T3000 Series Calibration Software User's Guide

About This Guide

Welcome to the T3000 calibration software user's guide. The calibration software allows the user to electronically tune and individually configure T3000 series handportable radios.

Overview

This guide covers the T3000 series calibration software, and explains how to install and use this software. It is structured in 3 chapters, with the Tait Software Licence agreement at the end.

Chapter 1: Getting Started

Introduces the software, and gives software installation and test equipment set-up instructions.

Chapter 2: General Operations

Explains how use the calibration software.

Chapter 3: Calibration Procedures

Gives detailed instructions on how to perform each calibration test.

Typographical Conventions

This guide uses the following typographical conventions:

Convention	Description
Bold	Menu Bar commands
	Menu names and options
	Field Names
	Button names in dialogue boxes
Monospace font	Indicates commands to be entered by the user via the keyboard
ALL CAPITALS	Keyboard keys e.g. CTRL, ENTER

Related Documents

M3000-00-10X	T3000 Series Service Manual
M3000-00-20X	T3000 Series II Service Manual
T3000-5000-00X	T3000 Programming Software Users' Guide (IPN 439-35000-0X)

Contents

About This Guide

Overview i
Typographical Conventions i
Related Documentsii
Contents iii

Chapter 1 Getting Started

About This Chapter 1-1
Software Overview 1-1
Software Compatibility 1-2
Hardware Requirements 1-2
Calibration Kit Components 1-3
Test Equipment Required 1-3
Installing The Software 1-5
Connecting The Radio 1-6

Chapter 2 General Operations

Starting The Program 2-	-1
Navigation	-2
Using The Menu Bar 2-	-3
Loading Files 2-	-3
Saving Files 2-	-4
Programming The Radio 2-	-5
Using The Utility Menu 2-	-6
Exiting The Program 2-	-8

Chapter 3 Calibration Procedures

Reading The Radio Identity
Full Calibration 3-
TCXO Output Frequency 3-
Power Control Test 3-
Balance Adjust Test 3-
Maximum Deviation Adjustment 3-
Front End Tuning 3-1

iv

Maximum Volume Threshold	3-15
Squelch	3-16
RSSI Thresholds (T3030, T3035 & T3040 Radios Only)	3-21
Battery Thresholds	3-22

Tait Electronics Limited Software Licence Agreement

1 Getting Started

About This Chapter

This chapter covers the following topics:

- Software Overview
- Hardware Requirements
- Calibration Kit Components
- Test Equipment Required
- Installing The Software
- Connecting The Radio

Software Overview

The T3000 radio has been designed to be totally electronically tuned, with all physical tuning points either eliminated or replaced with electronic tuning. Calibration of the T3000 is normally only carried out during product manufacture, or after major service.

The calibration package performs three major tasks:

- measurement carried out with the radio in computer controlled test mode, with all test equipment operated by the user
- calculation the controller processes the data
- programming the radio is placed in programming mode, and all data required for the radio's self-configuration is written to its database

Note Each radio is calibrated over a predetermined operating band, and the radio performance is not guaranteed outside of this band.

Software Compatibility

Version 2.04 calibration software is compatible with all current fully approved radio software versions at 26/3/96 that support the following calibration databases:

0	
T3010	v0.01, v1.01
T3020	v0.03
T303X & T3040	v1.01, v1.02, v1.03
The following fre VHF low	quency bands are covered: 136 to 154MHz (-31XX)
VHF high	145 to 174MHz (-32XX)
Band III low	174 to 195MHz (-41XX)
Band III high	184 to 208MHz (-42XX)
UHF low	400 to 440MHz (-51XX)
UHF mid	440 to 470MHz (-52XX)
UHF high	470 to 520MHz (-53XX)
UHF USA mid	450 to 470MHz (-55XX)
UHF USA high	470 to 490MHz (-56XX)
UHF Germany	410 to 430MHz (-54XX)
UHF China	336 to 360MHz (-70XX)
UHF Korea	360 to 400MHz (-71XX)
UHF Russia	300 to 340MHz (-72XX)
UHF 800MHz	806 to 870MHz (-81XX)

Hardware Requirements

While the T3000 calibration software will run on XT, AT, 386, or 486 IBM* compatible PCs, the recommended machine configuration is:

- A 386 or higher PC
- 2MB RAM
- VGA display
- Hard disk with 500kB of free space

Note The calibration software requires a large portion of the PCs 640K base memory to run reliably. To optimise memory usage, refer to the MS-DOS user manual.

* IBM is a registered trademark of International Business Machines.

Calibration Kit Components

The following items are contained in the T3000-7100 calibration kit:

- Diskette containing the latest calibration software.
- T3000 calibration test unit.
- T3000-7300 radio calibration cable. This connects the calibration test unit to the radio.
- T3000-7600 battery eliminator.
- X3000-19 programming lead. This connects the calibration test unit to a COM port of the PC.
- T3000-7400 RF test lead. This provides an RF connection from the radio to test instruments and can be used with the radio open. One end is fitted with a BNC plug and the other end has a modified N-type plug.
- T3000-7500 open radio control lead. This enables connection to the T3000 calibration test unit when the radio is open. One end is fitted with a modified accessory connector and the other end has a 15 way socket.

Note A calibration software upgrade package is also available under the product code T3000-7200-002. This contains a diskette with the latest calibration software and the T3000 Calibration Software User's Guide.

Test Equipment Required

The following list specifies the general performance requirements of test equipment used in the calibration process.

- Power supply providing +7.2V, with a 3A capacity.
- Sinad meter: accurate to ±1dB sinad at a reading of 12dB sinad.
- Audio signal generator: 600Ω output, output frequency variable from 50Hz to >10kHz, with a flat frequency response. Output level variable, with both a continuous adjustment and a 10dB step adjustment. Full output is >3Vp-p into a 600 Ω load.

- RF signal generator: capable of producing an internally modulated RF signal in the range of 100 to 520MHz with an output impedance of 50Ω and a frequency error of <2ppm. Output level can be varied over the range of 0dBm to -127dBm and must be accurate to within 2dB.
- Frequency counter: an oven controlled reference is preferred, however a TCXO reference with temperature stability of 5ppm (0°C to 50°C) will suffice.
- Power meter: this must be accurate to ±10% FSD.
- Modulation meter: this must be accurate to ±10% FSD. A demodulated audio output should also be available. Low pass filtering must be >15kHz and high pass filtering must be < 20Hz.
- 20MHz dual trace oscilloscope.
- 20dB RF power attenuator, 50Ω. Must be accurate to within 1dB and capable of handling 10W input power.
- Digital multimeter 3¹/₂ digit.

A multifunction test set may be used as long as it has the appropriate function to perform the calibration correctly e.g. Rhode & Schwarz CMS52 Radio Communications Test Set, with a high stability oscillator.

Note These test equipment performance requirements are satisfactory for servicing, but are not adequate for verifying the accuracy of the Factory Test Report that accompanies each new T3000.

Installing The Software

Copy all the files on the 3.5" diskette to the working directory on the hard disk e.g. copy a:*.* c:\calib, then press ENTER (,).

Creating A Windows* Desktop Icon

In the windows **Program Manager** select the **Program Group** in which you wish to place the calibration software icon.

Select the New command from the File menu.

Select Program Item then choose the OK button.

In the **Program Item Properties** dialogue box, enter the following information:

Description:	Calib v2.04
Command Line:	[drive/directory path]\calib.exe
Working Directory:	[drive/directory path that you want data
c <i>i</i>	files to be saved in]

Select **Change Icon**, then change the directory path to the one that holds the calib.ico file.

e.g. c:\calib\calib204.ico

The icon provided allows you to visually identify the icon representing the calibration software. When this icon is selected, choose the **OK** button.

In the **Program Item** dialogue box choose OK to create the new item on your desktop. To change the group in which it appears, click and drag it to the required group.

* Windows is a trademark of the Microsoft Corporation.

Connecting The Radio

The following diagram shows how to set up the test equipment.

2 General Operations

This chapter covers the following topics:

- Starting The Program
- Navigation
- Using The Menu Bar
- Loading Files
- Saving Files
- Programming The Radio
- Using the Utilities Menu
- Exiting The Program

Starting The Program

Connect the test equipment, as shown in Chapter 1.

Connect the battery eliminator and radio calibration cable to the T3000 and switch on the radio.

On the PC, change to the directory in which the calibration software was installed, and type calib to run the calibration program.

If the calibration software has been installed under Windows, click on the appropriate Windows desktop icon.

The calibration software runs in graphics mode by default. To run in text mode, type:

```
calib /t
```

Note Running in text mode will not normally provide significant performance enhancement.

Navigation

The calibration software can be used either with a mouse or keyboard. The following keyboard commands are common to all calibration software windows or menus.

Key	Function		
F1	Help		
F3	Exit window & return to main menu		
F4	Quit program without saving		
F5	Refresh screen		
ALT	Go to menu bar		
ENTER (⊣)	Selects the current DAC setting as the data value for the current test, and will then move on to the next window object or test		
TAB	Move to next window object		
SHIFT-TAB	Move to previous window object		
$\uparrow\downarrow$	Move up and down DAC adjustment range in single steps		
$\rightarrow \leftarrow$	Change to next data input field, or move along menu items, without saving the current DAC settings		
PAGEUP	Move to top of DAC adjustment screen		
PAGEDOWN	Move to bottom of DAC adjustment screen		
HOME	Go to top of DAC adjustment range		
END	Go to bottom of DAC adjustment range		

In the program windows, the following convention applies:

Cancel	Exit the window without saving the data
OK	Exit the window and save the data

Using The Menu Bar

The key words on the main menu bar are selected either by clicking on them with the mouse or by holding down the ALT key and pressing the underlined letter.

To access on-line help while either in the main menu or in a window, press F1. Help is context sensitive and the information given will relate to the window active when the F1 key was pressed.

Loading Files

Only calibration data from a radio with the same radio identity can be used to calibrate another radio.

Select **File** from the main menu then **Load** and the file will be loaded from the current directory. The following window appears:

				Radio Cal	ibration	
File	Radio	Test	Utility	Quit		
		_				
					Load A File	
		Cor	Load a The file	data file fr should hav File Name	rom the current directory. we the same radio identity. e : UNKNOWN.DATI CANCEL	
		-				

Enter the appropriate file name and press ENTER (,).

Choose the **LOADED** button to exit the window.

Saving Files

Once calibration is completed, it is possible to save the calibration data. This will be saved to the current directory.

In the main menu, select File then Save (or Save As).

The following window appears:

	Radio Calibration						
File	Radio	Test	Utility Quit				
			Save A File				
		Cor	Save the data to a file in the current directory. Input the file name and press <enter> File Name : UNKNOWN.DAT CANCEL</enter>				

Enter the file name and press ENTER (,).

Choose the **SAVED** button to exit the window.

Programming The Radio

After completing either full calibration or individual tests, it is necessary to enter the calibration data in the radio's database.

Select **Program Database** from the **Radio** menu and the following window appears:

			Radio Calibration
File	Radio	Test	Utility Quit
			Program The Radio
		Сору	Radio T3040sII-5322 After the radio is programmed, you have to read a radio before doing any test or loading from a file. OK Cancel Press the OK button to program, or Cancel to abort.

When the window opens, the **OK** button is highlighted. Press ENTER (\dashv) to select **OK** button and the calibration data is entered into the radio's database.

To exit this window *without* programming the database, choose the **CANCEL** button without first selecting **OK**.

Using The Utility Menu

Select **Utility** from the main menu, and the following window appears:

				Radio	Calibration
File	Radio	Test	Utility	Quit	
			Print		
			Configur	ation	
			Test Co	mmands	
	_				
			Radi	o Calibra	tion System
				Version	2.04
Copyright Tait Electro Christchurch,					nics Ltd., 1993 – 1996. New Zealand

Printing

Choose **Print** from the **Utility** menu and the following window appears:

Choose the **Print** button and radio information and test data will be printed.

Configuration

Choose **Configuration** from the **Utility** menu and the following window appears:

This menu allows the COM port connection details to be changed.

Test Commands

Choose **Test Commands** from the **Utilities** menu and the following window appears:

Radio Calibration								
-				Test Commands				
	Commands	5 Descr	iption					
	10	Set Mo	dem to Send	Zeros	+			
	11	Set Mo	dem to Send	Ones		Ouit		
	12	Set Mo	dem to Send	Preamble				
	13	Signalli	ng (modem) T	x Off		Test Mode		
	14	Read M	lodem Rx Stat	te				
	15	Switch	CTCSS/DCS					
	16	Switch	Tx On	+				
	Setting		0]				
	Tx Frequ	ency	120	MHz				
	Rx Frequ	ency	120	MHz				
	Re-config	jure	YES]				
	Response							

2-8 General Operations

Select a test command and press ENTER (\downarrow) .

If either user mode or program mode is required, click on the **Test Mode** button to select either **Test Mode**, **User Mode** or **PGM Mode**.

For commands 110 to 119, the value in the **Setting** window (0 to 255) will be sent to the appropriate control element. After changing the setting value, the desired command must be resent for it to take effect.

For details on the test facilities available, refer to Section 5.2 "Test Facilities" of the M3000-00 Service Manual.

Exiting The Program

From the main menu select **Quit**. Click on **OK** to exit the program or **CANCEL** to return to the main menu.

Selecting **F4** at any time will also exit you from the calibration program.

3 Calibration Procedures

This chapter covers the following topics:

- Reading The Radio Identity
- Full Calibration
- TCXO Output Frequency
- Power Control Test
- Balance Adjust Test
- Maximum Deviation Adjustment
- Front End Tuning
- Maximum Volume Threshold
- Squelch
- RSSI Thresholds (T3030, T3035 & T3040 Radios Only)
- Battery Thresholds

Reading The Radio Identity

Press ALT then select **Radio** from the main menu, and the following window appears:

	Radio Calibration									
File	Radio	Test	Utility	Quit						
					Infor	mation				
	PI	ease co	mplete the	e radio	identity	y and press	enter	to validate.		
	R	adio Ide	ntity:	TXXX	X₅XX	- XXXX		ОК		
	Si	gnalling:				i <u> </u>	-			
	Т	est Fre	quencies:	0	0	0	0	0		
	R	adio Tyj	pe:	Invalid	Data					
	Fi	equenc	y Range:	Invalid	Data					
	В	andwidtl	n:	Invalid	Data					
	D	8 versio	on:	00.00						

Select **Read Radio Identity**, and the following window appears:

Enter the last 4 characters of the 8 character T-code. This is found on the radio identity label on the rear cover of the radio.

Press ENTER (\downarrow), and the information on the screen is then updated.

Note The first 4 digits of the radio identity are programmed using T3000 programming software. This must be programmed prior to calibration.

Click on the **Signalling** button and select either **CTCSS** (T3030, T3035 and T3040 only), **Selcall** or **No** (none).

Choose the **OK** button to exit to the main menu.

Full Calibration

From the main menu, select **Test** and the following window appears:

	Radio Calibration									
File	Radio	Test	Utility	Quit						
File	Radio	Test Full C TCXO Powe Baland Maxim Front Maxim Count City S RSSI Batter	Utility alibration Output F r Control ce Adjust um Deviat -end Tuni um Volum ry Squelc Squelch Sa Threshold ry Threst	Quit requency ment ion Adjustm ng e Threshold h Setting etting ls holds	nent 1	tem ==== -, 1993 - 1996. ealand				

Select Full Calibration from the Test menu.

The program will now step the user through the calibration tests automatically, displaying commands on the screen at the beginning of each test. If a full calibration is not required, individual parameters may be selected for calibration and test in the **Test** menu.

The **Program Database** window will appear automatically at the completion of a full calibration.

Note After full calibration or when individual tests have been carried out, it is necessary to enter the new data into the radio's database to complete the calibration or test procedure (refer to "Program Database"). The **Program Database** window will only appear automatically at the completion of a full calibration.

TCXO Output Frequency

The T3000 is a synthesised radio, phase locked to a high stability TCXO. The TCXO needs careful alignment to ensure that the transmitter and receiver are on frequency.

Select **TCXO Output Frequency** from the **Test** menu and the following window appears:

Radio Calibration						
	TCXO Test					
Connect radio RF port to Adjust Coarse Trim and t as possible to 399.1 MHz *Coarse Trim 179	a frequency counter via a suitable attenuator. then Fine Trim to get the frequency as close Fine Trim 131 186 185 184 183 182 181 180 OK Cancel					

Connect the RF output of the radio to the frequency counter via the attenuator.

Adjust the **Coarse Trim** DAC, while monitoring the frequency counter.

Set the frequency as close as possible to the required frequency and press ENTER (\downarrow).

On pressing ENTER (\downarrow), **Fine Trim** is selected. Set the frequency as accurately as possible, then press ENTER (\downarrow).

Choose the **OK** button.

3-5

Power Control Test

The power control must be set for both high and low power at five points across the frequency band of the radio. This ensures a flat power output across the operating band.

Select **Power Control** from the **Test** menu and the following window appears:

	Radio Calibration									
	Power Control Test									
Connect radio RF port to Power Meter. OK At each freq point, tune DAC to give 4W power. CANCEL Then at each freq,tune the DAC to give 1W power.										
						VCO for P_C				
Freq	439.1 *	446.1	454.1	462.1	470.1	7 * 6 5				
High(4 w)	135	137	143	147	149	4				
Low(1 w)	79	79	79	81	83	3 2 1 0				

With the RF output of the radio connected to the power meter, the radio is set to transmit at each of the five points in the band.

Adjust the power control DAC so that the radio output power is set as closely as possible to the maximum rated power (5W VHF, 4W UHF and Band III).

Press ENTER (,) after each setting and repeat this process for low power setting (1W).

Choose the **OK** button.

Note It is recommended that the lead to the power meter is kept as short as possible to achieve best accuracy.

Balance Adjust Test

The modulation balance adjustment ensures a flat modulation response across the frequency band of the radio.

Select **Balance Adjustment** from the **Test** menu and the following window appears:

	Radio Calibration									
	Balance Adjust Test									
Connect	RF port to	Modulation I	Meter (MM)	via a suit	able a	ttenua	tor.			
Connect	an Audio Ge	nerator(AG)) to the mo	d. audio ir	iput.					
1. Set A	G to 70Hz. I	Adjust the	AG level to	give 2.5k	Hz dev	viation	on MM.			
2. Set A	G to 7kHz. I	Adjust Bala	nce Pot to	give 2.5kl	lz dev	iation	on MM.			
3. Check	the AG at	70Hz that o	dev. is still	2.5kHz. If	not,	гереа	t 1-3.			
At 7kHz	For each fr	equency, ir	nput deviatio	on DØ-D4	readin	g fro	n the MM.			
Freq	uency	Devia	tion	Bala	ance P	ot				
fØ	339.1	DØ	2.5	6	3		ОК			
f1	344.1	D1	2.37		67	÷	CANCEL			
f2	350(1	D2	2.3		66 65					
f3	f3 355.1 D3 2.25 64									
f4	360.1	D4	2.2		63 62	+				

Connect the RF output of the radio to the modulation meter via the attenuator.

Set the audio generator to 70Hz, set the test unit 'Tx Audio' switch to 'Mod Audio' and increase the audio generator output level to give ± 2.5 kHz deviation.

Increase the audio generator frequency to 7kHz without changing the output level. Adjust the **Balance Pot** to give ±2.5kHz deviation and press ENTER (\downarrow).

Reset the audio generator frequency to 70Hz and repeat the previous two steps until the deviation at 70Hz and 7kHz is the same, then set the audio generator to 7kHz.

On pressing ENTER (,-), the first frequency step is selected. Type in the deviation reading observed on the modulation meter and press ENTER (,-).

Type in the next 4 deviation readings, pressing ENTER (L) after each entry.

Note Using TAB to move to the next entry point will not change the data.

When all readings have been entered, choose the **OK** button.

Maximum Deviation Adjustment

In this Chapter, deviation settings are given first for wide band, followed by settings for medium band in brackets () and settings for narrow band in square brackets [].

T3010 & T3020 Radios - No Selcall

Select **Maximum Deviation Adjustment** from the **Test** menu, and the following window appears:

Radio Calibration	
Max Deviation Test for Conventional Radio	
Connect RF port to modulation meter via a suitable attenuator.	
Connect Audio Generator (AG) to Mic audio and set to 1 kHz.	
Adjust AG level to just before the onset of clipping.	
Increase audio level by 20 dB. Adjust freq 300Hz-3kHz to give max dev.	
Adjust Dev Pot to get 4.3kHz deviation. Then disconnect AG. \rightarrow	22
Adjust Dev Pot to get 600Hz signalling dev. Then reconnect AG	197
Adjust Dev Pot to get 4.5kHz deviation at +/- peak	22
Deviation Pot 28 * 27 26 25 24 23 22 *	ĒL

Set the audio generator to 1kHz and set the test unit 'Tx Audio' switch to 'Mic Audio'.

Observe the demodulated waveform on the oscilloscope and adjust the audio generator level until the peaks of the waveform just begin to flatten (about 3mV).

Increase the audio level by 20dB and vary the audio generator frequency between 300Hz and 3kHz to find the frequency of maximum deviation.

Adjust the **Deviation Pot** to give ± 4.3 kHz deviation and press ENTER (\rightarrow).

Set the test unit 'Tx Audio' switch to the off position.

To set the signalling deviation, adjust the **Deviation Pot** to give ± 600 Hz deviation and press ENTER (\downarrow).

Set the test unit 'Tx Audio' switch to 'Mic Audio'.

Readjust the **Deviation Pot** for ± 4.5 kHz (± 3.6 kHz) [± 2.2 kHz] deviation at the frequency of maximum deviation, and press ENTER (\rightarrow).

Choose the **OK** button.

T3020-XX2X Programmable Bandwidth Radios

There is one additional step in the test procedure, as shown:

Radio Calibration	
Max Deviation Test for Conventional Radio	
Connect RF port to modulation meter via a suitable attenuator.	
Connect Audio Generator (AG) to Mic audio and set to 1 kHz.	
Adjust AG level to just before the onset of clipping.	
Increase audio level by 20 dB. Adjust freq 300Hz-3kHz to give max dev.	
Adjust Dev Pot to get 4.3kHz deviation. Then disconnect AG. \rightarrow	22
Adjust Dev Pot to get 600Hz signalling dev. Then reconnect AG	197
Adjust Dev Pot to get 4.5kHz deviation at +/- peak -	47
Adjust Dev Pot to get 2.2kHz deviation at +/- peak	22
Deviation Pot	
27 26	EL
25	
23	
22	

Readjust the **Deviation Pot** for ± 2.2 kHz deviation at the frequency of maximum deviation, and press ENTER (\downarrow).

Choose the **OK** button.

T3010 & T3020 Radios - With Selcall

Select **Maximum Deviation Adjustment** from the **Test** menu, and the following window appears:

Radio Calibration	
Max Deviation Test for Conventional Radio	
Connect RF port to modulation meter via a suitable attenuator.	
Connect Audio Generator (AG) to Mic audio and set to 1 kHz.	
Adjust AG level to just before the onset of clipping.	
Increase audio level by 20 dB. Adjust freq 300Hz-3kHz to give max	dev.
Adjust Dev Pot to get 4.3kHz deviation. Then disconnect AG. \rightarrow	22
Adjust Dev Pot to get 600Hz signalling dev. Then reconnect AG	197
Adjust Dev Pot to get 4.5kHz deviation at +/- peak	22
Confirm 4.5kHz dev. is not exceeded. If so, adjust Dev Pot. –	22
Deviation Pot	
28 * 27 26 25 24 23 22 *	OK CANCEL

Set the audio generator to 1kHz and set the test unit 'Tx Audio' switch to 'Mic Audio'.

Observe the demodulated waveform on the oscilloscope and adjust the audio generator level until the peaks of the waveform just begin to flatten (about 3mV).

Increase the audio level by 20dB and vary the audio generator frequency between 300Hz and 3kHz to find the frequency of maximum deviation.

Adjust the **Deviation Pot** to give ± 4.3 kHz deviation and press ENTER (\downarrow).

Set the test unit 'Tx Audio' switch to the off position.

To set the signalling deviation, adjust the **Deviation Pot** to give ± 600 Hz deviation and press ENTER (\downarrow).

Set the test unit 'Tx Audio' switch to 'Mic Audio'.

Readjust the **Deviation Pot** for ± 4.5 kHz (± 3.6 kHz) [± 2.2 kHz] deviation at the frequency of maximum deviation, and press ENTER (\rightarrow).

Sweep the frequency band between 300Hz and 3kHz and check that ± 4.5 kHz (± 3.6 kHz) [± 2.2 kHz] is not exceeded at any frequency.

Choose the **OK** button.

T3020-XX2X Programmable Bandwidth Radios

There are 2 additional steps in the test procedure, as shown:

Radio Calibration	
Max Deviation Test for Conventional Radio	
Connect RF port to modulation meter via a suitable attenuator.	
Connect Audio Generator (AG) to Mic audio and set to 1 kHz.	
Adjust AG level to just before the onset of clipping.	
Increase audio level by 20 dB. Adjust freq 300Hz-3kHz to give ma:	x dev.
Adjust Dev Pot to get 4.3kHz deviation. Then disconnect AG. \rightarrow	22
Adjust Dev Pot to get 600Hz signalling dev. Then reconnect AG	197
Adjust Dev Pot to get 4.5kHz deviation at +/- peak -	47
Adjust Dev Pot to get 2.2kHz deviation at +/- peak	22
Confirm 2.2kHz dev. is not exceeded. If so, adjust Dev Pot	22
Deviation Pot	
28 * 27 26 25 24 23 2 23	OK Cancel

Readjust the **Deviation Pot** for ± 2.2 kHz deviation at the frequency of maximum deviation, and press ENTER (\downarrow).

Sweep the frequency band between 300Hz and 3kHz and check that ± 2.2 kHz is not exceeded at any frequency.

Choose the **OK** button.

T3030, T3035 & T3040 Radios

Select **Maximum Deviation Adjustment** from the **Test** menu and the following window appears:

Radio Calibration							
Max Deviation Test for Trunked Radio							
Connect RF port to modulation meter via a suitable attenuator.							
Connect Audio Generator (AG) to Mic audio and set to 1 kHz.							
Adjust AG level to just before the onset of clipping.							
Increase audio level by 20 dB. Adjust freq 300Hz-3kHz to give	max de	u _:					
Adjust Dev Pot to get 2.2kHz deviation.	->	128					
Adjust Dev Pot to get 1.5kHz deviation.	-	128					
Deviation Pot 132 + 131 130 129 128 127 +	Ca	DK					

Set the audio generator to 1kHz and set the test unit 'Tx Audio' switch to 'Mic Audio'.

Observe the demodulated waveform on the oscilloscope and adjust the audio generator level until the peaks of the waveform just begin to flatten.

Increase the audio level by 20dB and vary the audio generator frequency between 300Hz and 3kHz to find the frequency of maximum deviation.

Adjust the **Deviation Pot** to give ±4.5kHz (±3.6kHz) [±2.2kHz] deviation and press ENTER (↓).

Note If CTCSS is enabled, adjust the **Deviation Pot** to give ±4.3kHz (±3.5kHz) [±2.1kHz] deviation instead, and press ENTER (↓).

An FFSK tone will then be transmitted.

Adjust the **Deviation Pot** for ± 3.0 kHz (± 2.4 kHz) [± 1.5 kHz] deviation at the frequency of maximum deviation, and press ENTER (\rightarrow).

Choose the **OK** button.

Front End Tuning

The T3000 receiver front end is electronically tuned and during calibration is set to give maximum sensitivity at five points across the frequency band.

Note The TCXO output frequency must be set accurately *before* tuning the front end.

Select **Front-End Tuning** from the **Test** menu and the following window appears.

	Radio Calibration					
		F	ront-end	Tuning To	est	
Connect the radio RF port to RF signal generator (-100dBm). At each frequency, tune DAC for maximum RSSI reading.						
	×R1	R2	RЗ	R4	RX TUNE DAC	
Frequency	410.1,	420.1,	430.1,	440.1	53 🔹	
	46	84	124	172	52 51 50	
RSSI Reading	:	45			49 48 47	
	0	ĸ	[Cancel	46 45 +	

Connect the RF output of the radio to the RF signal generator via the attenuator. Connect the 'Sinad' audio output on the test unit to the sinad meter.

Set the signal generator to the required frequency with modulation set for ± 3.0 kHz (± 2.4 kHz) [± 1.5 kHz] deviation at 1kHz AF and an output level of -100dBm at the radio.

Tune the **Rx Tune DAC** to achieve an approximately maximum RSSI reading and press ENTER (\downarrow).

A "warning" window appears while the calibration software maximises this result. When the window disappears, an asterisk appears beside the next frequency.

Set the signal generator to this frequency and tune the **RX Tune DAC** as before.

Repeat these two steps for each successive frequency, and choose the **OK** button.

Note If the data input for R1 or R2 is incorrect, the R0 data (calculated from R1 and R2) will be invalid, and an error message appears. It will then be necessary to reset the R1 and R2 values.

Maximum Volume Threshold

The maximum volume threshold is set to ensure that the T3000 speaker is not overdriven (no audible distortion).

Select **Maximum Volume Threshold** from the **Test** menu and the following window appears:

Radio Calibrat	ion
Max Volume	Test
Connect the radio RF port to a RF signal g Connect the radio's audio output to an oscil Set the RF-SG to 439.1MHz(carrier), -47dE Adjust volume pot to give 5.7 volts peak to Volume Pot 27 31 * 30 29 28 27 26 *	enerator (RF-SG). loscope via interface unit. im, 1kHz mod. 1.5kHz dev. peak on oscilloscope. OK CANCEL

Connect the RF output of the radio to the RF signal generator via the attenuator and connect the 'Sinad' audio output on the test unit to the oscilloscope.

Set the signal generator to the frequency shown in the test window, with modulation set for ± 3.0 kHz (± 2.4 kHz) [± 1.5 kHz] deviation at 1kHz AF and an RF level of -47dBm at the radio.

Adjust the **Volume Pot** to give 5.7Vp-p on the oscilloscope and press ENTER (,-).

Choose the **OK** button.

Squelch

There are 2 programmable squelch settings for T3010 and T3020 radios. These are 'country' and 'city' squelch, and correspond to nominal settings of 10dB and 16dB sinad respectively.

T3010 & T3020 Non Programmable Bandwidth Radios

Country Squelch

Select **Country Squelch Setting** from the **Test** menu and the following window appears:

Radio Calibration					
Country Squelch Test					
Connect the audio output to	a SINAD) meter	via the	interface	e unit.
1.Set the RF-SG to 439.1M	lz(carrie	er), -110	ØdBm, 1	kHz mod.	3.0kHz dev.
2.Set power level on RF-SG	i to give	10dB 9	SINAD re	ading.	
3.Increase squeich level unt	il Busy :	status is	5 0.		
4.Decrease squeich level un	til Busy	status (changes	from Ø	to 1, press Enter.
5.Repeat this 4 times.					Squelch Level
					126 🔹
Reading Number	*1	2	3	4	125
High Squelch Threshold	135	135	135	135	123
					122
					120
Busy (1-busy, 0-not busy)	0				119 118 *
ОК		Can	cel		

Connect the RF output of the radio to the RF signal generator via the attenuator. Connect the 'Sinad' audio output on the test unit to the sinad meter.

Set the signal generator to the frequency shown in the test window, with modulation set for ± 3.0 kHz (± 2.4 kHz) [± 1.5 kHz] deviation at 1kHz AF and an output level to give a 10dB sinad.

Increase the Squelch Level DAC until the Busy status is '0'.

Decrease the squelch setting until the **Busy** status changes from '0' to '1', then press ENTER (الـ).

Repeat 3 more times and choose the OK button.

City Squelch

Select **City Squelch Setting** from the **Test** menu and the following window appears:

Radio Calibration					
	City	Squelcl	n Test		
Connect the audio output to	a SINAD) meter	via the	interface	e unit.
1.Set the RF-SG to 439.1M	lz(carrie	er), -11	ØdBm, 1	kHz mod.	3.0kHz dev.
2.Set power level on RF-SG	i to give	16dB 9	SINAD re	ading.	
3.Increase squelch level unt	il Busy :	status is	5 0.		
4.Decrease squelch level un	til Busy	status (changes	from Ø	to 1, press Enter.
5.Repeat this 4 times.					Squeich Level
					140 +
Reading Number	*1	2	3	4	139
High Squelch Threshold	145	145	145	145	137
					136
					134
Busu (1-husu, Ø-not husu)	ю				133
busy (1 busy) o nor busy,	U				132

Connect the RF output of the radio to the RF signal generator via the attenuator. Connect the 'Sinad' audio output on the test unit to the sinad meter.

Set the signal generator to the frequency shown in the test window, with modulation set for ± 3.0 kHz (± 2.4 kHz) [± 1.5 kHz] deviation at 1kHz AF and an output level to give a 16dB sinad.

Increase the **Squelch Level** DAC until the **Busy** status is '0'.

Decrease the squelch setting until the **Busy** value changes from '0' to '1', then press ENTER (الـ).

Repeat 3 more times and choose the **OK** button.

T3020-XX2X Programmable Bandwidth Radios

Country Squelch

Select **Country Squelch Setting** from the **Test** menu and the following window appears:

Radio Calibration					
Country Squelch Test					
Connect the audio output to	a SINAD) meter	via the	interfac	e unit.
1.Set the RF-SG to 399.1MH	z(carrie	er), -11(dBm, 1	kHz mod.	. 3.0kHz dev.
2.Set power level on RF-SG	to give	10dB 9	INAD re	ading.	
3.Increase squelch level unti	l Busy :	status is	· 0.		
4.Decrease squelch level until Busy status changes from 0 to 1, press Enter.					
5.Repeat this 4 times.					Squelch Level
					126 +
Reading Number	1	2	3	4	125
Wide Squelch Threshold	119	119	119	119	123
	*1	2	3	4	122
Narrow Squelch Threshold	135	135	135	135	120
Busy (1-busy, 0-not busy)	0				119 118 *
OK					

Connect the RF output of the radio to the RF signal generator via the attenuator. Connect the 'Sinad' audio output on the test unit to the sinad meter.

Set the signal generator to the frequency shown in the test window, with modulation set for ± 3.0 kHz deviation at 1kHz AF and an output level to give a 10dB sinad.

Increase the Squelch Level DAC until the Busy status is '0'.

Decrease the squelch setting until the **Busy** status changes from '0' to '1', then press ENTER (الـ).

Repeat 3 more times, then press ENTER (,).

Set the signal generator modulation to ± 1.5 kHz deviation at 1kHz AF, adjust the output level to give a 10dB sinad.

Decrease the squelch setting until the **Busy** status changes from '0' to '1', then press ENTER (الـ).

Repeat 3 more times, and choose the OK button.

City Squelch

Select **City Squelch Setting** from the **Test** menu and the following window appears:

	Radio	Calibra	tion				
City Squelch Test							
Connect the audio output to	Connect the audio output to a SINAD meter via the interface unit.						
1.Set the RF-SG to 399.1MH	z(carrie	er), -11(ØdBm, 1	kHz mod.	3.0kHz dev.		
2.Set power level on RF-SG	to give	16dB 9	SINAD re	ading.			
3.Increase squelch level unti	l Busy :	status is	. 0.				
4.Decrease squelch level unt	4.Decrease squelch level until Busy status changes from 0 to 1, press Enter.						
5.Repeat this 4 times.					Squeich Level		
					140 +		
Reading Number	*1	2	3	4	139		
Wide Squelch Threshold	133	133	133	133	137		
	1	2	3	4	136		
Narrow Squeich Threshold	145	145	145	145	134		
Busy (1-busy, 0-not busy)	0				133		
					196		
ОК		CANC	EL				

Connect the RF output of the radio to the RF signal generator via the attenuator. Connect the 'Sinad' audio output on the test unit to the sinad meter.

Set the signal generator to the frequency shown in the test window, with modulation set for ± 3.0 kHz deviation at 1kHz AF and an output level to give a 16dB sinad.

Increase the **Squelch Level** DAC until the **Busy** status is '0'.

Decrease the squelch setting until the **Busy** value changes from '0' to '1', then press ENTER (,...).

Repeat 3 more times, then press ENTER (,...).

Set the signal generator modulation to ± 1.5 kHz deviation at 1kHz AF, adjust the output level to give a 16dB sinad.

Decrease the squelch setting until the **Busy** value changes from '0' to '1', then press ENTER (الـ).

Repeat 3 more times, and choose the OK button.

T3030, T3035 & T3040 Radios

Select **Country Squelch Setting** from the **Test** menu and the following window appears:

Radio Calibration					
Squelch Test					
Connect the audio output to	a SINAC) meter	via the	interface	e unit.
1.Set the RF-SG to 469.1MH	lz(carrie	er), -110	dBm, 1	.kHz mod.	1.5kHz dev.
2.Set power level on RF-SG	to give	• 10dB 9	iNAD re	ading.	
3.Increase squelch level unti	l Busy :	status is	0.		
4.Decrease squelch level unt	til Busy	status o	hanges	from Ø f	to 1, press Enter.
5.Repeat this 4 times.					Squelch Level
Reading Number	*1	2	3	4	126 * 125 124
High Squelch Threshold	128	128	128	128	123
Busy (1-busy, 0-not busy)	0				122 121 120 119 118 *
ОК		Cano	el		

Connect the RF output of the radio to the RF signal generator via the attenuator. Connect the 'Sinad' audio output on the test unit to the sinad meter.

Set the signal generator to the frequency shown in the test window, with modulation set for ± 3.0 kHz (± 2.4 kHz) [± 1.5 kHz] deviation at 1kHz AF and an output level to give a 10dB sinad.

Increase the **Squelch Level** DAC until the **Busy** status is '0'.

Decrease the squelch setting until the **Busy** value changes from '0' to '1', then press ENTER (الم).

Repeat 3 more times and choose the OK button.

RSSI Thresholds (T3030, T3035 & T3040 Radios Only)

Select **RSSI Thresholds** from the **Test** menu and the following window appears:

Radio Calibration					
RSSI Thresholds Test					
Connect the radio RF port to a RF signal generator (RF-SG).					
Set the RF-SG to 469.1MHz(carrier), -108dBm, 1kHz mod. 1.5kHz dev.					
Press <enter> or click the mouse on the button for "Threshold1" to set</enter>					
that threshold.					
Then change power level on RF-SG to -94dBm.					
Press <enter> or click the mouse on the button for "Threshold2" to set</enter>					
that threshold.					
* Note: RF-SG power levels may be different for your system.					
Press <f1> for more information.</f1>					
OK					
Threshold 1 Cancel					
Threshold 2 35					

Connect the RF output of the radio to the RF signal generator via the attenuator. Connect the 'Sinad' audio output on the test unit to the sinad meter.

Set the signal generator to the frequency shown in the test window, with modulation set for ± 3.0 kHz (± 2.4 kHz) [± 1.5 kHz] deviation at 1kHz AF and an RF level of -108dBm at the radio.

Press ENTER (,-) to set RSSI Threshold 1. Threshold 2 is now selected.

Set the signal generator output to -94dBm and press ENTER (\downarrow) to set RSSI Threshold 2.

Choose the **OK** button.

Battery Thresholds

This test allows the radio to recognise the battery levels at which transmit or receive operation is marginal. These levels are used to give the 'battery low power' and 'off power' warnings.

Select **Battery Thresholds** from the **Test** menu and the following window appears:

Radio Ca	libration	
Battery Thr	esholds Test	
Use a digital multimeter to measure act Adjust the power supply to give 6.00-	ual voltage o : 9.00 volts.	f power supply.
Type in the actual power supply voltag Battery Reading: 6.94 volts	e and press ADC level:	170 OK CANCEL
Rx Low Power Threshold: 6.7 volts	ADC level:	164
Tx Low Power Threshold: 6.3 volts	ADC level:	154
Off Power Threshold: 6.0 volts	ADC level:	147

Adjust the power supply to give between 6 and 9V (normal battery voltage is 7.2V).

Using the digital multimeter, measure the power supply output voltage to 2 decimal places.

Type in the measured voltage and press ENTER (,-). The **Rx Low Power**, **Tx Low Power** and **Off Power** threshold levels are now automatically updated.

Choose the **OK** button.

Tait Electronics Limited Software Licence Agreement

This legal document is an Agreement between you, (the "Licencee") and Tait Electronics Limited ("Tait"). By opening this product package and/or using the product you agree to be bound by the terms of this Agreement.

If you do not agree to the terms of this Agreement, do not open the product package and immediately return the unopened product package to Tait. If you open the product package that will be deemed to be acceptance of the terms of this licence agreement.

Licence

In consideration of the payment of the Licence Fee which forms part of the price you paid for products you acquired from Tait or its subsidiary or agent (the "products") and our willingness to be bound by the terms of this agreement, Tait grants to you as Licencee the non-exclusive right to use the copy of a Tait software program included in the products, (the "Software").

In particular the Licencee may use the program on a single machine and if the software is supplied on a diskette, the licensee may:

(a) copy the program into any machine readable or printed form for backup purposes in support of your use of the program on the single machine (Certain programs, however, may include mechanisms to limit or inhibit copying. They are marked "copy protected"), provided the copyright notice must be reproduced and included on any such copy of the Software.

(b) Merge it into another program for your use on the single machine. (Any portion of this program merged into another program will continue to be subject to the terms and conditions of this Agreement.);

The Licencee may not duplicate, modify, reverse compile or reverse assemble the Software in whole or part.

Title To Software

This agreement does not constitute a contract of sale in relation to the Software supplied to the Licencee. Not withstanding the Licencee may own the magnetic or other physical media on which the Software was originally supplied, or has subsequently been recorded or fixed, it is a fundamental term of this Agreement that at all times title and ownership of the Software, whether on the original media or otherwise, shall remain vested in Tait or third parties who have granted licences to Tait.

Term And Termination

This Licence shall be effective until terminated in accordance with the provisions of this Agreement. The Licencee may terminate this Licence at any time by destroying all copies of the Software and associated written materials. This Licence will be terminated automatically and without notice from Tait in the event that the Licencee fails to comply with any term or condition of this Agreement. The Licencee agrees to destroy all copies of the Software and associated written materials in the event of such termination.

Limited Warranty

The Software is supplied by Tait and accepted by the Licencee "as is" without warranty of any kind either expressed or implied, including but not being limited to any implied warranties as to merchantability or fitness for any particular purpose. The entire risk as to the quality and performance of the Software vests in the Licencee. Should the Software prove to be defective, the Licencee (and not Licensor or any subsidiary or agent of the Licensor) shall assume the entire cost of all necessary servicing, repair or correction.

Tait does not warrant that the functions contained in the Software will meet the Licencee's requirements or that the operation of the Software will be uninterrupted or error free. However Tait warrants that the diskettes if any on which the Software is supplied to the Licencee shall be free from defects in material and workmanship under normal use and service for a period of ninety (90) days from the date of delivery to the Licencee.

Exclusion Of Liability

Tait's entire liability and the Licencee's exclusive remedy shall be:

1. The replacement of any diskette not meeting Tait "limited warranty" and which is returned to Tait or an authorised agent or subsidiary of Tait with a copy of the Licencee's purchase receipt; or

2. If a diskette is supplied and if Tait is unable to deliver a replacement diskette which is free from defects in material or workmanship, the Licencee may terminate this Agreement by returning the Software to Tait.

3. In no circumstances shall Tait be under any liability to the Licencee, or any other person whatsoever, for any direct or consequential damage arising out of or in connection with any use or inability of using the Software.

4. Tait warrants the operation of the Software only with the operating system for which it was designed. Use of the Software with an operating system other than that for which it was designed may not be supported by Tait, unless otherwise expressly agreed by Tait.

General

The Licencee confirms that it shall comply with the provisions of law in relation to the Software.

Law And Jurisdiction

This Agreement shall be subject to and construed in accordance with New Zealand law and disputes between the parties concerning the provisions hereof shall be determined by the New Zealand Courts of Law. Provided however Tait may at its election bring proceedings for breach of the terms hereof or for the enforcement of any judgement in relation to a breach of the terms hereof in any jurisdiction Tait considers fit for the purpose of ensuring compliance with the terms hereof or obtaining relief for breach of the terms hereof.

No Dealings

The Licencee may not sublicense, assign or transfer the licence or the program except as expressly provided in this Agreement. Any attempt otherwise to sublicense, assign or transfer any of the rights, duties or obligations hereunder is void.

No Other Terms

The Licencee acknowledges that it has read this agreement, understand it and agree to be bound by its terms and conditions. The Licencee further agrees that this is the complete and exclusive statement of the agreement between it and Tait in relation to the Software which supersedes any proposal or prior agreement, oral or written and any other communications between the Licencee and Tait relating to the Software. (LS-589).

439-37100-00

IV

Tait Electronics

	neau Onice
Address:	558 Wairakei Rd Christchurch New Zealand
Postal Address:	PO Box 1645 Christchurch New Zealand
Telephone:	64 3 358-3399
Fax:	64 3 358-3603 64 3 358-3636 64 3 358-3903

Australia

Tait Electronics (Aust) Pty Ltd 275 Toombul Road Northgate 4013 P.O. Box 679 Virginia Queensland 4014 Australia Phone: 61 7 3260-7799 Toll Free: 1800 077-112 Fax: 61 7 3260-7990

Canada

Tait Mobile Radio Inc. Unit 5, 158 Anderson Avenue Markham Ontario L6E1A9 Canada Phone: 1 905 472-1100 Toll Free: 1 800 890-8248 Fax: 1 905 472-5300

France

Tait France Sarl 2 Avenue de la Cristallerie 92 316 Sèvres, Cedex France Phone: 33 1 41 14-05-50 Fax: 33 1 41 14-05-55

Germany

Land Office

Tait Mobilfunk GmbH Willstätterstraße 50 D-90449 Nürnberg 60 Germany Phone: 49 911 96 746-0 Fax: 49 911 96 746-79

New Zealand

Tait Communications Ltd Unit 4, 75 Blenheim Road P.O. Box 1185 Christchurch Phone: 64 3 348-3301 Fax: 64 3 343-0558

Singapore

Tait Electronics (Far East) Pte Ltd 4 Leng Kee Road SIS Building #05-11A Singapore 159088 Phone: 65 471-2688 Fax: 65 479-7778

United Kingdom

Tait Mobile Radio Ltd Ermine Business Park Ermine Road Huntingdon Cambridgeshire PE18 6YA United Kingdom Phone: 44 1480-52255 Fax: 44 1480-411996

USA

Tait Electronics (USA) Inc. 9434 Old Katy Road Suite 110 Houston Texas 77055 USA Phone: 1 713 984-8684 Toll Free: 1 800 222-1255 Fax: 1 713 468-6944