

Colorimeter REAGENT SYSTEMS

TEST INSTRUCTIONS

SMART2 COLORIMETER REAGENT SYSTEMS

SMART2 REAGENT SYSTEMS LIST

LaMotte Company continuously updates the list of pre-programmed tests as the calibrations become available. Pre-programmed calibrations can be added to the Smart2 Colorimeter in the field. A Windows-based computer running a Windows Operating System and an 8 pin mini-DIN/9 pin F D-submin serial cable (order Code 1771) are required.

Call LaMotte Technical Services at 1-800-344-3100 (410-778-3100 outside the USA) or email at tech@lamotte.com for a current list of available calibrations and downloading instructions.

Test Factor (Test #)	Range (ppm)	Test Method (# of Reagents)	# of Tests
Alkalinity-UDV (1)	0–200	Unit Dose Vials (1)	50
Aluminum (2)	0.00-0.30	Eriochrome Cyanine R (4)	50
Ammonia Nitrogen- Low Range, Fresh Water (3)	0.00–1.00	Salicylate (3)	25
Ammonia Nitrogen- Low Range, Salt Water (4)	0.00–1.00	Salicylate (3)	25
Ammonia Nitrogen- High Range (5)	0.00–4.00	Nesslerization (2)	50
Benzotrizole (10)	0.0–30.0	UV Photolysis (3)	50
Biguanide (7)	0–70	Colorimetric	50
Boron (8)	0.00-0.80	Azomethine-H (2)	25
Bromine-Low Range (9) See Chlorine-Bromine-Iodine	0.00–9.00	DPD (3)	100
Bromine-UDV (11)	0.0–22.0	DPD (1)	
Cadmium (12)	0.00-1.00	PAN (4)	50
Ca & Mg Hardness-UDV (13)	0-400	Unit Dose Vials (1)	50
Carbohydrazide (14) See Oxygen Scavengers	0.000–0.900	Iron Reduction (3)	100
Chloride-TesTab (21)	0.0–30.0	Argentometric (1)	50
Chlorine (15)	0.00-4.00	DPD (3)	100
Chlorine-Free-UDV (16)	0.00-10.00	DPD (1)	50
Chlorine-Liquid DPD (17)	0.00-4.00	DPD (3)	144
Chlorine-Total-UDV (18)	0.00-10.00	DPD (1)	50
Chlorine Dioxide (20)	0.00-8.00	DPD (2)	100
Chromium (22)	0.00-1.00	Diphenylcarbohydrazide (1) or (5)	100
Chromium-TesTab (23)	0.00-1.00	Diphenylcarbohydrazide (1)	50

Test Factor (Test #)	Range (ppm)	Test Method (# of Reagents)	# of Tests
Cobalt (24)	0.00–2.00	PAN (3)	50
COD-Low Range (25)	5–150	Digestion (1)	25
COD-Standard Range (26)	0-1500	Digestion (1)	25
COD-High Range (27)	0–15000	Digestion (1)	25
Color (28)	0–1000	Platinum Cobalt (0)	∞
Copper-BCA-Low Range (29)	0.00-3.50	Bicinchoninic Acid (1)	50
Copper-Cuprizone (31)	0.00-2.00	Cuprizone (2)	50
Copper-DDC (32)	0.00-6.00	Diethyldithiocarbamate (1)	50
Copper-UDV (33)	0.0-4.0	Bicinchoninic Acid (1)	50
Cyanide (35)	0.00-0.50	Pyridine-Barbituric Acid (5)	50
Cyanuric Acid (36)	5–200	Melamine (1)	100
Cyanuric Acid-UDV (37)	5–150	Melamine (1)	50
DEHA (38) See Oxygen Scavengers	0.000-0.700	Iron Reduction (3)	100
Dissolved Oxygen (39)	0.0-11.0	Winkler Colorimetric (3)	100
Erythorbic Acid (40) See Oxygen Scavengers	0.00–3.00	Iron Reduction (3)	100
Fluoride (41)	0.00-2.00	SPADNS (2)	50
Hydrazine (45)	0.00-1.00	P-dimethylaminobenzaldehyde (2)	25
Hydrogen Peroxide- Low Range (46)	0.00–1.50	DPD (2)	100
Hydrogen Peroxide- High Range (47)	0–60	DPD (2)	50
Hydrogen Peroxide-Shock (48)	0–225	DPD (2)	50
Hydroquinone (49) See Oxygen Scavengers	0.00–2.00	Iron Reduction (3)	100
Iodine (50) See Chlorine-Bromine-Iodine	0.00–14.00	DPD (3)	100
Iron-Bipyridyl (51)	0.00-6.00	Bipyridyl (2)	50
Iron-UDV (52)	0.00-10.00	Bipyridyl (1)	50
Iron-Phenanthroline (53)	0.00-5.00	1,10 Phenanthroline (2)	50
Lead (54)	0.00-5.00	PAR (5)	50
Manganese-Low Range (55)	0.00-0.70	PAN (3)	50
Manganese-High Range (56)	0.0–15.0	Periodate (2)	50
Mercury (57)	0.00-1.50	TMK (3)	50
Test Factor (Test #)	Range (ppm)	Test Method (# of Reagents)	# of Tests

) (1 1 1 11 , · · (50)	0.00 2.00	I D 1 .: (2)	100
Methylethylketoxime (58) See Oxygen Scavengers	0.00–3.00	Iron Reduction (3)	100
Molybdenum-High Range (61)	0.0–50.0	Thioglycolate (3)	50
Nickel (63)	0.00–8.00	Dimethylglyoxime (6)	50
Nitrate Nitrogen- Low Range (64)	0.00–3.00	Cadmium Reduction (2)	20
Nitrate-TesTab (66)	0.0–60.0	Zinc Reduction (1)	50
Nitrite Nitrogen- Low Range (67)	0.00-0.80	Diazotization (2)	20
Nitrite-TesTab (69)	0.00-1.25	Diazotization (1)	50
Nitrogen, Total (70)	0–25 mg/L	Chromotropic Acid/Digestion (6)	25
Oxygen Scanvengers	various	DEHA (3)	50
Ozone-Low Range (71)	0.00-0.40	Indigo (3)	100
Ozone-High Range (72)	0.00-2.50	Indigo (3)	25
pH-Chlorophenol Red (74)	5.0-6.8	Chlorophenol Red (1)	100
pH-Phenol Red (75)	6.6–8.4	Phenol Red (1)	100
pH-Thymol Blue (76)	8.0-9.6	Thymol Blue (1)	100
Phenol (77)	0.00-6.00	Aminoantipyrine (3)	50
Phosphate-Low Range (78)	0.00-3.00	Ascorbic Acid Reduction (2)	50
Phosphate-High Range (79)	0.0–70.0	Vanodomolybdphosphoric Acid (1)	50
Phosphorus, Total Low-Range (82)	0.00–3.50 mg/L	Ascorbic Acid/Digestion (5)	25
Phosphorus, Total High-Range (83)	0.0–100.0 mg/L	Molybdovanadate/Digestion (5)	25
Potassium (81)	0.0–10.0	Tetraphenylboron (2)	100
Silica-Low Range (85)	0.0-4.0	Heteropoly Blue (4)	50
Silica-High Range (86)	0–75	Silicomolybdate (3)	50
Sulfate-High Range (89)	0–100	Barium Chloride (1)	50
Sulfide-Low Range (90)	0.00-1.50	Methylene Blue (3)	50
Surfactants (94)	0.5–8.0	Bromphenol Blue (3)	50
Tannin (96)	0.0–10.0	Tungsto-molybdophosphoric Acid (2)	50
Tolytriazole (97) See Benzotriazole	0.0–3.0	UV Photolysis (3)	50
Turbidity (98)	0-400 FTU	Absorption (0)	∞
Zinc-Low Range (99)	0.00-3.00	Zincon (6)	50

On the meter display, "NA" following the test number indicates that a calibration for that test number is not available.

UNIT DOSE VIALS • CODE 4318-H

CONTENTS	CODE
Alkalinity Unit Dose Vials, 10 pouches	4318-H
11	
Package of 3 Vials (empty)	0156
Syringe, 6 mL, plastic	1184
Foil Storage Bag	9467
CCESSORY PACKAGE • CODE 1962	
Pipettor	30528
Pipet Tip (0-5 mL)	30695
Cuvette Rack	31695
Package of 3 Vials (empty)	0156
Foil Storage Bag	9467
	Alkalinity Unit Dose Vials, 10 pouches Eded but not supplied: ECESSORY PACKAGE • CODE 1961 Package of 3 Vials (empty) Syringe, 6 mL, plastic Foil Storage Bag ECESSORY PACKAGE • CODE 1962 Pipettor Pipet Tip (0-5 mL) Cuvette Rack Package of 3 Vials (empty)

Drinking and surface waters; swimming pool water. APPLICATION:

0-200 ppm as CaCO₃ RANGE:

The sample is added to a buffered indicator reagent. The METHOD:

color that develops, ranging from yellow to blue, will indicate the amount of alkalinity in the sample.

Samples should be analyzed as soon as possible after collection. Sample may be refrigerated for 24 hours.

SAMPLE HANDLING & PRESERVATION:

INTERFERENCES: Quats and poly quats at high concentrations will interfere.

Use 10 mm square cell adapter

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 1 ALKALINTIY-UDV) from TESTING MENU.
- 5. Scroll to and select 1 ALKALINITY-UDV from menu.
- **6.** Rinse a clean vial (0156) with sample water.
- 7. Use the syringe (1184) to add 3 mL of sample to the vial.
- 8. Insert the vial into chamber, close lid and select SCAN BLANK.
- **9**. Remove vial from the colorimeter.
- **10.** Use the syringe (1184) to add 3 mL of sample to an Alkalinity-UDV vial (4318).
- 11. Wait 2 minutes.
- **12**. Invert vial 3 times to mix.
 - ☑ NOTE: If powder residue remains in the bottom of the vial after inverting, invert once more and tap bottom of vial sharply once or twice to dislodge powder. Mix.
- 13. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 14. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTES: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

UDVs from opened pouches should be used promptly. Store unused vials from opened pouches in the Foil Storage Bag (9467) to extend the shelf life of the reagent. Generally, UDVs stored in the bag should be used within 10 days if the humidity is less than 50% and within 5 days if humidity is greater than 50%. The Foil Storage Bag contains a desiccant pack with indicator. When the indicator in the window turns from blue to pink, the bag should be replaced.

ALUMINUM

ERIOCHROME CYANINE R METHOD • CODE 3641-SC

QUANTITY	CONTENTS	CODE
5 g	*Aluminum Inhibitor Reagent	*7865-C
2 x 120 mL	*Aluminum Buffer Reagent	*7866-J
120 mL	Aluminum Indicator Reagent	7867-J
15 mL	Aluminum Complexing Reagent	7868-E
1	Spoon, 0.05 g, plastic	0696
2	Pipets, 1.0 mL, plastic	0354
1	Test Tube, glass, 5 mL w/cap	0230

^{*}WARNING: Reagents marked with a * are considered to be potential health hazards. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Aluminum is the third most common element in the earth's crust, which accounts for its wide appearance in many water supplies. Aluminum exists in water as soluble salts, colloidal compounds, and insoluble compounds. In wastewater that has been treated by alum coagulation it will appear in one or more of the above forms. Properly treated drinking water should have an aluminum concentration below 0.05 mg/L.

APPLICATION: Drinking, surface, and saline waters; domestic and industrial

wastewater.

RANGE: 0.00–0.30 ppm Aluminum

METHOD: Aluminum ions buffered to a pH of 6.0 react with

Eriochrome Cyanine R dye to produce a pink to red complex

in proportion to the concentration.

SAMPLE HANDLING & PRESERVATION: Collect sample in acid washed glass or plastic bottle. Analyze

as soon as possible.

INTERFERENCES: Fluoride and polyphosphate will interfere. Interference from

iron and manganese is eliminated by the addition of an

inhibitor.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 2 Aluminum).
- 5. Scroll to and select 2 Aluminum from menu.
- **6.** Rinse a clean colorimeter tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into colorimeter chamber and select SCAN BLANK.
- **8.** Rinse a clean test tube (0230) with sample water. Fill to the 5 mL line with sample.
- **9.** Remove tube from colorimeter. Empty sample from tube (0290).
- **10**. Add 5 mL sample from test tube (0230) to empty tube (0290).
- 11. Use the 0.05 g spoon (0696) to add one measure of *Aluminum Inhibitor Reagent (7865). Cap and mix.
- 12. Use a 1.0 mL pipet (0354) to add 2 mL of *Aluminum Buffer Reagent (7866). Cap and mix.
- 13. Use a second 1.0 mL pipet (0354) to add 1 mL of Aluminum Indicator Reagent (7867). Cap and mix contents. Wait 5 minutes for maximum color development.
- 14. At end of 5 minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 15. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For the best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Add 5 drops of Aluminum Complexing Reagent (7868). Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

SALICYLATE METHOD • CODE 3659-01-SC

QUANTITY	CONTENTS	CODE
60 mL	*Salicylate Ammonia #1	*3978-H
10 g	*Salicylate #2	*7457-D
2 x 5 g	*Salicylate #3	*7458-C
1	Spoon, 0.1 g, plastic	0699
1	Spoon, 0.15 g, plastic	0727
1	Pipet, 1.0 mL, plastic	0354

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Ammonia nitrogen is present in various concentrations in many surface and ground water supplies. Any sudden change in the concentration of ammonia nitrogen in a water supply is cause for suspicion. A product of microbiological activity, ammonia nitrogen is sometimes accepted as chemical evidence of pollution when encountered in natural waters.

Ammonia is rapidly oxidized in natural water systems by special bacterial groups that produce nitrite and nitrate. This oxidation requires that dissolved oxygen be available in the water. Ammonia is an additional source of nitrogen as a nutrient which may contribute to the expanded growth of undesirable algae and other forms of plant growth that overload the natural system and cause pollution.

APPLICATION: Low concentrations of ammonia in fresh, brackish and salt

water; fresh and salt water aquariums.

RANGE: 0.00 - 1.00 ppm Ammonia-Nitrogen

METHOD: Salicylate and ammonia react at high pH in the presence of

a chlorine donor and an iron catalyst to form a blue

indophenol dye, the concentration of which is proportional

to the ammonia concentration in the sample.

SAMPLE. Ammonia solutions tend to be unstable and should be HANDLE &

analyzed immediately. Samples may be stored for 24 hours at

PRESERVATION: 4° C or 28 days at -20° C.

INTERFERENCES: There are few interferences in most natural waters. High

concentrations of reducing agents, such as hydrazine, react with the chlorine donor and can result in negative interferences. Color and turbidity can also interfere.

PROCEDURE - FRESH WATER

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- **3.** Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 3 Ammonia-NLF) from TESTING MENU.
- 5. Scroll to and select 3 Ammonia-NLF from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK. (See Note.)
- 8. Remove tube from colorimeter. Use the 1.0 mL plastic pipet (0354) to add 2.0 mL of *Salicylate Ammonia #1 (3978). Cap and mix.
- 9. Use the 0.15 g spoon (0727) to add two measures of *Salicylate #2 Reagent (7457). Cap and mix until dissolved. Wait 1 minute.
- 10. At end of 1 minute waiting period use 0.1 g spoon (0699) to add two measures of *Salicylate #3 Reagent Powder (7458). Cap and shake vigorously for at least 30 seconds and all solid has dissolved. Wait 12 minutes for maximum color development.
- 11. At the end of the 12 minute waiting period, immediately mix and insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 12. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

CALCULATIONS:

To express results as Unionized Ammonia (NH₃):

ppm Unionized Ammonia (NH₃) = ppm Ammonia-Nitrogen (NH₃-N) x 1.2

To express results as Ionized Ammonia (NH₄):

ppm Ionized Ammonia (NH_4+) = ppm Ammonia-Nitrogen $(NH_3-N) \times 1.3$

To determine the percentages of Unionized and Ionized Ammonia-Nitrogen, consult the Appendix.

NOTE:

For the best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

PROCEDURE - SALT WATER

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 4 Ammonia—NLS) from TESTING MENU.
- 5. Scroll to and select 4 Ammonia-NLS from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK. (See Note.)
- 8. Remove tube from colorimeter. Use the 1.0 mL plastic pipet (0354) to add 2.0 mL of *Salicylate Ammonia #1 (3978). Cap and mix.
- 9. Use the 0.15 g spoon (0727) to add two measures of *Salicylate #2 Reagent (7457). Cap and mix until dissolved. Wait 1 minute.
- 10. At end of 1 minute waiting period use 0.1 g spoon (0699) to add two measures of *Salicylate #3 Reagent Powder (7458). Cap and shake vigorously for at least 30 seconds and all solid has dissolved. Wait 20 minutes for maximum color development.
- 11. At the end of the 20 minute waiting period, immediately mix and insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 12. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

CALCULATIONS:

To express results as Unionized Ammonia (NH_3):

ppm Unionized Ammonia (NH₃) = ppm Ammonia-Nitrogen (NH₃-N) x 1.2

To express results as Ionized Ammonia (NH₄):

ppm Ionized Ammonia (NH₄+) = ppm Ammonia-Nitrogen (NH₃-N) x 1.3

To determine the percentages of Unionized and Ionized Ammonia-Nitrogen, consult the Appendix.

NOTE:

For the best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

AMMONIA-NITROGEN -HIGH RANGE

NESSLERIZATION METHOD • CODE 3642-SC

QUANTITY	CONTENTS	CODE
30 mL	Ammonia Nitrogen Reagent #1	V-4797-G
2 x 30 mL	*Ammonia Nitrogen Reagent #2	*V-4798- G
1	Pipet, 1 mL, plastic	0354

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Ammonia nitrogen is present in various concentrations in many surface and ground water supplies. Any sudden change in the concentration of ammonia nitrogen in a water supply is cause for suspicion. A product of microbiological activity, ammonia nitrogen is sometimes accepted as chemical evidence of pollution when encountered in natural waters.

Ammonia is rapidly oxidized in natural water systems by special bacterial groups that produce nitrite and nitrate. This oxidation requires that dissolved oxygen be available in the water. Ammonia is an additional source of nitrogen as a nutrient which may contribute to the expanded growth of undesirable algae and other forms of plant growth that overload the natural system and cause pollution.

APPLICATION: Drinking, surface, and saline waters; domestic and industrial

wastes.

RANGE: 0.00–4.00 Ammonia Nitrogen

METHOD: Ammonia forms a colored complex with Nessler's Reagent in

proportion to the amount of ammonia present in the sample. Rochelle salt is added to prevent precipitation of calcium or

magnesium in undistilled samples.

SAMPLE Ammonia solutions tend to be unstable and should be analyzed immediately. Sample may be stored for 24 hours at

PRESERVATION: 4°C or $28 \text{ days at } -20^{\circ}\text{C}$.

INTERFERENCES: Sample turbidity and color may interfere. Turbidity may be

removed by a filtration procedure. Color interference may be eliminated by blanking the instrument with a sample blank.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Scroll to and select ALL TESTS (or another sequence containing 5 Ammonia—N H) from TESTING MENU.
- 5. Scroll to and select 5 Ammonia-N H from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK. (See Note)
- **8.** Remove tube from colorimeter. Add 8 drops of Ammonia Nitrogen Reagent #1 (V-4797). Cap and mix. Wait 1 minute.
- 9. Use the 1.0 mL pipet (0354) to add 1.0 mL of *Ammonia Nitrogen Reagent #2 (V-4798). Cap and mix. Allow 5 minutes for maximum color development.
- 10. At end of the 5 minute waiting period, immediately mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 11. Press **OFF** button to turn the colorimeter off or press the **EXIT** button exit to a previous menu or make another menu selection.

CALCULATIONS:

To express results as Unionized Ammonia (NH₃):

ppm Unionized Ammonia (NH₃) = ppm Ammonia-Nitrogen (NH₃-N) x 1.2

To express results as Ionized Ammonia (NH₄):

ppm Ionized Ammonia (NH₄+) = ppm Ammonia-Nitrogen (NH₃-N) x 1.3

To determine the percentages of Unionized and Ionized Ammonia-Nitrogen, consult the Appendix.

☑ NOTE: For the best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

BENZOTRIAZOLE/TOLYLTRIAZOLE

UV Photolysis Method • **CODE 4047**

QUANTITY	CONTENTS	CODE
15 g	*Benzotriazole Reagent	*3818-E
25 mL	NaK Tartrate Solution	7841-G
25 mL	*Sulfuric Acid	*6139WT-G
1	pH Test Papers, 1–11	9259
1	Spoon, 0.25 g, plastic	0695
1	Erlenmeyer Flask, 25 mL, glass	2-2109
1	Graduated Cylinder, 25 mL, glass	0417

***WARNING:** Reagents marked with a * are considered to be potential health hazards. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or www.lamotte.com. To obtain a printed copy, contact LaMotte by email, phone or fax.

Equipment needed but not supplied:

QUANTITY	CONTENTS	CODE
1	UV Safety Goggles	31041
1	Penray UV Lamp	31041-1
1	Renray Lamp Power Source	31041-2

Proper safety precautions must be followed when using the Penray UV lamp and power source (31041-1 and 31041-2) to prevent eye and skin damage. Always wear the UV Safety Goggles (31041) while the lamp is turned on. Never handle the lamp itself; always hold it by the socket. Wipe the lamp dry with a clean, soft tissue after each test. Do not operate the lamp outside the Erlenmeyer Flask filled with water.

Benzotriazole and tolyltriazole form strong complexes with metals. They are used in antifreeze for cars, lubricating oil, and photographic anti-fogging agents. In cooling water systems benzotriazole and tolyltriazole are used as corrosion and rust inhibitors together with many kinds of scale inhibitors, bactericides and algaecides.

APPLICATION: Corrosion and rust inhibitors in cooling water systems

RANGE: 0.0 – 30.0 ppm Benzotriazole

0.0 – 30.0 ppm Tolyltriazole

METHOD: Benzotriazole and tolyltriazole are UV-photolyzed in a

buffered solution with a pH between 4 and 6. A yellow color

develops in proportion to the concentration of triazole

present.

SAMPLE HANDLING & PRESERVATION: Samples should be analyzed as soon as possible after collection.

INTERFERENCES: Tolyltriazole with interfere in the benzotriazole test. Benzotriazole will interfere in the tolyltriazole test. Strong reducing or oxidizing agents will interfere.

BENZOTRIAZOLE PROCEDURE

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press ENTER to select Testing Menu.
- 4. Select ALL TESTS (or another sequence containing 10 B triazole from TESTING MENU.
- 5. Scroll to and select 10 B triazole from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove the tube from colorimeter. Discard the sample.
- **9**. Adjust the sample water temperature to between 20 and 25°C if necessary.
- **10.** Fill the graduated cylinder (0417) to the 25 mL line with sample water. Transfer to the Erlenmeyer Flask (2-2109).
- 11. Use the pH Test Paper (9259) to check the pH of the sample. If the pH is not between 4 and 6, add one drop of *Sulfuric Acid, 1.0N (6139). Swirl to mix. Continue adding *Sulfuric Acid, 1.0N (6139) one drop at a time, swirling to mix and checking the pH after each drop, until the pH is between 4 and 6.
- **12**. Add 10 drops of NaK Tartrate (7841).
- **13**. Use the 0.25 g spoon (0695) to add one measure of *Benzotriazole Reagent (3818). Swirl to mix until the powder has dissolved.
- 14. Replace the flask in the slot in the case. Insert the Penray Lamp (31041-1) into the flask. Plug in the Penray Power Source (31041-2) and turn the lamp on for exactly 5 minutes. Remove the lamp from the flask. Rinse and wipe the lamp dry.
- 15. Fill a test tube (0290) to the 10 mL line with the digested sample. Cap tube.
- **16.** Insert tube into chamber, close lid and select SCAN SAMPLE. Record result in ppm Benzotriazole.
- 17. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents is obtained.

TOLYLTRIAZOLE PROCEDURE

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press ENTER to select Testing Menu.
- 4. Select ALL TESTS (or another sequence containing 97 T triazole from TESTING MENU.
- 5. Scroll to and select 97 T triazole from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove the tube from colorimeter. Discard the sample.
- **9.** Adjust the sample water temperature to between 20 and 25°C if necessary.
- **10.** Fill the graduated cylinder (0417) to the 25 mL line with sample water. Transfer to the Erlenmeyer Flask (2-2109).
- 11. Use the pH Test Paper (9259) to check the pH of the sample. If the pH is not between 4 and 6, add one drop of *Sulfuric Acid, 1.0N (6139). Swirl to mix. Continue adding *Sulfuric Acid, 1.0N (6139) one drop at a time, swirling to mix and checking the pH after each drop, until the pH is between 4 and 6.
- **12**. Add 10 drops of NaK Tartrate (7841).
- **13**. Use the 0.25 g spoon (0695) to add one measure of *Benzotriazole Reagent (3818). Swirl to mix until the powder has dissolved.
- 14. Replace the flask in the slot in the case. Insert the Penray Lamp (31041-1) into the flask. Plug in the Penray Power Source (31041-2) and turn the lamp on for exactly 5 minutes. Remove the lamp from the flask. Rinse and wipe the lamp dry.
- 15. Fill a test tube (0290) to the 10 mL line with the digested sample. Cap tube.
- **16.** Insert tube into chamber, close lid and select SCAN SAMPLE. Record result in ppm Tolyltriazole.
- 17. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents is obtained.

BIGUANIDE

COLORIMETRIC METHOD • CODE 4044

QUANTITY	CONTENTS	CODE
2 X 60 mL	Biguanide Indicator	3994-H
1	Pipet, plastic, 1.0 mL	0354

Biguanide is a non-chlorine, non-bromine chemical sanitizer. It is more stable than chlorine or bromine and has little chemical odor. Biquanide is an effective bacteriacide but, unlike chlorine and bromine, it does not destroy organic contaminants. Therefore, hydrogen peroxide is added to biguanide pools on a regular basis to eliminate organic contaminants. The optimum recommended level of biguanide is 30 to 50 ppm.

APPLICATION: Swimming pools

RANGE: 0–70 ppm

METHOD: Biguanide complexes with the proprietary indicator to

produce a colored solution. The color ranges from yellow through green to blue depending on the biguanide

concentration.

SAMPLE Samples should be analyzed as soon as possible.

HANDLING & PRESERVATION:

INTERFERENCES: The only interfering substances that are likely to be

encountered in pool water are oxidized manganese and oxidizing agents, such as chlorine, bromine and ozone.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- **3.** Press **ENTER** to select Testing Menu.
- 4. Select ALL TESTS (or another sequence containing 7 Biguanide from TESTING MENU.
- 5. Scroll to and select 7 Biguanide from menu.
- **6.** Rinse a tube (0290) with sample water. Fill to 10 mL with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove the tube from colorimeter.
- 9. Use the 1.0 mL pipet (0354) to add 2.0 mL of Biguanide Indicator (3994). Cap and invert three times to mix.
- 10. Wait 1 minute.
- 11. Insert the tube into chamber. Close lid.
- 12. Select SCAN SAMPLE. Record result in ppm Biguanide
- **13**. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ✓ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

BORON

AZOMETHINE-H METHOD • CODE 4868

QUANTITY	CONTENTS	CODE
120 mL	*Boron Buffer	*4869-J
10 g	*Boron Indicator Powder	*4870-D
1	Pipet, plastic, 1.0 mL	0354
1	Spoon, 0.15 g	0727
1	Dark storage chamber, brown	0108

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Small amounts of boron are necessary for plant growth but large amounts can be toxic. In humans, boron aids in the uptake of calcium and the production of strong bones. An excess of boron can affect the central nervous system resulting in a syndrome known as borism. Some natural waters may contain small amounts of boron. Large concentrations may be due to industrial effluent entering waterways. Boron compounds are used in cleaning compounds, paper and paints, fertilizers, glass and ceramics, fire retardants and the production of alloys. In the atomic energy field, boron is a component of neutron shields and nuclear reactors. Some swimming pools use boron buffering systems.

APPLICATION: Surface and saline waters, hydroponic solutions, industrial

waste, swimming pools.

RANGE: 0.00–0.80 ppm Boron

METHOD: Azomethine-H and borate form a yellow complex at pH 6 in

proportion to the concentration of boron present.

SAMPLE Store samples in polyethylene bottles. Do not use borate detergents or glassware.

PRESERVATION:

INTERFERENCES: Interferences in drinking water are unlikely. Manganese,

zirconium, chromium, titanium, copper, vanadium, aluminum, beryllium and iron may cause high results.

- 1. This test requires a Reagent Blank. Rinse a tube (0290) with clear, colorless, boron free water. Fill to 10 mL line with clear, colorless, boron free water.
- 2. Use the 1.0 mL pipet (0354) to add 2 mL of *Boron Buffer (4869). Cap and mix.
- 3. Use the 0.15 g spoon (0727) to add one level measure of *Boron Indicator Powder (4870). Press full spoon against side of jar to compress powder. Scrape off excess powder on inside neck of bottle. Tap excess off spoon handle.
- **4.** Cap and shake vigorously for 30 seconds.
- 5. Insert the tube into meter chamber. Close lid.
- **6.** Start a timer set for 30 minutes. Do not open the lid during the waiting time. The reaction is photosensitive.
- 7. Rinse a clean tube (0290) with Sample Water. Fill to the 10 mL line with sample water. Repeat steps 2–4.
- **8**. Insert the tube into the Dark Storage Chamber (0108). Close top.
- **9.** Start a second timer set for 30 minutes. Do not open the chamber during the waiting time. The reaction is photosensitive.
- 10. When 2 minutes remain on the first timer (Reagent Blank), press and hold **ON** button until colorimeter turns on.
- 11. Press **ENTER** to start.
- 12. Press ENTER to select Testing Menu.
- Select ALL TESTS (or another sequence containing 8 Boron) from TESTING MENU.
- 14. Scroll to and select 8 Boron from menu.
- **15.** At the end of the Reagent Blank 30 minute waiting period, remove Reagent Blank tube from meter chamber. Invert several times to mix.
- 16. Insert the tube into meter chamber, close lid and select SCAN BLANK.
- 17. Remove the tube from colorimeter.
- **18.** At the end of the Sample Water 30 minute waiting period, remove Sample Water tube from Dark Storage Chamber. Invert several times to mix.
- 19. Insert tube into meter chamber, close lid and select SCAN SAMPLE. Record result in ppm boron.
- **20.** Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

BROMINE - UDV

DPD METHOD-UNIT DOSE VIALS • CODE 4311-H

QUANTITY	CONTENTS	CODE
1	*Free Chlorine Unit Dose Vials, 10 pouches	*4311-H

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Equipment needed but not supplied:

STANDARD ACCESSORY PACKAGE • CODE 1961

1	Package of 3 Vials (empty)	0156
1	Syringe, 6 mL, plastic	1184
1	Foil Storage Bag	9467

Or:

ADVANCED ACCESSORY PACKAGE • CODE 1962

1	Pipettor	30528
1	Pipet Tip (0-5 mL)	30695
1	Cuvette Rack	31695
1	Package of 3 Vials (empty)	0156
1	Foil Storage Bag	9467

Like chlorine, bromine is an effective germicidal agent employed in drinking water treatment, pool and spa water sanitization, food service sanitation, and other public health applications.

APPLICATION: Drinking, surface, and saline waters; swimming pool water;

domestic and industrial waters and wastes.

RANGE: 0.0–22.0 ppm Bromine

METHOD: In buffered sample bromine reacts with diethyl-p-phenylene

diamine (DPD) to produce a pink-red color in proportion to

the concentration of bromine present.

SAMPLE HANDLING & PRESERVATION: Bromine in aqueous solutions is not stable, and the bromine content of samples or solutions, particularly weak solutions, will rapidly decrease. Exposure to sunlight or agitation will

accelerate the reduction of bromine present in such solutions. For best results start analysis immediately after sampling. Samples to be analyzed for bromine cannot be

preserved or stored.

INTERFERENCE:

The only interfering substance likely to be encountered in water is oxidized manganese. The extent of this interference can be determined by treating a sample with sodium arsenite to destroy the bromine present so that the degree of interference can be estimated.

Iodine and chlorine can also interfere, but these are not normally present unless they have been added as sanitizers.

Use 10 mm square cell adapter.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- **3**. Press **ENTER** to select Testing Menu.
- Select ALL TESTS (or another sequence containing 11 Bromine-UDV) from TESTING MENU.
- 5. Scroll to and select 11 Bromine-UDV from menu.
- **6**. Rinse a clean vial (0156) with sample water.
- 7. Use the syringe (1184) to add 3mL of sample to the vial.
- 8. Insert the vial into chamber, close the lid and select SCAN BLANK.
- **9**. Remove the vial from the colorimeter.
- **10**. Use the syringe (1184) to add 3mL of sample to a *Free Chlorine UDV vial (4311).
- 11. Shake vigorously until powder dissolves completely.
 - ☑ NOTE: If powder residue remains in the bottom of the vial after inverting or air bubbles form, invert once more and tap bottom of vial sharply once or twice to dislodge powder and bubbles. Mix.
- **12**. Immediately insert tube into chamber, close lid and select SCAN SAMPLE. Record result in ppm bromine.
- 13. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTES: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

UDVs from opened pouches should be used promptly. Store unused vials from opened pouches in the Foil Storage Bag (9467) to extend the shelf life of the reagent. Generally, UDVs stored in the bag should be used within 10 days if the humidity is less than 50% and within 5 days if humidity is greater than 50%. The Foil Storage Bag contains a desiccant pack with indicator. When the indicator in the window turns from blue to pink, the bag should be replaced.

CADMIUM

PAN METHOD • CODE 4017

QUANTITY	CONTENTS	CODE
60 mL	*Buffered Ammonia Reagent	*4020-H
15 mL	Sodium Citrate, 10%	6253-E
30 mL	PAN Indicator	4021-G
30 mL	Stabilizing Reagent	4022-G
1	Pipet, 1.0 mL, plastic	0354
2	Pipet, 0.5 mL, plastic	0353

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Cadmium is used in batteries, paint pigments, electroplating processes, and with other metals in the preparation of alloys. The solubility of cadmium in natural water is proportional to the hardness or alkalinity of the water. Cadmium is not an essential nutrient for plants and animals. It is extremely toxic and can accumulate in the kidneys and liver.

APPLICATION: Drinking and surface waters; domestic and industrial

wastewater.

RANGE: 0.00–1.00 Cadmium

METHOD: PAN (1-[2-Pyridylazo]-2-Naphthol) forms a red complex

with Cadmium (Cd+2) at a pH of 10.

SAMPLE Analyze sample as soon as possible. If sample must be stored, acidity with pitric acid to a pH below?

HANDLING & acidify with nitric acid to a pH below 2. **PRESERVATION**:

INTERFERENCES: Ag+2, Co+2, Cu+2, Mn+2, Ni+2, Zn+2, Y+3, In+3

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- **3.** Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 12 Cadmium) from TESTING MENU.
- 5. Scroll to and select 12 Cadmium from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove tube from colorimeter. Use the 1.0 mL pipet (0354) to add 1.0 mL of *Buffered Ammonia Reagent (4020). Swirl to mix.
- 9. Add two drops of Sodium Citrate, 10% (6253). Swirl to mix.
- 10. Use a 0.5 mL pipet (0353) to add 0.5 mL of PAN Indicator (4021). Swirl to mix.
- 11. Use a 0.5 mL pipet (0353) to add 0.5 mL Stabilizing Reagent (4022). Cap and mix.
- 12. Immediately insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **13**. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

CALCIUM & MAGNESIUM (TOTAL) HARDNESS-UDV

UNIT DOSE VIALS • CODE 4309-H

QUANTITY	CONTENTS	CODE
1	Calcium Hardness Unit Dose Vials, 10 pouches	4309-H
		1303 11
	d but not supplied: ESSORY PACKAGE • CODE 1961	
1	Package of 3 Vials (empty)	0156
1	Syringe, 3 mL, plastic	1184
1	Foil Storage Bag	9467
Or:		
ADVANCED ACC	ESSORY PACKAGE • CODE 1962	
1	Pipettor	30528
1	Pipet Tips (0-5 mL)	30695
1	Cuvette Rack	31695
1	Package of 3 Vials (empty)	0156
1	Foil Storage Bag	9467
APPLICATION: RANGE: METHOD:	Drinking and surface waters; swimming pool water. 0–400 ppm as CaCO ₃ Total Hardness Calcium and magnesium react in a strongly buffered medium with an indicator to develop a pale purple color in	
SAMPLE HANDLING & PRESERVATION: INTERFERENCES:	proportion to the concentration. Samples should be analyzed as soon as possible after collection. If storage is necessary, add 0.5 mL of 20 % hydrochloric acid per 100 mL of sample. However, the added acid will have to be neutralized with NaOH before testing. Heavy metals will interfere.	

Use 10 mm square cell adapter.

- 1. Press and hold **ON** button until colorimeter turns on.
- **2.** Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 13 Ca&Mg H-UDV) from TESTING MENU.
- 5. Scroll to and selec t 13 Ca&Mg Hand-UDV from menu.
- **6.** Rinse a clean vial (0156) with sample water.
- 7. Use the syringe (1184) to add 3 mL of sample to the vial.
- 8. Insert the vial into chamber, close lid and select SCAN BLANK.
- **9**. Remove vial from the colorimeter.
- **10**. Use the syringe (1184) to add 3 mL of sample to a Calcium Hardness UDV vial (4309).
- 11. Shake vigorously for 10 seconds.
- 12. Wait one minute.
- **13**. Invert vial 3 times to mix.
 - ☑ NOTE: Firmly tap side of vial 5-10 times to remove all air bubbles.
- 14. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 15. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ✓ NOTES: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

UDVs from opened pouches should be used promptly. Store unused vials from opened pouches in the Foil Storage Bag (9467) to extend the shelf life of the reagent. Generally, UDVs stored in the bag should be used within 10 days if the humidity is less than 50% and within 5 days if humidity is greater than 50%. The Foil Storage Bag contains a desiccant pack with indicator. When the indicator in the window turns from blue to pink, the bag should be replaced.

ARGENTOMETRIC METHOD • CODE 3693-SC

QUANTITY	CONTENTS	CODE
50	*Chloride Spectrophotometric Grade Tablets	*3885A-H
1	Tablet Crusher	0175

*WARNING: Reagents marked with a * are considered to be potential health hazards. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or www.lamotte.com. To obtain a printed copy, contact LaMotte by email, phone or fax.

Chloride is one of the major anions found in water and sewage. The presence of chlorides in large amounts may be due to the natural process of water passing through salt formations in the earth, or it may be evidence of the intrusion of seawater or pollution from industrial processes or domestic wastes. The salt content of water affects the distribution of plant and animal life in an aquatic system, based on the amount of salt they can tolerate.

Drinking, surface, and saline waters; domestic and industrial APPLICATION:

wastewaters.

RANGE: 0.0-30.0 ppm Chloride

METHOD: Silver nitrate reacts with chloride to form turbid silver

chloride in proportion to the amount of chloride in the

sample.

Collect samples in clean, chemically resistant glass or plastic SAMPLE

HANDLING & containers. No preservative is needed if sample is to be PRESERVATION:

stored.

INTERFERENCES: Substances in amounts normally found in drinking water

will not interfere. Bromide, iodide, cyanide, sulfide, thiosulfate, sulfide and orthophosphate will interfere.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 21 Chloride-TT) from TESTING MENU.
- 5. Scroll to and select 21 Chloride-TT from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL line with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- 8. Remove the tube from colorimeter.
- 9. Add one *Chloride Spectrophotometric Grade Tablet (3885A).
- 10. Use Tablet Crusher (0175) to crush tablet.
- 11. Cap tube.
- 12. Invert 2 times.
- 13. Wait 3 minutes. Do NOT mix.
- **14.** Insert tube into chamber, close lid and select SCAN SAMPLE. Record result in ppm chloride.
- 15. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ✓ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. The reagent system is temperature sensitive. The calibration is for 25°C If sample is at 30°C, multiply resulting ppm by 1.1. If the sample is at 20°, multiply ppm by 0.9.

CHLORINE

LIQUID DPD METHOD • CODE 4859

QUANTITY	CONTENTS	CODE
30 mL	DPD 1A Free Chlorine Reagent	P-6740-G
30 mL	*DPD 1B Free Chlorine Reagent	*P-6741-G
30 mL	*DPD 3 Total Chlorine Reagent	*P-6743-G

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

All water for cities and communities must be sanitized; even waters that come from clean sources, protected watersheds, reservoirs, and deep wells, are commonly sanitized to assure safety. Chlorine is the most commonly used sanitizer for several reasons: it is effective against a wide range of microorganisms, the cost is low, and the methods of applying it have been well developed. If an adequate concentration of chlorine is present in the water for a few minutes, disease producing bacteria will be destroyed. A number of conditions affect the sanitizing action of chlorine. In municipal systems these can be controlled so that if chlorine is detectable, it can be assumed that bacteria have been killed. The factors that influence the rate of sanitization are temperature, pH, presence of other materials that react with chlorine, time, and the concentrations of the various chlorine combinations that are formed in the water with ammonia and other substances that react with chlorine.

The fact that chlorine can be easily detected and measured makes chlorine a favorite water sanitizer of those concerned with the public safety of water supplies. Chlorine concentrations in the range of 0.1 to 0.4 parts per million are usually maintained in municipal supplies.

Chlorine can be added in the form of chlorine gas, liquid sodium hypochlorite (bleach), granular calcium hypochlorite or as organic chlorine compounds. Chlorine is not present in natural water supplies; if it is present it is the result of chlorination of a water supply or of chlorinated compounds being discharged as waste from industrial operations. The presence of chlorine in concentrations above 0.5 parts per million should be considered evidence of pollution from chlorine treated effluents or from a process in which high concentrations of chlorine are used.

APPLICATION: Drinking, surface, and saline waters; swimming pool water;

domestic and industrial wastes.

RANGE: 0.00–4.00 ppm Chlorine

METHOD: In the absence of iodide, free available chlorine reacts

instantly with DPD to produce a red color. Subsequent addition of potassium iodide evokes a rapid color response from the combined forms of chlorine (chloramines).

SAMPLE HANDLING & PRESERVATION: Chlorine in aqueous solutions is not stable, and the chlorine content of samples or solutions, particularly weak solutions, will rapidly decrease. Exposure to sunlight or agitation will accelerate the reduction of chlorine present in such solutions. For best results, start analysis immediately after sampling. Samples to be analyzed for chlorine cannot be preserved or stored.

INTERFERENCE:

The only interfering substance likely to be encountered in water is oxidized manganese. The extent of this interference can be determined by treating a sample with sodium arsenite to destroy the chlorine present so that the degree of interference can be measured.

Iodine and bromine can give a positive interference, but these are not normally present unless they have been added as sanitizers.

PROCEDURE-FREE CHLORINE

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select Testing Menu.
- Select ALL TESTS (or another sequence containing 17 C1 DPD-Liq) from TESTING MENU.
- 5. Scroll to and select 17 C1 DPD-Liq from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove the tube from colorimeter.
- 9. Add 5 drops of DPD 1A Free Chlorine Reagent (P-6740).
- 10. Add 5 drops of *DPD 1B Free Chlorine Reagent (P-6741). Cap and mix.
- 11. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result as ppm free chlorine.

PROCEDURE-TOTAL CHLORINE

- 12. Add 5 drops of *DPD 3 Total Chlorine Reagent (P-6741). Cap and mix.
 - ☑ NOTE: For wastewater samples, Standard Methods for the Examination of Water and Wastewater recommends waiting 2 minutes for full color development.
- **13**. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result as ppm total chlorine.
- **14.** Subtract the Free Chlorine reading from the Total Chlorine reading to determine ppm combined chlorine.
- 15. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents is obtained.

CHLORINE-BROMINE-IODINE

DPD METHOD • CODE 3643-SC

QUANTITY	CONTENTS	CODE
100	*Chlorine #1 Instrument Grade Tablets	*6903-J
100	*Chlorine #3 Instrument Grade Tablets	*6197-J
15 mL	Glycine Solution	6811-E
1	Tablet Crusher	0175

***WARNING:** Reagents marked with * are considered hazardous substances. Material Data Safety Sheets (MSDS) are supplied for these reagents. For your safety, read label and accompanying MSDS before using.

All water for cities and communities must be sanitized; even waters that come from clean sources, protected watersheds, reservoirs, and deep wells, are commonly sanitized to assure safety. Chlorine is the most commonly used sanitizer for several reasons: it is effective against a wide range of microorganisms, the cost is low, and the methods of applying it have been well developed. If an adequate concentration of chlorine is present in the water for a few minutes, disease producing bacteria will be destroyed. A number of conditions affect the sanitizing action of chlorine. In municipal systems these can be controlled so that if chlorine is detectable, it can be assumed that bacteria have been killed. The factors that influence the rate of sanitization are temperature, pH, presence of other materials that react with chlorine, time, and the concentrations of the various chlorine combinations that are formed in the water with ammonia and other substances that react with chlorine.

The fact that chlorine can be easily detected and measured makes chlorine a favorite water sanitizer of those concerned with the public safety of water supplies. Chlorine concentrations in the range of 0.1 to 0.4 parts per million are usually maintained in municipal supplies.

Chlorine can be added in the form of chlorine gas, liquid sodium hypochlorite (bleach), granular calcium hypochlorite or as organic chlorine compounds. Chlorine is not present in natural water supplies; if it is present it is the result of chlorination of a water supply or of chlorinated compounds being discharged as waste from industrial operations. The presence of chlorine in concentrations above 0.5 parts per million should be considered evidence of pollution from chlorine treated effluents or from a process in which high concentrations of chlorine are used.

APPLICATION: Drinking, surface, and saline waters; swimming pool water;

domestic and industrial wastes.

RANGE: 0.00–4.00 Chlorine

METHOD: In the absence of iodide, free available chlorine reacts

instantly with DPD to produce a red color. Subsequent addition of potassium iodide evokes a rapid color response from the combined forms of chlorine (chloramines).

SAMPLE HANDLING & PRESERVATION:

Chlorine in aqueous solutions is not stable, and the chlorine content of samples or solutions, particularly weak solutions, will rapidly decrease. Exposure to sunlight or agitation will accelerate the reduction of chlorine present in such solutions. For best results, start analysis immediately after sampling. Samples to be analyzed for chlorine cannot be preserved or stored.

INTERFERENCE:

The only interfering substance likely to be encountered in water is oxidized manganese. The extent of this interference can be determined by treating a sample with sodium arsenite to destroy the chlorine present so that the degree of interference can be measured.

Iodine and bromine can give a positive interference, but these are not normally present unless they have been added as sanitizers.

PROCEDURE-FREE CHLORINE

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 15 Chlorine) from TESTING MENU.
- 5. Scroll to and select 15 Chlorine from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- 8. Remove tube from colorimeter and pour off all but a sufficient amount of sample water to cover a tablet. Add one *Chlorine DPD #1 Instrument Grade Tablet (6903). Crush tablet with a tablet crusher (0175), then add sample water until tube is filled to 10 mL line. Cap tube and shake until tablet has dissolved. Solution will turn pink if free chlorine is present. Wait 15 seconds, but no longer than 30 seconds. Mix.
- 9. Insert tube into chamber, close lid and select SCAN SAMPLE.

PROCEDURE-COMBINED CHLORINE

- 10. Add one *Chlorine DPD #3 Instrument Grade Tablet (6197) to sample from Step 8 above. Crush tablet with tablet crusher (0175). Cap tube and shake until tablet dissolves. An increase in color represents combined chlorine.
 - ☑ NOTE: For wastewater samples, <u>Standard Methods for the Examination of Water and Wastewater</u> recommends waiting 2 minutes for full color development.
- 11. Insert sample into chamber, close lid and select SCAN SAMPLE. Record result as Total Chlorine.
- **12.** Subtract free chlorine reading from total chlorine reading to obtain concentration of combined chlorine.
- **13**. Press the **OFF** button to turn off the colorimeter or press the **EXIT** button to exit to a previous menu or make another menu selection.

BROMINE

Like chlorine, bromine is an effective germicidal agent employed in drinking water treatment, pool and spa water sanitization, food service sanitation, and other public health applications.

APPLICATION: Drinking, surface, and saline waters; swimming pool water;

domestic and industrial waters and wastes.

RANGE: 0.00–9.00 Bromine

METHOD: In buffered sample bromine reacts with diethyl-p-phenylene

diamine (DPD) to produce a pink-red color in proportion to

the concentration of bromine present.

SAMPLE HANDLING & PRESERVATION: Bromine in aqueous solutions is not stable, and the bromine content of samples or solutions, particularly weak solutions, will rapidly decrease. Exposure to sunlight or agitation will accelerate the reduction of bromine present in such

solutions. For best results start analysis immediately after sampling. Samples to be analyzed for bromine cannot be

preserved or stored.

INTERFERENCE: The only interfering substance likely to be encountered in

water is oxidized manganese. The extent of this interference can be determined by treating a sample with sodium arsenite

to destroy the bromine present so that the degree of

interference can be estimated.

Iodine and chlorine can also interfere, but these are not normally present unless they have been added as sanitizers.

PROCEDURE A: BROMINE (NO CHLORINE)

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 9 Bromine-LR) from TESTING MENU.
- 5. Scroll to and select 9 Bromine-LR from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- 8. Remove tube from colorimeter. Pour out all but a sufficient amount of sample water to cover a tablet. Add one *Chlorine DPD #1 Instrument Grade Tablet (6903). Crush tablet with crusher (0175), then add sample water until tube is filled to 10 mL line. Cap tube and shake until tablet is dissolved. Solution will turn pink if bromine is present. Wait 15 seconds. Mix.
- 9. Insert tube into chamber, close lid and select SCAN SAMPLE.
- **10.** Press **OFF** button to turn colorimeter off or press the **EXIT** button to exit to a previous menu or make another menu selection.

PROCEDURE B: BROMINE IN THE PRESENCE OF CHLORINE

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 9 Bromine-LR) from TESTING MENU.
- 5. Scroll to and select 9 Bromine-LR from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber close lid and select SCAN BLANK.
- **8**. Rinse a second clean tube (0290) with sample water. Fill to the 10 mL line with sample. Add 5 drops of Glycine Solution (6811). Cap and mix.
- 9. Remove blank from colorimeter. Pour out all of the sample water. To this tube add just enough of Glycine treated sample (Step 8) to cover a tablet. Add one *Chlorine DPD#1 Instrument Grade Tablet (6903). Crush tablet with a tablet crusher (0175). Add all remaining Glycine-treated sample. Cap tube and shake until tablet dissolves. Solution will turn pink if bromine is present. Wait 15 seconds. Mix.
- 10. Insert tube into chamber, close lid and select SCAN SAMPLE.
- 11. Press **OFF** button to exit to previous menu or make another menu selection.

PROCEDURE C: FREE AVAILABLE, TOTAL AVAILABLE & COMBINED CHLORINE IN THE PRESENCE OF BROMINE

- 1. Perform the test for free and combined chlorine as previously described.
- 2. Perform the test for bromine in the presence of chlorine.
- 3. Calculations:

Residual Bromine (ppm) = Reading BR

Free Chlorine in the Presence of Bromine = Free Chlorine - 0.45 (Reading BR)

Total Chlorine in the Presence of Bromine = Total Chlorine - 0.45 (Reading BR)

Combined Chlorine in the Presence of Bromine =
Total Chlorine - Free Chlorine

☑ NOTE: Combined chlorine is not affected by the presence of bromine, so the calculation is the same as when only chlorine is present.

IODINE

Like chlorine and bromine, iodine is an effective germicidal agent employed in drinking water treatment, pool and spa water sanitization, food service sanitation, and other public health applications.

APPLICATION: Drinking, surface, and saline waters; swimming pool water;

domestic and industrial wastes.

RANGE: 0.00–14.00 ppm Iodine

METHOD: In a buffered sample iodine reacts with

diethyl-p-phenylene-diamine (DPD) to produce a pink-red color in proportion to the concentration of iodine present.

SAMPLE

HANDLING & PRESERVATION:

Iodine in aqueous solutions is not stable, and the iodine content of samples or solutions, particularly weak solutions, will rapidly decrease. Exposure to sunlight or agitation will

accelerate the reduction of iodine present in such solutions. For best results start analysis immediately after sampling. Samples to be analyzed for iodine cannot be preserved or

stored.

INTERFERENCE: The only interfering substance likely to be encountered in

water is oxidized manganese. The extent of this interference can be determined by treating a sample with sodium arsenite

to destroy the iodine present so that the degree of

interference can be measured.

Chlorine and bromine can give a positive interference, but these are not normally present unless they have been added

as sanitizers.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 50 Iodine) from TESTING MENU.
- 5. Scroll to and select 50 Iodine from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill tube to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- 8. Remove tube from colorimeter. Pour off all but a sufficient amount of sample water to cover a tablet. Add one *DPD #1 Tablet Instrument Grade (6903). Crush tablet with tablet crusher (0175). Add sample water until tube is filled to 10 mL line. Cap and shake until tablet dissolves. Solution will turn pink if iodine is present. Wait 15 seconds. Mix.
- Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **10.** Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

CHLORINE, FREE - UDV

DPD METHOD-UNIT DOSE VIALS • CODE 4311-H

QUANTITY	CONTENTS	CODE
1	*Free Chlorine Unit Dose Vials, 10 pouche	es *4311-H
view or print a M	eagents marked with an * are considered hazardou aterial Safety Data Sheet (MSDS) for these reage to obtain a printed copy, contact us by e-mail, pho	ents see MSDS CD
	ded but not supplied: CESSORY PACKAGE • CODE 1961	
1	Package of 3 Vials (empty)	0156
1	Syringe, 6 mL, plastic	1184
1	Foil Storage Bag	9467
Or: ADVANCED AC	CESSORY PACKAGE • CODE 1962	
1	Pipettor	30528
1	Pipet Tip (0-5 mL)	30695
1	Cuvette Rack	31695
1	Package of 3 Vials (empty)	0156
1	Foil Storage Bag	9467

All water for cities and communities must be sanitized; even waters that come from clean sources, protected watersheds, reservoirs, and deep wells, are commonly sanitized to assure safety. Chlorine is the most commonly used sanitizer for several reasons: it is effective against a wide range of microorganisms, the cost is low, and the methods of applying it have been well developed. If an adequate concentration of chlorine is present in the water for a few minutes, disease producing bacteria will be destroyed. A number of conditions affect the sanitizing action of chlorine. In municipal systems these can be controlled so that if chlorine is detectable, it can be assumed that bacteria have been killed. The factors that influence the rate of sanitization are temperature, pH, presence of other materials that react with chlorine, time, and the concentrations of the various chlorine combinations that are formed in the water with ammonia and other substances that react with chlorine.

The fact that chlorine can be easily detected and measured makes chlorine a favorite water sanitizer of those concerned with the public safety of water supplies. Chlorine concentrations in the range of 0.1 to 0.4 parts per million are usually maintained in municipal supplies.

Chlorine can be added in the form of chlorine gas, liquid sodium hypochlorite (bleach), granular calcium hypochlorite or as organic chlorine compounds. Chlorine is not present in natural water supplies; if it is present it is the result of chlorination of a water supply or of chlorinated compounds being discharged as waste from industrial operations. The presence of chlorine in concentrations above 0.5 parts per million should be considered evidence of pollution from chlorine treated effluents or from a process in which high concentrations of chlorine are used.

APPLICATION: Drinking, surface, and saline waters; swimming pool water;

domestic and industrial wastes.

RANGE: 0.00–10.00 ppm Chlorine

METHOD: In the absence of iodide, free available chlorine reacts

instantly with DPD to produce a red color. Subsequent addition of potassium iodide evokes a rapid color response from the combined forms of chlorine (chloramines).

SAMPLE HANDLING & PRESERVATION: Chlorine in aqueous solutions is not stable, and the chlorine content of samples or solutions, particularly weak solutions, will rapidly decrease. Exposure to sunlight or agitation will

accelerate the reduction of chlorine present in such solutions. For best results, start analysis immediately after sampling. Samples to be analyzed for chlorine cannot be

preserved or stored.

INTERFERENCE: The only interfering substance likely to be encountered in

water is oxidized manganese. The extent of this interference can be determined by treating a sample with sodium arsenite to destroy the chlorine present so that the degree of

interference can be measured.

Iodine and bromine can give a positive interference, but these are not normally present unless they have been added

as sanitizers.

Use 10 mm square cell adapter.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press ENTER to select Testing Menu.
- Select ALL TESTS (or another sequence containing 16 C1 Free-UDV) from TESTING MENU.
- 5. Scroll to and select 16 Cl Free-UDV from menu.
- **6.** Rinse a clean vial (0156) with sample water.
- 7. Use the syringe (1184) to add 3mL of sample to the vial.
- 8. Insert the vial into chamber, close the lid and select SCAN BLANK.
- **9**. Remove the vial from the colorimeter.
- **10**. Use the syringe (1184) to add 3mL of sample to a *Free Chlorine UDV vial (4311).
- 11. Shake vigorously until powder dissolves completely.
 - ☑ NOTE: If powder residue remains in the bottom of the vial after inverting or air bubbles form, invert once more and tap bottom of vial sharply once or twice to dislodge powder and bubbles. Mix.
- **12.** Immediately insert tube into chamber, close lid and select SCAN SAMPLE. Record result in ppm free chlorine.
- 13. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTES: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

UDVs from opened pouches should be used promptly. Store unused vials from opened pouches in the Foil Storage Bag (9467) to extend the shelf life of the reagent. Generally, UDVs stored in the bag should be used within 10 days if the humidity is less than 50% and within 5 days if humidity is greater than 50%. The Foil Storage Bag contains a desiccant pack with indicator. When the indicator in the window turns from blue to pink, the bag should be replaced.

CHLORINE, TOTAL - UDV

DPD METHOD-UNIT DOSE VIALS • CODE 4312-H

QUANTITY	CONTENTS	CODE
1	*Total Chlorine Unit Dose Vials, 10 pouches	*4312-H
*W/A DAIIAIO D	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	т

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Equipment needed but not supplied:

STANDARD ACCESSORY PACKAGE • CODE 1961

1	Package of 3 Vials (empty)	0156
1	Syringe, 6 mL, plastic	1184
1	Foil Storage Bag	9467

Or:

ADVANCED ACCESSORY PACKAGE • CODE 1962

1	Pipettor	30528
1	Pipet Tip (0-5 mL)	30695
1	Cuvette Rack	31695
1	Package of 3 Vials (empty)	0156
1	Foil Storage Bag	9467

All water for cities and communities must be sanitized; even waters that come from clean sources, protected watersheds, reservoirs, and deep wells, are commonly sanitized to assure safety. Chlorine is the most commonly used sanitizer for several reasons: it is effective against a wide range of microorganisms, the cost is low, and the methods of applying it have been well developed. If an adequate concentration of chlorine is present in the water for a few minutes, disease producing bacteria will be destroyed. A number of conditions affect the sanitizing action of chlorine. In municipal systems these can be controlled so that if chlorine is detectable, it can be assumed that bacteria have been killed. The factors that influence the rate of sanitization are temperature, pH, presence of other materials that react with chlorine, time, and the concentrations of the various chlorine combinations that are formed in the water with ammonia and other substances that react with chlorine.

The fact that chlorine can be easily detected and measured makes chlorine a favorite water sanitizer of those concerned with the public safety of water supplies. Chlorine concentrations in the range of 0.1 to 0.4 parts per million are usually maintained in municipal supplies.

Chlorine can be added in the form of chlorine gas, liquid sodium hypochlorite (bleach), granular calcium hypochlorite or as organic chlorine compounds. Chlorine is not present in natural water supplies; if it is present it is the result of chlorination of a water supply or of chlorinated compounds being discharged as waste from industrial operations. The presence of chlorine in concentrations above 0.5 parts per million should be considered evidence of pollution from chlorine treated effluents or from a process in which high concentrations of chlorine are used.

APPLICATION: Drinking, surface, and saline waters; swimming pool water;

domestic and industrial wastes.

RANGE: 0.00–10.00 ppm Chlorine

METHOD: In the absence of iodide, free available chlorine reacts

instantly with DPD to produce a red color. Subsequent addition of potassium iodide evokes a rapid color response from the combined forms of chlorine (chloramines).

SAMPLE HANDLING & PRESERVATION: Chlorine in aqueous solutions is not stable, and the chlorine content of samples or solutions, particularly weak solutions, will rapidly decrease. Exposure to sunlight or agitation will

accelerate the reduction of chlorine present in such solutions. For best results, start analysis immediately after sampling. Samples to be analyzed for chlorine cannot be

preserved or stored.

INTERFERENCE: The only interfering substance likely to be encountered in

water is oxidized manganese. The extent of this interference can be determined by treating a sample with sodium arsenite to destroy the chlorine present so that the degree of

interference can be measured.

Iodine and bromine can give a positive interference, but these are not normally present unless they have been added

as sanitizers.

Use 10 mm square cell adapter.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- **3**. Press **ENTER** to select Testing Menu.
- Select ALL TESTS (or another sequence containing 18 C1 Total-UDV) from TESTING MENU.
- 5. Scroll to and select 18 Cl Total-UDV from menu.
- **6.** Rinse a clean vial (0156) with sample water.
- 7. Use the syringe (1184) to add 3mL of sample to the vial.
- 8. Insert the vial into chamber, close the lid and select SCAN BLANK.
- **9**. Remove the vial from the colorimeter.
- **10**. Use the syringe (1184) to add 3mL of sample to a *Total Chlorine UDV vial (4312).
- 11. Shake vigorously until powder dissolves completely.
 - ☑ NOTE: If powder residue remains in the bottom of the vial after inverting or air bubbles form, invert once more and tap bottom of vial sharply once or twice to dislodge powder and bubbles. Mix.
- **12.** Wait 2 minutes.
- **13**. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result in ppm total chlorine.
- **14.** Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTES: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

UDVs from opened pouches should be used promptly. Store unused vials from opened pouches in the Foil Storage Bag (9467) to extend the shelf life of the reagent. Generally, UDVs stored in the bag should be used within 10 days if the humidity is less than 50% and within 5 days if humidity is greater than 50%. The Foil Storage Bag contains a desiccant pack with indicator. When the indicator in the window turns from blue to pink, the bag should be replaced.

CHLORINE DIOXIDE

DPD METHOD • CODE 3644-SC

QUANTITY	CONTENTS	CODE
100	*Chlorine #1 Instrument Grade Tablets	*6903-J
15 mL	Glycine Solution	6811-E
1	Tablet Crusher	0175

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Chlorine dioxide is used as a substitute for and an adjunct to chlorine in water treatment. It is better than chlorine in eliminating taste and odor in certain cases. Chlorine dioxide, unlike chlorine, does not produce carcinogenic chlorinated organic compounds when reacted with organic materials. A disadvantage is the higher cost of producing chlorine dioxide compared to chlorine.

APPLICATION: Drinking and pool waters; domestic and industrial

wastewater; food sanitization.

RANGE: 0.00–8.00 Chlorine Dioxide

METHOD: Chlorine dioxide reacts with DPD to form a red color in

proportion to the concentration.

SAMPLE Test
HANDLING &
PRESERVATION:

Test as soon as possible to avoid loss of chlorine dioxide.

INTERFERENCE: Chlorine interference can be removed with the use of

glycine. Very high levels of chloramines may interfere if the test result is not read immediately. Oxidized manganese interferes but can be removed with arsenite. Bromine and iodine interfere. Chromate interference can be removed

with a thioacetamide blank correction.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 20 CHLOR DIOX) from TESTING MENU.
- 5. Scroll to and select 20 CHLOR DIOX from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove tube from colorimeter. Pour out all but a sufficient amount of sample water to cover tablet. Add 5 drops of Glycine Solution (6811).
- 9. Add one *Chlorine DPD #1 Instrument Grade Tablet (6903). Crush tablet with tablet crusher. Cap and shake until tablet dissolves. Fill to 10 mL line with sample water. Solution will turn pink if chlorine dioxide is present. Wait 15 seconds, but no longer than 30 seconds. Mix.
- 10. Insert tube into chamber, close lid and select SCAN SAMPLE.
- 11. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

CHROMIUM

DIPHENYLCARBOHYDRAZIDE METHOD • CODE 3697-SC

QUANTITY	CONTENTS	CODE
50	*Chromium Spectrophotometric Grade Tablets	*3889A-H
1	Tablet Crusher	0175

^{*}WARNING: Reagents marked with a * are considered to be potential health hazards. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or www.lamotte.com. To obtain a printed copy, contact LaMotte by email, phone or fax.

Chromium is one of a class of heavy metals found in the bottom mud of polluted bodies of water. It is considered to be a toxic chemical. Chromium will become concentrated in some shellfish, endangering the health of the human or animal that consumes them. Chromium may be present in water containing waste from industries such as metal plating. If more than 0.5 ppm chromium is present, it is evidence of contamination from untreated or incompletely treated industrial waste.

APPLICATION: Drinking, surface, and saline waters; domestic and industrial

wastewaters.

RANGE: 0.00–1.00 ppm Chromium

METHOD: Hexavalent chromium reacts with 1,5

diphenylcarbohydrazide under acidic conditions to form a red-purple color in proportion to the amount of chromium

present.

SAMPLE Analysis for chromium should be made as quickly as possible.

HANDLING & Storage in plastic or glass containers may result in low

PRESERVATION: results

INTERFERENCES: High concentrations of mercurous and mercuric ions may

impart a blue color to the chromium determination. Iron and vanadium in concentrations above 1 ppm may result in

a yellow color.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 23 Chromium-TT) from TESTING MENU.
- 5. Scroll to and select 23 Chromium-TT from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL line with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove the tube from colorimeter.
- 9. Add one *Chromium Spectrophotometric Grade Tablet (3889A).
- 10. Use Tablet Crusher (0175) to crush tablet.
- 11. Cap tube.
- **12**. Shake vigorously for 30 seconds.
- **13**. Wait 3 minutes.
- **14.** Insert tube into chamber, close lid and select SCAN SAMPLE. Record result in ppm chromium.
- **15**. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ✓ NOTES: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. To convert results to ppm chromate (CrO_4^{-2}) , multiply by 2.23. To convert result to ppm sodium chromate (Na_2CrO_4) multiply by 3.12.

CHROMIUM-HEXAVALENT

DIPHENYLCARBOHYDRAZIDE METHOD • CODE 3645-SC

QUANTITY	CONTENTS	CODE
10 g	*Chromium Reagent Powder	*V-6276-D
1	Spoon, 0.1 g, plastic	0699
50	Filter Paper	0465-Н
1	Funnel, Plastic	0459

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Chromium may be present in water containing waste from industries such as metal plating. It is considered to be a toxic chemical and, if present in an amount of over 0.5 ppm, is evidence of contamination from untreated or incompletely treated industrial waste.

Chromium is one of a class of heavy metals found in the bottom mud of polluted bodies of water. Certain shellfish are capable of concentrating this element, endangering the health of its ultimate consumer, human or animal.

APPLICATION: Drinking, surface, & saline waters; domestic and industrial

wastewaters.

RANGE: 0.00–1.00 Chromium

METHOD: Hexavalent chromium reacts with 1,5

diphenylcarbohydrazide under acidic conditions to form a red-purple color in proportion to the amount of chromium

present.

SAMPLE Analysis for chromium should be made as quickly as possible after sample collection since storage in glass or plastic

PRESERVATION: containers may result in low chromate values.

INTERFERENCES: High concentrations of mercurous and mercuric ions may

impart a blue color to the chromium determination. Iron and vanadium in concentrations above 1 mg/L may result in a yellow color. However, the vanadium color becomes

negligible 10 minutes after the addition of

diphenylcarbohydrazide.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 22 Chromium) from TESTING MENU.
- 5. Scroll to and select 22 Chromium from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove tube from colorimeter. Use the 0.1g spoon (0699) to add one measure of *Chromium Reagent Powder (V-6276). Cap and shake until powder dissolves. Wait 3 minutes for full color development.
- 9. During waiting period, fold a piece of filter paper (0465) in half then half again to form a cone. Push corners together to open end, and insert into funnel (0459).
- **10.** At the end of 3 minute waiting period, filter sample into a clean tube. Mix. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 11. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTES: To convert result to ppm chromate (CrO₄²-) multiply by 2.23. To convert result to ppm sodium chromate (Na₂CrO₄) multiply by 3.12. Highly buffered waters may give poor results and require a more careful pH adjustment. Before adding *Chromium Reagent Powder, adjust pH of sample to pH 3-4.

COBALT

PAN METHOD • CODE 4851

QUANTITY	CONTENTS	CODE
60 mL	*Cobalt Buffer	*4852-H
60 mL	*Cobalt Indicator Reagent	*4853-H
30 mL	*Stabilizer Solution	*4854-G
2	Pipet, 1.0 mL, plastic	0354
1	Pipet, 0.5 mL, plastic	0353

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Cobalt rarely occurs in natural water. It is used in the manufacture of alloys to increase corrosion resistance and strength. It is found in wastewaters as a corrosion by-product.

APPLICATION: Industrial wastewater. RANGE: 0.00–2.00 Cobalt

METHOD: PAN (1-[2-Pyridylazo]-2-Naphthol) forms a greenish

complex with Cobalt (Co+2) at a pH of 5.

SAMPLE Store samples in acid-washed plastic bottles. Adjust pH to less than 2 with nitric acid. Adjust sample pH to 5 before

PRESERVATION: testing.

INTERFERENCES: Iron (+2) and high concentrations of heavy metals.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select All Tests (or another sequence containing 24 Cobalt) from TESTNG MENU.
- 5. Scroll to and select 24 Cobalt from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove the tube from colorimeter.
- 9. Use the 1.0 mL pipet (0354) to add 1 mL of *Cobalt Buffer (4852). Cap and mix.
- 10. Use the other 1.0 mL pipet (0354) to add 1 mL of *Cobalt Indicator Reagent (4853). Cap and mix.
- 11. Wait 3 minutes.
- 12. Use the 0.5 mL pipet (0353) to add 0.5 mL *Stabilizer Solution (4854). Cap and invert 15 times to thoroughly mix.
- 13. Wait 5 minutes. DO NOT MIX.
- **14.** Insert tube into chamber, close lid and select SCAN SAMPLE. Record result in ppm cobalt.
- 15. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents is obtained.

COD-LOW RANGE

MERCURY FREE DIGESTION • CODE 0072-SC MERCURY DIGESTION • CODE 0075-SC

QUANTITY	CONTENTS	CODE
25	*COD Low Range Mercury Free Tubes	*0072-SC
or 25	*COD Low Range Mercury Tubes	*0075-SC

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

COD Low Range Mercury Free Tubes are not USEPA approved.

COD Low Range Mercury Tubes are USEPA approved.

Equipment needed but not supplied:

QUANTITY	CONTENTS	CODE
1	COD Adapter	5-0087
1	COD Reactor, 12 vial, 110V	5-0102
or 1	COD Reactor, 12 vial, 230V	5-0102-EX2
1	Measuring Pipet, 1.0 mL	2-2110
1	Pipet Bulb	2-2164

Chemical Oxygen Demand (COD) is a measure of the amount of organic matter in water which is susceptible to oxidation by chemical oxidants. COD can be empirically related to the Biological Oxygen Demand (BOD) and organic carbon content of a specific source of water. This correlation must be determined experimentally for each source of water.

APPLICATION: Domestic and industrial wastes.

RANGE: 5–150 mg/L COD

METHOD: Dichromate in the presence of silver salts, at high temperature in a closed system, oxidizes most organic

compounds to 95-100% of the theoretical amount. This process is called digestion. As dichromate oxidizes the organic compounds, the amount of yellow color is reduced. The remaining yellow color is measured colorimetrically at the 420 nm and is directly proportional to the COD of the

sample.

SAMPLE HANDLING & PRESERVATION: Collect samples in glass and test as soon as possible. If samples must be stored, preservation is accomplished by the addition of concentrated H_2SO_4 to adjust the pH below 2.

Samples with suspended solids should be homogenized in a blender (100 mL for 30 seconds) and then stirred gently

with a magnetic stirrer.

INTERFERENCES: Volatile organic compounds are not oxidized to the extent that they are in the vapor above the digestion solution. Therefore, they do not contribute to the COD reading. Chloride concentrations above 10% of COD interfere with the mercury free tubes. Chloride above 2000 ppm will interfere with the mercury tubes. Nitrite gives a positive interference of 1.1 ppm O₂ per ppm NO₂–N which is insignificant unless nitrite concentrations are very high. Other reduced inorganic compounds are stoichiometrically oxidized, causing a positive interference. Corrections can be made for these compounds based upon their stoichiometry and concentrations.

> When scanning samples in 16 mm tubes, such as COD, the sample chamber lid can not be closed. Use the COD adapter to minimize stray light interference. To further reduce stray light interference, do not scan sample in direct sunlight.

Use COD adapter (see p. 22).

- 1. Homogenize sample if necessary.
- 2. Preheat COD heater block to 150±2°C.
- 3. Remove cap from COD tube vial. Hold vial at a 45° angle. Use a volumetric pipet, to carefully add 2.0 mL sample water allowing the sample to run down the side of the vial.
- 4. Cap and mix thoroughly.
- 5. Rinse the outside of the vial with distilled water. Wipe dry with a paper towel.
- **6.** Repeat steps 3 through 5 using 2.0 mL distilled water. This is the reagent blank.
- 7. Place vials in preheated COD block heater and maintain temperature at 150±2°C for two hours.
- **8.** At the end of the heating period turn the heater off. Wait 20 minutes for the vials to cool to 120°C or less.
- 9. Remove vials from block heater. Invert several times to mix.
- **10**. Allow to cool to room temperature.
- 11. Press and hold **ON** button until colorimeter turns on.
- 12. Press **ENTER** to start.
- 13. Press **ENTER** to select TESTING MENU.
- **14.** Select ALL TESTS (or another sequence containing 25 COD LR) from PROGRAMMED TESTS menu.
- 15. Scroll to and select 25 COD LR from menu.
- **16.** Wipe the blank vial with a damp towel to remove fingerprints and smudges. Wipe with a dry towel.
- 17. Insert reagent blank tube into chamber. Select SCAN BLANK.
- **18**. Remove tube from colorimeter.
- 19. Insert digested water sample tube into chamber. Select SCAN SAMPLE. Record result. For the most accurate results, take three readings on each sample and average the results.
- **20.** Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

☑ **NOTES:** Reagents are light sensitive. Unused reagents should be stored in the shipping container, and in the refrigerator if possible, until needed.

A reagent blank should be run with each set of samples and with each lot of reagents.

The reacted blank will be stable if stored in the dark.

To eliminate error caused by contamination, wash all glassware with 20% sulfuric acid.

For greater accuracy, a minimum of three repetitions should be performed and the results averaged.

Some samples may be digested completely in less than two hours. The concentration may be measured at 15 minute intervals while the vials are still hot until the reading remains unchanged. The vials should be cooled to room temperature before the final measurement is taken.

CHROMIUM-HEXAVALENT, TRIVALENT & TOTAL

DIPHENYLCARBOHYDRAZIDE METHOD • CODE 3698-SC

QUANTITY	CONTENTS	CODE
60 mL	*Sulfuric Acid, 5N	*7681-H
10 g	*Chromium Reagent Powder	*V-6276-D
15 mL	*Sodium Azide, 5%	*7683-E
30 mL	Potassium Permanganate, 0.5%	7682-G
60 mL	Deionized Water	5115PT-H
1	Pipet, plain, glass, w/cap	0341
1	Pipet, 1.0 mL, plastic	0354
1	Spoon, 0.1 g, plastic	0699
1	Graduated Cylinder, 50 mL, glass	0418
1	Erlenmeyer Flask, 125 mL, glass	0431
1	Test tube holder	1113
1	Filter Paper	0465
1	Funnel, Plastic	0459

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

A toxic chemical, chromium is found in two forms in the water; trivalent chromium (Cr^{3+}) and hexavalent chromium (Cr^{6+}). Chromium enters the water from industrial waste. Hexavalent chromium is more toxic than trivalent chromium. Levels greater than 0.5 ppm indicate improperly treated industrial waste. It is important to maintain chromium levels at or below 0.5 ppm, because clams and other shellfish will store chromium in their systems, accumulating levels which may be dangerous to the consumer, whether human or animal.

APPLICATION: Drinking, surface, & saline water; domestic and industrial

waste.

RANGE: 0.00–1.00 Chromium

METHOD: The trivalent chromium is converted to hexavalent

chromium by permanganate under acidic conditions.

Hexavalent chromium reacts with 1,5

diphenylcarbohydrazide under acidic conditions to form a red-purple color in proportion to the amount of chromium

present.

SAMPLE HANDLING & PRESERVATION: Analysis for chromium should be made as quickly as possible after sample collection since storage in glass or plastic

containers may result in low chromate values.

INTERFERENCES: High concentrations of mercurous and mercuric ions may

interfere.

HEXAVALENT CHROMIUM PROCEDURE

- Press and hold **ON** button until colorimeter turns on. 1
- 2 Press **ENTER** to start.
- Press ENTER to select TESTING MENU. 3.
- Select ALL TESTS (or another sequence containing 22 Chromium) 4. from TESTING MENU.
- Scroll to and select 22 Chromium from menu. 5.
- Rinse a clean tube (0290) with sample water. Fill to 10 mL line with 6. sample water.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- Remove tube from colorimeter. Use 0.1 g spoon (0699) to add one level 8. measure of *Chromium Reagent Powder (V-6276). Cap and shake for one minute. Wait 3 minutes.
- During the waiting period, fold a piece of filter paper in half, then in half 9. again to form a cone. Push corners together to open end, and insert into funnel (0459).
- 10. At the end of 3 minute waiting period, filter sample into a clean tube (0290). Cap and mix. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 11. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

TOTAL CHROMIUM WITH ACID DIGESTION PROCEDURE

- 1. Fill graduated cylinder (0418) to 50 mL line with sample water. Transfer to Erlenmeyer flask (0431).
- 2. Use the 1 mL pipet (0354) to add 5 mL (five measures) of *Sulfuric Acid, 5N (7681). Swirl to mix.
 - ☑ NOTE: Highly buffered waters may require pH adjustment. Adjust the pH of highly buffered samples to 7.0 ±0.5. Continue procedure.
- 3. Place flask on burner or hot plate. Bring solution to a gentle boil.
- 4. Fill pipet (0341) with Potassium Permanganate, 0.5% (7682). While gently swirling flask, add Potassium Permanganate, 0.5% (7682), 2 drops at a time to boiling solution, until solution turns a dark pink color which persists for 10 minutes. Continue boiling.
- 5. Add one drop of *Sodium Azide, 5% (7683) to boiling solution. Boil for approximately 30 seconds. If pink color does not fade, add another drop of *Sodium Azide, 5%. Continue adding *Sodium Azide, 5% one drop at a time until pink color disappears.
- **6.** Remove flask from heat. Cool sample under running water. This is the digested sample.
- 7. Pour digested sample into clean graduated cylinder (0418). Dilute to the 50 mL line with Deionized Water (5115).
- **8**. Press and hold **ON** button until colorimeter turns on.
- **9.** Press **ENTER** to start.
- 10. Press **ENTER** to select TESTING MENU.
- 11. Select ALL TESTS or another sequence containing 22 Chromium) from TESTING MENU.
- 12. Scroll to and select 22 Chromium from menu.
- **13.** Rinse a clean tube (0290) with sample water. Fill to 10 mL line with sample water.
- 14. Insert tube into chamber, close lid and select SCAN BLANK.
- **15.** Remove tube from colorimeter. Use 0.1 g spoon (0699) to add one level measure of *Chromium Reagent Powder (V-6276). Cap and shake for one minute. Wait 3 minutes.
- **16.** During the waiting period, fold a piece of filter paper in half, then in half again to form a cone. Push corners together to open end, and insert into funnel (0459).
- 17. Filter sample into a clean tube (0290). Cap and mix. Insert tube of filtered sample into chamber, close lid and select SCAN SAMPLE. Record result.
- **18.** Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

TRIVALENT CHROMIUM PROCEDURE

Subtract hexavalent chromium from total chromium. Record as ppm trivalent chromium.

Trivalent Chromium = Total Chromium - Hexavalent Chromium

COD-STANDARD RANGE

MERCURY FREE DIGESTION • CODE 0073-SC MERCURY DIGESTION • CODE 0076-SC

QUANTITY	CONTENTS	CODE
25	*COD Standard Range Mercury Free Tubes	*0073-SC
or 25	*COD Standard Range Mercury Tubes	*0076-SC

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

COD Standard Range Mercury Free Tubes are not USEPA approved.

COD Standard Range Mercury Tubes are USEPA approved.

Equipment needed but not supplied:

QUANTITY	CONTENTS	CODE
1	COD Adapter	5-0087
1	COD Reactor, 12 vial, 110V	5-0102
or 1	COD Reactor, 12 vial, 230V	5-0102-EX2
1	Measuring Pipet, 1.0 mL	2-2110
1	Pipet Bulb	2-2164

Chemical Oxygen Demand (COD) is a measure of the amount of organic matter in water which is susceptible to oxidation by chemical oxidants. COD can be empirically related to the Biological Oxygen Demand (BOD) and organic carbon content of a specific source of water. This correlation must be determined experimentally for each source of water.

APPLICATION: Domestic and industrial wastes.

RANGE: 0–1500 mg/L COD

METHOD: Dichromate in the presence of silver salts, at high

temperature in a closed system, oxidizes most organic compounds to 95-100% of the theoretical amount. This process is called digestion. As dichromate oxidizes the organic compounds, a green complex is formed. The concentration of the green complex is measured at 605 nm and is directly proportional to the COD of the sample.

SAMPLE HANDLING & PRESERVATION: Collect samples in glass and test as soon as possible. If samples must be stored, preservation is accomplished by the addition of concentrated H₂SO₄ to adjust the pH below 2.

Samples with suspended solids should be homogenized in a blender (100 mL for 30 seconds) and then stirred gently

with a magnetic stirrer.

INTERFERENCES: Volatile organic compounds are not oxidized to the extent that they are in the vapor above the digestion solution. Therefore, they do not contribute to the COD reading. Chloride concentrations above 10% of COD interfere with the mercury free tubes. Chloride above 2000 ppm will interfere with the mercury tubes. Nitrite gives a positive interference of 1.1 ppm O₂ per ppm NO₂–N which is insignificant unless nitrite concentrations are very high. Other reduced inorganic compounds are stoichiometrically oxidized, causing a positive interference. Corrections can be made for these compounds based upon their stoichiometry and concentrations.

> When scanning samples in 16 mm tubes, such as COD, the sample chamber lid can not be closed. Use the COD adapter to minimize stray light interference. To further reduce stray light interference, do not scan sample in direct sunlight.

Use COD adapter (see p. 22).

- 1. Homogenize sample if necessary.
- 2. Preheat COD heater block to 150±2°C.
- 3. Remove cap from COD tube vial. Hold vial at a 45° angle. Use a volumetric pipet, to carefully add 2.0 mL sample water allowing the sample to run down the side of the vial.
- 4. Cap and mix thoroughly.
- Rinse the outside of the vial with distilled water. Wipe dry with a paper towel.
- **6.** Repeat steps 2 through 5 using 2.0 mL distilled water. This is the reagent blank.
- 7. Place vials in preheated COD block heater and maintain temperature at 150±2°C for two hours.
- **8.** At the end of the heating period turn the heater off. Wait 20 minutes for the vials to cool to 120°C or less.
- 9. Remove vials from block heater. Invert several times to mix.
- **10**. Allow to cool to room temperature.
- 11. Press and hold **ON** button until colorimeter turns on.
- **12.** Press **ENTER** to start.
- 13. Press ENTER to select TESTING MENU.
- **14.** Select ALL TESTS (or another sequence containing 26 COD SR) from PROGRAMMED TESTS menu.
- **15.** Wipe the blank vial with a damp towel to remove fingerprints and smudges. Wipe with a dry towel.
- 16. Scroll to and select 26 COD SR from menu.
- 17. Insert reagent blank tube into chamber. Select SCAN BLANK.
- **18**. Remove tube from colorimeter.
- 19. Insert digested water sample tube into chamber. Select SCAN SAMPLE. Record result. For the most accurate results, take three readings on each sample and average the results.
- **20.** Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

☑ NOTES: Reagents are light sensitive. Unused reagents should be stored in the shipping container, and in the refrigerator if possible, until needed.

A reagent blank should be run with each set of samples and with each lot of reagents.

The reacted blank will be stable if stored in the dark.

To eliminate error caused by contamination, wash all glassware with 20% sulfuric acid.

For greater accuracy, a minimum of three repetitions should be performed and the results averaged.

Some samples may be digested completely in less than two hours. The concentration may be measured at 15 minute intervals while the vials are still hot until the reading remains unchanged. The vials should be cooled to room temperature before the final measurement is taken.

COD-HIGH RANGE

MERCURY FREE DIGESTION • CODE 0074-SC MERCURY DIGESTION • CODE 0077-SC

QUANTITY	CONTENTS	CODE
25	*COD High Range Mercury Free Tubes	*0074-SC
or 25	*COD High Range Mercury Tubes	*0077-SC

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

COD High Range Mercury Free Tubes and COD High Range Mercury Tubes are not USEPA approved.

Equipment needed but not supplied:

QUANTITY	CONTENTS	CODE
1	COD Adapter	5-0087
1	COD Reactor, 12 vial, 110V	5-0102
or 1	COD Reactor, 12 vial, 230V	5-0102-EX2
1	Measuring Pipet, 1.0 mL	2-2110
1	Pipet Bulb	2-2164

Chemical Oxygen Demand (COD) is a measure of the amount of organic matter in water which is susceptible to oxidation by chemical oxidants. COD can be empirically related to the Biological Oxygen Demand (BOD) and organic carbon content of a specific source of water. This correlation must be determined experimentally for each source of water.

APPLICATION: Domestic and industrial wastes.

RANGE: 0–15000 mg/L COD

METHOD: Dichromate in the presence of silver salts, at high

temperature in a closed system, oxidizes most organic compounds to 95-100% of the theoretical amount. This process is called digestion. As dichromate oxidizes the organic compounds, a green complex is formed. The concentration of the green complex is measured at 605 nm and is directly proportional to the COD of the sample.

SAMPLE HANDLING & PRESERVATION: Collect samples in glass and test as soon as possible. If samples must be stored, preservation is accomplished by the addition of concentrated H₂SO₄ to adjust the pH below 2.

Samples with suspended solids should be homogenized in a blender (100 mL for 30 seconds) and then stirred gently

with a magnetic stirrer.

INTERFERENCES: Volatile organic compounds are not oxidized to the extent that they are in the vapor above the digestion solution. Therefore, they do not contribute to the COD reading. Contains mercury sulfate to prevent interference from chloride. Nitrite gives a positive interference of 1.1 ppm O₂ per ppm NO₂-N, which is insignificant unless nitrite concentrations are very high. Other reduced inorganic compounds are stoichiometrically oxidized, causing a positive interference. Corrections can be made for these compounds based upon their stoichiometry and concentrations.

> When scanning samples in 16 mm tubes, such as COD, the sample chamber lid can not be closed. Use the COD adapter to minimize stray light interference. To further reduce stray light interference, do not scan sample in direct sunlight.

Use COD adapter (see p. 22).

- 1. Homogenize sample if necessary.
- 2. Preheat COD heater block to 150±2°C.
- 3. Remove cap from COD tube vial. Hold vial at a 45° angle. Use a graduated pipet, to carefully add 0.2 mL sample water allowing the sample to run down the side of the vial.
- 4. Cap and mix thoroughly.
- 5. Rinse the outside of the vial with distilled water. Wipe dry with a paper towel.
- **6.** Repeat steps 3 through 5 using 0.2 mL distilled water. This is the reagent blank.
- Place vials in preheated COD block heater and maintain temperature at 150±2°C for two hours.
- **8.** At the end of the heating period turn the heater off. Wait 20 minutes for the vials to cool to 120°C or less.
- **9**. Remove vials from block heater. Invert several times to mix.
- **10**. Allow to cool to room temperature.
- 11. Press and hold **ON** button until colorimeter turns on.
- **12.** Press **ENTER** to start.
- 13. Press **ENTER** to select TESTING MENU.
- **14.** Select ALL TESTS (or another sequence containing 27 COD HR) from PROGRAMMED TESTS menu.
- **15.** Wipe the blank vial with a damp towel to remove fingerprints and smudges. Wipe with a dry towel.
- 16. Scroll to and select 27 COD HR from menu.
- 17. Insert reagent blank tube into chamber. Select SCAN BLANK.
- **18**. Remove tube from colorimeter.
- 19. Insert digested water sample tube into chamber. Select SCAN SAMPLE. Record result. For the most accurate results, take three readings on each sample and average the results.
- **20.** Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTES: Reagents are light sensitive. Unused reagents should be stored in the shipping container, and in the refrigerator if possible, until needed.

A reagent blank should be run with each set of samples and with each lot of reagents.

The reacted blank will be stable if stored in the dark.

To eliminate error caused by contamination, wash all glassware with 20% sulfuric acid.

For greater accuracy, a minimum of three repetitions should be performed and the results averaged.

PLATINUM COBALT METHOD • NO REAGENTS REQUIRED

Color in water may be attributed to humus, peat, plankton, vegetation, and natural metallic ions, such as iron and manganese, or industrial waste. Color is removed to make water suitable for domestic and industrial use. Color may have to be removed from industrial waste before it is discharged to a waterway.

APPLICATION: Potable water and water with color due to natural materials.

RANGE: 0–1000 color units

METHOD: Color is determined by a meter that has been calibrated with

colored standards of known platinum cobalt concentration. True color, the color of water in which the turbidity has been

removed, is measured.

SAMPLE Collect all samples in clean glassware. Determine color as soon as possible to avoid biological or chemical changes that

PRESERVATION: could occur in the sample during storage.

INTERFERENCES: Turbidity will interfere. Filter before testing.

- 1. Press and hold **ON** burton until colorimeter turns on.
- **2**. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 28 Color) from TESTING MENU.
- 5. Scroll to and select 28 Color from menu.
- **6.** Rinse a tube (0290) with color-free water (distilled or deionized water). Fill to 10 mL line with color-free water.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- 8. Remove tube from colorimeter. Empty tube.
- **9**. Rinse tube with sample water. Fill to 10 mL line with water sample.
- 10. Insert tube with sample water, close lid and select SCAN SAMPLE. Record result in color units.
- 11. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

COPPER-LOW RANGE

BICINCHONINIC ACID METHOD • CODE 3640-SC

QUANTITYCONTENTSCODE50*Copper Tablets*T-3808-H

The copper content of drinking water generally falls below 0.03 parts per million, but copper levels as high as 1.0 part per million will give water a bitter taste. Waters testing as high as 1.0 part per million copper have probably been treated with a copper compound, like those used in the control of algae, or have become contaminated from untreated industrial wastes. The addition of copper sulfate to lakes causes an increase in the copper content of the sediments. Acid waters and those high in free carbon dioxide may cause the corrosion or "eating away" of copper, brass and bronze pipes and fittings. This corrosion results in the addition of copper into the water supply.

APPLICATION: Drinking, surface, and saline waters; domestic and industrial

wastes.

RANGE: 0.00–3.50 ppm Copper

METHOD: Copper ions form a purple complex with bicinchoninic acid

around pH 6-7, in proportion to the concentration of copper

in the sample.

SAMPLE HANDLING & PRESERVATION: Copper has a tendency to be adsorbed to the surface of the sample container. Samples should be analyzed as soon as possible after collection. If storage is necessary, 0.5 mL of

20% HCl per 100 mL of sample will prevent "plating out." However, a correction must be made to bring the reaction

into the optimum pH range.

INTERFERENCES: High concentrations of oxidizing agents, calcium, and

magnesium interfere. Silver can also interfere.

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 29 Copper BCA-LR) from TESTING MENU.
- 5. Scroll to and select 29 Copper BCA-LR from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- 8. Remove tube from colorimeter and add one *Copper Tablet (T-3808). Cap and shake vigorously until tablet dissolves. Solution will turn purple if copper is present. Wait 2 minutes.
- 9. At end of 2 minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **10.** Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

CUPRIZONE METHOD • CODE 4023

QUANTITY	CONTENTS	CODE
15 mL	Copper A	P-6367-E
15 mL	*Copper B	*P-6368-E

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

The copper content of drinking water generally falls below 0.03 parts per million, but copper levels as high as 1.0 part per million will give water a bitter taste. Waters testing as high as 1.0 part per million copper have probably been treated with a copper compound, like those used in the control of algae, or have become contaminated from untreated industrial wastes. The addition of copper sulfate to lakes causes an increase in the copper content of the sediments. Acid waters and those high in free carbon dioxide may cause the corrosion or "eating away" of copper, brass and bronze pipes and fittings. This corrosion results in the addition of copper to the water supply.

Drinking, surface, and domestic waters. Pools and spas. APPLICATION:

RANGE: 0.00–2.00 ppm Copper

METHOD: Copper ions form a blue complex with cuprizone, in a 1 to 2

ratio, at a pH of about 8, in proportion to the concentration

of copper in the sample.

SAMPLE HANDLING & PRESERVATION: Copper has a tendency to be adsorbed to the surface of the sample container. Samples should be analyzed as soon as possible after collection. If storage is necessary, 0.5 mL of 20% hydrochloric acid per 100 mL of sample will prevent

"plating out". However, a correction must be made to bring

the reaction into the optimum pH range.

INTERFERENCES: Hg⁺¹ at 1 ppm. Cr⁺³, Co⁺², and silicate at 10 ppm. As⁺³,

Bi+3, Ca+2, Ce+3, Ce+4, Hg+2, Fe+2, Mn+2, Ni+2 and

ascorbate at 100 ppm.

Many other metal cations and inorganic anions at 1000

ppm. EDTA at all concentrations.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- **3.** Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 31 Cu-Cuprizone) from TESTING MENU.
- 5. Scroll to and select 31 Cu-Cuprizone from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- 8. Remove tube from colorimeter and add 5 drops of Copper A (6367). Cap and mix.
- 9. Add 5 drops of *Copper B (6368). Cap and mix.
- **10.** Wait 5 minutes. Mix.
- Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 12. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

The reaction may stain the tubes. Scrub tubes thoroughly after each use.

DIETHYLDITHIOCARBAMATE METHOD • CODE 3646-SC

QUANTITY	CONTENTS	CODE
15 mL	*Copper 1	*6446-E

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

The copper content of drinking water generally falls below 0.03 parts per million, but copper levels as high as 1.0 part per million will give water a bitter taste. Waters testing as high as 1.0 part per million copper have probably been treated with a copper compound, like those used in the control of algae, or have become contaminated from untreated industrial wastes. The addition of copper sulfate to lakes causes an increase in the copper content of the sediments. Acid waters and those high in free carbon dioxide may cause the corrosion or "eating away" of copper, brass and bronze pies and fittings. This corrosion results in the addition of copper into the water supply.

APPLICATION: Drinking, surface, and saline waters; domestic and industrial

wastes.

RANGE: 0.00–6.00 ppm Copper

METHOD: Copper ions form a yellow colored chelate with

diethyldithiocarbamate around pH 9-10 in proportion to the

concentration of copper in the sample.

SAMPLE HANDLING & PRESERVATION: Copper has a tendency to be adsorbed to the surface of the sample container. Samples should be analyzed as soon as possible after collection. If storage is necessary, 0.5 mL of

20% hydrochloric acid per 100 mL of sample will prevent "plating out." However, a correction must be made to bring

the reaction into the optimum pH range.

INTERFERENCES: Bismuth, cobalt, mercurous, nickel and silver ions and

chlorine (6 ppm or greater) interfere and must be absent.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence contining 32 Copper DDC) from TESTING MENU.
- 5. Scroll to and select 32 Copper DDC from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove tube from colorimeter and add 5 drops of *Copper 1 (6446). Cap and mix. Solution will turn yellow if copper is present.
- Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 10. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: The reaction may stain the tubes. Scrub the tubes thoroughly after each use.

COPPER-UDV

BICINCHONINIC ACID METHOD-UNIT DOSE VIALS CODE 4314-H

QUANTITY	CONTENTS	CODE
1	Copper Unit Dose Vials, 10 pouches	4314-H
	ded but not suppled: CESSORY PACKAGE • CODE 1961	
1	Package of 3 Vials (empty)	0156
1	Syringe, 3 mL, plastic	1184
1	Foil Storage Bag	9467
Or:	CCESSORY PACKAGE • CODE 1962	
1	Pipettor	30528
1	Pipet Tip (0-5 mL)	30695
1	Cuvette Rack	31695
1	Package of 3 Vials (empty)	0156
1	Foil Storage Bag	9467

The copper content of drinking water generally falls below 0.03 parts per million, but copper levels as high as 1.0 part per million will give water a bitter taste. Waters testing as high as 1.0 part per million copper have probably been treated with a copper compound, like those used in the control of algae, or have become contaminated from untreated industrial wastes. The addition of copper sulfate to lakes causes an increase in the copper content of the sediments. Acid waters and those high in free carbon dioxide may cause the corrosion or "eating away" of copper, brass and bronze pipes and fittings. This corrosion results in the addition of copper to the water supply.

APPLICATION: Drinking, surface, and saline waters; domestic and industrial

wastes.

RANGE: 0.0–4.0 ppm Copper

METHOD: Cupric ions form a purple complex with bicinchoninic acid

around pH 6–7, in proportion to the concentration of

copper in the sample.

SAMPLE HANDLING & PRESERVATION: Copper has a tendency to be adsorbed to the surface of the sample container. Samples should be analyzed as soon as possible after collection. If storage is necessary, 0.5 mL of 20% hydrochloric acid per 100 mL of sample will prevent "plating out". However, a correction must be made to bring the reaction into the optimum pH range.

INTERFERENCES: High concentrations of oxidizing agents, calcium, and magnesium interfere. Silver can also interfere.

Use 10 mm square cell adapter.

- 1. Press and hold **ON** button until colorimeter turns on.
- **2**. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 3. Select ALL TESTS (or another sequence containing 33 Copper-UDV) from TESTING MENU.
- 4. Scroll to and select 33 Copper-UDV from menu.
- 5. Rinse a clean vial (0156) with sample water.
- 6. Use the syringe (1184) to add 3 mL of sample to the vial.
- 7. Insert the vial into chamber, close lid and select SCAN BLANK.
- **8**. Remove vial from the colorimeter.
- 9. Use the syringe (1184) to add 3 mL of sample to a Copper UDV vial (4314).
- 10. Wait 2 minutes.
- 11. Invert vial 3 times to mix.
 - ☑ NOTE: If powder residue remains in the bottom of the vial after inverting, or if air bubbles form, invert once more and tap bottom of vial sharply once or twice to dislodge powder or bubbles. Mix.
- 12. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 13. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

UDVs from opened pouches should be used promptly. Store unused vials from opened pouches in the Foil Storage Bag (9467) to extend the shelf life of the reagent. Generally, UDVs stored in the bag should be used within 10 days if the humidity is less than 50% and within 5 days if humidity is greater than 50%. The Foil Storage Bag contains a desiccant pack with indicator. When the indicator in the window turns from blue to pink, the bag should be replaced.

PYRIDINE-BARBITURIC ACID METHOD • CODE 3660-SC

QUANTITY	CONTENTS	CODE
60 mL	Cyanide Buffer	2850PS-H
5 g	*Cyanide Cl Reagent	*2794DS-C
5 g	*Cyanide Indicator Reagent	*2793DS-C
15 mL	*Hydrochloric Acid 1N	*6130-E
15 mL	*Sodium Hydroxide 1N	*4004-E
2	Spoons, 0.1 g, plastic	0699
1	Pipet, plastic, 1.0 mL	0354
1	pH Short Range Test Paper, pH 9–14	2955
1	Stirring Rod, Plastic	0519

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

The presence of cyanide in water has a significant effect on the biological activity of the system. Cyanides may exist in water in a variety of forms which vary in toxicity. Cyanide is a by-product of industrial waste from petroleum refining and plating.

APPLICATION: Low level concentrations in drinking and surface waters;

domestic and industrial waters. This method determines

only those cyanides amenable to chlorination.

RANGE: 0.00–0.50 Cyanide

METHOD: Cyanides react with a chlorine donor to form cyanogen

chloride, which subsequently reacts with Pyridine and Barbituric Acid to form a red-blue compound in proportion

to the amount of cyanide originally present. The concentration of the red-blue compound is determined

spectrophotometrically.

SAMPLE HANDLING & PRESERVATION: Cyanide solutions tend to be unstable and should be analyzed as soon as possible. Samples can be stabilized by adjusting the pH to greater than 12 with NaOH. However,

the pH will have to be readjusted to pH 10.5 before

performing the test.

INTERFERENCES: Oxidizing agents and aldehydes can react with cyanide,

while reducing agents, such as sulfite, react with the chlorine donor; both can cause negative interferences. Thiocyanate and chloride both react as cyanide in this test and will give

a positive interference. Color and turbidity can also

interfere.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 35 Cyanide) from TESTING MENU.
- 5. Scroll to and select 35 Cyanide from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Dip the end of plastic rod (0519) into water sample and touch it to a small piece (1/4 inch) of pH test paper (2955) to wet paper. Read pH immediately from color chart.
 - a) If pH is below 10, raise the pH by adding *Sodium Hydroxide, 1N (4004) one drop at a time with stirring. Check pH after each drop with a new piece of pH test paper. Continue adjustment until pH is between 10.5 and 11.0.
 - b) If pH is above 11.5, lower pH by adding *Hydrochloric Acid (6130) one drop at a time with stirring. Check pH after each drop with a new piece of pH test paper. Continue adjustment until pH is between 10.5 and 11.0.
- 8. Insert tube into chamber, close lid and select SCAN BLANK.
- 9. Remove tube from colorimeter. Use the 1.0 mL pipet (0354) to add 1.0 mL of Cyanide Buffer (2850PS) to tube. Cap and mix.
- 10. Use one 0.1 g spoon (0699) to add one level measure of *Cyanide Cl Reagent (2794DS). Cap and invert 10 times to mix. Wait 30 seconds.
- 11. During the 30 second waiting period, carefully fill a second 0.1 g spoon (0699) with one level measure of *Cyanide Indicator Reagent (2793DS).
- 12. At the end of the 30 second waiting period, immediately add the level measure of *Cyanide Indicator Reagent (2793DS). Cap and shake vigorously for 20 seconds. Wait 20 minutes for maximum color development.
- **13**. At the end of the twenty minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 14. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

CYANURIC ACID

MELAMINE METHOD-TURBIDITY • CODE 3661-SC

QUANTITY	CONTENTS	CODE
2 x 250 mL	*Acid Test Solution	*4856-K
1	Syringe, 5 mL	0807

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Cyanuric acid is added to swimming pool water as a stabilizing agent for free chlorine residuals. It minimizes the loss of chlorine from the action of ultraviolet rays in sunlight. Cyanuric acid levels in pools should be maintained between 25 and 75 ppm and various public health associations recommend that the concentration should never exceed 100-150 ppm.

APPLICATION: Swimming pool waters. **RANGE:** 5–200 Cyanuric Acid

PRESERVATION:

METHOD: A buffered solution of melamine forms a precipitate with

cyanuric acid in proportion to the amount of cyanuric acid present. The amount of particles in suspension is measured

turbidimetrically.

SAMPLE Cyanuric acid samples should be analyzed as soon as possible after collection. Deterioration of the sample can be

minimized by keeping samples in the dark or refrigerated

until analysis can be performed.

INTERFERENCES: No known interference from compounds normally found in

pool water. Temperature of the sample should be maintained between 70°F and 80°F for best results. Check for stray light

interference (see p. 17).

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- **3.** Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 36 Cyanuric) from TESTING MENU.
- 5. Scroll to and select 36 Cyanuric from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- 8. Remove tube from colorimeter and pour out water. Use a graduated cylinder or similar to measure 5 mL of sample water and pour into colorimeter tube.
- 9. Use the 5 mL syringe (0807) to add 5 mL of *Cyanuric Acid Test Solution (4856). Cap and mix thoroughly. A precipitate will form if cyanuric acid is present. Wait 1 minute.
 - ☑ NOTE: This reagent bottle has a special fitting which enables the syringe to be inserted into the top of the bottle. With syringe in place, invert bottle and withdraw syringe plunger until 5 mL of reagent is contained in the syringe barrel. Remove syringe from reagent bottle and depress plunger to dispense into the tube.
- 10. At end of 1 minute waiting period, mix thoroughly, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 11. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ✓ NOTE: For the most accurate results, the sample and reagents should be at 25 ±4°C.

ANURIC ACID_U

MELAMINE METHOD-TURBIDITY-UNIT DOSE VIALS CODE 4313-H

QUANTITY	CONTENTS	CODE
1	Cyanuric Acid Unit Dose Vials, 10 pouches	4313-H
	ded but not suppled: CESSORY PACKAGE • CODE 1961	
1	Package of 3 Vials (empty)	0156
1	Syringe, 3 mL, plastic	1184
1	Foil Storage Bag	9467
Or: ADVANCED AC	CCESSORY PACKAGE • CODE 1962	
1	Pipettor	30528
1	Pipet Tip (0-5 mL)	30695
1	Cuvette Rack	31695
1	Package of 3 Vials (empty)	0156
1	Foil Storage Bag	9467

Cyanuric acid is added to swimming pool water as a stabilizing agent for free chlorine residuals. It minimizes the loss of chlorine from the action of ultraviolet rays in sunlight. Cyanuric acid levels should be maintained between 25 and 75 ppm and various public health associations recommend that the concentration should never exceed 100-150 ppm.

APPLICATION: Swimming pool water. RANGE: 5–150 ppm Cyanuric Acid

A buffered solution of melamine forms a precipitate with METHOD:

cyanuric acid in proportion to the amount of cyanuric acid present. The amount of particles in suspension is measured

turbidimetrically.

Cyanuric acid samples should be analyzed as soon as possible SAMPLE HANDLING & after collection. Deterioration of the sample can be PRESERVATION:

minimized by keeping samples in the dark or refrigerated

until analysis can be performed.

INTERFERENCES: No known interference from compounds normally found in

pool water. Temperature of the sample should be maintained between 70°F and 80°F for best results. Check for stray light

interference (see p. 17).

Use 10 mm square cell adapter.

- 1. Press and hold **ON** button until colorimeter turns on.
- **2**. Press **ENTER** to start.
- 3. Press **ENTER** to selct TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 37 Cyanuric-UDU) from TESTING MENU.
- 5. Scroll to and select 37 Cyanuric-UDV from menu.
- **6**. Rinse a clean vial (0156) with sample water.
- 7. Use the syringe (1184) to add 3 mL of sample to the vial.
- 8. Insert the vial into chamber, close lid and select SCAN BLANK.
- **9**. Remove vial from colorimeter.
- **10**. Use the syringe (1184) to add 3 mL of sample to a Cyanuric Acid UDV vial (4313).
- 11. Invert the vial 3 times to mix.
- 12. Wait 2 minutes.
- **13**. Invert vial 3 more times to mix.
 - ☑ NOTE: Firmly tap side of vial 5-10 times to remove all air bubbles.
- 14. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 15. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ✓ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

UDVs from opened pouches should be used promptly. Store unused vials from opened pouches in the Foil Storage Bag (9467) to extend the shelf life of the reagent. Generally, UDVs stored in the bag should be used within 10 days if the humidity is less than 50% and within 5 days if humidity is greater than 50%. The Foil Storage Bag contains a desiccant pack.

DISSOLVED OXYGEN

WINKLER COLORIMETRIC METHOD • CODE 3688-SC

QUANTITY	CONTENTS	CODE
30 mL	*Manganese Sulfate Solution	*4167-G
30 mL	*Alkaline Potassium Iodide Azide	*7166-G
30 mL	*Sulfuric Acid 1:1	*6141WT-G
1	Sample Tube, screw cap	29180
1	Cap	28570

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Dissolved oxygen is vital to the survival of aquatic organisms. Naturally present, dissolved oxygen enters the water when plants photosynthesize. Wind and wave action also cause oxygen from the air to dissolve into water. Dissolved oxygen is consumed by aquatic animals and by the oxidation, or chemical breakdown, of dead and decaying plants and animals. The concentration of dissolved oxygen in natural waters can range from 0 to 14 ppm and is effected by temperature and salinity.

APPLICATION: This method is applicable for the determination of dissolved

oxygen in drinking water, all surface waters and wastewater.

RANGE: 0.0–11.0 Dissolved Oxygen

METHOD: This method uses the azide modification of the Winkler

Method with a colorimetric determination of the yellow iodine produced from the reaction with the dissolved

oxygen.

INTERFERENCES: The presence of other oxidizing agents may cause positive

interferences. Reducing may cause negative interferences.

Nitrite interferences are eliminated with the azide

modification.

COLLECTION & TREATMENT OF THE WATER SAMPLE

Steps 1 through 4 below describe proper sampling technique in shallow water. For sample collection at depths beyond arm's reach, special water sampling apparatus is required (e.g. the LaMotte Water Sampling Chamber, Code 1060; Model JT-1 Water Samplers, Code 1077; Water Sampling Outfit, Code 3103; or Water Sampling Bottle, Code 3-0026).

- 1. To avoid contamination, thoroughly rinse the screw cap Sample Tube (29180) with sample water.
- 2. Tightly cap Sample Tube and submerge to the desired depth. Remove cap and allow the Sample Tube to fill.
- 3. Tap the sides of the submerged tube to dislodge any air bubbles clinging to the inside. Replace the cap while the Sample Tube is still submerged.
- 4. Retrieve Sample Tube and examine it carefully to make sure that no air bubbles are trapped inside. Once a satisfactory sample has been collected, proceed immediately with Steps 5 and 6 to "fix" the sample.
 - ☑ NOTE: Be careful not to introduce air into the sample while adding the reagents in steps 5 and 6. Simply drop the reagents into the sample. Cap carefully, and mix gently.
- 5. Add 2 drops of *Manganese Sulfate Solution (4167) and 2 drops of *Alkaline Potassium Iodide Azide (7166). Cap and mix by inverting several times. A precipitate will form. Allow the precipitate to settle below the shoulder of the tube before proceeding.
- **6.** Add 8 drops of *Sulfuric Acid, 1:1 (6141WT). Cap and gently mix until the reagent and the precipitate have dissolved. A clear-yellow to brown-orange color will develop, depending on the oxygen content of the sample.
 - ☑ NOTE: It is very important that all "brown flakes" are dissolved completely. If the water has a high DO level this could take several minutes. If flakes are not completely dissolved after 5 minutes, add 2 drops of *Sulfuric Acid 1:1 (6141WT) and continue mixing.
- ☑ NOTE: Following the completion of step 6, contact between the water sample and the atmosphere will not affect the test result. Once the sample has been "fixed" in this manner, it is not necessary to perform the actual test procedure immediately. Thus, several samples can be collected and "fixed" in the field, and then carried back to a testing station or laboratory where the test procedure is to be performed.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 39 DO) from TESTING MENU.
- 5. Scroll to and select 39 DO from menu.
- **6.** Rinse a clean tube (0290) with untreated sample water. Fill to the 10 mL line with sample. This tube is the BLANK.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8.** Fill a second tube (0290) to the 10 line with the treated "Fixed" sample. This tube is the SAMPLE.
- **9.** Remove BLANK from colorimeter, insert SAMPLE tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 10. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

FLUORIDE

SPADNS METHOD • CODE 3647-01-SC

QUANTITY	CONTENTS	CODE
4 x 30 mL	*Acid Zirconyl SPADNS Reagent	*3875-G
60 mL	*Sodium Solution	*4128-H
1	Pipet, 0.5 mL, plastic	0353
1	Pipet, 1.0 mL, plastic	0354

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Fluoride may occur naturally in some ground waters or it may be added to public drinking water supplies to maintain a 1.0 mg/L concentration to prevent dental cavities. At higher concentrations, fluoride may produce an objectionable discoloration of tooth enamel called fluorosis, though levels up to 8 mg/L have not been found to be physiologically harmful.

☑ NOTE: This procedure uses the EPA approved Reagent System for fluoride found in method 4500-F-D, 18th Edition of Standard Methods, pp. 1-27.

APPLICATION Drinking and surface waters; domestic and industrial waters.

RANGE: 0.00–2.00 Fluoride

METHOD: Colorimetric test based upon the reaction between fluoride

and zirconium dye lake. The fluoride reacts with the dye lake, dissociating a portion of it into a colorless complex ion and dye. As the fluoride concentration increases, the color

produced becomes progressively lighter.

SAMPLE Samples may be stored and refrigerated in plastic containers.

HANDLING & PRESERVATION:

INTERFERENCES: The following substances produce a positive interference at

the concentration given:

Chloride (Cl-) 7000 mg/L Phosphate (PO₄ -3) 16 mg/L (NaPO₃)₆ 1 mg/L The following substances produce a negative interference at the concentration given:

Alkalinity (CaCO ₃)	5000 mg/L
Aluminum (Al ³⁺)	0.1 mg/L
Iron (Fe ³⁺)	10 mg/L
Sulfate (SO ₄ -2)	200 mg/L

Color and turbidity must be removed or compensated for in the procedure. Temperature should be maintained within 5°C of room temperature.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 41 Fluoride) from TESTING MENU.
- 5. Scroll to and select 41 Fluoride from menu.
- **6.** This test requires a reagent blank. Rinse a clean tube (0290) with clear, colorless, fluoride free water. Fill to the 10 mL line with clear, colorless, fluoride free water.
- 7. Use the 0.5 mL pipet (0353) to add 0.5 mL of *Sodium Arsenite Solution (4128). Cap and mix.
- 8. Use the 1.0 mL pipet (0354) to add 2 measures of *Acid-Zirconyl SPADNS Reagent (3875). Cap and mix thoroughly. (This is the reagent blank.)
- 9. Insert tube into chamber, close lid and select SCAN BLANK.
- **10**. Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample water. Repeat steps 7 and 8.
- 11. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **12**. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

HYDRAZINE

p-DIMETHYLAMINOBENZALDEHYDE METHOD CODE 3656-SC

QUANTITY	CONTENTS	CODE
2x60 mL	*Hydrazine Reagent A	*4841-H
10 g	*Hydrazina Reagent B Powder	*4842-D
1	Pipet, 1.0 mL, plastic	0354
1	Spoon, 0.15 g, plastic	0727

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Hydrazine, N_2H_4 , is added to the water in high pressure boilers to reduce corrosion by acting as an oxygen scavenger.

APPLICATION: Water and boiler water, industrial waste water.

RANGE: 0.00–1.00 Hydrazine

METHOD: p-Dimethylaminobenzaldehyde reacts with hydrazine under

acidic conditions to form a yellow color in proportion to the

amount of hydrazine present.

SAMPLE Samples should be analyzed as soon as possible after collection due to the ease with which hydrazine becomes oxidized. Acidification of the sample may increase the time

between collection and analysis.

INTERFERENCES: The substances normally present in water do not interfere

with the test, with the exception of strong oxidizing agents.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 45 Hydrazine) from TESTING MENU.
- 4. Scroll to and select 45 Hudrazine from menu.
- **5**. Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 6. Insert tube into chamber, close lid and select SCAN BLANK.
- 7. Remove tube from colorimeter. Use the 1 mL pipet (0354) to add 4 mL of *Hydrazine Reagent A (4841). Cap and mix.
- 8. Use the 0.15 g spoon (0727) to add one measure of *Hydrazine Reagent B Powder (4842). Cap and shake vigorously for 10 seconds. Wait 2 minutes for maximum color development. An undissolved portion of Hydrazine Reagent B may remain in bottom of tube without adversely affecting results.
- 9. At the end of the 2 minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 10. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

HYDROGEN PEROXIDE-LOW RANGE

DPD METHOD • CODE 3662-SC

QUANTITY	CONTENTS	CODE
30 mL	*Hydrogen Peroxide Reagent #1	*6452-G
100	*Hydrogen Peroxide LR Tablets	*6454-J
1	Tablet Crusher	0175

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Hydrogen peroxide, H_2O_2 , is a colorless compound that is widely used as a bleaching or decolorizing agent in the manufacture of many commercial products. As an oxidizing compound it is also used in the treatment of sewage to reduce odors and corrosion due to hydrogen sulfide. It may also be used as a sanitizing agent for water treatment. Hydrogen peroxide is relatively unstable, and for this reason it dissipates quickly and leaves no residuals.

APPLICATION: Drinking and surface waters; domestic and industrial waste

water.

RANGE: 0.00–1.50 ppm Hydrogen Peroxide

METHOD: Hydrogen peroxide reacts with an excess of potassium iodide

through the action of a catalyst and buffer to release an equivalent amount of iodine. The iodine in turn reacts with diethyl-p-phenylenediamine (DPD) to produce a pink-red

color in proportion to the iodine released.

SAMPLE Hydrogen peroxide is not stable in aqueous solutions. Exposure to sunlight and agitation will accelerate the reduction of hydrogen peroxide in dilute solutions. For best

results start analysis immediately after sampling.

INTERFERENCES: The likelihood of other oxidizing compounds interfering

with this method is eliminated by the presence of hydrogen peroxide. Manganese may interfere and should be removed

before analysis

Use universal sample holder

- 1. Press and hold **ON** button until spectrophotometer turns on.
- 2. Scroll to and select PROGRAMMED TESTS.
- 3. Scroll to and select ALL TESTS (or another sequence containing 46 H Peroxide-LR) from TESTING MENU.
- 4. Scroll to and select 46 H Peroxide-LR from menu.
- **5**. Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- **6.** Insert tube into chamber, close lid and select SCAN BLANK. (See Note)
- 7. Remove tube from Spectro and add 4 drops of *Hydrogen Peroxide Reagent #1 (6452). Cap and mix.
- **8**. Add one *Hydrogen Peroxide LR Tablet (6454). Crush tablet with tablet crusher (0175). Cap and mix for 30 seconds. Solution will turn pink if hydrogen peroxide is present Wait 5 minutes for full color development.
- 9. At end of 5 minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 10. Press **OFF** button to turn spectrophotometer off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

For the most accurate results, the sample and reagents should be at 25 ± 4 °C.

HYDROGEN PEROXIDE-HIGH RANGE

DPD Method • CODE 4045

QUANTITY	CONTENTS	CODE
30 mL	*Hydrogen Peroxide Reagent #1	*6452-G
100	*Hydrogen Peroxide LR Tablets	*6454-J
1	Tablet Crusher	0175
1	Pipet, glass	0342

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Large quantities of hydrogen peroxide are added to a swimming pool to "shock" it. Shocking breaks down waste products and re-establishes a positive level of sanitizer. While many types of shock can be used with chlorine or bromine pools, only hydrogen peroxide can be used to shock biguanide pools.

Hydrogen peroxide, H_2O_2 , is a colorless compound that is widely used as a bleaching or decolorizing agent in the manufacture of many commercial products. As an oxidizing compound it is also used in the treatment of sewage to reduce odors and corrosion due to hydrogen sulfide. It may also be used as a sanitizing agent for water treatment. Hydrogen peroxide is relatively unstable, and for this reason it dissipates quickly and leaves no residuals.

APPLICATION: Drinking, industrial, domestic and swimming pool waters

RANGE: 0–60 ppm Hydrogen Peroxide

METHOD: Hydrogen peroxide reacts with an excess of potassium iodide

through the action of a catalyst and buffer to release an equivalent amount of iodine. The iodine in turn reacts with diethyl-p-phenylenediamine (DPD) to produce a pink-red

color in proportion to the iodine released.

SAMPLE Hydrogen peroxide is not stable in aqueous solutions. Exposure to sunlight and agitation will accelerate the reduction of hydrogen peroxide in dilute solutions. For best

results start analysis immediately after sampling.

INTERFERENCES: The likelihood of other oxidizing compounds interfering

with this method is eliminated by the presence of hydrogen peroxide. Manganese may interfere and should be removed

before analysis

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select Testing Menu.
- Select ALL TESTS (or another sequence containing 47 H Per-HR) from TESTING MENU.
- 5. Scroll to and select 47 H Per-HR from menu.
- **6**. Use the pipet (0342) to add 5 drops of the sample water to a tube (0290).
- 7. Dilute to the 10 mL line with distilled or hydrogen peroxide-free water.
- 8. Insert the tube into chamber, close lid and select SCAN BLANK.
- 9. Remove the tube from colorimeter and add 4 drops of *Hydrogen Peroxide Reagent #1 (6452). Cap and mix.
- 10. Add one *Hydrogen Peroxide LR Tablet (6454). Crush tablet with Tablet Crusher (0175). Cap and mix for 30 seconds. Solution will turn pink if hydrogen peroxide is present. Wait 5 minutes for full color development.
- 11. At the end of 5 minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **12**. Press **OFF** button to turn the meter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTES: For best possible results, a blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

For the most accurate results, the sample and reagents should be at 25 ± 4 °C.

HYDROGEN PEROXIDE-SHOCK

DPD Method • CODE 4045

QUANTITY	CONTENTS	CODE
30 mL	*Hydrogen Peroxide Reagent #1	*6452-G
100	*Hydrogen Peroxide LR Tablets	*6454-J
1	Tablet Crusher	0175
1	Pipet, glass	0342

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Large quantities of hydrogen peroxide shock are added to a swimming pool to "shock" it. Shocking breaks down waste products and re-establishes a positive level of sanitizer. While many types of shock can be used with chlorine or bromine pools, only hydrogen peroxide shock can be used to shock biguanide pools.

APPLICATION: Swimming pools

RANGE: 0–225 ppm Hydrogen Peroxide Shock

METHOD: Hydrogen peroxide reacts with an excess of potassium iodide

through the action of a catalyst and buffer to release an equivalent amount of iodine. The iodine in turn reacts with diethyl-p-phenylenediamine (DPD) to produce a pink-red

color in proportion to the iodine released.

SAMPLE Hydrogen peroxide is not stable in aqueous solutions. Exposure to sunlight and agitation will accelerate the

PRESERVATION: reduction of hydrogen peroxide in dilute solutions. For best

results start analysis immediately after sampling.

INTERFERENCES: The likelihood of other oxidizing compounds interfering

with this method is eliminated by the presence of hydrogen peroxide. Manganese may interfere and should be removed

before analysis

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press ENTER to select Testing Menu.
- 4. Select ALL TESTS (or another sequence containing 48 H Per Shock) from TESTING MENU.
- 5. Scroll to and select 48 H Per Shock from menu.
- **6**. Use the pipet (0342) to add 5 drops of the sample water to a tube (0290).
- 7. Dilute to the 10 mL line with distilled or hydrogen peroxide-free water.
- 8. Insert the tube into chamber, close lid and select SCAN BLANK.
- 9. Remove the tube from colorimeter and add 4 drops of *Hydrogen Peroxide Reagent #1 (6452). Cap and mix.
- 10. Add one *Hydrogen Peroxide LR Tablet (6454). Crush tablet with Tablet Crusher (0175). Cap and mix for 30 seconds. Solution will turn pink if hydrogen peroxide is present. Wait 5 minutes for full color development.
- 11. At the end of 5 minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **12.** Press **OFF** button to turn the meter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTES: For best possible results, a blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

For the most accurate results, the sample and reagents should be at 25 + ♣°C.

I.IO-PHENANTHROLINE METHOD • CODE 3668-SC

QUANTITY	CONTENTS	CODE
15 mL	*Acid Phenanthroline Indicator	*2776-E
5 g	*Iron Reducing Reagent	*2777-C
1	Spoon, 0.1 g, plastic	0699

***WARNING:** Reagents marked with a * are considered to be potential health hazards. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or www.lamotte.com. To obtain a printed copy, contact LaMotte by email, phone or fax.

Most natural waters contain some iron. Its presence may vary from small traces to very large amounts in water which is contaminated by acid mine wastes. For domestic use, the concentration should not exceed 0.2 ppm and for some industrial applications not even a trace of iron can be tolerated. There are many means available for removing or reducing the iron content. Water softening resins are effective for removing small amounts of iron and special ion exchange materials are selective for iron removal. High concentrations of iron can be removed by such chemical processes as oxidation and lime or lime-soda softening. Because of the many means of removing or reducing the amount of iron in water, the particular method employed will depend largely on the form of iron which is present and the end use of the treated water.

APPLICATION: Drinking, surface and saline waters; domestic and industrial

0.00-5.00 Iron RANGE:

Ferric iron is reduced to ferrous iron and subsequently forms METHOD:

a colored complex with phenanthroline for a quantitative

measure of total iron.

SAMPLE HANDLING & PRESERVATION The sample container should be cleaned with acid and rinsed with deionized water. Addition of acid to adjust the sample to pH 2-3 will prevent deposition of iron on the container walls. Samples should be analyzed as soon as possible after collection since ferrous iron undergoes

oxidation to ferric iron.

INTERFERENCES: Strong oxidizing agents, cyanide, nitrite, and phosphates,

chromium, zinc in concentrations exceeding 10 times that of iron; cobalt and copper in excess of 5 mg/L, and nickel in excess of 2 mg/L. Bismuth, cadmium, mercury, , and silver

precipitate phenanthroline.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 53 Iron Phen) from TESTING MENU.
- 5. Scroll to and select 53 Iron Phen from menu.
- **6.** Rinse a clean tube (0290)with sample water. Fill to the 10 mL mark with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove the tube from colorimeter. Remove the cap and add 6 drops of *Acid Phenanthroline Indicator (2776). Cap and invert the tube 4 times to mix reagents. Wait five minutes for maximum color development.
- **9.** After five minutes, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result as ppm Ferrous Iron.
- 10. Remove the tube from colorimeter. Use the 0.1g spoon (0699) to add one measure of *Iron Reducing Reagent (2777). Cap and invert 15-20 times times to mix. Wait 5 minutes for maximum color delelopment.
- 11. After 5 minutes, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result as ppm Total Iron.
- 12. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- 13. Total Iron (ppm) Ferrous Iron (ppm) = Ferric Iron (ppm)
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

BIPYRIDYL METHOD • CODE 3648-SC

QUANTITY	CONTENTS	CODE
30 mL	*Iron Reagent #1	*4450-G
5 g	*Iron Reagent #2 Powder	*V-4451-C
1	Pipet, 0.5 mL, plastic	0353
1	Spoon, 0.1 g, plastic	0699

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Most natural waters contain some iron. Its presence may vary from small traces to very large amounts in water which is contaminated by acid mine wastes. For domestic use, the concentration should not exceed 0.2 ppm and for some industrial applications not even a trace of iron can be tolerated. There are many means available for removing or reducing the iron content. Water softening resins are effective for removing small amounts of iron and special ion exchange materials are selective for iron removal. High concentrations of iron can be removed by such chemical processes as oxidation and lime or lime-soda softening. Because of the many means of removing or reducing the amount of iron in water, the particular method employed will depend largely on the form of iron which is present and the end use of the treated water.

APPLICATION: Drinking, surface and saline waters; domestic and industrial

wastes.

RANGE: 0.00–6.00 Iron

METHOD: Ferric iron is reduced to ferrous iron and subsequently forms

a colored complex with bipyridyl for a quantitative measure

of total iron.

SAMPLE The sample container should be cleaned with acid and rinsed with deionized water. Addition of acid to adjust the sample to pH 2–3 will prevent deposition of iron on the

container walls. Samples should be analyzed as soon as

possible.

INTERFERENCES: Strong oxidizing agents interfere, as well as copper and

cobalt in excess of 5.0 mg/L.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 51 Iron Bipyr) from TESTING MENU.
- 5. Scroll to and select 51 Iron Bipyr from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove tube from colorimeter. Use the 0.5 mL pipet (0353) to add one measure of *Iron Reagent #1 (V-4450). Cap and mix.
- 9. Use the 0.1 g spoon (0699) to add 0.1 g of *Iron Reagent #2 Powder (V-4451). Cap and shake vigorously for 30 seconds. Wait three minutes for maximum color development.
- 10. At the end of 3 minute waiting period, do not mix. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 11. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

IRON-UDV

BIPYRIDYL METHOD-UNIT DOSE VIALS • CODE 4315-H

QUANTITY	CONTENTS	CODE
1	*Iron Unit Dose Vials, 10 pouches	*4315-H

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Equipment needed but not supplied:

STANDARD ACCESSORY PACKAGE • CODE 1961

1	Package of 3 Vials (empty)	0156
1	Syringe, 6 mL, plastic	1184
1	Foil Storage Bag	9467

Or:

ADVANCED ACCESSORY PACKAGE • CODE 1962

1	Pipettor	30528
1	Pipet Tip (0-5 mL)	30695
1	Cuvette Rack	31695
1	Package of 3 Vials (empty)	0156
1	Foil Storage Bag	9467

Most natural waters contain some iron. Its presence may vary from small traces to very large amounts in water which is contaminated by acid mine wastes. For domestic use, the concentration should not exceed 0.2 ppm and for some industrial applications not even a trace of iron can be tolerated. There are many means available for removing or reducing iron content. Water softening resins are effective for removing small amounts of iron and special ion exchange materials are selective for iron removal. High concentrations of iron can be removed by such chemical processes as oxidation and lime or lime-soda softening. Because of the many means of removing or reducing the amount of iron in water, the particular method employed will depend largely on the form of iron which is present and the end use of the treated water.

APPLICATION: Drinking, surface, and saline waters; domestic and industrial

wastes.

RANGE: 0.00–10.00 ppm

METHOD: Ferric iron is reduced to ferrous iron and subsequently forms

a colored complex with bipyridyl for a quantitative measure

of total iron.

SAMPLE HANDLING & PRESERVATION: The sample container should be cleaned with acid and rinsed with deionized water. Addition of acid to adjust the sample th pH 2-3 will prevent depositation of iron on the container walls. Samples should be analyzed as soon as

possible.

INTERFERENCES: Strong oxidizing agents interfere, as well as copper and

cobalt in excess of 5.0 ppm.

Use 10 mm square cell adapter.

- Press and hold ON button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 52 Iron-UDV) from TESTING MENU.
- 5. Scroll to and select 52 Iron-UDV from menu.
- **6.** Rinse a clean vial (0156) with sample water.
- 7. Use the syringe (1184) to add 3 mL of sample to the vial.
- 8. Insert the vial into the chamber, close the lid and select SCAN BLANK.
- **9**. Remove the vial from the colorimeter.
- 10. Use the syringe (1184) to add 3 mL of sample to an *Iron UDV vial (4315).
- 11. Wait 2 minutes.
- **12**. Invert vial 3 times to mix.
 - ☑ NOTE: If powder residue remains in the bottom of the vial after inverting, or air bubbles form, invert vial once more and tap bottom of vial sharply once or twice to dislodge powder or bubbles. Mix.
- Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **14.** Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

UDVs from opened pouches should be used promptly. Store unused vials from opened pouches in the Foil Storage Bag (9467) to extend the shelf life of the reagent. Generally, UDVs stored in the bag should be used within 10 days if the humidity is less than 50% and within 5 days if humidity is greater than 50%. The Foil Storage Bag contains a desiccant pack with indicator. When the indicator in the window turns from blue to pink, the bag should be replaced.

LEAD

PAR METHOD • CODE 4031

QUANTITY	CONTENTS	CODE
250 mL	Ammonium Chloride Buffer	4032-K
15 mL	*Sodium Cyanide, 10%	*6565-E
30 mL	PAR Indicator	4033-G
30 mL	Stabilizing Reagent	4022-G
15 mL	DDC Reagent	4034-E
1	Syringe, 5 mL, plastic	0807
2	Pipet, 0.5 mL, plastic	0353

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

The average concentration of lead is 0.003 ppm in streams and less than 0.1 ppm in groundwater. Lead in a water supply may come from mine and smelter discharges or from industrial waste. Lead is used in the production of batteries, solder, pigments, insecticides, ammunition and alloys. Tetraethyl Lead has been used for years as an anti-knock reagent in gasoline. Lead may also enter water supplies when corrosive water dissolves pipes, plumbing fixtures and materials containing lead. Lead accumulates in the body and is toxic by ingestion.

APPLICATION: Drinking and surface waters; domestic and industrial

wastewater.

RANGE: 0.00–5.00 Lead

METHOD: Lead and calcium ions form a red complex with PAR

(4- [2'-pyridylazo] resorcinol), at a pH of about 10. When sodium diethyldithiocarbamate is added, the lead/PAR complex is destroyed leaving the calcium/PAR complex. The difference between the two measurements is due to the lead

concentration.

SAMPLE HANDLING & PRESERVATION: Analyze sample as soon as possible. If sample must be stored,

acidify with nitric acid to a pH of below 2.

INTERFERENCES: Calcium greater than 100 ppm (250 ppm CaCO₃) will

interfere. Low concentrations of cerium, iron, manganese,

magnesium, sulfur, tin, and EDTA will also interfere.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 54 Lead) from TESTING MENU.
- 5. Scroll to and select 54 Lead from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove the tube from colorimeter. Use the Syringe (0807) to remove 5mL of sample from tube. Discard remaining sample.
- 9. Add the 5 mL of sample in the syringe to the tube. Add 5 mL Ammonium Chloride Buffer (4032) to fill the tube to the 10 mL line. Swirl to mix.
- 10. Add 3 drops *Sodium Cyanide, 10% (6565). Swirl to mix.
- 11. Use the 0.5 mL pipet (0353) to add 0.5 mL PAR Indicator (4033). Swirl to mix.
- 12. Use the 0.5 mL pipet (0353) to add 0.5 mL Stabilizing Reagent (4022). Cap and mix.
- **13**. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result in ppm as Reading A.
- 14. Remove tube from colorimeter. Add 3 drops DDC Reagent (4034). Cap and mix.
- **15.** Insert tube into chamber, close lid and select SCAN SAMPLE. Record result in ppm as Reading B.
- 16. Calculate result:

Lead (ppm) = Reading A - Reading B

- 17. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ✓ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

MANGANESE-LOW RANGE

PAN METHOD • CODE 3658-01-SC

QUANTITY	CONTENTS	CODE
4x30 mL	*Hardness Buffer Reagent	*4255-G
30 mL	*Manganese Indicator Reagent	*3956-G
15 mL	*Sodium Cyanide, 10%	*6565-E
1	Pipet, 0.5 mL, plastic	0369
1	Pipet, 1.0 mL, plastic	0354

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Manganese is present in ground water in the divalent state due to the lack of oxygen. In surface waters manganese may be in various oxidation states as soluble complexes or as suspended compounds. Manganese is rarely present in excess of 1 mg/L. It may cause an objectionable taste or cause staining problems in laundry, but manganese levels normally encountered in water seldom produce any health hazard.

Manganese is removed from water by various means including chemical precipitation, pH adjustment, aeration, superchlorination and the use of ion exchange resins.

APPLICATION: Drinking and surface waters; domestic and industrial

wastewaters.

RANGE: 0.00–0.70 ppm Manganese

METHOD: PAN (1-[2-Pyridylazo]-2-Naphthol) forms a red complex

with Manganese (Mn^{2+}) at a pH of 10 to 11.

SAMPLE Manganese may oxidize readily in neutral water and

HANDLING & precipitate from solution. It may adhere to or be absorbed by container walls, especially glass. Acidified samples can be

stored in plastic.

INTERFERENCES: None. Test is quite specific.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 55 Manganese L) from TESTING MENU.
- 5. Scroll to and select 55 Manganese L from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove tube from colorimeter. Use the 1.0 mL pipet (0354) to add 2.0 mL (two measures) of *Hardness Buffer Reagent (4255). Swirl to mix.
- 9. Add 2 drops of *Sodium Cyanide, 10% (6565). Cap and mix.
- 10. Use the 0.5 mL pipet (0369) to add 0.5 mL of *Manganese Indicator Reagent (3956). Cap and mix.
- 11. Immediately insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **12**. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

MANGANESE-HIGH RANGE

PERIODATE METHOD • CODE 3669-SC

QUANTITY	CONTENTS	CODE
10 g	Manganese Buffer Reagent	6310-D
15 g	*Manganese Reagent	*6311-E
1	Spoon, 0.1 g, plastic	0699
1	Spoon, 0.15 g, plastic	0727

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Manganese is present in ground water in the divalent state due to the lack of oxygen. In surface waters, manganese may be in various oxidation states as soluble complexes or as suspended compounds. Manganese is rarely present in excess of 1 mg/L. It may impart an objectionable taste or cause staining problems in laundry, but manganese levels normally encountered in water seldom produce any health hazards. Manganese is removed from water by various means, including chemical precipitation, pH adjustment, aeration, superchlorination and the use of ion exchange resins.

APPLICATION: Drinking and surface waters, domestic and industrial

was tewaters.

RANGE: 0.0–15.0 Manganese

METHOD: Periodate oxidizes soluble manganous compounds into

permanganate.

SAMPLE Manganese may oxidize readily in a neutral water and precipitate from solution. It may adhere to or be absorbed by container walls, especially glass. Acidified samples can be

stored in plastic.

INTERFERENCES: Reducing substances capable of reacting with periodate or

permanganate must be removed or destroyed before the

periodate oxidation is attempted.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- **4.** Select ALL TESTS (or another sequence containing 56 Manganese H) from TESTING MENU.
- 5. Scroll to and select 56 Manganese H from menu.
- **6.** Rinse a tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove tube from colorimeter. Use the 0.1 g spoon (0699) to add two measures of Manganese Buffer Reagent (6310). Cap and mix until powder dissolves.
- 9. Use the 0.15 g spoon (0727) to add one measure of *Manganese Periodate Reagent (6311). Cap and shake for one minute. An undissolved portion of the reagent may remain in the bottom of the tube without adversely affecting the test results. Wait two minutes for maximum color development. Solution will turn pink if manganese is present.
- **10.** At the end of the two minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 11. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

MERCURY

TMK METHOD • CODE 4861

QUANTITY	CONTENTS	CODE
50	*TMK Tablets	*4862-H
2 x 250 mL	*Propyl Alcohol	*4863-K
250 mL	*Acetate Buffer	*4864-K
1	Tablet Crusher	0175
1	Test Tube, 10, glass, w/cap	0778
1	Pipet, 1.0 mL, plastic	0354
1	0.5 mL, plastic	0353

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Mercury occurs in small amounts in soil, streams and groundwater. It is used in the production of amalgams, mirror coatings and measuring devices such as thermometers, barometers and manometers. Pharmaceuticals and paints contain mercury. It is also used in fungicides and pesticides and as a mold retardant on paper. Some forms of mercury are very toxic and can accumulate in the aquatic food chain.

APPLICATION: Drinking and surface waters; domestic and industrial

wastewater.

RANGE: 0.00–1.50 Mercury

METHOD: Mercuric ions (Hg^{+2}) form a colored complex with 4, 4'-bis

(dimethylamino) thiobenzophenone (Thio-Michler's

ketone, TMK) at pH 3.

SAMPLE HANDLING & PRESERVATION: Analyze sample as soon as possible. If sample must be stored, treat with HNO₃ to reduce th pH to less than 2 and store in

a glass container.

INTERFERENCES: Palladium and other noble metals (gold, platinum, rhodium,

iridium, ruthenium), iodide and reducing agents such as hydroxylamine hydrochloride, ascorbic acid, sulfite and thiosulfate. Interference due to silver is eliminated if

chloride is present.

PREPARATION OF *TMK INDICATOR

- ☑ NOTE: Prepare *TMK Indicator daily. Keep out of direct sunlight.
- 1. Fill test tube (0778) to the 10 mL line with *Propyl Alcohol (4863).
- 2. Add one *TMK Tablet (4862).
- **3**. Use tablet crusher (0175) to completely crush tablet.
- **4.** Cap and mix. Shake vigorously for 30 seconds.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- **3**. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 57 Mercury) from TESTING MENU.
- 5. Scroll to and select 57 Mercury from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove the tube from colorimeter.
- 9. Use the 1.0 mL pipet (0354) to add 3 mL of *Acetate Buffer (4864). Cap and mix.
- 10. Use the 0.5 mL pipet (0353) to add 0.5 mL of prepared *TMK Indicator. Cap and mix.
- 11. Wait one minute.
- **12**. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result as ppm Mercury.
- **13**. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure using distilled or deionized water. This test result is the reagent blank. Subtract the reagent blank results from all subsequent test results of unknown samples. It is recommended that a reagent blank be determined each time *TMK Indicator is prepared.

THIOGLYCOLATE METHOD • CODE 3699-02-SC

QUANTITY	CONTENTS	CODE
2 x 30 mL	*Mo Buffer	*3997-G
2 x 30 mL	*Molybdenum Oxidizing Reagent	*6485-G
2.5g	*Molybdenum Indicator Powder	*6486-S
1	Spoon, 0.05g, plastic	0696
2	Pipets, 1.0 mL, plastic w/cap	0372

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Molybdenum occurs naturally in the earth's crust as molybdenite and wolfenite, and is an important element in many biochemical reactions, including nitrogen fixation. In industrial processes, such as the operation of boilers and cooling towers, molybdenum, in the form of sodium molybdate, is used as a corrosion inhibitor.

APPLICATIONS: Boiler and cooling water. RANGE: 0.0–50.0 ppm Molybdenum

METHOD: Calcium thioglycolate reacts with molybdenum to give a

vellow color with an intensity proportional to the amount of

molybdenum present.

SAMPLE HANDLING & PRESERVATION: Molybdenum samples may be stored in either plastic or glass

containers.

INTERFERENCES: Nickel levels less than 50 ppm do not interfere; aluminum levels less than 10 ppm do not interfere; chromate at higher concentrations interferes due to the intense yellow color. Ferrous iron levels below 50 ppm do not interfere, but low levels of ferric iron will cause a large blank. Highly buffered samples may exceed the capacity of the system possibly producing inaccurate results. Samples with high levels of nitrite will eventually develop a pale orange color. Scan the sample immediately to avoid this inteference.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 61 Moly-HR) from TESTING MENU.
- 5. Scroll to and select 61 Moly-HR from menu.
- **6**. Fill clean tube (0290) to 10 mL line with sample water.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove tube from colorimeter. Use a 1.0 mL pipet (0372) to add 1.0 mL of *Mo Buffer (3997). Cap and mix.
- 9. Use a second 1.0 mL pipet (0372) to add 1.0 mL of *Molybdenum Oxidizing Reagent (6485). Cap and mix.
- 10. Use 0.05 g spoon (0696) to add one measure of Molybdenum Indicator Powder (6486). Cap and mix until powder dissolves. Solution will turn yellow if molybdenum is present.
- 11. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 12. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

NICKEL

DIMETHYLGLYOXIME METHOD • CODE 3663-SC

QUANTITY	CONTENTS	CODE
60 mL	*Hydrochloric Acid, 2.5N	*6251PS-H
30 g	*Ammonium Persulfate Reagent	*6566-G
30 mL	*Silver Nitrate Solution, 0.0141N	*6346WT-G
250 mL	Sodium Citrate, 10%	6253-K
60 mL	*Dimethylglyoxime, 1%	*6254-H
60 mL	*Ammonium Hydroxide, Conc.	*6537-H
3	Pipets, 1.0 mL, plastic	0354
1	Spoon, 0.1 g, plastic	0699
1	Test tube, 5-10-12.9-15-20-25, glass, w/cap	0608
1	Graduated Cylinder, 10 mL, glass	0416

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Nickel is not usually found in natural waters except as a result of contamination from industrial wastewaters as a corrosion product of stainless steel and nickel alloys. Nickel may also enter surface waters from plating bath process water.

APPLICATION: Drinking and surface waters; domestic and industrial

wastewater.

RANGE: 0.00–8.00 ppm Nickel

METHOD: Nickel under basic conditions forms a colored complex with

dimethylglyoxime in proportion to the concentration of

nickel.

SAMPLE Samples may be collected in either plastic or glass containers and preserved by adding 5 mL of concentrated nitric acid per

PRESERVATION: liter.

INTERFERENCES: Organic matter interferes. Cobalt, iron, copper, manganese

and chromium do not interfere if each of the concentrations

is below 15 ppm.

- 1. Use the 10 mL graduated cylinder (0416) to measure 10 mL of sample water. Pour into glass test tube (0608).
- 2. Use the 1 mL pipet (0354) to add 1 mL of *Hydrochloric Acid, 2.5N (6251).
- 3. Use the 0.1 g spoon (0699) to add 2 measures of *Ammonium Persulfate Reagent (6566). Add two drops of *Silver Nitrate Solution, 0.0141N (6346WT). Mix until the powder has dissolved. The solution will be slightly cloudy at this point.
- 4. Use 10 mL graduated cylinder (0416) to add 5 mL of Sodium Citrate, 10% (6253).
- 5. Use a second 1 mL pipet (0354) to add 1 mL of *Ammonium Hydroxide, Conc. (6537). Mix, then dilute to 25 mL with deionized water.
- **6.** Use a third 1 mL pipet (0354) to add 1 mL of *Dimethylglyoxime, 1% (6254). Mix. Wait 20 minutes for color development.
- 7. At end of 20 minute waiting period fill a clean tube (0290) to the 10 mL line with the developed test sample.
- **8.** Fill a second clean tube (0290) to 10 mL line with deionized water or untreated sample water. This is the blank.
- 9. Press and hold **ON** button until colorimeter turns on.
- 10. Press **ENTER** to start.
- 11. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 63 Nickel) from TESTING MENU.
- 13. Scroll to and select 63 Nickel from menu.
- 14. Insert the blank into chamber, close lid and select SCAN BLANK.
- Insert test sample into chamber, close lid and select SCAN SAMPLE. Record result.
- **16.** Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

NITRATE

ZINC REDUCTION • CODE 3689-SC

QUANTITY	CONTENTS	CODE	
50	*Nitrate Spectrophotometric Grade Tablets	*3881A-H	
1	Tablet Crusher	0175	

*WARNING: Reagents marked with a * are considered to be potential health hazards. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or www.lamotte.com. To obtain a printed copy, contact LaMotte by email, phone or fax.

Nitrogen is essential for plant growth, but excessive amounts in water supplies can result in nutrient pollution. Nitrates, in conjunction with phosphate, stimulate the growth of algae creating water quality problems. Nitrogen compounds may enter water as nitrates or be converted to nitrates from agricultural fertilizers, sewage, industrial and packing house wastes, drainage from livestock feeding areas and manure. Nitrates in large amounts in drinking water can cause "blue baby syndrome" (methemoglobenemia) in infants in less than 6 months of age and other health problems. US Public Health Service Drinking Water Standards state that 44 ppm nitrate should not be exceeded. To the sanitary and industrial engineer, concentrations of less than 4 ppm are acceptable.

APPLICATION: Drinking, surface, and saline waters; domestic and industrial

waters.

RANGE: 0.0–60.0 ppm Nitrate

METHOD: Zinc is used to reduce nitrate to nitrite. The nitrite that was

originally present, plus the reduced nitrate, reacts with chromotropic acid to form a red color in proportion to the

amount of nitrite in the sample.

SAMPLE HANDLING & PRESERVATION: Analysis should be made as soon as possible. If analysis cannot be made within 24 hours, the sample should be refrigerated at 4°C. When samples must be stored for more

than 24 hours, add 2 mL of concentrated sulfuric acid per liter of sample. For best results, the analysis for nitrate should be determined at temperatures between 20°C and 25°C.

INTERFERENCES: Nitrite interferes at all concentrations. Strong oxidizing and

reducing substances interfere. Low results might be obtained for samples that contain high concentrations of copper and

iron.

- Press and hold **ON** button until colorimeter turns on. 1.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 66 Ni trate-TT) 4 from TESTING MENÙ.
- Scroll to and select 66 Nitrate-TT from menu. 5.
- Rinse a tube (0290) with sample water. Fill to 10 mL line with sample. 6.
- Insert the tube into chamber, close lid and select SCAN BLANK. 7.
- 8 Remove the tube from colorimeter.
- Add one *Nitrate Spectrophotometric Grade Tablet (3881A). 9.
- **10**. Use Tablet Crusher (0175) to crush tablet.
- 11. Cap tube.
- 12. Invert tube 60 times per minute for 2 minutes (one inversion equals 180°).
- 13. Wait 5 minutes. Do not mix.
- 14. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result in ppm nitrate.
- 15. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples.

To convert nitrate (NO₃) results to nitrate-nitrogen (NO₃-N), divide by 4.4.

NITRATE-NITROGEN-LOW RANGE

CADMIUM REDUCTION METHOD • CODE 3649-SC

QUANTITY	CONTENTS	CODE
2 x 60 mL	*Mixed Acid Reagent	*V-6278-H
5 g	*Nitrate Reducing Reagent	*V-6279-C
1	Spoon, 0.1 g, plastic	0699
1	Dispenser Cap	0692

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Nitrogen is essential for plant growth, but the presence of excessive amounts in water supplies presents a major pollution problem. Nitrogen compounds may enter water as nitrates or be converted to nitrates from agricultural fertilizers, sewage, industrial and packing house wastes, drainage from livestock feeding areas, farm manures and legumes. Nitrates in large amounts can cause "blue babies" (methemoglobinemia) in infants less than six months of age. Nitrate concentration is an important factor to be considered in livestock products, where, in addition to causing methemoglobinemia, it is responsible for many other problems. Nitrates in conjunction with phosphate stimulate the growth of algae with all of the related difficulties associated with excessive algae growth.

U.S. Public Health Service Drinking Water Standards state that 10 ppm nitrate nitrogen should not be exceeded. To the sanitary and industrial engineer, concentrations of less than 1 ppm are acceptable.

APPLICATION: This method determines nitrate levels in drinking, surface,

saline waters, domestic and industrial waters.

RANGE: 0.00–3.00 ppm Nitrate Nitrogen

METHOD: Powdered cadmium is used to reduce nitrate to nitrite. The

nitrite that is originally present plus reduced nitrate is determined by diazotization of sulfanilamide and nitrite followed by coupling with N-(1 naphthyl)-ethylenediamine dihydrochloride to form a highly colored azo dye which is

measured colorimetrically.

SAMPLE HANDLING & PRESERVATION: Analysis should be made as soon as possible. If analysis cannot be made within 24 hours, the sample should be preserved by refrigeration at 4°C. When samples must be

stored for more than 24 hours, they can be preserved by adding 2 mL of concentrated sulfuric acid per liter of sample. For best results, the analysis for nitrate should be determined

at temperatures between 20°C and 25°C.

INTERFERENCES: Nitrite interferes at all levels. Strong oxidizing and reducing substances interfere. Low results might be obtained for samples that contain high concentrations of iron and copper.

- ☑ NOTE: Place Dispenser Cap (0692) on *Mixed Acid Reagent (V-6278). Save this cap for refill reagents.
- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 64 Ni trate-N LR) from TESTING MENU.
- 5. Scroll to and select 64 Nitrate-N LR from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove tube from colorimeter and pour off 5 mL into graduated cylinder or similar. Discard the remaining sample.
- 9. Pour the 5mL sample from a graduated cylinder or similar into the tube. Use the graduated cylinder or similar to measure 5 mL of *Mixed Acid Reagent (V-6278) and add to tube. Cap and mix. Wait 2 minutes before proceeding to Step 10.
- **10**. Use the 0.1 g spoon (0699) to add two measures of *Nitrate Reducing Reagent (V-6279). Cap.
- 11. Hold tube by index finger and thumb and mix by inverting approximately 50-60 times a minute for four minutes. Wait 10 minutes for maximum color development.
 - NOTE: At end of waiting period an undissolved portion of Nitrate Reducing Reagent may remain in bottom of the tube without affecting results.
- **12**. At the end of the 10 minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **13**. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ✓ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

To convert Nitrate Nitrogen (NO₃–N) results to ppm Nitrate (NO₃), multiply by 4.4.

NITRITE

DIAZOTIZATION • CODE 3694-SC

QUANTITY	CONTENTS	CODE	
50	*Nitrite Spectrophotometric Grade Tablets	*3886А-Н	
1	Tablet Crusher	0175	

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Nitrite represents an intermediate stage of the nitrogen cycle, usually resulting from the bacterial decomposition of compounds containing organic nitrogen. Under aerobic conditions bacteria oxidize ammonia to nitrites; and under anaerobic conditions, bacteria reduce nitrates to nitrites. Nitrites are often used as food preservatives. The nitrite concentration of drinking water rarely exceeds 0.1 ppm.

APPLICATION: Drinking, surface, and saline waters; domestic and industrial

waters.

RANGE: 0.00–1.25 ppm Nitrite

METHOD: The compound formed by diazotization of sulfanilamide and

nitrite is coupled with N-(1-naphthyl)-ethylenediamine to produce a reddish purple color in proportion to the nitrite

concentration.

SAMPLE Samples should be analyzed as soon as possible. They may be stored for 24 to 48 hours at 4°C.

PRESERVATION: stored for 24 to 48 hours at 4°C.

INTERFERENCES: There are few known interfering substances at

concentrations at less than 1000 times the nitrite-nitrogen concentration; however, the presence of strong oxidizing

agents or reductants may readily affect nitrite

concentrations.

- 1. Press and hold ON button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 69 Nitrite-TT) from TESTING MENU.
- 5. Scroll to and select 69 Mitrite-TT from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL line with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove the tube from colorimeter.
- 9. Add one *Nitrite Spectrophotometric Grade Tablet (3886).
- 10. Use Tablet Crusher (0175) to crush tablet.
- 11. Cap tube.
- **12**. Shake vigorously for 20 seconds.
- 13. Wait 2 minutes.
- **14.** Immediately, insert tube into chamber, close lid and select SCAN SAMPLE. Record result in ppm nitrite.
- 15. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. To convert nitrite (NO_2) results to nitrite-nitrogen (NO_2 –N), divide results by 3.3.

NITRITE-NITROGEN-LOW RANGE

DIAZOTIZATION METHOD • CODE 3650-SC

QUANTITY	CONTENTS	CODE
2 x 60 mL	*Mixed Acid Reagent	*V-6278-H
5 g	*Color Developing Reagent	*V-6281-C
1	Spoon, 0.1 g, plastic	0699
1	Dispenser Cap	0692

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Nitrite represents an intermediate state in the nitrogen cycle, usually resulting from the bacterial decomposition of compounds containing organic nitrogen. Under aerobic conditions bacteria oxidize ammonia to nitrites; and under anaerobic conditions, bacteria reduce nitrates to nitrites. Nitrites are often used as preservatives when added to certain foods.

The nitrite concentration of drinking water rarely exceeds 0.1 ppm (mg/L).

APPLICATION: This method is applicable for the determination of nitrite in

drinking, surface and saline waters; domestic and industrial

wastes.

RANGE: 0.00–0.80 ppm Nitrite-Nitrogen

METHOD: The compound formed by diazotization of sulfanilamide and

nitrite is coupled with N-(1-naphthyl)-ethylenediamine to

produce a reddish-purple color, which is read

colorimetrically.

SAMPLE HANDLING & PRESERVATION: Samples should be analyzed as soon as possible. They may be

stored for 24 to 48 hours at 4°C.

INTERFERENCES: There are few known interfering substances at concentration

less than 1000 times the nitrite-nitrogen concentration; however, the presence of strong oxidants or reductants may readily affect nitrite concentrations. High alkalinity (above

600 mg/L) will give low results due to a shift in pH.

- ☑ NOTE: Place Dispenser Cap (0692) on *Mixed Acid Reagent (V-6278). Save this cap for refill reagents.
- 1. Press and hold **ON** button until colorimeter turns on.
- **2**. Press **ENTER** to start.
- Press ENTER to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 67 Nitrite-N LR) from TESTING MENU.
- 5. Scroll to and select 67 Nitrite-N LR from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove tube from colorimeter and pour off 5 mL into a graduated cylinder or similar. Discard the remaining sample.
- 9. Pour the 5 mL sample from the graduated cylinder into the colorimeter tube. Use graduated cylinder or similar to measure 5 mL of *Mixed Acid Reagent (V-6278) and add to tube. Cap and mix.
- 10. Use the 0.1 g spoon (0699) to add two measures of *Color Developing Reagent (V-6281). Cap and mix by gently inverting for 1 minute. Wait 5 minutes for maximum color development.
- 11. At the end of the 5 minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **12**. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- \square NOTE: To convert nitrite-nitrogen (NO₂–N) results to ppm nitrite (NO₂), multiply results by 3.3.

NITROGEN, TOTAL

CHROMOTROPIC ACID WITH PERSULFATE DIGESTION METHOD • CODE 4026

QUANTITY	CONTENTS	CODE
25	Nitrogen Hydroxide Reagent Tubes	4040-G
5 g	*Digestion Reagent Powder	4036-C
60 mL	Deionized Water	*5115PS-H
5 g	*Total Nitrogen Reagent A Powder	*4041-C
30	*Total Nitrogen Reagent B Tablets	*4042
25	*Total Nitrogen Acid Reagent Tubes	*4043-G
2	Spoon, 0.15 g, plastic	0727
4	Pipets, 1.0 mL, plastic	0354
2	Funnels, plastic	0459

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Note: for greater accuracy, use laboratory grade pipets.

Equipment needed but not supplied:

1	COD Adapter	5-0087
1	COD Reactor, 12 tubes, 110V	5-0102
or 1	COD Reactor, 12 tubes, 230V	5-0102-EX

Optional Equipment:

4	Pipet, Measuring, 1.0 mL	2-2110
1	Pipet Bulb	2-2164
1	Wipes	2-2069
1	Test Tube Rack	23371
1	Timer	9371-W13
1	Test Tube Holder	2-2190

Nitrogen is essential for plant growth, but the presence of excessive amounts in water supplies presents a major pollution problem. Nitrogen compounds may enter water as nitrates or be converted to nitrates from agricultural fertilizers, sewage, industrial and packing house wastes, drainage from livestock feeding areas, farm manures and legumes. Nitrates in large amounts can cause "blue babies" (methemoglobinemia) in infants less than six months of age. Nitrate concentration is an important factor to be considered in livestock products, where, in addition to causing methemoglobinemia, it is responsible for many other problems. Nitrates in conjunction with phosphate stimulate the growth of algae with all of the related difficulties associated with excessive algae growth.

U.S. Public Health Service Drinking Water Standards state that 10 ppm nitrate nitrogen should not be exceeded. To the sanitary and industrial engineer, concentrations of less than 1 ppm are acceptable.

APPLICATION: Drinking, surface, saline, domestic and industrial waters.

RANGE: 0–25 mg/L Total Nitrogen

METHOD: All forms of nitrogen are converted to nitrate by an alkaline

persulfate digestion. Interference from halogen oxides is eliminated by the addition of sodium metabisulfite. Nitrate reacts in acid with chromotropic acid to form a yellow color in proportion to the amount of nitrate in the treated sample.

SAMPLE HANDLING & PRESERVATION: If the sample can not be analyzed immediately, the sample should be preserved by adjusting the pH to 2 or less with concentrated sulfuric acid and refrigerated at 4°C. Warm the sample to room temperature and neutralize with 5.0 N

sodium hydroxide before analyzing.

INTERFERENCES: Bromide (>60 ppm) and chloride (>1000 ppm) will have a

positive interference.

Use COD adapter.

- 1. Preheat COD reactor to 100 ±2°C. Follow safety precautions.
- 2. Remove caps from two *Total Nitrogen Hydroxide Reagent Tubes (4040).
- 3. Use a 0.15 g spoon (0727) and a funnel (0459) to add one level measure of *Digestion Reagent Powder (4036) to each tube. Tap funnel to dispense powder completely.
- 4. Use a 1.0 mL pipet (0354) to add 2.0 mL of Deionized Water (5115PS), or organic-free water, to one tube. This is the blank.
- 5. Use another 1.0 mL pipet (0354) to add 2.0 mL of sample to the other tube. This is the sample.
- **6**. Cap both tubes and shake vigorously for 30 seconds.
- 7. Place the tubes in the COD reactor for 30 minutes.
- **8.** After exactly 30 minutes, turn the reactor off. Carefully remove the tubes from the reactor and allow them to cool to room temperature.
- 9. At the end of the cooling period, press and hold **ON** button until colorimeter turns on.
- 10. Press **ENTER** to start.
- 11. Press **ENTER** to select TESTING MENU.
- 12. Select ALL TESTS (or another sequence containing 62 Nitrogen T) from TESTING MENU.
- 13. Scroll to and select 62 Mitrogen T from the menu.
- **14.** Carefully remove caps from the digested tubes.
- 15. Use a 0.15 g spoon (0727) and a funnel (0459) to add one level measure of *Total Nitrogen Reagent A Powder (4041). Tap funnel to dispense powder completely. Cap the tubes and shake for 15 seconds.
- 16. Wait 3 minutes.
- 17. Remove the caps from the tubes. Add one *Total Nitrogen Reagent B Tablet (4042) to each tube. Cap the tubes and shake for 45 seconds or until the tablet disintegrates.
- 18. Wait 2 minutes.
- 19. Remove the caps from the reacted tubes. Carefully remove the caps from two *Total Nitrogen Acid Reagent Tubes (4043). CAUTION: Tubes contain a strong acid.
- **20**. Use another 1.0 mL pipet (0354) to add 2 mL of digested, treated blank to one Total Nitrogen Acid Reagent Tube. This is the blank.
- **21**. Use another 1.0 mL pipet (0354) to add 2 mL of digested, treated sample to the other Total Nitrogen Acid Reagent Tube. This is the sample.
- **22.** Cap the tubes and invert 10 times to mix. CAUTION: The tubes will be hot.

- ☑ Note: Invert slowly and completely for accurate results. Hold tubes with caps up. Invert the tube and wait for the air bubble to flow to the bottom of the tube. Turn the tube upright and wait for the air bubble to return to the top of the tube. This is one inversion.
- **23**. Wait 5 minutes.
- **24.** Wipe the tubes with a damp towel to remove fingerprints and smudges. Wipe with a dry towel.
- **25.** Insert the blank tube into the chamber. Select SCAN BLANK. Remove the blank tube from the colorimeter.
- **26**. Insert the sample tube into the chamber. Select SCAN SAMPLE. Record the result as Total Nitrogen in mg/L N.
- 27. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTES: For greater accuracy, use laboratory grade pipets. To order reagent refills, Order Code R-4026.

OXYGEN SCAVENGERS

DEHA (Diethylhydroxylamine), Carbohydrazide, Erythorbic Acid, Hydroquinone, Mehtylethylketoxime

IRON REDUCTION METHOD • CODE 4857

QUANTITY	CONTENTS	CODE
15 mL	*DEHA Reagent #1	*4791-E
15 mL	*DEHA Reagent #2	*4792-E
15 mL	*DEHA Reagent #3	*4793-E

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Oxygen can lead to corrosion in many parts of a boiler. Oxygen scavengers are added to the water to eliminate oxygen and thus decrease the chance of corrosion. Diethylhydroxylamine (DEHA) is a volatile oxygen scavenger used in boilers. It can also passivate steel and has a low toxicity.

APPLICATION: Boilers

RANGE: 0.000–0.700 ppm DEHA (Diethylhydroxylamine)

0.000–0.900 ppm Carbohydrazide 0.00–3.00 ppm Erythorbic Acid 0.00–2.00 ppm Hydroquinone

0.00-3.00 ppm Methylethylketoxime

METHOD: Ferric iron is reduced to ferrous iron by oxygen scavengers in

proportion to the concentration in the sample. The resulting ferrous iron reacts with an indicator to produce a purple

color.

SAMPLE Analyze samples immediately. Rinse sample containers and glassware with 1:1 hydrochloric acid to avoid iron

PRESERVATION: contamination.

INTERFERENCES: Other oxygen scavengers, such as DEHA, carbohydrazide,

erythorbic acid, hydroquinone and methylethylketoxime will interfere. Stray light and substances which complex iron

or reduce ferric iron will also interfere.

DEHA PROCEDURE

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 38 DEHA from TESTING MENU.
- 5. Scroll to and select 38 DEHA from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove the tube from colorimeter.
- 9. Add 3 drops of *DEHA Reagent #1 (4791). Swirl to mix.
- 10. Add 3 drops of *DEHA Reagent #2 (4792). Swirl to mix.
- 11. Add 3 drops of *DEHA Reagent #3 (4793). Invert 3 times to mix.
- 12. Insert the tube into chamber. Close lid.
- **13.** Wait 15 minutes. Do not open the lid during the waiting time. The reaction is photosensitive.
- 14. Remove tube from chamber. Invert 2 times to mix.
- 15. Immediately insert tube into chamber, close lid and select SCAN SAMPLE. Read within 30 seconds. Record result in ppm DEHA.
- **16**. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ✓ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents is obtained.

CARBOHYDRAZIDE PROCEDURE

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 14 c-hydrazide from TESTING MENU.
- 5. Scroll to and select 14 c-hydrazide from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove the tube from colorimeter.
- 9. Add 3 drops of *DEHA Reagent #1 (4791). Swirl to mix.
- 10. Add 3 drops of *DEHA Reagent #2 (4792). Swirl to mix.
- 11. Add 3 drops of *DEHA Reagent #3 (4793). Invert 3 times to mix.
- 12. Insert the tube into chamber. Close lid.
- **13**. Wait 15 minutes. Do not open the lid during the waiting time. The reaction is photosensitive.
- 14. Remove tube from chamber. Invert 2 times to mix.
- **15**. Immediately insert tube into chamber, close lid and select SCAN SAMPLE. Read within 30 seconds. Record result in ppm carbohydrazide.
- **16.** Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents is obtained.

ERYTHORBIC ACID PROCEDURE

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 40 E-thorbic A from TESTING MENU.
- 5. Scroll to and select 40 E-thorbic A from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove the tube from colorimeter.
- 9. Add 3 drops of *DEHA Reagent #1 (4791). Swirl to mix.
- 10. Add 3 drops of *DEHA Reagent #2 (4792). Swirl to mix.
- 11. Add 3 drops of *DEHA Reagent #3 (4793). Invert 3 times to mix.
- 12. Insert the tube into chamber. Close lid.
- **13**. Wait 15 minutes. Do not open the lid during the waiting time. The reaction is photosensitive.
- 14. Remove tube from chamber. Invert 2 times to mix.
- **15**. Immediately insert tube into chamber, close lid and select SCAN SAMPLE. Read within 30 seconds. Record result in ppm erythorbic acid.
- **16.** Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents is obtained.

HYDROQUINONE PROCEDURE

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 49 H-quinone from TESTING MENU.
- 5. Scroll to and select 49 H-quinone from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove the tube from colorimeter.
- 9. Add 3 drops of *DEHA Reagent #1 (4791). Swirl to mix.
- 10. Add 3 drops of *DEHA Reagent #2 (4792). Swirl to mix.
- 11. Add 3 drops of *DEHA Reagent #3 (4793). Invert 3 times to mix.
- 12. Insert the tube into chamber. Close lid.
- **13**. Wait 15 minutes. Do not open the lid during the waiting time. The reaction is photosensitive.
- 14. Remove tube from chamber. Invert 2 times to mix.
- **15.** Immediately insert tube into chamber, close lid and select SCAN SAMPLE. Read within 30 seconds. Record result in ppm hydroquinone.
- 16. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents is obtained.

METHYLETHYLKETOXIME PROCEDURE

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 58 m-e-ketoxim from TESTING MENU.
- 5. Scroll to and select 58 m-e-ketoxim from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove the tube from colorimeter.
- 9. Add 3 drops of *DEHA Reagent #1 (4791). Swirl to mix.
- 10. Add 3 drops of *DEHA Reagent #2 (4792). Swirl to mix.
- 11. Add 3 drops of *DEHA Reagent #3 (4793). Invert 3 times to mix.
- 12. Insert the tube into chamber. Close lid.
- **13**. Wait 15 minutes. Do not open the lid during the waiting time. The reaction is photosensitive.
- 14. Remove tube from chamber. Invert 2 times to mix.
- **15.** Immediately insert tube into chamber, close lid and select SCAN SAMPLE. Read within 30 seconds. Record result in ppm methylethylketoxime.
- **16.** Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents is obtained.

INDIGO METHOD • CODE 3651-SC

QUANTITY	CONTENTS	CODE
15 mL	Chlorine Inhibitor	3990-Е
250 mL	*Ozone Buffer	*3991-K
30 mL	Indigo Blue Stock Solution	3989-G
1	Sampling Apparatus	0681
1	Pipet, transfer, 1.0 mL	2-2170
1	Pipet, transfer, 5 mL	0329
1	Pump, 10 mL	30527
1	Bottle, HR Reagent, amber glass	0680-J
1	Graduated Cylinder, 50 mL, glass	0418

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Ozone is sometimes used in place of, or in conjunction with, chlorine or other halogens for disinfection of pool, spa, or drinking waters. Recently, large aquatic facilities have begun using ozone as a disinfectant in many artificial habitats.

Drinking, pool and aquatic waters. APPLICATION: RANGE: 0.00-0.40 ppm Ozone, Low Range 0.00-2.50 ppm Ozone, High Range

Ozone rapidly and stoichiometrically decolorizes Indigo Trisulfonate under acidic conditions. METHOD:

Ozone is extremely unstable in aqueous solutions. Test must **SAMPLE** be performed immediately and the sample must not be **HANDLING &**

PRESERVATION: agitated.

INTERFERENCES: Manganese at any level interferes.

PROCEDURE-LOW RANGE

A. PREPARATION OF HR REAGENT

- ☑ NOTE: The quantity of Indigo Blue Stock solution (3989) supplied will prepare one batch of HR Reagent for the High Range Ozone procedure or five batches of HR Reagent for the Low Range Ozone procedure.
- 1. Use the 50 mL graduated cylinder to carefully add 45 mL of *Ozone Buffer (3991) to amber glass bottle marked HR Reagent (0680).
- 2. Use the 5 mL transfer pipet (0329) and pump (30527) to add 5 mL of Indigo Blue Stock Solution (3989) to the amber glass bottle. Cap and mix.

B. DETERMINATION OF OZONE

- 3. Use the 1.0 mL transfer pipet (2-2170) and pump (30527) to add 1.0 mL of HR Reagent to each of 2 clean tubes (0290).
- **4.** If chlorine is present add 3 drops Chlorine Inhibitor (3990) to each tube. Cap tubes.
- **5**. Take one of the prepared tubes (0290) and sampling apparatus (0681) to sampling site.
- 6. Lower end of tubing of sampling apparatus to desired depth. Slowly withdraw and depress plunger several times to purge syringe and tubing. Slowly withdraw plunger to fill purged syringe.
- 7. Remove plastic tubing from syringe. Remove cap from the prepared tube. Place tip of syringe against inside of the prepared tube. Slowly depress plunger and fill to the 10 mL line and cap. This is the Sample Tube.

 ✓ NOTE: DO NOT SHAKE OR INVERT THE SAMPLE.
- **8.** Fill the second prepared tube (0290) to the 10 mL line with ozone free water. This is the Reagent Blank.
- 9. Press and hold **ON** button until colorimeter turns on.
- 10. Press **ENTER** to start.
- 11. Press ENTER to select TESTING MENU.
- 12. Select ALL TESTS (or another sequence containing 71 Ozone-LR) from TESTING MENU.
- 13. Scroll to and select 71 Ozone-LR from menu.
- 14. Insert the Reagent Blank tube into chamber, close lid and select SCAN BLANK.
- Insert reacted Sample Tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **16.** Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: HR Reagent must be made fresh **each week**. If reagent is refrigerated, it may be kept up to 3 weeks.

PROCEDURE-HIGH RANGE

A. PREPARATION OF HR REAGENT

- ☑ NOTE: The quantity of Indigo Blue Stock solution (3989) supplied will prepare one batch of HR Reagent for the High Range Ozone procedure or five batches of HR Reagent for the Low Range Ozone procedure.
- 1. Use the 50 mL graduated cylinder to carefully add 25 mL of *Ozone Buffer (3991) to amber glass bottle marked HR Reagent (0680).
- 2. Use the 50 mL graduated cylinder to carefully add 25 mL of Indigo Blue Stock Solution (3989) to the amber glass bottle. Cap and mix.

B. DETERMINATION OF OZONE

- 3. Use the 1.0 mL transfer pipet (2-2170) and pump (30527) to add 1.0 mL of HR Reagent to each of 2 clean tubes (0290).
- **4.** If chlorine is present add 3 drops Chlorine Inhibitor (3990) to each tube. Cap tubes.
- **5**. Take one of the prepared tubes (0290) and sampling apparatus (0681) to sampling site.
- **6.** Lower end of tubing of sampling apparatus to desired depth. Slowly withdraw and depress plunger several times to purge syringe and tubing. Slowly withdraw plunger to fill purged syringe.
- 7. Remove plastic tubing from syringe. Remove cap from the prepared tube. Place tip of syringe against inside of the prepared tube. Slowly depress plunger and fill to the 10 mL line and cap. This is the Sample Tube.

☑ NOTE: DO NOT SHAKE OR INVERT THE SAMPLE.

- **8.** Fill the second prepared tube (0290) to the 10 mL line with ozone free water. This is the Reagent Blank.
- 9. Press and hold **ON** button until colorimeter turns on.
- 10. Press **ENTER** to start.
- 11. Press ENTER to select TESTING MENU.
- 12. Select ALL TESTS (or another sequence containing 72 Ozone-HR) from TESTING MENU.
- 13. Scroll to and select 72 Ozone-HR from menu.
- 14. Insert the Reagent Blank tube into chamber, close lid and select SCAN BLANK.
- 15. Insert reacted **Sample Tube** into chamber, close lid and select SCAN SAMPLE. Record result.
- **16.** Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: HR Reagent must be made fresh **each week**. If reagent is refrigerated, it may be kept up to 3 weeks.

COLORIMETRIC METHOD • CODE 3700-SC

QUANTITY	CONTENTS	CODE
60 mL	Chlorphenol Red Indicator	V-2209-H
60 mL	Phenol Red Indicator	V-2304-H
60 mL	Thymol Blue Indicator	V-2213-H
3	Pipets, 0.5 mL, plastic w/caps	0369

The term pH (always written with a lower case p and an upper case H) is correctly defined as the negative logarithm of the hydrogen ion concentration. More simply, the term pH can be considered to be an index of the amount of hydrogen ion present in a substance, or is a measure of the acidity of the substance. This index is important as it can be used to quickly identify the acid, neutral or alkaline (basic) nature of materials. Acidic substances have a pH less than 7.0, neutral substances have a pH equal to 7.0 and alkaline substances have a pH greater than 7.0.

Most natural waters have pH values from pH 5.0 to pH 8.5. Acidic, freshly fallen rain water may have a pH value of pH 5.5 to pH 6.0. When it reacts with soils and minerals containing weakly alkaline materials, the hydroxyl ion concentration will increase and the hydrogen ion concentration will decrease. Then the water may become slightly alkaline with a pH of 8.0 to 8.5. Natural sea water has a pH value of 8.1, and changes from this value indicate that water from an inland source is entering the body of sea water.

Waters more acidic than pH 5.0 and more alkaline than pH 8.5 to 9.0 should be viewed with suspicion. Mine drainage and acidic industrial wastes are the principal factors in increasing the acidity of water, and alkaline industrial wastes are the cause of high pH values.

Because pH measurements can be made so simply, and because they can tell so much about the past and future reactions of water, they are routinely made in water quality studies. Sudden changes in pH values serve as warning signals that water quality may be adversely affected through the introduction of contaminants.

APPLICATION: Drinking, surface, and saline waters, swimming pool water;

domestic and industrial wastes.

METHOD: The various pH indicators exhibit a specific color change

over a narrow pH range. The color changes are measured

colorimetrically.

SAMPLE Sample should be analyzed immediately after collection. HANDLING &

PRESERVATION:

INTERFERENCES: Sample color and turbidity interfere with the colorimetric pH measurement. Color interference may be removed bystandardizing the instrument with the original water sample. Two drops of 0.1N sodium thiosulfate per 100 mL of sample will eliminate chlorine interference.

INDICATOR, RANGE, & TEST NAME:

carrip to will official		01011001
pH Indicator	рН	Smart2 Test Name
Chlorphenol Red	5.0-6.8	74 pH CPR
Phenol Red	6.6-8.4	75 pH PR
Thymol Blue	8.0-9.6	76 pH TB

- 1. Use *Indicator*, *Range*, & *Test Name* chart to select the indicator, corresponding to anticipated pH range and to determine corresponding test name to select from colorimeter menu.
- 2. Press and hold **ON** button until colorimeter turns on.
- 3. Press **ENTER** to start.
- 4. Press **ENTER** to select TESTING MENU.
- **5**. Select ALL TESTS (or another sequence containing the appropriate pH test name) from TESTING MENU.
- **6**. Scroll to and select the appropriate pH test name from menu.
- 7. Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 8. Insert tube into chamber, close lid and select SCAN BLANK.
- **9.** Remove tube from colorimeter. Use the 0.5 mL pipet (0369) to add exactly 0.5 mL of the pH indicator for the chosen range. Cap and mix.
- Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 11. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

PHENOL

AMINOANTIPYRINE METHOD • CODE 3652-SC

QUANTITY	CONTENTS	CODE
5 g	Aminoantipyrine Reagent	7825-C
30 mL	*Ammonium Hydroxide Solution	*7826-G
2 x 60 mL	*Potassium Ferricyanide Solution	*7827-H
1	Spoon, 0.1 g, plastic	0699
1	Pipet, plain, plastic	0352
1	Pipet, 1.0 mL, plastic	0354

***WARNING:** Reagents marked with a * are considered to be potential health hazards. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or www.lamotte.com. To obtain a printed copy, contact LaMotte by email, phone or fax.

Phenols may occur in domestic and industrial waste waters and in drinking water supplies. Chlorination of waters containing phenols may produce odiferous and objectionable tasting chlorophenols. Natural waters sedom contain more than 1 mg/L phenol.

APPLICATION: Drinking and surface waters; domestic and industrial waste

water.

RANGE: 0.00–6.00 ppm Phenol

METHOD: 4-Aminoantipyrine is oxidized in the presence of all ortho-

and meta-substituted phenols to form a colored complex in

proportion to the amount of phenol present.

SAMPLE Phenols are subject to biological and chemical oxidation. Samples should be analyzed within 4 hours after collection. If sample cannot be analyzed within 4 hours it can be

If sample cannot be analyzed within 4 hours, it can be preserved by acidification with phosphoric acid to pH 4.0.

INTERFERENCES: Oxidizing and reducing chemicals, alkaline pH values, and

phenol decomposing bacteria may interfere with the test.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 77 Pheno1) from TESTING MENU.
- 5. Scroll to and select 77 Pheno1 from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove tube from colorimeter. Use the 0.1 g spoon (0699) to add one measure of Aminoantipyrine Reagent (7825-C). Cap and mix.
- 9. Use the plain pipet (0352) to add 4 drops of *Ammonium Hydroxide Solution (7826). Cap and mix.
- 10. Use the 1 mL pipet (0354) to add 2 mL of *Potassium Ferricyanide Solution (7827). Cap and mix. Solution will almost immediately develop a reddish hue if phenols are present.
- 11. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **12.** Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

PHOSPHATE-LOW RANGE

ASCORBIC ACID REDUCTION METHOD • CODE 3653-SC

QUANTITY	CONTENTS	CODE
60 mL	*Phosphate Acid Reagent	*V-6282-H
5 g	*Phosphate Reducing Reagent	*V-6283-C
1	Pipet, 1 mL, plastic	0354
1	Spoon, 0.1 g, plastic	0699

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Phosphorus is an important nutrient for aquatic plants. The amount found in water is generally not more than 0.1 ppm unless the water has become polluted from waste water sources or excessive drainage from agricultural areas. When phosphorus is present in excess of the concentrations required for normal aquatic plant growth, a process called eutrophication takes place. This creates a favorable environment for the increase in algae and weeds. When algae cells die, oxygen is used in the decomposition and fish kills often result. Rapid decomposition of dense algae scums with associated organisms give rise to foul odors and hydrogen sulfide gas.

APPLICATION: Drinking, surface and saline waters; domestic and industrial

wastes (Method based on reactions that are specific for

orthophosphate).

RANGE: 0.00–3.00 ppm Orthophosphate

METHOD: Ammonium molybdate and antimony potassium tartrate

react in a filtered acid medium with dilute solution of PO_4^{-3} to form an antimony-phosphomolybdate complex. This complex is reduced to an intense blue colored complex by ascorbic acid. The color is proportional to the amount of phosphate present. (Only orthophosphate forms a blue color in this test.) Polyphosphates (and some organic phosphorus compounds) may be converted to the orthophosphate form by sulfuric acid digestion. Organic phosphorus compounds may be converted to the orthophosphate form by persulfate

digestion.

SAMPLE HANDLING & PRESERVATION: If benthic deposits are present in the area being sampled, great care should be taken not to include these deposits. If the analysis cannot be performed the same day of collection, the sample should be preserved by the addition of 2 mL of

concentrated sulfuric acid or 40 mg mercuric chloride per

liter and refrigerated at 4°C.

- **INTERFERENCES**: a. No interference from copper, iron, or silicate at concentrations many times the concentration of sea water. However, high iron concentrations can cause precipitation and subsequent loss of phosphorus.
 - **b.** Salt error for samples ranging from 5% to 20% salt content was found to be less than 1%.
 - c. Mercuric chloride, HgCl₂, when used as the preservative, interferes when the chloride levels are low (less than 50 mg/L). This interference is overcome by spiking samples with a minimum of 50 mg/L of sodium chloride.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 78 Phosphate L) from TESTING MENU.
- 5. Scroll to and select 78 Phosphate L from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove tube from colorimeter. Use 1.0 mL pipet (0354) to add 1.0 mL of *Phosphate Acid Reagent (V-6282). Cap and mix.
- 9. Use the 0.1 g spoon (0699) to add one measure of *Phosphate Reducing Reagent (V-6283). Cap and shake until powder dissolves. Wait 5 minutes for full color development. Solution will turn blue if phosphates are present.
- 10. At end of 5 minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 11. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

PHOSPHATE-HIGH RANGE

VANADOMOLYBDOPHOSPHORIC ACID METHOD CODE 3655-SC

QUANTITY	CONTENTS	CODE
2 x 30 mL	*VM Phosphate Reagent	*4410-G
1	Pipet, 1.0 mL, plastic	0354

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Phosphate treatments in boiler and cooling water and other industrial water systems are run at levels up to 100 ppm orthophosphate. These high levels permit the use of a simpler, high range test.

APPLICATION: Boiler, cooling, and industrial water.

RANGE: 0.0–70.0 ppm Phosphate

METHOD: Orthophosphate reacts in acid conditions with ammonium

vanadomolybdate to form vanadomolybdophosphoric acid. This yellow color is proportional to the concentration of

orthophosphate and is read colorimetrically.

SAMPLE If the analysis cannot be performed the same day of

HANDLING & collection, the sample should be preserved by the addition of

PRESERVATION: 2 mL of concentrated sulfuric acid or 40 mg mercuric

chloride per liter and refrigerated at 4°C.

INTERFERENCES: Silica interferes only if the sample is heated. Arsenate,

fluoride, thorium, bismuth, sulfide, thiosulfate, and

thiocyanate cause negative interference.

- 1. Press and hold **ON** button until colorimeter turns on.
- **2**. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 79 Phosphate H) from TESTING MENU.
- 5. Scroll to and select 79 Phosphate H from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- 8. Remove tube from colorimeter. Use the 1.0 mL pipet (0354) to add 2.0 mL of *VM Phosphate Reagent (4410). Cap and mix. Wait 5 minutes for full color development.
- After 5 minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **10.** Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

PHOSPHORUS, TOTAL-LOW RANGE

ASCORBIC ACID REDUCTION WITH PERSULFATE DIGESTION METHOD • CODE 4024

QUANTITY	CONTENTS	CODE
25	*Total Phosphorus Acid Reagent Tubes	*4035-G
5 g	*Digestion Reagent Powder	*4036-C
2 X 30 mL	*Total Phosphorus LR Hydroxide Reagent	*4038-G
2 X 30 mL	*Phosphate Acid Reagent	*V-6282-G
5 g	Phosphate Reducing Reagent	V-6283-C
1	Spoon, 0.15 g, plastic	0727
3	Pipets, 1.0 mL, plastic	0354
1	Spoon, 0.1 g, plastic	0699
2	Funnels, plastic	0459

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

☑ NOTE: For greater accuracy, use laboratory grade pipets.

Equipment needed but not supplied:

1	COD Adapter	5-0087
1	COD Reactor, 12 tubes, 110V	5-0102
or 1	COD Reactor, 12 tubes, 230V	5-0102-EX

Optional Equipment:

	1	
1	Volumetric pipet, 5.0 mL	2-2174
2	Volumetric pipets, 1.0 mL	2-2170
1	Pipet Bulb	2-2164
1	Wipes	2-2069
1	Test Tube Rack	23371
1	Timer	9371-W13
1	Test Tube Holder	2-2190

Phosphorus in natural waters and wastewaters occurs almost exclusively in the form of orthophosphates, condensed phosphates (pyro-, meta- and other polyphosphates) and organically bound phosphates. Phosphates may be added in small amounts to water supplies during treatment. Larger amounts are introduced to water used for cleaning or laundering as components of commercial cleaning preparations. Phosphates are used to treat boiler water and are components of agricultural and residential fertilizers. Phosphorus is an important nutrient for aquatic plants. The amount found in natural water is generally not more than 0.1 mg/L unless the water has become polluted from wastewater sources or excessive drainage from agricultural areas.

Drinking, surface and saline waters; domestic and industrial APPLICATION:

waste water.

RANGE: 0.00 –3.50 mg/L Total Phosphorus as Phosphate

METHOD: Pretreatment of the sample with heat and acid provides

conditions for the hydrolysis of condensed inorganic phosphates. Heat, acid and persulfate convert the organic phosphates to orthophosphate during the digestion. Ammonium molybdate and antimony potassium tartrate react in a filtered acid medium with dilute solutions of phosphate to form an antimony-phosphomolybdate complex. This complex is reduced to an intense blue colored

complex by ascorbic acid. The color is proportional to the

amount of phosphate present.

SAMPLE Rinse sample bottle with 1:1 hydrochloric acid followed by HANDLING & deionized water. Do not use phosphate detergents. If the PRESERVATION:

sample can not be analyzed immediately, the sample should

be preserved by adjusting the pH to 2 or less with

concentrated sulfuric acid and refrigerated at 4°C. Warm the

sample to room temperature and neutralize with 5.0 N

sodium hydroxide before analyzing.

INTERFERENCES: Large amounts of turbidity may interfere. Aluminum (200

ppm), Arsenate (any level), Chromium (100 ppm), Copper (10 ppm), Iron (100 ppm), Nickel (300 ppm), Silica (50 ppm), Silicate (10 ppm), Sulfide (90 ppm) and Zinc (80

ppm) will interfere.

Use COD adapter.

- 1. Preheat COD reactor to 150 ±2°C. Follow safety precautions.
- 2. Remove cap from a *Total Phosphorus Acid Reagent Tube (4035). Use a 1.0 mL pipet (0354) to add 5.0 mL of sample.
- 3. Use the 0.15 g spoon (0727) and a funnel (0459) to add one level measure of *Digestion Reagent Powder (4036). Tap funnel to dispense powder completely. Cap tube tightly and shake until powder completely dissolves.
- **4.** Place the tube in the COD reactor for 30 minutes.
- 5. At the end of the heating period, turn the reactor off. Carefully remove the tube from the reactor and allow it to cool to room temperature.
- **6.** At the end of the cooling period, press and hold **ON** button until colorimeter turns on.
- 7. Press **ENTER** to start.
- 8. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 82 Phos T LR) from TESTING MENU.
- 10. Scroll to and select 82 Phos T LR from the menu.
- 11. Carefully remove the cap from the digested tube. Use another 1 mL pipet (0354) to add 1.0 mL of *Total Phosphorus LR Hydroxide Reagent (4038) to the tube. Cap and invert to mix.
- **12**. Wipe the tube with a damp towel to remove fingerprints and smudges. Wipe with a dry towel.
- **13.** Insert the tube into the chamber. Select SCAN BLANK. Remove the tube from the colorimeter.
- 14. Use another 1 mL pipet (0354) to add *1.0 mL of Phosphate Acid Reagent (V-6282). Cap and invert tube to mix.
- 15. Use the 0.1g spoon (0699) and a funnel (0459) to add one level spoon of Phosphate Reducing Reagent (V-6283). Tap funnel to dispense powder completely. Cap tube and shake until powder dissolves.
- **16.** Wait 5 minutes.
- 17. Wipe the vials with a damp towel to remove fingerprints and smudges. Wipe with a dry towel.
- **18.** Insert the tube into the chamber. Select SCAN SAMPLE. Record the result as Total Phosphorus in mg/L PO₄.
- 19. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTES: For greater accuracy, use laboratory grade pipets. To order reagent refills, Order Code R-4024.

PHOSPHORUS, TOTAL-HIGH RANGE

MOLYBDOVANADATE METHOD WITH ACID PERSULFATE DIGESTION • CODE 4025

QUANTITY	CONTENTS	CODE
25	*Total Phosphorus Acid Reagent Tubes	*4035-G
60 mL	Deionized Water	5115PS-H
5 g	*Digestion Reagent Powder	*4036- C
2 X 30 mL	*Total Phosphorus HR Hydroxide Reagent	*4037-G
30 mL	*Total Phosphorus HR Indicator Reagent	*4039-G
1	Spoon, 0.15 g	0727
3	Pipets 1.0 mL, plastic	0354
1	Pipet, 0.5 mL	0353
1	Funnel, plastic	0459

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

☑ NOTE: For greater accuracy, use laboratory grade pipets.

Equipment needed but not supplied:

1	COD Adapter	5-0087
1	COD Reactor, 8 vial, 110V	5-0069
Or 1	COD Reactor, 8 vial, 220V	5-0070
Or 1	COD Reactor, 25 vial, 115V/230V	5-0094

Optional Equipment:

1	Volumetric pipet, 2.0 mL	2-2168
2	Volumetric pipet, 5.0 mL	2-2174
1	Volumetric pipet, 0.5 mL	30503
1	Pipet Bulb	2-2164
1	Wipes	2-2069
1	Test Tube Rack	23371
1	Timer	9371-W13
1	Test Tube Holder	2-2190

Phosphorus in natural waters and wastewaters occurs almost exclusively in the form of orthophosphates, condensed phosphates (pyro-, meta- and other polyphosphates) and organically bound phosphates. Phosphates may be added in small amounts to water supplies during treatment. Larger amounts are introduced to water used for cleaning or laundering, as components of commercial cleaning preparations. Phosphates are used to treat boiler water and are components of agricultural and residential fertilizers. Phosphorus is an important nutrient for aquatic plants. The amount found in natural water is generally not more than 0.1 mg/L unless the water has become polluted from wastewater sources or excessive drainage from agricultural areas.

APPLICATION: Boiler, cooling, and industrial water.

RANGE: 0.0–100.0 mg/L Total Phosphorus as phosphate

METHOD: Pretreatment of the sample with heat and acid provides

conditions for the hydrolysis of condensed inorganic phosphates. Heat, acid and persulfate convert the organic

phosphates to orthophosphate during digestion.

Orthophosphate reacts in acidic conditions with ammonium vanadomolybdate to form vanadomolybdophosphoric acid.

The resulting yellow color is proportional to the

concentration of orthophosphate.

SAMPLE HANDLING & PRESERVATION: Rinse sample bottle with 1:1 hydrochloric acid followed by deionized water. Do not use phosphate detergents. If the sample can not be analyzed immediately, the sample should

be preserved by adjusting the pH to 2 or less with

concentrated sulfuric acid and refrigerated at 4°C. Warm the sample to room temperature and neutralize with 5.0 N

sodium hydroxide before analyzing.

INTERFERENCES: Large amounts of turbidity may interfere. Silica and arsenate

interfere only if the sample is heated. Arsenite, fluoride, thorium, bismuth, molybdate, thiosulfate, and thiocyanate cause negative interference. Ferrous iron concentrations

above 100 ppm will interfere.

Use COD adapter.

- 1. Preheat COD reactor to 150 ±2°C. Follow safety precautions.
- 2. Remove cap from a *Total Phosphorus Acid Reagent Tube (4035). Use a 1.0 mL pipet (0354) to add 5.0 mL of Deionized Water (5115PS). This is the blank.
- 3. Remove cap from a *Total Phosphorus Acid Reagent Tube (4035). Use the 1.0 mL pipet (0354) to add 5.0 mL of sample water. This is the sample.
- 4. Use the 0.15 g spoon (0727) and a funnel (0459) to add one level measure of *Digestion Reagent Powder (4036) to each tube. Tap funnel to dispense powder completely. Cap tube tightly and shake until powder dissolves completely.
- **5**. Place the tubes in the COD reactor for 30 minutes.
- **6.** At the end of the heating period, turn the reactor off. Carefully remove the tubes from the reactor block and allow them to cool to room temperature.
- 7. Carefully remove the caps from the digested tubes. Use another 1 mL pipet (0354) to add 2.0 mL of *Total Phosphorus HR Hydroxide Reagent (4037) to each tube. Cap and invert to mix.
- 8. Use the 0.5 mL pipet (0353) to add 0.5 mL *Total Phosphorus HR Indicator Reagent (4039) to each tube. Cap and invert to mix. Wait 7 minutes.
- 9. During the waiting period, press and hold **ON** button until colorimeter turns on.
- 10. Press **ENTER** to start.
- 11. Press **ENTER** to select TESTING MENU.
- 12. Select ALL TESTS (or another sequence containing 83 Phos T HR) from TESTING MENU.
- 13. Scroll to and select 83 Phos T HR from the menu.
- 14. Wipe the tubes with a damp towel to remove fingerprints and smudges. Wipe with a dry towel.
- **15**. Insert the blank tube into the chamber. Select SCAN BLANK. Remove the blank tube from the colorimeter.
- **16.** Insert the sample tube into the chamber. Select SCAN SAMPLE. Record the result as Total Phosphorus in mg/L PO₄.
- 17. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ✓ NOTE: For greater accuracy, use laboratory grade pipets. To order reagent refills, order code R-4025.

TETRAPHENYLBORON METHOD • CODE 3639-SC

QUANTITY	CONTENTS	CODE
30 mL	*Sodium Hydroxide, 1.0N	*4004WT-G
5 g	*Tetraphenylboron Powder	*6364-C
1	Spoon, 0.05 g, plastic	0696

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Potassium, as the seventh most common element on the Earth, may be found in minor quantities in most water supplies. It seldom exceeds 10 ppm in drinking water and usually is less than 2 ppm. In some brine or runoff in agricultural areas the potassium concentration may reach 100 ppm.

Drinking, surface, and saline water. APPLICATION:

0.0–10.0 ppm Potassium RANGE:

METHOD: Potassium reacts with sodium tetraphenylborate to form a

colloidal white precipitate in quantities proportional to the

potassium concentration.

SAMPLE Store samples in polyethylene bottles, not in soft glass where HANDLING & leaching of potassium from the glass may occur. Samples may PRESERVATION:

be acidified to pH 2 with nitric acid, but should be

neutralized before analyzing.

Calcium and magnesium interfere at very high INTERFERENCE:

concentrations. Check for stray light interference (see p.

17).

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 81 Potassium) from TESTING MENU.
- 5. Scroll to and select 81 Potassium from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove tube from colorimeter. Add 4 drops of *Sodium Hydroxide, 1.0N (4004WT). Cap and mix.
- 9. Use the 0.05 g spoon (0696) to add one measure of *Tetraphenylboron Powder (6364). Cap and shake vigorously until all of the powder has dissolved. Wait 5 minutes.
- At end of 5 minute waiting period, mix tube again to suspend any settled precipitate. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 11. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTES: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

For the most accurate results, the sample and reagents should be at 25±4°C.

SILICA-LOW RANGE

HETEROPOLY BLUE METHOD • CODE 3664-SC

QUANTITY	CONTENTS	CODE
30 mL	*Silica Reagent #1	*V-4466-G
30 mL	*Silica Reagent #2	*V-4467-G
30 mL	*Silica Reagent #3	*V-4468-G
10 g	*Silica Reagent #4	*V-6284-D
1	Spoon, 0.1 g, plastic	0699

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Silicon dioxide, SiO_2 , commonly known as silica, occurs in all natural water. Silica may be present as suspended, insoluble particles in a colloidal or polymeric state. It may also be present in a reactive form as silicic acid or silicate ions. Silica is a major nutrient for diatoms. A silica cycle occurs in many bodies of water containing organisms, such as diatoms, that use silica in their skeletal structure. The silica removed from the water may be slowly returned to solution by the decomposition of the dead organisms. The major source of silica in natural water is from the decomposition of silicate minerals in the drainage basin from which the waters flow.

The presence of silica is particularly objectionable in water used for boiler feed water purposes, as it may cause the formation of a hard, dense scale which has unusually high resistance to heat transfer. Serious loss of turbine efficiency results from insoluble silica turbine blade deposits caused by vaporization of silica from boiler water.

APPLICATION: Drinking, surface and saline waters; domestic and industrial

wastes.

RANGE: 0.0–4.0 ppm Silica

METHOD: Reactive silica forms a complex with ammonium molybdate

in an acidic solution to produce a yellow-green color in proportion to the amount of silica present. Phosphate also reacts with molybdate but the addition of oxalic acid eliminates the molybdophosphoric acid complex. This silica molybdate complex is then reduced by ascorbic acid to

produce an intense blue color.

SAMPLE
HANDLING &
Silica samples may be preserved by refrigeration at 4°C in plastic containers up to one week without any change in

PRESERVATION: silica concentration.

INTERFERENCES: Sulfides and large amounts of iron interfere. Color and turbidity may be removed by standardizing the instrument with the original water sample. Since silica is a component of glass waste and a common contaminant, it is suggested to run a reagent blank using silica-free water. The blank value is subtracted from the sample concentrations.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 85 Silica Lo) from TESTING MENU.
- 5. Scroll to and select 85 Silica Lo from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK. (See Note)
- **8.** Remove tube from colorimeter. Add 6 drops *Silica Reagent #1 (V-4466). Cap and invert to mix.
- 9. Add 12 drops of *Silica Reagent #2 (V-4467). Cap and mix. Wait 5 minutes.
- **10.** Add 8 drops of *Silica Reagent #3 (V-4468). Cap and mix. Wait 2 minutes.
- 11. Use the 0.1 g spoon (0699) to add one measure of *Silica Reagent #4 (V-6284). Cap and mix gently until powder has dissolved. Wait 5 minutes for full color development.
- 12. At end of 5 minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **13**. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

SILICOMOLYBDATE METHOD • CODE 3687-SC

QUANTITY	CONTENTS	CODE	
30 mL	*Silica Reagent #1	*V-4466-G	
30 mL	*Silica Reagent #2	*V-4467-G	
15 mL	*Silica Reagent #3	*V-4468-G	

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Silicon dioxide, SiO₂, commonly known as silica, occurs in all natural water. Silica may be present as suspended, insoluble particles in a colloidal or polymeric state. It may also be present in a reactive form as silicic acid or silicate ions. Silica is a major nutrient for diatoms. A silica cycle occurs in many bodies of water containing organisms, such as diatoms, that use silica in their skeletal structure. The silica removed from the water may be slowly returned to solution by the decomposition of the dead organisms. The major source of silica in natural water is from the decomposition of silicate minerals in the drainage basin from which the waters flow.

The presence of silica is particularly objectionable in water used for boiler feed water purposes, as it may cause the formation of a hard, dense scale which has unusually high resistance to heat transfer. Serious loss of turbine efficiency results from insoluble silica turbine blade deposits caused by vaporization of silica from boiler water.

APPLICATION: Boilers and cooling towers; domestic and industrial wastes.

RANGE: 0–75 ppm Silica

METHOD: Silica forms a complex with ammonium molybdate in an

acidic solution to produce a yellow color in proportion to the amount of silica present. Phosphate also reacts with molybdate but the addition of oxalic acid eliminates the

molybdophosphoric acid complex.

SAMPLE Silica samples may be preserved by refrigeration at 4°C in HANDLING & plastic containers up to one week without any change in PRESERVATION:

silica concentration.

INTERFERENCES: Sulfides and large amounts of iron interfere. Color and

turbidity may be removed by standardizing the instrument

with the original water sample.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 86 Silica Hi) from TESTING MENU.
- 5. Scroll to and select 86 Silica Hi from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- 8. Remove tube from colorimeter. Add 6 drops *Silica Reagent #1 (V-4466). Cap and invert to mix.
- 9. Add 12 drops of *Silica Reagent #2 (V-4467). Cap and mix. Wait 5 minutes.
- **10.** At end of 5 minute waiting period, add 8 drops of *Silica Reagent #3 (V-4468). Cap and mix.
- 11. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **12**. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: To extend the range to 100 ppm, perform a 2:1 dilution of water sample, with silica-free water. Perform test and multiply result by 2.

SULFATE-HIGH RANGE

BARIUM CHLORIDE METHOD • CODE 3665-SC

QUANTITY	CONTENTS	CODE	
10 g	*Sulfate Reagent	*V-6277-D	
1	Spoon, 0.1 g, plastic	0699	

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

The most common mineral forms of sulfur are iron sulfide, lead sulfide, zinc sulfide and as calcium sulfate and magnesium sulfate. In most fresh waters the sulfate ion is the second or third most abundant anion, being exceeded only by bicarbonate and, in some cases, silicate. Sulfur, in the form of sulfate, is considered an important nutrient element. Mineral springs are rich in sulfate and feed appreciable quantities of this compound to the watershed. Acid mine water drainage is a form of pollution which may contribute extremely large amounts of sulfate content to natural waters. Other sources of sulfate include waste material from pulp mills, steel mills, food processing operations and municipal wastes. Many bacteria obtain sulfur from sulfate for the synthesis of amino acids. In lakes and streams low in oxygen, this process of sulfate reduction causes the production of hydrogen sulfide, with its characteristic offensive odor. Calcium sulfate and magnesium sulfate contribute significantly to the hardness of water. Under natural conditions, the quantities ordinarily to be expected in lakes are between 3 and 30 parts per million.

APPLICATION: Drinking and surface waters, domestic and industrial wastes.

RANGE: 0–100 ppm Sulfate

METHOD: Sulfate ion is precipitated in an acid medium with barium

chloride to form a barium sulfate suspension in proportion to

the amount of sulfate present.

SAMPLE Sulfate samples may be preserved by refrigeration at 4°C up to 7 days in glass or plastic containers without any change in

PRESERVATION: concentration.

INTERFERENCE: Suspended matter and color interference may be removed by

a filtration step. Silica in excess of 500 mg/L will interfere.

Check for stray light interference (see page 17).

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- **3.** Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 89 Sulfate-HR) from TESTING MENU.
- 5. Scroll to and select 89 Sulfate-HR from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove tube from colorimeter. Use the 0.1 g spoon (0699) to add one measure of *Sulfate Reagent (V-6277). Cap and shake until powder dissolves. A white precipitate will develop if sulfates are present. Wait 5 minutes.
- Mix tube again. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **10.** Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: If the sulfate concentration of the test sample is greater than 100 ppm, it is recommended that a dilution be made with deionized water and the results multiplied by the dilution factor.

A white film is deposited on the inside of test tubes as a result of the sulfate test. Thoroughly clean and rinse test tubes after each test.

For the most accurate results, samples and reactions should be at 25±4°C.

SULFIDE-LOW RANGE

METHYLENE BLUE METHOD • CODE 3654-01-SC

QUANTITY	CONTENTS	CODE
2 x 30	*Sulfide Reagent A	*V-4458-G
15 mL	*Sulfide Reagent B	*V-4459-E
2 x 60 mL	Sulfide Reagent C	4460-H
2	Pipets, 1.0 mL, plastic	0354

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Sulfide occurs in many well water supplies and sometimes is formed in lakes or surface waters. In distribution systems, it may be formed as a result of bacterial action on organic matter under anaerobic conditions. It may also be found in waters receiving sewage or industrial wastes. Lake muds rich in sulfates produce hydrogen sulfide during periods of very low oxygen levels that result from stagnation. Concentrations of a few hundredths of a part per million (or milligram per liter) cause a noticeable odor. At low concentrations, this odor is described as "musty"; at high concentration, as "rotten eggs." Removal of sulfide odor is accomplished by aeration or chlorination. Hydrogen sulfide, a toxic substance, acts as a respiratory depressant in both humans and fish.

APPLICATION: Drinking, surface and saline waters; domestic and industrial

wastes.

RANGE: 0.00–1.50 ppm Sulfide

METHOD: Under suitable conditions the sulfide ion reacts with

p-aminodimethylaniline and ferric chloride to produce methylene blue in proportion to the sulfide concentration. Ammonium phosphate is added to remove the color due to

the ferric iron.

SAMPLE HANDLING & PRESERVATION: Samples must be taken with a minimum of aeration since sulfide is volatilized by aeration and any oxygen which is taken up will destroy sulfides by chemical action. Samples

that are used for total sulfide concentrations may be

preserved by adding 2M zinc acetate solution at a dosage of 2 mL per liter of sample. This precipitates sulfide as inert zinc sulfide. Determination of dissolved sulfides in samples not preserved with zinc acetate must be started within 3 minutes

of sampling.

INTERFERENCES: Strong reducing agents such as sulfite, thiosulfate, and

hydrosulfite prevent the formation of the color or diminish its intensity. High concentrations of sulfide will inhibit the

reaction, but dilution of the sample prior to analysis

eliminates this problem.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 90 Sulfide-LR) from TESTING MENU.
- 5. Scroll to and select 90 Sulfide-LR from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8**. Remove tube from colorimeter. Use the 1.0 mL pipet (0354) to add 1.0 mL of *Sulfide Reagent A (V-4458). Cap and mix.
- **9.** Add 6 drops of Sulfide Reagent B (V-4459). Cap and mix. Wait 1 minute. Solution will turn blue if sulfides are present.
- 10. Use the 1.0 mL pipet (0354) to add 2.0 mL of Sulfide Reagent C (4460). Cap and mix. Color development is immediate and stable.
- 11. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **12.** Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.

SURFACTANTS

ION PAIR EXTRACTION-BROMPHENOL BLUE INDICATOR CODE 4876

QUANTITY	CONTENTS	CODE 4509- H		
50 g	pH Adjustment Powder			
10 g Sodium Chloride Reagent		4877-D		
2 X 60 mL *DS Indicator Reagent		*4508-H		
1	Spoon, 0.5 g, plastic	0698		
1	Spoon, 0.1 g, plastic	0699		
1	Pipet, 1.0 mL, plastic	0354		

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Aqueous waste from households and industrial laundering operations is the main source of surfactants in waters. Surfactants are found in low concentrations in natural water except in areas of an outfall or other point source.

APPLICATION: Surface water, wastewater.

RANGE: 0.5–8.0 as Linear Alkyl Sulfonates (LAS)

METHOD: The presence of LAS in the water sample causes the transfer

of bromphenol blue dye from the organic reagent layer to the aqueous layer. The amount of color in the aqueous layer is proportional to the concentration of the LAS in the sample. LAS are Methylene Blue Active Substances (MBAS). This calibration is based on sodium lauryl sulfate (dodecyl sodium sulfate). Some linear alkyl sulfonates may have a slightly

different response. Prepare standards of a known concentration and follow the test procedure below to

determine a conversion factor.

SAMPLE Analyze samples as soon as possible. May be stored at 4°C for 24 hours. Warm to room temperature before testing.

PRESERVATION:
INTERFERENCES: Cationic surfactants and nonionic surfactants.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 94 Surfactants) from TESTING MENU.
- 5. Scroll to and select 94 Surfactants from menu.
- **6**. Rinse a tube (0290) with sample water. Fill to 10 mL line with sample.
- 7. Insert the tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove the tube from colorimeter.
- 9. Use the 0.5 g spoon (0698) to add 0.5 g pH Adjustment Powder (4509). Cap and mix until powder dissolves.
- **10**. Use the 0.1 g spoon (0699) to add two measures of Sodium Chloride Reagent (4877). Cap and mix until powder disintegrates.
- 11. Use the 1.0 mL pipet (0354) to add 2.0 mL of *DS Indicator (4508).
- 12. Cap and shake for 1 minute.
- 13. Wait 5 minutes, DO NOT MIX.
- **14.** Insert tube into chamber, close lid and select SCAN SAMPLE. Record result in ppm LAS.
- 15. Press **OFF** button to turn the colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ✓ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents is obtained.

TANNIN

TUNGSTO-MOLYBDOPHOSPHORIC ACID METHOD CODE 3666-SC

QUANTITY	CONTENTS	*7833-G	
30 mL	*Tannin Reagent #1		
2 x 60 mL	*Tannin Reagent #2	*7834-H	
1	Pipet, plain, plastic	0352	
1	Pipet, 1.0 mL, plastic	0354	

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Tannin and lignin are examples of hydroxylated aromatic compounds found in discharge wastewater from paper mills, in some boiler water treatment, in natural brackish water, and in wastewater from leather tanning plants. The taste and odor of these compounds is generally offensive so that their control is important in many areas.

APPLICATION: Industrial wastewater, boiler water, and natural water.

RANGE: 0.0–10.0 ppm Tannic Acid

METHOD: The hydroxylated aromatic compounds will reduce a mixture

of tungstophosphoric and molybdophosphoric acids to form a blue color in proportion to the concentration of aromatic

hydroxyl groups.

SAMPLE HANDLING & PRESERVATION: Sample should be analyzed as soon as possible after

collection.

INTERFERENCES: Other reducing compounds such as ferrous iron and sulfites.

Results may be expressed as tannin like compounds, or

aromatic hydroxy compounds.

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 96 Tannin) from TESTING MENU.
- 5. Scroll to and select 96 Tannin from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8.** Remove tube from colorimeter. Use the plain pipet (0352) to add 4 drops of *Tannin Reagent #1 (7833). Cap and mix.
- 9. Use the 1.0 mL pipet (0354) to add 2.0 mL of *Tannin Reagent #2 (7834). Cap and mix. Wait 30 minutes for full color development.
- **10.** At end of 30 minute waiting period, mix, insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- 11. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTES: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

For the most accurate results, the sample and reagents should be at $20 \pm 2^{\circ}$ C.

TURBIDITY

ABSORPTION METHOD • NO REAGENTS REQUIRED

Turbidity is a measure of water clarity and is independent of color. Turbidity is caused by undissolved and suspended solids. Mud, silt, algae, and microorganisms can all cause turbidity. Turbidity is a gross measurement of water quality.

APPLICATION: Surface and industrial water for non-compliance monitoring.

(For compliance monitoring at low turbidity levels, use a

commercial nephelometer.)

RANGE: 0–400

METHOD: Absorptimetric

SAMPLE Measure sample as soon as possible after collection.

HANDLING & PRESERVATION:

INTERFERENCES: Check for stray light interference (see page 17).

- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- Select ALL TESTS (or another sequence containing 98 Turbidity) from TESTING MENU.
- 5. Scroll to and select 98 Turbidity from menu.
- 6. Rinse a clean tube (0290) with deionized water (turbidity free). Fill to the 10 mL line with deionized water.
- 7. Insert tube into chamber, close lid and select SCAN BLANK.
- **8**. Rinse a second clean tube (0290) with sample water. Fill to the 10 mL line with sample. Cap tube. Wipe off excess water and fingerprints. Shake to resuspend particulate matter. Remove all bubbles before measurement.
- 9. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result. Turbidity measurements should be taken as soon as possible after sample has been collected.
- 10. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For the most accurate results, the sample should be at 25±4°C.

PREPARING FORMAZIN SOLUTIONS

The turbidity calibration was prepared by using standard formazin solutions as a reference. These solutions can be prepared by carefully following the procedure below.†

- 1. Dissolve 1.000 g of Hydrazine Sulfate in deionized water and dilute to mark in 100 mL volumetric flask.
- 2. Dissolve 10.00 g of Hexamethylenetetramine in deionized water and dilute to mark in 100 mL volumetric flask.
- 3. Mix 5 mL of each solution in a 100 mL volumetric flask and allow to set undisturbed for 24 hours.
- 4. At the end of the waiting period, dilute to mark with deionized water and mix.
- 5. The turbidity of the stock solution is 400 FTU. The stock solution is stable for one month. Dilutions from the stock should be prepared fresh daily.

†Alternatively, a prepared concentrated formazin standard of 4000 NTU may be ordered in a 60 mL size by Code 6195-H.

ZINC-LOW RANGE

ZINCON METHOD • CODE 3667-SC

QUANTITY	QUANTITY CONTENTS	
30 mL *Zinc Indicator Solution		*6314-G
120 mL	*Methyl Alcohol	*6319-J
10 g	Sodium Ascorbate Powder	6316-D
25 g	*Zinc Buffer Powder	*6315-G
15 mL	*Sodium Cyanide, 10%	*6565-E
30 mL	*Formaldehyde Solution, 37%	*5128-G
1	"Dilute Zinc Indicator Solution" Bottle, w/1 pipet assembly	0128-MT
1	Graduated Cylinder, 10 mL, glass	0416
1	Spoon, 0.5 g, plastic	0698
2	Pipets, plain, plastic	0352
1	Spoon, 0.1 g, plastic	0699

^{*}WARNING: Reagents marked with an * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our web site. To obtain a printed copy, contact us by e-mail, phone or fax.

Zinc enters the domestic water supply from the deterioration of galvanized iron and brass pipes, and from industrial wastes. Zinc is an essential element for body growth and development and is an important plant nutrient.

Concentrations of zinc above 5.0 mg/L in drinking water can cause a bitter astringent taste. In the U.S., zinc concentrations may vary between 0.06 to 7.0 mg/L, with an average value of 1.33 mg/L.

APPLICATION: Drinking and surface waters, domestic and industrial waste

water.

RANGE: 0.00–3.00 ppm Zinc

METHOD: Zinc forms a blue colored complex with Zincon in a solution

buffered at pH 9.0. Other heavy metals are complexed by cyanide and the zinc cyanide complex is released by the addition of formaldehyde before the other metal cyanide complexes are destroyed. Sodium ascorbate is added to

reduce the interference of manganese.

SAMPLE HANDLING & PRESERVATION: Sample should be analyzed within 6 hours after collection. The addition of hydrochloric acid will help preserve the metal ion content, however the acid should be neutralized

before analysis.

INTERFERENCES: The following ions interfere in concentrations greater than those listed.

Ion	mg/L	Ion	mg/L
Cd(II)	1	Cr(III)	10
Al (III)	5	Ni(II)	20
Mn (II)	5	Co (II)	30
Fe (III)	7	CrO4(II)	50
Fe (II)	9		

A. PREPARATION OF DILUTE ZINC INDICATOR SOLUTION

- 1. Use a pipet (0352) to measure exactly 5.0 mL of *Zinc Indicator Solution (6314) into 10 mL graduated cylinder (0416). The bottom of the curved surface (the meniscus) of liquid should be at 5.0 mL mark. Pour this into the bottle labeled "Dilute Zinc Indicator Solution".
- 2. Use unrinsed graduated cylinder to add 10.0 mL and then 7.8 mL (total of 17.8 mL) of *Methyl Alcohol (6319) to bottle labeled "Dilute Zinc Indicator Solution". Cap and mix ingredients in this bottle. Do not leave this bottle uncapped.
- B. DETERMINATION OF ZINC
- 1. Press and hold **ON** button until colorimeter turns on.
- 2. Press **ENTER** to start.
- 3. Press **ENTER** to select TESTING MENU.
- 4. Select ALL TESTS (or another sequence containing 99 Zinc-LR) from TESTING MENU.
- 5. Scroll to and select 99 Zinc-LR from menu.
- **6.** Rinse a clean tube (0290) with sample water. Fill to the 10 mL line with sample.
- 7. Insert tube into chamber, close lid and select SCAN BLANK. (See Note)
- 8. Remove tube from colorimeter. Use 0.1 g spoon (0699) to add one measure of Sodium Ascorbate Powder (6316). Use 0.5 g spoon (0698) to add one measure of *Zinc Buffer Powder (6315). Cap and shake vigorously for 1 minute. Some undissolved buffer may remain in the bottom of the tube.
- 9. Add 3 drops of *Sodium Cyanide, 10% (6565). Cap and mix.
- 10. Use the 1 mL pipet assembly to add 1 mL of "Dilute Zinc Indicator Solution". Cap and mix.
- 11. Use a second plain pipet (0352) to add 4 drops of *Formaldehyde Solution, 37% (5128). Cap and mix by inverting 15 times.
- 12. Insert tube into chamber, close lid and select SCAN SAMPLE. Record result.
- **13**. Press **OFF** button to turn colorimeter off or press **EXIT** button to exit to a previous menu or make another menu selection.
- ☑ NOTE: For best possible results, a reagent blank should be determined to account for any contribution to the test result by the reagent system. To determine the reagent blank, follow the above test procedure to scan a distilled or deionized water blank. Then follow the above procedure to perform the test on a distilled or deionized water sample. This test result is the reagent blank. Subtract the reagent blank from all subsequent test results of unknown samples. It is necessary to determine the reagent blank only when a new lot number of reagents are obtained.

APPENDIX

APPENDIX

Ammonia in water occurs in two forms: toxic unionized ammonia (NH_3) and the relatively non-toxic ionized form, ammonium ion (NH_4 +). This test method measures both forms as ammonia-nitrogen (NH_3 +-N) to give the total ammonia-nitrogen concentration in water. The actual proportion of each compound depends on temperature, salinity, and pH. A greater concentration of unionized ammonia is present when the pH value and salinity increase.

- 1. Consult the table below to find the percentage that corresponds to the temperature, pH, and salinity of the sample.
- 2. To express the test result as ppm Unionized Ammonia Nitrogen (NH₃–N), multiply the total ammonia-nitrogen test result by the percentage from the table.
- **3**. To express the test result as ppm Ammonia Nitrogen (NH₃+–N), subtract the unionized ammonia-nitrogen determined in step 2 from the total ammonia-nitrogen.

	10	10°C 15°C 20°C		15°C		25°C		
рН	FW ¹	SW ²	FW	SW	FW	SW	FW	SW
7.0	0.19	_	0.27	_	0.40	_	0.55	_
7.1	0.23	_	0.34	_	0.50	_	0.70	_
7.2	0.29		0.43	_	0.63	_	0.88	_
7.3	0.37	_	0.54	_	0.79	_	1.10	_
7.4	0.47	_	0.68	_	0.99	_	1.38	_
7.5	0.59	0.459	0.85	0.665	1.24	0.963	1.73	1.39
7.6	0.74	0.577	1.07	0.836	1.56	1.21	2.17	1.75
7.7	0.92	0.726	1.35	1.05	1.96	1.52	2.72	2.19
7.8	1.16	0.912	1.69	1.32	2.45	1.90	3.39	2.74
7.9	1.46	1.15	2.12	1.66	3.06	2.39	4.24	3.43
8.0	1.83	1.44	2.65	2.07	3.83	2.98	5.28	4.28
8.1	2.29	1.80	3.32	2.60	4.77	3.73	6.55	5.32
8.2	2.86	2.26	4.14	3.25	5.94	4.65	8.11	6.61
8.3	3.58	2.83	5.16	4.06	7.36	5.78	10.00	8.18
8.4	4.46	3.54	6.41	5.05	9.09	7.17	12.27	10.10
8.5	5.55	4.41	7.98	6.28	11.18	8.87	14.97	12.40

¹ Freshwater data from Trussel (1972).

² Seawater values from Bower and Bidwell (1978). Salinity for Seawater values = 34% at an ionic strength of 0.701m.

FOR EXAMPLE:

If a fresh water sample at 20°C has a pH of 8.5 and the test result is 1.0 ppm as Total Ammonia-Nitrogen:

- 1. The percentage from the table is 11.18% (or 0.1118).
- 2. 1 ppm Total Ammonia-Nitrogen x 0.1118 = 0.1118 ppm Unionized Ammonia-Nitrogen.
- 3. Total Ammonia-Nitrogen 1.0000 ppm $\frac{\text{Unionized Ammonia-Nitrogen}}{\text{Ionized Ammonia-Nitrogen}} = \frac{0.1118 \text{ ppm}}{0.8882 \text{ ppm}}$