
Iso2flux Manual
Installation ... 1

Scripts .. 1

create_iso2flux_model.py ... 1

solve_iso2flux_label.py ... 2

integrate_gene_expression_py ... 3

p13cmfa.py .. 3

get_intervals.py ... 4

Inputs formats ... 5

Constraint Based model file .. 5

The label propagation rules (Mandatory): .. 5

Experimental data file ... 7

Constraints file (optional): .. 8

Gene expression file: ... 8

Using the command line script: .. 8

Installation
Iso2flux source code can be downloaded from GitHub at

https://github.com/cfoguet/iso2flux.git@master#egg=iso2flux

Iso2flux requires the following python packages available from PyPI - the Python Package

Index:

• Cython

• python-libsbml

• openpyxl

• numpy

• scipy

• lxml

• cobra

• pygmo

Scripts
The iso2flux installation includes several command lines scripts that are used to run iso2flux:

create_iso2flux_model.py
This script creates a iso2flux 13C propagation model object. This object is used as input for the

other scripts.

It takes the following command line arguments:

--experimental_data_file=, -e (Mandatory): Path to the file describing the labelled substrates

used and the quantified isotopologue fractions in metabolic products. See here.

https://github.com/cfoguet/iso2flux.git@master#egg=iso2flux

--label_propagation_rules=,-l (Mandatory) : Path to the file describing the label propagation

rules. See here

--constraint_based_model=,-c (Mandatory) Path to the constraint based model that will be

used in the analysis. See here

--flux_constraints=,-f (Optional):Path the file defining additional constraints for the

constraint_based_model. See here

--max_reversible_turnover=,-t (Optional) : Maximum reversible reaction turnover allowed.

Reversible reaction turnover is defined as the flux that is common to the forward (Jf) and

reverse (Jr) reactions in a reversible reaction. Default is 20.

--output_prefix=,-o (Optional): Used to define a prefix that will be added to all output files. It

can be used both to name the outputs and to select the directory where the outputs will be

saved (directory must already exist). If left empty the name of the experimental_data_file will

be used.

--eqn_dir=,-q (Optional): Used to define the directory where iso2flux equations will be saved.

 -v,--validate (Optional): If this flag is used iso2flux will validate if the label propagation rules

are properly coupled to the constraint based model. If validation fails it is usually a sign that

there is an error in the label propagation rules file. This mode will not create normal iso2flux

inputs. To create a iso2flux model run the script without this flag.

The main outputs (when not run with the -v flag) will be an iso2flux model (.iso2flux) file and a

set of files associated to it. As a general rule, the files generated should not be manually

edited or altered. The exception is the flux_penalty.csv file which can be used to set the flux

minimization weights used by the p13cmfa script.

solve_iso2flux_label.py
This script will run standard 13C MFA on a iso2flux model and provide the optimal flux

distribution. Iso2flux uses the PyGMO generalized island-model. Under this model there are

several “islands” (each running on a processor thread) and on each island, there is a

population of solutions vectors evolves. After a n number of generations, the best solutions

migrate across islands. Some of the parameters of the script are used to define the

characteristics this island-model. The parameters that can be taken by the script are:

--iso2flux_model_file=,-I (mandatory): path to the iso2flux model that will be solved. Iso2flux

model can be created with the create_iso2flux_model.py and has “.iso2flux” as extension.

--output_prefix=","-o= (optional): Used to define a prefix that will be added to all output files.

It can be used both to name the outputs and to select the directory where the outputs will be

saved (directory must already exist)

--number_of_processes=,-n(optional): Number of islands (processes) that will be used in the

optimization. Should not be larger than the number of processor threads. Default is 4.

--population_size=(optional),-p(optional): Size of the population in each island. Default is 20.

--generations_per_cycle=,-g(optional): Number of generations that each island will evolve

before exchanging individuals with other islands. Default is 200.

--max_cycles_without_improvement=,-m (optional): Maximum number of cycles without a

significant improvement of the objective function. When this number is reached the algorithm

will stop. Default is 9

integrate_gene_expression_py
This script uses gene expression data to set add additional minimization weights to reactions

with gene expression bellow a given threshold.

--iso2flux_model_file=,-i (mandatory): path to the iso2flux model that will be solved. Iso2flux

model can be created with the create_iso2flux_model.py and has “.iso2flux” as extension.

--gene_expression_file=,-g(optional): path to the file with gene expression data. See here

--output_flux_penalty_file=,-o(optional): Used to define a prefix that will be added to the

output flux penalty file. It can be used both to name the output and to select the directory

where the output will be saved (directory must already exist)

--reference_flux_penalty_file=,-f(optional): path to the reference flux_penalty_file, gene

expression penalties will use the values defined in this file as a starting point. Default is the

default reference_flux_penalty_file associated to the iso2flux_model loaded.

--gene_prefix==,-p (optional): prefix of that the constraint based model uses for genes (e.g

gene_) that is not present in the gene_expression_file. Default is empty (no prefix)

--gene_sufix==,-s (optional): suffix of that the constraint based model uses for genes (_at) that

is not present in the gene_expression_file. Default is empty (no suffix)

--remove_penalty_for_spontaneous,-r (Optional): If this flag is set the penalty for reactions not

associated to a gene will be 0

p13cmfa.py
--iso2flux_model_file=,-I (mandatory): path to the iso2flux model where p13cmfa will be

applied. Generally, the selected Iso2flux model should be the one generated by the

solve_iso2flux_label.py script to use the 13CMFA solution as starting point.

--output_prefix=","-o= (optional): Used to define a prefix that will be added to all output files.

It can be used both to name the outputs and to select the directory where the outputs will be

saved (directory must already exist)

--number_of_processes=,-n(optional): Number of islands (processes) that will be used in the

optimization. Should not be larger than the number of processor threads. Default is 4.

--population_size=(optional),-p(optional): Size of the population in each island. Default is 20.

--generations_per_cycle=,-g(optional): Number of generations that each island will evolve

before exchanging individuals with other islands. Default is 200.

--max_cycles_without_improvement=,-m (optional): Maximum number of cycles without a

significant improvement of the objective function. When this number is reached the algorithm

will stop. Default is 9

--flux_penalty_file=,-f (optional): path to the flux_penalty_file, this file defines the weight

given to the minimization of each flux.

--absolute, -a (optional) If this flag is used the tolerance will be used as an absolute tolerance

 --tolerance_of_label_objective=,-t(optional): Tolerance of the primary 13C MFA objective in the

p13cmfa optimization. If the absolute flag is not used the maximum primary objective allowed

value will be the optimal value of the primary objective plus the tolerance_of_label_objective.

The optimal value of the primary objective will be taken from the iso2flux_model_file if

solve_iso2flux_label.py has been run with this model. Alternatively, 13C MFA will be run to find

the optimal value of the primary objective. If the absolute flag is used, the

tolerance_of_label_objective will be the absolute maximum value allowed for the primary

objective. Default is 3.84

--starting_flux_value,-s (optional): Initial estimation of the minimal flux value, the script will only

sample solutions bellow or equal this value. Default is 1e6

--cycles=,-c (optional): number of iterations that the script should be run. In complex models the

script might not be able to find the absolute minimum in just one iteration, running several

iterations increases the likelihood that the absolute minimum has been found.

get_intervals.py
This script works similar to the p13cmfa.py script but instead of minimizing fluxes it minimizes

and maximizes each flux individually to estimate the variation interval for each flux.

--iso2flux_model_file=,-I (mandatory): path to the iso2flux model.

--output_prefix=","-o= (optional): Used to define a prefix that will be added to all output files.

It can be used both to name the outputs and to select the directory where the outputs will be

saved (directory must already exist)

--number_of_processes=,-n(optional): Number of islands (processes) that will be used in the

optimization. Should not be larger than the number of processor threads. Default is 4.

--population_size=(optional),-p(optional): Size of the population in each island. Default is 20.

--generations_per_cycle=,-g(optional): Number of generations that each island will evolve

before exchanging individuals with other islands. Default is 200.

--max_cycles_without_improvement=,-m (optional): Maximum number of cycles without a

significant improvement of the objective function. When this number is reached the algorithm

will stop. Default is 9

--absolute, -a (optional) If this flag is used the tolerance will be used as an absolute tolerance

 --tolerance_of_label_objective=,-t(optional): Tolerance of the primary 13C MFA objective in the

interval estimation. If the absolute flag is not used the maximum primary objective allowed value

will be the optimal value of the primary objective plus the tolerance_of_label_objective. The

optimal value of the primary objective will be taken from the iso2flux_model_file if

solve_iso2flux_label.py has been run with this model. Alternatively, 13C MFA will be run to find

the optimal value of the primary objective. If the absolute flag is used, the

tolerance_of_label_objective will be the absolute maximum value allowed for the primary

objective. Default is 3.84

Inputs formats

Constraint Based model file
 A CBM that provides the complete metabolic network stoichiometry, the default flux bounds

and the gene-protein-reaction association used to integrate gene expression data. The CBM

will be used to compute valid steady state flux distributions. The CBM can be entered either as

a SBML file or as a CSV o XLSX file. An example of the information that should be included in

CSV or XLSX file is provided bellow.

• A: Reactions (Mandatory): Describes the reactions of the CBM

o Reaction ID (Mandatory): ID that will be given to the reaction. ID must be unique

to a given reaction

o Stoichiometry (Mandatory): Stoichiometry of the reaction

o Reaction Name (Optional): Name of the reaction

o Lower Bound (Optional): Minimal value of the flux through the reaction

o Upper bound (Optional): Maximal value of the flux through the reaction

o Gene rules: Indicates the genes associated to each reaction following the standard

gene protein reaction (GPR) notation.

• B: Metabolites (Optional): Describes the metabolites in the CBM. If they are not defined

they will be automatically identified from the reaction stoichiometry.

o Metabolite ID: ID of the metabolite, must appear at least once in the stoichiometry

of one the reactions defined.

o Metabolite Name: Name of the metabolite

o Metabolite Formula: Empirical formula of the metabolite

o Compartment: Cellular compartment where the metabolite is found

The label propagation rules (Mandatory):

A XLSX or CSV file that defines how label is propagated in the model. It contains 2 type of

information, metabolites where label can propagate and its attributes and reactions that

propagate label and its attributes. An example indicating the different options is provided

bellow

A

B

A Metabolites where label is propagated: Contains the following information:

• Metabolite/s: ID(s) of the metabolites that can propagate label. Should be the same

• metabolite IDs used in the CBM. When several IDs are entered separated by a coma it

indicates that these metabolites should be grouped into a single label pool

• Nº Carbons: Number of positions that can contain labelled atoms. If left empty it will

automatically get the number of carbons from the empirical formula defined in the CBM. In

the example above, the field has been filled for acetyl CoA (accoa_m) because the number

of carbon atoms in the formula (23) is different from the number of carbons when we

assume label can propagate (2)

• Symmetry: Use Yes to indicate that the metabolite/s are symmetric like it is the case with

succinate. If left empty it will assume the molecule is not symmetric

• Constant: Use Yes to indicate that the abundances of isotopologues for these metabolite

should be constant. Constant isotopologues will always have their initial abundances. In the

example above we define that the fractions of isotopologues for carbon dioxide and

carbonate pool will be constant and, unless they are defined as labelled in the 13C pattern

files, they will always be a 100% m0. If left empty it will be assumed the the isotopologues

for this metabolite are not constant.

• Large unlabelled pool: At the beginning of a 13C experiment, all internal metabolites are

unlabelled (m0). Progressively, these products are enriched in 13C, with the subsequent

decrease in m0. Isotopic steady state is quickly reached for small pools of metabolites but

not necessarily for larger pools such as those of fatty acids, glycogen and culture medium

metabolites. For these larger pools, unlabelled isotopomers m0 are oversized and might not

decrease to the hypothetical value that should be reached at steady state. If “Large

unlabelled pool” is set to yes Iso2flux will simulate this effect through the addition of a

virtual reaction that adds m0 to the metabolite.

B Reactions that can propagate label. Contains the following information:

• Reaction ID(s): ID of the reactions that can propagate label. Should be the same reaction

IDs used in the CBM. If several reactions IDs are listed separated by coma it will group,

the reactions as described in methods. In the example above we wish to group all the

isocitrate dehydrogenase enzymes (icdhxm, icdhyrm and icdhy) because from a label

propagation perspective they all are equivalent. Reactions that do not shift carbon

positions do not need to be defined as they will be automatically added by Iso2flux.

• Substrates and Products: This should indicate how label is propagating by the reaction.

For substrates the substrates ID should be written followed by the identification given

A

B

to the atoms of the substrate that can be labelled (in order). Products should indicate

the ID of the products of the reaction followed by the identification of the atoms of the

substrates that form the product (in order). Any identification for atoms can be used

provide they are consistent between substrates and products and they are not repeated

within the same reaction. When the substrates and products are part of a metabolite

group the ID of any member of the group can be used. If the field substrates and

products are left empty it will be assumed that the reaction does not alter the position

of the labelled atoms between the substrate and product like is the case of glutamate

dehydrogenase (gludxm) in the example above. Input and Output reactions do not need

to be defined since they will be automatically added by Iso2Flux.

Iso2Flux is programmed to recognize whether a given row contains information about

metabolites (A) or reactions (B) or neither.

Experimental data file
One or more XLSX or CSV file that defines the labelled substrates used and the quantified

isotopologues. Below is an example of the information that the file should contain.

A Labelled substrates used and its abundance. Contains the following information:

• Metabolite ID, ID of the labelled substrates, must be the same used in the CBM

• Label pattern, indicates of the positions of the metabolite that contain a heavy isotope.

1 denotes heavy isotope (e.g. 13C) and 0 denotes non-heavy isotope (12C). In the example

above 1,1,0,0,0,0 indicates we have glucose labelled with 13C in the first two positions.

• Abundance, indicates the relative abundance of the labelled substrate (e.g. 0.5 indicates

50% abundance).

It is not necessary to indicate unlabelled substrates (e.g. in the example above is not

necessary to indicate that the abundance of the unlabelled substrate is 0.5)

 B Isotopologue distribution in products, contains information about the quantified

isotopologues and is abundance. Specifically, the following information:

A

B

• Name of the measurements. This will be used in the output and to refer the

measurements.

• Metabolite id. Id of the metabolite has been measured, must be the ID used in the CBM.

If the measurement correspond to multiple metabolites they should be grouped in the

label propagation rules and any of the metabolites ID grouped indicated in this field.

• Positions measured: Starting and end position of the fragment that has been measured.

In the case of Glu-198, 2-5 indicates that we have measured isotopologues in the a

fragment that contains only carbons 2 to 5.

• Isotopologue: Indicates the number of heavy isotopes present in each isotopologue (i.e

m0:0, m1:1, m2:2 etc …)

• Mean: Arithmetic mean of the relative abundance of each isotopologues in the

replicates.

• SD: Standard deviation of the measurements of relative abundance in a isotopologue

• m/Sm: Use Yes to indicate that you wish Iso2Flux to work with the relative abundance

of labelled isotopologues.

The fields Name of the measurements, Metabolite id, Positions measured and m/SM only

need to be entered in the first row of each quantified fragment.

Constraints file (optional):
A XLSX or CSV file that defines constraints for the CBM

A: When a reaction ID is found on the first column the second column will define the lower

bound of the reaction, the third column the upper bound of the reaction and the fourth

column the objective coefficient (if its positive the flux will be maximized and if its negative

the flux will be minimized).

Gene expression file:
A XLSX or CSV file that defines the gene expression. In the first row it should have the gene

identifiers and the second column the gene expression value. It is important that the type of

identifier used in the file is the same as the one used in the CBM model.

Using the command line script:
Execute the following on the terminal python run_iso2flux_cl -e 13cpatterns.csv -l

label_propagation_rules.csv -c constrained_based_model.sbml -f flux_constraints.csv

Where:

 13cpatterns.csv : is a 13C pattern file

label_propagation_rules.csv: is a file describing the label propagation rules

c constrained_based_model.sbml : Is the constrained based model

f flux_constraints.csv: Is a constraints file describing the lower and upper bound of the fluxes

measured experimentally

A

Optionally, add the following parameters -g gene_expression.csv and -m metabolomics.csv to

integrate gene expression (gene_expression.csv) and metabolomics data (metabolomics.csv)

The program will run without requiring further user input and the confidence intervals for

fluxes will be saved in a file named “confidence.csv”

