
1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

1.3

1.3.1

1.3.2

1.3.2.1

1.3.3

1.3.3.1

1.3.3.1.1

1.3.3.1.2

1.3.3.2

1.3.3.2.1

1.3.3.2.2

1.3.3.2.3

1.3.3.2.4

1.3.3.2.5

1.3.3.2.6

1.3.3.3

1.3.3.4

1.3.3.5

目錄

Introduction

I.	Spring	Boot文档

1.	关于本文档

2.	获取帮助

3.	第一步

4.	使用Spring	Boot

5.	了解Spring	Boot特性

6.	迁移到生产环境

7.	高级主题

II.	开始

8.	Spring	Boot介绍

9.	系统要求

9.1.	Servlet容器

10.	Spring	Boot安装

10.1.	为Java开发者准备的安装指南

10.1.1.	Maven安装

10.1.2.	Gradle安装

10.2.	Spring	Boot	CLI安装

10.2.1.	手动安装

10.2.2.	使用SDKMAN进行安装

10.2.3.	使用OSX	Homebrew进行安装

10.2.4.	使用MacPorts进行安装

10.2.5.	命令行实现

10.2.6.	Spring	CLI示例快速入门

10.3.	从Spring	Boot早期版本升级

11.	开发你的第一个Spring	Boot应用

11.1.	创建POM

1

1.3.3.6

1.3.3.7

1.3.3.7.1

1.3.3.7.2

1.3.3.7.3

1.3.3.8

1.3.3.9

1.3.3.10

1.4

1.4.1

1.4.1.1

1.4.1.2

1.4.1.2.1

1.4.1.2.3

1.4.1.2.4

1.4.1.2.2

1.4.1.3

1.4.1.4

1.4.1.5

1.4.2

1.4.2.1

1.4.2.2

1.4.3

1.4.3.1

1.4.3.2

1.4.4

1.4.4.1

1.4.4.2

1.4.5

1.4.6

11.2.	添加classpath依赖

11.3.	编写代码

11.3.1.	@RestController和@RequestMapping注解

11.3.2.	@EnableAutoConfiguration注解

11.3.3.	main方法

11.4.	运行示例

11.5.	创建一个可执行jar

12.	接下来阅读什么

III.	使用Spring	Boot

13.	构建系统

13.1.	依赖管理

13.2.	Maven

13.2.1.	继承starter	parent

13.2.2.	在不使用parent	POM的情况下玩转Spring	Boot

13.2.3.	改变Java版本

13.2.4.	使用Spring	Boot	Maven插件

13.3.	Gradle

13.4.	Ant

13.5.	Starters

14.	组织你的代码

14.1.	使用"default"包

14.2.	放置应用的main类

15.	配置类

15.1.	导入其他配置类

15.2.	导入XML配置

16.	自动配置

16.1.	逐步替换自动配置

16.2.	禁用特定的自动配置

17.	Spring	Beans和依赖注入

18.	使用@SpringBootApplication注解

2

1.4.7

1.4.7.1

1.4.7.2

1.4.7.3

1.4.7.4

1.4.7.5

1.4.8

1.4.8.1

1.4.8.2

1.4.8.2.1

1.4.8.2.2

1.4.8.2.3

1.4.8.2.4

1.4.8.2.5

1.4.8.2.6

1.4.8.3

1.4.8.4

1.4.8.5

1.4.8.5.1

1.4.8.5.2

1.4.8.5.3

1.4.8.5.3.1

1.4.8.5.3.2

1.5

1.5.1

1.5.1.1

1.5.1.2

1.5.1.3

1.5.1.4

1.5.1.5

19.	运行应用程序

19.1.	从IDE中运行

19.2.	作为一个打包后的应用运行

19.3.	使用Maven插件运行

19.4.	使用Gradle插件运行

19.5.	热交换

20.	开发者工具

20.1	默认属性

20.2	自动重启

20.2.1	排除资源

20.2.2	查看其他路径

20.2.3	禁用重启

20.2.4	使用触发器文件

20.2.5	自定义restart类加载器

20.2.6	已知限制

20.3	LiveReload

20.4	全局设置

20.5	远程应用

20.5.1	运行远程客户端应用

20.5.2	远程更新

20.5.3	远程调试通道

21.	打包用于生产的应用

22.	接下来阅读什么

IV.	Spring	Boot特性

23.	SpringApplication

23.1	启动失败

23.2.	自定义Banner

23.3.	自定义SpringApplication

23.4.	流式构建API

23.5.	Application事件和监听器

3

1.5.1.6

1.5.1.7

1.5.1.8

1.5.1.9

1.5.2

1.5.2.1

1.5.2.2

1.5.2.3

1.5.2.4

1.5.2.5

1.5.2.6

1.5.2.6.1

1.5.2.6.2

1.5.2.6.3

1.5.2.6.4

1.5.2.6.5

1.5.2.7

1.5.2.7.1

1.5.2.7.2

1.5.2.7.3

1.5.2.7.4

1.5.2.7.5

1.5.3

1.5.3.1

1.5.3.2

1.5.3.3

1.5.4

1.5.4.1

1.5.4.2

1.5.4.2.1

23.6.	Web环境

23.7	访问应用参数

23.8.	使用ApplicationRunner或CommandLineRunner

23.9	Application退出

24.外化配置

24.1.	配置随机值

24.2.	访问命令行属性

24.3.	Application属性文件

24.4.	Profile-specific属性

24.5.	属性占位符

24.6.	使用YAML代替Properties

24.6.1.	加载YAML

24.6.2.	在Spring环境中使用YAML暴露属性

24.6.3.	Multi-profile	YAML文档

24.6.4.	YAML缺点

24.6.5	合并YAML列表

24.7.	类型安全的配置属性

24.7.1.	第三方配置

24.7.2.	Relaxed绑定

24.7.3	属性转换

24.7.4.	@ConfigurationProperties校验

24.7.5	@ConfigurationProperties	vs	@Value

25.	Profiles

25.1.	添加激活的profiles

25.2.以编程方式设置profiles

25.3.	Profile-specific配置文件

26.	日志

26.1.	日志格式

26.2.	控制台输出

26.2.1	Color-coded输出

4

1.5.4.3

1.5.4.4

1.5.4.5

1.5.4.6

1.5.4.6.1

1.5.4.6.2

1.5.5

1.5.5.1

1.5.5.1.1

1.5.5.1.2

1.5.5.1.3

1.5.5.1.4

1.5.5.1.5

1.5.5.1.6

1.5.5.1.7

1.5.5.1.8

1.5.5.1.9

1.5.5.1.10

1.5.5.2

1.5.5.3

1.5.5.3.1

1.5.5.3.2

1.5.5.3.3

1.5.5.3.4

1.5.5.3.5

1.5.6

1.5.6.1

1.5.6.1.1

1.5.6.1.2

1.5.6.2

26.3.	文件输出

26.4.	日志级别

26.5.	自定义日志配置

26.6	Logback扩展

26.6.1	Profile-specific配置

26.6.2	Environment属性

27.	开发Web应用

27.1.	Spring	Web	MVC框架

27.1.1.	Spring	MVC自动配置

27.1.2.	HttpMessageConverters

27.1.3	自定义JSON序列化器和反序列化器

27.1.4	MessageCodesResolver

27.1.5	静态内容

27.1.6	ConfigurableWebBindingInitializer

27.1.7	模板引擎

27.1.8	错误处理

27.1.9	Spring	HATEOAS

27.1.10	CORS支持

27.2	JAX-RS和Jersey

27.3	内嵌servlet容器支持

27.3.1	Servlets,	Filters和listeners

27.3.2	Servlet上下文初始化

27.3.3	EmbeddedWebApplicationContext

27.3.4	自定义内嵌servlet容器

27.3.5	JSP的限制

28.	安全

28.1	OAuth2

28.1.1	授权服务器

28.1.2	资源服务器

28.2	User	Info中的Token类型

5

1.5.6.3

1.5.6.3.1

1.5.6.3.2

1.5.6.4

1.5.7

1.5.7.1

1.5.7.1.1

1.5.7.1.2

1.5.7.1.3

1.5.7.2

1.5.7.3

1.5.7.3.1

1.5.7.3.2

1.5.7.3.3

1.5.7.4

1.5.7.4.1

1.5.7.4.2

1.5.7.5

1.5.7.5.1

1.5.7.5.2

1.5.7.5.3

1.5.8

1.5.8.1

1.5.8.1.1

1.5.8.2

1.5.8.2.1

1.5.8.2.2

1.5.8.2.3

1.5.8.2.4

1.5.8.3

28.3	自定义User	Info	RestTemplate

28.3.1	客户端

28.3.2	单点登陆

28.4	Actuator安全

29.	使用SQL数据库

29.1.	配置DataSource

29.1.1.	对内嵌数据库的支持

29.1.2.	连接生产环境数据库

29.1.3.	连接JNDI数据库

29.2.	使用JdbcTemplate

29.3.	JPA和Spring	Data

29.3.1.	实体类

29.3.2.	Spring	Data	JPA仓库

29.3.3.	创建和删除JPA数据库

29.4	使用H2的web控制台

29.4.1	改变H2控制台路径

29.4.2	保护H2控制台

29.5	使用jOOQ

29.5.1	代码生成

29.5.2	使用DSLContext

29.5.3	自定义jOOQ

30.	使用NoSQL技术

30.1.	Redis

30.1.1.	连接Redis

30.2.	MongoDB

30.2.1.	连接MongoDB数据库

30.2.2.	MongoDBTemplate

30.2.3.	Spring	Data	MongoDB仓库

30.2.4	内嵌的Mongo

30.3	Neo4j

6

1.5.8.3.1

1.5.8.3.2

1.5.8.3.3

1.5.8.3.4

1.5.8.3.5

1.5.8.4

1.5.8.5

1.5.8.5.1

1.5.8.5.2

1.5.8.6

1.5.8.6.1

1.5.8.6.2

1.5.8.6.3

1.5.8.7

1.5.8.7.1

1.5.8.7.2

1.5.8.8

1.5.8.8.1

1.5.8.8.2

1.5.9

1.5.9.1

1.5.9.1.1

1.5.9.1.2

1.5.9.1.3

1.5.9.1.4

1.5.9.1.5

1.5.9.1.6

1.5.9.1.7

1.5.9.1.8

1.5.9.1.9

30.3.1	连接Neo4j数据库

30.3.2	使用内嵌模式

30.3.3	Neo4jSession

30.3.4	Spring	Data	Neo4j仓库

30.3.5	仓库示例

30.4	Gemfire

30.5	Solr

30.5.1	连接Solr

30.5.2	Spring	Data	Solr仓库

30.6	Elasticsearch

30.6.1	使用Jest连接Elasticsearch

30.6.2	使用Spring	Data连接Elasticsearch

30.6.3	Spring	Data	Elasticseach仓库

30.7	Cassandra

30.7.1	连接Cassandra

30.7.2	Spring	Data	Cassandra仓库

30.8	Couchbase

30.8.1	连接Couchbase

30.8.2	Spring	Data	Couchbase仓库

31.	缓存

31.1	支持的缓存提供商

31.1.1	Generic

31.1.2	JCache	(JSR-107)

31.1.3	EhCache	2.x

31.1.4	Hazelcast

31.1.5	Infinispan

31.1.6	Couchbase

31.1.7	Redis

31.1.8	Caffeine

31.1.9	Guava

7

1.5.9.1.10

1.5.9.1.11

1.5.10

1.5.10.1

1.5.10.1.1

1.5.10.1.2

1.5.10.1.3

1.5.10.1.4

1.5.10.1.5

1.5.10.1.6

1.5.10.2

1.5.10.2.1

1.5.10.2.2

1.5.10.2.3

1.5.10.3

1.5.10.3.1

1.5.11

1.5.12

1.5.12.1

1.5.12.2

1.5.12.3

1.5.12.4

1.5.12.5

1.5.12.6

1.5.13

1.5.14

1.5.15

1.5.16

1.5.17

1.5.17.1

31.1.10	Simple

31.1.11	None

32.	消息

32.1.	JMS

32.1.1	ActiveQ支持

32.1.2	Artemis支持

32.1.3	HornetQ支持

32.1.4	使用JNDI	ConnectionFactory

32.1.5	发送消息

32.1.6	接收消息

32.2	AMQP

32.2.1	RabbitMQ支持

32.2.2	发送消息

32.2.3	接收消息

33.	调用REST服务

33.1	自定义RestTemplate

34.	发送邮件

35.	使用JTA处理分布式事务

35.1	使用Atomikos事务管理器

35.2	使用Bitronix事务管理器

35.3	使用Narayana事务管理器

35.4	使用J2EE管理的事务管理器

35.5	混合XA和non-XA的JMS连接

35.6	支持可替代的内嵌事务管理器

36.	Hazelcast

37.	Spring集成

38.	Spring	Session

39.	基于JMX的监控和管理

40.	测试

40.1	测试作用域依赖

8

1.5.17.2

1.5.17.3

1.5.17.3.1

1.5.17.3.2

1.5.17.3.3

1.5.17.3.4

1.5.17.3.5

1.5.17.3.6

1.5.17.3.7

1.5.17.3.8

1.5.17.3.9

1.5.17.3.10

1.5.17.3.11

1.5.17.4

1.5.17.4.1

1.5.17.4.2

1.5.17.4.3

1.5.17.4.4

1.5.18

1.5.19

1.5.20

1.5.20.1

1.5.20.2

1.5.20.3

1.5.20.3.1

1.5.20.3.2

1.5.20.3.3

1.5.20.3.4

1.5.20.3.5

1.5.20.3.6

40.2	测试Spring应用

40.3	测试Spring	Boot应用

40.3.1	发现测试配置

40.3.2	排除测试配置

40.3.3	使用随机端口

40.3.4	模拟和监视beans

40.3.5	自动配置测试

40.3.6	自动配置的JSON测试

40.3.7	自动配置的Spring	MVC测试

40.3.8	自动配置的Data	JPA测试

40.3.9	自动配置的REST客户端

40.3.10	自动配置的Spring	REST	Docs测试

40.3.11	使用Spock测试Spring	Boot应用

40.4	测试工具类

40.4.1	ConfigFileApplicationContextInitializer

40.4.2	EnvironmentTestUtils

40.4.3	OutputCapture

40.4.4	TestRestTemplate

41.	WebSockets

42.	Web	Services

43.	创建自己的auto-configuration

43.1	理解自动配置的beans

43.2	定位自动配置候选者

43.3	条件注解

43.3.1	Class条件

43.3.2	Bean条件

43.3.3	Property条件

43.3.4	Resource条件

43.3.5	Web	Application条件

43.3.6	SpEL表达式条件

9

1.5.20.4

1.5.20.4.1

1.5.20.4.2

1.5.20.4.3

1.5.21

1.6

1.6.1

1.6.2

1.6.2.1

1.6.2.2

1.6.2.3

1.6.2.4

1.6.2.5

1.6.2.6

1.6.2.6.1

1.6.2.6.2

1.6.2.7

1.6.2.7.1

1.6.2.7.2

1.6.2.7.3

1.6.2.7.4

1.6.2.7.5

1.6.3

1.6.3.1

1.6.3.2

1.6.3.3

1.6.3.4

1.6.3.5

1.6.3.6

1.6.3.7

43.4	创建自己的starter

43.4.1	命名

43.4.2	自动配置模块

43.4.3	Starter模块

44.	接下来阅读什么

V.	Spring	Boot执行器:	Production-ready特性

45.	开启production-ready特性

46.	端点

46.1	自定义端点

46.2	执行器MVC端点的超媒体支持

46.3	CORS支持

46.4	添加自定义端点

46.5	健康信息

46.6	安全与HealthIndicators

46.6.1	自动配置的HealthIndicators

46.6.2	编写自定义HealthIndicators

46.7	应用信息

46.7.1	自动配置的InfoContributors

46.7.2	自定义应用info信息

46.7.3	Git提交信息

46.7.4	构建信息

46.7.5	编写自定义的InfoContributors

47.	基于HTTP的监控和管理

47.1	保护敏感端点

47.2	自定义管理端点路径

47.3	自定义管理服务器端口

47.4	配置管理相关的SSL

47.5	自定义管理服务器地址

47.6	禁用HTTP端点

47.7	HTTP	health端点访问限制

10

1.6.4

1.6.4.1

1.6.4.2

1.6.4.3

1.6.4.3.1

1.6.4.3.2

1.6.5

1.6.5.1

1.6.5.1.1

1.6.5.2

1.6.5.2.1

1.6.5.2.2

1.6.6

1.6.6.1

1.6.6.2

1.6.6.3

1.6.6.4

1.6.6.5

1.6.6.6

1.6.6.7

1.6.6.8

1.6.6.8.1

1.6.6.8.2

1.6.6.8.3

1.6.6.8.4

1.6.6.9

1.6.6.10

1.6.6.11

1.6.7

1.6.8

48.	基于JMX的监控和管理

48.1	自定义MBean名称

48.2	禁用JMX端点

48.3	使用Jolokia通过HTTP实现JMX远程管理

48.3.1	自定义Jolokia

48.3.2	禁用Jolokia

49.	使用远程shell进行监控和管理

49.1	连接远程shell

49.1.1	远程shell证书

49.2	扩展远程shell

49.2.1	远程shell命令

49.2.2	远程shell插件

50.	度量指标

50.1	系统指标

50.2	数据源指标

50.3	缓存指标

50.4	Tomcat	session指标

50.5	记录自己的指标

50.6	添加自己的公共指标

50.7	使用Java8的特性

50.8	指标写入,导出和聚合

50.8.1	示例:	导出到Redis

50.8.2	示例:	导出到Open	TSDB

50.8.3	示例:	导出到Statsd

50.8.4	示例:	导出到JMX

50.9	聚合多个来源的指标

50.10	Dropwizard指标

50.11	消息渠道集成

51.	审计

52.	追踪

11

1.6.8.1

1.6.9

1.6.9.1

1.6.9.2

1.6.10

1.7

1.7.1

1.7.1.1

1.7.1.1.1

1.7.1.2

1.7.1.3

1.7.1.4

1.7.1.5

1.7.2

1.7.2.1

1.7.2.1.1

1.7.2.1.2

1.7.2.1.3

1.7.2.2

1.7.3

1.8

1.8.1

1.8.2

1.8.2.1

1.8.2.1.1

1.8.2.1.2

1.8.2.1.3

1.8.2.1.4

1.8.2.1.5

1.8.2.2

52.1	自定义追踪

53.	进程监控

53.1	扩展配置

53.2	以编程方式

54.	接下来阅读什么

VI.	部署到云端

55.	部署到云端

55.1	Cloud	Foundry

55.1.1	绑定服务

55.2	Heroku

55.3	Openshift

55.4	Boxfuse和Amazon	Web	Services

55.5	Google	App	Engine

56.	安装Spring	Boot应用

56.1	Unix/Linux服务

56.1.1	安装为init.d服务(System	V)

56.1.2	安装为Systemd服务

56.1.3	自定义启动脚本

56.2	Microsoft	Windows服务

57.	接下来阅读什么

VII.	Spring	Boot	CLI

58.	安装CLI

59.	使用CLI

59.1	使用CLI运行应用

59.1.1	推断"grab"依赖

59.1.2	推断"grab"坐标

59.1.3	默认import语句

59.1.4	自动创建main方法

59.1.5	自定义依赖管理

59.2	测试你的代码

12

1.8.2.3

1.8.2.4

1.8.2.5

1.8.2.6

1.8.2.7

1.8.3

1.8.4

1.8.5

1.9

1.9.1

1.9.1.1

1.9.1.2

1.9.2

1.9.2.1

1.9.2.2

1.9.2.3

1.9.2.4

1.9.2.5

1.9.2.6

1.9.2.7

1.9.2.7.1

1.9.2.7.2

1.9.2.8

1.9.2.9

1.9.2.9.2

1.9.2.9.1

1.9.2.10

1.9.2.10.1

1.9.2.10.1.1

1.9.2.10.1.2

59.3	多源文件应用

59.4	应用打包

59.5	初始化新工程

59.6	使用内嵌shell

59.7	为CLI添加扩展

60.	使用Groovy	beans	DSL开发应用

61.	使用settings.xml配置CLI

62.	接下来阅读什么

VIII.	构建工具插件

63.	Spring	Boot	Maven插件

63.1	包含该插件

63.2	打包可执行jar和war文件

64.	Spring	Boot	Gradle插件

64.1	包含该插件

64.2	Gradle依赖管理

64.3	打包可执行jar和war文件

64.4	就地（in-place）运行项目

64.5	Spring	Boot插件配置

64.6	Repackage配置

64.7	使用Gradle自定义配置进行Repackage

64.7.1	配置选项

64.7.2	可用的layouts

64.8	理解Gradle插件是如何工作的

64.9	使用Gradle将artifacts发布到Maven仓库

64.9.1	自定义Gradle，用于产生一个继承依赖管理的pom

64.9.2	自定义Gradle，用于产生一个导入依赖管理的

pom

65.	Spring	Boot	AntLib模块

65.1.	Spring	Boot	Ant任务

65.1.1.	spring-boot:exejar

65.1.2.	示例

13

1.9.2.10.2

1.9.2.10.2.1

1.9.3

1.9.3.1

1.9.3.2

1.9.3.3

1.9.3.4

1.9.4

1.10

1.10.1

1.10.1.1

1.10.1.2

1.10.1.3

1.10.1.4

1.10.1.5

1.10.1.5.1

1.10.1.6

1.10.1.6.1

1.10.1.6.2

1.10.1.7

1.10.1.8

1.10.1.9

1.10.1.10

1.10.1.11

1.10.1.12

1.10.1.13

1.10.2

1.10.2.1

1.10.2.1.1

1.10.2.1.2

65.2.	spring-boot:findmainclass

65.2.1.	示例

66.	对其他构建系统的支持

66.1.	重新打包存档

66.2.	内嵌库

66.3.	查找main类

66.4.	repackage实现示例

67.	接下来阅读什么

IX.	How-to指南

68.	Spring	Boot应用

68.1	创建自己的FailureAnalyzer

68.2	解决自动配置问题

68.3	启动前自定义Environment或ApplicationContext

68.4	构建ApplicationContext层次结构

68.5	创建no-web应用

69.	属性&配置

69.1.	运行时暴露属性

69.1.1.	使用Maven自动暴露属性

69.1.2.	使用Gradle自动暴露属性

69.2.	外部化SpringApplication配置

69.3	改变应用程序外部配置文件的位置

69.4	使用'short'命令行参数

69.5	使用YAML配置外部属性

69.6	设置生效的Spring	profiles

69.7	根据环境改变配置

69.8	发现外部属性的内置选项

70.	内嵌servlet容器

70.1	为应用添加Servlet，Filter或Listener

70.1.1	使用Spring	bean添加Servlet,	Filter或Listener

70.1.2	使用classpath扫描添加Servlets,	Filters和Listeners

14

1.10.2.2

1.10.2.3

1.10.2.4

1.10.2.5

1.10.2.6

1.10.2.7

1.10.2.7.1

1.10.2.8

1.10.2.9

1.10.2.10

1.10.2.11

1.10.2.12

1.10.2.13

1.10.2.14

1.10.2.15

1.10.2.16

1.10.2.16.1

1.10.2.16.2

1.10.2.17

1.10.2.17.1

1.10.2.17.2

1.10.2.18

1.10.2.18.1

1.10.2.18.2

1.10.2.19

1.10.3

1.10.3.1

1.10.3.2

1.10.3.3

1.10.3.4

70.2	改变HTTP端口

70.3	使用随机未分配的HTTP端口

70.4	发现运行时的HTTP端口

70.5	配置SSL

70.6	配置访问日志

70.7	在前端代理服务器后使用

70.7.1	自定义Tomcat代理配置

70.8	配置Tomcat

70.9	启用Tomcat的多连接器

70.10	使用Tomcat的LegacyCookieProcessor

70.11	使用Jetty替代Tomcat

70.12	配置Jetty

70.13	使用Undertow替代Tomcat

70.14	配置Undertow

70.15	启用Undertow的多监听器

70.16	使用Tomcat	7.x或8.0

70.16.1	通过Maven使用Tomcat	7.x或8.0

70.16.2	通过Gradle使用Tomcat7.x或8.0

70.17	使用Jetty9.2

70.17.1	通过Maven使用Jetty9.2

70.17.2	通过Gradle使用Jetty	9.2

70.18	使用Jetty	8

70.18.1	通过Maven使用Jetty8

70.18.2	通过Gradle使用Jetty8

70.19	使用@ServerEndpoint创建WebSocket端点

71.	Spring	MVC

71.1	编写JSON	REST服务

71.2	编写XML	REST服务

71.3	自定义Jackson	ObjectMapper

71.4	自定义@ResponseBody渲染

15

1.10.3.5

1.10.3.6

1.10.3.7

1.10.3.8

1.10.3.9

1.10.3.10

1.10.4

1.10.4.1

1.10.4.1.1

1.10.4.2

1.10.4.2.1

1.10.5

1.10.5.1

1.10.5.2

1.10.5.3

1.10.5.4

1.10.5.5

1.10.5.6

1.10.5.7

1.10.5.8

1.10.5.9

1.10.5.10

1.10.5.11

1.10.6

1.10.6.1

1.10.6.2

1.10.6.3

1.10.6.4

1.10.6.5

1.10.6.5.1

71.5	处理Multipart文件上传

71.6	关闭Spring	MVC	DispatcherServlet

71.7	关闭默认的MVC配置

71.8	自定义ViewResolvers

71.9	Velocity

71.10	使用Thymeleaf	3

73.	日志

73.1	配置Logback

73.1.1	配置logback只输出到文件

73.2	配置Log4j

73.2.1	使用YAML或JSON配置Log4j2

74.	数据访问

74.1	配置数据源

74.2	配置两个数据源

74.3	使用Spring	Data仓库

74.4	从Spring配置分离@Entity定义

74.5	配置JPA属性

74.6	使用自定义EntityManagerFactory

74.7	使用两个EntityManagers

74.8	使用普通的persistence.xml

74.9	使用Spring	Data	JPA和Mongo仓库

74.10	将Spring	Data仓库暴露为REST端点

74.11	配置JPA使用的组件

75.	数据库初始化

75.1	使用JPA初始化数据库

75.2	使用Hibernate初始化数据库

75.3	使用Spring	JDBC初始化数据库

75.4	初始化Spring	Batch数据库

75.5	使用高级数据迁移工具

75.5.1	启动时执行Flyway数据库迁移

16

1.10.6.5.2

1.10.7

1.10.7.1

1.10.8

1.10.8.1

1.10.8.2

1.10.8.3

1.10.9

1.10.9.1

1.10.9.2

1.10.9.3

1.10.10

1.10.10.1

1.10.10.2

1.10.10.2.1

1.10.10.2.2

1.10.10.2.3

1.10.10.2.4

1.10.10.3

1.10.10.4

1.10.10.4.1

1.10.11

1.10.11.1

1.10.11.2

1.10.11.3

1.10.11.4

1.10.11.5

1.10.11.6

1.10.11.7

1.10.10.4.2

75.5.2	启动时执行Liquibase数据库迁移

76.	批处理应用

76.1	在启动时执行Spring	Batch作业

77.	执行器

77.1	改变HTTP端口或执行器端点的地址

77.2	自定义WhiteLabel错误页面

77.3	Actuator和Jersey

78.	安全

78.1	关闭Spring	Boot安全配置

78.2	改变AuthenticationManager并添加用户账号

78.3	当前端使用代理服务器时启用HTTPS

79.	热交换

79.1	重新加载静态内容

79.2.	在不重启容器的情况下重新加载模板

79.2.1	Thymeleaf模板

79.2.2	FreeMarker模板

79.2.3	Groovy模板

79.2.4	Velocity模板

79.3	应用快速重启

79.4	在不重启容器的情况下重新加载Java类

79.4.1	使用Maven配置Spring	Loaded

79.4.2	使用Gradle和IntelliJ	IDEA配置Spring	Loaded

80.	构建

80.1	生成构建信息

80.2	生成Git信息

80.3	自定义依赖版本

80.4	使用Maven创建可执行JAR

80.5	将Spring	Boot应用作为依赖

80.6	在可执行jar运行时提取特定的版本

80.7	使用排除创建不可执行的JAR

17

1.10.11.8

1.10.11.9

1.10.11.10

1.10.11.11

1.10.11.11.1

1.10.11.11.2

1.10.11.11.3

1.10.12

1.10.12.1

1.10.12.2

1.10.12.3

1.10.12.4

1.10.12.5

1.11

1.11.1

1.11.2

1.11.2.1

1.11.2.1.1

1.11.2.1.2

1.11.2.1.3

1.11.2.2

1.11.2.2.1

1.11.2.2.2

1.11.3

1.11.3.1

1.11.3.2

1.11.4

1.11.4.1

1.11.4.1.1

1.11.4.1.2

80.8	远程调试使用Maven启动的Spring	Boot项目

80.9	远程调试使用Gradle启动的Spring	Boot项目

80.10	使用Ant构建可执行存档

80.11	如何使用Java6

80.11.1	内嵌Servlet容器兼容性

80.11.2	Jackson

80.11.3	JTA	API兼容性

81.	传统部署

81.1	创建可部署的war文件

81.2	为老的servlet容器创建可部署的war文件

81.3	将现有的应用转换为Spring	Boot

81.4	部署WAR到Weblogic

81.5	部署WAR到老的(Servlet2.5)容器

X.附录

附录A.	常见应用属性

附录B.	配置元数据

附录B.1.	元数据格式

附录B.1.1.	Group属性

附录B.1.2.	Property属性

附录B.1.3.	可重复的元数据节点

附录B.2.	使用注解处理器产生自己的元数据

附录	B.2.1.	内嵌属性

附录	B.2.2.	添加其他的元数据

附录C.	自动配置类

附录	C.1.	来自spring-boot-autoconfigure模块

附录C.2.	来自spring-boot-actuator模块

附录D.	可执行jar格式

附录D.1.	内嵌JARs

附录D.1.1.	可执行jar文件结构

附录D.1.2.	可执行war文件结构

18

1.11.4.2

1.11.4.2.1

1.11.4.3

1.11.4.3.1

1.11.4.3.2

1.11.4.4

1.11.4.5

1.11.4.5.1

1.11.4.5.2

1.11.4.6

1.11.5

附录D.2.	Spring	Boot的"JarFile"类

附录D.2.1.	对标准Java	"JarFile"的兼容性

附录D.3.	启动可执行jars

附录D.3.1	Launcher	manifest

附录D.3.2.	暴露的存档

附录D.4.	PropertiesLauncher特性

附录D.5.	可执行jar的限制

附录D.5.1.	Zip实体压缩

附录D.5.2.	系统ClassLoader

附录D.6.	可替代的单一jar解决方案

附录E.	依赖版本

19

Spring-Boot-Reference-Guide
Spring	Boot	Reference	Guide中文翻译	-《Spring	Boot参考指南》

说明：本文档翻译的版本：1.4.1.RELEASE。

如感兴趣，可以star或fork该仓库！

Github：https://github.com/qibaoguang/

GitBook	:	Spring	Boot参考指南

整合示例：程序猿DD-Spring	Boot教程

Email：qibaoguang@gmail.com

从这里开始

交流群：

Spring	For	All社区：470962790
spring	boot最佳实践2（已满）	：	460560346
spring	boot最佳实践（已满）	：445015546

注	1.3版本查看本仓库的release。

Introduction

20

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/
https://github.com/qibaoguang/Spring-Boot-Reference-Guide
https://github.com/qibaoguang/
https://www.gitbook.com/book/qbgbook/spring-boot-reference-guide-zh/details
http://git.oschina.net/didispace/SpringBoot-Learning

Spring	Boot文档

本节对Spring	Boot参考文档做了一个简单概述。你可以参考本节，从头到尾依次阅

读该文档，也可以跳过不感兴趣的章节。

I.	Spring	Boot文档

21

1.	关于本文档

Spring	Boot参考指南有html，pdf和epub等形式的文档，你可以从

docs.spring.io/spring-boot/docs/current/reference获取到最新版本。

对本文档的拷贝，不管是电子版还是打印，在保证包含版权声明，并且不收取任何

费用的情况下，你可以自由使用，或分发给其他人。

1.	关于本文档

22

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/html
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/pdf/spring-boot-reference.pdf
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/epub/spring-boot-reference.epub
http://docs.spring.io/spring-boot/docs/current/reference

2.	获取帮助

使用Spring	Boot遇到麻烦，我们很乐意帮忙！

尝试How-to’s－它们为多数常见问题提供解决方案。

学习Spring基础知识－Spring	Boot是在很多其他Spring项目上构建的，查

看spring.io站点可以获取丰富的参考文档。如果你刚开始使用Spring，可以尝

试这些指导中的一个。

提问题－我们时刻监控着stackoverflow.com上标记为spring-boot的问题。

在github.com/spring-projects/spring-boot/issues上报告Spring	Boot的bug。

注：Spring	Boot的一切都是开源的，包括文档！如果你发现文档有问题，或只是想

提高它们的质量，请参与进来！

2.	获取帮助

23

http://spring.io/
http://spring.io/guides
http://stackoverflow.com/
http://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/issues
http://github.com/spring-projects/spring-boot/tree/master

3.	第一步

如果你想对Spring	Boot或Spring有个整体认识，可以从这里开始！

从零开始：概述｜要求｜安装

教程：第一部分｜第二部分

运行示例：第一部分｜第二部分

3.	第一步

24

4.	使用Spring	Boot
准备好使用Spring	Boot了？我们已经为你铺好道路.

构建系统：Maven｜Gradle｜Ant｜Starters
最佳实践：代码结构｜@Configuration｜@EnableAutoConfiguration｜Beans
和依赖注入

运行代码：IDE｜Packaged｜Maven｜Gradle
应用打包：产品级jars
Spring	Boot命令行：使用CLI

4.	使用Spring	Boot

25

5.	了解Spring	Boot特性

想要了解更多Spring	Boot核心特性的详情？这就是为你准备的！

核心特性：SpringApplication｜外部化配置｜Profiles｜日志

Web应用：MVC｜内嵌容器

使用数据：SQL｜NO-SQL
消息：概述｜JMS
测试：概述｜Boot应用｜工具

扩展：Auto-configuration｜@Conditions

5.	了解Spring	Boot特性

26

6.	迁移到生产环境

当你准备将Spring	Boot应用发布到生产环境时，我们提供了一些你可能喜欢的技

巧！

管理端点：概述｜自定义

连接选项：HTTP｜JMX｜SSH
监控：指标｜审计｜追踪｜进程

6.	迁移到生产环境

27

7.	高级主题

最后，我们为高级用户准备了一些主题。

部署Spring	Boot应用：云部署	|	操作系统服务

构建工具插件：Maven｜Gradle
附录：应用属性｜Auto-configuration类｜可执行Jars

7.	高级主题

28

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#build-tool-plugins-maven-plugin
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#build-tool-plugins-gradle-plugin
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#common-application-properties
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#auto-configuration-classes
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#executable-jar

入门指南

如果你想从大体上了解Spring	Boot或Spring，本章节正是你所需要的！本节中，我

们会回答基本的"what?"，"how?"和"why?"等问题，并通过一些安装指南简单介绍

下Spring	Boot。然后我们会构建第一个Spring	Boot应用，并讨论一些需要遵循的

核心原则。

II.	开始

29

8.	Spring	Boot介绍

Spring	Boot简化了基于Spring的应用开发，你只需要"run"就能创建一个独立的，产

品级别的Spring应用。	我们为Spring平台及第三方库提供开箱即用的设置，这样你

就可以有条不紊地开始。多数Spring	Boot应用只需要很少的Spring配置。

你可以使用Spring	Boot创建Java应用，并使用 	java	-jar	启动它或采用传统的

war部署方式。我们也提供了一个运行"spring脚本"的命令行工具。

我们主要的目标是：

为所有Spring开发提供一个从根本上更快，且随处可得的入门体验。

开箱即用，但通过不采用默认设置可以快速摆脱这种方式。

提供一系列大型项目常用的非功能性特征，比如：内嵌服务器，安全，指标，

健康检测，外部化配置。

绝对没有代码生成，也不需要XML配置。

8.	Spring	Boot介绍

30

9.	系统要求

默认情况下，Spring	Boot	1.4.0.BUILD-SNAPSHOT	需要Java7环境，Spring框架

4.3.2.BUILD-SNAPSHOT或以上版本。你可以在Java6下使用Spring	Boot，不过需

要添加额外配置。具体参考Section	82.11,	“How	to	use	Java	6”	。明确提供构建支

持的有Maven（3.2+）和Gradle（1.12+）。

注：尽管你可以在Java6或Java7环境下使用Spring	Boot，通常建议尽可能使用

Java8。

9.	系统要求

31

http://www.java.com/

9.1.	Servlet容器

下列内嵌容器支持开箱即用（out	of	the	box）：

名称 Servlet版本 Java版本

Tomcat	8 3.1 Java	7+

Tomcat	7 3.0 Java	6+

Jetty	9.3 3.1 Java	8+

Jetty	9.2 3.1 Java	7+

Jetty	8 3.0 Java	6+

Undertow	1.3 3.1 Java	7+

你也可以将Spring	Boot应用部署到任何兼容Servlet	3.0+的容器。

9.1.	Servlet容器

32

10.	Spring	Boot安装

Spring	Boot可以跟经典的Java开发工具（Eclipse，IntelliJ等）一起使用或安装成一

个命令行工具。不管怎样，你都需要安装Java	SDK	v1.6	或更高版本。在开始之

前，你需要检查下当前安装的Java版本：

$	java	-version

如果你是一个Java新手，或只是想体验一下Spring	Boot，你可能想先尝试Spring
Boot	CLI，否则继续阅读“经典”地安装指南。

注：尽管Spring	Boot兼容Java	1.6，如果可能的话，你应该考虑使用Java最新版

本。

10.	Spring	Boot安装

33

http://www.java.com/

10.1.	为Java开发者准备的安装指南

对于java开发者来说，使用Spring	Boot就跟使用其他Java库一样，只需要在你的

classpath下引入适当的 	spring-boot-*.jar	文件。Spring	Boot不需要集成任何

特殊的工具，所以你可以使用任何IDE或文本编辑器；同时，Spring	Boot应用也没

有什么特殊之处，你可以像对待其他Java程序那样运行，调试它。

尽管可以拷贝Spring	Boot	jars，但我们还是建议你使用支持依赖管理的构建工具，

比如Maven或Gradle。

10.1.	为Java开发者准备的安装指南

34

10.1.1.	Maven安装

Spring	Boot兼容Apache	Maven	3.2或更高版本。如果本地没有安装Maven，你可

以参考maven.apache.org上的指南。

注：在很多操作系统上，可以通过包管理器来安装Maven。OSX	Homebrew用户可

以尝试 	brew	install	maven	，Ubuntu用户可以运行 	sudo	apt-get	install

maven	。

Spring	Boot依赖使用的groupId为 	org.springframework.boot	。通常，你的

Maven	POM文件会继承 	spring-boot-starter-parent	工程，并声明一个或多

个“Starter	POMs”依赖。此外，Spring	Boot提供了一个可选的Maven插件，用于创

建可执行jars。

下面是一个典型的pom.xml文件：

<?xml	version="1.0"	encoding="UTF-8"?>

<project	xmlns="http://maven.apache.org/POM/4.0.0"	xmlns:xsi="ht

tp://www.w3.org/2001/XMLSchema-instance"

				xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	http:/

/maven.apache.org/xsd/maven-4.0.0.xsd">

				<modelVersion>4.0.0</modelVersion>

				<groupId>com.example</groupId>

				<artifactId>myproject</artifactId>

				<version>0.0.1-SNAPSHOT</version>

				<!--	Inherit	defaults	from	Spring	Boot	-->

				<parent>

								<groupId>org.springframework.boot</groupId>

								<artifactId>spring-boot-starter-parent</artifactId>

								<version>1.4.0.BUILD-SNAPSHOT</version>

				</parent>

				<!--	Add	typical	dependencies	for	a	web	application	-->

				<dependencies>

								<dependency>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-starter-web</artifactId>

10.1.	为Java开发者准备的安装指南

35

http://maven.apache.org/

								</dependency>

				</dependencies>

				<!--	Package	as	an	executable	jar	-->

				<build>

								<plugins>

												<plugin>

																<groupId>org.springframework.boot</groupId>

																<artifactId>spring-boot-maven-plugin</artifactId>

												</plugin>

								</plugins>

				</build>

				<!--	Add	Spring	repositories	-->

				<!--	(you	don't	need	this	if	you	are	using	a	.RELEASE	versio

n)	-->

				<repositories>

								<repository>

												<id>spring-snapshots</id>

												<url>http://repo.spring.io/snapshot</url>

												<snapshots><enabled>true</enabled></snapshots>

								</repository>

								<repository>

												<id>spring-milestones</id>

												<url>http://repo.spring.io/milestone</url>

								</repository>

				</repositories>

				<pluginRepositories>

								<pluginRepository>

												<id>spring-snapshots</id>

												<url>http://repo.spring.io/snapshot</url>

								</pluginRepository>

								<pluginRepository>

												<id>spring-milestones</id>

												<url>http://repo.spring.io/milestone</url>

								</pluginRepository>

				</pluginRepositories>

</project>

10.1.	为Java开发者准备的安装指南

36

注： 	spring-boot-starter-parent	是使用Spring	Boot的一种不错的方式，但它

并不总是最合适的。有时你可能需要继承一个不同的父	POM，或只是不喜欢我们

的默认配置，那你可以使用import作用域这种替代方案，具体查看Section	13.2.2,
“Using	Spring	Boot	without	the	parent	POM”。

10.1.	为Java开发者准备的安装指南

37

10.1.2.	Gradle安装

Spring	Boot兼容Gradle	1.12或更高版本。如果本地没有安装Gradle，你可以参

考www.gradle.org上的指南。

Spring	Boot的依赖可通过groupId	 	org.springframework.boot	来声明。通常，

你的项目将声明一个或多个“Starter	POMs”依赖。Spring	Boot提供了一个很有用的

Gradle插件，可以用来简化依赖声明，创建可执行jars。

注：当你需要构建项目时，Gradle	Wrapper提供一种给力的获取Gradle的方式。它

是一小段脚本和库，跟你的代码一块提交，用于启动构建进程，具体参考Gradle
Wrapper。

下面是一个典型的 	build.gradle	文件：

10.1.	为Java开发者准备的安装指南

38

http://www.gradle.org/

buildscript	{

				repositories	{

								jcenter()

								maven	{	url	"http://repo.spring.io/snapshot"	}

								maven	{	url	"http://repo.spring.io/milestone"	}

				}

				dependencies	{

								classpath("org.springframework.boot:spring-boot-gradle-p

lugin:1.4.0.BUILD-SNAPSHOT")

				}

}

apply	plugin:	'java'

apply	plugin:	'spring-boot'

jar	{

				baseName	=	'myproject'

				version	=		'0.0.1-SNAPSHOT'

}

repositories	{

				jcenter()

				maven	{	url	"http://repo.spring.io/snapshot"	}

				maven	{	url	"http://repo.spring.io/milestone"	}

}

dependencies	{

				compile("org.springframework.boot:spring-boot-starter-web")

				testCompile("org.springframework.boot:spring-boot-starter-te

st")

}

10.1.	为Java开发者准备的安装指南

39

10.2.	Spring	Boot	CLI安装

Spring	Boot	CLI是一个命令行工具，可用于快速搭建基于Spring的原型。它支持运

行Groovy脚本，这也就意味着你可以使用类似Java的语法，但不用写很多的模板代

码。

Spring	Boot不一定非要配合CLI使用，但它绝对是Spring应用取得进展的最快方式

（你咋不飞上天呢？）。

10.2.	Spring	Boot	CLI安装

40

http://groovy.codehaus.org/

10.2.1.	手动安装

Spring	CLI分发包可以从Spring软件仓库下载：

1.	 spring-boot-cli-1.4.0.BUILD-SNAPSHOT-bin.zip
2.	 spring-boot-cli-1.4.0.BUILD-SNAPSHOT-bin.tar.gz

不稳定的snapshot分发包也可以获取到。

下载完成后，解压分发包，根据存档里的INSTALL.txt操作指南进行安装。总的来

说，在 	.zip	文件的 	bin/	目录下会有一个spring脚本（Windows下
是 	spring.bat	），或使用 	java	-jar	运行 	lib/	目录下的 	.jar	文件（该脚

本会帮你确保classpath被正确设置）。

10.2.	Spring	Boot	CLI安装

41

http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/1.4.0.BUILD-SNAPSHOT/spring-boot-cli-1.4.0.BUILD-SNAPSHOT-bin.zip
http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/1.3.0.BUILD-SNAPSHOT/spring-boot-cli-1.4.0.BUILD-SNAPSHOT-bin.tar.gz
http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/
http://raw.github.com/spring-projects/spring-boot/master/spring-boot-cli/src/main/content/INSTALL.txt

10.2.2.	使用SDKMAN安装

SDKMAN（软件开发包管理器）可以对各种各样的二进制SDK包进行版本管理，包

括Groovy和Spring	Boot	CLI。可以从sdkman.io下载SDKMAN，并使用以下命令安

装Spring	Boot：

$	sdk	install	springboot

$	spring	--version

Spring	Boot	v1.4.0.BUILD-SNAPSHOT

如果你正在为CLI开发新的特性，并想轻松获取刚构建的版本，可以使用以下命

令：

$	sdk	install	springboot	dev	/path/to/spring-boot/spring-boot-cl

i/target/spring-boot-cli-1.4.0.BUILD-SNAPSHOT-bin/spring-1.4.0.B

UILD-SNAPSHOT/

$	sdk	default	springboot	dev

$	spring	--version

Spring	CLI	v1.4.0.BUILD-SNAPSHOT

这将会安装一个名叫dev的本地spring实例，它指向你的目标构建位置，所以每次你

重新构建Spring	Boot，spring都会更新为最新的。

你可以通过以下命令来验证：

10.2.	Spring	Boot	CLI安装

42

http://sdkman.io/

$	sdk	ls	springboot

==

================

Available	Springboot	Versions

==

================

>	+	dev

*	1.4.0.BUILD-SNAPSHOT

==

================

+	-	local	version

*	-	installed

>	-	currently	in	use

==

================

10.2.	Spring	Boot	CLI安装

43

10.2.3.	使用OSX	Homebrew进行安装

如果你的环境是Mac，并使用Homebrew，想要安装Spring	Boot	CLI只需以下操

作：

$	brew	tap	pivotal/tap

$	brew	install	springboot

Homebrew将把spring安装到 	/usr/local/bin	下。

注：如果该方案不可用，可能是因为你的brew版本太老了。你只需执行 	brew

update	并重试即可。

10.2.	Spring	Boot	CLI安装

44

http://brew.sh/

10.2.4.	使用MacPorts进行安装

如果你的环境是Mac，并使用MacPorts，想要安装Spring	Boot	CLI只需以下操作：

$	sudo	port	install	spring-boot-cli

10.2.	Spring	Boot	CLI安装

45

http://www.macports.org/

10.2.5.	命令行实现

Spring	Boot	CLI启动脚本为BASH和zsh	shells提供完整的命令行实现。你可以在任

何shell中source脚本（名称也是spring），或将它放到用户或系统范围内的bash初
始化脚本里。在Debian系统中，系统级的脚本位于 	/shell-

completion/bash	下，当新的shell启动时该目录下的所有脚本都会被执行。如果

想要手动运行脚本，假如你已经安装了SDKMAN，可以使用以下命令：

$.	~/.sdkman/candidates/springboot/current/shell-completion/bas

h/spring

$	spring	<HIT	TAB	HERE>

		grab		help		jar		run		test		version

注：如果你使用Homebrew或MacPorts安装Spring	Boot	CLI，命令行实现脚本会自

动注册到你的shell。

10.2.	Spring	Boot	CLI安装

46

http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://en.wikipedia.org/wiki/Zsh

10.2.6.	Spring	CLI示例快速入门

下面是一个相当简单的web应用，你可以用它测试Spring	CLI安装是否成功。创建

一个名叫 	app.groovy	的文件：

@RestController

class	ThisWillActuallyRun	{

				@RequestMapping("/")

				String	home()	{

								"Hello	World!"

				}

}

然后只需在shell中运行以下命令：

$	spring	run	app.groovy

注：首次运行该应用将会花费一些时间，因为需要下载依赖，后续运行将会快很

多。

使用你最喜欢的浏览器打开localhost:8080，然后就可以看到如下输出：

Hello	World!

10.2.	Spring	Boot	CLI安装

47

10.3.	版本升级

如果你正在升级Spring	Boot的早期发布版本，那最好查看下project	wiki上
的"release	notes"，你会发现每次发布对应的升级指南和一个"new	and
noteworthy"特性列表。

想要升级一个已安装的CLI，你需要使用合适的包管理命令，例如 	brew

upgrade	；如果是手动安装CLI，按照standard	instructions操作并记得更新你的

PATH环境变量以移除任何老的引用。

10.3.	从Spring	Boot早期版本升级

48

http://github.com/spring-projects/spring-boot/wiki

11.	开发你的第一个Spring	Boot应用

我们将使用Java开发一个简单的"Hello	World"	web应用，以此强调下Spring	Boot的
一些关键特性。项目采用Maven进行构建，因为大多数IDEs都支持它。

注：spring.io网站包含很多Spring	Boot"入门"指南，如果你正在找特定问题的解决

方案，可以先去那瞅瞅。你也可以简化下面的步骤，直接从start.spring.io的依赖搜

索器选中 	web		starter，这会自动生成一个新的项目结构，然后你就可以happy的
敲代码了。具体详情参考文档。

在开始前，你需要打开终端检查下安装的Java和Maven版本是否可用：

$	java	-version

java	version	"1.7.0_51"

Java(TM)	SE	Runtime	Environment	(build	1.7.0_51-b13)

Java	HotSpot(TM)	64-Bit	Server	VM	(build	24.51-b03,	mixed	mode)

$	mvn	-v

Apache	Maven	3.2.3	(33f8c3e1027c3ddde99d3cdebad2656a31e8fdf4;	20

14-08-11T13:58:10-07:00)

Maven	home:	/Users/user/tools/apache-maven-3.1.1

Java	version:	1.7.0_51,	vendor:	Oracle	Corporation

注：该示例需要创建单独的文件夹，后续的操作建立在你已创建一个合适的文件

夹，并且它是你的“当前目录”。

11.	开发你的第一个Spring	Boot应用

49

http://spring.io/
https://start.spring.io/
https://github.com/spring-io/initializr

11.1.	创建POM
让我们以创建一个Maven	 	pom.xml	文件作为开始吧，因为 	pom.xml	是构建项目

的处方！打开你最喜欢的文本编辑器，并添加以下内容：

<?xml	version="1.0"	encoding="UTF-8"?>

<project	xmlns="http://maven.apache.org/POM/4.0.0"	xmlns:xsi="ht

tp://www.w3.org/2001/XMLSchema-instance"

				xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	http:/

/maven.apache.org/xsd/maven-4.0.0.xsd">

				<modelVersion>4.0.0</modelVersion>

				<groupId>com.example</groupId>

				<artifactId>myproject</artifactId>

				<version>0.0.1-SNAPSHOT</version>

				<parent>

								<groupId>org.springframework.boot</groupId>

								<artifactId>spring-boot-starter-parent</artifactId>

								<version>1.4.1.BUILD-SNAPSHOT</version>

				</parent>

				<!--	Additional	lines	to	be	added	here...	-->

				<!--	(you	don't	need	this	if	you	are	using	a	.RELEASE	versio

n)	-->

				<repositories>

								<repository>

												<id>spring-snapshots</id>

												<url>http://repo.spring.io/snapshot</url>

												<snapshots><enabled>true</enabled></snapshots>

								</repository>

								<repository>

												<id>spring-milestones</id>

												<url>http://repo.spring.io/milestone</url>

								</repository>

				</repositories>

				<pluginRepositories>

11.1.	创建POM

50

								<pluginRepository>

												<id>spring-snapshots</id>

												<url>http://repo.spring.io/snapshot</url>

								</pluginRepository>

								<pluginRepository>

												<id>spring-milestones</id>

												<url>http://repo.spring.io/milestone</url>

								</pluginRepository>

				</pluginRepositories>

</project>

这样一个可工作的构建就完成了，你可以通过运行 	mvn	package	测试它（暂时忽

略"jar将是空的-没有包含任何内容！"的警告）。

注：此刻，你可以将该项目导入到IDE中（大多数现代的Java	IDE都包含对Maven
的内建支持）。简单起见，我们将继续使用普通的文本编辑器完成该示例。

11.1.	创建POM

51

11.2.	添加classpath依赖

Spring	Boot提供很多"Starters"，用来简化添加jars到classpath的操作。示例程序中

已经在POM的 	parent	节点使用了 	spring-boot-starter-parent	，它是一个

特殊的starter，提供了有用的Maven默认设置。同时，它也提供一个 	dependency-

management	节点，这样对于期望（”blessed“）的依赖就可以省略version标记了。

其他”Starters“只简单提供开发特定类型应用所需的依赖。由于正在开发web应用，

我们将添加 	spring-boot-starter-web	依赖-但在此之前，让我们先看下目前的

依赖：

$	mvn	dependency:tree

[INFO]	com.example:myproject:jar:0.0.1-SNAPSHOT

	mvn	dependency:tree	命令可以将项目依赖以树形方式展现出来，你可以看

到 	spring-boot-starter-parent	本身并没有提供依赖。编辑 	pom.xml	，并

在 	parent	节点下添加 	spring-boot-starter-web	依赖：

<dependencies>

				<dependency>

								<groupId>org.springframework.boot</groupId>

								<artifactId>spring-boot-starter-web</artifactId>

				</dependency>

</dependencies>

如果再次运行 	mvn	dependency:tree	，你将看到现在多了一些其他依赖，包括

Tomcat	web服务器和Spring	Boot自身。

11.2.	添加classpath依赖

52

11.3.	编写代码

为了完成应用程序，我们需要创建一个单独的Java文件。Maven默认会编

译 	src/main/java	下的源码，所以你需要创建那样的文件结构，并添加一个名

为 	src/main/java/Example.java	的文件：

import	org.springframework.boot.*;

import	org.springframework.boot.autoconfigure.*;

import	org.springframework.stereotype.*;

import	org.springframework.web.bind.annotation.*;

@RestController

@EnableAutoConfiguration

public	class	Example	{

				@RequestMapping("/")

				String	home()	{

								return	"Hello	World!";

				}

				public	static	void	main(String[]	args)	throws	Exception	{

								SpringApplication.run(Example.class,	args);

				}

}

尽管代码不多，但已经发生了很多事情，让我们分步探讨重要的部分吧！

11.3.	编写代码

53

11.3.1.	@RestController和@RequestMapping注解

Example类上使用的第一个注解是 	@RestController	，这被称为构造型

（stereotype）注解。它为阅读代码的人提供暗示（这是一个支持REST的控制

器），对于Spring，该类扮演了一个特殊角色。在本示例中，我们的类是一个web
	@Controller	，所以当web请求进来时，Spring会考虑是否使用它来处理。

	@RequestMapping	注解提供路由信息，它告诉Spring任何来自"/"路径的HTTP请
求都应该被映射到 	home	方法。 	@RestController	注解告诉Spring以字符串的形

式渲染结果，并直接返回给调用者。

注： 	@RestController	和 	@RequestMapping	是Spring	MVC中的注解（它们不

是Spring	Boot的特定部分），具体参考Spring文档的MVC章节。

11.3.	编写代码

54

http://mvc.linesh.tw

11.3.2.	@EnableAutoConfiguration注解

第二个类级别的注解是 	@EnableAutoConfiguration	，这个注解告诉Spring	Boot
根据添加的jar依赖猜测你想如何配置Spring。由于 	spring-boot-starter-web	添

加了Tomcat和Spring	MVC，所以auto-configuration将假定你正在开发一个web应
用，并对Spring进行相应地设置。

Starters和Auto-Configuration：Auto-configuration设计成可以跟"Starters"一起很

好的使用，但这两个概念没有直接的联系。你可以自由地挑选starters以外的jar依
赖，Spring	Boot仍会尽最大努力去自动配置你的应用。

11.3.	编写代码

55

11.3.3.	main方法

应用程序的最后部分是main方法，这是一个标准的方法，它遵循Java对于一个应用

程序入口点的约定。我们的main方法通过调用 	run	，将业务委托给了Spring	Boot
的SpringApplication类。SpringApplication将引导我们的应用，启动Spring，相应

地启动被自动配置的Tomcat	web服务器。我们需要将 	Example.class	作为参数传

递给 	run	方法，以此告诉SpringApplication谁是主要的Spring组件，并传递args数
组以暴露所有的命令行参数。

11.3.	编写代码

56

11.4.	运行示例

到此，示例应用可以工作了。由于使用了 	spring-boot-starter-parent	

POM，这样我们就有了一个非常有用的run目标来启动程序。在项目根目录下输

入 	mvn	spring-boot:run	启动应用：

$	mvn	spring-boot:run

		.			____										_												__	_	_

	/\\	/	___'_	__	_	_(_)_	__		__	_	\	\	\	\

(()___	|	'_	|	'_|	|	'_	\/	_`	|	\	\	\	\

	\\/		___)|	|_)|	|	|	|	|	||	(_|	|))))

		'		|____|	.__|_|	|_|_|	|___,	|	/	/	/	/

	=========|_|==============|___/=/_/_/_/

	::	Spring	Boot	::		(v1.4.1.BUILD-SNAPSHOT)

.......	.	.	.

.......	.	.	.	(log	output	here)

.......	.	.	.

........	Started	Example	in	2.222	seconds	(JVM	running	for	6.514

)

如果使用浏览器打开localhost:8080，你应该可以看到如下输出：

Hello	World!

点击 	ctrl-c	温雅地关闭应用程序。

11.4.	运行示例

57

http://localhost:8080

11.5.	创建可执行jar
让我们通过创建一个完全自包含，并可以在生产环境运行的可执行jar来结束示例

吧！可执行jars（有时被称为胖jars	"fat	jars"）是包含编译后的类及代码运行所需依

赖jar的存档。

可执行jars和Java：Java没有提供任何标准方式，用于加载内嵌jar文件（即jar文件

中还包含jar文件），这对分发自包含应用来说是个问题。为了解决该问题，很多开

发者采用"共享的"jars。共享的jar只是简单地将所有jars的类打包进一个单独的存

档，这种方式存在的问题是，很难区分应用程序中使用了哪些库。在多个jars中如

果存在相同的文件名（但内容不一样）也会是一个问题。Spring	Boot采取一个不同

的方式，允许你真正的直接内嵌jars。

为了创建可执行的jar，我们需要将 	spring-boot-maven-plugin	添加

到 	pom.xml	中，在dependencies节点后面插入以下内容：

<build>

				<plugins>

								<plugin>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-maven-plugin</artifactId>

								</plugin>

				</plugins>

</build>

注： 	spring-boot-starter-parent		POM包含绑定到repackage目标

的 	<executions>	配置。如果不使用parent	POM，你需要自己声明该配置，具体

参考插件文档。

保存 	pom.xml	，并从命令行运行 	mvn	package	：

11.5.	创建一个可执行jar

58

http://docs.spring.io/spring-boot/docs/1.4.1.BUILD-SNAPSHOT/maven-plugin/usage.html

$	mvn	package

[INFO]	Scanning	for	projects...

[INFO]

[INFO]	---

[INFO]	Building	myproject	0.0.1-SNAPSHOT

[INFO]	---

[INFO]

[INFO]	---	maven-jar-plugin:2.4:jar	(default-jar)	@	myproject	--

-

[INFO]	Building	jar:	/Users/developer/example/spring-boot-exampl

e/target/myproject-0.0.1-SNAPSHOT.jar

[INFO]

[INFO]	---	spring-boot-maven-plugin:1.4.1.BUILD-SNAPSHOT:repacka

ge	(default)	@	myproject	---

[INFO]	---

[INFO]	BUILD	SUCCESS

[INFO]	---

如果查看target目录，你应该可以看到 	myproject-0.0.1-SNAPSHOT.jar	，该文

件大概有10Mb。想查看内部结构，可以运行 	jar	tvf	：

$	jar	tvf	target/myproject-0.0.1-SNAPSHOT.jar

在该目录下，你应该还能看到一个很小的名为 	myproject-0.0.1-

SNAPSHOT.jar.original	的文件，这是在Spring	Boot重新打包前，Maven创建的

原始jar文件。

可以使用 	java	-jar	命令运行该应用程序：

11.5.	创建一个可执行jar

59

$	java	-jar	target/myproject-0.0.1-SNAPSHOT.jar

		.			____										_												__	_	_

	/\\	/	___'_	__	_	_(_)_	__		__	_	\	\	\	\

(()___	|	'_	|	'_|	|	'_	\/	_`	|	\	\	\	\

	\\/		___)|	|_)|	|	|	|	|	||	(_|	|))))

		'		|____|	.__|_|	|_|_|	|___,	|	/	/	/	/

	=========|_|==============|___/=/_/_/_/

	::	Spring	Boot	::		(v1.3.0.BUILD-SNAPSHOT)

.......	.	.	.

.......	.	.	.	(log	output	here)

.......	.	.	.

........	Started	Example	in	2.536	seconds	(JVM	running	for	2.864

)

如上所述，点击 	ctrl-c	可以温雅地退出应用。

11.5.	创建一个可执行jar

60

12.	接下来阅读什么

希望本章节已为你提供一些Spring	Boot的基础部分，并帮你找到开发自己应用的方

式。如果你是任务驱动型的开发者，那可以直接跳到spring.io，check	out一些入门

指南，以解决特定的"使用Spring如何做"的问题；我们也有Spring	Boot相关的How-
to参考文档。

Spring	Boot仓库有大量可以运行的示例，这些示例代码是彼此独立的(运行或使用

示例的时候不需要构建其他示例)。

否则，下一步就是阅读	III、使用Spring	Boot，如果没耐心，可以跳过该章节，直接

阅读	IV、Spring	Boot特性。

12.	接下来阅读什么

61

http://spring.io/
http://spring.io/guides/
http://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples

使用Spring	Boot
本章节将详细介绍如何使用Spring	Boot，不仅覆盖构建系统，自动配置，如何运行

应用等主题，还包括一些Spring	Boot的最佳实践。尽管Spring	Boot本身没有什么

特别的（跟其他一样，它只是另一个你可以使用的库），但仍有一些建议，如果遵

循的话将会事半功倍。

如果你刚接触Spring	Boot，那最好先阅读上一章节的Getting	Started指南。

III.	使用Spring	Boot

62

13.	构建系统

强烈建议你选择一个支持依赖管理，能消费发布到"Maven中央仓库"的artifacts的构

建系统，比如Maven或Gradle。使用其他构建系统也是可以的，比如Ant，但它们

可能得不到很好的支持。

13.	构建系统

63

13.1.	依赖管理

Spring	Boot每次发布时都会提供一个它所支持的精选依赖列表。实际上，在构建配

置里你不需要提供任何依赖的版本，因为Spring	Boot已经替你管理好了。当更新

Spring	Boot时，那些依赖也会一起更新。

注	如果有必要，你可以指定依赖的版本来覆盖Spring	Boot默认版本。

精选列表包括所有能够跟Spring	Boot一起使用的Spring模块及第三方库，该列表可

以在材料清单(spring-boot-dependencies)获取到，也可以找到一些支持Maven和
Gradle的资料。

注	Spring	Boot每次发布都关联一个Spring框架的基础版本，所以强烈建议你不要自

己指定Spring版本。

13.1.	依赖管理

64

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#using-boot-maven-without-a-parent
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#using-boot-maven-parent-pom
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#build-tool-plugins-gradle-dependency-management

13.2.	Maven
Maven用户可以继承 	spring-boot-starter-parent	项目来获取合适的默认设

置。该parent项目提供以下特性：

默认编译级别为Java	1.6
源码编码为UTF-8
一个Dependency	management节点，允许你省略常见依赖的 	<version>	标

签，继承自 	spring-boot-dependencies		POM。

恰到好处的资源过滤

恰到好处的插件配置（exec插件，surefire，Git	commit	ID，shade）
恰到好处的对 	application.properties	和 	application.yml	进行筛选，

包括特定profile（profile-specific）的文件，比如 	application-

foo.properties	和 	application-foo.yml	

最后一点：由于配置文件默认接收Spring风格的占位符（ 	${...}	），所以Maven
filtering需改用 	@..@	占位符（你可以使用Maven属性 	resource.delimiter	来覆

盖它）。

13.2.	Maven

65

https://maven.apache.org/plugins/maven-resources-plugin/examples/filter.html
http://mojo.codehaus.org/exec-maven-plugin/
http://maven.apache.org/surefire/maven-surefire-plugin/
https://github.com/ktoso/maven-git-commit-id-plugin
http://maven.apache.org/plugins/maven-shade-plugin/

13.2.1.	继承starter	parent
如果你想配置项目，让其继承自 	spring-boot-starter-parent	，只需

将 	parent	按如下设置：

<!--	Inherit	defaults	from	Spring	Boot	-->

<parent>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-starter-parent</artifactId>

				<version>1.4.1.BUILD-SNAPSHOT</version>

</parent>

注：你应该只需在该依赖上指定Spring	Boot版本，如果导入其他的starters，放心

的省略版本号好了。

按照以上设置，你可以在自己的项目中通过覆盖属性来覆盖个别的依赖。例如，你

可以将以下设置添加到 	pom.xml	中来升级Spring	Data到另一个发布版本。

<properties>

				<spring-data-releasetrain.version>Fowler-SR2</spring-data-re

leasetrain.version>

</properties>

注	查看spring-boot-dependencies	pom获取支持的属性列表。

13.2.	Maven

66

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-dependencies/pom.xml

13.2.2.	在不使用parent	POM的情况下玩转Spring
Boot
不是每个人都喜欢继承 	spring-boot-starter-parent		POM，比如你可能需要

使用公司的标准parent，或只是倾向于显式声明所有的Maven配置。

如果你不想使用 	spring-boot-starter-parent	，通过设置 	scope=import	的依

赖，你仍能获取到依赖管理的好处：

<dependencyManagement>

					<dependencies>

								<dependency>

												<!--	Import	dependency	management	from	Spring	Boot	-

->

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-dependencies</artifactId>

												<version>1.4.1.BUILD-SNAPSHOT</version>

												<type>pom</type>

												<scope>import</scope>

								</dependency>

				</dependencies>

</dependencyManagement>

以上设置不允许你使用属性覆盖个别依赖，为了达到这个目的，你需要在项目

的 	dependencyManagement	节点中，在 	spring-boot-dependencies	实体前插

入一个节点。例如，为了将Spring	Data升级到另一个发布版本，你需要将以下配置

添加到 	pom.xml	中：

13.2.	Maven

67

<dependencyManagement>

				<dependencies>

								<!--	Override	Spring	Data	release	train	provided	by	Spri

ng	Boot	-->

								<dependency>

												<groupId>org.springframework.data</groupId>

												<artifactId>spring-data-releasetrain</artifactId>

												<version>Fowler-SR2</version>

												<scope>import</scope>

												<type>pom</type>

								</dependency>

								<dependency>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-dependencies</artifactId>

												<version>1.4.1.BUILD-SNAPSHOT</version>

												<type>pom</type>

												<scope>import</scope>

								</dependency>

				</dependencies>

</dependencyManagement>

注	示例中，我们指定了一个BOM，但任何的依赖类型都可以通过这种方式覆盖。

13.2.	Maven

68

13.2.3.	改变Java版本

	spring-boot-starter-parent	选择了相当保守的Java兼容策略，如果你遵循我

们的建议，使用最新的Java版本，可以添加一个 	java.version	属性：

<properties>

				<java.version>1.8</java.version>

</properties>

13.2.	Maven

69

13.2.4.	使用Spring	Boot	Maven插件

Spring	Boot包含一个Maven插件，它可以将项目打包成一个可执行jar。如果想使用

它，你可以将该插件添加到 	<plugins>	节点处：

<build>

				<plugins>

								<plugin>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-maven-plugin</artifactId>

								</plugin>

				</plugins>

</build>

注：如果使用Spring	Boot	starter	parent	pom，你只需添加该插件而无需配置它，

除非你想改变定义在partent中的设置。

13.2.	Maven

70

13.3.	Gradle
Gradle用户可以直接在它们的 	dependencies	节点处导入”starters“。跟Maven不
同的是，这里不用导入"super	parent"，也就不能共享配置。

apply	plugin:	'java'

repositories	{

				maven	{	url	"http://repo.spring.io/snapshot"	}

				maven	{	url	"http://repo.spring.io/milestone"	}

}

dependencies	{

				compile("org.springframework.boot:spring-boot-starter-web:1.

4.1.BUILD-SNAPSHOT")

}

跟maven类似，spring	boot也有gradle插件spring-boot-gradle-plugin，它能够提供

任务用于创建可执行jar，或从源码（source）运行项目。它也提供依赖管理的能

力，该功能允许你省略Spring	Boot管理的任何依赖的version版本号：

13.3.	Gradle

71

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#build-tool-plugins-gradle-dependency-management

buildscript	{

				repositories	{

								maven	{	url	"http://repo.spring.io/snapshot"	}

								maven	{	url	"http://repo.spring.io/milestone"	}

				}

				dependencies	{

								classpath("org.springframework.boot:spring-boot-gradle-p

lugin:1.4.1.BUILD-SNAPSHOT")

				}

}

apply	plugin:	'java'

apply	plugin:	'spring-boot'

repositories	{

				maven	{	url	"http://repo.spring.io/snapshot"	}

				maven	{	url	"http://repo.spring.io/milestone"	}

}

dependencies	{

				compile("org.springframework.boot:spring-boot-starter-web")

				testCompile("org.springframework.boot:spring-boot-starter-te

st")

}

13.3.	Gradle

72

13.4.	Ant
使用Apache	Ant+Ivy构建Spring	Boot项目是完全可能的。 	spring-boot-antlib	

AntLib模块能够帮助Ant创建可执行jars，一个传统的用于声明依赖的 	ivy.xml	文

件可能如下所示：

<ivy-module	version="2.0">

				<info	organisation="org.springframework.boot"	module="spring

-boot-sample-ant"	/>

				<configurations>

								<conf	name="compile"	description="everything	needed	to	c

ompile	this	module"	/>

								<conf	name="runtime"	extends="compile"	description="ever

ything	needed	to	run	this	module"	/>

				</configurations>

				<dependencies>

								<dependency	org="org.springframework.boot"	name="spring-

boot-starter"

												rev="${spring-boot.version}"	conf="compile"	/>

				</dependencies>

</ivy-module>

同样，一个传统的 	build.xml	可能是这样的：

13.4.	Ant

73

<project

				xmlns:ivy="antlib:org.apache.ivy.ant"

				xmlns:spring-boot="antlib:org.springframework.boot.ant"

				name="myapp"	default="build">

				<property	name="spring-boot.version"	value="1.3.0.BUILD-SNAP

SHOT"	/>

				<target	name="resolve"	description="-->	retrieve	dependencie

s	with	ivy">

								<ivy:retrieve	pattern="lib/[conf]/[artifact]-[type]-[rev

ision].[ext]"	/>

				</target>

				<target	name="classpaths"	depends="resolve">

								<path	id="compile.classpath">

												<fileset	dir="lib/compile"	includes="*.jar"	/>

								</path>

				</target>

				<target	name="init"	depends="classpaths">

								<mkdir	dir="build/classes"	/>

				</target>

				<target	name="compile"	depends="init"	description="compile">

								<javac	srcdir="src/main/java"	destdir="build/classes"	cl

asspathref="compile.classpath"	/>

				</target>

				<target	name="build"	depends="compile">

								<spring-boot:exejar	destfile="build/myapp.jar"	classes="

build/classes">

												<spring-boot:lib>

																<fileset	dir="lib/runtime"	/>

												</spring-boot:lib>

								</spring-boot:exejar>

				</target>

</project>

13.4.	Ant

74

注	如果你不想使用 	spring-boot-antlib	模块，那查看Section	81.10,	“Build	an
executable	archive	from	Ant	without	using	spring-boot-antlib”获取更多指导。

13.4.	Ant

75

13.5.	Starters
Starters是一个依赖描述符的集合，你可以将它包含进项目中，这样添加依赖就非

常方便。你可以获取所有Spring及相关技术的一站式服务，而不需要翻阅示例代

码，拷贝粘贴大量的依赖描述符。例如，如果你想使用Spring和JPA进行数据库访

问，只需要在项目中包含 	spring-boot-starter-data-jpa	依赖，然后你就可以

开始了。

该starters包含很多搭建，快速运行项目所需的依赖，并提供一致的，可管理传递性

的依赖集。

名字有什么含义：所有官方starters遵循相似的命名模式： 	spring-boot-

starter-*	，在这里 	*	是一种特殊的应用程序类型。该命名结构旨在帮你找到需

要的starter。很多集成于IDEs中的Maven插件允许你通过名称name搜索依赖。例

如，使用相应的Eclipse或STS插件，你可以简单地在POM编辑器中点击 	ctrl-

space	，然后输入"spring-boot-starter"就可以获取一个完整列表。正如Creating
your	own	starter章节中讨论的，第三方starters不应该以 	spring-boot	开头，因

为它跟Spring	Boot官方artifacts冲突。一个acme的第三方starter通常命名为 	acme-

spring-boot-starter	。

以下应用程序starters是Spring	Boot在 	org.springframework.boot		group下提供

的：

表	13.1.	Spring	Boot	application	starters

名称 描述 Pom

spring-boot-
starter-test

用于测试Spring	Boot应用，支持常用测试类库，包
括JUnit,	Hamcrest和Mockito Pom

spring-boot-
starter-mobile 用于使用Spring	Mobile开发web应用 Pom

spring-boot-
starter-social-
twitter

对使用Spring	Social	Twitter的支持 Pom

spring-boot-
starter-cache 用于使用Spring框架的缓存支持 Pom

spring-boot-
starter-activemq 用于使用Apache	ActiveMQ实现JMS消息 Pom

13.5.	Starters

76

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#boot-features-custom-starter
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-test/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-mobile/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-social-twitter/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-cache/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-activemq/pom.xml

spring-boot-
starter-jta-
atomikos

用于使用Atomikos实现JTA事务 Pom

spring-boot-
starter-aop 用于使用Spring	AOP和AspectJ实现面向切面编程 Pom

spring-boot-
starter-web

用于使用Spring	MVC构建web应用，包括
RESTful。Tomcat是默认的内嵌容器

Pom

spring-boot-
starter-data-
elasticsearch

用于使用Elasticsearch搜索，分析引擎和Spring
Data	Elasticsearch Pom

spring-boot-
starter-jdbc 对JDBC的支持（使用Tomcat	JDBC连接池） Pom

spring-boot-
starter-batch 对Spring	Batch的支持 Pom

spring-boot-
starter-social-
facebook

用于使用Spring	Social	Facebook Pom

spring-boot-
starter-web-
services

对Spring	Web服务的支持 Pom

spring-boot-
starter-jta-
narayana

Spring	Boot	Narayana	JTA	Starter Pom

spring-boot-
starter-
thymeleaf

用于使用Thymeleaf模板引擎构建MVC	web应用 Pom

spring-boot-
starter-mail 用于使用Java	Mail和Spring框架email发送支持 Pom

spring-boot-
starter-jta-
bitronix

用于使用Bitronix实现JTA事务 Pom

spring-boot-
starter-data-
mongodb

用于使用基于文档的数据库MongoDB和Spring
Data	MongoDB Pom

spring-boot-
starter-
validation

用于使用Hibernate	Validator实现Java	Bean校验 Pom

spring-boot-
starter-jooq

用于使用JOOQ访问SQL数据库，可使用spring-
boot-starter-data-jpa或spring-boot-starter-jdbc替 Pom

13.5.	Starters

77

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-jta-atomikos/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-aop/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-web/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-data-elasticsearch/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-jdbc/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-batch/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-social-facebook/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-web-services/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-jta-narayana/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-thymeleaf/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-mail/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-jta-bitronix/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-data-mongodb/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-validation/pom.xml
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#spring-boot-starter-data-jpa
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#spring-boot-starter-jdbc
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-jooq/pom.xml

starter-jooq 代

spring-boot-
starter-redis

用于使用Spring	Data	Redis和Jedis客户端操作键-
值存储的Redis，在1.4中已被spring-boot-starter-
data-redis取代

Pom

spring-boot-
starter-data-
cassandra

用于使用分布式数据库Cassandra和Spring	Data
Cassandra Pom

spring-boot-
starter-hateoas

用于使用Spring	MVC和Spring	HATEOAS实现基于
超媒体的RESTful	web应用

Pom

spring-boot-
starter-
integration

用于使用Spring	Integration Pom

spring-boot-
starter-data-solr 通过Spring	Data	Solr使用Apache	Solr搜索平台 Pom

spring-boot-
starter-
freemarker

用于使用FreeMarker模板引擎构建MVC	web应用 Pom

spring-boot-
starter-jersey

用于使用JAX-RS和Jersey构建RESTful	web应用，
可使用spring-boot-starter-web替代

Pom

spring-boot-
starter 核心starter，包括自动配置支持，日志和YAML Pom

spring-boot-
starter-data-
couchbase

用于使用基于文档的数据库Couchbase和Spring
Data	Couchbase Pom

spring-boot-
starter-artemis 使用Apache	Artemis实现JMS消息 Pom

spring-boot-
starter-cloud-
connectors

对Spring	Cloud	Connectors的支持，用于简化云平
台下（例如Cloud	Foundry	和Heroku）服务的连接

Pom

spring-boot-
starter-social-
linkedin

用于使用Spring	Social	LinkedIn Pom

spring-boot-
starter-velocity

用于使用Velocity模板引擎构建MVC	web应用，从
1.4版本过期

Pom

spring-boot-
starter-data-rest

用于使用Spring	Data	REST暴露基于REST的
Spring	Data仓库

Pom

spring-boot-
starter-data- 用于使用分布式数据存储GemFire和Spring	Data

13.5.	Starters

78

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#spring-boot-starter-data-redis
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-redis/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-data-cassandra/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-hateoas/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-integration/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-data-solr/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-freemarker/pom.xml
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#spring-boot-starter-web
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-jersey/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-data-couchbase/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-artemis/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-cloud-connectors/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-social-linkedin/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-velocity/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-data-rest/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-data-gemfire/pom.xml

spring-boot-
starter-groovy-
templates

用于使用Groovy模板引擎构建MVC	web应用 Pom

spring-boot-
starter-amqp 用于使用Spring	AMQP和Rabbit	MQ Pom

spring-boot-
starter-hornetq

用于使用HornetQ实现JMS消息，被spring-boot-
starter-artemis取代

Pom

spring-boot-
starter-ws

用于使用Spring	Web服务，被spring-boot-starter-
web-services取代

Pom

spring-boot-
starter-security 对Spring	Security的支持 Pom

spring-boot-
starter-data-
redis

用于使用Spring	Data	Redis和Jedis客户端操作键
—值数据存储Redis Pom

spring-boot-
starter-
websocket

用于使用Spring框架的WebSocket支持构建
WebSocket应用

Pom

spring-boot-
starter-
mustache

用于使用Mustache模板引擎构建MVC	web应用 Pom

spring-boot-
starter-data-
neo4j

用于使用图数据库Neo4j和Spring	Data	Neo4j Pom

spring-boot-
starter-data-jpa 用于使用Hibernate实现Spring	Data	JPA Pom

除了应用程序starters，以下starters可用于添加production	ready的功能：

表	13.2.	Spring	Boot生产级starters

名称 描述 Pom

spring-boot-
starter-actuator

用于使用Spring	Boot的Actuator，它提供了
production	ready功能来帮助你监控和管理应用程
序

Pom

spring-boot-
starter-remote-
shell

用于通过SSH，使用CRaSH远程shell监控，管理
你的应用

Pom

最后，Spring	Boot还包含一些用于排除或交换某些特定技术方面的starters：

13.5.	Starters

79

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-groovy-templates/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-amqp/pom.xml
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#spring-boot-starter-artemis
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-hornetq/pom.xml
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#spring-boot-starter-web-services
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-ws/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-security/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-data-redis/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-websocket/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-mustache/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-data-neo4j/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-data-jpa/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-actuator/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-remote-shell/pom.xml

最后，Spring	Boot还包含一些用于排除或交换某些特定技术方面的starters：

表	13.3.	Spring	Boot技术性starters

名称 描述 Pom

spring-boot-
starter-undertow

用于使用Undertow作为内嵌servlet容器，可使
用spring-boot-starter-tomcat替代

Pom

spring-boot-
starter-logging 用于使用Logback记录日志，默认的日志starter Pom

spring-boot-
starter-tomcat

用于使用Tomcat作为内嵌servlet容器，spring-
boot-starter-web使用的默认servlet容器

Pom

spring-boot-
starter-jetty

用于使用Jetty作为内嵌servlet容器，可使用spring-
boot-starter-tomcat替代

Pom

spring-boot-
starter-log4j2

用于使用Log4j2记录日志，可使用spring-boot-
starter-logging代替

Pom

注：查看GitHub上位于 	spring-boot-starters	模块内的README文件，可以获

取到一个社区贡献的其他starters列表。

13.5.	Starters

80

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#spring-boot-starter-tomcat
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-undertow/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-logging/pom.xml
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#spring-boot-starter-web
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-tomcat/pom.xml
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#spring-boot-starter-tomcat
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-jetty/pom.xml
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#spring-boot-starter-logging
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/spring-boot-starter-log4j2/pom.xml
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/README.adoc

14.	组织你的代码

Spring	Boot不要求使用任何特殊的代码结构，不过，遵循以下的一些最佳实践还是

挺有帮助的。

14.	组织你的代码

81

14.1.	使用"default"包
当类没有声明 	package	时，它被认为处于 	default	package	下。通常不推荐使

用 	default	package	，因为对于使

用 	@ComponentScan	， 	@EntityScan	或 	@SpringBootApplication	注解的

Spring	Boot应用来说，它会扫描每个jar中的类，这会造成一定的问题。

注	我们建议你遵循Java推荐的包命名规范，使用一个反转的域名（例

如 	com.example.project	）。

14.1.	使用"default"包

82

14.2.	放置应用的main类
通常建议将应用的main类放到其他类所在包的顶层(root	package)，并

将 	@EnableAutoConfiguration	注解到你的main类上，这样就隐式地定义了一个

基础的包搜索路径（search	package），以搜索某些特定的注解实体（比如

@Service，@Component等）	。例如，如果你正在编写一个JPA应用，Spring将
搜索 	@EnableAutoConfiguration	注解的类所在包下的 	@Entity	实体。

采用root	package方式，你就可以使用 	@ComponentScan	注解而不需要指

定 	basePackage	属性，也可以使用 	@SpringBootApplication	注解，只要将

main类放到root	package中。

下面是一个典型的结构：

com

	+-	example

					+-	myproject

									+-	Application.java

									|

									+-	domain

									|			+-	Customer.java

									|			+-	CustomerRepository.java

									|

									+-	service

									|			+-	CustomerService.java

									|

									+-	web

													+-	CustomerController.java

	Application.java	将声明 	main	方法，还有基本的 	@Configuration	。

14.2.	放置应用的main类

83

package	com.example.myproject;

import	org.springframework.boot.SpringApplication;

import	org.springframework.boot.autoconfigure.EnableAutoConfigur

ation;

import	org.springframework.context.annotation.ComponentScan;

import	org.springframework.context.annotation.Configuration;

@Configuration

@EnableAutoConfiguration

@ComponentScan

public	class	Application	{

				public	static	void	main(String[]	args)	{

								SpringApplication.run(Application.class,	args);

				}

}

14.2.	放置应用的main类

84

15.	配置类

Spring	Boot提倡基于Java的配置。尽管你可以使用XML源调

用 	SpringApplication.run()	，不过还是建议你使用 	@Configuration	类作为

主要配置源。通常定义了 	main	方法的类也是使用 	@Configuration	注解的一个

很好的替补。

注：虽然网络上有很多使用XML配置的Spring示例，但你应该尽可能的使用基于

Java的配置，搜索查看 	enable*	注解就是一个好的开端。

15.	配置类

85

15.1.	导入其他配置类

你不需要将所有的 	@Configuration	放进一个单独的类， 	@Import	注解可以用来

导入其他配置类。另外，你也可以使用 	@ComponentScan	注解自动收集所有

Spring组件，包括 	@Configuration	类。

15.1.	导入其他配置类

86

15.2.	导入XML配置

如果必须使用XML配置，建议你仍旧从一个 	@Configuration	类开始，然后使

用 	@ImportResource	注解加载XML配置文件。

15.2.	导入XML配置

87

16.	自动配置

Spring	Boot自动配置（auto-configuration）尝试根据添加的jar依赖自动配置你的

Spring应用。例如，如果classpath下存在 	HSQLDB	，并且你没有手动配置任何数据

库连接的beans，那么Spring	Boot将自动配置一个内存型（in-memory）数据库。

实现自动配置有两种可选方式，分别是

将 	@EnableAutoConfiguration	或 	@SpringBootApplication	注解

到 	@Configuration	类上。

注：你应该只添加一个 	@EnableAutoConfiguration	注解，通常建议将它添加到

主配置类（primary	 	@Configuration	）上。

16.	自动配置

88

16.1.	逐步替换自动配置

自动配置（Auto-configuration）是非侵入性的，任何时候你都可以定义自己的配置

类来替换自动配置的特定部分。例如，如果你添加自己的 	DataSource		bean，默

认的内嵌数据库支持将不被考虑。

如果需要查看当前应用启动了哪些自动配置项，你可以在运行应用时打开 	--

debug	开关，这将为核心日志开启debug日志级别，并将自动配置相关的日志输出

到控制台。

16.1.	逐步替换自动配置

89

16.2.	禁用特定的自动配置项

如果发现启用了不想要的自动配置项，你可以使

用 	@EnableAutoConfiguration	注解的exclude属性禁用它们：

import	org.springframework.boot.autoconfigure.*;

import	org.springframework.boot.autoconfigure.jdbc.*;

import	org.springframework.context.annotation.*;

@Configuration

@EnableAutoConfiguration(exclude={DataSourceAutoConfiguration.cl

ass})

public	class	MyConfiguration	{

}

如果该类不在classpath中，你可以使用该注解的excludeName属性，并指定全限定

名来达到相同效果。最后，你可以通过 	spring.autoconfigure.exclude	属性

exclude多个自动配置项（一个自动配置项集合）。

注	通过注解级别或exclude属性都可以定义排除项。

16.2.	禁用特定的自动配置

90

17.	Spring	Beans和依赖注入

你可以自由地使用任何标准的Spring框架技术去定义beans和它们注入的依赖。简

单起见，我们经常使用 	@ComponentScan	注解搜索beans，并结

合 	@Autowired	构造器注入。

如果遵循以上的建议组织代码结构（将应用的main类放到包的最上层，即root
package），那么你就可以添加 	@ComponentScan	注解而不需要任何参数，所有应

用组件（ 	@Component	,	 	@Service	,	 	@Repository	,	 	@Controller	等）都会自

动注册成Spring	Beans。

下面是一个 	@Service		Bean的示例，它使用构建器注入获取一个需要

的 	RiskAssessor		bean。

package	com.example.service;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.stereotype.Service;

@Service

public	class	DatabaseAccountService	implements	AccountService	{

				private	final	RiskAssessor	riskAssessor;

				@Autowired

				public	DatabaseAccountService(RiskAssessor	riskAssessor)	{

								this.riskAssessor	=	riskAssessor;

				}

				//	...

}

注	注意使用构建器注入允许 	riskAssessor	字段被标记为 	final	，这意味

着 	riskAssessor	后续是不能改变的。

17.	Spring	Beans和依赖注入

91

18.	使用@SpringBootApplication注解

很多Spring	Boot开发者经常使

用 	@Configuration	， 	@EnableAutoConfiguration	， 	@ComponentScan	注解

他们的main类，由于这些注解如此频繁地一块使用（特别是遵循以上最佳实践的时

候），Spring	Boot就提供了一个方便的 	@SpringBootApplication	注解作为代

替。

	@SpringBootApplication	注解等价于以默认属性使

用 	@Configuration	， 	@EnableAutoConfiguration	和 	@ComponentScan	：

package	com.example.myproject;

import	org.springframework.boot.SpringApplication;

import	org.springframework.boot.autoconfigure.SpringBootApplicat

ion;

@SpringBootApplication	//	same	as	@Configuration	@EnableAutoConf

iguration	@ComponentScan

public	class	Application	{

				public	static	void	main(String[]	args)	{

								SpringApplication.run(Application.class,	args);

				}

}

注	 	@SpringBootApplication	注解也提供了用于自定

义 	@EnableAutoConfiguration	和 	@ComponentScan	属性的别名（aliases）。

18.	使用@SpringBootApplication注解

92

19.	运行应用程序

将应用打包成jar，并使用内嵌HTTP服务器的一个最大好处是，你可以像其他方式

那样运行你的应用程序。调试Spring	Boot应用也很简单，你都不需要任何特殊IDE
插件或扩展！

注：本章节只覆盖基于jar的打包，如果选择将应用打包成war文件，你最好参考相

关的服务器和IDE文档。

19.	运行应用程序

93

19.1.	从IDE中运行

你可以从IDE中运行Spring	Boot应用，就像一个简单的Java应用，但首先需要导入

项目。导入步骤取决于你的IDE和构建系统，大多数IDEs能够直接导入Maven项
目，例如Eclipse用户可以选择 	File	菜单的 	Import…​		-->	 	Existing	Maven
Projects	。

如果不能直接将项目导入IDE，你可以使用构建系统生成IDE的元数据。Maven有针

对Eclipse和IDEA的插件；Gradle为各种IDEs提供插件。

注	如果意外地多次运行一个web应用，你将看到一个"端口已被占用"的错误。STS
用户可以使用 	Relaunch	而不是 	Run	按钮，以确保任何存在的实例是关闭的。

19.1.	从IDE中运行

94

http://maven.apache.org/plugins/maven-eclipse-plugin/
http://maven.apache.org/plugins/maven-idea-plugin/
http://www.gradle.org/docs/current/userguide/ide_support.html

19.2.	作为一个打包后的应用运行

如果使用Spring	Boot	Maven或Gradle插件创建一个可执行jar，你可以使用 	java	-

jar	运行应用。例如：

$	java	-jar	target/myproject-0.0.1-SNAPSHOT.jar

Spring	Boot支持以远程调试模式运行一个打包的应用，下面的命令可以为应用关联

一个调试器：

$	java	-Xdebug	-Xrunjdwp:server=y,transport=dt_socket,address=80

00,suspend=n	\

							-jar	target/myproject-0.0.1-SNAPSHOT.jar

19.2.	作为一个打包后的应用运行

95

19.3.	使用Maven插件运行

Spring	Boot	Maven插件包含一个 	run	目标，可用来快速编译和运行应用程序，并

且跟在IDE运行一样支持热加载。

$	mvn	spring-boot:run

你可以使用一些有用的操作系统环境变量：

$	export	MAVEN_OPTS=-Xmx1024m	-XX:MaxPermSize=128M

19.3.	使用Maven插件运行

96

19.4.	使用Gradle插件运行

Spring	Boot	Gradle插件也包含一个 	bootRun	任务，可用来运行你的应用程序。无

论你何时import	 	spring-boot-gradle-plugin	， 	bootRun	任务总会被添加进

去。

$	gradle	bootRun

你可能想使用一些有用的操作系统环境变量：

$	export	JAVA_OPTS=-Xmx1024m	-XX:MaxPermSize=128M

19.4.	使用Gradle插件运行

97

19.5.	热交换

由于Spring	Boot应用只是普通的Java应用，所以JVM热交换（hot-swapping）也能

开箱即用。不过JVM热交换能替换的字节码有限制，想要更彻底的解决方案可以使

用Spring	Loaded项目或JRebel。 	spring-boot-devtools	模块也支持应用快速重

启(restart)。

详情参考下面的Chapter	20,	Developer	tools和“How-to”章节。

19.5.	热交换

98

https://github.com/spring-projects/spring-loaded
http://zeroturnaround.com/software/jrebel/
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#using-boot-devtools

20.	开发者工具

Spring	Boot包含了一些额外的工具集，用于提升Spring	Boot应用的开发体

验。 	spring-boot-devtools	模块可以included到任何模块中，以提供

development-time特性，你只需简单的将该模块的依赖添加到构建中：

Maven

<dependencies>

				<dependency>

								<groupId>org.springframework.boot</groupId>

								<artifactId>spring-boot-devtools</artifactId>

								<optional>true</optional>

				</dependency>

</dependencies>

Gradle

dependencies	{

				compile("org.springframework.boot:spring-boot-devtools")

}

注	在运行一个完整的，打包过的应用时，开发者工具（devtools）会被自动禁用。

如果应用使用 	java	-jar	或特殊的类加载器启动，都会被认为是一个产品级的应

用（production	application），从而禁用开发者工具。为了防止devtools传递到项

目中的其他模块，设置该依赖级别为optional是个不错的实践。不过Gradle不支

持 	optional	依赖，所以你可能要了解下propdeps-plugin。如果想确保devtools绝
对不会包含在一个产品级构建中，你可以使用 	excludeDevtools	构建属性彻底移

除该JAR，Maven和Gradle都支持该属性。

20.	开发者工具

99

https://github.com/spring-projects/gradle-plugins/tree/master/propdeps-plugin

20.1	默认属性

Spring	Boot支持的一些库（libraries）使用缓存提高性能，比如Thymeleaf将缓存模

板以避免重复解析XML源文件。虽然缓存在生产环境很有用，但开发期间就是个累

赘了。如果在IDE里修改了模板，你可能会想立即看到结果。

缓存选项通常配置在 	application.properties	文件中，比如Thymeleaf提供

了 	spring.thymeleaf.cache	属性， 	spring-boot-devtools	模块会自动应用

敏感的 	development-time	配置，而不是手动设置这些属性。

注	查看DevToolsPropertyDefaultsPostProcessor获取完整的被应用的属性列表。

20.1	默认属性

100

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-devtools/src/main/java/org/springframework/boot/devtools/env/DevToolsPropertyDefaultsPostProcessor.java

20.2	自动重启

如果应用使用 	spring-boot-devtools	，则只要classpath下的文件有变动，它就

会自动重启。这在使用IDE时非常有用，因为可以很快得到代码改变的反馈。默认

情况下，classpath下任何指向文件夹的实体都会被监控，注意一些资源的修改比如

静态assets，视图模板不需要重启应用。

触发重启	由于DevTools监控classpath下的资源，所以唯一触发重启的方式就是更

新classpath。引起classpath更新的方式依赖于你使用的IDE，在Eclipse里，保存一

个修改的文件将引起classpath更新，并触发重启。在IntelliJ	IDEA中，构建工程

（Build	→	Make	Project）有同样效果。

注	你也可以通过支持的构建工具（比如，Maven和Gradle）启动应用，只要开启

fork功能，因为DevTools需要一个隔离的应用类加载器执行正确的操作。Gradle默
认支持该行为，按照以下配置可强制Maven插件fork进程：

<build>

				<plugins>

								<plugin>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-maven-plugin</artifactId>

												<configuration>

																<fork>true</fork>

												</configuration>

								</plugin>

				</plugins>

</build>

自动重启跟LiveReload可以一起很好的工作，具体参考下面章节。如果你使用

JRebel，自动重启将禁用以支持动态类加载，其他devtools特性，比如

LiveReload，属性覆盖仍旧可以使用。

DevTools依赖应用上下文的shutdown钩子来关闭处于重启过程的应用，如果禁用

shutdown钩子（ 	SpringApplication.setRegisterShutdownHook(false)	），

它将不能正常工作。

20.2	自动重启

101

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#using-boot-devtools-livereload

当判定classpath下实体的改变是否会触发重启时，DevTools自动忽略以下工

程： 	spring-boot	， 	spring-boot-devtools	， 	spring-boot-

autoconfigure	， 	spring-boot-actuator	和 	spring-boot-starter	。

Restart	vs	Reload	Spring	Boot提供的重启技术是通过使用两个类加载器实现的。

没有变化的类（比如那些第三方jars）会加载进一个基础（basic）classloader，正

在开发的类会加载进一个重启（restart）classloader。当应用重启时，restart类加

载器会被丢弃，并创建一个新的。这种方式意味着应用重启通常比冷启动（cold
starts）快很多，因为基础类加载器已经可用，并且populated（意思是基础类加载

器加载的类比较多？）。

如果发现重启对于你的应用来说不够快，或遇到类加载的问题，那你可以考虑

reload技术，比如JRebel，这些技术是通过重写它们加载过的类实现的。Spring
Loaded提供了另一种选择，然而很多框架不支持它，也得不到商业支持。

20.2	自动重启

102

http://zeroturnaround.com/software/jrebel/
https://github.com/spring-projects/spring-loaded

20.2.1	排除资源

某些资源的变化没必要触发重启，比如Thymeleaf模板可以随时编辑。默认情况

下，位于 	/META-INF/maven	， 	/META-

INF/resources	， 	/resources	， 	/static	， 	/public	或 	/templates	下的

资源变更不会触发重启，但会触发实时加载（live	reload）。你可以使

用 	spring.devtools.restart.exclude	属性自定义这些排除规则，比如，为了

只排除 	/static	和 	/public	，你可以这样设置：

spring.devtools.restart.exclude=static/**,public/**

注	如果你想保留默认属性，并添加其他的排除规则，可以使

用 	spring.devtools.restart.additional-exclude	属性作为代替。

20.2	自动重启

103

20.2.2	查看其他路径

如果想让应用在改变没有位于classpath下的文件时也会重启或重新加载，你可以使

用 	spring.devtools.restart.additional-paths	属性来配置监控变化的额外路

径。你可以使用上面描述过的 	spring.devtools.restart.exclude	属性去控制

额外路径下的变化是否触发一个完整重启或只是一个实时重新加载。

20.2	自动重启

104

20.2.3	禁用重启

如果不想使用重启特性，你可以通过 	spring.devtools.restart.enabled	属性

来禁用它，通常情况下可以在 	application.properties	文件中设置（依旧会初

始化重启类加载器，但它不会监控文件变化）。

如果需要彻底禁用重启支持，比如，不能跟某个特殊库一块工作，你需要在调

用 	SpringApplication.run(…​)	之前设置一个系统属性，如下：

public	static	void	main(String[]	args)	{

				System.setProperty("spring.devtools.restart.enabled",	"false"

);

				SpringApplication.run(MyApp.class,	args);

}

20.2	自动重启

105

20.2.4	使用触发器文件

如果使用一个IDE连续不断地编译变化的文件，你可能倾向于只在特定时间触发重

启，触发器文件可以帮你实现该功能。触发器文件是一个特殊的文件，只有修改它

才能实际触发一个重启检测。改变该文件只会触发检测，实际的重启只会在

Devtools发现它必须这样做的时候，触发器文件可以手动更新，也可以通过IDE插
件更新。

使用 	spring.devtools.restart.trigger-file	属性可以指定触发器文件。

注	你可能想将 	spring.devtools.restart.trigger-file	属性设置为全局设

置，这样所有的工程表现都会相同。

20.2	自动重启

106

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#using-boot-devtools-globalsettings

20.2.5	自定义restart类加载器

正如以上Restart	vs	Reload章节讨论的，重启功能是通过两个类加载器实现的。对

于大部分应用来说是没问题的，但有时候它可能导致类加载问题。

默认情况，在IDE里打开的项目会通过'restart'类加载器加载，其他常规的 	.jar	文

件会使用'basic'类加载器加载。如果你工作在一个多模块的项目下，并且不是每个

模块都导入IDE里，你可能需要自定义一些东西。你需要创建一个 	META-

INF/spring-devtools.properties	文件， 	spring-devtools.properties	文

件可以包含 	restart.exclude.	， 	restart.include.	前缀的属

性。 	include	元素定义了那些需要加载进'restart'类加载器中的实

体， 	exclude	元素定义了那些需要加载进'basic'类加载器中的实体，这些属性的

值是一个将应用到classpath的正则表达式。

例如：

restart.include.companycommonlibs=/mycorp-common-[\\w-]+\.jar

restart.include.projectcommon=/mycorp-myproj-[\\w-]+\.jar

注	所有属性的keys必须唯一，只要

以 	restart.include.	或 	restart.exclude.	开头都会考虑进去。所有来自

classpath的 	META-INF/spring-devtools.properties	都会被加载，你可以将文

件打包进工程或工程使用的库里。

20.2	自动重启

107

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#using-spring-boot-restart-vs-reload

20.2.6	已知限制

重启功能不能跟使用标准 	ObjectInputStream	反序列化的对象工作，如果需要反

序列化数据，你可能需要使用Spring的 	ConfigurableObjectInputStream	，并

结合 	Thread.currentThread().getContextClassLoader()	。

不幸的是，一些第三方库反序列化时没有考虑上下文类加载器，如果发现这样的问

题，你需要请求原作者给处理下。

20.2	自动重启

108

20.3	LiveReload
	spring-boot-devtools	模块包含一个内嵌的LiveReload服务器，它可以在资源

改变时触发浏览器刷新。LiveReload浏览器扩展可以免费从livereload.com站点获

取，支持Chrome，Firefox，Safari等浏览器。

如果不想在运行应用时启动LiveReload服务器，你可以

将 	spring.devtools.livereload.enabled	属性设置为false。

注	每次只能运行一个LiveReload服务器，如果你在IDE中启动多个应用，只有第一

个能够获得动态加载功能。

20.3	LiveReload

109

http://livereload.com/extensions/

20.4	全局设置

在 	$HOME	文件夹下添加一个 	.spring-boot-devtools.properties	的文件可以

用来配置全局的devtools设置（注意文件名以"."开头），添加进该文件的任何属性

都会应用到你机器上使用该devtools的Spring	Boot应用。例如，想使用触发器文件

进行重启，可以添加如下配置：

~/.spring-boot-devtools.properties.

spring.devtools.reload.trigger-file=.reloadtrigger

20.4	全局设置

110

20.5	远程应用

Spring	Boot开发者工具并不仅限于本地开发，在运行远程应用时你也可以使用一些

特性。远程支持是可选的，通过设置 	spring.devtools.remote.secret	属性可

以启用它，例如：

spring.devtools.remote.secret=mysecret

注	在远程应用上启用 	spring-boot-devtools	有一定的安全风险，生产环境中最

好不要使用。

远程devtools支持分两部分：一个是接收连接的服务端端点，另一个是运行在IDE里
的客户端应用。如果设置 	spring.devtools.remote.secret	属性，服务端组件

会自动启用，客户端组件必须手动启动。

20.5	远程应用

111

20.5.1	运行远程客户端应用

远程客户端应用程序（remote	client	application）需要在IDE中运行，你需要使用

跟将要连接的远程应用相同的classpath运
行 	org.springframework.boot.devtools.RemoteSpringApplication	，传参

为你要连接的远程应用URL。例如，你正在使用Eclipse或STS，并有一个部署到

Cloud	Foundry的 	my-app	工程，远程连接该应用需要做以下操作：

从 	Run	菜单选择 	Run	Configurations…	。

创建一个新的 	Java	Application	启动配置（launch	configuration）。

浏览 	my-app	工程。

将 	org.springframework.boot.devtools.RemoteSpringApplication	作

为main类。

将 	https://myapp.cfapps.io	作为参数传递

给 	RemoteSpringApplication	（或其他任何远程URL）。

运行中的远程客户端看起来如下：

20.5	远程应用

112

	.			____										_																																												

		__	_	_

	/\\	/	___'_	__	_	_(_)_	__		__	_										___															_			

			\	\	\	\

(()___	|	'_	|	'_|	|	'_	\/	_`	|								|	_	___	_	__		___|	|_	

___	\	\	\	\

	\\/		___)|	|_)|	|	|	|	|	||	(_|	[]::::::[]			/	-_)	'		\/	_	\		_/

	-_)))))

		'		|____|	.__|_|	|_|_|	|___,	|								|_|____|_|_|____/__\

___|/	/	/	/

	=========|_|==============|___/================================

===/_/_/_/

	::	Spring	Boot	Remote	::	1.4.1.RELEASE

2015-06-10	18:25:06.632		INFO	14938	---	[main]	o.s.b.

devtools.RemoteSpringApplication			:	Starting	RemoteSpringApplic

ation	on	pwmbp	with	PID	14938	(/Users/pwebb/projects/spring-boot

/code/spring-boot-devtools/target/classes	started	by	pwebb	in	/U

sers/pwebb/projects/spring-boot/code/spring-boot-samples/spring-

boot-sample-devtools)

2015-06-10	18:25:06.671		INFO	14938	---	[main]	s.c.a.

AnnotationConfigApplicationContext	:	Refreshing	org.springframew

ork.context.annotation.AnnotationConfigApplicationContext@2a17b7

b6:	startup	date	[Wed	Jun	10	18:25:06	PDT	2015];	root	of	context

	hierarchy

2015-06-10	18:25:07.043		WARN	14938	---	[main]	o.s.b.

d.r.c.RemoteClientConfiguration				:	The	connection	to	http://lo

calhost:8080	is	insecure.	You	should	use	a	URL	starting	with	'ht

tps://'.

2015-06-10	18:25:07.074		INFO	14938	---	[main]	o.s.b.

d.a.OptionalLiveReloadServer							:	LiveReload	server	is	runnin

g	on	port	35729

2015-06-10	18:25:07.130		INFO	14938	---	[main]	o.s.b.

devtools.RemoteSpringApplication			:	Started	RemoteSpringApplica

tion	in	0.74	seconds	(JVM	running	for	1.105)

注	因为远程客户端使用的classpath跟真实应用相同，所以它能直接读取应用配

置，这就是 	spring.devtools.remote.secret	如何被读取和传递给服务器做验

证的。

20.5	远程应用

113

强烈建议使用 	https://	作为连接协议，这样传输通道是加密的，密码也不会被截

获。

如果需要使用代理连接远程应用，你需要配

置 	spring.devtools.remote.proxy.host	和 	spring.devtools.remote.proxy

.port	属性。

20.5	远程应用

114

20.5.2	远程更新

远程客户端将监听应用的classpath变化，任何更新的资源都会发布到远程应用，并

触发重启，这在你使用云服务迭代某个特性时非常有用。通常远程更新和重启比完

整rebuild和deploy快多了。

注	文件只有在远程客户端运行时才监控。如果你在启动远程客户端之前改变一个文

件，它是不会被发布到远程server的。

20.5	远程应用

115

20.5.3	远程调试通道

Java的远程调试在诊断远程应用问题时很有用，不幸的是，当应用部署在你的数据

中心外时，它并不总能够启用远程调试。如果你使用基于容器的技术，比如

Docker，远程调试设置起来非常麻烦。

为了突破这些限制，devtools支持基于HTTP的远程调试通道。远程客户端在8000
端口提供一个本地server，这样远程debugger就可以连接了。一旦连接建立，调试

信息就通过HTTP发送到远程应用。你可以使

用 	spring.devtools.remote.debug.local-port	属性设置不同的端口。

你需要确保远程应用启动时开启了远程调试功能，通常，这可以通过配

置 	JAVA_OPTS	实现，例如，对于Cloud	Foundry，你可以将以下内容添加到

manifest.yml：

		env:

				JAVA_OPTS:	"-Xdebug	-Xrunjdwp:server=y,transport=dt_socket,s

uspend=n"

注	注意你不需要传递一个 	address=NNNN	的配置项到 	-Xrunjdwp	，如果遗漏

了，java会使用一个随机可用端口。

调试基于Internet的远程服务可能很慢，你可能需要增加IDE的超时时间。例如，在

Eclipse中你可以从 	Preferences…	选择 	Java		->	 	Debug	，改变 	Debugger

timeout	(ms)	为更合适的值（60000在多数情况下就能解决）。

20.5	远程应用

116

21.	打包用于生产的应用

可执行jars可用于生产部署。由于它们是自包含的，非常适合基于云的部署。关于

其他“生产准备”的特性，比如健康监控，审计和指标REST，或JMX端点，可以考虑

添加 	spring-boot-actuator	。具体参考Part	V,	“Spring	Boot	Actuator:
Production-ready	features”。

20.5	远程应用

117

22.	接下来阅读什么

现在你应该明白怎么结合最佳实践使用Spring	Boot，接下来可以深入学习特殊的部

分Spring	Boot	features，或者你可以跳过开头，阅读Spring	Boot的production
ready部分。

20.5	远程应用

118

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#production-ready

Spring	Boot特性

本章节将深入详细的介绍Spring	Boot，通过阅读本节你可以了解到需要使用和定制

的核心特性。如果没做好准备，你可以先阅读Part	II.	Getting	started和Part	III,
“Using	Spring	Boot”	章节，以对Spring	Boot有个良好的基本认识。

IV.	Spring	Boot特性

119

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#using-boot

23.	SpringApplication
SpringApplication类提供了一种快捷方式，用于从 	main()	方法启动Spring应用。

多数情况下，你只需要将该任务委托给 	SpringApplication.run	静态方法：

public	static	void	main(String[]	args){

				SpringApplication.run(MySpringConfiguration.class,	args);

}

当应用启动时，你应该会看到类似下面的东西：

.			____										_												__	_	_

	/\\	/	___'_	__	_	_(_)_	__		__	_	\	\	\	\

(()___	|	'_	|	'_|	|	'_	\/	_`	|	\	\	\	\

	\\/		___)|	|_)|	|	|	|	|	||	(_|	|))))

		'		|____|	.__|_|	|_|_|	|___,	|	/	/	/	/

	=========|_|==============|___/=/_/_/_/

	::	Spring	Boot	::			v1.4.1.RELEASE

2013-07-31	00:08:16.117		INFO	56603	---	[main]	o.s.b.

s.app.SampleApplication												:	Starting	SampleApplication	

v0.1.0	on	mycomputer	with	PID	56603	(/apps/myapp.jar	started	by	

pwebb)

2013-07-31	00:08:16.166		INFO	56603	---	[main]	ationC

onfigEmbeddedWebApplicationContext	:	Refreshing	org.springframew

ork.boot.context.embedded.AnnotationConfigEmbeddedWebApplication

Context@6e5a8246:	startup	date	[Wed	Jul	31	00:08:16	PDT	2013];	r

oot	of	context	hierarchy

2014-03-04	13:09:54.912		INFO	41370	---	[main]	.t.Tom

catEmbeddedServletContainerFactory	:	Server	initialized	with	por

t:	8080

2014-03-04	13:09:56.501		INFO	41370	---	[main]	o.s.b.

s.app.SampleApplication												:	Started	SampleApplication	i

n	2.992	seconds	(JVM	running	for	3.658)

默认情况下会显示INFO级别的日志信息，包括一些相关的启动详情，比如启动应用

的用户等。

23.	SpringApplication

120

23.	SpringApplication

121

23.1	启动失败

如果应用启动失败，注册的 	FailureAnalyzers	就有机会提供一个特定的错误信

息，及具体的解决该问题的动作。例如，如果在 	8080	端口启动一个web应用，而

该端口已被占用，那你应该可以看到类似如下的内容：

APPLICATION	FAILED	TO	START

Description:

Embedded	servlet	container	failed	to	start.	Port	8080	was	alread

y	in	use.

Action:

Identify	and	stop	the	process	that's	listening	on	port	8080	or	c

onfigure	this	application	to	listen	on	another	port.

注	Spring	Boot提供很多的 	FailureAnalyzer	实现，你自己实现也很容易。

如果没有可用于处理该异常的失败分析器（failure	analyzers），你需要展示完整的

auto-configuration报告以便更好的查看出问题的地方，因此你需要启

用 	org.springframework.boot.autoconfigure.logging.AutoConfigurationR

eportLoggingInitializer	的debug属性，或开启DEBUG日志级别。

例如，使用 	java	-jar	运行应用时，你可以通过如下命令启用 	debug	属性：

$	java	-jar	myproject-0.0.1-SNAPSHOT.jar	--debug

23.1	启动失败

122

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#howto-failure-analyzer
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-external-config
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-custom-log-levels

23.2.	自定义Banner
通过在classpath下添加一个 	banner.txt	或设置 	banner.location	来指定相应

的文件可以改变启动过程中打印的banner。如果这个文件有特殊的编码，你可以使

用 	banner.encoding	设置它（默认为UTF-8）。除了文本文件，你也可以添加一

个 	banner.gif	， 	banner.jpg	或 	banner.png	图片，或设

置 	banner.image.location	属性。图片会转换为字符画（ASCII	art）形式，并在

所有文本banner上方显示。

在banner.txt中可以使用如下占位符：

变量 描述

${application.version}
MANIFEST.MF中声明的应用版本号，例
如 	Implementation-Version:	1.0	会
打印 	1.0	

${application.formatted-version}
MANIFEST.MF中声明的被格式化后的应
用版本号（被括号包裹且以v作为前
缀），用于显示，例如(v1.0)

${spring-boot.version} 当前Spring	Boot的版本号，例
如 	1.4.1.RELEASE	

${spring-boot.formatted-version}
当前Spring	Boot被格式化后的版本号
（被括号包裹且以v作为前缀）,	用于显
示，例如(v1.4.1.RELEASE)

${Ansi.NAME}（或
${AnsiColor.NAME}，
${AnsiBackground.NAME},
${AnsiStyle.NAME}）

NAME代表一种ANSI编码，具体详情查
看AnsiPropertySource

${application.title}
	MANIFEST.MF	中声明的应用title，例
如 	Implementation-Title:	MyApp	会
打印 	MyApp	

注	如果想以编程的方式产生一个banner，可以使

用 	SpringBootApplication.setBanner(…)	方法，并实

现 	org.springframework.boot.Banner	接口的 	printBanner()	方法。

你也可以使用 	spring.main.banner-mode	属性决定将banner打印到何

处， 	System.out	（ 	console	），配置的logger（ 	log	）或都不输出

（ 	off)。

23.2.	自定义Banner

123

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot/src/main/java/org/springframework/boot/ansi/AnsiPropertySource.java

打印的banner将注册成一个名为 	springBootBanner	的单例bean。

注	YAML会将 	off	映射为 	false	，如果想在应用中禁用banner，你需要确

保 	off	添加了括号：

spring:

				main:

								banner-mode:	"off"

23.2.	自定义Banner

124

23.3.	自定义SpringApplication
如果默认的 	SpringApplication	不符合你的口味，你可以创建一个本地实例并对

它进行自定义。例如，想要关闭banner你可以这样写：

public	static	void	main(String[]	args)	{

				SpringApplication	app	=	new	SpringApplication(MySpringConfig

uration.class);

				app.setBannerMode(Banner.Mode.OFF);

				app.run(args);

}

注：传递给 	SpringApplication	的构造器参数将作为spring	beans的配置源，多

数情况下，它们是一些 	@Configuration	类的引用，但也可能是XML配置或要扫

描包的引用。

你也可以使用 	application.properties	文件来配置 	SpringApplication	，具

体参考24.	Externalized	配置，访问SpringApplication	Javadoc可获取完整的配置选

项列表.

23.3.	自定义SpringApplication

125

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/api/org/springframework/boot/SpringApplication.html

23.4.	流式构建API
如果需要创建一个分层的 	ApplicationContext	（多个具有父子关系的上下

文），或只是喜欢使用流式（fluent）构建API，那你可以使用

SpringApplicationBuilder。	SpringApplicationBuilder允许你以链式方式调用多个方

法，包括parent和child方法，这样就可以创建多层次结构，例如：

new	SpringApplicationBuilder()

								.sources(Parent.class)

								.child(Application.class)

								.bannerMode(Banner.Mode.OFF)

								.run(args);

注：创建ApplicationContext层次时有些限制，比如，Web组件必须包含在子上下文

中，并且父上下文和子上下文使用相同的Environment，具体参

考SpringApplicationBuilder	javadoc。

23.4.	流式构建API

126

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/api/org/springframework/boot/builder/SpringApplicationBuilder.html

23.5.	Application事件和监听器

除了常见的Spring框架事件，比如

ContextRefreshedEvent， 	SpringApplication	也会发送其他的application事
件。

注	有些事件实际上是在 	ApplicationContext	创建前触发的，所以你不能在那些

事件（处理类）中通过 	@Bean	注册监听器，只能通

过 	SpringApplication.addListeners(…)	或 	SpringApplicationBuilder.lis

teners(…)	方法注册。如果想让监听器自动注册，而不关心应用的创建方式，你可

以在工程中添加一个 	META-INF/spring.factories	文件，并使

用 	org.springframework.context.ApplicationListener	作为key指向那些监

听器，如下：

org.springframework.context.ApplicationListener=com.example.proj

ect.MyListener

应用运行时，事件会以下面的次序发送：

1.	 在运行开始，但除了监听器注册和初始化以外的任何处理之前，会发送一

个 	ApplicationStartedEvent	。

2.	 在Environment将被用于已知的上下文，但在上下文被创建前，会发送一

个 	ApplicationEnvironmentPreparedEvent	。

3.	 在refresh开始前，但在bean定义已被加载后，会发送一

个 	ApplicationPreparedEvent	。

4.	 在refresh之后，相关的回调处理完，会发送一个 	ApplicationReadyEvent	，

表示应用准备好接收请求了。

5.	 启动过程中如果出现异常，会发送一个 	ApplicationFailedEvent	。

注	通常不需要使用application事件，但知道它们的存在是有用的（在某些场合可能

会使用到），比如，在Spring	Boot内部会使用事件处理各种任务。

23.5.	Application事件和监听器

127

http://docs.spring.io/spring/docs/4.3.3.RELEASE/javadoc-api/org/springframework/context/event/ContextRefreshedEvent.html

23.6.	Web环境

	SpringApplication	将尝试为你创建正确类型的 	ApplicationContext	，默认

情况下，根据你开发的是否为web应用决定使

用 	AnnotationConfigApplicationContext	或 	AnnotationConfigEmbeddedWeb

ApplicationContext	。

用于确定是否为web环境的算法相当简单（判断是否存在某些类），你可以使

用 	setWebEnvironment(boolean	webEnvironment)	覆盖默认行为。

通过调用 	setApplicationContextClass(…)	，你可以完全控

制 	ApplicationContext	的类型。

注	在Junit测试中使用 	SpringApplication	，调

用 	setWebEnvironment(false)	是很有意义的。

23.6.	Web环境

128

23.7	访问应用参数

如果需要获取传递给 	SpringApplication.run(…)	的应用参数，你可以注入一

个 	org.springframework.boot.ApplicationArguments	类型的

bean。 	ApplicationArguments	接口即提供对原始 	String[]	参数的访问，也提

供对解析成 	option	和 	non-option	参数的访问：

import	org.springframework.boot.*

import	org.springframework.beans.factory.annotation.*

import	org.springframework.stereotype.*

@Component

public	class	MyBean	{

				@Autowired

				public	MyBean(ApplicationArguments	args)	{

								boolean	debug	=	args.containsOption("debug");

								List<String>	files	=	args.getNonOptionArgs();

								//	if	run	with	"--debug	logfile.txt"	debug=true,	files=[

"logfile.txt"]

				}

}

注	Spring	Boot也会注册一个包含Spring	 	Environment	属性

的 	CommandLinePropertySource	，这就允许你使用 	@Value	注解注入单个的应

用参数。

23.7	访问应用参数

129

23.8.	使用ApplicationRunner或
CommandLineRunner
如果需要在 	SpringApplication	启动后执行一些特殊的代码，你可以实

现 	ApplicationRunner	或 	CommandLineRunner	接口，这两个接口工作方式相

同，都只提供单一的 	run	方法，该方法仅在 	SpringApplication.run(…)	完成

之前调用。

	CommandLineRunner	接口能够访问string数组类型的应用参数，

而 	ApplicationRunner	使用的是上面描述过的 	ApplicationArguments	接口：

import	org.springframework.boot.*

import	org.springframework.stereotype.*

@Component

public	class	MyBean	implements	CommandLineRunner	{

				public	void	run(String...	args)	{

								//	Do	something...

				}

}

如果某些定义的 	CommandLineRunner	或 	ApplicationRunner		beans需要以特定

的顺序调用，你可以实现 	org.springframework.core.Ordered	接口或使

用 	org.springframework.core.annotation.Order	注解。

23.8.	使用ApplicationRunner或CommandLineRunner

130

23.9	Application退出

为确保 	ApplicationContext	在退出时被平静的（gracefully）关闭，每

个 	SpringApplication	都会注册一个JVM的shutdown钩子，所有标准的Spring生
命周期回调（比如 	DisposableBean	接口或 	@PreDestroy	注解）都能使用。

此外，如果想在应用结束时返回特定的退出码（exit	code），这些beans可以实

现 	org.springframework.boot.ExitCodeGenerator	接口。

23.9	Application退出

131

24.外部化配置

Spring	Boot允许将配置外部化（externalize），这样你就能够在不同的环境下使用

相同的代码。你可以使用properties文件，YAML文件，环境变量和命令行参数来外

部化配置。使用@Value注解，可以直接将属性值注入到beans中，然后通过Spring
的 	Environment	抽象或通过 	@ConfigurationProperties	绑定到结构化对象来

访问。

Spring	Boot设计了一个非常特别的 	PropertySource	顺序，以允许对属性值进行

合理的覆盖，属性会以如下的顺序进行设值：

1.	 home目录下的devtools全局设置属性（ 	~/.spring-boot-

devtools.properties	，如果devtools激活）。

2.	 测试用例上的@TestPropertySource注解。

3.	 测试用例上的@SpringBootTest#properties注解。

4.	 命令行参数

5.	 来自 	SPRING_APPLICATION_JSON	的属性（环境变量或系统属性中内嵌的内联

JSON）。

6.	 	ServletConfig	初始化参数。

7.	 	ServletContext	初始化参数。

8.	 来自于 	java:comp/env	的JNDI属性。

9.	 Java系统属性（System.getProperties()）。

10.	 操作系统环境变量。

11.	 RandomValuePropertySource，只包含 	random.*	中的属性。

12.	 没有打进jar包的Profile-specific应用属性（ 	application-

{profile}.properties	和YAML变量）。

13.	 打进jar包中的Profile-specific应用属性（ 	application-

{profile}.properties	和YAML变量）。

14.	 没有打进jar包的应用配置（ 	application.properties	和YAML变量）。

15.	 打进jar包中的应用配置（ 	application.properties	和YAML变量）。

16.	 	@Configuration	类上的 	@PropertySource	注解。

17.	 默认属性（使用 	SpringApplication.setDefaultProperties	指定）。

下面是具体的示例，假设你开发一个使用name属性的 	@Component	：

24.外化配置

132

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-external-config-typesafe-configuration-properties
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#using-boot-devtools-globalsettings
http://docs.spring.io/spring/docs/4.3.3.RELEASE/javadoc-api/org/springframework/test/context/TestPropertySource.html
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/api/spring-boot-test/src/main/java/org/springframework/boot/test/context/SpringBootTest.html
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-external-config-profile-specific-properties
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-external-config-profile-specific-properties
http://docs.spring.io/spring/docs/4.3.3.RELEASE/javadoc-api/org/springframework/context/annotation/PropertySource.html

import	org.springframework.stereotype.*

import	org.springframework.beans.factory.annotation.*

@Component

public	class	MyBean	{

				@Value("${name}")

				private	String	name;

				//	...

}

你可以将一个 	application.properties	放到应用的classpath下，为 	name	提供

一个合适的默认属性值。当在新的环境中运行时，可以在jar包外提供一

个 	application.properties	覆盖 	name	属性。对于一次性的测试，你可以使用

特定的命令行开关启动应用（比如， 	java	-jar	app.jar	--

name="Spring"	）。

注	 	SPRING_APPLICATION_JSON	属性可以通过命令行的环境变量设置，例如，在

一个UNIX	shell中可以这样：

$	SPRING_APPLICATION_JSON='{"foo":{"bar":"spam"}}'	java	-jar	mya

pp.jar

本示例中，如果是Spring	 	Environment	，你可以以 	foo.bar=spam	结尾；如果

在一个系统变量中，可以提供作为 	spring.application.json	的JSON字符串：

$	java	-Dspring.application.json='{"foo":"bar"}'	-jar	myapp.jar

或命令行参数：

$	java	-jar	myapp.jar	--spring.application.json='{"foo":"bar"}'

或作为一个JNDI变量 	java:comp/env/spring.application.json	。

24.外化配置

133

24.1.	配置随机值

在注入随机值（比如，密钥或测试用例）时 	RandomValuePropertySource	很有

用，它能产生整数，longs或字符串，比如：

my.secret=${random.value}

my.number=${random.int}

my.bignumber=${random.long}

my.number.less.than.ten=${random.int(10)}

my.number.in.range=${random.int[1024,65536]}

	random.int*	语法是 	OPEN	value	(,max)	CLOSE	，此处 	OPEN，CLOSE	可以是

任何字符，并且 	value，max	是整数。如果提供 	max	，那么 	value	是最小

值， 	max	是最大值（不包含在内）。

24.1.	配置随机值

134

24.2.	访问命令行属性

默认情况下， 	SpringApplication	会将所有命令行配置参数（以'--'开头，比如 	-

-server.port=9000	）转化成一个 	property	，并将其添加到Spring
	Environment	中。正如以上章节提过的，命令行属性总是优先于其他属性源。

如果不想将命令行属性添加到 	Environment	，你可以使

用 	SpringApplication.setAddCommandLineProperties(false)	来禁用它们。

24.2.	访问命令行属性

135

24.3.	Application属性文件

	SpringApplication	将从以下位置加载 	application.properties	文件，并把

它们添加到Spring	 	Environment	中：

1.	 当前目录下的 	/config	子目录。

2.	 当前目录。

3.	 classpath下的 	/config	包。

4.	 classpath根路径（root）。

该列表是按优先级排序的（列表中位置高的路径下定义的属性将覆盖位置低的）。

注	你可以使用YAML（'.yml'）文件替代'.properties'。

如果不喜欢将 	application.properties	作为配置文件名，你可以通过指

定 	spring.config.name	环境属性来切换其他的名称，也可以使

用 	spring.config.location	环境属性引用一个明确的路径（目录位置或文件路

径列表以逗号分割）。

$	java	-jar	myproject.jar	--spring.config.name=myproject

或

$	java	-jar	myproject.jar	--spring.config.location=classpath:/de

fault.properties,classpath:/override.properties

注	在初期需要根据 	spring.config.name	和 	spring.config.location	决定加

载哪个文件，所以它们必须定义为environment属性（通常为OS	env，系统属性或

命令行参数）。

如果 	spring.config.location	包含目录（相对于文件），那它们应该以 	/	结尾

（在被加载前， 	spring.config.name	关联的名称将被追加到后面，包括profile-
specific的文件名）。 	spring.config.location	下定义的文件使用方法跟往常一

样，没有profile-specific变量支持的属性，将被profile-specific的属性覆盖。

24.3.	Application属性文件

136

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-external-config-yaml

不管 	spring.config.location	配置什么值，默认总会按

照 	classpath:,classpath:/config,file:,file:config/	的顺序进行搜索，优

先级由低到高，也就是 	file:config/	获胜。如果你指定自己的位置，它们会优

先于所有的默认位置（locations），并使用相同的由低到高的优先级顺序。那样，

你就可以在 	application.properties	为应用设置默认值，然后在运行的时候使

用不同的文件覆盖它，同时保留默认配置。

注	如果使用环境变量而不是系统属性，需要注意多数操作系统的key名称不允许以

句号分割（period-separated），但你可以使用下划线（underscores）代替（比

如，使用 	SPRING_CONFIG_NAME	代替 	spring.config.name	）。

注	如果应用运行在容器中，那么JNDI属性（java:comp/env）或servlet上下文初始

化参数可以用来代替环境变量或系统属性，当然也可以使用环境变量或系统属性。

24.3.	Application属性文件

137

24.4.	Profile-specific属性

除了 	application.properties	文件，profile-specific属性也能通过命名惯

例 	application-{profile}.properties	定义。 	Environment	（Spring的环境

抽象接口）有个默认profiles集合（默认情况为 	[default]	），在没有设置激活的

profiles时会被使用（例如，如果没有明确指定激活的profiles， 	application-

default.properties	中的属性会被加载）。

Profile-specific属性加载路径和标准的 	application.properties	相同，并且

profile-specific文件总是会覆盖non-specific文件，不管profile-specific文件是否被打

包到jar中。

如果定义多个profiles，最后一个将获胜。例如， 	spring.profiles.active	定义

的profiles被添加到通过 	SpringApplication	API定义的profiles后面，因此优先级

更高。

注	如果你已经在 	spring.config.location	下定义所有文件（非目录），那些

profile-specific的文件将不被考虑。如果想使用profile-specific属性，那就

在 	spring.config.location	下使用目录。

24.4.	Profile-specific属性

138

24.5.	属性占位符

当使用 	application.properties	定义的属性时，Spring会先通过已经存在

的 	Environment	查找该属性，所以你可以引用事先定义的值（比如，系统属

性）：

app.name=MyApp

app.description=${app.name}	is	a	Spring	Boot	application

注	你也可以使用该技巧为存在的Spring	Boot属性创建'短'变量，具体参考Section
69.4,	“Use	‘short’	command	line	arguments”。

24.5.	属性占位符

139

24.6.	使用YAML代替Properties
YAML是JSON的一个超集，也是一种方便的定义层次配置数据的格式。只要你

将SnakeYAML	库放到classpath下， 	SpringApplication	就会自动支持YAML，
以作为properties的替换。

注	如果你使用'Starters'，添加 	spring-boot-starter	依赖会自动加载

SnakeYAML。

24.6.	使用YAML代替Properties

140

http://yaml.org/
http://code.google.com/p/snakeyaml/

24.6.1.	加载YAML
Spring框架提供两个便利的类用于加载YAML文
档， 	YamlPropertiesFactoryBean	会将YAML加载

为 	Properties	， 	YamlMapFactoryBean	会将YAML加载为 	Map	。

例如，下面的YAML文档：

environments:

				dev:

								url:	http://dev.bar.com

								name:	Developer	Setup

				prod:

								url:	http://foo.bar.com

								name:	My	Cool	App

会被转化到这些属性：

environments.dev.url=http://dev.bar.com

environments.dev.name=Developer	Setup

environments.prod.url=http://foo.bar.com

environments.prod.name=My	Cool	App

YAML列表被表示成使用 	[index]	间接引用作为属性keys的形式，例如下面的

YAML：

my:

			servers:

							-	dev.bar.com

							-	foo.bar.com

将会转化到这些属性:

my.servers[0]=dev.bar.com

my.servers[1]=foo.bar.com

24.6.	使用YAML代替Properties

141

使用Spring	 	DataBinder	工具集绑定这些属性（这

是 	@ConfigurationProperties	做的事）时，你需要确保目标bean有
个 	java.util.List	或 	Set	类型的属性，并且需要提供一个setter或使用可变的

值初始化它，比如，下面的代码将绑定上面的属性：

@ConfigurationProperties(prefix="my")

public	class	Config	{

				private	List<String>	servers	=	new	ArrayList<String>();

				public	List<String>	getServers()	{

								return	this.servers;

				}

}

24.6.	使用YAML代替Properties

142

24.6.2.	在Spring环境中使用YAML暴露属性

	YamlPropertySourceLoader	类能够将YAML作为 	PropertySource	导出到Sprig
	Environment	，这允许你使用常用的 	@Value	注解配合占位符语法访问YAML属
性。

24.6.	使用YAML代替Properties

143

24.6.3.	Multi-profile	YAML文档

你可以在单个文件中定义多个特定配置（profile-specific）的YAML文档，并通

过 	spring.profiles	标示生效的文档，例如：

server:

				address:	192.168.1.100

spring:

				profiles:	development

server:

				address:	127.0.0.1

spring:

				profiles:	production

server:

				address:	192.168.1.120

在以上例子中，如果 	development		profile被激活， 	server.address	属性将

是 	127.0.0.1	；如果 	development	和 	production		profiles没有启用，则该属

性的值将是 	192.168.1.100	。

在应用上下文启动时，如果没有明确指定激活的profiles，则默认的profiles将生

效。所以，在下面的文档中我们为 	security.user.password	设置了一个值，该

值只在"default"	profile中有效：

server:

		port:	8000

spring:

		profiles:	default

security:

		user:

				password:	weak

然而，在这个示例中，由于没有关联任何profile，密码总是会设置，并且如果有必

要的话可以在其他profiles中显式重置：

24.6.	使用YAML代替Properties

144

server:

		port:	8000

security:

		user:

				password:	weak

通过 	!	可以对 	spring.profiles	指定的profiles进行取反（negated，跟java中
的 	!	作用一样），如果negated和non-negated	profiles都指定一个单一文件，至少

需要匹配一个non-negated	profile，可能不会匹配任何negated	profiles。

24.6.	使用YAML代替Properties

145

24.6.4.	YAML缺点

YAML文件不能通过 	@PropertySource	注解加载，如果需要使用该方式，那就必

须使用properties文件。

24.6.	使用YAML代替Properties

146

24.6.5	合并YAML列表

正如上面看到的，所有YAML最终都转换为properties，在通过一个profile覆
盖"list"属性时这个过程可能不够直观（counter	intuitive）。例如，假设有一

个 	MyPojo	对象，默认它的 	name	和 	description	属性都为 	null	，下面我们

将从 	FooProperties	暴露一个 	MyPojo	对象列表（list）：

@ConfigurationProperties("foo")

public	class	FooProperties	{

				private	final	List<MyPojo>	list	=	new	ArrayList<>();

				public	List<MyPojo>	getList()	{

								return	this.list;

				}

}

考虑如下配置：

foo:

		list:

				-	name:	my	name

						description:	my	description

spring:

		profiles:	dev

foo:

		list:

				-	name:	my	another	name

如果 	dev		profile没有激活， 	FooProperties.list	将包括一个如上述定义

的 	MyPojo	实体，即使 	dev	生效，该 	list	仍旧只包含一个实体（ 	name	值

为 	my	another	name	， 	description	值为 	null	）。此配置不会向该列表添加

第二个 	MyPojo	实例，也不会对该项进行合并。

当一个集合定义在多个profiles时，只使用优先级最高的：

24.6.	使用YAML代替Properties

147

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-external-config-loading-yaml

foo:

		list:

				-	name:	my	name

						description:	my	description

				-	name:	another	name

						description:	another	description

spring:

		profiles:	dev

foo:

		list:

					-	name:	my	another	name

在以上示例中，如果 	dev		profile激活， 	FooProperties.list	将包含一

个 	MyPojo	实体（ 	name	值为 	my	another	name	， 	description	值

为 	null	）。

24.6.	使用YAML代替Properties

148

24.7.1.	第三方配置

	@ConfigurationProperties	不仅可以注解在类上，也可以注解在public
	@Bean	方法上，当你需要为不受控的第三方组件绑定属性时，该方法将非常有

用。

为了从 	Environment	属性中配置一个bean，你需要使

用 	@ConfigurationProperties	注解该bean：

@ConfigurationProperties(prefix	=	"foo")

@Bean

public	FooComponent	fooComponent()	{

				...

}

和上面 	ConnectionSettings	的示例方式相同，所有以 	foo	为前缀的属性定义都

会被映射到 	FooComponent	上。

24.6.	使用YAML代替Properties

149

24.7.2.	Relaxed绑定

Spring	Boot将 	Environment	属性绑定到 	@ConfigurationProperties		beans时
会使用一些宽松的规则，所以 	Environment	属性名和bean属性名不需要精确匹

配。常见的示例中有用的包括虚线分割（比如， 	context-path	绑定

到 	contextPath	），将environment属性转为大写字母（比如， 	PORT	绑

定 	port	）。

例如，给定以下 	@ConfigurationProperties	类：

@ConfigurationProperties(prefix="person")

public	class	OwnerProperties	{

				private	String	firstName;

				public	String	getFirstName()	{

								return	this.firstName;

				}

				public	void	setFirstName(String	firstName)	{

								this.firstName	=	firstName;

				}

}

下面的属性名都能使用：

属性 说明

	person.firstName	 标准驼峰规则

	person.first-name	 虚线表示，推荐用于 	.properties	和 	.yml	文件中

	person.first_name	
下划线表示，用于 	.properties	和 	.yml	文件的可
选格式

	PERSON_FIRST_NAME	 大写形式，使用系统环境变量时推荐

24.6.	使用YAML代替Properties

150

24.7.3	属性转换

将外部应用配置绑定到 	@ConfigurationProperties		beans时，Spring会尝试将

属性强制转换为正确的类型。如果需要自定义类型转换器，你可以提供一

个 	ConversionService		bean（bean	id为 	conversionService	），或自定义属

性编辑器（通过 	CustomEditorConfigurer		bean），或自定

义 	Converters	（bean定义时需要注

解 	@ConfigurationPropertiesBinding	）。

注	由于该bean在应用程序生命周期的早期就需要使用，所以确保限制你

的 	ConversionService	使用的依赖。通常，在创建时期任何你需要的依赖可能都

没完全初始化。

24.6.	使用YAML代替Properties

151

24.7.4.	@ConfigurationProperties校验

Spring	Boot将尝试校验外部配置，默认使用JSR-303（如果在classpath路径中），

你只需要将JSR-303	 	javax.validation	约束注解添加

到 	@ConfigurationProperties	类上：

@ConfigurationProperties(prefix="connection")

public	class	ConnectionProperties	{

				@NotNull

				private	InetAddress	remoteAddress;

				//	...	getters	and	setters

}

为了校验内嵌属性的值，你需要使用 	@Valid	注解关联的字段以触发它的校验，例

如：

24.6.	使用YAML代替Properties

152

@ConfigurationProperties(prefix="connection")

public	class	ConnectionProperties	{

				@NotNull

				@Valid

				private	RemoteAddress	remoteAddress;

				//	...	getters	and	setters

				public	static	class	RemoteAddress	{

								@NotEmpty

								public	String	hostname;

								//	...	getters	and	setters

				}

}

你也可以通过创建一个叫做 	configurationPropertiesValidator	的bean来添加

自定义的Spring	 	Validator	。 	@Bean	方法需要声明为 	static	，因为配置属性

校验器在应用程序生命周期中创建的比较早，将 	@Bean	方法声明为 	static	允许

该bean在创建时不需要实例化 	@Configuration	类，从而避免了早期实例化

（early	instantiation）的所有问题。相关的示例可以看这里。

注	 	spring-boot-actuator	模块包含一个暴露所

有 	@ConfigurationProperties		beans的端点（endpoint），通过浏览器打

开 	/configprops	进行浏览，或使用等效的JMX端点，具体参考Production	ready
features。

24.6.	使用YAML代替Properties

153

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-samples/spring-boot-sample-property-validation

24.7.5	@ConfigurationProperties	vs.	@Value
	@Value	是Spring容器的一个核心特性，它没有提供跟type-safe	Configuration
Properties相同的特性。下面的表格总结

了 	@ConfigurationProperties	和 	@Value	支持的特性：

特性 	@ConfigurationProperties	 	@Value	

Relaxed绑定 Yes No

Meta-data支持 Yes No

	SpEL	表达式 No Yes

如果你为自己的组件定义了一系列的配置keys，我们建议你将它们

以 	@ConfigurationProperties	注解的POJO进行分组。由于 	@Value	不支持

relaxed绑定，所以如果你使用环境变量提供属性值的话，它就不是很好的选择。最

后，尽管 	@Value	可以写 	SpEL	表达式，但这些表达式不会处理来自Application属
性文件的属性。

24.6.	使用YAML代替Properties

154

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-external-config-relaxed-binding
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#configuration-metadata
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-external-config-application-property-files

25.	Profiles
Spring	Profiles提供了一种隔离应用程序配置的方式，并让这些配置只在特定的环

境下生效。任何 	@Component	或 	@Configuration	都能注解 	@Profile	，从而限

制加载它的时机：

@Configuration

@Profile("production")

public	class	ProductionConfiguration	{

				//	...

}

以正常的Spring方式，你可以使

用 	spring.profiles.active	的 	Environment	属性来指定哪个配置生效。你可

以使用通常的任何方式来指定该属性，例如，可以将它包含

到 	application.properties	中：

spring.profiles.active=dev,hsqldb

或使用命令行开关：

--spring.profiles.active=dev,hsqldb

25.	Profiles

155

25.1.	添加激活的配置(profiles)
	spring.profiles.active	属性和其他属性一样都遵循相同的排列规则，优先级

最高的 	PropertySource	获胜，也就是说，你可以

在 	application.properties	中指定生效的配置，然后使用命令行开关替换它

们。

有时，将profile-specific的属性添加到激活的配置中而不是直接替换它们是有好处

的。 	spring.profiles.include	属性可以用来无条件的添加激活的配置，

而 	SpringApplication	的入口点也提供了一个用于设置其他配置的Java	API，通

过它设置的active配置优先级高于 	spring.profiles.active	，具体参

考 	setAdditionalProfiles()	方法。

例如，当一个应用使用下面的属性，并用 	--spring.profiles.active=prod	开

关运行，那 	proddb	和 	prodmq		profiles也会激活：

my.property:	fromyamlfile

spring.profiles:	prod

spring.profiles.include:	proddb,prodmq

注	 	spring.profiles	属性可以定义到YAML文档中，以决定何时将该文档包含进

配置，具体参考Section	63.6,	“Change	configuration	depending	on	the
environment”

25.1.	添加激活的profiles

156

25.2.以编程方式设置profiles
在应用运行前，你可以通过调

用 	SpringApplication.setAdditionalProfiles(…)	方法，以编程的方式设置

激活的配置，也可以使用Spring的 	ConfigurableEnvironment	接口激活配置

（profiles）。

25.2.以编程方式设置profiles

157

25.3.	Profile-specific配置文件

Profile-specific的配置，不管

是 	application.properties	（或 	application.yml	），还是通

过 	@ConfigurationProperties	引用的文件都是被当作文件来加载的，具体参考

Section	24.3,	“Profile	specific	properties”。

25.3.	Profile-specific配置文件

158

26.1.	日志格式

Spring	Boot默认的日志输出格式如下：

2014-03-05	10:57:51.112		INFO	45469	---	[main]	org.ap

ache.catalina.core.StandardEngine		:	Starting	Servlet	Engine:	Ap

ache	Tomcat/7.0.52

2014-03-05	10:57:51.253		INFO	45469	---	[ost-startStop-1]	o.a.c.

c.C.[Tomcat].[localhost].[/]							:	Initializing	Spring	embedde

d	WebApplicationContext

2014-03-05	10:57:51.253		INFO	45469	---	[ost-startStop-1]	o.s.we

b.context.ContextLoader												:	Root	WebApplicationContext:

	initialization	completed	in	1358	ms

2014-03-05	10:57:51.698		INFO	45469	---	[ost-startStop-1]	o.s.b.

c.e.ServletRegistrationBean								:	Mapping	servlet:	'dispatche

rServlet'	to	[/]

2014-03-05	10:57:51.702		INFO	45469	---	[ost-startStop-1]	o.s.b.

c.embedded.FilterRegistrationBean		:	Mapping	filter:	'hiddenHttp

MethodFilter'	to:	[/*]

输出的节点（items）如下：

1.	 日期和时间	-	精确到毫秒，且易于排序。

2.	 日志级别	-	 	ERROR	,	 	WARN	,	 	INFO	,	 	DEBUG		或	 	TRACE	。
3.	 Process	ID。
4.	 	---	分隔符，用于区分实际日志信息开头。

5.	 线程名	-	包括在方括号中（控制台输出可能会被截断）。

6.	 日志名	-	通常是源class的类名（缩写）。

7.	 日志信息。

注	Logback没有 	FATAL	级别，它会映射到 	ERROR	。

26.1.	日志格式

159

26.2.	控制台输出

默认的日志配置会在写日志消息时将它们回显到控制台，级别为 	ERROR	,
	WARN	和 	INFO	的消息会被记录。你可以在启动应用时，通过 	--debug	标识开启

控制台的 	DEBUG	级别日志记录，也可以在 	application.properties	中指

定 	debug=true	。

$	java	-jar	myapp.jar	--debug

当debug模式启用时，一系列核心loggers（内嵌容器，Hibernate，Spring	Boot
等）记录的日志会变多，但不会输出所有的信息。

相应地，你可以在启动应用时，通过 	--trace	（或

在 	application.properties	设置 	trace=true	）启用"trace"模式，该模式能够

追踪核心loggers（内嵌容器，Hibernate生成的schema，Spring全部的portfolio）
的所有日志信息。

26.2.	控制台输出

160

26.2.1	Color-coded输出

如果你的终端支持ANSI，Spring	Boot将使用彩色编码（color	output）输出日志以

增强可读性，你可以将 	spring.output.ansi.enabled	设置为一个支持的值来覆

盖默认设置。

彩色编码（Color	coding）使用 	%clr	表达式进行配置，在其最简单的形式中，转

换器会根据日志级别使用不同的颜色输出日志，例如：

%clr(%5p)

日志级别到颜色的映射如下：

Level Color
	FATAL	 Red

	ERROR	 Red

	WARN	 Yellow

	INFO	 Green

	DEBUG	 Green

	TRACE	 Green

另外，在转换时你可以设定日志展示的颜色或样式，例如，让文本显示成黄色：

%clr(%d{yyyy-MM-dd	HH:mm:ss.SSS}){yellow}

支持的颜色，样式如下：

	blue	

	cyan	

	faint	

	green	

	magenta	

	red	

	yellow	

26.2.	控制台输出

161

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/api/org/springframework/boot/ansi/AnsiOutput.Enabled.html

26.2.	控制台输出

162

26.3.	文件输出

默认情况下，Spring	Boot只会将日志记录到控制台，而不写进日志文件，如果需

要，你可以设置 	logging.file	或 	logging.path	属性（例

如 	application.properties	）。

下表展示如何组合使用 	logging.*	：

logging.file logging.path 示例 描述

(none) (none) 只记录到控制台

Specific	file (none) my.log 写到特定的日志文件，名称可以是
精确的位置或相对于当前目录

(none) Specific
directory /var/log

写到特定目录下
的 	spring.log	里，名称可以是精
确的位置或相对于当前目录

日志文件每达到10M就会被分割，跟控制台一样，默认记录 	ERROR	,
	WARN	和 	INFO	级别的信息。

26.3.	文件输出

163

26.4.	日志级别

所有Spring	Boot支持的日志系统都可以在Spring	 	Environment	中设置级别

（ 	application.properties	里也一样），设置格式为'logging.level.*=LEVEL'，
其中 	LEVEL	是 	TRACE	,	 	DEBUG	,	 	INFO	,	 	WARN	,	 	ERROR	,	 	FATAL	,	 	OFF	之
一：

以下是 	application.properties	示例：

logging.level.root=WARN

logging.level.org.springframework.web=DEBUG

logging.level.org.hibernate=ERROR

注	默认情况，Spring	Boot会重新映射Thymeleaf的 	INFO	信息到 	DEBUG	级别，这

能减少标准日志输出的噪声。查看LevelRemappingAppender可以按自己的配置设

置映射。

26.4.	日志级别

164

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot/src/main/java/org/springframework/boot/logging/logback/LevelRemappingAppender.java

26.5.	自定义日志配置

通过将相应的库添加到classpath可以激活各种日志系统，然后在classpath根目录

下提供合适的配置文件可以进一步定制日志系统，配置文件也可以通过Spring
	Environment	的 	logging.config	属性指定。

使用 	org.springframework.boot.logging.LoggingSystem	系统属性可以强制

Spring	Boot使用指定的日志系统，该属性值需要是 	LoggingSystem	实现类的全限

定名，如果值为 	none	，则彻底禁用Spring	Boot的日志配置。

注	由于日志初始化早于 	ApplicationContext	的创建，所以不可能通

过 	@PropertySources	指定的Spring	 	@Configuration	文件控制日志，系统属性

和Spring	Boot外部化配置可以正常工作。

以下文件会根据你选择的日志系统进行加载：

日志系统 定制配置

Logback 	logback-spring.xml	, 	logback-
spring.groovy	, 	logback.xml	或 	logback.groovy	

Log4j 	log4j.properties	或 	log4j.xml	

Log4j2 	log4j2-spring.xml	或 	log4j2.xml	

JDK	(Java	Util
Logging)

	logging.properties	

注	如果可能的话，建议你使用 	-spring	变种形式定义日志配置（例如，使

用 	logback-spring.xml	而不是 	logback.xml	）。如果你使用标准的配置路

径，Spring可能不能够完全控制日志初始化。

注	Java	Util	Logging从可执行jar运行时会导致一些已知的类加载问题，我们建议尽

可能不使用它。

以下是从Spring	 	Envrionment	转换为System	properties的一些有助于定制的配置

属性：

26.5.	自定义日志配置

165

Spring	Environment System	Property Comments

	logging.exception-

conversion-word	
	LOG_EXCEPTION_CONVERSION_WORD	

记录异常使用的
关键字

	logging.file	 	LOG_FILE	

如果指定就会在
默认的日志配置

中使用

	logging.path	 	LOG_PATH	

如果指定就会在
默认的日志配置

中使用

	logging.pattern.console	 	CONSOLE_LOG_PATTERN	

日志输出到控制
台（stdout）时
使用的模式（只

支持默认的
logback设置）

	logging.pattern.file	 	FILE_LOG_PATTERN	

日志输出到文件
时使用的模式

（如果
LOG_FILE启

用，只支持默认
的logback设

置）

	logging.pattern.level	 	LOG_LEVEL_PATTERN	

用来渲染日志级
别的格式（默
认 	%5p

持默认的
logback设置）

	PID	 	PID	

当前的处理进程
(process)ID（能
够找到，且还没
有用作OS环境

变量）

所有支持的日志系统在解析配置文件时都能获取系统属性的值，具体可以参

考 	spring-boot.jar	中的默认配置。

注	如果想在日志属性中使用占位符，你需要使用Spring	Boot的语法，而不是底层

框架的语法。尤其是使用Logback时，你需要使用 	:	作为属性名和默认值的分隔

符，而不是 	:-	。

26.5.	自定义日志配置

166

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-external-config-placeholders-in-properties

注	通过覆盖 	LOG_LEVEL_PATTERN	（Logback对
应 	logging.pattern.level	），你可以向日志中添加MDC和其他ad-hoc的内

容。例如，将该值设置为 	logging.pattern.level=user:%X{user}	%5p	，则默

认日志格式将包含一个"user"的MDC实体，如果存在的话，比如：

2015-09-30	12:30:04.031	user:juergen	INFO	22174	---	[nio-8080-

exec-0]	demo.Controller

Handling	authenticated	request

26.5.	自定义日志配置

167

26.6	Logback扩展

Spring	Boot包含很多有用的Logback扩展，你可以在 	logback-spring.xml	配置

文件中使用它们。

注	你不能在标准的 	logback.xml	配置文件中使用扩展，因为它加载的太早了，不

过可以使用 	logback-spring.xml	，或指定 	logging.config	属性。

26.6	Logback扩展

168

26.6.1	Profile-specific配置

	<springProfile>	标签可用于根据激活的Spring	profiles，选择性的包含或排除

配置片段。Profile片段可以放在 	<configuration>	元素内的任何地方，使

用 	name	属性定义哪些profile接受该配置，多个profiles以逗号分隔。

<springProfile	name="staging">

				<!--	configuration	to	be	enabled	when	the	"staging"	profile	

is	active	-->

</springProfile>

<springProfile	name="dev,	staging">

				<!--	configuration	to	be	enabled	when	the	"dev"	or	"staging"

	profiles	are	active	-->

</springProfile>

<springProfile	name="!production">

				<!--	configuration	to	be	enabled	when	the	"production"	profi

le	is	not	active	-->

</springProfile>

26.6	Logback扩展

169

26.6.2	Environment属性

	<springProperty>	标签允许你从Spring	 	Environment	读取属性，以便在

Logback中使用。如果你想在logback配置获取 	application.properties	中的属

性值，该功能就很有用。该标签工作方式跟Logback标准 	<property>	标签类似，

但不是直接指定 	value	值，你需要定义属性的 	source	（来

自 	Environment	），也可以指定存储属性作用域的 	scope	。如

果 	Environment	没有相应属性，你可以通过 	defaultValue	设置默认值。

<springProperty	scope="context"	name="fluentHost"	source="myapp.

fluentd.host"

								defaultValue="localhost"/>

<appender	name="FLUENT"	class="ch.qos.logback.more.appenders.Dat

aFluentAppender">

				<remoteHost>${fluentHost}</remoteHost>

				...

</appender>

注	 	RelaxedPropertyResolver	用于获取 	Environment	属性，如果以中划线的

方式指定 	source	（ 	my-property-name	），则所有relaxed变体都会进行尝试

（ 	myPropertyName	， 	MY_PROPERTY_NAME	等）。

26.6	Logback扩展

170

27.	开发Web应用

Spring	Boot非常适合开发web应用程序。你可以使用内嵌的Tomcat，Jetty或
Undertow轻轻松松地创建一个HTTP服务器。大多数的web应用都可以使

用 	spring-boot-starter-web	模块进行快速搭建和运行。

如果没有开发过Spring	Boot	web应用，可以参考Getting	started章节的"Hello
World!"示例。

27.	开发Web应用

171

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#getting-started-first-application

27.1.	Spring	Web	MVC框架

Spring	Web	MVC框架（通常简称为"Spring	MVC"）是一个富“模型，视图，控制

器”web框架，	允许用户创建特定的 	@Controller	或 	@RestController		beans
来处理传入的HTTP请求，通过 	@RequestMapping	注解可以将控制器中的方法映

射到相应的HTTP请求。

示例：

@RestController

@RequestMapping(value="/users")

public	class	MyRestController	{

				@RequestMapping(value="/{user}",	method=RequestMethod.GET)

				public	User	getUser(@PathVariable	Long	user)	{

								//	...

				}

				@RequestMapping(value="/{user}/customers",	method=RequestMet

hod.GET)

				List<Customer>	getUserCustomers(@PathVariable	Long	user)	{

								//	...

				}

				@RequestMapping(value="/{user}",	method=RequestMethod.DELETE

)

				public	User	deleteUser(@PathVariable	Long	user)	{

								//	...

				}

}

Spring	MVC是Spring框架的核心部分，详细信息可以参考reference
documentation，spring.io/guides也有一些可用的指导覆盖Spring	MVC。

27.1.	Spring	Web	MVC框架

172

http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle#mvc
http://spring.io/guides

27.1.1.	Spring	MVC自动配置

Spring	Boot为Spring	MVC提供的auto-configuration适用于大多数应用，并在

Spring默认功能上添加了以下特性：

1.	 引入 	ContentNegotiatingViewResolver	和 	BeanNameViewResolver	

beans。
2.	 对静态资源的支持，包括对WebJars的支持。

3.	 自动注册 	Converter	， 	GenericConverter	， 	Formatter		beans。
4.	 对 	HttpMessageConverters	的支持。

5.	 自动注册 	MessageCodeResolver	。

6.	 对静态 	index.html	的支持。

7.	 对自定义 	Favicon	的支持。

8.	 自动使用 	ConfigurableWebBindingInitializer		bean。

如果保留Spring	Boot	MVC特性，你只需添加其他的MVC配置（拦截器，格式化处

理器，视图控制器等）。你可以添加自己的 	WebMvcConfigurerAdapter	类型

的 	@Configuration	类，而不需要注解 	@EnableWebMvc	。如果希望使用自定义

的 	RequestMappingHandlerMapping	， 	RequestMappingHandlerAdapter	，

或 	ExceptionHandlerExceptionResolver	，你可以声明一

个 	WebMvcRegistrationsAdapter	实例提供这些组件。

如果想全面控制Spring	MVC，你可以添加自己的 	@Configuration	，并使

用 	@EnableWebMvc	注解。

27.1.	Spring	Web	MVC框架

173

http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle#mvc

27.1.2.	HttpMessageConverters
Spring	MVC使用 	HttpMessageConverter	接口转换HTTP请求和响应，合适的默

认配置可以开箱即用，例如对象自动转换为JSON（使用Jackson库）或XML（如果

Jackson	XML扩展可用，否则使用JAXB），字符串默认使用 	UTF-8	编码。

可以使用Spring	Boot的 	HttpMessageConverters	类添加或自定义转换类：

import	org.springframework.boot.autoconfigure.web.HttpMessageCon

verters;

import	org.springframework.context.annotation.*;

import	org.springframework.http.converter.*;

@Configuration

public	class	MyConfiguration	{

				@Bean

				public	HttpMessageConverters	customConverters()	{

								HttpMessageConverter<?>	additional	=	...

								HttpMessageConverter<?>	another	=	...

								return	new	HttpMessageConverters(additional,	another);

				}

}

上下文中出现的所有 	HttpMessageConverter		bean都将添加到converters列表，

你可以通过这种方式覆盖默认的转换器列表（converters）。

27.1.	Spring	Web	MVC框架

174

27.1.3	自定义JSON序列化器和反序列化器

如果使用Jackson序列化，反序列化JSON数据，你可能想编写自己

的 	JsonSerializer	和 	JsonDeserializer	类。自定义序列化器（serializers）
通常通过Module注册到Jackson，但Spring	Boot提供了 	@JsonComponent	注解这

一替代方式，它能轻松的将序列化器注册为Spring	Beans。

27.1.	Spring	Web	MVC框架

175

http://wiki.fasterxml.com/JacksonHowToCustomDeserializers

27.1.4	MessageCodesResolver
Spring	MVC有一个实现策略，用于从绑定的errors产生用来渲染错误信息的错误

码： 	MessageCodesResolver	。Spring	Boot会自动为你创建该实现，只要设

置 	spring.mvc.message-codes-resolver.format	属性

为 	PREFIX_ERROR_CODE	或 	POSTFIX_ERROR_CODE	（具体查

看 	DefaultMessageCodesResolver.Format	枚举值）。

27.1.	Spring	Web	MVC框架

176

27.1.5	静态内容

默认情况下，Spring	Boot从classpath下
的 	/static	（ 	/public	， 	/resources	或 	/META-INF/resources	）文件夹，

或从 	ServletContext	根目录提供静态内容。这是通过Spring	MVC
的 	ResourceHttpRequestHandler	实现的，你可以自定

义 	WebMvcConfigurerAdapter	并覆写 	addResourceHandlers	方法来改变该行

为（加载静态文件）。

在单机web应用中，容器会启动默认的servlet，并用它加载 	ServletContext	根目

录下的内容以响应那些Spring不处理的请求。大多数情况下这都不会发生（除非你

修改默认的MVC配置），因为Spring总能够通过 	DispatcherServlet	处理这些请

求。

你可以设置 	spring.resources.staticLocations	属性自定义静态资源的位置

（配置一系列目录位置代替默认的值），如果你这样做，默认的欢迎页面将从自定

义位置加载，所以只要这些路径中的任何地方有一个 	index.html	，它都会成为

应用的主页。

此外，除了上述标准的静态资源位置，有个例外情况是Webjars内容。任何

在 	/webjars/**	路径下的资源都将从jar文件中提供，只要它们以Webjars的格式

打包。

注	如果你的应用将被打包成jar，那就不要使用 	src/main/webapp	文件夹。尽管

该文件夹是通常的标准格式，但它仅在打包成war的情况下起作用，在打包成jar
时，多数构建工具都会默认忽略它。

Spring	Boot也支持Spring	MVC提供的高级资源处理特性，可用于清除缓存的静态

资源或对WebJar使用版本无感知的URLs。

如果想使用针对WebJars版本无感知的URLs（version	agnostic），只需要添

加 	webjars-locator	依赖，然后声明你的Webjar。以jQuery为
例， 	"/webjars/jquery/dist/jquery.min.js"	实际

为 	"/webjars/jquery/x.y.z/dist/jquery.min.js"	， 	x.y.z	为Webjar的版

本。

注	如果使用JBoss，你需要声明 	webjars-locator-jboss-vfs	依赖而不

是 	webjars-locator	，否则所有的Webjars将解析为 	404	。

27.1.	Spring	Web	MVC框架

177

http://www.webjars.org/

以下的配置为所有的静态资源提供一种缓存清除（cache	busting）方案，实际上是

将内容hash添加到URLs中，比如 	<link	href="/css/spring-

2a2d595e6ed9a0b24f027f2b63b134d6.css"/>	：

spring.resources.chain.strategy.content.enabled=true

spring.resources.chain.strategy.content.paths=/**

注	实现该功能的是 	ResourceUrlEncodingFilter	，它在模板运行期会重写资源

链接，Thymeleaf，Velocity和FreeMarker会自动配置该filter，JSP需要手动配置。

其他模板引擎还没自动支持，不过你可以使用ResourceUrlProvider自定义模块宏或

帮助类。

当使用比如JavaScript模块加载器动态加载资源时，重命名文件是不行的，这也是

提供其他策略并能结合使用的原因。下面是一个"fixed"策略，在URL中添加一个静

态version字符串而不需要改变文件名：

spring.resources.chain.strategy.content.enabled=true

spring.resources.chain.strategy.content.paths=/**

spring.resources.chain.strategy.fixed.enabled=true

spring.resources.chain.strategy.fixed.paths=/js/lib/

spring.resources.chain.strategy.fixed.version=v12

使用以上策略，JavaScript模块加载器加载 	"/js/lib/"	下的文件时会使用一个固

定的版本策略 	"/v12/js/lib/mymodule.js"	，其他资源仍旧使用内容hash的方

式 	<link	href="/css/spring-

2a2d595e6ed9a0b24f027f2b63b134d6.css"/>	。查看ResourceProperties获取更

多支持的选项。

注	该特性在一个专门的博文和Spring框架参考文档中有透彻描述。

27.1.	Spring	Web	MVC框架

178

http://docs.spring.io/spring/docs/4.3.3.RELEASE/javadoc-api/org/springframework/web/servlet/resource/ResourceUrlProvider.html
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ResourceProperties.java
https://spring.io/blog/2014/07/24/spring-framework-4-1-handling-static-web-resources
https://spring.io/blog/2014/07/24/spring-framework-4-1-handling-static-web-resources

27.1.6	ConfigurableWebBindingInitializer
Spring	MVC使用 	WebBindingInitializer	为每个特殊的请求初始化相应

的 	WebDataBinder	，如果你创建自己的 	ConfigurableWebBindingInitializer

@Bean	，Spring	Boot会自动配置Spring	MVC使用它。

27.1.	Spring	Web	MVC框架

179

27.1.7	模板引擎

正如REST	web服务，你也可以使用Spring	MVC提供动态HTML内容。Spring	MVC
支持各种各样的模板技术，包括Velocity,	FreeMarker和JSPs，很多其他的模板引

擎也提供它们自己的Spring	MVC集成。

Spring	Boot为以下的模板引擎提供自动配置支持：

1.	 FreeMarker
2.	 Groovy
3.	 Thymeleaf
4.	 Velocity（1.4已不再支持）

5.	 Mustache

注：由于在内嵌servlet容器中使用JSPs存在一些已知的限制，所以建议尽量不使用

它们。

使用以上引擎中的任何一种，并采用默认配置，则模块会

从 	src/main/resources/templates	自动加载。

注：IntelliJ	IDEA根据你运行应用的方式会对classpath进行不同的排序。在IDE里通

过main方法运行应用，跟从Maven，或Gradle，或打包好的jar中运行相比会导致不

同的顺序，这可能导致Spring	Boot不能从classpath下成功地找到模板。如果遇到

这个问题，你可以在IDE里重新对classpath进行排序，将模块的类和资源放到第一

位。或者，你可以配置模块的前缀为 	classpath*:/templates/	，这样会查找

classpath下的所有模板目录。

27.1.	Spring	Web	MVC框架

180

http://freemarker.org/docs/
http://beta.groovy-lang.org/docs/groovy-2.3.0/html/documentation/markup-template-engine.html
http://www.thymeleaf.org/
http://velocity.apache.org/
http://mustache.github.io/

27.1.8	错误处理

Spring	Boot默认提供一个 	/error	映射用来以合适的方式处理所有的错误，并将

它注册为servlet容器中全局的	错误页面。对于机器客户端（相对于浏览器而言，浏

览器偏重于人的行为），它会产生一个具有详细错误，HTTP状态，异常信息的

JSON响应。对于浏览器客户端，它会产生一个白色标签样式（whitelabel）的错误

视图，该视图将以HTML格式显示同样的数据（可以添加一个解析为'error'的View来
自定义它）。为了完全替换默认的行为，你可以实现 	ErrorController	，并注册

一个该类型的bean定义，或简单地添加一个 	ErrorAttributes	类型的bean以使

用现存的机制，只是替换显示的内容。

注	 	BasicErrorController	可以作为自定义 	ErrorController	的基类，如果你

想添加对新context	type的处理（默认处理 	text/html	），这会很有帮助。你只需

要继承 	BasicErrorController	，添加一个public方法，并注解带

有 	produces	属性的 	@RequestMapping	，然后创建该新类型的bean。

你也可以定义一个 	@ControllerAdvice	去自定义某个特殊controller或exception
类型的JSON文档：

27.1.	Spring	Web	MVC框架

181

@ControllerAdvice(basePackageClasses	=	FooController.class)

public	class	FooControllerAdvice	extends	ResponseEntityException

Handler	{

				@ExceptionHandler(YourException.class)

				@ResponseBody

				ResponseEntity<?>	handleControllerException(HttpServletReque

st	request,	Throwable	ex)	{

								HttpStatus	status	=	getStatus(request);

								return	new	ResponseEntity<>(new	CustomErrorType(status.v

alue(),	ex.getMessage()),	status);

				}

				private	HttpStatus	getStatus(HttpServletRequest	request)	{

								Integer	statusCode	=	(Integer)	request.getAttribute("jav

ax.servlet.error.status_code");

								if	(statusCode	==	null)	{

												return	HttpStatus.INTERNAL_SERVER_ERROR;

								}

								return	HttpStatus.valueOf(statusCode);

				}

}

在以上示例中，如果跟 	FooController	相同package的某个controller抛
出 	YourException	，一个 	CustomerErrorType	类型的POJO的json展示将代

替 	ErrorAttributes	展示。

自定义错误页面

如果想为某个给定的状态码展示一个自定义的HTML错误页面，你需要将文件添加

到 	/error	文件夹下。错误页面既可以是静态HTML（比如，任何静态资源文件夹

下添加的），也可以是使用模板构建的，文件名必须是明确的状态码或一系列标

签。

例如，映射 	404	到一个静态HTML文件，你的目录结构可能如下：

27.1.	Spring	Web	MVC框架

182

src/

	+-	main/

					+-	java/

					|			+	<source	code>

					+-	resources/

									+-	public/

													+-	error/

													|			+-	404.html

													+-	<other	public	assets>

使用FreeMarker模板映射所有 	5xx	错误，你需要如下的目录结构：

src/

	+-	main/

					+-	java/

					|			+	<source	code>

					+-	resources/

									+-	templates/

													+-	error/

													|			+-	5xx.ftl

													+-	<other	templates>

对于更复杂的映射，你可以添加实现 	ErrorViewResolver	接口的beans：

public	class	MyErrorViewResolver	implements	ErrorViewResolver	{

				@Override

				public	ModelAndView	resolveErrorView(HttpServletRequest	requ

est,

												HttpStatus	status,	Map<String,	Object>	model)	{

								//	Use	the	request	or	status	to	optionally	return	a	Mode

lAndView

								return	...

				}

}

27.1.	Spring	Web	MVC框架

183

你也可以使用Spring	MVC特性，比如@ExceptionHandler方法和

@ControllerAdvice， 	ErrorController	将处理所有未处理的异常。

映射Spring	MVC以外的错误页面

对于不使用Spring	MVC的应用，你可以通过 	ErrorPageRegistrar	接口直接注

册 	ErrorPages	。该抽象直接工作于底层内嵌servlet容器，即使你没有Spring
MVC的 	DispatcherServlet	，它们仍旧可以工作。

@Bean

public	ErrorPageRegistrar	errorPageRegistrar(){

				return	new	MyErrorPageRegistrar();

}

//	...

private	static	class	MyErrorPageRegistrar	implements	ErrorPageRe

gistrar	{

				@Override

				public	void	registerErrorPages(ErrorPageRegistry	registry)	{

								registry.addErrorPages(new	ErrorPage(HttpStatus.BAD_REQU

EST,	"/400"));

				}

}

注.如果你注册一个 	ErrorPage	，该页面需要被一个 	Filter	处理（在一些非

Spring	web框架中很常见，比如Jersey，Wicket），那么该 	Filter	需要明确注册

为一个 	ERROR	分发器（dispatcher），例如：

27.1.	Spring	Web	MVC框架

184

http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle/#mvc-exceptionhandlers
http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle/#mvc-ann-controller-advice

@Bean

public	FilterRegistrationBean	myFilter()	{

				FilterRegistrationBean	registration	=	new	FilterRegistration

Bean();

				registration.setFilter(new	MyFilter());

				...

				registration.setDispatcherTypes(EnumSet.allOf(DispatcherType

.class));

				return	registration;

}

（默认的 	FilterRegistrationBean	不包含 	ERROR		dispatcher类型）。

WebSphere应用服务器的错误处理

当部署到一个servlet容器时，Spring	Boot通过它的错误页面过滤器将带有错误状态

的请求转发到恰当的错误页面。request只有在response还没提交时才能转发

（forwarded）到正确的错误页面，而WebSphere应用服务器8.0及后续版本默认情

况会在servlet方法成功执行后提交response，你需要设

置 	com.ibm.ws.webcontainer.invokeFlushAfterService	属性为 	false	来关

闭该行为。

27.1.	Spring	Web	MVC框架

185

27.1.9	Spring	HATEOAS
如果正在开发基于超媒体的RESTful	API，你可能需要Spring	HATEOAS，而Spring
Boot会为其提供自动配置，这在大多数应用中都运作良好。	自动配置取代

了 	@EnableHypermediaSupport	，只需注册一定数量的beans就能轻松构建基于

超媒体的应用，这些beans包括 	LinkDiscoverers	（客户端支

持）， 	ObjectMapper	（用于将响应编排为想要的形式）。 	ObjectMapper	可以

根据 	spring.jackson.*	属性或 	Jackson2ObjectMapperBuilder		bean进行自

定义。

通过注解 	@EnableHypermediaSupport	，你可以控制Spring	HATEOAS的配置，

但这会禁用上述 	ObjectMapper	的自定义功能。

27.1.	Spring	Web	MVC框架

186

27.1.10	CORS支持

跨域资源共享（CORS）是一个大多数浏览器都实现了的W3C标准，它允许你以灵

活的方式指定跨域请求如何被授权，而不是采用那些不安全，性能低的方式，比如

IFRAME或JSONP。

从4.2版本开始，Spring	MVC对CORS提供开箱即用的支持。不用添加任何特殊配

置，只需要在Spring	Boot应用的controller方法上注解 	@CrossOrigin	，并添加

CORS配置。通过注册一个自定义 	addCorsMappings(CorsRegistry)	方法

的 	WebMvcConfigurer		bean可以指定全局CORS配置：

@Configuration

public	class	MyConfiguration	{

				@Bean

				public	WebMvcConfigurer	corsConfigurer()	{

								return	new	WebMvcConfigurerAdapter()	{

												@Override

												public	void	addCorsMappings(CorsRegistry	registry)	{

																registry.addMapping("/api/**");

												}

								};

				}

}

27.1.	Spring	Web	MVC框架

187

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://caniuse.com/#feat=cors
http://www.w3.org/TR/cors/
http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle/#cors
http://docs.spring.io/spring/docs/4.3.3.RELEASE/javadoc-api/org/springframework/web/bind/annotation/CrossOrigin.html
http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle/#_controller_method_cors_configuration
http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle/#_global_cors_configuration

27.2	JAX-RS和Jersey
如果你更喜欢JAX-RS为REST端点提供的编程模型，可以使用相应的实现代替

Spring	MVC。如果将Jersey	1.x和Apache	CXF的 	Servlet	或 	Filter	注册到应

用上下文中，那它们可以很好的工作。Spring对Jersey	2.x有一些原生支持，所以

在Spring	Boot中也为它提供了自动配置及一个starter。

想要使用Jersey	2.x，只需添加 	spring-boot-starter-jersey	依赖，然后创建

一个 	ResourceConfig	类型的 	@Bean	，用于注册所有的端点（endpoints）：

@Component

public	class	JerseyConfig	extends	ResourceConfig	{

				public	JerseyConfig()	{

								register(Endpoint.class);

				}

}

你也可以注册任意数量的，实现 	ResourceConfigCustomizer	的beans来进一步

自定义。

所有注册的端点都需注解 	@Components	和HTTP资源annotations（比

如 	@GET	）：

@Component

@Path("/hello")

public	class	Endpoint	{

				@GET

				public	String	message()	{

								return	"Hello";

				}

}

由于 	Endpoint	是一个Spring组件（ 	@Component	），所以它的生命周期受

Spring管理，你可以使用 	@Autowired	添加依赖，也可以使用 	@Value	注入外部

配置。Jersey的servlet会被注册，并默认映射到 	/*	，你可以

将 	@ApplicationPath	添加到 	ResourceConfig	来改变该映射。

27.2	JAX-RS和Jersey

188

默认情况下，Jersey将以Servlet的形式注册为一个 	ServletRegistrationBean	类

型的 	@Bean	，name为 	jerseyServletRegistration	，该servlet默认会延迟初

始化，不过可以通过 	spring.jersey.servlet.load-on-startup	自定义。通过

创建相同name的bean，你可以禁用或覆盖框架默认产生的bean。设

置 	spring.jersey.type=filter	可以使用Filter的形式代替Servlet，相应

的 	@Bean	类型变为 	jerseyFilterRegistration	，该filter有一个 	@Order	属

性，你可以通过 	spring.jersey.filter.order	设置。Servlet和Filter注册时都可

以使用 	spring.jersey.init.*	定义一个属性集合传递给init参数。

这里有一个Jersey示例，你可以查看如何设置相关事项。

27.2	JAX-RS和Jersey

189

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-jersey

27.3	内嵌servlet容器支持

Spring	Boot支持内嵌的Tomcat,	Jetty和Undertow服务器，多数开发者只需要使用合

适的'Starter'来获取一个完全配置好的实例即可，内嵌服务器默认监听8080端口的

HTTP请求。

27.3	内嵌servlet容器支持

190

27.3.1	Servlets,	Filters和listeners
使用内嵌servlet容器时，你可以通过使用Spring	beans或扫描Servlet组件的方式注

册Servlets，Filters及特定Servlet相关的所有listeners（比

如 	HttpSessionListener	）。

将Servlets，Filters和listeners注册为Spring	beans

所有 	Servlet	， 	Filter	或Servlet	 	*Listener	实例，只要是Spring	bean，都

会注册到内嵌容器中。如果想在配置期间引用 	application.properties	的属

性，这是非常方便的。默认情况下，如果上下文只包含单个Servlet，那它将被映射

到 	/	。如果存在多个Servlet	beans，那么bean的名称将被用作路径的前缀，过滤

器将映射到 	/*	。

如果基于约定（convention-based）的映射不够灵活，你可以使

用 	ServletRegistrationBean	， 	FilterRegistrationBean	， 	ServletListe

nerRegistrationBean	实现完全的控制。

27.3	内嵌servlet容器支持

191

27.3.2	Servlet上下文初始化

内嵌servlet容器不会直接执行Servlet
3.0+的 	javax.servlet.ServletContainerInitializer	接口，或Spring
的 	org.springframework.web.WebApplicationInitializer	接口，这样设计的

目的是降低war包内运行的第三方库破坏Spring	Boot应用的风险。

如果需要在Spring	Boot应用中执行servlet上下文初始化，你需要注册一个实

现 	org.springframework.boot.context.embedded.ServletContextInitializ

er	接口的bean。 	onStartup	方法可以获取 	ServletContext	，如果需要的话可

以轻松用来适配一个已存在的 	WebApplicationInitializer	。

扫描Servlets,	Filters和listeners

当使用一个内嵌容器时，通过 	@ServletComponentScan	可以启用对注

解 	@WebServlet	， 	@WebFilter	和 	@WebListener	类的自动注册。

注	在独立的容器（非内嵌）中 	@ServletComponentScan	不起作用，取为代之的

是容器内建的discovery机制。

27.3	内嵌servlet容器支持

192

27.3.4	自定义内嵌servlet容器

常见的Servlet容器配置可以通过Spring	 	Environment	进行设置，通常将这些属性

定义到 	application.properties	文件中。

常见的服务器配置包括：

1.	 网络设置：监听进入Http请求的端口（ 	server.port	），接口绑定地

址 	server.address	等。

2.	 Session设置：session是否持久化（ 	server.session.persistence	），

session超时时间（ 	server.session.timeout	），session数据存放位置

（ 	server.session.store-dir	），session-cookie配置

（ 	server.session.cookie.*	）。

3.	 Error管理：错误页面的位置（ 	server.error.path	）等。

4.	 SSL。
5.	 HTTP压缩

Spring	Boot会尽量暴露常用设置，但这并不总是可能的。对于不可能的情况，可以

使用专用的命名空间提供server-specific配置（查

看 	server.tomcat	， 	server.undertow	）。例如，可以根据内嵌servlet容器的

特性对access	logs进行不同的设置。

注	具体参考ServerProperties。

编程方式的自定义

如果需要以编程方式配置内嵌servlet容器，你可以注册一个实

现 	EmbeddedServletContainerCustomizer	接口的Spring
bean。 	EmbeddedServletContainerCustomizer	能够获取到包含很多自定义

setter方法的 	ConfigurableEmbeddedServletContainer	，你可以通过这些setter
方法对内嵌容器自定义。

27.3	内嵌servlet容器支持

193

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#howto-configure-ssl
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#how-to-enable-http-response-compression
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#howto-configure-accesslogs
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

import	org.springframework.boot.context.embedded.*;

import	org.springframework.stereotype.Component;

@Component

public	class	CustomizationBean	implements	EmbeddedServletContain

erCustomizer	{

				@Override

				public	void	customize(ConfigurableEmbeddedServletContainer	c

ontainer)	{

								container.setPort(9000);

				}

}

直接自定义ConfigurableEmbeddedServletContainer

如果以上自定义手法过于受限，你可以自己注

册 	TomcatEmbeddedServletContainerFactory	， 	JettyEmbeddedServletCont

ainerFactory	或 	UndertowEmbeddedServletContainerFactory	。

@Bean

public	EmbeddedServletContainerFactory	servletContainer()	{

				TomcatEmbeddedServletContainerFactory	factory	=	new	TomcatEm

beddedServletContainerFactory();

				factory.setPort(9000);

				factory.setSessionTimeout(10,	TimeUnit.MINUTES);

				factory.addErrorPages(new	ErrorPage(HttpStatus.NOT_FOUND,	"/

notfound.html");

				return	factory;

}

很多配置选项提供setter方法，有的甚至提供一些受保护的钩子方法以满足你的某

些特殊需求，具体参考源码或相关文档。

27.3	内嵌servlet容器支持

194

27.3.5	JSP的限制

当使用内嵌servlet容器运行Spring	Boot应用时（并打包成一个可执行的存档

archive），容器对JSP的支持有一些限制：

1.	 Tomcat只支持war的打包方式，不支持可执行jar。
2.	 Jetty只支持war的打包方式。

3.	 Undertow不支持JSPs。
4.	 创建的自定义 	error.jsp	页面不会覆盖默认的error	handling视图。

这里有个JSP示例，你可以查看如何设置相关事项。

27.3	内嵌servlet容器支持

195

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-error-handling
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-web-jsp

28.	安全

如果添加了Spring	Security的依赖，那么web应用默认对所有的HTTP路径（也称为

终点，端点，表示API的具体网址）使用'basic'认证。为了给web应用添加方法级别

（method-level）的保护，你可以添加 	@EnableGlobalMethodSecurity	并使用想

要的设置，其他信息参考Spring	Security	Reference。

默认的 	AuthenticationManager	只有一个用户（'user'的用户名和随机密码会在

应用启动时以INFO日志级别打印出来），如下：

Using	default	security	password:	78fa095d-3f4c-48b1-ad50-e24c31d

5cf35

注	如果你对日志配置进行微调，确

保 	org.springframework.boot.autoconfigure.security	类别记录日志级别

为 	INFO	，否则默认的密码不会打印出来。

你可以通过设置 	security.user.password	改变默认密码，这些和其他有用的属

性通过SecurityProperties（以"security"为前缀的属性）被外部化了。

默认的安全配置是通

过 	SecurityAutoConfiguration	， 	SpringBootWebSecurityConfiguration	

（用于web安全）， 	AuthenticationManagerConfiguration	（可用于非web应
用的认证配置）进行管理的。你可以添加一个 	@EnableWebSecurity		bean来彻底

关掉Spring	Boot的默认配置。为了对它进行自定义，你需要使用外部的属性配置

和 	WebSecurityConfigurerAdapter	类型的beans（比如，添加基于表单的登

陆）。	想要关闭认证管理的配置，你可以添加一个 	AuthenticationManager	类

型的bean，或在 	@Configuration	类的某个方法里注

入 	AuthenticationManagerBuilder	来配置全局的 	AuthenticationManager	。

这里有一些安全相关的Spring	Boot应用示例可以拿来参考。

在web应用中你能得到的开箱即用的基本特性如下：

1.	 一个使用内存存储的 	AuthenticationManager		bean和一个用户（查

看 	SecurityProperties.User	获取user的属性）。

2.	 忽略（不保护）常见的静态资源路径（ 	/css/**,	/js/**,

/images/**	， 	/webjars/**	和	 	**/favicon.ico	）。

28.	安全

196

http://docs.spring.io/spring-security/site/docs/4.1.3.RELEASE/reference/htmlsingle#jc-method
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-samples/

3.	 对其他所有路径实施HTTP	Basic安全保护。

4.	 安全相关的事件会发布到Spring的 	ApplicationEventPublisher	（成功和失

败的认证，拒绝访问）。

5.	 Spring	Security提供的常见底层特性（HSTS,	XSS,	CSRF,	缓存）默认都被开

启。

上述所有特性都能通过外部配置（ 	security.*	）打开，关闭，或修改。想要覆

盖访问规则而不改变其他自动配置的特性，你可以添加一个注

解 	@Order(SecurityProperties.ACCESS_OVERRIDE_ORDER)	的 	WebSecurityCo

nfigurerAdapter	类型的 	@Bean	。

注	 	WebSecurityConfigurerAdapter	默认会匹配所有路径，如果不想完全覆盖

Spring	Boot自动配置的访问规则，你可以精确的配置想要覆盖的路径。

28.	安全

197

28.1	OAuth2
如果添加了 	spring-security-oauth2	依赖，你可以利用自动配置简化认证

（Authorization）或资源服务器（Resource	Server）的设置，详情参考Spring
Security	OAuth	2	Developers	Guide。

28.1	OAuth2

198

http://projects.spring.io/spring-security-oauth/docs/oauth2.html

28.1.1	授权服务器

想要创建一个授权服务器，并授予access	tokens，你需要使

用 	@EnableAuthorizationServer	，并提

供 	security.oauth2.client.client-

id	和 	security.oauth2.client.client-secret	配置。

按以上操作后，你就能使用客户端证书创建一个access	token，例如：

$	curl	client:secret@localhost:8080/oauth/token	-d	grant_type=pa

ssword	-d	username=user	-d	password=pwd

	/token	端点basic形式的认证证书是 	client-id	和 	client-secret	，用户证

书通常是Spring	Security的user详情（Spring	Boot中默认是"user"和一个随机的密

码）。

想要关闭自动配置，自己配置授权服务器特性，你只需添加一

个 	AuthorizationServerConfigurer	类型的 	@Bean	。

28.1	OAuth2

199

28.1.2	资源服务器

为了使用access	token，你需要一个资源服务器（可以跟授权服务器是同一个）。

创建资源服务器很简单，只需要添加 	@EnableResourceServer	，提供一些配置以

允许服务器解码access	token。如果应用也是授权服务器，由于它知道如何去解码

tokens，所以也就不需要做其他事情。如果你的app是独立的服务，那你就需要给

它添加以下可选配置中的某一项：

	security.oauth2.resource.user-info-uri	用于 	/me	资源（例如，PWS
的 	https://uaa.run.pivotal.io/userinfo	）。

	security.oauth2.resource.token-info-uri	用于token解码端点（例如，

PWS的 	https://uaa.run.pivotal.io/check_token	）。

如果 	user-info-uri	和 	token-info-uri	都指定了，你可以设置flag筛选出最想

要的那个（默认 	prefer-token-info=true	）。

另外，如果token是JWTs，你可以配置 	security.oauth2.resource.jwt.key-

value	解码它们（key是验签的key）。验签的键值可以是一个对称密钥，也可以是

PEM编码的RSA公钥。如果你没有key，并且它是公开的，你可以通

过 	security.oauth2.resource.jwt.key-uri	提供一个下载URI（有一

个"value"字段的JSON对象），例如，在PWS平台上：

$	curl	https://uaa.run.pivotal.io/token_key

{"alg":"SHA256withRSA","value":"-----BEGIN	PUBLIC	KEY-----\nMIIB

I...\n-----END	PUBLIC	KEY-----\n"}

注	如果你使用 	security.oauth2.resource.jwt.key-uri	，授权服务器需要在

应用启动时也运行起来，如果找不到key，它将输出warning，并告诉你如何解决。

28.1	OAuth2

200

28.2	User	Info中的Token类型

Google和其他一些第三方身份（identity）提供商对发送给user	info端点的请求头中

设置的token类型名有严格要求。默认的 	Bearer	满足大多数提供商要求，如果需

要你可以设置 	security.oauth2.resource.token-type	来改变它。

28.2	User	Info中的Token类型

201

28.3	自定义User	Info	RestTemplate
如果设置了 	user-info-uri	，资源服务器在内部将使用一

个 	OAuth2RestTemplate	抓取用于认证的用户信息，这是一个id
为 	userInfoRestTemplate	的 	@Bean	提供的，但你不需要了解这些，只需要用

它即可。默认适用于大多数提供商，但偶尔你可能需要添加其他interceptors，或改

变request的验证器（authenticator）。想要添加自定义，只需创建一

个 	UserInfoRestTemplateCustomizer	类型的bean	——	它只有单个方法，在

bean创建后，初始化前会调用该方法。此处自定义的rest	template仅用于内部执行

认证。

注	在YAML中设置RSA	key时，需要使用管道符分割多行（“|”），记得缩进key
value，例如：

security:

				oauth2:

								resource:

												jwt:

																keyValue:	|

																				-----BEGIN	PUBLIC	KEY-----

																				MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKC...

																				-----END	PUBLIC	KEY-----

28.3	自定义User	Info	RestTemplate

202

28.3.1	客户端

为了将web-app放入一个OAuth2客户端，你只需注解 	@EnableOAuth2Client	，

Spring	Boot会创

建 	OAuth2ClientContext	和 	OAuth2ProtectedResourceDetails	，这些是创

建 	OAuth2RestOperations	必需的。Spring	Boot不会自动创建该bean，但你自己

创建也不费力：

@Bean

public	OAuth2RestTemplate	oauth2RestTemplate(OAuth2ClientContext

	oauth2ClientContext,

								OAuth2ProtectedResourceDetails	details)	{

				return	new	OAuth2RestTemplate(details,	oauth2ClientContext);

}

注	你可能想添加一个限定名（qualifier），因为应用中可能定义多

个 	RestTemplate	。

该配置使用 	security.oauth2.client.*	作为证书（跟授权服务器使用的相

同），此外，它也需要知道授权服务器中认证和token的URIs，例如：

security:

				oauth2:

								client:

												clientId:	bd1c0a783ccdd1c9b9e4

												clientSecret:	1a9030fbca47a5b2c28e92f19050bb77824b5a

d1

												accessTokenUri:	https://github.com/login/oauth/acces

s_token

												userAuthorizationUri:	https://github.com/login/oauth

/authorize

												clientAuthenticationScheme:	form

具有该配置的应用在使用 	OAuth2RestTemplate	时会重定向到GitHub以完成授

权，如果已经登陆GitHub，你甚至不会注意到它已经授权过了。那些特殊的凭证

（credentials）只在应用运行于8080端口时有效（为了更灵活，在GitHub或其他提

28.3	自定义User	Info	RestTemplate

203

供商上注册自己的客户端app）。

在客户端获取access	token时，你可以设

置 	security.oauth2.client.scope	（逗号分隔或一个YAML数组）来限制它请

求的作用域（scope）。作用域默认是空的，默认值取决于授权服务器，通常依赖

于它拥有的客户端在注册时的设置。

注	对 	security.oauth2.client.client-authentication-scheme	也有设置，

默认为"header"（如果你的OAuth2提供商不喜欢header认证，例如Github，你可能

需要将它设置为“form”）。实际上， 	security.oauth2.client.*	属性绑定到一

个 	AuthorizationCodeResourceDetails	实例，所以它的所有属性都可以指定。

注	在一个非web应用中，你仍旧可以创建一个 	OAuth2RestOperations	，并且

跟 	security.oauth2.client.*	配置关联。在这种情况下，它是一个“client
credentials	token	grant”，如果你使用它的话就需要获取（此处不需要注

解 	@EnableOAuth2Client	或 	@EnableOAuth2Sso	）。为了防止基础设施定义，

只需要将 	security.oauth2.client.client-id	从配置中移除（或将它设为空字

符串）。

28.3	自定义User	Info	RestTemplate

204

28.3.2	单点登陆

OAuth2客户端可用于从提供商抓取用户详情，然后转换为Spring	Security需要

的 	Authentication		token。上述提到的资源服务器通过 	user-info-uri	属性来

支持该功能，这是基于OAuth2的单点登陆（SSO）协议最基本的，Spring	Boot提
供的 	@EnableOAuth2Sso	注解让它更容易实践。通过添加该注解及端点配置

（ 	security.oauth2.client.*	），Github客户端就可以使用 	/user/	端点保护

它的所有资源了：

security:

				oauth2:

...

				resource:

								userInfoUri:	https://api.github.com/user

								preferTokenInfo:	false

由于所有路径默认都处于保护下，也就没有主页展示那些未授权的用户，进而邀请

他们去登陆（通过访问 	/login	路径，或 	security.oauth2.sso.login-path	指

定的路径）。

为了自定义访问规则或保护的路径（这样你就可以添加主页），你可以

将 	@EnableOAuth2Sso	添加到一个 	WebSecurityConfigurerAdapter	，该注解

会包装它，增强需要的地方以使 	/login	路径工作。例如，这里我们允许未授权的

用户访问主页 	/	，其他的依旧保持默认：

28.3	自定义User	Info	RestTemplate

205

@Configuration

public	class	WebSecurityConfiguration	extends	WebSecurityConfigu

rerAdapter	{

				@Override

				public	void	init(WebSecurity	web)	{

								web.ignore("/");

				}

				@Override

				protected	void	configure(HttpSecurity	http)	throws	Exception	

{

								http.antMatcher("/**").authorizeRequests().anyRequest().

authenticated();

				}

}

28.3	自定义User	Info	RestTemplate

206

28.4	Actuator安全

如果Actuator处于使用中，你会发现：

管理的端点是安全的，即使应用端点不安全。

Security事件转换为 	AuditEvents	，并发布到 	AuditService	。

默认用户有 	ADMIN	， 	USER	角色。

Actuator的安全特性可以通过外部配置属性（ 	management.security.*	）进行修

改。为了覆盖应用访问规则但不覆盖actuator的访问规则，你可以添加一

个 	WebSecurityConfigurerAdapter	类型的 	@Bean	，并注

解 	@Order(SecurityProperties.ACCESS_OVERRIDE_ORDER)	，如果想覆盖

actuator访问规则，则注

解 	@Order(ManagementServerProperties.ACCESS_OVERRIDE_ORDER)	。

28.4	Actuator安全

207

29.	使用SQL数据库

Spring框架为使用SQL数据库提供了广泛支持，从使用 	JdbcTemplate	直接访问

JDBC到完全的‘对象关系映射’技术，比如Hibernate。Spring	Data提供了更高级的

功能，直接从接口创建 	Repository	实现，并根据约定从方法名生成查询。

29.	使用SQL数据库

208

29.1.	配置DataSource
Java的 	javax.sql.DataSource	接口提供了一个标准的使用数据库连接的方法。

通常，DataSource使用 	URL	和相应的凭证去初始化数据库连接。

29.1.	配置DataSource

209

29.1.1.	对内嵌数据库的支持

开发应用时使用内存数据库是很方便的。显然，内存数据库不提供持久化存储；你

只需要在应用启动时填充数据库，在应用结束前预先清除数据。

Spring	Boot可以自动配置的内嵌数据库包括H2,	HSQL和Derby。你不需要提供任

何连接URLs，只需要添加你想使用的内嵌数据库依赖。

示例：典型的POM依赖如下：

<dependency>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

<dependency>

				<groupId>org.hsqldb</groupId>

				<artifactId>hsqldb</artifactId>

				<scope>runtime</scope>

</dependency>

注	对于自动配置的内嵌数据库，你需要添加 	spring-jdbc	依赖，在本示例

中， 	spring-boot-starter-data-jpa	已包含该依赖了。

注	无论出于什么原因，你需要配置内嵌数据库的连接URL，一定要确保数据库的自

动关闭是禁用的。如果使用H2，你需要设置 	DB_CLOSE_ON_EXIT=FALSE	。如果使

用HSQLDB，你需要确保没使用 	shutdown=true	。禁用数据库的自动关闭可以让

Spring	Boot控制何时关闭数据库，因此在数据库不需要时可以确保关闭只发生一

次。

29.1.	配置DataSource

210

http://www.h2database.com/
http://hsqldb.org/
http://db.apache.org/derby/

29.1.2.	连接生产环境数据库

生产环境的数据库连接可以通过池化的 	DataSource	进行自动配置，下面是选取

特定实现的算法：

出于tomcat数据源连接池的优秀性能和并发，如果可用总会优先使用它。

如果HikariCP可用，我们将使用它。

如果Commons	DBCP可用，我们将使用它，但生产环境不推荐。

最后，如果Commons	DBCP2可用，我们将使用它。

如果使用 	spring-boot-starter-jdbc	或 	spring-boot-starter-data-jpa	

'starters'，你会自动添加 	tomcat-jdbc	依赖。

注	通过指定 	spring.datasource.type	属性，你可以完全抛弃该算法，然后指定

数据库连接池。如果你在tomcat容器中运行应用，由于默认提供 	tomcat-jdbc	，

这就很重要了。

注	其他的连接池可以手动配置，如果你定义自己的 	DataSource		bean，自动配置

是不会发生的。

DataSource配置被外部的 	spring.datasource.*	属性控制，例如，你可能会

在 	application.properties	中声明以下片段：

spring.datasource.url=jdbc:mysql://localhost/test

spring.datasource.username=dbuser

spring.datasource.password=dbpass

spring.datasource.driver-class-name=com.mysql.jdbc.Driver

注	你应该至少使用 	spring.datasource.url	属性指定url，或Spring	Boot尝试自

动配置内嵌数据库。

注	你经常不需要指定 	driver-class-name	，因为Spring	boot可以从 	url	推断大

部分数据库。

注	对于将要创建的池化 	DataSource	，我们需要验证是否有一个可用

的 	Driver	，所以在做其他事前会校验它。比如，如果你设

置 	spring.datasource.driver-class-name=com.mysql.jdbc.Driver	，然后

该class加载出来，否则就会出错。

29.1.	配置DataSource

211

其他可选配置可以查看DataSourceProperties，有些标准配置是跟实现无关的，对

于实现相关的配置可以通过相应前缀进行设置

（ 	spring.datasource.tomcat.*	， 	spring.datasource.hikari.*	， 	sprin

g.datasource.dbcp.*	和 	spring.datasource.dbcp2.*	），具体参考你使用的

连接池文档。

例如，如果正在使用Tomcat连接池，你可以自定义很多其他设置：

#	Number	of	ms	to	wait	before	throwing	an	exception	if	no	connec

tion	is	available.

spring.datasource.tomcat.max-wait=10000

#	Maximum	number	of	active	connections	that	can	be	allocated	fro

m	this	pool	at	the	same	time.

spring.datasource.tomcat.max-active=50

#	Validate	the	connection	before	borrowing	it	from	the	pool.

spring.datasource.tomcat.test-on-borrow=true

29.1.	配置DataSource

212

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceProperties.java
http://tomcat.apache.org/tomcat-8.0-doc/jdbc-pool.html#Common_Attributes

29.1.3.	连接JNDI数据库

如果正在将Spring	Boot应用部署到一个应用服务器，你可能想要用应用服务器内建

的特性来配置和管理你的DataSource，并使用JNDI访问它。

	spring.datasource.jndi-name	属性可用来替

代 	spring.datasource.url	， 	spring.datasource.username	和 	spring.dat

asource.password	去从一个特定的JNDI路径获取 	DataSource	，比如，以

下 	application.properties	中的片段展示了如何获取JBoss	AS定义

的 	DataSource	：

spring.datasource.jndi-name=java:jboss/datasources/customers

29.1.	配置DataSource

213

29.2.	使用JdbcTemplate
Spring的 	JdbcTemplate	和 	NamedParameterJdbcTemplate	类会被自动配置，你

可以将它们直接 	@Autowire	到自己的beans：

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.jdbc.core.JdbcTemplate;

import	org.springframework.stereotype.Component;

@Component

public	class	MyBean	{

				private	final	JdbcTemplate	jdbcTemplate;

				@Autowired

				public	MyBean(JdbcTemplate	jdbcTemplate)	{

								this.jdbcTemplate	=	jdbcTemplate;

				}

				//	...

}

29.2.	使用JdbcTemplate

214

29.3.	JPA和Spring	Data
Java持久化API是一个允许你将对象映射为关系数据库的标准技术， 	spring-

boot-starter-data-jpa		POM提供了一种快速上手的方式，它提供以下关键依

赖：

Hibernate	-	一个非常流行的JPA实现。

Spring	Data	JPA	-	让实现基于JPA的repositories更容易。

Spring	ORMs	-	Spring框架支持的核心ORM。

注	我们不想在这涉及太多关于JPA或Spring	Data的细节。你可以参考来自spring.io
的指南使用JPA获取数据，并阅读Spring	Data	JPA和Hibernate的参考文档。

注	Spring	Boot默认使用Hibernate	5.0.x，如果你希望的话也可以使用4.3.x或
5.2.x，具体参考Hibernate	4和Hibernate	5.2示例。

29.3.	JPA和Spring	Data

215

http://spring.io/
http://spring.io/guides/gs/accessing-data-jpa/
http://projects.spring.io/spring-data-jpa/
http://hibernate.org/orm/documentation/
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-samples/spring-boot-sample-hibernate4
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-samples/spring-boot-sample-hibernate52

29.3.1.	实体类

通常，JPA实体类被定义到一个 	persistence.xml	文件，在Spring	Boot中，这个

文件被'实体扫描'取代。默认情况，Spring	Boot会查找主配置类

（被 	@EnableAutoConfiguration	或 	@SpringBootApplication	注解的类）下

的所有包。

任何被 	@Entity	， 	@Embeddable	或 	@MappedSuperclass	注解的类都将被考

虑，一个普通的实体类看起来像这样：

package	com.example.myapp.domain;

import	java.io.Serializable;

import	javax.persistence.*;

@Entity

public	class	City	implements	Serializable	{

				@Id

				@GeneratedValue

				private	Long	id;

				@Column(nullable	=	false)

				private	String	name;

				@Column(nullable	=	false)

				private	String	state;

				//	...	additional	members,	often	include	@OneToMany	mappings

				protected	City()	{

								//	no-args	constructor	required	by	JPA	spec

								//	this	one	is	protected	since	it	shouldn't	be	used	dire

ctly

				}

				public	City(String	name,	String	state)	{

								this.name	=	name;

29.3.	JPA和Spring	Data

216

								this.country	=	country;

				}

				public	String	getName()	{

								return	this.name;

				}

				public	String	getState()	{

								return	this.state;

				}

				//	...	etc

}

注	你可以使用 	@EntityScan	注解自定义实体扫描路径，具体参考Section	74.4,
“Separate	@Entity	definitions	from	Spring	configuration”。

29.3.	JPA和Spring	Data

217

29.3.2.	Spring	Data	JPA仓库

Spring	Data	JPA仓库（repositories）是用来定义访问数据的接口。根据你的方法

名，JPA查询会被自动创建，比如，一个 	CityRepository	接口可能声明一

个 	findAllByState(String	state)	方法，用来查找给定状态的所有城市。

对于比较复杂的查询，你可以使用Spring	Data的 	Query	注解你的方法。

Spring	Data仓库通常继承自 	Repository	或 	CrudRepository	接口。如果你使用

自动配置，Spring	Boot会搜索主配置类（注

解 	@EnableAutoConfiguration	或 	@SpringBootApplication	的类）所在包下

的仓库。

下面是典型的Spring	Data仓库：

package	com.example.myapp.domain;

import	org.springframework.data.domain.*;

import	org.springframework.data.repository.*;

public	interface	CityRepository	extends	Repository<City,	Long>	{

				Page<City>	findAll(Pageable	pageable);

				City	findByNameAndCountryAllIgnoringCase(String	name,	String

	country);

}

注：我们仅仅触及了Spring	Data	JPA的表面，具体查看它的参考指南。

29.3.	JPA和Spring	Data

218

http://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/Query.html
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html
http://projects.spring.io/spring-data-jpa/

29.3.3.	创建和删除JPA数据库

默认情况下，只有在你使用内嵌数据库（H2,	HSQL或Derby）时，JPA数据库才会

被自动创建。你可以使用 	spring.jpa.*	属性显式的设置JPA，比如，将以下配置

添加到 	application.properties	中可以创建和删除表：

spring.jpa.hibernate.ddl-auto=create-drop

注	Hibernate自己内部对创建，删除表支持的属性

是 	hibernate.hbm2ddl.auto	（如果你记得更好）。你可以使

用 	spring.jpa.properties.*	（前缀在被添加到实体管理器之前会被去掉）设置

Hibernate其他的native属性，比

如： 	spring.jpa.properties.hibernate.globally_quoted_identifiers=true

	将传递 	hibernate.globally_quoted_identifiers	到Hibernate实体管理器。

通常，DDL执行（或验证）被延迟到 	ApplicationContext	启动后，这可以通

过 	spring.jpa.generate-ddl	标签控制，如果Hibernate自动配置被激活，那该

标识就不会被使用，因为 	ddl-auto	设置粒度更细。

29.3.	JPA和Spring	Data

219

29.4	使用H2的web控制台

H2数据库提供一个基于浏览器的控制台，Spring	Boot可以为你自动配置。如果以

下条件满足，则控制台会被自动配置：

你正在开发一个web应用。

添加 	com.h2database:h2	依赖。

你正在使用Spring	Boot开发者工具。

注	如果你没有使用Spring	Boot的开发者工具，仍想利用H2的控制台，可以设

置 	spring.h2.console.enabled	属性值为 	true	。H2控制台应该只用于开发期

间，所以确保生产环境没有设置 	spring.h2.console.enabled	。

29.4	使用H2的web控制台

220

http://www.h2database.com/
http://www.h2database.com/html/quickstart.html#h2_console
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#using-boot-devtools

29.4.1	改变H2控制台路径

H2控制台路径默认为 	/h2-console	，你可以通过设

置 	spring.h2.console.path	属性自定义该路径。

29.4	使用H2的web控制台

221

29.4.2	保护H2控制台

当添加Spring	Security依赖，并且启用基本认证时，Spring	Boot自动使用基本认证

保护H2控制台。以下属性可用于自定义安全配置：

	security.user.role	

	security.basic.authorize-mode	

	security.basic.enabled	

29.4	使用H2的web控制台

222

29.5	使用jOOQ
Java面向对象查询（jOOQ）是Data	Geekery的一个明星产品，可以从数据库生成

Java代码，让你通过它的流式API构建类型安全的SQL查询。不管是商业版，还是

开源版本都能跟Spring	Boot一块使用。

29.5	使用jOOQ

223

http://www.jooq.org/
http://www.datageekery.com/

29.5.1	代码生成

为了使用jOOQ类型安全的查询，你需要从数据库schema生成Java类，具体可参考

jOOQ用户指南。如果正在使用 	jooq-codegen-maven	插件（也使用 	spring-

boot-starter-parent		“parent	POM”），你可以安全的省略插件

的 	<version>	标签，也可以使用Spring	Boot定义的版本变量（比

如 	h2.version	）来声明插件的数据库依赖，示例如下：

<plugin>

				<groupId>org.jooq</groupId>

				<artifactId>jooq-codegen-maven</artifactId>

				<executions>

								...

				</executions>

				<dependencies>

								<dependency>

												<groupId>com.h2database</groupId>

												<artifactId>h2</artifactId>

												<version>${h2.version}</version>

								</dependency>

				</dependencies>

				<configuration>

								<jdbc>

												<driver>org.h2.Driver</driver>

												<url>jdbc:h2:~/yourdatabase</url>

								</jdbc>

								<generator>

												...

								</generator>

				</configuration>

</plugin>

29.5	使用jOOQ

224

http://www.jooq.org/doc/3.6/manual-single-page/#jooq-in-7-steps-step3

29.5.2	使用DSLContext
jOOQ提供的流式（fluent）API是通过 	org.jooq.DSLContext	接口初始化的，

Spring	Boot将自动配置一个 	DSLContext	为Spring	Bean，并将它跟应用

的 	DataSource	连接起来。想要使用 	DSLContext	，只需 	@Autowire	注入它：

@Component

public	class	JooqExample	implements	CommandLineRunner	{

				private	final	DSLContext	create;

				@Autowired

				public	JooqExample(DSLContext	dslContext)	{

								this.create	=	dslContext;

				}

}

注	jOOQ手册倾向于使用一个名为 	create	的变量持有 	DSLContext	，示例中也

是这样做的。

然后你就可以使用 	DSLContext	构造查询：

public	List<GregorianCalendar>	authorsBornAfter1980()	{

				return	this.create.selectFrom(AUTHOR)

								.where(AUTHOR.DATE_OF_BIRTH.greaterThan(new	GregorianCal

endar(1980,	0,	1)))

								.fetch(AUTHOR.DATE_OF_BIRTH);

}

29.5	使用jOOQ

225

29.5.3	自定义jOOQ
通过在 	application.properties	中设置 	spring.jooq.sql-dialect	属性，你

可以自定义jOOQ使用的SQL方言（dialect）。例如，设置方言为Postgres：

spring.jooq.sql-dialect=Postgres

定义自己的 	@Bean	，在jOOQ 	Configuration	创建时使用，可以实现更高级的定

制。你可以为以下jOOQ类型定义beans：

	ConnectionProvider	

	TransactionProvider	

	RecordMapperProvider	

	RecordListenerProvider	

	ExecuteListenerProvider	

	VisitListenerProvider	

如果想全面控制jOOQ配置，你甚至可以创建自己的 	org.jooq.Configuration	

	@Bean	。

29.5	使用jOOQ

226

30.	使用NoSQL技术

Spring	Data提供其他项目，用来帮你使用各种各样的NoSQL技术，包括MongoDB,
Neo4J,	Elasticsearch,	Solr,	Redis,	Gemfire,	Couchbase和Cassandra。Spring
Boot为Redis,	MongoDB,	Elasticsearch,	Solr和Cassandra提供自动配置。你也可以

充分利用其他项目，但需要自己配置它们，具体查看projects.spring.io/spring-data
中相应的参考文档。

30.	使用NoSQL技术

227

http://projects.spring.io/spring-data-mongodb/
http://projects.spring.io/spring-data-neo4j/
https://github.com/spring-projects/spring-data-elasticsearch/
http://projects.spring.io/spring-data-solr/
http://projects.spring.io/spring-data-redis/
http://projects.spring.io/spring-data-gemfire/
http://projects.spring.io/spring-data-couchbase/
http://projects.spring.io/spring-data-cassandra/
http://projects.spring.io/spring-data/

30.1.	Redis
Redis是一个缓存，消息中间件及具有丰富特性的键值存储系统。Spring	Boot
为Jedis客户端library提供基本的自动配置，Spring	Data	Redis提供了在它之上的抽

象， 	spring-boot-starter-redis	'Starter'收集了需要的依赖。

30.1.	Redis

228

http://redis.io/
https://github.com/xetorthio/jedis/
https://github.com/spring-projects/spring-data-redis

30.1.1.	连接Redis
你可以注入一个自动配置

的 	RedisConnectionFactory	， 	StringRedisTemplate	或普通

的 	RedisTemplate	实例，或任何其他Spring	Bean只要你愿意。默认情况下，这

个实例将尝试使用 	localhost:6379	连接Redis服务器：

@Component

public	class	MyBean	{

				private	StringRedisTemplate	template;

				@Autowired

				public	MyBean(StringRedisTemplate	template)	{

								this.template	=	template;

				}

				//	...

}

如果你添加一个自己的，或任何自动配置类型的 	@Bean	，它将替换默认实例（除

了 	RedisTemplate	的情况，它是根据 	bean	的name	'redisTemplate'而不是类型

进行排除的）。如果在classpath路径下存在 	commons-pool2	，默认你会获得一个

连接池工厂。

30.1.	Redis

229

30.2.	MongoDB
MongoDB是一个开源的NoSQL文档数据库，它使用类JSON格式的模式

（schema）替换了传统的基于表的关系数据。Spring	Boot为使用MongoDB提供了

很多便利，包括 	spring-boot-starter-data-mongodb	'Starter'。

30.2.	MongoDB

230

http://www.mongodb.com/

30.2.1.	连接MongoDB数据库

你可以注入一个自动配置

的 	org.springframework.data.mongodb.MongoDbFactory	来访问Mongo数据

库。默认情况下，该实例将尝试使用URL	 	mongodb://localhost/test	连接到

MongoDB服务器：

import	org.springframework.data.mongodb.MongoDbFactory;

import	com.mongodb.DB;

@Component

public	class	MyBean	{

				private	final	MongoDbFactory	mongo;

				@Autowired

				public	MyBean(MongoDbFactory	mongo)	{

								this.mongo	=	mongo;

				}

				//	...

				public	void	example()	{

								DB	db	=	mongo.getDb();

								//	...

				}

}

你可以设置 	spring.data.mongodb.uri	来改变该url，并配置其他的设置，比如

副本集：

spring.data.mongodb.uri=mongodb://user:secret@mongo1.example.com

:12345,mongo2.example.com:23456/test

另外，跟正在使用的Mongo	2.x一样，你可以指定 	host	/ 	port	，比如，

在 	application.properties	中添加以下配置：

30.2.	MongoDB

231

spring.data.mongodb.host=mongoserver

spring.data.mongodb.port=27017

注	Mongo	3.0	Java驱动不支

持 	spring.data.mongodb.host	和 	spring.data.mongodb.port	，对于这种情

况， 	spring.data.mongodb.uri	需要提供全部的配置信息。

注	如果没有指定 	spring.data.mongodb.port	，默认使用 	27017	，上述示例中

可以删除这行配置。

注	如果不使用Spring	Data	Mongo，你可以注入 	com.mongodb.Mongo	beans	以代

替 	MongoDbFactory	。

如果想完全控制MongoDB连接的建立过程，你可以声明自己

的 	MongoDbFactory	或 	Mongo		bean。	如果想全面控制MongoDB连接的建立，

你也可以声明自己的MongoDbFactory或Mongo，@Beans。

30.2.	MongoDB

232

30.2.2.	MongoDBTemplate
Spring	Data	Mongo提供了一个MongoTemplate类，它的设计和Spring
的 	JdbcTemplate	很相似。跟 	JdbcTemplate	一样，Spring	Boot会为你自动配置

一个bean，你只需简单的注入即可：

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.data.mongodb.core.MongoTemplate;

import	org.springframework.stereotype.Component;

@Component

public	class	MyBean	{

				private	final	MongoTemplate	mongoTemplate;

				@Autowired

				public	MyBean(MongoTemplate	mongoTemplate)	{

								this.mongoTemplate	=	mongoTemplate;

				}

				//	...

}

具体参考 	MongoOperations		Javadoc。

30.2.	MongoDB

233

http://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/MongoTemplate.html

30.2.3.	Spring	Data	MongoDB仓库

Spring	Data包含的仓库也支持MongoDB，正如上面讨论的JPA仓库，基于方法名

自动创建查询是基本的原则。

实际上，不管是Spring	Data	JPA还是Spring	Data	MongoDB都共享相同的基础设

施。所以你可以使用上面的JPA示例，并假设那个 	City	现在是一个Mongo数据类

而不是JPA	 	@Entity	，它将以同样的方式工作：

package	com.example.myapp.domain;

import	org.springframework.data.domain.*;

import	org.springframework.data.repository.*;

public	interface	CityRepository	extends	Repository<City,	Long>	{

				Page<City>	findAll(Pageable	pageable);

				City	findByNameAndCountryAllIgnoringCase(String	name,	String

	country);

}

注	想详细了解Spring	Data	MongoDB，包括它丰富的对象映射技术，可以查看它的

参考文档。

30.2.	MongoDB

234

http://projects.spring.io/spring-data-mongodb/

30.2.4	内嵌的Mongo
Spring	Boot为内嵌Mongo提供自动配置，你需要添

加 	de.flapdoodle.embed:de.flapdoodle.embed.mongo	依赖才能使用它。

	spring.data.mongodb.port	属性可用来配置Mongo监听的端口，将该属性值设

为0，表示使用一个随机分配的可用端口。通过 	MongoAutoConfiguration	创建

的 	MongoClient	将自动配置为使用随机分配的端口。

如果classpath下存在SLF4J依赖，Mongo产生的输出将自动路由到一个名

为 	org.springframework.boot.autoconfigure.mongo.embedded.EmbeddedMon

go	的logger。

想要完全控制Mongo实例的配置和日志路由，你可以声明自己

的 	IMongodConfig	和 	IRuntimeConfig		beans。

30.2.	MongoDB

235

https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo

30.3	Neo4j
Neo4j是一个开源的NoSQL图数据库，它使用图（graph)相关的概念来描述数据模

型，把数据保存为图中的节点以及节点之间的关系。相比传统rdbms（关系管理系

统）的方式，Neo4j更适合大数据关系分析。Spring	Boot为使用Neo4j提供很多便

利，包括 	spring-boot-starter-data-neo4j	‘Starter’。

30.3	Neo4j

236

http://neo4j.com/

30.3.1	连接Neo4j数据库

你可以注入一个自动配置的 	Neo4jSession	， 	Session	，

或 	Neo4jOperations	实例，就像使用其他Spring	Bean那样。该实例默认使

用 	localhost:7474	连接Neo4j服务器：

@Component

public	class	MyBean	{

				private	final	Neo4jTemplate	neo4jTemplate;

				@Autowired

				public	MyBean(Neo4jTemplate	neo4jTemplate)	{

								this.neo4jTemplate	=	neo4jTemplate;

				}

				//	...

}

添加自己的 	org.neo4j.ogm.config.Configuration		 	@Bean	，你就能完全控制

该配置了。同时，添加一个 	Neo4jOperations	类型的 	@Bean	可以禁用自动配

置。

通过 	spring.data.neo4j.*	属性可以配置使用的用户和凭证：

spring.data.neo4j.uri=http://my-server:7474

spring.data.neo4j.username=neo4j

spring.data.neo4j.password=secret

30.3	Neo4j

237

30.3.2	使用内嵌模式

注	Neo4j的内嵌模式从属于不同的许可，在将它集成到应用之前确保复查下。

如果将 	org.neo4j:neo4j-ogm-embedded-driver	依赖添加到应用中，Spring
Boot会自动配置一个进程内（in-process）的内嵌Neo4j实例，当应用关闭时，该实

例不会持久化任何数据。设置 	spring.data.neo4j.embedded.enabled=false	可

显式关闭该模式，你也可以启用内嵌模式的持久化特性：

spring.data.neo4j.uri=file://var/tmp/graph.db

30.3	Neo4j

238

30.3.3	Neo4jSession
Neo4jSession默认的生命周期是应用程序范围，如果运行的是web应用，你可以很

轻松的改变它的scope：

spring.data.neo4j.session.scope=session

30.3	Neo4j

239

30.3.4	Spring	Data	Neo4j仓库

Spring	Data包含的仓库也支持Neo4j，实际上，Spring	Data	JPA和Spring	Data
Neo4j使用相同的常用设施，所以你可以采用先前JPA的示例，假设 	City	现在是

一个Neo4j	OGM	 	@NodeEntity	而不是JPA	 	@Entity	，它将以同样的方式工作。

注	你可以使用 	@EntityScan	注解定义实体扫描路径。

将以下两个注解添加到你的Spring	configuration，可以启用repository支持（还有可

选的对 	@Transactional	的支持）：

@EnableNeo4jRepositories(basePackages	=	"com.example.myapp.repos

itory")

@EnableTransactionManagement

30.3	Neo4j

240

30.3.5	仓库示例

package	com.example.myapp.domain;

import	org.springframework.data.domain.*;

import	org.springframework.data.repository.*;

public	interface	CityRepository	extends	GraphRepository<City>	{

				Page<City>	findAll(Pageable	pageable);

				City	findByNameAndCountry(String	name,	String	country);

}

注	想详细了解Spring	Data	Neo4j，包括它丰富的对象映射技术，可查看它的参考

文档。

30.3	Neo4j

241

http://projects.spring.io/spring-data-neo4j/

30.4	Gemfire
Spring	Data	Gemfire为使用Pivotal	Gemfire数据管理平台提供了方便的，Spring友
好的工具。Spring	Boot提供了一个用于聚集依赖的 	spring-boot-starter-data-

gemfire	'Starter'，目前不支持Gemfire的自动配置，但你只需使用一个注解就能使

Spring	Data仓库支持它。

30.4	Gemfire

242

https://github.com/spring-projects/spring-data-gemfire
http://www.pivotal.io/big-data/pivotal-gemfire#details
https://github.com/spring-projects/spring-data-gemfire/blob/master/src/main/java/org/springframework/data/gemfire/repository/config/EnableGemfireRepositories.java

30.5	Solr
Apache	Solr是一个搜索引擎。Spring	Boot为Solr	5客户端library提供基本的自动配

置，Spring	Data	Solr提供了在它之上的抽象，还有用于收集依赖的 	spring-boot-

starter-data-solr	'Starter'。

30.5	Solr

243

http://lucene.apache.org/solr/
https://github.com/spring-projects/spring-data-solr

30.5.1	连接Solr
你可以注入一个自动配置的 	SolrClient	实例，就像其他Spring	beans那样，该实

例默认使用 	localhost:8983/solr	连接Solr服务器：

@Component

public	class	MyBean	{

				private	SolrClient	solr;

				@Autowired

				public	MyBean(SolrClient	solr)	{

								this.solr	=	solr;

				}

				//	...

}

如果你添加自己的 	SolrClient	类型的 	@Bean	，它将会替换默认实例。

30.5	Solr

244

30.5.2	Spring	Data	Solr仓库

Spring	Data包含的仓库也支持Apache	Solr，正如先前讨论的JPA仓库，基于方法

名自动创建查询是基本的原则。

实际上，不管是Spring	Data	JPA还是Spring	Data	Solr都共享相同的基础设施。所

以你可以使用先前的JPA示例，并假设那个 	City	现在是一个 	@SolrDocument	类

而不是JPA	 	@Entity	，它将以同样的方式工作。

注	具体参考Spring	Data	Solr文档。

30.5	Solr

245

http://projects.spring.io/spring-data-solr/

30.6	Elasticsearch
Elastic	Search是一个开源的，分布式，实时搜索和分析引擎。Spring	Boot为
Elasticsearch提供基本的自动配置，Spring	Data	Elasticsearch提供在它之上的抽

象，还有用于收集依赖的 	spring-boot-starter-data-

elasticsearch	'Starter'。

30.6	Elasticsearch

246

http://www.elasticsearch.org/
https://github.com/spring-projects/spring-data-elasticsearch

30.6.1	使用Jest连接Elasticsearch
如果添加 	Jest	依赖，你可以注入一个自动配置的 	JestClient	，默认目标

为 	http://localhost:9200/	，也可以进一步配置该客户端：

spring.elasticsearch.jest.uris=http://search.example.com:9200

spring.elasticsearch.jest.read-timeout=10000

spring.elasticsearch.jest.username=user

spring.elasticsearch.jest.password=secret

定义一个 	JestClient		bean以完全控制注册过程。

30.6	Elasticsearch

247

30.6.2	使用Spring	Data连接Elasticsearch
你可以注入一个自动配置的 	ElasticsearchTemplate	或Elasticsearch
	Client	实例，就想其他Spring	Bean那样。该实例默认内嵌一个本地，内存型服

务器（在Elasticsearch中被称为 	Node	），并使用当前工作目录作为服务器的

home目录。在这个步骤中，首先要做的是告诉Elasticsearch将文件存放到什么地

方：

spring.data.elasticsearch.properties.path.home=/foo/bar

另外，你可以通过设置 	spring.data.elasticsearch.cluster-nodes	（逗号分

隔的‘host:port’列表）来切换为远程服务器：

spring.data.elasticsearch.cluster-nodes=localhost:9300

@Component

public	class	MyBean	{

				private	ElasticsearchTemplate	template;

				@Autowired

				public	MyBean(ElasticsearchTemplate	template)	{

								this.template	=	template;

				}

				//	...

}

如果添加自己的 	ElasticsearchTemplate	类型的 	@Bean	，它将覆盖默认实例。

30.6	Elasticsearch

248

30.6.3	Spring	Data	Elasticseach仓库

Spring	Data包含的仓库也支持Elasticsearch，正如前面讨论的JPA仓库，基于方法

名自动创建查询是基本的原则。

实际上，不管是Spring	Data	JPA还是Spring	Data	Elasticsearch都共享相同的基础

设施。所以你可以使用前面的JPA示例，并假设那个 	City	现在是一个

Elasticsearch	 	@Document	类而不是JPA	 	@Entity	，它将以同样的方式工作。

注	具体参考Spring	Data	Elasticsearch文档。

30.6	Elasticsearch

249

http://docs.spring.io/spring-data/elasticsearch/docs/

30.7	Cassandra
Cassandra是一个开源，分布式数据库管理系统，设计用于处理跨很多商品服务器

的大数据。Spring	Boot为Cassandra提供自动配置，Spring	Data	Cassandra提供

在它之上的抽象，还有收集依赖的 	spring-boot-starter-data-

cassandra	‘Starter’。

30.7	Cassandra

250

http://cassandra.apache.org/
https://github.com/spring-projects/spring-data-cassandra

30.7.1	连接Cassandra
你可以注入一个自动配置的 	CassandraTemplate	或Cassandra	 	Session	实例，

就像注入其他Spring	Bean那样。 	spring.data.cassandra.*	属性可用来自定义

该连接，通常你需要提供 	keyspace-name	和 	contact-points	属性：

spring.data.cassandra.keyspace-name=mykeyspace

spring.data.cassandra.contact-points=cassandrahost1,cassandrahos

t2

@Component

public	class	MyBean	{

				private	CassandraTemplate	template;

				@Autowired

				public	MyBean(CassandraTemplate	template)	{

								this.template	=	template;

				}

				//	...

}

如果添加自己的 	CassandraTemplate	类型的 	@Bean	，它将替换默认实例。

30.7	Cassandra

251

30.7.2	Spring	Data	Cassandra仓库

Spring	Data包含的仓库对Cassandra提供基本支持，目前受到的限制比先前讨论的

JPA仓库要多，并且需要使用 	@Query	注解相应的查找方法。

注	想全面了解Spring	Data	Cassandra，可查看它的参考指南。

30.7	Cassandra

252

http://docs.spring.io/spring-data/cassandra/docs/

30.8	Couchbase
Couchbase是一个基于文档，分布式多模型的开源数据库，设计用于交互式应用程

序。Spring	Boot为Couchbase提供自动配置，Spring	Data	Couchbase提供在它之

上的抽象，还有收集依赖的 	spring-boot-starter-data-couchbase	‘Starter’。

30.8	Couchbase

253

http://www.couchbase.com/
https://github.com/spring-projects/spring-data-couchbase

30.8.1	连接Couchbase
通过添加Couchbase	SDK和一些配置，你可以很容易获取一

个 	Bucket	和 	Cluster	， 	spring.couchbase.*	属性可用于自定义该连接。通

常，你需要提供启动hosts，bucket	name和password：

spring.couchbase.bootstrap-hosts=my-host-1,192.168.1.123

spring.couchbase.bucket.name=my-bucket

spring.couchbase.bucket.password=secret

注	你至少需要提供启动host(s)，在这种情况下，bucket	name默认为 	default	，

password默认为空字符串。另外，你可以定义自己

的 	org.springframework.data.couchbase.config.CouchbaseConfigurer	

	@Bean	来把控所有配置。

你也可以自定义一些 	CouchbaseEnvironment	设置，例如，以下配置改变打开

新 	Bucket	的超时时间（timeout），还启用了SSL支持：

spring.couchbase.env.timeouts.connect=3000

spring.couchbase.env.ssl.key-store=/location/of/keystore.jks

spring.couchbase.env.ssl.key-store-password=secret

具体查看 	spring.couchbase.env.*	属性。

30.8	Couchbase

254

30.8.2	Spring	Data	Couchbase仓库

Spring	Data包含的仓库也支持Couchbase，具体可查看Spring	Data	Couchbase的
参考文档。

你可以注入一个自动配置的 	CouchbaseTemplate	实例，就像注入其他Spring
Bean那样，只要默认的 	CouchbaseConfigurer	可以使用。如果想关闭Spring
Data	Couchbase的自动配置，你可以提供自己

的 	org.springframework.data.couchbase.config.AbstractCouchbaseDataCo

nfiguration	实现。

@Component

public	class	MyBean	{

				private	final	CouchbaseTemplate	template;

				@Autowired

				public	MyBean(CouchbaseTemplate	template)	{

								this.template	=	template;

				}

				//	...

}

如果添加你自己的 	CouchbaseTemplate	类型的 	@Bean	，且名称

为 	couchbaseTemplate	，那它将替换默认实例。

30.8	Couchbase

255

http://docs.spring.io/spring-data/couchbase/docs/current/reference/html/

31.	缓存

Spring框架提供为应用透明添加缓存的支持，核心思想是，将抽象应用到缓存方

法，基于缓存中可用信息减少方法的执行。缓存逻辑的应用是透明的，不会干扰调

用者。

注	具体参考Spring框架指南的相应章节。

简而言之，为服务的某个操作添加缓存跟为方法添加相应注解那样简单：

import	javax.cache.annotation.CacheResult;

import	org.springframework.stereotype.Component;

@Component

public	class	MathService	{

				@CacheResult

				public	int	computePiDecimal(int	i)	{

								//	...

				}

}

注	你既可以使用标准的JSR-107	(JCache)注解，也可以使用Spring自己的缓存注

解，这是透明的，我们强烈建议你不要混淆使用。

注	透明的更新或驱除缓存数据是可以的。

31.	缓存

256

http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle/#cache
http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle/#cache-annotations-put
http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle/#cache-annotations-evict

31.1	支持的缓存提供商

缓存抽象不提供实际的存储，而是依赖

于 	org.springframework.cache.Cache	和 	org.springframework.cache.Cach

eManager	接口的实现。只要通过 	@EnableCaching	注解开启缓存支持，Spring
Boot就会根据实现自动配置一个合适的 	CacheManager	。

注	如果你使用的缓存设施beans不是基于接口的，确保启

用 	proxyTargetClass	，并设置其属性为 	@EnableCaching	。

注	使用 	spring-boot-starter-cache	‘Starter’可以快速添加所需缓存依赖，如果

你是手动添加依赖，需要注意一些实现只有 	spring-context-support		jar才提

供。

如果你还没有定义一个 	CacheManager	类型的bean，或一个名

为 	cacheResolver	的 	CacheResolver	（查看 	CachingConfigurer	），Spring
Boot将尝试以下提供商（按这个顺序)：

Generic
JCache	(JSR-107)(EhCache	3,	Hazelcast,	Infinispan,	etc)
EhCache	2.x
Hazelcast
Infinispan
Couchbase
Redis
Caffeine
Guava
Simple

注	 	spring.cache.type	属性可强制指定使用的缓存提供商，如果需要在一

些环境（比如，测试）中禁用全部缓存也可以使用该属性。

如果 	CacheManager	是Spring	Boot自动配置的，你可以在它完全初始化前，

通过实现 	CacheManagerCustomizer	接口进一步配置，以下设置使用的缓存

name：

31.1	支持的缓存提供商

257

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-caching-provider-generic
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-caching-provider-jcache
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-caching-provider-ehcache2
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-caching-provider-hazelcast
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-caching-provider-infinispan
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-caching-provider-couchbase
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-caching-provider-redis
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-caching-provider-caffeine
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-caching-provider-guava
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-caching-provider-simple
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-caching-provider-none

@Bean

public	CacheManagerCustomizer<ConcurrentMapCacheManager>	cac

heManagerCustomizer()	{

	return	new	CacheManagerCustomizer<ConcurrentMapCacheManager

>()	{

					@Override

					public	void	customize(ConcurrentMapCacheManager	cacheMa

nager)	{

									cacheManager.setCacheNames(Arrays.asList("one",	"tw

o"));

					}

	};

}

注	在以上示例中，需要配置一个 	ConcurrentMapCacheManager	，如果没有

配置，则自定义器（customizer）将不会被调用。自定义器你添加多少都可

以，并可以使用 	@Order	或 	Ordered	对它们进行排序。

31.1	支持的缓存提供商

258

31.1.1	Generic
如果上下文定义至少一个 	org.springframework.cache.Cache		bean，一个配置

好的 	CacheManager	包装着它们，那么将使用通用（Generic）缓存。

31.1	支持的缓存提供商

259

31.1.3	EhCache	2.x
如果在classpath下的根目录可以找到一个名为 	ehcache.xml	的文件，则缓存将使

用EhCache	2.x。如果EhCache	2.x和这样的文件出现，那它们将用于启动缓存管

理器，使用以下配置可提供替换的配置文件：

spring.cache.ehcache.config=classpath:config/another-config.xml

31.1	支持的缓存提供商

260

31.1.4	Hazelcast
Spring	Boot为Hazelcast提供通常的支持，如果 	HazelcastInstance	被自动配

置，那它将自动包装进一个 	CacheManager	。

如果出于某些原因，需要使用另一个不同的 	HazelcastInstance	，你可以请求

Spring	Boot创建一个单独的实例，并只用于该 	CacheManager	：

spring.cache.hazelcast.config=classpath:config/my-cache-hazelcas

t.xml

注	如果以这种方式创建一个单独的 	HazelcastInstance	，它将不会注册到应用

上下文中。

31.1	支持的缓存提供商

261

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-hazelcast

31.1.5	Infinispan
Infinispan没有默认的配置文件位置，所以需要显式指定：

spring.cache.infinispan.config=infinispan.xml

通过设置 	spring.cache.cache-names	属性可以让缓存在启动时就被创建，如果

定义了 	ConfigurationBuilder		bean，它将用来定义该实例。

31.1	支持的缓存提供商

262

31.1.6	Couchbase
如果Couchbase可用，并配置好了， 	CouchbaseCacheManager	将会自动配置，使

用 	spring.cache.cache-names	属性可以在启动时创建其他缓存。对 	Bucket	的

操作也是自动配置的，你可以使用customizer在另一个 	Bucket	上创建其他缓存：

假设你需要在“main”	 	Bucket	上存放两个缓存（ 	foo	和 	bar	），在另一

个 	Bucket	上存放一个存活时间为2秒的 	biz	缓存。首先，你通过配置创建两个

缓存：

spring.cache.cache-names=foo,bar

然后定义其他 	@Configuration	来配置另一个 	Bucket	和 	biz	缓存：

31.1	支持的缓存提供商

263

@Configuration

public	class	CouchbaseCacheConfiguration	{

				private	final	Cluster	cluster;

				public	CouchbaseCacheConfiguration(Cluster	cluster)	{

								this.cluster	=	cluster;

				}

				@Bean

				public	Bucket	anotherBucket()	{

								return	this.cluster.openBucket("another",	"secret");

				}

				@Bean

				public	CacheManagerCustomizer<CouchbaseCacheManager>	cacheMa

nagerCustomizer()	{

								return	c	->	{

												c.prepareCache("biz",	CacheBuilder.newInstance(anoth

erBucket())

																				.withExpirationInMillis(2000));

								};

				}

}

这个示例配置重用了通过自动配置的 	Cluster	。

31.1	支持的缓存提供商

264

31.1.7	Redis
如果Redis可用，并配置好了， 	RedisCacheManager	将被自动配置，使

用 	spring.cache.cache-names	可以在启动时创建其他缓存。

注	默认会添加key前缀以防止两个单独的缓存使用相同的key，否则Redis将存在重

复的key，有可能返回不可用的值。如果创建自己的 	RedisCacheManager	，强烈

建议你保留该配置处于启用状态。

31.1	支持的缓存提供商

265

31.1.8	Caffeine
Caffeine是Java8对Guava缓存的重写版本，在Spring	Boot	2.0中将取代Guava。如

果出现Caffeine， 	CaffeineCacheManager	将会自动配置。使

用 	spring.cache.cache-names	属性可以在启动时创建缓存，并可以通过以下配

置进行自定义（按顺序）：

1.	 	spring.cache.caffeine.spec	定义的特殊缓存

2.	 	com.github.benmanes.caffeine.cache.CaffeineSpec		bean定义

3.	 	com.github.benmanes.caffeine.cache.Caffeine		bean定义

例如，以下配置创建一个 	foo	和 	bar	缓存，最大数量为500，存活时间为10分
钟：

spring.cache.cache-names=foo,bar

spring.cache.caffeine.spec=maximumSize=500,expireAfterAccess=600

s

除此之外，如果定义

了 	com.github.benmanes.caffeine.cache.CacheLoader	，它会自动关联

到 	CaffeineCacheManager	。由于该 	CacheLoader	将关联被该缓存管理器管理

的所有缓存，所以它必须定义为 	CacheLoader<Object,	Object>	，自动配置将

忽略所有泛型类型。

31.1	支持的缓存提供商

266

31.1.9	Guava
如果存在Guava， 	GuavaCacheManager	会自动配置。使

用 	spring.cache.cache-names	属性可以在启动时创建缓存，并通过以下方式之

一自定义（按此顺序）：

1.	 	spring.cache.guava.spec	定义的特殊缓存

2.	 	com.google.common.cache.CacheBuilderSpec		bean定义的

3.	 	com.google.common.cache.CacheBuilder		bean定义的

例如，以下配置创建了一个 	foo	和 	bar	缓存，该缓存最大数量为500，存活时间

为10分钟：

spring.cache.cache-names=foo,bar

spring.cache.guava.spec=maximumSize=500,expireAfterAccess=600s

此外，如果定义 	com.google.common.cache.CacheLoader		bean，它会自动关联

到 	GuavaCacheManager	。由于该 	CacheLoader	将关联该缓存管理器管理的所有

缓存，它必须定义为 	CacheLoader<Object,	Object>	，自动配置会忽略所有泛

型类型。

31.1	支持的缓存提供商

267

31.1.10	Simple
如果以上选项都没有采用，一个使用 	ConcurrentHashMap	作为缓存存储的简单实

现将被配置，这是应用没有添加缓存library的默认设置。

31.1	支持的缓存提供商

268

31.1.11	None
如果配置类中出现 	@EnableCaching	，一个合适的缓存配置也同样被期待。如果

在某些环境需要禁用全部缓存，强制将缓存类型设为 	none	将会使用一个no-op实
现（没有任何实现的实现）：

spring.cache.type=none

31.1	支持的缓存提供商

269

32.	消息

Spring	Framework框架为集成消息系统提供了扩展（extensive）支持：从使

用 	JmsTemplate	简化JMS	API，到实现一个能够异步接收消息的完整的底层设

施。Spring	AMQP提供一个相似的用于'高级消息队列协议'的特征集，并且Spring
Boot也为 	RabbitTemplate	和RabbitMQ提供了自动配置选项。Spring	Websocket
提供原生的STOMP消息支持，并且Spring	Boot也提供了starters和自动配置支持。

32.	消息

270

32.1.	JMS
	javax.jms.ConnectionFactory	接口提供标准的用于创

建 	javax.jms.Connection	的方法， 	javax.jms.Connection	用于和JMS代理

（broker）交互。	尽管Spring需要一个 	ConnectionFactory	才能使用JMS，通常

你不需要直接使用它，而是依赖于上层消息抽象（具体参考Spring框架的相关章

节），Spring	Boot会自动配置发送和接收消息需要的设施（infrastructure）。

32.1.	JMS

271

http://docs.spring.io/spring/docs/4.1.4.RELEASE/spring-framework-reference/htmlsingle/#jms

32.1.1	ActiveQ支持

如果发现ActiveMQ在classpath下可用，Spring	Boot会配置一

个 	ConnectionFactory	。如果需要代理，将会开启一个内嵌的，已经自动配置好

的代理（只要配置中没有指定代理URL）。

ActiveMQ是通过 	spring.activemq.*	外部配置来控制的，例如，你可能

在 	application.properties	中声明以下片段：

spring.activemq.broker-url=tcp://192.168.1.210:9876

spring.activemq.user=admin

spring.activemq.password=secret

具体参考ActiveMQProperties。

默认情况下，如果目标不存在，ActiveMQ将创建一个，所以目标是通过它们提供的

名称解析出来的。

32.1.	JMS

272

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQProperties.java

32.1.2	Artemis支持

Apache	Artemis成立于2015年，那时HornetQ刚捐给Apache基金会，确保别使用

了过期的HornetQ支持。	注	不要尝试同时使用Artemis和HornetQ。

如果发现classpath下存在Artemis依赖，Spring	Boot将自动配置一

个 	ConnectionFactory	。如果需要broker，Spring	Boot将启动内嵌的broker，并

对其自动配置（除非模式mode属性被显式设置）。支持的modes包
括： 	embedded	（明确需要内嵌broker，如果classpath下不存在则出

错）， 	native	（使用 	netty	传输协议连接broker）。当配置 	native	模式，

Spring	Boot将配置一个连接broker的 	ConnectionFactory	，该broker使用默认的

设置运行在本地机器。	注	使用 	spring-boot-starter-artemis		'Starter'，则连

接已存在的Artemis实例及Spring设施集成JMS所需依赖都会提供，添

加 	org.apache.activemq:artemis-jms-server	依赖，你可以使用内嵌模式。

Artemis配置控制在外部配置属性 	spring.artemis.*	中，例如，

在 	application.properties	声明以下片段：

spring.artemis.mode=native

spring.artemis.host=192.168.1.210

spring.artemis.port=9876

spring.artemis.user=admin

spring.artemis.password=secret

当使用内嵌模式时，你可以选择是否启用持久化，及目的地列表。这些可以通过逗

号分割的列表来指定，也可以分别定

义 	org.apache.activemq.artemis.jms.server.config.JMSQueueConfigurati

on	或 	org.apache.activemq.artemis.jms.server.config.TopicConfigurati

on	类型的bean来进一步配置队列和topic，具体支持选项可参

考ArtemisProperties。

32.1.	JMS

273

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/artemis/ArtemisProperties.java

32.1.3	HornetQ支持

注	HornetQ在1.4版本已过期，可以考虑迁移到artemis。

如果在classpath下发现HornetQ，Spring	Boot会自动配置 	ConnectionFactory	。

如果需要代理，将会开启一个内嵌的，已经自动配置好的代理（除非显式设置

mode属性）。支持的modes有： 	embedded	（显式声明使用内嵌的代理，如果该

代理在classpath下不可用将出错）， 	native	（使用 	netty	传输协议连接代

理）。当后者被配置，Spring	Boot配置一个连接到代理的 	ConnectionFactory	，

该代理运行在使用默认配置的本地机器上。

注：如果使用 	spring-boot-starter-hornetq	，连接到一个已存在的HornetQ实

例所需的依赖都会被提供，同时还有用于集成JMS的Spring基础设施。

将 	org.hornetq:hornetq-jms-server	添加到应用中，你就可以使

用 	embedded	模式。

HornetQ配置被 	spring.hornetq.*	中的外部配置属性所控制，例如，

在 	application.properties	声明以下片段：

spring.hornetq.mode=native

spring.hornetq.host=192.168.1.210

spring.hornetq.port=9876

当内嵌代理时，你可以选择是否启用持久化，并且列表中的目标都应该是可用的。

这些可以通过一个以逗号分割的列表来指定一些默认的配置项，或定

义 	org.hornetq.jms.server.config.JMSQueueConfiguration	或 	org.hornet

q.jms.server.config.TopicConfiguration	类型的bean(s)来配置更高级的队列

和主题，具体参考HornetQProperties。

没有涉及JNDI查找，目标是通过名字解析的，名字即可以使用HornetQ配置中的

name属性，也可以是配置中提供的names。

32.1.	JMS

274

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-artemis
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/hornetq/HornetQProperties.java

32.1.4	使用JNDI	ConnectionFactory
如果你的App运行在应用服务器中，Spring	Boot将尝试使用JNDI定位一个JMS
	ConnectionFactory	，默认会检查 	java:/JmsXA	和 	java:/

XAConnectionFactory	两个地址。如果需要指定替换位置，可以使

用 	spring.jms.jndi-name	属性：

spring.jms.jndi-name=java:/MyConnectionFactory

32.1.	JMS

275

32.1.5	发送消息

Spring的 	JmsTemplate	会被自动配置，你可以将它直接注入到自己的beans中：

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.jms.core.JmsTemplate;

import	org.springframework.stereotype.Component;

@Component

public	class	MyBean	{

private	final	JmsTemplate	jmsTemplate;

@Autowired

public	MyBean(JmsTemplate	jmsTemplate)	{

this.jmsTemplate	=	jmsTemplate;

}

//	...

}

注	你可以使用相同方式注入JmsMessagingTemplate。如果定义

了 	DestinationResolver	或 	MessageConverter		beans，它们将自动关联到自

动配置的 	JmsTemplate	。

32.1.	JMS

276

http://docs.spring.io/spring/docs/4.3.3.RELEASE/javadoc-api/org/springframework/jms/core/JmsMessagingTemplate.html

32.1.6	接收消息

当JMS基础设施能够使用时，任何bean都能够被 	@JmsListener	注解，以创建一

个监听者端点。如果没有定义 	JmsListenerContainerFactory	，将自动配置一

个默认的。如果定义 	DestinationResolver	或 	MessageConverter		beans，它

们将自动关联该默认factory。

默认factory是事务性的，如果运行的设施出现 	JtaTransactionManager	，它默认

将关联到监听器容器。如果没有， 	sessionTransacted	标记将启用。在后一场景

中，你可以通过在监听器方法上添加 	@Transactional	，以本地数据存储事务处

理接收的消息，这可以确保接收的消息在本地事务完成后只确认一次。

下面的组件创建了一个以 	someQueue	为目标的监听器端点：

@Component

public	class	MyBean	{

@JmsListener(destination	=	"someQueue")

public	void	processMessage(String	content)	{

//	...

}

}

具体查看@EnableJms	javadoc。

如果想创建多个 	JmsListenerContainerFactory	实例或覆盖默认实例，你可以

使用Spring	Boot提供的 	DefaultJmsListenerContainerFactoryConfigurer	，

通过它可以使用跟自动配置的实例相同配置来初始化一

个 	DefaultJmsListenerContainerFactory	。

例如，以下使用一个特殊的 	MessageConverter	创建另一个factory：

32.1.	JMS

277

http://docs.spring.io/spring/docs/4.3.3.RELEASE/javadoc-api/org/springframework/jms/annotation/EnableJms.html

@Configuration

static	class	JmsConfiguration	{

				@Bean

				public	DefaultJmsListenerContainerFactory	myFactory(

												DefaultJmsListenerContainerFactoryConfigurer	configu

rer)	{

								DefaultJmsListenerContainerFactory	factory	=

																new	DefaultJmsListenerContainerFactory();

								configurer.configure(factory,	connectionFactory());

								factory.setMessageConverter(myMessageConverter());

								return	factory;

				}

}

然后，你可以像下面那样在任何 	@JmsListener	注解中使用：

@Component

public	class	MyBean	{

				@JmsListener(destination	=	"someQueue",	containerFactory="my

Factory")

				public	void	processMessage(String	content)	{

								//	...

				}

}

32.1.	JMS

278

32.2	AMQP
高级消息队列协议（AMQP）是一个用于消息中间件的，平台无关的，线路级

（wire-level）协议。Spring	AMQP项目使用Spring的核心概念开发基于AMQP的消

息解决方案，Spring	Boot为通过RabbitMQ使用AMQP提供了一些便利，包

括 	spring-boot-starter-amqp	‘Starter’。

32.2	AMQP

279

32.2.1	RabbitMQ支持

RabbitMQ是一个基于AMQP协议，轻量级的，可靠的，可扩展的和可移植的消息

代理，Spring就使用它进行消息传递。RabbitMQ配置被外部属

性 	spring.rabbitmq.*	控制，例如，在 	application.properties	中声明以下

片段：

spring.rabbitmq.host=localhost

spring.rabbitmq.port=5672

spring.rabbitmq.username=admin

spring.rabbitmq.password=secret

更多选项参考RabbitProperties。

32.2	AMQP

280

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitProperties.java

32.2.2	发送消息

Spring的 	AmqpTemplate	和 	AmqpAdmin	会被自动配置，你可以将它们直接注入

beans中：

import	org.springframework.amqp.core.AmqpAdmin;

import	org.springframework.amqp.core.AmqpTemplate;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.stereotype.Component;

@Component

public	class	MyBean	{

				private	final	AmqpAdmin	amqpAdmin;

				private	final	AmqpTemplate	amqpTemplate;

				@Autowired

				public	MyBean(AmqpAdmin	amqpAdmin,	AmqpTemplate	amqpTemplate)

	{

								this.amqpAdmin	=	amqpAdmin;

								this.amqpTemplate	=	amqpTemplate;

				}

				//	...

}

注	可以使用相似方式注入 	RabbitMessagingTemplate	，如果定

义 	MessageConverter		bean，它将自动关联到自动配置的 	AmqpTemplate	。

如果需要的话，所有定义为bean的 	org.springframework.amqp.core.Queue	将

自动在RabbitMQ实例中声明相应的队列。你可以启用 	AmqpTemplate	的重试选

项，例如代理连接丢失时，重试默认不启用。

32.2	AMQP

281

32.2.3	接收消息

当Rabbit设施出现时，所有bean都可以注解 	@RabbitListener	来创建一个监听器

端点。如果没有定义 	RabbitListenerContainerFactory	，Spring	Boot将自动配

置一个默认的。如果定义 	MessageConverter		beans，它将自动关联到默认的

factory。

下面的组件创建一个 	someQueue	队列上的监听器端点：

@Component

public	class	MyBean	{

				@RabbitListener(queues	=	"someQueue")

				public	void	processMessage(String	content)	{

								//	...

				}

}

注	具体参考@EnableRabbit。

如果需要创建多个 	RabbitListenerContainerFactory	实例，或想覆盖默认实

例，你可以使用Spring	Boot提供

的 	SimpleRabbitListenerContainerFactoryConfigurer	，通过它可以使用跟

自动配置实例相同的配置初始化 	SimpleRabbitListenerContainerFactory	。

例如，下面使用一个特殊的 	MessageConverter	创建了另一个factory：

32.2	AMQP

282

http://docs.spring.io/spring-amqp/docs/current/api/org/springframework/amqp/rabbit/annotation/EnableRabbit.html

@Configuration

static	class	RabbitConfiguration	{

				@Bean

				public	SimpleRabbitListenerContainerFactory	myFactory(

												SimpleRabbitListenerContainerFactoryConfigurer	confi

gurer)	{

								SimpleRabbitListenerContainerFactory	factory	=

																new	SimpleRabbitListenerContainerFactory();

								configurer.configure(factory,	connectionFactory);

								factory.setMessageConverter(myMessageConverter());

								return	factory;

				}

}

然后，你可以像下面那样在所有 	@RabbitListener	注解方法中使用：

@Component

public	class	MyBean	{

				@RabbitListener(queues	=	"someQueue",	containerFactory="myFa

ctory")

				public	void	processMessage(String	content)	{

								//	...

				}

}

你可以启动重试处理那些监听器抛出异常的情况，当重试次数达到限制时，该消息

将被拒绝，要不被丢弃，要不路由到一个dead-letter交换器，如果broker这样配置

的话，默认禁用重试。

重要	如果没启用重试，且监听器抛出异常，则Rabbit会不定期进行重试。你可以采

用两种方式修改该行为：设置 	defaultRequeueRejected	属性为 	false	，这样

就不会重试；或抛出一个 	AmqpRejectAndDontRequeueException	异常表示该消

息应该被拒绝，这是开启重试，且达到最大重试次数时使用的策略。

32.2	AMQP

283

32.2	AMQP

284

33.	调用REST服务

如果应用需要调用远程REST服务，你可以使用Spring框架的 	RestTemplate	类。

由于 	RestTemplate	实例经常在使用前需要自定义，Spring	Boot就没有提供任何

自动配置的 	RestTemplate		bean，不过你可以通过自动配置

的 	RestTemplateBuilder	创建自己需要的 	RestTemplate	实例。自动配置

的 	RestTemplateBuilder	会确保应用到 	RestTemplate	实例

的 	HttpMessageConverters	是合适的。

以下是典型的示例：

@Service

public	class	MyBean	{

				private	final	RestTemplate	restTemplate;

				public	MyBean(RestTemplateBuilder	restTemplateBuilder)	{

								this.restTemplate	=	restTemplateBuilder.build();

				}

				public	Details	someRestCall(String	name)	{

								return	this.restTemplate.getForObject("/{name}/details",

	Details.class,	name);

				}

}

注	 	RestTemplateBuilder	包含很多有用的方法，可以用于快速配置一

个 	RestTemplate	。例如，你可以使用 	builder.basicAuthorization("user",

"password").build()	添加基本的认证支持（BASIC	auth）。

33.	调用REST服务

285

33.1	自定义RestTemplate
当使用 	RestTemplateBuilder	构建 	RestTemplate	时，可以通

过 	RestTemplateCustomizer	进行更高级的定制，所

有 	RestTemplateCustomizer		beans将自动添加到自动配置

的 	RestTemplateBuilder	。此外，调

用 	additionalCustomizers(RestTemplateCustomizer…)	方法可以创建一个新

的，具有其他customizers的 	RestTemplateBuilder	。

以下示例演示使用自定义器（customizer）配置所有hosts使用代理，除

了 	192.168.0.5	：

33.	调用REST服务

286

static	class	ProxyCustomizer	implements	RestTemplateCustomizer	{

				@Override

				public	void	customize(RestTemplate	restTemplate)	{

								HttpHost	proxy	=	new	HttpHost("proxy.example.com");

								HttpClient	httpClient	=	HttpClientBuilder.create()

																.setRoutePlanner(new	DefaultProxyRoutePlanner(pr

oxy)	{

																				@Override

																				public	HttpHost	determineProxy(HttpHost	targ

et,

																												HttpRequest	request,	HttpContext	con

text)

																																				throws	HttpException	{

																								if	(target.getHostName().equals("192.168

.0.5"))	{

																												return	null;

																								}

																								return	super.determineProxy(target,	requ

est,	context);

																				}

																}).build();

								restTemplate.setRequestFactory(

																new	HttpComponentsClientHttpRequestFactory(httpC

lient));

				}

}

33.	调用REST服务

287

34.	发送邮件

Spring框架通过 	JavaMailSender	接口为发送邮件提供了一个简单的抽象，并且

Spring	Boot也为它提供了自动配置和一个starter模块。	具体查看JavaMailSender
参考文档。

如果 	spring.mail.host	和相关的libraries（通过 	spring-boot-starter-

mail	定义的）都可用，Spring	Boot将创建一个默认的 	JavaMailSender	，该

sender可以通过 	spring.mail	命名空间下的配置项进一步自定义，具体参

考MailProperties。

34.	发送邮件

288

http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle/#mail
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailProperties.java

35.	使用JTA处理分布式事务

Spring	Boot通过Atomkos或Bitronix的内嵌事务管理器支持跨多个XA资源的分布式

JTA事务，当部署到恰当的J2EE应用服务器时也会支持JTA事务。

当发现JTA环境时，Spring	Boot将使用Spring的 	JtaTransactionManager	来管理

事务。自动配置的JMS，DataSource和JPA　beans将被升级以支持XA事务。你可

以使用标准的Spring	idioms，比如 	@Transactional	，来参与到一个分布式事务

中。如果处于JTA环境，但仍想使用本地事务，你可以将 	spring.jta.enabled	属

性设置为 	false	来禁用JTA自动配置功能。

35.	使用JTA处理分布式事务

289

http://www.atomikos.com/
http://docs.codehaus.org/display/BTM/Home

35.1	使用Atomikos事务管理器

Atomikos是一个非常流行的开源事务管理器，并且可以嵌入到你的Spring	Boot应用

中。你可以使用 	spring-boot-starter-jta-atomikos	Starter去获取正确的

Atomikos库。Spring	Boot会自动配置Atomikos，并将合适的 	depends-on	应用到

你的Spring	Beans上，确保它们以正确的顺序启动和关闭。

默认情况下，Atomikos事务日志将被记录在应用home目录（你的应用jar文件放置

的目录）下的 	transaction-logs	文件夹中。你可以

在 	application.properties	文件中通过设置 	spring.jta.log-dir	属性来定

义该目录，以 	spring.jta.atomikos.properties	开头的属性能用来定义

Atomikos的 	UserTransactionServiceIml	实现，具体参考AtomikosProperties
javadoc。

注	为了确保多个事务管理器能够安全地和相应的资源管理器配合，每个Atomikos实
例必须设置一个唯一的ID。默认情况下，该ID是Atomikos实例运行的机器上的IP地
址。为了确保生产环境中该ID的唯一性，你需要为应用的每个实例设置不同

的 	spring.jta.transaction-manager-id	属性值。

35.1	使用Atomikos事务管理器

290

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/api/org/springframework/boot/jta/atomikos/AtomikosProperties.html

35.2	使用Bitronix事务管理器

Bitronix是一个流行的开源JTA事务管理器实现，你可以使用 	spring-boot-

starter-jta-bitronix	starter为项目添加合适的Birtronix依赖。和Atomikos类
似，Spring	Boot将自动配置Bitronix，并对beans进行后处理（post-process）以确

保它们以正确的顺序启动和关闭。

默认情况下，Bitronix事务日志（ 	part1.btm	和 	part2.btm	）将被记录到应用

home目录下的 	transaction-logs	文件夹中，你可以通过设

置 	spring.jta.log-dir	属性来自定义该目录。

以 	spring.jta.bitronix.properties	开头的属性将被绑定

到 	bitronix.tm.Configuration		bean，你可以通过这完成进一步的自定义，具

体参考Bitronix文档。

注	为了确保多个事务管理器能够安全地和相应的资源管理器配合，每个Bitronix实
例必须设置一个唯一的ID。默认情况下，该ID是Bitronix实例运行的机器上的IP地
址。为了确保生产环境中该ID的唯一性，你需要为应用的每个实例设置不同

的 	spring.jta.transaction-manager-id	属性值。

35.2	使用Bitronix事务管理器

291

https://github.com/bitronix/btm/wiki/Transaction-manager-configuration

35.3	使用Narayana事务管理器

Narayana是一个流行的开源JTA事务管理器实现，目前只有JBoss支持。你可以使

用 	spring-boot-starter-jta-narayana		starter添加合适的Narayana依赖，像

Atomikos和Bitronix那样，Spring	Boot将自动配置Narayana，并对你的beans后处

理（post-process）以确保正确启动和关闭。

Narayana事务日志默认记录到应用home目录（放置应用jar的目录）

的 	transaction-logs	目录下，你可以通过设置 	application.properties	中

的 	spring.jta.log-dir	属性自定义该目录。

以 	spring.jta.narayana.properties	开头的属性可用于自定义Narayana配置，

具体参考NarayanaProperties。

注	为了确保多事务管理器能够安全配合相应资源管理器，每个Narayana实例必须

配置唯一的ID，默认ID设为 	1	。为确保生产环境中ID唯一性，你可以为应用的每

个实例配置不同的 	spring.jta.transaction-manager-id	属性值。

35.3	使用Narayana事务管理器

292

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/api/org/springframework/boot/jta/narayana/NarayanaProperties.html

35.4	使用J2EE管理的事务管理器

如果你将Spring	Boot应用打包为一个 	war	或 	ear	文件，并将它部署到一个J2EE
的应用服务器中，那你就能使用应用服务器内建的事务管理器。Spring	Boot将尝试

通过查找常见的JNDI路径（ 	java:comp/UserTransaction	,
	java:comp/TransactionManager	等）来自动配置一个事务管理器。如果使用应

用服务器提供的事务服务，你通常需要确保所有的资源都被应用服务器管理，并通

过JNDI暴露出去。Spring	Boot通过查找JNDI路
径 	java:/JmsXA	或 	java:/XAConnectionFactory	获取一

个 	ConnectionFactory	来自动配置JMS，并且你可以使

用 	spring.datasource.jndi-name	属性配置你的 	DataSource	。

35.4	使用J2EE管理的事务管理器

293

35.5	混合XA和non-XA的JMS连接

当使用JTA时，primary	JMS	 	ConnectionFactory	bean将能识别XA，并参与到分

布式事务中。有些情况下，你可能需要使用non-XA的 	ConnectionFactory	去处

理一些JMS消息。例如，你的JMS处理逻辑可能比XA超时时间长。

如果想使用一个non-XA的 	ConnectionFactory	，你可以注

入 	nonXaJmsConnectionFactory	　bean而不是 	@Primary	

	jmsConnectionFactory		bean。为了保持一致， 	jmsConnectionFactory	　

bean将以别名 	xaJmsConnectionFactor	来被使用。

示例如下：

//	Inject	the	primary	(XA	aware)	ConnectionFactory

@Autowired

private	ConnectionFactory	defaultConnectionFactory;

//	Inject	the	XA	aware	ConnectionFactory	(uses	the	alias	and	inj

ects	the	same	as	above)

@Autowired

@Qualifier("xaJmsConnectionFactory")

private	ConnectionFactory	xaConnectionFactory;

//	Inject	the	non-XA	aware	ConnectionFactory

@Autowired

@Qualifier("nonXaJmsConnectionFactory")

private	ConnectionFactory	nonXaConnectionFactory;

35.5	混合XA和non-XA的JMS连接

294

35.6	支持可替代的内嵌事务管理器

XAConnectionFactoryWrapper和XADataSourceWrapper接口用于支持可替换的内

嵌事务管理器。该接口用于包装 	XAConnectionFactory	和 	XADataSource	　

beans，并将它们暴露为普通的 	ConnectionFactory	和 	DataSource		beans，这

样在分布式事务中可以透明使用。Spring	Boot将使用注册

到 	ApplicationContext	的合适的XA包装器及 	JtaTransactionManager		bean
自动配置你的DataSource和JMS。

BitronixXAConnectionFactoryWrapper和BitronixXADataSourceWrapper提供很好

的示例用于演示怎么编写XA包装器。

35.6	支持可替代的内嵌事务管理器

295

http://github.com/spring-projects/spring-boot/tree/master/spring-boot/src/main/java/org/springframework/boot/jta/XAConnectionFactoryWrapper.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot/src/main/java/org/springframework/boot/jta/XADataSourceWrapper.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot/src/main/java/org/springframework/boot/jta/bitronix/BitronixXAConnectionFactoryWrapper.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot/src/main/java/org/springframework/boot/jta/bitronix/BitronixXADataSourceWrapper.java

36.	Hazelcast
如果添加hazelcast依赖，Spring	Boot将自动配置一个 	HazelcastInstance	，你

可以注入到应用中， 	HazelcastInstance	实例只有存在相关配置时才会创建。

如果定义了 	com.hazelcast.config.Config		bean，则Spring	Boot将使用它。如

果你的配置指定了实例的名称，Spring	Boot将尝试定位已存在的而不是创建一个新

实例。你可以在配置中指定将要使用的 	hazelcast.xml	配置文件：

spring.hazelcast.config=classpath:config/my-hazelcast.xml

否则，Spring	Boot尝试从默认路径查找Hazelcast配置，也就

是 	hazelcast.xml	所在的工作路径或classpath的根路径。Spring	Boot也会检查

是否设置 	hazelcast.config	系统属性，具体参考Hazelcast文档。

注	Spring	Boot为Hazelcast提供了缓存支持，如果开启缓存的

话， 	HazelcastInstance	实例将自动包装进一个 	CacheManager	实现中。

36.	Hazelcast

296

http://docs.hazelcast.org/docs/latest/manual/html-single/

37.	Spring集成

Spring	Boot为Spring集成提供了一些便利，包括 	spring-boot-starter-

integration		‘Starter’。	Spring集成提供基于消息和其他传输协议的抽象，比如

HTTP，TCP等。如果添加Spring集成依赖，使用 	@EnableIntegration	注解可以

初始化它。如果classpath下存在'spring-integration-jmx'依赖，则消息处理统计分析

将被通过JMX发布出去，具体参考IntegrationAutoConfiguration类。

37.	Spring集成

297

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationAutoConfiguration.java

38.	Spring	Session
Spring	Boot为Spring	Session自动配置了各种存储：

JDBC
MongoDB
Redis
Hazelcast
HashMap

如果Spring	Session可用，你只需选择想要的存储sessions的存储类型StoreType。
例如，按如下配置将使用JDBC作为后端存储：

spring.session.store-type=jdbc

注	出于向后兼容，如果Redis可用，Spring	Session将自动配置使用Redis存储。

注	设置 	store-type	为 	none	可以禁用Spring	Session。

每个存储都有特殊设置，例如，对于jdbc存储可自定义表名：

spring.session.jdbc.table-name=SESSIONS

38.	Spring	Session

298

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/StoreType.java

39.	基于JMX的监控和管理

Java管理扩展（JMX）提供了一个标准的用于监控和管理应用的机制。默认情况

下，Spring	Boot将创建一个id为‘mbeanServer’的 	MBeanServer	，并导出任何被

Spring	JMX注解

（ 	@ManagedResource	， 	@ManagedAttribute	， 	@ManagedOperation	）的

beans，具体参考JmxAutoConfiguration类。

39.	基于JMX的监控和管理

299

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.java

40.	测试

Spring	Boot提供很多有用的工具类和注解用于帮助你测试应用，主要分两个模

块： 	spring-boot-test	包含核心组件， 	spring-boot-test-

autoconfigure	为测试提供自动配置。

大多数开发者只需要引用 	spring-boot-starter-test		‘Starter’，它既提供

Spring	Boot测试模块，也提供JUnit，AssertJ，Hamcrest和很多有用的依赖。

40.	测试

300

40.1	测试作用域依赖

如果使用 	spring-boot-starter-test		‘Starter’（在 	test``scope	内），你将

发现下列被提供的库：

JUnit	-	事实上的(de-facto)标准，用于Java应用的单元测试。

Spring	Test	&	Spring	Boot	Test 	-	对Spring应用的集成测试支持。

AssertJ	-	一个流式断言库。

Hamcrest	-	一个匹配对象的库（也称为约束或前置条件）。

Mockito	-	一个Java模拟框架。

JSONassert	-	一个针对JSON的断言库。

JsonPath	-	用于JSON的XPath。

这是写测试用例经常用到的库，如果它们不能满足要求，你可以随意添加其他的依

赖。

40.1	测试作用域依赖

301

http://junit.org/
http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle/#integration-testing.html
http://joel-costigliola.github.io/assertj/
http://hamcrest.org/JavaHamcrest/
http://mockito.org/
https://github.com/skyscreamer/JSONassert
https://github.com/jayway/JsonPath

40.2	测试Spring应用

依赖注入主要优势之一就是它能够让你的代码更容易进行单元测试。你只需简单的

通过 	new	操作符实例化对象，甚至不需要涉及Spring，也可以使用模拟对象替换

真正的依赖。

你常常需要在进行单元测试后，开始集成测试（在这个过程中只需要涉及到Spring
的 	ApplicationContext	）。在执行集成测试时，不需要部署应用或连接到其他

基础设施是非常有用的，Spring框架为实现这样的集成测试提供了一个专用的测试

模块，通过声明 	org.springframework:spring-test	的依赖，或使用 	spring-

boot-starter-test		‘Starter’就可以使用它了。

如果以前没有使用过 	spring-test	模块，可以查看Spring框架参考文档中的相关

章节。

40.2	测试Spring应用

302

http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle/#testing

40.3	测试Spring	Boot应用

Spring	Boot应用只是一个Spring	 	ApplicationContext	，所以在测试时对它只需

要像处理普通Spring	context那样即可。唯一需要注意的是，如果你使

用 	SpringApplication	创建上下文，外部配置，日志和Spring	Boot的其他特性只

会在默认的上下文中起作用。

Spring	Boot提供一个 	@SpringApplicationConfiguration	注解用于替换标准

的 	spring-test		 	@ContextConfiguration	注解，该组件工作方式是通

过 	SpringApplication	创建用于测试的 	ApplicationContext	。

你可以使用 	@SpringBootTest	的 	webEnvironment	属性定义怎么运行测试：

	MOCK		-	加载 	WebApplicationContext	，并提供一个mock	servlet环境，使

用该注解时内嵌servlet容器将不会启动。如果classpath下不存在servlet
APIs，该模式将创建一个常规的non-web	 	ApplicationContext	。

	RANDOM_PORT		-	加载 	EmbeddedWebApplicationContext	，并提供一个真实

的servlet环境。使用该模式内嵌容器将启动，并监听在一个随机端口。

	DEFINED_PORT		-	加载 	EmbeddedWebApplicationContext	，并提供一个真

实的servlet环境。使用该模式内嵌容器将启动，并监听一个定义好的端口（比

如 	application.properties	中定义的或默认的 	8080	端口）。

	NONE		-	使用 	SpringApplication	加载一个 	ApplicationContext	，但不

提供任何servlet环境（不管是mock还是其他）。

注	不要忘记在测试用例上添加 	@RunWith(SpringRunner.class)	，否则该注解将

被忽略。

40.3	测试Spring	Boot应用

303

40.3.1	发现测试配置

如果熟悉Spring测试框架，你可能经常通

过 	@ContextConfiguration(classes=…)	指定加载哪些Spring
	@Configuration	，也可能经常在测试类中使用内嵌 	@Configuration	类。当测

试Spring	Boot应用时这些就不需要了，Spring	Boot的 	@*Test	注解会自动搜索主

配置类，即使你没有显式定义它。

搜索算法是从包含测试类的package开始搜索，直到发

现 	@SpringBootApplication	或 	@SpringBootConfiguration	注解的类，只要

按恰当的方式组织代码，通常都会发现主配置类。

如果想自定义主配置类，你可以使用一个内嵌的 	@TestConfiguration	类。不像

内嵌的 	@Configuration	类（会替换应用主配置类），内嵌

的 	@TestConfiguration	类是可以跟应用主配置类一块使用的。

注	Spring测试框架在测试过程中会缓存应用上下文，因此，只要你的测试共享相同

的配置（不管是怎么发现的），加载上下文的潜在时间消耗都只会发生一次。

40.3	测试Spring	Boot应用

304

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#using-boot-structuring-your-code

40.3.2	排除测试配置

如果应用使用组件扫描，比如 	@SpringBootApplication	或 	@ComponentScan	，

你可能发现为测试类创建的组件或配置在任何地方都可能偶然扫描到。为了防止这

种情况，Spring	Boot提供了 	@TestComponent	和 	@TestConfiguration	注解，

可用在 	src/test/java	目录下的类，以暗示它们不应该被扫描。

注	只有上层类需要 	@TestComponent	和 	@TestConfiguration	注解，如果你在

测试类（任何有 	@Test	方法或 	@RunWith	注解的类）中定

义 	@Configuration	或 	@Component	内部类，它们将被自动过滤。

注	如果直接使用 	@ComponentScan	（比如不通

过 	@SpringBootApplication	），你需要为它注册 	TypeExcludeFilter	，具体

参考Javadoc。

40.3	测试Spring	Boot应用

305

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/api/org/springframework/boot/context/TypeExcludeFilter.html

40.3.3	使用随机端口

如果你需要为测试启动一个完整运行的服务器，我们建议你使用随机端口。如果你

使用 	@SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT)	，每

次运行测试都会为你分配一个可用的随机端口。

	@LocalServerPort	注解用于注入测试用例实际使用的端口，简单起见，需要发

起REST调用到启动服务器的测试可以额外 	@Autowire	一

个 	TestRestTemplate	，它可以解析到运行服务器的相关链接：

import	org.junit.*;

import	org.junit.runner.*;

import	org.springframework.boot.test.context.web.*;

import	org.springframework.boot.test.web.client.*;

import	org.springframework.test.context.junit4.*;

import	static	org.assertj.core.api.Assertions.*

@RunWith(SpringRunner.class)

@SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT)

public	class	MyWebIntegrationTests	{

				@Autowired

				private	TestRestTemplate	restTemplate;

				@Test

				public	void	exampleTest()	{

								String	body	=	this.restTemplate.getForObject("/",	String

.class);

								assertThat(body).isEqualTo("Hello	World");

				}

}

40.3	测试Spring	Boot应用

306

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#howto-discover-the-http-port-at-runtime

40.3.4	模拟和监视beans
有时候需要在运行测试用例时mock一些组件，例如，你可能需要一些远程服务的门

面，但在开发期间不可用。Mocking在模拟真实环境很难复现的失败情况时非常有

用。

Spring	Boot提供一个 	@MockBean	注解，可用于为 	ApplicationContext	中的

bean定义一个Mockito	mock，你可以使用该注解添加新beans，或替换已存在的

bean定义。该注解可直接用于测试类，也可用于测试类的字段，或用

于 	@Configuration	注解的类和字段。当用于字段时，创建mock的实例也会被注

入。Mock	beans每次调用完测试方法后会自动重置。

下面是一个典型示例，演示使用mock实现替换真实存在的 	RemoteService	

bean：

40.3	测试Spring	Boot应用

307

import	org.junit.*;

import	org.junit.runner.*;

import	org.springframework.beans.factory.annotation.*;

import	org.springframework.boot.test.context.*;

import	org.springframework.boot.test.mock.mockito.*;

import	org.springframework.test.context.junit4.*;

import	static	org.assertj.core.api.Assertions.*;

import	static	org.mockito.BDDMockito.*;

@RunWith(SpringRunner.class)

@SpringBootTest

public	class	MyTests	{

				@MockBean

				private	RemoteService	remoteService;

				@Autowired

				private	Reverser	reverser;

				@Test

				public	void	exampleTest()	{

								//	RemoteService	has	been	injected	into	the	reverser	bean

								given(this.remoteService.someCall()).willReturn("mock");

								String	reverse	=	reverser.reverseSomeCall();

								assertThat(reverse).isEqualTo("kcom");

				}

}

此外，你可以使用 	@SpyBean	和Mockito	 	spy	包装一个已存在的bean，具体参考

文档。

40.3	测试Spring	Boot应用

308

40.3.5	自动配置测试

Spring	Boot的自动配置系统对应用来说很合适，但用于测试就有点杀鸡用牛刀了，

测试时只加载需要的应用片段（slice）通常是有好处的。例如，你可能想测试

Spring	MVC控制器映射URLs是否正确，且不想在这些测试中涉及到数据库调用；

或者你想测试JPA实体，那测试运行时你可能对web层不感兴趣。

	spring-boot-test-autoconfigure	模块包含很多用来自动配置这些片段

（slices）的注解，每个工作方式都相似，都是提供一个 	@…Test	注解，然后加

载 	ApplicationContext	，使用一个或多个 	@AutoConfigure…	注解自定义设

置。

注	 	@AutoConfigure…	注解也可以跟标准的 	@SpringBootTest	注解一块使用，

如果对应用片段不感兴趣，只是想获取自动配置的一些测试beans，你可以使用该

组合。

40.3	测试Spring	Boot应用

309

40.3.6	自动配置的JSON测试

你可以使用 	@JsonTest	测试对象JSON序列化和反序列化是否工作正常，该注解

将自动配置Jackson	 	ObjectMapper	， 	@JsonComponent	和Jackson
	Modules	。如果碰巧使用gson代替Jackson，该注解将配置 	Gson	。使

用 	@AutoConfigureJsonTesters	可以配置auto-configuration的元素。

Spring	Boot提供基于AssertJ的帮助类（helpers），可用来配合JSONassert和
JsonPath	libraries检测JSON是否为期望

的， 	JacksonHelper	， 	GsonHelper	， 	BasicJsonTester	分别用于Jackson，
Gson，Strings。当使用 	@JsonTest	时，你可以在测试类中 	@Autowired	任何

helper字段：

import	org.junit.*;

import	org.junit.runner.*;

import	org.springframework.beans.factory.annotation.*;

import	org.springframework.boot.test.autoconfigure.json.*;

import	org.springframework.boot.test.context.*;

import	org.springframework.boot.test.json.*;

import	org.springframework.test.context.junit4.*;

import	static	org.assertj.core.api.Assertions.*;

@RunWith(SpringRunner.class)

@JsonTest

public	class	MyJsonTests	{

				@Autowired

				private	JacksonTester<VehicleDetails>	json;

				@Test

				public	void	testSerialize()	throws	Exception	{

								VehicleDetails	details	=	new	VehicleDetails("Honda",	"Ci

vic");

								//	Assert	against	a	`.json`	file	in	the	same	package	as	

the	test

								assertThat(this.json.write(details)).isEqualToJson("expe

cted.json");

40.3	测试Spring	Boot应用

310

								//	Or	use	JSON	path	based	assertions

								assertThat(this.json.write(details)).hasJsonPathStringVa

lue("@.make");

								assertThat(this.json.write(details)).extractingJsonPathS

tringValue("@.make")

																.isEqualTo("Honda");

				}

				@Test

				public	void	testDeserialize()	throws	Exception	{

								String	content	=	"{\"make\":\"Ford\",\"model\":\"Focus\"

}";

								assertThat(this.json.parse(content))

																.isEqualTo(new	VehicleDetails("Ford",	"Focus"));

								assertThat(this.json.parseObject(content).getMake()).isE

qualTo("Ford");

				}

}

注	JSON帮助类可用于标准单元测试类，如果没有使用 	@JsonTest	，你需要

在 	@Before	方法中调用帮助类的 	initFields	方法。

在附录中可以查看 	@JsonTest	开启的自动配置列表。

40.3	测试Spring	Boot应用

311

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#test-auto-configuration

40.3.7	自动配置的Spring	MVC测试

你可以使用 	@WebMvcTest	检测Spring	MVC控制器是否工作正常，该注解将自动配

置Spring	MVC设施，并且只扫描注

解 	@Controller	， 	@ControllerAdvice	， 	@JsonComponent	， 	Filter	， 	W

ebMvcConfigurer	和 	HandlerMethodArgumentResolver	的beans，其他常规

的 	@Component		beans将不会被扫描。

通常 	@WebMvcTest	只限于单个控制器（controller）使用，并结合 	@MockBean	以

提供需要的协作者（collaborators）的mock实现。 	@WebMvcTest	也会自动配

置 	MockMvc	，Mock	MVC为快速测试MVC控制器提供了一种强大的方式，并且不

需要启动一个完整的HTTP服务器。

注	使用 	@AutoConfigureMockMvc	注解一个non- 	@WebMvcTest	的类（比

如 	SpringBootTest	）也可以自动配置 	MockMvc	。

40.3	测试Spring	Boot应用

312

import	org.junit.*;

import	org.junit.runner.*;

import	org.springframework.beans.factory.annotation.*;

import	org.springframework.boot.test.autoconfigure.web.servlet.*

;

import	org.springframework.boot.test.mock.mockito.*;

import	static	org.assertj.core.api.Assertions.*;

import	static	org.mockito.BDDMockito.*;

import	static	org.springframework.test.web.servlet.request.MockM

vcRequestBuilders.*;

import	static	org.springframework.test.web.servlet.result.MockMv

cResultMatchers.*;

@RunWith(SpringRunner.class)

@WebMvcTest(UserVehicleController.class)

public	class	MyControllerTests	{

				@Autowired

				private	MockMvc	mvc;

				@MockBean

				private	UserVehicleService	userVehicleService;

				@Test

				public	void	testExample()	throws	Exception	{

								given(this.userVehicleService.getVehicleDetails("sboot")

)

																.willReturn(new	VehicleDetails("Honda",	"Civic")

);

								this.mvc.perform(get("/sboot/vehicle").accept(MediaType.

TEXT_PLAIN))

																.andExpect(status().isOk()).andExpect(content().

string("Honda	Civic"));

				}

}

40.3	测试Spring	Boot应用

313

注	如果需要定义自定配置（auto-configuration）的元素（比如什么时候使用servlet
filters），你可以使用 	@AutoConfigureMockMvc	的属性。

如果你使用HtmlUnit或Selenium，	自动配置将提供一个 	WebClient		bean和/
或 	WebDriver		bean，以下是使用HtmlUnit的示例：

40.3	测试Spring	Boot应用

314

import	com.gargoylesoftware.htmlunit.*;

import	org.junit.*;

import	org.junit.runner.*;

import	org.springframework.beans.factory.annotation.*;

import	org.springframework.boot.test.autoconfigure.web.servlet.*

;

import	org.springframework.boot.test.mock.mockito.*;

import	static	org.assertj.core.api.Assertions.*;

import	static	org.mockito.BDDMockito.*;

@RunWith(SpringRunner.class)

@WebMvcTest(UserVehicleController.class)

public	class	MyHtmlUnitTests	{

				@Autowired

				private	WebClient	webClient;

				@MockBean

				private	UserVehicleService	userVehicleService;

				@Test

				public	void	testExample()	throws	Exception	{

								given(this.userVehicleService.getVehicleDetails("sboot")

)

																.willReturn(new	VehicleDetails("Honda",	"Civic")

);

								HtmlPage	page	=	this.webClient.getPage("/sboot/vehicle.h

tml");

								assertThat(page.getBody().getTextContent()).isEqualTo("H

onda	Civic");

				}

}

在附录中可以查看 	@WebMvcTest	开启的自动配置列表。

40.3	测试Spring	Boot应用

315

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#test-auto-configuration

40.3	测试Spring	Boot应用

316

40.3.8	自动配置的Data	JPA测试

你可以使用 	@DataJpaTest	测试JPA应用，它默认配置一个内存型的内嵌数据库，

扫描 	@Entity	类，并配置Spring	Data	JPA仓库，其他常规的 	@Component	

beans不会加载进 	ApplicationContext	。

Data	JPA测试类是事务型的，默认在每个测试结束后回滚，具体查看Spring参考文

档的相关章节。如果这不是你想要的结果，可以通过禁用事务管理器来改变：

import	org.junit.Test;

import	org.junit.runner.RunWith;

import	org.springframework.boot.test.autoconfigure.orm.jpa.DataJ

paTest;

import	org.springframework.test.context.junit4.SpringRunner;

import	org.springframework.transaction.annotation.Propagation;

import	org.springframework.transaction.annotation.Transactional;

@RunWith(SpringRunner.class)

@DataJpaTest

@Transactional(propagation	=	Propagation.NOT_SUPPORTED)

public	class	ExampleNonTransactionalTests	{

}

Data	JPA测试类可能会注入一个专为测试设计的 	[TestEntityManager]

(https://github.com/spring-projects/spring-

boot/tree/v1.4.1.RELEASE/spring-boot-test-

autoconfigure/src/main/java/org/springframework/boot/test/autoconfig

ure/orm/jpa/TestEntityManager.java)		bean以替换标准的JPA
	EntityManager	。如果想在 	@DataJpaTests	外使用 	TestEntityManager	，你

可以使用 	@AutoConfigureTestEntityManager	注解。如果需

要， 	JdbcTemplate	也是可用的。

40.3	测试Spring	Boot应用

317

http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle#testcontext-tx-enabling-transactions

import	org.junit.*;

import	org.junit.runner.*;

import	org.springframework.boot.test.autoconfigure.orm.jpa.*;

import	static	org.assertj.core.api.Assertions.*;

@RunWith(SpringRunner.class)

@DataJpaTest

public	class	ExampleRepositoryTests	{

				@Autowired

				private	TestEntityManager	entityManager;

				@Autowired

				private	UserRepository	repository;

				@Test

				public	void	testExample()	throws	Exception	{

								this.entityManager.persist(new	User("sboot",	"1234"));

								User	user	=	this.repository.findByUsername("sboot");

								assertThat(user.getUsername()).isEqualTo("sboot");

								assertThat(user.getVin()).isEqualTo("1234");

				}

}

对于测试来说，内存型的内嵌数据库通常是足够的，因为它们既快又不需要任何安

装。如果比较喜欢在真实数据库上运行测试，你可以使

用 	@AutoConfigureTestDatabase	注解：

@RunWith(SpringRunner.class)

@DataJpaTest

@AutoConfigureTestDatabase(replace=Replace.NONE)

public	class	ExampleRepositoryTests	{

				//	...

}

40.3	测试Spring	Boot应用

318

在附录中可以查看 	@DataJpaTest	开启的自动配置列表。

40.3	测试Spring	Boot应用

319

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#test-auto-configuration

40.3.9	自动配置的REST客户端

你可以使用 	@RestClientTest	测试REST客户端，它默认会自动配置Jackson和
GSON，配置 	RestTemplateBuilder	，并添加 	MockRestServiceServer	支

持。你需要将 	@RestClientTest	的 	value	或 	components	属性值设置为待测试

类：

@RunWith(SpringRunner.class)

@RestClientTest(RemoteVehicleDetailsService.class)

public	class	ExampleRestClientTest	{

				@Autowired

				private	RemoteVehicleDetailsService	service;

				@Autowired

				private	MockRestServiceServer	server;

				@Test

				public	void	getVehicleDetailsWhenResultIsSuccessShouldReturn

Details()

												throws	Exception	{

								this.server.expect(requestTo("/greet/details"))

																.andRespond(withSuccess("hello",	MediaType.TEXT_

PLAIN));

								String	greeting	=	this.service.callRestService();

								assertThat(greeting).isEqualTo("hello");

				}

}

在附录中可以查看 	@RestClientTest	启用的自动配置列表。

40.3	测试Spring	Boot应用

320

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#test-auto-configuration

40.3.10	自动配置的Spring	REST	Docs测试

如果想在测试类中使用Spring	REST	Docs，你可以使

用 	@AutoConfigureRestDocs	注解，它会自动配置 	MockMvc	去使用Spring
REST	Docs，并移除对Spring	REST	Docs的JUnit规则的需要。

40.3	测试Spring	Boot应用

321

import	org.junit.Test;

import	org.junit.runner.RunWith;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.boot.test.autoconfigure.web.servlet.W

ebMvcTest;

import	org.springframework.http.MediaType;

import	org.springframework.test.context.junit4.SpringRunner;

import	org.springframework.test.web.servlet.MockMvc;

import	static	org.springframework.restdocs.mockmvc.MockMvcRestDo

cumentation.document;

import	static	org.springframework.test.web.servlet.request.MockM

vcRequestBuilders.get;

import	static	org.springframework.test.web.servlet.result.MockMv

cResultMatchers.*;

@RunWith(SpringRunner.class)

@WebMvcTest(UserController.class)

@AutoConfigureRestDocs("target/generated-snippets")

public	class	UserDocumentationTests	{

				@Autowired

				private	MockMvc	mvc;

				@Test

				public	void	listUsers()	throws	Exception	{

								this.mvc.perform(get("/users").accept(MediaType.TEXT_PLA

IN))

																.andExpect(status().isOk())

																.andDo(document("list-users"));

				}

}

此外，除了配置输出目录， 	@AutoConfigureRestDocs	也能配置将出现在任何文

档化的URLs中的部分，比如host，scheme和port等。如果需要控制更多Spring
REST	Docs的配置，你可以使用 	RestDocsMockMvcConfigurationCustomizer	

bean：

40.3	测试Spring	Boot应用

322

@TestConfiguration

static	class	CustomizationConfiguration

								implements	RestDocsMockMvcConfigurationCustomizer	{

				@Override

				public	void	customize(MockMvcRestDocumentationConfigurer	con

figurer)	{

								configurer.snippets().withTemplateFormat(TemplateFormats

.markdown());

				}

}

如果想充分利用Spring	REST	Docs对参数化输出目录的支持，你可以创建一

个 	RestDocumentationResultHandler		bean，自动配置将使用它调

用 	alwaysDo	方法，进而促使每个 	MockMvc	调用都会自动产生默认片段：

@TestConfiguration

static	class	ResultHandlerConfiguration	{

				@Bean

				public	RestDocumentationResultHandler	restDocumentation()	{

								return	MockMvcRestDocumentation.document("{method-name}"

);

				}

}

40.3	测试Spring	Boot应用

323

40.3.11	使用Spock测试Spring	Boot应用

如果想使用Spock测试Spring	Boot应用，你需要为应用添加Spock的 	spock-

spring	依赖，该依赖已将Spring测试框架集成进Spock，怎么使用Spock测试

Spring	Boot应用取决于你使用的Spock版本。

注	Spring	Boot为Spock	1.0提供依赖管理，如果希望使用Spock	1.1，你需要覆

盖 	build.gradle	或 	pom.xml	文件中的 	spock.version	属性。

当使用Spock	1.1时，只能使用上述注解，你可以使用 	@SpringBootTest	注解你

的 	Specification	以满足测试需求。

当使用Spock	1.0时， 	@SpringBootTest	将不能用于web项目，你需要使

用 	@SpringApplicationConfiguration	和 	@WebIntegrationTest(randomPort

=	true)	。	不能使用 	@SpringBootTest	也就意味着你失去了自动配置

的 	TestRestTemplate		bean，不过可以通过以下配置创建一个等价的bean：

@Configuration

static	class	TestRestTemplateConfiguration	{

				@Bean

				public	TestRestTemplate	testRestTemplate(

												ObjectProvider<RestTemplateBuilder>	builderProvider,

												Environment	environment)	{

								RestTemplateBuilder	builder	=	builderProvider.getIfAvail

able();

								TestRestTemplate	template	=	builder	==	null	?	new	TestRe

stTemplate()

																:	new	TestRestTemplate(builder.build());

								template.setUriTemplateHandler(new	LocalHostUriTemplateH

andler(environment));

								return	template;

				}

}

40.3	测试Spring	Boot应用

324

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-testing-spring-boot-applications

40.3	测试Spring	Boot应用

325

40.4	测试工具类

一些测试工具类也打包进了 	spring-boot	，在测试时使用它们会有很大帮助。

40.4	测试工具类

326

40.4.1	ConfigFileApplicationContextInitializer
	ConfigFileApplicationContextInitializer	是一

个 	ApplicationContextInitializer	，可在测试类中用于加载Spring	Boot
的 	application.properties	文件。当不需要使用 	@SpringBootTest	提供的全

部特性时，你可以使用它。

@ContextConfiguration(classes	=	Config.class,initializers	=	Conf

igFileApplicationContextInitializer.class)

注	单独使用 	ConfigFileApplicationContextInitializer	不会提

供 	@Value("${…}")	注入支持，它只负责确保 	application.properties	文件加

载进Spring的 	Environment	。为了 	@Value	支持，你需要额外配置一

个 	PropertySourcesPlaceholderConfigurer	或使用 	@SpringBootTest	为你自

动配置一个。

40.4	测试工具类

327

40.4.2	EnvironmentTestUtils
使用简单的 	key=value	字符串调用 	EnvironmentTestUtils	就可以快速添加属

性到 	ConfigurableEnvironment	或 	ConfigurableApplicationContext	：

```java	EnvironmentTestUtils.addEnvironment(env,	"org=Spring",	"name=Boot");

40.4	测试工具类

328



40.4.3	OutputCapture
	OutputCapture	是JUnit的一个 	Rule	，用于捕

获 	System.out	和 	System.err	输出，只需简单的将 	@Rule	注解capture，然后

在断言中调用 	toString()	：

import	org.junit.Rule;

import	org.junit.Test;

import	org.springframework.boot.test.OutputCapture;

import	static	org.hamcrest.Matchers.*;

import	static	org.junit.Assert.*;

public	class	MyTest	{

@Rule

public	OutputCapture	capture	=	new	OutputCapture();

@Test

public	void	testName()	throws	Exception	{

System.out.println("Hello	World!");

assertThat(capture.toString(),	containsString("World"));

}

}

40.4	测试工具类

329



40.4.4	TestRestTemplate
在集成测试中, 	TestRestTemplate	是Spring	 	RestTemplate	的便利替代。你可

以获取一个普通的或发送基本HTTP认证（使用用户名和密码）的模板，不管哪种

情况，	这些模板都有益于测试：不允许重定向（这样你可以对响应地址进行断

言），忽略cookies（这样模板就是无状态的），对于服务端错误不会抛出异常。推

荐使用Apache	HTTP	Client(4.3.2或更高版本)，但不强制这样做，如果相关库在

classpath下存在， 	TestRestTemplate	将以正确配置的client进行响应。

public	class	MyTest	{

RestTemplate	template	=	new	TestRestTemplate();

@Test

public	void	testRequest()	throws	Exception	{

HttpHeaders	headers	=	template.getForEntity("http://myhost.com",

	String.class).getHeaders();

assertThat(headers.getLocation().toString(),	containsString("myo

therhost"));

}

}

如果正在使用 	@SpringBootTest	，且设置

了 	WebEnvironment.RANDOM_PORT	或 	WebEnvironment.DEFINED_PORT	属性，你

可以注入一个配置完全的 	TestRestTemplate	，并开始使用它。如果有需要，你

还可以通过 	RestTemplateBuilder		bean进行额外的自定义：

40.4	测试工具类

330



@RunWith(SpringRunner.class)

@SpringBootTest

public	class	MyTest	{

				@Autowired

				private	TestRestTemplate	template;

				@Test

				public	void	testRequest()	throws	Exception	{

								HttpHeaders	headers	=	template.getForEntity("http://myho

st.com",	String.class).getHeaders();

								assertThat(headers.getLocation().toString(),	containsStr

ing("myotherhost"));

				}

				@TestConfiguration

				static	class	Config	{

								@Bean

								public	RestTemplateBuilder	restTemplateBuilder()	{

												return	new	RestTemplateBuilder()

																.additionalMessageConverters(...)

																.customizers(...);

								}

				}

}

40.4	测试工具类

331



41.	WebSockets
Spring	Boot为内嵌的Tomcat(8和7)，Jetty	9和Undertow提供WebSockets自动配

置。如果你正在将war包部署到独立容器中，Spring	Boot将假设该容器会负责配置

WebSocket。Spring框架提供丰富的WebSocket支持，只需要添加 	spring-boot-

starter-websocket	模块即可。

41.	WebSockets

332

http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle/#websocket


42.	Web	Services
Spring	Boot提供Web	Services自动配置，你需要的就是定义 	Endpoints	。通过添

加 	spring-boot-starter-webservices	模块可以获取Spring	Web	Services特
性。

42.	Web	Services

333

http://docs.spring.io/spring-ws/docs/2.3.0.RELEASE/reference/htmlsingle


43.	创建自己的auto-configuration
如果你在公司里开发共享libraries，或者正在开发一个开源或商业library，你可能想

开发自己的自动配置（auto-configuration）。自动配置类可以打包到外部jars，并

且依旧可以被Spring	Boot识别。自动配置可以关联一个"starter"，用于提供auto-
configuration的代码及需要引用的libraries。我们首先讲解构建自己的auto-
configuration需要知道哪些内容，然后讲解创建自定义starter的常见步骤。

注	可参考demo工程了解如何一步步创建一个starter。

43.	创建自己的auto-configuration

334

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#boot-features-custom-starter
https://github.com/snicoll-demos/spring-boot-master-auto-configuration


43.1	理解自动配置的beans
从底层来讲，自动配置（auto-configuration）是通过标准的 	@Configuration	类

实现的。此外， 	@Conditional	注解用来约束自动配置生效的条件。通常自动配

置类需要使用 	@ConditionalOnClass	和 	@ConditionalOnMissingBean	注解，

这是为了确保只有在相关的类被发现及没有声明自定义的 	@Configuration	时才

应用自动配置，具体查看 	spring-boot-autoconfigure	源码中

的 	@Configuration	类（ 	META-INF/spring.factories	文件）。

43.1	理解自动配置的beans

335

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure


43.2	定位自动配置候选者

Spring	Boot会检查你发布的jar中是否存在 	META-INF/spring.factories	文件，

该文件中以 	EnableAutoConfiguration	为key的属性应该列出你的配置类：

org.springframework.boot.autoconfigure.EnableAutoConfiguration=\

com.mycorp.libx.autoconfigure.LibXAutoConfiguration,\

com.mycorp.libx.autoconfigure.LibXWebAutoConfiguration

你可以使用 	@AutoConfigureAfter	或 	@AutoConfigureBefore	注解为配置类指

定特定的顺序。例如，如果你提供web-specific配置，你的类就需要应用

在 	WebMvcAutoConfiguration	后面。

你也可以使用 	@AutoconfigureOrder	注解为那些相互不知道存在的自动配置类提

供排序，该注解语义跟常规的 	@Order	注解相同，但专为自动配置类提供顺序。

注	自动配置类只能通过这种方式加载，确保它们定义在一个特殊的package中，特

别是不能成为组件扫描的目标。

43.2	定位自动配置候选者

336

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureAfter.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureBefore.java


43.3	条件注解

你几乎总是需要在自己的自动配置类里添加一个或更多的 	@Conditional	注

解。 	@ConditionalOnMissingBean	注解是一个常见的示例，开发者可以用它覆

盖自动配置类提供的默认行为。

Spring	Boot包含很多 	@Conditional	注解，你可以在自己的代码中通过注

解 	@Configuration	类或单独的 	@Bean	方法来重用它们。

43.3	条件注解

337



43.3.1	Class条件

	@ConditionalOnClass	和 	@ConditionalOnMissingClass	注解可以根据特定类

是否出现来决定配置的包含，由于注解元数据是使用ASM来解析的，所以你可以使

用 	value	属性来引用真正的类，即使该类没有出现在运行应用的classpath下，也

可以使用 	name	属性如果你倾向于使用字符串作为类名。

43.3	条件注解

338

http://asm.ow2.org/


43.3.2	Bean条件

	@ConditionalOnBean	和 	@ConditionalOnMissingBean	注解可以根据特定类是

否存在决定bean的包含，你可以使用 	value	属性指定beans（by	type），也可以

使用 	name	定义beans（by	name）， 	search	属性用于限制搜索beans时需要考

虑的 	ApplicationContext	层次。

注	你需要注意bean定义添加的顺序，因为这些条件的计算是基于目前处理内容

的。出于这个原因，我们推荐在自动配置类上只使

用 	@ConditionalOnBean	和 	@ConditionalOnMissingBean	注解（即使保证它们

在其他用户定义的beans后加载）。

注	 	@ConditionalOnBean	和 	@ConditionalOnMissingBean	不会阻

止 	@Configuration	类的创建，在类级别使用那些conditions跟使用注解标记每

个 	@Bean	方法是等价的。

43.3	条件注解

339



43.3.3	Property条件

	@ConditionalOnProperty	注解可以根据一个Spring	 	Environment	属性来决定

是否包含配置，使用 	prefix	和 	name	属性指定要检查的配置。默认情况下，任

何存在的只要不是 	false	的属性都会匹配，你也可以使

用 	havingValue	和 	matchIfMissing	属性创建更高级的检测。

43.3	条件注解

340



43.3.4	Resource条件

	@ConditionalOnResource	注解只在特定资源出现时才会包含配置，可以使用常

见的Spring约定命名资源，例如 	file:/home/user/test.dat	。

43.3	条件注解

341



43.3.5	Web	Application条件

	@ConditionalOnWebApplication	和 	@ConditionalOnNotWebApplication	注

解可以根据应用是否为'web应用'来决定是否包含配置，web应用是任何使用Spring
	WebApplicationContext	，定义一个 	session	作用域，或有一

个 	StandardServletEnvironment	的应用。

43.3	条件注解

342



43.3.6	SpEL表达式条件

	@ConditionalOnExpression	注解可以根据SpEL表达式结果来决定是否包含配

置。

43.3	条件注解

343

http://docs.spring.io/spring/docs/4.3.3.RELEASE/spring-framework-reference/htmlsingle/#expressions


43.4	创建自己的starter
一个完整的Spring	Boot	starter可能包含以下组件：

	autoconfigure	模块，包含自动配置类的代码。

	starter	模块，提供自动配置模块及其他有用的依赖，简而言之，添加本

starter就能开始使用该library。

注	如果不需要将它们分离开来，你可以将自动配置代码和依赖管理放到一个单一模

块中。

43.4	创建自己的starter

344



43.4.1	命名

确保为你的starter提供一个合适的命名空间（namespace），模块名不要

以 	spring-boot	作为开头，尽管使用一个不同的Maven	groupId，未来我们可能

会为你正在做的自动配置提供官方支持。

这里是经验之谈，假设你正在为“acme”创建一个starter，命名自动配置模块

为 	acme-spring-boot-autoconfigure	，命名starter为 	acme-spring-boot-

starter	，如果只有一个模块结合它们，通常会使用 	acme-spring-boot-

starter	。

此外，如果你的starter提供配置keys，需要为它们提供一个合适的命名空间，特别

是不要使用Spring	Boot的命名空间（比

如， 	server	， 	management	， 	spring	等），这些是属于Spring	Boot的，我们

可能会在将来以相同方式提高/修改它们，这可能会破坏你的东西。

确保触发meta-data生成，这样IDE辅助也就可以用于你的keys了，你可能想检查生

成的元数据（ 	META-INF/spring-configuration-metadata.json	）以确保keys
被正确的文档化。

43.4	创建自己的starter

345

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#configuration-metadata-annotation-processor


43.4.2	自动配置模块

自动配置模块包含了使用该library需要的任何东西，它可能还包含配置的keys定义

（ 	@ConfigurationProperties	）和用于定义组件如何初始化的回调接口。

注	你需要将对该library的依赖标记为可选的，这样在项目中添加该自动配置模块就

更容易了。如果你这样做，该library将不会提供，Spring	Boot会回退到默认设置。

43.4	创建自己的starter

346



43.4.3	Starter模块

starter模块实际是一个空jar，它的目的是提供使用该library所需的必要依赖。不要

对添加你的starter的项目做任何假设，如果你正在自动配置的library需要其他

starters，一定要提到它。提供一个合适的默认依赖集可能比较困难，特别是存在大

量可选依赖时，你应该避免引入任何非必需的依赖。

43.4	创建自己的starter

347



44.	接下来阅读什么

如果想了解本章节讨论类的更多内容，你可以查看Spring	Boot	API文档，或直接浏

览源码。如果有特别问题，可以参考how-to章节。

如果已熟悉Spring	Boot的核心特性，你可以继续并查看production-ready特性。

44.	接下来阅读什么

348

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/api
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#howto
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#production-ready


Spring	Boot执行器：Production-ready特性

Spring	Boot包含很多其他特性，可用来帮你监控和管理发布到生产环境的应用。你

可以选择使用HTTP端点，JMX，甚至通过远程shell（SSH或Telnet）来管理和监控

应用。审计（Auditing），健康（health）和数据采集（metrics	gathering）会自动

应用到你的应用。

Actuator	HTTP端点只能用在基于Spring	MVC的应用，特别地，它不能跟Jersey一
块使用，除非你也启用Spring	MVC。

V.	Spring	Boot执行器:	Production-ready特性

349

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#howto-use-actuator-with-jersey


45.	开启production-ready特性

spring-boot-actuator模块提供Spring	Boot所有的production-ready特性，启用该特

性的最简单方式是添加 	spring-boot-starter-actuator		‘Starter’依赖。

执行器（Actuator）的定义：执行器是一个制造业术语，指的是用于移动或控制东

西的一个机械装置，一个很小的改变就能让执行器产生大量的运动。

按以下配置为Maven项目添加执行器：

<dependencies>

				<dependency>

								<groupId>org.springframework.boot</groupId>

								<artifactId>spring-boot-starter-actuator</artifactId>

				</dependency>

</dependencies>

对于Gradle，使用下面的声明：

dependencies	{

				compile("org.springframework.boot:spring-boot-starter-actuat

or")

}

45.	开启production-ready特性

350

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator


46.	端点

执行器端点（endpoints）可用于监控应用及与应用进行交互，Spring	Boot包含很

多内置的端点，你也可以添加自己的。例如， 	health	端点提供了应用的基本健康

信息。	端点暴露的方式取决于你采用的技术类型，大部分应用选择HTTP监控，端

点的ID映射到一个URL。例如， 	health	端点默认映射到 	/health	。

下面的端点都是可用的：

ID 描述　
是否
敏感

	actuator	
为其他端点提供基于超文本的导航页面，需要添加
Spring	HATEOAS依赖

true

	autoconfig	
显示一个自动配置类的报告，该报告展示所有自动
配置候选者及它们被应用或未被应用的原因

true

	beans	 显示一个应用中所有Spring	Beans的完整列表 true

	configprops	
显示一个所有 	@ConfigurationProperties	的集
合列表

true

	dump	 执行一个线程转储 true

	env	
暴露来自Spring	 	ConfigurableEnvironment	的属
性

true

	flyway	 显示数据库迁移路径，如果有的话 true

	health	

展示应用的健康信息（当使用一个未认证连接访问
时显示一个简单的'status'，使用认证连接访问则显
示全部信息详情）

false

	info	 显示任意的应用信息 false

	liquibase	 展示任何Liquibase数据库迁移路径，如果有的话 true

	metrics	 展示当前应用的'metrics'信息 true

	mappings	 显示一个所有 	@RequestMapping	路径的集合列表 true

	shutdown	 允许应用以优雅的方式关闭（默认情况下不启用） true

	trace	 显示trace信息（默认为最新的100条HTTP请求） true

如果使用Spring	MVC，你还可以使用以下端点：

46.	端点

351



ID 描述　
是否
敏感

	docs	
展示Actuator的文档，包括示例请求和响应，需添
加 	spring-boot-actuator-docs	依赖

false

	heapdump	 返回一个GZip压缩的 	hprof	堆转储文件 true

	jolokia	 通过HTTP暴露JMX	beans（依赖Jolokia） true

	logfile	

返回日志文件内容（如果设
置 	logging.file	或 	logging.path	属性），支持使
用HTTP	 	Range	头接收日志文件内容的部分信息

注：根据端点暴露的方式， 	sensitive	属性可用做安全提示，例如，在使用

HTTP访问敏感（sensitive）端点时需要提供用户名/密码（如果没有启用web安
全，可能会简化为禁止访问该端点）。

46.	端点

352



46.1	自定义端点

使用Spring属性可以自定义端点，你可以设置端点是否开启（ 	enabled	），是否

敏感（ 	sensitive	），甚至改变它的 	id	。例如，下面

的 	application.properties	改变 	beans	端点的敏感性及id，并启

用 	shutdown	：

endpoints.beans.id=springbeans

endpoints.beans.sensitive=false

endpoints.shutdown.enabled=true

注：前缀 	endpoints	+	.	+	name	用于被配置端点的唯一标识。

默认情况，所有端点除了 	shutdown	以外都是开启的，你可以使

用 	endpoints.enabled	属性指定可选端点是否启用。例如，所有端点除 	info	外

都被禁用：

endpoints.enabled=false

endpoints.info.enabled=true

同样地，你可以全局范围内设置所有端点的 	sensitive	标记，敏感标记默认取决

于端点类型（查看上面表格）。例如，所有端点除 	info	外都标记为敏感：

endpoints.sensitive=true

endpoints.info.sensitive=false

46.1	自定义端点

353



46.2	执行器MVC端点的超媒体支持

如果classpath下存在Spring	HATEOAS库（比如，通过 	spring-boot-starter-

hateoas	或使用Spring	Data	REST），来自执行器（Actuator）的HTTP端点将使

用超媒体链接进行增强（hypermedia	links），也就是使用一个“导航页”汇总所有端

点链接，该页面默认路径为 	/actuator	。该实现也是一个端点，可以通过属性配

置它的路径（ 	endpoints.actuator.path	）及是否开启

（ 	endpoints.actuator.enabled	）。

当指定了一个自定义管理上下文路径时，“导航页”路径自动从 	/actuator	迁移到

管理上下文根目录。例如，如果管理上下文路径为 	/management	，那就可以通

过 	/management	访问“导航页”。

如果classpath下存在HAL	Browser（通过webjar： 	org.webjars:hal-browser	，

或 	spring-data-rest-hal-browser	），Spring	Boot将提供一个以HAL	Browser
格式的HTML“导航页”。

46.2	执行器MVC端点的超媒体支持

354

http://projects.spring.io/spring-hateoas
http://projects.spring.io/spring-data-rest
https://github.com/mikekelly/hal-browser


46.3	CORS支持

跨域资源共享（CORS）是一个W3C规范，用于以灵活的方式指定跨域请求的认证

类型，执行器的MVC端点也可以配置成支持该场景。

CORS支持默认是禁用的，只有在 	endpoints.cors.allowed-origins	属性设置

时才启用。以下配置允许来自 	example.com	域的 	GET	和 	POST	调用：

endpoints.cors.allowed-origins=http://example.com

endpoints.cors.allowed-methods=GET,POST

注	查看EndpointCorsProperties获取完整的配置选项列表。

46.3	CORS支持

355

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://www.w3.org/TR/cors/
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointCorsProperties.java


46.4	添加自定义端点

如果添加一个 	Endpoint	类型的 	@Bean	，Spring	Boot会自动通过JMX和
HTTP（如果有可用服务器）将该端点暴露出去。通过创建 	MvcEndpoint	类型的

bean可进一步定义HTTP端点，虽然该bean不是 	@Controller	，但仍能使

用 	@RequestMapping	（和 	@Managed*	）暴露资源。

注	如果你的用户需要一个单独的管理端口或地址，你可以将注

解 	@ManagementContextConfiguration	的配置类添加到 	/META-

INF/spring.factories	中，且key
为 	org.springframework.boot.actuate.autoconfigure.ManagementContextC

onfiguration	，这样该端点将跟其他MVC端点一样移动到一个子上下文中，通

过 	WebConfigurerAdapter	可以为管理端点添加静态资源。

46.4	添加自定义端点

356



46.5	健康信息

健康信息可以检查应用的运行状态，它经常被监控软件用来提醒人们生产环境是否

存在问题。 	health	端点暴露的默认信息取决于端点是如何被访问的。对于一个非

安全，未认证的连接只返回一个简单的'status'信息。对于一个安全或认证过的连接

其他详细信息也会展示（具体参考章节47.7,	“HTTP健康端点访问限制”	）。

健康信息是从你的 	ApplicationContext	中定义的所有HealthIndicator	beans收集

过来的。Spring	Boot包含很多自动配置的 	HealthIndicators	，你也可以写自己

的。

46.5	健康信息

357

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java


46.6	安全与HealthIndicators
	HealthIndicators	返回的信息通常有点敏感，例如，你可能不想将数据库服务

器的详情发布到外面。因此，在使用一个未认证的HTTP连接时，默认只会暴露健

康状态（health	status）。如果想将所有的健康信息暴露出去，你可以

把 	endpoints.health.sensitive	设置为 	false	。

为防止'拒绝服务'攻击，Health响应会被缓存，你可以使

用 	endpoints.health.time-to-live	属性改变默认的缓存时间（1000毫秒）。

46.6	安全与HealthIndicators

358



46.6.1	自动配置的HealthIndicators
Spring	Boot在合适的时候会自动配置以下 	HealthIndicators	：

名称 描述

	CassandraHealthIndicator	 检查Cassandra数据库状况

	DiskSpaceHealthIndicator	 低磁盘空间检查

	DataSourceHealthIndicator	 检查是否能从 	DataSource	获取连接

	ElasticsearchHealthIndicator	 检查Elasticsearch集群状况

	JmsHealthIndicator	 检查JMS消息代理状况

	MailHealthIndicator	 检查邮件服务器状况

	MongoHealthIndicator	 检查Mongo数据库状况

	RabbitHealthIndicator	 检查Rabbit服务器状况

	RedisHealthIndicator	 检查Redis服务器状况

	SolrHealthIndicator	 检查Solr服务器状况

注	使用 	management.health.defaults.enabled	属性可以禁用以上全

部 	HealthIndicators	。

46.6	安全与HealthIndicators

359

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/CassandraHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/DiskSpaceHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/DataSourceHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/ElasticsearchHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/JmsHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/MailHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/MongoHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/MongoHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/RedisHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/SolrHealthIndicator.java


46.6.2	编写自定义HealthIndicators
你可以注册实现HealthIndicator接口的Spring	beans来提供自定义健康信息。你需

要实现 	health()	方法，并返回一个 	Health	响应，该响应需要包含一

个 	status	和其他用于展示的详情。

import	org.springframework.boot.actuate.health.HealthIndicator;

import	org.springframework.stereotype.Component;

@Component

public	class	MyHealth	implements	HealthIndicator	{

				@Override

				public	Health	health()	{

								int	errorCode	=	check();	//	perform	some	specific	health

	check

								if	(errorCode	!=	0)	{

												return	Health.down().withDetail("Error	Code",	errorC

ode).build();

								}

								return	Health.up().build();

				}

}

注	对于给定 	HealthIndicator	的标识是bean	name去掉 	HealthIndicator	后

缀剩下的部分。在以上示例中，可以在 	my	的实体中获取健康信息。

除Spring	Boot预定义的 	Status	类型， 	Health	也可以返回一个代表新的系统状

态的自定义 	Status	。在这种情况下，你需要提供一个 	HealthAggregator	接口

的自定义实现，或使用 	management.health.status.order	属性配置默认实现。

例如，假设一个新的，代码为 	FATAL	的 	Status	被用于你的一

个 	HealthIndicator	实现中。为了配置严重性级别，你需要将以下配置添加到

application属性文件中：

management.health.status.order=DOWN,	OUT_OF_SERVICE,	UNKNOWN,	UP

46.6	安全与HealthIndicators

360

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/Status.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthAggregator.java


如果使用HTTP访问health端点，你可能想要注册自定义的status，并使

用 	HealthMvcEndpoint	进行映射。例如，你可以将 	FATAL	映射

为 	HttpStatus.SERVICE_UNAVAILABLE	。

46.6	安全与HealthIndicators

361



46.7	应用信息

应用信息会暴露所有 	InfoContributor		beans收集的各种信息，Spring	Boot包含

很多自动配置的 	InfoContributors	，你也可以编写自己的实现。

46.7	应用信息

362

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoContributor.java


46.7.1	自动配置的InfoContributors
Spring	Boot会在合适的时候自动配置以下 	InfoContributors	：

名称 描述

	EnvironmentInfoContributor	
暴露 	Environment	中key为 	info	的所
有key

	GitInfoContributor	
暴露git信息，如果存
在 	git.properties	文件

	BuildInfoContributor	
暴露构建信息，如果存在 	META-

INF/build-info.properties	文件

注	使用 	management.info.defaults.enabled	属性可禁用以上所

有 	InfoContributors	。

46.7	应用信息

363

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/EnvironmentInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/GitInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/BuildInfoContributor.java


46.7.2	自定义应用info信息

通过设置Spring属性 	info.*	，你可以定义 	info	端点暴露的数据。所有

在 	info	关键字下的 	Environment	属性都将被自动暴露，例如，你可以将以下配

置添加到 	application.properties	：

info.app.encoding=UTF-8

info.app.java.source=1.8

info.app.java.target=1.8

注	你可以在构建时扩展info属性，而不是硬编码这些值。假设使用Maven，你可以

按以下配置重写示例：

info.app.encoding=@project.build.sourceEncoding@

info.app.java.source=@java.version@

info.app.java.target=@java.version@

46.7	应用信息

364

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#howto-automatic-expansion


46.7.3	Git提交信息

	info	端点的另一个有用特性是，在项目构建完成后发布 	git	源码仓库的状态信

息。如果 	GitProperties		bean可用，Spring	Boot将暴

露 	git.branch	， 	git.commit.id	和 	git.commit.time	属性。

注	如果classpath根目录存在 	git.properties	文件，Spring	Boot将自动配

置 	GitProperties		bean。查看Generate	git	information获取更多详细信息。

使用 	management.info.git.mode	属性可展示全部git信息（比

如 	git.properties	全部内容）：

management.info.git.mode=full

46.7	应用信息

365

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#howto-git-info


46.7.4	构建信息

如果 	BuildProperties		bean存在， 	info	端点也会发布你的构建信息。

注	如果classpath下存在 	META-INF/build-info.properties	文件，Spring	Boot
将自动构建 	BuildProperties		bean。Maven和Gradle都能产生该文件，具体查

看Generate	build	information。

46.7	应用信息

366

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#howto-build-info


46.7.5	编写自定义的InfoContributors
你可以注册实现了 	InfoContributor	接口的Spring	beans来提供自定义应用信

息。以下示例暴露一个只有单个值的 	example	实体：

import	java.util.Collections;

import	org.springframework.boot.actuate.info.Info;

import	org.springframework.boot.actuate.info.InfoContributor;

import	org.springframework.stereotype.Component;

@Component

public	class	ExampleInfoContributor	implements	InfoContributor	{

				@Override

				public	void	contribute(Info.Builder	builder)	{

								builder.withDetail("example",

																Collections.singletonMap("key",	"value"));

				}

}

如果点击 	info	端点，你应该可以看到包含以下实体的响应：

{

				"example":	{

								"key"	:	"value"

				}

}

46.7	应用信息

367

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoContributor.java


47.	基于HTTP的监控和管理

如果你正在开发一个Spring	MVC应用，Spring	Boot执行器自动将所有启用的端点

通过HTTP暴露出去。默认约定使用端点的 	id	作为URL路径，例如， 	health	暴

露为 	/health	。

47.	基于HTTP的监控和管理

368



47.1	保护敏感端点

如果你的项目添加了‘Spring	Security’依赖，所有通过HTTP暴露的敏感端点都会受

到保护，默认情况下会使用用户名为 	user	的基本认证（basic	authentication），

产生的密码会在应用启动时打印到控制台上。

注	在应用启动时会记录生成的密码，具体搜索 	Using	default	security

password	。

你可以使用Spring属性改变用户名，密码和访问端点需要的安全角色。例如，你可

以将以下配置添加到 	application.properties	中：

security.user.name=admin

security.user.password=secret

management.security.role=SUPERUSER

注	如果不使用Spring	Security，并且公开暴露HTTP端点，你应该慎重考虑启用哪

些端点，具体参考Section	46.1,	“Customizing	endpoints”。

47.1	保护敏感端点

369



47.2	自定义管理端点路径

有时将所有管理端点划分到单个路径下是有用的。例如， 	/info	可能已被应用占

用，你可以用 	management.contextPath	属性为管理端点设置一个前缀：

management.context-path=/manage

以上的 	application.properties	示例将把端点从 	/{id}	改

为 	/manage/{id}	（比如 	/manage/info	）。

你也可以改变端点的 	id	（使用 	endpoints.{name}.id	）来改变MVC端点的默

认资源路径，合法的端点ids只能由字母数字组成（因为它们可以暴露到很多地方，

包括不允许特殊字符的JMX对象name）。MVC路径也可以通过配置 	endpoints.

{name}.path	来单独改变，Spring	Boot不会校验这些值（所以你可以使用URL中
任何合法的字符）。例如，想要改变 	/health	端点路径为 	/ping/me	，你可以设

置 	endpoints.health.path=/ping/me	。

注	如果你提供一个自定义 	MvcEndpoint	，记得包含一个可设置的 	path	属性，

并像标准MVC端点那样将该属性默认设置为 	/{id}	（具体可参

考 	HealthMvcEndpoint	）。如果你的自定义端点是一个 	Endpoint	（不

是 	MvcEndpoint	），Spring	Boot将会为你分配路径。

47.2	自定义管理端点路径

370



47.4	配置管理相关的SSL
当配置使用一个自定义端口时，管理服务器可以通过各种 	management.ssl.*	属

性配置自己的SSL。例如，以下配置允许通过HTTP访问管理服务器，通过HTTPS
访问主应用：

server.port=8443

server.ssl.enabled=true

server.ssl.key-store=classpath:store.jks

server.ssl.key-password=secret

management.port=8080

management.ssl.enable=false

或者，主应用服务器和管理服务器都使用SSL，但key	stores不一样：

server.port=8443

server.ssl.enabled=true

server.ssl.key-store=classpath:main.jks

server.ssl.key-password=secret

management.port=8080

management.ssl.enable=true

management.ssl.key-store=classpath:management.jks

management.ssl.key-password=secret

47.4	配置管理相关的SSL

371



47.5	自定义管理服务器地址

你可以通过设置 	management.address	属性来定义管理端点使用的地址，这在你

只想监听内部或面向生产环境的网络，或只监听来自 	localhost	的连接时非常有

用。

注	如果端口跟主应用服务器不一样，你只能监听一个不同的地址。

下面的application.properties示例不允许远程访问管理服务器：

management.port=8081

management.address=127.0.0.1

47.5	自定义管理服务器地址

372



47.6	禁用HTTP端点

如果不想通过HTTP暴露端点，你可以将管理端口设置为-1：
	management.port=-1	

47.6	禁用HTTP端点

373



47.7	HTTP	health端点访问限制

	health	端点暴露的信息依赖于是否为匿名访问，应用是否受保护。默认情况下，

当匿名访问一个受保护的应用时，任何有关服务器的健康详情都被隐藏了，该端点

只简单的展示服务器运行状况（up或down）。此外，响应会被缓存一个可配置的

时间段以防止端点被用于'拒绝服务'攻击，你可以通过 	endpoints.health.time-

to-live	属性设置缓存时间（单位为毫秒），默认为1000毫秒，也就是1秒。

你可以增强上述限制，从而只允许认证用户完全访问一个受保护应用的 	health	端

点，将 	endpoints.health.sensitive	设为 	true	可以实现该效果，具体可查看

以下总结（ 	sensitive	标识值为"false"的默认加粗）：

	management.security.enabled	 	endpoints.health.sensitive	
未认
证

false false 全部
内容

false true
只能
查看
Status

true false
只能
查看
Status

true true

不能
查看
任何
内容

47.7	HTTP	health端点访问限制

374



48.	基于JMX的监控和管理

Java管理扩展（JMX）提供了一种标准的监控和管理应用的机制。默认情况下，

Spring	Boot在 	org.springframework.boot	域下将管理端点暴露为JMX
MBeans。

48.	基于JMX的监控和管理

375



48.1	自定义MBean名称

MBean的名称通常产生于端点的id，例如， 	health	端点被暴露

为 	org.springframework.boot/Endpoint/healthEndpoint	。

如果应用包含多个Spring	 	ApplicationContext	，你会发现存在名称冲突。为了

解决这个问题，你可以将 	endpoints.jmx.uniqueNames	设置为 	true	，这样

MBean的名称总是唯一的。

你也可以自定义端点暴露的JMX域，具体可参考以

下 	application.properties	示例：	```properties	endpoints.jmx.domain=myapp
endpoints.jmx.uniqueNames=true

48.1	自定义MBean名称

376



48.2	禁用JMX端点

如果不想通过JMX暴露端点，你可以将 	endpoints.jmx.enabled	属性设置

为 	false	：

endpoints.jmx.enabled=false

48.2	禁用JMX端点

377



48.3	使用Jolokia通过HTTP实现JMX远程管理

Jolokia是一个JMX-HTTP桥，它提供了一种访问JMX	beans的替代方法。想要使用

Jolokia，只需添加 	org.jolokia:jolokia-core	的依赖。例如，使用Maven需要

添加以下配置：

<dependency>

				<groupId>org.jolokia</groupId>

				<artifactId>jolokia-core</artifactId>

	</dependency>

然后在你的管理HTTP服务器上可以通过 	/jolokia	访问Jolokia。

48.3	使用Jolokia通过HTTP实现JMX远程管理

378



48.3.1	自定义Jolokia
Jolokia有很多配置，通常使用servlet参数进行设置，跟Spring	Boot一块使用时可以

在 	application.properties	中添加 	jolokia.config.	前缀的属性进行配置：

jolokia.config.debug=true

48.3	使用Jolokia通过HTTP实现JMX远程管理

379



48.3.2	禁用Jolokia
如果正在使用Jolokia，又不想让Spring	Boot配置它，你只需要简单的

将 	endpoints.jolokia.enabled	属性设置为 	false	：

endpoints.jolokia.enabled=false

48.3	使用Jolokia通过HTTP实现JMX远程管理

380



49.	使用远程shell进行监控和管理

Spring	Boot支持集成一个称为'CRaSH'的Java	shell，你可以在CRaSH中使用ssh或
telnet命令连接到运行的应用，项目中添加以下依赖可以启用远程shell支持：

<dependency>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-starter-remote-shell</artifactId>

	</dependency>

注	如果想使用telnet访问，你还需添加对 	org.crsh:crsh.shell.telnet	的依

赖。

注	CRaSH运行时需要JDK，因为它要动态编译命令。如果一个基本的 	help	命令

都运行失败，你很可能使用的是JRE。

49.	使用远程shell进行监控和管理

381



49.1	连接远程shell
远程shell默认监听端口为 	2000	，默认用户名为 	user	，密码为随机生成的，并

且在输出日志中会显示。如果应用使用Spring	Security，该shell默认使用相同的配

置。如果不是，将使用一个简单的认证策略，你可能会看到类似这样的信息：

Using	default	password	for	shell	access:	ec03e16c-4cf4-49ee-b745-

7c8255c1dd7e

Linux和OSX用户可以使用 	ssh	连接远程shell，Windows用户可以下载并安装

PuTTY。

$	ssh	-p	2000	user@localhost

user@localhost's	password:

		.			____										_												__	_	_

	/\\	/	___'_	__	_	_(_)_	__		__	_	\	\	\	\

(	(	)\___	|	'_	|	'_|	|	'_	\/	_`	|	\	\	\	\

	\\/		___)|	|_)|	|	|	|	|	||	(_|	|		)	)	)	)

		'		|____|	.__|_|	|_|_|	|_\__,	|	/	/	/	/

	=========|_|==============|___/=/_/_/_/

	::	Spring	Boot	::		(v1.4.1.RELEASE)	on	myhost

输入 	help	可以获取命令列表，Spring	Boot提
供 	metrics	， 	beans	， 	autoconfig	和 	endpoint	命令。

49.1	连接远程shell

382

http://www.putty.org/


49.1.1	远程shell证书

你可以使

用 	management.shell.auth.simple.user.name	和 	management.shell.auth.s

imple.user.password	属性配置自定义的连接证书，也可以使用Spring	Security
的 	AuthenticationManager	处理登录职责，具体参考CrshAutoConfiguration和
ShellProperties的Javadoc。

49.1	连接远程shell

383

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/api/org/springframework/boot/actuate/autoconfigure/CrshAutoConfiguration.html
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/api/org/springframework/boot/actuate/autoconfigure/ShellProperties.html


49.2	扩展远程shell
有很多有趣的方式可以用来扩展远程shell。

49.2	扩展远程shell

384



49.2.1	远程shell命令

你可以使用Groovy或Java编写其他的shell命令（具体参考CRaSH文档），Spring
Boot默认会搜索以下路径的命令：

	classpath*:/commands/**	

	classpath*:/crash/commands/**	

注	设置 	shell.command-path-patterns	属性可以改变搜索路径。	注	如果使用可

执行存档（archive），shell依赖的所有类都必须打包进一个内嵌的jar，而不是直接

打包进可执行jar或war。

下面是一个从 	src/main/resources/commands/hello.groovy	加载的'hello'命
令：

package	commands

import	org.crsh.cli.Usage

import	org.crsh.cli.Command

class	hello	{

				@Usage("Say	Hello")

				@Command

				def	main(InvocationContext	context)	{

								return	"Hello"

				}

}

Spring	Boot为 	InvocationContext	添加一些其他属性，你可以在命令中访问它

们：

49.2	扩展远程shell

385



属性名称 描述

	spring.boot.version	 Spring	Boot的版本

	spring.version	 Spring核心框架的版本

	spring.beanfactory	 获取Spring的 	BeanFactory	

	spring.environment	 获取Spring的 	Environment	

49.2	扩展远程shell

386



49.2.2	远程shell插件

除了创建新命令，你也可以扩展CRaSH	shell的其他特性，所有继

承 	org.crsh.plugin.CRaSHPlugin	的Spring	Beans将自动注册到shell，具体查

看CRaSH参考文档。

49.2	扩展远程shell

387

http://www.crashub.org/


50.	度量指标（Metrics）
Spring	Boot执行器包含一个支持'gauge'和'counter'级别的度量指标服务，'gauge'记
录一个单一值，'counter'记录一个增量（增加或减少）。同时，Spring	Boot提供一

个PublicMetrics接口，你可以实现它，从而暴露以上两种机制不能记录的指标，具

体参考SystemPublicMetrics。

所有HTTP请求的指标都被自动记录，所以如果点击 	metrics	端点，你可能会看

到类似以下的响应：

{

				"counter.status.200.root":	20,

				"counter.status.200.metrics":	3,

				"counter.status.200.star-star":	5,

				"counter.status.401.root":	4,

				"gauge.response.star-star":	6,

				"gauge.response.root":	2,

				"gauge.response.metrics":	3,

				"classes":	5808,

				"classes.loaded":	5808,

				"classes.unloaded":	0,

				"heap":	3728384,

				"heap.committed":	986624,

				"heap.init":	262144,

				"heap.used":	52765,

				"mem":	986624,

				"mem.free":	933858,

				"processors":	8,

				"threads":	15,

				"threads.daemon":	11,

				"threads.peak":	15,

				"uptime":	494836,

				"instance.uptime":	489782,

				"datasource.primary.active":	5,

				"datasource.primary.usage":	0.25

}

50.	度量指标

388

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/endpoint/PublicMetrics.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/endpoint/PublicMetrics.java


此处，我们可以看到基本的 	memory	， 	heap	， 	class

loading	， 	processor	和 	thread	pool	信息，连同一些HTTP指标。在该实例

中， 	root	('/')， 	/metrics		URLs分别返回 	20	次， 	3	次 	HTTP	200	响应，同

时可以看到 	root		URL返回了 	4	次 	HTTP	401	（unauthorized）响应。双星号

（ 	star-star	）来自于被Spring	MVC	 	/**	匹配到的请求（通常为静态资源）。

	gauge	展示了一个请求的最后响应时间，所以 	root	的最后请求响应耗时 	2毫

秒	， 	/metrics	耗时 	3毫秒	。

注	在该示例中，我们实际是通过HTTP的 	/metrics	路径访问该端点的，这也就是

响应中出现 	metrics	的原因。

50.	度量指标

389



50.1	系统指标

Spring	Boot会暴露以下系统指标：

系统内存总量（ 	mem	），单位:KB
空闲内存数量（ 	mem.free	），单位:KB
处理器数量（ 	processors	）

系统正常运行时间（ 	uptime	），单位:毫秒

应用上下文（应用实例）正常运行时间（ 	instance.uptime	），单位:毫秒

系统平均负载（ 	systemload.average	）

堆信息（ 	heap	， 	heap.committed	， 	heap.init	， 	heap.used	），单

位:KB
线程信息（ 	threads	， 	thread.peak	， 	thead.daemon	）

类加载信息（ 	classes	， 	classes.loaded	， 	classes.unloaded	）

垃圾收集信息（ 	gc.xxx.count	,	 	gc.xxx.time	）

50.1	系统指标

390



50.2	数据源指标

Spring	Boot会为应用中定义的每个支持的 	DataSource	暴露以下指标：

活动连接数（ 	datasource.xxx.active	）

连接池当前使用情况（ 	datasource.xxx.usage	）

所有数据源指标共用 	datasoure.	前缀，该前缀适用于每个数据源：

如果是主数据源（唯一可用的数据源或注解 	@Primary	的数据源）前缀

为 	datasource.primary	。

如果数据源bean名称以 	DataSource	结尾，前缀就是bean的名称去

掉 	DataSource	的部分（比如， 	batchDataSource	的前缀

是 	datasource.batch	）。

其他情况使用bean的名称作为前缀。

通过注册自定义版本的 	DataSourcePublicMetrics		bean，你可以覆盖部分或全

部的默认行为。Spring	Boot默认提供支持所有数据源的元数据，如果喜欢的数据源

恰好不被支持，你可以添加其他的 	DataSourcePoolMetadataProvider		beans，
具体参考 	DataSourcePoolMetadataProvidersConfiguration	。

50.2	数据源指标

391



50.3	缓存指标

Spring	Boot会为应用中定义的每个支持的缓存暴露以下指标：

cache当前大小（ 	cache.xxx.size	）

命中率（ 	cache.xxx.hit.ratio	）

丢失率（ 	cache.xxx.miss.ratio	）

注	缓存提供商没有以一致的方式暴露命中/丢失率，有些暴露的是聚合

（aggregated）值（比如，自从统计清理后的命中率），而其他暴露的是时序

（temporal）值	（比如，最后一秒的命中率），具体查看缓存提供商的文档。

如果两个不同的缓存管理器恰巧定义了相同的缓存，缓存name将
以 	CacheManager		bean的name作为前缀。

注册自定义版本的 	CachePublicMetrics	可以部分或全部覆盖这些默认值，

Spring	Boot默认为EhCache，Hazelcast，Infinispan，JCache和Guava提供统计。

如果喜欢的缓存库没被支持，你可以添加其他 	CacheStatisticsProvider	

beans，具体可参考 	CacheStatisticsAutoConfiguration	。

50.3	缓存指标

392



50.4	Tomcat	session指标

如果你使用Tomcat作为内嵌的servlet容器，Spring	Boot将自动暴露session指标，

	httpsessions.active	和 	httpsessions.max	分别提供活动的和最大的session
数量。

50.4	Tomcat	session指标

393



50.5	记录自己的指标

将CounterService或GaugeService注入到你的bean中可以记录自己的度量指

标： 	CounterService	暴露 	increment	， 	decrement	和 	reset	方

法； 	GaugeService	提供一个 	submit	方法。

下面是一个简单的示例，它记录了方法调用的次数：

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.boot.actuate.metrics.CounterService;

import	org.springframework.stereotype.Service;

@Service

public	class	MyService	{

				private	final	CounterService	counterService;

				@Autowired

				public	MyService(CounterService	counterService)	{

								this.counterService	=	counterService;

				}

				public	void	exampleMethod()	{

								this.counterService.increment("services.system.myservice

.invoked");

				}

}

注	你可以将任何字符串用作度量指标的名称，但最好遵循所选存储/图形技术的指

南，Matt	Aimonetti’s	Blog中有一些好的关于Graphite的指南。

50.5	记录自己的指标

394

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/CounterService.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/GaugeService.java
http://matt.aimonetti.net/posts/2013/06/26/practical-guide-to-graphite-monitoring/


50.6	添加自己的公共指标

只要注册其他的 	PublicMetrics	实现beans，你就可以添加其他的度量指标，比

如计算metrics端点每次调用的次数。默认情况下，端点会聚合所有这样的beans，
通过定义自己的 	MetricsEndpoint	可以轻易改变这种情况。

50.6	添加自己的公共指标

395



50.7	使用Java8的特性

Spring	Boot提供的 	GaugeService	和 	CounterService	默认实现依赖于你使用的

Java版本。如果使用Java8（或更高版本），Spring	Boot将实现切换为一个高性能

版本，该版本优化了写速度，底层使用原子内存buffers，而不是通过不可变但相对

昂贵的 	Metric<?>	类型（跟基于仓库的实现相比，counters大概快5倍，gauges
大概快2倍）。对于Java7，Dropwizard指标服务也是很有效的（使用了某些Java8
并发库），但它不记录指标值的时间戳。如果需要关注指标采集的性能，建议你使

用高性能的选项，并不要频繁读取指标信息，这样写入会本地缓存，只有在需要时

读取。

注	如果使用Java8或Dropwizard，Spring	Boot默认不会使用老

的 	MetricRepository	和它的 	InMemoryMetricRepository	实现。

50.7	使用Java8的特性

396



50.8	指标写入,导出和聚合

Spring	Boot提供几个标记接口 	Exporter	的实现，可用于将从内存buffers读取的

指标复制到一个分析和展示它们的地方。实际上，如果提供一个实

现 	MetricWriter	接口（或 	GaugeWriter	用于简单场景）且注

解 	@ExportMetricWriter	的 	@Bean	，它将自动挂钩一个 	Exporter	并每5秒反

馈下指标更新（通过 	spring.metrics.export.delay-millis	配置）。此外，你

定义的所有注解 	@ExportMetricReader	的 	MetricReader	，它们的值将被默认

exporter导出。

默认exporter是一个 	MetricCopyExporter	，它会优化自己不去复制那些从上次调

用以来没有变化的值（设置 	spring.metrics.export.send-latest	标识可以关

闭该优化）。注意Dropwizard	 	MetricRegistry	不支持时间戳，所以如果你使用

Dropwizard指标服务，该优化是不起作用的（每次都会复制全部指标）。

通过 	spring.metrics.export.*	属性可以设置导出的触发器（ 	delay-

millis	， 	includes	， 	excludes	和 	send-latest	），特

殊 	MetricWriters	的值可以通过 	spring.metrics.export.triggers.

<name>.*	设置，此处 	<name>	是bean的名称（或匹配bean名称的表达式）。

注	如果关闭默认的 	MetricRepository	（比如使用Dropwizard指标服务），指标

的自动导出将禁用。你可以通过声明自定义类型的 	MetricReader	并注

解 	@ExportMetricReader	来获取相同功能。

50.8	指标写入,导出和聚合

397



50.8.1	示例:	导出到Redis
如果提供一个 	RedisMetricRepository	类型的 	@Bean	并注

解 	@ExportMetricWriter	，指标将导出到Redis缓存完成聚

合。 	RedisMetricRepository	有两个重要参数用于配置实现这样的目

的： 	prefix	和 	key	（传递给构造器）。最好使用应用实例唯一的前缀（比如，

使用一个随机值及应用的逻辑name，这样可以关联相同应用的其他实

例）。“key”用来保持所有指标name的全局索引，所以它应该全局唯一，不管这对

于你的应用意味着什么（比如，相同系统的两个实例可以共享一个Redis缓存，如

果它们有不同的keys）。

示例：

@Bean

@ExportMetricWriter

MetricWriter	metricWriter(MetricExportProperties	export)	{

				return	new	RedisMetricRepository(connectionFactory,

						export.getRedis().getPrefix(),	export.getRedis().getKey())

;

}

	application.properties	：

spring.metrics.export.redis.prefix:	metrics.mysystem.${spring.ap

plication.name:application}.${random.value:0000}

spring.metrics.export.redis.key:	keys.metrics.mysystem

前缀最后由应用名和id组成，所以它可以用来标识具有相同逻辑名的processes分
组。

注	设置 	key	和 	prefix	都是非常重要的。key用于所有的仓库操作，并可以被多

个仓库共享。如果多个仓库共享一个key（比如你需要聚合它们的时候），你通常

有一个只读“master”仓库，它有一个简短的但可辨识的前缀（比

如 	metrics.mysystem	），还有很多只写的仓库，这些仓库以master前缀开头

50.8	指标写入,导出和聚合

398



（比如以上示例中为 	metrics.mysystem.*	）。这样从一个"master"仓库读取所

有keys是相当高效的，但使用较长的前缀读取一个子集就比较低效了（比如使用一

个写仓库）。

注	以上示例使用 	MetricExportProperties	去注入和提取key和前缀，这是

Spring	Boot提供的便利设施，用于配置合适的默认值，你也可以自己设值。

50.8	指标写入,导出和聚合

399



50.8.2	示例:	导出到Open	TSDB
如果提供一个 	OpenTsdbGaugeWriter	类型的 	@Bean	并注

解 	@ExportMetricWriter	，指标将导出到Open	TSDB	完成聚

合。 	OpenTsdbGaugeWriter	有一个 	url	属性，你需要将它设置为Open	TSDB
的“/put”端点，比如 	localhost:4242/api/put	。它还有个 	namingStrategy	，

你可以自定义或配置以使指标匹配服务器上你需要的数据结构。默认它只传递指标

名作为Open	TSDB指标名，添加 	domain	标签（值

为 	org.springframework.metrics	）和 	process	（值为命名策略的对象hash
值）。因此，在运行应用并产生一些指标后，你可以在TSD	UI查看这些指标（默认

路径为 	localhost:4242	）。

示例：

curl	localhost:4242/api/query?start=1h-ago&m=max:counter.status.

200.root

[

				{

								"metric":	"counter.status.200.root",

								"tags":	{

												"domain":	"org.springframework.metrics",

												"process":	"b968a76"

								},

								"aggregateTags":	[],

								"dps":	{

												"1430492872":	2,

												"1430492875":	6

								}

				}

]

50.8	指标写入,导出和聚合

400

http://opentsdb.net/


50.8.3	示例:	导出到Statsd
想要将指标导出到Statsd，首先你需要确定添加了 	com.timgroup:java-statsd-

client	依赖（Spring	Boot为它提供了依赖管理），然后

将 	spring.metrics.export.statsd.host	属性添加

到 	application.properties	文件中，连接将在 	8125	端口建立，除非设

置 	spring.metrics.export.statsd.port	对默认值进行覆盖。使

用 	spring.metrics.export.statsd.prefix	可以设置自定义前缀，此外，你可

以提供一个 	StatsdMetricWriter	类型的 	@Bean	并注

解 	@ExportMetricWriter	：

@Value("${spring.application.name:application}.${random.value:00

00}")

private	String	prefix	=	"metrics";

@Bean

@ExportMetricWriter

MetricWriter	metricWriter()	{

				return	new	StatsdMetricWriter(prefix,	"localhost",	8125);

}

50.8	指标写入,导出和聚合

401



50.8.4	示例:	导出到JMX
如果提供一个 	JmxMetricWriter	类型并注

解 	@ExportMetricWriter	的 	@Bean	，指标将作为MBeans暴露到本地服务器

（只要开启，Spring	Boot	JMX自动配置会提供 	MBeanExporter	）。

示例：

@Bean

@ExportMetricWriter

MetricWriter	metricWriter(MBeanExporter	exporter)	{

				return	new	JmxMetricWriter(exporter);

}

每个指标都暴露为单独的MBean，你可以将 	ObjectNamingStrategy	注

入 	JmxMetricWriter	来指定 	ObjectNames	的格式。

50.8	指标写入,导出和聚合

402



50.9	聚合多个来源的指标

Spring	Boot提供一个 	AggregateMetricReader	，用于合并来自不同物理来源的

指标。具有相同逻辑指标的来源只需将指标加上以句号分隔的前缀发布出去，

reader会聚合它们（通过截取指标名并丢掉前缀），计数器被求和，所有东西（比

如gauges）都采用最近的值。

这非常有用，特别是当有多个应用实例反馈数据到中央仓库（比如Redis），并且

你想展示结果。推荐将 	MetricReaderPublicMetrics	结果连接到 	/metrics	端

点。

示例：

@Autowired

private	MetricExportProperties	export;

@Bean

public	PublicMetrics	metricsAggregate()	{

		return	new	MetricReaderPublicMetrics(aggregatesMetricReader())

;

}

private	MetricReader	globalMetricsForAggregation()	{

		return	new	RedisMetricRepository(this.connectionFactory,

						this.export.getRedis().getAggregatePrefix(),	this.export.g

etRedis().getKey());

}

private	MetricReader	aggregatesMetricReader()	{

		AggregateMetricReader	repository	=	new	AggregateMetricReader(

						globalMetricsForAggregation());

		return	repository;

}

注	上面的示例使用 	MetricExportProperties	注入和提取key和前缀，这是

Spring	Boot提供的便利设施，并且默认值是合适的，它们是

在 	MetricExportAutoConfiguration	中设置的。

50.9	聚合多个来源的指标

403



注	上面的 	MetricReaders	不是 	@Beans	，也没注解 	@ExportMetricReader	，

因为它们只收集和分析来自其他仓库的数据，不需要暴露自己的值。

50.9	聚合多个来源的指标

404



50.10	Dropwizard指标

当你声明对 	io.dropwizard.metrics:metrics-core	的依赖时，Spring	Boot会
创建一个默认的 	MetricRegistry		bean。如果需要自定义，你可以注册自己

的 	@Bean	实例。使用Dropwizard	‘Metrics’	library的用户会发现Spring	Boot指标自

动发布到 	com.codahale.metrics.MetricRegistry	，来自 	MetricRegistry	的

指标也自动暴露到 	/metrics	端点。

使用Dropwizard指标时，默认

的 	CounterService	和 	GaugeService	被 	DropwizardMetricServices	替换，

它是一个 	MetricRegistry	的包装器（所以你可以 	@Autowired	其中任意

services，并像平常那么使用它）。通过使用恰当的前缀类型标记你的指标名可以

创建特殊的Dropwizard指标服务（比如，gauges使
用 	timer.*	， 	histogram.*	，counters使用 	meter.*	）。

50.10	Dropwizard指标

405

https://dropwizard.github.io/metrics/


50.11	消息渠道集成

如果存在名为 	metricsChannel	的 	MessageChannel		bean，Spring	Boot将创建

一个 	MetricWriter	将指标写入该渠道（channel）。writer自动挂钩一个

exporter，所以全部指标值都会出现在渠道上，	订阅者就可以进行其他分析或动作

（提供渠道和订阅者取决于你）。

50.11	消息渠道集成

406



51.	审计

Spring	Boot执行器有一个灵活的审计框架，一旦Spring	Security处于活动状态（默

认抛出'authentication	success'，'failure'和'access	denied'异常），它就会发布事

件。这对于报告非常有用，同时可以基于认证失败实现一个锁定策略。为了自定义

发布的安全事件，你可以提供自己

的 	AbstractAuthenticationAuditListener	， 	AbstractAuthorizationAudit

Listener	实现。你也可以使用审计服务处理自己的业务事件。为此，你可以将存

在的 	AuditEventRepository	注入到自己的组件，并直接使用它，或者只是简单

地通过Spring	 	ApplicationEventPublisher	发
布 	AuditApplicationEvent	（使用 	ApplicationEventPublisherAware	）。

51.	审计

407



52.	追踪（Tracing）
对于所有的HTTP请求Spring	Boot自动启用追踪，你可以查看 	trace	端点获取最

近100条请求的基本信息：

[{

				"timestamp":	1394343677415,

				"info":	{

								"method":	"GET",

								"path":	"/trace",

								"headers":	{

												"request":	{

																"Accept":	"text/html,application/xhtml+xml,appli

cation/xml;q=0.9,*/*;q=0.8",

																"Connection":	"keep-alive",

																"Accept-Encoding":	"gzip,	deflate",

																"User-Agent":	"Mozilla/5.0	Gecko/Firefox",

																"Accept-Language":	"en-US,en;q=0.5",

																"Cookie":	"_ga=GA1.1.827067509.1390890128;	..."

																"Authorization":	"Basic	...",

																"Host":	"localhost:8080"

												},

												"response":	{

																"Strict-Transport-Security":	"max-age=31536000	;

	includeSubDomains",

																"X-Application-Context":	"application:8080",

																"Content-Type":	"application/json;charset=UTF-8"

,

																"status":	"200"

												}

								}

				}

},{

				"timestamp":	1394343684465,

				...

}]

52.	追踪

408



52.	追踪

409



52.1	自定义追踪

如果需要追踪其他事件，你可以注入TraceRepository到你的Spring	Beans
中， 	add	方法接收一个 	Map	结构的参数，该数据将转换为JSON并被记录下来。

默认使用 	InMemoryTraceRepository	存储最新的100个事件，如果需要扩充容

量，你可以定义自己的 	InMemoryTraceRepository	实例，甚至创建自己

的 	TraceRepository	实现。

52.1	自定义追踪

410

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/trace/TraceRepository.java


53.1	扩展配置

在 	META-INF/spring.factories	文件中，你可以激活创建PID文件

的 	listener(s)	，示例：

org.springframework.context.ApplicationListener=\

org.springframework.boot.actuate.system.ApplicationPidFileWriter

,

org.springframework.boot.actuate.system.EmbeddedServerPortFileWr

iter

53.1	扩展配置

411



53.2	以编程方式

你也可以通过调用 	SpringApplication.addListeners(…)	方法并传递相应

的 	Writer	对象来激活一个监听器，该方法允许你通过 	Writer	构造器自定义文

件名和路径。

53.2	以编程方式

412



54.	接下来阅读什么

如果想探索本章节讨论的某些内容，你可以看下执行器的示例应用，你也可能想了

解图形工具比如Graphite。

此外，你可以继续了解‘deployment	options’或直接跳到Spring	Boot的build	tool
plugins。

54.	接下来阅读什么

413

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-samples
http://graphite.wikidot.com/
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#deployment
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#build-tool-plugins


55.	部署到云端

对于大多数流行云PaaS（平台即服务）提供商，Spring	Boot的可执行jars就是为它

们准备的。这些提供商往往要求你自己提供容器，它们只负责管理应用的进程（不

特别针对Java应用程序），所以它们需要一些中间层来将你的应用适配到云概念中

的一个运行进程。

两个流行的云提供商，Heroku和Cloud	Foundry，采取一个打包（'buildpack'）方

法。为了启动你的应用程序，不管需要什么，buildpack都会将它们打包到你的部署

代码：它可能是一个JDK和一个java调用，也可能是一个内嵌的webserver，或者是

一个成熟的应用服务器。buildpack是可插拔的，但你最好尽可能少的对它进行自定

义设置。这可以减少不受你控制的功能范围，最小化部署和生产环境的发散。

理想情况下，你的应用就像一个Spring	Boot可执行jar，所有运行需要的东西都打包

到它内部。

本章节我们将看到在“Getting	Started”章节开发的简单应用是怎么在云端运行的。

55.	部署到云端

414



55.1	Cloud	Foundry
如果不指定其他打包方式，Cloud	Foundry会启用它提供的默认打包方式。Cloud
Foundry的Java	buildpack对Spring应用有出色的支持，包括Spring	Boot。你可以部

署独立的可执行jar应用，也可以部署传统的 	.war	形式的应用。

一旦你构建应用（比如，使用 	mvn	clean	package	）并安装 	cf	命令行工具，你

可以使用下面的 	cf	push	命令（将路径指向你编译后的 	.jar	）来部署应用。在

发布应用前，确保你已登陆cf命令行客户端。

$	cf	push	acloudyspringtime	-p	target/demo-0.0.1-SNAPSHOT.jar

查看 	cf	push	文档获取更多可选项。如果相同目录下存在manifest.yml，Cloud
Foundry会使用它。

就此， 	cf	将开始上传你的应用：

Uploading	acloudyspringtime...	OK

Preparing	to	start	acloudyspringtime...	OK

----->	Downloaded	app	package	(8.9M)

----->	Java	Buildpack	source:	system

----->	Downloading	Open	JDK	1.7.0_51	from	.../x86_64/openjdk-1.7

.0_51.tar.gz	(1.8s)

							Expanding	Open	JDK	to	.java-buildpack/open_jdk	(1.2s)

----->	Downloading	Spring	Auto	Reconfiguration	from		0.8.7	.../a

uto-reconfiguration-0.8.7.jar	(0.1s)

----->	Uploading	droplet	(44M)

Checking	status	of	app	'acloudyspringtime'...

		0	of	1	instances	running	(1	starting)

		...

		0	of	1	instances	running	(1	down)

		...

		0	of	1	instances	running	(1	starting)

		...

		1	of	1	instances	running	(1	running)

App	started

55.1	Cloud	Foundry

415

https://github.com/cloudfoundry/java-buildpack
http://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
http://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#login
http://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#push
http://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html


恭喜！应用现在处于运行状态！

检验部署应用的状态是很简单的：

$	cf	apps

Getting	applications	in	...

OK

name																	requested	state			instances			memory			disk

			urls

...

acloudyspringtime				started											1/1									512M					1G		

			acloudyspringtime.cfapps.io

...

一旦Cloud	Foundry意识到你的应用已经部署，你就可以点击给定的应用URI，此处

是acloudyspringtime.cfapps.io/。

55.1	Cloud	Foundry

416

http://acloudyspringtime.cfapps.io/


55.1.1	绑定服务

默认情况下，运行应用的元数据和服务连接信息被暴露为应用的环境变量（比

如 	$VCAP_SERVICES	），采用这种架构的原因是因为Cloud	Foundry多语言特性

（任何语言和平台都支持作为buildpack），进程级别的环境变量是语言无关

（language	agnostic）的。

环境变量并不总是有利于设计最简单的API，所以Spring	Boot自动提取它们，然后

将这些数据导入能够通过Spring	 	Environment	抽象访问的属性里：

@Component

class	MyBean	implements	EnvironmentAware	{

				private	String	instanceId;

				@Override

				public	void	setEnvironment(Environment	environment)	{

								this.instanceId	=	environment.getProperty("vcap.applicat

ion.instance_id");

				}

				//	...

}

所有的Cloud	Foundry属性都以 	vcap	作为前缀，你可以使用vcap属性获取应用信

息（比如应用的公共URL）和服务信息（比如数据库证书），具体参

考 	CloudFoundryVcapEnvironmentPostProcessor		Javadoc。

注：Spring	Cloud	Connectors项目很适合比如配置数据源的任务，Spring	Boot为它

提供了自动配置支持和一个 	spring-boot-starter-cloud-connectors		starter。

55.1	Cloud	Foundry

417

http://cloud.spring.io/spring-cloud-connectors/


55.2	Heroku
Heroku是另外一个流行的Paas平台，你可以提供一个 	Procfile	来定义Heroku的
构建过程，它提供部署应用所需的指令。Heroku为Java应用分配一个端口，确保能

够路由到外部URI。

你必须配置你的应用监听正确的端口，下面是用于我们的starter	REST应用

的 	Procfile	：

web:	java	-Dserver.port=$PORT	-jar	target/demo-0.0.1-SNAPSHOT.ja

r

Spring	Boot将 	-D	参数作为属性，通过Spring	 	Environment	实例访

问。 	server.port	配置属性适合于内嵌的Tomcat，Jetty或Undertow实例启用时

使用， 	$PORT	环境变量被分配给Heroku	Paas使用。

Heroku默认使用Java	1.8，只要你的Maven或Gradle构建时使用相同的版本就没问

题（Maven用户可以设置 	java.version	属性）。如果你想使用JDK	1.7，在你

的 	pom.xml	和 	Procfile	临近处创建一个 	system.properties	文件，在该文件

中添加以下设置：

java.runtime.version=1.7

这就是你需要做的所有内容，对于Heroku部署来说，经常做的工作就是使用 	git

push	将代码推送到生产环境。

$	git	push	heroku	master

Initializing	repository,	done.

Counting	objects:	95,	done.

Delta	compression	using	up	to	8	threads.

Compressing	objects:	100%	(78/78),	done.

Writing	objects:	100%	(95/95),	8.66	MiB	|	606.00	KiB/s,	done.

Total	95	(delta	31),	reused	0	(delta	0)

----->	Java	app	detected

55.2	Heroku

418



----->	Installing	OpenJDK	1.8...	done

----->	Installing	Maven	3.3.1...	done

----->	Installing	settings.xml...	done

----->	executing	/app/tmp/cache/.maven/bin/mvn	-B

							-Duser.home=/tmp/build_0c35a5d2-a067-4abc-a232-14b1fb7a82

29

							-Dmaven.repo.local=/app/tmp/cache/.m2/repository

							-s	/app/tmp/cache/.m2/settings.xml	-DskipTests=true	clean

	install

							[INFO]	Scanning	for	projects...

							Downloading:	http://repo.spring.io/...

							Downloaded:	http://repo.spring.io/...	(818	B	at	1.8	KB/se

c)

								....

							Downloaded:	http://s3pository.heroku.com/jvm/...	(152	KB	

at	595.3	KB/sec)

							[INFO]	Installing	/tmp/build_0c35a5d2-a067-4abc-a232-14b1

fb7a8229/target/...

							[INFO]	Installing	/tmp/build_0c35a5d2-a067-4abc-a232-14b1

fb7a8229/pom.xml	...

							[INFO]	--------------------------------------------------

----------------------

							[INFO]	BUILD	SUCCESS

							[INFO]	--------------------------------------------------

----------------------

							[INFO]	Total	time:	59.358s

							[INFO]	Finished	at:	Fri	Mar	07	07:28:25	UTC	2014

							[INFO]	Final	Memory:	20M/493M

							[INFO]	--------------------------------------------------

----------------------

----->	Discovering	process	types

							Procfile	declares	types	->	web

----->	Compressing...	done,	70.4MB

----->	Launching...	done,	v6

							http://agile-sierra-1405.herokuapp.com/	deployed	to	Herok

u

55.2	Heroku

419



To	git@heroku.com:agile-sierra-1405.git

	*	[new	branch]						master	->	master

现在你的应用已经启动并运行在Heroku。

55.2	Heroku

420



55.3	Openshift
Openshift是RedHat公共（和企业）PaaS解决方案。和Heroku相似，它也是通过运

行被git提交触发的脚本来工作的，所以你可以使用任何你喜欢的方式编写Spring
Boot应用启动脚本，只要Java运行时环境可用（这是在Openshift上可以要求的一

个标准特性）。为了实现这样的效果，你可以使用DIY	Cartridge，并

在 	.openshift/action_scripts	下hooks你的仓库：

基本模式如下：

1.确保Java和构建工具已被远程安装，比如使用一个 	pre_build		hook（默认会安

装Java和Maven，不会安装Gradle）。

2.使用一个 	build		hook去构建你的jar（使用Maven或Gradle），比如：

#!/bin/bash

cd	$OPENSHIFT_REPO_DIR

mvn	package	-s	.openshift/settings.xml	-DskipTests=true

3.添加一个调用 	java	-jar	…	的 	start		hook

#!/bin/bash

cd	$OPENSHIFT_REPO_DIR

nohup	java	-jar	target/*.jar	--server.port=${OPENSHIFT_DIY_PORT}

	--server.address=${OPENSHIFT_DIY_IP}	&

4.使用一个 	stop		hook

55.3	Openshift

421

https://www.openshift.com/
https://www.openshift.com/developers/do-it-yourself


#!/bin/bash

source	$OPENSHIFT_CARTRIDGE_SDK_BASH

PID=$(ps	-ef	|	grep	java.*\.jar	|	grep	-v	grep	|	awk	'{	print	$2

	}')

if	[	-z	"$PID"	]

then

				client_result	"Application	is	already	stopped"

else

				kill	$PID

fi

5.将内嵌的服务绑定到平台提供的 	application.properties	定义的环境变量，

比如：

spring.datasource.url:	jdbc:mysql://${OPENSHIFT_MYSQL_DB_HOST}:$

{OPENSHIFT_MYSQL_DB_PORT}/${OPENSHIFT_APP_NAME}

spring.datasource.username:	${OPENSHIFT_MYSQL_DB_USERNAME}

spring.datasource.password:	${OPENSHIFT_MYSQL_DB_PASSWORD}

在Openshift的网站上有一篇running	Gradle	in	Openshift博客，如果想使用gradle构
建运行的应用可以参考它。

55.3	Openshift

422

https://www.openshift.com/blogs/run-gradle-builds-on-openshift


55.4	Boxfuse和Amazon	Web	Services
Boxfuse的工作机制是将你的Spring	Boot可执行jar或war转换进一个最小化的VM镜

像，该镜像不需改变就能部署到VirtualBox或AWS。Boxfuse深度集成Spring	Boot
并使用你的Spring	Boot配置文件自动配置端口和健康检查URLs，它将该信息用于

产生的镜像及它提供的所有资源（实例，安全分组，可伸缩的负载均衡等）。

一旦创建一个Boxfuse	account，并将它连接到你的AWS账号，安装最新版Boxfuse
客户端，你就能按照以下操作将Spring	Boot应用部署到AWS（首先要确保应用被

Maven或Gradle构建过，比如 	mvn	clean	package	）：

$	boxfuse	run	myapp-1.0.jar	-env=prod

更多选项可查看 	boxfuse	run	文档，如果当前目录存在一个boxfuse.conf文件，

Boxfuse将使用它。

注	如果你的可执行jar或war包含 	application-boxfuse.properties	文件，

Boxfuse默认在启动时会激活一个名为 	boxfuse	的Spring	profile，然后在该profile
包含的属性基础上构建自己的配置。

此刻 	boxfuse	将为你的应用创建一个镜像并上传到AWS，然后配置并启动需要的

资源：

55.4	Boxfuse和Amazon	Web	Services

423

https://boxfuse.com/
https://console.boxfuse.com/
https://boxfuse.com/docs/commandline/run.html
https://boxfuse.com/docs/commandline/#configuration
https://boxfuse.com/docs/payloads/springboot.html#configuration


Fusing	Image	for	myapp-1.0.jar	...

Image	fused	in	00:06.838s	(53937	K)	->	axelfontaine/myapp:1.0

Creating	axelfontaine/myapp	...

Pushing	axelfontaine/myapp:1.0	...

Verifying	axelfontaine/myapp:1.0	...

Creating	Elastic	IP	...

Mapping	myapp-axelfontaine.boxfuse.io	to	52.28.233.167	...

Waiting	for	AWS	to	create	an	AMI	for	axelfontaine/myapp:1.0	in	e

u-central-1	(this	may	take	up	to	50	seconds)	...

AMI	created	in	00:23.557s	->	ami-d23f38cf

Creating	security	group	boxfuse-sg_axelfontaine/myapp:1.0	...

Launching	t2.micro	instance	of	axelfontaine/myapp:1.0	(ami-d23f3

8cf)	in	eu-central-1	...

Instance	launched	in	00:30.306s	->	i-92ef9f53

Waiting	for	AWS	to	boot	Instance	i-92ef9f53	and	Payload	to	start

	at	http://52.28.235.61/	...

Payload	started	in	00:29.266s	->	http://52.28.235.61/

Remapping	Elastic	IP	52.28.233.167	to	i-92ef9f53	...

Waiting	15s	for	AWS	to	complete	Elastic	IP	Zero	Downtime	transit

ion	...

Deployment	completed	successfully.	axelfontaine/myapp:1.0	is	up	

and	running	at	http://myapp-axelfontaine.boxfuse.io/

你的应用现在应该已经在AWS上启动并运行了。

这里有篇在EC2部署Spring	Boot应用的博客，Boxfuse官网也有Boxfuse集成Spring
Boot文档，你可以拿来作为参考。

55.4	Boxfuse和Amazon	Web	Services

424

https://boxfuse.com/blog/spring-boot-ec2.html
https://boxfuse.com/docs/payloads/springboot.html


55.5	Google	App	Engine
Google	App	Engine关联了Servlet	2.5	API，如果不做一些修改你是不能在其上部署

Spring应用的，具体查看本指南的Servlet	2.5章节	Container.md)。

55.5	Google	App	Engine

425



56.	安装Spring	Boot应用

除了使用 	java	-jar	运行Spring	Boot应用，制作在Unix系统完全可执行的应用也

是可能的，这会简化常见生产环境Spring	Boot应用的安装和管理。在Maven中添加

以下plugin配置可以创建一个"完全可执行"jar：

<plugin>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-maven-plugin</artifactId>

				<configuration>

								<executable>true</executable>

				</configuration>

</plugin>

对于Gradle等价的配置如下：

apply	plugin:	'spring-boot'

springBoot	{

				executable	=	true

}

然后输入 	./my-application.jar	运行应用（ 	my-application	是你的artifact
name）。

注	完全可执行jars在文件前内嵌了一个额外脚本，目前不是所有工具都能接受这种

形式，所以你有时可能不能使用该技术。

注	默认脚本支持大多数Linux分发版本，并在CentOS和Ubuntu上测试过。其他平

台，比如OS	X和FreeBSD，可能需要使用自定义 	embeddedLaunchScript	。

注	当一个完全可执行jar运行时，它会将jar的目录作为工作目录。

56.	安装Spring	Boot应用

426



56.1	Unix/Linux服务

你可以使用 	init.d	或 	systemd	启动Spring	Boot应用，就像其他Unix/Linux服务

那样。

56.1	Unix/Linux服务

427



56.1.2	安装为Systemd服务

Systemd是System	V	init系统的继任者，很多现代Linux分发版本都在使用，尽管你

可以继续使用 	init.d	脚本，但使用 	systemd		‘service’脚本启动Spring	Boot应用

是有可能的。

假设你在 	/var/myapp	目录下安装一个Spring	Boot应用，为了将它安装为一

个 	systemd	服务，你需要按照以下示例创建一个脚本，比如命名

为 	myapp.service	，然后将它放到 	/etc/systemd/system	目录下：

[Unit]

Description=myapp

After=syslog.target

[Service]

User=myapp

ExecStart=/var/myapp/myapp.jar

SuccessExitStatus=143

[Install]

WantedBy=multi-user.target

注	记得根据你的应用改变 	Description	， 	User	和 	ExecStart	字段。

注意跟作为 	init.d	服务运行不同，使用 	systemd	这种方式运行应用，PID文件

和控制台日志文件表现是不同的，必须在‘service’脚本配置正确的字段，具体参

考service	unit	configuration	man	page。

使用以下命令标识应用自动在系统boot上启动：

$	systemctl	enable	myapp.service

具体详情可参考 	man	systemctl	。

56.1	Unix/Linux服务

428

http://www.freedesktop.org/software/systemd/man/systemd.service.html


56.1.3	自定义启动脚本

Maven或Gradle插件生成的默认内嵌启动脚本可以通过很多方法自定义，对于大多

数开发者，使用默认脚本和一些自定义通常就足够了。如果发现不能自定义需要的

东西，你可以使用 	embeddedLaunchScript	选项生成自己的文件。

在脚本生成时自定义

自定义写入jar文件的启动脚本元素是有意义的，例如，为 	init.d	脚本提

供 	description	，既然知道这会展示到前端，你可能会在生成jar时提供它。

为了自定义写入的元素，你需要为Spring	Boot	Maven或Gradle插件指

定 	embeddedLaunchScriptProperties	选项。

以下是默认脚本支持的可代替属性：

56.1	Unix/Linux服务

429



名称 描述

	mode	 脚本模式，默认为 	auto	

	initInfoProvides	

'INIT	INFO'部分的 	Provides	，对于Gradle
默认为 	spring-boot-application	，对于
Maven默认为 	${project.artifactId}	

	initInfoShortDescription	

‘INIT	INFO’部分的 	Short-Description	，
对于Gradle默认为 	Spring	Boot

Application	，对于Maven默认
为 	${project.name}	

	initInfoDescription	

“INIT	INFO”部分的 	Description	，对于
Gradle默认为 	Spring	Boot

Application	，对于Maven默认
为 	${project.description}	（失败会回
退到 	${project.name}	）

	initInfoChkconfig	
“INIT	INFO”部分的 	chkconfig	，默认
为 	2345	99	01	

	confFolder	
	CONF_FOLDER	的默认值，默认为包含jar的
文件夹

	logFolder	
	LOG_FOLDER	的默认值，只对 	init.d	服
务有效

	pidFolder	
	PID_FOLDER	的默认值，只对 	init.d	服
务有效

	useStartStopDaemon	
如果 	start-stop-daemon	命令可用，它会
控制该实例，默认为 	true	

在脚本运行时自定义

对于需要在jar文件生成后自定义的项目，你可以使用环境变量或配置文件。

默认脚本支持以下环境变量：

56.1	Unix/Linux服务

430



变量 描述

	MODE	

操作的模式，默认值依赖于jar
构建方式，通常为 	auto	（意
味着它会尝试通过检查它是否
为 	init.d	目录的软连接来
推断这是不是一个init脚
本）。你可以显式将它设置
为 	service	，这样`stop

start status

	USE_START_STOP_DAEMON	

如果 	start-stop-daemon	命
令可用，它将被用来控制该实
例，默认为 	true	

	PID_FOLDER	
pid文件夹的根目录（默认
为 	/var/run	）

	LOG_FOLDER	
存放日志文件的文件夹（默认
为 	/var/log	）

	CONF_FOLDER	 读取 	.conf	文件的文件夹

	LOG_FILENAME	

存放于 	LOG_FOLDER	的日志
文件名（默认
为 	<appname>.log	）

	APP_NAME	

应用名，如果jar运行自一个软
连接，脚本会猜测它的应用
名。如果不是软连接，或你想
显式设置应用名，这就很有用
了

	RUN_ARGS	
传递给程序的参数（Spring
Boot应用）

	JAVA_HOME	

默认使用 	PATH	指
定 	java	的位置，但如果
在 	$JAVA_HOME/bin/java	有
可执行文件，你可以通过该属
性显式设置

	JAVA_OPTS	 JVM启动时传递的配置项

	JARFILE	
在脚本启动没内嵌其内的jar文
件时显式设置jar位置

	DEBUG	

如果shell实例的 	-x	标识有设
值，则你能轻松看到脚本的处
理逻辑

56.1	Unix/Linux服务

431



注	 	PID_FOLDER	， 	LOG_FOLDER	和 	LOG_FILENAME	变量只对 	init.d	服务有

效。对于 	systemd	等价的自定义方式是使用‘service’脚本。

如果 	JARFILE	和 	APP_NAME	出现异常，上面的设置可以使用一个 	.conf	文件进

行配置。该文件预期是放到跟jar文件临近的地方，并且名字相同，但后缀

为 	.conf	而不是 	.jar	。例如，一个命名为 	/var/myapp/myapp.jar	的jar将使

用名为 	/var/myapp/myapp.conf	的配置文件：

myapp.conf

JAVA_OPTS=-Xmx1024M

LOG_FOLDER=/custom/log/folder

注	如果不喜欢配置文件放到jar附近，你可以使用 	CONF_FOLDER	环境变量指定文件

的位置。

想要学习如何正确的保护文件可以参考the	guidelines	for	securing	an	init.d
service.。

56.1	Unix/Linux服务

432



56.2	Microsoft	Windows服务

在Window上，你可以使用winsw启动Spring	Boot应用。这里有个单独维护的示例

为你演示了怎么一步步为Spring	Boot应用创建Windows服务。

56.2	Microsoft	Windows服务

433

https://github.com/kohsuke/winsw
https://github.com/snicoll-scratches/spring-boot-daemon


57.	接下来阅读什么

打开Cloud	Foundry，Heroku，OpenShift和Boxfuse网站获取更多Paas能提供的特

性信息。这里只提到4个比较流行的Java	PaaS提供商，由于Spring	Boot遵从基于

云的部署原则，所以你也可以自由考虑其他提供商。

下章节将继续讲解Spring	Boot	CLI，你也可以直接跳到build	tool	plugins。

57.	接下来阅读什么

434

http://www.cloudfoundry.com/
https://www.heroku.com/
https://www.openshift.com/
https://boxfuse.com/
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#cli
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#build-tool-plugins


Spring	Boot	CLI
Spring	Boot	CLI是一个命令行工具，如果想使用Spring进行快速开发可以使用它。

它允许你运行Groovy脚本，这意味着你可以使用熟悉的类Java语法，并且没有那么

多的模板代码。你可以通过Spring	Boot	CLI启动新项目，或为它编写命令。

VII.	Spring	Boot	CLI

435



58.	安装CLI
你可以手动安装Spring	Boot	CLI，也可以使用SDKMAN!（SDK管理器）或

Homebrew，MacPorts（如果你是一个OSX用户），具体安装指令参考"Getting
started"的Section	10.2,	“Installing	the	Spring	Boot	CLI”	章节。

58.	安装CLI

436



59.	使用CLI
一旦安装好CLI，你可以输入 	spring	来运行它。如果不使用任何参数运

行 	spring	，将会展现一个简单的帮助界面：

$	spring

usage:	spring	[--help]	[--version]

							<command>	[<args>]

Available	commands	are:

		run	[options]	<files>	[--]	[args]

				Run	a	spring	groovy	script

		...	more	command	help	is	shown	here

你可以使用 	help	获取任何支持命令的详细信息，例如：

$	spring	help	run

spring	run	-	Run	a	spring	groovy	script

usage:	spring	run	[options]	<files>	[--]	[args]

Option																					Description

------																					-----------

--autoconfigure	[Boolean]		Add	autoconfigure	compiler

																													transformations	(default:	true)

--classpath,	-cp											Additional	classpath	entries

-e,	--edit																	Open	the	file	with	the	default	system

																													editor

--no-guess-dependencies				Do	not	attempt	to	guess	dependencies

--no-guess-imports									Do	not	attempt	to	guess	imports

-q,	--quiet																Quiet	logging

-v,	--verbose														Verbose	logging	of	dependency

																													resolution

--watch																				Watch	the	specified	file	for	changes

59.	使用CLI

437



	version	命令提供一个检查你正在使用的Spring	Boot版本的快速方式：

$	spring	version

Spring	CLI	v1.4.1.RELEASE

59.	使用CLI

438



59.1	使用CLI运行应用

你可以使用 	run	命令编译和运行Groovy源代码。Spring	Boot	CLI完全自包含，以

致于你不需要安装任何外部的Groovy。

下面是一个使用Groovy编写的"hello	world"	web应用：

hello.grooy

@RestController

class	WebApplication	{

				@RequestMapping("/")

				String	home()	{

								"Hello	World!"

				}

}

编译和运行应用可以输入：

$	spring	run	hello.groovy

你可以使用 	--	将命令行参数和"spring"命令参数区分开来，例如：

$	spring	run	hello.groovy	--	--server.port=9000

你可以使用 	JAVA_OPTS	环境变量设置JVM命令行参数，例如：

$	JAVA_OPTS=-Xmx1024m	spring	run	hello.groovy

59.1	使用CLI运行应用

439



59.1.1	推断"grab"依赖

标准的Groovy包含一个 	@Grab	注解，它允许你声明对第三方库的依赖。这项有用

的技术允许Groovy以和Maven或Gradle相同的方式下载jars，但不需要使用构建工

具。

Spring	Boot进一步延伸了该技术，它会基于你的代码尝试推导你"grab"哪个库。例

如，由于 	WebApplication	代码上使用了 	@RestController	注

解，"Tomcat"和"Spring	MVC"将被获取（grabbed）。

下面items被用作"grab	hints"：

items Grabs

	JdbcTemplate	, 	NamedParameterJdbcTemplate	, 	DataSource	 JDBC应用

	@EnableJms	 JMS应用

	@EnableCaching	 缓存抽象

	@Test	 JUnit

	@EnableRabbit	 RabbitMQ

	@EnableReactor	 项目重构

extends	 	Specification	 Spock	test

	@EnableBatchProcessing	 Spring	Batch

	@MessageEndpoint	, 	@EnableIntegrationPatterns	 Spring集成

	@EnableDeviceResolver	
Spring
Mobile

	@Controller	, 	@RestController	, 	@EnableWebMvc	
Spring	MVC
+	内嵌
Tomcat

	@EnableWebSecurity	
Spring
Security

	@EnableTransactionManagement	

Spring
Transaction
Management

注	想要理解自定义是如何生效的，可以查看Spring	Boot	CLI源码中的

CompilerAutoConfiguration子类。

59.1	使用CLI运行应用

440

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-cli/src/main/java/org/springframework/boot/cli/compiler/CompilerAutoConfiguration.java


59.1	使用CLI运行应用

441



59.1.2	推断"grab"坐标

Spring	Boot扩展了Groovy标准 	@Grab	注解，使其能够允许你指定一个没

有 	group	或 	version	的依赖，例如 	@Grab('freemarker')	。Spring	Boot使用

默认依赖元数据推断artifact’s的group和version，需要注意的是默认元数据和你使

用的CLI版本有绑定关系－只有在迁移到新版本的CLI时它才会改变，这样你就可以

控制何时改变依赖了，在附录的表格中可以查看默认元数据包含的依赖和它们的版

本。

59.1	使用CLI运行应用

442

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#appendix-dependency-versions


59.1.3	默认import语句

为了帮助你减少Groovy代码量，一些 	import	语句被自动包含进来了。注意上面

的示例中引用 	@Component	， 	@RestController	和 	@RequestMapping	而没有

使用全限定名或 	import	语句。

注：很多Spring注解在不使用 	import	语句的情况下可以正常工作。尝试运行你的

应用，看一下在添加imports之前哪些会失败。

59.1	使用CLI运行应用

443



59.1.4	自动创建main方法

跟等效的Java应用不同，你不需要在Groovy脚本中添加一个 	public	static

void	main(String[]	args)	方法。Spring	Boot会使用你编译后的代码自动创建

一个 	SpringApplication	。

59.1	使用CLI运行应用

444



59.1.5	自定义依赖管理

默认情况下，CLI使用在解析 	@Grab	依赖时 	spring-boot-dependencies	声明的

依赖管理，其他的依赖管理会覆盖默认的依赖管理，并可以通

过 	@DependencyManagementBom	注解进行配置。该注解的值必须是一个或多个

Maven	BOMs的候选（ 	groupId:artifactId:version	）。

例如，以下声明：

@DependencyManagementBom("com.example.custom-bom:1.0.0")

将选择Maven仓库中 	com/example/custom-versions/1.0.0/	下的 	custom-

bom-1.0.0.pom	。

当指定多个BOMs时，它们会以声明次序进行应用，例如：

@DependencyManagementBom(["com.example.custom-bom:1.0.0",

								"com.example.another-bom:1.0.0"])

意味着 	another-bom	的依赖将覆盖 	custom-bom	依赖。

能够使用 	@Grab	的地方，你同样可以使用 	@DependencyManagementBom	。然

而，为了确保依赖管理的一致次序，你在应用中至多使用一

次 	@DependencyManagementBom	。Spring	IO	Platform是一个非常有用的依赖元数

据源(Spring	Boot的超集)，例如：

	@DependencyManagementBom('io.spring.platform:platform-

bom:1.1.2.RELEASE')	。

59.1	使用CLI运行应用

445

http://platform.spring.io/


59.2	测试你的代码

	test	命令允许你编译和运行应用程序的测试用例，常规使用方式如下：

$	spring	test	app.groovy	tests.groovy

Total:	1,	Success:	1,	:	Failures:	0

Passed?	true

在这个示例中， 	test.groovy	包含JUnit	 	@Test	方法或Spock
	Specification	类。所有的普通框架注解和静态方法在不使用 	import	导入的情

况下，仍旧可以使用。

下面是我们使用的 	test.groovy	文件（含有一个JUnit测试）：

class	ApplicationTests	{

				@Test

				void	homeSaysHello()	{

								assertEquals("Hello	World!",	new	WebApplication().home()

)

				}

}

注	如果有多个测试源文件，你可能倾向于将它们放到 	test	目录下。

59.2	测试你的代码

446



59.3	多源文件应用

你可以在所有接收文件输入的命令中使用shell通配符。这允许你轻松处理来自一个

目录下的多个文件，例如：

$	spring	run	*.groovy

如果想将 	test	或 	spec	代码从主应用代码中分离，这项技术就十分有用了：

$	spring	test	app/*.groovy	test/*.groovy

59.3	多源文件应用

447



59.4	应用打包

你可以使用 	jar	命令打包应用程序为一个可执行的jar文件，例如：

$	spring	jar	my-app.jar	*.groovy

最终的jar包括编译应用产生的类和所有依赖，这样你就可以使用 	java	-jar	来执

行它了。该jar文件也包含了来自应用classpath的实体。你可以使用 	--

include	和 	--exclude	添加明确的路径（两者都是用逗号分割，同样都接收值

为'+'和'-'的前缀，'-'意味着它们将从默认设置中移除），默认包含（includes）：

public/**,	resources/**,	static/**,	templates/**,	META-INF/**,	*

默认排除(excludes)：

.*,	repository/**,	build/**,	target/**,	**/*.jar,	**/*.groovy

查看 	spring	help	jar	可以获得更多信息。

59.4	应用打包

448



59.5	初始化新工程

	init	命令允许你使用start.spring.io在不离开shell的情况下创建一个新的项目，例

如：

$	spring	init	--dependencies=web,data-jpa	my-project

Using	service	at	https://start.spring.io

Project	extracted	to	'/Users/developer/example/my-project'

这创建了一个 	my-project	目录，它是一个基于Maven且依赖 	spring-boot-

starter-web	和 	spring-boot-starter-data-jpa	的项目。你可以使用 	--

list	参数列出该服务的能力。

$	spring	init	--list

=======================================

Capabilities	of	https://start.spring.io

=======================================

Available	dependencies:

-----------------------

actuator	-	Actuator:	Production	ready	features	to	help	you	monit

or	and	manage	your	application

...

web	-	Web:	Support	for	full-stack	web	development,	including	Tom

cat	and	spring-webmvc

websocket	-	Websocket:	Support	for	WebSocket	development

ws	-	WS:	Support	for	Spring	Web	Services

Available	project	types:

------------------------

gradle-build	-		Gradle	Config	[format:build,	build:gradle]

gradle-project	-		Gradle	Project	[format:project,	build:gradle]

maven-build	-		Maven	POM	[format:build,	build:maven]

maven-project	-		Maven	Project	[format:project,	build:maven]	(de

fault)

...

59.5	初始化新工程

449

https://start.spring.io/


	init	命令支持很多选项，查看 	help	输出可以获得更多详情。例如，下面的命

令创建一个使用Java8和打包为 	war	的gradle项目：

$	spring	init	--build=gradle	--java-version=1.8	--dependencies=w

ebsocket	--packaging=war	sample-app.zip

Using	service	at	https://start.spring.io

Content	saved	to	'sample-app.zip'

59.5	初始化新工程

450



59.6	使用内嵌shell
Spring	Boot包括完整的BASH和zsh	shells的命令行脚本，如果这两种你都不使用

（可能你是一个Window用户），那你可以使用 	shell	命令启用一个集成shell。

$	spring	shell

Spring	Boot	(v1.4.1.RELEASE)

Hit	TAB	to	complete.	Type	\'help'	and	hit	RETURN	for	help,	and	\

'exit'	to	quit.

从内嵌shell中可以直接运行其他命令：

$	version

Spring	CLI	v1.4.1.RELEASE

内嵌shell支持ANSI彩色输出和tab补全，如果需要运行一个原生命令，你可以使

用 	!	前缀，点击 	ctrl-c	将退出内嵌shell。

59.6	使用内嵌shell

451



59.7	为CLI添加扩展

使用 	install	命令可以为CLI添加扩展，该命令接收一个或多个格式

为 	group:artifact:version	的artifact坐标集，例如：

$	spring	install	com.example:spring-boot-cli-extension:1.0.0.REL

EASE

除安装你提供坐标的artifacts标识外，该artifacts的所有依赖也会被安装。

使用 	uninstall	可以卸载一个依赖，和 	install	命令一样，它也接收一个或多

个格式为 	group:artifact:version	的artifact坐标集，例如：

$	spring	uninstall	com.example:spring-boot-cli-extension:1.0.0.R

ELEASE

它会通过你提供的坐标卸载相应的artifacts标识及它们的依赖。

为了卸载所有附加依赖，你可以使用 	--all	选项，例如：

$	spring	uninstall	--all

59.7	为CLI添加扩展

452



60.	使用Groovy	beans	DSL开发应用

Spring框架4.0版本对 	beans{}	"DSL"（借鉴自Grails）提供原生支持，你可以使用

相同格式在Groovy应用程序脚本中嵌入bean定义。有时这是引入外部特性的很好

方式，比如中间件声明，例如：

@Configuration

class	Application	implements	CommandLineRunner	{

				@Autowired

				SharedService	service

				@Override

				void	run(String...	args)	{

								println	service.message

				}

}

import	my.company.SharedService

beans	{

				service(SharedService)	{

								message	=	"Hello	World"

				}

}

你可以使用 	beans{}	混合位于相同文件的类声明，只要它们都处于顶级，或如果

喜欢的话，你可以将beans	DSL放到一个单独的文件中。

60.	使用Groovy	beans	DSL开发应用

453

http://grails.org/


61.	使用settings.xml配置CLI
Spring	Boot	CLI使用Maven的依赖解析引擎Aether来解析依赖，它充分利用发现

的 	~/.m2/settings.xml		Maven设置去配置Aether。

CLI支持以下配置：

Offline
Mirrors
Servers
Proxies
Profiles

Activation

Repositories

Active	profiles

更多信息可参考Maven设置文档。

61.	使用settings.xml配置CLI

454

https://maven.apache.org/settings.html


62.	接下来阅读什么

GitHub仓库有一些groovy脚本示例可用于尝试Spring	Boot	CLI，源码里也有丰富的

文档说明。

如果发现已触及CLI工具的限制，你可以将应用完全转换为Gradle或Maven构建的

groovy工程。下一章节将覆盖Spring	Boot的构建工具，这些工具可以跟Gradle或
Maven一起使用。

62.	接下来阅读什么

455

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-cli/samples
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-cli/src/main/java/org/springframework/boot/cli


构建工具插件

Spring	Boot为Maven和Gradle提供构建工具插件，该插件提供各种各样的特性，包

括打包可执行jars。本章节提供关于插件的更多详情及用于扩展一个不支持的构建

系统所需的帮助信息。如果你是刚刚开始，那可能需要先阅读Part	III,	“Using
Spring	Boot”章节的“Chapter	13,	Build	systems”。

VIII.	构建工具插件

456



63.	Spring	Boot	Maven插件

Spring	Boot	Maven插件为Maven提供Spring	Boot支持，它允许你打包可执行jar或
war存档，然后就地运行应用。为了使用它，你需要使用Maven	3.2（或更高版

本）。

注	参考Spring	Boot	Maven	Plugin	Site可以获取全部的插件文档。

63.	Spring	Boot	Maven插件

457

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/maven-plugin/
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/maven-plugin/


63.1	包含该插件

想要使用Spring	Boot	Maven插件只需简单地在你的pom.xml的 	plugins	部分包含

相应的XML：

<?xml	version="1.0"	encoding="UTF-8"?>

<project	xmlns="http://maven.apache.org/POM/4.0.0"	xmlns:xsi="ht

tp://www.w3.org/2001/XMLSchema-instance"

				xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	http:/

/maven.apache.org/xsd/maven-4.0.0.xsd">

				<modelVersion>4.0.0</modelVersion>

				<!--	...	-->

				<build>

								<plugins>

												<plugin>

																<groupId>org.springframework.boot</groupId>

																<artifactId>spring-boot-maven-plugin</artifactId>

																<version>1.4.1.RELEASE</version>

																<executions>

																				<execution>

																								<goals>

																												<goal>repackage</goal>

																								</goals>

																				</execution>

																</executions>

												</plugin>

								</plugins>

				</build>

</project>

该配置会在Maven生命周期的 	package	阶段重新打包一个jar或war。下面的示例

展示在 	target	目录下既有重新打包后的jar，也有原始的jar：

63.1	包含该插件

458



$	mvn	package

$	ls	target/*.jar

target/myproject-1.0.0.jar	target/myproject-1.0.0.jar.original

如果不包含像上面那样的 	<execution/>	，你可以自己运行该插件（但只有在

package目标也被使用的情况），例如：

$	mvn	package	spring-boot:repackage

$	ls	target/*.jar

target/myproject-1.0.0.jar	target/myproject-1.0.0.jar.original

如果使用一个里程碑或快照版本，你还需要添加正确的 	pluginRepository	元

素：

<pluginRepositories>

				<pluginRepository>

								<id>spring-snapshots</id>

								<url>http://repo.spring.io/snapshot</url>

				</pluginRepository>

				<pluginRepository>

								<id>spring-milestones</id>

								<url>http://repo.spring.io/milestone</url>

				</pluginRepository>

</pluginRepositories>

63.1	包含该插件

459



63.2	打包可执行jar和war文件

一旦 	spring-boot-maven-plugin	被包含到你的 	pom.xml	中，Spring	Boot就会

自动尝试使用 	spring-boot:repackage	目标重写存档以使它们能够执行。为了构

建一个jar或war，你应该使用常规的 	packaging	元素配置你的项目：

<?xml	version="1.0"	encoding="UTF-8"?>

<project	xmlns="http://maven.apache.org/POM/4.0.0"	xmlns:xsi="ht

tp://www.w3.org/2001/XMLSchema-instance"

				xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	http:/

/maven.apache.org/xsd/maven-4.0.0.xsd">

				<!--	...	-->

				<packaging>jar</packaging>

				<!--	...	-->

</project>

生成的存档在 	package	阶段会被Spring	Boot增强。你想启动的main类即可以通过

指定一个配置选项，也可以通过为manifest添加一个 	Main-Class	属性这种常规的

方式实现。如果你没有指定一个main类，该插件会搜索带有 	public	static	void

main(String[]	args)	方法的类。

为了构建和运行一个项目的artifact，你可以输入以下命令：

$	mvn	package

$	java	-jar	target/mymodule-0.0.1-SNAPSHOT.jar

为了构建一个即可执行，又能部署到外部容器的war文件，你需要标记内嵌容器依

赖为"provided"，例如：

63.2	打包可执行jar和war文件

460



<?xml	version="1.0"	encoding="UTF-8"?>

<project	xmlns="http://maven.apache.org/POM/4.0.0"	xmlns:xsi="ht

tp://www.w3.org/2001/XMLSchema-instance"

				xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	http:/

/maven.apache.org/xsd/maven-4.0.0.xsd">

				<!--	...	-->

				<packaging>war</packaging>

				<!--	...	-->

				<dependencies>

								<dependency>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-starter-web</artifactId>

								</dependency>

								<dependency>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-starter-tomcat</artifactId>

												<scope>provided</scope>

								</dependency>

								<!--	...	-->

				</dependencies>

</project>

注	具体参考“Section	81.1,	“Create	a	deployable	war	file””	章节。

高级配置选项和示例可在插件信息页面获取。

63.2	打包可执行jar和war文件

461

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/maven-plugin/


64.	Spring	Boot	Gradle插件

Spring	Boot	Gradle插件为Gradle提供Spring	Boot支持，它允许你打包可执行jar或
war存档，运行Spring	Boot应用，使用 	spring-boot-dependencies	提供的依赖

管理。

64.	Spring	Boot	Gradle插件

462



64.1	包含该插件

想要使用Spring	Boot	Gradle插件，你只需简单的包含一个 	buildscript	依赖，

并应用 	spring-boot	插件：

buildscript	{

				dependencies	{

								classpath("org.springframework.boot:spring-boot-gradle-p

lugin:1.4.1.RELEASE")

				}

}

apply	plugin:	'spring-boot'

如果使用的是一个里程碑或快照版本，你需要添加相应的 	repositories	引用：

buildscript	{

				repositories	{

								maven.url	"http://repo.spring.io/snapshot"

								maven.url	"http://repo.spring.io/milestone"

				}

				//	...

}

64.1	包含该插件

463



64.2	Gradle依赖管理

	spring-boot	插件自动应用Dependency	Management	Plugin，并配置它导

入 	spring-boot-starter-parent		bom。这提供了跟Maven用户喜欢的相似依赖

管理体验，例如，如果声明的依赖在bom中被管理的话，你就可以省略版本。为了

充分使用该功能，只需要想通常那样声明依赖，但将版本号设置为空：

dependencies	{

				compile("org.springframework.boot:spring-boot-starter-web")

				compile("org.thymeleaf:thymeleaf-spring4")

				compile("nz.net.ultraq.thymeleaf:thymeleaf-layout-dialect")

}

注	你声明的 	spring-boot		Gradle插件的版本决定了 	spring-boot-starter-

parent		bom导入的版本（确保可以重复构建）。你最好将 	spring-boot		gradle
插件版本跟Spring	Boot版本保持一致，版本详细信息可以在附录中查看。

	spring-boot	插件对于没有指定版本的依赖只会提供一个版本。如果不想使用插

件提供的版本，你可以像平常那样在声明依赖的时候指定版本。例如：

dependencies	{

				compile("org.thymeleaf:thymeleaf-spring4:2.1.1.RELEASE")

}

64.2	Gradle依赖管理

464

https://github.com/spring-gradle-plugins/dependency-management-plugin/


64.3	打包可执行jar和war文件

一旦 	spring-boot	插件被应用到你的项目，它将使用 	bootRepackage	任务自动

尝试重写存档以使它们能够执行。为了构建一个jar或war，你需要按通常的方式配

置项目。

你想启动的main类既可以通过一个配置选项指定，也可以通过向manifest添加一

个 	Main-Class	属性。如果你没有指定main类，该插件会搜索带有 	public

static	void	main(String[]	args)	方法的类。

为了构建和运行一个项目artifact，你可以输入以下内容：

$	gradle	build

$	java	-jar	build/libs/mymodule-0.0.1-SNAPSHOT.jar

为了构建一个即能执行也可以部署到外部容器的war包，你需要将内嵌容器依赖标

记为 	providedRuntime	，比如：

64.3	打包可执行jar和war文件

465



...

apply	plugin:	'war'

war	{

				baseName	=	'myapp'

				version	=		'0.5.0'

}

repositories	{

				jcenter()

				maven	{	url	"http://repo.spring.io/libs-snapshot"	}

}

configurations	{

				providedRuntime

}

dependencies	{

				compile("org.springframework.boot:spring-boot-starter-web")

				providedRuntime("org.springframework.boot:spring-boot-starte

r-tomcat")

				...

}

注	具体参考“Section	81.1,	“Create	a	deployable	war	file””。

64.3	打包可执行jar和war文件

466



64.4	就地（in-place）运行项目

为了在不先构建jar的情况下运行项目，你可以使用 	bootRun	任务：

$	gradle	bootRun

如果项目中添加了devtools，它将自动监控你的应用变动。此外，你可以运行应

用，这样静态classpath资源（比如，默认位于 	src/main/resources	下）在应用

运行期间将能够重新加载，这在开发期间是非常有用的：

bootRun	{

				addResources	=	true

}

让静态classpath资源可加载意味着 	bootRun	不使用 	processResources	任务的

输出，例如，当使用 	bootRun	调用时，你的应用将以未经处理的形式使用资源。

64.4	就地（in-place）运行项目

467

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#using-boot-devtools


64.5	Spring	Boot插件配置

Gradle插件自动扩展你的构建脚本DSL，它为脚本添加一个 	springBoot	元素以此

作为Boot插件的全局配置。你可以像配置其他Gradle扩展那样为 	springBoot	设

置相应的属性（下面有配置选项列表）。

springBoot	{

				backupSource	=	false

}

64.5	Spring	Boot插件配置

468



64.6	Repackage配置

该插件添加了一个 	bootRepackage	任务，你可以直接配置它，比如：

bootRepackage	{

				mainClass	=	'demo.Application'

}

下面是可用的配置选项：

64.6	Repackage配置

469



名称 描述

	enabled	

布尔值，用于控制repackager的开关
（如果你只想要Boot的其他特性而不
是这个，那它就派上用场了）

	mainClass	

要运行的main类。如果没有指定，则
使用project属性 	mainClassName	。
如果该应用插件没有使用或没有定
义 	mainClassName	，则搜索存档以
寻找一个合适的类。"合适"意味着一个
唯一的，具有良好格式的 	main()	方
法的类（如果找到多个则构建会失
败）。你也可以通过 	run	任务
（ 	main	属性）指定 	main	类的名
称，和/或
将"startScripts"（ 	mainClassName	属
性）作为"springBoot"配置的替代。

	classifier	

添加到存档的一个文件名字段（在扩
展之前），这样最初保存的存档仍旧
存放在最初的位置。在存档被重新打
包（repackage）的情况下，该属性默
认为 	null	。默认值适用于多数情
况，但如果你想在另一个项目中使用
原jar作为依赖，最好使用一个扩展来
定义该可执行jar

	withJarTask	
Jar任务的名称或值，用于定位要被
repackage的存档

	customConfiguration	

自定义配置的名称，用于填充内嵌的
lib目录（不指定该属性，你将获取所
有编译和运行时依赖）

	executable	
布尔值标识，表示jar文件在类Unix系
统上是否完整可执行，默认为 	false	

	embeddedLaunchScript	

如果jar是完整可执行的，该内嵌启动
脚本将添加到jar。如果没有指定，将
使用Spring	Boot默认的脚本

	embeddedLaunchScriptProperties	

启动脚本暴露的其他属性，默认脚本
支持 	mode	属性，值可以
是 	auto	， 	service	或 	run	

	excludeDevtools	

布尔值标识，表示devtools	jar是否应
该从重新打包的存档中排除出去，默
认为 	false	

64.6	Repackage配置

470



64.6	Repackage配置

471



64.7	使用Gradle自定义配置进行Repackage
有时候不打包解析自 	compile	， 	runtime	和 	provided	作用域的默认依赖可能

更合适些。如果创建的可执行jar被原样运行，你需要将所有的依赖内嵌进该jar中；

然而，如果目的是explode一个jar文件，并手动运行main类，你可能

在 	CLASSPATH	下已经有一些可用的库了。在这种情况下，你可以使用不同的依赖

集重新打包（repackage）你的jar。

使用自定义的配置将自动禁用来自 	compile	， 	runtime	和 	provided	作用域的

依赖解析。自定义配置即可以定义为全局的（处于 	springBoot	部分内），也可

以定义为任务级的。

task	clientJar(type:	Jar)	{

				appendix	=	'client'

				from	sourceSets.main.output

				exclude('**/*Something*')

}

task	clientBoot(type:	BootRepackage,	dependsOn:	clientJar)	{

				withJarTask	=	clientJar

				customConfiguration	=	"mycustomconfiguration"

}

在以上示例中，我们创建了一个新的 	clientJar		Jar任务从你编译后的源中打包

一个自定义文件集。然后我们创建一个新的 	clientBoot		BootRepackage任务，

并让它使用 	clientJar	任务和 	mycustomconfiguration	。

configurations	{

				mycustomconfiguration.exclude	group:	'log4j'

}

dependencies	{

				mycustomconfiguration	configurations.runtime

}

64.7	使用Gradle自定义配置进行Repackage

472



在 	BootRepackage	中引用的配置是一个正常的Gradle配置。在以上示例中，我们

创建了一个新的名叫 	mycustomconfiguration	的配置，指示它来自一

个 	runtime	，并排除对 	log4j	的依赖。如果 	clientBoot	任务被执行，重新打

包的jar将含有所有来自 	runtime	作用域的依赖，除了 	log4j		jars。

64.7	使用Gradle自定义配置进行Repackage

473

http://www.gradle.org/docs/current/dsl/org.gradle.api.artifacts.Configuration.html


64.7.1	配置选项

可用的配置选项如下：

名称 描述

	mainClass	 可执行jar运行的main类

	providedConfiguration	
provided配置的名称（默认
为 	providedRuntime	）

	backupSource	
在重新打包之前，原先的存档是否备份（默认
为 	true	）

	customConfiguration	 自定义配置的名称

	layout	

存档类型，对应于内部依赖是如何制定的（默认
基于存档类型进行推测），具体查看available
layouts

	requiresUnpack	

一个依赖列表（格式为"groupId:artifactId"，为
了运行，它们需要从fat	jars中解压出来。）所有
节点被打包进胖jar，但运行的时候它们将被自
动解压

64.7	使用Gradle自定义配置进行Repackage

474

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#build-tool-plugins-gradle-configuration-layouts


64.7.2	可用的layouts
	layout	属性用于配置存档格式及启动加载器是否包含，以下为可用的layouts：

名称 描述
可
执
行

	JAR	 常规的可执行JAR	layout 是

	WAR	

可执行WAR	layout， 	provided	依赖放置到 	WEB-

INF/lib-provided	，以免 	war	部署到servlet容器时造成
冲突

是

	ZIP	（别
名 	DIR	）

跟 	JAR		layout类似，使用PropertiesLauncher 是

	MODULE	
捆绑(Bundle)依赖（排除那些 	provided	作用域的依赖）和
项目资源

否

	NONE	 捆绑(Bundle)所有依赖和项目资源 否

64.7	使用Gradle自定义配置进行Repackage

475

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#executable-jar-jar-file-structure
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#executable-jar-war-file-structure
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#executable-jar-property-launcher-features


64.8	理解Gradle插件是如何工作的

当 	spring-boot	应用到你的Gradle项目，一个默认的名叫 	bootRepackage	的任

务被自动创建。 	bootRepackage	任务依赖于Gradle	 	assemble	任务，当执行

时，它会尝试找到所有限定符为空的jar	artifacts（也就是说，tests和sources	jars被
自动跳过）。

由于 	bootRepackage	会查找'所有'创建的jar	artifacts，Gradle任务执行的顺序就非

常重要了。多数项目只创建一个单一的jar文件，所以通常这不是一个问题。然而，

如果你正打算创建一个更复杂的，使用自定义 	jar	和 	BootRepackage	任务的项

目setup，有几个方面需要考虑。

如果'仅仅'从项目创建自定义jar文件，你可以简单地禁用默认

的 	jar	和 	bootRepackage	任务：

jar.enabled	=	false

bootRepackage.enabled	=	false

另一个选项是指示默认的 	bootRepackage	任务只能使用一个默认的 	jar	任务：

bootRepackage.withJarTask	=	jar

如果你有一个默认的项目setup，在该项目中，主（main）jar文件被创建和重新打

包。并且，你仍旧想创建额外的自定义jars，你可以将自定义的repackage任务结合

起来，然后使用 	dependsOn	，这样 	bootJars	任务就会在默认

的 	bootRepackage	任务执行以后运行：

task	bootJars

bootJars.dependsOn	=	[clientBoot1,clientBoot2,clientBoot3]

build.dependsOn(bootJars)

上面所有方面经常用于避免一个已经创建的boot	jar又被重新打包的情况。重新打包

一个存在的boot	jar不是什么大问题，但你可能会发现它包含不必要的依赖。

64.8	理解Gradle插件是如何工作的

476



64.8	理解Gradle插件是如何工作的

477



64.9	使用Gradle将artifacts发布到Maven仓库

如果声明依赖但没有指定版本，且想要将artifacts发布到一个Maven仓库，那你需

要使用详细的Spring	Boot依赖管理来配置Maven发布。通过配置它发布继承

自 	spring-boot-starter-parent	的poms或引入来自 	spring-boot-

dependencies	的依赖管理可以实现该需求。这种配置的具体细节取决于你如何使

用Gradle及如何发布该artifacts。

64.9	使用Gradle将artifacts发布到Maven仓库

478



64.9.1	自定义Gradle，用于产生一个继承依赖管理的
pom
下面示例展示了如何配置Gradle去产生一个继承自 	spring-boot-starter-

parent	的pom，更多信息请参考Gradle用户指南。

uploadArchives	{

				repositories	{

								mavenDeployer	{

												pom	{

																project	{

																				parent	{

																								groupId	"org.springframework.boot"

																								artifactId	"spring-boot-starter-parent"

																								version	"1.4.1.RELEASE"

																				}

																}

												}

								}

				}

}

64.9	使用Gradle将artifacts发布到Maven仓库

479

http://gradle.org/docs/current/userguide/userguide.html


64.9.2	自定义Gradle，用于产生一个导入依赖管理的
pom
以下示例展示了如何配置Gradle产生一个导入 	spring-boot-dependencies	提供

的依赖管理的pom，更多信息请参考Gradle用户指南。

uploadArchives	{

				repositories	{

								mavenDeployer	{

												pom	{

																project	{

																				dependencyManagement	{

																								dependencies	{

																												dependency	{

																																groupId	"org.springframework.boo

t"

																																artifactId	"spring-boot-dependen

cies"

																																version	"1.4.1.RELEASE"

																																type	"pom"

																																scope	"import"

																												}

																								}

																				}

																}

												}

								}

				}

}

64.9	使用Gradle将artifacts发布到Maven仓库

480

http://gradle.org/docs/current/userguide/userguide.html


65.	Spring	Boot	AntLib模块

Spring	Boot	AntLib模块为Apache	Ant提供基本的Spring	Boot支持，你可以使用该

模块创建可执行的jars。在 	build.xml	添加额外的 	spring-boot	命名空间就可

以使用该模块了：

<project	xmlns:ivy="antlib:org.apache.ivy.ant"

				xmlns:spring-boot="antlib:org.springframework.boot.ant"

				name="myapp"	default="build">

				...

</project>

你需要记得在启动Ant时使用 	-lib	选项，例如：

$	ant	-lib	<folder	containing	spring-boot-antlib-1.4.1.RELEASE.j

ar>

注	详细示例可参考using	Apache	Ant	with	 	spring-boot-antlib		。

65.	Spring	Boot	AntLib模块

481

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#using-boot-ant


65.1.	Spring	Boot	Ant任务

一旦声明 	spring-boot-antlib	命名空间，以下任务就可用了。

65.	Spring	Boot	AntLib模块

482



65.1.1.	spring-boot:exejar
	exejar	任务可用于创建Spring	Boot可执行jar，该任务支持以下属性：

属性 描述 是否必须

	destfile	
将要创建的目的jar
文件

是

	classes	
Java类文件的根目
录

是

	start-

class	
运行的main类 否（默认为找到的第一个声明 	main	方

法的类）

以下元素可以跟任务一块使用：

元素 描述

	resources	
一个或多个Resource	Collections，描述将添加到创建的jar文
件中的资源集合

	lib	
一个或多个Resource	Collections，表示需要添加进jar库的集
合，组成了应用运行时的classpath依赖

65.	Spring	Boot	AntLib模块

483

http://ant.apache.org/manual/Types/resources.html#collection
http://ant.apache.org/manual/Types/resources.html#collection


65.1.2.	示例

指定start-class

<spring-boot:exejar	destfile="target/my-application.jar"

								classes="target/classes"	start-class="com.foo.MyApplicat

ion">

				<resources>

								<fileset	dir="src/main/resources"	/>

				</resources>

				<lib>

								<fileset	dir="lib"	/>

				</lib>

</spring-boot:exejar>

探测start-class

<exejar	destfile="target/my-application.jar"	classes="target/cla

sses">

				<lib>

								<fileset	dir="lib"	/>

				</lib>

</exejar>

65.	Spring	Boot	AntLib模块

484



65.2.	spring-boot:findmainclass
	findmainclass	任务是 	exejar	内部用于定位声明 	main	方法类的，如果构建

需要，你可以直接使用该任务，支持属性如下：

属性 描述 是否必需

	classesroot	 Java类文件的根目录 是（除非指定 	mainclass	）

	mainclass	
可用于缩减 	main	类的
查找

否

	property	
Ant属性必须使用result
设值

否（没有指定则result会记录日
志中）

65.	Spring	Boot	AntLib模块

485



65.2.1.	示例

查找并记录

<findmainclass	classesroot="target/classes"	/>

查找并设置

<findmainclass	classesroot="target/classes"	property="main-class"

	/>

覆盖并设置

<findmainclass	mainclass="com.foo.MainClass"	property="main-clas

s"	/>

65.	Spring	Boot	AntLib模块

486



66.	对其他构建系统的支持

如果想使用除了Maven和Gradle之外的构建工具，你可能需要开发自己的插件。可

执行jars需要遵循一个特定格式，并且一些实体需要以不压缩的方式写入（详情查

看附录中的可执行jar格式章节）。

Spring	Boot	Maven和Gradle插件在实际生成jars的过程中会使用 	spring-boot-

loader-tools	，如果需要，你也可以自由地使用该library。

66.	对其他构建系统的支持

487

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#executable-jar


66.1.	重新打包存档

使用 	org.springframework.boot.loader.tools.Repackager	可以将一个存在

的存档重新打包，这样它就变成一个自包含的可执行存档。 	Repackager	类需要

提供单一的构造器参数，该参数指向一个存在的jar或war包。你可以使用两个可用

的 	repackage()	方法中的一个来替换原始的文件或写入新的目标，在repackager
运行前还可以指定各种配置。

66.1.	重新打包存档

488



66.2.	内嵌库

当重新打包一个存档时，你可以使

用 	org.springframework.boot.loader.tools.Libraries	接口来包含对依赖文

件的引用。在这里我们不提供任何该 	Libraries	接口的具体实现，因为它们通常

跟具体的构建系统相关。

如果存档已经包含libraries，你可以使用 	Libraries.NONE	。

66.2.	内嵌库

489



66.3.	查找main类
如果你没有使用 	Repackager.setMainClass()	指定一个main类，该repackager
将使用ASM去读取class文件，然后尝试查找一个合适的，具有 	public	static

void	main(String[]	args)	方法的类。如果发现多个候选者，将会抛出异常。

66.3.	查找main类

490

http://asm.ow2.org/


66.4.	repackage实现示例

这是一个典型的repackage示例：

Repackager	repackager	=	new	Repackager(sourceJarFile);

repackager.setBackupSource(false);

repackager.repackage(new	Libraries()	{

												@Override

												public	void	doWithLibraries(LibraryCallback	callback)

	throws	IOException	{

																//	Build	system	specific	implementation,	callbac

k	for	each	dependency

																//	callback.library(new	Library(nestedFile,	Libr

aryScope.COMPILE));

												}

								});

66.4.	repackage实现示例

491



67.	接下来阅读什么

如果对构建工具插件如何工作感兴趣，你可以查看GitHub上的spring-boot-tools模
块，附加中有详细的可执行jar格式。

如果有特定构建相关的问题，可以查看how-to指南。

67.	接下来阅读什么

492

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-tools
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-tools


How-to指南

本章节将回答一些常见的"我该怎么做"类型的问题，这些问题在我们使用Spring
Boot时经常遇到。这虽然不是一个详尽的列表，但它覆盖了很多方面。

如果遇到一个特殊的我们没有覆盖的问题，你可以查看stackoverflow.com，看是否

已经有人给出了答案；这也是一个很好的提新问题的地方（请使用 	spring-

boot	标签）。

我们也乐意扩展本章节；如果想添加一个'how-to'，你可以给我们发一个pull请求。

IX.	How-to指南

493

http://stackoverflow.com/tags/spring-boot
http://github.com/spring-projects/spring-boot/tree/master


68.	Spring	Boot应用

68.	Spring	Boot应用

494



68.1	创建自己的FailureAnalyzer
FailureAnalyzer是拦截启动时的异常并将它转换为可读消息的很好方式，Spring
Boot为应用上下文相关异常，	JSR-303校验等提供分析器，实际上创建你自己的分

析器也相当简单。

	AbstractFailureAnalyzer	是 	FailureAnalyzer	的一个方便扩展，根据指定类

型的异常是否出现来进行处理。你可以继承它，这样就可以处理实际出现的异常。

如果出于某些原因，不能处理该异常，那就返回 	null	让其他实现处理。

	FailureAnalyzer	的实现需要注册到 	META-INF/spring.factories	，以下注

册了 	ProjectConstraintViolationFailureAnalyzer	：

org.springframework.boot.diagnostics.FailureAnalyzer=\

com.example.ProjectConstraintViolationFailureAnalyzer

68.1	创建自己的FailureAnalyzer

495

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/api/org/springframework/boot/diagnostics/FailureAnalyzer.html


68.2	解决自动配置问题

Spring	Boot自动配置总是尝试尽最大努力去做正确的事，但有时候会失败并且很难

说出失败原因。

在每个Spring	Boot	 	ApplicationContext	中都存在一个相当有用

的 	ConditionEvaluationReport	。如果开启 	DEBUG	日志输出，你将会看到它。

如果你使用 	spring-boot-actuator	，则会有一个 	autoconfig	的端点，它将以

JSON形式渲染该报告。你还可以使用它调试应用程序，并能查看Spring	Boot运行

时都添加了哪些特性（及哪些没添加）。

通过查看源码和javadoc可以获取更多问题的答案，以下是一些经验：

查找名为 	*AutoConfiguration	的类并阅读源码，特别

是 	@Conditional*	注解，这可以帮你找出它们启用哪些特性及何时启用。

将 	--debug	添加到命令行或添加系统属性 	-Ddebug	可以在控制台查看日

志，该日志会记录你的应用中所有自动配置的决策。在运行Actuator的app中，

通过查看 	autoconfig	端点（ 	/autoconfig	或等效的JMX）可以获取相同信

息。

查找 	@ConfigurationProperties	的类（比如ServerProperties）并看下有哪

些可用的外部配置选项。 	@ConfigurationProperties	类有一个用于充当外

部配置前缀的 	name	属性，因

此 	ServerProperties	的 	prefix="server"	，它的配置属性

有 	server.port	， 	server.address	等。在运行Actuator的应用中可以查

看 	configprops	端点。

查看 	RelaxedPropertyResolver	明确地将配置从 	Environment	暴露出去，

它经常会使用前缀。

查看 	@Value	注解，它直接绑定到 	Environment	。相

比 	RelaxedPropertyResolver	，这种方式稍微缺乏灵活性，但它也允许松散

的绑定，特别是OS环境变量（所

以 	CAPITALS_AND_UNDERSCORES	是 	period.separated	的同义词）。

查看 	@ConditionalOnExpression	注解，它根据SpEL表达式的结果来开启或

关闭特性，通常使用解析自 	Environment	的占位符进行计算。

68.2	解决自动配置问题

496

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java


68.3	启动前自定义Environment或
ApplicationContext
每个 	SpringApplication	都

有 	ApplicationListeners	和 	ApplicationContextInitializers	，用于自定

义上下文（context）或环境(environment)。Spring	Boot从 	META-

INF/spring.factories	下加载很多这样的内部使用的自定义，有很多方法可以注

册其他的自定义：

以编程方式为每个应用注册自定义，通过在 	SpringApplication	运行前调用

它的 	addListeners	和 	addInitializers	方法来实现。

以声明方式为每个应用注册自定义，通过设

置 	context.initializer.classes	或 	context.listener.classes	来实

现。

以声明方式为所有应用注册自定义，通过添加一个 	META-

INF/spring.factories	并打包成一个jar文件（该应用将它作为一个库）来实

现。

	SpringApplication	会给监听器（即使是在上下文被创建之前就存在的）发送一

些特定的 	ApplicationEvents	，然后也会注册监听 	ApplicationContext	发布

的事件的监听器，查看Spring	Boot特性章节中的Section	23.5,	“Application	events
and	listeners”	可以获取完整列表。

在应用上下文刷新前使用 	EnvironmentPostProcessor	自定义 	Environment	是

可能的，每个实现都需要注册到 	META-INF/spring.factories	：

org.springframework.boot.env.EnvironmentPostProcessor=com.exampl

e.YourEnvironmentPostProcessor

68.3	启动前自定义Environment或ApplicationContext

497



68.5	创建no-web应用

不是所有的Spring应用都必须是web应用（或web服务）。如果你想在 	main	方法

中执行一些代码，但需要启动一个Spring应用去设置需要的底层设施，那使用

Spring	Boot的 	SpringApplication	特性可以很容易实

现。 	SpringApplication	会根据它是否需要一个web应用来改变它

的 	ApplicationContext	类，首先你需要做的是去掉servlet	API依赖，如果不能

这样做（比如基于相同的代码运行两个应用），那你可以明确地调

用 	SpringApplication.setWebEnvironment(false)	或设

置 	applicationContextClass	属性（通过Java	API或使用外部配置）。你想运行

的，作为业务逻辑的应用代码可以实现为一个 	CommandLineRunner	，并将上下文

降级为一个 	@Bean	定义。

68.5	创建no-web应用

498



69.1.	运行时暴露属性

相对于在项目构建配置中硬编码某些配置，你可以使用已存在的构建配置自动暴露

它们，Maven和Gradle都支持。

69.1.	运行时暴露属性

499



69.1.1.	使用Maven自动暴露属性

你可以使用Maven的资源过滤（resource	filter）自动暴露来自Maven项目的属性，

如果使用 	spring-boot-starter-parent	，你可以通过 	@..@	占位符引用Maven
项目的属性，例如：

app.encoding=@project.build.sourceEncoding@

app.java.version=@java.version@

注	如果启用 	addResources	标识， 	spring-boot:run	可以

将 	src/main/resources	直接添加到classpath（出于热加载目的），这就绕过了

资源过滤和本特性。你可以使用 	exec:java	目标进行替代，或自定义该插件的配

置，具体查看插件使用页面。

如果不使用starter	parent，你需要将以下片段添加到 	pom.xml	中（ 	<build/>	元

素内）：

<resources>

				<resource>

								<directory>src/main/resources</directory>

								<filtering>true</filtering>

				</resource>

</resources>

和（ 	<plugins/>	元素内）：

69.1.	运行时暴露属性

500

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/maven-plugin/usage.html


<plugin>

				<groupId>org.apache.maven.plugins</groupId>

				<artifactId>maven-resources-plugin</artifactId>

				<version>2.7</version>

				<configuration>

								<delimiters>

												<delimiter>@</delimiter>

								</delimiters>

								<useDefaultDelimiters>false</useDefaultDelimiters>

				</configuration>

</plugin>

注	如果你在配置中使用标准的Spring占位符（比如 	${foo}	）且没有

将 	useDefaultDelimiters	属性设置为 	false	，那构建时这些属性将被暴露出

去。

69.1.	运行时暴露属性

501



69.1.2.	使用Gradle自动暴露属性

你可以通过配置Java插件的 	processResources	任务自动暴露来自Gradle项目的

属性：

processResources	{

				expand(project.properties)

}

然后你可以通过占位符引用Gradle项目的属性：

app.name=${name}

app.description=${description}

注	Gradle的 	expand	方法使用Groovy的 	SimpleTemplateEngine	转换 	${..}	占

位符， 	${..}	这种格式跟Spring自身的属性占位符机制冲突，想要自动暴露

Spring属性占位符，你需要将其进行编码，比如 	\${..}	。

69.1.	运行时暴露属性

502



69.2.	外部化SpringApplication配置

SpringApplication已经被属性化（主要是setters），所以你可以在创建应用时使用

它的Java	API修改其行为，或者使用以 	spring.main.*	为key的属性来外部化这

些配置。比如，在 	application.properties	中可能会有以下内容：

spring.main.web-environment=false

spring.main.banner-mode=off

这样，Spring	Boot在启动时将不会显示banner，并且该应用也不是一个web应用。

注	以上示例也展示在属性名中使用下划线（ 	_	）和中划线（ 	-	）的灵活绑定。

外部配置定义的属性会覆盖创建 	ApplicationContext	时通过Java	API指定的

值，让我们看如下应用：

new	SpringApplicationBuilder()

				.bannerMode(Banner.Mode.OFF)

				.sources(demo.MyApp.class)

				.run(args);

并使用以下配置：

spring.main.sources=com.acme.Config,com.acme.ExtraConfig

spring.main.banner-mode=console

实际的应用将显示banner（被配置覆盖），并为 	ApplicationContext	指定3个
sources，依次

为： 	demo.MyApp	， 	com.acme.Config	， 	com.acme.ExtraConfig	。

69.2.	外部化SpringApplication配置

503



69.3	改变应用程序外部配置文件的位置

默认情况下，来自不同源的属性以一个定义好的顺序添加到Spring
的 	Environment	中（精确顺序可查看'Sprin	Boot特性'章节的Chapter	24,
Externalized	Configuration）。

为应用程序源添加 	@PropertySource	注解是一种很好的添加和修改源顺序的方

法。传递给 	SpringApplication	静态便利设施（convenience）方法的类和使

用 	setSources()	添加的类都会被检查，以查看它们是否

有 	@PropertySources	，如果有，这些属性会被尽可能早的添加

到 	Environment	里，以确保 	ApplicationContext	生命周期的所有阶段都能使

用。以这种方式添加的属性优先级低于任何使用默认位置（比

如 	application.properties	）添加的属性，系统属性，环境变量或命令行参

数。

你也可以提供系统属性（或环境变量）来改变该行为：

	spring.config.name	（ 	SPRING_CONFIG_NAME	）是根文件名，默认

为 	application	。

	spring.config.location	（ 	SPRING_CONFIG_LOCATION	）是要加载的文

件（例如，一个classpath资源或URL）。Spring	Boot为该文档设置一个单独

的 	Environment	属性，它可以被系统属性，环境变量或命令行参数覆盖。

不管你在environment设置什么，Spring	Boot都将加载上面讨论过

的 	application.properties	。如果使用YAML，那具有 	.yml	扩展的文件默认

也会被添加到该列表，详情参考ConfigFileApplicationListener

69.3	改变应用程序外部配置文件的位置

504

http://github.com/spring-projects/spring-boot/tree/master/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigFileApplicationListener.java


69.4	使用'short'命令行参数

有些人喜欢使用（例如） 	--port=9000	代替 	--server.port=9000	来设置命令

行配置属性。你可以通过在 	application.properties	中使用占位符来启用该功

能，比如：

server.port=${port:8080}

注	如果你继承自 	spring-boot-starter-parent		POM，为了防止和Spring格式

的占位符产生冲突， 	maven-resources-plugins	默认的过滤令牌（filter	token）
已经从 	${*}	变为 	@	（即 	@maven.token@	代替 	${maven.token}	）。如果直接

启用maven对 	application.properties	的过滤，你可能想使用其他的分隔符替

换默认的过滤令牌。

注	在这种特殊的情况下，端口绑定能够在一个PaaS环境下工作，比如Heroku和
Cloud	Foundry，因为在这两个平台中 	PORT	环境变量是自动设置的，并且Spring
能够绑定 	Environment	属性的大写同义词。

69.4	使用'short'命令行参数

505

http://maven.apache.org/plugins/maven-resources-plugin/resources-mojo.html#delimiters


69.5	使用YAML配置外部属性

YAML是JSON的一个超集，可以非常方便的将外部配置以层次结构形式存储起来，

比如：

spring:

				application:

								name:	cruncher

				datasource:

								driverClassName:	com.mysql.jdbc.Driver

								url:	jdbc:mysql://localhost/test

server:

				port:	9000

创建一个 	application.yml	文件，将它放到classpath的根目录下，并添

加 	snakeyaml	依赖（Maven坐标为 	org.yaml:snakeyaml	，如果你使

用 	spring-boot-starter	那就已经包含了）。一个YAML文件会被解析为一个

Java	 	Map<String,Object>	（和一个JSON对象类似），Spring	Boot会平伸该

map，这样它就只有1级深度，并且有period-separated的keys，跟人们在Java中经

常使用的 	Properties	文件非常类似。	上面的YAML示例对应于下面

的 	application.properties	文件：

spring.application.name=cruncher

spring.datasource.driverClassName=com.mysql.jdbc.Driver

spring.datasource.url=jdbc:mysql://localhost/test

server.port=9000

查看'Spring	Boot特性'章节的Section	24.6,	“Using	YAML	instead	of	Properties”可以

获取更多关于YAML的信息。

69.5	使用YAML配置外部属性

506



69.6	设置生效的Spring	profiles
Spring	 	Environment	有一个API可以设置生效的profiles，但通常你会通过系统属

性（ 	spring.profiles.active	）或OS环境变量

（ 	SPRING_PROFILES_ACTIVE	）设置。比如，使用一个 	-D	参数启动应用程序

（记着把它放到 	main	类或jar文件之前）：

$	java	-jar	-Dspring.profiles.active=production	demo-0.0.1-SNAPS

HOT.jar

在Spring	Boot中，你也可以在 	application.properties	里设置生效的profile，
例如：

spring.profiles.active=production

通过这种方式设置的值会被系统属性或环境变量替换，但不会

被 	SpringApplicationBuilder.profiles()	方法替换。因此，后面的Java	API
可用来在不改变默认设置的情况下增加profiles。

想要获取更多信息可查看'Spring	Boot特性'章节的Chapter	25,	Profiles。

69.6	设置生效的Spring	profiles

507



69.7	根据环境改变配置

一个YAML文件实际上是一系列以 	---	线分割的文档，每个文档都被单独解析为一

个平坦的（flattened）map。

如果一个YAML文档包含一个 	spring.profiles	关键字，那profiles的值（以逗号

分割的profiles列表）将被传入Spring的 	Environment.acceptsProfiles()	方

法，并且如果这些profiles的任何一个被激活，对应的文档被包含到最终的合并中

（否则不会）。

示例：

server:

				port:	9000

---

spring:

				profiles:	development

server:

				port:	9001

---

spring:

				profiles:	production

server:

				port:	0

在这个示例中，默认的端口是 	9000	，但如果Spring	profile	 	development	生效则

该端口是 	9001	，如果 	production	生效则它是 	0	。

YAML文档以它们出现的顺序合并，所以后面的值会覆盖前面的值。

想要使用profiles文件完成同样的操作，你可以使用 	application-

${profile}.properties	指定特殊的，profile相关的值。

69.7	根据环境改变配置

508



69.8	发现外部属性的内置选项

Spring	Boot在运行时会将来自 	application.properties	（或 	.yml	）的外部属

性绑定到应用，因为不可能将所有支持的属性放到一个地方，classpath下的其他jar
也有支持的属性。

每个运行中且有Actuator特性的应用都会有一个 	configprops	端点，它能够展示

所有边界和可通过 	@ConfigurationProperties	绑定的属性。

附录中包含一个application.properties示例，它列举了Spring	Boot支持的大多数常

用属性，查看 	@ConfigurationProperties	， 	@Value	，还有不经常使用

的 	RelaxedEnvironment	的源码可获取最权威的属性列表。

69.8	发现外部属性的内置选项

509

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#common-application-properties


70.	内嵌servlet容器

70.	内嵌servlet容器

510



70.1	为应用添加Servlet，Filter或Listener
这里有两种方式可以为应用添

加 	Servlet	， 	Filter	， 	ServletContextListener	和其他Servlet支持的特定

listeners。你既可以为它们提供Spring	beans，也可以为Servlet组件启用扫描

（package	scan）。

70.1	为应用添加Servlet，Filter或Listener

511



70.1.1	使用Spring	bean添加Servlet,	Filter或Listener
想要添加 	Servlet	， 	Filter	或Servlet 	*Listener	，你只需要为它提供一

个 	@Bean	定义，这种方式很适合注入配置或依赖。不过，需要注意的是它们不会

导致其他很多beans的热初始化，因为它们需要在应用生命周期的早期进行安装

（让它依赖 	DataSource	或JPA配置不是好主意），你可以通过懒加载突破该限制

（在第一次使用时才初始化）。

对于 	Filters	或 	Servlets	，你可以通

过 	FilterRegistrationBean	或 	ServletRegistrationBean	添加映射和初始化

参数。

注	在一个filter注册时，如果没指定 	dispatcherType	，它将匹

配 	FORWARD	， 	INCLUDE	和 	REQUEST	。如果启用异步，它也将匹配 	ASYNC	。如

果迁移 	web.xml	中没有 	dispatcher	元素的filter，你需要自己指定一

个 	dispatcherType	：

@Bean

public	FilterRegistrationBean	myFilterRegistration()	{

				FilterRegistrationBean	registration	=	new	FilterRegistration

Bean();

				registration.setDispatcherTypes(DispatcherType.REQUEST);

				....

				return	registration;

}

禁止Servlet或Filter的注册

如上所述，任何 	Servlet	或 	Filter		beans都将自动注册到servlet容器。不过，

为特定的 	Filter	或 	Servlet		bean创建一个registration，并将它标记为

disabled，可以禁用该filter或servlet。例如：

70.1	为应用添加Servlet，Filter或Listener

512



@Bean

public	FilterRegistrationBean	registration(MyFilter	filter)	{

				FilterRegistrationBean	registration	=	new	FilterRegistration

Bean(filter);

				registration.setEnabled(false);

				return	registration;

}

70.1	为应用添加Servlet，Filter或Listener

513



70.1.2	使用classpath扫描添加Servlets,	Filters和
Listeners
通过把 	@ServletComponentScan	注解到一个 	@Configuration	类并指定包含要

注册组件的package(s)，可以

将 	@WebServlet	， 	@WebFilter	和 	@WebListener	注解的类自动注册到内嵌

servlet容器。默认情况下， 	@ServletComponentScan	将从被注解类的package开
始扫描。

70.1	为应用添加Servlet，Filter或Listener

514



70.2	改变HTTP端口

在一个单独的应用中，主HTTP端口默认为 	8080	，不过可以使

用 	server.port	设置（比如，在 	application.properties	中或作为系统属

性）。由于 	Environment	值的宽松绑定，你也可以使用 	SERVER_PORT	（比如，

作为OS环境变量）。

想要创建 	WebApplicationContext	但完全关闭HTTP端点，你可以设

置 	server.port=-1	（测试时可能有用）。具体详情可查看'Spring	Boot特性'章节

的Section	27.3.4,	“Customizing	embedded	servlet	containers”，
或ServerProperties源码。

70.2	改变HTTP端口

515

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java


70.3	使用随机未分配的HTTP端口

想扫描获取一个未使用的端口（使用操作系统本地端口以防冲突）可以设

置 	server.port=0	。

70.3	使用随机未分配的HTTP端口

516



70.4	发现运行时的HTTP端口

你可以通过日志输出或它

的 	EmbeddedServletContainer	的 	EmbeddedWebApplicationContext	获取服务

器正在运行的端口。获取和确认服务器已经初始化的最好方式是添加一

个 	ApplicationListener<EmbeddedServletContainerInitializedEvent>	类

型的 	@Bean	，然后当事件发布时将容器pull出来。

使用 	@SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT)	进行

测试时，你可以通过 	@LocalServerPort	注解将实际端口注入到字段中，例如：

@RunWith(SpringJUnit4ClassRunner.class)

@SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT)

public	class	MyWebIntegrationTests	{

				@Autowired

				EmbeddedWebApplicationContext	server;

				@LocalServerPort

				int	port;

				//	...

}

注	 	@LocalServerPort	是 	@Value("${local.server.port}")	的元数据，在常

规的应用中不要尝试注入端口。正如我们看到的，该值只会在容器初始化后设置。

相对于测试，应用代码回调处理的会更早（例如在该值实际可用之前）。

70.4	发现运行时的HTTP端口

517



70.5	配置SSL
你可以以声明方式配置SSL，一般通过

在 	application.properties	或 	application.yml	设置各种各样

的 	server.ssl.*	属性，例如：

server.port	=	8443

server.ssl.key-store	=	classpath:keystore.jks

server.ssl.key-store-password	=	secret

server.ssl.key-password	=	another-secret

查看Ssl获取所有支持的配置。

使用类似于以上示例的配置意味着该应用将不支持端口为8080的普通HTTP连接。

Spring	Boot不支持通过 	application.properties	同时配置HTTP连接器和

HTTPS连接器。如果你两个都想要，那就需要以编程的方式配置它们中的一个。推

荐使用 	application.properties	配置HTTPS，因为HTTP连接器是两个中最容

易以编程方式进行配置的，查看spring-boot-sample-tomcat-multi-connectors可获

取示例项目。

70.5	配置SSL

518

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot/src/main/java/org/springframework/boot/context/embedded/Ssl.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-samples/spring-boot-sample-tomcat-multi-connectors


70.6	配置访问日志

通过相应的命令空间可以为Tomcat和Undertow配置访问日志，例如下面是为

Tomcat配置的一个自定义模式的访问日志：

server.tomcat.basedir=my-tomcat

server.tomcat.accesslog.enabled=true

server.tomcat.accesslog.pattern=%t	%a	"%r"	%s	(%D	ms)

注	日志默认路径为tomcat基础路径下的 	logs	目录，该dir默认是个临时目录，所

以你可能想改变Tomcat的base目录或为日志指定绝对路径。上述示例中，你可以在

相对于应用工作目录的 	my-tomcat/logs	访问到日志。

Undertow的访问日志配置方式类似：

server.undertow.accesslog.enabled=true

server.undertow.accesslog.pattern=%t	%a	"%r"	%s	(%D	ms)

日志存储在相对于应用工作目录的 	logs	目录下，可以通

过 	server.undertow.accesslog.directory	自定义。

70.6	配置访问日志

519

https://tomcat.apache.org/tomcat-8.0-doc/config/valve.html#Access_Logging


70.7	在前端代理服务器后使用

你的应用可能需要发送 	302	跳转或使用指向自己的绝对路径渲染内容。当在代理

服务器后面运行时，调用者需要的是代理服务器链接而不是部署应用的实际物理机

器地址，通常的解决方式是代理服务器将前端地址放到headers并告诉后端服务器

如何拼装链接。

如果代理添加约定的 	X-Forwarded-For	和 	X-Forwarded-Proto		headers（大多

数都是开箱即用的），只要将 	application.properties	中的 	server.use-

forward-headers	设置为 	true	，绝对链接就能正确的渲染。

注	如果应用运行在Cloud	Foundry或Heroku， 	server.use-forward-headers	属

性没指定的话默认为 	true	，其他实例默认为 	false	。

70.7	在前端代理服务器后使用

520



70.7.1	自定义Tomcat代理配置

如果使用的是Tomcat，你可以配置用于传输"forwarded"信息的headers名：

server.tomcat.remote-ip-header=x-your-remote-ip-header

server.tomcat.protocol-header=x-your-protocol-header

你也可以为Tomcat配置一个默认的正则表达式，用来匹配内部信任的代理。默认情

况下，IP地址 	10/8	， 	192.168/16	， 	169.254/16	和 	127/8	是被信任的。通

过设置 	server.tomcat.internal-proxies	属性可以自定义，比如：

server.tomcat.internal-proxies=192\\.168\\.\\d{1,3}\\.\\d{1,3}

注	只有在使用配置文件时才需要双反斜线，如果使用YAML，只需要单个反斜线，

比如 	192\.168\.\d{1,3}\.\d{1,3}	。

注	将 	internal-proxies	设置为空表示信任所有代理，不要在生产环境使用。

你可以完全控制Tomcat的 	RemoteIpValve	配置，只要关掉自动配置（比如设

置 	server.use-forward-headers=false	）并

在 	TomcatEmbeddedServletContainerFactory		bean添加一个新value实例。

70.7	在前端代理服务器后使用

521



70.8	配置Tomcat
通常你可以遵循Section	69.8,	“Discover	built-in	options	for	external	properties”关
于 	@ConfigurationProperties	（这里主要的是 	ServerProperties	）的建

议，但也看下 	EmbeddedServletContainerCustomizer	和各种你可以添加的

Tomcat-specific的 	*Customizers	。

Tomcat	APIs相当丰富，一旦获取

到 	TomcatEmbeddedServletContainerFactory	，你就能够以多种方式修改它，

或更彻底地就是添加你自己的 	TomcatEmbeddedServletContainerFactory	。

70.8	配置Tomcat

522



70.9	启用Tomcat的多连接器

你可以将 	org.apache.catalina.connector.Connector	添加

到 	TomcatEmbeddedServletContainerFactory	，这就能够允许多连接器，比如

HTTP和HTTPS连接器：

70.9	启用Tomcat的多连接器

523



@Bean

public	EmbeddedServletContainerFactory	servletContainer()	{

				TomcatEmbeddedServletContainerFactory	tomcat	=	new	TomcatEmb

eddedServletContainerFactory();

				tomcat.addAdditionalTomcatConnectors(createSslConnector());

				return	tomcat;

}

private	Connector	createSslConnector()	{

				Connector	connector	=	new	Connector("org.apache.coyote.http1

1.Http11NioProtocol");

				Http11NioProtocol	protocol	=	(Http11NioProtocol)	connector.g

etProtocolHandler();

				try	{

								File	keystore	=	new	ClassPathResource("keystore").getFil

e();

								File	truststore	=	new	ClassPathResource("keystore").getF

ile();

								connector.setScheme("https");

								connector.setSecure(true);

								connector.setPort(8443);

								protocol.setSSLEnabled(true);

								protocol.setKeystoreFile(keystore.getAbsolutePath());

								protocol.setKeystorePass("changeit");

								protocol.setTruststoreFile(truststore.getAbsolutePath())

;

								protocol.setTruststorePass("changeit");

								protocol.setKeyAlias("apitester");

								return	connector;

				}

				catch	(IOException	ex)	{

								throw	new	IllegalStateException("can't	access	keystore:	

["	+	"keystore"

																+	"]	or	truststore:	["	+	"keystore"	+	"]",	ex);

				}

}

70.9	启用Tomcat的多连接器

524



70.9	启用Tomcat的多连接器

525



70.10	使用Tomcat的LegacyCookieProcessor
Spring	Boot使用的内嵌Tomcat不能开箱即用的支持 	Version	0	的Cookie格式，

你可能会看到以下错误：

java.lang.IllegalArgumentException:	An	invalid	character	[32]	wa

s	present	in	the	Cookie	value

可以的话，你需要考虑将代码升级到只存储遵从最新版Cookie定义的值。如果不能

改变写入的cookie，你可以配置Tomcat使用 	LegacyCookieProcessor	。通过

向 	EmbeddedServletContainerCustomizer		bean添加一

个 	TomcatContextCustomizer	可以开启 	LegacyCookieProcessor	：

70.10	使用Tomcat的LegacyCookieProcessor

526



@Bean

public	EmbeddedServletContainerCustomizer	cookieProcessorCustomi

zer()	{

				return	new	EmbeddedServletContainerCustomizer()	{

								@Override

								public	void	customize(ConfigurableEmbeddedServletContain

er	container)	{

												if	(container	instanceof	TomcatEmbeddedServletContai

nerFactory)	{

																((TomcatEmbeddedServletContainerFactory)	contain

er)

																								.addContextCustomizers(new	TomcatContext

Customizer()	{

																				@Override

																				public	void	customize(Context	context)	{

																								context.setCookieProcessor(new	LegacyCoo

kieProcessor());

																				}

																});

												}

								}

				};

}

70.10	使用Tomcat的LegacyCookieProcessor

527



70.11	使用Jetty替代Tomcat
Spring	Boot	starters（特别是 	spring-boot-starter-web	）默认都使用Tomcat作
为内嵌容器。想使用Jetty替代Tomcat，你需要排除那些Tomcat的依赖并包含Jetty
的依赖。为了简化这种事情的处理，Spring	Boot将Tomcat和Jetty的依赖捆绑在一

起，然后提供了单独的starters。

Maven示例：

<dependency>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-starter-web</artifactId>

				<exclusions>

								<exclusion>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-starter-tomcat</artifactId>

								</exclusion>

				</exclusions>

</dependency>

<dependency>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-starter-jetty</artifactId>

</dependency>

Gradle示例：

configurations	{

				compile.exclude	module:	"spring-boot-starter-tomcat"

}

dependencies	{

				compile("org.springframework.boot:spring-boot-starter-web:1.

4.1.RELEASE")

				compile("org.springframework.boot:spring-boot-starter-jetty:

1.4.1.RELEASE")

				//	...

}

70.11	使用Jetty替代Tomcat

528



70.11	使用Jetty替代Tomcat

529



70.12	配置Jetty
通常你可以遵循Section	69.8,	“Discover	built-in	options	for	external	properties”关
于 	@ConfigurationProperties	（此处主要是 	ServerProperties	）的建议，

但也要看下 	EmbeddedServletContainerCustomizer	。

Jetty	API相当丰富，一旦获取到 	JettyEmbeddedServletContainerFactory	，你

就可以使用很多方式修改它，或更彻底地就是添加你自己

的 	JettyEmbeddedServletContainerFactory	。

70.12	配置Jetty

530



70.13	使用Undertow替代Tomcat
使用Undertow替代Tomcat和使用Jetty替代Tomcat非常类似。你需要排除Tomat依
赖，并包含Undertow	starter。

Maven示例：

<dependency>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-starter-web</artifactId>

				<exclusions>

								<exclusion>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-starter-tomcat</artifactId>

								</exclusion>

				</exclusions>

</dependency>

<dependency>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-starter-undertow</artifactId>

</dependency>

Gradle示例：

configurations	{

				compile.exclude	module:	"spring-boot-starter-tomcat"

}

dependencies	{

				compile	'org.springframework.boot:spring-boot-starter-web:1.

3.0.BUILD-SNAPSHOT")

				compile	'org.springframework.boot:spring-boot-starter-undert

ow:1.3.0.BUILD-SNAPSHOT")

				//	...

}

70.13	使用Undertow替代Tomcat

531



70.13	使用Undertow替代Tomcat

532



70.14	配置Undertow
通常你可以遵循Section	69.8,	“Discover	built-in	options	for	external	properties”关
于 	@ConfigurationProperties	（此处主要

是 	ServerProperties	和 	ServerProperties.Undertow	），但也要看

下 	EmbeddedServletContainerCustomizer	。

一旦获取到 	UndertowEmbeddedServletContainerFactory	，你就可以使

用 	UndertowBuilderCustomizer	修改Undertow的配置以满足你的需求，或更彻

底地就是添加你自己的 	UndertowEmbeddedServletContainerFactory	。

70.14	配置Undertow

533



70.15	启用Undertow的多监听器

将 	UndertowBuilderCustomizer	添加

到 	UndertowEmbeddedServletContainerFactory	，然后使用 	Builder	添加一

个listener：

@Bean

public	UndertowEmbeddedServletContainerFactory	embeddedServletCo

ntainerFactory()	{

				UndertowEmbeddedServletContainerFactory	factory	=	new	Undert

owEmbeddedServletContainerFactory();

				factory.addBuilderCustomizers(new	UndertowBuilderCustomizer(

)	{

								@Override

								public	void	customize(Builder	builder)	{

												builder.addHttpListener(8080,	"0.0.0.0");

								}

				});

				return	factory;

}

70.15	启用Undertow的多监听器

534



70.16	使用Tomcat	7.x或8.0
Spring	Boot可以使用Tomcat7&8.0，但默认使用的是Tomcat8.5。如果不能使用

Tomcat8.5（例如，因为你使用的是Java1.6），你需要改变classpath去引用一个不

同版本。

70.16	使用Tomcat	7.x或8.0

535



70.16.1	通过Maven使用Tomcat	7.x或8.0
如果正在使用starters	和parent，你只需要改变Tomcat的 	version	属性，并添

加 	tomcat-juli	依赖。比如，对于一个简单的webapp或service：

<properties>

				<tomcat.version>7.0.59</tomcat.version>

</properties>

<dependencies>

				...

				<dependency>

								<groupId>org.springframework.boot</groupId>

								<artifactId>spring-boot-starter-web</artifactId>

				</dependency>

				<dependency>

								<groupId>org.apache.tomcat</groupId>

								<artifactId>tomcat-juli</artifactId>

								<version>${tomcat.version}</version>

				</dependency>

				...

</dependencies>

70.16	使用Tomcat	7.x或8.0

536



70.16.2	通过Gradle使用Tomcat7.x或8.0
对于Gradle，你可以通过设置 	tomcat.version	属性改变Tomcat的版本，然后添

加 	tomcat-juli	依赖：

ext['tomcat.version']	=	'7.0.59'

dependencies	{

				compile	'org.springframework.boot:spring-boot-starter-web'

				compile	group:'org.apache.tomcat',	name:'tomcat-juli',	versi

on:property('tomcat.version')

}

70.16	使用Tomcat	7.x或8.0

537



70.17	使用Jetty9.2
Spring	Boot可以使用Jetty9.2，但默认使用的是Jetty9.3。如果不能使用

Jetty9.3（例如，因为你使用的是Java7），你需要改变classpath去引用Jetty9.2。

70.17	使用Jetty9.2

538



70.17.1	通过Maven使用Jetty9.2
如果正在使用starters和parent，你只需添加Jetty	starter并覆盖 	jetty.version	属

性：

<properties>

				<jetty.version>9.2.17.v20160517</jetty.version>

</properties>

<dependencies>

				<dependency>

								<groupId>org.springframework.boot</groupId>

								<artifactId>spring-boot-starter-web</artifactId>

								<exclusions>

												<exclusion>

																<groupId>org.springframework.boot</groupId>

																<artifactId>spring-boot-starter-tomcat</artifact

Id>

												</exclusion>

								</exclusions>

				</dependency>

				<dependency>

								<groupId>org.springframework.boot</groupId>

								<artifactId>spring-boot-starter-jetty</artifactId>

				</dependency>

</dependencies>

70.17	使用Jetty9.2

539



70.17.2	通过Gradle使用Jetty	9.2
对于Gradle，你需要设置 	jetty.version	属性，例如对于一个简单的webapp或
service：

ext['jetty.version']	=	'9.2.17.v20160517'

dependencies	{

				compile	('org.springframework.boot:spring-boot-starter-web')

	{

								exclude	group:	'org.springframework.boot',	module:	'spri

ng-boot-starter-tomcat'

				}

				compile	('org.springframework.boot:spring-boot-starter-jetty'

)

}

70.17	使用Jetty9.2

540



70.18	使用Jetty	8
Spring	Boot支持Jetty	8，但默认使用的是Jetty	9.3。如果不能使用Jetty	9.3（比如

因为你使用的是Java	1.6），你需要改变classpath去引用Jetty	8，还需要排除Jetty
的WebSocket相关依赖。

70.18	使用Jetty	8

541



70.18.1	通过Maven使用Jetty8
如果正在使用starters和parent，你只需要添加Jetty	starter，排除那些需要的

WebSocket，并改变version属性。比如，对于一个简单的webapp或service：

<properties>

				<jetty.version>8.1.15.v20140411</jetty.version>

				<jetty-jsp.version>2.2.0.v201112011158</jetty-jsp.version>

</properties>

<dependencies>

				<dependency>

								<groupId>org.springframework.boot</groupId>

								<artifactId>spring-boot-starter-web</artifactId>

								<exclusions>

												<exclusion>

																<groupId>org.springframework.boot</groupId>

																<artifactId>spring-boot-starter-tomcat</artifact

Id>

												</exclusion>

								</exclusions>

				</dependency>

				<dependency>

								<groupId>org.springframework.boot</groupId>

								<artifactId>spring-boot-starter-jetty</artifactId>

								<exclusions>

												<exclusion>

																<groupId>org.eclipse.jetty.websocket</groupId>

																<artifactId>*</artifactId>

												</exclusion>

								</exclusions>

				</dependency>

</dependencies>

70.18	使用Jetty	8

542



70.18.2	通过Gradle使用Jetty8
你可以设置 	jetty.version	属性并排除相关的WebSocket依赖，比如对于一个简

单的webapp或service：

ext['jetty.version']	=	'8.1.15.v20140411'

dependencies	{

				compile	('org.springframework.boot:spring-boot-starter-web')

	{

								exclude	group:	'org.springframework.boot',	module:	'spri

ng-boot-starter-tomcat'

				}

				compile	('org.springframework.boot:spring-boot-starter-jetty'

)	{

								exclude	group:	'org.eclipse.jetty.websocket'

				}

}

70.18	使用Jetty	8

543



70.19	使用@ServerEndpoint创建WebSocket端点

如果想在使用内嵌容器的Spring	Boot应用中使用 	@ServerEndpoint	，你需要声明

一个单独的 	ServerEndpointExporter		 	@Bean	：

@Bean

public	ServerEndpointExporter	serverEndpointExporter()	{

				return	new	ServerEndpointExporter();

}

该bean将使用底层的WebSocket容器注册任何被 	@ServerEndpoint	注解的

beans。当部署到一个单独的servlet容器时，该角色将被一个servlet容器初始化方

法执行， 	ServerEndpointExporter		bean也就不需要了。

70.19	使用@ServerEndpoint创建WebSocket端点

544



71.	Spring	MVC

71.	Spring	MVC

545



71.1	编写JSON	REST服务

只要添加的有Jackson2依赖，Spring	Boot应用中的任何 	@RestController	默认

都会渲染为JSON响应，例如：

@RestController

public	class	MyController	{

				@RequestMapping("/thing")

				public	MyThing	thing()	{

												return	new	MyThing();

				}

}

只要 	MyThing	能够通过Jackson2序列化（比如，一个标准的POJO或Groovy对
象），默认localhost:8080/thing将响应一个JSON数据。有时在浏览器中你可能看

到XML响应，因为浏览器倾向于发送XML	accept	headers。

71.1	编写JSON	REST服务

546

http://localhost:8080/thing


71.2	编写XML	REST服务

如果classpath下存在Jackson	XML扩展（ 	jackson-dataformat-xml	），它会被

用来渲染XML响应，示例和JSON的非常相似。想要使用它，只需为你的项目添加

以下依赖：

<dependency>

				<groupId>com.fasterxml.jackson.dataformat</groupId>

				<artifactId>jackson-dataformat-xml</artifactId>

</dependency>

你可能还需要添加Woodstox的依赖，它比JDK提供的默认StAX实现快很多，并且

支持良好的格式化输出，提高了namespace处理能力：

<dependency>

				<groupId>org.codehaus.woodstox</groupId>

				<artifactId>woodstox-core-asl</artifactId>

</dependency>

如果Jackson的XML扩展不可用，Spring	Boot将使用JAXB（JDK默认提供），不

过 	MyThing	需要注解 	@XmlRootElement	：

@XmlRootElement

public	class	MyThing	{

				private	String	name;

				//	..	getters	and	setters

}

想要服务器渲染XML而不是JSON，你可能需要发送一个 	Accept:	text/xml	头部

（或使用浏览器）。

71.2	编写XML	REST服务

547



71.3	自定义Jackson	ObjectMapper
在一个HTTP交互中，Spring	MVC（客户端和服务端）使

用 	HttpMessageConverters	协商内容转换。如果classpath下存在Jackson，你就

获取到 	Jackson2ObjectMapperBuilder	提供的默认转换器，这是Spring	Boot为
你自动配置的实例。

创建的 	ObjectMapper	（或用于Jackson	XML转换的 	XmlMapper	）实例默认有以

下自定义属性：

	MapperFeature.DEFAULT_VIEW_INCLUSION	，默认是禁用的

	DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES	，默认是禁用的

Spring	Boot也有一些用于简化自定义该行为的特性。

你可以使用当前的environment配置 	ObjectMapper	和 	XmlMapper	实例。

Jackson提供一个扩展套件，可以用来关闭或开启一些特性，你可以用它们配置

Jackson以处理不同方面。这些特性在Jackson中是使用6个枚举进行描述的，并被

映射到environment的属性上：

Jackson枚举 Environment属性

	com.fasterxml.jackson.databind.DeserializationFeature	 `spring.jackson.deserialization.

	com.fasterxml.jackson.core.JsonGenerator.Feature	 `spring.jackson.generator.

	com.fasterxml.jackson.databind.MapperFeature	 `spring.jackson.mapper.

	com.fasterxml.jackson.core.JsonParser.Feature	 `spring.jackson.parser.

	com.fasterxml.jackson.databind.SerializationFeature	 `spring.jackson.serialization.

	com.fasterxml.jackson.annotation.JsonInclude.Include	
`spring.jackson.serialization-
inclusion=always

例如，设置 	spring.jackson.serialization.indent_output=true	可以美化打

印输出（pretty	print）。注意，由于松散绑定的使用， 	indent_output	不必匹配

对应的枚举常量 	INDENT_OUTPUT	。

基于environment的配置会应用到自动配置的 	Jackson2ObjectMapperBuilder	

bean，然后应用到通过该builder创建的mappers，包括自动配置

的 	ObjectMapper		bean。

71.3	自定义Jackson	ObjectMapper

548



	ApplicationContext	中的 	Jackson2ObjectMapperBuilder	可以通

过 	Jackson2ObjectMapperBuilderCustomizer		bean自定义。这些customizer
beans可以排序，Spring	Boot自己的customizer序号为0，其他自定义可以应用到

Spring	Boot自定义之前或之后。

所有类型为 	com.fasterxml.jackson.databind.Module	的beans都会自动注册

到自动配置的 	Jackson2ObjectMapperBuilder	，并应用到它创建的任

何 	ObjectMapper	实例。这提供了一种全局机制，用于在为应用添加新特性时贡

献自定义模块。

如果想完全替换默认的 	ObjectMapper	，你既可以定义该类型的 	@Bean	并注

解 	@Primary	，也可以定义 	Jackson2ObjectMapperBuilder		 	@Bean	，通过

builder构建。注意不管哪种方式都会禁用所有的自动配置 	ObjectMapper	。

如果你提供 	MappingJackson2HttpMessageConverter	类型的 	@Bean	，它们将

替换MVC配置中的默认值。Spring	Boot也提供了一

个 	HttpMessageConverters	类型的便利bean（如果你使用MVC默认配置，那它

就总是可用的），它提供了一些有用的方法来获取默认和用户增强的消息转换器

（message	converters）。具体详情可参考Section	71.4,	“Customize	the
@ResponseBody	rendering”及WebMvcAutoConfiguration源码。

71.3	自定义Jackson	ObjectMapper

549

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java


71.4	自定义@ResponseBody渲染

Spring使用 	HttpMessageConverters	渲染 	@ResponseBody	（或来

自 	@RestController	的响应），你可以通过在Spring	Boot上下文中添加该类型的

beans来贡献其他的转换器。如果你添加的bean类型默认已经包含了（像用于

JSON转换的 	MappingJackson2HttpMessageConverter	），那它将替换默认的。

Spring	Boot提供一个方便的 	HttpMessageConverters	类型的bean，它有一些有

用的方法可以访问默认的和用户增强的message转换器（比如你想要手动将它们注

入到一个自定义的 	RestTemplate	时就很有用）。

在通常的MVC用例中，任何你提供的 	WebMvcConfigurerAdapter		beans通过覆

盖 	configureMessageConverters	方法也能贡献转换器，但不同于通常的MVC，
你可以只提供你需要的转换器（因为Spring	Boot使用相同的机制来贡献它默认的转

换器）。最终，如果你通过提供自己的 	@EnableWebMvc	注解覆盖Spring	Boot默认

的MVC配置，那你就可以完全控制，并使用来

自 	WebMvcConfigurationSupport	的 	getMessageConverters	手动做任何事。

更多详情可参考WebMvcAutoConfiguration源码。

71.4	自定义@ResponseBody渲染

550

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java


71.5	处理Multipart文件上传

Spring	Boot采用Servlet	3	 	javax.servlet.http.Part		API来支持文件上传。默

认情况下，Spring	Boot配置Spring	MVC在单个请求中只处理每个文件最大1Mb，
最多10Mb的文件数据。你可以覆盖那些值，也可以设置临时文件存储的位置（比

如，存储到 	/tmp	文件夹下）及传递数据刷新到磁盘的阀值（通过使

用 	MultipartProperties	类暴露的属性）。如果你需要设置文件不受限制，可以

设置 	spring.http.multipart.max-file-size	属性值为 	-1	。

当你想要接收multipart编码文件数据作为Spring	MVC控制器（controller）处理方法

中被 	@RequestParam	注解的 	MultipartFile	类型的参数时，multipart支持就非

常有用了。

更多详情可参考MultipartAutoConfiguration源码。

71.5	处理Multipart文件上传

551

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/MultipartAutoConfiguration.java


71.6	关闭Spring	MVC	DispatcherServlet
Spring	Boot想要服务来自应用程序root	 	/	下的所有内容。如果你想将自己的

servlet映射到该目录下也是可以的，但当然你可能失去一些Spring	Boot	MVC特
性。为了添加你自己的servlet，并将它映射到root资源，你只需声明一

个 	Servlet	类型的 	@Bean	，并给它特定的bean名称 	dispatcherServlet	（如

果只想关闭但不替换它，你可以使用该名称创建不同类型的bean）。

71.6	关闭Spring	MVC	DispatcherServlet

552



71.7	关闭默认的MVC配置

完全控制MVC配置的最简单方式是提供你自己的被 	@EnableWebMvc	注解

的 	@Configuration	，这样所有的MVC配置都逃不出你的掌心。

71.7	关闭默认的MVC配置

553



71.8	自定义ViewResolvers
	ViewResolver	是Spring	MVC的核心组件，它负责转换 	@Controller	中的视图

名称到实际的 	View	实现。注意 	ViewResolvers	主要用在UI应用中，而不是

REST风格的服务（ 	View	不是用来渲染 	@ResponseBody	的）。Spring有很多你

可以选择的 	ViewResolver	实现，并且Spring自己对如何选择相应实现也没发表意

见。另一方面，Spring	Boot会根据classpath上的依赖和应用上下文为你安装一或

两个 	ViewResolver	实现。 	DispatcherServlet	使用所有在应用上下文中找到

的解析器（resolvers），并依次尝试每一个直到它获取到结果，所以如果你正在添

加自己的解析器，那就要小心顺序和你的解析器添加的位置。

	WebMvcAutoConfiguration	将会为你的上下文添加以下 	ViewResolvers	：

bean	id为 	defaultViewResolver	的 	InternalResourceViewResolver	，

它会定位可以使用 	DefaultServlet	渲染的物理资源（比如静态资源和JSP页
面）。它在视图名上应用了一个前缀和后缀（默认都为空，但你可以通

过 	spring.view.prefix	和 	spring.view.suffix	设置），然后查找在

servlet上下文中具有该路径的物理资源，可以通过提供相同类型的bean覆盖

它。

id为 	beanNameViewResolver	的 	BeanNameViewResolver	，它是视图解析器

链的一个非常有用的成员，可以在 	View	解析时收集任何具有相同名称的

beans，没必要覆盖或替换它。

id为 	viewResolver	的 	ContentNegotiatingViewResolver	，它只会在实

际 	View	类型的beans出现时添加。这是一个'master'解析器，它的职责会代理

给其他解析器，它会尝试找到客户端发送的一个匹配'Accept'的HTTP头部。这

有一篇关于ContentNegotiatingViewResolver的博客，你也可以也查看下源

码。通过定义一个名叫'viewResolver'的bean，你可以关闭自动配置

的 	ContentNegotiatingViewResolver	。

如果使用Thymeleaf，你将有一个id
为 	thymeleafViewResolver	的 	ThymeleafViewResolver	，它会通过加前

缀和后缀的视图名来查找资源（外部配置

为 	spring.thymeleaf.prefix	和 	spring.thymeleaf.suffix	，对应的默

认为'classpath:/templates/'和'.html'）。你可以通过提供相同名称的bean来覆

盖它。

如果使用FreeMarker，你将有一个id
为 	freeMarkerViewResolver	的 	FreeMarkerViewResolver	，它会使用加

71.8	自定义ViewResolvers

554

https://spring.io/blog/2013/06/03/content-negotiation-using-views


前缀和后缀（外部配置

为 	spring.freemarker.prefix	和 	spring.freemarker.suffix	，对应的

默认值为空和'.ftl'）的视图名从加载路径（外部配置

为 	spring.freemarker.templateLoaderPath	，默认

为'classpath:/templates/'）下查找资源。你可以通过提供相同名称的bean来覆

盖它。

如果使用Groovy模板（实际上只要你把groovy-templates添加到classpath
下），你将有一个id为 	groovyTemplateViewResolver	的 	Groovy

TemplateViewResolver	，它会使用加前缀和后缀（外部属性

为 	spring.groovy.template.prefix	和 	spring.groovy.template.suffix

	，对应的默认值为'classpath:/templates/'和'.tpl'）的视图名从加载路径下查找

资源。你可以通过提供相同名称的bean来覆盖它。

如果使用Velocity，你将有一个id
为 	velocityViewResolver	的 	VelocityViewResolver	，它会使用加前缀

和后缀（外部属性

为 	spring.velocity.prefix	和 	spring.velocity.suffix	，对应的默认

值为空和'.vm'）的视图名从加载路径（外部属性

为 	spring.velocity.resourceLoaderPath	，默认

为'classpath:/templates/'）下查找资源。你可以通过提供相同名称的bean来覆

盖它。

更多详情可查看源码：

WebMvcAutoConfiguration，ThymeleafAutoConfiguration，FreeMarkerAutoConfi
guration，GroovyTemplateAutoConfiguration，VelocityAutoConfiguration。

71.8	自定义ViewResolvers

555

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/velocity/VelocityAutoConfiguration.java


71.9	Velocity
默认情况下，Spring	Boot会配置一个 	VelocityViewResolver	，如果需要的

是 	VelocityLayoutViewResolver	，你可以自己创建一个名

为 	velocityViewResolver	的bean。你也可以将 	VelocityProperties	实例注

入到自定义视图解析器以获取基本的默认设置。

以下示例使用 	VelocityLayoutViewResolver	替换自动配置的velocity视图解析

器，并自定义 	layoutUrl	及应用所有自动配置的属性：

@Bean(name	=	"velocityViewResolver")

public	VelocityLayoutViewResolver	velocityViewResolver(VelocityP

roperties	properties)	{

				VelocityLayoutViewResolver	resolver	=	new	VelocityLayoutView

Resolver();

				properties.applyToViewResolver(resolver);

				resolver.setLayoutUrl("layout/default.vm");

				return	resolver;

}

71.9	Velocity

556



71.10	使用Thymeleaf	3
默认情况下， 	spring-boot-starter-thymeleaf	使用的是Thymeleaf	2.1，你可

以通过覆盖 	thymeleaf.version	和 	thymeleaf-layout-dialect.version	属性

使用Thymeleaf	3，例如：

<properties>

				<thymeleaf.version>3.0.0.RELEASE</thymeleaf.version>

				<thymeleaf-layout-dialect.version>2.0.0</thymeleaf-layout-di

alect.version>

</dependency>

为了避免关于HTML	5模板模式过期，将使用HTML模板模式的警告提醒，你需要显

式配置 	spring.thymeleaf.mode	为 	HTML	，例如：

spring.thymeleaf.mode:	HTML

具体操作可查看Thymeleaf	3示例。

如果正在使用其他自动配置的Thymeleaf附加组件（Spring	Security，Data
Attribute或Java	8	Time），你需要使用兼容Thymeleaf	3.0的版本覆盖它们现在的

版本。

71.10	使用Thymeleaf	3

557

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-samples/spring-boot-sample-web-thymeleaf3


73.	日志

Spring	Boot除了 	commons-logging	API外没有其他强制性的日志依赖，你有很多

可选的日志实现。想要使用Logback，你需要包含它及 	jcl-over-slf4j	（它实现

了Commons	Logging	API）。最简单的方式是通过依赖 	spring-boot-starter-

logging	的starters。对于一个web应用程序，你只需添加 	spring-boot-

starter-web	依赖，因为它依赖于logging	starter。例如，使用Maven：

<dependency>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-starter-web</artifactId>

</dependency>

Spring	Boot有一个 	LoggingSystem	抽象，用于尝试通过classpath上下文配置日

志系统。如果Logback可用，则首选它。如果你唯一需要做的就是设置不同日志级

别，那可以通过在 	application.properties	中使用 	logging.level	前缀实

现，比如：

logging.level.org.springframework.web=DEBUG

logging.level.org.hibernate=ERROR

你也可以使用 	logging.file	设置日志文件的位置（除控制台之外，默认会输出

到控制台）。

想要对日志系统进行更细粒度的配置，你需要使用 	LoggingSystem	支持的原生配

置格式。默认情况下，Spring	Boot从系统的默认位置加载原生配置（比如对于

Logback为 	classpath:logback.xml	），但你可以使用 	logging.config	属性

设置配置文件的位置。

73.	日志

558

http://logback.qos.ch/


73.1	配置Logback
如果你将 	logback.xml	放到classpath根目录下，那它将会被从这加载

（或 	logback-spring.xml	充分利用Boot提供的模板特性）。Spring	Boot提供一

个默认的基本配置，如果你只是设置日志级别，那你可以包含它，比如：

<?xml	version="1.0"	encoding="UTF-8"?>

<configuration>

				<include	resource="org/springframework/boot/logging/logback/

base.xml"/>

				<logger	name="org.springframework.web"	level="DEBUG"/>

</configuration>

如果查看spring-boot	jar中的 	base.xml	，你将会看到 	LoggingSystem	为你创建

的很多有用的系统属性，比如：

	${PID}	，当前进程id。
	${LOG_FILE}	，如果在Boot外部配置中设置了 	logging.file	。

	${LOG_PATH}	，如果设置了 	logging.path	（表示日志文件产生的目录）。

	${LOG_EXCEPTION_CONVERSION_WORD}	，如果在Boot外部配置中设置

了 	logging.exception-conversion-word	。

Spring	Boot也提供使用自定义的Logback转换器在控制台上输出一些漂亮的彩色

ANSI日志信息（不是日志文件），具体参考默认的 	base.xml	配置。

如果Groovy在classpath下，你也可以使用 	logback.groovy	配置Logback。

73.1	配置Logback

559



73.1.1	配置logback只输出到文件

如果想禁用控制台日志记录，只将输出写入文件中，你需要一个只导入 	file-

appender.xml	而不是 	console-appender.xml	的自定义 	logback-

spring.xml	：

<?xml	version="1.0"	encoding="UTF-8"?>

<configuration>

				<include	resource="org/springframework/boot/logging/logback/

defaults.xml"	/>

				<property	name="LOG_FILE"	value="${LOG_FILE:-${LOG_PATH:-${L

OG_TEMP:-${java.io.tmpdir:-/tmp}}/}spring.log}"/>

				<include	resource="org/springframework/boot/logging/logback/

file-appender.xml"	/>

				<root	level="INFO">

								<appender-ref	ref="FILE"	/>

				</root>

</configuration>

你还需要将 	logging.file	添加到 	application.properties	：

logging.file=myapplication.log

73.1	配置Logback

560



73.2	配置Log4j
如果Log4j	2出现在classpath下，Spring	Boot会将其作为日志配置。如果你正在使

用starters进行依赖装配，这意味着你需要排除Logback，然后包含log4j	2。如果不

使用starters，除了添加Log4j	2，你还需要提供 	jcl-over-slf4j	依赖（至少）。

最简单的方式可能就是通过starters，尽管它需要排除一些依赖，比如，在Maven
中：

<dependency>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-starter</artifactId>

				<exclusions>

								<exclusion>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-starter-logging</artifactId>

								</exclusion>

				</exclusions>

</dependency>

<dependency>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-starter-log4j2</artifactId>

</dependency>

注	Log4j	starters会收集好依赖以满足普通日志记录的需求（比如，Tomcat中使

用 	java.util.logging	，但使用Log4j	2作为输出），具体查看Actuator	Log4j	2
的示例，了解如何将它用于实战。

73.2	配置Log4j

561

http://logging.apache.org/log4j/2.x


73.2.1	使用YAML或JSON配置Log4j2
除了它的默认XML配置格式，Log4j	2也支持YAML和JSON配置文件。想使用其他

配置文件格式配置Log4j	2，你需要添加合适的依赖到classpath，并以匹配所选格

式的方式命名配置文件：

格式 依赖 文件名

YAML
	com.fasterxml.jackson.core:jackson-

databind	

	com.fasterxml.jackson.dataformat:jackson-

dataformat-yaml	

	log4j2.yaml	

	log4j2.yml	

JSON 	com.fasterxml.jackson.core:jackson-

databind	

	log4j2.json	

	log4j2.jsn	

73.2	配置Log4j

562



74.	数据访问

74.	数据访问

563



74.1	配置数据源

自定义 	DataSource	类型的 	@Bean	可以覆盖默认设置，正如Section	24.7.1,
“Third-party	configuration”解释的那样，你可以很轻松的将它跟一系

列 	Environment	属性绑定：

@Bean

@ConfigurationProperties(prefix="datasource.fancy")

public	DataSource	dataSource()	{

				return	new	FancyDataSource();

}

datasource.fancy.jdbcUrl=jdbc:h2:mem:mydb

datasource.fancy.username=sa

datasource.fancy.poolSize=30

Spring	Boot也提供了一个工具类 	DataSourceBuilder	用来创建标准的数据源。如

果需要重用 	DataSourceProperties	的配置，你可以从它初始化一

个 	DataSourceBuilder	：

@Bean

@ConfigurationProperties(prefix="datasource.mine")

public	DataSource	dataSource(DataSourceProperties	properties)	{

				return	properties.initializeDataSourceBuilder()

												//	additional	customizations

												.build();

}

在此场景中，你保留了通过Spring	Boot暴露的标准属性，通过添

加 	@ConfigurationProperties	，你可以暴露在相应的命命名空间暴露其他特定

实现的配置，	具体详情可参考'Spring	Boot特性'章节中的Section	29.1,	“Configure
a	DataSource”和DataSourceAutoConfiguration类源码。

74.1	配置数据源

564

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java


74.1	配置数据源

565



74.2	配置两个数据源

创建多个数据源和创建一个工作都是一样的，如果使用JDBC或JPA的默认自动配

置，你需要将其中一个设置为 	@Primary	（然后它就能被任何 	@Autowired	注入

获取）。

@Bean

@Primary

@ConfigurationProperties(prefix="datasource.primary")

public	DataSource	primaryDataSource()	{

				return	DataSourceBuilder.create().build();

}

@Bean

@ConfigurationProperties(prefix="datasource.secondary")

public	DataSource	secondaryDataSource()	{

				return	DataSourceBuilder.create().build();

}

74.2	配置两个数据源

566



74.3	使用Spring	Data仓库

Spring	Data可以为你的 	@Repository	接口创建各种风格的实现。Spring	Boot会
为你处理所有事情，只要那些 	@Repositories	接口跟你

的 	@EnableAutoConfiguration	类处于相同的包（或子包）。

对于很多应用来说，你需要做的就是将正确的Spring	Data依赖添加到classpath下
（JPA对应 	spring-boot-starter-data-jpa	，Mongodb对应 	spring-boot-

starter-data-mongodb	），创建一些repository接口来处理 	@Entity	对象，相应

示例可参考JPA	sample或Mongodb	sample。

Spring	Boot会基于它找到的 	@EnableAutoConfiguration	来尝试猜测你

的 	@Repository	定义的位置。想要获取更多控制，可以使

用 	@EnableJpaRepositories	注解（来自Spring	Data	JPA）。

74.3	使用Spring	Data仓库

567

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-samples/spring-boot-sample-data-jpa
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-samples/spring-boot-sample-data-mongodb


74.4	从Spring配置分离	@Entity	定义

Spring	Boot会基于它找到的 	@EnableAutoConfiguration	来尝试猜

测 	@Entity	定义的位置，想要获取更多控制可以使用 	@EntityScan	注解，比

如：

@Configuration

@EnableAutoConfiguration

@EntityScan(basePackageClasses=City.class)

public	class	Application	{

				//...

}

74.4	从Spring配置分离@Entity定义

568



74.5	配置JPA属性

Spring	Data	JPA已经提供了一些独立的配置选项（比如，针对SQL日志），并且

Spring	Boot会暴露它们，针对hibernate的外部配置属性也更多些，最常见的选项如

下：

spring.jpa.hibernate.ddl-auto=create-drop

spring.jpa.hibernate.naming.physical-strategy=com.example.MyPhys

icalNamingStrategy

spring.jpa.database=H2

spring.jpa.show-sql=true

	ddl-auto	配置是个特殊情况，它的默认设置取决于是否使用内嵌数据库（是则默

认值为 	create-drop	，否则为 	none	）。当本地 	EntityManagerFactory	被创

建时，所有 	spring.jpa.properties.*	属性都被作为正常的JPA属性（去掉前

缀）传递进去了。

Spring	Boot提供一致的命名策略，不管你使用什么Hibernate版本。如果使用

Hibernate	4，你可以使用 	spring.jpa.hibernate.naming.strategy	进行自定

义；Hibernate	5定义一个 	Physical	和 	Implicit	命名策略：Spring	Boot默认配

置 	SpringPhysicalNamingStrategy	，该实现提供跟Hibernate	4相同的表结构。

如果你情愿使用Hibernate	5默认的，可以设置以下属性：

spring.jpa.hibernate.naming.physical-strategy=org.hibernate.boot

.model.naming.PhysicalNamingStrategyStandardImpl

具体详情可参考HibernateJpaAutoConfiguration和JpaBaseConfiguration。

74.5	配置JPA属性

569

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java


74.6	使用自定义EntityManagerFactory
为了完全控制 	EntityManagerFactory	的配置，你需要添加一个名

为 	entityManagerFactory	的 	@Bean	，Spring	Boot自动配置会根据是否存在该

类型的bean来关闭它的实体管理器（entity	manager）。

74.6	使用自定义EntityManagerFactory

570



74.7	使用两个EntityManagers
即使默认的 	EntityManagerFactory	工作的很好，你也需要定义一个新

的 	EntityManagerFactory	，因为一旦出现第二个该类型的bean，默认的将会被

关闭。为了轻松的实现该操作，你可以使用Spring	Boot提供

的 	EntityManagerBuilder	，或者如果你喜欢的话可以直接使用来自Spring	ORM
的 	LocalContainerEntityManagerFactoryBean	。

示例：

//	add	two	data	sources	configured	as	above

@Bean

public	LocalContainerEntityManagerFactoryBean	customerEntityMana

gerFactory(

								EntityManagerFactoryBuilder	builder)	{

				return	builder

												.dataSource(customerDataSource())

												.packages(Customer.class)

												.persistenceUnit("customers")

												.build();

}

@Bean

public	LocalContainerEntityManagerFactoryBean	orderEntityManager

Factory(

								EntityManagerFactoryBuilder	builder)	{

				return	builder

												.dataSource(orderDataSource())

												.packages(Order.class)

												.persistenceUnit("orders")

												.build();

}

上面的配置靠自己基本可以运行，想要完成作品你还需要为两

个 	EntityManagers	配置 	TransactionManagers	。其中的一个会被Spring	Boot
默认的 	JpaTransactionManager	获取，如果你将它标记为 	@Primary	。另一个

74.7	使用两个EntityManagers

571



需要显式注入到一个新实例。或你可以使用一个JTA事物管理器生成它两个。

如果使用Spring	Data，你需要相应地需要配置 	@EnableJpaRepositories	：

@Configuration

@EnableJpaRepositories(basePackageClasses	=	Customer.class,

								entityManagerFactoryRef	=	"customerEntityManagerFactory"

)

public	class	CustomerConfiguration	{

				...

}

@Configuration

@EnableJpaRepositories(basePackageClasses	=	Order.class,

								entityManagerFactoryRef	=	"orderEntityManagerFactory")

public	class	OrderConfiguration	{

				...

}

74.7	使用两个EntityManagers

572



74.8	使用普通的persistence.xml
Spring不要求使用XML配置JPA提供者（provider），并且Spring	Boot假定你想要

充分利用该特性。如果你倾向于使用 	persistence.xml	，那你需要定义你自己的

id为 	entityManagerFactory	的 	LocalEntityManagerFactoryBean	类型

的 	@Bean	，并在那设置持久化单元的名称，默认设置可查

看JpaBaseConfiguration。

74.8	使用普通的persistence.xml

573

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java


74.9	使用Spring	Data	JPA和Mongo仓库

Spring	Data	JPA和Spring	Data	Mongo都能自动为你创建 	Repository	实现。如果

它们同时出现在classpath下，你可能需要添加额外的配置来告诉Spring	Boot你想

要哪个（或两个）为你创建仓库。最明确地方式是使用标准的Spring	Data
	@Enable*Repositories	，然后告诉它你的 	Repository	接口的位置（此

处 	*	即可以是Jpa，也可以是Mongo，或者两者都是）。

这里也有 	spring.data.*.repositories.enabled	标志，可用来在外部配置中开

启或关闭仓库的自动配置，这在你想关闭Mongo仓库但仍使用自动配置

的 	MongoTemplate	时非常有用。

相同的障碍和特性也存在于其他自动配置的Spring	Data仓库类型（Elasticsearch,
Solr），只需要改变对应注解的名称和标志。

74.9	使用Spring	Data	JPA和Mongo仓库

574



74.10	将Spring	Data仓库暴露为REST端点

Spring	Data	REST能够将 	Repository	的实现暴露为REST端点，只要该应用启用

Spring	MVC。Spring	Boot暴露一系列来自 	spring.data.rest	命名空间的有用属

性来定制化RepositoryRestConfiguration，你可以使

用 	RepositoryRestConfigurer	提供其他定制。

74.10	将Spring	Data仓库暴露为REST端点

575

http://docs.spring.io/spring-data/rest/docs/current/api/org/springframework/data/rest/core/config/RepositoryRestConfiguration.html
http://docs.spring.io/spring-data/rest/docs/current/api/org/springframework/data/rest/webmvc/config/RepositoryRestConfigurer.html


74.11	配置JPA使用的组件

如果想配置一个JPA使用的组件，你需要确保该组件在JPA之前初始化。组件如果

是Spring	Boot自动配置的，Spring	Boot会为你处理。例如，Flyway是自动配置

的，Hibernate依赖于Flyway，这样Hibernate有机会在使用数据库前对其进行初始

化。

如果自己配置组件，你可以使

用 	EntityManagerFactoryDependsOnPostProcessor	子类设置必要的依赖，例

如，如果你正使用Hibernate搜索，并将Elasticsearch作为它的索引管理器，这样任

何 	EntityManagerFactory		beans必须设置为依赖 	elasticsearchClient	

bean：

/**

	*	{@link	EntityManagerFactoryDependsOnPostProcessor}	that	ensur

es	that

	*	{@link	EntityManagerFactory}	beans	depend	on	the	{@code	elast

icsearchClient}	bean.

	*/

@Configuration

static	class	ElasticsearchJpaDependencyConfiguration

								extends	EntityManagerFactoryDependsOnPostProcessor	{

				ElasticsearchJpaDependencyConfiguration()	{

								super("elasticsearchClient");

				}

}

74.11	配置JPA使用的组件

576



75.	数据库初始化

一个数据库可以使用不同的方式进行初始化，这取决于你的技术栈。或者你可以手

动完成该任务，只要数据库是单独的过程。

75.	数据库初始化

577



75.1	使用JPA初始化数据库

JPA有个生成DDL的特性，并且可以设置为在数据库启动时运行，这可以通过两个

外部属性进行控制：

	spring.jpa.generate-ddl	（ 	boolean	）控制该特性的关闭和开启，跟实

现者没关系。

	spring.jpa.hibernate.ddl-auto	（ 	enum	）是一个Hibernate特性，用于

更细力度的控制该行为，更多详情参考以下内容。

75.1	使用JPA初始化数据库

578



75.2	使用Hibernate初始化数据库

你可以显式设置 	spring.jpa.hibernate.ddl-auto	，标准的Hibernate属性值

有 	none	， 	validate	， 	update	， 	create	， 	create-drop	。Spring	Boot根
据你的数据库是否为内嵌数据库来选择相应的默认值，如果是内嵌型的则默认值

为 	create-drop	，否则为 	none	。通过查看 	Connection	类型可以检查是否为

内嵌型数据库，hsqldb，h2和derby是内嵌的，其他都不是。当从内存数据库迁移

到一个真正的数据库时，你需要当心，在新的平台中不能对数据库表和数据是否存

在进行臆断，你也需要显式设置 	ddl-auto	，或使用其他机制初始化数据库。

此外，启动时处于classpath根目录下的 	import.sql	文件会被执行。这在demos
或测试时很有用，但在生产环境中你可能不期望这样。这是Hibernate的特性，和

Spring没有一点关系。

75.2	使用Hibernate初始化数据库

579



75.3	使用Spring	JDBC初始化数据库

Spring	JDBC有一个初始化 	DataSource	特性，Spring	Boot默认启用该特性，并

从标准的位置 	schema.sql	和 	data.sql	（位于classpath根目录）加载SQL。此

外，Spring	Boot将加载 	schema-${platform}.sql	和 	data-

${platform}.sql	文件（如果存在），在这

里 	platform	是 	spring.datasource.platform	的值，比如，你可以将它设置为

数据库的供应商名称（ 	hsqldb	,	 	h2	,	 	oracle	,	 	mysql	,	 	postgresql	等）。

Spring	Boot默认启用Spring	JDBC初始化快速失败特性，所以如果脚本导致异常产

生，那应用程序将启动失败。脚本的位置可以通过设

置 	spring.datasource.schema	和 	spring.datasource.data	来改变，如果设

置 	spring.datasource.initialize=false	则哪个位置都不会被处理。

你可以设置 	spring.datasource.continue-on-error=true	禁用快速失败特性。

一旦应用程序成熟并被部署了很多次，那该设置就很有用，因为脚本可以充当"可怜

人的迁移"-例如，插入失败时意味着数据已经存在，也就没必要阻止应用继续运

行。

如果你想要在一个JPA应用中使用 	schema.sql	，那如果Hibernate试图创建相同

的表， 	ddl-auto=create-drop	将导致错误产生。为了避免那些错误，可以

将 	ddl-auto	设置为“”（推荐）或 	none	。不管是否使用 	ddl-auto=create-

drop	，你总可以使用 	data.sql	初始化新数据。

75.3	使用Spring	JDBC初始化数据库

580



75.4	初始化Spring	Batch数据库

如果你正在使用Spring	Batch，那么它会为大多数的流行数据库平台预装SQL初始

化脚本。Spring	Boot会检测你的数据库类型，并默认执行那些脚本，在这种情况下

将关闭快速失败特性（错误被记录但不会阻止应用启动）。这是因为那些脚本是可

信任的，通常不会包含bugs，所以错误会被忽略掉，并且对错误的忽略可以让脚本

具有幂等性。你可以使用 	spring.batch.initializer.enabled=false	显式关闭

初始化功能。

75.4	初始化Spring	Batch数据库

581



75.5	使用高级数据迁移工具

Spring	Boot支持两种高级数据迁移工具Flyway(基于SQL)和Liquibase(XML)。

75.5	使用高级数据迁移工具

582

http://flywaydb.org/
http://www.liquibase.org/


75.5.1	启动时执行Flyway数据库迁移

想要在启动时自动运行Flyway数据库迁移，需要将 	org.flywaydb:flyway-

core	添加到你的classpath下。

迁移是一些 	V<VERSION>__<NAME>.sql	格式的脚本（ 	<VERSION>	是一个下划线

分割的版本号，比如'1'或'2_1'）。默认情况下，它们存放

在 	classpath:db/migration	文件夹中，但你可以使用 	flyway.locations	（一

个列表）改变它。详情可参考flyway-core中的 	Flyway	类，查看一些可用的配置，

比如schemas。Spring	Boot在FlywayProperties中提供了一个小的属性集，可用于

禁止迁移，或关闭位置检测。Spring	Boot将调用 	Flyway.migrate()	执行数据库

迁移，如果想要更多控制可提供一个实现FlywayMigrationStrategy的 	@Bean	。

默认情况下，Flyway将自动注入（ 	@Primary	） 	DataSource	到你的上下文，并

用它进行数据迁移。如果想使用不同的 	DataSource	，你可以创建一个，并将它

标记为 	@FlywayDataSource	的 	@Bean	-如果你这样做了，且想要两个数据源，记

得创建另一个并将它标记为 	@Primary	，或者你可以通过在外部配置文件中设

置 	flyway.[url,user,password]	来使用Flyway的原生 	DataSource	。

这是一个Flyway示例，你可以作为参考。

75.5	使用高级数据迁移工具

583

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayProperties.java
https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayMigrationStrategy.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-flyway


75.5.2	启动时执行Liquibase数据库迁移

想要在启动时自动运行Liquibase数据库迁移，你需要

将 	org.liquibase:liquibase-core	添加到classpath下。

你可以使用 	liquibase.change-log	设置master变化日志位置，默认

从 	db/changelog/db.changelog-master.yaml	读取。除了YAML，Liquibase还
支持JSON,	XML和SQL改变日志格式。查看LiquibaseProperties获取可用配置，比

如上下文，默认schema等。

这里有个Liquibase示例可作为参考。

75.5	使用高级数据迁移工具

584

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/liquibase/LiquibaseProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-liquibase


76.	批处理应用

76.	批处理应用

585



76.1	在启动时执行Spring	Batch作业

你可以在上下文的某个地方添加 	@EnableBatchProcessing	来启用Spring	Batch
的自动配置功能。

默认情况下，在启动时它会执行应用的所有作业（Jobs），具体查

看JobLauncherCommandLineRunner。你可以通过指

定 	spring.batch.job.names	（多个作业名以逗号分割）来缩小到一个特定的作

业或多个作业。

如果应用上下文包含一个 	JobRegistry	，那么处

于 	spring.batch.job.names	中的作业将会从registry中查找，而不是从上下文中

自动装配。这是复杂系统中常见的一个模式，在这些系统中多个作业被定义在子上

下文和注册中心。

详情可参考BatchAutoConfiguration和@EnableBatchProcessing。

76.1	在启动时执行Spring	Batch作业

586

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/JobLauncherCommandLineRunner.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.java
https://github.com/spring-projects/spring-batch/blob/master/spring-batch-core/src/main/java/org/springframework/batch/core/configuration/annotation/EnableBatchProcessing.java


77.	执行器（Actuator）

77.	执行器

587



77.1	改变HTTP端口或执行器端点的地址

在一个单独的应用中，执行器的HTTP端口默认和主HTTP端口相同。想要让应用监

听不同的端口，你可以设置外部属性 	management.port	。为了监听一个完全不同

的网络地址（比如，你有一个用于管理的内部网络和一个用于用户应用程序的外部

网络），你可以将 	management.address	设置为一个可用的IP地址，然后将服务

器绑定到该地址。

更多详情可查看ManagementServerProperties源码和'Production-ready特性'章节中

的Section	47.3,	“Customizing	the	management	server	port”。

77.1	改变HTTP端口或执行器端点的地址

588

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementServerProperties.java


77.2	自定义WhiteLabel错误页面

Spring	Boot安装了一个'whitelabel'错误页面，如果你遇到一个服务器错误（机器客

户端消费的是JSON，其他媒体类型则会看到一个具有正确错误码的合乎情理的响

应），那就能在客户端浏览器中看到该页面。你可以设

置 	error.whitelabel.enabled=false	来关闭该功能，但通常你想要添加自己的

错误页面来取代whitelabel。确切地说，如何实现取决于你使用的模板技术。例

如，你正在使用Thymeleaf，你将添加一个 	error.html	模板。如果你正在使用

FreeMarker，那你将添加一个 	error.ftl	模板。通常，你需要的只是一个名称

为 	error	的 	View	，或一个处理 	/error	路径的 	@Controller	。除非你替换了

一些默认配置，否则你将在你的 	ApplicationContext	中找到一

个 	BeanNameViewResolver	，所以一个id为 	error	的 	@Bean	可能是完成该操作

的一个简单方式，详情可参考ErrorMvcAutoConfiguration。

查看Error	Handling章节，了解如何将处理器（handlers）注册到servlet容器中。

77.2	自定义WhiteLabel错误页面

589

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ErrorMvcAutoConfiguration.java


77.3	Actuator和Jersey
执行器HTTP端点只有在基于Spring	MVC的应用才可用，如果想使用Jersey和执行

器，你需要启用Spring	MVC（添加 	spring-boot-starter-web	依赖）。默认情

况下，Jersey和	Spring	MVC分发器servlet被映射到相同路径（ 	/	）。你需要改变

它们中的某个路径（Spring	MVC可以配置 	server.servlet-path	，Jersey可以

配置 	spring.jersey.application-path	）。例如，如果你

在 	application.properties	中添加 	server.servlet-path=/system	，你将

在 	/system	访问执行器HTTP端点。

77.3	Actuator和Jersey

590



78.	安全

78.	安全

591



78.1	关闭Spring	Boot安全配置

不管你在应用的什么地方定义了一个使用 	@EnableWebSecurity	注解

的 	@Configuration	，它都会关闭Spring	Boot中的默认webapp安全设置。想要调

整默认值，你可以尝试设置 	security.*	属性（具体查看SecurityProperties和常

见应用属性的SECURITY章节）。

78.1	关闭Spring	Boot安全配置

592

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#common-application-properties-security


78.2	改变AuthenticationManager并添加用户账号

如果你提供了一个 	AuthenticationManager	类型的 	@Bean	，那么默认的就不会

被创建了，所以你可以获得Spring	Security可用的全部特性（比如，不同的认证选

项）。

Spring	Security也提供了一个方便的 	AuthenticationManagerBuilder	，用于构

建具有常见选项的 	AuthenticationManager	。在一个webapp中，推荐将它注入

到 	WebSecurityConfigurerAdapter	的一个void方法中，比如：

@Configuration

public	class	SecurityConfiguration	extends	WebSecurityConfigurer

Adapter	{

				@Autowired

				public	void	configureGlobal(AuthenticationManagerBuilder	aut

h)	throws	Exception	{

												auth.inMemoryAuthentication()

																.withUser("barry").password("password").roles("U

SER");	//	...	etc.

				}

				//	...	other	stuff	for	application	security

}

如果把它放到一个内部类或一个单独的类中，你将得到最好的结果（也就是不跟很

多其他 	@Beans	混合在一起将允许你改变实例化的顺序）。secure	web	sample是
一个有用的参考模板。

如果你遇到了实例化问题（比如，使用JDBC或JPA进行用户详细信息的存储），那

将 	AuthenticationManagerBuilder	回调提取到一

个 	GlobalAuthenticationConfigurerAdapter	（放到 	init()	方法内以防其他

地方也需要authentication	manager）可能是个不错的选择，比如：

78.2	改变AuthenticationManager并添加用户账号

593

http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jc-authentication
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-web-secure


@Configuration

public	class	AuthenticationManagerConfiguration	extends

				GlobalAuthenticationConfigurerAdapter	{

				@Override

				public	void	init(AuthenticationManagerBuilder	auth)	{

								auth.inMemoryAuthentication()	//	...	etc.

				}

}

78.2	改变AuthenticationManager并添加用户账号

594



78.3	当前端使用代理服务器时启用HTTPS
对于任何应用来说，确保所有的主端点（URL）都只在HTTPS下可用是个重要的苦

差事。如果你使用Tomcat作为servlet容器，那Spring	Boot如果发现一些环境设置的

话，它将自动添加Tomcat自己的 	RemoteIpValve	，你也可以依赖

于 	HttpServletRequest	来报告是否请求是安全的（即使代理服务器的

downstream处理真实的SSL终端）。这个标准行为取决于某些请求头是否出现

（ 	x-forwarded-for	和 	x-forwarded-proto	），这些请求头的名称都是约定好

的，所以对于大多数前端和代理都是有效的。

你可以向 	application.properties	添加以下设置开启该功能，比如：

server.tomcat.remote_ip_header=x-forwarded-for

server.tomcat.protocol_header=x-forwarded-proto

（这些属性出现一个就会开启该功能，或者你可以通过添加一

个 	TomcatEmbeddedServletContainerFactory		bean自己添

加 	RemoteIpValve	）。

Spring	Security也可以配置成针对所有或某些请求需要一个安全渠道（channel）。

想要在一个Spring	Boot应用中开启它，你只需将 	application.properties	中

的 	security.require_ssl	设置为 	true	即可。

78.3	当前端使用代理服务器时启用HTTPS

595



79.	热交换

79.	热交换

596



79.1	重新加载静态内容

Spring	Boot有很多用于热加载的选项，不过推荐使用spring-boot-devtools，因为它

提供了其他开发时特性，比如快速应用重启和LiveReload，还有开发时敏感的配置

加载（比如，模板缓存）。

此外，使用IDE开发也是一个不错的方式，特别是需要调试的时候（所有的现代

IDEs都允许重新加载静态资源，通常也支持对变更的Java类进行热交换）。

最后，Maven和Gradle插件也支持命令行下的静态文件热加载。如果你使用其他高

级工具编写css/js，并使用外部的css/js编译器，那你就可以充分利用该功能。

79.1	重新加载静态内容

597



79.2.	在不重启容器的情况下重新加载模板

Spring	Boot支持的大多数模板技术包含一个禁用缓存的配置选项，如果你正在使

用 	spring-boot-devtools	模块，Spring	Boot在开发期间会自动为你配置那些属

性。

79.2.	在不重启容器的情况下重新加载模板

598



79.2.1	Thymeleaf模板

如果你正在使用Thymeleaf，那就将 	spring.thymeleaf.cache	设置为 	false	，

查看ThymeleafAutoConfiguration可以获取其他Thymeleaf自定义选项。

79.2.	在不重启容器的情况下重新加载模板

599

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java


79.2.2	FreeMarker模板

如果你正在使用FreeMarker，那就将 	spring.freemarker.cache	设置

为 	false	，查看FreeMarkerAutoConfiguration	可以获取其他FreeMarker自定义选

项。

79.2.	在不重启容器的情况下重新加载模板

600

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java


79.2.3	Groovy模板

如果你正在使用Groovy模板，那就将 	spring.groovy.template.cache	设置

为 	false	，查看GroovyTemplateAutoConfiguration可以获取其他Groovy自定义选

项。

79.2.	在不重启容器的情况下重新加载模板

601

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java


79.2.4	Velocity模板

如果你正在使用Velocity，那就将 	spring.velocity.cache	设置为 	false	，查

看VelocityAutoConfiguration可以获取其他Velocity自定义选项。

79.2.	在不重启容器的情况下重新加载模板

602

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/velocity/VelocityAutoConfiguration.java


79.3	应用快速重启

	spring-boot-devtools	模块包括应用自动重启支持，虽然没有其他技术快，比

如JRebel或Spring	Loaded，但比"冷启动"快。在研究其他复杂重启选项时，你最好

自己先试下，更多详情可参考Chapter	20,	Developer	tools章节。

79.3	应用快速重启

603

http://zeroturnaround.com/software/jrebel/
https://github.com/spring-projects/spring-loaded


79.4	在不重启容器的情况下重新加载Java类
现代IDEs（Eclipse,	IDEA等）都支持字节码的热交换，所以如果你做了一个没有影

响类或方法签名的改变，它会利索地重新加载并没有任何影响。

Spring	Loaded在这方面走的更远，它能够重新加载方法签名改变的类定义，如果

对它进行一些自定义配置可以强制 	ApplicationContext	刷新自己（但没有通用

的机制来确保这对一个运行中的应用总是安全的，所以它可能只是一个开发时的技

巧）。

79.4	在不重启容器的情况下重新加载Java类

604

https://github.com/spring-projects/spring-loaded


79.4.1	使用Maven配置Spring	Loaded
为了在Maven命令行下使用Spring	Loaded，你只需将它作为依赖添加到Spring
Boot插件声明中即可，比如：

<plugin>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-maven-plugin</artifactId>

				<dependencies>

								<dependency>

												<groupId>org.springframework</groupId>

												<artifactId>springloaded</artifactId>

												<version>1.2.0.RELEASE</version>

								</dependency>

				</dependencies>

</plugin>

正常情况下，这在Eclipse和IntelliJ	IDEA中工作的相当漂亮，只要它们有相应的，

和Maven默认一致的构建配置（Eclipse	m2e对此支持的更好，开箱即用）。

79.4	在不重启容器的情况下重新加载Java类

605



79.4.2	使用Gradle和IntelliJ	IDEA配置Spring	Loaded
如果想将Spring	Loaded和Gradle，IntelliJ	IDEA结合起来，那你需要付出代价。默

认情况下，IntelliJ	IDEA将类编译到一个跟Gradle不同的位置，这会导致Spring
Loaded监控失败。

为了正确配置IntelliJ	IDEA，你可以使用 	idea		Gradle插件：

buildscript	{

				repositories	{	jcenter()	}

				dependencies	{

								classpath	"org.springframework.boot:spring-boot-gradle-p

lugin:1.4.1.RELEASE"

								classpath	'org.springframework:springloaded:1.2.0.RELEAS

E'

				}

}

apply	plugin:	'idea'

idea	{

				module	{

								inheritOutputDirs	=	false

								outputDir	=	file("$buildDir/classes/main/")

				}

}

//	...

注	IntelliJ	IDEA必须配置跟命令行Gradle任务相同的Java版本，并

且 	springloaded	必须作为一个 	buildscript	依赖被包含进去。

此外，你也可以启用Intellij	IDEA内部的 	Make	Project	Automatically	，这样不

管什么时候只要文件被保存都会自动编译。

79.4	在不重启容器的情况下重新加载Java类

606



80.	构建

80.	构建

607



80.1	生成构建信息

Maven和Gradle都支持产生包含项目版本，坐标，名称的构建信息，该插件可以通

过配置添加其他属性。当这些文件出现时，Spring	Boot自动配置一

个 	BuildProperties		bean。

为了让Maven生成构建信息，你需要为 	build-info		goal添加一个execution：

<build>

				<plugins>

								<plugin>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-maven-plugin</artifactId>

												<version>1.4.1.RELEASE</version>

												<executions>

																<execution>

																				<goals>

																								<goal>build-info</goal>

																				</goals>

																</execution>

												</executions>

								</plugin>

				</plugins>

</build>

注	更多详情查看Spring	Boot	Maven插件文档。

使用Gradle实现同样效果：

springBoot		{

				buildInfo()

}

可以使用DSL添加其他属性：

80.1	生成构建信息

608

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/maven-plugin/


springBoot		{

				buildInfo	{

								additionalProperties	=	[

												'foo':	'bar'

								]

				}

}

80.1	生成构建信息

609



80.2	生成Git信息

Maven和Gradle都支持生成一个 	git.properties	文件，该文件包含项目构建

时 	git	源码的仓库状态。对于Maven用户来说， 	spring-boot-starter-

parent		POM包含一个预配置的插件去产生一个 	git.properties	文件，只需简

单的将以下声明添加到POM中：

<build>

				<plugins>

								<plugin>

												<groupId>pl.project13.maven</groupId>

												<artifactId>git-commit-id-plugin</artifactId>

								</plugin>

				</plugins>

</build>

Gradle用户可以使用gradle-git-properties插件实现相同效果：

plugins	{

				id	"com.gorylenko.gradle-git-properties"	version	"1.4.6"

}

80.2	生成Git信息

610

https://plugins.gradle.org/plugin/com.gorylenko.gradle-git-properties


80.3	自定义依赖版本

如果你使用Maven进行一个直接或间接继承 	spring-boot-dependencies	（比

如 	spring-boot-starter-parent	）的构建，并想覆盖一个特定的第三方依赖，

那你可以添加合适的 	<properties>	元素。浏览spring-boot-dependencies	POM
可以获取一个全面的属性列表。例如，想要选择一个不同的 	slf4j	版本，你可以

添加以下内容：

<properties>

				<slf4j.version>1.7.5<slf4j.version>

</properties>

注	这只在你的Maven项目继承（直接或间接）自 	spring-boot-dependencies	才

有用。如果你使用 	<scope>import</scope>	，将 	spring-boot-

dependencies	添加到自己的 	dependencyManagement	片段，那你必须自己重新

定义artifact而不是覆盖属性。

注	每个Spring	Boot发布都是基于一些特定的第三方依赖集进行设计和测试的，覆

盖版本可能导致兼容性问题。

Gradle中为了覆盖依赖版本，你需要指定如下所示的version：

ext['slf4j.version']	=	'1.7.5'

更多详情查看Gradle	Dependency	Management插件文档。

80.3	自定义依赖版本

611

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-dependencies/pom.xml
https://github.com/spring-gradle-plugins/dependency-management-plugin


80.4	使用Maven创建可执行JAR
	spring-boot-maven-plugin	能够用来创建可执行的'胖'JAR。如果正在使

用 	spring-boot-starter-parent		POM，你可以简单地声明该插件，然后你的

jar将被重新打包：

<build>

				<plugins>

								<plugin>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-maven-plugin</artifactId>

								</plugin>

				</plugins>

</build>

如果没有使用parent	POM，你仍旧可以使用该插件。不过，你需要另外添加一

个 	<executions>	片段：

<build>

				<plugins>

								<plugin>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-maven-plugin</artifactId>

												<version>1.4.1.RELEASE</version>

												<executions>

																<execution>

																				<goals>

																								<goal>repackage</goal>

																				</goals>

																</execution>

												</executions>

								</plugin>

				</plugins>

</build>

查看插件文档获取详细的用例。

80.4	使用Maven创建可执行JAR

612

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/maven-plugin/usage.html


80.4	使用Maven创建可执行JAR

613



80.5	将Spring	Boot应用作为依赖

跟war包一样，Spring	Boot应用不是用来作为依赖的。如果你的应用包含需要跟其

他项目共享的类，最好的方式是将代码放到单独的模块，然后其他项目及你的应用

都可以依赖该模块。

如果不能按照上述推荐的方式重新组织代码，你需要配置Spring	Boot的Maven和
Gradle插件去产生一个单独的artifact，以适合于作为依赖。可执行存档不能用于依

赖，因为可执行jar格式将应用class打包到 	BOOT-INF/classes	，也就意味着可执

行jar用于依赖时会找不到。

为了产生两个artifacts（一个用于依赖，一个用于可执行jar），你需要指定

classifier。classifier用于可执行存档的name，默认存档用于依赖。

可以使用以下配置Maven中classifier的 	exec	：

<build>

				<plugins>

								<plugin>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-maven-plugin</artifactId>

												<configuration>

																<classifier>exec</classifier>

												</configuration>

								</plugin>

				</plugins>

</build>

使用Gradle可以添加以下配置：

bootRepackage		{

				classifier	=	'exec'

}

80.5	将Spring	Boot应用作为依赖

614

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/htmlsingle/#executable-jar-jar-file-structure


80.6	在可执行jar运行时提取特定的版本

在一个可执行jar中，为了运行，多数内嵌的库不需要拆包（unpacked），然而有

一些库可能会遇到问题。例如，JRuby包含它自己的内嵌jar，它假定 	jruby-

complete.jar	本身总是能够直接作为文件访问的。

为了处理任何有问题的库，你可以标记那些特定的内嵌jars，让它们在可执行jar第
一次运行时自动解压到一个临时文件夹中。例如，为了将JRuby标记为使用Maven
插件拆包，你需要添加如下的配置：

<build>

				<plugins>

								<plugin>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-maven-plugin</artifactId>

												<configuration>

																<requiresUnpack>

																				<dependency>

																								<groupId>org.jruby</groupId>

																								<artifactId>jruby-complete</artifactId>

																				</dependency>

																</requiresUnpack>

												</configuration>

								</plugin>

				</plugins>

</build>

使用Gradle完全上述操作：

springBoot		{

				requiresUnpack	=	['org.jruby:jruby-complete']

}

80.6	在可执行jar运行时提取特定的版本

615



80.7	使用排除创建不可执行的JAR
如果你构建的产物既有可执行的jar和非可执行的jar，那你常常需要为可执行的版本

添加额外的配置文件，而这些文件在一个library	jar中是不需要的。比

如， 	application.yml	配置文件可能需要从非可执行的JAR中排除。

下面是如何在Maven中实现：

<build>

				<plugins>

								<plugin>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-maven-plugin</artifactId>

												<configuration>

																<classifier>exec</classifier>

												</configuration>

								</plugin>

								<plugin>

												<artifactId>maven-jar-plugin</artifactId>

												<executions>

																<execution>

																				<id>exec</id>

																				<phase>package</phase>

																				<goals>

																								<goal>jar</goal>

																				</goals>

																				<configuration>

																								<classifier>exec</classifier>

																				</configuration>

																</execution>

																<execution>

																				<phase>package</phase>

																				<goals>

																								<goal>jar</goal>

																				</goals>

																				<configuration>

																								<!--	Need	this	to	ensure	application.yml

	is	excluded	-->

80.7	使用排除创建不可执行的JAR

616



																								<forceCreation>true</forceCreation>

																								<excludes>

																												<exclude>application.yml</exclude>

																								</excludes>

																				</configuration>

																</execution>

												</executions>

								</plugin>

				</plugins>

</build>

在Gradle中，你可以使用标准任务的DSL（领域特定语言）特性创建一个新的JAR
存档，然后在 	bootRepackage	任务中使用 	withJarTask	属性添加对它的依赖：

jar	{

				baseName	=	'spring-boot-sample-profile'

				version	=		'0.0.0'

				excludes	=	['**/application.yml']

}

task('execJar',	type:Jar,	dependsOn:	'jar')	{

				baseName	=	'spring-boot-sample-profile'

				version	=		'0.0.0'

				classifier	=	'exec'

				from	sourceSets.main.output

}

bootRepackage		{

				withJarTask	=	tasks['execJar']

}

80.7	使用排除创建不可执行的JAR

617



80.8	远程调试使用Maven启动的Spring	Boot项目

想要为使用Maven启动的Spring	Boot应用添加一个远程调试器，你可以使用mave
插件的jvmArguments属性，详情参考示例。

80.8	远程调试使用Maven启动的Spring	Boot项目

618

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/maven-plugin/
http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/maven-plugin/examples/run-debug.html


80.9	远程调试使用Gradle启动的Spring	Boot项目

想要为使用Gradle启动的Spring	Boot应用添加一个远程调试器，你可以使

用 	build.gradle	的 	applicationDefaultJvmArgs	属性或 	--debug-jvm	命令

行选项。

build.gradle：

applicationDefaultJvmArgs	=	[

				"-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,addre

ss=5005"

]

命令行：

$	gradle	run	--debug-jvm

详情查看Gradle应用插件。

80.9	远程调试使用Gradle启动的Spring	Boot项目

619

http://www.gradle.org/docs/current/userguide/application_plugin.html


80.10	使用Ant构建可执行存档（不使用spring-boot-
antlib）
想要使用Ant进行构建，你需要抓取依赖，编译，然后像通常那样创建一个jar或war
存档。为了让它可以执行，你可以使用 	spring-boot-antlib	，也可以使用以下

指令：

1.	 如果构建jar，你需要将应用的类和资源打包进内嵌的 	BOOT-INF/classes	目

录。如果构建war，你需要将应用的类打包进内嵌的 	WEB-INF/classes	目

录。

2.	 对于jar，添加运行时依赖到内嵌的 	BOOT-INF/lib	目录。对于war，则添加

到 	WEB-INF/lib	目录。注意不能压缩存档中的实体。

3.	 对于jar，添加 	provided	依赖到内嵌的 	BOOT-INF/lib	目录。对于war，则

添加到 	WEB-INF/lib-provided	目录。注意不能压缩存档中的实体。

4.	 在存档的根目录添加 	spring-boot-loader	类（这样 	Main-Class	就可用

了）。

5.	 使用恰当的启动器，比如对于jar使用 	JarLauncher	作为manifest的 	Main-

Class	属性，指定manifest的其他属性，特别是 	Start-Class	。

示例：

80.10	使用Ant构建可执行存档

620



<target	name="build"	depends="compile">

				<jar	destfile="target/${ant.project.name}-${spring-boot.vers

ion}.jar"	compress="false">

								<mappedresources>

												<fileset	dir="target/classes"	/>

												<globmapper	from="*"	to="BOOT-INF/classes/*"/>

								</mappedresources>

								<mappedresources>

												<fileset	dir="src/main/resources"	erroronmissingdir=

"false"/>

												<globmapper	from="*"	to="BOOT-INF/classes/*"/>

								</mappedresources>

								<mappedresources>

												<fileset	dir="${lib.dir}/runtime"	/>

												<globmapper	from="*"	to="BOOT-INF/lib/*"/>

								</mappedresources>

								<zipfileset	src="${lib.dir}/loader/spring-boot-loader-ja

r-${spring-boot.version}.jar"	/>

								<manifest>

												<attribute	name="Main-Class"	value="org.springframew

ork.boot.loader.JarLauncher"	/>

												<attribute	name="Start-Class"	value="${start-class}"

	/>

								</manifest>

				</jar>

</target>

该Ant示例中有一个 	build.xml	文件及 	manual	任务，可以使用以下命令来运

行：

$	ant	-lib	<folder	containing	ivy-2.2.jar>	clean	manual

在上述操作之后，你可以使用以下命令运行该应用：

$	java	-jar	target/*.jar

80.10	使用Ant构建可执行存档

621

https://github.com/spring-projects/spring-boot/tree/v1.4.1.RELEASE/spring-boot-samples/spring-boot-sample-ant


80.10	使用Ant构建可执行存档

622



80.11	如何使用Java6
如果想在Java6环境中使用Spring	Boot，你需要改变一些配置，具体的改变取决于

你应用的功能。

80.11	如何使用Java6

623



80.11.1	内嵌Servlet容器兼容性

如果你在使用Boot的内嵌Servlet容器，你需要使用一个兼容Java6的容器。Tomcat
7和Jetty	8都是Java	6兼容的。具体参考Section	70.16	使用Tomcat	7.x或8.0和
Section	70.18	使用Jetty	8。

80.11	如何使用Java6

624



80.11.2	Jackson
Jackson	2.7及以后版本需要Java	7，如果想要在Java	6环境使用Jackson，你需要

降级使用Jackson	2.6。

80.11	如何使用Java6

625



80.11.3	JTA	API兼容性

虽然Java	Transaction	API自身不要求Java	7，但官方API	jar包含的已构建类需要

Java	7。如果正在使用JTA，你需要使用能够在Java	6环境工作的jar替换官方的JTA
1.2	API	jar。想要实现这样的效果，你需要排除任

何 	javax.transaction:javax.transaction-api	依赖，并使

用 	org.jboss.spec.javax.transaction:jboss-transaction-

api_1.2_spec:1.0.0.Final	替换它。

80.11	如何使用Java6

626



81.	传统部署

81.	传统部署

627



81.1	创建可部署的war文件

产生一个可部署war包的第一步是提供一个 	SpringBootServletInitializer	子

类，并覆盖它的 	configure	方法，这充分利用了Spring框架对Servlet	3.0的支

持，并允许你在应用通过servlet容器启动时配置它。通常，你只需把应用的主类改

为继承 	SpringBootServletInitializer	即可：

@SpringBootApplication

public	class	Application	extends	SpringBootServletInitializer	{

				@Override

				protected	SpringApplicationBuilder	configure(SpringApplicati

onBuilder	application)	{

								return	application.sources(Application.class);

				}

				public	static	void	main(String[]	args)	throws	Exception	{

								SpringApplication.run(Application.class,	args);

				}

}

下一步是更新你的构建配置，这样你的项目将产生一个war包而不是jar包。如果你

使用Maven，并使用 	spring-boot-starter-parent	（为了配置Maven的war插
件），所有你需要做的就是更改 	pom.xml	的打包方式为 	war	：

<packaging>war</packaging>

如果你使用Gradle，你需要修改 	build.gradle	来将war插件应用到项目上：

apply	plugin:	'war'

该过程最后的一步是确保内嵌的servlet容器不能干扰war包将部署的servlet容器。

为了达到这个目的，你需要将内嵌容器的依赖标记为 	provided	。

如果使用Maven：

81.1	创建可部署的war文件

628



<dependencies>

				<!--	…	-->

				<dependency>

								<groupId>org.springframework.boot</groupId>

								<artifactId>spring-boot-starter-tomcat</artifactId>

								<scope>provided</scope>

				</dependency>

				<!--	…	-->

</dependencies>

如果使用Gradle：

dependencies	{

				//	…

				providedRuntime	'org.springframework.boot:spring-boot-starte

r-tomcat'

				//	…

}

如果你使用Spring	Boot构建工具，将内嵌容器依赖标记为 	provided	将产生一个

可执行war包，在 	lib-provided	目录有该war包的 	provided	依赖。这意味着，

除了部署到servlet容器，你还可以通过使用命令行 	java	-jar	命令来运行应用。

注	查看Spring	Boot基于以上配置的一个Maven示例应用。

81.1	创建可部署的war文件

629

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-traditional/pom.xml


81.2	为老的servlet容器创建可部署的war文件

老的Servlet容器不支持在Servlet	3.0中使用的 	ServletContextInitializer	启动

处理。你仍旧可以在这些容器使用Spring和Spring	Boot，但你需要为应用添加一

个 	web.xml	，并将它配置为通过一个 	DispatcherServlet	加载一

个 	ApplicationContext	。

81.2	为老的servlet容器创建可部署的war文件

630



81.3	将现有的应用转换为Spring	Boot
对于一个非web项目，转换为Spring	Boot应用很容易（抛弃创

建 	ApplicationContext	的代码，取而代之的是调

用 	SpringApplication	或 	SpringApplicationBuilder	）。Spring	MVC	web
应用通常先创建一个可部署的war应用，然后将它迁移为一个可执行的war或jar，建

议阅读Getting	Started	Guide	on	Converting	a	jar	to	a	war.。

通过继承 	SpringBootServletInitializer	创建一个可执行war（比如，在一个

名为 	Application	的类中），然后添加Spring	Boot
的 	@EnableAutoConfiguration	注解，示例：

@Configuration

@EnableAutoConfiguration

@ComponentScan

public	class	Application	extends	SpringBootServletInitializer	{

				@Override

				protected	SpringApplicationBuilder	configure(SpringApplicati

onBuilder	application)	{

								//	Customize	the	application	or	call	application.sources

(...)	to	add	sources

								//	Since	our	example	is	itself	a	@Configuration	class	we

	actually	don't

								//	need	to	override	this	method.

								return	application;

				}

}

记住不管你往 	sources	放什么东西，它仅是一个Spring
	ApplicationContext	，正常情况下，任何生效的在这里也会起作用。有一些

beans你可以先移除，然后让Spring	Boot提供它的默认实现，不过有可能需要先完

成一些事情。

81.3	将现有的应用转换为Spring	Boot

631

http://spring.io/guides/gs/convert-jar-to-war/


静态资源可以移到classpath根目录下

的 	/public	（或 	/static	， 	/resources	， 	/META-INF/resources	）。同样

的方式也适合于 	messages.properties	（Spring	Boot在classpath根目录下自动

发现这些配置）。

美妙的（Vanilla	usage	of）Spring	 	DispatcherServlet	和Spring	Security不需要

改变。如果你的应用有其他特性，比如使用其他servlets或filters，那你可能需要添

加一些配置到你的 	Application	上下文中，按以下操作替换 	web.xml	的那些元

素：

在容器中安装一个 	Servlet	或 	ServletRegistrationBean	类型

的 	@Bean	，就好像 	web.xml	中的 	<servlet/>	和 	<servlet-

mapping/>	。

同样的添加一个 	Filter	或 	FilterRegistrationBean	类型的 	@Bean	（类

似于 	<filter/>	和 	<filter-mapping/>	）。

在XML文件中的 	ApplicationContext	可以通过 	@Import	添加到你

的 	Application	中。简单的情况下，大量使用注解配置可以在几行内定

义 	@Bean	定义。

一旦war可以使用，我们就通过添加一个main方法到 	Application	来让它可以执

行，比如：

public	static	void	main(String[]	args)	{

				SpringApplication.run(Application.class,	args);

}

应用可以划分为多个类别：

没有web.xml的Servlet	3.0+应用

有web.xml的应用

有上下文层次的应用

没有上下文层次的应用

所有这些都可以进行适当的转化，但每个可能需要稍微不同的技巧。

Servlet	3.0+的应用转化的相当简单，如果它们已经使用Spring	Servlet	3.0+初始化

器辅助类。通常所有来自一个存在的 	WebApplicationInitializer	的代码可以

移到一个 	SpringBootServletInitializer	中。如果一个存在的应用有多

个 	ApplicationContext	（比如，如果它使

81.3	将现有的应用转换为Spring	Boot

632



用 	AbstractDispatcherServletInitializer	），那你可以将所有上下文源放进

一个单一的 	SpringApplication	。你遇到的主要难题可能是如果那样不能工作，

那你就要维护上下文层次。参考示例entry	on	building	a	hierarchy。一个存在的包

含web相关特性的父上下文通常需要分解，这样所有的 	ServletContextAware	组

件都处于子上下文中。

对于还不是Spring应用的应用来说，上面的指南有助于你把应用转换为一个Spring
Boot应用，但你也可以选择其他方式。

81.3	将现有的应用转换为Spring	Boot

633

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#howto-build-an-application-context-hierarchy


81.4	部署WAR到Weblogic
想要将Spring	Boot应用部署到Weblogic，你需要确保你的servlet初始化器直接实

现 	WebApplicationInitializer	（即使你继承的基类已经实现了它）。

一个传统的Weblogic初始化器可能如下所示：

import	org.springframework.boot.autoconfigure.SpringBootApplicat

ion;

import	org.springframework.boot.context.web.SpringBootServletIni

tializer;

import	org.springframework.web.WebApplicationInitializer;

@SpringBootApplication

public	class	MyApplication	extends	SpringBootServletInitializer	

implements	WebApplicationInitializer	{

}

如果使用logback，你需要告诉Weblogic你倾向使用的打包版本而不是服务器预装

的版本。你可以通过添加一个具有如下内容的 	WEB-INF/weblogic.xml	实现该操

作：

81.4	部署WAR到Weblogic

634



<?xml	version="1.0"	encoding="UTF-8"?>

<wls:weblogic-web-app

				xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-app"

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

				xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

								http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd

								http://xmlns.oracle.com/weblogic/weblogic-web-app

								http://xmlns.oracle.com/weblogic/weblogic-web-app/1.4/we

blogic-web-app.xsd">

				<wls:container-descriptor>

								<wls:prefer-application-packages>

												<wls:package-name>org.slf4j</wls:package-name>

								</wls:prefer-application-packages>

				</wls:container-descriptor>

</wls:weblogic-web-app>

81.4	部署WAR到Weblogic

635



X.附录

X.附录

636



附录A.	常见应用属性

你可以在 	application.properties/application.yml	文件内部或通过命令行开

关来指定各种属性。本章节提供了一个常见Spring	Boot属性的列表及使用这些属性

的底层类的引用。

注	属性可以来自classpath下的其他jar文件中，所以你不应该把它当成详尽的列

表。定义你自己的属性也是相当合法的。

注	示例文件只是一个指导。不要拷贝/粘贴整个内容到你的应用，而是只提取你需

要的属性。

#	==============================================================

=====

#	COMMON	SPRING	BOOT	PROPERTIES

#

#	This	sample	file	is	provided	as	a	guideline.	Do	NOT	copy	it	in

	its

#	entirety	to	your	own	application.															^^^

#	==============================================================

=====

#	----------------------------------------

#	CORE	PROPERTIES

#	----------------------------------------

#	BANNER

banner.charset=UTF-8	#	Banner	file	encoding.

banner.location=classpath:banner.txt	#	Banner	file	location.

banner.image.location=classpath:banner.gif	#	Banner	image	file	l

ocation	(jpg/png	can	also	be	used).

banner.image.width=	#	Width	of	the	banner	image	in	chars	(defaul

t	76)

banner.image.height=	#	Height	of	the	banner	image	in	chars	(defa

ult	based	on	image	height)

banner.image.margin=	#	Left	hand	image	margin	in	chars	(default	

2)

banner.image.invert=	#	If	images	should	be	inverted	for	dark	ter

附录A.	常见应用属性

637



minal	themes	(default	false)

#	LOGGING

logging.config=	#	Location	of	the	logging	configuration	file.	Fo

r	instance	`classpath:logback.xml`	for	Logback

logging.exception-conversion-word=%wEx	#	Conversion	word	used	wh

en	logging	exceptions.

logging.file=	#	Log	file	name.	For	instance	`myapp.log`

logging.level.*=	#	Log	levels	severity	mapping.	For	instance	`lo

gging.level.org.springframework=DEBUG`

logging.path=	#	Location	of	the	log	file.	For	instance	`/var/log

`

logging.pattern.console=	#	Appender	pattern	for	output	to	the	co

nsole.	Only	supported	with	the	default	logback	setup.

logging.pattern.file=	#	Appender	pattern	for	output	to	the	file.

	Only	supported	with	the	default	logback	setup.

logging.pattern.level=	#	Appender	pattern	for	log	level	(default

	%5p).	Only	supported	with	the	default	logback	setup.

logging.register-shutdown-hook=false	#	Register	a	shutdown	hook	

for	the	logging	system	when	it	is	initialized.

#	AOP

spring.aop.auto=true	#	Add	@EnableAspectJAutoProxy.

spring.aop.proxy-target-class=false	#	Whether	subclass-based	(CG

LIB)	proxies	are	to	be	created	(true)	as	opposed	to	standard	Jav

a	interface-based	proxies	(false).

#	IDENTITY	(ContextIdApplicationContextInitializer)

spring.application.index=	#	Application	index.

spring.application.name=	#	Application	name.

#	ADMIN	(SpringApplicationAdminJmxAutoConfiguration)

spring.application.admin.enabled=false	#	Enable	admin	features	f

or	the	application.

spring.application.admin.jmx-name=org.springframework.boot:type=

Admin,name=SpringApplication	#	JMX	name	of	the	application	admin

	MBean.

#	AUTO-CONFIGURATION

spring.autoconfigure.exclude=	#	Auto-configuration	classes	to	ex

附录A.	常见应用属性

638



clude.

#	SPRING	CORE

spring.beaninfo.ignore=true	#	Skip	search	of	BeanInfo	classes.

#	SPRING	CACHE	(CacheProperties)

spring.cache.cache-names=	#	Comma-separated	list	of	cache	names	

to	create	if	supported	by	the	underlying	cache	manager.

spring.cache.caffeine.spec=	#	The	spec	to	use	to	create	caches.	

Check	CaffeineSpec	for	more	details	on	the	spec	format.

spring.cache.couchbase.expiration=0	#	Entry	expiration	in	millis

econds.	By	default	the	entries	never	expire.

spring.cache.ehcache.config=	#	The	location	of	the	configuration

	file	to	use	to	initialize	EhCache.

spring.cache.guava.spec=	#	The	spec	to	use	to	create	caches.	Che

ck	CacheBuilderSpec	for	more	details	on	the	spec	format.

spring.cache.hazelcast.config=	#	The	location	of	the	configurati

on	file	to	use	to	initialize	Hazelcast.

spring.cache.infinispan.config=	#	The	location	of	the	configurat

ion	file	to	use	to	initialize	Infinispan.

spring.cache.jcache.config=	#	The	location	of	the	configuration	

file	to	use	to	initialize	the	cache	manager.

spring.cache.jcache.provider=	#	Fully	qualified	name	of	the	Cach

ingProvider	implementation	to	use	to	retrieve	the	JSR-107	compli

ant	cache	manager.	Only	needed	if	more	than	one	JSR-107	implemen

tation	is	available	on	the	classpath.

spring.cache.type=	#	Cache	type,	auto-detected	according	to	the	

environment	by	default.

#	SPRING	CONFIG	-	using	environment	property	only	(ConfigFileApp

licationListener)

spring.config.location=	#	Config	file	locations.

spring.config.name=application	#	Config	file	name.

#	HAZELCAST	(HazelcastProperties)

spring.hazelcast.config=	#	The	location	of	the	configuration	fil

e	to	use	to	initialize	Hazelcast.

#	PROJECT	INFORMATION	(ProjectInfoProperties)

spring.info.build.location=classpath:META-INF/build-info.propert

附录A.	常见应用属性

639



ies	#	Location	of	the	generated	build-info.properties	file.

spring.info.git.location=classpath:git.properties	#	Location	of	

the	generated	git.properties	file.

#	JMX

spring.jmx.default-domain=	#	JMX	domain	name.

spring.jmx.enabled=true	#	Expose	management	beans	to	the	JMX	dom

ain.

spring.jmx.server=mbeanServer	#	MBeanServer	bean	name.

#	Email	(MailProperties)

spring.mail.default-encoding=UTF-8	#	Default	MimeMessage	encodin

g.

spring.mail.host=	#	SMTP	server	host.	For	instance	`smtp.example

.com`

spring.mail.jndi-name=	#	Session	JNDI	name.	When	set,	takes	prec

edence	to	others	mail	settings.

spring.mail.password=	#	Login	password	of	the	SMTP	server.

spring.mail.port=	#	SMTP	server	port.

spring.mail.properties.*=	#	Additional	JavaMail	session	properti

es.

spring.mail.protocol=smtp	#	Protocol	used	by	the	SMTP	server.

spring.mail.test-connection=false	#	Test	that	the	mail	server	is

	available	on	startup.

spring.mail.username=	#	Login	user	of	the	SMTP	server.

#	APPLICATION	SETTINGS	(SpringApplication)

spring.main.banner-mode=console	#	Mode	used	to	display	the	banne

r	when	the	application	runs.

spring.main.sources=	#	Sources	(class	name,	package	name	or	XML	

resource	location)	to	include	in	the	ApplicationContext.

spring.main.web-environment=	#	Run	the	application	in	a	web	envi

ronment	(auto-detected	by	default).

#	FILE	ENCODING	(FileEncodingApplicationListener)

spring.mandatory-file-encoding=	#	Expected	character	encoding	th

e	application	must	use.

#	INTERNATIONALIZATION	(MessageSourceAutoConfiguration)

spring.messages.always-use-message-format=false	#	Set	whether	to

附录A.	常见应用属性

640



	always	apply	the	MessageFormat	rules,	parsing	even	messages	wit

hout	arguments.

spring.messages.basename=messages	#	Comma-separated	list	of	base

names,	each	following	the	ResourceBundle	convention.

spring.messages.cache-seconds=-1	#	Loaded	resource	bundle	files	

cache	expiration,	in	seconds.	When	set	to	-1,	bundles	are	cached

	forever.

spring.messages.encoding=UTF-8	#	Message	bundles	encoding.

spring.messages.fallback-to-system-locale=true	#	Set	whether	to	

fall	back	to	the	system	Locale	if	no	files	for	a	specific	Locale

	have	been	found.

#	OUTPUT

spring.output.ansi.enabled=detect	#	Configure	the	ANSI	output.

#	PID	FILE	(ApplicationPidFileWriter)

spring.pid.fail-on-write-error=	#	Fail	if	ApplicationPidFileWrit

er	is	used	but	it	cannot	write	the	PID	file.

spring.pid.file=	#	Location	of	the	PID	file	to	write	(if	Applica

tionPidFileWriter	is	used).

#	PROFILES

spring.profiles.active=	#	Comma-separated	list	of	active	profile

s.

spring.profiles.include=	#	Unconditionally	activate	the	specifie

d	comma	separated	profiles.

#	SENDGRID	(SendGridAutoConfiguration)

spring.sendgrid.api-key=	#	SendGrid	api	key	(alternative	to	user

name/password)

spring.sendgrid.username=	#	SendGrid	account	username

spring.sendgrid.password=	#	SendGrid	account	password

spring.sendgrid.proxy.host=	#	SendGrid	proxy	host

spring.sendgrid.proxy.port=	#	SendGrid	proxy	port

#	----------------------------------------

#	WEB	PROPERTIES

#	----------------------------------------

附录A.	常见应用属性

641



#	EMBEDDED	SERVER	CONFIGURATION	(ServerProperties)

server.address=	#	Network	address	to	which	the	server	should	bin

d	to.

server.compression.enabled=false	#	If	response	compression	is	en

abled.

server.compression.excluded-user-agents=	#	List	of	user-agents	t

o	exclude	from	compression.

server.compression.mime-types=	#	Comma-separated	list	of	MIME	ty

pes	that	should	be	compressed.	For	instance	`text/html,text/css,

application/json`

server.compression.min-response-size=	#	Minimum	response	size	th

at	is	required	for	compression	to	be	performed.	For	instance	204

8

server.connection-timeout=	#	Time	in	milliseconds	that	connector

s	will	wait	for	another	HTTP	request	before	closing	the	connecti

on.	When	not	set,	the	connector's	container-specific	default	wil

l	be	used.	Use	a	value	of	-1	to	indicate	no	(i.e.	infinite)	time

out.

server.context-parameters.*=	#	Servlet	context	init	parameters.	

For	instance	`server.context-parameters.a=alpha`

server.context-path=	#	Context	path	of	the	application.

server.display-name=application	#	Display	name	of	the	applicatio

n.

server.max-http-header-size=0	#	Maximum	size	in	bytes	of	the	HTT

P	message	header.

server.max-http-post-size=0	#	Maximum	size	in	bytes	of	the	HTTP	

post	content.

server.error.include-stacktrace=never	#	When	to	include	a	"stack

trace"	attribute.

server.error.path=/error	#	Path	of	the	error	controller.

server.error.whitelabel.enabled=true	#	Enable	the	default	error	

page	displayed	in	browsers	in	case	of	a	server	error.

server.jetty.acceptors=	#	Number	of	acceptor	threads	to	use.

server.jetty.selectors=	#	Number	of	selector	threads	to	use.

server.jsp-servlet.class-name=org.apache.jasper.servlet.JspServl

et	#	The	class	name	of	the	JSP	servlet.

server.jsp-servlet.init-parameters.*=	#	Init	parameters	used	to	

configure	the	JSP	servlet

server.jsp-servlet.registered=true	#	Whether	or	not	the	JSP	serv

let	is	registered

附录A.	常见应用属性

642



server.port=8080	#	Server	HTTP	port.

server.server-header=	#	Value	to	use	for	the	Server	response	hea

der	(no	header	is	sent	if	empty)

server.servlet-path=/	#	Path	of	the	main	dispatcher	servlet.

server.use-forward-headers=	#	If	X-Forwarded-*	headers	should	be

	applied	to	the	HttpRequest.

server.session.cookie.comment=	#	Comment	for	the	session	cookie.

server.session.cookie.domain=	#	Domain	for	the	session	cookie.

server.session.cookie.http-only=	#	"HttpOnly"	flag	for	the	sessi

on	cookie.

server.session.cookie.max-age=	#	Maximum	age	of	the	session	cook

ie	in	seconds.

server.session.cookie.name=	#	Session	cookie	name.

server.session.cookie.path=	#	Path	of	the	session	cookie.

server.session.cookie.secure=	#	"Secure"	flag	for	the	session	co

okie.

server.session.persistent=false	#	Persist	session	data	between	r

estarts.

server.session.store-dir=	#	Directory	used	to	store	session	data

.

server.session.timeout=	#	Session	timeout	in	seconds.

server.session.tracking-modes=	#	Session	tracking	modes	(one	or	

more	of	the	following:	"cookie",	"url",	"ssl").

server.ssl.ciphers=	#	Supported	SSL	ciphers.

server.ssl.client-auth=	#	Whether	client	authentication	is	wante

d	("want")	or	needed	("need").	Requires	a	trust	store.

server.ssl.enabled=	#	Enable	SSL	support.

server.ssl.enabled-protocols=	#	Enabled	SSL	protocols.

server.ssl.key-alias=	#	Alias	that	identifies	the	key	in	the	key

	store.

server.ssl.key-password=	#	Password	used	to	access	the	key	in	th

e	key	store.

server.ssl.key-store=	#	Path	to	the	key	store	that	holds	the	SSL

	certificate	(typically	a	jks	file).

server.ssl.key-store-password=	#	Password	used	to	access	the	key

	store.

server.ssl.key-store-provider=	#	Provider	for	the	key	store.

server.ssl.key-store-type=	#	Type	of	the	key	store.

server.ssl.protocol=TLS	#	SSL	protocol	to	use.

server.ssl.trust-store=	#	Trust	store	that	holds	SSL	certificate

附录A.	常见应用属性

643



s.

server.ssl.trust-store-password=	#	Password	used	to	access	the	t

rust	store.

server.ssl.trust-store-provider=	#	Provider	for	the	trust	store.

server.ssl.trust-store-type=	#	Type	of	the	trust	store.

server.tomcat.accesslog.directory=logs	#	Directory	in	which	log	

files	are	created.	Can	be	relative	to	the	tomcat	base	dir	or	abs

olute.

server.tomcat.accesslog.enabled=false	#	Enable	access	log.

server.tomcat.accesslog.pattern=common	#	Format	pattern	for	acce

ss	logs.

server.tomcat.accesslog.prefix=access_log	#	Log	file	name	prefix

.

server.tomcat.accesslog.rename-on-rotate=false	#	Defer	inclusion

	of	the	date	stamp	in	the	file	name	until	rotate	time.

server.tomcat.accesslog.suffix=.log	#	Log	file	name	suffix.

server.tomcat.background-processor-delay=30	#	Delay	in	seconds	b

etween	the	invocation	of	backgroundProcess	methods.

server.tomcat.basedir=	#	Tomcat	base	directory.	If	not	specified

	a	temporary	directory	will	be	used.

server.tomcat.internal-proxies=10\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,

3}|\\

								192\\.168\\.\\d{1,3}\\.\\d{1,3}|\\

								169\\.254\\.\\d{1,3}\\.\\d{1,3}|\\

								127\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}|\\

								172\\.1[6-9]{1}\\.\\d{1,3}\\.\\d{1,3}|\\

								172\\.2[0-9]{1}\\.\\d{1,3}\\.\\d{1,3}|\\

								172\\.3[0-1]{1}\\.\\d{1,3}\\.\\d{1,3}	#	regular	expressi

on	matching	trusted	IP	addresses.

server.tomcat.max-threads=0	#	Maximum	amount	of	worker	threads.

server.tomcat.min-spare-threads=0	#	Minimum	amount	of	worker	thr

eads.

server.tomcat.port-header=X-Forwarded-Port	#	Name	of	the	HTTP	he

ader	used	to	override	the	original	port	value.

server.tomcat.protocol-header=	#	Header	that	holds	the	incoming	

protocol,	usually	named	"X-Forwarded-Proto".

server.tomcat.protocol-header-https-value=https	#	Value	of	the	p

rotocol	header	that	indicates	that	the	incoming	request	uses	SSL

.

server.tomcat.redirect-context-root=	#	Whether	requests	to	the	c

附录A.	常见应用属性

644



ontext	root	should	be	redirected	by	appending	a	/	to	the	path.

server.tomcat.remote-ip-header=	#	Name	of	the	http	header	from	w

hich	the	remote	ip	is	extracted.	For	instance	`X-FORWARDED-FOR`

server.tomcat.uri-encoding=UTF-8	#	Character	encoding	to	use	to	

decode	the	URI.

server.undertow.accesslog.dir=	#	Undertow	access	log	directory.

server.undertow.accesslog.enabled=false	#	Enable	access	log.

server.undertow.accesslog.pattern=common	#	Format	pattern	for	ac

cess	logs.

server.undertow.accesslog.prefix=access_log.	#	Log	file	name	pre

fix.

server.undertow.accesslog.suffix=log	#	Log	file	name	suffix.

server.undertow.buffer-size=	#	Size	of	each	buffer	in	bytes.

server.undertow.buffers-per-region=	#	Number	of	buffer	per	regio

n.

server.undertow.direct-buffers=	#	Allocate	buffers	outside	the	J

ava	heap.

server.undertow.io-threads=	#	Number	of	I/O	threads	to	create	fo

r	the	worker.

server.undertow.worker-threads=	#	Number	of	worker	threads.

#	FREEMARKER	(FreeMarkerAutoConfiguration)

spring.freemarker.allow-request-override=false	#	Set	whether	Htt

pServletRequest	attributes	are	allowed	to	override	(hide)	contro

ller	generated	model	attributes	of	the	same	name.

spring.freemarker.allow-session-override=false	#	Set	whether	Htt

pSession	attributes	are	allowed	to	override	(hide)	controller	ge

nerated	model	attributes	of	the	same	name.

spring.freemarker.cache=false	#	Enable	template	caching.

spring.freemarker.charset=UTF-8	#	Template	encoding.

spring.freemarker.check-template-location=true	#	Check	that	the	

templates	location	exists.

spring.freemarker.content-type=text/html	#	Content-Type	value.

spring.freemarker.enabled=true	#	Enable	MVC	view	resolution	for	

this	technology.

spring.freemarker.expose-request-attributes=false	#	Set	whether	

all	request	attributes	should	be	added	to	the	model	prior	to	mer

ging	with	the	template.

spring.freemarker.expose-session-attributes=false	#	Set	whether	

all	HttpSession	attributes	should	be	added	to	the	model	prior	to

附录A.	常见应用属性

645



	merging	with	the	template.

spring.freemarker.expose-spring-macro-helpers=true	#	Set	whether

	to	expose	a	RequestContext	for	use	by	Spring's	macro	library,	u

nder	the	name	"springMacroRequestContext".

spring.freemarker.prefer-file-system-access=true	#	Prefer	file	s

ystem	access	for	template	loading.	File	system	access	enables	ho

t	detection	of	template	changes.

spring.freemarker.prefix=	#	Prefix	that	gets	prepended	to	view	n

ames	when	building	a	URL.

spring.freemarker.request-context-attribute=	#	Name	of	the	Reque

stContext	attribute	for	all	views.

spring.freemarker.settings.*=	#	Well-known	FreeMarker	keys	which

	will	be	passed	to	FreeMarker's	Configuration.

spring.freemarker.suffix=	#	Suffix	that	gets	appended	to	view	na

mes	when	building	a	URL.

spring.freemarker.template-loader-path=classpath:/templates/	#	C

omma-separated	list	of	template	paths.

spring.freemarker.view-names=	#	White	list	of	view	names	that	ca

n	be	resolved.

#	GROOVY	TEMPLATES	(GroovyTemplateAutoConfiguration)

spring.groovy.template.allow-request-override=false	#	Set	whethe

r	HttpServletRequest	attributes	are	allowed	to	override	(hide)	c

ontroller	generated	model	attributes	of	the	same	name.

spring.groovy.template.allow-session-override=false	#	Set	whethe

r	HttpSession	attributes	are	allowed	to	override	(hide)	controll

er	generated	model	attributes	of	the	same	name.

spring.groovy.template.cache=	#	Enable	template	caching.

spring.groovy.template.charset=UTF-8	#	Template	encoding.

spring.groovy.template.check-template-location=true	#	Check	that

	the	templates	location	exists.

spring.groovy.template.configuration.*=	#	See	GroovyMarkupConfig

urer

spring.groovy.template.content-type=test/html	#	Content-Type	val

ue.

spring.groovy.template.enabled=true	#	Enable	MVC	view	resolution

	for	this	technology.

spring.groovy.template.expose-request-attributes=false	#	Set	whe

ther	all	request	attributes	should	be	added	to	the	model	prior	t

o	merging	with	the	template.

附录A.	常见应用属性

646



spring.groovy.template.expose-session-attributes=false	#	Set	whe

ther	all	HttpSession	attributes	should	be	added	to	the	model	pri

or	to	merging	with	the	template.

spring.groovy.template.expose-spring-macro-helpers=true	#	Set	wh

ether	to	expose	a	RequestContext	for	use	by	Spring's	macro	libra

ry,	under	the	name	"springMacroRequestContext".

spring.groovy.template.prefix=	#	Prefix	that	gets	prepended	to	v

iew	names	when	building	a	URL.

spring.groovy.template.request-context-attribute=	#	Name	of	the	

RequestContext	attribute	for	all	views.

spring.groovy.template.resource-loader-path=classpath:/templates

/	#	Template	path.

spring.groovy.template.suffix=.tpl	#	Suffix	that	gets	appended	t

o	view	names	when	building	a	URL.

spring.groovy.template.view-names=	#	White	list	of	view	names	th

at	can	be	resolved.

#	SPRING	HATEOAS	(HateoasProperties)

spring.hateoas.use-hal-as-default-json-media-type=true	#	Specify

	if	application/hal+json	responses	should	be	sent	to	requests	th

at	accept	application/json.

#	HTTP	message	conversion

spring.http.converters.preferred-json-mapper=jackson	#	Preferred

	JSON	mapper	to	use	for	HTTP	message	conversion.	Set	to	"gson"	t

o	force	the	use	of	Gson	when	both	it	and	Jackson	are	on	the	clas

spath.

#	HTTP	encoding	(HttpEncodingProperties)

spring.http.encoding.charset=UTF-8	#	Charset	of	HTTP	requests	an

d	responses.	Added	to	the	"Content-Type"	header	if	not	set	expli

citly.

spring.http.encoding.enabled=true	#	Enable	http	encoding	support

.

spring.http.encoding.force=	#	Force	the	encoding	to	the	configur

ed	charset	on	HTTP	requests	and	responses.

spring.http.encoding.force-request=	#	Force	the	encoding	to	the	

configured	charset	on	HTTP	requests.	Defaults	to	true	when	"forc

e"	has	not	been	specified.

spring.http.encoding.force-response=	#	Force	the	encoding	to	the

附录A.	常见应用属性

647



	configured	charset	on	HTTP	responses.

#	MULTIPART	(MultipartProperties)

spring.http.multipart.enabled=true	#	Enable	support	of	multi-par

t	uploads.

spring.http.multipart.file-size-threshold=0	#	Threshold	after	wh

ich	files	will	be	written	to	disk.	Values	can	use	the	suffixed	"

MB"	or	"KB"	to	indicate	a	Megabyte	or	Kilobyte	size.

spring.http.multipart.location=	#	Intermediate	location	of	uploa

ded	files.

spring.http.multipart.max-file-size=1Mb	#	Max	file	size.	Values	

can	use	the	suffixed	"MB"	or	"KB"	to	indicate	a	Megabyte	or	Kilo

byte	size.

spring.http.multipart.max-request-size=10Mb	#	Max	request	size.	

Values	can	use	the	suffixed	"MB"	or	"KB"	to	indicate	a	Megabyte	

or	Kilobyte	size.

spring.http.multipart.resolve-lazily=false	#	Whether	to	resolve	

the	multipart	request	lazily	at	the	time	of	file	or	parameter	ac

cess.

#	JACKSON	(JacksonProperties)

spring.jackson.date-format=	#	Date	format	string	or	a	fully-qual

ified	date	format	class	name.	For	instance	`yyyy-MM-dd	HH:mm:ss`

.

spring.jackson.default-property-inclusion=	#	Controls	the	inclus

ion	of	properties	during	serialization.

spring.jackson.deserialization.*=	#	Jackson	on/off	features	that

	affect	the	way	Java	objects	are	deserialized.

spring.jackson.generator.*=	#	Jackson	on/off	features	for	genera

tors.

spring.jackson.joda-date-time-format=	#	Joda	date	time	format	st

ring.	If	not	configured,	"date-format"	will	be	used	as	a	fallbac

k	if	it	is	configured	with	a	format	string.

spring.jackson.locale=	#	Locale	used	for	formatting.

spring.jackson.mapper.*=	#	Jackson	general	purpose	on/off	featur

es.

spring.jackson.parser.*=	#	Jackson	on/off	features	for	parsers.

spring.jackson.property-naming-strategy=	#	One	of	the	constants	

on	Jackson's	PropertyNamingStrategy.	Can	also	be	a	fully-qualifi

ed	class	name	of	a	PropertyNamingStrategy	subclass.

附录A.	常见应用属性

648



spring.jackson.serialization.*=	#	Jackson	on/off	features	that	a

ffect	the	way	Java	objects	are	serialized.

spring.jackson.serialization-inclusion=	#	Controls	the	inclusion

	of	properties	during	serialization.	Configured	with	one	of	the	

values	in	Jackson's	JsonInclude.Include	enumeration.

spring.jackson.time-zone=	#	Time	zone	used	when	formatting	dates

.	For	instance	`America/Los_Angeles`

#	JERSEY	(JerseyProperties)

spring.jersey.application-path=	#	Path	that	serves	as	the	base	U

RI	for	the	application.	Overrides	the	value	of	"@ApplicationPath

"	if	specified.

spring.jersey.filter.order=0	#	Jersey	filter	chain	order.

spring.jersey.init.*=	#	Init	parameters	to	pass	to	Jersey	via	th

e	servlet	or	filter.

spring.jersey.servlet.load-on-startup=-1	#	Load	on	startup	prior

ity	of	the	Jersey	servlet.

spring.jersey.type=servlet	#	Jersey	integration	type.

#	SPRING	MOBILE	DEVICE	VIEWS	(DeviceDelegatingViewResolverAutoCo

nfiguration)

spring.mobile.devicedelegatingviewresolver.enable-fallback=false

	#	Enable	support	for	fallback	resolution.

spring.mobile.devicedelegatingviewresolver.enabled=false	#	Enabl

e	device	view	resolver.

spring.mobile.devicedelegatingviewresolver.mobile-prefix=mobile/

	#	Prefix	that	gets	prepended	to	view	names	for	mobile	devices.

spring.mobile.devicedelegatingviewresolver.mobile-suffix=	#	Suff

ix	that	gets	appended	to	view	names	for	mobile	devices.

spring.mobile.devicedelegatingviewresolver.normal-prefix=	#	Pref

ix	that	gets	prepended	to	view	names	for	normal	devices.

spring.mobile.devicedelegatingviewresolver.normal-suffix=	#	Suff

ix	that	gets	appended	to	view	names	for	normal	devices.

spring.mobile.devicedelegatingviewresolver.tablet-prefix=tablet/

	#	Prefix	that	gets	prepended	to	view	names	for	tablet	devices.

spring.mobile.devicedelegatingviewresolver.tablet-suffix=	#	Suff

ix	that	gets	appended	to	view	names	for	tablet	devices.

#	SPRING	MOBILE	SITE	PREFERENCE	(SitePreferenceAutoConfiguration

)

附录A.	常见应用属性

649



spring.mobile.sitepreference.enabled=true	#	Enable	SitePreferenc

eHandler.

#	MUSTACHE	TEMPLATES	(MustacheAutoConfiguration)

spring.mustache.allow-request-override=	#	Set	whether	HttpServle

tRequest	attributes	are	allowed	to	override	(hide)	controller	ge

nerated	model	attributes	of	the	same	name.

spring.mustache.allow-session-override=	#	Set	whether	HttpSessio

n	attributes	are	allowed	to	override	(hide)	controller	generated

	model	attributes	of	the	same	name.

spring.mustache.cache=	#	Enable	template	caching.

spring.mustache.charset=	#	Template	encoding.

spring.mustache.check-template-location=	#	Check	that	the	templa

tes	location	exists.

spring.mustache.content-type=	#	Content-Type	value.

spring.mustache.enabled=	#	Enable	MVC	view	resolution	for	this	t

echnology.

spring.mustache.expose-request-attributes=	#	Set	whether	all	req

uest	attributes	should	be	added	to	the	model	prior	to	merging	wi

th	the	template.

spring.mustache.expose-session-attributes=	#	Set	whether	all	Htt

pSession	attributes	should	be	added	to	the	model	prior	to	mergin

g	with	the	template.

spring.mustache.expose-spring-macro-helpers=	#	Set	whether	to	ex

pose	a	RequestContext	for	use	by	Spring's	macro	library,	under	t

he	name	"springMacroRequestContext".

spring.mustache.prefix=classpath:/templates/	#	Prefix	to	apply	t

o	template	names.

spring.mustache.request-context-attribute=	#	Name	of	the	Request

Context	attribute	for	all	views.

spring.mustache.suffix=.html	#	Suffix	to	apply	to	template	names

.

spring.mustache.view-names=	#	White	list	of	view	names	that	can	

be	resolved.

#	SPRING	MVC	(WebMvcProperties)

spring.mvc.async.request-timeout=	#	Amount	of	time	(in	milliseco

nds)	before	asynchronous	request	handling	times	out.

spring.mvc.date-format=	#	Date	format	to	use.	For	instance	`dd/M

M/yyyy`.

附录A.	常见应用属性

650



spring.mvc.dispatch-trace-request=false	#	Dispatch	TRACE	request

s	to	the	FrameworkServlet	doService	method.

spring.mvc.dispatch-options-request=true	#	Dispatch	OPTIONS	requ

ests	to	the	FrameworkServlet	doService	method.

spring.mvc.favicon.enabled=true	#	Enable	resolution	of	favicon.i

co.

spring.mvc.formcontent.putfilter.enabled=true	#	Enable	Spring's	

HttpPutFormContentFilter.

spring.mvc.ignore-default-model-on-redirect=true	#	If	the	conten

t	of	the	"default"	model	should	be	ignored	during	redirect	scena

rios.

spring.mvc.locale=	#	Locale	to	use.	By	default,	this	locale	is	o

verridden	by	the	"Accept-Language"	header.

spring.mvc.locale-resolver=accept-header	#	Define	how	the	locale

	should	be	resolved.

spring.mvc.log-resolved-exception=false	#	Enable	warn	logging	of

	exceptions	resolved	by	a	"HandlerExceptionResolver".

spring.mvc.media-types.*=	#	Maps	file	extensions	to	media	types	

for	content	negotiation.

spring.mvc.message-codes-resolver-format=	#	Formatting	strategy	

for	message	codes.	For	instance	`PREFIX_ERROR_CODE`.

spring.mvc.servlet.load-on-startup=-1	#	Load	on	startup	priority

	of	the	Spring	Web	Services	servlet.

spring.mvc.static-path-pattern=/**	#	Path	pattern	used	for	stati

c	resources.

spring.mvc.throw-exception-if-no-handler-found=false	#	If	a	"NoH

andlerFoundException"	should	be	thrown	if	no	Handler	was	found	t

o	process	a	request.

spring.mvc.view.prefix=	#	Spring	MVC	view	prefix.

spring.mvc.view.suffix=	#	Spring	MVC	view	suffix.

#	SPRING	RESOURCES	HANDLING	(ResourceProperties)

spring.resources.add-mappings=true	#	Enable	default	resource	han

dling.

spring.resources.cache-period=	#	Cache	period	for	the	resources	

served	by	the	resource	handler,	in	seconds.

spring.resources.chain.cache=true	#	Enable	caching	in	the	Resour

ce	chain.

spring.resources.chain.enabled=	#	Enable	the	Spring	Resource	Han

dling	chain.	Disabled	by	default	unless	at	least	one	strategy	ha

附录A.	常见应用属性

651



s	been	enabled.

spring.resources.chain.gzipped=false	#	Enable	resolution	of	alre

ady	gzipped	resources.

spring.resources.chain.html-application-cache=false	#	Enable	HTM

L5	application	cache	manifest	rewriting.

spring.resources.chain.strategy.content.enabled=false	#	Enable	t

he	content	Version	Strategy.

spring.resources.chain.strategy.content.paths=/**	#	Comma-separa

ted	list	of	patterns	to	apply	to	the	Version	Strategy.

spring.resources.chain.strategy.fixed.enabled=false	#	Enable	the

	fixed	Version	Strategy.

spring.resources.chain.strategy.fixed.paths=/**	#	Comma-separate

d	list	of	patterns	to	apply	to	the	Version	Strategy.

spring.resources.chain.strategy.fixed.version=	#	Version	string	

to	use	for	the	Version	Strategy.

spring.resources.static-locations=classpath:/META-INF/resources/

,classpath:/resources/,classpath:/static/,classpath:/public/	#	L

ocations	of	static	resources.

#	SPRING	SESSION	(SessionProperties)

spring.session.hazelcast.map-name=spring:session:sessions	#	Name

	of	the	map	used	to	store	sessions.

spring.session.jdbc.initializer.enabled=	#	Create	the	required	s

ession	tables	on	startup	if	necessary.	Enabled	automatically	if	

the	default	table	name	is	set	or	a	custom	schema	is	configured.

spring.session.jdbc.schema=classpath:org/springframework/session

/jdbc/schema-@@platform@@.sql	#	Path	to	the	SQL	file	to	use	to	i

nitialize	the	database	schema.

spring.session.jdbc.table-name=SPRING_SESSION	#	Name	of	database

	table	used	to	store	sessions.

spring.session.mongo.collection-name=sessions	#	Collection	name	

used	to	store	sessions.

spring.session.redis.flush-mode=	#	Flush	mode	for	the	Redis	sess

ions.

spring.session.redis.namespace=	#	Namespace	for	keys	used	to	sto

re	sessions.

spring.session.store-type=	#	Session	store	type.

#	SPRING	SOCIAL	(SocialWebAutoConfiguration)

spring.social.auto-connection-views=false	#	Enable	the	connectio

附录A.	常见应用属性

652



n	status	view	for	supported	providers.

#	SPRING	SOCIAL	FACEBOOK	(FacebookAutoConfiguration)

spring.social.facebook.app-id=	#	your	application's	Facebook	App

	ID

spring.social.facebook.app-secret=	#	your	application's	Facebook

	App	Secret

#	SPRING	SOCIAL	LINKEDIN	(LinkedInAutoConfiguration)

spring.social.linkedin.app-id=	#	your	application's	LinkedIn	App

	ID

spring.social.linkedin.app-secret=	#	your	application's	LinkedIn

	App	Secret

#	SPRING	SOCIAL	TWITTER	(TwitterAutoConfiguration)

spring.social.twitter.app-id=	#	your	application's	Twitter	App	I

D

spring.social.twitter.app-secret=	#	your	application's	Twitter	A

pp	Secret

#	THYMELEAF	(ThymeleafAutoConfiguration)

spring.thymeleaf.cache=true	#	Enable	template	caching.

spring.thymeleaf.check-template=true	#	Check	that	the	template	e

xists	before	rendering	it.

spring.thymeleaf.check-template-location=true	#	Check	that	the	t

emplates	location	exists.

spring.thymeleaf.content-type=text/html	#	Content-Type	value.

spring.thymeleaf.enabled=true	#	Enable	MVC	Thymeleaf	view	resolu

tion.

spring.thymeleaf.encoding=UTF-8	#	Template	encoding.

spring.thymeleaf.excluded-view-names=	#	Comma-separated	list	of	

view	names	that	should	be	excluded	from	resolution.

spring.thymeleaf.mode=HTML5	#	Template	mode	to	be	applied	to	tem

plates.	See	also	StandardTemplateModeHandlers.

spring.thymeleaf.prefix=classpath:/templates/	#	Prefix	that	gets

	prepended	to	view	names	when	building	a	URL.

spring.thymeleaf.suffix=.html	#	Suffix	that	gets	appended	to	vie

w	names	when	building	a	URL.

spring.thymeleaf.template-resolver-order=	#	Order	of	the	templat

e	resolver	in	the	chain.

附录A.	常见应用属性

653



spring.thymeleaf.view-names=	#	Comma-separated	list	of	view	name

s	that	can	be	resolved.

#	VELOCITY	TEMPLATES	(VelocityAutoConfiguration)

spring.velocity.allow-request-override=false	#	Set	whether	HttpS

ervletRequest	attributes	are	allowed	to	override	(hide)	controll

er	generated	model	attributes	of	the	same	name.

spring.velocity.allow-session-override=false	#	Set	whether	HttpS

ession	attributes	are	allowed	to	override	(hide)	controller	gene

rated	model	attributes	of	the	same	name.

spring.velocity.cache=	#	Enable	template	caching.

spring.velocity.charset=UTF-8	#	Template	encoding.

spring.velocity.check-template-location=true	#	Check	that	the	te

mplates	location	exists.

spring.velocity.content-type=text/html	#	Content-Type	value.

spring.velocity.date-tool-attribute=	#	Name	of	the	DateTool	help

er	object	to	expose	in	the	Velocity	context	of	the	view.

spring.velocity.enabled=true	#	Enable	MVC	view	resolution	for	th

is	technology.

spring.velocity.expose-request-attributes=false	#	Set	whether	al

l	request	attributes	should	be	added	to	the	model	prior	to	mergi

ng	with	the	template.

spring.velocity.expose-session-attributes=false	#	Set	whether	al

l	HttpSession	attributes	should	be	added	to	the	model	prior	to	m

erging	with	the	template.

spring.velocity.expose-spring-macro-helpers=true	#	Set	whether	t

o	expose	a	RequestContext	for	use	by	Spring's	macro	library,	und

er	the	name	"springMacroRequestContext".

spring.velocity.number-tool-attribute=	#	Name	of	the	NumberTool	

helper	object	to	expose	in	the	Velocity	context	of	the	view.

spring.velocity.prefer-file-system-access=true	#	Prefer	file	sys

tem	access	for	template	loading.	File	system	access	enables	hot	

detection	of	template	changes.

spring.velocity.prefix=	#	Prefix	that	gets	prepended	to	view	nam

es	when	building	a	URL.

spring.velocity.properties.*=	#	Additional	velocity	properties.

spring.velocity.request-context-attribute=	#	Name	of	the	Request

Context	attribute	for	all	views.

spring.velocity.resource-loader-path=classpath:/templates/	#	Tem

plate	path.

附录A.	常见应用属性

654



spring.velocity.suffix=.vm	#	Suffix	that	gets	appended	to	view	n

ames	when	building	a	URL.

spring.velocity.toolbox-config-location=	#	Velocity	Toolbox	conf

ig	location.	For	instance	`/WEB-INF/toolbox.xml`

spring.velocity.view-names=	#	White	list	of	view	names	that	can	

be	resolved.

#	SPRING	WEB	SERVICES	(WebServicesProperties)

spring.webservices.path=/services	#	Path	that	serves	as	the	base

	URI	for	the	services.

spring.webservices.servlet.init=	#	Servlet	init	parameters	to	pa

ss	to	Spring	Web	Services.

spring.webservices.servlet.load-on-startup=-1	#	Load	on	startup	

priority	of	the	Spring	Web	Services	servlet.

#	----------------------------------------

#	SECURITY	PROPERTIES

#	----------------------------------------

#	SECURITY	(SecurityProperties)

security.basic.authorize-mode=role	#	Security	authorize	mode	to	

apply.

security.basic.enabled=true	#	Enable	basic	authentication.

security.basic.path=/**	#	Comma-separated	list	of	paths	to	secur

e.

security.basic.realm=Spring	#	HTTP	basic	realm	name.

security.enable-csrf=false	#	Enable	Cross	Site	Request	Forgery	s

upport.

security.filter-order=0	#	Security	filter	chain	order.

security.filter-dispatcher-types=ASYNC,	FORWARD,	INCLUDE,	REQUES

T	#	Security	filter	chain	dispatcher	types.

security.headers.cache=true	#	Enable	cache	control	HTTP	headers.

security.headers.content-type=true	#	Enable	"X-Content-Type-Opti

ons"	header.

security.headers.frame=true	#	Enable	"X-Frame-Options"	header.

security.headers.hsts=	#	HTTP	Strict	Transport	Security	(HSTS)	m

ode	(none,	domain,	all).

security.headers.xss=true	#	Enable	cross	site	scripting	(XSS)	pr

otection.

附录A.	常见应用属性

655



security.ignored=	#	Comma-separated	list	of	paths	to	exclude	fro

m	the	default	secured	paths.

security.require-ssl=false	#	Enable	secure	channel	for	all	reque

sts.

security.sessions=stateless	#	Session	creation	policy	(always,	n

ever,	if_required,	stateless).

security.user.name=user	#	Default	user	name.

security.user.password=	#	Password	for	the	default	user	name.	A	

random	password	is	logged	on	startup	by	default.

security.user.role=USER	#	Granted	roles	for	the	default	user	nam

e.

#	SECURITY	OAUTH2	CLIENT	(OAuth2ClientProperties

security.oauth2.client.client-id=	#	OAuth2	client	id.

security.oauth2.client.client-secret=	#	OAuth2	client	secret.	A	

random	secret	is	generated	by	default

#	SECURITY	OAUTH2	RESOURCES	(ResourceServerProperties

security.oauth2.resource.id=	#	Identifier	of	the	resource.

security.oauth2.resource.jwt.key-uri=	#	The	URI	of	the	JWT	token

.	Can	be	set	if	the	value	is	not	available	and	the	key	is	public

.

security.oauth2.resource.jwt.key-value=	#	The	verification	key	o

f	the	JWT	token.	Can	either	be	a	symmetric	secret	or	PEM-encoded

	RSA	public	key.

security.oauth2.resource.prefer-token-info=true	#	Use	the	token	

info,	can	be	set	to	false	to	use	the	user	info.

security.oauth2.resource.service-id=resource	#

security.oauth2.resource.token-info-uri=	#	URI	of	the	token	deco

ding	endpoint.

security.oauth2.resource.token-type=	#	The	token	type	to	send	wh

en	using	the	userInfoUri.

security.oauth2.resource.user-info-uri=	#	URI	of	the	user	endpoi

nt.

#	SECURITY	OAUTH2	SSO	(OAuth2SsoProperties

security.oauth2.sso.filter-order=	#	Filter	order	to	apply	if	not

	providing	an	explicit	WebSecurityConfigurerAdapter

security.oauth2.sso.login-path=/login	#	Path	to	the	login	page,	

i.e.	the	one	that	triggers	the	redirect	to	the	OAuth2	Authorizat

附录A.	常见应用属性

656



ion	Server

#	----------------------------------------

#	DATA	PROPERTIES

#	----------------------------------------

#	FLYWAY	(FlywayProperties)

flyway.baseline-description=	#

flyway.baseline-version=1	#	version	to	start	migration

flyway.baseline-on-migrate=	#

flyway.check-location=false	#	Check	that	migration	scripts	locat

ion	exists.

flyway.clean-on-validation-error=	#

flyway.enabled=true	#	Enable	flyway.

flyway.encoding=	#

flyway.ignore-failed-future-migration=	#

flyway.init-sqls=	#	SQL	statements	to	execute	to	initialize	a	co

nnection	immediately	after	obtaining	it.

flyway.locations=classpath:db/migration	#	locations	of	migration

s	scripts

flyway.out-of-order=	#

flyway.password=	#	JDBC	password	if	you	want	Flyway	to	create	it

s	own	DataSource

flyway.placeholder-prefix=	#

flyway.placeholder-replacement=	#

flyway.placeholder-suffix=	#

flyway.placeholders.*=	#

flyway.schemas=	#	schemas	to	update

flyway.sql-migration-prefix=V	#

flyway.sql-migration-separator=	#

flyway.sql-migration-suffix=.sql	#

flyway.table=	#

flyway.url=	#	JDBC	url	of	the	database	to	migrate.	If	not	set,	t

he	primary	configured	data	source	is	used.

flyway.user=	#	Login	user	of	the	database	to	migrate.

flyway.validate-on-migrate=	#

#	LIQUIBASE	(LiquibaseProperties)

liquibase.change-log=classpath:/db/changelog/db.changelog-master

附录A.	常见应用属性

657



.yaml	#	Change	log	configuration	path.

liquibase.check-change-log-location=true	#	Check	the	change	log	

location	exists.

liquibase.contexts=	#	Comma-separated	list	of	runtime	contexts	t

o	use.

liquibase.default-schema=	#	Default	database	schema.

liquibase.drop-first=false	#	Drop	the	database	schema	first.

liquibase.enabled=true	#	Enable	liquibase	support.

liquibase.labels=	#	Comma-separated	list	of	runtime	labels	to	us

e.

liquibase.parameters.*=	#	Change	log	parameters.

liquibase.password=	#	Login	password	of	the	database	to	migrate.

liquibase.rollback-file=	#	File	to	which	rollback	SQL	will	be	wr

itten	when	an	update	is	performed.

liquibase.url=	#	JDBC	url	of	the	database	to	migrate.	If	not	set

,	the	primary	configured	data	source	is	used.

liquibase.user=	#	Login	user	of	the	database	to	migrate.

#	COUCHBASE	(CouchbaseProperties)

spring.couchbase.bootstrap-hosts=	#	Couchbase	nodes	(host	or	IP	

address)	to	bootstrap	from.

spring.couchbase.bucket.name=default	#	Name	of	the	bucket	to	con

nect	to.

spring.couchbase.bucket.password=		#	Password	of	the	bucket.

spring.couchbase.env.endpoints.key-value=1	#	Number	of	sockets	p

er	node	against	the	Key/value	service.

spring.couchbase.env.endpoints.query=1	#	Number	of	sockets	per	n

ode	against	the	Query	(N1QL)	service.

spring.couchbase.env.endpoints.view=1	#	Number	of	sockets	per	no

de	against	the	view	service.

spring.couchbase.env.ssl.enabled=	#	Enable	SSL	support.	Enabled	

automatically	if	a	"keyStore"	is	provided	unless	specified	other

wise.

spring.couchbase.env.ssl.key-store=	#	Path	to	the	JVM	key	store	

that	holds	the	certificates.

spring.couchbase.env.ssl.key-store-password=	#	Password	used	to	

access	the	key	store.

spring.couchbase.env.timeouts.connect=5000	#	Bucket	connections	

timeout	in	milliseconds.

spring.couchbase.env.timeouts.key-value=2500	#	Blocking	operatio

附录A.	常见应用属性

658



ns	performed	on	a	specific	key	timeout	in	milliseconds.

spring.couchbase.env.timeouts.query=7500	#	N1QL	query	operations

	timeout	in	milliseconds.

spring.couchbase.env.timeouts.socket-connect=1000	#	Socket	conne

ct	connections	timeout	in	milliseconds.

spring.couchbase.env.timeouts.view=7500	#	Regular	and	geospatial

	view	operations	timeout	in	milliseconds.

#	DAO	(PersistenceExceptionTranslationAutoConfiguration)

spring.dao.exceptiontranslation.enabled=true	#	Enable	the	Persis

tenceExceptionTranslationPostProcessor.

#	CASSANDRA	(CassandraProperties)

spring.data.cassandra.cluster-name=	#	Name	of	the	Cassandra	clus

ter.

spring.data.cassandra.compression=	#	Compression	supported	by	th

e	Cassandra	binary	protocol.

spring.data.cassandra.connect-timeout-millis=	#	Socket	option:	c

onnection	time	out.

spring.data.cassandra.consistency-level=	#	Queries	consistency	l

evel.

spring.data.cassandra.contact-points=localhost	#	Comma-separated

	list	of	cluster	node	addresses.

spring.data.cassandra.fetch-size=	#	Queries	default	fetch	size.

spring.data.cassandra.keyspace-name=	#	Keyspace	name	to	use.

spring.data.cassandra.load-balancing-policy=	#	Class	name	of	the

	load	balancing	policy.

spring.data.cassandra.port=	#	Port	of	the	Cassandra	server.

spring.data.cassandra.password=	#	Login	password	of	the	server.

spring.data.cassandra.read-timeout-millis=	#	Socket	option:	read

	time	out.

spring.data.cassandra.reconnection-policy=	#	Reconnection	policy

	class.

spring.data.cassandra.retry-policy=	#	Class	name	of	the	retry	po

licy.

spring.data.cassandra.serial-consistency-level=	#	Queries	serial

	consistency	level.

spring.data.cassandra.schema-action=none	#	Schema	action	to	take

	at	startup.

spring.data.cassandra.ssl=false	#	Enable	SSL	support.

附录A.	常见应用属性

659



spring.data.cassandra.username=	#	Login	user	of	the	server.

#	DATA	COUCHBASE	(CouchbaseDataProperties)

spring.data.couchbase.auto-index=false	#	Automatically	create	vi

ews	and	indexes.

spring.data.couchbase.consistency=read-your-own-writes	#	Consist

ency	to	apply	by	default	on	generated	queries.

spring.data.couchbase.repositories.enabled=true	#	Enable	Couchba

se	repositories.

#	ELASTICSEARCH	(ElasticsearchProperties)

spring.data.elasticsearch.cluster-name=elasticsearch	#	Elasticse

arch	cluster	name.

spring.data.elasticsearch.cluster-nodes=	#	Comma-separated	list	

of	cluster	node	addresses.	If	not	specified,	starts	a	client	nod

e.

spring.data.elasticsearch.properties.*=	#	Additional	properties	

used	to	configure	the	client.

spring.data.elasticsearch.repositories.enabled=true	#	Enable	Ela

sticsearch	repositories.

#	MONGODB	(MongoProperties)

spring.data.mongodb.authentication-database=	#	Authentication	da

tabase	name.

spring.data.mongodb.database=test	#	Database	name.

spring.data.mongodb.field-naming-strategy=	#	Fully	qualified	nam

e	of	the	FieldNamingStrategy	to	use.

spring.data.mongodb.grid-fs-database=	#	GridFS	database	name.

spring.data.mongodb.host=localhost	#	Mongo	server	host.

spring.data.mongodb.password=	#	Login	password	of	the	mongo	serv

er.

spring.data.mongodb.port=27017	#	Mongo	server	port.

spring.data.mongodb.repositories.enabled=true	#	Enable	Mongo	rep

ositories.

spring.data.mongodb.uri=mongodb://localhost/test	#	Mongo	databas

e	URI.	When	set,	host	and	port	are	ignored.

spring.data.mongodb.username=	#	Login	user	of	the	mongo	server.

#	DATA	REDIS

spring.data.redis.repositories.enabled=true	#	Enable	Redis	repos

附录A.	常见应用属性

660



itories.

#	NEO4J	(Neo4jProperties)

spring.data.neo4j.compiler=	#	Compiler	to	use.

spring.data.neo4j.embedded.enabled=true	#	Enable	embedded	mode	i

f	the	embedded	driver	is	available.

spring.data.neo4j.password=	#	Login	password	of	the	server.

spring.data.neo4j.repositories.enabled=true	#	Enable	Neo4j	repos

itories.

spring.data.neo4j.session.scope=singleton	#	Scope	(lifetime)	of	

the	session.

spring.data.neo4j.uri=	#	URI	used	by	the	driver.	Auto-detected	b

y	default.

spring.data.neo4j.username=	#	Login	user	of	the	server.

#	DATA	REST	(RepositoryRestProperties)

spring.data.rest.base-path=	#	Base	path	to	be	used	by	Spring	Dat

a	REST	to	expose	repository	resources.

spring.data.rest.default-page-size=	#	Default	size	of	pages.

spring.data.rest.enable-enum-translation=	#	Enable	enum	value	tr

anslation	via	the	Spring	Data	REST	default	resource	bundle.

spring.data.rest.limit-param-name=	#	Name	of	the	URL	query	strin

g	parameter	that	indicates	how	many	results	to	return	at	once.

spring.data.rest.max-page-size=	#	Maximum	size	of	pages.

spring.data.rest.page-param-name=	#	Name	of	the	URL	query	string

	parameter	that	indicates	what	page	to	return.

spring.data.rest.return-body-on-create=	#	Return	a	response	body

	after	creating	an	entity.

spring.data.rest.return-body-on-update=	#	Return	a	response	body

	after	updating	an	entity.

spring.data.rest.sort-param-name=	#	Name	of	the	URL	query	string

	parameter	that	indicates	what	direction	to	sort	results.

#	SOLR	(SolrProperties)

spring.data.solr.host=http://127.0.0.1:8983/solr	#	Solr	host.	Ig

nored	if	"zk-host"	is	set.

spring.data.solr.repositories.enabled=true	#	Enable	Solr	reposit

ories.

spring.data.solr.zk-host=	#	ZooKeeper	host	address	in	the	form	H

OST:PORT.

附录A.	常见应用属性

661



#	DATASOURCE	(DataSourceAutoConfiguration	&	DataSourceProperties

)

spring.datasource.continue-on-error=false	#	Do	not	stop	if	an	er

ror	occurs	while	initializing	the	database.

spring.datasource.data=	#	Data	(DML)	script	resource	reference.

spring.datasource.data-username=	#	User	of	the	database	to	execu

te	DML	scripts	(if	different).

spring.datasource.data-password=	#	Password	of	the	database	to	e

xecute	DML	scripts	(if	different).

spring.datasource.dbcp.*=	#	Commons	DBCP	specific	settings

spring.datasource.dbcp2.*=	#	Commons	DBCP2	specific	settings

spring.datasource.driver-class-name=	#	Fully	qualified	name	of	t

he	JDBC	driver.	Auto-detected	based	on	the	URL	by	default.

spring.datasource.hikari.*=	#	Hikari	specific	settings

spring.datasource.initialize=true	#	Populate	the	database	using	

'data.sql'.

spring.datasource.jmx-enabled=false	#	Enable	JMX	support	(if	pro

vided	by	the	underlying	pool).

spring.datasource.jndi-name=	#	JNDI	location	of	the	datasource.	

Class,	url,	username	&	password	are	ignored	when	set.

spring.datasource.name=testdb	#	Name	of	the	datasource.

spring.datasource.password=	#	Login	password	of	the	database.

spring.datasource.platform=all	#	Platform	to	use	in	the	schema	r

esource	(schema-${platform}.sql).

spring.datasource.schema=	#	Schema	(DDL)	script	resource	referen

ce.

spring.datasource.schema-username=	#	User	of	the	database	to	exe

cute	DDL	scripts	(if	different).

spring.datasource.schema-password=	#	Password	of	the	database	to

	execute	DDL	scripts	(if	different).

spring.datasource.separator=;	#	Statement	separator	in	SQL	initi

alization	scripts.

spring.datasource.sql-script-encoding=	#	SQL	scripts	encoding.

spring.datasource.tomcat.*=	#	Tomcat	datasource	specific	setting

s

spring.datasource.type=	#	Fully	qualified	name	of	the	connection

	pool	implementation	to	use.	By	default,	it	is	auto-detected	fro

m	the	classpath.

spring.datasource.url=	#	JDBC	url	of	the	database.

附录A.	常见应用属性

662



spring.datasource.username=

#	JEST	(Elasticsearch	HTTP	client)	(JestProperties)

spring.elasticsearch.jest.connection-timeout=3000	#	Connection	t

imeout	in	milliseconds.

spring.elasticsearch.jest.password=	#	Login	password.

spring.elasticsearch.jest.proxy.host=	#	Proxy	host	the	HTTP	clie

nt	should	use.

spring.elasticsearch.jest.proxy.port=	#	Proxy	port	the	HTTP	clie

nt	should	use.

spring.elasticsearch.jest.read-timeout=3000	#	Read	timeout	in	mi

lliseconds.

spring.elasticsearch.jest.uris=http://localhost:9200	#	Comma-sep

arated	list	of	the	Elasticsearch	instances	to	use.

spring.elasticsearch.jest.username=	#	Login	user.

#	H2	Web	Console	(H2ConsoleProperties)

spring.h2.console.enabled=false	#	Enable	the	console.

spring.h2.console.path=/h2-console	#	Path	at	which	the	console	w

ill	be	available.

spring.h2.console.settings.trace=false	#	Enable	trace	output.

spring.h2.console.settings.web-allow-others=false	#	Enable	remot

e	access.

#	JOOQ	(JooqAutoConfiguration)

spring.jooq.sql-dialect=	#	SQLDialect	JOOQ	used	when	communicati

ng	with	the	configured	datasource.	For	instance	`POSTGRES`

#	JPA	(JpaBaseConfiguration,	HibernateJpaAutoConfiguration)

spring.data.jpa.repositories.enabled=true	#	Enable	JPA	repositor

ies.

spring.jpa.database=	#	Target	database	to	operate	on,	auto-detec

ted	by	default.	Can	be	alternatively	set	using	the	"databasePlat

form"	property.

spring.jpa.database-platform=	#	Name	of	the	target	database	to	o

perate	on,	auto-detected	by	default.	Can	be	alternatively	set	us

ing	the	"Database"	enum.

spring.jpa.generate-ddl=false	#	Initialize	the	schema	on	startup

.

spring.jpa.hibernate.ddl-auto=	#	DDL	mode.	This	is	actually	a	sh

附录A.	常见应用属性

663



ortcut	for	the	"hibernate.hbm2ddl.auto"	property.	Default	to	"cr

eate-drop"	when	using	an	embedded	database,	"none"	otherwise.

spring.jpa.hibernate.naming.implicit-strategy=	#	Hibernate	5	imp

licit	naming	strategy	fully	qualified	name.

spring.jpa.hibernate.naming.physical-strategy=	#	Hibernate	5	phy

sical	naming	strategy	fully	qualified	name.

spring.jpa.hibernate.naming.strategy=	#	Hibernate	4	naming	strat

egy	fully	qualified	name.	Not	supported	with	Hibernate	5.

spring.jpa.hibernate.use-new-id-generator-mappings=	#	Use	Hibern

ate's	newer	IdentifierGenerator	for	AUTO,	TABLE	and	SEQUENCE.

spring.jpa.open-in-view=true	#	Register	OpenEntityManagerInViewI

nterceptor.	Binds	a	JPA	EntityManager	to	the	thread	for	the	enti

re	processing	of	the	request.

spring.jpa.properties.*=	#	Additional	native	properties	to	set	o

n	the	JPA	provider.

spring.jpa.show-sql=false	#	Enable	logging	of	SQL	statements.

#	JTA	(JtaAutoConfiguration)

spring.jta.enabled=true	#	Enable	JTA	support.

spring.jta.log-dir=	#	Transaction	logs	directory.

spring.jta.transaction-manager-id=	#	Transaction	manager	unique	

identifier.

#	ATOMIKOS	(AtomikosProperties)

spring.jta.atomikos.connectionfactory.borrow-connection-timeout=

30	#	Timeout,	in	seconds,	for	borrowing	connections	from	the	poo

l.

spring.jta.atomikos.connectionfactory.ignore-session-transacted-

flag=true	#	Whether	or	not	to	ignore	the	transacted	flag	when	cr

eating	session.

spring.jta.atomikos.connectionfactory.local-transaction-mode=fal

se	#	Whether	or	not	local	transactions	are	desired.

spring.jta.atomikos.connectionfactory.maintenance-interval=60	#	

The	time,	in	seconds,	between	runs	of	the	pool's	maintenance	thr

ead.

spring.jta.atomikos.connectionfactory.max-idle-time=60	#	The	tim

e,	in	seconds,	after	which	connections	are	cleaned	up	from	the	p

ool.

spring.jta.atomikos.connectionfactory.max-lifetime=0	#	The	time,

	in	seconds,	that	a	connection	can	be	pooled	for	before	being	de

附录A.	常见应用属性

664



stroyed.	0	denotes	no	limit.

spring.jta.atomikos.connectionfactory.max-pool-size=1	#	The	maxi

mum	size	of	the	pool.

spring.jta.atomikos.connectionfactory.min-pool-size=1	#	The	mini

mum	size	of	the	pool.

spring.jta.atomikos.connectionfactory.reap-timeout=0	#	The	reap	

timeout,	in	seconds,	for	borrowed	connections.	0	denotes	no	limi

t.

spring.jta.atomikos.connectionfactory.unique-resource-name=jmsCo

nnectionFactory	#	The	unique	name	used	to	identify	the	resource	

during	recovery.

spring.jta.atomikos.datasource.borrow-connection-timeout=30	#	Ti

meout,	in	seconds,	for	borrowing	connections	from	the	pool.

spring.jta.atomikos.datasource.default-isolation-level=	#	Defaul

t	isolation	level	of	connections	provided	by	the	pool.

spring.jta.atomikos.datasource.login-timeout=	#	Timeout,	in	seco

nds,	for	establishing	a	database	connection.

spring.jta.atomikos.datasource.maintenance-interval=60	#	The	tim

e,	in	seconds,	between	runs	of	the	pool's	maintenance	thread.

spring.jta.atomikos.datasource.max-idle-time=60	#	The	time,	in	s

econds,	after	which	connections	are	cleaned	up	from	the	pool.

spring.jta.atomikos.datasource.max-lifetime=0	#	The	time,	in	sec

onds,	that	a	connection	can	be	pooled	for	before	being	destroyed

.	0	denotes	no	limit.

spring.jta.atomikos.datasource.max-pool-size=1	#	The	maximum	siz

e	of	the	pool.

spring.jta.atomikos.datasource.min-pool-size=1	#	The	minimum	siz

e	of	the	pool.

spring.jta.atomikos.datasource.reap-timeout=0	#	The	reap	timeout

,	in	seconds,	for	borrowed	connections.	0	denotes	no	limit.

spring.jta.atomikos.datasource.test-query=	#	SQL	query	or	statem

ent	used	to	validate	a	connection	before	returning	it.

spring.jta.atomikos.datasource.unique-resource-name=dataSource	#

	The	unique	name	used	to	identify	the	resource	during	recovery.

spring.jta.atomikos.properties.checkpoint-interval=500	#	Interva

l	between	checkpoints.

spring.jta.atomikos.properties.console-file-count=1	#	Number	of	

debug	logs	files	that	can	be	created.

spring.jta.atomikos.properties.console-file-limit=-1	#	How	many	

bytes	can	be	stored	at	most	in	debug	logs	files.

附录A.	常见应用属性

665



spring.jta.atomikos.properties.console-file-name=tm.out	#	Debug	

logs	file	name.

spring.jta.atomikos.properties.console-log-level=	#	Console	log	

level.

spring.jta.atomikos.properties.default-jta-timeout=10000	#	Defau

lt	timeout	for	JTA	transactions.

spring.jta.atomikos.properties.enable-logging=true	#	Enable	disk

	logging.

spring.jta.atomikos.properties.force-shutdown-on-vm-exit=false	#

	Specify	if	a	VM	shutdown	should	trigger	forced	shutdown	of	the	

transaction	core.

spring.jta.atomikos.properties.log-base-dir=	#	Directory	in	whic

h	the	log	files	should	be	stored.

spring.jta.atomikos.properties.log-base-name=tmlog	#	Transaction

s	log	file	base	name.

spring.jta.atomikos.properties.max-actives=50	#	Maximum	number	o

f	active	transactions.

spring.jta.atomikos.properties.max-timeout=300000	#	Maximum	time

out	(in	milliseconds)	that	can	be	allowed	for	transactions.

spring.jta.atomikos.properties.output-dir=	#	Directory	in	which	

to	store	the	debug	log	files.

spring.jta.atomikos.properties.serial-jta-transactions=true	#	Sp

ecify	if	sub-transactions	should	be	joined	when	possible.

spring.jta.atomikos.properties.service=	#	Transaction	manager	im

plementation	that	should	be	started.

spring.jta.atomikos.properties.threaded-two-phase-commit=true	#	

Use	different	(and	concurrent)	threads	for	two-phase	commit	on	t

he	participating	resources.

spring.jta.atomikos.properties.transaction-manager-unique-name=	

#	Transaction	manager's	unique	name.

#	BITRONIX

spring.jta.bitronix.connectionfactory.acquire-increment=1	#	Numb

er	of	connections	to	create	when	growing	the	pool.

spring.jta.bitronix.connectionfactory.acquisition-interval=1	#	T

ime,	in	seconds,	to	wait	before	trying	to	acquire	a	connection	a

gain	after	an	invalid	connection	was	acquired.

spring.jta.bitronix.connectionfactory.acquisition-timeout=30	#	T

imeout,	in	seconds,	for	acquiring	connections	from	the	pool.

spring.jta.bitronix.connectionfactory.allow-local-transactions=t

附录A.	常见应用属性

666



rue	#	Whether	or	not	the	transaction	manager	should	allow	mixing

	XA	and	non-XA	transactions.

spring.jta.bitronix.connectionfactory.apply-transaction-timeout=

false	#	Whether	or	not	the	transaction	timeout	should	be	set	on	

the	XAResource	when	it	is	enlisted.

spring.jta.bitronix.connectionfactory.automatic-enlisting-enable

d=true	#	Whether	or	not	resources	should	be	enlisted	and	deliste

d	automatically.

spring.jta.bitronix.connectionfactory.cache-producers-consumers=

true	#	Whether	or	not	produces	and	consumers	should	be	cached.

spring.jta.bitronix.connectionfactory.defer-connection-release=t

rue	#	Whether	or	not	the	provider	can	run	many	transactions	on	t

he	same	connection	and	supports	transaction	interleaving.

spring.jta.bitronix.connectionfactory.ignore-recovery-failures=f

alse	#	Whether	or	not	recovery	failures	should	be	ignored.

spring.jta.bitronix.connectionfactory.max-idle-time=60	#	The	tim

e,	in	seconds,	after	which	connections	are	cleaned	up	from	the	p

ool.

spring.jta.bitronix.connectionfactory.max-pool-size=10	#	The	max

imum	size	of	the	pool.	0	denotes	no	limit.

spring.jta.bitronix.connectionfactory.min-pool-size=0	#	The	mini

mum	size	of	the	pool.

spring.jta.bitronix.connectionfactory.password=	#	The	password	t

o	use	to	connect	to	the	JMS	provider.

spring.jta.bitronix.connectionfactory.share-transaction-connecti

ons=false	#		Whether	or	not	connections	in	the	ACCESSIBLE	state	

can	be	shared	within	the	context	of	a	transaction.

spring.jta.bitronix.connectionfactory.test-connections=true	#	Wh

ether	or	not	connections	should	be	tested	when	acquired	from	the

	pool.

spring.jta.bitronix.connectionfactory.two-pc-ordering-position=1

	#	The	position	that	this	resource	should	take	during	two-phase	

commit	(always	first	is	Integer.MIN_VALUE,	always	last	is	Intege

r.MAX_VALUE).

spring.jta.bitronix.connectionfactory.unique-name=jmsConnectionF

actory	#	The	unique	name	used	to	identify	the	resource	during	re

covery.

spring.jta.bitronix.connectionfactory.use-tm-join=true	Whether	o

r	not	TMJOIN	should	be	used	when	starting	XAResources.

spring.jta.bitronix.connectionfactory.user=	#	The	user	to	use	to

附录A.	常见应用属性

667



	connect	to	the	JMS	provider.

spring.jta.bitronix.datasource.acquire-increment=1	#	Number	of	c

onnections	to	create	when	growing	the	pool.

spring.jta.bitronix.datasource.acquisition-interval=1	#	Time,	in

	seconds,	to	wait	before	trying	to	acquire	a	connection	again	af

ter	an	invalid	connection	was	acquired.

spring.jta.bitronix.datasource.acquisition-timeout=30	#	Timeout,

	in	seconds,	for	acquiring	connections	from	the	pool.

spring.jta.bitronix.datasource.allow-local-transactions=true	#	W

hether	or	not	the	transaction	manager	should	allow	mixing	XA	and

	non-XA	transactions.

spring.jta.bitronix.datasource.apply-transaction-timeout=false	#

	Whether	or	not	the	transaction	timeout	should	be	set	on	the	XAR

esource	when	it	is	enlisted.

spring.jta.bitronix.datasource.automatic-enlisting-enabled=true	

#	Whether	or	not	resources	should	be	enlisted	and	delisted	autom

atically.

spring.jta.bitronix.datasource.cursor-holdability=	#	The	default

	cursor	holdability	for	connections.

spring.jta.bitronix.datasource.defer-connection-release=true	#	W

hether	or	not	the	database	can	run	many	transactions	on	the	same

	connection	and	supports	transaction	interleaving.

spring.jta.bitronix.datasource.enable-jdbc4-connection-test=	#	W

hether	or	not	Connection.isValid()	is	called	when	acquiring	a	co

nnection	from	the	pool.

spring.jta.bitronix.datasource.ignore-recovery-failures=false	#	

Whether	or	not	recovery	failures	should	be	ignored.

spring.jta.bitronix.datasource.isolation-level=	#	The	default	is

olation	level	for	connections.

spring.jta.bitronix.datasource.local-auto-commit=	#	The	default	

auto-commit	mode	for	local	transactions.

spring.jta.bitronix.datasource.login-timeout=	#	Timeout,	in	seco

nds,	for	establishing	a	database	connection.

spring.jta.bitronix.datasource.max-idle-time=60	#	The	time,	in	s

econds,	after	which	connections	are	cleaned	up	from	the	pool.

spring.jta.bitronix.datasource.max-pool-size=10	#	The	maximum	si

ze	of	the	pool.	0	denotes	no	limit.

spring.jta.bitronix.datasource.min-pool-size=0	#	The	minimum	siz

e	of	the	pool.

spring.jta.bitronix.datasource.prepared-statement-cache-size=0	#

附录A.	常见应用属性

668



	The	target	size	of	the	prepared	statement	cache.	0	disables	the

	cache.

spring.jta.bitronix.datasource.share-transaction-connections=fal

se	#		Whether	or	not	connections	in	the	ACCESSIBLE	state	can	be	

shared	within	the	context	of	a	transaction.

spring.jta.bitronix.datasource.test-query=	#	SQL	query	or	statem

ent	used	to	validate	a	connection	before	returning	it.

spring.jta.bitronix.datasource.two-pc-ordering-position=1	#	The	

position	that	this	resource	should	take	during	two-phase	commit	

(always	first	is	Integer.MIN_VALUE,	always	last	is	Integer.MAX_V

ALUE).

spring.jta.bitronix.datasource.unique-name=dataSource	#	The	uniq

ue	name	used	to	identify	the	resource	during	recovery.

spring.jta.bitronix.datasource.use-tm-join=true	Whether	or	not	T

MJOIN	should	be	used	when	starting	XAResources.

spring.jta.bitronix.properties.allow-multiple-lrc=false	#	Allow	

multiple	LRC	resources	to	be	enlisted	into	the	same	transaction.

spring.jta.bitronix.properties.asynchronous2-pc=false	#	Enable	a

synchronously	execution	of	two	phase	commit.

spring.jta.bitronix.properties.background-recovery-interval-seco

nds=60	#	Interval	in	seconds	at	which	to	run	the	recovery	proces

s	in	the	background.

spring.jta.bitronix.properties.current-node-only-recovery=true	#

	Recover	only	the	current	node.

spring.jta.bitronix.properties.debug-zero-resource-transaction=f

alse	#	Log	the	creation	and	commit	call	stacks	of	transactions	e

xecuted	without	a	single	enlisted	resource.

spring.jta.bitronix.properties.default-transaction-timeout=60	#	

Default	transaction	timeout	in	seconds.

spring.jta.bitronix.properties.disable-jmx=false	#	Enable	JMX	su

pport.

spring.jta.bitronix.properties.exception-analyzer=	#	Set	the	ful

ly	qualified	name	of	the	exception	analyzer	implementation	to	us

e.

spring.jta.bitronix.properties.filter-log-status=false	#	Enable	

filtering	of	logs	so	that	only	mandatory	logs	are	written.

spring.jta.bitronix.properties.force-batching-enabled=true	#		Se

t	if	disk	forces	are	batched.

spring.jta.bitronix.properties.forced-write-enabled=true	#	Set	i

f	logs	are	forced	to	disk.

附录A.	常见应用属性

669



spring.jta.bitronix.properties.graceful-shutdown-interval=60	#	M

aximum	amount	of	seconds	the	TM	will	wait	for	transactions	to	ge

t	done	before	aborting	them	at	shutdown	time.

spring.jta.bitronix.properties.jndi-transaction-synchronization-

registry-name=	#	JNDI	name	of	the	TransactionSynchronizationRegi

stry.

spring.jta.bitronix.properties.jndi-user-transaction-name=	#	JND

I	name	of	the	UserTransaction.

spring.jta.bitronix.properties.journal=disk	#	Name	of	the	journa

l.	Can	be	'disk',	'null'	or	a	class	name.

spring.jta.bitronix.properties.log-part1-filename=btm1.tlog	#	Na

me	of	the	first	fragment	of	the	journal.

spring.jta.bitronix.properties.log-part2-filename=btm2.tlog	#	Na

me	of	the	second	fragment	of	the	journal.

spring.jta.bitronix.properties.max-log-size-in-mb=2	#	Maximum	si

ze	in	megabytes	of	the	journal	fragments.

spring.jta.bitronix.properties.resource-configuration-filename=	

#	ResourceLoader	configuration	file	name.

spring.jta.bitronix.properties.server-id=	#	ASCII	ID	that	must	u

niquely	identify	this	TM	instance.	Default	to	the	machine's	IP	a

ddress.

spring.jta.bitronix.properties.skip-corrupted-logs=false	#	Skip	

corrupted	transactions	log	entries.

spring.jta.bitronix.properties.warn-about-zero-resource-transact

ion=true	#	Log	a	warning	for	transactions	executed	without	a	sin

gle	enlisted	resource.

#	NARAYANA	(NarayanaProperties)

spring.jta.narayana.default-timeout=60	#	Transaction	timeout	in	

seconds.

spring.jta.narayana.expiry-scanners=com.arjuna.ats.internal.arju

na.recovery.ExpiredTransactionStatusManagerScanner	#	Comma-separ

ated	list	of	expiry	scanners.

spring.jta.narayana.log-dir=	#	Transaction	object	store	director

y.

spring.jta.narayana.one-phase-commit=true	#	Enable	one	phase	com

mit	optimisation.

spring.jta.narayana.periodic-recovery-period=120	#	Interval	in	w

hich	periodic	recovery	scans	are	performed	in	seconds.

spring.jta.narayana.recovery-backoff-period=10	#	Back	off	period

附录A.	常见应用属性

670



	between	first	and	second	phases	of	the	recovery	scan	in	seconds

.

spring.jta.narayana.recovery-db-pass=	#	Database	password	to	be	

used	by	recovery	manager.

spring.jta.narayana.recovery-db-user=	#	Database	username	to	be	

used	by	recovery	manager.

spring.jta.narayana.recovery-jms-pass=	#	JMS	password	to	be	used

	by	recovery	manager.

spring.jta.narayana.recovery-jms-user=	#	JMS	username	to	be	used

	by	recovery	manager.

spring.jta.narayana.recovery-modules=	#	Comma-separated	list	of	

recovery	modules.

spring.jta.narayana.transaction-manager-id=1	#	Unique	transactio

n	manager	id.

spring.jta.narayana.xa-resource-orphan-filters=	#	Comma-separate

d	list	of	orphan	filters.

#	EMBEDDED	MONGODB	(EmbeddedMongoProperties)

spring.mongodb.embedded.features=SYNC_DELAY	#	Comma-separated	li

st	of	features	to	enable.

spring.mongodb.embedded.storage.databaseDir=	#	Directory	used	fo

r	data	storage.

spring.mongodb.embedded.storage.oplogSize=	#	Maximum	size	of	the

	oplog	in	megabytes.

spring.mongodb.embedded.storage.replSetName=	#	Name	of	the	repli

ca	set.

spring.mongodb.embedded.version=2.6.10	#	Version	of	Mongo	to	use

.

#	REDIS	(RedisProperties)

spring.redis.cluster.max-redirects=	#	Maximum	number	of	redirect

s	to	follow	when	executing	commands	across	the	cluster.

spring.redis.cluster.nodes=	#	Comma-separated	list	of	"host:port

"	pairs	to	bootstrap	from.

spring.redis.database=0	#	Database	index	used	by	the	connection	

factory.

spring.redis.host=localhost	#	Redis	server	host.

spring.redis.password=	#	Login	password	of	the	redis	server.

spring.redis.pool.max-active=8	#	Max	number	of	connections	that	

can	be	allocated	by	the	pool	at	a	given	time.	Use	a	negative	val

附录A.	常见应用属性

671



ue	for	no	limit.

spring.redis.pool.max-idle=8	#	Max	number	of	"idle"	connections	

in	the	pool.	Use	a	negative	value	to	indicate	an	unlimited	numbe

r	of	idle	connections.

spring.redis.pool.max-wait=-1	#	Maximum	amount	of	time	(in	milli

seconds)	a	connection	allocation	should	block	before	throwing	an

	exception	when	the	pool	is	exhausted.	Use	a	negative	value	to	b

lock	indefinitely.

spring.redis.pool.min-idle=0	#	Target	for	the	minimum	number	of	

idle	connections	to	maintain	in	the	pool.	This	setting	only	has	

an	effect	if	it	is	positive.

spring.redis.port=6379	#	Redis	server	port.

spring.redis.sentinel.master=	#	Name	of	Redis	server.

spring.redis.sentinel.nodes=	#	Comma-separated	list	of	host:port

	pairs.

spring.redis.timeout=0	#	Connection	timeout	in	milliseconds.

#	----------------------------------------

#	INTEGRATION	PROPERTIES

#	----------------------------------------

#	ACTIVEMQ	(ActiveMQProperties)

spring.activemq.broker-url=	#	URL	of	the	ActiveMQ	broker.	Auto-g

enerated	by	default.	For	instance	`tcp://localhost:61616`

spring.activemq.in-memory=true	#	Specify	if	the	default	broker	U

RL	should	be	in	memory.	Ignored	if	an	explicit	broker	has	been	s

pecified.

spring.activemq.password=	#	Login	password	of	the	broker.

spring.activemq.user=	#	Login	user	of	the	broker.

spring.activemq.packages.trust-all=false	#	Trust	all	packages.

spring.activemq.packages.trusted=	#	Comma-separated	list	of	spec

ific	packages	to	trust	(when	not	trusting	all	packages).

spring.activemq.pool.configuration.*=	#	See	PooledConnectionFact

ory.

spring.activemq.pool.enabled=false	#	Whether	a	PooledConnectionF

actory	should	be	created	instead	of	a	regular	ConnectionFactory.

spring.activemq.pool.expiry-timeout=0	#	Connection	expiration	ti

meout	in	milliseconds.

spring.activemq.pool.idle-timeout=30000	#	Connection	idle	timeou

附录A.	常见应用属性

672



t	in	milliseconds.

spring.activemq.pool.max-connections=1	#	Maximum	number	of	poole

d	connections.

#	ARTEMIS	(ArtemisProperties)

spring.artemis.embedded.cluster-password=	#	Cluster	password.	Ra

ndomly	generated	on	startup	by	default.

spring.artemis.embedded.data-directory=	#	Journal	file	directory

.	Not	necessary	if	persistence	is	turned	off.

spring.artemis.embedded.enabled=true	#	Enable	embedded	mode	if	t

he	Artemis	server	APIs	are	available.

spring.artemis.embedded.persistent=false	#	Enable	persistent	sto

re.

spring.artemis.embedded.queues=	#	Comma-separated	list	of	queues

	to	create	on	startup.

spring.artemis.embedded.server-id=	#	Server	id.	By	default,	an	a

uto-incremented	counter	is	used.

spring.artemis.embedded.topics=	#	Comma-separated	list	of	topics

	to	create	on	startup.

spring.artemis.host=localhost	#	Artemis	broker	host.

spring.artemis.mode=	#	Artemis	deployment	mode,	auto-detected	by

	default.

spring.artemis.password=	#	Login	password	of	the	broker.

spring.artemis.port=61616	#	Artemis	broker	port.

spring.artemis.user=	#	Login	user	of	the	broker.

#	SPRING	BATCH	(BatchProperties)

spring.batch.initializer.enabled=	#	Create	the	required	batch	ta

bles	on	startup	if	necessary.	Enabled	automatically	if	no	custom

	table	prefix	is	set	or	if	a	custom	schema	is	configured.

spring.batch.job.enabled=true	#	Execute	all	Spring	Batch	jobs	in

	the	context	on	startup.

spring.batch.job.names=	#	Comma-separated	list	of	job	names	to	e

xecute	on	startup	(For	instance	`job1,job2`).	By	default,	all	Jo

bs	found	in	the	context	are	executed.

spring.batch.schema=classpath:org/springframework/batch/core/sch

ema-@@platform@@.sql	#	Path	to	the	SQL	file	to	use	to	initialize

	the	database	schema.

spring.batch.table-prefix=	#	Table	prefix	for	all	the	batch	meta

-data	tables.

附录A.	常见应用属性

673



#	HORNETQ	(HornetQProperties)

spring.hornetq.embedded.cluster-password=	#	Cluster	password.	Ra

ndomly	generated	on	startup	by	default.

spring.hornetq.embedded.data-directory=	#	Journal	file	directory

.	Not	necessary	if	persistence	is	turned	off.

spring.hornetq.embedded.enabled=true	#	Enable	embedded	mode	if	t

he	HornetQ	server	APIs	are	available.

spring.hornetq.embedded.persistent=false	#	Enable	persistent	sto

re.

spring.hornetq.embedded.queues=	#	Comma-separated	list	of	queues

	to	create	on	startup.

spring.hornetq.embedded.server-id=	#	Server	id.	By	default,	an	a

uto-incremented	counter	is	used.

spring.hornetq.embedded.topics=	#	Comma-separated	list	of	topics

	to	create	on	startup.

spring.hornetq.host=localhost	#	HornetQ	broker	host.

spring.hornetq.mode=	#	HornetQ	deployment	mode,	auto-detected	by

	default.

spring.hornetq.password=	#	Login	password	of	the	broker.

spring.hornetq.port=5445	#	HornetQ	broker	port.

spring.hornetq.user=	#	Login	user	of	the	broker.

#	JMS	(JmsProperties)

spring.jms.jndi-name=	#	Connection	factory	JNDI	name.	When	set,	

takes	precedence	to	others	connection	factory	auto-configuration

s.

spring.jms.listener.acknowledge-mode=	#	Acknowledge	mode	of	the	

container.	By	default,	the	listener	is	transacted	with	automatic

	acknowledgment.

spring.jms.listener.auto-startup=true	#	Start	the	container	auto

matically	on	startup.

spring.jms.listener.concurrency=	#	Minimum	number	of	concurrent	

consumers.

spring.jms.listener.max-concurrency=	#	Maximum	number	of	concurr

ent	consumers.

spring.jms.pub-sub-domain=false	#	Specify	if	the	default	destina

tion	type	is	topic.

#	RABBIT	(RabbitProperties)

附录A.	常见应用属性

674



spring.rabbitmq.addresses=	#	Comma-separated	list	of	addresses	t

o	which	the	client	should	connect.

spring.rabbitmq.cache.channel.checkout-timeout=	#	Number	of	mill

iseconds	to	wait	to	obtain	a	channel	if	the	cache	size	has	been	

reached.

spring.rabbitmq.cache.channel.size=	#	Number	of	channels	to	reta

in	in	the	cache.

spring.rabbitmq.cache.connection.mode=CHANNEL	#	Connection	facto

ry	cache	mode.

spring.rabbitmq.cache.connection.size=	#	Number	of	connections	t

o	cache.

spring.rabbitmq.connection-timeout=	#	Connection	timeout,	in	mil

liseconds;	zero	for	infinite.

spring.rabbitmq.dynamic=true	#	Create	an	AmqpAdmin	bean.

spring.rabbitmq.host=localhost	#	RabbitMQ	host.

spring.rabbitmq.listener.acknowledge-mode=	#	Acknowledge	mode	of

	container.

spring.rabbitmq.listener.auto-startup=true	#	Start	the	container

	automatically	on	startup.

spring.rabbitmq.listener.concurrency=	#	Minimum	number	of	consum

ers.

spring.rabbitmq.listener.default-requeue-rejected=	#	Whether	or	

not	to	requeue	delivery	failures;	default	`true`.

spring.rabbitmq.listener.max-concurrency=	#	Maximum	number	of	co

nsumers.

spring.rabbitmq.listener.prefetch=	#	Number	of	messages	to	be	ha

ndled	in	a	single	request.	It	should	be	greater	than	or	equal	to

	the	transaction	size	(if	used).

spring.rabbitmq.listener.retry.enabled=false	#	Whether	or	not	pu

blishing	retries	are	enabled.

spring.rabbitmq.listener.retry.initial-interval=1000	#	Interval	

between	the	first	and	second	attempt	to	deliver	a	message.

spring.rabbitmq.listener.retry.max-attempts=3	#	Maximum	number	o

f	attempts	to	deliver	a	message.

spring.rabbitmq.listener.retry.max-interval=10000	#	Maximum	inte

rval	between	attempts.

spring.rabbitmq.listener.retry.multiplier=1.0	#	A	multiplier	to	

apply	to	the	previous	delivery	retry	interval.

spring.rabbitmq.listener.retry.stateless=true	#	Whether	or	not	r

etry	is	stateless	or	stateful.

附录A.	常见应用属性

675



spring.rabbitmq.listener.transaction-size=	#	Number	of	messages	

to	be	processed	in	a	transaction.	For	best	results	it	should	be	

less	than	or	equal	to	the	prefetch	count.

spring.rabbitmq.password=	#	Login	to	authenticate	against	the	br

oker.

spring.rabbitmq.port=5672	#	RabbitMQ	port.

spring.rabbitmq.publisher-confirms=false	#	Enable	publisher	conf

irms.

spring.rabbitmq.publisher-returns=false	#	Enable	publisher	retur

ns.

spring.rabbitmq.requested-heartbeat=	#	Requested	heartbeat	timeo

ut,	in	seconds;	zero	for	none.

spring.rabbitmq.ssl.enabled=false	#	Enable	SSL	support.

spring.rabbitmq.ssl.key-store=	#	Path	to	the	key	store	that	hold

s	the	SSL	certificate.

spring.rabbitmq.ssl.key-store-password=	#	Password	used	to	acces

s	the	key	store.

spring.rabbitmq.ssl.trust-store=	#	Trust	store	that	holds	SSL	ce

rtificates.

spring.rabbitmq.ssl.trust-store-password=	#	Password	used	to	acc

ess	the	trust	store.

spring.rabbitmq.ssl.algorithm=	#	SSL	algorithm	to	use.	By	defaul

t	configure	by	the	rabbit	client	library.

spring.rabbitmq.template.mandatory=false	#	Enable	mandatory	mess

ages.

spring.rabbitmq.template.receive-timeout=0	#	Timeout	for	`receiv

e()`	methods.

spring.rabbitmq.template.reply-timeout=5000	#	Timeout	for	`sendA

ndReceive()`	methods.

spring.rabbitmq.template.retry.enabled=false	#	Set	to	true	to	en

able	retries	in	the	`RabbitTemplate`.

spring.rabbitmq.template.retry.initial-interval=1000	#	Interval	

between	the	first	and	second	attempt	to	publish	a	message.

spring.rabbitmq.template.retry.max-attempts=3	#	Maximum	number	o

f	attempts	to	publish	a	message.

spring.rabbitmq.template.retry.max-interval=10000	#	Maximum	numb

er	of	attempts	to	publish	a	message.

spring.rabbitmq.template.retry.multiplier=1.0	#	A	multiplier	to	

apply	to	the	previous	publishing	retry	interval.

spring.rabbitmq.username=	#	Login	user	to	authenticate	to	the	br

附录A.	常见应用属性

676



oker.

spring.rabbitmq.virtual-host=	#	Virtual	host	to	use	when	connect

ing	to	the	broker.

#	----------------------------------------

#	ACTUATOR	PROPERTIES

#	----------------------------------------

#	ENDPOINTS	(AbstractEndpoint	subclasses)

endpoints.enabled=true	#	Enable	endpoints.

endpoints.sensitive=	#	Default	endpoint	sensitive	setting.

endpoints.actuator.enabled=true	#	Enable	the	endpoint.

endpoints.actuator.path=	#	Endpoint	URL	path.

endpoints.actuator.sensitive=false	#	Enable	security	on	the	endp

oint.

endpoints.autoconfig.enabled=	#	Enable	the	endpoint.

endpoints.autoconfig.id=	#	Endpoint	identifier.

endpoints.autoconfig.path=	#	Endpoint	path.

endpoints.autoconfig.sensitive=	#	Mark	if	the	endpoint	exposes	s

ensitive	information.

endpoints.beans.enabled=	#	Enable	the	endpoint.

endpoints.beans.id=	#	Endpoint	identifier.

endpoints.beans.path=	#	Endpoint	path.

endpoints.beans.sensitive=	#	Mark	if	the	endpoint	exposes	sensit

ive	information.

endpoints.configprops.enabled=	#	Enable	the	endpoint.

endpoints.configprops.id=	#	Endpoint	identifier.

endpoints.configprops.keys-to-sanitize=password,secret,key,token

,.*credentials.*,vcap_services	#	Keys	that	should	be	sanitized.	

Keys	can	be	simple	strings	that	the	property	ends	with	or	regex	

expressions.

endpoints.configprops.path=	#	Endpoint	path.

endpoints.configprops.sensitive=	#	Mark	if	the	endpoint	exposes	

sensitive	information.

endpoints.docs.curies.enabled=false	#	Enable	the	curie	generatio

n.

endpoints.docs.enabled=true	#	Enable	actuator	docs	endpoint.

endpoints.docs.path=/docs	#

endpoints.docs.sensitive=false	#

附录A.	常见应用属性

677



endpoints.dump.enabled=	#	Enable	the	endpoint.

endpoints.dump.id=	#	Endpoint	identifier.

endpoints.dump.path=	#	Endpoint	path.

endpoints.dump.sensitive=	#	Mark	if	the	endpoint	exposes	sensiti

ve	information.

endpoints.env.enabled=	#	Enable	the	endpoint.

endpoints.env.id=	#	Endpoint	identifier.

endpoints.env.keys-to-sanitize=password,secret,key,token,.*crede

ntials.*,vcap_services	#	Keys	that	should	be	sanitized.	Keys	can

	be	simple	strings	that	the	property	ends	with	or	regex	expressi

ons.

endpoints.env.path=	#	Endpoint	path.

endpoints.env.sensitive=	#	Mark	if	the	endpoint	exposes	sensitiv

e	information.

endpoints.flyway.enabled=	#	Enable	the	endpoint.

endpoints.flyway.id=	#	Endpoint	identifier.

endpoints.flyway.sensitive=	#	Mark	if	the	endpoint	exposes	sensi

tive	information.

endpoints.health.enabled=	#	Enable	the	endpoint.

endpoints.health.id=	#	Endpoint	identifier.

endpoints.health.mapping.*=	#	Mapping	of	health	statuses	to	Http

Status	codes.	By	default,	registered	health	statuses	map	to	sens

ible	defaults	(i.e.	UP	maps	to	200).

endpoints.health.path=	#	Endpoint	path.

endpoints.health.sensitive=	#	Mark	if	the	endpoint	exposes	sensi

tive	information.

endpoints.health.time-to-live=1000	#	Time	to	live	for	cached	res

ult,	in	milliseconds.

endpoints.heapdump.enabled=	#	Enable	the	endpoint.

endpoints.heapdump.path=	#	Endpoint	path.

endpoints.heapdump.sensitive=	#	Mark	if	the	endpoint	exposes	sen

sitive	information.

endpoints.info.enabled=	#	Enable	the	endpoint.

endpoints.info.id=	#	Endpoint	identifier.

endpoints.info.path=	#	Endpoint	path.

endpoints.info.sensitive=	#	Mark	if	the	endpoint	exposes	sensiti

ve	information.

endpoints.jolokia.enabled=true	#	Enable	Jolokia	endpoint.

endpoints.jolokia.path=/jolokia	#	Endpoint	URL	path.

endpoints.jolokia.sensitive=true	#	Enable	security	on	the	endpoi

附录A.	常见应用属性

678



nt.

endpoints.liquibase.enabled=	#	Enable	the	endpoint.

endpoints.liquibase.id=	#	Endpoint	identifier.

endpoints.liquibase.sensitive=	#	Mark	if	the	endpoint	exposes	se

nsitive	information.

endpoints.logfile.enabled=true	#	Enable	the	endpoint.

endpoints.logfile.external-file=	#	External	Logfile	to	be	access

ed.

endpoints.logfile.path=/logfile	#	Endpoint	URL	path.

endpoints.logfile.sensitive=true	#	Enable	security	on	the	endpoi

nt.

endpoints.mappings.enabled=	#	Enable	the	endpoint.

endpoints.mappings.id=	#	Endpoint	identifier.

endpoints.mappings.path=	#	Endpoint	path.

endpoints.mappings.sensitive=	#	Mark	if	the	endpoint	exposes	sen

sitive	information.

endpoints.metrics.enabled=	#	Enable	the	endpoint.

endpoints.metrics.filter.enabled=true	#	Enable	the	metrics	servl

et	filter.

endpoints.metrics.filter.gauge-submissions=merged	#	Http	filter	

gauge	submissions	(merged,	per-http-method)

endpoints.metrics.filter.counter-submissions=merged	#	Http	filte

r	counter	submissions	(merged,	per-http-method)

endpoints.metrics.id=	#	Endpoint	identifier.

endpoints.metrics.path=	#	Endpoint	path.

endpoints.metrics.sensitive=	#	Mark	if	the	endpoint	exposes	sens

itive	information.

endpoints.shutdown.enabled=	#	Enable	the	endpoint.

endpoints.shutdown.id=	#	Endpoint	identifier.

endpoints.shutdown.path=	#	Endpoint	path.

endpoints.shutdown.sensitive=	#	Mark	if	the	endpoint	exposes	sen

sitive	information.

endpoints.trace.enabled=	#	Enable	the	endpoint.

endpoints.trace.id=	#	Endpoint	identifier.

endpoints.trace.path=	#	Endpoint	path.

endpoints.trace.sensitive=	#	Mark	if	the	endpoint	exposes	sensit

ive	information.

#	ENDPOINTS	CORS	CONFIGURATION	(EndpointCorsProperties)

endpoints.cors.allow-credentials=	#	Set	whether	credentials	are	

附录A.	常见应用属性

679



supported.	When	not	set,	credentials	are	not	supported.

endpoints.cors.allowed-headers=	#	Comma-separated	list	of	header

s	to	allow	in	a	request.	'*'	allows	all	headers.

endpoints.cors.allowed-methods=GET	#	Comma-separated	list	of	met

hods	to	allow.	'*'	allows	all	methods.

endpoints.cors.allowed-origins=	#	Comma-separated	list	of	origin

s	to	allow.	'*'	allows	all	origins.	When	not	set,	CORS	support	i

s	disabled.

endpoints.cors.exposed-headers=	#	Comma-separated	list	of	header

s	to	include	in	a	response.

endpoints.cors.max-age=1800	#	How	long,	in	seconds,	the	response

	from	a	pre-flight	request	can	be	cached	by	clients.

#	JMX	ENDPOINT	(EndpointMBeanExportProperties)

endpoints.jmx.domain=	#	JMX	domain	name.	Initialized	with	the	va

lue	of	'spring.jmx.default-domain'	if	set.

endpoints.jmx.enabled=true	#	Enable	JMX	export	of	all	endpoints.

endpoints.jmx.static-names=	#	Additional	static	properties	to	ap

pend	to	all	ObjectNames	of	MBeans	representing	Endpoints.

endpoints.jmx.unique-names=false	#	Ensure	that	ObjectNames	are	m

odified	in	case	of	conflict.

#	JOLOKIA	(JolokiaProperties)

jolokia.config.*=	#	See	Jolokia	manual

#	MANAGEMENT	HTTP	SERVER	(ManagementServerProperties)

management.add-application-context-header=true	#	Add	the	"X-Appl

ication-Context"	HTTP	header	in	each	response.

management.address=	#	Network	address	that	the	management	endpoi

nts	should	bind	to.

management.context-path=	#	Management	endpoint	context-path.	For

	instance	`/actuator`

management.port=	#	Management	endpoint	HTTP	port.	Uses	the	same	

port	as	the	application	by	default.	Configure	a	different	port	t

o	use	management-specific	SSL.

management.security.enabled=true	#	Enable	security.

management.security.roles=ADMIN	#	Comma-separated	list	of	roles	

that	can	access	the	management	endpoint.

management.security.sessions=stateless	#	Session	creating	policy

	to	use	(always,	never,	if_required,	stateless).

附录A.	常见应用属性

680



management.ssl.ciphers=	#	Supported	SSL	ciphers.	Requires	a	cust

om	management.port.

management.ssl.client-auth=	#	Whether	client	authentication	is	w

anted	("want")	or	needed	("need").	Requires	a	trust	store.	Requi

res	a	custom	management.port.

management.ssl.enabled=	#	Enable	SSL	support.	Requires	a	custom	

management.port.

management.ssl.enabled-protocols=	#	Enabled	SSL	protocols.	Requi

res	a	custom	management.port.

management.ssl.key-alias=	#	Alias	that	identifies	the	key	in	the

	key	store.	Requires	a	custom	management.port.

management.ssl.key-password=	#	Password	used	to	access	the	key	i

n	the	key	store.	Requires	a	custom	management.port.

management.ssl.key-store=	#	Path	to	the	key	store	that	holds	the

	SSL	certificate	(typically	a	jks	file).	Requires	a	custom	manag

ement.port.

management.ssl.key-store-password=	#	Password	used	to	access	the

	key	store.	Requires	a	custom	management.port.

management.ssl.key-store-provider=	#	Provider	for	the	key	store.

	Requires	a	custom	management.port.

management.ssl.key-store-type=	#	Type	of	the	key	store.	Requires

	a	custom	management.port.

management.ssl.protocol=TLS	#	SSL	protocol	to	use.	Requires	a	cu

stom	management.port.

management.ssl.trust-store=	#	Trust	store	that	holds	SSL	certifi

cates.	Requires	a	custom	management.port.

management.ssl.trust-store-password=	#	Password	used	to	access	t

he	trust	store.	Requires	a	custom	management.port.

management.ssl.trust-store-provider=	#	Provider	for	the	trust	st

ore.	Requires	a	custom	management.port.

management.ssl.trust-store-type=	#	Type	of	the	trust	store.	Requ

ires	a	custom	management.port.

#	HEALTH	INDICATORS	(previously	health.*)

management.health.db.enabled=true	#	Enable	database	health	check

.

management.health.defaults.enabled=true	#	Enable	default	health	

indicators.

management.health.diskspace.enabled=true	#	Enable	disk	space	hea

lth	check.

附录A.	常见应用属性

681



management.health.diskspace.path=	#	Path	used	to	compute	the	ava

ilable	disk	space.

management.health.diskspace.threshold=0	#	Minimum	disk	space	tha

t	should	be	available,	in	bytes.

management.health.elasticsearch.enabled=true	#	Enable	elasticsea

rch	health	check.

management.health.elasticsearch.indices=	#	Comma-separated	index

	names.

management.health.elasticsearch.response-timeout=100	#	The	time,

	in	milliseconds,	to	wait	for	a	response	from	the	cluster.

management.health.jms.enabled=true	#	Enable	JMS	health	check.

management.health.mail.enabled=true	#	Enable	Mail	health	check.

management.health.mongo.enabled=true	#	Enable	MongoDB	health	che

ck.

management.health.rabbit.enabled=true	#	Enable	RabbitMQ	health	c

heck.

management.health.redis.enabled=true	#	Enable	Redis	health	check

.

management.health.solr.enabled=true	#	Enable	Solr	health	check.

management.health.status.order=DOWN,	OUT_OF_SERVICE,	UNKNOWN,	UP

	#	Comma-separated	list	of	health	statuses	in	order	of	severity.

#	INFO	CONTRIBUTORS	(InfoContributorProperties)

management.info.build.enabled=true	#	Enable	build	info.

management.info.defaults.enabled=true	#	Enable	default	info	cont

ributors.

management.info.env.enabled=true	#	Enable	environment	info.

management.info.git.enabled=true	#	Enable	git	info.

management.info.git.mode=simple	#	Mode	to	use	to	expose	git	info

rmation.

#	REMOTE	SHELL	(ShellProperties)

management.shell.auth.type=simple	#	Authentication	type.	Auto-de

tected	according	to	the	environment.

management.shell.auth.jaas.domain=my-domain	#	JAAS	domain.

management.shell.auth.key.path=	#	Path	to	the	authentication	key

.	This	should	point	to	a	valid	".pem"	file.

management.shell.auth.simple.user.name=user	#	Login	user.

management.shell.auth.simple.user.password=	#	Login	password.

management.shell.auth.spring.roles=ADMIN	#	Comma-separated	list	

附录A.	常见应用属性

682



of	required	roles	to	login	to	the	CRaSH	console.

management.shell.command-path-patterns=classpath*:/commands/**,c

lasspath*:/crash/commands/**	#	Patterns	to	use	to	look	for	comma

nds.

management.shell.command-refresh-interval=-1	#	Scan	for	changes	

and	update	the	command	if	necessary	(in	seconds).

management.shell.config-path-patterns=classpath*:/crash/*	#	Patt

erns	to	use	to	look	for	configurations.

management.shell.disabled-commands=jpa*,jdbc*,jndi*	#	Comma-sepa

rated	list	of	commands	to	disable.

management.shell.disabled-plugins=	#	Comma-separated	list	of	plu

gins	to	disable.	Certain	plugins	are	disabled	by	default	based	o

n	the	environment.

management.shell.ssh.auth-timeout	=	#	Number	of	milliseconds	aft

er	user	will	be	prompted	to	login	again.

management.shell.ssh.enabled=true	#	Enable	CRaSH	SSH	support.

management.shell.ssh.idle-timeout	=	#	Number	of	milliseconds	aft

er	which	unused	connections	are	closed.

management.shell.ssh.key-path=	#	Path	to	the	SSH	server	key.

management.shell.ssh.port=2000	#	SSH	port.

management.shell.telnet.enabled=false	#	Enable	CRaSH	telnet	supp

ort.	Enabled	by	default	if	the	TelnetPlugin	is		available.

management.shell.telnet.port=5000	#	Telnet	port.

#	TRACING	(TraceProperties)

management.trace.include=request-headers,response-headers,cookie

s,errors	#	Items	to	be	included	in	the	trace.

#	METRICS	EXPORT	(MetricExportProperties)

spring.metrics.export.aggregate.key-pattern=	#	Pattern	that	tell

s	the	aggregator	what	to	do	with	the	keys	from	the	source	reposi

tory.

spring.metrics.export.aggregate.prefix=	#	Prefix	for	global	repo

sitory	if	active.

spring.metrics.export.delay-millis=5000	#	Delay	in	milliseconds	

between	export	ticks.	Metrics	are	exported	to	external	sources	o

n	a	schedule	with	this	delay.

spring.metrics.export.enabled=true	#	Flag	to	enable	metric	expor

t	(assuming	a	MetricWriter	is	available).

spring.metrics.export.excludes=	#	List	of	patterns	for	metric	na

附录A.	常见应用属性

683



mes	to	exclude.	Applied	after	the	includes.

spring.metrics.export.includes=	#	List	of	patterns	for	metric	na

mes	to	include.

spring.metrics.export.redis.key=keys.spring.metrics	#	Key	for	re

dis	repository	export	(if	active).

spring.metrics.export.redis.prefix=spring.metrics	#	Prefix	for	r

edis	repository	if	active.

spring.metrics.export.send-latest=	#	Flag	to	switch	off	any	avai

lable	optimizations	based	on	not	exporting	unchanged	metric	valu

es.

spring.metrics.export.statsd.host=	#	Host	of	a	statsd	server	to	

receive	exported	metrics.

spring.metrics.export.statsd.port=8125	#	Port	of	a	statsd	server

	to	receive	exported	metrics.

spring.metrics.export.statsd.prefix=	#	Prefix	for	statsd	exporte

d	metrics.

spring.metrics.export.triggers.*=	#	Specific	trigger	properties	

per	MetricWriter	bean	name.

#	----------------------------------------

#	DEVTOOLS	PROPERTIES

#	----------------------------------------

#	DEVTOOLS	(DevToolsProperties)

spring.devtools.livereload.enabled=true	#	Enable	a	livereload.co

m	compatible	server.

spring.devtools.livereload.port=35729	#	Server	port.

spring.devtools.restart.additional-exclude=	#	Additional	pattern

s	that	should	be	excluded	from	triggering	a	full	restart.

spring.devtools.restart.additional-paths=	#	Additional	paths	to	

watch	for	changes.

spring.devtools.restart.enabled=true	#	Enable	automatic	restart.

spring.devtools.restart.exclude=META-INF/maven/**,META-INF/resou

rces/**,resources/**,static/**,public/**,templates/**,**/*Test.c

lass,**/*Tests.class,git.properties	#	Patterns	that	should	be	ex

cluded	from	triggering	a	full	restart.

spring.devtools.restart.poll-interval=1000	#	Amount	of	time	(in	

milliseconds)	to	wait	between	polling	for	classpath	changes.

spring.devtools.restart.quiet-period=400	#	Amount	of	quiet	time	

附录A.	常见应用属性

684



(in	milliseconds)	required	without	any	classpath	changes	before	

a	restart	is	triggered.

spring.devtools.restart.trigger-file=	#	Name	of	a	specific	file	

that	when	changed	will	trigger	the	restart	check.	If	not	specifi

ed	any	classpath	file	change	will	trigger	the	restart.

#	REMOTE	DEVTOOLS	(RemoteDevToolsProperties)

spring.devtools.remote.context-path=/.~~spring-boot!~	#	Context	

path	used	to	handle	the	remote	connection.

spring.devtools.remote.debug.enabled=true	#	Enable	remote	debug	

support.

spring.devtools.remote.debug.local-port=8000	#	Local	remote	debu

g	server	port.

spring.devtools.remote.proxy.host=	#	The	host	of	the	proxy	to	us

e	to	connect	to	the	remote	application.

spring.devtools.remote.proxy.port=	#	The	port	of	the	proxy	to	us

e	to	connect	to	the	remote	application.

spring.devtools.remote.restart.enabled=true	#	Enable	remote	rest

art.

spring.devtools.remote.secret=	#	A	shared	secret	required	to	est

ablish	a	connection	(required	to	enable	remote	support).

spring.devtools.remote.secret-header-name=X-AUTH-TOKEN	#	HTTP	he

ader	used	to	transfer	the	shared	secret.

附录A.	常见应用属性

685



附录B.	配置元数据

Spring	Boot	jars包含元数据文件，它们提供了所有支持的配置属性详情。这些文件

设计用于让IDE开发者能够为使

用 	application.properties	或 	application.yml	文件的用户提供上下文帮助

及代码完成功能。

主要的元数据文件是在编译器通过处理所有被 	@ConfigurationProperties	注解

的节点来自动生成的。

附录B.	配置元数据

686



附录B.1.	元数据格式

配置元数据位于jars文件中的 	META-INF/spring-configuration-

metadata.json	，它们使用一个具有"groups"或"properties"分类节点的简单JSON
格式：

{"groups":	[

				{

								"name":	"server",

								"type":	"org.springframework.boot.autoconfigure.web.Serv

erProperties",

								"sourceType":	"org.springframework.boot.autoconfigure.we

b.ServerProperties"

				},

				{

								"name":	"spring.jpa.hibernate",

								"type":	"org.springframework.boot.autoconfigure.orm.jpa.

JpaProperties$Hibernate",

								"sourceType":	"org.springframework.boot.autoconfigure.or

m.jpa.JpaProperties",

								"sourceMethod":	"getHibernate()"

				}

				...

],"properties":	[

				{

								"name":	"server.port",

								"type":	"java.lang.Integer",

								"sourceType":	"org.springframework.boot.autoconfigure.we

b.ServerProperties"

				},

				{

								"name":	"server.servlet-path",

								"type":	"java.lang.String",

								"sourceType":	"org.springframework.boot.autoconfigure.we

b.ServerProperties",

								"defaultValue":	"/"

				},

				{

附录B.1.	元数据格式

687



										"name":	"spring.jpa.hibernate.ddl-auto",

										"type":	"java.lang.String",

										"description":	"DDL	mode.	This	is	actually	a	shortcut	

for	the	\"hibernate.hbm2ddl.auto\"	property.",

										"sourceType":	"org.springframework.boot.autoconfigure.

orm.jpa.JpaProperties$Hibernate"

				}

				...

],"hints":	[

				{

								"name":	"spring.jpa.hibernate.ddl-auto",

								"values":	[

												{

																"value":	"none",

																"description":	"Disable	DDL	handling."

												},

												{

																"value":	"validate",

																"description":	"Validate	the	schema,	make	no	cha

nges	to	the	database."

												},

												{

																"value":	"update",

																"description":	"Update	the	schema	if	necessary."

												},

												{

																"value":	"create",

																"description":	"Create	the	schema	and	destroy	pr

evious	data."

												},

												{

																"value":	"create-drop",

																"description":	"Create	and	then	destroy	the	sche

ma	at	the	end	of	the	session."

												}

								]

				}

]}

附录B.1.	元数据格式

688



每个"property"是一个配置节点，用户可以使用特定的值指定它。例

如， 	server.port	和 	server.servlet-path	可能

在 	application.properties	中如以下定义：

server.port=9090

server.servlet-path=/home

"groups"是高级别的节点，它们本身不指定一个值，但为properties提供一个有上下

文关联的分组。例如， 	server.port	和 	server.servlet-path	属性

是 	server	组的一部分。

注：不需要每个"property"都有一个"group"，一些属性可以以自己的形式存在。

附录B.1.	元数据格式

689



附录B.1.1.	Group属性

	groups	数组包含的JSON对象可以由以下属性组成：

名称 类型 目的

name String group的全名，该属性是强制性的

type String

group数据类型的类名。例如，如果group是基于一
个被 	@ConfigurationProperties	注解的类，该属
性将包含该类的全限定名。如果基于一个 	@Bean	方
法，它将是该方法的返回类型。如果该类型未知，
则该属性将被忽略

description String

一个简短的group描述，用于展示给用户。如果没有
可用描述，该属性将被忽略。推荐使用一个简短的
段落描述，第一行提供一个简洁的总结，最后一行
以句号结尾

sourceType String

贡献该组的来源类名。例如，如果组基于一个
被 	@ConfigurationProperties	注解的 	@Bean	方
法，该属性将包含 	@Configuration	类的全限定
名，该类包含此方法。如果来源类型未知，则该属
性将被忽略

sourceMethod String

贡献该组的方法的全名（包含括号及参数类型）。
例如，被 	@ConfigurationProperties	注解
的 	@Bean	方法名。如果源方法未知，该属性将被忽
略

附录B.1.	元数据格式

690



附录B.1.2.	Property属性

	properties	数组中包含的JSON对象可由以下属性构成：

名称 类型 目的

name String property的全名，格式为小写虚线分割的形式（比
如 	server.servlet-path	）。该属性是强制性的

type String

property数据类型的类名。例
如 	java.lang.String	。该属性可以用来指导用户
他们可以输入值的类型。为了保持一致，原生类型
使用它们的包装类代替，比如 	boolean	变成
了 	java.lang.Boolean	。注意，这个类可能是个
从一个字符串转换而来的复杂类型。如果类型未知
则该属性会被忽略

description String

一个简短的组的描述，用于展示给用户。如果没有
描述可用则该属性会被忽略。推荐使用一个简短的
段落描述，开头提供一个简洁的总结，最后一行以
句号结束

sourceType String

贡献property的来源类名。例如，如果property来自
一个被 	@ConfigurationProperties	注解的类，
该属性将包括该类的全限定名。如果来源类型未知
则该属性会被忽略

defaultValue Object
当property没有定义时使用的默认值。如果property
类型是个数组则该属性也可以是个数组。如果默认
值未知则该属性会被忽略

deprecated boolean 指定该property是否过期。如果该字段没有过期或该
信息未知则该属性会被忽略

附录B.1.	元数据格式

691



附录B.1.3.	可重复的元数据节点

在同一个元数据文件中出现多次相同名称的"property"和"group"对象是可以接受

的。例如，Spring	Boot将 	spring.datasource	属性绑定到Hikari，Tomcat和
DBCP类，并且每个都潜在的提供了重复的属性名。这些元数据的消费者需要确保

他们支持这样的场景。

附录B.1.	元数据格式

692



附录B.2.	使用注解处理器产生自己的元数据

通过使用 	spring-boot-configuration-processor		jar，	你可以从

被 	@ConfigurationProperties	注解的节点轻松的产生自己的配置元数据文件。

该jar包含一个在你的项目编译时会被调用的Java注解处理器。想要使用该处理器，

你只需简单添加 	spring-boot-configuration-processor	依赖，例如使用

Maven你需要添加：

<dependency>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-configuration-processor</artifactId>

				<optional>true</optional>

</dependency>

使用Gradle时，你可以使用propdeps-plugin并指定：

dependencies	{

								optional	"org.springframework.boot:spring-boot-configura

tion-processor"

				}

				compileJava.dependsOn(processResources)

}

注：你需要将 	compileJava.dependsOn(processResources)	添加到构建中，以

确保资源在代码编译之前处理。如果没有该指令，任何 	additional-spring-

configuration-metadata.json	文件都不会被处理。

该处理器会处理被 	@ConfigurationProperties	注解的类和方法，description属
性用于产生配置类字段值的Javadoc说明。

注：你应该使用简单的文本来设置 	@ConfigurationProperties	字段的

Javadoc，因为在没有被添加到JSON之前它们是不被处理的。

属性是通过判断是否存在标准的getters和setters来发现的，对于集合类型有特殊处

理（即使只出现一个getter）。该注解处理器也支持使用lombok的 	@Data	,
	@Getter	和 	@Setter	注解。

附录B.2.	使用注解处理器产生自己的元数据

693

https://github.com/spring-projects/gradle-plugins/tree/master/propdeps-plugin


附录B.2.	使用注解处理器产生自己的元数据

694



附录	B.2.1.	内嵌属性

该注解处理器自动将内部类当做内嵌属性处理。例如，下面的类：

@ConfigurationProperties(prefix="server")

public	class	ServerProperties	{

				private	String	name;

				private	Host	host;

				//	...	getter	and	setters

				private	static	class	Host	{

								private	String	ip;

								private	int	port;

								//	...	getter	and	setters

				}

}

附录B.2.	使用注解处理器产生自己的元数据

695



附录	B.2.2.	添加其他的元数据

附录B.2.	使用注解处理器产生自己的元数据

696



附录C.	自动配置类

这里有一个Spring	Boot提供的所有自动配置类的文档链接和源码列表。也要记着看

一下你的应用都开启了哪些自动配置（使用 	--debug	或 	-Debug	启动应用，或在

一个Actuator应用中使用 	autoconfig	端点）。

附录C.	自动配置类

697



附录	C.1	来自	spring-boot-autoconfigure	模块

下面的自动配置类来自 	spring-boot-autoconfigure	模块：

配置类 链接

ActiveMQAutoConfiguration javadoc

AopAutoConfiguration javadoc

BatchAutoConfiguration javadoc

CacheAutoConfiguration javadoc

CloudAutoConfiguration javadoc

DataSourceAutoConfiguration javadoc

DataSourceTransactionManagerAutoConfiguration javadoc

DeviceDelegatingViewResolverAutoConfiguration javadoc

DeviceResolverAutoConfiguration javadoc

DispatcherServletAutoConfiguration javadoc

附录	C.1.	来自spring-boot-autoconfigure模块

698

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.3.0.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/aop/AopAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.3.0.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/aop/AopAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.3.0.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/cache/CacheAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.3.0.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/cache/CacheAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/cloud/CloudAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.3.0.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/cloud/CloudAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.3.0.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.3.0.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mobile/DeviceDelegatingViewResolverAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.3.0.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/mobile/DeviceDelegatingViewResolverAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mobile/DeviceResolverAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.3.0.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/mobile/DeviceResolverAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/DispatcherServletAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.3.0.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/web/DispatcherServletAutoConfiguration.html


附录C.2	来自	spring-boot-actuator	模块

下列的自动配置类来自于 	spring-boot-actuator	模块：

附录C.2.	来自spring-boot-actuator模块

699



附录D.	可执行jar格式

	spring-boot-loader	模块允许Spring	Boot对可执行jar和war文件的支持。如果

你正在使用Maven或Gradle插件，可执行jar会被自动产生，通常你不需要了解它是

如何工作的。

如果你需要从一个不同的构建系统创建可执行jars，或你只是对底层技术好奇，本

章节将提供一些背景资料。

附录D.	可执行jar格式

700



附录D.1.	内嵌JARs
Java没有提供任何标准的方式来加载内嵌的jar文件（也就是jar文件自身包含到一个

jar中）。如果你正分发一个在不解压缩的情况下可以从命令行运行的自包含应用，

那这将是个问题。

为了解决这个问题，很多开发者使用"影子"	jars。一个影子jar只是简单的将所有jars
的类打包进一个单独的"超级jar"。使用影子jars的问题是它很难分辨在你的应用中

实际可以使用的库。在多个jars中存在相同的文件名（内容不同）也是一个问题。

Spring	Boot另劈稀径，让你能够直接嵌套jars。

附录D.1.	内嵌JARs

701



附录D.1.1	可执行jar文件结构

Spring	Boot	Loader兼容的jar文件应该遵循以下结构：

example.jar

	|

	+-META-INF

	|		+-MANIFEST.MF

	+-org

	|		+-springframework

	|					+-boot

	|								+-loader

	|											+-<spring	boot	loader	classes>

	+-com

	|		+-mycompany

	|					+	project

	|								+-YouClasses.class

	+-lib

				+-dependency1.jar

				+-dependency2.jar

依赖需要放到内部的lib目录下。

附录D.1.	内嵌JARs

702



附录D.1.2.	可执行war文件结构

Spring	Boot	Loader兼容的war文件应该遵循以下结构：

example.jar

	|

	+-META-INF

	|		+-MANIFEST.MF

	+-org

	|		+-springframework

	|					+-boot

	|								+-loader

	|											+-<spring	boot	loader	classes>

	+-WEB-INF

				+-classes

				|		+-com

				|					+-mycompany

				|								+-project

				|											+-YouClasses.class

				+-lib

				|		+-dependency1.jar

				|		+-dependency2.jar

				+-lib-provided

							+-servlet-api.jar

							+-dependency3.jar

依赖需要放到内嵌的 	WEB-INF/lib	目录下。任何运行时需要但部署到普通web容
器不需要的依赖应该放到 	WEB-INF/lib-provided	目录下。

附录D.1.	内嵌JARs

703



附录D.2.	Spring	Boot的"JarFile"类
Spring	Boot用于支持加载内嵌jars的核心类

是 	org.springframework.boot.loader.jar.JarFile	。它允许你从一个标准的

jar文件或内嵌的子jar数据中加载jar内容。当首次加载的时候，每个JarEntry的位置

被映射到一个偏移于外部jar的物理文件：

myapp.jar

+---------+---------------------+

|									|	/lib/mylib.jar						|

|	A.class	|+---------+---------+|

|									||	B.class	|	B.class	||

|									|+---------+---------+|

+---------+---------------------+

^										^										^

0063							3452							3980

上面的示例展示了如何在myapp.jar的0063处找到A.class。来自于内嵌jar的B.class
实际可以在myapp.jar的3452处找到，B.class可以在3980处找到（图有问题？）。

有了这些信息，我们就可以通过简单的寻找外部jar的合适部分来加载指定的内嵌实

体。我们不需要解压存档，也不需要将所有实体读取到内存中。

附录D.2.	Spring	Boot的"JarFile"类

704



附录D.2.1	对标准Java	"JarFile"的兼容性

Spring	Boot	Loader努力保持对已有代码和库的兼

容。 	org.springframework.boot.loader.jar.JarFile	继承

自 	java.util.jar.JarFile	，可以作为降级替换。

附录D.2.	Spring	Boot的"JarFile"类

705



附录D.3.	启动可执行jars
	org.springframework.boot.loader.Launcher	类是个特殊的启动类，用于一个

可执行jars的主要入口。它实际上就是你jar文件的 	Main-Class	，并用来设置一个

合适的 	URLClassLoader	，最后调用你的 	main()	方法。

这里有３个启动器子类，JarLauncher，WarLauncher和PropertiesLauncher。它们

的作用是从嵌套的jar或war文件目录中（相对于显示的从classpath）加载资源

（.class文件等）。在 	[Jar|War]Launcher	情况下，嵌套路径是固定的

（ 	lib/*.jar	和war的 	lib-provided/*.jar	），所以如果你需要很多其他jars
只需添加到那些位置即可。PropertiesLauncher默认查找你应用存档的 	lib/	目

录，但你可以通过设置环境变量 	LOADER_PATH	或application.properties中
的 	loader.path	来添加其他的位置（逗号分割的目录或存档列表）。

附录D.3.	启动可执行jars

706



附录D.3.1	Launcher	manifest
你需要指定一个合适的Launcher作为 	META-INF/MANIFEST.MF	的 	Main-Class	属

性。你实际想要启动的类（也就是你编写的包含main方法的类）需要在 	Start-

Class	属性中定义。

例如，这里有个典型的可执行jar文件的MANIFEST.MF：

Main-Class:	org.springframework.boot.loader.JarLauncher

Start-Class:	com.mycompany.project.MyApplication

对于一个war文件，它可能是这样的：

Main-Class:	org.springframework.boot.loader.WarLauncher

Start-Class:	com.mycompany.project.MyApplication

注：你不需要在manifest文件中指定 	Class-Path	实体，classpath会从嵌套的jars
中被推导出来。

附录D.3.	启动可执行jars

707



附录D.3.2.	暴露的存档

一些PaaS实现可能选择在运行前先解压存档。例如，Cloud	Foundry就是这样操作

的。你可以运行一个解压的存档，只需简单的启动合适的启动器：

$	unzip	-q	myapp.jar

$	java	org.springframework.boot.loader.JarLaunche

附录D.3.	启动可执行jars

708



附录D.4.	PropertiesLauncher特性

PropertiesLauncher有一些特殊的性质，它们可以通过外部属性来启用（系统属

性，环境变量，manifest实体或application.properties）。

Key 作用

loader.path 逗号分割的classpath，比如 	lib:${HOME}/app/lib	

loader.home 其他属性文件的位置，比如/opt/app（默认
为 	${user.dir}	）

loader.args main方法的默认参数（以空格分割）

loader.main 要启动的main类名称，比如 	com.app.Application	

loader.config.name 属性文件名，比如loader（默认为application）

loader.config.location
属性文件路径，比
如 	classpath:loader.properties	（默认为
application.properties）

loader.system 布尔标识，表明所有的属性都应该添加到系统属性中
（默认为false）

Manifest实体keys通过大写单词首字母及将分隔符从"."改为"-"（比如 	Loader-

Path	）来进行格式化。 	loader.main	是个特例，它是通过查找manifest
的 	Start-Class	，这样也兼容JarLauncher。

环境变量可以大写字母并且用下划线代替句号。

	loader.home	是其他属性文件（覆盖默认）的目录位置，只要没有指

定 	loader.config.location	。

	loader.path	可以包含目录（递归地扫描jar和zip文件），存档路径或通配符

模式（针对默认的JVM行为）。

占位符在使用前会被系统和环境变量加上属性文件本身的值替换掉。

附录D.4.	PropertiesLauncher特性

709



附录D.5.	可执行jar的限制

当使用Spring	Boot	Loader打包的应用时有一些你需要考虑的限制。

附录D.5.	可执行jar的限制

710



附录D.5.1	Zip实体压缩

对于一个嵌套jar的ZipEntry必须使用 	ZipEntry.STORED	方法保存。这是需要的，

这样我们可以直接查找嵌套jar中的个别内容。嵌套jar的内容本身可以仍旧被压缩，

正如外部jar的其他任何实体。

附录D.5.	可执行jar的限制

711



附录D.5.2.	系统ClassLoader
启动的应用在加载类时应该使用 	Thread.getContextClassLoader()	（多数库和

框架都默认这样做）。尝试通过 	ClassLoader.getSystemClassLoader()	加载嵌

套的类将失败。请注意 	java.util.Logging	总是使用系统类加载器，由于这个原

因你需要考虑一个不同的日志实现。

附录D.5.	可执行jar的限制

712



附录D.6.	可替代的单一jar解决方案

如果以上限制造成你不能使用Spring	Boot	Loader，那可以考虑以下的替代方案：

Maven	Shade	Plugin
JarClassLoader
OneJar

附录D.6.	可替代的单一jar解决方案

713

http://maven.apache.org/plugins/maven-shade-plugin/
http://www.jdotsoft.com/JarClassLoader.php
http://one-jar.sourceforge.net/


附录E.	依赖版本

下面的表格提供了详尽的依赖版本信息，这些版本由Spring	Boot自身的CLI，
Maven的依赖管理（dependency	management）和Gradle插件提供。当你声明一

个对以下artifacts的依赖而没有声明版本时，将使用下面表格中列出的版本。

附录E.	依赖版本

714


	Introduction
	I. Spring Boot文档
	1. 关于本文档
	2. 获取帮助
	3. 第一步
	4. 使用Spring Boot
	5. 了解Spring Boot特性
	6. 迁移到生产环境
	7. 高级主题

	II. 开始
	8. Spring Boot介绍
	9. 系统要求
	9.1. Servlet容器

	10. Spring Boot安装
	10.1. 为Java开发者准备的安装指南
	10.2. Spring Boot CLI安装
	10.3. 从Spring Boot早期版本升级
	11. 开发你的第一个Spring Boot应用
	11.1. 创建POM
	11.2. 添加classpath依赖
	11.3. 编写代码
	11.4. 运行示例
	11.5. 创建一个可执行jar
	12. 接下来阅读什么


	III. 使用Spring Boot
	13. 构建系统
	13.1. 依赖管理
	13.2. Maven
	13.3. Gradle
	13.4. Ant
	13.5. Starters

	14. 组织你的代码
	14.1. 使用"default"包
	14.2. 放置应用的main类

	15. 配置类
	15.1. 导入其他配置类
	15.2. 导入XML配置

	16. 自动配置
	16.1. 逐步替换自动配置
	16.2. 禁用特定的自动配置

	17. Spring Beans和依赖注入
	18. 使用@SpringBootApplication注解
	19. 运行应用程序
	19.1. 从IDE中运行
	19.2. 作为一个打包后的应用运行
	19.3. 使用Maven插件运行
	19.4. 使用Gradle插件运行
	19.5. 热交换

	20. 开发者工具
	20.1 默认属性
	20.2 自动重启
	20.3 LiveReload
	20.4 全局设置
	20.5 远程应用


	IV. Spring Boot特性
	23. SpringApplication
	23.1 启动失败
	23.2. 自定义Banner
	23.3. 自定义SpringApplication
	23.4. 流式构建API
	23.5. Application事件和监听器
	23.6. Web环境
	23.7 访问应用参数
	23.8. 使用ApplicationRunner或CommandLineRunner
	23.9 Application退出

	24.外化配置
	24.1. 配置随机值
	24.2. 访问命令行属性
	24.3. Application属性文件
	24.4. Profile-specific属性
	24.5. 属性占位符
	24.6. 使用YAML代替Properties

	25. Profiles
	25.1. 添加激活的profiles
	25.2.以编程方式设置profiles
	25.3. Profile-specific配置文件
	26.1. 日志格式
	26.2. 控制台输出
	26.3. 文件输出
	26.4. 日志级别
	26.5. 自定义日志配置
	26.6 Logback扩展

	27. 开发Web应用
	27.1. Spring Web MVC框架
	27.2 JAX-RS和Jersey
	27.3 内嵌servlet容器支持

	28. 安全
	28.1 OAuth2
	28.2 User Info中的Token类型
	28.3 自定义User Info RestTemplate
	28.4 Actuator安全

	29. 使用SQL数据库
	29.1. 配置DataSource
	29.2. 使用JdbcTemplate
	29.3. JPA和Spring Data
	29.4 使用H2的web控制台
	29.5 使用jOOQ

	30. 使用NoSQL技术
	30.1. Redis
	30.2. MongoDB
	30.3 Neo4j
	30.4 Gemfire
	30.5 Solr
	30.6 Elasticsearch
	30.7 Cassandra
	30.8 Couchbase

	31. 缓存
	31.1 支持的缓存提供商

	32. 消息
	32.1. JMS
	32.2 AMQP
	33. 调用REST服务

	34. 发送邮件
	35. 使用JTA处理分布式事务
	35.1 使用Atomikos事务管理器
	35.2 使用Bitronix事务管理器
	35.3 使用Narayana事务管理器
	35.4 使用J2EE管理的事务管理器
	35.5 混合XA和non-XA的JMS连接
	35.6 支持可替代的内嵌事务管理器

	36. Hazelcast
	37. Spring集成
	38. Spring Session
	39. 基于JMX的监控和管理
	40. 测试
	40.1 测试作用域依赖
	40.2 测试Spring应用
	40.3 测试Spring Boot应用
	40.4 测试工具类

	41. WebSockets
	42. Web Services
	43. 创建自己的auto-configuration
	43.1 理解自动配置的beans
	43.2 定位自动配置候选者
	43.3 条件注解
	43.4 创建自己的starter

	44. 接下来阅读什么

	V. Spring Boot执行器: Production-ready特性
	45. 开启production-ready特性
	46. 端点
	46.1 自定义端点
	46.2 执行器MVC端点的超媒体支持
	46.3 CORS支持
	46.4 添加自定义端点
	46.5 健康信息
	46.6 安全与HealthIndicators
	46.7 应用信息

	47. 基于HTTP的监控和管理
	47.1 保护敏感端点
	47.2 自定义管理端点路径
	47.4 配置管理相关的SSL
	47.5 自定义管理服务器地址
	47.6 禁用HTTP端点
	47.7 HTTP health端点访问限制

	48. 基于JMX的监控和管理
	48.1 自定义MBean名称
	48.2 禁用JMX端点
	48.3 使用Jolokia通过HTTP实现JMX远程管理

	49. 使用远程shell进行监控和管理
	49.1 连接远程shell
	49.2 扩展远程shell

	50. 度量指标
	50.1 系统指标
	50.2 数据源指标
	50.3 缓存指标
	50.4 Tomcat session指标
	50.5 记录自己的指标
	50.6 添加自己的公共指标
	50.7 使用Java8的特性
	50.8 指标写入,导出和聚合
	50.9 聚合多个来源的指标
	50.10 Dropwizard指标
	50.11 消息渠道集成

	51. 审计
	52. 追踪
	52.1 自定义追踪
	53.1 扩展配置
	53.2 以编程方式

	54. 接下来阅读什么
	55. 部署到云端
	55.1 Cloud Foundry
	55.2 Heroku
	55.3 Openshift
	55.4 Boxfuse和Amazon Web Services
	55.5 Google App Engine

	56. 安装Spring Boot应用
	56.1 Unix/Linux服务
	56.2 Microsoft Windows服务

	57. 接下来阅读什么

	VII. Spring Boot CLI
	58. 安装CLI
	59. 使用CLI
	59.1 使用CLI运行应用
	59.2 测试你的代码
	59.3 多源文件应用
	59.4 应用打包
	59.5 初始化新工程
	59.6 使用内嵌shell
	59.7 为CLI添加扩展

	60. 使用Groovy beans DSL开发应用
	61. 使用settings.xml配置CLI
	62. 接下来阅读什么

	VIII. 构建工具插件
	63. Spring Boot Maven插件
	63.1 包含该插件
	63.2 打包可执行jar和war文件

	64. Spring Boot Gradle插件
	64.1 包含该插件
	64.2 Gradle依赖管理
	64.3 打包可执行jar和war文件
	64.4 就地（in-place）运行项目
	64.5 Spring Boot插件配置
	64.6 Repackage配置
	64.7 使用Gradle自定义配置进行Repackage
	64.8 理解Gradle插件是如何工作的
	64.9 使用Gradle将artifacts发布到Maven仓库
	65. Spring Boot AntLib模块

	66. 对其他构建系统的支持
	66.1. 重新打包存档
	66.2. 内嵌库
	66.3. 查找main类
	66.4. repackage实现示例

	67. 接下来阅读什么

	IX. How-to指南
	68. Spring Boot应用
	68.1 创建自己的FailureAnalyzer
	68.2 解决自动配置问题
	68.3 启动前自定义Environment或ApplicationContext
	68.5 创建no-web应用
	69.1. 运行时暴露属性
	69.2. 外部化SpringApplication配置
	69.3 改变应用程序外部配置文件的位置
	69.4 使用'short'命令行参数
	69.5 使用YAML配置外部属性
	69.6 设置生效的Spring profiles
	69.7 根据环境改变配置
	69.8 发现外部属性的内置选项

	70. 内嵌servlet容器
	70.1 为应用添加Servlet，Filter或Listener
	70.2 改变HTTP端口
	70.3 使用随机未分配的HTTP端口
	70.4 发现运行时的HTTP端口
	70.5 配置SSL
	70.6 配置访问日志
	70.7 在前端代理服务器后使用
	70.8 配置Tomcat
	70.9 启用Tomcat的多连接器
	70.10 使用Tomcat的LegacyCookieProcessor
	70.11 使用Jetty替代Tomcat
	70.12 配置Jetty
	70.13 使用Undertow替代Tomcat
	70.14 配置Undertow
	70.15 启用Undertow的多监听器
	70.16 使用Tomcat 7.x或8.0
	70.17 使用Jetty9.2
	70.18 使用Jetty 8
	70.19 使用@ServerEndpoint创建WebSocket端点

	71. Spring MVC
	71.1 编写JSON REST服务
	71.2 编写XML REST服务
	71.3 自定义Jackson ObjectMapper
	71.4 自定义@ResponseBody渲染
	71.5 处理Multipart文件上传
	71.6 关闭Spring MVC DispatcherServlet
	71.7 关闭默认的MVC配置
	71.8 自定义ViewResolvers
	71.9 Velocity
	71.10 使用Thymeleaf 3

	73. 日志
	73.1 配置Logback
	73.2 配置Log4j

	74. 数据访问
	74.1 配置数据源
	74.2 配置两个数据源
	74.3 使用Spring Data仓库
	74.4 从Spring配置分离@Entity定义
	74.5 配置JPA属性
	74.6 使用自定义EntityManagerFactory
	74.7 使用两个EntityManagers
	74.8 使用普通的persistence.xml
	74.9 使用Spring Data JPA和Mongo仓库
	74.10 将Spring Data仓库暴露为REST端点
	74.11 配置JPA使用的组件

	75. 数据库初始化
	75.1 使用JPA初始化数据库
	75.2 使用Hibernate初始化数据库
	75.3 使用Spring JDBC初始化数据库
	75.4 初始化Spring Batch数据库
	75.5 使用高级数据迁移工具

	76. 批处理应用
	76.1 在启动时执行Spring Batch作业

	77. 执行器
	77.1 改变HTTP端口或执行器端点的地址
	77.2 自定义WhiteLabel错误页面
	77.3 Actuator和Jersey

	78. 安全
	78.1 关闭Spring Boot安全配置
	78.2 改变AuthenticationManager并添加用户账号
	78.3 当前端使用代理服务器时启用HTTPS

	79. 热交换
	79.1 重新加载静态内容
	79.2. 在不重启容器的情况下重新加载模板
	79.3 应用快速重启
	79.4 在不重启容器的情况下重新加载Java类

	80. 构建
	80.1 生成构建信息
	80.2 生成Git信息
	80.3 自定义依赖版本
	80.4 使用Maven创建可执行JAR
	80.5 将Spring Boot应用作为依赖
	80.6 在可执行jar运行时提取特定的版本
	80.7 使用排除创建不可执行的JAR
	80.8 远程调试使用Maven启动的Spring Boot项目
	80.9 远程调试使用Gradle启动的Spring Boot项目
	80.10 使用Ant构建可执行存档
	80.11 如何使用Java6

	81. 传统部署
	81.1 创建可部署的war文件
	81.2 为老的servlet容器创建可部署的war文件
	81.3 将现有的应用转换为Spring Boot
	81.4 部署WAR到Weblogic


	X.附录
	附录A. 常见应用属性
	附录B. 配置元数据
	附录B.1. 元数据格式
	附录B.2. 使用注解处理器产生自己的元数据

	附录C. 自动配置类
	附录 C.1. 来自spring-boot-autoconfigure模块
	附录C.2. 来自spring-boot-actuator模块

	附录D. 可执行jar格式
	附录D.1. 内嵌JARs
	附录D.2. Spring Boot的"JarFile"类
	附录D.3. 启动可执行jars
	附录D.4. PropertiesLauncher特性
	附录D.5. 可执行jar的限制
	附录D.6. 可替代的单一jar解决方案

	附录E. 依赖版本


