ACT Math Concepts to Know

Just Numbers

Terms

√?	Concept	Explanation	Example/Visual
	Undefined	An expression is undefined when the	If $f(x) = \frac{a+b}{x-c}$, for what value of x would this
		denominator equais zero.	function be undefined?
			Answer: c , because c - c = 0
	Imaginary number	• To take the square root of a negative	Solve: $\sqrt{3x} = 6i$
		number, first take the square root of	1) Square both sides \rightarrow 3x = -6
		the number as if it were positive, then add "i"	2) Divide both sides by 3 \rightarrow x = -2
		• i ² = -1	
	Integers	Whole numbers, including negative numbers and zero	-2, 0, 3, 7
	Rational/ Irrational number	Rational – Can be expressed as a decimal or	Rational45, ¾
		fraction	
		Irrational – Cannot be expressed as a	Irrational - $\sqrt{2}$, $\sqrt{3}$, π
		decimal or fraction	
	Adding and subtracting negative	Adding a positive and a negative –	-38 + 25
	numbers	1) Ignore the signs	1) 38 - 25 = 13
		2) Subtract the smaller number from the larger number	2) -38 is larger than 25, so the answer is -13
		3) Put on the sign from the larger number	
		Subtracting negative numbers –	13 - (-23) =
		1) Change the subtraction into addition	13 + (+23) = 36
	Multiplying and dividing with	1) Ignore the signs and do the problem	-3 x -5 x -2
	negative numbers	without signs	1) 3 x 5 x 2 = 30
		2) If there is an odd number of negative	2) Odd number of negative signs → -30
		signs, add a negative sign to the final	
		answer	

PEMDAS/ Order of operations	 1) Parentheses 2) Exponents 3) Multiplication and Division 4) Addition and Subtraction 	Order of Operations $5 - 4^2 \cdot (10 - 2) + 3 \cdot 6$ P $5 - 4^2 \cdot 8 + 3 \cdot 6$ E $5 - 16 \cdot 8 + 3 \cdot 6$ MD $5 - 2 + 3 \cdot 6$ MD $5 - 2 + 18$ AS $3 + 18$ AS 21 MM
Absolute value	 A number inside an absolute value sign becomes positive 1) Do what's inside the absolute value sign first 2) Make the result positive 	2 - 5 = -3 = 3
The number of integers from one number to another	Subtract the two numbers and then add 1 We need to add 1 to include the first number	How many integers are there from 12 to 25? 25 - 12 = 13 13 + 1 = 14

Divisibility

√?	Concept	Explanation	Example/Visual
	Factors and Multiples	Factor – A number that divides into an	Factors of 20:
		integer with no remainder	1, 2, 4, 5, 10, 20
		Multiple – A number that the integer	Multiples of 6:
		divides into with no remainder	6, 12, 18, 24, 30, 36
	Prime number	The only factors are 1 and the number.	2, 3, 5, 7, 13
		Note: 1 is NOT a prime number	
	Prime Factorization	Keep breaking a number into factors until	Prime factorization of 48:
		all the factors are prime	48 =
			12 x 4 =
			(3 x 4) x (2 x 2) =
			3 x 2 x 2 x 2 x 2

Least Common Multiple	The lowest number that is a multiple of	The LCM of 12 and 15:
•	both numbers	15, 30, 45, 60
	1) Find multiples of the larger number until	60 is also a multiple of 12
	you get to one that is also a multiple of the	The LCM is 60
	smaller number.	
Greatest Common Factor	The highest number that is a factor of both	The GCM of 16 and 24
	numbers	Prime factorization of 16:
	1) Figure it out mentally	2 x 2 x 2 x 2
	OR	Prime factorization of 24:
	1) Break each number into its prime factors	2 x 2 x 2 x 3
	2) Multiple the prime factors they have in	16 and 24 have 2 x 2 x 2 in common
	common	The GCM is 2 x 2 x 2 = 8
Even or Odd?	To find out if an answer will be even or odd,	Will 2x ³ + 1 be odd or even?
	just plug in simple numbers like 1 and 2	$x = 1 \rightarrow 2 + 1 = 3$
		$x = 2 \rightarrow 16 + 1 = 17$
		2x ³ + 1 will always be odd
Is a number divisible by 2, 3, 4, 5,	Divisible by	
9, and 10?	2 – If the last digit is even	36 \rightarrow the last digit, 6, is even
	3 – If the sum of the digits is divisible by 3	357 \rightarrow 3 + 5 + 7 = 15 (15 is divisible by 3)
	4 – If the last two digits are divisible by 4	524 \rightarrow 24 is divisible by 4
	5 – If the last digit is 5 or 0	55 $ ightarrow$ the last digit is 5
	9 – If the sum of the digits is divisible by 9	$396 \rightarrow 3 + 9 + 6 = 18$ (18 is divisible by 9)
	10 – If the last digit is 0	730 \rightarrow the last digit is 0
Remainder	The whole number left over after division	14/4 = 3 Remainder 2

Fractions and Decimals

√?	Concept	Explanation	Example/Visual
	Reducing fractions	Cancel out all the factors that the	$\frac{15}{3 \times 5} - \frac{3}{3}$
		numerator (top number) and the	$\overline{20} - \overline{4 \times 5} - \overline{4}$
		denominator (bottom number) have in	
		common	
	Adding and subtracting fractions	1) Find a common denominator	1 2 5 8 13
		2) Add or subtract the numerators	$\frac{1}{4} + \frac{1}{5} - \frac{1}{20} + \frac{1}{20} - \frac{1}{20}$

Multiplying fractions	1) Multiply the numerators	3 5 - 15
	2) Multiply the denominators	$\frac{1}{8} \times \frac{7}{7} = \frac{1}{56}$
Dividing fractions	1) Flip the second fraction	2, 7, 2, 9, 18
	2) Multiple the two fractions	$\overline{5} \cdot \overline{9} - \overline{5} \cdot \overline{7} - \overline{35}$
Changing a mixed number to an	1) Multiply the whole number by the	2^{3} (3 × 7) + 3 24
improper fraction	denominator, then add the numerator	37 - 7 - 7
	2) Put the number from #1 over the same	
	denominator	
Changing an improper fraction to	1) Divide the denominator into the	23
a mixed number	numerator to get a whole number and a	5
	remainder	1) $23 \div 5 = 4 \text{ R} 3$
	2) The whole number remains a whole	2) $4\frac{3}{r}$
	number, and the remainder is the	5
	numerator. The denominator stays the	
	same	
Reciprocal	Flip the numerator and the denominator	$2 \rightarrow 5$
		$\overline{5}$ $\overline{2}$
Which fraction is greater?	1) Convert both fractions so they have a	$\frac{5}{2}$ or $\frac{9}{16} \rightarrow \frac{10}{16}$ or $\frac{9}{16} \rightarrow \frac{5}{2}$ is greater
	common denominator	8 10 10 16 0
	OR	5 ÷ 8 = .625
	2) Convert both fractions to decimals	9 ÷ 16 = .5625
Converting fractions to decimals	Divide the top number by the bottom	9 ÷ 16 = .5625
	number	
Finding a particular digit in a	1) Which digit are you trying to find?	1) To find the 101^{th} digit of $\frac{6}{100}$
repeating decimal	2) How many digits are repeating?	11
	3) Find the multiple of #2 that is closest to	$2)\frac{1}{11} = .54545454 (2 digits are repeating)$
	the digit you are trying to find, and then	3) The digit of every multiple of 2 is 4. The
	count up or down to find the digit you are	100 th digit is 4. The 101th digit is 5.
	looking for	
Percent formula	1) Change the percent into a decimal	70% of 50 is what?
	(divide it by 100)	1) 70% ÷ 100 = .7
	2) Change "of" into a multiplication sign,	2) .7 x 50 = ?
	and Change "is/are" into an equal sign	3) .7 x 50 = 35
	3) Complete the problem	

Percent increase and decrease	Percent increase –	\$120 increased by 25%
	1) Convert the percent to a decimal, add 1	1) 25% = .25
	2) Multiply	.25 + 1 = 1.25
		1.25 x \$120 = \$150
	Percent decrease –	
	1) Convert the percent to a decimal	\$120 decreased by 25%
	2) Multiply	1) 25% = .25
	3) Check if you need to subtract your	2) .25 x \$120 = \$30
	answer from the original	3) \$120 - \$30 = \$90
Multiple increases and decreases	1) Start with 100 and then apply the	A price is increased by 20% and then the new
	increases and decreases	price is decreased by 30%. What is the net
		change?
		20% increase → 100 x 1.20 = 120
		30% decrease → 120 x .30 = 36
		120 - 36 = 84
		Net change → 100 - 84 = 16
		16% decrease

Ratios, Proportions, and Rates

√?	Concept	Explanation	Example/Visual
	Setting up a ratio	1) Put the number after "of" on top	What is the ratio of 3 cats to 5 dogs?
		2) Put the number after "to" on bottom	Answer → 3:5
		3) Reduce	
	Solving a proportion	1) Cross multiply	$\frac{2}{5} = \frac{x}{15}$ 5x = 30
			x = 6
	Solving rate problems	Rate x Time = Distance	A car travels 294 miles in 6 hours. What is the
		Average Rate = Total Distance / Total Time	rate at which it is traveling?
			Rate x 6 = 294
			Rate = 49mph

Averages

√?	Concept	Explanation	Example/Visual
	Average formula	Average = Sum of terms / Number of terms	What is the average of 25, 39, and 42? $\frac{25+39+44}{3} \rightarrow \frac{108}{3} \rightarrow 36$
	Average of evenly spaced numbers	Just average the smallest and largest numbers	What is the average of all the even numbers from 12 to 36? $\frac{12+36}{2} \rightarrow \frac{48}{2} \rightarrow 24$
	Using the average to find the sum	Sum = Average x Number of terms Then, subtract the numbers you already have to find the answer	Jim's average score after four tests is 88. What score on the fifth test would bring Martin's average up to exactly 90? Answer: 90 x 5 = 450 450 - 88 - 88 - 88 - 88 = 98
	Counting the possibilities	Multiply the number of choices for the first thing by the number of choices for the second thing	John has 5 different shirts and 7 different pairs of pants. How many different combinations of shirts and pants can he have? Answer → 5 x 7 = 35 different combinations
	Probability	Number of items / Total number of items = Probability/Percentage	In a group of 30 students, 12 are male. What percentage of the group is male? Answer \rightarrow 12 / 30 = .4 \rightarrow 40% are male

Roots

√?	Concept	Explanation	Example/Visual
	Simplifying square roots	 Factor out the perfect squares Put the square root of the perfect square(s) in front of the radical 	$ \frac{\sqrt{27}}{\sqrt{9 \times 3}} $ $ 3\sqrt{3} $
	Adding and subtracting roots	If the number under the radical is the same, you can add or subtract them	$2\sqrt{5} + 6\sqrt{5} = 8\sqrt{5}$

Multiplying and dividing roots	You can multiply two different roots by first multiplying the numbers under the	$\sqrt{3} \times \sqrt{5} = \sqrt{15}$
	roots You can divide two different roots by first dividing the numbers under the roots	$\sqrt{15} \div \sqrt{5} = \sqrt{3}$
Matrices – Adding and subtracting	Simply add or subtract the spaces that correspond to each other	$\begin{bmatrix} 3 & 8 \\ 4 & 6 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 1 & -9 \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 5 & -3 \end{bmatrix}$

<u>Algebra</u>

Algebraic Expressions

√?	Concept	Explanation	Example/Visual
	Multiplying and Dividing Powers	To multiply powers with the same base:	$x^3 \times x^4 = x^7$
		add the exponents	
		To divide powers with the same base,	$x^5 \div x^3 = x^2$
		subtract the exponents	
	Raising powers to powers	Multiply the exponents	$x^3 \times x^4 = x^{12}$
	Evaluating an algebraic expression	Plug in the values for the unknown	If $f(x) = x^3 - x^2 + x$, what is the value of $f(-2)$?
			Answer:
			$(-2)^3 - (-2)^2 + (-2)$
			(-8) - (4) + (-2) = -14
	Adding and subtracting algebraic	Add and subtract like terms	2x + 3x = 5x
	expressions		$x^2 + 3x^2 = 4x^2$
	Multiplying monomials (one term	Multiply the coefficients and the variables	$3x^2 \times 5x^3 = 15x^5$
	by one term)	separately	
	Multiplying binomials (two terms	In this order, multiply the:	(2x+2)(x-2) =
	by two terms) using FOIL	1) First terms	(2x)(x) + (2x)(-2) + (2)(x) + (2)(-2) =
		2) Outside terms	$2x^2 + (-4x) + 2x + (-4) =$
		3) Inside terms	2x ² - 2x - 4
		4) Last terms	

Factoring Algebraic Expressions

√?	Concept	Explanation	Example/Visual
	Factoring out a common divisor	If all the terms have a common factor, it	$2x^2 - 8x =$
		can be factored out	2x(x - 4)
	Factoring the difference of	The ACT likes to test this.	x ² - 9 =
	squares	x ² - (number) ² = (x - number)(x + number)	(x - 3)(x + 3)

Factoring the square of a binomial	The ACT likes to test this	x ² + 8x + 16 =
(a + b)² or (a - b)²	If the last number is a perfect square, check	$(x + 4)^2$
	if the algebraic expression is a square of a	
	binomial	
Factoring other algebraic	Think about what binomials you could use	$6x^2 - 16x + 8 =$
expressions	FOIL on to result with the algebraic	1) 3 x 2 or 6 x 1
	expression	2) 4 x 2 or 8 x 1
	1) What first terms could get you the	3) (3 x 4) + (2 x 2) = 16
	squared term?	(3x ² - 2)(2x ² - 4)
	2) What last terms could get you the	
	number?	
	3) What combinations of first and last	
	terms could get you the middle term?	
Simplifying an algebraic fraction	1) Factor the numerator and denominator	x + 3
	2) Cancel out factors that are in both the	$\overline{x^2 + 5x + 6}$
	numerator and denominator	(x+3)
		$\overline{(x+3)}(x+2)$
		1
		$\overline{x+2}$

Solving Equations

√?	Concept	Explanation	Example/Visual
	Solving a linear equation	1) Add and subtract terms to get the x	2x + 6 = 5x
		terms on one side	* Subtract 2x from both sides
		2) Divide (or multiply) to solve for x	6 = 3x
			2 = x
	Solving "in terms of"	To solve for one variable in terms of	Solve for x in terms of y: 2x - y - 4 = y
		another, do the same thing above for	* add y to both sides
		the variable you are solving for. The	2x - 4 = 2y
		other side will have the variable you are	* divide both sides by 2
		solving in terms of .	x-2=y

Translating from English into	1) Break the word problem into parts	The toll for driving a segment of a certain freeway is
algebra	2) Write out the algebraic expression for	\$1.20 plus 20 cents for each mile traveled. John paid
	the different parts and then put them	a \$25.00 toll for driving a segment of the freeway.
	together according to what the problem	How many miles did he travel?
	is asking for	1.20 + .20(m) = 25
		.20(m) = 23.80
		m = 119 miles
Solving a quadratic equation	1) Factor the algebraic expression	$x^2 + 5x + 6 = 0$
	2) Find out what values will make the	(x+2)(x+3) = 0
	expression equal zero	x = -2 or -3
	OR	
	1) Use the quadratic formula	$-5 \pm \sqrt{5^2 - 4(1)(6)}$
	$-b \pm \sqrt{b^2 - 4ac}$	$x = \frac{1}{2(1)}$
	$x = \frac{2a}{2a}$	$-5 \pm \sqrt{1}$
	20	$x = \frac{5 \pm \sqrt{1}}{2}$
		-4^2 -6
		$x = \frac{1}{2} \text{ or } \frac{1}{2}$
		x = -2 or -3
Solving a system of equations	Combine the equations in a way that one	y = x + 5 $y = 2x + 2$
	of the variables cancels out	x + 5 = 2x + 2
		2x + 3y = 20xx
		+ -2x + y = 4 $5 = x + 2-2 - 2$
		0 + 4y = 24 3 = x
		4x = 24 $y = 2x + 2$
		y = 2(3) + 2 = -8
		$(\gamma = 6)$ Solution: (3, 8)
		Elimination Substitution
Solving an equation that has	There will be two different answers: one	
absolute value signs	that results in a positive number and one	4x + 5 = 21
	that results in a negative number	\wedge
		4x + 5 = 21 $4x + 5 = -21$
		4x = 10 $4x = -20x = 4$ $x = -6.5$

Solving an inequality	 Solve for the variable as if it is a linear equation If you multiply or divide by a negative number, flip the inequality sign 	$-3n > 12$ $\begin{array}{c} \text{If you divide or} \\ \text{multiply by a} \\ \text{negative number} \\ \hline -\frac{3n}{-3} > \frac{12}{-3} \\ \text{inequality symbol} \\ n < -4 \\ \hline \text{Solution: all numbers} \\ \text{less than } -4 \end{array}$
Graphic inequalities on a number line	Use a solid circle if the point is included and an open circle of the point is not included	< or > use open circle $\leq \text{ or } \geq$ use closed circle Examples $X > 3 \qquad \underbrace{++ \bigoplus_{3}}_{-7} \qquad \underbrace{-7}_{-7} \qquad \underbrace{-7}_{-2} \qquad \underbrace{-2}_{-2} \qquad \underbrace{-2}_{$
Graphing inequalities on a grid	 Choose a coordinate to plug into the equation If the coordinate makes the inequality true, shade in that side of the line/curve. If not, shade in the other side. 	Graph using same steps as linear inequalities $y < 2x^2 + 4x - 8$ t boarder is t t t t t t t t t t t t t t t t t

Coordinate geometry

√?	Concept	Explanation	Example/Visual
	Finding the distance between two points	 Use the Pythagorean Theorem (x₁ - x₂)² + (y₁ - y₂)² = c² OR 2) Use special right triangles 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Finding the midpoint	$(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	$\begin{pmatrix} x_1 + x_2 \\ 2 \end{pmatrix} \begin{pmatrix} y_1 + y_2 \\ 2 \end{pmatrix}$ $(x_1, y_1) \bullet$
	Using two points to find the slope	Slope = Change in y / Change in x	$Slope = \frac{\Delta Y}{\Delta x} = \frac{Y_2 - Y_1}{X_2 - X_1}$ (X_2, Y_2) (X_1, Y_1) ΔY $Y_2 - Y_1$ ΔX $X_2 - X_1$ $0 www.mathwarduces.com$

A line perpendicular to the slope	Take the reciprocal of the slope and change the sign	Y = 2x + 1 3 2 Y = $-\frac{1}{2}x + 1$ 1 2 3 3 4 5 2005 wyw.mathware.euse.com
Using an equation to find the slope	Use the slope-intercept form y = mx + b m is the slope, b is the y-intercept	y = 2x + 1
Using an equation to find the intercept	To find the y-intercept: Plug in 0 for x and solve for y To find the x-intercept: Plug in 0 for y and solve for x	
Equation for a circle	(x - h) ² + (y - k) ² = r ² r = radius (h,k) is the center of the circle	$(x -h)^{2} + (y-k)^{2} = r^{2}$ (h,k) r $ww.mathwarehouse.com$

Equation for a parabola	$y = ax^2 + bx + c$	Parabola y = x ² - 2x - 3 x-intercept: -1 x-intercept: 3
Equation for an ellipse	x ² /a ² + y ² /b ² = 1 a = x-intercepts b = y-intercepts	Factored: $(x + 1)(x - 3)$ Factored: $(x + 1)(x - 3)$ $\frac{x^2}{12} + \frac{y^2}{22} = 1$ (0,2) Major Axis (-1,0) (1,0) (1,0) (1,0) (0,-2) (0,-2)

Plane Geometry

Lines and Angles

Concept	Explanation	Example/Visual
Intersecting lines	When two lines intersect:	7
	• Adjacent angles, or angles next to each	$\angle a + \angle b = 180^{\circ}$
	other, are supplementary and add up	a/b $\angle b = \angle d$
	to 180 degrees	d c
	Vertical angles, or angles across from	
	each other, are equal	
Parallel lines and transversal (a	Forms four equal acute angles and four	F
line that crosses through parallel	equal obtuse angles	h
lines)		$C \longrightarrow D$
		b
		$A \longrightarrow C \qquad B$
	Concept Intersecting lines Parallel lines and transversal (a line that crosses through parallel lines)	ConceptExplanationIntersecting linesWhen two lines intersect:• Adjacent angles, or angles next to each other, are supplementary and add up to 180 degrees• Vertical angles, or angles across from each other, are equalParallel lines and transversal (a line that crosses through parallel lines)Ine that crosses through parallel

Triangles – General

√?	Concept	Explanation	Example/Visual
	Interior angles of a triangle	The three angles add up to 180 degrees	$A = \frac{C}{m \angle A + m \angle B + m \angle C} = 180$

Exterior angle of a triangle	 An exterior angle equals the sum of the two angles it is not next to The three exterior angles of a triangle add up to 360 degrees 	
Similar triangles	 Have the same shape, but different size Corresponding angles are equal Corresponding sides are 	$2a + 2b + 2c = 360^{\circ}$ $2a = 2c + 2b$ 33° 33° 22° 15 2
Area of a triangle	 Corresponding sides are proportional Area = ½(Base)(Height) For non-right triangles, the height is inside the triangle 	4 height 9 mm base 8 mm

Right Triangles

√?	Concept	Explanation	Example/Visual
	Pythagorean Theorem	$(leg_1)^2 + (leg_2)^2 = (hypotenuse)^2$	a b $a^2 + b^2 = c^2$

|--|

Other Polygons

√?	Concept	Explanation	Example/Visual
	Rectangle	 Has 4 right angles Opposite sides are equal Diagonals are equal Area = Length x Width 	Length X Width
	Parallelogram	 Has 2 pairs of parallel sides Opposite sides are equal Opposite angles are equal Angles next to each other add up to 180 degrees Area = Base x Height 	a = b * h
	Square	 Rectangle with 4 equal dies Area = (Side)² 	$arca = s^2 \qquad s$
	Trapezoid	 One pair of parallel sides One pair of non-parallel sides Area = ^{base1 + base2}/₂ × height 	$A = \frac{1}{2}(b_1 + b_2) \cdot h$

Interior angles of a polygon			(n-2)(180)	
	• <u>(n</u> ·	$\frac{-2) \times 180}{1}$ = Interior angle	n	
	0	n is the number of sides	(8-2)(180)	
	0	It is the number of sides	8	
			$\frac{(6)(180)}{180} = 135$	
			8	for a polygon with 8 sides

Circles

√?	Concept	Explanation	Example/Visual
	Circumference (outside) of a circle	Circumference = 2 π r	c = 2TTr
	Area of a circle	Area = πr^2	r Area = $\pi x r^2$
	Length of an arc (piece of the circumference)	Arc = n/360 * (2πr) n = the arc's central angle	A central angle Arc length = $2\pi r \times \frac{central angle}{360^{\circ}}$

Area of a sector (piece of the area	Sector = n/360 x (πr²)	
of a circle)	n = the sector's central angle	r contor
		Sector area = $\pi r^2 \times \frac{\text{central angle}}{360^\circ}$

Solids

√?	Concept	Explanation	Example/Visual
	Surface area of a rectangular solid Volume of a rectangular solid	Surface area = 2(Iw + wh + Ih) Volume = Iwh	H Surface area=2(L*W+L*H+W*H) $Volume = L*W*H$
	Volume of a cylinder	Volume of a cylinder = πr²H	$V = \pi r^2 h$
	Volume of a cone	Volume of a cone = 1/3πr²H	$V = \frac{V_3 \pi r^2 h}{V}$

Volume of a sphere	Volume of a sphere = $4/3\pi r^3$	Sphere
Surface area of a sphere	Surface area of a sphere = $4\pi r^2$	$\frac{Surface}{Area}$ $A = 4 \pi r^{2}$
		$\frac{\text{Volume}}{V = \frac{4}{3}\pi r^3}$

Trigonometry

√?	Concept	Explanation	Example/Visual
	Sine, Cosine, and Tangent of acute angles	SOH-CAH-TOA Sine = Opposite/Hypotenuse Cosine = Adjacent/Hypotenuse Tangent = Opposite/Adjacent	SOH $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$ CAH $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ TOA $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$ $\frac{\theta}{\text{side}}$
	Cotangent, Secant, and Cosecant of acute angles	These are the reciprocals of Sine, Cosine, and Tangent Cotangent = 1/Tangent = Adjacent/Opposite Secant = 1/Cosine = Hypotenuse/Adjacent Cosecant = 1/Sine = Hypotenuse/Opposite	$csc \theta = \frac{1}{\sin \theta}$ $sec \theta = \frac{1}{\cos \theta}$ $cot \theta = \frac{1}{\tan \theta}$
	Trigonometric functions of other angles	 For angles greater than 90 degrees 1) Draw a circle with radius 1 centered on the coordinate grid 2) Rotate the appropriate number of degrees counterclockwise 3) Draw an acute triangle depending on where the angle lands 4) Find the answer 	$\begin{array}{c} \begin{array}{c} y \\ y \\ y \\ y \\ x \\ z \\ z$
	Simplifying trigonometric expressions	sin ² x + cos ² x = 1 Also, use the trigonometric properties to simplify	$\cot x + \tan x = \frac{\cos x}{\sin x} + \frac{\sin x}{\cos x}$ $= \frac{\cos^2 x + \sin^2 x}{\sin x \cos x}$ $= \frac{1}{\sin x \cos x}$ $= \cos e x \sec x (Proven)$

Graphic trigonometric	x-axis \rightarrow angle	У
functions	y-axis \rightarrow value of the trigonometric	Ĩ
	function	1 y = sinx°
	Use special angles like 0, 30, 45, 60, 90,	
	etc. to plot key points	-90° 0 90° 180° 270° 360° 450° 540°
		× †
		$y = \cos x^{\circ}$
		-90° 0 90° 180° 270° 360° 450° 540° -1
Radians	π = 180°	2π = 360°
		π = 180°
		$\pi/2 = 90^{\circ}$