
mpv

a media player

Copyright: GPLv2+

Manual
section:

1

Manual group: multimedia

Table of Contents
SYNOPSIS 6

DESCRIPTION 7

INTERACTIVE CONTROL 8

Keyboard Control 8

Mouse Control 11

USAGE 12

Legacy option syntax 12

Escaping spaces and other special characters 12

Paths 13

Per-File Options 13

List Options 14

Playing DVDs 15

CONFIGURATION FILES 16

Location and Syntax 16

Escaping spaces and special characters 16

Putting Command Line Options into the Configuration File 16

File-specific Configuration Files 16

Profiles 17

Auto profiles 17

TAKING SCREENSHOTS 19

TERMINAL STATUS LINE 20

LOW LATENCY PLAYBACK 21

PROTOCOLS 22

PSEUDO GUI MODE 24

OPTIONS 25

Track Selection 25

Playback Control 26

Program Behavior 30

Video 34

Audio 43

Subtitles 50

Window 60

Disc Devices 67

Equalizer 68

Demuxer 69

Input 73

OSD 74

Screenshot 77

Software Scaler 80

Audio Resampler 80

Terminal 81

TV 82

Cache 85

Network 87

DVB 89

ALSA audio output options 89

GPU renderer options 90

Miscellaneous 109

AUDIO OUTPUT DRIVERS 114

VIDEO OUTPUT DRIVERS 118

AUDIO FILTERS 127

VIDEO FILTERS 132

ENCODING 142

COMMAND INTERFACE 144

input.conf 144

General Input Command Syntax 144

List of Input Commands 145

Input Commands that are Possibly Subject to Change 150

Hooks 154

Legacy hook API 155

Input Command Prefixes 156

Input Sections 156

Properties 157

Property list 157

Inconsistencies between options and properties 176

Property Expansion 177

Raw and Formatted Properties 178

ON SCREEN CONTROLLER 179

Using the OSC 179

The Interface 179

Key Bindings 180

Configuration 180

Config Syntax 180

Command-line Syntax 181

Configurable Options 181

Script Commands 183

STATS 184

Usage 184

Font 184

Configuration 184

Configurable Options 184

Different key bindings 186

LUA SCRIPTING 187

Example 187

Details on the script initialization and lifecycle 187

mp functions 187

Advanced mp functions 192

mp.msg functions 193

mp.options functions 193

mp.utils functions 194

Events 196

List of events 197

Extras 198

JAVASCRIPT 199

Example 199

Similarities with Lua 199

Differences from Lua 199

Language features - ECMAScript 5 199

Unsupported Lua APIs and their JS alternatives 199

Scripting APIs - identical to Lua 200

Additional utilities 201

Timers (global) 202

CommonJS modules and require(id) 202

The event loop 203

JSON IPC 204

Socat example 204

Command Prompt example 204

Protocol 205

Commands 205

UTF-8 207

CHANGELOG 208

EMBEDDING INTO OTHER PROGRAMS (LIBMPV) 209

C PLUGINS 210

C plugins location 210

API 210

Linkage to libmpv 210

Examples 210

ENVIRONMENT VARIABLES 211

EXIT CODES 213

FILES 214

FILES ON WINDOWS 215

SYNOPSIS
mpv [options] [file|URL|PLAYLIST|-]
mpv [options] files

DESCRIPTION
mpv is a media player based on MPlayer and mplayer2. It supports a wide variety of video file formats,
audio and video codecs, and subtitle types. Special input URL types are available to read input from a
variety of sources other than disk files. Depending on platform, a variety of different video and audio output
methods are supported.

Usage examples to get you started quickly can be found at the end of this man page.

INTERACTIVE CONTROL
mpv has a fully configurable, command-driven control layer which allows you to control mpv using
keyboard, mouse, or remote control (there is no LIRC support - configure remotes as input devices
instead).

See the --input- options for ways to customize it.

The following listings are not necessarily complete. See etc/input.conf for a list of default bindings.
User input.conf files and Lua scripts can define additional key bindings.

Keyboard Control
LEFT and RIGHT

Seek backward/forward 5 seconds. Shift+arrow does a 1 second exact seek (see --hr-seek).

UP and DOWN

Seek forward/backward 1 minute. Shift+arrow does a 5 second exact seek (see --hr-seek).

Ctrl+LEFT and Ctrl+RIGHT

Seek to the previous/next subtitle. Subject to some restrictions and might not always work; see
sub-seek command.

Ctrl+Shift+Left and Ctrl+Shift+Right

Adjust subtitle delay so that the next or previous subtitle is displayed now. This is especially useful to
sync subtitles to audio.

[and]

Decrease/increase current playback speed by 10%.

{ and }

Halve/double current playback speed.

BACKSPACE

Reset playback speed to normal.

Shift+BACKSPACE

Undo the last seek. This works only if the playlist entry was not changed. Hitting it a second time will
go back to the original position. See revert-seek command for details.

Shift+Ctrl+BACKSPACE

Mark the current position. This will then be used by Shift+BACKSPACE as revert position (once you
seek back, the marker will be reset). You can use this to seek around in the file and then return to the
exact position where you left off.

< and >

Go backward/forward in the playlist.

ENTER

Go forward in the playlist.

p / SPACE

Pause (pressing again unpauses).

.

Step forward. Pressing once will pause, every consecutive press will play one frame and then go into
pause mode again.

,

Step backward. Pressing once will pause, every consecutive press will play one frame in reverse and
then go into pause mode again.

q

Stop playing and quit.

Q

Like q, but store the current playback position. Playing the same file later will resume at the old
playback position if possible.

/ and *

Decrease/increase volume.

9 and 0

Decrease/increase volume.

m

Mute sound.

_

Cycle through the available video tracks.

#

Cycle through the available audio tracks.

f

Toggle fullscreen (see also --fs).

ESC

Exit fullscreen mode.

T

Toggle stay-on-top (see also --ontop).

w and W

Decrease/increase pan-and-scan range. The e key does the same as W currently, but use is
discouraged.

o (also P)

Show progression bar, elapsed time and total duration on the OSD.

O

Toggle OSD states between normal and playback time/duration.

v

Toggle subtitle visibility.

j and J

Cycle through the available subtitles.

z and Z

Adjust subtitle delay by +/- 0.1 seconds. The x key does the same as Z currently, but use is
discouraged.

l

Set/clear A-B loop points. See ab-loop command for details.

L

Toggle infinite looping.

Ctrl + and Ctrl -

Adjust audio delay (A/V sync) by +/- 0.1 seconds.

u

Switch between applying no style overrides to SSA/ASS subtitles, and overriding them almost
completely with the normal subtitle style. See --sub-ass-override for more info.

V

Toggle subtitle VSFilter aspect compatibility mode. See --sub-ass-vsfilter-aspect-compat
for more info.

r and R

Move subtitles up/down. The t key does the same as R currently, but use is discouraged.

s

Take a screenshot.

S

Take a screenshot, without subtitles. (Whether this works depends on VO driver support.)

Ctrl s

Take a screenshot, as the window shows it (with subtitles, OSD, and scaled video).

PGUP and PGDWN

Seek to the beginning of the previous/next chapter. In most cases, "previous" will actually go to the
beginning of the current chapter; see --chapter-seek-threshold.

Shift+PGUP and Shift+PGDWN

Seek backward or forward by 10 minutes. (This used to be mapped to PGUP/PGDWN without Shift.)

d

Activate/deactivate deinterlacer.

A

Cycle aspect ratio override.

Ctrl h

Toggle hardware video decoding on/off.

Alt+LEFT, Alt+RIGHT, Alt+UP, Alt+DOWN

Move the video rectangle (panning).

Alt + and Alt -

Combining Alt with the + or - keys changes video zoom.

Alt+BACKSPACE

Reset the pan/zoom settings.

F9

Show the playlist and the current position in it (useful only if a UI window is used, broken on the
terminal).

F10

Show the list of audio and subtitle streams (useful only if a UI window is used, broken on the
terminal).

(The following keys are valid only when using a video output that supports the corresponding adjustment.)

1 and 2

Adjust contrast.

3 and 4

Adjust brightness.

5 and 6

Adjust gamma.

7 and 8

Adjust saturation.

Alt+0 (and command+0 on OSX)

Resize video window to half its original size.

Alt+1 (and command+1 on OSX)

Resize video window to its original size.

Alt+2 (and command+2 on OSX)

Resize video window to double its original size.

command + f (OSX only)

Toggle fullscreen (see also --fs).

(The following keys are valid if you have a keyboard with multimedia keys.)

PAUSE

Pause.

STOP

Stop playing and quit.

PREVIOUS and NEXT

Seek backward/forward 1 minute.

If you miss some older key bindings, look at etc/restore-old-bindings.conf in the mpv git
repository.

Mouse Control
button 3 and button 4

Seek backward/forward 1 minute.

button 5 and button 6

Decrease/increase volume.

USAGE
Command line arguments starting with - are interpreted as options, everything else as filenames or URLs.
All options except flag options (or choice options which include yes) require a parameter in the form
--option=value.

One exception is the lone - (without anything else), which means media data will be read from stdin. Also,
-- (without anything else) will make the player interpret all following arguments as filenames, even if they
start with -. (To play a file named -, you need to use ./-.)

Every flag option has a no-flag counterpart, e.g. the opposite of the --fs option is --no-fs. --fs=yes is
same as --fs, --fs=no is the same as --no-fs.

If an option is marked as (XXX only), it will only work in combination with the XXX option or if XXX is
compiled in.

Legacy option syntax
The --option=value syntax is not strictly enforced, and the alternative legacy syntax -option value
and --option value will also work. This is mostly for compatibility with MPlayer. Using these should be
avoided. Their semantics can change any time in the future.

For example, the alternative syntax will consider an argument following the option a filename.
mpv -fs no will attempt to play a file named no, because --fs is a flag option that requires no
parameter. If an option changes and its parameter becomes optional, then a command line using the
alternative syntax will break.

Currently, the parser makes no difference whether an option starts with -- or a single -. This might also
change in the future, and --option value might always interpret value as filename in order to reduce
ambiguities.

Escaping spaces and other special characters
Keep in mind that the shell will partially parse and mangle the arguments you pass to mpv. For example,
you might need to quote or escape options and filenames:

mpv "filename with spaces.mkv" --title="window title"

It gets more complicated if the suboption parser is involved. The suboption parser puts several options
into a single string, and passes them to a component at once, instead of using multiple options on the
level of the command line.

The suboption parser can quote strings with " and [...]. Additionally, there is a special form of quoting
with %n% described below.

For example, assume the hypothetical foo filter can take multiple options:

mpv test.mkv --vf=foo:option1=value1:option2:option3=value3,bar

This passes option1 and option3 to the foo filter, with option2 as flag (implicitly option2=yes), and
adds a bar filter after that. If an option contains spaces or characters like , or :, you need to quote them:

mpv '--vf=foo:option1="option value with spaces",bar'

Shells may actually strip some quotes from the string passed to the commandline, so the example quotes
the string twice, ensuring that mpv receives the " quotes.

The [...] form of quotes wraps everything between [and]. It's useful with shells that don't interpret
these characters in the middle of an argument (like bash). These quotes are balanced (since mpv 0.9.0):
the [and] nest, and the quote terminates on the last] that has no matching [within the string. (For
example, [a[b]c] results in a[b]c.)

The fixed-length quoting syntax is intended for use with external scripts and programs.

It is started with % and has the following format:

%n%string_of_length_n

Examples

mpv '--vf=foo:option1=%11%quoted text' test.avi

Or in a script:

mpv --vf=foo:option1=%`expr length "$NAME"`%"$NAME" test.avi

Suboptions passed to the client API are also subject to escaping. Using mpv_set_option_string() is
exactly like passing --name=data to the command line (but without shell processing of the string). Some
options support passing values in a more structured way instead of flat strings, and can avoid the
suboption parsing mess. For example, --vf supports MPV_FORMAT_NODE, which lets you pass
suboptions as a nested data structure of maps and arrays.

Paths
Some care must be taken when passing arbitrary paths and filenames to mpv. For example, paths starting
with - will be interpreted as options. Likewise, if a path contains the sequence ://, the string before that
might be interpreted as protocol prefix, even though :// can be part of a legal UNIX path. To avoid
problems with arbitrary paths, you should be sure that absolute paths passed to mpv start with /, and
prefix relative paths with ./.

Using the file:// pseudo-protocol is discouraged, because it involves strange URL unescaping rules.

The name - itself is interpreted as stdin, and will cause mpv to disable console controls. (Which makes it
suitable for playing data piped to stdin.)

The special argument -- can be used to stop mpv from interpreting the following arguments as options.

When using the client API, you should strictly avoid using mpv_command_string for invoking the
loadfile command, and instead prefer e.g. mpv_command to avoid the need for filename escaping.

For paths passed to suboptions, the situation is further complicated by the need to escape special
characters. To work this around, the path can be additionally wrapped in the fixed-length syntax, e.g.
%n%string_of_length_n (see above).

Some mpv options interpret paths starting with ~. Currently, the prefix ~~/ expands to the mpv
configuration directory (usually ~/.config/mpv/). ~/ expands to the user's home directory. (The trailing
/ is always required.) There are the following paths as well:

Name Meaning

~~home/ same as ~~/

~~global/ the global config path, if available (not on win32)

~~osxbundle/ the OSX bundle resource path (OSX only)

~~desktop/ the path to the desktop (win32, OSX)

Per-File Options
When playing multiple files, any option given on the command line usually affects all files. Example:

mpv --a file1.mkv --b file2.mkv --c

File Active options

file1.mkv --a --b --c

file2.mkv --a --b --c

(This is different from MPlayer and mplayer2.)

Also, if any option is changed at runtime (via input commands), they are not reset when a new file is
played.

Sometimes, it is useful to change options per-file. This can be achieved by adding the special per-file
markers --{ and --}. (Note that you must escape these on some shells.) Example:

mpv --a file1.mkv --b --\{ --c file2.mkv --d file3.mkv --e --\} file4.mkv --f

File Active options

file1.mkv --a --b --f

file2.mkv --a --b --f --c --d --e

file3.mkv --a --b --f --c --d --e

file4.mkv --a --b --f

Additionally, any file-local option changed at runtime is reset when the current file stops playing. If option
--c is changed during playback of file2.mkv, it is reset when advancing to file3.mkv. This only
affects file-local options. The option --a is never reset here.

List Options
Some options which store lists of option values can have action suffixes. For example, you can set a
,-separated list of filters with --vf, but the option also allows you to append filters with --vf-append.

Options for filenames do not use , as separator, but : (Unix) or ; (Windows).

Suffix Meaning

-add Append 1 or more items (may become alias for -append)

-append Append single item (avoids need for escaping)

-clr Clear the option

-del Delete an existing item by integer index

-pre Prepend 1 or more items

-set Set a list of items

-toggle Append an item, or remove if if it already exists

Although some operations allow specifying multiple ,-separated items, using this is strongly discouraged
and deprecated, except for -set.

Without suffix, the action taken is normally -set.

Some options (like --sub-file, --audio-file, --glsl-shader) are aliases for the proper option
with -append action. For example, --sub-file is an alias for --sub-files-append.

Some options only support a subset of the above.

Options of this type can be changed at runtime using the change-list command, which takes the suffix
as separate operation parameter.

Playing DVDs
DVDs can be played with the dvd://[title] syntax. The optional title specifier is a number which
selects between separate video streams on the DVD. If no title is given (dvd://) then the longest title is
selected automatically by the library. This is usually what you want. mpv does not support DVD menus.

DVDs which have been copied on to a hard drive or other mounted filesystem (by e.g. the dvdbackup
tool) are accommodated by specifying the path to the local copy: --dvd-device=PATH. Alternatively,
running mpv PATH should auto-detect a DVD directory tree and play the longest title.

Note

DVD library choices

mpv uses a different default DVD library than MPlayer. MPlayer uses libdvdread by default, and
mpv uses libdvdnav by default. Both libraries are developed in parallel, but libdvdnav is intended to
support more sophisticated DVD features such as menus and multi-angle playback. mpv uses
libdvdnav for files specified as either dvd://... or dvdnav://.... To use libdvdread, which will
produce behavior more like MPlayer, specify dvdread://... instead. Some users have
experienced problems when using libdvdnav, in which playback gets stuck in a DVD menu stream.
These problems are reported to go away when auto-selecting the title (dvd:// rather than
dvd://1) or when using libdvdread (e.g. dvdread://0). There are also outstanding bugs in
libdvdnav with seeking backwards and forwards in a video stream. Specify dvdread://... to fix
such problems.

Note

DVD subtitles

DVDs use image-based subtitles. Image subtitles are implemented as a bitmap video stream which
can be superimposed over the main movie. mpv's subtitle styling and positioning options and
keyboard shortcuts generally do not work with image-based subtitles. Exceptions include options
like --stretch-dvd-subs and --stretch-image-subs-to-screen.

CONFIGURATION FILES

Location and Syntax
You can put all of the options in configuration files which will be read every time mpv is run. The
system-wide configuration file 'mpv.conf' is in your configuration directory (e.g. /etc/mpv or
/usr/local/etc/mpv), the user-specific one is ~/.config/mpv/mpv.conf. For details and platform
specifics (in particular Windows paths) see the FILES section.

User-specific options override system-wide options and options given on the command line override either.
The syntax of the configuration files is option=value. Everything after a # is considered a comment.
Options that work without values can be enabled by setting them to yes and disabled by setting them to
no. Even suboptions can be specified in this way.

Example configuration file

Use GPU-accelerated video output by default.
vo=gpu
Use quotes for text that can contain spaces:
status-msg="Time: ${time-pos}"

Escaping spaces and special characters
This is done like with command line options. The shell is not involved here, but option values still need to
be quoted as a whole if it contains certain characters like spaces. A config entry can be quoted with ", as
well as with the fixed-length syntax (%n%) mentioned before. This is like passing the exact contents of the
quoted string as command line option. C-style escapes are currently _not_ interpreted on this level,
although some options do this manually. (This is a mess and should probably be changed at some point.)

Putting Command Line Options into the Configuration File
Almost all command line options can be put into the configuration file. Here is a small guide:

Option Configuration file entry

--flag flag

-opt val opt=val

--opt=val opt=val

-opt "has spaces" opt="has spaces"

File-specific Configuration Files
You can also write file-specific configuration files. If you wish to have a configuration file for a file called
'video.avi', create a file named 'video.avi.conf' with the file-specific options in it and put it in
~/.config/mpv/. You can also put the configuration file in the same directory as the file to be played.
Both require you to set the --use-filedir-conf option (either on the command line or in your global
config file). If a file-specific configuration file is found in the same directory, no file-specific configuration is
loaded from ~/.config/mpv. In addition, the --use-filedir-conf option enables directory-specific
configuration files. For this, mpv first tries to load a mpv.conf from the same directory as the file played and
then tries to load any file-specific configuration.

Profiles
To ease working with different configurations, profiles can be defined in the configuration files. A profile
starts with its name in square brackets, e.g. [my-profile]. All following options will be part of the profile.
A description (shown by --profile=help) can be defined with the profile-desc option. To end the
profile, start another one or use the profile name default to continue with normal options.

You can list profiles with --profile=help, and show the contents of a profile with
--show-profile=<name> (replace <name> with the profile name). You can apply profiles on start with
the --profile=<name> option, or at runtime with the apply-profile <name> command.

Example mpv config file with profiles

normal top-level option
fullscreen=yes

a profile that can be enabled with --profile=big-cache
[big-cache]
cache=123400
demuxer-readahead-secs=20

[slow]
profile-desc="some profile name"
reference a builtin profile
profile=gpu-hq

[fast]
vo=vdpau

using a profile again extends it
[slow]
framedrop=no
you can also include other profiles
profile=big-cache

Auto profiles
Some profiles are loaded automatically. The following example demonstrates this:

Auto profile loading

[protocol.dvd]
profile-desc="profile for dvd:// streams"
alang=en

[extension.flv]
profile-desc="profile for .flv files"
vf=flip

The profile name follows the schema type.name, where type can be protocol for the input/output
protocol in use (see --list-protocols), and extension for the extension of the path of the currently
played file (not the file format).

This feature is very limited, and there are no other auto profiles.

TAKING SCREENSHOTS
Screenshots of the currently played file can be taken using the 'screenshot' input mode command, which is
by default bound to the s key. Files named mpv-shotNNNN.jpg will be saved in the working directory,
using the first available number - no files will be overwritten. In pseudo-GUI mode, the screenshot will be
saved somewhere else. See PSEUDO GUI MODE.

A screenshot will usually contain the unscaled video contents at the end of the video filter chain and
subtitles. By default, S takes screenshots without subtitles, while s includes subtitles.

Unlike with MPlayer, the screenshot video filter is not required. This filter was never required in mpv,
and has been removed.

TERMINAL STATUS LINE
During playback, mpv shows the playback status on the terminal. It looks like something like this:

AV: 00:03:12 / 00:24:25 (13%) A-V: -0.000

The status line can be overridden with the --term-status-msg option.

The following is a list of things that can show up in the status line. Input properties, that can be used to get
the same information manually, are also listed.

• AV: or V: (video only) or A: (audio only)

• The current time position in HH:MM:SS format (playback-time property)

• The total file duration (absent if unknown) (length property)

• Playback speed, e.g. `` x2.0``. Only visible if the speed is not normal. This is the user-requested
speed, and not the actual speed (usually they should be the same, unless playback is too slow).
(speed property.)

• Playback percentage, e.g. (13%). How much of the file has been played. Normally calculated out of
playback position and duration, but can fallback to other methods (like byte position) if these are not
available. (percent-pos property.)

• The audio/video sync as A-V: 0.000. This is the difference between audio and video time.
Normally it should be 0 or close to 0. If it's growing, it might indicate a playback problem. (avsync
property.)

• Total A/V sync change, e.g. ct: -0.417. Normally invisible. Can show up if there is audio
"missing", or not enough frames can be dropped. Usually this will indicate a problem.
(total-avsync-change property.)

• Encoding state in {...}, only shown in encoding mode.

• Display sync state. If display sync is active (display-sync-active property), this shows
DS: 2.500/13, where the first number is average number of vsyncs per video frame (e.g. 2.5 when
playing 24Hz videos on 60Hz screens), which might jitter if the ratio doesn't round off, or there are
mistimed frames (vsync-ratio), and the second number of estimated number of vsyncs which took
too long (vo-delayed-frame-count property). The latter is a heuristic, as it's generally not
possible to determine this with certainty.

• Dropped frames, e.g. Dropped: 4. Shows up only if the count is not 0. Can grow if the video
framerate is higher than that of the display, or if video rendering is too slow. May also be incremented
on "hiccups" and when the video frame couldn't be displayed on time. (vo-drop-frame-count
property.) If the decoder drops frames, the number of decoder-dropped frames is appended to the
display as well, e.g.: Dropped: 4/34. This happens only if decoder frame dropping is enabled with
the --framedrop options. (drop-frame-count property.)

• Cache state, e.g. Cache: 2s+134KB. Visible if the stream cache is enabled. The first value shows
the amount of video buffered in the demuxer in seconds, the second value shows the sum of the
demuxer forward cache size and the additional data buffered in the stream cache in kilobytes.
(demuxer-cache-duration, demuxer-cache-state, cache-used properties.)

LOW LATENCY PLAYBACK
mpv is optimized for normal video playback, meaning it actually tries to buffer as much data as it seems to
make sense. This will increase latency. Reducing latency is possible only by specifically disabling features
which increase latency.

The builtin low-latency profile tries to apply some of the options which can reduce latency. You can use
--profile=low-latency to apply all of them. You can list the contents with
--show-profile=low-latency (some of the options are quite obscure, and may change every mpv
release).

Be aware that some of the options can reduce playback quality.

Most latency is actually caused by inconvenient timing behavior. You can disable this with --untimed,
but it will likely break, unless the stream has no audio, and the input feeds data to the player at a constant
rate.

Another common problem is with MJPEG streams. These do not signal the correct framerate. Using
--untimed or --no-correct-pts --fps=60 might help.

For livestreams, data can build up due to pausing the stream, due to slightly lower playback rate, or
"buffering" pauses. If the demuxer cache is enabled, these can be skipped manually. The experimental
drop-buffers command can be used to discard any buffered data, though it's very disruptive.

In some cases, manually tuning TCP buffer sizes and such can help to reduce latency.

Additional options that can be tried:

• --opengl-glfinish=yes, can reduce buffering in the graphics driver

• --opengl-swapinterval=0, same

• --vo=xv, same

• without audio --framedrop=no --speed=1.01 may help for live sources (results can be mixed)

PROTOCOLS
http://..., https://, ...

Many network protocols are supported, but the protocol prefix must always be specified. mpv will
never attempt to guess whether a filename is actually a network address. A protocol prefix is always
required.

Note that not all prefixes are documented here. Undocumented prefixes are either aliases to
documented protocols, or are just redirections to protocols implemented and documented in FFmpeg.

data: is supported in FFmpeg (not in Libav), but needs to be in the format data://. This is done to
avoid ambiguity with filenames. You can also prefix it with lavf:// or ffmpeg://.

ytdl://...

By default, the youtube-dl hook script (enabled by default for mpv CLI) only looks at http URLs.
Prefixing an URL with ytdl:// forces it to be always processed by the script. This can also be used
to invoke special youtube-dl functionality like playing a video by ID or invoking search.

Keep in mind that you can't pass youtube-dl command line options by this, and you have to use
--ytdl-raw-options instead.

-

Play data from stdin.

smb://PATH

Play a path from Samba share.

bd://[title][/device] --bluray-device=PATH

Play a Blu-ray disc. Since libbluray 1.0.1, you can read from ISO files by passing them to
--bluray-device.

title can be: longest or first (selects the default playlist); mpls/<number> (selects
<number>.mpls playlist); <number> (select playlist with the same index). mpv will list the available
playlists on loading.

bluray:// is an alias.

dvd://[title|[starttitle]-endtitle][/device] --dvd-device=PATH

Play a DVD. DVD menus are not supported. If no title is given, the longest title is auto-selected.

dvdnav:// is an old alias for dvd:// and does exactly the same thing.

dvdread://...:

Play a DVD using the old libdvdread code. This is what MPlayer and older mpv versions used for
dvd://. Use is discouraged. It's provided only for compatibility and for transition, and to work around
outstanding dvdnav bugs (see "DVD library choices" above).

tv://[channel][/input_id] --tv-...

Analogue TV via V4L. Also useful for webcams. (Linux only.)

pvr:// --pvr-...

PVR. (Linux only.)

dvb://[cardnumber@]channel --dvbin-...

Digital TV via DVB. (Linux only.)

mf://[filemask|@listfile] --mf-...

Play a series of images as video.

cdda://[device] --cdrom-device=PATH --cdda-...

Play CD.

lavf://...

Access any FFmpeg/Libav libavformat protocol. Basically, this passed the string after the // directly
to libavformat.

av://type:options

This is intended for using libavdevice inputs. type is the libavdevice demuxer name, and options is
the (pseudo-)filename passed to the demuxer.

For example, mpv av://lavfi:mandelbrot makes use of the libavfilter wrapper included in
libavdevice, and will use the mandelbrot source filter to generate input data.

avdevice:// is an alias.

file://PATH

A local path as URL. Might be useful in some special use-cases. Note that PATH itself should start
with a third / to make the path an absolute path.

appending://PATH

Play a local file, but assume it's being appended to. This is useful for example for files that are
currently being downloaded to disk. This will block playback, and stop playback only if no new data
was appended after a timeout of about 2 seconds.

Using this is still a bit of a bad idea, because there is no way to detect if a file is actually being
appended, or if it's still written. If you're trying to play the output of some program, consider using a
pipe (something | mpv -). If it really has to be a file on disk, use tail to make it wait forever, e.g.
tail -f -c +0 file.mkv | mpv -.

fd://123

Read data from the given file descriptor (for example 123). This is similar to piping data to stdin via -,
but can use an arbitrary file descriptor.

fdclose://123

Like fd://, but the file descriptor is closed after use. When using this you need to ensure that the
same fd URL will only be used once.

edl://[edl specification as in edl-mpv.rst]

Stitch together parts of multiple files and play them.

null://

Simulate an empty file. If opened for writing, it will discard all data. The null demuxer will specifically
pass autoprobing if this protocol is used (while it's not automatically invoked for empty files).

memory://data

Use the data part as source data.

hex://data

Like memory://, but the string is interpreted as hexdump.

PSEUDO GUI MODE
mpv has no official GUI, other than the OSC (ON SCREEN CONTROLLER), which is not a full GUI and is
not meant to be. However, to compensate for the lack of expected GUI behavior, mpv will in some cases
start with some settings changed to behave slightly more like a GUI mode.

Currently this happens only in the following cases:

• if started using the mpv.desktop file on Linux (e.g. started from menus or file associations provided
by desktop environments)

• if started from explorer.exe on Windows (technically, if it was started on Windows, and all of the
stdout/stderr/stdin handles are unset)

• started out of the bundle on OSX

• if you manually use --player-operation-mode=pseudo-gui on the command line

This mode applies options from the builtin profile builtin-pseudo-gui, but only if these haven't been
set in the user's config file or on the command line. Also, for compatibility with the old pseudo-gui behavior,
the options in the pseudo-gui profile are applied unconditionally. In addition, the profile makes sure to
enable the pseudo-GUI mode, so that --profile=pseudo-gui works like in older mpv releases. The
profiles are currently defined as follows:

[builtin-pseudo-gui]
terminal=no
force-window=yes
idle=once
screenshot-directory=~~desktop/
[pseudo-gui]
player-operation-mode=pseudo-gui

Warning

Currently, you can extend the pseudo-gui profile in the config file the normal way. This is
deprecated. In future mpv releases, the behavior might change, and not apply your additional
settings, and/or use a different profile name.

OPTIONS

Track Selection
--alang=<languagecode[,languagecode,...]>

Specify a priority list of audio languages to use. Different container formats employ different language
codes. DVDs use ISO 639-1 two-letter language codes, Matroska, MPEG-TS and NUT use ISO 639-2
three-letter language codes, while OGM uses a free-form identifier. See also --aid.

Examples

• mpv dvd://1 --alang=hu,en chooses the Hungarian language track on a DVD and
falls back on English if Hungarian is not available.

• mpv --alang=jpn example.mkv plays a Matroska file with Japanese audio.

--slang=<languagecode[,languagecode,...]>

Specify a priority list of subtitle languages to use. Different container formats employ different
language codes. DVDs use ISO 639-1 two letter language codes, Matroska uses ISO 639-2 three
letter language codes while OGM uses a free-form identifier. See also --sid.

Examples

• mpv dvd://1 --slang=hu,en chooses the Hungarian subtitle track on a DVD and
falls back on English if Hungarian is not available.

• mpv --slang=jpn example.mkv plays a Matroska file with Japanese subtitles.

--vlang=<...>

Equivalent to --alang and --slang, for video tracks.

--aid=<ID|auto|no>

Select audio track. auto selects the default, no disables audio. See also --alang. mpv normally
prints available audio tracks on the terminal when starting playback of a file.

--audio is an alias for --aid.

--aid=no or --audio=no or --no-audio disables audio playback. (The latter variant does not
work with the client API.)

--sid=<ID|auto|no>

Display the subtitle stream specified by <ID>. auto selects the default, no disables subtitles.

--sub is an alias for --sid.

--sid=no or --sub=no or --no-sub disables subtitle decoding. (The latter variant does not work
with the client API.)

--vid=<ID|auto|no>

Select video channel. auto selects the default, no disables video.

--video is an alias for --vid.

--vid=no or --video=no or --no-video disables video playback. (The latter variant does not
work with the client API.)

If video is disabled, mpv will try to download the audio only if media is streamed with youtube-dl,
because it saves bandwidth. This is done by setting the ytdl_format to "bestaudio/best" in the
ytdl_hook.lua script.

--edition=<ID|auto>

(Matroska files only) Specify the edition (set of chapters) to use, where 0 is the first. If set to auto (the
default), mpv will choose the first edition declared as a default, or if there is no default, the first edition
defined.

--track-auto-selection=<yes|no>

Enable the default track auto-selection (default: yes). Enabling this will make the player select streams
according to --aid, --alang, and others. If it is disabled, no tracks are selected. In addition, the
player will not exit if no tracks are selected, and wait instead (this wait mode is similar to pausing, but
the pause option is not set).

This is useful with --lavfi-complex: you can start playback in this mode, and then set select
tracks at runtime by setting the filter graph. Note that if --lavfi-complex is set before playback is
started, the referenced tracks are always selected.

Playback Control
--start=<relative time>

Seek to given time position.

The general format for absolute times is [[hh:]mm:]ss[.ms]. If the time is given with a prefix of +
or -, the seek is relative from the start or end of the file. (Since mpv 0.14, the start of the file is always
considered 0.)

pp% seeks to percent position pp (0-100).

#c seeks to chapter number c. (Chapters start from 1.)

none resets any previously set option (useful for libmpv).

Examples

--start=+56, --start=+00:56

Seeks to the start time + 56 seconds.

--start=-56, --start=-00:56

Seeks to the end time - 56 seconds.

--start=01:10:00

Seeks to 1 hour 10 min.

--start=50%

Seeks to the middle of the file.

--start=30 --end=40

Seeks to 30 seconds, plays 10 seconds, and exits.

--start=-3:20 --length=10

Seeks to 3 minutes and 20 seconds before the end of the file, plays 10 seconds, and
exits.

--start='#2' --end='#4'

Plays chapters 2 and 3, and exits.

--end=<relative time>

Stop at given time. Use --length if the time should be relative to --start. See --start for valid
option values and examples.

--length=<relative time>

Stop after a given time relative to the start time. See --start for valid option values and examples.

If both --end and --length are provided, playback will stop when it reaches either of the two
endpoints.

--rebase-start-time=<yes|no>

Whether to move the file start time to 00:00:00 (default: yes). This is less awkward for files which
start at a random timestamp, such as transport streams. On the other hand, if there are timestamp
resets, the resulting behavior can be rather weird. For this reason, and in case you are actually
interested in the real timestamps, this behavior can be disabled with no.

--speed=<0.01-100>

Slow down or speed up playback by the factor given as parameter.

If --audio-pitch-correction (on by default) is used, playing with a speed higher than normal
automatically inserts the scaletempo audio filter.

--pause

Start the player in paused state.

--shuffle

Play files in random order.

--chapter=<start[-end]>

Specify which chapter to start playing at. Optionally specify which chapter to end playing at.

See also: --start.

--playlist-start=<auto|index>

Set which file on the internal playlist to start playback with. The index is an integer, with 0 meaning the
first file. The value auto means that the selection of the entry to play is left to the playback resume
mechanism (default). If an entry with the given index doesn't exist, the behavior is unspecified and
might change in future mpv versions. The same applies if the playlist contains further playlists (don't
expect any reasonable behavior). Passing a playlist file to mpv should work with this option, though.
E.g. mpv playlist.m3u --playlist-start=123 will work as expected, as long as
playlist.m3u does not link to further playlists.

The value no is a deprecated alias for auto.

--playlist=<filename>

Play files according to a playlist file (Supports some common formats. If no format is detected, it will
be treated as list of files, separated by newline characters. Note that XML playlist formats are not
supported.)

You can play playlists directly and without this option, however, this option disables any security
mechanisms that might be in place. You may also need this option to load plaintext files as playlist.

Warning

The way mpv uses playlist files via --playlist is not safe against maliciously constructed
files. Such files may trigger harmful actions. This has been the case for all mpv and MPlayer
versions, but unfortunately this fact was not well documented earlier, and some people have
even misguidedly recommended use of --playlist with untrusted sources. Do NOT use
--playlist with random internet sources or files you do not trust!

Playlist can contain entries using other protocols, such as local files, or (most severely),
special protocols like avdevice://, which are inherently unsafe.

--chapter-merge-threshold=<number>

Threshold for merging almost consecutive ordered chapter parts in milliseconds (default: 100). Some
Matroska files with ordered chapters have inaccurate chapter end timestamps, causing a small gap
between the end of one chapter and the start of the next one when they should match. If the end of
one playback part is less than the given threshold away from the start of the next one then keep
playing video normally over the chapter change instead of doing a seek.

--chapter-seek-threshold=<seconds>

Distance in seconds from the beginning of a chapter within which a backward chapter seek will go to
the previous chapter (default: 5.0). Past this threshold, a backward chapter seek will go to the
beginning of the current chapter instead. A negative value means always go back to the previous
chapter.

--hr-seek=<no|absolute|yes>

Select when to use precise seeks that are not limited to keyframes. Such seeks require decoding
video from the previous keyframe up to the target position and so can take some time depending on
decoding performance. For some video formats, precise seeks are disabled. This option selects the
default choice to use for seeks; it is possible to explicitly override that default in the definition of key
bindings and in input commands.

no: Never use precise seeks.

absolute: Use precise seeks if the seek is to an absolute position in the file, such as a
chapter seek, but not for relative seeks like the default behavior of arrow keys
(default).

yes: Use precise seeks whenever possible.

always: Same as yes (for compatibility).

--hr-seek-demuxer-offset=<seconds>

This option exists to work around failures to do precise seeks (as in --hr-seek) caused by bugs or
limitations in the demuxers for some file formats. Some demuxers fail to seek to a keyframe before the
given target position, going to a later position instead. The value of this option is subtracted from the
time stamp given to the demuxer. Thus, if you set this option to 1.5 and try to do a precise seek to 60
seconds, the demuxer is told to seek to time 58.5, which hopefully reduces the chance that it
erroneously goes to some time later than 60 seconds. The downside of setting this option is that
precise seeks become slower, as video between the earlier demuxer position and the real target may
be unnecessarily decoded.

--hr-seek-framedrop=<yes|no>

Allow the video decoder to drop frames during seek, if these frames are before the seek target. If this
is enabled, precise seeking can be faster, but if you're using video filters which modify timestamps or
add new frames, it can lead to precise seeking skipping the target frame. This e.g. can break frame
backstepping when deinterlacing is enabled.

Default: yes

--index=<mode>

Controls how to seek in files. Note that if the index is missing from a file, it will be built on the fly by
default, so you don't need to change this. But it might help with some broken files.

default: use an index if the file has one, or build it if missing

recreate: don't read or use the file's index

Note

This option only works if the underlying media supports seeking (i.e. not with stdin, pipe, etc).

--load-unsafe-playlists

Load URLs from playlists which are considered unsafe (default: no). This includes special protocols
and anything that doesn't refer to normal files. Local files and HTTP links on the other hand are
always considered safe.

Note that --playlist always loads all entries, so you use that instead if you really have the need for
this functionality.

--access-references=<yes|no>

Follow any references in the file being opened (default: yes). Disabling this is helpful if the file is
automatically scanned (e.g. thumbnail generation). If the thumbnail scanner for example encounters a
playlist file, which contains network URLs, and the scanner should not open these, enabling this
option will prevent it. This option also disables ordered chapters, mov reference files, opening of
archives, and a number of other features.

On older FFmpeg versions, this will not work in some cases. Some FFmpeg demuxers might not
respect this option.

This option does not prevent opening of paired subtitle files and such. Use --autoload-files=no
to prevent this.

This option does not always work if you open non-files (for example using dvd://directory would
open a whole bunch of files in the given directory). Prefixing the filename with ./ if it doesn't start with
a / will avoid this.

--loop-playlist=<N|inf|force|no>, --loop-playlist

Loops playback N times. A value of 1 plays it one time (default), 2 two times, etc. inf means forever.
no is the same as 1 and disables looping. If several files are specified on command line, the entire
playlist is looped. --loop-playlist is the same as --loop-playlist=inf.

The force mode is like inf, but does not skip playlist entries which have been marked as failing.
This means the player might waste CPU time trying to loop a file that doesn't exist. But it might be
useful for playing webradios under very bad network conditions.

--loop-file=<N|inf|no>, --loop=<N|inf|no>

Loop a single file N times. inf means forever, no means normal playback. For compatibility,
--loop-file and --loop-file=yes are also accepted, and are the same as
--loop-file=inf.

The difference to --loop-playlist is that this doesn't loop the playlist, just the file itself. If the
playlist contains only a single file, the difference between the two option is that this option performs a
seek on loop, instead of reloading the file.

--loop is an alias for this option.

--ab-loop-a=<time>, --ab-loop-b=<time>

Set loop points. If playback passes the b timestamp, it will seek to the a timestamp. Seeking past the
b point doesn't loop (this is intentional).

If both options are set to no or unset, looping is disabled. Otherwise, the start/end of playback is used
if one of the options is set to no or unset.

The loop-points can be adjusted at runtime with the corresponding properties. See also ab-loop
command.

--ordered-chapters, --no-ordered-chapters

Enabled by default. Disable support for Matroska ordered chapters. mpv will not load or search for
video segments from other files, and will also ignore any chapter order specified for the main file.

--ordered-chapters-files=<playlist-file>

Loads the given file as playlist, and tries to use the files contained in it as reference files when
opening a Matroska file that uses ordered chapters. This overrides the normal mechanism for loading
referenced files by scanning the same directory the main file is located in.

Useful for loading ordered chapter files that are not located on the local filesystem, or if the
referenced files are in different directories.

Note: a playlist can be as simple as a text file containing filenames separated by newlines.

--chapters-file=<filename>

Load chapters from this file, instead of using the chapter metadata found in the main file.

This accepts a media file (like mkv) or even a pseudo-format like ffmetadata and uses its chapters to
replace the current file's chapters. This doesn't work with OGM or XML chapters directly.

--sstep=<sec>

Skip <sec> seconds after every frame.

Note

Without --hr-seek, skipping will snap to keyframes.

--stop-playback-on-init-failure=<yes|no>

Stop playback if either audio or video fails to initialize (default: no). With no, playback will continue in
video-only or audio-only mode if one of them fails. This doesn't affect playback of audio-only or
video-only files.

Program Behavior
--help, --h

Show short summary of options.

You can also pass a string to this option, which will list all top-level options which contain the string in
the name, e.g. --h=scale for all options that contain the word scale. The special string * lists all
top-level options.

-v

Increment verbosity level, one level for each -v found on the command line.

--version, -V

Print version string and exit.

--no-config

Do not load default configuration files. This prevents loading of both the user-level and system-wide
mpv.conf and input.conf files. Other configuration files are blocked as well, such as resume
playback files.

Note

Files explicitly requested by command line options, like --include or
--use-filedir-conf, will still be loaded.

See also: --config-dir.

--list-options

Prints all available options.

--list-properties

Print a list of the available properties.

--list-protocols

Print a list of the supported protocols.

--log-file=<path>

Opens the given path for writing, and print log messages to it. Existing files will be truncated. The log
level is at least -v -v, but can be raised via --msg-level (the option cannot lower it below the
forced minimum log level).

--config-dir=<path>

Force a different configuration directory. If this is set, the given directory is used to load configuration
files, and all other configuration directories are ignored. This means the global mpv configuration
directory as well as per-user directories are ignored, and overrides through environment variables
(MPV_HOME) are also ignored.

Note that the --no-config option takes precedence over this option.

--save-position-on-quit

Always save the current playback position on quit. When this file is played again later, the player will
seek to the old playback position on start. This does not happen if playback of a file is stopped in any
other way than quitting. For example, going to the next file in the playlist will not save the position,
and start playback at beginning the next time the file is played.

This behavior is disabled by default, but is always available when quitting the player with Shift+Q.

--watch-later-directory=<path>

The directory in which to store the "watch later" temporary files.

The default is a subdirectory named "watch_later" underneath the config directory (usually
~/.config/mpv/).

--dump-stats=<filename>

Write certain statistics to the given file. The file is truncated on opening. The file will contain raw
samples, each with a timestamp. To make this file into a readable, the script
TOOLS/stats-conv.py can be used (which currently displays it as a graph).

This option is useful for debugging only.

--idle=<no|yes|once>

Makes mpv wait idly instead of quitting when there is no file to play. Mostly useful in input mode,
where mpv can be controlled through input commands. (Default: no)

once will only idle at start and let the player close once the first playlist has finished playing back.

--include=<configuration-file>

Specify configuration file to be parsed after the default ones.

--load-scripts=<yes|no>

If set to no, don't auto-load scripts from the scripts configuration subdirectory (usually
~/.config/mpv/scripts/). (Default: yes)

--script=<filename>

Load a Lua script. You can load multiple scripts by separating them with commas (,).

--script-opts=key1=value1,key2=value2,...

Set options for scripts. A script can query an option by key. If an option is used and what semantics
the option value has depends entirely on the loaded scripts. Values not claimed by any scripts are
ignored.

--merge-files

Pretend that all files passed to mpv are concatenated into a single, big file. This uses timeline/EDL
support internally.

--no-resume-playback

Do not restore playback position from the watch_later configuration subdirectory (usually
~/.config/mpv/watch_later/). See quit-watch-later input command.

--profile=<profile1,profile2,...>

Use the given profile(s), --profile=help displays a list of the defined profiles.

--reset-on-next-file=<all|option1,option2,...>

Normally, mpv will try to keep all settings when playing the next file on the playlist, even if they were
changed by the user during playback. (This behavior is the opposite of MPlayer's, which tries to reset
all settings when starting next file.)

Default: Do not reset anything.

This can be changed with this option. It accepts a list of options, and mpv will reset the value of these
options on playback start to the initial value. The initial value is either the default value, or as set by
the config file or command line.

In some cases, this might not work as expected. For example, --volume will only be reset if it is
explicitly set in the config file or the command line.

The special name all resets as many options as possible.

Examples

• --reset-on-next-file=pause Reset pause mode when switching to the next file.

• --reset-on-next-file=fullscreen,speed Reset fullscreen and playback speed
settings if they were changed during playback.

• --reset-on-next-file=all Try to reset all settings that were changed during
playback.

--write-filename-in-watch-later-config

Prepend the watch later config files with the name of the file they refer to. This is simply written as
comment on the top of the file.

Warning

This option may expose privacy-sensitive information and is thus disabled by default.

--ignore-path-in-watch-later-config

Ignore path (i.e. use filename only) when using watch later feature. (Default: disabled)

--show-profile=<profile>

Show the description and content of a profile.

--use-filedir-conf

Look for a file-specific configuration file in the same directory as the file that is being played. See
File-specific Configuration Files.

Warning

May be dangerous if playing from untrusted media.

--ytdl, --no-ytdl

Enable the youtube-dl hook-script. It will look at the input URL, and will play the video located on the
website. This works with many streaming sites, not just the one that the script is named after. This
requires a recent version of youtube-dl to be installed on the system. (Enabled by default.)

If the script can't do anything with an URL, it will do nothing.

The try_ytdl_first script option accepts a boolean 'yes' or 'no', and if 'yes' will try parsing the URL with
youtube-dl first, instead of the default where it's only after mpv failed to open it. This mostly depends
on whether most of your URLs need youtube-dl parsing.

The exclude script option accepts a |-separated list of URL patterns which mpv should not use with
youtube-dl. The patterns are matched after the http(s):// part of the URL.

The use_manifests script option makes mpv use the master manifest URL for formats like HLS and
DASH, if available, allowing for video/audio selection in runtime. It's disabled ("no") by default for
performance reasons.

^ matches the beginning of the URL, $ matches its end, and you should use % before any of the
characters ^$()%|,.[]*+-? to match that character.

Examples

• --script-opts=ytdl_hook-exclude='^youtube%.com' will exclude any URL
that starts with http://youtube.com or https://youtube.com.

• --script-opts=ytdl_hook-exclude='%.mkv$|%.mp4$' will exclude any URL
that ends with .mkv or .mp4.

See more lua patterns here: https://www.lua.org/manual/5.1/manual.html#5.4.1

--ytdl-format=<best|worst|mp4|webm|...>

https://www.lua.org/manual/5.1/manual.html#5.4.1

Video format/quality that is directly passed to youtube-dl. The possible values are specific to the
website and the video, for a given url the available formats can be found with the command
youtube-dl --list-formats URL. See youtube-dl's documentation for available aliases.
(Default: youtube-dl's default, currently bestvideo+bestaudio/best)

--ytdl-raw-options=<key>=<value>[,<key>=<value>[,...]]

Pass arbitrary options to youtube-dl. Parameter and argument should be passed as a key-value pair.
Options without argument must include =.

There is no sanity checking so it's possible to break things (i.e. passing invalid parameters to
youtube-dl).

A proxy URL can be passed for youtube-dl to use it in parsing the website. This is useful for
geo-restricted URLs. After youtube-dl parsing, some URLs also require a proxy for playback, so this
can pass that proxy information to mpv. Take note that SOCKS proxies aren't supported and https
URLs also bypass the proxy. This is a limitation in FFmpeg.

Example

• --ytdl-raw-options=username=user,password=pass

• --ytdl-raw-options=force-ipv6=

• --ytdl-raw-options=proxy=[http://127.0.0.1:3128]

• --ytdl-raw-options-append=proxy=http://127.0.0.1:3128

--load-stats-overlay=<yes|no>

Enable the builtin script that shows useful playback information on a key binding (default: yes). By
default, the i key is used (I to make the overlay permanent).

--player-operation-mode=<cplayer|pseudo-gui>

For enabling "pseudo GUI mode", which means that the defaults for some options are changed. This
option should not normally be used directly, but only by mpv internally, or mpv-provided scripts, config
files, or .desktop files.

Video
--vo=<driver>

Specify the video output backend to be used. See VIDEO OUTPUT DRIVERS for details and
descriptions of available drivers.

--vd=<...>

Specify a priority list of video decoders to be used, according to their family and name. See --ad for
further details. Both of these options use the same syntax and semantics; the only difference is that
they operate on different codec lists.

Note

See --vd=help for a full list of available decoders.

--vf=<filter1[=parameter1:parameter2:...],filter2,...>

Specify a list of video filters to apply to the video stream. See VIDEO FILTERS for details and
descriptions of the available filters. The option variants --vf-add, --vf-pre, --vf-del and
--vf-clr exist to modify a previously specified list, but you should not need these for typical use.

--untimed

Do not sleep when outputting video frames. Useful for benchmarks when used with --no-audio.

--framedrop=<mode>

Skip displaying some frames to maintain A/V sync on slow systems, or playing high framerate video
on video outputs that have an upper framerate limit.

The argument selects the drop methods, and can be one of the following:

<no>

Disable any framedropping.

<vo>

Drop late frames on video output (default). This still decodes and filters all frames, but doesn't
render them on the VO. It tries to query the display FPS (X11 only, not correct on multi-monitor
systems), or assumes infinite display FPS if that fails. Drops are indicated in the terminal status
line as Dropped: field. If the decoder is too slow, in theory all frames would have to be dropped
(because all frames are too late) - to avoid this, frame dropping stops if the effective framerate is
below 10 FPS.

<decoder>

Old, decoder-based framedrop mode. (This is the same as --framedrop=yes in mpv 0.5.x and
before.) This tells the decoder to skip frames (unless they are needed to decode future frames).
May help with slow systems, but can produce unwatchable choppy output, or even freeze the
display completely. Not recommended. The --vd-lavc-framedrop option controls what
frames to drop.

<decoder+vo>

Enable both modes. Not recommended.

Note

--vo=vdpau has its own code for the vo framedrop mode. Slight differences to other VOs are
possible.

--video-latency-hacks=<yes|no>

Enable some things which tend to reduce video latency by 1 or 2 frames (default: no). Note that this
option might be removed without notice once the player's timing code does not inherently need to do
these things anymore.

This does:

• Use the demuxer reported FPS for frame dropping. This avoids that the player needs to decode
1 frame in advance, lowering total latency in effect. This also means that if the demuxer reported
FPS is wrong, or the video filter chain changes FPS (e.g. deinterlacing), then it could drop too
many or not enough frames.

• Disable waiting for the first video frame. Normally the player waits for the first video frame to be
fully rendered before starting playback properly. Some VOs will lazily initialize stuff when
rendering the first frame, so if this is not done, there is some likeliness that the VO has to drop
some frames if rendering the first frame takes longer than needed.

--display-fps=<fps>

Set the display FPS used with the --video-sync=display-* modes. By default, a detected value
is used. Keep in mind that setting an incorrect value (even if slightly incorrect) can ruin video
playback. On multi-monitor systems, there is a chance that the detected value is from the wrong
monitor.

Set this option only if you have reason to believe the automatically determined value is wrong.

--hwdec=<api>

Specify the hardware video decoding API that should be used if possible. Whether hardware
decoding is actually done depends on the video codec. If hardware decoding is not possible, mpv will
fall back on software decoding.

<api> can be one of the following:

no: always use software decoding (default)

auto: enable best hw decoder (see below)

yes: exactly the same as auto

auto-copy: enable best hw decoder with copy-back (see below)

vdpau: requires --vo=gpu or --vo=vdpau (Linux only)

vdpau-copy: copies video back into system RAM (Linux with some GPUs only)

vaapi: requires --vo=gpu or --vo=vaapi (Linux only)

vaapi-copy: copies video back into system RAM (Linux with some GPUs only)

videotoolbox: requires --vo=gpu (OS X 10.8 and up), or --vo=opengl-cb (iOS 9.0 and up)

videotoolbox-c
opy:

copies video back into system RAM (OS X 10.8 or iOS 9.0 and up)

dxva2: requires --vo=gpu with --gpu-context=d3d11, --gpu-context=angle
or --gpu-context=dxinterop (Windows only)

dxva2-copy: copies video back to system RAM (Windows only)

d3d11va: requires --vo=gpu with --gpu-context=d3d11 or --gpu-context=angle
(Windows 8+ only)

d3d11va-copy: copies video back to system RAM (Windows 8+ only)

mediacodec: requires --vo=mediacodec_embed (Android only)

mediacodec-co
py:

copies video back to system RAM (Android only)

mmal: requires --vo=gpu (Raspberry Pi only - default if available)

mmal-copy: copies video back to system RAM (Raspberry Pi only)

cuda: requires --vo=gpu (Any platform CUDA is available)

cuda-copy: copies video back to system RAM (Any platform CUDA is available)

nvdec: requires --vo=gpu (Any platform CUDA is available)

nvdec-copy: copies video back to system RAM (Any platform CUDA is available)

crystalhd: copies video back to system RAM (Any platform supported by hardware)

rkmpp: requires --vo=gpu (some RockChip devices only)

auto tries to automatically enable hardware decoding using the first available method. This still
depends what VO you are using. For example, if you are not using --vo=gpu or --vo=vdpau, vdpau
decoding will never be enabled. Also note that if the first found method doesn't actually work, it will
always fall back to software decoding, instead of trying the next method (might matter on some Linux
systems).

auto-copy selects only modes that copy the video data back to system memory after decoding. This
selects modes like vaapi-copy (and so on). If none of these work, hardware decoding is disabled.
This mode is always guaranteed to incur no additional loss compared to software decoding, and will
allow CPU processing with video filters.

The vaapi mode, if used with --vo=gpu, requires Mesa 11 and most likely works with Intel GPUs
only. It also requires the opengl EGL backend.

The cuda and cuda-copy modes provides deinterlacing in the decoder which is useful as there is no
other deinterlacing mechanism in the opengl output path. To use this deinterlacing you must pass the
option: vd-lavc-o=deint=[weave|bob|adaptive]. Pass weave (or leave the option unset) to
not attempt any deinterlacing. cuda should always be preferred unless the gpu vo is not being used
or filters are required.

nvdec is a newer implementation of CUVID/CUDA decoding, which uses the FFmpeg decoders for
file parsing. Experimental, is known not to correctly check whether decoding is supported by the
hardware at all. Deinterlacing is not supported. Since this uses FFmpeg's codec parsers, it is
expected that this generally causes fewer issues than cuda.

Most video filters will not work with hardware decoding as they are primarily implemented on the CPU.
Some exceptions are vdpaupp, vdpaurb and vavpp. See VIDEO FILTERS for more details.

The ...-copy modes (e.g. dxva2-copy) allow you to use hardware decoding with any VO,
backend or filter. Because these copy the decoded video back to system RAM, they're likely less
efficient than the direct modes (like e.g. dxva2), and probably not more efficient than software
decoding except for some codecs (e.g. HEVC).

Note

When using this switch, hardware decoding is still only done for some codecs. See
--hwdec-codecs to enable hardware decoding for more codecs.

Quality reduction with hardware decoding

In theory, hardware decoding does not reduce video quality (at least for the codecs h264 and
HEVC). However, due to restrictions in video output APIs, as well as bugs in the actual
hardware decoders, there can be some loss, or even blatantly incorrect results.

In some cases, RGB conversion is forced, which means the RGB conversion is performed by
the hardware decoding API, instead of the shaders used by --vo=gpu. This means certain
colorspaces may not display correctly, and certain filtering (such as debanding) cannot be
applied in an ideal way. This will also usually force the use of low quality chroma scalers
instead of the one specified by --cscale. In other cases, hardware decoding can also reduce
the bit depth of the decoded image, which can introduce banding or precision loss for 10-bit
files.

vdpau is usually safe. If deinterlacing enabled (or the vdpaupp video filter is active in
general), it forces RGB conversion. The latter currently does not treat certain colorspaces like
BT.2020 correctly (which is mostly a mpv-specific restriction). The vdpauprb video filter
retrieves image data without RGB conversion and is safe (but precludes use of vdpau
postprocessing).

vaapi is safe if the vaapi-egl backend is indicated in the logs. If vaapi-glx is indicated,
and the video colorspace is either BT.601 or BT.709, a forced, low-quality but correct RGB
conversion is performed. Otherwise, the result will be totally incorrect.

d3d11va is safe when used with the d3d11 backend. If used with angle is it usually safe,
except that 10 bit input (HEVC main 10 profiles) will be rounded down to 8 bits, which will
result in reduced quality. Also note that with very old ANGLE builds (without
EGL_KHR_stream path,) all input will be converted to RGB.

dxva2 is not safe. It appears to always use BT.601 for forced RGB conversion, but actual
behavior depends on the GPU drivers. Some drivers appear to convert to limited range RGB,

which gives a faded appearance. In addition to driver-specific behavior, global system settings
might affect this additionally. This can give incorrect results even with completely ordinary
video sources.

rpi always uses the hardware overlay renderer, even with --vo=gpu.

cuda should be safe, but it has been reported to corrupt the timestamps causing glitched,
flashing frames on some files. It can also sometimes cause massive framedrops for unknown
reasons. Caution is advised.

crystalhd is not safe. It always converts to 4:2:2 YUV, which may be lossy, depending on
how chroma sub-sampling is done during conversion. It also discards the top left pixel of each
frame for some reason.

All other methods, in particular the copy-back methods (like dxva2-copy etc.) should
hopefully be safe, although they can still cause random decoding issues. At the very least, they
shouldn't affect the colors of the image.

In particular, auto-copy will only select "safe" modes (although potentially slower than other
methods), but there's still no guarantee the chosen hardware decoder will actually work
correctly.

In general, it's very strongly advised to avoid hardware decoding unless absolutely necessary,
i.e. if your CPU is insufficient to decode the file in questions. If you run into any weird decoding
issues, frame glitches or discoloration, and you have --hwdec turned on, the first thing you
should try is disabling it.

--gpu-hwdec-interop=<auto|all|no|name>

This option is for troubleshooting hwdec interop issues. Since it's a debugging option, its semantics
may change at any time.

This is useful for the gpu and opengl-cb VOs for selecting which hwdec interop context to use
exactly. Effectively it also can be used to block loading of certain backends.

If set to auto (default), the behavior depends on the VO: for gpu, it does nothing, and the interop
context is loaded on demand (when the decoder probes for --hwdec support). For opengl-cb,
which has has no on-demand loading, this is equivalent to all.

The empty string is equivalent to auto.

If set to all, it attempts to load all interop contexts at GL context creation time.

Other than that, a specific backend can be set, and the list of them can be queried with help (mpv
CLI only).

Runtime changes to this are ignored (the current option value is used whenever the renderer is
created).

The old aliases --opengl-hwdec-interop and --hwdec-preload are barely related to this
anymore, but will be somewhat compatible in some cases.

--hwdec-image-format=<name>

Set the internal pixel format used by hardware decoding via --hwdec (default no). The special value
no selects an implementation specific standard format. Most decoder implementations support only
one format, and will fail to initialize if the format is not supported.

Some implementations might support multiple formats. In particular, videotoolbox is known to require
uyvy422 for good performance on some older hardware. d3d11va can always use yuv420p, which
uses an opaque format, with likely no advantages.

--cuda-decode-device=<auto|0..>

Choose the GPU device used for decoding when using the cuda hwdec.

By default, the device that is being used to provide OpenGL output will also be used for decoding
(and in the vast majority of cases, only one GPU will be present).

Note that when using the cuda-copy hwdec, a different option must be passed:
--vd-lavc-o=gpu=<0..>.

--vaapi-device=<device file>

Choose the DRM device for vaapi-copy. This should be the path to a DRM device file. (Default:
/dev/dri/renderD128)

--panscan=<0.0-1.0>

Enables pan-and-scan functionality (cropping the sides of e.g. a 16:9 video to make it fit a 4:3 display
without black bands). The range controls how much of the image is cropped. May not work with all
video output drivers.

This option has no effect if --video-unscaled option is used.

--video-aspect=<ratio|no>

Override video aspect ratio, in case aspect information is incorrect or missing in the file being played.
See also --no-video-aspect.

These values have special meaning:

0: disable aspect ratio handling, pretend the video has square pixels

no: same as 0

-1: use the video stream or container aspect (default)

But note that handling of these special values might change in the future.

Examples

• --video-aspect=4:3 or --video-aspect=1.3333

• --video-aspect=16:9 or --video-aspect=1.7777

• --no-video-aspect or --video-aspect=no

--video-aspect-method=<bitstream|container>

This sets the default video aspect determination method (if the aspect is _not_ overridden by the user
with --video-aspect or others).

container: Strictly prefer the container aspect ratio. This is apparently the default behavior
with VLC, at least with Matroska. Note that if the container has no aspect ratio
set, the behavior is the same as with bitstream.

bitstream: Strictly prefer the bitstream aspect ratio, unless the bitstream aspect ratio is not
set. This is apparently the default behavior with XBMC/kodi, at least with
Matroska.

The current default for mpv is container.

Normally you should not set this. Try the various choices if you encounter video that has the wrong
aspect ratio in mpv, but seems to be correct in other players.

--video-unscaled=<no|yes|downscale-big>

Disable scaling of the video. If the window is larger than the video, black bars are added. Otherwise,
the video is cropped, unless the option is set to downscale-big, in which case the video is fit to

window. The video still can be influenced by the other --video-... options. This option disables the
effect of --panscan.

Note that the scaler algorithm may still be used, even if the video isn't scaled. For example, this can
influence chroma conversion. The video will also still be scaled in one dimension if the source uses
non-square pixels (e.g. anamorphic widescreen DVDs).

This option is disabled if the --no-keepaspect option is used.

--video-pan-x=<value>, --video-pan-y=<value>

Moves the displayed video rectangle by the given value in the X or Y direction. The unit is in fractions
of the size of the scaled video (the full size, even if parts of the video are not visible due to panscan or
other options).

For example, displaying a 1280x720 video fullscreen on a 1680x1050 screen with
--video-pan-x=-0.1 would move the video 168 pixels to the left (making 128 pixels of the source
video invisible).

This option is disabled if the --no-keepaspect option is used.

--video-rotate=<0-359|no>

Rotate the video clockwise, in degrees. Currently supports 90° steps only. If no is given, the video is
never rotated, even if the file has rotation metadata. (The rotation value is added to the rotation
metadata, which means the value 0 would rotate the video according to the rotation metadata.)

--video-stereo-mode=<no|mode>

Set the stereo 3D output mode (default: mono). This is mostly broken and thus deprecated.

The pseudo-mode no disables automatic conversion completely.

The mode mono is an alias to ml, which refers to the left frame in 2D. This is the default, which means
mpv will try to show 3D movies in 2D, instead of the mangled 3D image not intended for consumption
(such as showing the left and right frame side by side, etc.).

Use --video-stereo-mode=help to list all available modes. Check with the stereo3d filter
documentation to see what the names mean. Note that some names refer to modes not supported by
stereo3d - these modes can appear in files, but can't be handled properly by mpv.

--video-zoom=<value>

Adjust the video display scale factor by the given value. The parameter is given log 2. For example,
--video-zoom=0 is unscaled, --video-zoom=1 is twice the size, --video-zoom=-2 is one
fourth of the size, and so on.

This option is disabled if the --no-keepaspect option is used.

--video-align-x=<-1-1>, --video-align-y=<-1-1>

Moves the video rectangle within the black borders, which are usually added to pad the video to
screen if video and screen aspect ratios are different. --video-align-y=-1 would move the video
to the top of the screen (leaving a border only on the bottom), a value of 0 centers it (default), and a
value of 1 would put the video at the bottom of the screen.

If video and screen aspect match perfectly, these options do nothing.

This option is disabled if the --no-keepaspect option is used.

--correct-pts, --no-correct-pts

--no-correct-pts switches mpv to a mode where video timing is determined using a fixed
framerate value (either using the --fps option, or using file information). Sometimes, files with very
broken timestamps can be played somewhat well in this mode. Note that video filters, subtitle
rendering and audio synchronization can be completely broken in this mode.

--fps=<float>

Override video framerate. Useful if the original value is wrong or missing.

Note

Works in --no-correct-pts mode only.

--deinterlace=<yes|no>

Enable or disable interlacing (default: no). Interlaced video shows ugly comb-like artifacts, which are
visible on fast movement. Enabling this typically inserts the yadif video filter in order to deinterlace the
video, or lets the video output apply deinterlacing if supported.

This behaves exactly like the deinterlace input property (usually mapped to d).

Keep in mind that this will conflict with manually inserted deinterlacing filters, unless you take care.
(Since mpv 0.27.0, even the hardware deinterlace filters will conflict. Also since that version,
--deinterlace=auto was removed, which used to mean that the default interlacing option of
possibly inserted video filters was used.)

Note that this will make video look worse if it's not actually interlaced.

--frames=<number>

Play/convert only first <number> video frames, then quit.

--frames=0 loads the file, but immediately quits before initializing playback. (Might be useful for
scripts which just want to determine some file properties.)

For audio-only playback, any value greater than 0 will quit playback immediately after initialization.
The value 0 works as with video.

--video-output-levels=<outputlevels>

RGB color levels used with YUV to RGB conversion. Normally, output devices such as PC monitors
use full range color levels. However, some TVs and video monitors expect studio RGB levels.
Providing full range output to a device expecting studio level input results in crushed blacks and
whites, the reverse in dim gray blacks and dim whites.

Not all VOs support this option. Some will silently ignore it.

Available color ranges are:

auto: automatic selection (equals to full range) (default)

limited: limited range (16-235 per component), studio levels

full: full range (0-255 per component), PC levels

Note

It is advisable to use your graphics driver's color range option instead, if available.

--hwdec-codecs=<codec1,codec2,...|all>

Allow hardware decoding for a given list of codecs only. The special value all always allows all
codecs.

You can get the list of allowed codecs with mpv --vd=help. Remove the prefix, e.g. instead of
lavc:h264 use h264.

By default, this is set to h264,vc1,wmv3,hevc,mpeg2video,vp9. Note that the hardware
acceleration special codecs like h264_vdpau are not relevant anymore, and in fact have been
removed from Libav in this form.

This is usually only needed with broken GPUs, where a codec is reported as supported, but decoding
causes more problems than it solves.

Example

mpv --hwdec=vdpau --vo=vdpau --hwdec-codecs=h264,mpeg2video

Enable vdpau decoding for h264 and mpeg2 only.

--vd-lavc-check-hw-profile=<yes|no>

Check hardware decoder profile (default: yes). If no is set, the highest profile of the hardware decoder
is unconditionally selected, and decoding is forced even if the profile of the video is higher than that.
The result is most likely broken decoding, but may also help if the detected or reported profiles are
somehow incorrect.

--vd-lavc-software-fallback=<yes|no|N>

Fallback to software decoding if the hardware-accelerated decoder fails (default: 3). If this is a
number, then fallback will be triggered if N frames fail to decode in a row. 1 is equivalent to yes.

--vd-lavc-dr=<yes|no>

Enable direct rendering (default: yes). If this is set to yes, the video will be decoded directly to GPU
video memory (or staging buffers). This can speed up video upload, and may help with large
resolutions or slow hardware. This works only with the following VOs:

• gpu: requires at least OpenGL 4.4 or Vulkan.

(In particular, this can't be made work with opengl-cb, but the libmpv render API has optional
support.)

Using video filters of any kind that write to the image data (or output newly allocated frames) will
silently disable the DR code path.

--vd-lavc-bitexact

Only use bit-exact algorithms in all decoding steps (for codec testing).

--vd-lavc-fast (MPEG-2, MPEG-4, and H.264 only)

Enable optimizations which do not comply with the format specification and potentially cause
problems, like simpler dequantization, simpler motion compensation, assuming use of the default
quantization matrix, assuming YUV 4:2:0 and skipping a few checks to detect damaged bitstreams.

--vd-lavc-o=<key>=<value>[,<key>=<value>[,...]]

Pass AVOptions to libavcodec decoder. Note, a patch to make the o= unneeded and pass all
unknown options through the AVOption system is welcome. A full list of AVOptions can be found in
the FFmpeg manual.

Some options which used to be direct options can be set with this mechanism, like bug, gray, idct,
ec, vismv, skip_top (was st), skip_bottom (was sb), debug.

Example

--vd-lavc-o=debug=pict

--vd-lavc-show-all=<yes|no>

Show even broken/corrupt frames (default: no). If this option is set to no, libavcodec won't output
frames that were either decoded before an initial keyframe was decoded, or frames that are
recognized as corrupted.

--vd-lavc-skiploopfilter=<skipvalue> (H.264 only)

Skips the loop filter (AKA deblocking) during H.264 decoding. Since the filtered frame is supposed to
be used as reference for decoding dependent frames, this has a worse effect on quality than not
doing deblocking on e.g. MPEG-2 video. But at least for high bitrate HDTV, this provides a big
speedup with little visible quality loss.

<skipvalue> can be one of the following:

none: Never skip.

default: Skip useless processing steps (e.g. 0 size packets in AVI).

nonref: Skip frames that are not referenced (i.e. not used for decoding other frames,
the error cannot "build up").

bidir: Skip B-Frames.

nonkey: Skip all frames except keyframes.

all: Skip all frames.

--vd-lavc-skipidct=<skipvalue> (MPEG-1/2 only)

Skips the IDCT step. This degrades quality a lot in almost all cases (see skiploopfilter for available
skip values).

--vd-lavc-skipframe=<skipvalue>

Skips decoding of frames completely. Big speedup, but jerky motion and sometimes bad artifacts
(see skiploopfilter for available skip values).

--vd-lavc-framedrop=<skipvalue>

Set framedropping mode used with --framedrop (see skiploopfilter for available skip values).

--vd-lavc-threads=<N>

Number of threads to use for decoding. Whether threading is actually supported depends on codec
(default: 0). 0 means autodetect number of cores on the machine and use that, up to the maximum of
16. You can set more than 16 threads manually.

--vd-lavc-assume-old-x264=<yes|no>

Assume the video was encoded by an old, buggy x264 version (default: no). Normally, this is
autodetected by libavcodec. But if the bitstream contains no x264 version info (or it was somehow
skipped), and the stream was in fact encoded by an old x264 version (build 150 or earlier), and if the
stream uses 4:4:4 chroma, then libavcodec will by default show corrupted video. This option sets the
libavcodec x264_build option to 150, which means that if the stream contains no version info, or
was not encoded by x264 at all, it assumes it was encoded by the old version. Enabling this option is
pretty safe if you want your broken files to work, but in theory this can break on streams not encoded
by x264, or if a stream encoded by a newer x264 version contains no version info.

Audio
--audio-pitch-correction=<yes|no>

If this is enabled (default), playing with a speed different from normal automatically inserts the
scaletempo audio filter. For details, see audio filter section.

--audio-device=<name>

Use the given audio device. This consists of the audio output name, e.g. alsa, followed by /,
followed by the audio output specific device name. The default value for this option is auto, which
tries every audio output in preference order with the default device.

You can list audio devices with --audio-device=help. This outputs the device name in quotes,
followed by a description. The device name is what you have to pass to the --audio-device

option. The list of audio devices can be retrieved by API by using the audio-device-list property.

While the option normally takes one of the strings as indicated by the methods above, you can also
force the device for most AOs by building it manually. For example name/foobar forces the AO
name to use the device foobar. However, the --ao option will strictly force a specific AO. To avoid
confusion, don't use --ao and --audio-device together.

Example for ALSA

MPlayer and mplayer2 required you to replace any ',' with '.' and any ':' with '=' in the ALSA
device name. For example, to use the device named dmix:default, you had to do:

-ao alsa:device=dmix=default

In mpv you could instead use:

--audio-device=alsa/dmix:default

--audio-exclusive=<yes|no>

Enable exclusive output mode. In this mode, the system is usually locked out, and only mpv will be
able to output audio.

This only works for some audio outputs, such as wasapi and coreaudio. Other audio outputs
silently ignore this options. They either have no concept of exclusive mode, or the mpv side of the
implementation is missing.

--audio-fallback-to-null=<yes|no>

If no audio device can be opened, behave as if --ao=null was given. This is useful in combination
with --audio-device: instead of causing an error if the selected device does not exist, the client
API user (or a Lua script) could let playback continue normally, and check the current-ao and
audio-device-list properties to make high-level decisions about how to continue.

--ao=<driver>

Specify the audio output drivers to be used. See AUDIO OUTPUT DRIVERS for details and
descriptions of available drivers.

--af=<filter1[=parameter1:parameter2:...],filter2,...>

Specify a list of audio filters to apply to the audio stream. See AUDIO FILTERS for details and
descriptions of the available filters. The option variants --af-add, --af-pre, --af-del and
--af-clr exist to modify a previously specified list, but you should not need these for typical use.

--audio-spdif=<codecs>

List of codecs for which compressed audio passthrough should be used. This works for both classic
S/PDIF and HDMI.

Possible codecs are ac3, dts, dts-hd, eac3, truehd. Multiple codecs can be specified by
separating them with ,. dts refers to low bitrate DTS core, while dts-hd refers to DTS MA (receiver
and OS support varies). If both dts and dts-hd are specified, it behaves equivalent to specifying
dts-hd only.

In earlier mpv versions you could use --ad to force the spdif wrapper. This does not work anymore.

Warning

There is not much reason to use this. HDMI supports uncompressed multichannel PCM, and
mpv supports lossless DTS-HD decoding via FFmpeg's new DCA decoder (based on
libdcadec).

--ad=<decoder1,decoder2,...[-]>

Specify a priority list of audio decoders to be used, according to their decoder name. When
determining which decoder to use, the first decoder that matches the audio format is selected. If that
is unavailable, the next decoder is used. Finally, it tries all other decoders that are not explicitly
selected or rejected by the option.

- at the end of the list suppresses fallback on other available decoders not on the --ad list. + in front
of an entry forces the decoder. Both of these should not normally be used, because they break normal
decoder auto-selection! Both of these methods are deprecated.

Examples

--ad=mp3float

Prefer the FFmpeg/Libav mp3float decoder over all other MP3 decoders.

--ad=help

List all available decoders.

Warning

Enabling compressed audio passthrough (AC3 and DTS via SPDIF/HDMI) with this option is
not possible. Use --audio-spdif instead.

--volume=<value>

Set the startup volume. 0 means silence, 100 means no volume reduction or amplification. Negative
values can be passed for compatibility, but are treated as 0.

Since mpv 0.18.1, this always controls the internal mixer (aka "softvol").

--replaygain=<no|track|album>

Adjust volume gain according to the track-gain or album-gain replaygain value stored in the file
metadata (default: no replaygain).

--replaygain-preamp=<db>

Pre-amplification gain in dB to apply to the selected replaygain gain (default: 0).

--replaygain-clip=<yes|no>

Prevent clipping caused by replaygain by automatically lowering the gain (default). Use
--replaygain-clip=no to disable this.

--replaygain-fallback=<db>

Gain in dB to apply if the file has no replay gain tags. This option is always applied if the replaygain
logic is somehow inactive. If this is applied, no other replaygain options are applied.

--audio-delay=<sec>

Audio delay in seconds (positive or negative float value). Positive values delay the audio, and
negative values delay the video.

--mute=<yes|no|auto>

Set startup audio mute status (default: no).

auto is a deprecated possible value that is equivalent to no.

See also: --volume.

--softvol=<no|yes|auto>

Deprecated/unfunctional. Before mpv 0.18.1, this used to control whether to use the volume controls
of the audio output driver or the internal mpv volume filter.

The current behavior is that softvol is always enabled, i.e. as if this option is set to yes. The other
behaviors are not available anymore, although auto almost matches current behavior in most cases.

The no behavior is still partially available through the ao-volume and ao-mute properties. But there
are no options to reset these.

--audio-demuxer=<[+]name>

Use this audio demuxer type when using --audio-file. Use a '+' before the name to force it; this
will skip some checks. Give the demuxer name as printed by --audio-demuxer=help.

--ad-lavc-ac3drc=<level>

Select the Dynamic Range Compression level for AC-3 audio streams. <level> is a float value
ranging from 0 to 1, where 0 means no compression (which is the default) and 1 means full
compression (make loud passages more silent and vice versa). Values up to 6 are also accepted, but
are purely experimental. This option only shows an effect if the AC-3 stream contains the required
range compression information.

The standard mandates that DRC is enabled by default, but mpv (and some other players) ignore this
for the sake of better audio quality.

--ad-lavc-downmix=<yes|no>

Whether to request audio channel downmixing from the decoder (default: yes). Some decoders, like
AC-3, AAC and DTS, can remix audio on decoding. The requested number of output channels is set
with the --audio-channels option. Useful for playing surround audio on a stereo system.

--ad-lavc-threads=<0-16>

Number of threads to use for decoding. Whether threading is actually supported depends on codec.
As of this writing, it's supported for some lossless codecs only. 0 means autodetect number of cores
on the machine and use that, up to the maximum of 16 (default: 1).

--ad-lavc-o=<key>=<value>[,<key>=<value>[,...]]

Pass AVOptions to libavcodec decoder. Note, a patch to make the o= unneeded and pass all
unknown options through the AVOption system is welcome. A full list of AVOptions can be found in
the FFmpeg manual.

--ad-spdif-dtshd=<yes|no>, --dtshd, --no-dtshd

If DTS is passed through, use DTS-HD.

Warning

This and enabling passthrough via --ad are deprecated in favor of using
--audio-spdif=dts-hd.

--audio-channels=<auto-safe|auto|layouts>

Control which audio channels are output (e.g. surround vs. stereo). There are the following
possibilities:

• --audio-channels=auto-safe

Use the system's preferred channel layout. If there is none (such as when accessing a
hardware device instead of the system mixer), force stereo. Some audio outputs might
simply accept any layout and do downmixing on their own.

This is the default.

• --audio-channels=auto

Send the audio device whatever it accepts, preferring the audio's original channel layout.
Can cause issues with HDMI (see the warning below).

• --audio-channels=layout1,layout2,...

List of ,-separated channel layouts which should be allowed. Technically, this only adjusts
the filter chain output to the best matching layout in the list, and passes the result to the
audio API. It's possible that the audio API will select a different channel layout.

Using this mode is recommended for direct hardware output, especially over HDMI (see
HDMI warning below).

• --audio-channels=stereo

Force a plain stereo downmix. This is a special-case of the previous item. (See paragraphs
below for implications.)

If a list of layouts is given, each item can be either an explicit channel layout name (like 5.1), or a
channel number. Channel numbers refer to default layouts, e.g. 2 channels refer to stereo, 6 refers to
5.1.

See --audio-channels=help output for defined default layouts. This also lists speaker names,
which can be used to express arbitrary channel layouts (e.g. fl-fr-lfe is 2.1).

If the list of channel layouts has only 1 item, the decoder is asked to produce according output. This
sometimes triggers decoder-downmix, which might be different from the normal mpv downmix. (Only
some decoders support remixing audio, like AC-3, AAC or DTS. You can use
--ad-lavc-downmix=no to make the decoder always output its native layout.) One consequence is
that --audio-channels=stereo triggers decoder downmix, while auto or auto-safe never will,
even if they end up selecting stereo. This happens because the decision whether to use decoder
downmix happens long before the audio device is opened.

If the channel layout of the media file (i.e. the decoder) and the AO's channel layout don't match, mpv
will attempt to insert a conversion filter. You may need to change the channel layout of the system
mixer to achieve your desired output as mpv does not have control over it. Another work-around for
this on some AOs is to use --audio-exclusive=yes to circumvent the system mixer entirely.

Warning

Using auto can cause issues when using audio over HDMI. The OS will typically report all
channel layouts that _can_ go over HDMI, even if the receiver does not support them. If a

receiver gets an unsupported channel layout, random things can happen, such as dropping the
additional channels, or adding noise.

You are recommended to set an explicit whitelist of the layouts you want. For example, most
A/V receivers connected via HDMI and that can do 7.1 would be served by:
--audio-channels=7.1,5.1,stereo

--audio-display=<no|attachment>

Setting this option to attachment (default) will display image attachments (e.g. album cover art)
when playing audio files. It will display the first image found, and additional images are available as
video tracks.

Setting this option to no disables display of video entirely when playing audio files.

This option has no influence on files with normal video tracks.

--audio-files=<files>

Play audio from an external file while viewing a video.

This is a list option. See List Options for details.

--audio-file=<file>

CLI/config file only alias for --audio-files-append. Each use of this option will add a new audio
track. The details are similar to how --sub-file works.

--audio-format=<format>

Select the sample format used for output from the audio filter layer to the sound card. The values that
<format> can adopt are listed below in the description of the format audio filter.

--audio-samplerate=<Hz>

Select the output sample rate to be used (of course sound cards have limits on this). If the sample
frequency selected is different from that of the current media, the lavrresample audio filter will be
inserted into the audio filter layer to compensate for the difference.

--gapless-audio=<no|yes|weak>

Try to play consecutive audio files with no silence or disruption at the point of file change. Default:
weak.

no: Disable gapless audio.

yes: The audio device is opened using parameters chosen for the first file played
and is then kept open for gapless playback. This means that if the first file for
example has a low sample rate, then the following files may get resampled to
the same low sample rate, resulting in reduced sound quality. If you play files
with different parameters, consider using options such as
--audio-samplerate and --audio-format to explicitly select what the
shared output format will be.

weak: Normally, the audio device is kept open (using the format it was first initialized
with). If the audio format the decoder output changes, the audio device is
closed and reopened. This means that you will normally get gapless audio with
files that were encoded using the same settings, but might not be gapless in
other cases. The exact conditions under which the audio device is kept open is
an implementation detail, and can change from version to version. Currently,
the device is kept even if the sample format changes, but the sample formats
are convertible.

Note

This feature is implemented in a simple manner and relies on audio output device buffering to
continue playback while moving from one file to another. If playback of the new file starts
slowly, for example because it is played from a remote network location or because you have
specified cache settings that require time for the initial cache fill, then the buffered audio may
run out before playback of the new file can start.

--initial-audio-sync, --no-initial-audio-sync

When starting a video file or after events such as seeking, mpv will by default modify the audio
stream to make it start from the same timestamp as video, by either inserting silence at the start or
cutting away the first samples. Disabling this option makes the player behave like older mpv versions
did: video and audio are both started immediately even if their start timestamps differ, and then video
timing is gradually adjusted if necessary to reach correct synchronization later.

--volume-max=<100.0-1000.0>, --softvol-max=<...>

Set the maximum amplification level in percent (default: 130). A value of 130 will allow you to adjust
the volume up to about double the normal level.

--softvol-max is a deprecated alias and should not be used.

--audio-file-auto=<no|exact|fuzzy|all>, --no-audio-file-auto

Load additional audio files matching the video filename. The parameter specifies how external audio
files are matched.

no: Don't automatically load external audio files (default).

exact: Load the media filename with audio file extension.

fuzzy: Load all audio files containing media filename.

all: Load all audio files in the current and --audio-file-paths directories.

--audio-file-paths=<path1:path2:...>

Equivalent to --sub-file-paths option, but for auto-loaded audio files.

--audio-client-name=<name>

The application name the player reports to the audio API. Can be useful if you want to force a
different audio profile (e.g. with PulseAudio), or to set your own application name when using libmpv.

--audio-buffer=<seconds>

Set the audio output minimum buffer. The audio device might actually create a larger buffer if it
pleases. If the device creates a smaller buffer, additional audio is buffered in an additional software
buffer.

Making this larger will make soft-volume and other filters react slower, introduce additional issues on
playback speed change, and block the player on audio format changes. A smaller buffer might lead to
audio dropouts.

This option should be used for testing only. If a non-default value helps significantly, the mpv
developers should be contacted.

Default: 0.2 (200 ms).

--audio-stream-silence=<yes|no>

Cash-grab consumer audio hardware (such as A/V receivers) often ignore initial audio sent over
HDMI. This can happen every time audio over HDMI is stopped and resumed. In order to compensate
for this, you can enable this option to not to stop and restart audio on seeks, and fill the gaps with
silence. Likewise, when pausing playback, audio is not stopped, and silence is played

while paused. Note that if no audio track is selected, the audio device will still be closed immediately.

Not all AOs support this.

--audio-wait-open=<secs>

This makes sense for use with --audio-stream-silence=yes. If this option is given, the player
will wait for the given amount of seconds after opening the audio device before sending actual audio
data to it. Useful if your expensive hardware discards the first 1 or 2 seconds of audio data sent to it. If
--audio-stream-silence=yes is not set, this option will likely just waste time.

Subtitles

Note

Changing styling and position does not work with all subtitles. Image-based subtitles (DVD,
Bluray/PGS, DVB) cannot changed for fundamental reasons. Subtitles in ASS format are normally
not changed intentionally, but overriding them can be controlled with --sub-ass-override.

Previously some options working on text subtitles were called --sub-text-*, they are now
named --sub-*, and those specifically for ASS have been renamed from --ass-* to
--sub-ass-*. They are now all in this section.

--sub-demuxer=<[+]name>

Force subtitle demuxer type for --sub-file. Give the demuxer name as printed by
--sub-demuxer=help.

--sub-delay=<sec>

Delays subtitles by <sec> seconds. Can be negative.

--sub-files=<file-list>, --sub-file=<filename>

Add a subtitle file to the list of external subtitles.

If you use --sub-file only once, this subtitle file is displayed by default.

If --sub-file is used multiple times, the subtitle to use can be switched at runtime by cycling
subtitle tracks. It's possible to show two subtitles at once: use --sid to select the first subtitle index,
and --secondary-sid to select the second index. (The index is printed on the terminal output after
the --sid= in the list of streams.)

--sub-files is a list option (see List Options for details), and can take multiple file names
separated by : (Unix) or ; (Windows), while --sub-file takes a single filename, but can be used
multiple times to add multiple files. Technically, --sub-file is a CLI/config file only alias for
--sub-files-append.

--secondary-sid=<ID|auto|no>

Select a secondary subtitle stream. This is similar to --sid. If a secondary subtitle is selected, it will
be rendered as toptitle (i.e. on the top of the screen) alongside the normal subtitle, and provides a way
to render two subtitles at once.

There are some caveats associated with this feature. For example, bitmap subtitles will always be
rendered in their usual position, so selecting a bitmap subtitle as secondary subtitle will result in
overlapping subtitles. Secondary subtitles are never shown on the terminal if video is disabled.

Note

Styling and interpretation of any formatting tags is disabled for the secondary subtitle.
Internally, the same mechanism as --no-sub-ass is used to strip the styling.

Note

If the main subtitle stream contains formatting tags which display the subtitle at the top of the
screen, it will overlap with the secondary subtitle. To prevent this, you could use
--no-sub-ass to disable styling in the main subtitle stream.

--sub-scale=<0-100>

Factor for the text subtitle font size (default: 1).

Note

This affects ASS subtitles as well, and may lead to incorrect subtitle rendering. Use with care,
or use --sub-font-size instead.

--sub-scale-by-window=<yes|no>

Whether to scale subtitles with the window size (default: yes). If this is disabled, changing the window
size won't change the subtitle font size.

Like --sub-scale, this can break ASS subtitles.

--sub-scale-with-window=<yes|no>

Make the subtitle font size relative to the window, instead of the video. This is useful if you always
want the same font size, even if the video doesn't cover the window fully, e.g. because screen aspect
and window aspect mismatch (and the player adds black bars).

Default: yes.

This option is misnamed. The difference to the confusingly similar sounding option
--sub-scale-by-window is that --sub-scale-with-window still scales with the approximate
window size, while the other option disables this scaling.

Affects plain text subtitles only (or ASS if --sub-ass-override is set high enough).

--sub-ass-scale-with-window=<yes|no>

Like --sub-scale-with-window, but affects subtitles in ASS format only. Like --sub-scale, this
can break ASS subtitles.

Default: no.

--embeddedfonts, --no-embeddedfonts

Use fonts embedded in Matroska container files and ASS scripts (default: enabled). These fonts can
be used for SSA/ASS subtitle rendering.

--sub-pos=<0-100>

Specify the position of subtitles on the screen. The value is the vertical position of the subtitle in % of
the screen height.

Note

This affects ASS subtitles as well, and may lead to incorrect subtitle rendering. Use with care,
or use --sub-margin-y instead.

--sub-speed=<0.1-10.0>

Multiply the subtitle event timestamps with the given value. Can be used to fix the playback speed for
frame-based subtitle formats. Affects text subtitles only.

Example

--sub-speed=25/23.976 plays frame based subtitles which have been loaded assuming a
framerate of 23.976 at 25 FPS.

--sub-ass-force-style=<[Style.]Param=Value[,...]>

Override some style or script info parameters.

Examples

• --sub-ass-force-style=FontName=Arial,Default.Bold=1

• --sub-ass-force-style=PlayResY=768

Note

Using this option may lead to incorrect subtitle rendering.

--sub-ass-hinting=<none|light|normal|native>

Set font hinting type. <type> can be:

none: no hinting (default)

light: FreeType autohinter, light mode

normal: FreeType autohinter, normal mode

native: font native hinter

Warning

Enabling hinting can lead to mispositioned text (in situations it's supposed to match up video
background), or reduce the smoothness of animations with some badly authored ASS scripts.
It is recommended to not use this option, unless really needed.

--sub-ass-line-spacing=<value>

Set line spacing value for SSA/ASS renderer.

--sub-ass-shaper=<simple|complex>

Set the text layout engine used by libass.

simple: uses Fribidi only, fast, doesn't render some languages correctly

complex: uses HarfBuzz, slower, wider language support

complex is the default. If libass hasn't been compiled against HarfBuzz, libass silently reverts to
simple.

--sub-ass-styles=<filename>

Load all SSA/ASS styles found in the specified file and use them for rendering text subtitles. The
syntax of the file is exactly like the [V4 Styles] / [V4+ Styles] section of SSA/ASS.

Note

Using this option may lead to incorrect subtitle rendering.

--sub-ass-override=<yes|no|force|scale|strip>

Control whether user style overrides should be applied. Note that all of these overrides try to be
somewhat smart about figuring out whether or not a subtitle is considered a "sign".

no: Render subtitles as specified by the subtitle scripts, without overrides.

yes: Apply all the --sub-ass-* style override options. Changing the default for any
of these options can lead to incorrect subtitle rendering (default).

force: Like yes, but also force all --sub-* options. Can break rendering easily.

scale: Like yes, but also apply --sub-scale.

strip: Radically strip all ASS tags and styles from the subtitle. This is equivalent to the
old --no-ass / --no-sub-ass options.

--sub-ass-force-margins

Enables placing toptitles and subtitles in black borders when they are available, if the subtitles are in
the ASS format.

Default: no.

--sub-use-margins

Enables placing toptitles and subtitles in black borders when they are available, if the subtitles are in a
plain text format (or ASS if --sub-ass-override is set high enough).

Default: yes.

Renamed from --sub-ass-use-margins. To place ASS subtitles in the borders too (like the old
option did), also add --sub-ass-force-margins.

--sub-ass-vsfilter-aspect-compat=<yes|no>

Stretch SSA/ASS subtitles when playing anamorphic videos for compatibility with traditional VSFilter
behavior. This switch has no effect when the video is stored with square pixels.

The renderer historically most commonly used for the SSA/ASS subtitle formats, VSFilter, had
questionable behavior that resulted in subtitles being stretched too if the video was stored in
anamorphic format that required scaling for display. This behavior is usually undesirable and newer
VSFilter versions may behave differently. However, many existing scripts compensate for the
stretching by modifying things in the opposite direction. Thus, if such scripts are displayed "correctly",
they will not appear as intended. This switch enables emulation of the old VSFilter behavior
(undesirable but expected by many existing scripts).

Enabled by default.

--sub-ass-vsfilter-blur-compat=<yes|no>

Scale \blur tags by video resolution instead of script resolution (enabled by default). This is bug in
VSFilter, which according to some, can't be fixed anymore in the name of compatibility.

Note that this uses the actual video resolution for calculating the offset scale factor, not what the
video filter chain or the video output use.

--sub-ass-vsfilter-color-compat=<basic|full|force-601|no>

Mangle colors like (xy-)vsfilter do (default: basic). Historically, VSFilter was not color space aware.
This was no problem as long as the color space used for SD video (BT.601) was used. But when
everything switched to HD (BT.709), VSFilter was still converting RGB colors to BT.601, rendered
them into the video frame, and handled the frame to the video output, which would use BT.709 for
conversion to RGB. The result were mangled subtitle colors. Later on, bad hacks were added on top
of the ASS format to control how colors are to be mangled.

basic: Handle only BT.601->BT.709 mangling, if the subtitles seem to indicate that this
is required (default).

full: Handle the full YCbCr Matrix header with all video color spaces supported by
libass and mpv. This might lead to bad breakages in corner cases and is not
strictly needed for compatibility (hopefully), which is why this is not default.

force-601: Force BT.601->BT.709 mangling, regardless of subtitle headers or video color
space.

no: Disable color mangling completely. All colors are RGB.

Choosing anything other than no will make the subtitle color depend on the video color space, and it's
for example in theory not possible to reuse a subtitle script with another video file. The
--sub-ass-override option doesn't affect how this option is interpreted.

--stretch-dvd-subs=<yes|no>

Stretch DVD subtitles when playing anamorphic videos for better looking fonts on badly mastered
DVDs. This switch has no effect when the video is stored with square pixels - which for DVD input
cannot be the case though.

Many studios tend to use bitmap fonts designed for square pixels when authoring DVDs, causing the
fonts to look stretched on playback on DVD players. This option fixes them, however at the price of
possibly misaligning some subtitles (e.g. sign translations).

Disabled by default.

--stretch-image-subs-to-screen=<yes|no>

Stretch DVD and other image subtitles to the screen, ignoring the video margins. This has a similar
effect as --sub-use-margins for text subtitles, except that the text itself will be stretched, not only
just repositioned. (At least in general it is unavoidable, as an image bitmap can in theory consist of a
single bitmap covering the whole screen, and the player won't know where exactly the text parts are
located.)

This option does not display subtitles correctly. Use with care.

Disabled by default.

--image-subs-video-resolution=<yes|no>

Override the image subtitle resolution with the video resolution (default: no). Normally, the subtitle
canvas is fit into the video canvas (e.g. letterboxed). Setting this option uses the video size as subtitle
canvas size. Can be useful to test broken subtitles, which often happen when the video was
trancoded, while attempting to keep the old subtitles.

--sub-ass, --no-sub-ass

Render ASS subtitles natively (enabled by default).

Note

This has been deprecated by --sub-ass-override=strip. You also may need
--embeddedfonts=no to get the same behavior. Also, using
--sub-ass-override=style should give better results without breaking subtitles too
much.

If --no-sub-ass is specified, all tags and style declarations are stripped and ignored on display. The
subtitle renderer uses the font style as specified by the --sub- options instead.

Note

Using --no-sub-ass may lead to incorrect or completely broken rendering of ASS/SSA
subtitles. It can sometimes be useful to forcibly override the styling of ASS subtitles, but should
be avoided in general.

--sub-auto=<no|exact|fuzzy|all>, --no-sub-auto

Load additional subtitle files matching the video filename. The parameter specifies how external
subtitle files are matched. exact is enabled by default.

no: Don't automatically load external subtitle files.

exact: Load the media filename with subtitle file extension (default).

fuzzy: Load all subs containing media filename.

all: Load all subs in the current and --sub-file-paths directories.

--sub-codepage=<codepage>

You can use this option to specify the subtitle codepage. uchardet will be used to guess the charset.
(If mpv was not compiled with uchardet, then utf-8 is the effective default.)

The default value for this option is auto, which enables autodetection.

The following steps are taken to determine the final codepage, in order:

• if the specific codepage has a +, use that codepage

• if the data looks like UTF-8, assume it is UTF-8

• if --sub-codepage is set to a specific codepage, use that

• run uchardet, and if successful, use that

• otherwise, use UTF-8-BROKEN

Examples

• --sub-codepage=latin2 Use Latin 2 if input is not UTF-8.

• --sub-codepage=+cp1250 Always force recoding to cp1250.

The pseudo codepage UTF-8-BROKEN is used internally. If it's set, subtitles are interpreted as UTF-8
with "Latin 1" as fallback for bytes which are not valid UTF-8 sequences. iconv is never involved in this
mode.

This option changed in mpv 0.23.0. Support for the old syntax was fully removed in mpv 0.24.0.

--sub-fix-timing=<yes|no>

Adjust subtitle timing is to remove minor gaps or overlaps between subtitles (if the difference is
smaller than 210 ms, the gap or overlap is removed).

--sub-forced-only

Display only forced subtitles for the DVD subtitle stream selected by e.g. --slang.

--sub-fps=<rate>

Specify the framerate of the subtitle file (default: video fps). Affects text subtitles only.

Note

<rate> > video fps speeds the subtitles up for frame-based subtitle files and slows them down
for time-based ones.

See also: --sub-speed.

--sub-gauss=<0.0-3.0>

Apply Gaussian blur to image subtitles (default: 0). This can help to make pixelated DVD/Vobsubs
look nicer. A value other than 0 also switches to software subtitle scaling. Might be slow.

Note

Never applied to text subtitles.

--sub-gray

Convert image subtitles to grayscale. Can help to make yellow DVD/Vobsubs look nicer.

Note

Never applied to text subtitles.

--sub-paths=<path1:path2:...>

Deprecated, use --sub-file-paths.

--sub-file-paths=<path-list>

Specify extra directories to search for subtitles matching the video. Multiple directories can be
separated by ":" (";" on Windows). Paths can be relative or absolute. Relative paths are interpreted
relative to video file directory. If the file is a URL, only absolute paths and sub configuration
subdirectory will be scanned.

Example

Assuming that /path/to/video/video.avi is played and
--sub-file-paths=sub:subtitles is specified, mpv searches for subtitle files in these
directories:

• /path/to/video/

• /path/to/video/sub/

• /path/to/video/subtitles/

• the sub configuration subdirectory (usually ~/.config/mpv/sub/)

This is a list option. See List Options for details.

--sub-visibility, --no-sub-visibility

Can be used to disable display of subtitles, but still select and decode them.

--sub-clear-on-seek

(Obscure, rarely useful.) Can be used to play broken mkv files with duplicate ReadOrder fields.
ReadOrder is the first field in a Matroska-style ASS subtitle packets. It should be unique, and libass
uses it for fast elimination of duplicates. This option disables caching of subtitles across seeks, so
after a seek libass can't eliminate subtitle packets with the same ReadOrder as earlier packets.

--teletext-page=<1-999>

This works for dvb_teletext subtitle streams, and if FFmpeg has been compiled with support for it.

--sub-font=<name>

Specify font to use for subtitles that do not themselves specify a particular font. The default is
sans-serif.

Examples

• --sub-font='Bitstream Vera Sans'

• --sub-font='Comic Sans MS'

Note

The --sub-font option (and many other style related --sub- options) are ignored when
ASS-subtitles are rendered, unless the --no-sub-ass option is specified.

This used to support fontconfig patterns. Starting with libass 0.13.0, this stopped working.

--sub-font-size=<size>

Specify the sub font size. The unit is the size in scaled pixels at a window height of 720. The actual
pixel size is scaled with the window height: if the window height is larger or smaller than 720, the
actual size of the text increases or decreases as well.

Default: 55.

--sub-back-color=<color>

See --sub-color. Color used for sub text background. You can use --sub-shadow-offset to
change its size relative to the text.

--sub-blur=<0..20.0>

Gaussian blur factor. 0 means no blur applied (default).

--sub-bold=<yes|no>

Format text on bold.

--sub-italic=<yes|no>

Format text on italic.

--sub-border-color=<color>

See --sub-color. Color used for the sub font border.

Note

ignored when --sub-back-color is specified (or more exactly: when that option is not set to
completely transparent).

--sub-border-size=<size>

Size of the sub font border in scaled pixels (see --sub-font-size for details). A value of 0 disables
borders.

Default: 3.

--sub-color=<color>

Specify the color used for unstyled text subtitles.

The color is specified in the form r/g/b, where each color component is specified as number in the
range 0.0 to 1.0. It's also possible to specify the transparency by using r/g/b/a, where the alpha

value 0 means fully transparent, and 1.0 means opaque. If the alpha component is not given, the color
is 100% opaque.

Passing a single number to the option sets the sub to gray, and the form gray/a lets you specify
alpha additionally.

Examples

• --sub-color=1.0/0.0/0.0 set sub to opaque red

• --sub-color=1.0/0.0/0.0/0.75 set sub to opaque red with 75% alpha

• --sub-color=0.5/0.75 set sub to 50% gray with 75% alpha

Alternatively, the color can be specified as a RGB hex triplet in the form #RRGGBB, where each 2-digit
group expresses a color value in the range 0 (00) to 255 (FF). For example, #FF0000 is red. This is
similar to web colors. Alpha is given with #AARRGGBB.

Examples

• --sub-color='#FF0000' set sub to opaque red

• --sub-color='#C0808080' set sub to 50% gray with 75% alpha

--sub-margin-x=<size>

Left and right screen margin for the subs in scaled pixels (see --sub-font-size for details).

This option specifies the distance of the sub to the left, as well as at which distance from the right
border long sub text will be broken.

Default: 25.

--sub-margin-y=<size>

Top and bottom screen margin for the subs in scaled pixels (see --sub-font-size for details).

This option specifies the vertical margins of unstyled text subtitles. If you just want to raise the vertical
subtitle position, use --sub-pos.

Default: 22.

--sub-align-x=<left|center|right>

Control to which corner of the screen text subtitles should be aligned to (default: center).

Never applied to ASS subtitles, except in --no-sub-ass mode. Likewise, this does not apply to
image subtitles.

--sub-align-y=<top|center|bottom>

Vertical position (default: bottom). Details see --sub-align-x.

--sub-justify=<auto|left|center|right>

Control how multi line subs are justified irrespective of where they are aligned (default: auto which
justifies as defined by --sub-align-y). Left justification is recommended to make the subs easier to
read as it is easier for the eyes.

--sub-ass-justify=<yes|no>

Applies justification as defined by --sub-justify on ASS subtitles if --sub-ass-override is not
set to no. Default: no.

--sub-shadow-color=<color>

See --sub-color. Color used for sub text shadow.

--sub-shadow-offset=<size>

Displacement of the sub text shadow in scaled pixels (see --sub-font-size for details). A value of
0 disables shadows.

Default: 0.

--sub-spacing=<size>

Horizontal sub font spacing in scaled pixels (see --sub-font-size for details). This value is added
to the normal letter spacing. Negative values are allowed.

Default: 0.

--sub-filter-sdh=<yes|no>

Applies filter removing subtitle additions for the deaf or hard-of-hearing (SDH). This is intended for
English, but may in part work for other languages too. The intention is that it can be always enabled
so may not remove all parts added. It removes speaker labels (like MAN:), upper case text in
parentheses and any text in brackets.

Default: no.

--sub-filter-sdh-harder=<yes|no>

Do harder SDH filtering (if enabled by --sub-filter-sdh). Will also remove speaker labels and
text within parentheses using both lower and upper case letters.

Default: no.

--sub-create-cc-track=<yes|no>

For every video stream, create a closed captions track (default: no). The only purpose is to make the
track available for selection at the start of playback, instead of creating it lazily. This applies only to
ATSC A53 Part 4 Closed Captions (displayed by mpv as subtitle tracks using the codec
eia_608). The CC track is marked "default" and selected according to the normal subtitle track
selection rules. You can then use --sid to explicitly select the correct track too.

If the video stream contains no closed captions, or if no video is being decoded, the CC track will
remain empty and will not show any text.

Window
--title=<string>

Set the window title. This is used for the video window, and if possible, also sets the audio stream
title.

Properties are expanded. (See Property Expansion.)

Warning

There is a danger of this causing significant CPU usage, depending on the properties used.
Changing the window title is often a slow operation, and if the title changes every frame,
playback can be ruined.

--screen=<default|0-32>

In multi-monitor configurations (i.e. a single desktop that spans across multiple displays), this option
tells mpv which screen to display the video on.

Note (X11)

This option does not work properly with all window managers. In these cases, you can try to
use --geometry to position the window explicitly. It's also possible that the window manager
provides native features to control which screens application windows should use.

See also --fs-screen.

--fullscreen, --fs

Fullscreen playback.

--fs-screen=<all|current|0-32>

In multi-monitor configurations (i.e. a single desktop that spans across multiple displays), this option
tells mpv which screen to go fullscreen to. If default is provided mpv will fallback on using the
behavior depending on what the user provided with the screen option.

Note (X11)

This option works properly only with window managers which understand the EWMH
_NET_WM_FULLSCREEN_MONITORS hint.

Note (OS X)

all does not work on OS X and will behave like current.

See also --screen.

--keep-open=<yes|no|always>

Do not terminate when playing or seeking beyond the end of the file, and there is not next file to be
played (and --loop is not used). Instead, pause the player. When trying to seek beyond end of the
file, the player will attempt to seek to the last frame.

Normally, this will act like set pause yes on EOF, unless the --keep-open-pause=no option is
set.

The following arguments can be given:

no: If the current file ends, go to the next file or terminate. (Default.)

yes: Don't terminate if the current file is the last playlist entry. Equivalent to
--keep-open without arguments.

always: Like yes, but also applies to files before the last playlist entry. This means
playback will never automatically advance to the next file.

Note

This option is not respected when using --frames. Explicitly skipping to the next file if the
binding uses force will terminate playback as well.

Also, if errors or unusual circumstances happen, the player can quit anyway.

Since mpv 0.6.0, this doesn't pause if there is a next file in the playlist, or the playlist is looped.
Approximately, this will pause when the player would normally exit, but in practice there are corner
cases in which this is not the case (e.g. mpv --keep-open file.mkv /dev/null will play
file.mkv normally, then fail to open /dev/null, then exit). (In mpv 0.8.0, always was introduced,
which restores the old behavior.)

--keep-open-pause=<yes|no>

If set to no, instead of pausing when --keep-open is active, just stop at end of file and continue
playing forward when you seek backwards until end where it stops again. Default: yes.

--image-display-duration=<seconds|inf>

If the current file is an image, play the image for the given amount of seconds (default: 1). inf means
the file is kept open forever (until the user stops playback manually).

Unlike --keep-open, the player is not paused, but simply continues playback until the time has
elapsed. (It should not use any resources during "playback".)

This affects image files, which are defined as having only 1 video frame and no audio. The player may
recognize certain non-images as images, for example if --length is used to reduce the length to 1
frame, or if you seek to the last frame.

This option does not affect the framerate used for mf:// or --merge-files. For that, use
--mf-fps instead.

Setting --image-display-duration hides the OSC and does not track playback time on the
command-line output, and also does not duplicate the image frame when encoding. To force the
player into "dumb mode" and actually count out seconds, or to duplicate the image when encoding,
you need to use --demuxer=lavf --demuxer-lavf-o=loop=1, and use --length or
--frames to stop after a particular time.

--force-window=<yes|no|immediate>

Create a video output window even if there is no video. This can be useful when pretending that mpv
is a GUI application. Currently, the window always has the size 640x480, and is subject to
--geometry, --autofit, and similar options.

Warning

The window is created only after initialization (to make sure default window placement still
works if the video size is different from the --force-window default window size). This can
be a problem if initialization doesn't work perfectly, such as when opening URLs with bad
network connection, or opening broken video files. The immediate mode can be used to
create the window always on program start, but this may cause other issues.

--taskbar-progress, --no-taskbar-progress

(Windows only) Enable/disable playback progress rendering in taskbar (Windows 7 and above).

Enabled by default.

--snap-window

(Windows only) Snap the player window to screen edges.

--ontop

Makes the player window stay on top of other windows.

On Windows, if combined with fullscreen mode, this causes mpv to be treated as exclusive fullscreen
window that bypasses the Desktop Window Manager.

--ontop-level=<window|system|level>

(OS X only) Sets the level of an ontop window (default: window).

window: On top of all other windows.

system: On top of system elements like Taskbar, Menubar and Dock.

level: A level as integer.

--border, --no-border

Play video with window border and decorations. Since this is on by default, use --no-border to
disable the standard window decorations.

--fit-border, --no-fit-border

(Windows only) Fit the whole window with border and decorations on the screen. Since this is on by
default, use --no-fit-border to make mpv try to only fit client area with video on the screen. This
behavior only applied to window/video with size exceeding size of the screen.

--on-all-workspaces

(X11 only) Show the video window on all virtual desktops.

--geometry=<[W[xH]][+-x+-y]>, --geometry=<x:y>

Adjust the initial window position or size. W and H set the window size in pixels. x and y set the window
position, measured in pixels from the top-left corner of the screen to the top-left corner of the image
being displayed. If a percentage sign (%) is given after the argument, it turns the value into a
percentage of the screen size in that direction. Positions are specified similar to the standard X11
--geometry option format, in which e.g. +10-50 means "place 10 pixels from the left border and 50
pixels from the lower border" and "--20+-10" means "place 20 pixels beyond the right and 10 pixels
beyond the top border".

If an external window is specified using the --wid option, this option is ignored.

The coordinates are relative to the screen given with --screen for the video output drivers that fully
support --screen.

Note

Generally only supported by GUI VOs. Ignored for encoding.

Note (X11)

This option does not work properly with all window managers.

Examples

50:40

Places the window at x=50, y=40.

50%:50%

Places the window in the middle of the screen.

100%:100%

Places the window at the bottom right corner of the screen.

50%

Sets the window width to half the screen width. Window height is set so that the window
has the video aspect ratio.

50%x50%

Forces the window width and height to half the screen width and height. Will show black
borders to compensate for the video aspect ratio (with most VOs and without
--no-keepaspect).

50%+10+10

Sets the window to half the screen widths, and positions it 10 pixels below/left of the top
left corner of the screen.

See also --autofit and --autofit-larger for fitting the window into a given size without
changing aspect ratio.

--autofit=<[W[xH]]>

Set the initial window size to a maximum size specified by WxH, without changing the window's aspect
ratio. The size is measured in pixels, or if a number is followed by a percentage sign (%), in percents of
the screen size.

This option never changes the aspect ratio of the window. If the aspect ratio mismatches, the
window's size is reduced until it fits into the specified size.

Window position is not taken into account, nor is it modified by this option (the window manager still
may place the window differently depending on size). Use --geometry to change the window
position. Its effects are applied after this option.

See --geometry for details how this is handled with multi-monitor setups.

Use --autofit-larger instead if you just want to limit the maximum size of the window, rather
than always forcing a window size.

Use --geometry if you want to force both window width and height to a specific size.

Note

Generally only supported by GUI VOs. Ignored for encoding.

Examples

70%

Make the window width 70% of the screen size, keeping aspect ratio.

1000

Set the window width to 1000 pixels, keeping aspect ratio.

70%x60%

Make the window as large as possible, without being wider than 70% of the screen width,
or higher than 60% of the screen height.

--autofit-larger=<[W[xH]]>

This option behaves exactly like --autofit, except the window size is only changed if the window
would be larger than the specified size.

Example

90%x80%

If the video is larger than 90% of the screen width or 80% of the screen height, make the
window smaller until either its width is 90% of the screen, or its height is 80% of the
screen.

--autofit-smaller=<[W[xH]]>

This option behaves exactly like --autofit, except that it sets the minimum size of the window (just
as --autofit-larger sets the maximum).

Example

500x500

Make the window at least 500 pixels wide and 500 pixels high (depending on the video
aspect ratio, the width or height will be larger than 500 in order to keep the aspect ratio
the same).

--window-scale=<factor>

Resize the video window to a multiple (or fraction) of the video size. This option is applied before
--autofit and other options are applied (so they override this option).

For example, --window-scale=0.5 would show the window at half the video size.

--cursor-autohide=<number|no|always>

Make mouse cursor automatically hide after given number of milliseconds. no will disable cursor
autohide. always means the cursor will stay hidden.

--cursor-autohide-fs-only

If this option is given, the cursor is always visible in windowed mode. In fullscreen mode, the cursor is
shown or hidden according to --cursor-autohide.

--no-fixed-vo, --fixed-vo

--no-fixed-vo enforces closing and reopening the video window for multiple files (one
(un)initialization for each file).

--force-rgba-osd-rendering

Change how some video outputs render the OSD and text subtitles. This does not change
appearance of the subtitles and only has performance implications. For VOs which support native
ASS rendering (like gpu, vdpau, direct3d), this can be slightly faster or slower, depending on GPU
drivers and hardware. For other VOs, this just makes rendering slower.

--force-window-position

Forcefully move mpv's video output window to default location whenever there is a change in video
parameters, video stream or file. This used to be the default behavior. Currently only affects X11
VOs.

--no-keepaspect, --keepaspect

--no-keepaspect will always stretch the video to window size, and will disable the window
manager hints that force the window aspect ratio. (Ignored in fullscreen mode.)

--no-keepaspect-window, --keepaspect-window

--keepaspect-window (the default) will lock the window size to the video aspect.
--no-keepaspect-window disables this behavior, and will instead add black bars if window aspect
and video aspect mismatch. Whether this actually works depends on the VO backend. (Ignored in
fullscreen mode.)

--monitoraspect=<ratio>

Set the aspect ratio of your monitor or TV screen. A value of 0 disables a previous setting (e.g. in the
config file). Overrides the --monitorpixelaspect setting if enabled.

See also --monitorpixelaspect and --video-aspect.

Examples

• --monitoraspect=4:3 or --monitoraspect=1.3333

• --monitoraspect=16:9 or --monitoraspect=1.7777

--hidpi-window-scale, --no-hidpi-window-scale

(OS X and X11 only) Scale the window size according to the backing scale factor (default: yes). On
regular HiDPI resolutions the window opens with double the size but appears as having the same
size as on none-HiDPI resolutions. This is the default OS X behavior.

--native-fs, --no-native-fs

(OS X only) Uses the native fullscreen mechanism of the OS (default: yes).

--monitorpixelaspect=<ratio>

Set the aspect of a single pixel of your monitor or TV screen (default: 1). A value of 1 means square
pixels (correct for (almost?) all LCDs). See also --monitoraspect and --video-aspect.

--stop-screensaver, --no-stop-screensaver

Turns off the screensaver (or screen blanker and similar mechanisms) at startup and turns it on again
on exit (default: yes). The screensaver is always re-enabled when the player is paused.

This is not supported on all video outputs or platforms. Sometimes it is implemented, but does not
work (known to happen with GNOME). You might be able to work around this using
--heartbeat-cmd instead.

--wid=<ID>

This tells mpv to attach to an existing window. If a VO is selected that supports this option, it will use
that window for video output. mpv will scale the video to the size of this window, and will add black
bars to compensate if the aspect ratio of the video is different.

On X11, the ID is interpreted as a Window on X11. Unlike MPlayer/mplayer2, mpv always creates its
own window, and sets the wid window as parent. The window will always be resized to cover the
parent window fully. The value 0 is interpreted specially, and mpv will draw directly on the root
window.

On win32, the ID is interpreted as HWND. Pass it as value cast to intptr_t. mpv will create its own
window, and set the wid window as parent, like with X11.

On OSX/Cocoa, the ID is interpreted as NSView*. Pass it as value cast to intptr_t. mpv will create
its own sub-view. Because OSX does not support window embedding of foreign processes, this works
only with libmpv, and will crash when used from the command line.

On Android, the ID is interpreted as android.view.Surface. Pass it as a value cast to intptr_t.
Use with --vo=mediacodec_embed and --hwdec=mediacodec for direct rendering using
MediaCodec, or with --vo=gpu --gpu-context=android (with or without
--hwdec=mediacodec-copy).

--no-window-dragging

Don't move the window when clicking on it and moving the mouse pointer.

--x11-name

Set the window class name for X11-based video output methods.

--x11-netwm=<yes|no|auto>

(X11 only) Control the use of NetWM protocol features.

This may or may not help with broken window managers. This provides some functionality that was
implemented by the now removed --fstype option. Actually, it is not known to the developers to
which degree this option was needed, so feedback is welcome.

Specifically, yes will force use of NetWM fullscreen support, even if not advertised by the WM. This
can be useful for WMs that are broken on purpose, like XMonad. (XMonad supposedly doesn't
advertise fullscreen support, because Flash uses it. Apparently, applications which want to use
fullscreen anyway are supposed to either ignore the NetWM support hints, or provide a workaround.
Shame on XMonad for deliberately breaking X protocols (as if X isn't bad enough already).

By default, NetWM support is autodetected (auto).

This option might be removed in the future.

--x11-bypass-compositor=<yes|no|fs-only|never>

If set to yes, then ask the compositor to unredirect the mpv window (default: fs-only). This uses the
_NET_WM_BYPASS_COMPOSITOR hint.

fs-only asks the window manager to disable the compositor only in fullscreen mode.

no sets _NET_WM_BYPASS_COMPOSITOR to 0, which is the default value as declared by the EWMH
specification, i.e. no change is done.

never asks the window manager to never disable the compositor.

Disc Devices
--cdrom-device=<path>

Specify the CD-ROM device (default: /dev/cdrom).

--dvd-device=<path>

Specify the DVD device or .iso filename (default: /dev/dvd). You can also specify a directory that
contains files previously copied directly from a DVD (with e.g. vobcopy).

Example

mpv dvd:// --dvd-device=/path/to/dvd/

--bluray-device=<path>

(Blu-ray only) Specify the Blu-ray disc location. Must be a directory with Blu-ray structure.

Example

mpv bd:// --bluray-device=/path/to/bd/

--cdda-...

These options can be used to tune the CD Audio reading feature of mpv.

--cdda-speed=<value>

Set CD spin speed.

--cdda-paranoia=<0-2>

Set paranoia level. Values other than 0 seem to break playback of anything but the first track.

0: disable checking (default)

1: overlap checking only

2: full data correction and verification

--cdda-sector-size=<value>

Set atomic read size.

--cdda-overlap=<value>

Force minimum overlap search during verification to <value> sectors.

--cdda-toc-bias

Assume that the beginning offset of track 1 as reported in the TOC will be addressed as LBA 0. Some
discs need this for getting track boundaries correctly.

--cdda-toc-offset=<value>

Add <value> sectors to the values reported when addressing tracks. May be negative.

--cdda-skip=<yes|no>

(Never) accept imperfect data reconstruction.

--cdda-cdtext=<yes|no>

Print CD text. This is disabled by default, because it ruins performance with CD-ROM drives for
unknown reasons.

--dvd-speed=<speed>

Try to limit DVD speed (default: 0, no change). DVD base speed is 1385 kB/s, so an 8x drive can read
at speeds up to 11080 kB/s. Slower speeds make the drive more quiet. For watching DVDs, 2700
kB/s should be quiet and fast enough. mpv resets the speed to the drive default value on close.
Values of at least 100 mean speed in kB/s. Values less than 100 mean multiples of 1385 kB/s, i.e.
--dvd-speed=8 selects 11080 kB/s.

Note

You need write access to the DVD device to change the speed.

--dvd-angle=<ID>

Some DVDs contain scenes that can be viewed from multiple angles. This option tells mpv which
angle to use (default: 1).

Equalizer
--brightness=<-100-100>

Adjust the brightness of the video signal (default: 0). Not supported by all video output drivers.

--contrast=<-100-100>

Adjust the contrast of the video signal (default: 0). Not supported by all video output drivers.

--saturation=<-100-100>

Adjust the saturation of the video signal (default: 0). You can get grayscale output with this option.
Not supported by all video output drivers.

--gamma=<-100-100>

Adjust the gamma of the video signal (default: 0). Not supported by all video output drivers.

--hue=<-100-100>

Adjust the hue of the video signal (default: 0). You can get a colored negative of the image with this
option. Not supported by all video output drivers.

Demuxer
--demuxer=<[+]name>

Force demuxer type. Use a '+' before the name to force it; this will skip some checks. Give the
demuxer name as printed by --demuxer=help.

--demuxer-lavf-analyzeduration=<value>

Maximum length in seconds to analyze the stream properties.

--demuxer-lavf-probe-info=<yes|no|auto|nostreams>

Whether to probe stream information (default: auto). Technically, this controls whether libavformat's
avformat_find_stream_info() function is called. Usually it's safer to call it, but it can also make
startup slower.

The auto choice (the default) tries to skip this for a few know-safe whitelisted formats, while calling it
for everything else.

The nostreams choice only calls it if and only if the file seems to contain no streams after opening
(helpful in cases when calling the function is needed to detect streams at all, such as with FLV files).

--demuxer-lavf-probescore=<1-100>

Minimum required libavformat probe score. Lower values will require less data to be loaded (makes
streams start faster), but makes file format detection less reliable. Can be used to force auto-detected
libavformat demuxers, even if libavformat considers the detection not reliable enough. (Default: 26.)

--demuxer-lavf-allow-mimetype=<yes|no>

Allow deriving the format from the HTTP MIME type (default: yes). Set this to no in case playing
things from HTTP mysteriously fails, even though the same files work from local disk.

This is default in order to reduce latency when opening HTTP streams.

--demuxer-lavf-format=<name>

Force a specific libavformat demuxer.

--demuxer-lavf-hacks=<yes|no>

By default, some formats will be handled differently from other formats by explicitly checking for them.
Most of these compensate for weird or imperfect behavior from libavformat demuxers. Passing no
disables these. For debugging and testing only.

--demuxer-lavf-genpts-mode=<no|lavf>

Mode for deriving missing packet PTS values from packet DTS. lavf enables libavformat's genpts
option. no disables it. This used to be enabled by default, but then it was deemed as not needed
anymore. Enabling this might help with timestamp problems, or make them worse.

--demuxer-lavf-o=<key>=<value>[,<key>=<value>[,...]]

Pass AVOptions to libavformat demuxer.

Note, a patch to make the o= unneeded and pass all unknown options through the AVOption system
is welcome. A full list of AVOptions can be found in the FFmpeg manual. Note that some options may
conflict with mpv options.

Example

--demuxer-lavf-o=fflags=+ignidx

--demuxer-lavf-probesize=<value>

Maximum amount of data to probe during the detection phase. In the case of MPEG-TS this value
identifies the maximum number of TS packets to scan.

--demuxer-lavf-buffersize=<value>

Size of the stream read buffer allocated for libavformat in bytes (default: 32768). Lowering the size
could lower latency. Note that libavformat might reallocate the buffer internally, or not fully use all of it.

--demuxer-mkv-subtitle-preroll=<yes|index|no>, --mkv-subtitle-preroll

Try harder to show embedded soft subtitles when seeking somewhere. Normally, it can happen that
the subtitle at the seek target is not shown due to how some container file formats are designed. The
subtitles appear only if seeking before or exactly to the position a subtitle first appears. To make this
worse, subtitles are often timed to appear a very small amount before the associated video frame, so
that seeking to the video frame typically does not demux the subtitle at that position.

Enabling this option makes the demuxer start reading data a bit before the seek target, so that
subtitles appear correctly. Note that this makes seeking slower, and is not guaranteed to always
work. It only works if the subtitle is close enough to the seek target.

Works with the internal Matroska demuxer only. Always enabled for absolute and hr-seeks, and this
option changes behavior with relative or imprecise seeks only.

You can use the --demuxer-mkv-subtitle-preroll-secs option to specify how much data the
demuxer should pre-read at most in order to find subtitle packets that may overlap. Setting this to 0
will effectively disable this preroll mechanism. Setting a very large value can make seeking very slow,
and an extremely large value would completely reread the entire file from start to seek target on every
seek - seeking can become slower towards the end of the file. The details are messy, and the value is
actually rounded down to the cluster with the previous video keyframe.

Some files, especially files muxed with newer mkvmerge versions, have information embedded that
can be used to determine what subtitle packets overlap with a seek target. In these cases, mpv will
reduce the amount of data read to a minimum. (Although it will still read all data between the cluster
that contains the first wanted subtitle packet, and the seek target.) If the index choice (which is the
default) is specified, then prerolling will be done only if this information is actually available. If this
method is used, the maximum amount of data to skip can be additionally controlled by
--demuxer-mkv-subtitle-preroll-secs-index (it still uses the value of the option without
-index if that is higher).

See also --hr-seek-demuxer-offset option. This option can achieve a similar effect, but only if
hr-seek is active. It works with any demuxer, but makes seeking much slower, as it has to decode
audio and video data instead of just skipping over it.

--mkv-subtitle-preroll is a deprecated alias.

--demuxer-mkv-subtitle-preroll-secs=<value>

See --demuxer-mkv-subtitle-preroll.

--demuxer-mkv-subtitle-preroll-secs-index=<value>

See --demuxer-mkv-subtitle-preroll.

--demuxer-mkv-probe-video-duration=<yes|no|full>

When opening the file, seek to the end of it, and check what timestamp the last video packet has, and
report that as file duration. This is strictly for compatibility with Haali only. In this mode, it's possible
that opening will be slower (especially when playing over http), or that behavior with broken files is
much worse. So don't use this option.

The yes mode merely uses the index and reads a small number of blocks from the end of the file. The
full mode actually traverses the entire file and can make a reliable estimate even without an index
present (such as partial files).

--demuxer-rawaudio-channels=<value>

Number of channels (or channel layout) if --demuxer=rawaudio is used (default: stereo).

--demuxer-rawaudio-format=<value>

Sample format for --demuxer=rawaudio (default: s16le). Use
--demuxer-rawaudio-format=help to get a list of all formats.

--demuxer-rawaudio-rate=<value>

Sample rate for --demuxer=rawaudio (default: 44 kHz).

--demuxer-rawvideo-fps=<value>

Rate in frames per second for --demuxer=rawvideo (default: 25.0).

--demuxer-rawvideo-w=<value>, --demuxer-rawvideo-h=<value>

Image dimension in pixels for --demuxer=rawvideo.

Example

Play a raw YUV sample:

mpv sample-720x576.yuv --demuxer=rawvideo \
--demuxer-rawvideo-w=720 --demuxer-rawvideo-h=576

--demuxer-rawvideo-format=<value>

Color space (fourcc) in hex or string for --demuxer=rawvideo (default: YV12).

--demuxer-rawvideo-mp-format=<value>

Color space by internal video format for --demuxer=rawvideo. Use
--demuxer-rawvideo-mp-format=help for a list of possible formats.

--demuxer-rawvideo-codec=<value>

Set the video codec instead of selecting the rawvideo codec when using --demuxer=rawvideo.
This uses the same values as codec names in --vd (but it does not accept decoder names).

--demuxer-rawvideo-size=<value>

Frame size in bytes when using --demuxer=rawvideo.

--demuxer-max-bytes=<bytesize>

This controls how much the demuxer is allowed to buffer ahead. The demuxer will normally try to read
ahead as much as necessary, or as much is requested with --demuxer-readahead-secs. The
option can be used to restrict the maximum readahead. This limits excessive readahead in case of
broken files or desynced playback. The demuxer will stop reading additional packets as soon as one
of the limits is reached. (The limits still can be slightly overstepped due to technical reasons.)

Set these limits higher if you get a packet queue overflow warning, and you think normal playback
would be possible with a larger packet queue.

See --list-options for defaults and value range. <bytesize> options accept suffixes such as
KiB and MiB.

--demuxer-max-back-bytes=<bytesize>

This controls how much past data the demuxer is allowed to preserve. This is useful only if the
--demuxer-seekable-cache option is enabled. Unlike the forward cache, there is no control how
many seconds are actually cached - it will simply use as much memory this option allows. Setting this
option to 0 will strictly disable any back buffer, but this will lead to the situation that the forward seek
range starts after the current playback position (as it removes past packets that are seek points).

Keep in mind that other buffers in the player (like decoders) will cause the demuxer to cache "future"
frames in the back buffer, which can skew the impression about how much data the backbuffer
contains.

See --list-options for defaults and value range.

--demuxer-seekable-cache=<yes|no|auto>

This controls whether seeking can use the demuxer cache (default: auto). If enabled, short seek
offsets will not trigger a low level demuxer seek (which means for example that slow network round
trips or FFmpeg seek bugs can be avoided). If a seek cannot happen within the cached range, a low
level seek will be triggered. Seeking outside of the cache will start a new cached range, but can
discard the old cache range if the demuxer exhibits certain unsupported behavior.

Keep in mind that some events can flush the cache or force a low level seek anyway, such as
switching tracks, or attempting to seek before the start or after the end of the file.

The special value auto means yes in the same situation as --cache-secs is used (i.e. when the
stream appears to be a network stream or the stream cache is enabled).

--demuxer-thread=<yes|no>

Run the demuxer in a separate thread, and let it prefetch a certain amount of packets (default: yes).
Having this enabled may lead to smoother playback, but on the other hand can add delays to seeking
or track switching.

--demuxer-readahead-secs=<seconds>

If --demuxer-thread is enabled, this controls how much the demuxer should buffer ahead in
seconds (default: 1). As long as no packet has a timestamp difference higher than the readahead
amount relative to the last packet returned to the decoder, the demuxer keeps reading.

Note that the --cache-secs option will override this value if a cache is enabled, and the value is
larger.

(This value tends to be fuzzy, because many file formats don't store linear timestamps.)

--prefetch-playlist=<yes|no>

Prefetch next playlist entry while playback of the current entry is ending (default: no). This merely
opens the URL of the next playlist entry as soon as the current URL is fully read.

This does not work with URLs resolved by the youtube-dl wrapper, and it won't.

This does not affect HLS (.m3u8 URLs) - HLS prefetching depends on the demuxer cache settings
and is on by default.

This can give subtly wrong results if per-file options are used, or if options are changed in the time
window between prefetching start and next file played.

This can occasionally make wrong prefetching decisions. For example, it can't predict whether you go
backwards in the playlist, and assumes you won't edit the playlist.

Highly experimental.

--force-seekable=<yes|no>

If the player thinks that the media is not seekable (e.g. playing from a pipe, or it's an http stream with
a server that doesn't support range requests), seeking will be disabled. This option can forcibly
enable it. For seeks within the cache, there's a good chance of success.

Input
--native-keyrepeat

Use system settings for keyrepeat delay and rate, instead of --input-ar-delay and
--input-ar-rate. (Whether this applies depends on the VO backend and how it handles keyboard
input. Does not apply to terminal input.)

--input-ar-delay

Delay in milliseconds before we start to autorepeat a key (0 to disable).

--input-ar-rate

Number of key presses to generate per second on autorepeat.

--input-conf=<filename>

Specify input configuration file other than the default location in the mpv configuration directory
(usually ~/.config/mpv/input.conf).

--no-input-default-bindings

Disable mpv default (built-in) key bindings.

--input-cmdlist

Prints all commands that can be bound to keys.

--input-doubleclick-time=<milliseconds>

Time in milliseconds to recognize two consecutive button presses as a double-click (default: 300).

--input-keylist

Prints all keys that can be bound to commands.

--input-key-fifo-size=<2-65000>

Specify the size of the FIFO that buffers key events (default: 7). If it is too small, some events may be
lost. The main disadvantage of setting it to a very large value is that if you hold down a key triggering
some particularly slow command then the player may be unresponsive while it processes all the
queued commands.

--input-test

Input test mode. Instead of executing commands on key presses, mpv will show the keys and the
bound commands on the OSD. Has to be used with a dummy video, and the normal ways to quit the
player will not work (key bindings that normally quit will be shown on OSD only, just like any other
binding). See INPUT.CONF.

--input-file=<filename>

Read commands from the given file. Mostly useful with a FIFO. Since mpv 0.7.0 also understands
JSON commands (see JSON IPC), but you can't get replies or events. Use --input-ipc-server
for something bi-directional. On MS Windows, JSON commands are not available.

This can also specify a direct file descriptor with fd://N (UNIX only). In this case, JSON replies will
be written if the FD is writable.

Note

When the given file is a FIFO mpv opens both ends, so you can do several echo "seek 10" >
mp_pipe and the pipe will stay valid.

--input-terminal, --no-input-terminal

--no-input-terminal prevents the player from reading key events from standard input. Useful
when reading data from standard input. This is automatically enabled when - is found on the
command line. There are situations where you have to set it manually, e.g. if you open /dev/stdin

(or the equivalent on your system), use stdin in a playlist or intend to read from stdin later on via the
loadfile or loadlist input commands.

--input-ipc-server=<filename>

Enable the IPC support and create the listening socket at the given path.

On Linux and Unix, the given path is a regular filesystem path. On Windows, named pipes are used,
so the path refers to the pipe namespace (\\.\pipe\<name>). If the \\.\pipe\ prefix is missing,
mpv will add it automatically before creating the pipe, so
--input-ipc-server=/tmp/mpv-socket and
--input-ipc-server=\\.\pipe\tmp\mpv-socket are equivalent for IPC on Windows.

See JSON IPC for details.

--input-appleremote=<yes|no>

(OS X only) Enable/disable Apple Remote support. Enabled by default (except for libmpv).

--input-cursor, --no-input-cursor

Permit mpv to receive pointer events reported by the video output driver. Necessary to use the OSC,
or to select the buttons in DVD menus. Support depends on the VO in use.

--input-media-keys=<yes|no>

(OS X and Windows only) Enable/disable media keys support. Enabled by default (except for libmpv).

--input-right-alt-gr, --no-input-right-alt-gr

(Cocoa and Windows only) Use the right Alt key as Alt Gr to produce special characters. If disabled,
count the right Alt as an Alt modifier key. Enabled by default.

--input-vo-keyboard=<yes|no>

Disable all keyboard input on for VOs which can't participate in proper keyboard input dispatching.
May not affect all VOs. Generally useful for embedding only.

On X11, a sub-window with input enabled grabs all keyboard input as long as it is 1. a child of a
focused window, and 2. the mouse is inside of the sub-window. It can steal away all keyboard input
from the application embedding the mpv window, and on the other hand, the mpv window will receive
no input if the mouse is outside of the mpv window, even though mpv has focus. Modern toolkits work
around this weird X11 behavior, but naively embedding foreign windows breaks it.

The only way to handle this reasonably is using the XEmbed protocol, which was designed to solve
these problems. GTK provides GtkSocket, which supports XEmbed. Qt doesn't seem to provide
anything working in newer versions.

If the embedder supports XEmbed, input should work with default settings and with this option
disabled. Note that input-default-bindings is disabled by default in libmpv as well - it should be
enabled if you want the mpv default key bindings.

(This option was renamed from --input-x11-keyboard.)

OSD
--osc, --no-osc

Whether to load the on-screen-controller (default: yes).

--no-osd-bar, --osd-bar

Disable display of the OSD bar.

You can configure this on a per-command basis in input.conf using osd- prefixes, see
Input Command Prefixes. If you want to disable the OSD completely, use --osd-level=0.

--osd-on-seek=<no,bar,msg,msg-bar>

Set what is displayed on the OSD during seeks. The default is bar.

You can configure this on a per-command basis in input.conf using osd- prefixes, see
Input Command Prefixes.

--osd-duration=<time>

Set the duration of the OSD messages in ms (default: 1000).

--osd-font=<name>

Specify font to use for OSD. The default is sans-serif.

Examples

• --osd-font='Bitstream Vera Sans'

• --osd-font='Comic Sans MS'

--osd-font-size=<size>

Specify the OSD font size. See --sub-font-size for details.

Default: 55.

--osd-msg1=<string>

Show this string as message on OSD with OSD level 1 (visible by default). The message will be
visible by default, and as long as no other message covers it, and the OSD level isn't changed (see
--osd-level). Expands properties; see Property Expansion.

--osd-msg2=<string>

Similar to --osd-msg1, but for OSD level 2. If this is an empty string (default), then the playback time
is shown.

--osd-msg3=<string>

Similar to --osd-msg1, but for OSD level 3. If this is an empty string (default), then the playback
time, duration, and some more information is shown.

This is used for the show-progress command (by default mapped to P), and when seeking if
enabled with --osd-on-seek or by osd- prefixes in input.conf (see Input Command Prefixes).

--osd-status-msg is a legacy equivalent (but with a minor difference).

--osd-status-msg=<string>

Show a custom string during playback instead of the standard status text. This overrides the status
text used for --osd-level=3, when using the show-progress command (by default mapped to P),
and when seeking if enabled with --osd-on-seek or osd- prefixes in input.conf (see
Input Command Prefixes). Expands properties. See Property Expansion.

This option has been replaced with --osd-msg3. The only difference is that this option implicitly
includes ${osd-sym-cc}. This option is ignored if --osd-msg3 is not empty.

--osd-playing-msg=<string>

Show a message on OSD when playback starts. The string is expanded for properties, e.g.
--osd-playing-msg='file: ${filename}' will show the message file: followed by a space
and the currently played filename.

See Property Expansion.

--osd-bar-align-x=<-1-1>

Position of the OSD bar. -1 is far left, 0 is centered, 1 is far right. Fractional values (like 0.5) are
allowed.

--osd-bar-align-y=<-1-1>

Position of the OSD bar. -1 is top, 0 is centered, 1 is bottom. Fractional values (like 0.5) are allowed.

--osd-bar-w=<1-100>

Width of the OSD bar, in percentage of the screen width (default: 75). A value of 50 means the bar is
half the screen wide.

--osd-bar-h=<0.1-50>

Height of the OSD bar, in percentage of the screen height (default: 3.125).

--osd-back-color=<color>

See --osd-color. Color used for OSD text background.

--osd-blur=<0..20.0>

Gaussian blur factor. 0 means no blur applied (default).

--osd-bold=<yes|no>

Format text on bold.

--osd-italic=<yes|no>

Format text on italic.

--osd-border-color=<color>

See --osd-color. Color used for the OSD font border.

Note

ignored when --osd-back-color is specified (or more exactly: when that option is not set to
completely transparent).

--osd-border-size=<size>

Size of the OSD font border in scaled pixels (see --sub-font-size for details). A value of 0
disables borders.

Default: 3.

--osd-color=<color>

Specify the color used for OSD. See --sub-color for details.

--osd-fractions

Show OSD times with fractions of seconds (in millisecond precision). Useful to see the exact
timestamp of a video frame.

--osd-level=<0-3>

Specifies which mode the OSD should start in.

0: OSD completely disabled (subtitles only)

1: enabled (shows up only on user interaction)

2: enabled + current time visible by default

3: enabled + --osd-status-msg (current time and status by default)

--osd-margin-x=<size>

Left and right screen margin for the OSD in scaled pixels (see --sub-font-size for details).

This option specifies the distance of the OSD to the left, as well as at which distance from the right
border long OSD text will be broken.

Default: 25.

--osd-margin-y=<size>

Top and bottom screen margin for the OSD in scaled pixels (see --sub-font-size for details).

This option specifies the vertical margins of the OSD.

Default: 22.

--osd-align-x=<left|center|right>

Control to which corner of the screen OSD should be aligned to (default: left).

--osd-align-y=<top|center|bottom>

Vertical position (default: top). Details see --osd-align-x.

--osd-scale=<factor>

OSD font size multiplier, multiplied with --osd-font-size value.

--osd-scale-by-window=<yes|no>

Whether to scale the OSD with the window size (default: yes). If this is disabled, --osd-font-size
and other OSD options that use scaled pixels are always in actual pixels. The effect is that changing
the window size won't change the OSD font size.

--osd-shadow-color=<color>

See --sub-color. Color used for OSD shadow.

--osd-shadow-offset=<size>

Displacement of the OSD shadow in scaled pixels (see --sub-font-size for details). A value of 0
disables shadows.

Default: 0.

--osd-spacing=<size>

Horizontal OSD/sub font spacing in scaled pixels (see --sub-font-size for details). This value is
added to the normal letter spacing. Negative values are allowed.

Default: 0.

--video-osd=<yes|no>

Enabled OSD rendering on the video window (default: yes). This can be used in situations where
terminal OSD is preferred. If you just want to disable all OSD rendering, use --osd-level=0.

It does not affect subtitles or overlays created by scripts (in particular, the OSC needs to be disabled
with --no-osc).

This option is somewhat experimental and could be replaced by another mechanism in the future.

Screenshot
--screenshot-format=<type>

Set the image file type used for saving screenshots.

Available choices:

png: PNG

jpg: JPEG (default)

jpeg: JPEG (alias for jpg)

--screenshot-tag-colorspace=<yes|no>

Tag screenshots with the appropriate colorspace.

Note that not all formats are supported.

Default: no.

--screenshot-high-bit-depth=<yes|no>

If possible, write screenshots with a bit depth similar to the source video (default: yes). This is
interesting in particular for PNG, as this sometimes triggers writing 16 bit PNGs with huge file sizes.
This will also include an unused alpha channel in the resulting files if 16 bit is used.

--screenshot-template=<template>

Specify the filename template used to save screenshots. The template specifies the filename without
file extension, and can contain format specifiers, which will be substituted when taking a screenshot.
By default, the template is mpv-shot%n, which results in filenames like mpv-shot0012.png for
example.

The template can start with a relative or absolute path, in order to specify a directory location where
screenshots should be saved.

If the final screenshot filename points to an already existing file, the file will not be overwritten. The
screenshot will either not be saved, or if the template contains %n, saved using different, newly
generated filename.

Allowed format specifiers:

%[#][0X]n

A sequence number, padded with zeros to length X (default: 04). E.g. passing the format %04n
will yield 0012 on the 12th screenshot. The number is incremented every time a screenshot is
taken or if the file already exists. The length X must be in the range 0-9. With the optional # sign,
mpv will use the lowest available number. For example, if you take three screenshots--0001,
0002, 0003--and delete the first two, the next two screenshots will not be 0004 and 0005, but
0001 and 0002 again.

%f

Filename of the currently played video.

%F

Same as %f, but strip the file extension, including the dot.

%x

Directory path of the currently played video. If the video is not on the filesystem (but e.g.
http://), this expand to an empty string.

%X{fallback}

Same as %x, but if the video file is not on the filesystem, return the fallback string inside the
{...}.

%p

Current playback time, in the same format as used in the OSD. The result is a string of the form
"HH:MM:SS". For example, if the video is at the time position 5 minutes and 34 seconds, %p will
be replaced with "00:05:34".

%P

Similar to %p, but extended with the playback time in milliseconds. It is formatted as
"HH:MM:SS.mmm", with "mmm" being the millisecond part of the playback time.

Note

This is a simple way for getting unique per-frame timestamps. (Frame numbers would be
more intuitive, but are not easily implementable because container formats usually use
time stamps for identifying frames.)

%wX

Specify the current playback time using the format string X. %p is like %wH:%wM:%wS, and %P is
like %wH:%wM:%wS.%wT.

Valid format specifiers:

%wH

hour (padded with 0 to two digits)

%wh

hour (not padded)

%wM

minutes (00-59)

%wm

total minutes (includes hours, unlike %wM)

%wS

seconds (00-59)

%ws

total seconds (includes hours and minutes)

%wf

like %ws, but as float

%wT

milliseconds (000-999)

%tX

Specify the current local date/time using the format X. This format specifier uses the UNIX
strftime() function internally, and inserts the result of passing "%X" to strftime. For
example, %tm will insert the number of the current month as number. You have to use multiple
%tX specifiers to build a full date/time string.

%{prop[:fallback text]}

Insert the value of the input property 'prop'. E.g. %{filename} is the same as %f. If the property
does not exist or is not available, an error text is inserted, unless a fallback is specified.

%%

Replaced with the % character itself.

--screenshot-directory=<path>

Store screenshots in this directory. This path is joined with the filename generated by
--screenshot-template. If the template filename is already absolute, the directory is ignored.

If the directory does not exist, it is created on the first screenshot. If it is not a directory, an error is
generated when trying to write a screenshot.

This option is not set by default, and thus will write screenshots to the directory from which mpv was
started. In pseudo-gui mode (see PSEUDO GUI MODE), this is set to the desktop.

--screenshot-jpeg-quality=<0-100>

Set the JPEG quality level. Higher means better quality. The default is 90.

--screenshot-jpeg-source-chroma=<yes|no>

Write JPEG files with the same chroma subsampling as the video (default: yes). If disabled, the
libjpeg default is used.

--screenshot-png-compression=<0-9>

Set the PNG compression level. Higher means better compression. This will affect the file size of the
written screenshot file and the time it takes to write a screenshot. Too high compression might occupy
enough CPU time to interrupt playback. The default is 7.

--screenshot-png-filter=<0-5>

Set the filter applied prior to PNG compression. 0 is none, 1 is "sub", 2 is "up", 3 is "average", 4 is
"Paeth", and 5 is "mixed". This affects the level of compression that can be achieved. For most
images, "mixed" achieves the best compression ratio, hence it is the default.

Software Scaler
--sws-scaler=<name>

Specify the software scaler algorithm to be used with --vf=scale. This also affects video output
drivers which lack hardware acceleration, e.g. x11. See also --vf=scale.

To get a list of available scalers, run --sws-scaler=help.

Default: bicubic.

--sws-lgb=<0-100>

Software scaler Gaussian blur filter (luma). See --sws-scaler.

--sws-cgb=<0-100>

Software scaler Gaussian blur filter (chroma). See --sws-scaler.

--sws-ls=<-100-100>

Software scaler sharpen filter (luma). See --sws-scaler.

--sws-cs=<-100-100>

Software scaler sharpen filter (chroma). See --sws-scaler.

--sws-chs=<h>

Software scaler chroma horizontal shifting. See --sws-scaler.

--sws-cvs=<v>

Software scaler chroma vertical shifting. See --sws-scaler.

Audio Resampler
This controls the default options of any resampling done by mpv (but not within libavfilter, within the
system audio API resampler, or any other places).

It also sets the defaults for the lavrresample audio filter.

--audio-resample-filter-size=<length>

Length of the filter with respect to the lower sampling rate. (default: 16)

--audio-resample-phase-shift=<count>

Log2 of the number of polyphase entries. (..., 10->1024, 11->2048, 12->4096, ...) (default: 10->1024)

--audio-resample-cutoff=<cutoff>

Cutoff frequency (0.0-1.0), default set depending upon filter length.

--audio-resample-linear=<yes|no>

If set then filters will be linearly interpolated between polyphase entries. (default: no)

--audio-normalize-downmix=<yes|no>

Enable/disable normalization if surround audio is downmixed to stereo (default: no). If this is disabled,
downmix can cause clipping. If it's enabled, the output might be too quiet. It depends on the source
audio.

Technically, this changes the normalize suboption of the lavrresample audio filter, which
performs the downmixing.

If downmix happens outside of mpv for some reason, or in the decoder (decoder downmixing), or in
the audio output (system mixer), this has no effect.

--audio-resample-max-output-size=<length>

Limit maximum size of audio frames filtered at once, in ms (default: 40). The output size size is limited
in order to make resample speed changes react faster. This is necessary especially if decoders or
filters output very large frame sizes (like some lossless codecs or some DRC filters). This option does
not affect the resampling algorithm in any way.

For testing/debugging only. Can be removed or changed any time.

--audio-swresample-o=<string>

Set AVOptions on the SwrContext or AVAudioResampleContext. These should be documented by
FFmpeg or Libav.

Terminal
--quiet

Make console output less verbose; in particular, prevents the status line (i.e. AV: 3.4 (00:00:03.37) /
5320.6 ...) from being displayed. Particularly useful on slow terminals or broken ones which do not
properly handle carriage return (i.e. \r).

See also: --really-quiet and --msg-level.

--really-quiet

Display even less output and status messages than with --quiet.

--no-terminal, --terminal

Disable any use of the terminal and stdin/stdout/stderr. This completely silences any message output.

Unlike --really-quiet, this disables input and terminal initialization as well.

--no-msg-color

Disable colorful console output on terminals.

--msg-level=<module1=level1,module2=level2,...>

Control verbosity directly for each module. The all module changes the verbosity of all the modules.
The verbosity changes from this option are applied in order from left to right, and each item can
override a previous one.

Run mpv with --msg-level=all=trace to see all messages mpv outputs. You can use the module
names printed in the output (prefixed to each line in [...]) to limit the output to interesting modules.

This also affects --log-file, and in certain cases libmpv API logging.

Note

Some messages are printed before the command line is parsed and are therefore not affected
by --msg-level. To control these messages, you have to use the MPV_VERBOSE
environment variable; see ENVIRONMENT VARIABLES for details.

Available levels:

no: complete silence

fatal: fatal messages only

error: error messages

warn: warning messages

info: informational messages

status: status messages (default)

v: verbose messages

debug: debug messages

trace: very noisy debug messages

Example

mpv --msg-level=ao/sndio=no

Completely silences the output of ao_sndio, which uses the log prefix [ao/sndio].

mpv --msg-level=all=warn,ao/alsa=error

Only show warnings or worse, and let the ao_alsa output show errors only.

--term-osd=<auto|no|force>

Control whether OSD messages are shown on the console when no video output is available (default:
auto).

auto: use terminal OSD if no video output active

no: disable terminal OSD

force: use terminal OSD even if video output active

The auto mode also enables terminal OSD if --video-osd=no was set.

--term-osd-bar, --no-term-osd-bar

Enable printing a progress bar under the status line on the terminal. (Disabled by default.)

--term-osd-bar-chars=<string>

Customize the --term-osd-bar feature. The string is expected to consist of 5 characters (start, left
space, position indicator, right space, end). You can use Unicode characters, but note that double-
width characters will not be treated correctly.

Default: [-+-].

--term-playing-msg=<string>

Print out a string after starting playback. The string is expanded for properties, e.g.
--term-playing-msg='file: ${filename}' will print the string file: followed by a space
and the currently played filename.

See Property Expansion.

--term-status-msg=<string>

Print out a custom string during playback instead of the standard status line. Expands properties. See
Property Expansion.

--msg-module

Prepend module name to each console message.

--msg-time

Prepend timing information to each console message.

TV
--tv-...

These options tune various properties of the TV capture module. For watching TV with mpv, use
tv:// or tv://<channel_number> or even tv://<channel_name> (see option tv-channels
for channel_name below) as a media URL. You can also use tv:///<input_id> to start watching
a video from a composite or S-Video input (see option input for details).

--tv-device=<value>

Specify TV device (default: /dev/video0).

--tv-channel=<value>

Set tuner to <value> channel.

--no-tv-audio

no sound

--tv-automute=<0-255> (v4l and v4l2 only)

If signal strength reported by device is less than this value, audio and video will be muted. In most
cases automute=100 will be enough. Default is 0 (automute disabled).

--tv-driver=<value>

See --tv=driver=help for a list of compiled-in TV input drivers. available: dummy, v4l2 (default:
autodetect)

--tv-input=<value>

Specify input (default: 0 (TV), see console output for available inputs).

--tv-freq=<value>

Specify the frequency to set the tuner to (e.g. 511.250). Not compatible with the channels parameter.

--tv-outfmt=<value>

Specify the output format of the tuner with a preset value supported by the V4L driver (YV12, UYVY,
YUY2, I420) or an arbitrary format given as hex value.

--tv-width=<value>

output window width

--tv-height=<value>

output window height

--tv-fps=<value>

framerate at which to capture video (frames per second)

--tv-buffersize=<value>

maximum size of the capture buffer in megabytes (default: dynamical)

--tv-norm=<value>

See the console output for a list of all available norms.

See also: --tv-normid.

--tv-normid=<value> (v4l2 only)

Sets the TV norm to the given numeric ID. The TV norm depends on the capture card. See the
console output for a list of available TV norms.

--tv-chanlist=<value>

available: argentina, australia, china-bcast, europe-east, europe-west, france, ireland, italy,
japan-bcast, japan-cable, newzealand, russia, southafrica, us-bcast, us-cable, us-cable-hrc

--tv-channels=<chan>-<name>[=<norm>],<chan>-<name>[=<norm>],...

Set names for channels.

Note

If <chan> is an integer greater than 1000, it will be treated as frequency (in kHz) rather than
channel name from frequency table. Use _ for spaces in names (or play with quoting ;-)). The
channel names will then be written using OSD, and the input commands

tv_step_channel, tv_set_channel and tv_last_channel will be usable for a remote
control. Not compatible with the frequency parameter.

Note

The channel number will then be the position in the 'channels' list, beginning with 1.

Examples

tv://1, tv://TV1, tv_set_channel 1, tv_set_channel TV1

--tv-[brightness|contrast|hue|saturation]=<-100-100>

Set the image equalizer on the card.

--tv-audiorate=<value>

Set input audio sample rate.

--tv-forceaudio

Capture audio even if there are no audio sources reported by v4l.

--tv-alsa

Capture from ALSA.

--tv-amode=<0-3>

Choose an audio mode:

0: mono

1: stereo

2: language 1

3: language 2

--tv-forcechan=<1-2>

By default, the count of recorded audio channels is determined automatically by querying the audio
mode from the TV card. This option allows forcing stereo/mono recording regardless of the amode
option and the values returned by v4l. This can be used for troubleshooting when the TV card is
unable to report the current audio mode.

--tv-adevice=<value>

Set an audio device. <value> should be /dev/xxx for OSS and a hardware ID for ALSA. You must
replace any ':' by a '.' in the hardware ID for ALSA.

--tv-audioid=<value>

Choose an audio output of the capture card, if it has more than one.

--tv-[volume|bass|treble|balance]=<0-100>

These options set parameters of the mixer on the video capture card. They will have no effect, if your
card does not have one. For v4l2 50 maps to the default value of the control, as reported by the
driver.

--tv-gain=<0-100>

Set gain control for video devices (usually webcams) to the desired value and switch off automatic
control. A value of 0 enables automatic control. If this option is omitted, gain control will not be
modified.

--tv-immediatemode=<bool>

A value of 0 means capture and buffer audio and video together. A value of 1 (default) means to do
video capture only and let the audio go through a loopback cable from the TV card to the sound card.

--tv-mjpeg

Use hardware MJPEG compression (if the card supports it). When using this option, you do not need
to specify the width and height of the output window, because mpv will determine it automatically from
the decimation value (see below).

--tv-decimation=<1|2|4>

choose the size of the picture that will be compressed by hardware MJPEG compression:

1: full size

• 704x576 PAL

• 704x480 NTSC
2: medium size

• 352x288 PAL

• 352x240 NTSC
4: small size

• 176x144 PAL

• 176x120 NTSC

--tv-quality=<0-100>

Choose the quality of the JPEG compression (< 60 recommended for full size).

--tv-scan-autostart

Begin channel scanning immediately after startup (default: disabled).

--tv-scan-period=<0.1-2.0>

Specify delay in seconds before switching to next channel (default: 0.5). Lower values will cause
faster scanning, but can detect inactive TV channels as active.

--tv-scan-threshold=<1-100>

Threshold value for the signal strength (in percent), as reported by the device (default: 50). A signal
strength higher than this value will indicate that the currently scanning channel is active.

Cache
--cache=<kBytes|yes|no|auto>

Set the size of the cache in kilobytes, disable it with no, or automatically enable it if needed with auto
(default: auto). With auto, the cache will usually be enabled for network streams, using the size set
by --cache-default. With yes, the cache will always be enabled with the size set by
--cache-default (unless the stream cannot be cached, or --cache-default disables caching).

May be useful when playing files from slow media, but can also have negative effects, especially with
file formats that require a lot of seeking, such as MP4.

Note that half the cache size will be used to allow fast seeking back. This is also the reason why a full
cache is usually not reported as 100% full. The cache fill display does not include the part of the
cache reserved for seeking back. The actual maximum percentage will usually be the ratio between
readahead and backbuffer sizes.

--cache-default=<kBytes|no>

Set the size of the cache in kilobytes (default: 10000 KB). Using no will not automatically enable the
cache e.g. when playing from a network stream. Note that using --cache will always override this
option.

--cache-initial=<kBytes>

Playback will start when the cache has been filled up with this many kilobytes of data (default: 0).

--cache-seek-min=<kBytes>

If a seek is to be made to a position within <kBytes> of the cache size from the current position, mpv
will wait for the cache to be filled to this position rather than performing a stream seek (default: 500).

This matters for small forward seeks. With slow streams (especially HTTP streams) there is a tradeoff
between skipping the data between current position and seek destination, or performing an actual
seek. Depending on the situation, either of these might be slower than the other method. This option
allows control over this.

--cache-backbuffer=<kBytes>

Size of the cache back buffer (default: 10000 KB). This will add to the total cache size, and reserved
the amount for seeking back. The reserved amount will not be used for readahead, and instead
preserves already read data to enable fast seeking back.

--cache-file=<TMP|path>

Create a cache file on the filesystem.

There are two ways of using this:

1. Passing a path (a filename). The file will always be overwritten. When the general cache is
enabled, this file cache will be used to store whatever is read from the source stream.

This will always overwrite the cache file, and you can't use an existing cache file to resume
playback of a stream. (Technically, mpv wouldn't even know which blocks in the file are valid
and which not.)

The resulting file will not necessarily contain all data of the source stream. For example, if you
seek, the parts that were skipped over are never read and consequently are not written to the
cache. The skipped over parts are filled with zeros. This means that the cache file doesn't
necessarily correspond to a full download of the source stream.

Both of these issues could be improved if there is any user interest.

Warning

Causes random corruption when used with ordered chapters or with --audio-file.

2. Passing the string TMP. This will not be interpreted as filename. Instead, an invisible temporary
file is created. It depends on your C library where this file is created (usually /tmp/), and
whether filename is visible (the tmpfile() function is used). On some systems, automatic
deletion of the cache file might not be guaranteed.

If you want to use a file cache, this mode is recommended, because it doesn't break ordered
chapters or --audio-file. These modes open multiple cache streams, and using the same
file for them obviously clashes.

See also: --cache-file-size.

--cache-file-size=<kBytes>

Maximum size of the file created with --cache-file. For read accesses above this size, the cache
is simply not used.

Keep in mind that some use-cases, like playing ordered chapters with cache enabled, will actually
create multiple cache files, each of which will use up to this much disk space.

(Default: 1048576, 1 GB.)

--no-cache

Turn off input stream caching. See --cache.

--cache-secs=<seconds>

How many seconds of audio/video to prefetch if the cache is active. This overrides the
--demuxer-readahead-secs option if and only if the cache is enabled and the value is larger. The
default value is set to something very high, so the actually achieved readahead will usually be limited
by the value of the --demuxer-max-bytes option.

--cache-pause=<yes|no>

Whether the player should automatically pause when the cache runs out of data and stalls
decoding/playback (default: yes). If enabled, it will pause and unpause once more data is available,
aka "buffering".

--cache-pause-wait=<seconds>

Number of seconds the packet cache should have buffered before starting playback again if
"buffering" was entered (default: 1). This can be used to control how long the player rebuffers if
--cache-pause is enabled, and the demuxer underruns. If the given time is higher than the
maximum set with --cache-secs or --demuxer-readahead-secs, or prefetching ends before
that for some other reason (like file end), playback resumes earlier.

--cache-pause-initial=<yes|no>

Enter "buffering" mode before starting playback (default: no). This can be used to ensure playback
starts smoothly, in exchange for waiting some time to prefetch network data (as controlled by
--cache-pause-wait). For example, some common behavior is that playback starts, but network
caches immediately underrun when trying to decode more data as playback progresses.

Another thing that can happen is that the network prefetching is so CPU demanding (due to demuxing
in the background) that playback drops frames at first. In these cases, it helps enabling this option,
and setting --cache-secs and --cache-pause-wait to roughly the same value.

This option also triggers when playback is restarted after seeking.

Network
--user-agent=<string>

Use <string> as user agent for HTTP streaming.

--cookies, --no-cookies

Support cookies when making HTTP requests. Disabled by default.

--cookies-file=<filename>

Read HTTP cookies from <filename>. The file is assumed to be in Netscape format.

--http-header-fields=<field1,field2>

Set custom HTTP fields when accessing HTTP stream.

Example

mpv --http-header-fields='Field1: value1','Field2: value2' \
http://localhost:1234

Will generate HTTP request:

GET / HTTP/1.0
Host: localhost:1234

User-Agent: MPlayer
Icy-MetaData: 1
Field1: value1
Field2: value2
Connection: close

--tls-ca-file=<filename>

Certificate authority database file for use with TLS. (Silently fails with older FFmpeg or Libav
versions.)

--tls-verify

Verify peer certificates when using TLS (e.g. with https://...). (Silently fails with older FFmpeg or
Libav versions.)

--tls-cert-file

A file containing a certificate to use in the handshake with the peer.

--tls-key-file

A file containing the private key for the certificate.

--referrer=<string>

Specify a referrer path or URL for HTTP requests.

--network-timeout=<seconds>

Specify the network timeout in seconds. This affects at least HTTP. The special value 0 (default) uses
the FFmpeg/Libav defaults. If a protocol is used which does not support timeouts, this option is
silently ignored.

Warning

This breaks the RTSP protocol, because of inconsistent FFmpeg API regarding its internal
timeout option. Not only does the RTSP timeout option accept different units (seconds instead
of microseconds, causing mpv to pass it huge values), it will also overflow FFmpeg internal
calculations. The worst is that merely setting the option will put RTSP into listening mode,
which breaks any client uses. Do not use this option with RTSP URLs.

--rtsp-transport=<lavf|udp|tcp|http>

Select RTSP transport method (default: tcp). This selects the underlying network transport when
playing rtsp://... URLs. The value lavf leaves the decision to libavformat.

--hls-bitrate=<no|min|max|<rate>>

If HLS streams are played, this option controls what streams are selected by default. The option
allows the following parameters:

no: Don't do anything special. Typically, this will simply pick the first audio/video
streams it can find.

min: Pick the streams with the lowest bitrate.

max: Same, but highest bitrate. (Default.)

Additionally, if the option is a number, the stream with the highest rate equal or below the option value
is selected.

The bitrate as used is sent by the server, and there's no guarantee it's actually meaningful.

DVB
--dvbin-card=<1-4>

Specifies using card number 1-4 (default: 1).

--dvbin-file=<filename>

Instructs mpv to read the channels list from <filename>. The default is in the mpv configuration
directory (usually ~/.config/mpv) with the filename channels.conf.{sat,ter,cbl,atsc}
(based on your card type) or channels.conf as a last resort. For DVB-S/2 cards, a VDR 1.7.x
format channel list is recommended as it allows tuning to DVB-S2 channels, enabling subtitles and
decoding the PMT (which largely improves the demuxing). Classic mplayer format channel lists are
still supported (without these improvements), and for other card types, only limited VDR format
channel list support is implemented (patches welcome). For channels with dynamic PID switching or
incomplete channels.conf, --dvbin-full-transponder or the magic PID 8192 are
recommended.

--dvbin-timeout=<1-30>

Maximum number of seconds to wait when trying to tune a frequency before giving up (default: 30).

--dvbin-full-transponder=<yes|no>

Apply no filters on program PIDs, only tune to frequency and pass full transponder to demuxer. The
player frontend selects the streams from the full TS in this case, so the program which is shown
initially may not match the chosen channel. Switching between the programs is possible by cycling the
program property. This is useful to record multiple programs on a single transponder, or to work
around issues in the channels.conf. It is also recommended to use this for channels which switch
PIDs on-the-fly, e.g. for regional news.

Default: no

ALSA audio output options
--alsa-device=<device>

Deprecated, use --audio-device (requires alsa/ prefix).

--alsa-resample=yes

Enable ALSA resampling plugin. (This is disabled by default, because some drivers report incorrect
audio delay in some cases.)

--alsa-mixer-device=<device>

Set the mixer device used with ao-volume (default: default).

--alsa-mixer-name=<name>

Set the name of the mixer element (default: Master). This is for example PCM or Master.

--alsa-mixer-index=<number>

Set the index of the mixer channel (default: 0). Consider the output of "amixer scontrols", then
the index is the number that follows the name of the element.

--alsa-non-interleaved

Allow output of non-interleaved formats (if the audio decoder uses this format). Currently disabled by
default, because some popular ALSA plugins are utterly broken with non-interleaved formats.

--alsa-ignore-chmap

Don't read or set the channel map of the ALSA device - only request the required number of channels,
and then pass the audio as-is to it. This option most likely should not be used. It can be useful for
debugging, or for static setups with a specially engineered ALSA configuration (in this case you
should always force the same layout with --audio-channels, or it will work only for files which use
the layout implicit to your ALSA device).

--alsa-buffer-time=<microseconds>

Set the requested buffer time in microseconds. A value of 0 skips requesting anything from the ALSA
API. This and the --alsa-periods option uses the ALSA near functions to set the requested
parameters. If doing so results in an empty configuration set, setting these parameters is skipped.

Both options control the buffer size. A low buffer size can lead to higher CPU usage and audio
dropouts, while a high buffer size can lead to higher latency in volume changes and other filtering.

--alsa-periods=<number>

Number of periods requested from the ALSA API. See --alsa-buffer-time for further remarks.

GPU renderer options
The following video options are currently all specific to --vo=gpu and --vo=opengl-cb only, which are
the only VOs that implement them.

--scale=<filter>

The filter function to use when upscaling video.

bilinear

Bilinear hardware texture filtering (fastest, very low quality). This is the default for compatibility
reasons.

spline36

Mid quality and speed. This is the default when using gpu-hq.

lanczos

Lanczos scaling. Provides mid quality and speed. Generally worse than spline36, but it results
in a slightly sharper image which is good for some content types. The number of taps can be
controlled with scale-radius, but is best left unchanged.

(This filter is an alias for sinc-windowed sinc)

ewa_lanczos

Elliptic weighted average Lanczos scaling. Also known as Jinc. Relatively slow, but very good
quality. The radius can be controlled with scale-radius. Increasing the radius makes the filter
sharper but adds more ringing.

(This filter is an alias for jinc-windowed jinc)

ewa_lanczossharp

A slightly sharpened version of ewa_lanczos, preconfigured to use an ideal radius and
parameter. If your hardware can run it, this is probably what you should use by default.

mitchell

Mitchell-Netravali. The B and C parameters can be set with --scale-param1 and
--scale-param2. This filter is very good at downscaling (see --dscale).

oversample

A version of nearest neighbour that (naively) oversamples pixels, so that pixels overlapping
edges get linearly interpolated instead of rounded. This essentially removes the small
imperfections and judder artifacts caused by nearest-neighbour interpolation, in exchange for
adding some blur. This filter is good at temporal interpolation, and also known as "smoothmotion"
(see --tscale).

linear

A --tscale filter.

There are some more filters, but most are not as useful. For a complete list, pass help as value, e.g.:

mpv --scale=help

--cscale=<filter>

As --scale, but for interpolating chroma information. If the image is not subsampled, this option is
ignored entirely.

--dscale=<filter>

Like --scale, but apply these filters on downscaling instead. If this option is unset, the filter implied
by --scale will be applied.

--tscale=<filter>

The filter used for interpolating the temporal axis (frames). This is only used if --interpolation is
enabled. The only valid choices for --tscale are separable convolution filters (use
--tscale=help to get a list). The default is mitchell.

Common --tscale choices include oversample, linear, catmull_rom, mitchell, gaussian,
or bicubic. These are listed in increasing order of smoothness/blurriness, with bicubic being the
smoothest/blurriest and oversample being the sharpest/least smooth.

--scale-param1=<value>, --scale-param2=<value>, --cscale-param1=<value>,
--cscale-param2=<value>, --dscale-param1=<value>, --dscale-param2=<value>,
--tscale-param1=<value>, --tscale-param2=<value>

Set filter parameters. Ignored if the filter is not tunable. Currently, this affects the following filter
parameters:

bcspline

Spline parameters (B and C). Defaults to 0.5 for both.

gaussian

Scale parameter (t). Increasing this makes the result blurrier. Defaults to 1.

oversample

Minimum distance to an edge before interpolation is used. Setting this to 0 will always interpolate
edges, whereas setting it to 0.5 will never interpolate, thus behaving as if the regular nearest
neighbour algorithm was used. Defaults to 0.0.

--scale-blur=<value>, --scale-wblur=<value>, --cscale-blur=<value>,
--cscale-wblur=<value>, --dscale-blur=<value>, --dscale-wblur=<value>,
--tscale-blur=<value>, --tscale-wblur=<value>

Kernel/window scaling factor (also known as a blur factor). Decreasing this makes the result sharper,
increasing it makes it blurrier (default 0). If set to 0, the kernel's preferred blur factor is used. Note that
setting this too low (eg. 0.5) leads to bad results. It's generally recommended to stick to values
between 0.8 and 1.2.

--scale-clamp=<0.0-1.0>, --cscale-clamp, --dscale-clamp, --tscale-clamp

Specifies a weight bias to multiply into negative coefficients. Specifying --scale-clamp=1 has the
effect of removing negative weights completely, thus effectively clamping the value range to [0-1].
Values between 0.0 and 1.0 can be specified to apply only a moderate diminishment of negative
weights. This is especially useful for --tscale, where it reduces excessive ringing artifacts in the
temporal domain (which typically manifest themselves as short flashes or fringes of black, mostly
around moving edges) in exchange for potentially adding more blur. The default for
--tscale-clamp is 1.0, the others default to 0.0.

--scale-cutoff=<value>, --cscale-cutoff=<value>, --dscale-cutoff=<value>

Cut off the filter kernel prematurely once the value range drops below this threshold. Doing so allows
more aggressive pruning of skippable coefficients by disregarding parts of the LUT which are
effectively zeroed out by the window function. Only affects polar (EWA) filters. The default is 0.001 for
each, which is perceptually transparent but provides a 10%-20% speedup, depending on the exact
radius and filter kernel chosen.

--scale-taper=<value>, --scale-wtaper=<value>, --dscale-taper=<value>,
--dscale-wtaper=<value>, --cscale-taper=<value>, --cscale-wtaper=<value>,
--tscale-taper=<value>, --tscale-wtaper=<value>

Kernel/window taper factor. Increasing this flattens the filter function. Value range is 0 to 1. A value of
0 (the default) means no flattening, a value of 1 makes the filter completely flat (equivalent to a box
function). Values in between mean that some portion will be flat and the actual filter function will be
squeezed into the space in between.

--scale-radius=<value>, --cscale-radius=<value>, --dscale-radius=<value>,
--tscale-radius=<value>

Set radius for tunable filters, must be a float number between 0.5 and 16.0. Defaults to the filter's
preferred radius if not specified. Doesn't work for every scaler and VO combination.

Note that depending on filter implementation details and video scaling ratio, the radius that actually
being used might be different (most likely being increased a bit).

--scale-antiring=<value>, --cscale-antiring=<value>, --dscale-antiring=<value>,
--tscale-antiring=<value>

Set the antiringing strength. This tries to eliminate ringing, but can introduce other artifacts in the
process. Must be a float number between 0.0 and 1.0. The default value of 0.0 disables antiringing
entirely.

Note that this doesn't affect the special filters bilinear and bicubic_fast, nor does it affect any
polar (EWA) scalers.

--scale-window=<window>, --cscale-window=<window>, --dscale-window=<window>,
--tscale-window=<window>

(Advanced users only) Choose a custom windowing function for the kernel. Defaults to the filter's
preferred window if unset. Use --scale-window=help to get a list of supported windowing
functions.

--scale-wparam=<window>, --cscale-wparam=<window>, --cscale-wparam=<window>,
--tscale-wparam=<window>

(Advanced users only) Configure the parameter for the window function given by --scale-window
etc. Ignored if the window is not tunable. Currently, this affects the following window parameters:

kaiser

Window parameter (alpha). Defaults to 6.33.

blackman

Window parameter (alpha). Defaults to 0.16.

gaussian

Scale parameter (t). Increasing this makes the window wider. Defaults to 1.

--scaler-lut-size=<4..10>

Set the size of the lookup texture for scaler kernels (default: 6). The actual size of the texture is 2^N
for an option value of N. So the lookup texture with the default setting uses 64 samples.

All weights are linearly interpolated from those samples, so increasing the size of lookup table might
improve the accuracy of scaler.

--scaler-resizes-only

Disable the scaler if the video image is not resized. In that case, bilinear is used instead of
whatever is set with --scale. Bilinear will reproduce the source image perfectly if no scaling is
performed. Enabled by default. Note that this option never affects --cscale.

--linear-scaling

Scale in linear light. It should only be used with a --fbo-format that has at least 16 bit precision.
This option has no effect on HDR content.

--correct-downscaling

When using convolution based filters, extend the filter size when downscaling. Increases quality, but
reduces performance while downscaling.

This will perform slightly sub-optimally for anamorphic video (but still better than without it) since it will
extend the size to match only the milder of the scale factors between the axes.

--interpolation

Reduce stuttering caused by mismatches in the video fps and display refresh rate (also known as
judder).

Warning

This requires setting the --video-sync option to one of the display- modes, or it will be
silently disabled. This was not required before mpv 0.14.0.

This essentially attempts to interpolate the missing frames by convoluting the video along the
temporal axis. The filter used can be controlled using the --tscale setting.

--interpolation-threshold=<0..1,-1>

Threshold below which frame ratio interpolation gets disabled (default: 0.0001). This is calculated as
abs(disphz/vfps - 1) < threshold, where vfps is the speed-adjusted video FPS, and
disphz the display refresh rate. (The speed-adjusted video FPS is roughly equal to the normal video
FPS, but with slowdown and speedup applied. This matters if you use
--video-sync=display-resample to make video run synchronously to the display FPS, or if you
change the speed property.)

The default is intended to almost always enable interpolation if the playback rate is even slightly
different from the display refresh rate. But note that if you use e.g.
--video-sync=display-vdrop, small deviations in the rate can disable interpolation and
introduce a discontinuity every other minute.

Set this to -1 to disable this logic.

--opengl-pbo

Enable use of PBOs. On some drivers this can be faster, especially if the source video size is huge
(e.g. so called "4K" video). On other drivers it might be slower or cause latency issues.

--dither-depth=<N|no|auto>

Set dither target depth to N. Default: no.

no

Disable any dithering done by mpv.

auto

Automatic selection. If output bit depth cannot be detected, 8 bits per component are assumed.

8

Dither to 8 bit output.

Note that the depth of the connected video display device cannot be detected. Often, LCD panels will
do dithering on their own, which conflicts with this option and leads to ugly output.

--dither-size-fruit=<2-8>

Set the size of the dither matrix (default: 6). The actual size of the matrix is (2^N) x (2^N) for an
option value of N, so a value of 6 gives a size of 64x64. The matrix is generated at startup time, and a
large matrix can take rather long to compute (seconds).

Used in --dither=fruit mode only.

--dither=<fruit|ordered|no>

Select dithering algorithm (default: fruit). (Normally, the --dither-depth option controls whether
dithering is enabled.)

--temporal-dither

Enable temporal dithering. (Only active if dithering is enabled in general.) This changes between 8
different dithering patterns on each frame by changing the orientation of the tiled dithering matrix.
Unfortunately, this can lead to flicker on LCD displays, since these have a high reaction time.

--temporal-dither-period=<1-128>

Determines how often the dithering pattern is updated when --temporal-dither is in use. 1 (the
default) will update on every video frame, 2 on every other frame, etc.

--gpu-debug

Enables GPU debugging. What this means depends on the API type. For OpenGL, it calls
glGetError(), and requests a debug context. For Vulkan, it enables validation layers.

--opengl-swapinterval=<n>

Interval in displayed frames between two buffer swaps. 1 is equivalent to enable VSYNC, 0 to disable
VSYNC. Defaults to 1 if not specified.

Note that this depends on proper OpenGL vsync support. On some platforms and drivers, this only
works reliably when in fullscreen mode. It may also require driver-specific hacks if using multiple
monitors, to ensure mpv syncs to the right one. Compositing window managers can also lead to bad
results, as can missing or incorrect display FPS information (see --display-fps).

--vulkan-swap-mode=<mode>

Controls the presentation mode of the vulkan swapchain. This is similar to the
--opengl-swapinterval option.

auto

Use the preferred swapchain mode for the vulkan context. (Default)

fifo

Non-tearing, vsync blocked. Similar to "VSync on".

fifo-relaxed

Tearing, vsync blocked. Late frames will tear instead of stuttering.

mailbox

Non-tearing, not vsync blocked. Similar to "triple buffering".

immediate

Tearing, not vsync blocked. Similar to "VSync off".

--vulkan-queue-count=<1..8>

Controls the number of VkQueues used for rendering (limited by how many your device supports). In
theory, using more queues could enable some parallelism between frames (when using a
--swapchain-depth higher than 1), but it can also slow things down on hardware where there's no
true parallelism between queues. (Default: 1)

--vulkan-async-transfer

Enables the use of async transfer queues on supported vulkan devices. Using them allows transfer
operations like texture uploads and blits to happen concurrently with the actual rendering, thus
improving overall throughput and power consumption. Enabled by default, and should be relatively
safe.

--vulkan-async-compute

Enables the use of async compute queues on supported vulkan devices. Using this, in theory, allows
out-of-order scheduling of compute shaders with graphics shaders, thus enabling the hardware to do
more effective work while waiting for pipeline bubbles and memory operations. Not beneficial on all
GPUs. It's worth noting that if async compute is enabled, and the device supports more compute
queues than graphics queues (bound by the restrictions set by --vulkan-queue-count), mpv will
internally try and prefer the use of compute shaders over fragment shaders wherever possible. Not
enabled by default, since it seems to cause issues with some drivers.

--d3d11-warp=<yes|no|auto>

Use WARP (Windows Advanced Rasterization Platform) with the D3D11 GPU backend (default:
auto). This is a high performance software renderer. By default, it is only used when the system has
no hardware adapters that support D3D11. While the extended GPU features will work with WARP,
they can be very slow.

--d3d11-feature-level=<12_1|12_0|11_1|11_0|10_1|10_0|9_3|9_2|9_1>

Select a specific feature level when using the D3D11 GPU backend. By default, the highest available
feature level is used. This option can be used to select a lower feature level, which is mainly useful for
debugging. Most extended GPU features will not work at 9_x feature levels.

--d3d11-flip=<yes|no>

Enable flip-model presentation, which avoids unnecessarily copying the backbuffer by sharing
surfaces with the DWM (default: yes). This may cause performance issues with older drivers. If
flip-model presentation is not supported (for example, on Windows 7 without the platform update),
mpv will automatically fall back to the older bitblt presentation model.

--d3d11-sync-interval=<0..4>

Schedule each frame to be presented for this number of VBlank intervals. (default: 1) Setting to 1 will
enable VSync, setting to 0 will disable it.

--d3d11va-zero-copy=<yes|no>

By default, when using hardware decoding with --gpu-api=d3d11, the video image will be copied
(GPU-to-GPU) from the decoder surface to a shader resource. Set this option to avoid that copy by
sampling directly from the decoder image. This may increase performance and reduce power usage,
but can cause the image to be sampled incorrectly on the bottom and right edges due to padding, and
may invoke driver bugs, since Direct3D 11 technically does not allow sampling from a decoder surface
(though most drivers support it.)

Currently only relevant for --gpu-api=d3d11.

--spirv-compiler=<compiler>

Controls which compiler is used to translate GLSL to SPIR-V. This is (currently) only relevant for
--gpu-api=vulkan. The possible choices are:

auto

Use the first available compiler. (Default)

shaderc

Use libshaderc, which is an API wrapper around glslang. This is generally the most preferred, if
available.

nvidia

Use nvidia's built-in compiler. Only works for nvidia GPUs. Can be buggy, but also supports
some features glslang does not. Only works with vulkan.

--glsl-shaders=<file-list>

Custom GLSL hooks. These are a flexible way to add custom fragment shaders, which can be
injected at almost arbitrary points in the rendering pipeline, and access all previous intermediate
textures. Each use of the option will add another file to the internal list of shaders (see List Options).

Warning

The syntax is not stable yet and may change any time.

The general syntax of a user shader looks like this:

//!METADATA ARGS...
//!METADATA ARGS...

vec4 hook() {
 ...
 return something;
}

//!METADATA ARGS...
//!METADATA ARGS...

...

Each section of metadata, along with the non-metadata lines after it, defines a single block. There are
currently two types of blocks, HOOKs and TEXTUREs.

A TEXTURE block can set the following options:

TEXTURE <name> (required)

The name of this texture. Hooks can then bind the texture under this name using BIND. This
must be the first option of the texture block.

SIZE <width> [<height>] [<depth>] (required)

The dimensions of the texture. The height and depth are optional. The type of texture (1D, 2D or
3D) depends on the number of components specified.

FORMAT <name> (required)

The texture format for the samples. Supported texture formats are listed in debug logging when
the gpu VO is initialized (look for Texture formats:). Usually, this follows OpenGL naming
conventions. For example, rgb16 provides 3 channels with normalized 16 bit components. One
oddity are float formats: for example, rgba16f has 16 bit internal precision, but the texture data
is provided as 32 bit floats, and the driver converts the data on texture upload.

Although format names follow a common naming convention, not all of them are available on all
hardware, drivers, GL versions, and so on.

FILTER <LINEAR|NEAREST>

The min/magnification filter used when sampling from this texture.

BORDER <CLAMP|REPEAT|MIRROR>

The border wrapping mode used when sampling from this texture.

Following the metadata is a string of bytes in hexadecimal notation that define the raw texture data,
corresponding to the format specified by FORMAT, on a single line with no extra whitespace.

A HOOK block can set the following options:

HOOK <name> (required)

The texture which to hook into. May occur multiple times within a metadata block, up to a
predetermined limit. See below for a list of hookable textures.

DESC <title>

User-friendly description of the pass. This is the name used when representing this shader in the
list of passes for property vo-passes.

BIND <name>

Loads a texture (either coming from mpv or from a TEXTURE block) and makes it available to the
pass. When binding textures from mpv, this will also set up macros to facilitate accessing it
properly. See below for a list. By default, no textures are bound. The special name HOOKED can
be used to refer to the texture that triggered this pass.

SAVE <name>

Gives the name of the texture to save the result of this pass into. By default, this is set to the
special name HOOKED which has the effect of overwriting the hooked texture.

WIDTH <szexpr>, HEIGHT <szexpr>

Specifies the size of the resulting texture for this pass. szexpr refers to an expression in RPN
(reverse polish notation), using the operators + - * / > < !, floating point literals, and references to
sizes of existing texture (such as MAIN.width or CHROMA.height), OUTPUT, or
NATIVE_CROPPED (size of an input texture cropped after pan-and-scan, video-align-x/y,
video-pan-x/y, etc. and possibly prescaled). By default, these are set to HOOKED.w and
HOOKED.h, espectively.

WHEN <szexpr>

Specifies a condition that needs to be true (non-zero) for the shader stage to be evaluated. If it
fails, it will silently be omitted. (Note that a shader stage like this which has a dependency on an
optional hook point can still cause that hook point to be saved, which has some minor overhead)

OFFSET <ox> <oy>

Indicates a pixel shift (offset) introduced by this pass. These pixel offsets will be accumulated and
corrected during the next scaling pass (cscale or scale). The default values are 0 0 which
correspond to no shift. Note that offsets are ignored when not overwriting the hooked texture.

COMPONENTS <n>

Specifies how many components of this pass's output are relevant and should be stored in the
texture, up to 4 (rgba). By default, this value is equal to the number of components in HOOKED.

COMPUTE <bw> <bh> [<tw> <th>]

Specifies that this shader should be treated as a compute shader, with the block size bw and bh.
The compute shader will be dispatched with however many blocks are necessary to completely
tile over the output. Within each block, there will bw tw*th threads, forming a single work group.
In other words: tw and th specify the work group size, which can be different from the block size.
So for example, a compute shader with bw, bh = 32 and tw, th = 8 running on a 500x500 texture
would dispatch 16x16 blocks (rounded up), each with 8x8 threads.

Compute shaders in mpv are treated a bit different from fragment shaders. Instead of defining a
vec4 hook that produces an output sample, you directly define void hook which writes to a
fixed writeonly image unit named out_image (this is bound by mpv) using imageStore. To help
translate texture coordinates in the absence of vertices, mpv provides a special function
NAME_map(id) to map from the texel space of the output image to the texture coordinates for all
bound textures. In particular, NAME_pos is equivalent to
NAME_map(gl_GlobalInvocationID), although using this only really makes sense if (tw,th)
== (bw,bh).

Each bound mpv texture (via BIND) will make available the following definitions to that shader pass,
where NAME is the name of the bound texture:

vec4 NAME_tex(vec2 pos)

The sampling function to use to access the texture at a certain spot (in texture coordinate space,
range [0,1]). This takes care of any necessary normalization conversions.

vec4 NAME_texOff(vec2 offset)

Sample the texture at a certain offset in pixels. This works like NAME_tex but additionally takes
care of necessary rotations, so that sampling at e.g. vec2(-1,0) is always one pixel to the left.

vec2 NAME_pos

The local texture coordinate of that texture, range [0,1].

vec2 NAME_size

The (rotated) size in pixels of the texture.

mat2 NAME_rot

The rotation matrix associated with this texture. (Rotates pixel space to texture coordinates)

vec2 NAME_pt

The (unrotated) size of a single pixel, range [0,1].

float NAME_mul

The coefficient that needs to be multiplied into the texture contents in order to normalize it to the
range [0,1].

sampler NAME_raw

The raw bound texture itself. The use of this should be avoided unless absolutely necessary.

Normally, users should use either NAME_tex or NAME_texOff to read from the texture. For some
shaders however , it can be better for performance to do custom sampling from NAME_raw, in which
case care needs to be taken to respect NAME_mul and NAME_rot.

In addition to these parameters, the following uniforms are also globally available:

float random

A random number in the range [0-1], different per frame.

int frame

A simple count of frames rendered, increases by one per frame and never resets (regardless of
seeks).

vec2 input_size

The size in pixels of the input image (possibly cropped and prescaled).

vec2 target_size

The size in pixels of the visible part of the scaled (and possibly cropped) image.

vec2 tex_offset

Texture offset introduced by user shaders or options like panscan, video-align-x/y, video-pan-x/y.

Internally, vo_gpu may generate any number of the following textures. Whenever a texture is
rendered and saved by vo_gpu, all of the passes that have hooked into it will run, in the order they
were added by the user. This is a list of the legal hook points:

RGB, LUMA, CHROMA, ALPHA, XYZ (resizable)

Source planes (raw). Which of these fire depends on the image format of the source.

CHROMA_SCALED, ALPHA_SCALED (fixed)

Source planes (upscaled). These only fire on subsampled content.

NATIVE (resizable)

The combined image, in the source colorspace, before conversion to RGB.

MAINPRESUB (resizable)

The image, after conversion to RGB, but before --blend-subtitles=video is applied.

MAIN (resizable)

The main image, after conversion to RGB but before upscaling.

LINEAR (fixed)

Linear light image, before scaling. This only fires when --linear-scaling is in effect.

SIGMOID (fixed)

Sigmoidized light, before scaling. This only fires when --sigmoid-upscaling is in effect.

PREKERNEL (fixed)

The image immediately before the scaler kernel runs.

POSTKERNEL (fixed)

The image immediately after the scaler kernel runs.

SCALED (fixed)

The final upscaled image, before color management.

OUTPUT (fixed)

The final output image, after color management but before dithering and drawing to screen.

Only the textures labelled with resizable may be transformed by the pass. When overwriting a
texture marked fixed, the WIDTH, HEIGHT and OFFSET must be left at their default values.

--glsl-shader=<file>

CLI/config file only alias for --glsl-shaders-append.

--deband

Enable the debanding algorithm. This greatly reduces the amount of visible banding, blocking and
other quantization artifacts, at the expensive of very slightly blurring some of the finest details. In
practice, it's virtually always an improvement - the only reason to disable it would be for performance.

--deband-iterations=<1..16>

The number of debanding steps to perform per sample. Each step reduces a bit more banding, but
takes time to compute. Note that the strength of each step falls off very quickly, so high numbers (>4)
are practically useless. (Default 1)

--deband-threshold=<0..4096>

The debanding filter's cut-off threshold. Higher numbers increase the debanding strength dramatically
but progressively diminish image details. (Default 64)

--deband-range=<1..64>

The debanding filter's initial radius. The radius increases linearly for each iteration. A higher radius
will find more gradients, but a lower radius will smooth more aggressively. (Default 16)

If you increase the --deband-iterations, you should probably decrease this to compensate.

--deband-grain=<0..4096>

Add some extra noise to the image. This significantly helps cover up remaining quantization artifacts.
Higher numbers add more noise. (Default 48)

--sigmoid-upscaling

When upscaling, use a sigmoidal color transform to avoid emphasizing ringing artifacts. This also
implies --linear-scaling.

--sigmoid-center

The center of the sigmoid curve used for --sigmoid-upscaling, must be a float between 0.0 and
1.0. Defaults to 0.75 if not specified.

--sigmoid-slope

The slope of the sigmoid curve used for --sigmoid-upscaling, must be a float between 1.0 and
20.0. Defaults to 6.5 if not specified.

--sharpen=<value>

If set to a value other than 0, enable an unsharp masking filter. Positive values will sharpen the image
(but add more ringing and aliasing). Negative values will blur the image. If your GPU is powerful
enough, consider alternatives like the ewa_lanczossharp scale filter, or the --scale-blur option.

--opengl-glfinish

Call glFinish() before swapping buffers (default: disabled). Slower, but might improve results
when doing framedropping. Can completely ruin performance. The details depend entirely on the
OpenGL driver.

--opengl-waitvsync

Call glXWaitVideoSyncSGI after each buffer swap (default: disabled). This may or may not help
with video timing accuracy and frame drop. It's possible that this makes video output slower, or has no
effect at all.

X11/GLX only.

--opengl-dwmflush=<no|windowed|yes|auto>

Calls DwmFlush after swapping buffers on Windows (default: auto). It also sets SwapInterval(0)
to ignore the OpenGL timing. Values are: no (disabled), windowed (only in windowed mode), yes (also
in full screen).

The value auto will try to determine whether the compositor is active, and calls DwmFlush only if it
seems to be.

This may help to get more consistent frame intervals, especially with high-fps clips - which might also
reduce dropped frames. Typically, a value of windowed should be enough, since full screen may
bypass the DWM.

Windows only.

--angle-d3d11-feature-level=<11_0|10_1|10_0|9_3>

Selects a specific feature level when using the ANGLE backend with D3D11. By default, the highest
available feature level is used. This option can be used to select a lower feature level, which is mainly
useful for debugging. Note that OpenGL ES 3.0 is only supported at feature level 10_1 or higher. Most
extended OpenGL features will not work at lower feature levels (similar to --gpu-dumb-mode).

Windows with ANGLE only.

--angle-d3d11-warp=<yes|no|auto>

Use WARP (Windows Advanced Rasterization Platform) when using the ANGLE backend with
D3D11 (default: auto). This is a high performance software renderer. By default, it is used when the
Direct3D hardware does not support Direct3D 11 feature level 9_3. While the extended OpenGL
features will work with WARP, they can be very slow.

Windows with ANGLE only.

--angle-egl-windowing=<yes|no|auto>

Use ANGLE's built in EGL windowing functions to create a swap chain (default: auto). If this is set to
no and the D3D11 renderer is in use, ANGLE's built in swap chain will not be used and a custom
swap chain that is optimized for video rendering will be created instead. If set to auto, a custom swap
chain will be used for D3D11 and the built in swap chain will be used for D3D9. This option is mainly
for debugging purposes, in case the custom swap chain has poor performance or does not work.

If set to yes, the --angle-max-frame-latency, --angle-swapchain-length and
--angle-flip options will have no effect.

Windows with ANGLE only.

--angle-flip=<yes|no>

Enable flip-model presentation, which avoids unnecessarily copying the backbuffer by sharing
surfaces with the DWM (default: yes). This may cause performance issues with older drivers. If
flip-model presentation is not supported (for example, on Windows 7 without the platform update),
mpv will automatically fall back to the older bitblt presentation model.

If set to no, the --angle-swapchain-length option will have no effect.

Windows with ANGLE only.

--angle-renderer=<d3d9|d3d11|auto>

Forces a specific renderer when using the ANGLE backend (default: auto). In auto mode this will pick
D3D11 for systems that support Direct3D 11 feature level 9_3 or higher, and D3D9 otherwise. This
option is mainly for debugging purposes. Normally there is no reason to force a specific renderer,
though --angle-renderer=d3d9 may give slightly better performance on old hardware. Note that
the D3D9 renderer only supports OpenGL ES 2.0, so most extended OpenGL features will not work if
this renderer is selected (similar to --gpu-dumb-mode).

Windows with ANGLE only.

--cocoa-force-dedicated-gpu=<yes|no>

Deactivates the automatic graphics switching and forces the dedicated GPU. (default: no)

OS X only.

--macos-title-bar-style=<dark|ultradark|light|mediumlight|auto>

Sets the styling of the title bar (default: dark). OS X and cocoa-cb only

dark: Dark title bar with vibrancy, a subtle blurring effect that dynamically blends the
background (Video) into the title bar.

ultradark: Darker title bar with vibrancy (like QuickTime Player).

light: Bright title bar with vibrancy.

mediumlight: Less bright title bar with vibrancy.

auto: Detects the system settings and sets the title bar styling appropriately, either
ultradark or mediumlight.

--macos-fs-animation-duration=<default|0-1000>

Sets the fullscreen resize animation duration in ms (default: default). The default value is slightly less
than the system's animation duration (500ms) to prevent some problems when the end of an async
animation happens at the same time as the end of the system wide fullscreen animation. Setting
anything higher than 500ms will only prematurely cancel the resize animation after the system wide
animation ended. The upper limit is still set at 1000ms since it's possible that Apple or the user
changes the system defaults. Anything higher than 1000ms though seems too long and shouldn't be
set anyway. OS X and cocoa-cb only

--android-surface-size=<WxH>

Set dimensions of the rendering surface used by the Android gpu context. Needs to be set by the
embedding application if the dimensions change during runtime (i.e. if the device is rotated), via the
surfaceChanged callback.

Android with --gpu-context=android only.

--swapchain-depth=<N>

Allow up to N in-flight frames. This essentially controls the frame latency. Increasing the swapchain
depth can improve pipelining and prevent missed vsyncs, but increases visible latency. This option
only mandates an upper limit, the implementation can use a lower latency than requested internally. A
setting of 1 means that the VO will wait for every frame to become visible before starting to render the
next frame. (Default: 3)

--gpu-sw

Continue even if a software renderer is detected.

--gpu-context=<sys>

The value auto (the default) selects the GPU context. You can also pass help to get a complete list
of compiled in backends (sorted by autoprobe order).

auto

auto-select (default)

cocoa

Cocoa/OS X (deprecated, use --vo=opengl-cb instead)

win

Win32/WGL

winvk

VK_KHR_win32_surface

angle

Direct3D11 through the OpenGL ES translation layer ANGLE. This supports almost everything
the win backend does (if the ANGLE build is new enough).

dxinterop (experimental)

Win32, using WGL for rendering and Direct3D 9Ex for presentation. Works on Nvidia and AMD.
Newer Intel chips with the latest drivers may also work.

d3d11

Win32, with native Direct3D 11 rendering.

x11

X11/GLX

x11vk

VK_KHR_xlib_surface

x11probe

For internal autoprobing, equivalent to x11 otherwise. Don't use directly, it could be removed
without warning as autoprobing is changed.

wayland

Wayland/EGL

waylandvk

VK_KHR_wayland_surface

drm

DRM/EGL

x11egl

X11/EGL

android

Android/EGL. Requires --wid be set to an android.view.Surface.

mali-fbdev

Direct fbdev/EGL support on some ARM/MALI devices.

vdpauglx

Use vdpau presentation with GLX as backing. Experimental use only. Using this will have no
advantage (other than additional bugs or performance problems), and is for doing experiments
only. Will not be used automatically.

--gpu-api=<type>

Controls which type of graphics APIs will be accepted:

auto

Use any available API (default)

opengl

Allow only OpenGL (requires OpenGL 2.1+ or GLES 2.0+)

vulkan

Allow only Vulkan (requires a valid/working --spirv-compiler)

d3d11

Allow only --gpu-context=d3d11

--opengl-es=<mode>

Controls which type of OpenGL context will be accepted:

auto

Allow all types of OpenGL (default)

yes

Only allow GLES

no

Only allow desktop/core GL

--opengl-restrict=<version>

Restricts all OpenGL versions above a certain version. Versions are encoded in hundreds, i.e.
OpenGL 4.5 -> 450. As an example, --opengl-restrict=300 would restrict OpenGL 3.0 and higher,
effectively only allowing 2.x contexts. Note that this only imposes a limit on context creation APIs, the
actual OpenGL context may still have a higher OpenGL version. (Default: 0)

--fbo-format=<fmt>

Selects the internal format of textures used for FBOs. The format can influence performance and
quality of the video output. fmt can be one of: rgb8, rgb10, rgb10_a2, rgb16, rgb16f, rgb32f, rgba12,
rgba16, rgba16f, rgba16hf, rgba32f. Default: auto, which maps to rgba16 on desktop GL, and
rgba16f or rgb10_a2 on GLES (e.g. ANGLE), unless GL_EXT_texture_norm16 is available.

--gamma-factor=<0.1..2.0>

Set an additional raw gamma factor (default: 1.0). If gamma is adjusted in other ways (like with the
--gamma option or key bindings and the gamma property), the value is multiplied with the other
gamma value.

Recommended values based on the environmental brightness:

1.0

Pitch black or dimly lit room (default)

1.1

Moderately lit room, home

1.2

Brightly illuminated room, office

NOTE: This is based around the assumptions of typical movie content, which contains an implicit
end-to-end of about 0.8 from scene to display. For bright environments it can be useful to cancel that
out.

--gamma-auto

Automatically corrects the gamma value depending on ambient lighting conditions (adding a gamma
boost for bright rooms).

With ambient illuminance of 16 lux, mpv will pick the 1.0 gamma value (no boost), and slightly
increase the boost up until 1.2 for 256 lux.

NOTE: Only implemented on OS X.

--target-prim=<value>

Specifies the primaries of the display. Video colors will be adapted to this colorspace when ICC color
management is not being used. Valid values are:

auto

Disable any adaptation (default)

bt.470m

ITU-R BT.470 M

bt.601-525

ITU-R BT.601 (525-line SD systems, eg. NTSC), SMPTE 170M/240M

bt.601-625

ITU-R BT.601 (625-line SD systems, eg. PAL/SECAM), ITU-R BT.470 B/G

bt.709

ITU-R BT.709 (HD), IEC 61966-2-4 (sRGB), SMPTE RP177 Annex B

bt.2020

ITU-R BT.2020 (UHD)

apple

Apple RGB

adobe

Adobe RGB (1998)

prophoto

ProPhoto RGB (ROMM)

cie1931

CIE 1931 RGB (not to be confused with CIE XYZ)

dci-p3

DCI-P3 (Digital Cinema Colorspace), SMPTE RP431-2

v-gamut

Panasonic V-Gamut (VARICAM) primaries

s-gamut

Sony S-Gamut (S-Log) primaries

--target-trc=<value>

Specifies the transfer characteristics (gamma) of the display. Video colors will be adjusted to this
curve when ICC color management is not being used. Valid values are:

auto

Disable any adaptation (default)

bt.1886

ITU-R BT.1886 curve (assuming infinite contrast)

srgb

IEC 61966-2-4 (sRGB)

linear

Linear light output

gamma1.8

Pure power curve (gamma 1.8), also used for Apple RGB

gamma2.2

Pure power curve (gamma 2.2)

gamma2.8

Pure power curve (gamma 2.8), also used for BT.470-BG

prophoto

ProPhoto RGB (ROMM)

pq

ITU-R BT.2100 PQ (Perceptual quantizer) curve, aka SMPTE ST2084

hlg

ITU-R BT.2100 HLG (Hybrid Log-gamma) curve, aka ARIB STD-B67

v-log

Panasonic V-Log (VARICAM) curve

s-log1

Sony S-Log1 curve

s-log2

Sony S-Log2 curve

Note

When using HDR output formats, mpv will encode to the specified curve but it will not set any
HDMI flags or other signalling that might be required for the target device to correctly display
the HDR signal. The user should independently guarantee this before using these signal
formats for display.

--target-peak=<nits>

Specifies the measured peak brightness of the output display, in cd/m^2 (AKA nits). The interpretation
of this brightness depends on the configured --target-trc. In all cases, it imposes a limit on the
signal values that will be sent to the display. If the source exceeds this brightness level, a tone
mapping filter will be inserted. For HLG, it has the additional effect of parametrizing the inverse OOTF,
in order to get colorimetrically consistent results with the mastering display. For SDR, or when using
an ICC (profile (--icc-profile), setting this to a value above 100 essentially causes the display to
be treated as if it were an HDR display in disguise. (See the note below)

By default, the chosen peak defaults to an appropriate value based on the TRC in use. For SDR
curves, it defaults to 100. For HDR curves, it defaults to 100 * the transfer function's nominal peak.

Note

When using an SDR transfer function, this is normally not needed, and setting it may lead to
very unexpected results. The one time it is useful is if you want to calibrate a HDR display
using traditional transfer functions and calibration equipment. In such cases, you can set your
HDR display to a high brightness such as 800 cd/m^2, and then calibrate it to a standard curve
like gamma2.8. Setting this value to 800 would then instruct mpv to essentially treat it as an
HDR display with the given peak. This may be a good alternative in environments where PQ or
HLG input to the display is not possible, and makes it possible to use HDR displays with mpv
regardless of operating system support for HDMI HDR metadata.

In such a configuration, we highly recommend setting --tone-mapping to mobius or even
clip.

--tone-mapping=<value>

Specifies the algorithm used for tone-mapping images onto the target display. This is relevant for both
HDR->SDR conversion as well as gamut reduction (e.g. playing back BT.2020 content on a standard
gamut display). Valid values are:

clip

Hard-clip any out-of-range values. Use this when you care about perfect color accuracy for
in-range values at the cost of completely distorting out-of-range values. Not generally
recommended.

mobius

Generalization of Reinhard to a Möbius transform with linear section. Smoothly maps
out-of-range values while retaining contrast and colors for in-range material as much as possible.
Use this when you care about color accuracy more than detail preservation. This is somewhere in
between clip and reinhard, depending on the value of --tone-mapping-param.

reinhard

Reinhard tone mapping algorithm. Very simple continuous curve. Preserves overall image
brightness but uses nonlinear contrast, which results in flattening of details and degradation in
color accuracy.

hable

Similar to reinhard but preserves both dark and bright details better (slightly sigmoidal), at the
cost of slightly darkening / desaturating everything. Developed by John Hable for use in video
games. Use this when you care about detail preservation more than color/brightness accuracy.
This is roughly equivalent to
--hdr-tone-mapping=reinhard --tone-mapping-param=0.24. If possible, you should
also enable --hdr-compute-peak for the best results. (Default)

gamma

Fits a logarithmic transfer between the tone curves.

linear

Linearly stretches the entire reference gamut to (a linear multiple of) the display.

--tone-mapping-param=<value>

Set tone mapping parameters. Ignored if the tone mapping algorithm is not tunable. This affects the
following tone mapping algorithms:

clip

Specifies an extra linear coefficient to multiply into the signal before clipping. Defaults to 1.0.

mobius

Specifies the transition point from linear to mobius transform. Every value below this point is
guaranteed to be mapped 1:1. The higher the value, the more accurate the result will be, at the
cost of losing bright details. Defaults to 0.3, which due to the steep initial slope still preserves
in-range colors fairly accurately.

reinhard

Specifies the local contrast coefficient at the display peak. Defaults to 0.5, which means that
in-gamut values will be about half as bright as when clipping.

gamma

Specifies the exponent of the function. Defaults to 1.8.

linear

Specifies the scale factor to use while stretching. Defaults to 1.0.

--hdr-compute-peak=<auto|yes|no>

Compute the HDR peak and frame average brightness per-frame instead of relying on tagged
metadata. These values are averaged over local regions as well as over several frames to prevent the
value from jittering around too much. This option basically gives you dynamic, per-scene tone
mapping. Requires compute shaders, which is a fairly recent OpenGL feature, and will probably also
perform horribly on some drivers, so enable at your own risk. The special value auto (default) will
enable HDR peak computation automatically if compute shaders and SSBOs are supported.

--tone-mapping-desaturate=<value>

Apply desaturation for highlights. The parameter essentially controls the steepness of the
desaturation curve. The higher the parameter, the more aggressively colors will be desaturated. This
setting helps prevent unnaturally blown-out colors for super-highlights, by (smoothly) turning into
white instead. This makes images feel more natural, at the cost of reducing information about
out-of-range colors.

The default of 0.5 provides a good balance. This value is weaker than the ACES ODT curves'
recommendation, but works better for most content in practice. A setting of 0.0 disables this option.

--gamut-warning

If enabled, mpv will mark all clipped/out-of-gamut pixels that exceed a given threshold (currently
hard-coded to 101%). The affected pixels will be inverted to make them stand out. Note: This option

applies after the effects of all of mpv's color space transformation / tone mapping options, so it's a
good idea to combine this with --tone-mapping=clip and use --target-prim to set the gamut
to simulate. For example, --target-prim=bt.709 would make mpv highlight all pixels that exceed
the gamut of a standard gamut (sRGB) display. This option also does not work well with ICC profiles,
since the 3DLUTs are always generated against the source color space and have
chromatically-accurate clipping built in.

--use-embedded-icc-profile

Load the embedded ICC profile contained in media files such as PNG images. (Default: yes). Note
that this option only works when also using a display ICC profile (--icc-profile or
--icc-profile-auto), and also requires LittleCMS 2 support.

--icc-profile=<file>

Load an ICC profile and use it to transform video RGB to screen output. Needs LittleCMS 2 support
compiled in. This option overrides the --target-prim, --target-trc and
--icc-profile-auto options.

--icc-profile-auto

Automatically select the ICC display profile currently specified by the display settings of the operating
system.

NOTE: On Windows, the default profile must be an ICC profile. WCS profiles are not supported.

Applications using libmpv with the render API need to provide the ICC profile via
MPV_RENDER_PARAM_ICC_PROFILE.

--icc-cache-dir=<dirname>

Store and load the 3D LUTs created from the ICC profile in this directory. This can be used to speed
up loading, since LittleCMS 2 can take a while to create a 3D LUT. Note that these files contain
uncompressed LUTs. Their size depends on the --icc-3dlut-size, and can be very big.

NOTE: This is not cleaned automatically, so old, unused cache files may stick around indefinitely.

--icc-intent=<value>

Specifies the ICC intent used for the color transformation (when using --icc-profile).

0

perceptual

1

relative colorimetric (default)

2

saturation

3

absolute colorimetric

--icc-3dlut-size=<r>x<g>x

Size of the 3D LUT generated from the ICC profile in each dimension. Default is 64x64x64. Sizes
may range from 2 to 512.

--icc-contrast=<0-100000>

Specifies an upper limit on the target device's contrast ratio. This is detected automatically from the
profile if possible, but for some profiles it might be missing, causing the contrast to be assumed as
infinite. As a result, video may appear darker than intended. This only affects BT.1886 content. The
default of 0 means no limit.

--blend-subtitles=<yes|video|no>

Blend subtitles directly onto upscaled video frames, before interpolation and/or color management
(default: no). Enabling this causes subtitles to be affected by --icc-profile, --target-prim,
--target-trc, --interpolation, --gamma-factor and --glsl-shaders. It also increases
subtitle performance when using --interpolation.

The downside of enabling this is that it restricts subtitles to the visible portion of the video, so you
can't have subtitles exist in the black margins below a video (for example).

If video is selected, the behavior is similar to yes, but subs are drawn at the video's native
resolution, and scaled along with the video.

Warning

This changes the way subtitle colors are handled. Normally, subtitle colors are assumed to be
in sRGB and color managed as such. Enabling this makes them treated as being in the
video's color space instead. This is good if you want things like softsubbed ASS signs to
match the video colors, but may cause SRT subtitles or similar to look slightly off.

--alpha=<blend-tiles|blend|yes|no>

Decides what to do if the input has an alpha component.

blend-tiles

Blend the frame against a 16x16 gray/white tiles background (default).

blend

Blend the frame against the background color (--background, normally black).

yes

Try to create a framebuffer with alpha component. This only makes sense if the video contains
alpha information (which is extremely rare). May not be supported on all platforms. If alpha
framebuffers are unavailable, it silently falls back on a normal framebuffer. Note that if you set the
--fbo-format option to a non-default value, a format with alpha must be specified, or this won't
work. This does not work on X11 with EGL and Mesa (freedesktop bug 67676).

no

Ignore alpha component.

--opengl-rectangle-textures

Force use of rectangle textures (default: no). Normally this shouldn't have any advantages over
normal textures. Note that hardware decoding overrides this flag. Could be removed any time.

--background=<color>

Color used to draw parts of the mpv window not covered by video. See --osd-color option how
colors are defined.

--gpu-tex-pad-x, --gpu-tex-pad-y

Enlarge the video source textures by this many pixels. For debugging only (normally textures are
sized exactly, but due to hardware decoding interop we may have to deal with additional padding,
which can be tested with these options). Could be removed any time.

--opengl-early-flush=<yes|no|auto>

Call glFlush() after rendering a frame and before attempting to display it (default: auto). Can fix
stuttering in some cases, in other cases probably causes it. The auto mode will call glFlush() only
if the renderer is going to wait for a while after rendering, instead of flipping GL front and backbuffers
immediately (i.e. it doesn't call it in display-sync mode).

On OSX this is always deactivated because it only causes performance problems and other
regressions.

--gpu-dumb-mode=<yes|no|auto>

This mode is extremely restricted, and will disable most extended features. That includes high quality
scalers and custom shaders!

It is intended for hardware that does not support FBOs (including GLES, which supports it
insufficiently), or to get some more performance out of bad or old hardware.

This mode is forced automatically if needed, and this option is mostly useful for debugging. The
default of auto will enable it automatically if nothing uses features which require FBOs.

This option might be silently removed in the future.

--gpu-shader-cache-dir=<dirname>

Store and load compiled GLSL shaders in this directory. Normally, shader compilation is very fast, so
this is usually not needed. It mostly matters for GPU APIs that require internally recompiling shaders
to other languages, for example anything based on ANGLE or Vulkan. Enabling this can improve
startup performance on these platforms.

NOTE: This is not cleaned automatically, so old, unused cache files may stick around indefinitely.

Miscellaneous
--display-tags=tag1,tags2,...

Set the list of tags that should be displayed on the terminal. Tags that are in the list, but are not
present in the played file, will not be shown. If a value ends with *, all tags are matched by prefix
(though there is no general globbing). Just passing * essentially filtering.

The default includes a common list of tags, call mpv with --list-options to see it.

--mc=<seconds/frame>

Maximum A-V sync correction per frame (in seconds)

--autosync=<factor>

Gradually adjusts the A/V sync based on audio delay measurements. Specifying --autosync=0, the
default, will cause frame timing to be based entirely on audio delay measurements. Specifying
--autosync=1 will do the same, but will subtly change the A/V correction algorithm. An uneven
video framerate in a video which plays fine with --no-audio can often be helped by setting this to an
integer value greater than 1. The higher the value, the closer the timing will be to --no-audio. Try
--autosync=30 to smooth out problems with sound drivers which do not implement a perfect audio
delay measurement. With this value, if large A/V sync offsets occur, they will only take about 1 or 2
seconds to settle out. This delay in reaction time to sudden A/V offsets should be the only side effect
of turning this option on, for all sound drivers.

--video-timing-offset=<seconds>

Control how long before video display target time the frame should be rendered (default: 0.050). If a
video frame should be displayed at a certain time, the VO will start rendering the frame earlier, and
then will perform a blocking wait until the display time, and only then "swap" the frame to display. The
rendering cannot start before the previous frame is displayed, so this value is implicitly limited by the
video framerate. With normal video frame rates, the default value will ensure that rendering is always
immediately started after the previous frame was displayed. On the other hand, setting a too high
value can reduce responsiveness with low FPS value.

For client API users using the render API (or the deprecated opengl-cb API), this option is
interesting, because you can stop the render API from limiting your FPS (see
mpv_render_context_render() documentation).

This applies only to audio timing modes (e.g. --video-sync=audio). In other modes
(--video-sync=display-...), video timing relies on vsync blocking, and this option is not used.

--video-sync=<audio|...>

How the player synchronizes audio and video.

If you use this option, you usually want to set it to display-resample to enable a timing mode that
tries to not skip or repeat frames when for example playing 24fps video on a 24Hz screen.

The modes starting with display- try to output video frames completely synchronously to the
display, using the detected display vertical refresh rate as a hint how fast frames will be displayed on

average. These modes change video speed slightly to match the display. See --video-sync-...
options for fine tuning. The robustness of this mode is further reduced by making a some idealized
assumptions, which may not always apply in reality. Behavior can depend on the VO and the system's
video and audio drivers. Media files must use constant framerate. Section-wise VFR might work as
well with some container formats (but not e.g. mkv). If the sync code detects severe A/V desync, or
the framerate cannot be detected, the player automatically reverts to audio mode for some time or
permanently. These modes also require a vsync blocked presentation mode. For OpenGL, this
translates to --opengl-swapinterval=1. For Vulkan, it translates to
--vulkan-swap-mode=fifo (or fifo-relaxed).

The modes with desync in their names do not attempt to keep audio/video in sync. They will slowly
(or quickly) desync, until e.g. the next seek happens. These modes are meant for testing, not serious
use.

audio: Time video frames to audio. This is the most robust mode, because the player
doesn't have to assume anything about how the display behaves. The
disadvantage is that it can lead to occasional frame drops or repeats. If audio is
disabled, this uses the system clock. This is the default mode.

display-resam
ple:

Resample audio to match the video. This mode will also try to adjust audio
speed to compensate for other drift. (This means it will play the audio at a
different speed every once in a while to reduce the A/V difference.)

display-resam
ple-vdrop:

Resample audio to match the video. Drop video frames to compensate for drift.

display-resam
ple-desync:

Like the previous mode, but no A/V compensation.

display-vdrop: Drop or repeat video frames to compensate desyncing video. (Although it
should have the same effects as audio, the implementation is very different.)

display-adrop: Drop or repeat audio data to compensate desyncing video. See
--video-sync-adrop-size. This mode will cause severe audio artifacts if
the real monitor refresh rate is too different from the reported or forced rate.

display-desync
:

Sync video to display, and let audio play on its own.

desync: Sync video according to system clock, and let audio play on its own.

--video-sync-max-video-change=<value>

Maximum speed difference in percent that is applied to video with --video-sync=display-...
(default: 1). Display sync mode will be disabled if the monitor and video refresh way do not match
within the given range. It tries multiples as well: playing 30 fps video on a 60 Hz screen will duplicate
every second frame. Playing 24 fps video on a 60 Hz screen will play video in a 2-3-2-3-... pattern.

The default settings are not loose enough to speed up 23.976 fps video to 25 fps. We consider the
pitch change too extreme to allow this behavior by default. Set this option to a value of 5 to enable it.

Note that in the --video-sync=display-resample mode, audio speed will additionally be
changed by a small amount if necessary for A/V sync. See --video-sync-max-audio-change.

--video-sync-max-audio-change=<value>

Maximum additional speed difference in percent that is applied to audio with
--video-sync=display-... (default: 0.125). Normally, the player plays the audio at the speed of
the video. But if the difference between audio and video position is too high, e.g. due to drift or other
timing errors, it will attempt to speed up or slow down audio by this additional factor. Too low values
could lead to video frame dropping or repeating if the A/V desync cannot be compensated, too high
values could lead to chaotic frame dropping due to the audio "overshooting" and skipping multiple
video frames before the sync logic can react.

--video-sync-adrop-size=<value>

For the --video-sync=display-adrop mode. This mode duplicates/drops audio data to keep
audio in sync with video. To avoid audio artifacts on jitter (which would add/remove samples all the
time), this is done in relatively large, fixed units, controlled by this option. The unit is seconds.

--mf-fps=<value>

Framerate used when decoding from multiple PNG or JPEG files with mf:// (default: 1).

--mf-type=<value>

Input file type for mf:// (available: jpeg, png, tga, sgi). By default, this is guessed from the file
extension.

--stream-dump=<destination-filename>

Instead of playing a file, read its byte stream and write it to the given destination file. The destination
is overwritten. Can be useful to test network-related behavior.

--stream-lavf-o=opt1=value1,opt2=value2,...

Set AVOptions on streams opened with libavformat. Unknown or misspelled options are silently
ignored. (They are mentioned in the terminal output in verbose mode, i.e. --v. In general we can't
print errors, because other options such as e.g. user agent are not available with all protocols, and
printing errors for unknown options would end up being too noisy.)

--vo-mmcss-profile=<name>

(Windows only.) Set the MMCSS profile for the video renderer thread (default: Playback).

--priority=<prio>

(Windows only.) Set process priority for mpv according to the predefined priorities available under
Windows.

Possible values of <prio>: idle|belownormal|normal|abovenormal|high|realtime

Warning

Using realtime priority can cause system lockup.

--force-media-title=<string>

Force the contents of the media-title property to this value. Useful for scripts which want to set a
title, without overriding the user's setting in --title.

--external-files=<file-list>

Load a file and add all of its tracks. This is useful to play different files together (for example audio
from one file, video from another), or for advanced --lavfi-complex used (like playing two video
files at the same time).

Unlike --sub-files and --audio-files, this includes all tracks, and does not cause default
stream selection over the "proper" file. This makes it slightly less intrusive. (In mpv 0.28.0 and before,
this was not quite strictly enforced.)

This is a list option. See List Options for details.

--external-file=<file>

CLI/config file only alias for --external-files-append. Each use of this option will add a new
external files.

--autoload-files=<yes|no>

Automatically load/select external files (default: yes).

If set to no, then do not automatically load external files as specified by --sub-auto and
--audio-file-auto. If external files are forcibly added (like with --sub-files), they will not be
auto-selected.

This does not affect playlist expansion, redirection, or other loading of referenced files like with
ordered chapters.

--record-file=<file>

Record the current stream to the given target file. The target file will always be overwritten without
asking.

This remuxes the source stream without reencoding, which makes this a highly fragile and
experimental feature. It's entirely possible that this writes files which are broken, not standards
compliant, not playable with all players (including mpv), or incomplete.

The target file format is determined by the file extension of the target filename. It is recommended to
use the same target container as the source container if possible, and preferring Matroska as
fallback.

Seeking during stream recording, or enabling/disabling stream recording during playback, can cut off
data, or produce "holes" in the output file. These are technical restrictions. In particular, video data or
subtitles which were read ahead can produce such holes, which might cause playback problems with
various players (including mpv).

The behavior of this option might changed in the future, such as changing it to a template (similar to
--screenshot-template), being renamed, removed, or anything else, until it is declared
semi-stable.

--lavfi-complex=<string>

Set a "complex" libavfilter filter, which means a single filter graph can take input from multiple source
audio and video tracks. The graph can result in a single audio or video output (or both).

Currently, the filter graph labels are used to select the participating input tracks and audio/video
output. The following rules apply:

• A label of the form aidN selects audio track N as input (e.g. aid1).

• A label of the form vidN selects video track N as input.

• A label named ao will be connected to the audio output.

• A label named vo will be connected to the video output.

Each label can be used only once. If you want to use e.g. an audio stream for multiple filters, you need
to use the asplit filter. Multiple video or audio outputs are not possible, but you can use filters to
merge them into one.

It's not possible to change the tracks connected to the filter at runtime, unless you explicitly change
the lavfi-complex property and set new track assignments. When the graph is changed, the track
selection is changed according to the used labels as well.

Other tracks, as long as they're not connected to the filter, and the corresponding output is not
connected to the filter, can still be freely changed with the normal methods.

Note that the normal filter chains (--af, --vf) are applied between the complex graphs (e.g. ao
label) and the actual output.

Examples

• --lavfi-complex='[aid1] [aid2] amix [ao]' Play audio track 1 and 2 at the
same time.

• --lavfi-complex='[vid1] [vid2] vstack [vo]' Stack video track 1 and 2
and play them at the same time. Note that both tracks need to have the same width, or
filter initialization will fail (you can add scale filters before the vstack filter to fix the
size). To load a video track from another file, you can use
--external-file=other.mkv.

• --lavfi-complex='[aid1] asplit [t1] [ao] ; [t1] showvolume [t2] ; [vid1] [t2] overlay [vo]'
Play audio track 1, and overlay the measured volume for each speaker over video track 1.

• null:// --lavfi-complex='life [vo]' A libavfilter source-only filter (Conways'
Life Game).

See the FFmpeg libavfilter documentation for details on the available filters.

AUDIO OUTPUT DRIVERS
Audio output drivers are interfaces to different audio output facilities. The syntax is:

--ao=<driver1,driver2,...[,]>

Specify a priority list of audio output drivers to be used.

If the list has a trailing ',', mpv will fall back on drivers not contained in the list.

Note

See --ao=help for a list of compiled-in audio output drivers. The driver --ao=alsa is preferred.
--ao=pulse is preferred on systems where PulseAudio is used. On BSD systems, --ao=oss or
--ao=sndio may work (the latter being experimental).

Available audio output drivers are:

alsa (Linux only)

ALSA audio output driver

See ALSA audio output options for options specific to this AO.

Warning

To get multichannel/surround audio, use --audio-channels=auto. The default for this
option is auto-safe, which makes this audio output explicitly reject multichannel output, as
there is no way to detect whether a certain channel layout is actually supported.

You can also try using the upmix plugin. This setup enables multichannel audio on the
default device with automatic upmixing with shared access, so playing stereo and
multichannel audio at the same time will work as expected.

oss

OSS audio output driver

The following global options are supported by this audio output:

--oss-mixer-device

Sets the audio mixer device (default: /dev/mixer).

--oss-mixer-channel

Sets the audio mixer channel (default: pcm). Other valid values include vol, pcm, line. For a
complete list of options look for SOUND_DEVICE_NAMES in
/usr/include/linux/soundcard.h.

jack

JACK (Jack Audio Connection Kit) audio output driver.

The following global options are supported by this audio output:

--jack-port=<name>

Connects to the ports with the given name (default: physical ports).

--jack-name=<client>

Client name that is passed to JACK (default: mpv). Useful if you want to have certain connections
established automatically.

http://git.io/vfuAy

--jack-autostart=<yes|no>

Automatically start jackd if necessary (default: disabled). Note that this tends to be unreliable and
will flood stdout with server messages.

--jack-connect=<yes|no>

Automatically create connections to output ports (default: enabled). When enabled, the maximum
number of output channels will be limited to the number of available output ports.

--jack-std-channel-layout=<waveext|any>

Select the standard channel layout (default: waveext). JACK itself has no notion of channel
layouts (i.e. assigning which speaker a given channel is supposed to map to) - it just takes
whatever the application outputs, and reroutes it to whatever the user defines. This means the
user and the application are in charge of dealing with the channel layout. waveext uses
WAVE_FORMAT_EXTENSIBLE order, which, even though it was defined by Microsoft, is the
standard on many systems. The value any makes JACK accept whatever comes from the audio
filter chain, regardless of channel layout and without reordering. This mode is probably not very
useful, other than for debugging or when used with fixed setups.

coreaudio (Mac OS X only)

Native Mac OS X audio output driver using AudioUnits and the CoreAudio sound server.

Automatically redirects to coreaudio_exclusive when playing compressed formats.

The following global options are supported by this audio output:

--coreaudio-change-physical-format=<yes|no>

Change the physical format to one similar to the requested audio format (default: no). This has
the advantage that multichannel audio output will actually work. The disadvantage is that it will
change the system-wide audio settings. This is equivalent to changing the Format setting in the
Audio Devices dialog in the Audio MIDI Setup utility. Note that this does not affect the
selected speaker setup.

--coreaudio-spdif-hack=<yes|no>

Try to pass through AC3/DTS data as PCM. This is useful for drivers which do not report AC3
support. It converts the AC3 data to float, and assumes the driver will do the inverse conversion,
which means a typical A/V receiver will pick it up as compressed IEC framed AC3 stream,
ignoring that it's marked as PCM. This disables normal AC3 passthrough (even if the device
reports it as supported). Use with extreme care.

coreaudio_exclusive (Mac OS X only)

Native Mac OS X audio output driver using direct device access and exclusive mode (bypasses the
sound server).

openal

OpenAL audio output driver

--openal-num-buffers=<2-128>

Specify the number of audio buffers to use. Lower values are better for lower CPU usage.
Default: 4.

--openal-num-samples=<256-32768>

Specify the number of complete samples to use for each buffer. Higher values are better for
lower CPU usage. Default: 8192.

--openal-direct-channels=<yes|no>

Enable OpenAL Soft's direct channel extension when available to avoid tinting the sound with
ambisonics or HRTF. Channels are dropped when when they are not available as downmixing
will be disabled. Default: no.

pulse

PulseAudio audio output driver

The following global options are supported by this audio output:

--pulse-host=<host>

Specify the host to use. An empty <host> string uses a local connection, "localhost" uses network
transfer (most likely not what you want).

--pulse-buffer=<1-2000|native>

Set the audio buffer size in milliseconds. A higher value buffers more data, and has a lower
probability of buffer underruns. A smaller value makes the audio stream react faster, e.g. to
playback speed changes.

--pulse-latency-hacks=<yes|no>

Enable hacks to workaround PulseAudio timing bugs (default: no). If enabled, mpv will do
elaborate latency calculations on its own. If disabled, it will use PulseAudio automatically updated
timing information. Disabling this might help with e.g. networked audio or some plugins, while
enabling it might help in some unknown situations (it used to be required to get good behavior on
old PulseAudio versions).

If you have stuttering video when using pulse, try to enable this option. (Or try to update
PulseAudio.)

sdl

SDL 1.2+ audio output driver. Should work on any platform supported by SDL 1.2, but may require the
SDL_AUDIODRIVER environment variable to be set appropriately for your system.

Note

This driver is for compatibility with extremely foreign environments, such as systems where
none of the other drivers are available.

The following global options are supported by this audio output:

--sdl-buflen=<length>

Sets the audio buffer length in seconds. Is used only as a hint by the sound system. Playing a file
with -v will show the requested and obtained exact buffer size. A value of 0 selects the sound
system default.

--sdl-bufcnt=<count>

Sets the number of extra audio buffers in mpv. Usually needs not be changed.

null

Produces no audio output but maintains video playback speed. You can use
--ao=null --ao-null-untimed for benchmarking.

The following global options are supported by this audio output:

--ao-null-untimed

Do not simulate timing of a perfect audio device. This means audio decoding will go as fast as
possible, instead of timing it to the system clock.

--ao-null-buffer

Simulated buffer length in seconds.

--ao-null-outburst

Simulated chunk size in samples.

--ao-null-speed

Simulated audio playback speed as a multiplier. Usually, a real audio device will not go exactly
as fast as the system clock. It will deviate just a little, and this option helps to simulate this.

--ao-null-latency

Simulated device latency. This is additional to EOF.

--ao-null-broken-eof

Simulate broken audio drivers, which always add the fixed device latency to the reported audio
playback position.

--ao-null-broken-delay

Simulate broken audio drivers, which don't report latency correctly.

--ao-null-channel-layouts

If not empty, this is a , separated list of channel layouts the AO allows. This can be used to test
channel layout selection.

--ao-null-format

Force the audio output format the AO will accept. If unset accepts any.

pcm

Raw PCM/WAVE file writer audio output

The following global options are supported by this audio output:

--ao-pcm-waveheader=<yes|no>

Include or do not include the WAVE header (default: included). When not included, raw PCM will
be generated.

--ao-pcm-file=<filename>

Write the sound to <filename> instead of the default audiodump.wav. If no-waveheader is
specified, the default is audiodump.pcm.

--ao-pcm-append=<yes|no>

Append to the file, instead of overwriting it. Always use this with the no-waveheader option -
with waveheader it's broken, because it will write a WAVE header every time the file is opened.

rsound

Audio output to an RSound daemon. Use --audio-device=rsound/<hostname> to set the host
name (with <hostname> replaced, without the < >).

Note

Completely useless, unless you intend to run RSound. Not to be confused with RoarAudio,
which is something completely different.

sndio

Audio output to the OpenBSD sndio sound system

Note

Experimental. There are known bugs and issues.

(Note: only supports mono, stereo, 4.0, 5.1 and 7.1 channel layouts.)

wasapi

Audio output to the Windows Audio Session API.

VIDEO OUTPUT DRIVERS
Video output drivers are interfaces to different video output facilities. The syntax is:

--vo=<driver1,driver2,...[,]>

Specify a priority list of video output drivers to be used.

If the list has a trailing ,, mpv will fall back on drivers not contained in the list.

Note

See --vo=help for a list of compiled-in video output drivers.

The recommended output driver is --vo=gpu, which is the default. All other drivers are for
compatibility or special purposes. If the default does not work, it will fallback to other drivers (in the
same order as listed by --vo=help).

Available video output drivers are:

xv (X11 only)

Uses the XVideo extension to enable hardware-accelerated display. This is the most compatible VO
on X, but may be low-quality, and has issues with OSD and subtitle display.

Note

This driver is for compatibility with old systems.

The following global options are supported by this video output:

--xv-adaptor=<number>

Select a specific XVideo adapter (check xvinfo results).

--xv-port=<number>

Select a specific XVideo port.

--xv-ck=<cur|use|set>

Select the source from which the color key is taken (default: cur).

cur

The default takes the color key currently set in Xv.

use

Use but do not set the color key from mpv (use the --colorkey option to change it).

set

Same as use but also sets the supplied color key.

--xv-ck-method=<none|man|bg|auto>

Sets the color key drawing method (default: man).

none

Disables color-keying.

man

Draw the color key manually (reduces flicker in some cases).

bg

Set the color key as window background.

auto

Let Xv draw the color key.

--xv-colorkey=<number>

Changes the color key to an RGB value of your choice. 0x000000 is black and 0xffffff is
white.

--xv-buffers=<number>

Number of image buffers to use for the internal ringbuffer (default: 2). Increasing this will use
more memory, but might help with the X server not responding quickly enough if video FPS is
close to or higher than the display refresh rate.

x11 (X11 only)

Shared memory video output driver without hardware acceleration that works whenever X11 is
present.

Note

This is a fallback only, and should not be normally used.

vdpau (X11 only)

Uses the VDPAU interface to display and optionally also decode video. Hardware decoding is used
with --hwdec=vdpau.

Note

Earlier versions of mpv (and MPlayer, mplayer2) provided sub-options to tune vdpau
post-processing, like deint, sharpen, denoise, chroma-deint, pullup, hqscaling.
These sub-options are deprecated, and you should use the vdpaupp video filter instead.

The following global options are supported by this video output:

--vo-vdpau-sharpen=<-1-1>

(Deprecated. See note about vdpaupp.)

For positive values, apply a sharpening algorithm to the video, for negative values a blurring
algorithm (default: 0).

--vo-vdpau-denoise=<0-1>

(Deprecated. See note about vdpaupp.)

Apply a noise reduction algorithm to the video (default: 0; no noise reduction).

--vo-vdpau-deint=<-4-4>

(Deprecated. See note about vdpaupp.)

Select deinterlacing mode (default: 0). In older versions (as well as MPlayer/mplayer2) you
could use this option to enable deinterlacing. This doesn't work anymore, and deinterlacing is
enabled with either the d key (by default mapped to the command cycle deinterlace), or
the --deinterlace option. Also, to select the default deint mode, you should use something
like --vf-defaults=vdpaupp:deint-mode=temporal instead of this sub-option.

0

Pick the vdpaupp video filter default, which corresponds to 3.

1

Show only first field.

2

Bob deinterlacing.

3

Motion-adaptive temporal deinterlacing. May lead to A/V desync with slow video hardware
and/or high resolution.

4

Motion-adaptive temporal deinterlacing with edge-guided spatial interpolation. Needs fast
video hardware.

--vo-vdpau-chroma-deint

(Deprecated. See note about vdpaupp.)

Makes temporal deinterlacers operate both on luma and chroma (default). Use no-chroma-deint
to solely use luma and speed up advanced deinterlacing. Useful with slow video memory.

--vo-vdpau-pullup

(Deprecated. See note about vdpaupp.)

Try to apply inverse telecine, needs motion adaptive temporal deinterlacing.

--vo-vdpau-hqscaling=<0-9>

(Deprecated. See note about vdpaupp.)

0

Use default VDPAU scaling (default).

1-9

Apply high quality VDPAU scaling (needs capable hardware).

--vo-vdpau-fps=<number>

Override autodetected display refresh rate value (the value is needed for framedrop to allow
video playback rates higher than display refresh rate, and for vsync-aware frame timing
adjustments). Default 0 means use autodetected value. A positive value is interpreted as a
refresh rate in Hz and overrides the autodetected value. A negative value disables all timing
adjustment and framedrop logic.

--vo-vdpau-composite-detect

NVIDIA's current VDPAU implementation behaves somewhat differently under a compositing
window manager and does not give accurate frame timing information. With this option enabled,
the player tries to detect whether a compositing window manager is active. If one is detected, the
player disables timing adjustments as if the user had specified fps=-1 (as they would be based
on incorrect input). This means timing is somewhat less accurate than without compositing, but
with the composited mode behavior of the NVIDIA driver, there is no hard playback speed limit
even without the disabled logic. Enabled by default, use --vo-vdpau-composite-detect=no
to disable.

--vo-vdpau-queuetime-windowed=<number> and queuetime-fs=<number>

Use VDPAU's presentation queue functionality to queue future video frame changes at most this
many milliseconds in advance (default: 50). See below for additional information.

--vo-vdpau-output-surfaces=<2-15>

Allocate this many output surfaces to display video frames (default: 3). See below for additional
information.

--vo-vdpau-colorkey=<#RRGGBB|#AARRGGBB>

Set the VDPAU presentation queue background color, which in practice is the colorkey used if
VDPAU operates in overlay mode (default: #020507, some shade of black). If the alpha

component of this value is 0, the default VDPAU colorkey will be used instead (which is usually
green).

--vo-vdpau-force-yuv

Never accept RGBA input. This means mpv will insert a filter to convert to a YUV format before
the VO. Sometimes useful to force availability of certain YUV-only features, like video equalizer
or deinterlacing.

Using the VDPAU frame queuing functionality controlled by the queuetime options makes mpv's
frame flip timing less sensitive to system CPU load and allows mpv to start decoding the next
frame(s) slightly earlier, which can reduce jitter caused by individual slow-to-decode frames.
However, the NVIDIA graphics drivers can make other window behavior such as window moves
choppy if VDPAU is using the blit queue (mainly happens if you have the composite extension
enabled) and this feature is active. If this happens on your system and it bothers you then you can set
the queuetime value to 0 to disable this feature. The settings to use in windowed and fullscreen mode
are separate because there should be no reason to disable this for fullscreen mode (as the driver
issue should not affect the video itself).

You can queue more frames ahead by increasing the queuetime values and the output_surfaces
count (to ensure enough surfaces to buffer video for a certain time ahead you need at least as many
surfaces as the video has frames during that time, plus two). This could help make video smoother in
some cases. The main downsides are increased video RAM requirements for the surfaces and laggier
display response to user commands (display changes only become visible some time after they're
queued). The graphics driver implementation may also have limits on the length of maximum queuing
time or number of queued surfaces that work well or at all.

direct3d (Windows only)

Video output driver that uses the Direct3D interface.

Note

This driver is for compatibility with systems that don't provide proper OpenGL drivers, and
where ANGLE does not perform well.

Note

Before to 0.21.0, direct3d_shaders and direct3d were different, with direct3d not
using shader by default. Now both use shaders by default, and direct3d_shaders is a
deprecated alias. Use the --vo-direct3d-prefer-stretchrect or the
--vo-direct3d-disable-shaders options to get the old behavior of direct3d.

The following global options are supported by this video output:

--vo-direct3d-prefer-stretchrect

Use IDirect3DDevice9::StretchRect over other methods if possible.

--vo-direct3d-disable-stretchrect

Never render the video using IDirect3DDevice9::StretchRect.

--vo-direct3d-disable-textures

Never render the video using D3D texture rendering. Rendering with textures + shader will still be
allowed. Add disable-shaders to completely disable video rendering with textures.

--vo-direct3d-disable-shaders

Never use shaders when rendering video.

--vo-direct3d-only-8bit

Never render YUV video with more than 8 bits per component. Using this flag will force software
conversion to 8-bit.

--vo-direct3d-disable-texture-align

Normally texture sizes are always aligned to 16. With this option enabled, the video texture will
always have exactly the same size as the video itself.

Debug options. These might be incorrect, might be removed in the future, might crash, might cause
slow downs, etc. Contact the developers if you actually need any of these for performance or proper
operation.

--vo-direct3d-force-power-of-2

Always force textures to power of 2, even if the device reports non-power-of-2 texture sizes as
supported.

--vo-direct3d-texture-memory=<mode>

Only affects operation with shaders/texturing enabled, and (E)OSD. Possible values:

default (default)

Use D3DPOOL_DEFAULT, with a D3DPOOL_SYSTEMMEM texture for locking. If the driver
supports D3DDEVCAPS_TEXTURESYSTEMMEMORY, D3DPOOL_SYSTEMMEM is used directly.

default-pool

Use D3DPOOL_DEFAULT. (Like default, but never use a shadow-texture.)

default-pool-shadow

Use D3DPOOL_DEFAULT, with a D3DPOOL_SYSTEMMEM texture for locking. (Like default,
but always force the shadow-texture.)

managed

Use D3DPOOL_MANAGED.

scratch

Use D3DPOOL_SCRATCH, with a D3DPOOL_SYSTEMMEM texture for locking.

--vo-direct3d-swap-discard

Use D3DSWAPEFFECT_DISCARD, which might be faster. Might be slower too, as it must(?) clear
every frame.

--vo-direct3d-exact-backbuffer

Always resize the backbuffer to window size.

gpu

General purpose, customizable, GPU-accelerated video output driver. It supports extended scaling
methods, dithering, color management, custom shaders, HDR, and more.

See GPU renderer options for options specific to this VO.

By default, it tries to use fast and fail-safe settings. Use the gpu-hq profile to use this driver with
defaults set to high quality rendering. The profile can be applied with --profile=gpu-hq and its
contents can be viewed with --show-profile=gpu-hq.

This VO abstracts over several possible graphics APIs and windowing contexts, which can be
influenced using the --gpu-api and --gpu-context options.

Hardware decoding over OpenGL-interop is supported to some degree. Note that in this mode, some
corner case might not be gracefully handled, and color space conversion and chroma upsampling is
generally in the hand of the hardware decoder APIs.

gpu makes use of FBOs by default. Sometimes you can achieve better quality or performance by
changing the --gpu-fbo-format option to rgb16f, rgb32f or rgb. Known problems include
Mesa/Intel not accepting rgb16, Mesa sometimes not being compiled with float texture support, and

some OS X setups being very slow with rgb16 but fast with rgb32f. If you have problems, you can
also try enabling the --gpu-dumb-mode=yes option.

sdl

SDL 2.0+ Render video output driver, depending on system with or without hardware acceleration.
Should work on all platforms supported by SDL 2.0. For tuning, refer to your copy of the file
SDL_hints.h.

Note

This driver is for compatibility with systems that don't provide proper graphics drivers, or which
support GLES only.

The following global options are supported by this video output:

--sdl-sw

Continue even if a software renderer is detected.

--sdl-switch-mode

Instruct SDL to switch the monitor video mode when going fullscreen.

vaapi

Intel VA API video output driver with support for hardware decoding. Note that there is absolutely no
reason to use this, other than compatibility. This is low quality, and has issues with OSD.

Note

This driver is for compatibility with crappy systems. You can use vaapi hardware decoding with
--vo=gpu too.

The following global options are supported by this video output:

--vo-vaapi-scaling=<algorithm>

default

Driver default (mpv default as well).

fast

Fast, but low quality.

hq

Unspecified driver dependent high-quality scaling, slow.

nla

non-linear anamorphic scaling

--vo-vaapi-deint-mode=<mode>

Select deinterlacing algorithm. Note that by default deinterlacing is initially always off, and needs
to be enabled with the d key (default key binding for cycle deinterlace).

This option doesn't apply if libva supports video post processing (vpp). In this case, the default
for deint-mode is no, and enabling deinterlacing via user interaction using the methods
mentioned above actually inserts the vavpp video filter. If vpp is not actually supported with the
libva backend in use, you can use this option to forcibly enable VO based deinterlacing.

no

Don't allow deinterlacing (default for newer libva).

first-field

Show only first field.

bob

bob deinterlacing (default for older libva).

--vo-vaapi-scaled-osd=<yes|no>

If enabled, then the OSD is rendered at video resolution and scaled to display resolution. By
default, this is disabled, and the OSD is rendered at display resolution if the driver supports it.

null

Produces no video output. Useful for benchmarking.

Usually, it's better to disable video with --no-video instead.

The following global options are supported by this video output:

--vo-null-fps=<value>

Simulate display FPS. This artificially limits how many frames the VO accepts per second.

caca

Color ASCII art video output driver that works on a text console.

Note

This driver is a joke.

tct

Color Unicode art video output driver that works on a text console. Depends on support of true color
by modern terminals to display the images at full color range. On Windows it requires an ansi terminal
such as mintty.

--vo-tct-algo=<algo>

Select how to write the pixels to the terminal.

half-blocks

Uses unicode LOWER HALF BLOCK character to achieve higher vertical resolution.
(Default.)

plain

Uses spaces. Causes vertical resolution to drop twofolds, but in theory works in more
places.

--vo-tct-width=<width> --vo-tct-height=<height>

Assume the terminal has the specified character width and/or height. These default to 80x25 if
the terminal size cannot be determined.

--vo-tct-256=<yes|no> (default: no)

Use 256 colors - for terminals which don't support true color.

image

Output each frame into an image file in the current directory. Each file takes the frame number
padded with leading zeros as name.

The following global options are supported by this video output:

--vo-image-format=<format>

Select the image file format.

jpg

JPEG files, extension .jpg. (Default.)

jpeg

JPEG files, extension .jpeg.

png

PNG files.

--vo-image-png-compression=<0-9>

PNG compression factor (speed vs. file size tradeoff) (default: 7)

--vo-image-png-filter=<0-5>

Filter applied prior to PNG compression (0 = none; 1 = sub; 2 = up; 3 = average; 4 = Paeth; 5 =
mixed) (default: 5)

--vo-image-jpeg-quality=<0-100>

JPEG quality factor (default: 90)

--vo-image-jpeg-optimize=<0-100>

JPEG optimization factor (default: 100)

--vo-image-outdir=<dirname>

Specify the directory to save the image files to (default: ./).

libmpv

For use with libmpv direct embedding. As a special case, on OS X it is used like a normal VO within
mpv (cocoa-cb). Otherwise useless in any other contexts. (See <mpv/render.h>.)

This also supports many of the options the gpu VO has, depending on the backend.

rpi (Raspberry Pi)

Native video output on the Raspberry Pi using the MMAL API.

This is deprecated. Use --vo=gpu instead, which is the default and provides the same functionality.
The rpi VO will be removed in mpv 0.23.0. Its functionality was folded into --vo=gpu, which now uses
RPI hardware decoding by treating it as a hardware overlay (without applying GL filtering). Also to be
changed in 0.23.0: the --fs flag will be reset to "no" by default (like on the other platforms).

The following deprecated global options are supported by this video output:

--rpi-display=<number>

Select the display number on which the video overlay should be shown (default: 0).

--rpi-layer=<number>

Select the dispmanx layer on which the video overlay should be shown (default: -10). Note that
mpv will also use the 2 layers above the selected layer, to handle the window background and
OSD. Actual video rendering will happen on the layer above the selected layer.

--rpi-background=<yes|no>

Whether to render a black background behind the video (default: no). Normally it's better to kill
the console framebuffer instead, which gives better performance.

--rpi-osd=<yes|no>

Enabled by default. If disabled with no, no OSD layer is created. This also means there will be no
subtitles rendered.

drm (Direct Rendering Manager)

Video output driver using Kernel Mode Setting / Direct Rendering Manager. Should be used when one
doesn't want to install full-blown graphical environment (e.g. no X). Does not support hardware
acceleration (if you need this, check the drm backend for gpu VO).

The following global options are supported by this video output:

--drm-connector=[<gpu_number>.]<name>

Select the connector to use (usually this is a monitor.) If <name> is empty or auto, mpv renders
the output on the first available connector. Use --drm-connector=help to get list of available
connectors. When using multiple graphic cards, use the <gpu_number> argument to
disambiguate. (default: empty)

--drm-mode=<number>

Mode ID to use (resolution and frame rate). (default: 0)

--drm-osd-plane-id=<number>

Select the DRM plane index to use for OSD (or OSD and video). Index is zero based, and related
to crtc. When using this option with the drm_prime renderer, it will only affect the OSD contents.
Otherwise it will set OSD & video plane. (default: primary plane)

--drm-video-plane-id=<number>

Select the DRM plane index to use for video layer. Index is zero based, and related to crtc. This
option only has effect when using the drm_prime renderer (which supports several layers)
together with vo=gpu and gpu-context=drm. (default: first overlay plane)

--drm-format=<xrgb8888,xrgb2101010>

Select the DRM format to use (default: xrgb8888). This allows you to choose the bit depth of the
DRM mode. xrgb8888 is your usual 24 bit per pixel/8 bits per channel packed RGB format with 8
bits of padding. xrgb2101010 is a packed 30 bits per pixel/10 bits per channel packed RGB
format with 2 bits of padding.

Unless you have an intel graphics card, a recent kernel and a recent version of mesa (>=18)
xrgb2101010 is unlikely to work for you.

This currently only has an effect when used together with the drm backend for the gpu VO. The
drm VO always uses xrgb8888.

--drm-osd-size=<[WxH]>

Sets the OSD OpenGL size to the specified size. OSD will then be upscaled to the current
screen resolution. This option can be useful when using several layers in high resolutions with a
GPU which cannot handle it. Note : this option is only available with DRM atomic support.
(default: display resolution)

mediacodec_embed (Android)

Renders IMGFMT_MEDIACODEC frames directly to an android.view.Surface. Requires
--hwdec=mediacodec for hardware decoding, along with --vo=mediacodec_embed and
--wid=(intptr_t)(*android.view.Surface).

Since this video output driver uses native decoding and rendering routines, many of mpv's features
(subtitle rendering, OSD/OSC, video filters, etc) are not available with this driver.

To use hardware decoding with --vo-gpu instead, use --hwdec=mediacodec-copy along with
--gpu-context=android.

AUDIO FILTERS
Audio filters allow you to modify the audio stream and its properties. The syntax is:

--af=...

Setup a chain of audio filters. See --vf (VIDEO FILTERS) for the full syntax.

Note

To get a full list of available audio filters, see --af=help.

Also, keep in mind that most actual filters are available via the lavfi wrapper, which gives you
access to most of libavfilter's filters. This includes all filters that have been ported from MPlayer to
libavfilter.

The --vf description describes how libavfilter can be used and how to workaround deprecated
mpv filters.

See --vf group of options for info on how --af-defaults, --af-add, --af-pre, --af-del,
--af-clr, and possibly others work.

Available filters are:

lavrresample[=option1:option2:...]

This filter uses libavresample (or libswresample, depending on the build) to change sample rate,
sample format, or channel layout of the audio stream. This filter is automatically enabled if the audio
output does not support the audio configuration of the file being played.

Warning

Deprecated. Either use the --audio-resample-... options to customize resampling, or the
libavfilter --af=aresample filter, which has its own options.

It supports only the following sample formats: u8, s16, s32, float.

filter-size=<length>

Length of the filter with respect to the lower sampling rate. (default: 16)

phase-shift=<count>

Log2 of the number of polyphase entries. (..., 10->1024, 11->2048, 12->4096, ...) (default:
10->1024)

cutoff=<cutoff>

Cutoff frequency (0.0-1.0), default set depending upon filter length.

linear

If set then filters will be linearly interpolated between polyphase entries. (default: no)

no-detach

Do not detach if input and output audio format/rate/channels match. (If you just want to set
defaults for this filter that will be used even by automatically inserted lavrresample instances, you
should prefer setting them with the --audio-resample-... options.) This does not do
anything anymore and the filter will never detach.

normalize=<yes|no|auto>

Whether to normalize when remixing channel layouts (default: auto). auto uses the value set by
--audio-normalize-downmix.

o=<string>

Set AVOptions on the SwrContext or AVAudioResampleContext. These should be documented
by FFmpeg or Libav.

lavcac3enc[=options]

Encode multi-channel audio to AC-3 at runtime using libavcodec. Supports 16-bit native-endian input
format, maximum 6 channels. The output is big-endian when outputting a raw AC-3 stream,
native-endian when outputting to S/PDIF. If the input sample rate is not 48 kHz, 44.1 kHz or 32 kHz, it
will be resampled to 48 kHz.

tospdif=<yes|no>

Output raw AC-3 stream if no, output to S/PDIF for pass-through if yes (default).

bitrate=<rate>

The bitrate use for the AC-3 stream. Set it to 384 to get 384 kbps.

The default is 640. Some receivers might not be able to handle this.

Valid values: 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 576,
640.

The special value auto selects a default bitrate based on the input channel number:

1ch: 96

2ch: 192

3ch: 224

4ch: 384

5ch: 448

6ch: 448

minch=<n>

If the input channel number is less than <minch>, the filter will detach itself (default: 3).

encoder=<name>

Select the libavcodec encoder used. Currently, this should be an AC-3 encoder, and using
another codec will fail horribly.

format=format:srate:channels:out-srate:out-channels

Does not do any format conversion itself. Rather, it may cause the filter system to insert necessary
conversion filters before or after this filter if needed. It is primarily useful for controlling the audio
format going into other filters. To specify the format for audio output, see --audio-format,
--audio-samplerate, and --audio-channels. This filter is able to force a particular format,
whereas --audio-* may be overridden by the ao based on output compatibility.

All parameters are optional. The first 3 parameters restrict what the filter accepts as input. They will
therefore cause conversion filters to be inserted before this one. The out- parameters tell the filters
or audio outputs following this filter how to interpret the data without actually doing a conversion.
Setting these will probably just break things unless you really know you want this for some reason,
such as testing or dealing with broken media.

<format>

Force conversion to this format. Use --af=format=format=help to get a list of valid formats.

<srate>

Force conversion to a specific sample rate. The rate is an integer, 48000 for example.

<channels>

Force mixing to a specific channel layout. See --audio-channels option for possible values.

<out-srate>

<out-channels>

NOTE: this filter used to be named force. The old format filter used to do conversion itself, unlike
this one which lets the filter system handle the conversion.

scaletempo[=option1:option2:...]

Scales audio tempo without altering pitch, optionally synced to playback speed (default).

This works by playing 'stride' ms of audio at normal speed then consuming 'stride*scale' ms of input
audio. It pieces the strides together by blending 'overlap'% of stride with audio following the previous
stride. It optionally performs a short statistical analysis on the next 'search' ms of audio to determine
the best overlap position.

scale=<amount>

Nominal amount to scale tempo. Scales this amount in addition to speed. (default: 1.0)

stride=<amount>

Length in milliseconds to output each stride. Too high of a value will cause noticeable skips at
high scale amounts and an echo at low scale amounts. Very low values will alter pitch.
Increasing improves performance. (default: 60)

overlap=<percent>

Percentage of stride to overlap. Decreasing improves performance. (default: .20)

search=<amount>

Length in milliseconds to search for best overlap position. Decreasing improves performance
greatly. On slow systems, you will probably want to set this very low. (default: 14)

speed=<tempo|pitch|both|none>

Set response to speed change.

tempo

Scale tempo in sync with speed (default).

pitch

Reverses effect of filter. Scales pitch without altering tempo. Add this to your input.conf to
step by musical semi-tones:

[multiply speed 0.9438743126816935
] multiply speed 1.059463094352953

Warning

Loses sync with video.

both

Scale both tempo and pitch.

none

Ignore speed changes.

Examples

mpv --af=scaletempo --speed=1.2 media.ogg

Would play media at 1.2x normal speed, with audio at normal pitch. Changing playback
speed would change audio tempo to match.

mpv --af=scaletempo=scale=1.2:speed=none --speed=1.2 media.ogg

Would play media at 1.2x normal speed, with audio at normal pitch, but changing
playback speed would have no effect on audio tempo.

mpv --af=scaletempo=stride=30:overlap=.50:search=10 media.ogg

Would tweak the quality and performance parameters.

mpv --af=scaletempo=scale=1.2:speed=pitch audio.ogg

Would play media at 1.2x normal speed, with audio at normal pitch. Changing playback
speed would change pitch, leaving audio tempo at 1.2x.

rubberband

High quality pitch correction with librubberband. This can be used in place of scaletempo, and will
be used to adjust audio pitch when playing at speed different from normal. It can also be used to
adjust audio pitch without changing playback speed.

<pitch-scale>

Sets the pitch scaling factor. Frequencies are multiplied by this value.

This filter has a number of additional sub-options. You can list them with
mpv --af=rubberband=help. This will also show the default values for each option. The options
are not documented here, because they are merely passed to librubberband. Look at the
librubberband documentation to learn what each option does:
http://breakfastquay.com/rubberband/code-doc/classRubberBand_1_1RubberBandStretcher.html
(The mapping of the mpv rubberband filter sub-option names and values to those of librubberband
follows a simple pattern: "Option" + Name + Value.)

This filter supports the following af-command commands:

set-pitch

Set the <pitch-scale> argument dynamically. This can be used to change the playback pitch
at runtime. Note that speed is controlled using the standard speed property, not af-command.

multiply-pitch <factor>

Multiply the current value of <pitch-scale> dynamically. For example: 0.5 to go down by an
octave, 1.5 to go up by a perfect fifth. If you want to go up or down by semi-tones, use
1.059463094352953 and 0.9438743126816935

lavfi=graph

Filter audio using FFmpeg's libavfilter.

<graph>

Libavfilter graph. See lavfi video filter for details - the graph syntax is the same.

Warning

Don't forget to quote libavfilter graphs as described in the lavfi video filter section.

o=<string>

http://breakfastquay.com/rubberband/code-doc/classRubberBand_1_1RubberBandStretcher.html

AVOptions.

fix-pts=<yes|no>

Determine PTS based on sample count (default: no). If this is enabled, the player won't rely on
libavfilter passing through PTS accurately. Instead, it pass a sample count as PTS to libavfilter,
and compute the PTS used by mpv based on that and the input PTS. This helps with filters which
output a recomputed PTS instead of the original PTS (including filters which require the PTS to
start at 0). mpv normally expects filters to not touch the PTS (or only to the extent of changing
frame boundaries), so this is not the default, but it will be needed to use broken filters. In
practice, these broken filters will either cause slow A/V desync over time (with some files), or
break playback completely if you seek or start playback from the middle of a file.

VIDEO FILTERS
Video filters allow you to modify the video stream and its properties. All of the information described in this
section applies to audio filters as well (generally using the prefix --af instead of --vf).

The exact syntax is:

--vf=<filter1[=parameter1:parameter2:...],filter2,...>

Setup a chain of video filters. This consists on the filter name, and an option list of parameters after =.
The parameters are separated by : (not ,, as that starts a new filter entry).

Before the filter name, a label can be specified with @name:, where name is an arbitrary user-given
name, which identifies the filter. This is only needed if you want to toggle the filter at runtime.

A ! before the filter name means the filter is enabled by default. It will be skipped on filter creation.
This is also useful for runtime filter toggling.

See the vf command (and toggle sub-command) for further explanations and examples.

The general filter entry syntax is:

["@"<label-name>":"] ["!"] <filter-name> ["=" <filter-parameter-list>]

or for the special "toggle" syntax (see vf command):

"@"<label-name>

and the filter-parameter-list:

<filter-parameter> | <filter-parameter> "," <filter-parameter-list>

and filter-parameter:

(<param-name> "=" <param-value>) | <param-value>

param-value can further be quoted in [/] in case the value contains characters like , or =. This is
used in particular with the lavfi filter, which uses a very similar syntax as mpv (MPlayer historically)
to specify filters and their parameters.

Filters can be manipulated at run time. You can use @ labels as described above in combination with the
vf command (see COMMAND INTERFACE) to get more control over this. Initially disabled filters with !
are useful for this as well.

You can also set defaults for each filter. The defaults are applied before the normal filter parameters. This
is deprecated and never worked for the libavfilter bridge.

--vf-defaults=<filter1[=parameter1:parameter2:...],filter2,...>

Set defaults for each filter. (Deprecated. --af-defaults is deprecated as well.)

Note

To get a full list of available video filters, see --vf=help and http://ffmpeg.org/ffmpeg-filters.html .

Also, keep in mind that most actual filters are available via the lavfi wrapper, which gives you
access to most of libavfilter's filters. This includes all filters that have been ported from MPlayer to
libavfilter.

Most builtin filters are deprecated in some ways, unless they're only available in mpv (such as
filters which deal with mpv specifics, or which are implemented in mpv only).

If a filter is not builtin, the lavfi-bridge will be automatically tried. This bridge does not support
help output, and does not verify parameters before the filter is actually used. Although the mpv
syntax is rather similar to libavfilter's, it's not the same. (Which means not everything accepted by
vf_lavfi's graph option will be accepted by --vf.)

http://ffmpeg.org/ffmpeg-filters.html

You can also prefix the filter name with lavfi- to force the wrapper. This is helpful if the filter
name collides with a deprecated mpv builtin filter. For example --vf=lavfi-scale=args would
use libavfilter's scale filter over mpv's deprecated builtin one.

Video filters are managed in lists. There are a few commands to manage the filter list.

--vf-add=filter

Appends the filter given as arguments to the filter list. (Passing multiple filters is currently still
possible, but deprecated.)

--vf-pre=filter

Prepends the filters given as arguments to the filter list. (Passing multiple filters is currently still
possible, but deprecated.)

--vf-del=filter

Deletes the filter. The filter can even given the way it was added (filter name and its full argument list),
by label (prefixed with @), or as index number. Index numbers start at 0, negative numbers address
the end of the list (-1 is the last). (Passing multiple filters is currently still possible, but deprecated.)

--vf-clr

Completely empties the filter list.

With filters that support it, you can access parameters by their name.

--vf=<filter>=help

Prints the parameter names and parameter value ranges for a particular filter.

Available mpv-only filters are:

format=fmt=<value>:colormatrix=<value>:...

Restricts the color space for the next filter without doing any conversion. Use together with the scale
filter for a real conversion.

Note

For a list of available formats, see format=fmt=help.

<fmt>

Format name, e.g. rgb15, bgr24, 420p, etc. (default: don't change).

<colormatrix>

Controls the YUV to RGB color space conversion when playing video. There are various
standards. Normally, BT.601 should be used for SD video, and BT.709 for HD video. (This is
done by default.) Using incorrect color space results in slightly under or over saturated and
shifted colors.

These options are not always supported. Different video outputs provide varying degrees of
support. The gpu and vdpau video output drivers usually offer full support. The xv output can
set the color space if the system video driver supports it, but not input and output levels. The
scale video filter can configure color space and input levels, but only if the output format is
RGB (if the video output driver supports RGB output, you can force this with
-vf scale,format=rgba).

If this option is set to auto (which is the default), the video's color space flag will be used. If that
flag is unset, the color space will be selected automatically. This is done using a simple heuristic
that attempts to distinguish SD and HD video. If the video is larger than 1279x576 pixels,
BT.709 (HD) will be used; otherwise BT.601 (SD) is selected.

Available color spaces are:

auto: automatic selection (default)

bt.601: ITU-R BT.601 (SD)

bt.709: ITU-R BT.709 (HD)

bt.2020-ncl: ITU-R BT.2020 non-constant luminance system

bt.2020-cl: ITU-R BT.2020 constant luminance system

smpte-240m: SMPTE-240M

<colorlevels>

YUV color levels used with YUV to RGB conversion. This option is only necessary when playing
broken files which do not follow standard color levels or which are flagged wrong. If the video
does not specify its color range, it is assumed to be limited range.

The same limitations as with <colormatrix> apply.

Available color ranges are:

auto: automatic selection (normally limited range) (default)

limited: limited range (16-235 for luma, 16-240 for chroma)

full: full range (0-255 for both luma and chroma)

<primaries>

RGB primaries the source file was encoded with. Normally this should be set in the file header,
but when playing broken or mistagged files this can be used to override the setting.

This option only affects video output drivers that perform color management, for example gpu
with the target-prim or icc-profile suboptions set.

If this option is set to auto (which is the default), the video's primaries flag will be used. If that
flag is unset, the color space will be selected automatically, using the following heuristics: If the
<colormatrix> is set or determined as BT.2020 or BT.709, the corresponding primaries are
used. Otherwise, if the video height is exactly 576 (PAL), BT.601-625 is used. If it's exactly 480 or
486 (NTSC), BT.601-525 is used. If the video resolution is anything else, BT.709 is used.

Available primaries are:

auto: automatic selection (default)

bt.601-525: ITU-R BT.601 (SD) 525-line systems (NTSC, SMPTE-C)

bt.601-625: ITU-R BT.601 (SD) 625-line systems (PAL, SECAM)

bt.709: ITU-R BT.709 (HD) (same primaries as sRGB)

bt.2020: ITU-R BT.2020 (UHD)

apple: Apple RGB

adobe: Adobe RGB (1998)

prophoto: ProPhoto RGB (ROMM)

cie1931: CIE 1931 RGB

dci-p3: DCI-P3 (Digital Cinema)

v-gamut: Panasonic V-Gamut primaries

<gamma>

Gamma function the source file was encoded with. Normally this should be set in the file
header, but when playing broken or mistagged files this can be used to override the setting.

This option only affects video output drivers that perform color management.

If this option is set to auto (which is the default), the gamma will be set to BT.1886 for YCbCr
content, sRGB for RGB content and Linear for XYZ content.

Available gamma functions are:

auto: automatic selection (default)

bt.1886: ITU-R BT.1886 (EOTF corresponding to BT.601/BT.709/BT.2020)

srgb: IEC 61966-2-4 (sRGB)

linear: Linear light

gamma1.8: Pure power curve (gamma 1.8)

gamma2.2: Pure power curve (gamma 2.2)

gamma2.8: Pure power curve (gamma 2.8)

prophoto: ProPhoto RGB (ROMM) curve

pq: ITU-R BT.2100 PQ (Perceptual quantizer) curve

hlg: ITU-R BT.2100 HLG (Hybrid Log-gamma) curve

v-log: Panasonic V-Log transfer curve

s-log1: Sony S-Log1 transfer curve

s-log2: Sony S-Log2 transfer curve

<sig-peak>

Reference peak illumination for the video file, relative to the signal's reference white level. This is
mostly interesting for HDR, but it can also be used tone map SDR content to simulate a different
exposure. Normally inferred from tags such as MaxCLL or mastering metadata.

The default of 0.0 will default to the source's nominal peak luminance.

<light>

Light type of the scene. This is mostly correctly inferred based on the gamma function, but it
can be useful to override this when viewing raw camera footage (e.g. V-Log), which is
normally scene-referred instead of display-referred.

Available light types are:

auto: Automatic selection (default)

display: Display-referred light (most content)

hlg: Scene-referred using the HLG OOTF (e.g. HLG content)

709-1886: Scene-referred using the BT709+BT1886 interaction

gamma1.2: Scene-referred using a pure power OOTF (gamma=1.2)

<stereo-in>

Set the stereo mode the video is assumed to be encoded in. Takes the same values as the
--video-stereo-mode option.

<stereo-out>

Set the stereo mode the video should be displayed as. Takes the same values as the
--video-stereo-mode option.

<rotate>

Set the rotation the video is assumed to be encoded with in degrees. The special value -1 uses
the input format.

<dw>, <dh>

Set the display size. Note that setting the display size such that the video is scaled in both
directions instead of just changing the aspect ratio is an implementation detail, and might change
later.

<dar>

Set the display aspect ratio of the video frame. This is a float, but values such as [16:9] can be
passed too ([...] for quoting to prevent the option parser from interpreting the : character).

<spherical-type>

Type of the spherical projection:

auto: As indicated by the file (default)

none: Normal video

equirect: Equirectangular

unknown: Unknown projection

<spherical-yaw>, <spherical-pitch>, <spherical-roll>

Reference angle in degree, if spherical video is used.

lavfi=graph[:sws-flags[:o=opts]]

Filter video using FFmpeg's libavfilter.

<graph>

The libavfilter graph string. The filter must have a single video input pad and a single video
output pad.

See https://ffmpeg.org/ffmpeg-filters.html for syntax and available filters.

Warning

If you want to use the full filter syntax with this option, you have to quote the filter graph in
order to prevent mpv's syntax and the filter graph syntax from clashing. To prevent a
quoting and escaping mess, consider using --lavfi-complex if you know which video
track you want to use from the input file. (There is only one video track for nearly all video
files anyway.)

Examples

--vf=lavfi=[gradfun=20:30,vflip]

gradfun filter with nonsense parameters, followed by a vflip filter. (This
demonstrates how libavfilter takes a graph and not just a single filter.) The filter graph
string is quoted with [and]. This requires no additional quoting or escaping with
some shells (like bash), while others (like zsh) require additional " quotes around the
option string.

'--vf=lavfi="gradfun=20:30,vflip"'

Same as before, but uses quoting that should be safe with all shells. The outer '
quotes make sure that the shell does not remove the " quotes needed by mpv.

'--vf=lavfi=graph="gradfun=radius=30:strength=20,vflip"'

Same as before, but uses named parameters for everything.

<sws-flags>

If libavfilter inserts filters for pixel format conversion, this option gives the flags which should be
passed to libswscale. This option is numeric and takes a bit-wise combination of SWS_ flags.

See http://git.videolan.org/?p=ffmpeg.git;a=blob;f=libswscale/swscale.h.

<o>

Set AVFilterGraph options. These should be documented by FFmpeg.

https://ffmpeg.org/ffmpeg-filters.html

Example

'--vf=lavfi=yadif:o="threads=2,thread_type=slice"'

forces a specific threading configuration.

sub=[=bottom-margin:top-margin]

Moves subtitle rendering to an arbitrary point in the filter chain, or force subtitle rendering in the video
filter as opposed to using video output OSD support.

<bottom-margin>

Adds a black band at the bottom of the frame. The SSA/ASS renderer can place subtitles there
(with --sub-use-margins).

<top-margin>

Black band on the top for toptitles (with --sub-use-margins).

Examples

--vf=sub,eq

Moves sub rendering before the eq filter. This will put both subtitle colors and video under
the influence of the video equalizer settings.

vapoursynth=file:buffered-frames:concurrent-frames

Loads a VapourSynth filter script. This is intended for streamed processing: mpv actually provides a
source filter, instead of using a native VapourSynth video source. The mpv source will answer frame
requests only within a small window of frames (the size of this window is controlled with the
buffered-frames parameter), and requests outside of that will return errors. As such, you can't use
the full power of VapourSynth, but you can use certain filters.

If you just want to play video generated by a VapourSynth (i.e. using a native VapourSynth video
source), it's better to use vspipe and a FIFO to feed the video to mpv. The same applies if the filter
script requires random frame access (see buffered-frames parameter).

This filter is experimental. If it turns out that it works well and is used, it will be ported to libavfilter.
Otherwise, it will be just removed.

file

Filename of the script source. Currently, this is always a python script. The variable video_in
is set to the mpv video source, and it is expected that the script reads video from it. (Otherwise,
mpv will decode no video, and the video packet queue will overflow, eventually leading to audio
being stopped.) The script is also expected to pass through timestamps using the
_DurationNum and _DurationDen frame properties.

Example:

import vapoursynth as vs
core = vs.get_core()
core.std.AddBorders(video_in, 10, 10, 20, 20).set_output()

Warning

The script will be reloaded on every seek. This is done to reset the filter properly on
discontinuities.

buffered-frames

Maximum number of decoded video frames that should be buffered before the filter (default: 4).
This specifies the maximum number of frames the script can request in reverse direction. E.g. if
buffered-frames=5, and the script just requested frame 15, it can still request frame 10, but
frame 9 is not available anymore. If it requests frame 30, mpv will decode 15 more frames, and
keep only frames 25-30.

The actual number of buffered frames also depends on the value of the concurrent-frames
option. Currently, both option values are multiplied to get the final buffer size.

(Normally, VapourSynth source filters must provide random access, but mpv was made for
playback, and does not provide frame-exact random access. The way this video filter works is a
compromise to make simple filters work anyway.)

concurrent-frames

Number of frames that should be requested in parallel. The level of concurrency depends on the
filter and how quickly mpv can decode video to feed the filter. This value should probably be
proportional to the number of cores on your machine. Most time, making it higher than the
number of cores can actually make it slower.

By default, this uses the special value auto, which sets the option to the number of detected
logical CPU cores.

The following variables are defined by mpv:

video_in

The mpv video source as vapoursynth clip. Note that this has no length set, which confuses many
filters. Using Trim on the clip with a high dummy length can turn it into a finite clip.

video_in_dw, video_in_dh

Display size of the video. Can be different from video size if the video does not use square pixels
(e.g. DVD).

container_fps

FPS value as reported by file headers. This value can be wrong or completely broken (e.g. 0 or
NaN). Even if the value is correct, if another filter changes the real FPS (by dropping or inserting
frames), the value of this variable might not be useful. Note that the --fps command line option
overrides this value.

Useful for some filters which insist on having a FPS.

display_fps

Refresh rate of the current display. Note that this value can be 0.

vapoursynth-lazy

The same as vapoursynth, but doesn't load Python scripts. Instead, a custom backend using Lua
and the raw VapourSynth API is used. The syntax is completely different, and absolutely no
convenience features are provided. There's no type checking either, and you can trigger crashes.

Example:

video_out = invoke("morpho", "Open", {clip = video_in})

The special variable video_in is the mpv video source, while the special variable video_out is
used to read video from. The 1st argument is the plugin (queried with getPluginByNs), the 2nd is
the filter name, and the 3rd argument is a table with the arguments. Positional arguments are not
supported. The types must match exactly. Since Lua is terrible and can't distinguish integers and
floats, integer arguments must be prefixed with i_, in which case the prefix is removed and the
argument is cast to an integer. Should the argument's name start with i_, you're out of luck.

Clips (VSNodeRef) are passed as light userdata, so trying to pass any other userdata type will result
in hard crashes.

vavpp

VA-AP-API video post processing. Works with --vo=vaapi and --vo=gpu only. Currently
deinterlaces. This filter is automatically inserted if deinterlacing is requested (either using the d key, by
default mapped to the command cycle deinterlace, or the --deinterlace option).

deint=<method>

Select the deinterlacing algorithm.

no

Don't perform deinterlacing.

auto

Select the best quality deinterlacing algorithm (default). This goes by the order of the options
as documented, with motion-compensated being considered best quality.

first-field

Show only first field.

bob

bob deinterlacing.

weave, motion-adaptive, motion-compensated

Advanced deinterlacing algorithms. Whether these actually work depends on the GPU
hardware, the GPU drivers, driver bugs, and mpv bugs.

<interlaced-only>

no: Deinterlace all frames (default).

yes: Only deinterlace frames marked as interlaced.

reversal-bug=<yes|no>

no: Use the API as it was interpreted by older Mesa drivers. While this
interpretation was more obvious and inuitive, it was apparently wrong, and
not shared by Intel driver developers.

yes: Use Intel interpretation of surface forward and backwards references
(default). This is what Intel drivers and newer Mesa drivers expect. Matters
only for the advanced deinterlacing algorithms.

vdpaupp

VDPAU video post processing. Works with --vo=vdpau and --vo=gpu only. This filter is
automatically inserted if deinterlacing is requested (either using the d key, by default mapped to the
command cycle deinterlace, or the --deinterlace option). When enabling deinterlacing, it

is always preferred over software deinterlacer filters if the vdpau VO is used, and also if gpu is used
and hardware decoding was activated at least once (i.e. vdpau was loaded).

sharpen=<-1-1>

For positive values, apply a sharpening algorithm to the video, for negative values a blurring
algorithm (default: 0).

denoise=<0-1>

Apply a noise reduction algorithm to the video (default: 0; no noise reduction).

deint=<yes|no>

Whether deinterlacing is enabled (default: no). If enabled, it will use the mode selected with
deint-mode.

deint-mode=<first-field|bob|temporal|temporal-spatial>

Select deinterlacing mode (default: temporal).

Note that there's currently a mechanism that allows the vdpau VO to change the deint-mode of
auto-inserted vdpaupp filters. To avoid confusion, it's recommended not to use the --vo=vdpau
suboptions related to filtering.

first-field

Show only first field.

bob

Bob deinterlacing.

temporal

Motion-adaptive temporal deinterlacing. May lead to A/V desync with slow video hardware
and/or high resolution.

temporal-spatial

Motion-adaptive temporal deinterlacing with edge-guided spatial interpolation. Needs fast
video hardware.

chroma-deint

Makes temporal deinterlacers operate both on luma and chroma (default). Use no-chroma-deint
to solely use luma and speed up advanced deinterlacing. Useful with slow video memory.

pullup

Try to apply inverse telecine, needs motion adaptive temporal deinterlacing.

interlaced-only=<yes|no>

If yes, only deinterlace frames marked as interlaced (default: no).

hqscaling=<0-9>

0

Use default VDPAU scaling (default).

1-9

Apply high quality VDPAU scaling (needs capable hardware).

d3d11vpp

Direct3D 11 video post processing. Currently requires D3D11 hardware decoding for use.

deint=<yes|no>

Whether deinterlacing is enabled (default: no).

interlaced-only=<yes|no>

If yes, only deinterlace frames marked as interlaced (default: no).

mode=<blend|bob|adaptive|mocomp|ivctc|none>

Tries to select a video processor with the given processing capability. If a video processor
supports multiple capabilities, it is not clear which algorithm is actually selected. none always
falls back. On most if not all hardware, this option will probably do nothing, because a video
processor usually supports all modes or none.

ENCODING
You can encode files from one format/codec to another using this facility.

--o=<filename>

Enables encoding mode and specifies the output file name.

--of=<format>

Specifies the output format (overrides autodetection by the file name extension of the file specified by
-o). See --of=help for a full list of supported formats.

--ofopts=<options>

Specifies the output format options for libavformat. See --ofopts=help for a full list of supported
options.

Options are managed in lists. There are a few commands to manage the options list.

--ofopts-add=<options1[,options2,...]>

Appends the options given as arguments to the options list.

--ofopts=""

Completely empties the options list.

--oac=<codec>

Specifies the output audio codec. See --oac=help for a full list of supported codecs.

--oaoffset=<value>

Shifts audio data by the given time (in seconds) by adding/removing samples at the start.
Deprecated.

--oacopts=<options>

Specifies the output audio codec options for libavcodec. See --oacopts=help for a full list of
supported options.

Example

"--oac=libmp3lame --oacopts=b=128000"

selects 128 kbps MP3 encoding.

Options are managed in lists. There are a few commands to manage the options list.

--oacopts-add=<options1[,options2,...]>

Appends the options given as arguments to the options list.

--oacopts=""

Completely empties the options list.

--oafirst

Force the audio stream to become the first stream in the output. By default, the order is unspecified.
Deprecated.

--ovc=<codec>

Specifies the output video codec. See --ovc=help for a full list of supported codecs.

--ovoffset=<value>

Shifts video data by the given time (in seconds) by shifting the pts values. Deprecated.

--ovcopts=<options>

Specifies the output video codec options for libavcodec. See --ovcopts=help for a full list of supported
options.

Examples

"--ovc=mpeg4 --ovcopts=qscale=5"

selects constant quantizer scale 5 for MPEG-4 encoding.

"--ovc=libx264 --ovcopts=crf=23"

selects VBR quality factor 23 for H.264 encoding.

Options are managed in lists. There are a few commands to manage the options list.

--ovcopts-add=<options1[,options2,...]>

Appends the options given as arguments to the options list.

--ovcopts=""

Completely empties the options list.

--ovfirst

Force the video stream to become the first stream in the output. By default, the order is unspecified.
Deprecated.

--orawts

Copies input pts to the output video (not supported by some output container formats, e.g. AVI). In
this mode, discontinuities are not fixed and all pts are passed through as-is. Never seek backwards or
use multiple input files in this mode!

--no-ocopy-metadata

Turns off copying of metadata from input files to output files when encoding (which is enabled by
default).

--oset-metadata=<metadata-tag[,metadata-tag,...]>

Specifies metadata to include in the output file. Supported keys vary between output formats. For
example, Matroska (MKV) and FLAC allow almost arbitrary keys, while support in MP4 and MP3 is
more limited.

Example

"--oset-metadata=title="Output title",comment="Another tag""

adds a title and a comment to the output file.

--oremove-metadata=<metadata-tag[,metadata-tag,...]>

Specifies metadata to exclude from the output file when copying from the input file.

Example

"--oremove-metadata=comment,genre"

excludes copying of the the comment and genre tags to the output file.

COMMAND INTERFACE
The mpv core can be controlled with commands and properties. A number of ways to interact with the
player use them: key bindings (input.conf), OSD (showing information with properties), JSON IPC, the
client API (libmpv), and the classic slave mode.

input.conf
The input.conf file consists of a list of key bindings, for example:

s screenshot # take a screenshot with the s key
LEFT seek 15 # map the left-arrow key to seeking forward by 15 seconds

Each line maps a key to an input command. Keys are specified with their literal value (upper case if
combined with Shift), or a name for special keys. For example, a maps to the a key without shift, and A
maps to a with shift.

The file is located in the mpv configuration directory (normally at ~/.config/mpv/input.conf
depending on platform). The default bindings are defined here:

https://github.com/mpv-player/mpv/blob/master/etc/input.conf

A list of special keys can be obtained with

mpv --input-keylist

In general, keys can be combined with Shift, Ctrl and Alt:

ctrl+q quit

mpv can be started in input test mode, which displays key bindings and the commands they're bound to
on the OSD, instead of executing the commands:

mpv --input-test --force-window --idle

(Only closing the window will make mpv exit, pressing normal keys will merely display the binding, even if
mapped to quit.)

General Input Command Syntax
[Shift+][Ctrl+][Alt+][Meta+]<key> [{<section>}] [<prefixes>] <command> (<argum
ent>)* [; <command>]

Note that by default, the right Alt key can be used to create special characters, and thus does not register
as a modifier. The option --no-input-right-alt-gr changes this behavior.

Newlines always start a new binding. # starts a comment (outside of quoted string arguments). To bind
commands to the # key, SHARP can be used.

<key> is either the literal character the key produces (ASCII or Unicode character), or a symbolic name
(as printed by --input-keylist).

<section> (braced with { and }) is the input section for this command.

Arguments are separated by whitespace. This applies even to string arguments. For this reason, string
arguments should be quoted with ". Inside quotes, C-style escaping can be used.

You can bind multiple commands to one key. For example:

a show-text "command 1" ; show-text "command 2"

It's also possible to bind a command to a sequence of keys:

a-b-c show-text "command run after a, b, c have been pressed"

(This is not shown in the general command syntax.)

If a or a-b or b are already bound, this will run the first command that matches, and the multi-key
command will never be called. Intermediate keys can be remapped to ignore in order to avoid this issue.
The maximum number of (non-modifier) keys for combinations is currently 4.

List of Input Commands
ignore

Use this to "block" keys that should be unbound, and do nothing. Useful for disabling default bindings,
without disabling all bindings with --no-input-default-bindings.

seek <seconds> [relative|absolute|absolute-percent|relative-percent|exact|keyf
rames]

Change the playback position. By default, seeks by a relative amount of seconds.

The second argument consists of flags controlling the seek mode:

relative (default)

Seek relative to current position (a negative value seeks backwards).

absolute

Seek to a given time (a negative value starts from the end of the file).

absolute-percent

Seek to a given percent position.

relative-percent

Seek relative to current position in percent.

keyframes

Always restart playback at keyframe boundaries (fast).

exact

Always do exact/hr/precise seeks (slow).

Multiple flags can be combined, e.g.: absolute+keyframes.

By default, keyframes is used for relative seeks, and exact is used for absolute seeks.

Before mpv 0.9, the keyframes and exact flags had to be passed as 3rd parameter (essentially
using a space instead of +). The 3rd parameter is still parsed, but is considered deprecated.

revert-seek [mode]

Undoes the seek command, and some other commands that seek (but not necessarily all of them).
Calling this command once will jump to the playback position before the seek. Calling it a second time
undoes the revert-seek command itself. This only works within a single file.

The first argument is optional, and can change the behavior:

mark

Mark the current time position. The next normal revert-seek command will seek back to this
point, no matter how many seeks happened since last time.

Using it without any arguments gives you the default behavior.

frame-step

Play one frame, then pause. Does nothing with audio-only playback.

frame-back-step

Go back by one frame, then pause. Note that this can be very slow (it tries to be precise, not fast), and
sometimes fails to behave as expected. How well this works depends on whether precise seeking
works correctly (e.g. see the --hr-seek-demuxer-offset option). Video filters or other video
post-processing that modifies timing of frames (e.g. deinterlacing) should usually work, but might
make backstepping silently behave incorrectly in corner cases. Using --hr-seek-framedrop=no
should help, although it might make precise seeking slower.

This does not work with audio-only playback.

set <property> "<value>"

Set the given property to the given value.

add <property> [<value>]

Add the given value to the property. On overflow or underflow, clamp the property to the maximum. If
<value> is omitted, assume 1.

cycle <property> [up|down]

Cycle the given property. up and down set the cycle direction. On overflow, set the property back to
the minimum, on underflow set it to the maximum. If up or down is omitted, assume up.

multiply <property> <factor>

Multiplies the value of a property with the numeric factor.

screenshot [subtitles|video|window|single|each-frame]

Take a screenshot.

Multiple flags are available (some can be combined with +):

<subtitles> (default)

Save the video image, in its original resolution, and with subtitles. Some video outputs may still
include the OSD in the output under certain circumstances.

<video>

Like subtitles, but typically without OSD or subtitles. The exact behavior depends on the
selected video output.

<window>

Save the contents of the mpv window. Typically scaled, with OSD and subtitles. The exact
behavior depends on the selected video output, and if no support is available, this will act like
video.

<each-frame>

Take a screenshot each frame. Issue this command again to stop taking screenshots. Note that
you should disable frame-dropping when using this mode - or you might receive duplicate images
in cases when a frame was dropped. This flag can be combined with the other flags, e.g.
video+each-frame.

Older mpv versions required passing single and each-frame as second argument (and did not
have flags). This syntax is still understood, but deprecated and might be removed in the future.

Setting the async flag will make encoding and writing the actual image file asynchronous in most
cases. (each-frame mode ignores this flag currently.) Requesting async screenshots too early or too
often could lead to the same filenames being chosen, and overwriting each others in undefined order.

screenshot-to-file "<filename>" [subtitles|video|window]

Take a screenshot and save it to a given file. The format of the file will be guessed by the extension
(and --screenshot-format is ignored - the behavior when the extension is missing or unknown is
arbitrary).

The second argument is like the first argument to screenshot.

If the file already exists, it's overwritten.

Like all input command parameters, the filename is subject to property expansion as described in
Property Expansion.

The async flag has an effect on this command (see screenshot command).

playlist-next [weak|force]

Go to the next entry on the playlist.

weak (default)

If the last file on the playlist is currently played, do nothing.

force

Terminate playback if there are no more files on the playlist.

playlist-prev [weak|force]

Go to the previous entry on the playlist.

weak (default)

If the first file on the playlist is currently played, do nothing.

force

Terminate playback if the first file is being played.

loadfile "<file>" [replace|append|append-play [options]]

Load the given file and play it.

Second argument:

<replace> (default)

Stop playback of the current file, and play the new file immediately.

<append>

Append the file to the playlist.

<append-play>

Append the file, and if nothing is currently playing, start playback. (Always starts with the added
file, even if the playlist was not empty before running this command.)

The third argument is a list of options and values which should be set while the file is playing. It is of
the form opt1=value1,opt2=value2,... Not all options can be changed this way. Some options
require a restart of the player.

loadlist "<playlist>" [replace|append]

Load the given playlist file (like --playlist).

playlist-clear

Clear the playlist, except the currently played file.

playlist-remove current|<index>

Remove the playlist entry at the given index. Index values start counting with 0. The special value
current removes the current entry. Note that removing the current entry also stops playback and
starts playing the next entry.

playlist-move <index1> <index2>

Move the playlist entry at index1, so that it takes the place of the entry index2. (Paradoxically, the
moved playlist entry will not have the index value index2 after moving if index1 was lower than
index2, because index2 refers to the target entry, not the index the entry will have after moving.)

playlist-shuffle

Shuffle the playlist. This is similar to what is done on start if the --shuffle option is used.

run "command" "arg1" "arg2" ...

Run the given command. Unlike in MPlayer/mplayer2 and earlier versions of mpv (0.2.x and older),
this doesn't call the shell. Instead, the command is run directly, with each argument passed
separately. Each argument is expanded like in Property Expansion. Note that there is a static limit of
(as of this writing) 9 arguments (this limit could be raised on demand).

The program is run in a detached way. mpv doesn't wait until the command is completed, but
continues playback right after spawning it.

To get the old behavior, use /bin/sh and -c as the first two arguments.

Example

run "/bin/sh" "-c" "echo ${title} > /tmp/playing"

This is not a particularly good example, because it doesn't handle escaping, and a specially
prepared file might allow an attacker to execute arbitrary shell commands. It is recommended
to write a small shell script, and call that with run.

quit [<code>]

Exit the player. If an argument is given, it's used as process exit code.

quit-watch-later [<code>]

Exit player, and store current playback position. Playing that file later will seek to the previous position
on start. The (optional) argument is exactly as in the quit command.

sub-add "<file>" [<flags> [<title> [<lang>]]]

Load the given subtitle file. It is selected as current subtitle after loading.

The flags args is one of the following values:

<select>

Select the subtitle immediately.

<auto>

Don't select the subtitle. (Or in some special situations, let the default stream selection
mechanism decide.)

<cached>

Select the subtitle. If a subtitle with the same filename was already added, that one is selected,
instead of loading a duplicate entry. (In this case, title/language are ignored, and if the was
changed since it was loaded, these changes won't be reflected.)

The title argument sets the track title in the UI.

The lang argument sets the track language, and can also influence stream selection with flags set
to auto.

sub-remove [<id>]

Remove the given subtitle track. If the id argument is missing, remove the current track. (Works on
external subtitle files only.)

sub-reload [<id>]

Reload the given subtitle tracks. If the id argument is missing, reload the current track. (Works on
external subtitle files only.)

This works by unloading and re-adding the subtitle track.

sub-step <skip>

Change subtitle timing such, that the subtitle event after the next <skip> subtitle events is displayed.
<skip> can be negative to step backwards.

sub-seek <skip>

Seek to the next (skip set to 1) or the previous (skip set to -1) subtitle. This is similar to sub-step,
except that it seeks video and audio instead of adjusting the subtitle delay.

For embedded subtitles (like with Matroska), this works only with subtitle events that have already
been displayed, or are within a short prefetch range.

print-text "<string>"

Print text to stdout. The string can contain properties (see Property Expansion).

show-text "<string>" [<duration>|- [<level>]]

Show text on the OSD. The string can contain properties, which are expanded as described in
Property Expansion. This can be used to show playback time, filename, and so on.

<duration>

The time in ms to show the message for. By default, it uses the same value as
--osd-duration.

<level>

The minimum OSD level to show the text at (see --osd-level).

expand-text "<string>"

Property-expand the argument and return the expanded string. This can be used only through the
client API or from a script using mp.command_native. (see Property Expansion).

show-progress

Show the progress bar, the elapsed time and the total duration of the file on the OSD.

write-watch-later-config

Write the resume config file that the quit-watch-later command writes, but continue playback
normally.

stop

Stop playback and clear playlist. With default settings, this is essentially like quit. Useful for the client
API: playback can be stopped without terminating the player.

mouse <x> <y> [<button> [single|double]]

Send a mouse event with given coordinate (<x>, <y>).

Second argument:

<button>

The button number of clicked mouse button. This should be one of 0-19. If <button> is omitted,
only the position will be updated.

Third argument:

<single> (default)

The mouse event represents regular single click.

<double>

The mouse event represents double-click.

keypress <key_name>

Send a key event through mpv's input handler, triggering whatever behavior is configured to that key.
key_name uses the input.conf naming scheme for keys and modifiers. Useful for the client API:
key events can be sent to libmpv to handle internally.

keydown <key_name>

Similar to keypress, but sets the KEYDOWN flag so that if the key is bound to a repeatable command,
it will be run repeatedly with mpv's key repeat timing until the keyup command is called.

keyup [<key_name>]

Set the KEYUP flag, stopping any repeated behavior that had been triggered. key_name is optional. If
key_name is not given or is an empty string, KEYUP will be set on all keys. Otherwise, KEYUP will only
be set on the key specified by key_name.

audio-add "<file>" [<flags> [<title> [<lang>]]]

Load the given audio file. See sub-add command.

audio-remove [<id>]

Remove the given audio track. See sub-remove command.

audio-reload [<id>]

Reload the given audio tracks. See sub-reload command.

rescan-external-files [<mode>]

Rescan external files according to the current --sub-auto and --audio-file-auto settings. This
can be used to auto-load external files after the file was loaded.

The mode argument is one of the following:

<reselect> (default)

Select the default audio and subtitle streams, which typically selects external files with the
highest preference. (The implementation is not perfect, and could be improved on request.)

<keep-selection>

Do not change current track selections.

Input Commands that are Possibly Subject to Change
af set|add|toggle|del|clr "filter1=params,filter2,..."

Change audio filter chain. See vf command.

vf set|add|toggle|del|clr "filter1=params,filter2,..."

Change video filter chain.

The first argument decides what happens:

set

Overwrite the previous filter chain with the new one.

add

Append the new filter chain to the previous one.

toggle

Check if the given filter (with the exact parameters) is already in the video chain. If yes, remove
the filter. If no, add the filter. (If several filters are passed to the command, this is done for each
filter.)

A special variant is combining this with labels, and using @name without filter name and
parameters as filter entry. This toggles the enable/disable flag.

del

Remove the given filters from the video chain. Unlike in the other cases, the second parameter is
a comma separated list of filter names or integer indexes. 0 would denote the first filter. Negative
indexes start from the last filter, and -1 denotes the last filter.

clr

Remove all filters. Note that like the other sub-commands, this does not control automatically
inserted filters.

The argument is always needed. E.g. in case of clr use vf clr "".

You can assign labels to filter by prefixing them with @name: (where name is a user-chosen arbitrary
identifier). Labels can be used to refer to filters by name in all of the filter chain modification
commands. For add, using an already used label will replace the existing filter.

The vf command shows the list of requested filters on the OSD after changing the filter chain. This is
roughly equivalent to show-text ${vf}. Note that auto-inserted filters for format conversion are not
shown on the list, only what was requested by the user.

Normally, the commands will check whether the video chain is recreated successfully, and will undo
the operation on failure. If the command is run before video is configured (can happen if the
command is run immediately after opening a file and before a video frame is decoded), this check
can't be run. Then it can happen that creating the video chain fails.

Example for input.conf

• a vf set flip turn video upside-down on the a key

• b vf set "" remove all video filters on b

• c vf toggle gradfun toggle debanding on c

Example how to toggle disabled filters at runtime

• Add something like vf-add=@deband:!gradfun to mpv.conf. The @deband: is the
label, an arbitrary, user-given name for this filter entry. The ! before the filter name
disables the filter by default. Everything after this is the normal filter name and possibly
filter parameters, like in the normal --vf syntax.

• Add a vf toggle @deband to input.conf. This toggles the "disabled" flag for the
filter with the label deband when the a key is hit.

cycle-values ["!reverse"] <property> "<value1>" "<value2>" ...

Cycle through a list of values. Each invocation of the command will set the given property to the next
value in the list. The command will use the current value of the property/option, and use it to
determine the current position in the list of values. Once it has found it, it will set the next value in the
list (wrapping around to the first item if needed).

The special argument !reverse can be used to cycle the value list in reverse. The only advantage is
that you don't need to reverse the value list yourself when adding a second key binding for cycling
backwards.

enable-section "<section>" [flags]

Enable all key bindings in the named input section.

The enabled input sections form a stack. Bindings in sections on the top of the stack are preferred to
lower sections. This command puts the section on top of the stack. If the section was already on the
stack, it is implicitly removed beforehand. (A section cannot be on the stack more than once.)

The flags parameter can be a combination (separated by +) of the following flags:

<exclusive>

All sections enabled before the newly enabled section are disabled. They will be re-enabled as
soon as all exclusive sections above them are removed. In other words, the new section
shadows all previous sections.

<allow-hide-cursor>

This feature can't be used through the public API.

<allow-vo-dragging>

Same.

disable-section "<section>"

Disable the named input section. Undoes enable-section.

define-section "<section>" "<contents>" [default|force]

Create a named input section, or replace the contents of an already existing input section. The
contents parameter uses the same syntax as the input.conf file (except that using the section
syntax in it is not allowed), including the need to separate bindings with a newline character.

If the contents parameter is an empty string, the section is removed.

The section with the name default is the normal input section.

In general, input sections have to be enabled with the enable-section command, or they are
ignored.

The last parameter has the following meaning:

<default> (also used if parameter omitted)

Use a key binding defined by this section only if the user hasn't already bound this key to a
command.

<force>

Always bind a key. (The input section that was made active most recently wins if there are
ambiguities.)

This command can be used to dispatch arbitrary keys to a script or a client API user. If the input
section defines script-binding commands, it is also possible to get separate events on key
up/down, and relatively detailed information about the key state. The special key name unmapped
can be used to match any unmapped key.

overlay-add <id> <x> <y> "<file>" <offset> "<fmt>" <w> <h> <stride>

Add an OSD overlay sourced from raw data. This might be useful for scripts and applications
controlling mpv, and which want to display things on top of the video window.

Overlays are usually displayed in screen resolution, but with some VOs, the resolution is reduced to
that of the video's. You can read the osd-width and osd-height properties. At least with --vo-xv
and anamorphic video (such as DVD), osd-par should be read as well, and the overlay should be
aspect-compensated.

id is an integer between 0 and 63 identifying the overlay element. The ID can be used to add multiple
overlay parts, update a part by using this command with an already existing ID, or to remove a part
with overlay-remove. Using a previously unused ID will add a new overlay, while reusing an ID will
update it.

x and y specify the position where the OSD should be displayed.

file specifies the file the raw image data is read from. It can be either a numeric UNIX file descriptor
prefixed with @ (e.g. @4), or a filename. The file will be mapped into memory with mmap(), copied, and
unmapped before the command returns (changed in mpv 0.18.1).

It is also possible to pass a raw memory address for use as bitmap memory by passing a memory
address as integer prefixed with an & character. Passing the wrong thing here will crash the player.
This mode might be useful for use with libmpv. The offset parameter is simply added to the memory
address (since mpv 0.8.0, ignored before).

offset is the byte offset of the first pixel in the source file. (The current implementation always
mmap's the whole file from position 0 to the end of the image, so large offsets should be avoided.
Before mpv 0.8.0, the offset was actually passed directly to mmap, but it was changed to make using it
easier.)

fmt is a string identifying the image format. Currently, only bgra is defined. This format has 4 bytes
per pixels, with 8 bits per component. The least significant 8 bits are blue, and the most significant 8
bits are alpha (in little endian, the components are B-G-R-A, with B as first byte). This uses
premultiplied alpha: every color component is already multiplied with the alpha component. This
means the numeric value of each component is equal to or smaller than the alpha component.
(Violating this rule will lead to different results with different VOs: numeric overflows resulting from

blending broken alpha values is considered something that shouldn't happen, and consequently
implementations don't ensure that you get predictable behavior in this case.)

w, h, and stride specify the size of the overlay. w is the visible width of the overlay, while stride
gives the width in bytes in memory. In the simple case, and with the bgra format, stride==4*w. In
general, the total amount of memory accessed is stride * h. (Technically, the minimum size would
be stride * (h - 1) + w * 4, but for simplicity, the player will access all stride * h bytes.)

Note

Before mpv 0.18.1, you had to do manual "double buffering" when updating an overlay by
replacing it with a different memory buffer. Since mpv 0.18.1, the memory is simply copied and
doesn't reference any of the memory indicated by the command's arguments after the
commend returns. If you want to use this command before mpv 0.18.1, reads the old docs to
see how to handle this correctly.

overlay-remove <id>

Remove an overlay added with overlay-add and the same ID. Does nothing if no overlay with this
ID exists.

script-message "<arg1>" "<arg2>" ...

Send a message to all clients, and pass it the following list of arguments. What this message means,
how many arguments it takes, and what the arguments mean is fully up to the receiver and the
sender. Every client receives the message, so be careful about name clashes (or use
script-message-to).

script-message-to "<target>" "<arg1>" "<arg2>" ...

Same as script-message, but send it only to the client named <target>. Each client (scripts etc.)
has a unique name. For example, Lua scripts can get their name via mp.get_script_name().

script-binding "<name>"

Invoke a script-provided key binding. This can be used to remap key bindings provided by external
Lua scripts.

The argument is the name of the binding.

It can optionally be prefixed with the name of the script, using / as separator, e.g.
script-binding scriptname/bindingname.

For completeness, here is how this command works internally. The details could change any time. On
any matching key event, script-message-to or script-message is called (depending on
whether the script name is included), with the following arguments:

1. The string key-binding.

2. The name of the binding (as established above).

3. The key state as string (see below).

4. The key name (since mpv 0.15.0).

The key state consists of 2 letters:

1. One of d (key was pressed down), u (was released), r (key is still down, and was repeated; only
if key repeat is enabled for this binding), p (key was pressed; happens if up/down can't be
tracked).

2. Whether the event originates from the mouse, either m (mouse button) or - (something else).
ab-loop

Cycle through A-B loop states. The first command will set the A point (the ab-loop-a property); the
second the B point, and the third will clear both points.

drop-buffers

Drop audio/video/demuxer buffers, and restart from fresh. Might help with unseekable streams that
are going out of sync. This command might be changed or removed in the future.

screenshot-raw [subtitles|video|window]

Return a screenshot in memory. This can be used only through the client API. The
MPV_FORMAT_NODE_MAP returned by this command has the w, h, stride fields set to obvious
contents. The format field is set to bgr0 by default. This format is organized as B8G8R8X8 (where B
is the LSB). The contents of the padding X are undefined. The data field is of type
MPV_FORMAT_BYTE_ARRAY with the actual image data. The image is freed as soon as the result
mpv_node is freed. As usual with client API semantics, you are not allowed to write to the image data.

vf-command "<label>" "<cmd>" "<args>"

Send a command to the filter with the given <label>. Use all to send it to all filters at once. The
command and argument string is filter specific. Currently, this only works with the lavfi filter - see
the libavfilter documentation for which commands a filter supports.

Note that the <label> is a mpv filter label, not a libavfilter filter name.

af-command "<label>" "<cmd>" "<args>"

Same as vf-command, but for audio filters.

apply-profile "<name>"

Apply the contents of a named profile. This is like using profile=name in a config file, except you
can map it to a key binding to change it at runtime.

There is no such thing as "unapplying" a profile - applying a profile merely sets all option values listed
within the profile.

load-script "<path>"

Load a script, similar to the --script option. Whether this waits for the script to finish initialization or
not changed multiple times, and the future behavior is left undefined.

change-list "<option>" "<operation>" "<value>"

This command changes list options as described in List Options. The <option> parameter is the
normal option name, while <operation> is the suffix or action used on the option.

Some operations take no value, but the command still requires the value parameter. In these cases,
the value must be an empty string.

Example

change-list glsl-shaders append file.glsl

Add a filename to the glsl-shaders list. The command line equivalent is
--glsl-shaders-append=file.glsl or alternatively --glsl-shader=file.glsl.

Undocumented commands: tv-last-channel (TV/DVB only), ao-reload (experimental/internal).

Hooks
Hooks are synchronous events between player core and a script or similar. This applies to client API
(including the Lua scripting interface). Normally, events are supposed to be asynchronous, and the hook
API provides an awkward and obscure way to handle events that require stricter coordination. There are
no API stability guarantees made. Not following the protocol exactly can make the player freeze randomly.
Basically, nobody should use this API.

The C API is described in the header files. The Lua API is described in the Lua section.

The following hooks are currently defined:

on_load

Called when a file is to be opened, before anything is actually done. For example, you could read and
write the stream-open-filename property to redirect an URL to something else (consider support
for streaming sites which rarely give the user a direct media URL), or you could set per-file options
with by setting the property file-local-options/<option name>. The player will wait until all
hooks are run.

on_load_fail

Called after after a file has been opened, but failed to. This can be used to provide a fallback in case
native demuxers failed to recognize the file, instead of always running before the native demuxers like
on_load. Demux will only be retried if stream-open-filename was changed.

on_preloaded

Called after a file has been opened, and before tracks are selected and decoders are created. This
has some usefulness if an API users wants to select tracks manually, based on the set of available
tracks. It's also useful to initialize --lavfi-complex in a specific way by API, without having to
"probe" the available streams at first.

Note that this does not yet apply default track selection. Which operations exactly can be done and
not be done, and what information is available and what is not yet available yet, is all subject to
change.

on_unload

Run before closing a file, and before actually uninitializing everything. It's not possible to resume
playback in this state.

Legacy hook API

Warning

The legacy API is deprecated and will be removed soon.

There are two special commands involved. Also, the client must listen for client messages
(MPV_EVENT_CLIENT_MESSAGE in the C API).

hook-add <hook-name> <id> <priority>

Subscribe to the hook identified by the first argument (basically, the name of event). The id argument
is an arbitrary integer chosen by the user. priority is used to sort all hook handlers globally across
all clients. Each client can register multiple hook handlers (even for the same hook-name). Once the
hook is registered, it cannot be unregistered.

When a specific event happens, all registered handlers are run serially. This uses a protocol every
client has to follow explicitly. When a hook handler is run, a client message
(MPV_EVENT_CLIENT_MESSAGE) is sent to the client which registered the hook. This message has
the following arguments:

1. the string hook_run

2. the id argument the hook was registered with as string (this can be used to correctly handle
multiple hooks registered by the same client, as long as the id argument is unique in the client)

3. something undefined, used by the hook mechanism to track hook execution

Upon receiving this message, the client can handle the event. While doing this, the player core will
still react to requests, but playback will typically be stopped.

When the client is done, it must continue the core's hook execution by running the hook-ack
command.

hook-ack <string>

Run the next hook in the global chain of hooks. The argument is the 3rd argument of the client
message that starts hook execution for the current client.

Input Command Prefixes
These prefixes are placed between key name and the actual command. Multiple prefixes can be specified.
They are separated by whitespace.

osd-auto

Use the default behavior for this command. This is the default for input.conf commands. Some
libmpv/scripting/IPC APIs do not use this as default, but use no-osd instead.

no-osd

Do not use any OSD for this command.

osd-bar

If possible, show a bar with this command. Seek commands will show the progress bar, property
changing commands may show the newly set value.

osd-msg

If possible, show an OSD message with this command. Seek command show the current playback
time, property changing commands show the newly set value as text.

osd-msg-bar

Combine osd-bar and osd-msg.

raw

Do not expand properties in string arguments. (Like "${property-name}".) This is the default for
some libmpv/scripting/IPC APIs.

expand-properties

All string arguments are expanded as described in Property Expansion. This is the default for
input.conf commands.

repeatable

For some commands, keeping a key pressed doesn't run the command repeatedly. This prefix forces
enabling key repeat in any case.

async

Allow asynchronous execution (if possible). Note that only a few commands will support this (usually
this is explicitly documented). Some commands are asynchronous by default (or rather, their effects
might manifest after completion of the command). The semantics of this flag might change in the
future. Set it only if you don't rely on the effects of this command being fully realized when it returns.

All of the osd prefixes are still overridden by the global --osd-level settings.

Input Sections
Input sections group a set of bindings, and enable or disable them at once. In input.conf, each key
binding is assigned to an input section, rather than actually having explicit text sections.

See also: enable-section and disable-section commands.

Predefined bindings:

default

Bindings without input section are implicitly assigned to this section. It is enabled by default during
normal playback.

encode

Section which is active in encoding mode. It is enabled exclusively, so that bindings in the default
sections are ignored.

Properties
Properties are used to set mpv options during runtime, or to query arbitrary information. They can be
manipulated with the set/add/cycle commands, and retrieved with show-text, or anything else that
uses property expansion. (See Property Expansion.)

The property name is annotated with RW to indicate whether the property is generally writable.

If an option is referenced, the property will normally take/return exactly the same values as the option. In
these cases, properties are merely a way to change an option at runtime.

Property list

Note

Most options can be set as runtime via properties as well. Just remove the leading -- from the
option name. These are not documented. Only properties which do not exist as option with the
same name, or which have very different behavior from the options are documented below.

audio-speed-correction, video-speed-correction

Factor multiplied with speed at which the player attempts to play the file. Usually it's exactly 1.
(Display sync mode will make this useful.)

OSD formatting will display it in the form of +1.23456%, with the number being (raw - 1) * 100
for the given raw property value.

display-sync-active

Return whether --video-sync=display is actually active.

filename

Currently played file, with path stripped. If this is an URL, try to undo percent encoding as well. (The
result is not necessarily correct, but looks better for display purposes. Use the path property to get an
unmodified filename.)

This has a sub-property:

filename/no-ext

Like the filename property, but if the text contains a ., strip all text after the last .. Usually this
removes the file extension.

file-size

Length in bytes of the source file/stream. (This is the same as ${stream-end}. For
segmented/multi-part files, this will return the size of the main or manifest file, whatever it is.)

estimated-frame-count

Total number of frames in current file.

Note

This is only an estimate. (It's computed from two unreliable quantities: fps and stream length.)

estimated-frame-number

Number of current frame in current stream.

Note

This is only an estimate. (It's computed from two unreliable quantities: fps and possibly
rounded timestamps.)

path

Full path of the currently played file. Usually this is exactly the same string you pass on the mpv
command line or the loadfile command, even if it's a relative path. If you expect an absolute path,
you will have to determine it yourself, for example by using the working-directory property.

media-title

If the currently played file has a title tag, use that.

Otherwise, if the media type is DVD, return the volume ID of DVD.

Otherwise, return the filename property.

file-format

Symbolic name of the file format. In some cases, this is a comma-separated list of format names, e.g.
mp4 is mov,mp4,m4a,3gp,3g2,mj2 (the list may grow in the future for any format).

current-demuxer

Name of the current demuxer. (This is useless.)

(Renamed from demuxer.)

stream-path

Filename (full path) of the stream layer filename. (This is probably useless and is almost never
different from path.)

stream-pos

Raw byte position in source stream. Technically, this returns the position of the most recent packet
passed to a decoder.

stream-end

Raw end position in bytes in source stream.

duration

Duration of the current file in seconds. If the duration is unknown, the property is unavailable. Note
that the file duration is not always exactly known, so this is an estimate.

This replaces the length property, which was deprecated after the mpv 0.9 release. (The semantics
are the same.)

avsync

Last A/V synchronization difference. Unavailable if audio or video is disabled.

total-avsync-change

Total A-V sync correction done. Unavailable if audio or video is disabled.

decoder-frame-drop-count

Video frames dropped by decoder, because video is too far behind audio (when using
--framedrop=decoder). Sometimes, this may be incremented in other situations, e.g. when video
packets are damaged, or the decoder doesn't follow the usual rules. Unavailable if video is disabled.

drop-frame-count is a deprecated alias.

frame-drop-count

Frames dropped by VO (when using --framedrop=vo).

vo-drop-frame-count is a deprecated alias.

mistimed-frame-count

Number of video frames that were not timed correctly in display-sync mode for the sake of keeping
A/V sync. This does not include external circumstances, such as video rendering being too slow or the
graphics driver somehow skipping a vsync. It does not include rounding errors either (which can
happen especially with bad source timestamps). For example, using the display-desync mode
should never change this value from 0.

vsync-ratio

For how many vsyncs a frame is displayed on average. This is available if display-sync is active only.
For 30 FPS video on a 60 Hz screen, this will be 2. This is the moving average of what actually has
been scheduled, so 24 FPS on 60 Hz will never remain exactly on 2.5, but jitter depending on the last
frame displayed.

vo-delayed-frame-count

Estimated number of frames delayed due to external circumstances in display-sync mode. Note that
in general, mpv has to guess that this is happening, and the guess can be inaccurate.

percent-pos (RW)

Position in current file (0-100). The advantage over using this instead of calculating it out of other
properties is that it properly falls back to estimating the playback position from the byte position, if the
file duration is not known.

time-pos (RW)

Position in current file in seconds.

time-start

Deprecated. Always returns 0. Before mpv 0.14, this used to return the start time of the file (could
affect e.g. transport streams). See --rebase-start-time option.

time-remaining

Remaining length of the file in seconds. Note that the file duration is not always exactly known, so this
is an estimate.

audio-pts (R)

Current audio playback position in current file in seconds. Unlike time-pos, this updates more often
than once per frame. For audio-only files, it is mostly equivalent to time-pos, while for video-only files
this property is not available.

playtime-remaining

time-remaining scaled by the current speed.

playback-time (RW)

Position in current file in seconds. Unlike time-pos, the time is clamped to the range of the file.
(Inaccurate file durations etc. could make it go out of range. Useful on attempts to seek outside of the
file, as the seek target time is considered the current position during seeking.)

chapter (RW)

Current chapter number. The number of the first chapter is 0.

edition (RW)

Current MKV edition number. Setting this property to a different value will restart playback. The
number of the first edition is 0.

disc-titles

Number of BD/DVD titles.

This has a number of sub-properties. Replace N with the 0-based edition index.

disc-titles/count

Number of titles.

disc-titles/id

Title ID as integer. Currently, this is the same as the title index.

disc-titles/length

Length in seconds. Can be unavailable in a number of cases (currently it works for libdvdnav
only).

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each edition)
 "id" MPV_FORMAT_INT64
 "length" MPV_FORMAT_DOUBLE

disc-title-list

List of BD/DVD titles.

disc-title (RW)

Current BD/DVD title number. Writing works only for dvdnav:// and bd:// (and aliases for these).

chapters

Number of chapters.

editions

Number of MKV editions.

edition-list

List of editions, current entry marked. Currently, the raw property value is useless.

This has a number of sub-properties. Replace N with the 0-based edition index.

edition-list/count

Number of editions. If there are no editions, this can be 0 or 1 (1 if there's a useless dummy
edition).

edition-list/N/id

Edition ID as integer. Use this to set the edition property. Currently, this is the same as the
edition index.

edition-list/N/default

yes if this is the default edition, no otherwise.

edition-list/N/title

Edition title as stored in the file. Not always available.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each edition)
 "id" MPV_FORMAT_INT64

 "title" MPV_FORMAT_STRING
 "default" MPV_FORMAT_FLAG

angle (RW)

Current DVD angle.

metadata

Metadata key/value pairs.

If the property is accessed with Lua's mp.get_property_native, this returns a table with metadata
keys mapping to metadata values. If it is accessed with the client API, this returns a
MPV_FORMAT_NODE_MAP, with tag keys mapping to tag values.

For OSD, it returns a formatted list. Trying to retrieve this property as a raw string doesn't work.

This has a number of sub-properties:

metadata/by-key/<key>

Value of metadata entry <key>.

metadata/list/count

Number of metadata entries.

metadata/list/N/key

Key name of the Nth metadata entry. (The first entry is 0).

metadata/list/N/value

Value of the Nth metadata entry.

metadata/<key>

Old version of metadata/by-key/<key>. Use is discouraged, because the metadata key string
could conflict with other sub-properties.

The layout of this property might be subject to change. Suggestions are welcome how exactly this
property should work.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_MAP
 (key and string value for each metadata entry)

filtered-metadata

Like metadata, but includes only fields listed in the --display-tags option. This is the same set of
tags that is printed to the terminal.

chapter-metadata

Metadata of current chapter. Works similar to metadata property. It also allows the same access
methods (using sub-properties).

Per-chapter metadata is very rare. Usually, only the chapter name (title) is set.

For accessing other information, like chapter start, see the chapter-list property.

vf-metadata/<filter-label>

Metadata added by video filters. Accessed by the filter label, which, if not explicitly specified using the
@filter-label: syntax, will be <filter-name>NN.

Works similar to metadata property. It allows the same access methods (using sub-properties).

An example of this kind of metadata are the cropping parameters added by
--vf=lavfi=cropdetect.

af-metadata/<filter-label>

Equivalent to vf-metadata/<filter-label>, but for audio filters.

idle-active

Return yes if no file is loaded, but the player is staying around because of the --idle option.

(Renamed from idle.)

core-idle

Return yes if the playback core is paused, otherwise no. This can be different pause in special
situations, such as when the player pauses itself due to low network cache.

This also returns yes if playback is restarting or if nothing is playing at all. In other words, it's only no if
there's actually video playing. (Behavior since mpv 0.7.0.)

cache

Network cache fill state (0-100.0).

cache-size (RW)

Network cache size in KB. This is similar to --cache. This allows setting the cache size at runtime.
Currently, it's not possible to enable or disable the cache at runtime using this property, just to resize
an existing cache.

This does not include the backbuffer size (changed after mpv 0.10.0).

Note that this tries to keep the cache contents as far as possible. To make this easier, the cache
resizing code will allocate the new cache while the old cache is still allocated.

Don't use this when playing DVD or Blu-ray.

cache-free (R)

Total free cache size in KB.

cache-used (R)

Total used cache size in KB.

cache-speed (R)

Current I/O read speed between the cache and the lower layer (like network). This gives the number
bytes per seconds over a 1 second window (using the type MPV_FORMAT_INT64 for the client API).

cache-idle (R)

Returns yes if the cache is idle, which means the cache is filled as much as possible, and is currently
not reading more data.

demuxer-cache-duration

Approximate duration of video buffered in the demuxer, in seconds. The guess is very unreliable, and
often the property will not be available at all, even if data is buffered.

demuxer-cache-time

Approximate time of video buffered in the demuxer, in seconds. Same as
demuxer-cache-duration but returns the last timestamp of buffered data in demuxer.

demuxer-cache-idle

Returns yes if the demuxer is idle, which means the demuxer cache is filled to the requested amount,
and is currently not reading more data.

demuxer-cache-state

Various undocumented or half-documented things.

Each entry in seekable-ranges represents a region in the demuxer cache that can be seeked to. If
there are multiple demuxers active, this only returns information about the "main" demuxer, but might
be changed in future to return unified information about all demuxers. The ranges are in arbitrary
order. Often, ranges will overlap for a bit, before being joined. In broken corner cases, ranges may
overlap all over the place.

The end of a seek range is usually smaller than the value returned by the demuxer-cache-time
property, because that property returns the guessed buffering amount, while the seek ranges
represent the buffered data that can actually be used for cached seeking.

fw-bytes is the number of bytes of packets buffered in the range starting from the current decoding
position.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_MAP
 "seekable-ranges" MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP
 "start" MPV_FORMAT_DOUBLE
 "end" MPV_FORMAT_DOUBLE
 "fw-bytes" MPV_FORMAT_INT64

Other fields (might be changed or removed in the future):

eof

True if the reader thread has hit the end of the file.

underrun

True if the reader thread could not satisfy a decoder's request for a new packet.

idle

True if the thread is currently not reading.

total-bytes

Sum of packet bytes (plus some overhead estimation) of the entire packet queue, including
cached seekable ranges.

fw-bytes

Sum of packet bytes (plus some overhead estimation) of the readahead packet queue (packets
between current decoder reader positions and demuxer position).

demuxer-via-network

Returns yes if the stream demuxed via the main demuxer is most likely played via network. What
constitutes "network" is not always clear, might be used for other types of untrusted streams, could be
wrong in certain cases, and its definition might be changing. Also, external files (like separate audio
files or streams) do not influence the value of this property (currently).

demuxer-start-time (R)

Returns the start time reported by the demuxer in fractional seconds.

paused-for-cache

Returns yes when playback is paused because of waiting for the cache.

cache-buffering-state

Return the percentage (0-100) of the cache fill status until the player will unpause (related to
paused-for-cache).

eof-reached

Returns yes if end of playback was reached, no otherwise. Note that this is usually interesting only if
--keep-open is enabled, since otherwise the player will immediately play the next file (or exit or
enter idle mode), and in these cases the eof-reached property will logically be cleared immediately
after it's set.

seeking

Returns yes if the player is currently seeking, or otherwise trying to restart playback. (It's possible that
it returns yes while a file is loadedThis is because the same underlying code is used for seeking and
resyncing.)

mixer-active

Return yes if the audio mixer is active, no otherwise.

This option is relatively useless. Before mpv 0.18.1, it could be used to infer behavior of the volume
property.

ao-volume (RW)

System volume. This property is available only if mpv audio output is currently active, and only if the
underlying implementation supports volume control. What this option does depends on the API. For
example, on ALSA this usually changes system-wide audio, while with PulseAudio this controls
per-application volume.

ao-mute (RW)

Similar to ao-volume, but controls the mute state. May be unimplemented even if ao-volume
works.

audio-codec

Audio codec selected for decoding.

audio-codec-name

Audio codec.

audio-params

Audio format as output by the audio decoder. This has a number of sub-properties:

audio-params/format

The sample format as string. This uses the same names as used in other places of mpv.

audio-params/samplerate

Samplerate.

audio-params/channels

The channel layout as a string. This is similar to what the --audio-channels accepts.

audio-params/hr-channels

As channels, but instead of the possibly cryptic actual layout sent to the audio device, return a
hopefully more human readable form. (Usually only audio-out-params/hr-channels makes
sense.)

audio-params/channel-count

Number of audio channels. This is redundant to the channels field described above.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_MAP
 "format" MPV_FORMAT_STRING
 "samplerate" MPV_FORMAT_INT64
 "channels" MPV_FORMAT_STRING
 "channel-count" MPV_FORMAT_INT64
 "hr-channels" MPV_FORMAT_STRING

audio-out-params

Same as audio-params, but the format of the data written to the audio API.

colormatrix (R)

Redirects to video-params/colormatrix. This parameter (as well as similar ones) can be
overridden with the format video filter.

colormatrix-input-range (R)

See colormatrix.

colormatrix-primaries (R)

See colormatrix.

hwdec (RW)

Reflects the --hwdec option.

Writing to it may change the currently used hardware decoder, if possible. (Internally, the player may
reinitialize the decoder, and will perform a seek to refresh the video properly.) You can watch the
other hwdec properties to see whether this was successful.

Unlike in mpv 0.9.x and before, this does not return the currently active hardware decoder. Since mpv
0.18.0, hwdec-current is available for this purpose.

hwdec-current

Return the current hardware decoding in use. If decoding is active, return one of the values used by
the hwdec option/property. no indicates software decoding. If no decoder is loaded, the property is
unavailable.

hwdec-interop

This returns the currently loaded hardware decoding/output interop driver. This is known only once the
VO has opened (and possibly later). With some VOs (like gpu), this might be never known in
advance, but only when the decoder attempted to create the hw decoder successfully. (Using
--gpu-hwdec-interop can load it eagerly.) If there are multiple drivers loaded, they will be
separated by ,.

If no VO is active or no interop driver is known, this property is unavailable.

This does not necessarily use the same values as hwdec. There can be multiple interop drivers for
the same hardware decoder, depending on platform and VO.

video-format

Video format as string.

video-codec

Video codec selected for decoding.

width, height

Video size. This uses the size of the video as decoded, or if no video frame has been decoded yet,
the (possibly incorrect) container indicated size.

video-params

Video parameters, as output by the decoder (with overrides like aspect etc. applied). This has a
number of sub-properties:

video-params/pixelformat

The pixel format as string. This uses the same names as used in other places of mpv.

video-params/average-bpp

Average bits-per-pixel as integer. Subsampled planar formats use a different resolution, which is
the reason this value can sometimes be odd or confusing. Can be unavailable with some
formats.

video-params/plane-depth

Bit depth for each color component as integer. This is only exposed for planar or
single-component formats, and is unavailable for other formats.

video-params/w, video-params/h

Video size as integers, with no aspect correction applied.

video-params/dw, video-params/dh

Video size as integers, scaled for correct aspect ratio.

video-params/aspect

Display aspect ratio as float.

video-params/par

Pixel aspect ratio.

video-params/colormatrix

The colormatrix in use as string. (Exact values subject to change.)

video-params/colorlevels

The colorlevels as string. (Exact values subject to change.)

video-params/primaries

The primaries in use as string. (Exact values subject to change.)

video-params/gamma

The gamma function in use as string. (Exact values subject to change.)

video-params/sig-peak

The video file's tagged signal peak as float.

video-params/light

The light type in use as a string. (Exact values subject to change.)

video-params/chroma-location

Chroma location as string. (Exact values subject to change.)

video-params/rotate

Intended display rotation in degrees (clockwise).

video-params/stereo-in

Source file stereo 3D mode. (See --video-stereo-mode option.)

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_MAP
 "pixelformat" MPV_FORMAT_STRING
 "w" MPV_FORMAT_INT64
 "h" MPV_FORMAT_INT64
 "dw" MPV_FORMAT_INT64
 "dh" MPV_FORMAT_INT64
 "aspect" MPV_FORMAT_DOUBLE
 "par" MPV_FORMAT_DOUBLE
 "colormatrix" MPV_FORMAT_STRING
 "colorlevels" MPV_FORMAT_STRING
 "primaries" MPV_FORMAT_STRING
 "gamma" MPV_FORMAT_STRING
 "sig-peak" MPV_FORMAT_DOUBLE
 "light" MPV_FORMAT_STRING
 "chroma-location" MPV_FORMAT_STRING
 "rotate" MPV_FORMAT_INT64
 "stereo-in" MPV_FORMAT_STRING

dwidth, dheight

Video display size. This is the video size after filters and aspect scaling have been applied. The
actual video window size can still be different from this, e.g. if the user resized the video window
manually.

These have the same values as video-out-params/dw and video-out-params/dh.

video-dec-params

Exactly like video-params, but no overrides applied.

video-out-params

Same as video-params, but after video filters have been applied. If there are no video filters in use,
this will contain the same values as video-params. Note that this is still not necessarily what the
video window uses, since the user can change the window size, and all real VOs do their own scaling
independently from the filter chain.

Has the same sub-properties as video-params.

video-frame-info

Approximate information of the current frame. Note that if any of these are used on OSD, the
information might be off by a few frames due to OSD redrawing and frame display being somewhat
disconnected, and you might have to pause and force a redraw.

Sub-properties:

video-frame-info/picture-type
video-frame-info/interlaced
video-frame-info/tff
video-frame-info/repeat

container-fps

Container FPS. This can easily contain bogus values. For videos that use modern container formats
or video codecs, this will often be incorrect.

(Renamed from fps.)

estimated-vf-fps

Estimated/measured FPS of the video filter chain output. (If no filters are used, this corresponds to
decoder output.) This uses the average of the 10 past frame durations to calculate the FPS. It will be
inaccurate if frame-dropping is involved (such as when framedrop is explicitly enabled, or after
precise seeking). Files with imprecise timestamps (such as Matroska) might lead to unstable results.

window-scale (RW)

Window size multiplier. Setting this will resize the video window to the values contained in dwidth
and dheight multiplied with the value set with this property. Setting 1 will resize to original video size
(or to be exact, the size the video filters output). 2 will set the double size, 0.5 halves the size.

window-minimized

Return whether the video window is minimized or not.

display-names

Names of the displays that the mpv window covers. On X11, these are the xrandr names (LVDS1,
HDMI1, DP1, VGA1, etc.). On Windows, these are the GDI names (\.DISPLAY1, \.DISPLAY2, etc.)
and the first display in the list will be the one that Windows considers associated with the window (as
determined by the MonitorFromWindow API.)

display-fps (RW)

The refresh rate of the current display. Currently, this is the lowest FPS of any display covered by the
video, as retrieved by the underlying system APIs (e.g. xrandr on X11). It is not the measured FPS.
It's not necessarily available on all platforms. Note that any of the listed facts may change any time
without a warning.

estimated-display-fps

Only available if display-sync mode (as selected by --video-sync) is active. Returns the actual rate
at which display refreshes seem to occur, measured by system time.

vsync-jitter

Estimated deviation factor of the vsync duration.

video-aspect (RW)

Video aspect, see --video-aspect.

If video is active, this reports the effective aspect value, instead of the value of the --video-aspect
option.

osd-width, osd-height

Last known OSD width (can be 0). This is needed if you want to use the overlay-add command. It
gives you the actual OSD size, which can be different from the window size in some cases.

osd-par

Last known OSD display pixel aspect (can be 0).

program (W)

Switch TS program (write-only).

dvb-channel (W)

Pair of integers: card,channel of current DVB stream. Can be switched to switch to another channel
on the same card.

dvb-channel-name (RW)

Name of current DVB program. On write, a channel-switch to the named channel on the same card is
performed. Can also be used for channel switching.

sub-text

Return the current subtitle text. Formatting is stripped. If a subtitle is selected, but no text is currently
visible, or the subtitle is not text-based (i.e. DVD/BD subtitles), an empty string is returned.

This property is experimental and might be removed in the future.

tv-brightness, tv-contrast, tv-saturation, tv-hue (RW)

TV stuff.

playlist-pos (RW)

Current position on playlist. The first entry is on position 0. Writing to the property will restart playback
at the written entry.

playlist-pos-1 (RW)

Same as playlist-pos, but 1-based.

playlist-count

Number of total playlist entries.

playlist

Playlist, current entry marked. Currently, the raw property value is useless.

This has a number of sub-properties. Replace N with the 0-based playlist entry index.

playlist/count

Number of playlist entries (same as playlist-count).

playlist/N/filename

Filename of the Nth entry.

playlist/N/current, playlist/N/playing

yes if this entry is currently playing (or being loaded). Unavailable or no otherwise. When
changing files, current and playing can be different, because the currently playing file hasn't
been unloaded yet; in this case, current refers to the new selection. (Since mpv 0.7.0.)

playlist/N/title

Name of the Nth entry. Only available if the playlist file contains such fields, and only if mpv's
parser supports it for the given playlist format.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each playlist entry)
 "filename" MPV_FORMAT_STRING
 "current" MPV_FORMAT_FLAG (might be missing; since mpv 0.7.0)
 "playing" MPV_FORMAT_FLAG (same)
 "title" MPV_FORMAT_STRING (optional)

track-list

List of audio/video/sub tracks, current entry marked. Currently, the raw property value is useless.

This has a number of sub-properties. Replace N with the 0-based track index.

track-list/count

Total number of tracks.

track-list/N/id

The ID as it's used for -sid/--aid/--vid. This is unique within tracks of the same type
(sub/audio/video), but otherwise not.

track-list/N/type

String describing the media type. One of audio, video, sub.

track-list/N/src-id

Track ID as used in the source file. Not always available.

track-list/N/title

Track title as it is stored in the file. Not always available.

track-list/N/lang

Track language as identified by the file. Not always available.

track-list/N/albumart

yes if this is a video track that consists of a single picture, no or unavailable otherwise. This is
used for video tracks that are really attached pictures in audio files.

track-list/N/default

yes if the track has the default flag set in the file, no otherwise.

track-list/N/forced

yes if the track has the forced flag set in the file, no otherwise.

track-list/N/codec

The codec name used by this track, for example h264. Unavailable in some rare cases.

track-list/N/external

yes if the track is an external file, no otherwise. This is set for separate subtitle files.

track-list/N/external-filename

The filename if the track is from an external file, unavailable otherwise.

track-list/N/selected

yes if the track is currently decoded, no otherwise.

track-list/N/ff-index

The stream index as usually used by the FFmpeg utilities. Note that this can be potentially wrong
if a demuxer other than libavformat (--demuxer=lavf) is used. For mkv files, the index will
usually match even if the default (builtin) demuxer is used, but there is no hard guarantee.

track-list/N/decoder-desc

If this track is being decoded, the human-readable decoder name,

track-list/N/demux-w, track-list/N/demux-h

Video size hint as indicated by the container. (Not always accurate.)

track-list/N/demux-channel-count

Number of audio channels as indicated by the container. (Not always accurate - in particular, the
track could be decoded as a different number of channels.)

track-list/N/demux-channels

Channel layout as indicated by the container. (Not always accurate.)

track-list/N/demux-samplerate

Audio sample rate as indicated by the container. (Not always accurate.)

track-list/N/demux-fps

Video FPS as indicated by the container. (Not always accurate.)

track-list/N/audio-channels (deprecated)

Deprecated alias for track-list/N/demux-channel-count.

track-list/N/replaygain-track-peak, track-list/N/replaygain-track-gain

Per-track replaygain values. Only available for audio tracks with corresponding information
stored in the source file.

track-list/N/replaygain-album-peak, track-list/N/replaygain-album-gain

Per-album replaygain values. If the file has per-track but no per-album information, the per-album
values will be copied from the per-track values currently. It's possible that future mpv versions will
make these properties unavailable instead in this case.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each track)
 "id" MPV_FORMAT_INT64
 "type" MPV_FORMAT_STRING
 "src-id" MPV_FORMAT_INT64
 "title" MPV_FORMAT_STRING
 "lang" MPV_FORMAT_STRING
 "albumart" MPV_FORMAT_FLAG
 "default" MPV_FORMAT_FLAG
 "forced" MPV_FORMAT_FLAG
 "selected" MPV_FORMAT_FLAG
 "external" MPV_FORMAT_FLAG
 "external-filename" MPV_FORMAT_STRING
 "codec" MPV_FORMAT_STRING
 "ff-index" MPV_FORMAT_INT64
 "decoder-desc" MPV_FORMAT_STRING
 "demux-w" MPV_FORMAT_INT64
 "demux-h" MPV_FORMAT_INT64
 "demux-channel-count" MPV_FORMAT_INT64
 "demux-channels" MPV_FORMAT_STRING
 "demux-samplerate" MPV_FORMAT_INT64
 "demux-fps" MPV_FORMAT_DOUBLE
 "audio-channels" MPV_FORMAT_INT64
 "replaygain-track-peak" MPV_FORMAT_DOUBLE
 "replaygain-track-gain" MPV_FORMAT_DOUBLE
 "replaygain-album-peak" MPV_FORMAT_DOUBLE
 "replaygain-album-gain" MPV_FORMAT_DOUBLE

chapter-list

List of chapters, current entry marked. Currently, the raw property value is useless.

This has a number of sub-properties. Replace N with the 0-based chapter index.

chapter-list/count

Number of chapters.

chapter-list/N/title

Chapter title as stored in the file. Not always available.

chapter-list/N/time

Chapter start time in seconds as float.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each chapter)
 "title" MPV_FORMAT_STRING
 "time" MPV_FORMAT_DOUBLE

af, vf (RW)

See --vf/--af and the vf/af command.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each filter entry)
 "name" MPV_FORMAT_STRING
 "label" MPV_FORMAT_STRING [optional]
 "enabled" MPV_FORMAT_FLAG [optional]
 "params" MPV_FORMAT_NODE_MAP [optional]
 "key" MPV_FORMAT_STRING
 "value" MPV_FORMAT_STRING

It's also possible to write the property using this format.

seekable

Return whether it's generally possible to seek in the current file.

partially-seekable

Return yes if the current file is considered seekable, but only because the cache is active. This
means small relative seeks may be fine, but larger seeks may fail anyway. Whether a seek will
succeed or not is generally not known in advance.

If this property returns true, seekable will also return true.

playback-abort

Return whether playback is stopped or is to be stopped. (Useful in obscure situations like during
on_load hook processing, when the user can stop playback, but the script has to explicitly end
processing.)

cursor-autohide (RW)

See --cursor-autohide. Setting this to a new value will always update the cursor, and reset the
internal timer.

osd-sym-cc

Inserts the current OSD symbol as opaque OSD control code (cc). This makes sense only with the
show-text command or options which set OSD messages. The control code is implementation
specific and is useless for anything else.

osd-ass-cc

${osd-ass-cc/0} disables escaping ASS sequences of text in OSD, ${osd-ass-cc/1} enables
it again. By default, ASS sequences are escaped to avoid accidental formatting, and this property can
disable this behavior. Note that the properties return an opaque OSD control code, which only makes
sense for the show-text command or options which set OSD messages.

Example

• --osd-status-msg='This is ${osd-ass-cc/0}{\\b1}bold text'

• show-text "This is ${osd-ass-cc/0}{\b1}bold text"

Any ASS override tags as understood by libass can be used.

Note that you need to escape the \ character, because the string is processed for C escape
sequences before passing it to the OSD code.

A list of tags can be found here: http://docs.aegisub.org/latest/ASS_Tags/

vo-configured

Return whether the VO is configured right now. Usually this corresponds to whether the video window
is visible. If the --force-window option is used, this is usually always returns yes.

vo-passes

Contains introspection about the VO's active render passes and their execution times. Not
implemented by all VOs.

This is further subdivided into two frame types, vo-passes/fresh for fresh frames (which have to
be uploaded, scaled, etc.) and vo-passes/redraw for redrawn frames (which only have to be
re-painted). The number of passes for any given subtype can change from frame to frame, and should
not be relied upon.

Each frame type has a number of further sub-properties. Replace TYPE with the frame type, N with the
0-based pass index, and M with the 0-based sample index.

vo-passes/TYPE/count

Number of passes.

vo-passes/TYPE/N/desc

Human-friendy description of the pass.

vo-passes/TYPE/N/last

Last measured execution time, in nanoseconds.

vo-passes/TYPE/N/avg

Average execution time of this pass, in nanoseconds. The exact timeframe varies, but it should
generally be a handful of seconds.

vo-passes/TYPE/N/peak

The peak execution time (highest value) within this averaging range, in nanoseconds.

vo-passes/TYPE/N/count

The number of samples for this pass.

vo-passes/TYPE/N/samples/M

The raw execution time of a specific sample for this pass, in nanoseconds.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

http://docs.aegisub.org/latest/ASS_Tags/

MPV_FORMAT_NODE_MAP
"TYPE" MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP
 "desc" MPV_FORMAT_STRING
 "last" MPV_FORMAT_INT64
 "avg" MPV_FORMAT_INT64
 "peak" MPV_FORMAT_INT64
 "count" MPV_FORMAT_INT64
 "samples" MPV_FORMAT_NODE_ARRAY
 MP_FORMAT_INT64

Note that directly accessing this structure via subkeys is not supported, the only access is through
aforementioned MPV_FORMAT_NODE.

video-bitrate, audio-bitrate, sub-bitrate

Bitrate values calculated on the packet level. This works by dividing the bit size of all packets
between two keyframes by their presentation timestamp distance. (This uses the timestamps are
stored in the file, so e.g. playback speed does not influence the returned values.) In particular, the
video bitrate will update only per keyframe, and show the "past" bitrate. To make the property more
UI friendly, updates to these properties are throttled in a certain way.

The unit is bits per second. OSD formatting turns these values in kilobits (or megabits, if appropriate),
which can be prevented by using the raw property value, e.g. with ${=video-bitrate}.

Note that the accuracy of these properties is influenced by a few factors. If the underlying demuxer
rewrites the packets on demuxing (done for some file formats), the bitrate might be slightly off. If
timestamps are bad or jittery (like in Matroska), even constant bitrate streams might show fluctuating
bitrate.

How exactly these values are calculated might change in the future.

In earlier versions of mpv, these properties returned a static (but bad) guess using a completely
different method.

packet-video-bitrate, packet-audio-bitrate, packet-sub-bitrate

Old and deprecated properties for video-bitrate, audio-bitrate, sub-bitrate. They behave
exactly the same, but return a value in kilobits. Also, they don't have any OSD formatting, though the
same can be achieved with e.g. ${=video-bitrate}.

These properties shouldn't be used anymore.

audio-device-list

Return the list of discovered audio devices. This is mostly for use with the client API, and reflects what
--audio-device=help with the command line player returns.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each device entry)
 "name" MPV_FORMAT_STRING
 "description" MPV_FORMAT_STRING

The name is what is to be passed to the --audio-device option (and often a rather cryptic audio
API-specific ID), while description is human readable free form text. The description is set to the
device name (minus mpv-specific <driver>/ prefix) if no description is available or the description
would have been an empty string.

The special entry with the name set to auto selects the default audio output driver and the default
device.

The property can be watched with the property observation mechanism in the client API and in Lua
scripts. (Technically, change notification is enabled the first time this property is read.)

audio-device (RW)

Set the audio device. This directly reads/writes the --audio-device option, but on write accesses,
the audio output will be scheduled for reloading.

Writing this property while no audio output is active will not automatically enable audio. (This is also
true in the case when audio was disabled due to reinitialization failure after a previous write access to
audio-device.)

This property also doesn't tell you which audio device is actually in use.

How these details are handled may change in the future.

current-vo

Current video output driver (name as used with --vo).

current-ao

Current audio output driver (name as used with --ao).

working-directory

Return the working directory of the mpv process. Can be useful for JSON IPC users, because the
command line player usually works with relative paths.

protocol-list

List of protocol prefixes potentially recognized by the player. They are returned without trailing ://
suffix (which is still always required). In some cases, the protocol will not actually be supported
(consider https if ffmpeg is not compiled with TLS support).

decoder-list

List of decoders supported. This lists decoders which can be passed to --vd and --ad.

codec

Canonical codec name, which identifies the format the decoder can handle.

driver

The name of the decoder itself. Often, this is the same as codec. Sometimes it can be different.
It is used to distinguish multiple decoders for the same codec.

description

Human readable description of the decoder and codec.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each decoder entry)
 "codec" MPV_FORMAT_STRING
 "driver" MPV_FORMAT_STRING
 "description" MPV_FORMAT_STRING

encoder-list

List of libavcodec encoders. This has the same format as decoder-list. The encoder names
(driver entries) can be passed to --ovc and --oac (without the lavc: prefix required by --vd
and --ad).

demuxer-lavf-list

List of available libavformat demuxers' names. This can be used to check for support for a specific
format or use with --demuxer-lavf-format.

mpv-version

Return the mpv version/copyright string. Depending on how the binary was built, it might contain
either a release version, or just a git hash.

mpv-configuration

Return the configuration arguments which were passed to the build system (typically the way
./waf configure ... was invoked).

ffmpeg-version

Return the contents of the av_version_info() API call. This is a string which identifies the build in
some way, either through a release version number, or a git hash. This applies to Libav as well (the
property is still named the same.) This property is unavailable if mpv is linked against older FFmpeg
and Libav versions.

options/<name> (RW)

Read-only access to value of option --<name>. Most options can be changed at runtime by writing to
this property. Note that many options require reloading the file for changes to take effect. If there is an
equivalent property, prefer setting the property instead.

There shouldn't be any reason to access options/<name> instead of <name>, except in situations
in which the properties have different behavior or conflicting semantics.

file-local-options/<name>

Similar to options/<name>, but when setting an option through this property, the option is reset to
its old value once the current file has stopped playing. Trying to write an option while no file is playing
(or is being loaded) results in an error.

(Note that if an option is marked as file-local, even options/ will access the local value, and the old
value, which will be restored on end of playback, cannot be read or written until end of playback.)

option-info/<name>

Additional per-option information.

This has a number of sub-properties. Replace <name> with the name of a top-level option. No
guarantee of stability is given to any of these sub-properties - they may change radically in the
feature.

option-info/<name>/name

Returns the name of the option.

option-info/<name>/type

Return the name of the option type, like String or Integer. For many complex types, this isn't
very accurate.

option-info/<name>/set-from-commandline

Return yes if the option was set from the mpv command line, no otherwise. What this is set to if
the option is e.g. changed at runtime is left undefined (meaning it could change in the future).

option-info/<name>/set-locally

Return yes if the option was set per-file. This is the case with automatically loaded profiles,
file-dir configs, and other cases. It means the option value will be restored to the value before
playback start when playback ends.

option-info/<name>/default-value

The default value of the option. May not always be available.

option-info/<name>/min, option-info/<name>/max

Integer minimum and maximum values allowed for the option. Only available if the options are
numeric, and the minimum/maximum has been set internally. It's also possible that only one of
these is set.

option-info/<name>/choices

If the option is a choice option, the possible choices. Choices that are integers may or may not be
included (they can be implied by min and max). Note that options which behave like choice
options, but are not actual choice options internally, may not have this info available.

property-list

Return the list of top-level properties.

profile-list

Return the list of profiles and their contents. This is highly implementation-specific, and may change
any time. Currently, it returns an array of options for each profile. Each option has a name and a
value, with the value currently always being a string. Note that the options array is not a map, as order
matters and duplicate entries are possible. Recursive profiles are not expanded, and show up as
special profile options.

Inconsistencies between options and properties
You can access (almost) all options as properties, though there are some caveats with some properties
(due to historical reasons):

vid, aid, sid

While playback is active, you can set existing tracks only. (The option allows setting any track ID, and
which tracks to enable is chosen at loading time.)

Option changes at runtime are affected by this as well.

video-aspect

While video is active, always returns the effective aspect ratio. Setting a special value (like no, values
<= 0) will make the property set this as option, and return whatever actual aspect was derived from
the option setting.

display-fps

If a VO is created, this will return either the actual display FPS, or an invalid value, instead of the
option value.

vf, af

If you set the properties during playback, and the filter chain fails to reinitialize, the new value will be
rejected. Setting the option or setting the property outside of playback will always succeed/fail in the
same way. Also, there are no vf-add etc. properties, but you can use the vf/af group of commands
to achieve the same.

Option changes at runtime are affected by this as well.

edition

While a file is loaded, the property will always return the effective edition, and setting the auto value
will show somewhat strange behavior (the property eventually switching to whatever is the default
edition).

playlist

The property is read-only and returns the current internal playlist. The option is for loading playlist
during command line parsing. For client API uses, you should use the loadlist command instead.

window-scale

Might verify the set value when setting while a window is created.

audio-file, sub-file, external-file

These options/properties are actually lists of filenames. To make the command-line interface easier,
each --audio-file=... option appends the full string to the internal list. However, when used as
properties, every time you set the property as a string the internal list will be replaced with a single
entry containing the string you set. , or other separators are never used. You have to use
MPV_FORMAT_NODE_ARRAY (or corresponding API, e.g. mp.set_property_native() with a table
in Lua) to set multiple entries.

Strictly speaking, option access via API (e.g. mpv_set_option_string()) has the same problem,
and it's only a difference between CLI/API.

playlist-pos, chapter

These properties behave different from the deprecated options with the same names.

profile, include

These are write-only, and will perform actions as they are written to, exactly as if they were used on
the mpv CLI commandline. Their only use is when using libmpv before mpv_initialize(), which in
turn is probably only useful in encoding mode. Normal libmpv users should use other mechanisms,
such as the apply-profile command, and the mpv_load_config_file API function. Avoid
these properties.

Property Expansion
All string arguments to input commands as well as certain options (like --term-playing-msg) are
subject to property expansion. Note that property expansion does not work in places where e.g. numeric
parameters are expected. (For example, the add command does not do property expansion. The set
command is an exception and not a general rule.)

Example for input.conf

i show-text "Filename: ${filename}"

shows the filename of the current file when pressing the i key

Within input.conf, property expansion can be inhibited by putting the raw prefix in front of commands.

The following expansions are supported:

${NAME}

Expands to the value of the property NAME. If retrieving the property fails, expand to an error string.
(Use ${NAME:} with a trailing : to expand to an empty string instead.) If NAME is prefixed with =,
expand to the raw value of the property (see section below).

${NAME:STR}

Expands to the value of the property NAME, or STR if the property cannot be retrieved. STR is
expanded recursively.

${?NAME:STR}

Expands to STR (recursively) if the property NAME is available.

${!NAME:STR}

Expands to STR (recursively) if the property NAME cannot be retrieved.

${?NAME==VALUE:STR}

Expands to STR (recursively) if the property NAME expands to a string equal to VALUE. You can prefix
NAME with = in order to compare the raw value of a property (see section below). If the property is
unavailable, or other errors happen when retrieving it, the value is never considered equal. Note that
VALUE can't contain any of the characters : or }. Also, it is possible that escaping with " or % might be
added in the future, should the need arise.

${!NAME==VALUE:STR}

Same as with the ? variant, but STR is expanded if the value is not equal. (Using the same semantics
as with ?.)

$$

Expands to $.

$}

Expands to }. (To produce this character inside recursive expansion.)

$>

Disable property expansion and special handling of $ for the rest of the string.

In places where property expansion is allowed, C-style escapes are often accepted as well. Example:

• \n becomes a newline character

• \\ expands to \

Raw and Formatted Properties
Normally, properties are formatted as human-readable text, meant to be displayed on OSD or on the
terminal. It is possible to retrieve an unformatted (raw) value from a property by prefixing its name with =.
These raw values can be parsed by other programs and follow the same conventions as the options
associated with the properties.

Examples

• ${time-pos} expands to 00:14:23 (if playback position is at 14 minutes 23 seconds)

• ${=time-pos} expands to 863.4 (same time, plus 400 milliseconds - milliseconds are
normally not shown in the formatted case)

Sometimes, the difference in amount of information carried by raw and formatted property values can be
rather big. In some cases, raw values have more information, like higher precision than seconds with
time-pos. Sometimes it is the other way around, e.g. aid shows track title and language in the formatted
case, but only the track number if it is raw.

ON SCREEN CONTROLLER
The On Screen Controller (short: OSC) is a minimal GUI integrated with mpv to offer basic
mouse-controllability. It is intended to make interaction easier for new users and to enable precise and
direct seeking.

The OSC is enabled by default if mpv was compiled with Lua support. It can be disabled entirely using the
--osc=no option.

Using the OSC
By default, the OSC will show up whenever the mouse is moved inside the player window and will hide if
the mouse is not moved outside the OSC for 0.5 seconds or if the mouse leaves the window.

The Interface

+---------+----------+--+----------+
| pl prev | pl next | title | cache |
+------+--+---+------+---------+-----------+------+-------+-----+-----+----+
| play | skip | skip | time | seekbar | time | audio | sub | vol | fs |
| | back | frwd | elapsed | | left | | | | |
+------+------+------+---------+-----------+------+-------+-----+-----+----+

pl prev

left-click play previous file in playlist

right-click show playlist

shift+L-click show playlist

pl next

left-click play next file in playlist

right-click show playlist

shift+L-click show playlist

title

Displays current media-title, filename, or custom title

left-click show playlist position and length and full title

right-click show filename

cache

Shows current cache fill status

play

left-click toggle play/pause

skip back

left-click go to beginning of chapter / previous chapter

right-click show chapters

shift+L-click show chapters

skip frwd

left-click go to next chapter

right-click show chapters

shift+L-click show chapters

time elapsed

Shows current playback position timestamp

left-click toggle displaying timecodes with milliseconds

seekbar

Indicates current playback position and position of chapters

left-click seek to position

time left

Shows remaining playback time timestamp

left-click toggle between total and remaining time

audio and sub

Displays selected track and amount of available tracks

left-click cycle audio/sub tracks forward

right-click cycle audio/sub tracks backwards

shift+L-click show available audio/sub tracks

vol

left-click toggle mute

mouse wheel volume up/down

fs

left-click toggle fullscreen

Key Bindings
These key bindings are active by default if nothing else is already bound to these keys. In case of collision,
the function needs to be bound to a different key. See the Script Commands section.

del Cycles visibility between never / auto (mouse-move) / always

Configuration
The OSC offers limited configuration through a config file script-opts/osc.conf placed in mpv's user
dir and through the --script-opts command-line option. Options provided through the command-line
will override those from the config file.

Config Syntax
The config file must exactly follow the following syntax:

this is a comment
optionA=value1
optionB=value2

can only be used at the beginning of a line and there may be no spaces around the = or anywhere else.

Command-line Syntax
To avoid collisions with other scripts, all options need to be prefixed with osc-.

Example:

--script-opts=osc-optionA=value1,osc-optionB=value2

Configurable Options
layout

Default: bottombar

The layout for the OSC. Currently available are: box, slimbox, bottombar and topbar. Default
pre-0.21.0 was 'box'.

seekbarstyle

Default: bar

Sets the style of the seekbar, slider (diamond marker), knob (circle marker with guide), or bar (fill).
Default pre-0.21.0 was 'slider'.

seekbarkeyframes

Default: yes

Controls the mode used to seek when dragging the seekbar. By default, keyframes are used. If set to
false, exact seeking on mouse drags will be used instead. Keyframes are preferred, but exact seeks
may be useful in cases where keyframes cannot be found. Note that using exact seeks can
potentially make mouse dragging much slower.

deadzonesize

Default: 0.5

Size of the deadzone. The deadzone is an area that makes the mouse act like leaving the window.
Movement there won't make the OSC show up and it will hide immediately if the mouse enters it. The
deadzone starts at the window border opposite to the OSC and the size controls how much of the
window it will span. Values between 0.0 and 1.0, where 0 means the OSC will always popup with
mouse movement in the window, and 1 means the OSC will only show up when the mouse hovers it.
Default pre-0.21.0 was 0.

minmousemove

Default: 0

Minimum amount of pixels the mouse has to move between ticks to make the OSC show up. Default
pre-0.21.0 was 3.

showwindowed

Default: yes

Enable the OSC when windowed

showfullscreen

Default: yes

Enable the OSC when fullscreen

scalewindowed

Default: 1.0

Scale factor of the OSC when windowed.

scalefullscreen

Default: 1.0

Scale factor of the OSC when fullscreen

scaleforcedwindow

Default: 2.0

Scale factor of the OSC when rendered on a forced (dummy) window

vidscale

Default: yes

Scale the OSC with the video no tries to keep the OSC size constant as much as the window size
allows

valign

Default: 0.8

Vertical alignment, -1 (top) to 1 (bottom)

halign

Default: 0.0

Horizontal alignment, -1 (left) to 1 (right)

barmargin

Default: 0

Margin from bottom (bottombar) or top (topbar), in pixels

boxalpha

Default: 80

Alpha of the background box, 0 (opaque) to 255 (fully transparent)

hidetimeout

Default: 500

Duration in ms until the OSC hides if no mouse movement, must not be negative

fadeduration

Default: 200

Duration of fade out in ms, 0 = no fade

title

Default: ${media-title}

String that supports property expansion that will be displayed as OSC title. ASS tags are escaped,
and newlines and trailing slashes are stripped.

tooltipborder

Default: 1

Size of the tooltip outline when using bottombar or topbar layouts

timetotal

Default: no

Show total time instead of time remaining

timems

Default: no

Display timecodes with milliseconds

seekranges

Default: yes

Display seekable ranges on the seekbar

visibility

Default: auto (auto hide/show on mouse move)

Also supports never and always

boxmaxchars

Default: 80

Max chars for the osc title at the box layout. mpv does not measure the text width on screen and so it
needs to limit it by number of chars. The default is conservative to allow wide fonts to be used without
overflow. However, with many common fonts a bigger number can be used. YMMV.

Script Commands
The OSC script listens to certain script commands. These commands can bound in input.conf, or sent
by other scripts.

osc-message

Show a message on screen using the OSC. First argument is the message, second the duration in
seconds.

osc-visibility

Controls visibility mode never / auto (on mouse move) / always and also cycle to cycle between
the modes

Example

You could put this into input.conf to hide the OSC with the a key and to set auto mode (the default)
with b:

a script-message osc-visibility never
b script-message osc-visibility auto

osc-playlist, osc-chapterlist, osc-tracklist

Shows a limited view of the respective type of list using the OSC. First argument is duration in
seconds.

STATS
This builtin script displays information and statistics for the currently played file. It is enabled by default if
mpv was compiled with Lua support. It can be disabled entirely using the --load-stats-overlay=no
option.

Usage
The following key bindings are active by default unless something else is already bound to them:

i Show stats for a fixed duration

I Toggle stats (shown until toggled again)

While the stats are visible on screen the following key bindings are active, regardless of existing bindings.
They allow you to switch between pages of stats:

1 Show usual stats

2 Show frame timings

Font
For optimal visual experience, a font with support for many font weights and monospaced digits is
recommended. By default, the open source font Source Sans Pro is used.

Configuration
This script can be customized through a config file script-opts/stats.conf placed in mpv's user
directory and through the --script-opts command-line option. The configuration syntax is described in
ON SCREEN CONTROLLER.

Configurable Options
key_oneshot

Default: i

key_toggle

Default: I

Key bindings to display stats.

key_page_1

Default: 1

key_page_2

Default: 2

Key bindings for page switching while stats are displayed.

duration

Default: 4

How long the stats are shown in seconds (oneshot).

redraw_delay

Default: 1

How long it takes to refresh the displayed stats in seconds (toggling).

persistent_overlay

Default: no

https://github.com/adobe-fonts/source-sans-pro

When no, other scripts printing text to the screen can overwrite the displayed stats. When yes,
displayed stats are persistently shown for the respective duration. This can result in overlapping text
when multiple scripts decide to print text at the same time.

plot_perfdata

Default: yes

Show graphs for performance data (page 2).

plot_vsync_ratio

Default: yes

plot_vsync_jitter

Default: yes

Show graphs for vsync and jitter values (page 1). Only when toggled.

flush_graph_data

Default: yes

Clear data buffers used for drawing graphs when toggling.

font

Default: Source Sans Pro

Font name. Should support as many font weights as possible for optimal visual experience.

font_mono

Default: Source Sans Pro

Font name for parts where monospaced characters are necessary to align text. Currently,
monospaced digits are sufficient.

font_size

Default: 8

Font size used to render text.

font_color

Default: FFFFFF

Font color.

border_size

Default: 0.8

Size of border drawn around the font.

border_color

Default: 262626

Color of drawn border.

alpha

Default: 11

Transparency for drawn text.

plot_bg_border_color

Default: 0000FF

Border color used for drawing graphs.

plot_bg_color

Default: 262626

Background color used for drawing graphs.

plot_color

Default: FFFFFF

Color used for drawing graphs.

Note: colors are given as hexadecimal values and use ASS tag order: BBGGRR (blue green red).

Different key bindings
A different key binding can be defined with the aforementioned options key_oneshot and key_toggle
but also with commands in input.conf, for example:

e script-binding stats/display-stats
E script-binding stats/display-stats-toggle

Using input.conf, it is also possible to directly display a certain page:

i script-binding stats/display-page-1
e script-binding stats/display-page-2

LUA SCRIPTING
mpv can load Lua scripts. Scripts passed to the --script option, or found in the scripts subdirectory
of the mpv configuration directory (usually ~/.config/mpv/scripts/) will be loaded on program start.
mpv also appends the scripts subdirectory to the end of Lua's path so you can import scripts from there
too. Since it's added to the end, don't name scripts you want to import the same as Lua libraries because
they will be overshadowed by them.

mpv provides the built-in module mp, which contains functions to send commands to the mpv core and to
retrieve information about playback state, user settings, file information, and so on.

These scripts can be used to control mpv in a similar way to slave mode. Technically, the Lua code uses
the client API internally.

Example
A script which leaves fullscreen mode when the player is paused:

function on_pause_change(name, value)
 if value == true then
 mp.set_property("fullscreen", "no")
 end
end
mp.observe_property("pause", "bool", on_pause_change)

Details on the script initialization and lifecycle
Your script will be loaded by the player at program start from the scripts configuration subdirectory, or
from a path specified with the --script option. Some scripts are loaded internally (like --osc). Each
script runs in its own thread. Your script is first run "as is", and once that is done, the event loop is entered.
This event loop will dispatch events received by mpv and call your own event handlers which you have
registered with mp.register_event, or timers added with mp.add_timeout or similar. Note that since
the script starts execution concurrently with player initialization, some properties may not be populated
with meaningful values until the relevant subsystems have initialized.

When the player quits, all scripts will be asked to terminate. This happens via a shutdown event, which by
default will make the event loop return. If your script got into an endless loop, mpv will probably behave
fine during playback, but it won't terminate when quitting, because it's waiting on your script.

Internally, the C code will call the Lua function mp_event_loop after loading a Lua script. This function is
normally defined by the default prelude loaded before your script (see player/lua/defaults.lua in
the mpv sources). The event loop will wait for events and dispatch events registered with
mp.register_event. It will also handle timers added with mp.add_timeout and similar (by waiting
with a timeout).

Since mpv 0.6.0, the player will wait until the script is fully loaded before continuing normal operation. The
player considers a script as fully loaded as soon as it starts waiting for mpv events (or it exits). In practice
this means the player will more or less hang until the script returns from the main chunk (and
mp_event_loop is called), or the script calls mp_event_loop or mp.dispatch_events directly. This
is done to make it possible for a script to fully setup event handlers etc. before playback actually starts. In
older mpv versions, this happened asynchronously. With mpv 0.29.0, this changes slightly, and it merely
waits for scripts to be loaded in this manner before starting playback as part of the player initialization
phase. Scripts run though initialization in parallel. This might change again.

mp functions
The mp module is preloaded, although it can be loaded manually with require 'mp'. It provides the core
client API.

mp.command(string)

Run the given command. This is similar to the commands used in input.conf. See List of Input
Commands.

By default, this will show something on the OSD (depending on the command), as if it was used in
input.conf. See Input Command Prefixes how to influence OSD usage per command.

Returns true on success, or nil, error on error.

mp.commandv(arg1, arg2, ...)

Similar to mp.command, but pass each command argument as separate parameter. This has the
advantage that you don't have to care about quoting and escaping in some cases.

Example:

mp.command("loadfile " .. filename .. " append")
mp.commandv("loadfile", filename, "append")

These two commands are equivalent, except that the first version breaks if the filename contains
spaces or certain special characters.

Note that properties are not expanded. You can use either mp.command, the expand-properties
prefix, or the mp.get_property family of functions.

Unlike mp.command, this will not use OSD by default either (except for some OSD-specific
commands).

mp.command_native(table [,def])

Similar to mp.commandv, but pass the argument list as table. This has the advantage that in at least
some cases, arguments can be passed as native types.

Returns a result table on success (usually empty), or def, error on error. def is the second
parameter provided to the function, and is nil if it's missing.

mp.get_property(name [,def])

Return the value of the given property as string. These are the same properties as used in input.conf.
See Properties for a list of properties. The returned string is formatted similar to ${=name} (see
Property Expansion).

Returns the string on success, or def, error on error. def is the second parameter provided to the
function, and is nil if it's missing.

mp.get_property_osd(name [,def])

Similar to mp.get_property, but return the property value formatted for OSD. This is the same
string as printed with ${name} when used in input.conf.

Returns the string on success, or def, error on error. def is the second parameter provided to the
function, and is an empty string if it's missing. Unlike get_property(), assigning the return value to
a variable will always result in a string.

mp.get_property_bool(name [,def])

Similar to mp.get_property, but return the property value as Boolean.

Returns a Boolean on success, or def, error on error.

mp.get_property_number(name [,def])

Similar to mp.get_property, but return the property value as number.

Note that while Lua does not distinguish between integers and floats, mpv internals do. This function
simply request a double float from mpv, and mpv will usually convert integer property values to float.

Returns a number on success, or def, error on error.

mp.get_property_native(name [,def])

Similar to mp.get_property, but return the property value using the best Lua type for the property.
Most time, this will return a string, Boolean, or number. Some properties (for example
chapter-list) are returned as tables.

Returns a value on success, or def, error on error. Note that nil might be a possible, valid value
too in some corner cases.

mp.set_property(name, value)

Set the given property to the given string value. See mp.get_property and Properties for more
information about properties.

Returns true on success, or nil, error on error.

mp.set_property_bool(name, value)

Similar to mp.set_property, but set the given property to the given Boolean value.

mp.set_property_number(name, value)

Similar to mp.set_property, but set the given property to the given numeric value.

Note that while Lua does not distinguish between integers and floats, mpv internals do. This function
will test whether the number can be represented as integer, and if so, it will pass an integer value to
mpv, otherwise a double float.

mp.set_property_native(name, value)

Similar to mp.set_property, but set the given property using its native type.

Since there are several data types which cannot represented natively in Lua, this might not always
work as expected. For example, while the Lua wrapper can do some guesswork to decide whether a
Lua table is an array or a map, this would fail with empty tables. Also, there are not many properties
for which it makes sense to use this, instead of set_property, set_property_bool,
set_property_number. For these reasons, this function should probably be avoided for now,
except for properties that use tables natively.

mp.get_time()

Return the current mpv internal time in seconds as a number. This is basically the system time, with
an arbitrary offset.

mp.add_key_binding(key, name|fn [,fn [,flags]])

Register callback to be run on a key binding. The binding will be mapped to the given key, which is a
string describing the physical key. This uses the same key names as in input.conf, and also allows
combinations (e.g. ctrl+a). If the key is empty or nil, no physical key is registered, but the user still
can create own bindings (see below).

After calling this function, key presses will cause the function fn to be called (unless the user
remapped the key with another binding).

The name argument should be a short symbolic string. It allows the user to remap the key binding via
input.conf using the script-message command, and the name of the key binding (see below for an
example). The name should be unique across other bindings in the same script - if not, the previous
binding with the same name will be overwritten. You can omit the name, in which case a random
name is generated internally.

The last argument is used for optional flags. This is a table, which can have the following entries:

repeatable

If set to true, enables key repeat for this specific binding.

complex

If set to true, then fn is called on both key up and down events (as well as key repeat, if
enabled), with the first argument being a table. This table has an event entry, which is set to
one of the strings down, repeat, up or press (the latter if key up/down can't be tracked). It
further has an is_mouse entry, which tells whether the event was caused by a mouse
button.

Internally, key bindings are dispatched via the script-message-to or script-binding input
commands and mp.register_script_message.

Trying to map multiple commands to a key will essentially prefer a random binding, while the other
bindings are not called. It is guaranteed that user defined bindings in the central input.conf are
preferred over bindings added with this function (but see mp.add_forced_key_binding).

Example:

function something_handler()
 print("the key was pressed")
end
mp.add_key_binding("x", "something", something_handler)

This will print the message the key was pressed when x was pressed.

The user can remap these key bindings. Then the user has to put the following into their input.conf to
remap the command to the y key:

y script-binding something

This will print the message when the key y is pressed. (x will still work, unless the user remaps it.)

You can also explicitly send a message to a named script only. Assume the above script was using
the filename fooscript.lua:

y script-binding fooscript/something

mp.add_forced_key_binding(...)

This works almost the same as mp.add_key_binding, but registers the key binding in a way that
will overwrite the user's custom bindings in their input.conf. (mp.add_key_binding overwrites
default key bindings only, but not those by the user's input.conf.)

mp.remove_key_binding(name)

Remove a key binding added with mp.add_key_binding or mp.add_forced_key_binding. Use
the same name as you used when adding the bindings. It's not possible to remove bindings for which
you omitted the name.

mp.register_event(name, fn)

Call a specific function when an event happens. The event name is a string, and the function fn is a
Lua function value.

Some events have associated data. This is put into a Lua table and passed as argument to fn. The
Lua table by default contains a name field, which is a string containing the event name. If the event
has an error associated, the error field is set to a string describing the error, on success it's not set.

If multiple functions are registered for the same event, they are run in registration order, which the
first registered function running before all the other ones.

Returns true if such an event exists, false otherwise.

See Events and List of events for details.

mp.unregister_event(fn)

Undo mp.register_event(..., fn). This removes all event handlers that are equal to the fn
parameter. This uses normal Lua == comparison, so be careful when dealing with closures.

mp.observe_property(name, type, fn)

Watch a property for changes. If the property name is changed, then the function fn(name) will be
called. type can be nil, or be set to one of none, native, bool, string, or number. none is the

same as nil. For all other values, the new value of the property will be passed as second argument
to fn, using mp.get_property_<type> to retrieve it. This means if type is for example string,
fn is roughly called as in fn(name, mp.get_property_string(name)).

If possible, change events are coalesced. If a property is changed a bunch of times in a row, only the
last change triggers the change function. (The exact behavior depends on timing and other things.)

In some cases the function is not called even if the property changes. Whether this can happen
depends on the property.

If the type is none or nil, sporadic property change events are possible. This means the change
function fn can be called even if the property doesn't actually change.

mp.unobserve_property(fn)

Undo mp.observe_property(..., fn). This removes all property handlers that are equal to the
fn parameter. This uses normal Lua == comparison, so be careful when dealing with closures.

mp.add_timeout(seconds, fn)

Call the given function fn when the given number of seconds has elapsed. Note that the number of
seconds can be fractional. For now, the timer's resolution may be as low as 50 ms, although this will
be improved in the future.

This is a one-shot timer: it will be removed when it's fired.

Returns a timer object. See mp.add_periodic_timer for details.

mp.add_periodic_timer(seconds, fn)

Call the given function periodically. This is like mp.add_timeout, but the timer is re-added after the
function fn is run.

Returns a timer object. The timer object provides the following methods:

stop()

Disable the timer. Does nothing if the timer is already disabled. This will remember the
current elapsed time when stopping, so that resume() essentially unpauses the timer.

kill()

Disable the timer. Resets the elapsed time. resume() will restart the timer.

resume()

Restart the timer. If the timer was disabled with stop(), this will resume at the time it was
stopped. If the timer was disabled with kill(), or if it's a previously fired one-shot timer
(added with add_timeout()), this starts the timer from the beginning, using the initially
configured timeout.

is_enabled()

Whether the timer is currently enabled or was previously disabled (e.g. by stop() or
kill()).

timeout (RW)

This field contains the current timeout period. This value is not updated as time progresses.
It's only used to calculate when the timer should fire next when the timer expires.

If you write this, you can call t:kill() ; t:resume() to reset the current timeout to the
new one. (t:stop() won't use the new timeout.)

oneshot (RW)

Whether the timer is periodic (false) or fires just once (true). This value is used when the
timer expires (but before the timer callback function fn is run).

Note that these are method, and you have to call them using : instead of . (Refer to
http://www.lua.org/manual/5.2/manual.html#3.4.9 .)

Example:

http://www.lua.org/manual/5.2/manual.html#3.4.9

seconds = 0
timer = mp.add_periodic_timer(1, function()
 print("called every second")
 # stop it after 10 seconds
 seconds = seconds + 1
 if seconds >= 10 then
 timer:kill()
 end
end)

mp.get_opt(key)

Return a setting from the --script-opts option. It's up to the user and the script how this
mechanism is used. Currently, all scripts can access this equally, so you should be careful about
collisions.

mp.get_script_name()

Return the name of the current script. The name is usually made of the filename of the script, with
directory and file extension removed. If there are several scripts which would have the same name,
it's made unique by appending a number.

Example

The script /path/to/fooscript.lua becomes fooscript.

mp.osd_message(text [,duration])

Show an OSD message on the screen. duration is in seconds, and is optional (uses
--osd-duration by default).

Advanced mp functions
These also live in the mp module, but are documented separately as they are useful only in special
situations.

mp.suspend()

This function has been deprecated in mpv 0.21.0 and does nothing starting with mpv 0.23.0 (no
replacement).

mp.resume()

This function has been deprecated in mpv 0.21.0 and does nothing starting with mpv 0.23.0 (no
replacement).

mp.resume_all()

This function has been deprecated in mpv 0.21.0 and does nothing starting with mpv 0.23.0 (no
replacement).

mp.get_wakeup_pipe()

Calls mpv_get_wakeup_pipe() and returns the read end of the wakeup pipe. This is deprecated,
but still works. (See client.h for details.)

mp.get_next_timeout()

Return the relative time in seconds when the next timer (mp.add_timeout and similar) expires. If
there is no timer, return nil.

mp.dispatch_events([allow_wait])

This can be used to run custom event loops. If you want to have direct control what the Lua script
does (instead of being called by the default event loop), you can set the global variable

mp_event_loop to your own function running the event loop. From your event loop, you should call
mp.dispatch_events() to dequeue and dispatch mpv events.

If the allow_wait parameter is set to true, the function will block until the next event is received or
the next timer expires. Otherwise (and this is the default behavior), it returns as soon as the event
loop is emptied. It's strongly recommended to use mp.get_next_timeout() and
mp.get_wakeup_pipe() if you're interested in properly working notification of new events and
working timers.

mp.register_idle(fn)

Register an event loop idle handler. Idle handlers are called before the script goes to sleep after
handling all new events. This can be used for example to delay processing of property change
events: if you're observing multiple properties at once, you might not want to act on each property
change, but only when all change notifications have been received.

mp.unregister_idle(fn)

Undo mp.register_idle(fn). This removes all idle handlers that are equal to the fn parameter.
This uses normal Lua == comparison, so be careful when dealing with closures.

mp.enable_messages(level)

Set the minimum log level of which mpv message output to receive. These messages are normally
printed to the terminal. By calling this function, you can set the minimum log level of messages which
should be received with the log-message event. See the description of this event for details. The
level is a string, see msg.log for allowed log levels.

mp.register_script_message(name, fn)

This is a helper to dispatch script-message or script-message-to invocations to Lua functions.
fn is called if script-message or script-message-to (with this script as destination) is run with
name as first parameter. The other parameters are passed to fn. If a message with the given name is
already registered, it's overwritten.

Used by mp.add_key_binding, so be careful about name collisions.

mp.unregister_script_message(name)

Undo a previous registration with mp.register_script_message. Does nothing if the name wasn't
registered.

mp.msg functions
This module allows outputting messages to the terminal, and can be loaded with require 'mp.msg'.

msg.log(level, ...)

The level parameter is the message priority. It's a string and one of fatal, error, warn, info, v,
debug, trace. The user's settings will determine which of these messages will be visible. Normally,
all messages are visible, except v, debug and trace.

The parameters after that are all converted to strings. Spaces are inserted to separate multiple
parameters.

You don't need to add newlines.

msg.fatal(...), msg.error(...), msg.warn(...), msg.info(...), msg.verbose(...),
msg.debug(...), msg.trace(...)

All of these are shortcuts and equivalent to the corresponding msg.log(level, ...) call.

mp.options functions
mpv comes with a built-in module to manage options from config-files and the command-line. All you have
to do is to supply a table with default options to the read_options function. The function will overwrite the
default values with values found in the config-file and the command-line (in that order).

options.read_options(table [, identifier])

A table with key-value pairs. The type of the default values is important for converting the values
read from the config file or command-line back. Do not use nil as a default value!

The identifier is used to identify the config-file and the command-line options. These needs to
unique to avoid collisions with other scripts. Defaults to mp.get_script_name().

Example implementation:

require 'mp.options'
local options = {
 optionA = "defaultvalueA",
 optionB = -0.5,
 optionC = true,
}
read_options(options, "myscript")
print(options.optionA)

The config file will be stored in script-opts/identifier.conf in mpv's user folder. Comment lines
can be started with # and stray spaces are not removed. Boolean values will be represented with yes/no.

Example config:

comment
optionA=Hello World
optionB=9999
optionC=no

Command-line options are read from the --script-opts parameter. To avoid collisions, all keys have to
be prefixed with identifier-.

Example command-line:

--script-opts=myscript-optionA=TEST,myscript-optionB=0,myscript-optionC=yes

mp.utils functions
This built-in module provides generic helper functions for Lua, and have strictly speaking nothing to do
with mpv or video/audio playback. They are provided for convenience. Most compensate for Lua's scarce
standard library.

Be warned that any of these functions might disappear any time. They are not strictly part of the
guaranteed API.

utils.getcwd()

Returns the directory that mpv was launched from. On error, nil, error is returned.

utils.readdir(path [, filter])

Enumerate all entries at the given path on the filesystem, and return them as array. Each entry is a
directory entry (without the path). The list is unsorted (in whatever order the operating system returns
it).

If the filter argument is given, it must be one of the following strings:

files

List regular files only. This excludes directories, special files (like UNIX device files or
FIFOs), and dead symlinks. It includes UNIX symlinks to regular files.

dirs

List directories only, or symlinks to directories. . and .. are not included.

normal

Include the results of both files and dirs. (This is the default.)

all

List all entries, even device files, dead symlinks, FIFOs, and the . and .. entries.

On error, nil, error is returned.

utils.file_info(path)

Stats the given path for information and returns a table with the following entries:

mode

protection bits (on Windows, always 755 (octal) for directories and 644 (octal) for files)

size

size in bytes

atime

time of last access

mtime

time of last modification

ctime

time of last metadata change (Linux) / time of creation (Windows)

is_file

Whether path is a regular file (boolean)

is_dir

Whether path is a directory (boolean)

mode and size are integers. Timestamps (atime, mtime and ctime) are integer seconds since the
Unix epoch (Unix time). The booleans is_file and is_dir are provided as a convenience; they
can be and are derived from mode.

On error (eg. path does not exist), nil, error is returned.

utils.split_path(path)

Split a path into directory component and filename component, and return them. The first return value
is always the directory. The second return value is the trailing part of the path, the directory entry.

utils.join_path(p1, p2)

Return the concatenation of the 2 paths. Tries to be clever. For example, if `p2 is an absolute path,
p2 is returned without change.

utils.subprocess(t)

Runs an external process and waits until it exits. Returns process status and the captured output.

The parameter t is a table. The function reads the following entries:

args

Array of strings. The first array entry is the executable. This can be either an absolute path,
or a filename with no path components, in which case the PATH environment variable is used
to resolve the executable. The other array elements are passed as command line
arguments.

cancellable

Optional. If set to true (default), then if the user stops playback or goes to the next file while
the process is running, the process will be killed.

max_size

Optional. The maximum size in bytes of the data that can be captured from stdout. (Default:
16 MB.)

The function returns a table as result with the following entries:

status

The raw exit status of the process. It will be negative on error.

stdout

Captured output stream as string, limited to max_size.

error

nil on success. The string killed if the process was terminated in an unusual way. The
string init if the process could not be started.

On Windows, killed is only returned when the process has been killed by mpv as a result
of cancellable being set to true.

killed_by_us

Set to true if the process has been killed by mpv as a result of cancellable being set to
true.

utils.subprocess_detached(t)

Runs an external process and detaches it from mpv's control.

The parameter t is a table. The function reads the following entries:

args

Array of strings of the same semantics as the args used in the subprocess function.

The function returns nil.

utils.getpid()

Returns the process ID of the running mpv process. This can be used to identify the calling mpv when
launching (detached) subprocesses.

utils.parse_json(str [, trail])

Parses the given string argument as JSON, and returns it as a Lua table. On error, returns
nil, error. (Currently, error is just a string reading error, because there is no fine-grained error
reporting of any kind.)

The returned value uses similar conventions as mp.get_property_native() to distinguish empty
objects and arrays.

If the trail parameter is true (or any value equal to true), then trailing non-whitespace text is
tolerated by the function, and the trailing text is returned as 3rd return value. (The 3rd return value is
always there, but with trail set, no error is raised.)

utils.format_json(v)

Format the given Lua table (or value) as a JSON string and return it. On error, returns nil, error.
(Errors usually only happen on value types incompatible with JSON.)

The argument value uses similar conventions as mp.set_property_native() to distinguish
empty objects and arrays.

utils.to_string(v)

Turn the given value into a string. Formats tables and their contents. This doesn't do anything special;
it is only needed because Lua is terrible.

Events
Events are notifications from player core to scripts. You can register an event handler with
mp.register_event.

Note that all scripts (and other parts of the player) receive events equally, and there's no such thing as
blocking other scripts from receiving events.

Example:

function my_fn(event)
 print("start of playback!")
end

mp.register_event("file-loaded", my_fn)

List of events
start-file

Happens right before a new file is loaded. When you receive this, the player is loading the file (or
possibly already done with it).

end-file

Happens after a file was unloaded. Typically, the player will load the next file right away, or quit if this
was the last file.

The event has the reason field, which takes one of these values:

eof

The file has ended. This can (but doesn't have to) include incomplete files or broken network
connections under circumstances.

stop

Playback was ended by a command.

quit

Playback was ended by sending the quit command.

error

An error happened. In this case, an error field is present with the error string.

redirect

Happens with playlists and similar. Details see MPV_END_FILE_REASON_REDIRECT in the C
API.

unknown

Unknown. Normally doesn't happen, unless the Lua API is out of sync with the C API. (Likewise,
it could happen that your script gets reason strings that did not exist yet at the time your script
was written.)

file-loaded

Happens after a file was loaded and begins playback.

seek

Happens on seeking. (This might include cases when the player seeks internally, even without user
interaction. This includes e.g. segment changes when playing ordered chapters Matroska files.)

playback-restart

Start of playback after seek or after file was loaded.

idle

Idle mode is entered. This happens when playback ended, and the player was started with --idle or
--force-window. This mode is implicitly ended when the start-file or shutdown events
happen.

tick

Called after a video frame was displayed. This is a hack, and you should avoid using it. Use timers
instead and maybe watch pausing/unpausing events to avoid wasting CPU when the player is
paused.

shutdown

Sent when the player quits, and the script should terminate. Normally handled automatically. See
Details on the script initialization and lifecycle.

log-message

Receives messages enabled with mp.enable_messages. The message data is contained in the
table passed as first parameter to the event handler. The table contains, in addition to the default
event fields, the following fields:

prefix

The module prefix, identifies the sender of the message. This is what the terminal player puts in
front of the message text when using the --v option, and is also what is used for --msg-level.

level

The log level as string. See msg.log for possible log level names. Note that later versions of
mpv might add new levels or remove (undocumented) existing ones.

text

The log message. The text will end with a newline character. Sometimes it can contain multiple
lines.

Keep in mind that these messages are meant to be hints for humans. You should not parse them,
and prefix/level/text of messages might change any time.

get-property-reply

Undocumented (not useful for Lua scripts).

set-property-reply

Undocumented (not useful for Lua scripts).

command-reply

Undocumented (not useful for Lua scripts).

client-message

Undocumented (used internally).

video-reconfig

Happens on video output or filter reconfig.

audio-reconfig

Happens on audio output or filter reconfig.

The following events also happen, but are deprecated: tracks-changed, track-switched, pause,
unpause, metadata-update, chapter-change. Use mp.observe_property() instead.

Extras
This documents experimental features, or features that are "too special" to guarantee a stable interface.

mp.add_hook(type, priority, fn)

Add a hook callback for type (a string identifying a certain kind of hook). These hooks allow the
player to call script functions and wait for their result (normally, the Lua scripting interface is
asynchronous from the point of view of the player core). priority is an arbitrary integer that allows
ordering among hooks of the same kind. Using the value 50 is recommended as neutral default value.
fn is the function that will be called during execution of the hook.

See Hooks for currently existing hooks and what they do - only the hook list is interesting; handling
hook execution is done by the Lua script function automatically.

JAVASCRIPT
JavaScript support in mpv is near identical to its Lua support. Use this section as reference on differences
and availability of APIs, but otherwise you should refer to the Lua documentation for API details and
general scripting in mpv.

Example
JavaScript code which leaves fullscreen mode when the player is paused:

function on_pause_change(name, value) {
 if (value == true)
 mp.set_property("fullscreen", "no");
}
mp.observe_property("pause", "bool", on_pause_change);

Similarities with Lua
mpv tries to load a script file as JavaScript if it has a .js extension, but otherwise, the documented Lua
options, script directories, loading, etc apply to JavaScript files too.

Script initialization and lifecycle is the same as with Lua, and most of the Lua functions at the modules mp,
mp.utils, mp.msg and mp.options are available to JavaScript with identical APIs - including running
commands, getting/setting properties, registering events/key-bindings/hooks, etc.

Differences from Lua
No need to load modules. mp, mp.utils, mp.msg and mp.options are preloaded, and you can use e.g.
var cwd = mp.utils.getcwd(); without prior setup.

Errors are slightly different. Where the Lua APIs return nil for error, the JavaScript ones return
undefined. Where Lua returns something, error JavaScript returns only something - and makes
error available via mp.last_error(). Note that only some of the functions have this additional error
value - typically the same ones which have it in Lua.

Standard APIs are preferred. For instance setTimeout and JSON.stringify are available, but
mp.add_timeout and mp.utils.format_json are not.

No standard library. This means that interaction with anything outside of mpv is limited to the available
APIs, typically via mp.utils. However, some file functions were added, and CommonJS require is
available too - where the loaded modules have the same privileges as normal scripts.

Language features - ECMAScript 5
The scripting backend which mpv currently uses is MuJS - a compatible minimal ES5 interpreter. As such,
String.substring is implemented for instance, while the common but non-standard String.substr
is not. Please consult the MuJS pages on language features and platform support - http://mujs.com .

Unsupported Lua APIs and their JS alternatives
mp.add_timeout(seconds, fn) JS: id = setTimeout(fn, ms)

mp.add_periodic_timer(seconds, fn) JS: id = setInterval(fn, ms)

utils.parse_json(str [, trail]) JS: JSON.parse(str)

utils.format_json(v) JS: JSON.stringify(v)

utils.to_string(v) see dump below.

http://mujs.com

mp.suspend() JS: none (deprecated).

mp.resume() JS: none (deprecated).

mp.resume_all() JS: none (deprecated).

mp.get_next_timeout() see event loop below.

mp.dispatch_events([allow_wait]) see event loop below.

Scripting APIs - identical to Lua
(LE) - Last-Error, indicates that mp.last_error() can be used after the call to test for success (empty
string) or failure (non empty reason string). Otherwise, where the Lua APIs return nil on error, JS returns
undefined.

mp.command(string) (LE)

mp.commandv(arg1, arg2, ...) (LE)

mp.command_native(table [,def]) (LE)

mp.get_property(name [,def]) (LE)

mp.get_property_osd(name [,def]) (LE)

mp.get_property_bool(name [,def]) (LE)

mp.get_property_number(name [,def]) (LE)

mp.get_property_native(name [,def]) (LE)

mp.set_property(name, value) (LE)

mp.set_property_bool(name, value) (LE)

mp.set_property_number(name, value) (LE)

mp.set_property_native(name, value) (LE)

mp.get_time()

mp.add_key_binding(key, name|fn [,fn [,flags]])

mp.add_forced_key_binding(...)

mp.remove_key_binding(name)

mp.register_event(name, fn)

mp.unregister_event(fn)

mp.observe_property(name, type, fn)

mp.unobserve_property(fn)

mp.get_opt(key)

mp.get_script_name()

mp.osd_message(text [,duration])

mp.get_wakeup_pipe()

mp.register_idle(fn)

mp.unregister_idle(fn)

mp.enable_messages(level)

mp.register_script_message(name, fn)

mp.unregister_script_message(name)

mp.msg.log(level, ...)

mp.msg.fatal(...)

mp.msg.error(...)

mp.msg.warn(...)

mp.msg.info(...)

mp.msg.verbose(...)

mp.msg.debug(...)

mp.msg.trace(...)

mp.utils.getcwd() (LE)

mp.utils.readdir(path [, filter]) (LE)

mp.utils.file_info(path) (LE)

mp.utils.split_path(path)

mp.utils.join_path(p1, p2)

mp.utils.subprocess(t)

mp.utils.subprocess_detached(t)

mp.utils.getpid() (LE)

mp.add_hook(type, priority, fn)

mp.options.read_options(obj [, identifier]) (types: string/boolean/number)

Additional utilities
mp.last_error()

If used after an API call which updates last error, returns an empty string if the API call succeeded, or
a non-empty error reason string otherwise.

Error.stack (string)

When using try { ... } catch(e) { ... }, then e.stack is the stack trace of the error - if it
was created using the Error(...) constructor.

print (global)

A convenient alias to mp.msg.info.

dump (global)

Like print but also expands objects and arrays recursively.

mp.utils.getenv(name)

Returns the value of the host environment variable name, or undefined if the variable is not defined.

mp.utils.get_user_path(path)

Expands (mpv) meta paths like ~/x, ~~/y, ~~desktop/z etc. read_file, write_file and
require already use this internaly.

mp.utils.read_file(fname [,max])

Returns the content of file fname as string. If max is provided and not negative, limit the read to max
bytes.

mp.utils.write_file(fname, str)

(Over)write file fname with text content str. fname must be prefixed with file:// as simple
protection against accidental arguments switch, e.g.
mp.utils.write_file("file://~/abc.txt", "hello world").

Note: read_file and write_file throw on errors, allow text content only.

mp.get_time_ms()

Same as mp.get_time() but in ms instead of seconds.

mp.get_script_file()

Returns the file name of the current script.

exit() (global)

Make the script exit at the end of the current event loop iteration. Note: please remove added key
bindings before calling exit().

mp.utils.compile_js(fname, content_str)

Compiles the JS code content_str as file name fname (without loading anything from the
filesystem), and returns it as a function. Very similar to a Function constructor, but shows at stack
traces as fname.

Timers (global)
The standard HTML/node.js timers are available:

id = setTimeout(fn [,duration [,arg1 [,arg2...]]])

id = setTimeout(code_string [,duration])

clearTimeout(id)

id = setInterval(fn [,duration [,arg1 [,arg2...]]])

id = setInterval(code_string [,duration])

clearInterval(id)

setTimeout and setInterval return id, and later call fn (or execute code_string) after duration
ms. Interval also repeat every duration.

duration has a minimum and default value of 0, code_string is a plain string which is evaluated as JS
code, and [,arg1 [,arg2..]] are used as arguments (if provided) when calling back fn.

The clear...(id) functions cancel timer id, and are irreversible.

Note: timers always call back asynchronously, e.g. setTimeout(fn) will never call fn before returning.
fn will be called either at the end of this event loop iteration or at a later event loop iteration. This is true
also for intervals - which also never call back twice at the same event loop iteration.

Additionally, timers are processed after the event queue is empty, so it's valid to use setTimeout(fn) as
a one-time idle observer.

CommonJS modules and require(id)
CommonJS Modules are a standard system where scripts can export common functions for use by other
scripts. A module is a script which adds properties (functions, etc) to its invisible exports object, which
another script can access by loading it with require(module-id) - which returns that exports object.

Modules and require are supported, standard compliant, and generally similar to node.js. However,
most node.js modules won't run due to missing modules such as fs, process, etc, but some node.js
modules with minimal dependencies do work. In general, this is for mpv modules and not a node.js
replacement.

A .js file extension is always added to id, e.g. require("./foo") will load the file ./foo.js and
return its exports object.

An id is relative (to the script which require'd it) if it starts with ./ or ../. Otherwise, it's considered a
"top-level id" (CommonJS term).

Top level id is evaluated as absolute filesystem path if possible (e.g. /x/y or ~/x). Otherwise, it's
searched at scripts/modules.js/ in mpv config dirs - in normal config search order. E.g.
require("x") is searched as file x.js at those dirs, and id foo/x is searched as file foo/x.js.

No global variable, but a module's this at its top lexical scope is the global object - also in strict mode.
If you have a module which needs global as the global object, you could do this.global = this;
before require.

Functions and variables declared at a module don't pollute the global object.

The event loop
The event loop poll/dispatch mpv events as long as the queue is not empty, then processes the timers,
then waits for the next event, and repeats this forever.

You could put this code at your script to replace the built-in event loop, and also print every event which
mpv sends to your script:

function mp_event_loop() {
 var wait = 0;
 do {
 var e = mp.wait_event(wait);
 dump(e); // there could be a lot of prints...
 if (e.event != "none") {
 mp.dispatch_event(e);
 wait = 0;
 } else {
 wait = mp.process_timers() / 1000;
 if (wait != 0) {
 mp.notify_idle_observers();
 wait = mp.peek_timers_wait() / 1000;
 }
 }
 } while (mp.keep_running);
}

mp_event_loop is a name which mpv tries to call after the script loads. The internal implementation is
similar to this (without dump though..).

e = mp.wait_event(wait) returns when the next mpv event arrives, or after wait seconds if positive
and no mpv events arrived. wait value of 0 returns immediately (with e.event == "none" if the queue
is empty).

mp.dispatch_event(e) calls back the handlers registered for e.event, if there are such (event
handlers, property observers, script messages, etc).

mp.process_timers() calls back the already-added, non-canceled due timers, and returns the duration
in ms till the next due timer (possibly 0), or -1 if there are no pending timers. Must not be called recursively.

mp.notify_idle_observers() calls back the idle observers, which we do when we're about to sleep
(wait != 0), but the observers may add timers or take non-negligible duration to complete, so we
re-calculate wait afterwards.

mp.peek_timers_wait() returns the same values as mp.process_timers() but without doing
anything. Invalid result if called from a timer callback.

Note: exit() is also registered for the shutdown event, and its implementation is a simple
mp.keep_running = false.

JSON IPC
mpv can be controlled by external programs using the JSON-based IPC protocol. It can be enabled by
specifying the path to a unix socket or a named pipe using the option --input-ipc-server. Clients can
connect to this socket and send commands to the player or receive events from it.

Warning

This is not intended to be a secure network protocol. It is explicitly insecure: there is no
authentication, no encryption, and the commands themselves are insecure too. For example, the
run command is exposed, which can run arbitrary system commands. The use-case is controlling
the player locally. This is not different from the MPlayer slave protocol.

Socat example
You can use the socat tool to send commands (and receive replies) from the shell. Assuming mpv was
started with:

mpv file.mkv --input-ipc-server=/tmp/mpvsocket

Then you can control it using socat:

> echo '{ "command": ["get_property", "playback-time"] }' | socat - /tmp/mpvsocket
{"data":190.482000,"error":"success"}

In this case, socat copies data between stdin/stdout and the mpv socket connection.

See the --idle option how to make mpv start without exiting immediately or playing a file.

It's also possible to send input.conf style text-only commands:

> echo 'show-text ${playback-time}' | socat - /tmp/mpvsocket

But you won't get a reply over the socket. (This particular command shows the playback time on the
player's OSD.)

Command Prompt example
Unfortunately, it's not as easy to test the IPC protocol on Windows, since Windows ports of socat (in
Cygwin and MSYS2) don't understand named pipes. In the absence of a simple tool to send and receive
from bidirectional pipes, the echo command can be used to send commands, but not receive replies from
the command prompt.

Assuming mpv was started with:

mpv file.mkv --input-ipc-server=\\.\pipe\mpvsocket

You can send commands from a command prompt:

echo show-text ${playback-time} >\\.\pipe\mpvsocket

To be able to simultaneously read and write from the IPC pipe, like on Linux, it's necessary to write an
external program that uses overlapped file I/O (or some wrapper like .NET's NamedPipeClientStream.)

Protocol
Clients can execute commands on the player by sending JSON messages of the following form:

{ "command": ["command_name", "param1", "param2", ...] }

where command_name is the name of the command to be executed, followed by a list of parameters.
Parameters must be formatted as native JSON values (integers, strings, booleans, ...). Every message
must be terminated with \n. Additionally, \n must not appear anywhere inside the message. In practice
this means that messages should be minified before being sent to mpv.

mpv will then send back a reply indicating whether the command was run correctly, and an additional field
holding the command-specific return data (it can also be null).

{ "error": "success", "data": null }

mpv will also send events to clients with JSON messages of the following form:

{ "event": "event_name" }

where event_name is the name of the event. Additional event-specific fields can also be present. See List
of events for a list of all supported events.

Because events can occur at any time, it may be difficult at times to determine which response goes with
which command. Commands may optionally include a request_id which, if provided in the command
request, will be copied verbatim into the response. mpv does not intrepret the request_id in any way; it
is solely for the use of the requester.

For example, this request:

{ "command": ["get_property", "time-pos"], "request_id": 100 }

Would generate this response:

{ "error": "success", "data": 1.468135, "request_id": 100 }

All commands, replies, and events are separated from each other with a line break character (\n).

If the first character (after skipping whitespace) is not {, the command will be interpreted as non-JSON text
command, as they are used in input.conf (or mpv_command_string() in the client API). Additionally,
lines starting with # and empty lines are ignored.

Currently, embedded 0 bytes terminate the current line, but you should not rely on this.

Commands
In addition to the commands described in List of Input Commands, a few extra commands can also be
used as part of the protocol:

client_name

Return the name of the client as string. This is the string ipc-N with N being an integer number.

get_time_us

Return the current mpv internal time in microseconds as a number. This is basically the system time,
with an arbitrary offset.

get_property

Return the value of the given property. The value will be sent in the data field of the replay message.

Example:

{ "command": ["get_property", "volume"] }
{ "data": 50.0, "error": "success" }

get_property_string

Like get_property, but the resulting data will always be a string.

Example:

{ "command": ["get_property_string", "volume"] }
{ "data": "50.000000", "error": "success" }

set_property

Set the given property to the given value. See Properties for more information about properties.

Example:

{ "command": ["set_property", "pause", true] }
{ "error": "success" }

set_property_string

Like set_property, but the argument value must be passed as string.

Example:

{ "command": ["set_property_string", "pause", "yes"] }
{ "error": "success" }

observe_property

Watch a property for changes. If the given property is changed, then an event of type
property-change will be generated

Example:

{ "command": ["observe_property", 1, "volume"] }
{ "error": "success" }
{ "event": "property-change", "id": 1, "data": 52.0, "name": "volume" }

Warning

If the connection is closed, the IPC client is destroyed internally, and the observed properties
are unregistered. This happens for example when sending commands to a socket with
separate socat invocations. This can make it seem like property observation does not work.
You must keep the IPC connection open to make it work.

observe_property_string

Like observe_property, but the resulting data will always be a string.

Example:

{ "command": ["observe_property_string", 1, "volume"] }
{ "error": "success" }
{ "event": "property-change", "id": 1, "data": "52.000000", "name": "volume" }

unobserve_property

Undo observe_property or observe_property_string. This requires the numeric id passed to
the observed command as argument.

Example:

{ "command": ["unobserve_property", 1] }
{ "error": "success" }

request_log_messages

Enable output of mpv log messages. They will be received as events. The parameter to this command
is the log-level (see mpv_request_log_messages C API function).

Log message output is meant for humans only (mostly for debugging). Attempting to retrieve
information by parsing these messages will just lead to breakages with future mpv releases. Instead,
make a feature request, and ask for a proper event that returns the information you need.

enable_event, disable_event

Enables or disables the named event. Mirrors the mpv_request_event C API function. If the string
all is used instead of an event name, all events are enabled or disabled.

By default, most events are enabled, and there is not much use for this command.

get_version

Returns the client API version the C API of the remote mpv instance provides.

See also: DOCS/client-api-changes.rst.

UTF-8
Normally, all strings are in UTF-8. Sometimes it can happen that strings are in some broken encoding
(often happens with file tags and such, and filenames on many Unixes are not required to be in UTF-8
either). This means that mpv sometimes sends invalid JSON. If that is a problem for the client
application's parser, it should filter the raw data for invalid UTF-8 sequences and perform the desired
replacement, before feeding the data to its JSON parser.

mpv will not attempt to construct invalid UTF-8 with broken escape sequences.

CHANGELOG
There is no real changelog, but you can look at the following things:

• The release changelog, which should contain most user-visible changes, including new features and
bug fixes:

https://github.com/mpv-player/mpv/releases

• The git log, which is the "real" changelog

• The files client-api-changes.rst and interface-changes.rst in the DOCS sub directoryon
the git repository, which document API and user interface changes (the latter usually documents
breaking changes only, rather than additions).

• The file mplayer-changes.rst in the DOCS sub directory on the git repository, which used to be in
place of this section. It documents some changes that happened since mplayer2 forked off MPlayer.
(Not updated anymore.)

https://github.com/mpv-player/mpv/releases

EMBEDDING INTO OTHER PROGRAMS (LIBMPV)
mpv can be embedded into other programs as video/audio playback backend. The recommended way to
do so is using libmpv. See libmpv/client.h in the mpv source code repository. This provides a C API.
Bindings for other languages might be available (see wiki).

Since libmpv merely allows access to underlying mechanisms that can control mpv, further documentation
is spread over a few places:

• https://github.com/mpv-player/mpv/blob/master/libmpv/client.h

• http://mpv.io/manual/master/#options

• http://mpv.io/manual/master/#list-of-input-commands

• http://mpv.io/manual/master/#properties

• https://github.com/mpv-player/mpv-examples/tree/master/libmpv

https://github.com/mpv-player/mpv/blob/master/libmpv/client.h
http://mpv.io/manual/master/#options
http://mpv.io/manual/master/#list-of-input-commands
http://mpv.io/manual/master/#properties
https://github.com/mpv-player/mpv-examples/tree/master/libmpv

C PLUGINS
You can write C plugins for mpv. These use the libmpv API, although they do not use the libmpv library
itself.

Currently, they must be explicitly enabled at build time with --enable-cplugins. They are available on
Linux/BSD platforms only.

C plugins location
C plugins are put into the mpv scripts directory in its config directory (see the FILES section for details).
They must have a .so file extension. They can also be explicitly loaded with the --script option.

API
A C plugin must export the following function:

int mpv_open_cplugin(mpv_handle *handle)

The plugin function will be called on loading time. This function does not return as long as your plugin is
loaded (it runs in its own thread). The handle will be deallocated as soon as the plugin function returns.

The return value is interpreted as error status. A value of 0 is interpreted as success, while -1 signals an
error. In the latter case, the player prints an uninformative error message that loading failed.

Return values other than 0 and -1 are reserved, and trigger undefined behavior.

Within the plugin function, you can call libmpv API functions. The handle is created by
mpv_create_client() (or actually an internal equivalent), and belongs to you. You can call
mpv_wait_event() to wait for things happening, and so on.

Note that the player might block until your plugin calls mpv_wait_event() for the first time. This gives
you a chance to install initial hooks etc. before playback begins.

The details are quite similar to Lua scripts.

Linkage to libmpv
The current implementation requires that your plugins are not linked against libmpv. What your plugins
uses are not symbols from a libmpv binary, but symbols from the mpv host binary.

Examples
See:

• https://github.com/mpv-player/mpv-examples/tree/master/cplugins

https://github.com/mpv-player/mpv-examples/tree/master/cplugins

ENVIRONMENT VARIABLES
There are a number of environment variables that can be used to control the behavior of mpv.

HOME, XDG_CONFIG_HOME

Used to determine mpv config directory. If XDG_CONFIG_HOME is not set, $HOME/.config/mpv is
used.

$HOME/.mpv is always added to the list of config search paths with a lower priority.

XDG_CONFIG_DIRS

If set, XDG-style system configuration directories are used. Otherwise, the UNIX convention
(PREFIX/etc/mpv/) is used.

MPV_HOME

Directory where mpv looks for user settings. Overrides HOME, and mpv will try to load the config file as
$MPV_HOME/mpv.conf.

MPV_VERBOSE (see also -v and --msg-level)

Set the initial verbosity level across all message modules (default: 0). This is an integer, and the
resulting verbosity corresponds to the number of --v options passed to the command line.

MPV_LEAK_REPORT

If set to 1, enable internal talloc leak reporting.

LADSPA_PATH

Specifies the search path for LADSPA plugins. If it is unset, fully qualified path names must be used.

DISPLAY

Standard X11 display name to use.

FFmpeg/Libav:

This library accesses various environment variables. However, they are not centrally documented,
and documenting them is not our job. Therefore, this list is incomplete.

Notable environment variables:

http_proxy

URL to proxy for http:// and https:// URLs.

no_proxy

List of domain patterns for which no proxy should be used. List entries are separated by ,.
Patterns can include *.

libdvdcss:

DVDCSS_CACHE

Specify a directory in which to store title key values. This will speed up descrambling of DVDs
which are in the cache. The DVDCSS_CACHE directory is created if it does not exist, and a
subdirectory is created named after the DVD's title or manufacturing date. If DVDCSS_CACHE is
not set or is empty, libdvdcss will use the default value which is ${HOME}/.dvdcss/ under Unix
and the roaming application data directory (%APPDATA%) under Windows. The special value "off"
disables caching.

DVDCSS_METHOD

Sets the authentication and decryption method that libdvdcss will use to read scrambled discs.
Can be one of title, key or disc.

key

is the default method. libdvdcss will use a set of calculated player keys to try to get the disc
key. This can fail if the drive does not recognize any of the player keys.

disc

is a fallback method when key has failed. Instead of using player keys, libdvdcss will crack
the disc key using a brute force algorithm. This process is CPU intensive and requires 64
MB of memory to store temporary data.

title

is the fallback when all other methods have failed. It does not rely on a key exchange with
the DVD drive, but rather uses a crypto attack to guess the title key. On rare cases this may
fail because there is not enough encrypted data on the disc to perform a statistical attack,
but on the other hand it is the only way to decrypt a DVD stored on a hard disc, or a DVD
with the wrong region on an RPC2 drive.

DVDCSS_RAW_DEVICE

Specify the raw device to use. Exact usage will depend on your operating system, the Linux
utility to set up raw devices is raw(8) for instance. Please note that on most operating systems,
using a raw device requires highly aligned buffers: Linux requires a 2048 bytes alignment (which
is the size of a DVD sector).

DVDCSS_VERBOSE

Sets the libdvdcss verbosity level.

0: Outputs no messages at all.

1: Outputs error messages to stderr.

2: Outputs error messages and debug messages to stderr.

DVDREAD_NOKEYS

Skip retrieving all keys on startup. Currently disabled.

HOME

FIXME: Document this.

EXIT CODES
Normally mpv returns 0 as exit code after finishing playback successfully. If errors happen, the following
exit codes can be returned:

1: Error initializing mpv. This is also returned if unknown options are passed to
mpv.

2: The file passed to mpv couldn't be played. This is somewhat fuzzy: currently,
playback of a file is considered to be successful if initialization was mostly
successful, even if playback fails immediately after initialization.

3: There were some files that could be played, and some files which couldn't
(using the definition of success from above).

4: Quit due to a signal, Ctrl+c in a VO window (by default), or from the default quit
key bindings in encoding mode.

Note that quitting the player manually will always lead to exit code 0, overriding the exit code that would be
returned normally. Also, the quit input command can take an exit code: in this case, that exit code is
returned.

FILES
For Windows-specifics, see FILES ON WINDOWS section.

/usr/local/etc/mpv/mpv.conf

mpv system-wide settings (depends on --prefix passed to configure - mpv in default configuration
will use /usr/local/etc/mpv/ as config directory, while most Linux distributions will set it to
/etc/mpv/).

~/.config/mpv/mpv.conf

mpv user settings (see CONFIGURATION FILES section)

~/.config/mpv/input.conf

key bindings (see INPUT.CONF section)

~/.config/mpv/fonts.conf

Fontconfig fonts.conf that is customized for mpv. You should include system fonts.conf in this file or
mpv would not know about fonts that you already have in the system.

Only available when libass is built with fontconfig.

~/.config/mpv/subfont.ttf

fallback subtitle font

~/.config/mpv/fonts/

Font files in this directory are used by mpv/libass for subtitles. Useful if you do not want to install fonts
to your system. Note that files in this directory are loaded into memory before being used by mpv. If
you have a lot of fonts, consider using fonts.conf (see above) to include additional fonts, which is
more memory-efficient.

~/.config/mpv/scripts/

All files in this directory are loaded as if they were passed to the --script option. They are loaded in
alphabetical order, and sub-directories and files with no .lua extension are ignored. The
--load-scripts=no option disables loading these files.

~/.config/mpv/watch_later/

Contains temporary config files needed for resuming playback of files with the watch later feature. See
for example the Q key binding, or the quit-watch-later input command.

Each file is a small config file which is loaded if the corresponding media file is loaded. It contains the
playback position and some (not necessarily all) settings that were changed during playback. The
filenames are hashed from the full paths of the media files. It's in general not possible to extract the
media filename from this hash. However, you can set the
--write-filename-in-watch-later-config option, and the player will add the media filename
to the contents of the resume config file.

~/.config/mpv/script-opts/osc.conf

This is loaded by the OSC script. See the ON SCREEN CONTROLLER docs for details.

Other files in this directory are specific to the corresponding scripts as well, and the mpv core doesn't
touch them.

Note that the environment variables $XDG_CONFIG_HOME and $MPV_HOME can override the standard
directory ~/.config/mpv/.

Also, the old config location at ~/.mpv/ is still read, and if the XDG variant does not exist, will still be
preferred.

FILES ON WINDOWS
On win32 (if compiled with MinGW, but not Cygwin), the default config file locations are different. They are
generally located under %APPDATA%/mpv/. For example, the path to mpv.conf is
%APPDATA%/mpv/mpv.conf, which maps to a system and user-specific path, for example

C:\users\USERNAME\AppData\Roaming\mpv\mpv.conf

You can find the exact path by running echo %APPDATA%\mpv\mpv.conf in cmd.exe.

Other config files (such as input.conf) are in the same directory. See the FILES section above.

The environment variable $MPV_HOME completely overrides these, like on UNIX.

If a directory named portable_config next to the mpv.exe exists, all config will be loaded from this
directory only. Watch later config files are written to this directory as well. (This exists on Windows only
and is redundant with $MPV_HOME. However, since Windows is very scripting unfriendly, a wrapper script
just setting $MPV_HOME, like you could do it on other systems, won't work. portable_config is provided
for convenience to get around this restriction.)

Config files located in the same directory as mpv.exe are loaded with lower priority. Some config files are
loaded only once, which means that e.g. of 2 input.conf files located in two config directories, only the
one from the directory with higher priority will be loaded.

A third config directory with the lowest priority is the directory named mpv in the same directory as
mpv.exe. This used to be the directory with the highest priority, but is now discouraged to use and might
be removed in the future.

Note that mpv likes to mix / and \ path separators for simplicity. kernel32.dll accepts this, but cmd.exe
does not.

	SYNOPSIS
	DESCRIPTION
	INTERACTIVE CONTROL
	Keyboard Control
	Mouse Control

	USAGE
	Legacy option syntax
	Escaping spaces and other special characters
	Paths
	Per-File Options
	List Options
	Playing DVDs

	CONFIGURATION FILES
	Location and Syntax
	Escaping spaces and special characters
	Putting Command Line Options into the Configuration File
	File-specific Configuration Files
	Profiles
	Auto profiles

	TAKING SCREENSHOTS
	TERMINAL STATUS LINE
	LOW LATENCY PLAYBACK
	PROTOCOLS
	PSEUDO GUI MODE
	OPTIONS
	Track Selection
	Playback Control
	Program Behavior
	Video
	Audio
	Subtitles
	Window
	Disc Devices
	Equalizer
	Demuxer
	Input
	OSD
	Screenshot
	Software Scaler
	Audio Resampler
	Terminal
	TV
	Cache
	Network
	DVB
	ALSA audio output options
	GPU renderer options
	Miscellaneous

	AUDIO OUTPUT DRIVERS
	VIDEO OUTPUT DRIVERS
	AUDIO FILTERS
	VIDEO FILTERS
	ENCODING
	COMMAND INTERFACE
	input.conf
	General Input Command Syntax
	List of Input Commands
	Input Commands that are Possibly Subject to Change
	Hooks
	Legacy hook API

	Input Command Prefixes
	Input Sections
	Properties
	Property list
	Inconsistencies between options and properties
	Property Expansion
	Raw and Formatted Properties

	ON SCREEN CONTROLLER
	Using the OSC
	The Interface
	Key Bindings

	Configuration
	Config Syntax
	Command-line Syntax
	Configurable Options
	Script Commands

	STATS
	Usage
	Font

	Configuration
	Configurable Options
	Different key bindings

	LUA SCRIPTING
	Example
	Details on the script initialization and lifecycle
	mp functions
	Advanced mp functions
	mp.msg functions
	mp.options functions
	mp.utils functions
	Events
	List of events
	Extras

	JAVASCRIPT
	Example
	Similarities with Lua
	Differences from Lua
	Language features - ECMAScript 5
	Unsupported Lua APIs and their JS alternatives
	Scripting APIs - identical to Lua
	Additional utilities
	Timers (global)
	CommonJS modules and require(id)
	The event loop

	JSON IPC
	Socat example
	Command Prompt example
	Protocol
	Commands
	UTF-8

	CHANGELOG
	EMBEDDING INTO OTHER PROGRAMS (LIBMPV)
	C PLUGINS
	C plugins location
	API
	Linkage to libmpv
	Examples

	ENVIRONMENT VARIABLES
	EXIT CODES
	FILES
	FILES ON WINDOWS

