
SMT-RAT
Version 2.0.0

Open Source C++ Toolbox
for Strategic and Parallel SMT Solving

Manual

SMT
RAT

Contents

1 Introduction 3

2 Installation 5
2.1 Requirements . 5
2.2 Building SMT-RAT . 5
2.3 Execute SMT-RAT as an SMT solver . 6

3 System architecture 7
3.1 Modules . 8
3.2 Strategy . 8
3.3 Manager . 8
3.4 Procedures implemented as modules . 9
3.5 Infeasible subsets and lemmas . 9

4 Constructing an formula 11
4.1 Normalized constraints . 11
4.2 Boolean combinations of constraints and Boolean variables 12

5 Embedding of an SMT-RAT solver composition 15

6 Implementing further modules 19
6.1 Main members of a module . 19
6.2 Interfaces to implement . 20

6.2.1 Informing about a constraint . 20
6.2.2 Adding a received formula . 20
6.2.3 Removing a received formula . 21
6.2.4 Checking for satisfiability . 21
6.2.5 Updating the model/satisfying assignment 21

6.3 Running backend modules . 22
6.4 Auxilliary functions . 23

7 Composing a solver 27
7.1 Existing module implementation . 27

7.1.1 The CNFerModule . 27
7.1.2 The SATModule . 27
7.1.3 The LRAModule . 28
7.1.4 The ICPModule . 28
7.1.5 The GroebnerModule . 29

1

Contents

7.1.6 The VSModule . 29
7.1.7 The CADModule . 30

7.2 Specifying a strategy with the GUI . 30
7.2.1 Concept . 30
7.2.2 Main window structure . 31
7.2.3 Strategy graph pane . 31
7.2.4 Further functionalities . 36

8 Further features 39
8.1 Delta debugging . 39

2

1 Introduction
This manual describes SMT-RAT, a C++ library consisting of a collection of SMT-
compliant implementations of methods for solving nonlinear real and integer arith-
metic (NRA/NIA) formulas, we refer to as modules. These modules can be combined
to (1) a theory solver in order to extend the supported logics of an existing SMT solver
by NRA/NIA or (2) an SMT solver for NRA/NIA. The latter is especially intended to
be a testing environment for the development of SMT compliant implementations of
further methods tackling NRA/NIA. SMT-RAT provides a graphical user interface for
the creation of a strategy of such module combinations. It specifies dynamically which
modules have to solve a given NRA/NIA formula, involving the formula’s properties
and the solving history.

3

2 Installation

2.1 Requirements
SMT-RAT has been successfully compiled and tested under Linux and Mac OS. For
its configuration we use cmake, which can be found on http://www.cmake.org/, and
for its compilation we tested successfully gcc (version 4.8 or higher), available on
http://gcc.gnu.org/, and clang (version 3.4 or higher). The configuration settings can
be changed with the command line interface ccmake. For the arithmetic calculations of
rationals SMT-RAT uses the C++ library GMP, which can be found on https://gmplib.org/
(but most often it is already installed on the system). The data structures and ba-
sic operations with polynomials and formulas within SMT-RAT are based on the C++
library CArL available at http://ths.informatik.rwth-aachen.de/doxygen/carl/html/.
Optional, there is a graphical user interface for the composition of a solver, which
needs java (version 1.7 or higher) and its package ANTLR, which can be found on
http://www.antlr.org/.

Summarizing, you need the following packages:

• gcc (version 4.8 or higher) or alternatively clang (version 3.4 or higher)

• cmake

• GMP

• CArL

Optional:

• ccmake [for the command line interface for compiler settings]

• java (version 1.7 or higher) [for the GUI]

• ANTLR [for the GUI]

2.2 Building SMT-RAT
You can download SMT-RAT from https://github.com/smtrat/smtrat and build it the
following way:

1. Open a terminal and navigate to the root folder of SMT-RAT.

2. Create a directory (e.g. build) that will contain the object files and the executa-
bles, and change into it:

5

http://www.cmake.org/
http://www.cmake.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://clang.llvm.org/
http://www.cmake.org/
https://gmplib.org/
https://gmplib.org/
http://ths.informatik.rwth-aachen.de/doxygen/carl/html/
http://openjdk.java.net/
http://www.antlr.org/
http://gcc.gnu.org/
http://clang.llvm.org/
http://www.cmake.org/
https://gmplib.org/
http://ths.informatik.rwth-aachen.de/doxygen/carl/html/
http://www.cmake.org/
http://openjdk.java.net/
http://www.antlr.org/
https://github.com/smtrat/smtrat

2 Installation

mkdir build && cd build

3. Configure:

cmake ..

4. Build:

make

5. Cleaning:

make clean

More information can be found in the README file, which can be found in SMT-RAT
directory.

2.3 Execute SMT-RAT as an SMT solver
You can find the executable of SMT-RAT, named smtrat, in the build-directory. It
displays the usage information if it is invoked with the option flag --help:

./smtrat --help

The executable supports only .smt2-files as input, so the solving can be invoked by,
e.g.:

./smtrat path_to_your_smt_file.smt2

6

3 System architecture
SMT-RAT is a C++ library consisting of a collection of SMT compliant implementations
of methods for solving non-linear real and integer arithmetic NRA/NIA formulas, we
refer to as modules. These modules can be combined to (1) a theory solver in order to
extend the supported logics of an existing SMT solver by NRA/NIA (see Figure 3.2)
or (2) an SMT solver for NRA/NIA (see Figure 3.1). The latter is especially intended
to be a testing environment for the development of SMT compliant implementations
of further methods tackling NRA/NIA. Here, the developer only needs to implement
the given interfaces of an SMT-RAT module and does not need to care about parsing
input files, transforming formulas to conjunctive normal form or embedding a SAT
solver in order to solve the Boolean skeleton of the given formula. Instead, SMT-RAT
provides this and more features, such as lemma exchange, which will be explained in
following (taken from the system architecture description of our SAT’15 submission).

Fr
on

te
nd

Manager
Strategy

ConditionCondition Condition
. . .

Module Module Module Module . . .

Figure 3.1: A snapshot of an SMT-RAT composition being an SMT solver for NRA.

SMT solver

SAT
solver

Manager
Strategy

ConditionCondition Condition
. . .

Module Module Module Module . . .

Figure 3.2: A snapshot of an SMT-RAT composition being a theory solver embedded
in an SMT solver.

A module fixes a common interface for the SMT compliant implementations of pro-

7

3 System architecture

cedures to tackle the satisfiability question of the supported logics of SMT-RAT. They
can then be composed to a solver according to a user defined strategy. A manager
maintains their allocation to solving tasks according to the strategy and provides the
API, including the parsing of an .smt2-file.

3.1 Modules
A module m holds a set of formulas, called its set of received formulas and denoted
by Crcv(m). The main function of a module is check(bool full), which either de-
cides whether Crcv(m) is satisfiable or not, returning sat or unsat, respectively, or
returns unknown. A set of formulas is semantically defined by their conjunction. If
the function’s argument full is set to false, the underlying procedure of m is al-
lowed to omit hard obstacles during solving at the cost of returning unknown in more
cases. We can manipulate Crcv(m) by adding (removing) formulas ϕ to (from) it
with add(ϕ) (remove(ϕ)). Usually, Crcv(m) is only slightly changed between two
consecutive check calls, hence, the solver’s performance can be significantly improved
if a module works incrementally and supports backtracking. In case m determines the
unsatisfiability of Crcv(m), it has to compute at least one preferably small infeasible
subset Cinf (m) ⊆ Crcv(m). Moreover, a module can specify lemmas, which are valid
formulas. They encapsulate information which can be extracted from a module’s inter-
nal state and propagated among other modules. Furthermore, a module itself can ask
other modules for the satisfiability of its set of passed formulas denoted by Cpas(m),
if it invokes the procedure runBackends(bool full) (controlled by the manager). It
thereby delegates work to modules that may be more suitable for the problem at hand.

3.2 Strategy
SMT-RAT allows a user to decide how to compose the modules. For this purpose we
provide a graphical user interface, where the user can create a strategy specifying
this composition. A strategy is a directed tree T := (V,E) with a set V of modules as
nodes and E ⊆ V ×Ω×Σ×V , with Ω being the set of conditions and Σ being the set of
priority values. A condition is an arbitrary Boolean combination of formula properties,
such as propositions about the Boolean structure of the formula, e.g., whether it is
in conjunctive normal form (CNF), about the constraints, e. g., whether it contains
equations, or about the polynomials, e.g., whether they are linear. Furthermore, each
edge carries a unique priority value from Σ = {1, . . . , |E|}.

3.3 Manager
The manager holds the strategy and the SMT solver’s input formula Cinput. Initially,
the manager calls the method check of the module mr given by the root of the strategy
with Crcv(mr) = Cinput. Whenever a module m ∈ V calls runBackends, the manager
adds a solving task (σ, m, m′) to its priority queue Q of solving tasks (ordered by the

8

3.4 Procedures implemented as modules

priority value), if there exists an edge (m, ω, σ, m′) ∈ E in the strategy such that ω
holds for Cpas(m). If a processor p on the machine where SMT-RAT is executed on is
available, the first solving task of Q is assigned to p and popped from Q. The manager
thereby starts the method check of m′ with Crcv(m′) =Cpas(m) and passes the result
(including infeasible subsets and lemmas) back to m. The module m can now benefit
in its solving and reasoning process from this shared information. Note that a strategy-
based composition of modules works incrementally and supports backtracking not just
within one module but as a whole. This is realized by a mapping in each module m
of its passed formulas ϕ ∈ Cpas(m) to sets R1, . . . , Rn ⊆ Crcv(m) such that each Ri

forms a reason why m included ϕ in Cpas(m) to ask for its satisfiability. In order to
exploit the incrementality of the modules, all parallel executed backends terminate in
a consistent state (instead of just being killed), if one of them finds an answer.

3.4 Procedures implemented as modules
The heart of an SMT solver usually forms a SAT solver. In SMT-RAT, the module
SATM abstracts Crcv(SATM) to propositional logic and uses the efficient SAT solver
minisat [5] to find a Boolean assignment of the abstraction. It invokes runBackends
where Cpas(SATM) contains the constraints abstracted by the assigned Boolean vari-
ables in a less-lazy fashion [11]. The module SIMM implements the Simplex method
equipped with branch-and-bound and cutting-plane procedures as presented in [4]. We
apply it on the linear constraints of any conjunction of NRA/NIA constraints. For
a conjunction of nonlinear constraints SMT-RAT provides the modules GBM , VSM and
CADM , implementing GB [8], VS [2] and CAD [9] procedures, respectively. Moreover,
the module ICPM uses ICP similar as presented in [6], lifting splitting decisions and
contraction lemmas to a preceding SATM and harnessing other modules for nonlinear
conjunctions of constraints as backends. The exact procedure is going to be pub-
lished. The module CNFM invokes runBackends on Cpas(CNFM) being the CNF of
Crcv(CNFM), and the module PPM performs some preprocessing based on factoriza-
tions and sum-of-square decompositions of polynomials.

3.5 Infeasible subsets and lemmas
Infeasible subsets and lemmas, which contain only formulas from Cpas(MSAT) of a pre-
ceding MSAT, prune its Boolean search space and hence the number of theory calls.
Smaller infeasible subsets are usually more advantageous, because they make larger
cuts in the search space. We call lemmas containing new constraints inventive lemmas
(non-inventive otherwise). They might enlarge the Boolean search space, but they
can reduce the complexity of later theory calls. When using inventive lemmas, it is
important to ensure that the set possible constraints introduced in such lemmas is
finite for a given module and a given input formula. Otherwise, the termination of
this procedure cannot be guaranteed. In general, any module might contribute lemmas
and all preceding modules in the solving hierarchy can directly involve them in their

9

3 System architecture

search for satisfiability.

10

4 Constructing an formula
The class Formula represents SMT formulas, which are defined according to the fol-
lowing abstract grammar

p ::= a | b | x | (p+p) | (p ·p) | (pe)
v ::= u | x
s ::= f(v, . . . ,v) | u | x
e ::= s= s
c ::= p= 0 | p < 0 | p≤ 0 | p > 0 | p≥ 0 | p 6= 0
ϕ ::= c | (¬ϕ) | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ→ ϕ) |

(ϕ↔ ϕ) | (ϕ⊕ϕ)

where a is a rational number, e is a natural number greater one, b is a Boolean
variable and the arithmetic variable x is an inherently existential quantified and either
real- or integer-valued. We call p a polynomial and use a CArL multivariate polynomial
with cln rationals as coefficients to represent it. The uninterpreted function f is of
a certain order o(f) and each of its o(f) arguments are either an arithmetic variable
or an uninterpreted variable u, which is also inherently existential quantified, but has
no domain specified. Than an uninterpreted equation e has either an uninterpreted
function, an uninterpreted variable or an arithmetic variable as left-hand respectively
right-hand side. A constraint c compares a polynomial to zero, using a relation symbol.
Furthermore, we keep constraints in a normalized representation to be able to differ
them better.

4.1 Normalized constraints
A normalized constraint has the form

a1

m1︷ ︸︸ ︷
x

e1,1
1,1 · . . . ·x

e1,k1
1,k1

+ . . .+an

mn︷ ︸︸ ︷
x

en,1
n,1 · . . . ·x

en,kn
n,kn

+ d ∼ 0

with n ≥ 0, the ith coefficient ai being an integral number (6= 0), d being a integral
number, xi,ji being a real- or integer-valued variable and ei,ji being a natural number
greater zero (for all 1≤ i≤ n and 1≤ ji ≤ ki). Furthermore, it holds that xi,ji 6= xi,li

if
ji 6= li (for all 1≤ i≤n and 1≤ ji, li≤ ki) and mi1 6=mi2 if i1 6= i2 (for all 1≤ i1, i2≤n).
If n is 0 then d is 0 and ∼ is either = or <. In the former case we have the normalized
representation of any variable-free consistent constraint, which semantically equals
true, and in the latter case we have the normalized representation of any variable-free

11

4 Constructing an formula

inconsistent constraint, which semantically equals false. Note that the monomials
and the variables in them are ordered according the graded lexicographic order of
CArL. Moreover, the first coefficient of a normalized constraint (with respect to this
order) is always positive and the greatest common divisor of a1, . . . , an, d is 1. If all
variable are integer valued the constraint is further simplified to

a1
g
·m1 + . . . + an

g
·mn + d′ ∼′ 0,

where g is the greatest common divisor of a1, . . . , an,

∼′=

 ≤, if ∼ is <
≥, if ∼ is >
∼, otherwise

and

d′ =

dd

g e if ∼′ is ≤

bd
g c if ∼′ is ≥

d
g otherwise

If additionally d
g is not integral and ∼′ is =, the constraint is simplified 0< 0, or if ∼′

is 6=, the constraint is simplified 0 = 0.
We do some further simplifactions, such as the elimination of multiple roots of the

left-hand sides in equations and inequalities with the relation symbol 6=, e.g., x3 = 0
is simplified to x= 0. We also simplify constraints whose left-hand sides are obviously
positive (semi)/negative (semi) definite, e.g., x2 ≤ 0 is simplified to x2 = 0, which again
can be simplified to x= 0 according to the first simplification rule.

4.2 Boolean combinations of constraints and Boolean
variables

A formula is stored as a directed acyclic graph, where the intermediate nodes rep-
resent the Boolean operations on the sub-formulas represented by the successors of
this node. The leaves (nodes without successor) contain either a Boolean variable, a
constraint or an uninterpreted equality. Equal formulas, that is formulas being leaves
and containing the same element or formulas representing the same operation on the
same sub-formulas, are stored only once.

The construction of formulas, which are represented by the Formula, is mainly based
on the presented abstract grammar. A formula being a leaf wraps the corresponding
objects representing a Boolean variable, a constraint or an uninterpreted equality. A
Boolean combination of Boolean variables, constraints and uninterpreted equalities
consists of a Boolean operator and the sub-formulas it interconnects. For this purpose
we either firstly create a set of formulas containing all sub-formulas and then construct
the Formula or (if the formula shall not have more than three sub-formulas) construct

12

4.2 Boolean combinations of constraints and Boolean variables

the formula directly passing the operator and sub-formulas. Formulas, constraints and
uninterpreted equalities are non-mutable, once they are constructed.

We give a small example constructing the formula

(¬b ∧ x2−y < 0 ∧ 4x+y−8y7 = 0) → (¬(x2−y < 0) ∨ b),

with the Boolean variable b and the real-valued variables x and y, for demonstration.
Furthermore, we construct the UF formula

v = f(u,u) ⊕ w 6= u

with u, v and w being uninterpreted variables of not specified domains S and T ,
respectively, and f is an uninterpreted function with not specified domain TS×S .

Firstly, we show how to create real valued (integer valued analogously with VT INT),
Boolean and uninterpreted variables:

carl::Variable x = smtrat::newVariable("x", carl::VariableType::VT_REAL);
carl::Variable y = smtrat::newVariable("y", carl::VariableType::VT_REAL);
carl::Variable b = smtrat::newVariable("b", carl::VariableType::VT_BOOL);
carl::Variable u = smtrat::newVariable("u", carl::VariableType::VT_UNINTERPRETED);
carl::Variable v = smtrat::newVariable("v", carl::VariableType::VT_UNINTERPRETED);
carl::Variable w = smtrat::newVariable("w", carl::VariableType::VT_UNINTERPRETED);

Uninterpreted variables, functions and function instances combined in equations or
inequalities comparing them are constructed the following way.

carl::Sort sortS = smtrat::newSort("S");
carl::Sort sortT = smtrat::newSort("T");
carl::UVariable uu(u, sortS);
carl::UVariable uv(v, sortT);
carl::UVariable uw(w, sortS);
carl::UninterpretedFunction f = smtrat::newUF("f", sortS, sortS, sortT);
carl::UFInstance f1 = smtrat::newUFInstance(f, uu, uw);
carl::UEquality ueqA(uv, f1, false);
carl::UEquality ueqB(uw, uu, true);

Next we see an example how to create polynomials, which form the left-hand sides of
the constraints:

smtrat::Poly px(x);
smtrat::Poly py(y);
smtrat::Poly lhsA = px.pow(2) - py;
smtrat::Poly lhsB = smtrat::Rational(4) * px + py - smtrat::Rational(8) * py.pow(7);

Constraints can then be constructed as follows:

smtrat::ConstraintT constraintA(lhsA, carl::Relation::LESS);
smtrat::ConstraintT constraintB(lhsB, carl::Relation::EQ);

Now, we can construct the atoms of the Boolean formula

smtrat::FormulaT atomA(constraintA);
smtrat::FormulaT atomB(constraintB);
smtrat::FormulaT atomC(b);
smtrat::FormulaT atomD(ueqA);
smtrat::FormulaT atomE(ueqB);

and the formulas itself (either with a set of arguments or directly):

13

4 Constructing an formula

smtrat::FormulasT subformulasA;
subformulasA.insert(smtrat::FormulaT(carl::FormulaType::NOT, atomC));
subformulasA.insert(atomA);
subformulasA.insert(atomB);
smtrat::FormulaT phiA(carl::FormulaType::AND, std::move(subformulasA));
smtrat::FormulaT phiB(carl::FormulaType::NOT, atomA)
smtrat::FormulaT phiC(carl::FormulaType::OR, phiB, atomC);
smtrat::FormulaT phiD(carl::FormulaType::IMPLIES, phiA, phiC);
smtrat::FormulaT phiE(carl::FormulaType::XOR, atomD, atomE);

Note, that ∧ and ∨ are n-ary constructors, ¬ is a unary constructor and all the other
Boolean operators are binary.

14

5 Embedding of an SMT-RAT solver
composition

In this chapter we show how to embed a solver composed as explained in Chapter 7,
e. g., using the default strategy solver RatOne. For instance, we could embed a theory
solver composed with SMT-RAT into an SMT solver in order to extend its supported
logics by NRA/NIA (or any of its sub-logics) or embed an SMT solver composed with
SMT-RAT into a model checker for the verification of the satisfiability/unsatisfiability
of occurring SMT formulas.

If for instance the SMT solver based on the strategy of RatOne shall be used (we
can also choose any self-composed strategy here), we can create it as follows:

smtrat::RatOne yourSolver = smtrat::RatOne();

In Chapter 4 we have seen, how to construct an object representing an SMT formula.
Having this formula, we can add it to the formulas, whose conjunction the solver
composed with SMT-RAT has to check later for satisfiability. Here we give an overview
of all interfaces:

• bool inform(const FormulaT&)

Informs the solver about a constraint, wrapped by the given formula. Optimally,
the solver should be informed about all constraints, which it will receive eventu-
ally, before any of them is added as part of a formula with the interface add(..).
The method returns false if it is easy to decide (for any module used in this
solver), whether the constraint itself is inconsistent.

• bool add(const FormulaT&)

Adds the given formula to the conjunction of formulas, which will be considered
for the next satisfiability check. The method returns false, if it is easy to decide
whether the just added formula is not satisfiable in the context of the already
added formulas. Note, that only a very superficial and cheap satisfiability check
is performed and mainly depends on solutions of previous consistency checks.
In the most cases this method returns true, but in the case it does not the
corresponding infeasible subset(s) can be obtained by infeasibleSubsets().

• Answer check(bool)

This method checks the so far added formulas for satisfiability. If, for instance
we extend an SMT solver by a theory solver composed with SMT-RAT, these
formulas are only constraints. The answer can either be True, if satisfiability has

15

5 Embedding of an SMT-RAT solver composition

been detected, or False, if the formulas are not satisfiable, and Unknown, if the
composition cannot give a conclusive answer. If the answer has been True, we get
the model, satisfying the conjunction of the given formulas, using model() and,
if it has been False, we can obtain infeasible subsets by infeasibleSubsets().
If the answer is Unknown, the composed solver is either incomplete (which highly
depends on the strategy but for NRA it is actually always possible to define a
strategy for a complete SMT-RAT solver) or it communicates lemmas/tautologies,
which can be obtained applying lemmas(). If we embed, e.g., a theory solver
composed with SMT-RAT into an SMT solver, these lemmas can be used in its
SAT solving process in the same way as infeasible subsets are used. The strategy
of an SMT solver composed with SMT-RAT has to involve a SATM before any
theory module is used1 and, therefore, the SMT solver never communicates these
lemmas as they are already processed by the SATM . A better explanation on
the modules and the strategy can be found in Chapter 3 and Chapter 7. If the
Boolean argument of the function check is false, the composed solver is allowed
to omit hard obstacles during solving at the cost of returning unknown in more
cases.

• void push()

Pushes a backtrack point to the stack of backtrack points.

• bool pop()

Pops a backtrack point from the stack of backtrack points and undoes everything
which has been done after adding that backtrack point. It returns false if no
backtrack point is on the stack. Note, that SMT-RAT supports incrementality,
that means, that by removing everything which has been done after adding a
backtrack point, we mean, that all intermediate solving results which only depend
on the formulas to remove are deleted. It is highly recommended not to remove
anything, which is going to be added directly afterwards.

• const std::vector<FormulasT>& infeasibleSubsets() const

Returns one or more reasons for the unsatisfiability of the considered conjunction
of formulas of this SMT-RAT composition. A reason is an infeasible subset of the
sub-formulas of this conjunction.

• const Model model() const

Returns an assignment of the variables, which occur in the so far added formu-
las, to values of their domains, such that it satisfies the conjunction of these
formulas. Note, that an assignment is only provided if the conjunction of so far
added formulas is satisfiable. Furthermore, when solving non-linear real arith-
metic formulas the assignment could contain other variables or freshly introduced
variables.

1It is possible to define a strategy using conditions in a way, that we achieve an SMT solver, even if
for some cases no SATM is involved before a theory module is applied.

16

• std::vector<FormulaT> lemmas() const

Returns valid formulas for the purposes as explained in Section 3.5. Note, that
for instance the ICPM might return lemmas being splitting decisions, which need
to be processed in, e. g., a SAT solver. A splitting decision has in general the
form

(c1∧ . . .∧ cn) → (p≤ r ∨ p > r)

where c1, . . . , cn are constraints of the set of currently being checked constraints
(forming a premise), p is a polynomial (in the most cases consisting only of one
variable) and r ∈ Q. Hence, splitting decisions always form a tautology. We
recommend to use the ICPM only in strategies with a preceding SATM . The
same holds for the SIMM , VSM , and CADM if used on NIA formulas. Here, again,
splitting decisions might be communicated.

17

6 Implementing further modules
In this chapter we explain how to implement further modules. A module is a deriva-
tion of the class Module and we give an introduction to its members, interfaces and
auxiliary methods in the following of this chapter. A new module and, hence, the
corresponding C++ source and header files can be easily created when using the script
writeModules.py. Its single argument is the module’s name and the script creates
a new folder in src/lib/modules/ containing the source and header file with the in-
terfaces yet to implement. Furthermore, it is optional to create the module having
a template parameter forming a settings object as explained in Section 6.4. A new
module should be created only this way, as the script takes care of a correct integration
of the corresponding code into SMT-RAT. A module can be deleted belatedly by just
removing the complete folder it is implemented in.

6.1 Main members of a module
Here is an overview of the most important members of the class Module.

• vector<FormulasT> mInfeasibleSubsets

Stores the infeasible subsets of the so far received formulas, if the module deter-
mined that their conjunction is not satisfiable.

• Manager* const mpManager

A pointer to the manager which maintains the allocation of modules (including
this one) to other modules, when they call a backend for a certain formula. For
further details see Chapter 7.

• const ModuleInput* mpReceivedFormula

The received formula stores the conjunction of the so far received formulas, which
this module considers for a satisfiability check. These formulas are of the type
Formula and the ModuleInput is basically a list of such formulas, which never
contains a formula more than once.

• ModuleInput* mpPassedFormula

The passed formulaă stores the conjunction of the formulas which this module
passes to a backend to be solved for satisfiability. There are dedicated methods
to change this member, which are explained in the following.

The received formula of a module is the passed formula of the preceding module. The
owner is the preceding module, hence, a module has only read access to its received

19

6 Implementing further modules

formula. The ModuleInput also stores a mapping of a sub-formula in the passed
formula of a module to its origins in the received formula of the same module. Why
this mapping is essential and how we can construct it is explained in Section 6.3.

6.2 Interfaces to implement
In the following we explain which methods must be implemented in order to fill the
module’s interfaces with life. All these methods are the core implementation and
wrapped by the actual interfaces. This way the developer of a new module needs only
to take care about the implementation of the actual procedure for the satisfiability
check. All infrastructure-related actions are performed by the actual interface.

6.2.1 Informing about a constraint

bool MyModule::informCore(const Formula& _constraint)
{

// Write the implementation here.
}

Figure 6.1: Example showing how to implement the method informCore.

Informs the module about the existence of the given constraint (actually it is a
formula wrapping a constraint) usually before it is actually added to this module for
consideration of a later satisfiability check. At least it can be expected, that this
method is called, before a formula containing the given constraint is added to this
module for consideration of a later satisfiability check. This information might be
useful for the module, e.g., for the initialization of the data structures it uses. If
the module can already decide whether the given constraint is not satisfiable itself, it
returns false otherwise true.

6.2.2 Adding a received formula

bool MyModule::addCore(const ModuleInput::const_iterator)
{

// Write the implementation here.
}

Figure 6.2: Example showing how to implement the method addCore.

Adds the formula at the given position in the conjunction of received formulas,
meaning that this module has to include this formula in the next satisfiability check.
If the module can already decide (with very low effort) whether the given formula
is not satisfiable in combination with the already received formulas, it returns false

20

6.2 Interfaces to implement

otherwise true. This is usually determined using the solving results this module has
stored after the last consistency checks. In the most cases the implementation of a
new module needs some initialization in this method.

6.2.3 Removing a received formula

void MyModule::removeCore(const ModuleInput::iterator)
{

// Write the implementation here.
}

Figure 6.3: Example showing how to implement the method removeCore.

Removes the formula at the given position from the received formula. Everything,
which has been stored in this module and depends on this formula must be removed.

6.2.4 Checking for satisfiability

Answer MyModule::checkCore(bool)
{

// Write the implementation here.
}

Figure 6.4: Example showing how to implement the method checkCore.

Implements the actual satisfiability check of the conjunction of formulas, which are
in the received formula. There are three options how this module can answer: it either
determines that the received formula is satisfiable and returns True, it determines
unsatisfiability and returns False, or it cannot give a conclusive answer and returns
Unknown. A module has also the opportunity to reason about the conflicts occurred,
if it determines unsatisfiability. For this purpose it has to store at least one infeasible
subset of the set of so far received formulas. If the method check is called with its
argument being false, this module is allowed to omit hard obstacles during solving
at the cost of returning unknown in more cases, we refer to as a lightweight check.

6.2.5 Updating the model/satisfying assignment
If this method is called, the last result of a satisfiability check was True and no fur-
ther formulas have been added to the received formula, this module needs to fill its
member mModel with a model. This model must be complete, that is all variables and
uninterpreted functions occurring in the received formula must be assigned to a value
of their corresponding domain. It might be necessary to involve the backends using
the method getBackendsModel() (if they have been asked for the satisfiability of a
sub-problem). It stores the model of one backend into the model of this module.

21

6 Implementing further modules

void MyModule::updateModel()
{

// Write the implementation here.
}

Figure 6.5: Example showing how to implement the method updateModel.

6.3 Running backend modules
Modules can always call a backend in order to check the satisfiability of any conjunction
of formulas. Fortunately, there is no need to manage the assertion of formulas to or
removing of formulas from the backend. This would be even more involved as we do
allow changing the backend if it is appropriate (more details to this are explained in
Chapter 7). Running the backend is done in two steps:

1. Change the passed formula to the formula which should be solved by the backend.
Keep in mind, that the passed formula could still contain formulas of the previous
backend call.

2. Call runBackends(full), where full being false means that the backends
have to perform a lightweight check.

The first step is a bit more tricky, as we need to know which received formulas led to a
passed formula. For this purpose the ModuleInput maintains a mapping from a passed
sub-formula to one or more conjunctions of received sub-formulas. We give a small
example. Let us assume that a module has so far received the following constraints
(wrapped in formulas)

c0 : x≤ 0, c1 : x≥ 0, c2 : x= 0

and combines the first two constraints c0 and c1 to c2. Afterwards it calls its backend on
the only remaining constraint, that means the passed formula contains only c2 : x= 0.
The mapping of c2 in the passed formula to the received sub-formulas it stems from
then is

c2 7→ (c0∧ c1, c2).

The mapping is maintained automatically and offers two methods to add formulas
to the passed formulas:

• std::pair<ModuleInput::iterator,bool>
addReceivedSubformulaToPassedFormula
(

ModuleInput::const_iterator
)

Adds the formula at the given positition in the received formula to the passed
formulas. The mapping to its original formulas contains only the set consisting
of the formula at the given position in the received formula.

22

6.4 Auxilliary functions

• std::pair<ModuleInput::iterator,bool> addSubformulaToPassedFormula
(

const Formula&
)

std::pair<ModuleInput::iterator,bool> addSubformulaToPassedFormula
(

const Formula&,
const Formula&

)

std::pair<ModuleInput::iterator,bool> addSubformulaToPassedFormula
(

const Formula&,
std::shared_ptr<std::vector<FormulaT>>&

)

Adds the given formula to the passed formulas. It is mapped to the given con-
junctions of origins in the received formula. The second argument (if it exists)
must only consist of formulas in the received formula. It returns a pair of a
position in the passed formula and a bool. The bool is true, if the formula at
the given position in the received formula has been added to the passed formula,
which is only the case, if this formula was not yet part of the passed formula.
Otherwise, the bool is false. The returned position in the passed formula points
to the just added formula.
The vector of conjunctions of origins can be passed as a shared pointer, which
is due to a more efficient manipulation of these origins. Some of the current
module implementations directly change this vector and thereby achieve directly
a change in the origins of a passed formula.

If, by reason of a later removing of received formulas, there is no conjunction of original
formulas of a passed formula left (empty conjunction are removed), this passed formula
will be automatically removed from the backends and the passed formula. That does
also mean, that if we add a formula to the passed formula without giving any origin
(which is done by the first version of addSubformulaToPassedFormula), the next call
of removeSubformula of this module removes this formula from the passed formula.
Specifying received formulas being the origins of a passed formula highly improves the
incremental solving performance, so we recommend to do so.

The second step is really just calling runBackends and processing its return value,
which can be True, False, or Unknown.

6.4 Auxilliary functions
The module class provides a rich set of methods for the analysis of the implemented
procedures in a module and debugging purposes. Besides all the printing methods,

23

6 Implementing further modules

which print the contents of a member of this module to the given output stream,
SMT-RAT helps to maintain the correctness of new modules during their development.
It therefore provides methods to store formulas with their assumed satisfiability status
in order to check them belatedly by any SMT solver which is capable to parse .smt2
files and solve the stored formula. To be able to use the following methods, the compiler
flag SMTRAT DEVOPTION Validation must be activated, which can be easily achieved
when using, e.g., ccmake.

• static void addAssumptionToCheck(const X&, bool, const string&)

Adds the given formulas to those, which are going to be stored as an .smt2 file,
with the assumption that they are satisfiable, if the given Boolean argument is
true, or unsatisfiable, if the given Boolean argument is false. The formulas
can be passed as one of the following types (X can be one of the following data
structures)

– Formula (a single formula of any type)
– ModuleInput (the entire received or passed formula of a module)
– FormulasT (a set of formulas, which is considered to be a conjunction)
– ConstraintsT (a set of constraints, which is considered to be a conjunction)

The third argument of this function is any string which helps to identify the
assumption, e.g., involving the name of the module and for which purpose this
assumption has been made.

• static void storeAssumptionsToCheck(const Manager&)

This method stores all collected assumptions to the file assumptions.smt2,
which can be checked later by any SMT solver which is capable to parse .smt2
files and solve the stored formula. As this method is static, we need to pass the
module’s manager (*mpManager). Note that this method will be automatically
called when destructing the given manager. Invoking this method is only reason-
able, if the solving aborts directly afterwards and, hence, omits the manager’s
destructor.

• void checkInfSubsetForMinimality
(

vector<FormulasT>::const_iterator,
const string&,
unsigned

) const

This method checks the infeasible subset at the given position for minimality,
that is it checks whether there is a subset of it having maximally n elements
less while still being infeasible. As for some approaches it is computationally too
hard to provide always a minimal infeasible subset, they rather provide infeasible
subsets not necessarily being minimal. This method helps to analyze how close
the size of the encountered infeasible subsets is to a minimal one.

24

http://www.cmake.org/

6.4 Auxilliary functions

• Another important feature during the development of a new module is the collec-
tion of statistics. The script writeModules.py for the creation of a new module
automatically adds a class to maintain statistics in the same folder in which the
module itself is located. The members of this class store the statistics usually
represented by primitive data types as integers and floats. They can be ex-
tended as one pleases and be manipulated by methods, which have also to be
implemented in this class. SMT-RAT collects and prints these statistics automat-
ically, if its command line interface is called with the option --statistics or
-s.

• If the script writeModules.py for the creation of a new module is called with
the option -s, the module has also a template parameter being a settings object.
The different settings objects are stored in the settings file again in the same
folder as the module is located. Each of these setting objects assigns all settings,
which are usually of type bool, to values. The name of these objects must
be of the form XYSettingsN, if the module is called XYModule and with N
being preferably a positive integer. Fulfilling these requirements, the settings
to compile this module with, can be chosen, e. g., with ccmake, by setting the
compiler flag SMTRAT XY Settings to N.
Within the implementation of the module, its settings can then be accessed using
its template parameter Settings. If, for instance, we want to change the control
flow of the implemented procedure in the new module depending on a setting
mySetting being true, we write the following:

..
if(Settings::mySettings)
{

..
}
..

This methodology assures that the right control flow is chosen during compilation
and, hence, before runtime.

25

http://www.cmake.org/

7 Composing a solver
SMT-RAT contributes a toolbox for composing an SMT compliant solver for its sup-
ported logics, that means it is incremental, supports backtracking and provides reasons
for inconsistency. The resulting solver is either a fully operative SMT solver, which
can be applied directly on .smt2-files, or a theory solver, which can be embedded into
an SMT solver in order to extend its supported logics by those provided by SMT-RAT.

We are talking about composition and toolbox, as SMT-RAT contains implementations
of many different procedures to tackle, e. g., NRA/NIA, each of them embedded in a
module with uniform interfaces. These modules form the tools in the toolbox and
it is dedicated to a user how to use them for solving an SMT formula. We provide
a self-explanatory graphical user interface (GUI) for the definition of a graph-based
strategy specifying which module(s) should be applied on which formula, taking into
account the modules which were already involved.

In Section 3.2 we have already introduced a strategy and in the following of this
chapter we firstly give a brief introduction to the existing modules equipped with an
estimation of their input-based performances and then illustrate how to use the GUI
for composing a strategy.

7.1 Existing module implementation

7.1.1 The CNFerModule

Transforms its received formula into conjunctive normal form CNF.

Efficiency The worst case complexity of this module is polynomial in the number of
operators in the formula to transform.

7.1.2 The SATModule

This module abstracts it’s received formula, being any SMT formula of the supported
logics of SMT-RAT, to it’s Boolean skeleton. It thereby replaces all constraints in
the formula by fresh Boolean variables. The resulting propositional formula is then
solved with minisat [5], where after each completed decision level the constraints
belonging to the assigned Boolean variables are checked for consistency by the backends
of this module. In the case of inconsistency, the infeasible subsets of the backends are
abstracted and then involved in the search for a satisfying solution.

27

7 Composing a solver

Efficiency Even though the worst case complexity of this procedure, not considering
the complexity of the backend calls, is exponential in the number of variables in the
abstracted formula, the procedure is in practice more efficient than any of the theory
modules. Hence, it does clearly not form a bottleneck of the SMT solving. However,
one should aim at reducing the number and complexity of the theory (backend) calls of
this module, which might be influenced by infeasible subsets, which are small and/or
involve constraints of earlier decision levels in the SAT solving, and lemmas, which
either prune the search space of the SAT solving or ease subsequent theory calls.

7.1.3 The LRAModule

Implements the SMT compliant Simplex method presented in [4]. Hence, this module
can decide the consistency of any conjunction consisting only of linear real arith-
metic constraints. Furthermore, it might also find the consistency of a conjunction
of constraints even if they are not all linear and calls a backend after removing some
redundant linear constraints, if the linear constraints are satisfiable and the found
solution does not satisfy the non-linear constraints. Note that the LRAModule might
need to communicate a lemma/tautology to a preceding SATModule, if it receives a
constraint with the relation symbol 6= and the strategy needs for this reason to define
a SATModule at any position before an LRAModule.

Integer arithmetic In order to find integer solutions, this module applies, depending
on which settings are used, branch-and-bound, the construction of Gomory cuts and
the generation of cuts from proofs [3]. It is also supported to combine these approaches.
Note that for all of them the LRAModule needs to communicate a lemma/tautology to
a preceding SATModule and the strategy needs for this reason to define a SATModule
at any position before an LRAModule.

Efficiency The worst case complexity of the implemented approach is exponential in
the number of variables occurring in the problem to solve. However, in practice, it
performs much faster, and the worst case applies only on very artificial examples. This
module outperforms any module implementing a method that is designed for solving
formulas with non-linear constraints. If the received formula contains integer valued
variables, the aforementioned methods might not terminate.

7.1.4 The ICPModule

Implements a combination of interval constraint propagation equipped with a Newton-
based contraction [7] and LRA solving, for which we use our LRAModule. The imple-
mentation is inspired by [6], but additionally interacts with backends in order to exploit
their efficiency on examples, where ICP fails. It thereby incorporates the possibility to
invoke lightweight checks and highly benefits from the backends being optimized for
small domains as, e. g., described in [9]. This module tries to lift splitting decisions

28

7.1 Existing module implementation

as well as lemmas encoding a nonzero contraction to a preceding SATModule. It en-
sures an efficient processing of these decisions, which are this way shared with other
modules.

Efficiency It is very difficult to give a conclusive statement about the efficiency of
ICP. Usually, it performs better, if the domains of all variables are bounded inter-
vals, preferably with a small diameter. It might also benefit from a higher number
of constraints, as this introduces more chances for the propagation. However, more
constraints mean also more overhead.

7.1.5 The GroebnerModule

Implements the Gröbner bases based procedure as presented in [8]. In general, this
procedure can detect only the unsatisfiability of a conjunction of equations. This
module also supports the usage of these equations to further simplify all constraints in
the conjunction of constraints forming its input and passes these simplified constraints
to its backends. However, it cannot be guaranteed that backends perform better on
the simplified constraints than on the constraints before simplification.

Efficiency The worst case complexity of the underlying procedure is exponential in
the number of variables of the input constraints. In the case that the conjunction
of constraints to check for satisfiability contains equations, this module can be more
efficient than other modules for NRA on finding out inconsistency.

7.1.6 The VSModule

Implements the virtual substitution method for a conjunction of constraints as de-
scribed in [2]. This module supports incremental calls, efficient backtracking and
infeasible subset generation. Note, that the infeasible subsets are often very small
but not necessarily minimal. The implemented approach is not complete, as it maybe
cannot decide the satisfiability of a conjunction containing a constraint, which involves
a variable with degree 3 or more. Note, that even if no constraint of such form occurs
in the received formula, this module might not be able to determine the consistency of
its received formula, as it could create constraints of this form in its solving process.
Nevertheless, the implemented approach is efficient compared to other approaches for
non-linear real arithmetic conjunctions, and therefore well-suited to be used for solving
conjunctions of non-linear real arithmetic constraints before complete approaches have
their try. In combination with a backend, this module tries to solve the given problem
and calls the backend on problems with less variables.

Efficiency The worst case complexity of this approach is exponential in the number
of real arithmetic variables occurring in the conjunction to solve. It performs espe-
cially good on almost linear instances and slightly prefers problems only containing
constraints with the relation symbols ≤, ≥ and =. It is often the case, that even if

29

7 Composing a solver

the conjunction to solve contains many not suited constraints, this module can de-
termine the consistency on the basis of a well suited subset of the constraints in this
conjunction.

7.1.7 The CADModule

This module implements an adapted version of the cylindrical algebraic decomposition
(CAD) for a conjunction of constraints as described in [1]. It extends the original
algorithm to be SMT compliant and implements the ideas from [9].

The CAD method consists of two basic routines: the projection (or elimination) of
polynomials and the lifting (or construction) of samples. The projection transforms
a set of polynomials over a set of variables to a new set of polynomials that do not
contain some of the variables. The lifting starts with a sample point of degree k and
constructs a sample point of degree k+1 using the polynomial sets from the projection.
Both routines work in an incremental fashion: polynomials are only projected if needed
and the construction is performed as a depth-first search.

Efficiency The worst case complexity of this algorithm is doubly exponential in the
number of variables, the base being the sum of the number of polynomials and the
maximum degree of any polynomial. This is due to an quadratic increase of polyno-
mials in each projection step and a number of possible sample points that grows with
the number of polynomials.

The practical performance heavily depends on the number and degree of polynomials
created during the elimination. It benefits greatly if the real roots of the polynomials
are rational, as irrational root operation may take quite some time.

7.2 Specifying a strategy with the GUI
The following subsections are used to give an overview of the SMT-RAT’s GUI, which
we call SMT-XRAT, and to introduce its functionalities.

7.2.1 Concept
The underlying concept of SMT-XRAT is the user-guided, visual modeling of module
compositions in form of graphs and their mapping onto their corresponding source code
for SMT-RAT. A modeled graph expresses an intended strategy graph of the user. Both
can easily be projected on each other, because the data structure of a strategy graph
also describes a graph structure, as explained in the previous chapter. A mapping
considers not only the modeled hierarchy of the SMT-RAT modules, but also their
attributes. Furthermore the GUI complies the constraints of these attributes during
the modeling process, for example priority values are required to be unique.

The GUI does not only support the visual creation of strategy graphs and their
translation into source code, but also enables the user to integrate the translated
source code into SMT-RAT or, if necessary, delete it subsequently. The conclusive work

30

7.2 Specifying a strategy with the GUI

only involves a recompilation of SMT-RAT with the desired strategy graph instance to
obtain a customized SMT solver.

7.2.2 Main window structure
The main window structure of the SMT-XRAT application can be seen in Figure 7.1. It
principally consists only of one large pane, which is called strategy graph pane. This
pane embodies the workspace of the user and visualizes the composition of SMT-RAT
modules, which are currently modeled. Only a comparatively small area is occupied
by a compact menu bar, which offers for instance the exportation of a strategy graph
into SMT-RAT.

Figure 7.1: The main window of the SMT-XRAT application in its initial state.

7.2.3 Strategy graph pane
The graphs, which can be modeled in the strategy pane, must be acyclic, directed
and weakly connected. Nodes represent SMT-RAT modules and edges represent the call
hierarchy of them. Both of the element types are labeled to display all necessary and
editable module attributes within the visualization. Modeling strategy graphs on the
pane implies the interactive operations of adding, editing and deleting modules and
also aligning elements, if desired by the user.

31

7 Composing a solver

Adding backends

Figure 7.2: The small rectangles alongside the edges reveal the hidden condition of
a backend.

An initial visualization of the pane contains the inevitable Start module of an SMT
solver, which displays no attributes, but marks the starting point for the user to create
the desired strategy graph. The user can simply consider the Start module as the front-
end of an SMT solver where, e. g., NRA/NIA formulas are passed to. Building up a
composition of modules occurs by appending backends to the Start module and then to
the newly appended backends and so forth. When appending a backend to a selected
module, a dialog window requests the operating user to input a condition and to choose
the type of SMT-RAT module for the new backend. The GUI provides a special input
interface to enter conditions, which is explained later. For each appended backend a
new node as well as a directed edge from the originating module to this new node is
drawn in the visualization. In this way, the graph gradually arises on the pane. A
node is labeled with its type of SMT-RAT module whereas an edge holds its condition
and an automatically assigned priority value. Initially this priority value is always
the total number of currently existing modules minus 1, as the Start module is not
counted. As the user-defined conditions might get quite long, they cannot be directly
seen on the strategy graph pane. Instead, a small rectangle alongside the edge reveals
them quickly on request. The user needs to point the mouse cursor over a rectangle
to obtain its corresponding tool tip text, which shows the hidden condition, as can be

32

7.2 Specifying a strategy with the GUI

seen in Figure 7.2. This leaves the graph compact and helps to concentrate on the
more essential aspect of modeling an execution hierarchy. The user can choose to input
an own condition or leave it by the default value of ‘TRUE’, which, as described before,
means that given a formula the condition is always satisfied and, hence, the backends
will always be used. To point out better which modules contain default conditions
and which do not, the color of a rectangle containing a default condition is green and
otherwise orange.

Grammar for conditions

When adding a module to the strategy graph pane, the user has to input a valid
condition for its intended use as backend. A valid condition is a derivation of the
formal Grammar

C = (N,Σ,R,S).

The set of nonterminals is given by

N = {S,T,B,C,D,P},

whereas the set of terminal symbols

Σ = {(,),¬,↔,⊕,→,∧,∨}∪{TRUE,p1, . . . ,pn}

consists of the union of logical operators and propositions. S ∈N is the start symbol
of the production rules denoted by the set R, which covers the following:

S → TRUE | T | C | D | TBT
T → P | ¬T | (C) | (D) | (TBT)
B → ↔ | ⊕ | →
C → C ∧C | T
D → D∨D | T
P → p1 | . . . | pn

with the non-terminal symbols T being a term, B being a binary operator, C being
a conjunction, D being a disjunction and P being a proposition.

The terminal symbols ‘¬’, ‘↔’, ‘⊕’, ‘→’, ‘∧’ and ‘∨’ represent their related logical
operators, which, in the context of conditions, are negation, equivalence, exclusive or,
implication, conjunction and disjunction respectively. Their semantics is defined as
usual. The terminal symbols ‘(’ and ‘)’ are used, in case several different types of
logical operators are utilized within one term. They point out the precedences of the
operators in the same way as it is known from mathematical contexts. For example,
for the term p1∨p2∧p3 it is unknown, which of the logical operators has the higher
precedence. Writing the same term with parenthesis as p1∨(p2∧p3) clarifies, that the
conjunction operator is of higher precedence.

The propositions P = {p1, . . . ,pn} are as explained in Section 3.2. This set can vary
among releases of the SMT-RAT, as well as the user can also define own propositions.
For this reason, the set of propositions is dynamically loaded from the SMT-RAT source

33

7 Composing a solver

code each time the GUI is started. As mentioned in the previous chapter, the set of
SMT-RAT modules can vary as well. Therefore the list of available SMT-RAT modules is
also dynamically loaded.

Interface for inputting conditions

When adding backends to existing modules on the strategy graph pane, a dialog win-
dow requests the user to input a condition, which must be derivable from the above
defined Grammar C. This dialog window is equipped with additional features to ease
the input process for the user and to improve the usability. A specialized text area
is used for inputting conditions. Initially, it contains the default proposition value
‘TRUE’. The window also contains a combo box, where the user has the possibility to
choose a proposition value from. A chosen proposition value can then be copied to
the current caret position of the text area. Should the occasion arise that the user
selects a part of an entered condition beforehand, it is simply overwritten by the cho-
sen proposition value. The user can only input proposition values by using this combo
box. Proposition values cannot be typed into the text area directly. On the one side,
this simply prevents mistyping and, on the other side, the list of propositions might
be changed between releases of SMT-RAT, as stated before. In many cases it will not be
sufficient to use conditions, which contain just one single proposition. When requiring
a Boolean combination of conditions, the above stated logical operators are needed.
Although, the characters of the operators are generally not present on a keyboard,
they can just be typed into the specialized text area of the dialog window. To type in
the conjunction operator ‘∧’, for instance, the user simply needs to hit the key ‘c’ on
the keyboard. Instead of the character ‘c’, the character ‘∧’ will then appear in the
text area.

In order to increase the user experience even further, the text area treats the single
characters of an inserted proposition value as a block, which cannot be entered by the
caret of the text area. This means, that if the caret is positioned directly left of an
inputted proposition value and the user navigates the caret to the right, it will jump to
the position directly right of the proposition. The caret will never appear between the
characters of a single proposition value. This is the analogous case for selecting and
deleting proposition values. All characters of a proposition value are always selected,
deselected or deleted at once.

The text area allows to copy and paste conditions or parts of it. Text, which should
be pasted into the text area, is checked to guarantee, that it only contains allowed
values. Otherwise it will be refused. Allowed values cover proposition values, the
characters used to express logical operators and parenthesis.

When the user confirms the dialog window, the implemented recursive descent parser
of SMT-XRAT checks, whether the inputted condition is a valid derivation of Grammar
C or not. In case it is not, the user will be returned to the dialog window to re-edit the
condition, as can be seen in Figure 7.3. Otherwise the inputted condition is adopted
for the backend.

34

7.2 Specifying a strategy with the GUI

Figure 7.3: A wrong condition has been inputted by the user.

Manipulating the strategy graph

Besides the capability of adding modules, the strategy graph pane gives the user also
the possibility to remove and edit them subsequently.

The deletion of a single module implicates that all of its succeeding modules in the
composition hierarchy will be removed as well. The strategy graph pane is only allowed
to contain one weakly connected graph. Furthermore, when deleting one or implicitly
more modules, the priority values of all remaining modules might automatically be
adjusted to comply the constraints of the priority values (the priority value of an edge
is always greater than the priority values of its preceding edges). However, the logical
priority order remains untouched.

When editing modules, the same dialog window is displayed as for adding modules.
The window components are already filled in with the attributes of the corresponding
module. However, priority values are not manipulated via this dialog window. As said
before, priority values are automatically assigned, when a module is created, and they
are displayed alongside the edges. The user can manually change the priority order by
pushing the priority value of a lower prioritized module in front of the priority value of
a higher prioritized one. The user achieves this by using the mouse pointer to draw a
dashed arrow from the edge label of that lower prioritized module to the edge label of
the higher prioritized module, as it is illustrated by Figure 7.4. Afterwards the lower
prioritized module will have a higher priority than the other one. The priority values

35

7 Composing a solver

of the modules might just be swapped. If this is not possible, the priority values of
the modules and of their preceding modules are adjusted automatically, so that as a
result, the newly prioritized module will be ordered logically before the other one. The
adaptation of the priority values is emphasized by Figure 7.5.

Figure 7.4: Priority values before changes are set.

7.2.4 Further functionalities
Further features of the GUI are reached through the menu bar. The most impor-
tant and also necessary functionality is the management of strategy graphs inside the
SMT-RAT source code, e. g., the translation of a strategy in the GUI into source code of
SMT-RAT. To export a currently modeled strategy graph, the user simply needs to open
the corresponding dialog window and choose a name. Figure 7.6 shows an example
for exporting the current strategy graph and naming it SMT-XRAT. The GUI will then
fulfill the translation and integration process. The same dialog window also lists all
existing strategy graphs, which are currently integrated in the source code, and gives
the opportunity to delete them separately. This can be seen for the existing strategy
graph NRATSolver of the example.

The remaining features hold by the menu bar are not mandatory, but improve the
creation process and usability. For example, the GUI allows the user to save the current
strategy graph into an XML file. This file can then be opened again for later editing

36

7.2 Specifying a strategy with the GUI

Figure 7.5: Intentionally changed and automatically adapted priority values.

or it can be exchanged with another user. Another practical feature is the ability to
save a screen shot of the strategy graph pane into an image file. Such image files can
be used to discuss strategy graphs, when it is not desired to run the GUI.

37

7 Composing a solver

Figure 7.6: Managing SMT solvers in the SMT-RAT source code.

38

8 Further features

8.1 Delta debugging
Delta debugging describes a generic debugging approach based on automated testing.
Given a program and an input that provokes a certain behavior – for example an error
– delta debugging is the process of iteratively changing the input, retaining the specific
behavior. Each small change to the input represents a delta and is the result of some
transformation rule. Whenever a change was successful, it is stored and the process
continues from this intermediate result. Eventually, there is no transformation left,
such that the faulty behavior is retained and the debugging process terminates.

This approach only works, if the transformation rules can neither be chained to form
a loop, nor continue infinitely. Usually, as the ultimate goal is a minimal example that
triggers some bug, all transformation rules are designed to make the input smaller, in
one way or another.

This approach has proven to be very valuable in the context of SAT and SMT
solving. However, existing delta debugging tools [10] needed a preprocessed input and
manual restarts to achieve a fix-point, hence, we decided to include our own delta
debugging tool, delta, in SMT-RAT. It can be used completely independent of SMT-
RAT and is built to be as generic as possible, but focuses on programs operating on
SMTLib files. It has some knowledge of the semantics of the corresponding logics, but
only operates on nodes. Any SMTLib construct, that is either a constant or a braced
expression, is a node.

The actual transformation rules are implemented in operations.h and are enabled
in the constructor of the Producer class. The implemented rules are rather simple:
removing a node, replacing a node by a child node, simplifying a number, replacing
a symbol by a constant or eliminating a let expression. These transformations are
designed such that they can be extended easily. For a given input delta applies
each transformation to each node. Each application may produce arbitrarily many
candidate inputs which are then tested. The first candidate that provokes the error is
then adopted, the other candidates are rejected.

When analyzing the behavior, delta relies on the exit code of the program. It will
run the program on the original input and obtain the original exit code. Whenever
the program returns the same exit code, delta assumes that the program behaved the
same. Hence, if you want to debug a specific assertion (or error, faulty output, ...),
make sure that this event results in a unique exit code.

Using delta is rather easy. It accepts the input file and the solver as its two
main arguments: ./delta -i input.smt2 -s ./solver. There are a couple of other
arguments that are documented in the help: ./delta --help.

39

Bibliography
[1] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic

decomposition. In Automata Theory and Formal Languages, volume 33 of LNCS,
pages 134–183. Springer, 1975.

[2] F. Corzilius and E. Ábrahám. Virtual substitution for SMT solving. In Proc. of
FCT’11, volume 6914 of LNCS, pages 360–371. Springer, 2011.

[3] Isil Dillig, Thomas Dillig, and Alex Aiken. Cuts from proofs: a complete and
practical technique for solving linear inequalities over integers. Formal Methods
in System Design, 39(3):246–260, 2011.

[4] B. Dutertre and L. de Moura. A fast linear-arithmetic solver for DPLL(T). In
Proc. of CAV’06, volume 4144 of LNCS, pages 81–94. Springer, 2006.

[5] N. Eén and N. Sörensson. An extensible sat-solver. In Proc. of SAT’03, volume
2919 of LNCS, pages 502–518. Springer, 2004.

[6] S. Gao, M. K. Ganai, F. Ivancic, A. Gupta, S. Sankaranarayanan, and E. M.
Clarke. Integrating ICP and LRA solvers for deciding nonlinear real arithmetic
problems. In Proc. of FMCAD’10, pages 81–89. IEEE, 2010.

[7] Stefan Herbort and Dietmar Ratz. Improving the Efficiency of a Nonlinear-
System-Solver Using a Componentwise Newton Method. 1997.

[8] S. Junges, U. Loup, F. Corzilius, and E. Ábrahám. On Gröbner bases in the
context of satisfiability-modulo-theories solving over the real numbers. Technical
Report AIB-2013-08, RWTH Aachen University, 2013.

[9] U. Loup, K. Scheibler, F. Corzilius, Erika E. Ábrahám, and Bernd Becker. A sym-
biosis of interval constraint propagation and cylindrical algebraic decomposition.
In Proc. of CADE-24, volume 7898 of LNCS, pages 193–207. Springer, 2013.

[10] Aina Niemetz and Armin Biere. ddsmt: A delta debugger for the smt-lib v2
format. In SMT Workshop 2013 11th International Workshop on Satisfiability
Modulo Theories, 2013.

[11] Roberto Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability,
Boolean Modeling and Computation, 3:141–224, 2007.

41

	Introduction
	Installation
	Requirements
	Building SMT-RAT
	Execute SMT-RAT as an SMT solver

	System architecture
	Modules
	Strategy
	Manager
	Procedures implemented as modules
	Infeasible subsets and lemmas

	Constructing an formula
	Normalized constraints
	Boolean combinations of constraints and Boolean variables

	Embedding of an SMT-RAT solver composition
	Implementing further modules
	Main members of a module
	Interfaces to implement
	Informing about a constraint
	Adding a received formula
	Removing a received formula
	Checking for satisfiability
	Updating the model/satisfying assignment

	Running backend modules
	Auxilliary functions

	Composing a solver
	Existing module implementation
	The CNFerModule
	The SATModule
	The LRAModule
	The ICPModule
	The GroebnerModule
	The VSModule
	The CADModule

	Specifying a strategy with the GUI
	Concept
	Main window structure
	Strategy graph pane
	Further functionalities

	Further features
	Delta debugging

