
The following options are available in this test mode:

Option Description
Default
value

--mutex-num
Number of mutexes. The actual mutex to lock is

chosen randomly before each lock
4096

--mutex-locks
Number of mutex locks to acquire per each

request
50000

--mutex-loops
Number of iterations for an empty loop to

perform before acquiring the lock
10000

4.4. memory

This test mode can be used to benchmark sequential memory reads or writes.

Depending on command line options each thread can access either a global

or a local block for all memory operations.

The following options are available in this test mode:

Option Description
Default
value

--memory-block-size Size of memory block to use 1K

--memory-scope

Possible values: global, local. Specifies

whether each thread will use a globally

allocated memory block, or a local one.

global

--memory-total-size Total size of data to transfer 100G

--memory-oper
Type of memory operations. Possible

values: read, write.
100G

4.5. fileio

This test mode can be used to produce various kinds of file I/O workloads.

At the prepare stage SysBench creates a specified number of files with a

specified total size, then at the run stage, each thread performs specified I/O

operations on this set of files.

cheng

When the global --validate option is used with the fileio test mode,

SysBench performs checksums validation on all data read from the disk. On

each write operation the block is filled with random values, then the

checksum is calculated and stored in the block along with the offset of this

block within a file. On each read operation the block is validated by

comparing the stored offset with the real offset, and the stored checksum

with the real calculated checksum.

The following I/O operations are supported:

seqwr
sequential write

seqrewr
sequential rewrite

seqrd
sequential read

rndrd
random read

rndwr
random write

rndrw
combined random read/write

Also, the following file access modes can be specified, if the underlying

platform supports them:

Asynchronous I/O mode

At the moment only Linux AIO implementation is supported. When

running in asynchronous mode, SysBench queues a specified number

of I/O requests using Linux AIO API, then waits for at least one of

submitted requests to complete. After that a new series of I/O

requests is submitted.

Slow mmap() mode

In this mode SysBench will use mmap'ed I/O. However, a

separate mmap will be used for each I/O request due to the limitation of

32-bit architectures (we cannotmmap() the whole file, as its size migth

possibly exceed the maximum of 2 GB of the process address space).

Fast mmap() mode

cheng

cheng

On 64-bit architectures it is possible to mmap() the whole file into the

process address space, avoiding the limitation of 2 GB on 32-bit

platforms.

Using fdatasync() instead of fsync()

Additional flags to open(2)

SysBench can use additional flags to open(2), such

as O_SYNC, O_DSYNC and O_DIRECT.

Below is a list of test-specific option for the fileio mode:

Option Description
Defau
lt
value

--file-num Number of files to create 128

--file-block

-size
Block size to use in all I/O operations 16K

--file-total

-size
Total size of files 2G

--file-test-

mode

Type of workload to produce. Possible values: seqwr,

seqrewr, seqrd, rndrd, rndwr, rndwr (see above)

requi
red

--file-io-mo

de

I/O mode. Possible

values: sync, async, fastmmap, slowmmap (onl

y if supported by the platform, see above).

sync

--file-async

-backlog

Number of asynchronous operations to queue per

thread (only for --file-io-mode=async, see above)
128

--file-extra

-flags
Additional flags to use with open(2)

--file-fsync

-freq

Do fsync() after this number of requests (0 -

don't use fsync())
100

--file-fsync

-all
Do fsync() after each write operation no

--file-fsync

-end
Do fsync() at the end of the test yes

--file-fsync

-mode

Which method to use for synchronization. Possible

values: fsync, fdatasync (see above)
fsync

--file-merge Merge at most this number of I/O requests if possible 0

cheng

cheng

cheng

cheng

cheng

cheng

cheng

cheng

cheng

d-requests (0 - don't merge)

--file-rw-ra

tio

reads/writes ration for combined random read/write

test
1.5

Usage example:

$ sysbench --num-threads=16 --test=fileio --file-total-size=3G

--file-test-mode=rndrw prepare

$ sysbench --num-threads=16 --test=fileio --file-total-size=3G

--file-test-mode=rndrw run

$ sysbench --num-threads=16 --test=fileio --file-total-size=3G

--file-test-mode=rndrw cleanup

In the above example the first command creates 128 files with the total size

of 3 GB in the current directory, the second command runs the actual

benchmark and displays the results upon completion, and the third one

removes the files used for the test.

4.6. oltp

This test mode was written to benchmark a real database performance. At

the prepare stage the following table is created in the specified database

(sbtest by default):

 CREATE TABLE `sbtest` (

 `id` int(10) unsigned NOT NULL auto_increment,

 `k` int(10) unsigned NOT NULL default '0',

 `c` char(120) NOT NULL default '',

 `pad` char(60) NOT NULL default '',

 PRIMARY KEY (`id`),

 KEY `k` (`k`));

Then this table is filled with a specified number of rows.

The following execution modes are available at the run stage:

Simple

In this mode each thread runs simple queries of the following form:

 SELECT c FROM sbtest WHERE id=N

cheng

cheng

