
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

Table	of	Contents
Introduction

1.	Why	TornadoFX?

2.	Setting	Up

3.	Components

4.	Basic	Controls

5.	Data	Controls

6.	Type	Safe	CSS

7.	Layouts	and	Menus

8.	Charts

9.	Shapes	and	Animation

10.	FXML

11.	Editing	Models	and	Validation

12.	OSGi

13.	TornadoFX	IDEA	Plugin

14.	Scopes

15.	EventBus

16.	Workspaces

17.	Internationalization

18.	Config	Settings	and	State

19.	JSON	and	REST

20.	Dependency	Injection

21.	Wizard

Appendix	A	-	Supplementary	Topics

Appendix	B	-	Tools	and	Utilities

1

TornadoFX	Guide
This	is	a	continual	effort	to	fully	document	the	TornadoFX	framework	in	the	format	of	a	book.

Introduction

2

https://github.com/edvin/tornadofx

Introduction
User	interfaces	are	becoming	increasingly	critical	to	the	success	of	consumer	and	business
applications.	With	the	rise	of	consumer	mobile	apps	and	web	applications,	business	users
are	increasingly	holding	enterprise	applications	to	a	higher	standard	of	quality.	They	want
rich,	feature-packed	user	interfaces	that	provide	immediate	insight	and	navigate	complex
screens	intuitively.	More	importantly,	they	want	the	application	to	adapt	quickly	to	business
changes	on	a	frequent	basis.	For	the	developer,	this	means	the	application	must	not	only	be
maintainable	but	also	evolvable.	TornadoFX	seeks	to	assist	all	these	objectives	and	greatly
streamline	the	coding	of	JavaFX	UI's.

While	much	of	the	enterprise	IT	world	is	pushing	HTML5	and	cloud-based	applications,
many	businesses	are	still	using	desktop	UI	frameworks	like	JavaFX.	While	it	does	not
distribute	to	large	audiences	as	easily	as	web	applications,	JavaFX	works	well	for	"in-house"
business	applications.	Its	high-performance	with	large	datasets	(and	the	fact	it	is	native
Java)	make	it	a	practical	choice	for	applications	used	behind	the	corporate	firewall.

JavaFX,	like	many	UI	frameworks,	can	quickly	become	verbose	and	difficult	to	maintain.
Fortunately,	the	release	of	Kotlin	has	created	an	opportunity	to	rethink	how	JavaFX
applications	are	built.

An	interesting	product	that	is	in	development	is	JPro,	a	web-based	JavaFX	container
that	uses	no	plugins.	It	can	work	with	TornadoFX	and	JavaFX,	but	is	still	in	closed	beta
at	the	time	of	writing.	You	can	follow	the	project	and	wait	for	its	availability	here:
https://jpro.io/

Why	TornadoFX?
In	February	2016,	JetBrains	released	Kotlin,	a	new	JVM	language	that	emphasizes
pragmatism	over	convention.	Kotlin	works	at	a	higher	level	of	abstraction	and	provides
practical	language	features	not	available	in	Java.	One	of	the	more	important	features	of
Kotlin	is	its	100%	interoperability	with	existing	Java	libraries	and	codebases,	including
JavaFX.

While	JavaFX	can	be	used	with	Kotlin	in	the	same	manner	as	Java,	some	believed	Kotlin
had	language	features	that	could	streamline	and	simplify	JavaFX	development.	Well	before
Kotlin's	beta,	Eugen	Kiss	prototyped	JavaFX	"builders"	with	KotlinFX.	In	January	2016,
Edvin	Syse	rebooted	the	initiative	and	released	TornadoFX.

1.	Why	TornadoFX?

3

https://jpro.io/
http://kotlinlang.org

TornadoFX	seeks	to	greatly	minimize	the	amount	of	code	needed	to	build	JavaFX
applications.	It	not	only	includes	type-safe	builders	to	quickly	lay	out	controls	and	user
interfaces,	but	also	features	dependency	injection,	delegated	properties,	control	extension
functions,	and	other	practical	features	enabled	by	Kotlin.	TornadoFX	is	a	fine	showcase	of
how	Kotlin	can	simplify	codebases,	and	it	tackles	the	verbosity	of	UI	code	with	elegance	and
simplicity.	It	can	work	in	conjunction	with	other	popular	JavaFX	libraries	such	as	ControlsFX
and	JFXtras.	It	works	especially	well	with	reactive	frameworks	such	as	ReactFX	as	well	as
RxJava	and	friends	(including	RxJavaFX,	RxKotlin,	and	RxKotlinFX).

Reader	Requirements
This	book	expects	readers	to	have	some	knowledge	of	Kotlin	and	have	spent	some	time
getting	acquainted	with	it.	There	will	be	some	coverage	of	Kotlin	language	features	but	only
to	a	certain	extent.	If	you	have	not	done	so	already,	read	the	JetBrains	Kotlin	Reference	and
spend	a	good	few	hours	studying	it.

It	definitely	helps	to	be	familiar	with	JavaFX	but	it	is	not	a	requirement.	Perhaps	you	started
studying	JavaFX	but	found	the	development	experience	to	be	tedious,	and	you	are	checking
out	TornadoFX	hoping	it	provides	a	better	way	to	build	user	interfaces.	If	this	describes	your
experience	and	you	are	learning	Kotlin,	then	you	will	probably	benefit	from	this	guide.

A	Motivational	Example
If	you	have	worked	with	JavaFX	before,	you	might	have	created	a		TableView		at	some	point.
Say	you	have	a	given	domain	type		Person	.	TornadoFX	allows	you	to	much	more	concisely
create	the	JavaBeans-like	convention	used	for	the	JavaFX	binding.

class	Person(id:	Int,	name:	String,	birthday:	LocalDate)	{

				val	idProperty	=	SimpleIntegerProperty(id)

				var	id	by	idProperty

				val	nameProperty	=	SimpleStringProperty(name)

				var	name	by	nameProperty

				val	birthdayProperty	=	SimpleObjectProperty(birthday)

				var	birthday	by	birthdayProperty

				val	age:	Int	get()	=	Period.between(birthday,	LocalDate.now()).years

}

You	can	then	build	an	entire	"	View	"	containing	a		TableView		with	a	small	code	footprint.

1.	Why	TornadoFX?

4

http://fxexperience.com/controlsfx/
http://jfxtras.org/
https://github.com/TomasMikula/ReactFX
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxKotlin
https://github.com/thomasnield/RxKotlinFX
https://kotlinlang.org/docs/reference/

class	MyView	:	View()	{

				private	val	persons	=	listOf(

												Person(1,	"Samantha	Stuart",	LocalDate.of(1981,12,4)),

												Person(2,	"Tom	Marks",	LocalDate.of(2001,1,23)),

												Person(3,	"Stuart	Gills",	LocalDate.of(1989,5,23)),

												Person(3,	"Nicole	Williams",	LocalDate.of(1998,8,11))

).observable()

				override	val	root	=	tableview(persons)	{

								column("ID",	Person::idProperty)

								column("Name",	Person::nameProperty)

								column("Birthday",	Person::birthdayProperty)

								column("Age",	Person::age)

				}

}

RENDERED	OUTPUT:

Half	of	that	code	was	just	initializing	sample	data!	If	you	hone	in	on	just	the	part	declaring	the
	TableView		with	four	columns	(shown	below),	you	will	see	it	took	a	simple	functional
construct	to	build	a		TableView	.	It	will	automatically	support	edits	to	the	fields	as	well.

tableview(persons)	{

				column("ID",	Person::idProperty)

				column("Name",	Person::nameProperty)

				column("Birthday",	Person::birthdayProperty)

				column("Age",	Person::age)

}

As	shown	below,	we	can	use	the		cellFormat()		extension	function	on	a		TableColumn	,	and
create	conditional	formatting	for	"Age"	values	that	are	less	than		18	.

1.	Why	TornadoFX?

5

tableview<Person>	{

				items	=	persons

				column("ID",	Person::idProperty)

				column("Name",	Person::nameProperty)

				column("Birthday",	Person::birthdayProperty)

				column("Age",	Person::age).cellFormat	{

								text	=	it.toString()

								style	{

												if	(it	<	18)	{

																backgroundColor	+=	c("#8b0000")

																textFill	=	Color.WHITE

												}

								}

				}

}

RENDERED	OUTPUT:

These	declarations	are	pure	Kotlin	code,	and	TornadoFX	is	packed	with	expressive	power
for	dozens	of	cases	like	this.	This	allows	you	to	focus	on	creating	solutions	rather	than
engineering	UI	code.	Your	JavaFX	applications	will	not	only	be	turned	around	more	quickly,
but	also	be	maintainable	and	evolvable.

1.	Why	TornadoFX?

6

Setting	Up
To	use	TornadoFX,	there	are	several	options	to	set	up	the	dependency	for	your	project.
Mainstream	build	automation	tools	like	Gradle	and	Maven	are	supported	and	should	have	no
issues	in	getting	set	up.

Please	note	that	TornadoFX	is	a	Kotlin	library,	and	therefore	your	project	needs	to	be
configured	to	use	Kotlin.	For	Gradle	and	Maven	configurations,	please	refer	to	the	Kotlin
Gradle	Setup	and	Kotlin	Maven	Setup	guides.	Make	sure	your	development	environment	or
IDE	is	equipped	to	work	with	Kotlin	and	has	the	proper	plugins	and	compilers.

This	guide	will	use	Intellij	IDEA	to	walk	through	certain	examples.	IDEA	is	the	IDE	of	choice
to	work	with	Kotlin,	although	Eclipse	has	a	plugin	as	well.

Gradle
For	Gradle,	you	can	set	up	the	dependency	directly	from	Maven	Central.	Provide	the	desired
version	number	for	the		x.y.z		placeholder.

repositories	{

				mavenCentral()

}

//	Minimum	jvmTarget	of	1.8	needed	since	Kotlin	1.1

compileKotlin	{

				kotlinOptions.jvmTarget=	1.8

}

dependencies	{

				compile	'no.tornado:tornadofx:x.y.z'

}

Maven
To	import	TornadoFX	with	Maven,	add	the	following	dependency	to	your	POM	file.	Provide
the	desired	version	number	for	the		x.y.z		placeholder.

Goes	into	kotlin-maven-plugin	block:

2.	Setting	Up

7

http://gradle.org/
https://maven.apache.org/
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-maven.html

<configuration>

				<jvmTarget>1.8</jvmTarget>

</configuration>

Then	this	goes	into		dependencies		block:

<dependency>

				<groupId>no.tornado</groupId>

				<artifactId>tornadofx</artifactId>

				<version>x.y.z</version>

</dependency>

Other	Build	Automation	Solutions

For	instructions	on	how	to	use	TornadoFX	with	other	build	automation	solutions,	please	refer
to	the	[TornadoFX	page	at	the	Central	Repository]
([http://search.maven.org/#search|gav|1|g%3A"no.tornado]
(http://search.maven.org/#search|gav|1|g%3A"no.tornado)"	AND	a%3A"tornadofx")

Manual	Import
To	manually	download	and	import	the	JAR	file,	go	to	the	TornadoFX	release	page	or	the
Central	Repository.	Download	the	JAR	file	and	configure	it	into	your	project.

Starting	a	TornadoFX	Application
Newer	versions	of	the	JVM	know	how	to	start	JavaFX	applications	without	a		main()	
method.	A	JavaFX	application,	and	by	extension	a	TornadoFX	application,	is	any	class	that
extends		javafx.application.Application	.	Since		tornadofx.App		extends
	javafx.application.Application	,	TornadoFX	apps	are	no	different.	Therefore	you	would
start	the	app	by	referencing		com.example.app.MyApp	,	and	you	don't	necessarily	need	a
	main()		function	unless	you	need	to	supply	command	line	arguments.	In	that	case	you
would	add	a	package	level	main	function	to	the		MyApp.kt		file:

fun	main(args:	Array<String>)	{

		Application.launch(MyApp::class.java,	*args)

}

2.	Setting	Up

8

http://search.maven.org/#search|gav|1|g%3A"no.tornado]%28http://search.maven.org/#search|gav|1|g%3A"no.tornado
https://github.com/edvin/tornadofx/releases
https://search.maven.org

This	main	function	would	be	compiled	to		com.example.app.MyAppKt		-	notice	the		Kt		at	the
end.	When	you	create	a	package
level	main	function,	it	will	always	have	a	class	name	of	the	fully	qualified	package,	plus	the
file	name,	appended	with		Kt	.

In	fact,	TornadoFX	also	contains	a	helper	to	make	it	even	nicer	to	launch	applications	from	a
main	class	by	accepting	the	app	class	as	a	generic	type	parameter:

fun	main(args:	Array<String>)	=	launch<MyApp>(args)

2.	Setting	Up

9

Components
JavaFX	uses	a	theatrical	analogy	to	organize	an		Application		with		Stage		and		Scene	
components.	TornadoFX	builds	on	this	by	providing		View	,		Controller	,	and		Fragment	
components.	While	the		Stage	,	and		Scene		are	used	by	TornadoFX,	the		View	,
	Controller	,	and		Fragment		introduces	new	concepts	that	streamline	development.	Many	of
these	components	are	automatically	maintained	as	singletons,	and	can	communicate	to
each	other	through	simple	dependency	injections	and	other	means.

You	also	have	the	option	to	utilize	FXML	which	will	be	discussed	much	later.	But	first,	lets
extend		App		to	create	an	entry	point	that	launches	aTornadoFX	application.

App	and	View	Basics
To	create	a	TornadoFX	application,	you	must	have	at	least	one	class	that	extends		App	.	An
App	is	the	entry	point	to	the	application	and	specifies	the	initial		View	.	It	does	in	fact	extend
JavaFX		Application	,	but	you	do	not	necessarily	need	to	specify	a		start()		or		main()	
method.

But	first,	extend		App		to	create	your	own	implementation	and	specify	the	primary	view	as	the
first	constructor	argument.

class	MyApp:	App(MyView::class)

A	View	contains	display	logic	as	well	as	a	layout	of	Nodes,	similar	to	the	JavaFX		Stage	.	It
is	automatically	managed	as	a	singleton.	When	you	declare	a		View		you	must	specify	a
	root		property	which	can	be	any		Node		type,	and	that	will	hold	the	View's	content.

In	the	same	Kotlin	file	or	in	a	new	file,	extend	a	class	off	of		View	.	Override	the	abstract
	root		property	and	assign	it		VBox		or	any	other		Node		you	choose.

class	MyView:	View()	{

				override	val	root	=	VBox()

}

However,	we	might	want	to	populate	this		VBox		acting	as	the		root		control.	Using	the
initializer	block,	let's	add	a	JavaFX		Button		and	a		Label	.	You	can	use	the	"plus	assign"
	+=		operators	to	add	children,	such	as	a		Button		and		Label	

3.	Components

10

https://kotlinlang.org/docs/reference/classes.html#constructors

class	MyView:	View()	{

				override	val	root	=	VBox()

				init	{

								root	+=	Button("Press	Me")

								root	+=	Label("")

				}

}

While	it	is	pretty	clear	what's	going	on	from	looking	at	this	code,	TornadoFX	provides	a
builder	syntax	that	will	streamline	your	UI	code	further	andmake	it	much	easier	to	reason
about	the	resulting	UI	just	by	looking	at	the	code.	We	will	gradually	move	into	builder	syntax,
and	finally	cover	builders	in	full	in	the	next	chapter.

While	we	introduce	you	to	new	concepts,	you	might	sometimes	see	code	that	is	not	using
best	practices.	We	do	this	to	introduce	you	gradually	to	concepts	and	give	you	a	broader
understanding	of	what	is	going	on	under	the	hood.	Gradually	we	will	introduce	more
powerful	constructs	to	solve	the	problem	at	hand	in	a	better	way.

Next	we	will	see	how	to	run	this	application.

Starting	a	TornadoFX	Application
Newer	versions	of	the	JVM	know	how	to	start	JavaFX	applications	without	a		main()	
method.	A	JavaFX	application,	and	by	extension	a	TornadoFX	application,	is	any	class	that
extends		javafx.application.Application	.	Since		tornadofx.App		extends
	javafx.application.Application	,	TornadoFX	apps	are	no	different.	Therefore	you	would
start	the	app	by	referencing		com.example.app.MyApp	,	and	you	do	not	necessarily	need	a
	main()		function	unless	you	need	to	supply	command	line	arguments.	In	that	case	you
would	add	a	package	level	main	function	to	the		MyApp.kt		file:

fun	main(args:	Array<String>)	{

		Application.launch(MyApp::class.java,	*args)

}

This	main	function	would	be	compiled	to		com.example.app.MyAppKt	.	Notice	the		Kt		at	the
end.	When	you	create	a	package	level	main	function,	it	will	always	have	a	class	name	of	the
fully	qualified	package,	plus	the	file	name,	appended	with		Kt	.

For	launching	and	testing	the		App	,	we	will	use	Intellij	IDEA.	Navigate	to	Run→Edit
Configurations	(Figure	3.1).

Figure	3.1

3.	Components

11

Click	the	green	"+"	sign	and	create	a	new	Application	configuration	(Figure	3.2).

Figure	3.2

3.	Components

12

Specify	the	name	of	your	"Main	class"	which	should	be	your		App		class.	You	will	also	need
to	specify	the	module	it	resides	in.	Give	the	configuration	a	meaningful	name	such	as
"Launcher".	After	that	click	"OK"	(Figure	3.3).

Figure	3.3

You	can	run	your	TornadoFX	application	by	selecting	Run→Run	'Launcher'	or	whatever	you
named	the	configuration	(Figure	3.4).

Figure	3.4

3.	Components

13

You	should	now	see	your	application	launch	(Figure	3.5)

Figure	3.5

Congratulations!	You	have	written	your	first	(albeit	simple)	TornadoFX	application.	It	may	not
look	like	much	right	now,	but	as	we	cover	more	of	TornadoFX's	powerful	features	we	will	be
creating	large,	impressive	user	interfaces	with	little	code	in	no	time.	But	first	let's	understand
a	little	better	what	is	happening	between		App		and		View	.

Understanding	Views
Let's	dive	a	little	deeper	into	how	a		View		works	and	how	it	can	be	used.	Take	a	look	at	the
	App		and		View		classes	we	just	built.

3.	Components

14

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	VBox()

				init	{

								with(root)	{

												this	+=	Button("Press	Me")

												this	+=	Label("Waiting")

								}

				}

}

A		View		contains	a	hierarchy	of	JavaFX	Nodes	and	is	injected	by	name	wherever	it	is	called.
In	the	next	section	we	will	learn	how	to	leverage	powerful	builders	to	create	these		Node	
hierarchies	quickly.	There	is	only	one	instance	of		MyView		maintained	by	TornadoFX,
effectively	making	it	a	singleton.	TornadoFX	also	supports	scopes,	which	can	group	together
a	collection	of		View	s,		Fragment	s	and		Controller	s	in	separate	instances,	resulting	in	a
	View		only	being	a	singleton	inside	that	scope.	This	is	great	for	Multiple-Document	Interface
applications	and	other	advanced	use	cases.	This	is	covered	in	a	later	chapter.

Using	inject()	and	Embedding	Views
You	can	also	inject	one	or	more	Views	into	another		View	.	Below	we	embed	a		TopView		and
	BottomView		into	a		MasterView	.	Note	we	use	the		inject()		delegate	property	to	lazily	inject
the		TopView		and		BottomView		instances.	Then	we	call	each	"child"	View's		root		to	assign
them	to	the		BorderPane		(Figure	3.6).

class	MasterView:	View()	{

				val	topView:	TopView	by	inject()

				val	bottomView:	BottomView	by	inject()

				override	val	root	=	borderpane	{

								top	=	topView.root

								bottom	=	bottomView.root

				}

}

class	TopView:	View()	{

				override	val	root	=	label("Top	View")

}

class	BottomView:	View()	{

				override	val	root	=	label("Bottom	View")

}

3.	Components

15

https://msdn.microsoft.com/en-us/library/aa263481.aspx

Figure	3.6

If	you	need	Views	to	communicate	to	each	other,	you	can	create	a	property	in	each	of	the
"child"	Views	that	holds	the	"parent"		View	.

class	MasterView	:	View()	{

				override	val	root	=	BorderPane()

				val	topView:	TopView	by	inject()

				val	bottomView:	BottomView	by	inject()

				init	{

								with(root)	{

												top	=	topView.root

												bottom	=	bottomView.root

								}

								topView.parent	=	this

								bottomView.parent	=	this

				}

}

class	TopView:	View()	{

				override	val	root	=	Label("Top	View")

				lateinit	var	parent:	MasterView

}

class	BottomView:	View()	{

				override	val	root	=	Label("Bottom	View")

				lateinit	var	parent:	MasterView

}

More	typically	you	would	use	a		Controller		or	a		ViewModel		to	communicate	between	views,
and	we	will	visit	this	topic	later.

Injection	Using	find()
The		inject()		delegate	will	lazily	assign	a	given	component	to	a	property.	The	first	time	that
component	is	called	is	when	it	will	be	retrieved.	Alternatively,	instead	of	using	the		inject()	
delegate	you	can	use	the		find()		function	to	retrieve	a	singleton	instance	of	a		View		or
other	components.

3.	Components

16

class	MasterView	:	View()	{

				override	val	root	=	BorderPane()

				val	topView	=	find(TopView::class)

				val	bottomView	=	find(BottomView::class)

				init	{

								with(root)	{

												top	=	topView.root

												bottom	=	bottomView.root

								}

				}

}

class	TopView:	View()	{

				override	val	root	=	Label("Top	View")

}

class	BottomView:	View()	{

				override	val	root	=	Label("Bottom	View")

}

You	can	use	either		find()		or		inject()	,	but	using		inject()		delegates	is	the	preferred
means	to	perform	dependency	injection.

Introduction	to	Builders
While	we	will	cover	builders	more	in	depth	in	the	next	chapter,	it	is	time	to	reveal	that	the
above	example	can	be	written	in	a	much	more	concise	and	expressive	syntax:

class	MasterView	:	View()	{

				override	val	root	=	borderpane	{

								top(TopView::class)

								bottom(BottomView::class)

				}

}

Instead	of	injecting	the		TopView		and		BottomView		and	then	assigning	their	respective	root
nodes	to	the		BorderPane	s		top		and		bottom		property,	we	specify	the		BorderPane		with	the
builder	syntax	(all	lower	case)	and	then	declaratively	tell	TornadoFX	to	pull	in	the	two
subviews	and	assign	them	to	the		top		and		bottom		properties	automatically.	Hopefully	you
agree	this	is	much	more	expressive,	with	a	lot	less	boiler	plate.	This	is	one	of	the	most
important	principles	TornadoFX	tries	to	live	by:	Reduce	boiler	plate	and	increase	readability.
The	end	result	is	often	less	code	and	less	bugs.

3.	Components

17

Controllers
In	many	cases,	it	is	considered	a	good	practice	to	separate	a	UI	into	three	distinct	parts:

1.	 Model	-	The	business	code	layer	that	holds	core	logic	and	data
2.	 View	-	The	visual	display	with	various	input	and	output	controls
3.	 Controller	-	The	"middleman"	mediating	events	between	the	Model	and	the	View

There	are	other	flavors	of	MVC	like	MVVM	and	MVP,	all	of	which	can	be	leveraged	in
TornadoFX.

While	you	could	put	all	logic	from	the	Model	and	Controller	right	into	the	view,	it	is	often
cleaner	to	separate	these	three	pieces	distinctly	to	maximize	reusability.	One	commonly
used	pattern	to	accomplish	this	is	the	MVC	pattern.	In	TornadoFX,	a		Controller		can	be
injected	to	support	a		View	.

Here	is	a	simple	example.	Create	a	simple		View		with	a		TextField		whose	value	is	written
to	a	"database"	when	a		Button		is	clicked.	We	can	inject	a		Controller		that	handles
interacting	with	the	model	that	writes	to	the	database.	Since	this	example	is	simplified,	there
will	be	no	database	but	a	printed	message	will	serve	as	a	placeholder	(Figure	3.7).

class	MyView	:	View()	{

				val	controller:	MyController	by	inject()

				var	inputField:	TextField	by	singleAssign()

				override	val	root	=	vbox	{

								label("Input")

								inputField	=	textfield()

								button("Commit")	{

												action	{

																controller.writeToDb(inputField.text)

																inputField.clear()

												}

								}

				}

}

class	MyController:	Controller()	{

				fun	writeToDb(inputValue:	String)	{

								println("Writing	$inputValue	to	database!")

				}

}

Figure	3.7

3.	Components

18

When	we	build	the	UI,	we	make	sure	to	add	a	reference	to	the		inputField		so	that	it	can	be
references	from	the		onClick		event	handler	of	the	"Commit"	button	later.	When	the
"Commit"	button	is	clicked,	you	will	see	the	Controller	prints	a	line	to	the	console.

Writing	Alpha	to	database!

It	is	important	to	note	that	while	the	above	works,	and	may	even	look	pretty	good,	it	is	a
good	practice	to	avoid	referencing	other	UI	elements	directly.	Your	code	will	be	much	easier
to	refactor	if	you	bind	your	UI	elements	to	properties	and	manipulate	the	properties	instead.
We	will	introduce	the		ViewModel		later,	which	provides	even	easier	ways	to	deal	with	this
type	of	interaction.

You	can	also	use	Controllers	to	provide	data	to	a		View		(Figure	3.8).

class	MyView	:	View()	{

				val	controller:	MyController	by	inject()

				override	val	root	=	vbox	{

								label("My	items")

								listview(controller.values)

				}

}

class	MyController:	Controller()	{

				val	values	=	FXCollections.observableArrayList("Alpha","Beta","Gamma","Delta")

}

Figure	3.8

3.	Components

19

The		VBox		contains	a		Label		and	a		ListView	,	and	the		items		property	of	the		ListView		is
assigned	to	the		values		property	of	our		Controller	.

Whether	they	are	reading	or	writing	data,	Controllers	can	have	long-running	tasks	and
should	not	perform	work	on	the	JavaFX	thread.	You	will	learn	how	to	easily	offload	work	to	a
worker	thread	using	the		runAsync		construct	later	in	this	chapter.

Long	running	tasks

Whenever	you	call	a	function	in	a	controller	you	need	to	determine	if	that	function	returns
immediately	or	if	it	performs	potentially	long-running	tasks.	If	you	call	a	function	on	the
JavaFX	Application	Thread,	the	UI	will	be	unresponsive	until	the	call	completes.
Unresponsive	UI's	is	a	killer	for	user	acceptance,	so	make	sure	that	you	run	expensive
operations	in	the	background.	TornadoFX	provides	the		runAsync		function	to	help	with	this.

Code	placed	inside	a		runAsync		block	will	run	in	the	background.	If	the	result	of	the
background	call	should	update	your	UI,	you	must	make	sure	that	you	apply	the	changes	on
the	JavaFX	Application	Thread.	The		ui		block	does	exactly	that.

3.	Components

20

val	textfield	=	textfield()

button("Update	text")	{

				action	{

								runAsync	{

												myController.loadText()

								}	ui	{	loadedText	->

												textfield.text	=	loadedText

								}

				}

}

When	the	button	is	clicked,	the	action	inside	the		action		builder	(which	delegates	the
	ActionEvent		to		setAction		method)	is	run.	It	makes	a	call	out	to
	myController.loadText()	and	applies	the	result	to	the	text	property	of	the	textfield	when	it
returns.	The	UI	stays	responsive	while	the	controller	function	runs.

Under	the	covers,		runAsync		creates	JavaFX		Task		objects,	and	spins	off	a	separate	thread
to	run	your	call	inside	the		Task	.	You	can	assign	this		Task		to	a	variable	and	bind	it	to	a	UI
to	show	progress	while	your	operation	is	running.

In	fact,	this	is	so	common	that	there	is	also	an	default	ViewModel	called		TaskStatus		which
contains	observable	values	for		running	,		message	,		title	,	and		progress	.	You	can	supply
the		runAsync		call	with	a	specific	instance	of	the		TaskStatus		object,	or	use	the	default.

The	TornadoFX	sources	includes	an	example	usage	of	this	in	the		AsyncProgressApp.kt		file.

There	is	also	a	version	of		runAsync		called		runAsyncWithProgress		which	will	cover	the
current	node	with	a	progress	indicator	while	the	long	running	operation	runs.

singleAssign()	Property	Delegate

In	the	example	above	we	initialized	the		inputField		property	with	the		singleAssign	
delegate.	If	you	want	to	guarantee	that	a	value	is	only	assigned	once,	you	can	use	the
	singleAssign()		delegate	instead	of	the		lateinit		keyword	from	Kotlin.	This	will	cause	a
second	assignment	to	throw	an	error,	and	it	will	also	error	when	it	is	prematurely	accessed
before	it	is	assigned.

You	can	look	up	more	about		singleAssign()		in	detail	in	Appendix	A1,	but	know	for	now	it
guarantees	a		var		can	only	be	assigned	once.	It	is	also	threadsafe	and	helps	mitigate
issues	with	mutability.

Fragment

3.	Components

21

Any		View		you	create	is	a	singleton,	which	means	you	typically	use	it	in	only	one	place	at	a
time.	The	reason	for	this	is	that	the	root	node	of	the		View		can	only	have	a	single	parent	in	a
JavaFX	application.	If	you	assign	it	another	parent,	it	will	disappear	from	its	previous	parent.

However,	if	you	would	like	to	create	a	piece	of	UI	that	is	short-lived	or	can	be	used	in
multiple	places,	consider	using	a		Fragment	.	A	Fragment	is	a	special	type	of		View		that	can
have	multiple	instances.	They	are	particularly	useful	for	popups	or	as	pieces	of	a	larger	UI
(such	as	ListCells,	which	we	look	at	via	the		ListCellFragment		later).

Both		View		and		Fragment		support		openModal()	,		openWindow()		and		openInternalWindow()	
that	will	open	the	root	node	in	a	separate	Window.

class	MyView	:	View()	{

				override	val	root	=	vbox	{

								button("Press	Me")	{

												action	{

																find(MyFragment::class).openModal(stageStyle	=	StageStyle.UTILITY)

												}

								}

				}

}

class	MyFragment:	Fragment()	{

				override	val	root	=	label("This	is	a	popup")

}

You	can	pass	optional	arguments	to		openModal()		as	well	to	modify	a	few	of	its	behaviors.

Optional	Arguments	for	openModal()

Argument Type Description

stageStyle StageStyle Defines	one	of	the	possible	enum	styles	for
	Stage	.	Default:		StageStyle.DECORATED	

modality Modality
Defines	one	of	the	possible	enum	modality
types	for		Stage	.	Default:
	Modality.APPLICATION_MODAL	

escapeClosesWindow Boolean Sets	the		ESC		key	to	call		closeModal()	.
Default:		true	

owner Window Specify	the	owner	Window	for	this	Stage`

block Boolean Block	UI	execution	until	the	Window	closes.
Default:		false	

InternalWindow

3.	Components

22

While		openModal		opens	in	a	new		Stage	,		openInternalWindow		opens	over	the	current	root
node,	or	any	other	node	if	you	specify	it:

				button("Open	editor")	{

								action	{

												openInternalWindow(Editor::class)

								}

				}

Figure	3.9

A	good	use	case	for	the	internal	window	is	for	single	stage	environments	like	JPro,	or	if	you
want	to	customize	the	window	trim	to	make	the	window	appear	more	in	line	with	the	design
of	your	application.	The	Internal	Window	can	be	styled	with	CSS.	Take	a	look	at	the
	InternalWindow.Styles		class	for	more	information	about	styleable	properties.

The	internal	window	API	differs	from	modal/window	in	one	important	aspect.	Since	the
window	opens	over	an	existing	node,	you	typically	call		openInternalWindow()		from	within	the
View	you	want	it	to	open	on	top	of.	You	supply	the	View	you	want	to	show,	and	you	can
optionally	supply	what	node	to	open	over	via	the		owner		parameter.

Optional	Arguments	for	openInternalWindow()

3.	Components

23

Argument Type Description

view UIComponent The	component	will	be	the	content	of	the
new	window

view KClass Alternatively,	you	can	supply	the	class	of	the
view	instead	of	an	instance

icon Node Optional	window	icon

scope Scope If	you	specify	the	view	class,	you	can	also
specify	the	scope	used	to	fetch	the	view

modal Boolean
Defines	if	the	covering	node	should	be
disabled	while	the	internal	window	is	active.
Default:		true	

escapeClosesWindow Boolean Sets	the		ESC		key	to	call		close()	.	Default:
	true	

owner Node
Specify	the	owner	Node	for	this	window.	The
window	will	by	default	cover	the	root	node	of
this	view.`

Closing	modal	windows
Any		Component		opened	using		openModal()	,		openWindow()		or		openInternalWindow()		can	be
closed	by	calling		closeModal()	.	It	is	also	possible	to	get	to	the		InternalWindow		instance
directly	if	needed	using		findParentOfType(InternalWindow::class)	.

Replacing	Views	and	Docking	Events
With	TornadoFX,	is	easy	to	swap	your	current		View		with	another		View		using
	replaceWith()	,	and	optionally	add	a	transition.	In	the	example	below,	a		Button		on	each
	View		will	switch	to	the	other	view,	which	can	be		MyView1		or		MyView2		(Figure	3.10).

3.	Components

24

class	MyView1:	View()	{

				override	val	root	=	vbox	{

								button("Go	to	MyView2")	{

												action	{

																replaceWith(MyView2::class)

												}

								}

				}

}

class	MyView2:	View()	{

				override	val	root	=	vbox	{

								button("Go	to	MyView1")	{

												action	{

																replaceWith(MyView1::class)

												}

								}

				}

}

Figure	3.10

You	also	have	the	option	to	specify	a	spiffy	animation	for	the	transition	between	the	two
Views.

replaceWith(MyView1::class,	ViewTransition.Slide(0.3.seconds,	Direction.LEFT)

This	works	by	replacing	the		root			Node		on	given		View		with	another		View	's		root	.	There
are	two	functions	you	can	override	on		View		to	leverage	when	a	View's		root			Node		is
connected	to	a	parent	(onDock()),	and	when	it	is	disconnected	(onUndock()).	You	can
leverage	these	two	events	to	connect	and	"clean	up"	whenever	a		View		comes	in	or	falls
out.	You	will	notice	running	the	code	below	that	whenever	a		View		is	swapped,	it	will	undock
that	previous		View		and	dock	the	new	one.	You	can	leverage	these	two	events	to	manage
initialization	and	disposal	tasks.

3.	Components

25

class	MyView1:	View()	{

				override	val	root	=	vbox	{

								button("Go	to	MyView2")	{

												action	{

																replaceWith(MyView2::class)

												}

								}

				}

				override	fun	onDock()	{

								println("Docking	MyView1!")

				}

				override	fun	onUndock()	{

								println("Undocking	MyView1!")

				}

}

class	MyView2:	View()	{

				override	val	root	=	vbox	{

								button("Go	to	MyView1")	{

												action	{

																replaceWith(MyView1::class)

												}

								}

				}

				override	fun	onDock()	{

								println("Docking	MyView2!")

				}

				override	fun	onUndock()	{

								println("Undocking	MyView2!")

				}

}

Passing	parameters	to	views
The	best	way	to	pass	information	between	views	is	often	an	injected	ViewModel.	Even	so,	it
can	still	be	convenient	to	be	able	to	pass	parameters	to	other	components.	The		find		and
	inject		functions	supports	varargs	of		Pair<String,	Any>		which	can	be	used	for	just	this
purpose.	Consider	a	customer	list	that	opens	a	customer	editor	for	the	selected	customer.
The	action	to	edit	a	customer	might	look	like	this:

fun	editCustomer(customer:	Customer)	{

				find<CustomerEditor>(mapOf(CustomerEditor::customer	to	customer).openWindow())

}

3.	Components

26

The	parameters	are	passed	as	a	map,	where	the	key	is	the	property	in	the	view	and	the
value	is	whatever	you	want	the	property	to	be.	This	gives	you	a	type	safe	way	of	configuring
parameters	for	the	target	View.

Here	we	use	the	Kotlin		to		syntax	to	create	the	parameter.	This	could	also	have	been
written	as		Pair(CustomerEditor::customer,	customer)		if	you	prefer.	The	editor	can	now
access	the	parameter	like	this:

class	CustomerEditor	:	Fragment()	{

				val	customer:	Customer	by	param()

}

If	you	want	to	inspect	the	parameters	instead	of	blindly	relying	on	them	to	be	available,	you
can	either	declare	them	as	nullable	or	consult	the		params		map:

class	CustomerEditor	:	Fragment()	{

				init	{

								val	customer	=	params["customer"]	as?	Customer

								if	(customer	!=	null)	{

												...

								}

				}

}

If	you	don't	care	about	type	safety	you	can	also	pass	parameters	as		mapOf("customer"	to
customer)	,	but	then	you	miss	out	on	automatic	refactoring	if	you	rename	a	property	in	the
target	view.

Accessing	the	primary	stage
	View		has	a	property	called		primaryStage		that	allows	you	to	manipulate	properties	of	the
	Stage		backing	it,	such	as	window	size	for	example.	Any		View		or		Fragment		that	were
opened	via		openModal		will	also	have	a		modalStage		property	available.

Accessing	the	scene
Some	times	it	is	necessary	to	get	a	hold	of	the	current	scene	from	within	a		View		or
	Fragment	.	This	can	be	achieved	with		root.scene	,	or	if	you	are	within	a	type	safe	builder,
there	is	an	even	shorter	way,	just	use		scene	.

3.	Components

27

Accessing	resources
Lot's	of	JavaFX	APIs	takes	resources	as	an		URL		or	the		toExternalForm		of	an	URL.	To
retrieve	a	resource	url	one	would	typically	write	something	like:

val	myAudioClip	=	AudioClip(MyView::class.java.getResource("mysound.wav").toExternalFo

rm())

Every		Component		has	a		resources		object	which	can	retrieve	the	external	form	url	of	a
resource	like	this:

val	myAudiClip	=	AudioClip(resources["mysound.wav"])

If	you	need	an	actual		URL		it	can	be	retrieved	like	this:

val	myResourceURL	=	resources.url("mysound.wav")

The		resources		helper	also	has	several	other	helpful	functions	to	help	you	turn	files	relative
to	the		Component		into	an	object	of	the	type	you	need:

val	myJsonObject	=	resources.json("myobject.json")

val	myJsonArray	=	resources.jsonArray("myarray.json")

val	myStream	=	resources.stream("somefile")

It's	worth	mentioning	that	the		json		and		jsonArray		functions	are	also	available	on
	InputStream		objects.

Resources	are	relative	to	the		Component		but	you	can	also	retrieve	a	resource	by	it's	full
path,	starting	with	a		/	.

Shortcuts	and	key	combinations	for	actions
You	can	fire	actions	when	certain	key	combinations	are	typed.	This	is	done	with	the
	shortcut		function:

shortcut(KeyCombination.valueOf("Ctrl+Y"))	{

				doSomething()

}

3.	Components

28

There	is	also	a	string	version	of	the		shortcut		function	that	does	the	same	but	is	less
verbose:

shortcut("Ctrl+Y"))	{

				doSomething()

}

You	can	also	add	shortcuts	to	button	actions	directly:

button("Save")	{

				action	{	doSave()	}

				shortcut("Ctrl+S")

}

Touch	Support

JavaFX	supports	touch	out	of	the	box,	and	for	now	the	only	place	we	needed	to	improve	it
was	to	handle	shortpress	and	longpress	in	a	more	convenient	way.	It	consists	of	two
functions	similar	to		action	,	which	can	be	configured	on	any		Node	:

shortpress	{	println("Activated	on	short	press")	}

longpress	{	println("Activated	on	long	press")	}

Both	functions	accepts	a		consume		parameter	which	by	default	is		false	.	Setting	it	to	true
will	prevent	event	bubbling	for	the	press	event.	The		longpress		function	additionally
supports	a		threshold		parameter	which	is	used	to	determine	when	a	longpress	has	accured.
It	is		700.millis		by	default.

Summary
TornadoFX	is	filled	with	simple,	streamlined,	and	powerful	injection	tools	to	manage	Views
and	Controllers.	It	also	streamlines	dialogs	and	other	small	UI	pieces	using		Fragment	.	While
the	applications	we	built	so	far	are	pretty	simple,	hopefully	you	appreciate	the	simplified
concepts	TornadoFX	introduces	to	JavaFX.	In	the	next	chapter	we	will	cover	what	is
arguably	the	most	powerful	feature	of	TornadoFX:	Type-Safe	Builders.

3.	Components

29

Basic	Controls
One	of	the	most	exciting	features	of	TornadoFX	are	the	Type-Safe	Builders.	Configuring	and
laying	out	controls	for	complex	UI's	can	be	verbose	and	difficult,	and	the	code	can	quickly
become	messy	to	maintain.	Fortunately,	you	can	use	a	powerful	closure	pattern	pioneered
by	Groovy	to	create	structured	UI	layouts	with	pure	and	simple	Kotlin	code.

While	we	will	learn	how	to	apply	FXML	later,	you	may	find	builders	to	be	an	expressive,
robust	way	to	create	complex	UI's	in	a	fraction	of	the	time.	There	are	no	configuration	files	or
compiler	magic	tricks,	and	builders	are	done	with	pure	Kotlin	code.	The	next	several
chapters	will	divide	the	builders	into	separate	categories	of	controls.	Along	the	way,	you	will
gradually	build	more	complex	UI's	by	integrating	these	builders	together.

But	first,	let's	cover	how	builders	actually	work.

How	Builders	Work
Kotlin's	standard	library	comes	with	a	handful	of	helpful	"block"	functions	to	target	items	of
any	type		T	.	There	is	the	with()	function,	which	allows	you	to	write	code	against	an	item	as	if
you	were	right	inside	of	its	class.

class	MyView	:	View()	{

				override	val	root	=	VBox()

				init	{

								with(root)	{

												this	+=	Button("Press	Me")

								}

				}

}

In	the	above	example,	the		with()		function	accepts	the		root		as	an	argument.	The
following	closure	argument	manipulates		root		directly	by	referring	to	it	as		this	,	which	is
safely	interpreted	as	a		VBox	.	A		Button		was	added	to	the		VBox		by	calling	it's
	plusAssign()		extended	operator.

Alternatively,	every	type	in	Kotlin	has	an	apply()	function.	This	is	almost	the	same
functionality	as		with()		but	it	is	actually	an	extended	higher-order	function.

4.	Basic	Controls

30

https://kotlinlang.org/docs/reference/type-safe-builders.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/with.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/apply.html

class	MyView	:	View()	{

				override	val	root	=	VBox()

				init	{

								root.apply	{

												this	+=	Button("Press	Me")

								}

				}

}

Both		with()		and		apply()		accomplish	a	similar	task.	They	safely	interpret	the	type	they	are
targeting	and	allow	manipulations	to	be	done	to	it.	However,		with()		returns	the	last
statement	within	the	lambda,	whereas		apply()		does	in	fact	return	the	item	it	was	targeting.
Therefore,	if	you	call		apply()		on	a		Button		to	manipulate	say,	its	font	color	and	action,	it	is
helpful	the		Button		returns	itself	so	as	to	not	break	the	declaration	flow.

class	MyView	:	View()	{

				override	val	root	=	VBox()

				init	{

								with(root)	{

												this	+=	Button("Press	Me").apply	{

																textFill	=	Color.RED

																action	{	println("Button	pressed!")	}

												}

								}

				}

}

The	basic	concepts	of	how	builders	work	are	expressed	above,	and	there	are	three	tasks
being	done:

1.	 A		Button		is	created
2.	 The		Button		is	modified
3.	 The		Button		is	added	to	its	"parent",	which	is	a		VBox	

When	declaring	any		Node	,	these	three	steps	are	so	common	that	TornadoFX	streamlines
them	for	you	using	strategically	placed	extension	functions,	such	as		button()		as	shown
below.

4.	Basic	Controls

31

class	MyView	:	View()	{

				override	val	root	=	VBox()

				init	{

								with(root)	{

												button("Press	Me")	{

																textFill	=	Color.RED

																action	{	println("Button	pressed!")	}

												}

								}

				}

}

While	this	looks	much	cleaner,	you	might	be	wondering:	"How	did	we	just	get	rid	of	the		this
+=		and		apply()		function	call?	And	why	are	we	using	a	function	called		button()		instead	of
an	actual		Button	?"
We	will	not	go	too	deep	on	how	this	is	done,	and	you	can	always	dig	into	the	source	code	if
you	are	curious.
But	essentially,	the		VBox		(or	any	targetable	component)	has	an	extension	function	called
	button()	.
It	accepts	a	text	argument	and	an	optional	closure	targeting	a		Button		it	will	instantiate.
When	this	function	is	called,	it	will	create	a		Button		with	the	specified	text,	apply	the	closure
to	it,	add	it	to	the		VBox		it	was	called	on,	and	then	return	it.

Taking	this	efficiency	further,	you	can	override	the		root		in	a		View	,	but	assign	it	a	builder
function	and	avoid	needing	any		init		and		with()		blocks.

class	MyView	:	View()	{

				override	val	root	=	vbox	{

								button("Press	Me")	{

												textFill	=	Color.RED

												action	{	println("Button	pressed!")	}

								}

				}

}

The	builder	pattern	becomes	especially	powerful	when	you	start	nesting	controls	into	other
controls.	Using	these	builder	extension	functions,	you	can	easily	populate	and	nest	multiple
	HBox		instances	into	a		VBox	,	and	create	UI	code	that	is	clearly	structured	(Figure	4.1).

4.	Basic	Controls

32

https://github.com/edvin/tornadofx/blob/master/src/main/java/tornadofx/Controls.kt#L234

class	MyView	:	View()	{

				override	val	root	=	vbox	{

									hbox	{

													label("First	Name")

													textfield()

									}

									hbox	{

													label("Last	Name")

													textfield()

									}

									button("LOGIN")	{

													useMaxWidth	=	true

									}

				}

}

Figure	4.1

Also	note	we	will	learn	about	TornadoFX's	proprietary		Form		later,	which	will	make
simple	input	UI's	like	this	even	simpler	to	code.

If	you	need	to	save	references	to	controls	such	as	the	TextFields,	you	can	save	them	to
variables	or	properties	since	the	functions	return	the	produced	controls.	It	is	recommend	you
use	the		singleAssign()		delegates	to	ensure	the	properties	are	only	assigned	once.

4.	Basic	Controls

33

class	MyView	:	View()	{

				var	firstNameField:	TextField	by	singleAssign()

				var	lastNameField:	TextField	by	singleAssign()

				override	val	root	=	vbox	{

								hbox	{

												label("First	Name")

												firstNameField	=	textfield()

								}

								hbox	{

												label("Last	Name")

												lastNameField	=	textfield()

								}

								button("LOGIN")	{

												useMaxWidth	=	true

												action	{

																println("Logging	in	as	${firstNameField.text}	${lastNameField.text}")

												}

								}

				}

}

Note	that	non-builder	extension	functions	and	properties	have	been	added	to	different
controls	as	well.	The		useMaxWidth		is	an	extended	property	for		Node	,	and	it	sets	the		Node	
to	occupy	the	maximum	width	allowed.	We	will	see	more	of	these	helpful	extensions
throughout	the	next	few	chapters.

In	the	coming	chapters,	we	will	cover	each	corresponding	builder	for	each	JavaFX	control.
With	the	concepts	understood	above,	you	can	read	about	these	next	chapters	start	to	finish
or	as	a	reference.

Builders	for	Basic	Controls
The	rest	of	this	chapter	will	cover	builders	for	common	JavaFX	controls	like		Button	,
	Label	,	and		TextField	.	The	next	chapter	will	cover	builders	for	data-driven	controls	like
	ListView	,		TableView	,	and		TreeTableView	.

Button

For	any		Pane	,	you	can	call	its		button()		extension	function	to	add	a		Button		to	it.	You	can
optionally	pass	a		text		argument	and	a		Button.()	->	Unit		lambda	to	modify	its	properties.

4.	Basic	Controls

34

Within	a		Pane	,	this	will	add	a		Button		with	red	text	and	print	"Button	pressed!"	every	time	it
is	clicked	(Figure	4.2)

button("Press	Me")	{

				textFill	=	Color.RED

				action	{

								println("Button	pressed!")

				}

}

Figure	4.2

Label

You	can	call	the		label()		extension	function	to	add	a		Label		to	a	given		Pane	.
Optionally	you	can	provide	a	text	(of	type		String		or		Property<String>),	a	graphic
(of	type	Node		or		ObjectProperty<Node>)	and	a		Label.()	->	Unit		lambda	to	modify	its
properties	(Figure	4.3).

label("Lorem	ipsum",	circle(10,	10,	5))	{

				textFill	=	Color.BLUE

}

Figure	4.3

TextField

For	any		Pane		you	can	add	a		TextField		by	calling	its		textfield()		extension	function
(Figure	4.4).

textfield()

Figure	4.4

4.	Basic	Controls

35

You	can	optionally	provide	initial	text	as	well	as	a	closure	to	manipulate	the		TextField	.	For
example,	we	can	add	a	listener	to	its		textProperty()		and	print	its	value	every	time	it
changes	(Figure	4.5).

textfield("Input	something")	{

				textProperty().addListener	{	obs,	old,	new	->

								println("You	typed:	"	+	new)

				}

}

Figure	4.6

PasswordField

If	you	need	a		TextField		to	take	sensitive	information,	you	might	want	to	consider	a
	PasswordField		instead.	It	will	show	anonymous	characters	to	protect	from	prying	eyes.	You
can	also	provide	an	initial	password	as	an	argument	and	a	block	to	manipulate	it	(Figure
4.7).

passwordfield("my_password")	{

				requestFocus()

}

Figure	4.7

CheckBox

You	can	create	a		CheckBox		to	quickly	create	a	true/false	state	control	and	optionally
manipulate	it	with	a	block	(Figure	4.8).

4.	Basic	Controls

36

checkbox("Admin	Mode")	{

				action	{	println(isSelected)	}

}

Notice	that	the	action	block	is	wrapped	inside	the	checkbox	so	you	can	access
it's	isSelected		property.	If	you	don't	need	access	to	the	properties	of	the	CheckBox	you
could	have	written		checkbox("Admin	Mode").action	{}	.

Figure	4.9

You	can	also	provide	a		Property<Boolean>		that	will	bind	to	its	selection	state.

val	booleanProperty	=	SimpleBooleanProperty()

checkbox("Admin	Mode",	booleanProperty).action	{	println(isSelected)	}

ComboBox

A		ComboBox		is	a	drop	down	control	that	allows	a	fixed	set	of	values	to	be	selected	from
(Figure	4.10).

val	texasCities	=	FXCollections.observableArrayList("Austin",

				"Dallas","Midland",	"San	Antonio","Fort	Worth")

combobox<String>	{

				items	=	texasCities

}

Figure	4.10

4.	Basic	Controls

37

You	do	not	need	to	specify	the	generic	type	if	you	declare	the		values		as	an	argument.

val	texasCities	=	FXCollections.observableArrayList("Austin",

								"Dallas","Midland","San	Antonio","Fort	Worth")

combobox(values	=	texasCities)

You	can	also	specify	a		Property<T>		to	be	bound	to	the	selected	value.

val	texasCities	=	FXCollections.observableArrayList("Austin",

								"Dallas","Midland","San	Antonio","Fort	Worth")

val	selectedCity	=	SimpleStringProperty()

combobox(selectedCity,	texasCities)

ToggleButton

A		ToggleButton		is	a	button	that	expresses	a	true/false	state	depending	on	its	selection	state
(Figure	4.11).

togglebutton("OFF")	{

				action	{

								text	=	if	(isSelected)	"ON"	else	"OFF"	

				}

}

4.	Basic	Controls

38

Perhaps	a	more	idomatic	way	to	control	the	button	text	would	be	to	use	a	StringBinding
bound	to	the		textProperty:	

togglebutton	{

				val	stateText	=	selectedProperty().stringBinding	{

								if	(it	==	true)	"ON"	else	"OFF"

				}

				textProperty().bind(stateText)

}

Figure	4.11

	

You	can	optionally	pass	a		ToggleGroup		to	the		togglebutton()		function.	This	will	ensure	all
	ToggleButton	s	in	that		ToggleGroup		can	only	have	one	selected	at	a	time	(Figure	4.12).

class	MyView	:	View()	{

				private	val	toggleGroup	=	ToggleGroup()

				override	val	root	=	hbox	{

												togglebutton("YES",	toggleGroup)

												togglebutton("NO",	toggleGroup)

												togglebutton("MAYBE",	toggleGroup)

				}

}

Figure	4.12

RadioButton

A		RadioButton		is	the	same	functionality	as	a		ToggleButton		but	with	a	different	visual	style.
When	it	is	selected,	it	"fills"	in	a	circular	control	(Figure	4.13).

radiobutton("Power	User	Mode")	{

				action	{

								println("Power	User	Mode:	$isSelected")

				}

}

4.	Basic	Controls

39

Figure	4.13

Also	like	the		ToggleButton	,	you	can	set	a		RadioButton		to	be	included	in	a		ToggleGroup		so
that	only	one	item	in	that	group	can	be	selected	at	a	time	(Figure	4.14).

class	MyView	:	View()	{

				private	val	toggleGroup	=	ToggleGroup()

				override	val	root	=	vbox	{

												radiobutton("Employee",	toggleGroup)

												radiobutton("Contractor",	toggleGroup)

												radiobutton("Intern",	toggleGroup)

				}

}

Figure	4.14

DatePicker

The		DatePicker		is	a	simple	to	declare.	It	allows	you	to	choose	a	date	from	a	popout
calendar	control.	You	can	optionally	provide	a	block	to	manipulate	it	(Figure	4.15).

datepicker	{

				value	=	LocalDate.now()

}

Figure	4.15

4.	Basic	Controls

40

You	can	also	provide	a		Property<LocalDate>		as	an	argument	to	bind	to	its	value.

val	dateProperty	=	SimpleObjectProperty<LocalDate>()

datepicker(dateProperty)	{

				value	=	LocalDate.now()

}

TextArea

The		TextArea		allows	you	input	multiline	freeform	text.	You	can	optionally	provide	the	initial
text		value		as	well	as	a	block	to	manipulate	it	on	declaration	(Figure	4.16).

textarea("Type	memo	here")	{

				selectAll()

}

Figure	4.16

4.	Basic	Controls

41

ProgressBar

A		ProgressBar		visualizes	progress	towards	completion	of	a	process.	You	can	optionally
provide	an	initial		Double		value	less	than	or	equal	to	1.0	indicating	percentage	of	completion
(Figure	4.17).

progressbar(0.5)

Figure	4.17

Here	is	a	more	dynamic	example	simulating	progress	over	a	short	period	of	time.

progressbar()	{

				thread	{

								for	(i	in	1..100)	{

												Platform.runLater	{	progress	=	i.toDouble()	/	100.0	}

												Thread.sleep(100)

								}

				}

}

You	can	also	pass	a		Property<Double>		that	will	bind	the		progress		to	its	value	as	well	as	a
block	to	manipulate	the		ProgressBar	.

4.	Basic	Controls

42

progressbar(completion)	{

				progressProperty().addListener	{

								obsVal,	old,	new	->		print("VALUE:	$new")

				}

}

ProgressIndicator

A		ProgressIndicator		is	functionally	identical	to	a		ProgressBar		but	uses	a	filling	circle
instead	of	a	bar	(Figure	4.18).

progressindicator	{

				thread	{

								for	(i	in	1..100)	{

												Platform.runLater	{	progress	=	i.toDouble()	/	100.0	}

												Thread.sleep(100)

								}

				}

}

Figure	4.18

	

Just	like	the		ProgressBar		you	can	provide	a		Property<Double>		and/or	a	block	as	optional
arguments	(Figure	4.19).

val	completion	=	SimpleObjectProperty(0.0)

progressindicator(completion)

ImageView

You	can	embed	an	image	using		imageview()	.

imageview("tornado.jpg")

Figure	4.19

4.	Basic	Controls

43

Like	most	other	controls,	you	can	use	a	block	to	modify	its	attributes	(Figure	4.20).

imageview("tornado.jpg")	{

				scaleX	=	.50

				scaleY	=	.50

}

Figure	4.20

4.	Basic	Controls

44

ScrollPane

You	can	embed	a	control	inside	a		ScrollPane		to	make	it	scrollable.	When	the	available	area
becomes	smaller	than	the	control,	scrollbars	will	appear	to	navigate	the	control's	area.

For	instance,	you	can	wrap	an		ImageView		inside	a		ScrollPane		(Figure	4.21).

scrollpane	{

				imageview("tornado.jpg")

}

Figure	4.21

4.	Basic	Controls

45

Keep	in	mind	that	many	controls	like		TableView		and		TreeTableView		already	have	scroll
bars	on	them,	so	wrapping	them	in	a		ScrollPane		is	not	necessary	(Figure	4.22).

Hyperlink

You	can	create	a		Hyperlink		control	to	mimic	the	behavior	of	a	typical	hyperlink	to	a	file,	a
website,	or	simply	perform	an	action.

hyperlink("Open	File").action	{	println("Opening	file...")	}

Figure	4.22

Text

You	can	add	a	simple	piece	of		Text		with	formatted	properties.	This	control	is	simpler	and
rawer	than	a		Label	,	and	paragraphs	can	be	separated	using		\n		characters	(Figure	4.23).

4.	Basic	Controls

46

text("Veni\nVidi\nVici")	{

				fill	=	Color.PURPLE

				font	=	Font(20.0)

}

Figure	4.23

TextFlow

If	you	need	to	concatenate	multiple	pieces	of	text	with	different	formats,	the		TextFlow	
control	can	be	helpful	(Figure	4.24).

textflow	{

				text("Tornado")	{

								fill	=	Color.PURPLE

								font	=	Font(20.0)

				}

				text("FX")	{

								fill	=	Color.ORANGE

								font	=	Font(28.0)

				}

}

Figure	4.24

You	can	add	any		Node		to	the		textflow	,	including	images,	using	the	standard	builder
functions.

Tooltips

Inside	any		Node		you	can	specify	a		Tooltip		via	the		tooltip()		function	(Figure	4.25).

4.	Basic	Controls

47

button("Commit")	{

				tooltip("Writes	input	to	the	database")

}

Figure	4.25

Like	most	other	builders,	you	can	provide	a	closure	to	customize	the		Tooltip		itself.

button("Commit")	{

				tooltip("Writes	input	to	the	database")	{

								font	=	Font.font("Verdana")

				}

}

There	are	many	other	builder	controls,	and	the	maintainers	of	TornadoFX	have	strived
to	create	a	builder	for	every	JavaFX	control.	If	you	need	something	that	is	not	covered
here,	use	Google	to	see	if	its	included	in	JavaFX.	Chances	are	if	a	control	is	available
in	JavaFX,	there	is	a	builder	with	the	same	name	in	TornadoFX.

SUMMARY

In	this	chapter	we	learned	about	TornadoFX	builders	and	how	they	work	simply	by	using
Kotlin	extension	functions.	We	also	covered	builders	for	basic	controls	like		Button	,
	TextField		and		ImageView	.	In	the	coming	chapters	we	will	learn	about	builders	for	tables,
layouts,	menus,	charts,	and	other	controls.	As	you	will	see,	combining	all	these	builders
together	creates	a	powerful	way	to	express	complex	UI's	with	very	structured	and	minimal
code.

These	are	not	the	only	control	builders	in	the	TornadoFX	API,	and	this	guide	does	its	best	to
keep	up.	Always	check	the	TornadoFX	GitHub	to	see	the	latest	builders	and	functionalities
available,	and	file	an	issue	if	you	see	any	missing.

4.	Basic	Controls

48

https://github.com/edvin/tornadofx

4.	Basic	Controls

49

Data	Controls
Any	significant	application	works	with	data,	and	providing	a	means	for	users	to	view,
manipulate,	and	modify	data	is	not	a	trivial	task	for	user	interface	development.	Fortunately,
TornadoFX	streamlines	many	JavaFX	data	controls	such	as		ListView	,		TableView	,
	TreeView	,	and		TreeTableView	.	These	controls	can	be	cumbersome	to	set	up	in	a	purely
object-oriented	way.	But	using	builders	through	functional	declarations,	we	can	code	all
these	controls	in	a	much	more	streamlined	way.

ListView

A		ListView		is	similar	to	a		ComboBox		but	it	displays	all	items	within	a		ScrollView		and	has
the	option	of	allowing	multiple	selections,	as	shown	in	Figure	5.1

listview<String>	{

				items.add("Alpha")

				items.add("Beta")

				items.add("Gamma")

				items.add("Delta")

				items.add("Epsilon")

				selectionModel.selectionMode	=	SelectionMode.MULTIPLE

}

Figure	5.1

You	can	also	provide	it	an		ObservableList		of	items	up	front	and	omit	the	type	declaration
since	it	can	be	inferred.	Using	an	ObservableList	also	has	the	benefit	that	changes	to	the	list
will	automatically	be	reflected	in	the	ListView.

5.	Data	Controls

50

val	greekLetters	=	listOf("Alpha","Beta",

								"Gamma","Delta","Epsilon").observable()

listview(greekLetters)	{

				selectionModel.selectionMode	=	SelectionMode.MULTIPLE

}

Like	most	data	controls,	keep	in	mind	that	by	default,	the		ListView		will	call		toString()		to
render	the	text	for	each	item	in	your	domain	class.	To	render	anything	else,	you	will	need	to
create	your	own	custom	cell	formatting.

Custom	Cell	Formatting	in	ListView

Even	though	the	default	look	of	a		ListView		is	rather	boring	(because	it	calls		toString()	
and	renders	it	as	text)	you	can	modify	it	so	that	every	cell	is	a	custom		Node		of	your
choosing.	By	calling		cellCache()	,	TornadoFX	provides	a	convenient	way	to	override	what
kind	of		Node		is	returned	for	each	item	in	your	list	(Figure	5.2).

5.	Data	Controls

51

class	MyView:	View()	{

				val	persons	=	listOf(

												Person("John	Marlow",	LocalDate.of(1982,11,2)),

												Person("Samantha	James",	LocalDate.of(1973,2,4))

).observable()

				override	val	root	=	listview(persons)	{

								cellFormat	{

												graphic	=	cache	{

																form	{

																				fieldset	{

																								field("Name")	{

																												label(it.name)

																								}

																								field("Birthday")	{

																												label(it.birthday.toString())

																								}

																								label("${it.age}	years	old")	{

																												alignment	=	Pos.CENTER_RIGHT

																												style	{

																																fontSize	=	22.px

																																fontWeight	=	FontWeight.BOLD

																												}

																								}

																				}

																}

												}

								}

				}

}

class	Person(val	name:	String,	val	birthday:	LocalDate)	{

				val	age:	Int	get()	=	Period.between(birthday,	LocalDate.now()).years

}

5.	Data	Controls

52

Figure	5.2	-	A	custom	cell	rendering	for		ListView		

The		cellFormat		function	lets	you	configure	the		text		and/or		graphic		property	of	the	cell
whenever	it	comes	into	view	on	the	screen.	The	cells	themselves	are	reused,	but	whenever
the		ListView		asks	the	cell	to	update	it's	content,	the		cellFormat		function	is	called.	In	our
example	we	only	assign	to		graphic	,	but	if	you	just	want	to	change	the	string	representation
you	should	assign	it	to		text	.	It	is	completely	legitimate	to	assign	it	to	both		text		and
	graphic	.	The	values	will	automatically	be	cleared	by	the		cellFormat		function	when	a
certain	list	cell	is	not	showing	an	active	item.

Note	that	assigning	new	nodes	to	the		graphic		property	every	time	the	list	cell	is	asked	to
update	can	be	expensive.	It	might	be	fine	for	many	use	cases,	but	for	heavy	node	graphs,	or
node	graphs	where	you	utilize	binding	towards	the	ui	components	inside	the	cell,	you	should
cache	the	resulting	node	so	the	node	graph	will	only	be	created	once	per	node.	This	is	done
using	the		cache		wrapper	in	the	above	example.

5.	Data	Controls

53

Assign	If	Null

If	you	have	a	reason	for	wanting	to	recreate	the	graphic	property	for	a	list	cell,	you	can	use
the		assignIfNull		helper,	which	will	assign	a	value	to	any	given	property	if	the	property
doesn't	already	contain	a	value.	This	will	make	sure	that	you	avoid	creating	new	nodes	if
	updateItem		is	called	on	a	cell	that	already	has	a	graphic	property	assigned.

cellFormat	{

				graphicProperty().assignIfNull	{

								label("Hello")

				}

}

ListCellFragment

The		ListCellFragment		is	a	special	fragment	which	can	help	you	manage		ListView		cells.	It
extends		Fragment	,	and	includes	some	extra		ListView		specific	fields	and	helpers.	You
never	instantiate	these	fragments	manually,	instead	you	instruct	the		ListView		to	create
them	as	needed.	There	is	a	one	to	one	correlation	between		ListCell		and
	ListCellFragment		instances.	One		ListCellFragment		instance	will	over	its	lifecycle	be	used
to	represent	different	items.

To	understand	how	this	works,	let's	consider	a	manually	implemented		ListCell	,	essentially
the	way	you	would	do	in	vanilla	JavaFX.	The		updateItem		function	will	be	called	when	the
	ListCell		should	represent	a	new	item,	no	item,	or	just	an	update	to	the	same	item.	When
you	use	a		ListCellFragment	,	you	do	not	need	to	implement	something	akin	to		updateItem	,
but	the		itemProperty		inside	it	will	update	to	represent	the	new	item	automatically.	You	can
listen	to	changes	to	the		itemProperty	,	or	better	yet,	bind	it	directly	to	a		ViewModel	.	That
way	your	UI	can	bind	directly	to	the		ViewModel		and	no	longer	need	to	care	about	changes	to
the	underlying	item.

Let's	recreate	the	form	from	the		cellFormat		example	using	a		ListCellFragment	.	We	need	a
	ViewModel		which	we	will	call		PersonModel		(Please	see	the		Editing	Models	and	Validation	
chapter	for	a	full	explanation	of	the		ViewModel)	For	now,	just	imagine	that	the		ViewModel	
acts	as	a	proxy	for	an	underlying		Person	,	and	that	the		Person		can	be	changed	while	the
observable	values	in	the		ViewModel		remain	the	same.	When	we	have	created	our
	PersonCellFragment	,	we	need	to	configure	the		ListView		to	use	it:

listview(personlist)	{

				cellFragment(PersonCellFragment::class)

}

5.	Data	Controls

54

Now	comes	the		ListCellFragment		itself.

class	PersonListFragment	:	ListCellFragment<Person>()	{

				val	person	=	PersonModel().bindTo(this)

				override	val	root	=	form	{

								fieldset	{

												field("Name")	{

																label(person.name)

												}

												field("Birthday")	{

																label(person.birthday)

												}

												label(stringBinding(person.age)	{	"$value	years	old"	})	{

																alignment	=	Pos.CENTER_RIGHT

																style	{

																				fontSize	=	22.px

																				fontWeight	=	FontWeight.BOLD

																}

												}

								}

				}

}

Because	this	Fragment	will	be	reused	to	represent	different	list	items,	the	easiest	approach
is	to	bind	the	ui	elements	to	the	ViewModel's	properties.

The		name		and		birthday		properties	are	bound	directly	to	the	labels	inside	the	fields.	The
age	string	in	the	last	label	needs	to	be	constructed	using	a		stringBinding	to	make	sure	it
updates	when	the	item	changes.

While	this	might	seem	like	slightly	more	work	than	the		cellFormat		example,	this	approach
makes	it	possible	to	leverage	everything	the	Fragment	class	has	to	offer.	It	also	forces	you
to	define	the	cell	node	graph	outside	of	the	builder	hierarchy,	which	improves	refactoring
possibilities	and	enables	code	reuse.

Additional	helpers	and	editing	support

The		ListCellFragment		also	have	some	other	helper	properties.	They	include	the
	cellProperty		which	will	update	whenever	the	underlying	cell	changes	and	the
	editingProperty	,	which	will	tell	you	if	this	the	underlying	list	cell	is	in	editing	mode.	There
are	also	editing	helper	functions	called		startEdit	,		commitEdit	,		cancelEdit		plus	an
	onEdit		callback.	The		ListCellFragment		makes	it	trivial	to	utilize	the	existing	editing
capabilites	of	the		ListView	.	A	complete	example	can	be	seen	in	the	TodoMVC	demo
application.

5.	Data	Controls

55

https://github.com/edvin/todomvc

TableView

Probably	one	of	the	most	significant	builders	in	TornadoFX	is	the	one	for		TableView	.	If	you
have	worked	with	JavaFX,	you	might	have	experienced	building	a		TableView		in	an	object-
oriented	way.	But	TornadoFX	provides	a	functional	declaration	construct	pattern	using
extension	functions	that	greatly	simplifies	the	coding	of	a		TableView	.

Say	you	have	a	domain	type,	such	as		Person	.

class	Person(val	id:	Int,	val	name:	String,	val	birthday:	LocalDate)	{

				val	age:	Int	get()	=	Period.between(birthday,	LocalDate.now()).years

}

Take	several	instances	of		Person		and	put	them	in	an		ObservableList	.

private	val	persons	=	listOf(

								Person(1,"Samantha	Stuart",LocalDate.of(1981,12,4)),

								Person(2,"Tom	Marks",LocalDate.of(2001,1,23)),

								Person(3,"Stuart	Gills",LocalDate.of(1989,5,23)),

								Person(3,"Nicole	Williams",LocalDate.of(1998,8,11))

).observable()

You	can	quickly	declare	a		TableView		with	all	of	its	columns	using	a	functional	construct,	and
specify	the		items		property	to	an		ObservableList<Person>		(Figure	5.3).

tableview(persons)	{

				column("ID",Person::id)

				column("Name",	Person::name)

				column("Birthday",	Person::birthday)

				column("Age",Person::age)

}

Figure	5.3

5.	Data	Controls

56

The		column()		functions	are	extension	functions	for		TableView		accepting	a		header		name
and	a	mapped	property	using	reflection	syntax.	TornadoFX	will	then	take	each	mapping	to
render	a	value	for	each	cell	in	that	given	column.

If	you	want	granular	control	over		TableView		column	resize	policies,	see	Appendix	A2
for	more	information	on		SmartResize		policies.

Using	"Property"	properties

If	you	follow	the	JavaFX		Property		conventions	to	set	up	your	domain	class,	it	will
automatically	support	value	editing.

You	can	create	these		Property		objects	the	conventional	way,	or	you	can	use	TornadoFX's
	property		delegates	to	automatically	create	these		Property		declarations	as	shown	below.

class	Person(id:	Int,	name:	String,	birthday:	LocalDate)	{

				var	id	by	property(id)

				fun	idProperty()	=	getProperty(Person::id)

				var	name	by	property(name)

				fun	nameProperty()	=	getProperty(Person::name)

				var	birthday	by	property(birthday)

				fun	birthdayProperty()	=	getProperty(Person::birthday)

				val	age:	Int	get()	=	Period.between(birthday,	LocalDate.now()).years

}

You	need	to	create		xxxProperty()		functions	for	each	property	to	support	JavaFX's	naming
convention	when	it	uses	reflection.	This	can	easily	be	done	by	relaying	their	calls	to
	getProperty()		to	retrieve	the		Property		for	a	given	field.	See	Appendix	A1	for	detailed

5.	Data	Controls

57

information	on	how	these	property	delegates	work.

Now	on	the		TableView	,	you	can	make	it	editable,	map	to	the	properties,	and	apply	the
appropriate	cell-editing	factories	to	make	the	values	editable.

override	val	root	=	tableview(persons)	{

				isEditable	=	true

				column("ID",Person::idProperty).useTextField(IntegerStringConverter())

				column("Name",	Person::nameProperty).useTextField(DefaultStringConverter())

				column("Birthday",	Person::birthdayProperty).useTextField(LocalDateStringConverter

())

				column("Age",Person::age)

}

To	allow	editing	and	rendering,	TornadoFX	provides	a	few	default	cell	factories	you	can
invoke	on	a	column	easily	through	extension	functions.

Extension
Function Description

useTextField() Uses	a	standard		TextField		to	edit	values	with	a	provided
	StringConverter	

useComboBox() Edits	a	cell	value	via	a		ComboBox		with	a	specified
	ObservableList<T>		of	applicable	values

useChoiceBox() Accepts	value	changes	to	a	cell	with	a		ChoiceBox	

useCheckBox() Renders	an	editable		CheckBox		for	a		Boolean		value	column

useProgressBar() Renders	the	cell	as	a		ProgressBar		for	a		Double		value	column

Property	Syntax	Alternatives

If	you	do	not	care	about	exposing	the		Property		in	a	function	(which	is	common	in	practial
usage)	you	can	express	your	class	like	this:

class	Person(id:	Int,	name:	String,	birthday:	LocalDate)	{

				val	idProperty	=	SimpleIntegerProperty(id)

				var	id	by	idProperty

				val	nameProperty	=	SimpleStringProperty(name)

				var	name	by	nameProperty

				val	birthdayProperty	=	SimpleObjectProperty(birthday)

				var	birthday	by	birthdayProperty

				val	age:	Int	get()	=	Period.between(birthday,	LocalDate.now()).years

}

5.	Data	Controls

58

This	alternative	pattern	exposes	the		Property		as	a	field	member	instead	of	a	function.	If
you	like	the	above	syntax	but	want	to	keep	the	function,	you	can	make	the	property
	private		and	add	the	function	like	this:

private	val	nameProperty	=	SimpleStringProperty(name)

fun	nameProperty()	=	nameProperty

var	name	by	nameProperty

Choosing	from	these	patterns	are	all	a	matter	of	taste,	and	you	can	use	whatever	version
meets	your	needs	or	preferences	best.

You	can	also	convert	plain	properties	to	JavaFX	properties	using	the	TornadoFX	Plugin.
Refer	to	Chapter	13	to	learn	how	to	do	this.

Using	cellFormat()

There	are	other	extension	functions	applied	to		TableView		that	can	assist	the	flow	of
declaring	a		TableView	.	For	instance,	you	can	call	a		cellFormat()		function	on	a	given
column	to	apply	formatting	rules,	such	as	highlighting	"Age"	values	less	than	18	(Figure	5.4).

tableview(persons)	{

				column("ID",	Person::id)

				column("Name",	Person::name)

				column("Birthday",	Person::birthday)

				column("Age",	Person::age).cellFormat	{

								text	=	it.toString()

								style	{

												if	(it	<	18)	{

																backgroundColor	+=	c("#8b0000")

																textFill	=	Color.WHITE

												}	else	{

																backgroundColor	+=	Color.WHITE

																textFill	=	Color.BLACK

												}

								}

					}

}

Figure	5.4

5.	Data	Controls

59

Accessing	nested	properties

Let's	assume	our		Person		object	has	a		parent		property	which	is	also	of	of	type		Person	.	To
create	a	column	for	the	parent	name,	we	have	several	options.	Our	first	attempt	is	simply
extracting	the	name	property	manually:

column<Person,	String>("Parent	name",	{	it.value.parentProperty.value.nameProperty	})

Notice	how	we	can't	simply	reference	the	property,	we	need	to	access	the	value	provided	in
the	callback	to	get	to	the	actual	instance	and	nest	from	there	down	to	the	nameProperty.
While	this	works,	it	has	one	major	drawback.	If	the	parent	changes,	the	list	won't	be
updated.	We	can	partially	remedy	this	by	defining	the	value	for	the	property	as	the	parent
itself,	and	formatting	it's	name:

column("Parent	name",	Person::parentProperty).cellFormat	{

				textProperty().bind(it.parentProperty.value.nameProperty)

}

It	might	still	not	update	right	away,	even	though	it	would	eventually	become	consistent	as	the
TableView	refreshes.

To	create	a	binding	that	would	reflect	a	change	to	the	parent	property	immediately,	consider
using	a	select	binding:	(more	on	bindings	later)

column<Person,	String>("Parent	name",	{	it.value.parentProperty.select(Person::namePro

perty)	})

5.	Data	Controls

60

Declaring	Column	Values	Functionally

If	you	need	to	map	a	column's	value	to	a	non-property	(such	as	a	function),	you	can	use	a
non-reflection	means	to	extract	the	values	for	that	column.

Say	you	have	a		WeeklyReport		type	that	has	a		getTotal()		function	accepting	a		DayOfWeek	
argument	(an	enum	of	Monday,	Tuesday...	Sunday).

abstract	class	WeeklyReport(val	startDate:	LocalDate)	{

				abstract	fun	getTotal(dayOfWeek:	DayOfWeek):	BigDecimal

}

Let's	say	you	wanted	to	create	a	column	for	each		DayOfWeek	.	You	cannot	map	to	properties,
but	you	can	map	each		WeeklyReport		item	explicitly	to	extract	each	value	for	that
	DayOfWeek	.

tableview<WeeklyReport>	{

				for	(dayOfWeek	in	DayOfWeek.values())	{

								column<WeeklyReport,	BigDecimal>(dayOfWeek.toString())	{

												ReadOnlyObjectWrapper(it.value.getTotal(dayOfWeek))

								}

				}

}

This	more	closely	resembles	the	traditional		setCellValueFactory()		for	the	JavaFX
	TableColumn	.

Row	Expanders

Later	we	will	learn	about	the		TreeTableView		which	has	a	notion	of	"parent"	and	"child"	rows,
but	the	constraint	with	this	control	is	the	parent	and	child	must	have	the	same	columns.
Fortunately,	TornadoFX	comes	with	an	awesome	utility	to	not	only	reveal	a	"child	table"	for	a
given	row,	but	any	kind	of		Node		control.

Say	we	have	two	domain	types:		Region		and		Branch	.	A		Region		is	a	geographical	zone,
and	it	contains	one	or	more		Branch		items	which	are	specific	business	operation	locations
(warehouses,	distribution	centers,	etc).	Here	is	a	declaration	of	these	types	and	some	given
instances.

5.	Data	Controls

61

class	Region(val	id:	Int,	val	name:	String,	val	country:	String,	val	branches:	Observa

bleList<Branch>)

class	Branch(val	id:	Int,	val	facilityCode:	String,	val	city:	String,	val	stateProvince

:	String)

val	regions	=	listOf(

								Region(1,"Pacific	Northwest",	"USA",listOf(

																Branch(1,"D","Seattle","WA"),

																Branch(2,"W","Portland","OR")

).observable()),

								Region(2,"Alberta",	"Canada",listOf(

																Branch(3,"W","Calgary","AB")

).observable()),

								Region(3,"Midwest",	"USA",	listOf(

																Branch(4,"D","Chicago","IL"),

																Branch(5,"D","Frankfort","KY"),

																Branch(6,	"W","Indianapolis",	"IN")

).observable())

).observable()

We	can	create	a		TableView		where	each	row	has	a		rowExpander()		function	defined,	and
there	we	can	arbitrarily	create	any		Node		control	built	off	that	particular	row's	item.	In	this
case,	we	can	nest	another		TableView		for	a	given		Region		to	show	all	the		Branch		items
belonging	to	it.	It	will	have	a	"+"	button	column	to	expand	and	show	this	expanded	control
(Figure	5.5).

Figure	5.5

5.	Data	Controls

62

There	are	a	few	configurability	options,	like	"expand	on	double-click"	behaviors	and
accessing	the		expanderColumn		(the	column	with	the	"+"	button)	to	drive	a	padding	(Figure
5.6).

override	val	root	=	tableview(regions)	{

								column("ID",Region::id)

								column("Name",	Region::name)

								column("Country",	Region::country)

								rowExpander(expandOnDoubleClick	=	true)	{

												paddingLeft	=	expanderColumn.width

												tableview(it.branches)	{

																column("ID",Branch::id)

																column("Facility	Code",Branch::facilityCode)

																column("City",Branch::city)

																column("State/Province",Branch::stateProvince)

												}

								}

				}

Figure	5.6

5.	Data	Controls

63

The		rowExpander()		function	does	not	have	to	return	a		TableView		but	any	kind	of		Node	,
including	Forms	and	other	simple	or	complex	controls.

Accessing	the	expander	column

You	might	want	to	manipulate	or	call	functions	on	the	actual	expander	column.	If	you
activate	expand	on	double	click,	you	might	not	want	to	show	the	expander	column	in	the
table	at	all.	First	we	need	a	reference	to	the	expander:

val	expander	=	rowExpander(true)	{	...	}

If	you	want	to	hide	the	expander	column,	just	call		expander.isVisible	=	false	.	You	can	also
programmatically	toggle	the	expanded	state	of	any	column	by	calling
	expander.toggleExpanded(rowIndex)	.

TreeView

The		TreeView		contains	elements	where	each	element	may	contain	child	elements.	Typically
arrows	allow	you	to	expand	a	parent	element	to	see	its	children.	For	instance,	we	can	nest
employees	under	department	names

5.	Data	Controls

64

Traditionally	in	JavaFX,	populating	these	elements	is	rather	cumbersome	and	verbose.
Fortunately	TornadoFX	makes	it	relatively	simple.

Say	you	have	a	simple	type		Person		and	an		ObservableList		containing	several	instances.

data	class	Person(val	name:	String,	val	department:	String)

val	persons	=	listOf(

								Person("Mary	Hanes","Marketing"),

								Person("Steve	Folley","Customer	Service"),

								Person("John	Ramsy","IT	Help	Desk"),

								Person("Erlick	Foyes","Customer	Service"),

								Person("Erin	James","Marketing"),

								Person("Jacob	Mays","IT	Help	Desk"),

								Person("Larry	Cable","Customer	Service")

)

Creating	a		TreeView		with	the		treeview()		builder	can	be	done	functionally	Figure	5.7).

//	Create	Person	objects	for	the	departments

//	with	the	department	name	as	Person.name

val	departments	=	persons

				.map	{	it.department	}

				.distinct().map	{	Person(it,	"")	}

treeview<Person>	{

				//	Create	root	item

				root	=	TreeItem(Person("Departments",	""))

				//	Make	sure	the	text	in	each	TreeItem	is	the	name	of	the	Person

				cellFormat	{	text	=	it.name	}

				//	Generate	items.	Children	of	the	root	item	will	contain	departments

				populate	{	parent	->

								if	(parent	==	root)	departments	else	persons.filter	{	it.department	==	parent.

value.name	}

				}

}

Figure	5.7

5.	Data	Controls

65

Let's	break	this	down:

val	departments	=	persons

				.map	{	it.department	}

				.distinct().map	{	Person(it,	"")	}

First	we	gather	a	distinct	list	of	all	the		departments		derived	from	the		persons		list.	But	then
we	put	each		department		String	in	a		Person		object	since	the		TreeView		only	accepts
	Person		elements.	While	this	is	not	very	intuitive,	this	is	the	constraint	and	design	of
	TreeView	.	We	must	make	each		department		a		Person		for	it	to	be	accepted.

treeview<Person>	{

				//	Create	root	item

				root	=	TreeItem(Person("Departments",	""))

5.	Data	Controls

66

Next	we	specify	the	highest		root		for	the		TreeView		that	all	departments	will	be	nested
under,	and	we	give	it	a	placeholder		Person		called	"Departments".

				cellFormat	{	text	=	it.name	}

Then	we	specify	the		cellFormat()		to	render	the		name		of	each		Person		(including
departments)	on	each	cell.

			populate	{	parent	->

								if	(parent	==	root)	departments	else	persons.filter	{	it.department	==	parent.

value.name	}

				}

Finally,	we	call	the		populate()		function	and	provide	a	block	instructing	how	to	provide
children	to	each		parent	.	If	the		parent		is	indeed	the		root	,	then	we	return	the
	departments	.	Otherwise	the		parent		is	a		department		and	we	provide	a	list	of		Person	
objects	belonging	to	that		department	.

Data	driven	TreeView

If	the	child	list	you	return	from		populate		is	an		ObservableList	,	any	changes	to	that	list	will
automatically	be	reflected	in	the	TreeView.	The	populate	function	will	be	called	for	any	new
children	that	appears,	and	removed	items	will	result	in	removed	TreeItems	as	well.

TreeView	with	Differing	Types

It	is	not	necessarily	intuitive	to	make	every	entity	in	the	previous	example	a		Person	.	We
made	each	department	a		Person		as	well	as	the		root		"Departments".	For	a	more	complex
	TreeView<T>		where		T		is	unknown	and	can	be	any	number	of	types,	it	is	better	to	leverage
star	projection	for	type		T	.

Using	star	projection,	you	can	safely	populate	multiple	types	nested	into	the		TreeView	.

For	instance,	you	can	create	a		Department		type	and	leverage		cellFormat()		to	utilize	type-
checking	for	rendering.	Then	you	can	use	a		populate()		function	that	will	iterate	over	each
element,	and	you	specify	the	children	for	each	element	(if	any).

5.	Data	Controls

67

http://kotlinlang.org/docs/reference/generics.html#star-projections

data	class	Department(val	name:	String)

//	Create	Department	objects	for	the	departments	by	getting	distinct	values	from	Perso

n.department

val	departments	=	persons.map	{	it.department	}.distinct().map	{	Department(it)	}

//	Type	safe	way	of	extracting	the	correct	TreeItem	text

cellFormat	{

				text	=	when	(it)	{

								is	String	->	it

								is	Department	->	it.name

								is	Person	->	it.name

								else	->	throw	IllegalArgumentException("Invalid	value	type")

				}

}

//	Generate	items.	Children	of	the	root	item	will	contain	departments,	children	of	dep

artments	are	filtered

populate	{	parent	->

				val	value	=	parent.value

				if	(parent	==	root)	departments

				else	if	(value	is	Department)	persons.filter	{	it.department	==	value.name	}

				else	null

}

TreeTableView

The		TreeTableView		operates	and	functions	similarly	to	a		TreeView	,	but	it	has	multiple
columns	since	it	is	a	table.	Please	note	that	the	columns	in	a		TreeTableView		are	the	same
for	each	parent	and	child	element.	If	you	want	the	columns	to	be	different	between	parent
and	child,	use	a		TableView		with	a		rowExpander()		as	covered	earlier	in	this	chapter.

Say	you	have	a		Person		class	that	optionally	has	an		employees		parameter,	which	defaults
to	an	empty		List<Person>		if	nobody	reports	to	that		Person	.

class	Person(val	name:	String,

		val	department:	String,

		val	email:	String,

		val	employees:	List<Person>	=	emptyList())

Then	you	have	an		ObservableList<Person>		holding	instances	of	this	class.

5.	Data	Controls

68

val	persons	=	listOf(

								Person("Mary	Hanes",	"IT	Administration",	"mary.hanes@contoso.com",	listOf(

												Person("Jacob	Mays",	"IT	Help	Desk",	"jacob.mays@contoso.com"),

												Person("John	Ramsy",	"IT	Help	Desk",	"john.ramsy@contoso.com"))),

								Person("Erin	James",	"Human	Resources",	"erin.james@contoso.com",	listOf(

												Person("Erlick	Foyes",	"Customer	Service",	"erlick.foyes@contoso.com"),

												Person("Steve	Folley",	"Customer	Service",	"steve.folley@contoso.com"),

												Person("Larry	Cable",	"Customer	Service",	"larry.cable@contoso.com")))

).observable()

You	can	create	a		TreeTableView		by	merging	the	components	needed	for	a		TableView		and
	TreeView		together.	You	will	need	to	call	the		populate()		function	as	well	as	set	the	root
	TreeItem	.

val	treeTableView	=	TreeTableView<Person>().apply	{

				column("Name",	Person::nameProperty)

				column("Department",	Person::departmentProperty)

				column("Email",	Person::emailProperty)

				///	Create	the	root	item	that	holds	all	top	level	employees

				root	=	TreeItem(Person("Employees	by	leader",	"",	"",	persons))

				//	Always	return	employees	under	the	current	person

				populate	{	it.value.employees	}

				//	Expand	the	two	first	levels

				root.isExpanded	=	true

				root.children.forEach	{	it.isExpanded	=	true	}

				//	Resize	to	display	all	elements	on	the	first	two	levels

				resizeColumnsToFitContent()

}

It	is	also	possible	to	work	with	more	of	an	ad	hoc	backing	store	like	a		Map	.	That	would	look
something	like	this:

5.	Data	Controls

69

val	tableData	=	mapOf(

				"Fruit"	to	arrayOf("apple",	"pear",	"Banana"),

				"Veggies"	to	arrayOf("beans",	"cauliflower",	"cale"),

				"Meat"	to	arrayOf("poultry",	"pork",	"beef")

)

treetableview<String>(TreeItem("Items"))	{

				column<String,	String>("Type",	{	it.value.valueProperty()	})

				populate	{

								if	(it.value	==	"Items")	tableData.keys

								else	tableData[it.value]?.asList()

				}

}

DataGrid

A		DataGrid		is	similar	to	the		GridPane		in	that	it	displays	items	in	a	flexible	grid	of	rows	and
columns,	but	the	similarities	ends	there.	While	the		GridPane		requires	you	to	add	Nodes	to
the	children	list,	the		DataGrid		is	data	driven	in	the	same	way	as		TableView		and		ListView	.
You	supply	it	with	a	list	of	items	and	tell	it	how	to	convert	those	children	to	a	graphical
representation.

It	supports	selection	of	either	a	single	item	or	multiple	items	at	a	time	so	it	can	be	used	as	for
example	the	display	of	an	image	viewer	or	other	components	where	you	want	a	visual
representation	of	the	underlying	data.	Usage	wise	it	is	close	to	a		ListView	,	but	you	can
create	an	arbitrary	scene	graph	inside	each	cell	so	it	is	easy	to	visualize	multiple	properties
for	each	item.

val	kittens	=	listOf("http://i.imgur.com/DuFZ6PQb.jpg",	"http://i.imgur.com/o2QoeNnb.j

pg")	//	more	items	here

datagrid(kittens)	{

				cellCache	{

									imageview(it)

				}

}

Figure	5.8

5.	Data	Controls

70

The		cellCache		function	receives	each	item	in	the	list,	and	since	we	used	a	list	of	Strings	in
our	example,	we	simply	pass	that	string	to	the		imageview()		builder	to	create	an		ImageView	
inside	each	table	cell.	It	is	important	to	call	the		cellCache		function	instead	of	the
	cellFormat		function	to	avoid	recreating	the	images	every	time	the		DataGrid		redraws.	It	will
reuse	the	items.

Let's	create	a	scene	graph	that	is	a	little	bit	more	involved,	and	also	change	the	default	size
of	each	cell:

5.	Data	Controls

71

val	numbers	=	(1..10).toList()

datagrid(numbers)	{

				cellHeight	=	75.0

				cellWidth	=	75.0

				multiSelect	=	true

				cellCache	{

								stackpane	{

												circle(radius	=	25.0)	{

																fill	=	Color.FORESTGREEN

												}

												label(it.toString())

								}

				}

}

Figure	5.9

The	grid	is	supplied	with	a	list	of	numbers	this	time.	We	start	by	specifying	a	cell	height	and
width	of	75	pixels,	half	of	the	default	size.	We	also	configure	multi	select	to	be	able	to	select
more	than	a	single	element.	This	is	a	shortcut	of	writing		selectionModel.selectionMode	=
SelectionMode.MULTIPLE		via	an	extension	property.	We	create	a		StackPane		that	stacks	a
	Label		on	top	of	a		Circle	.

5.	Data	Controls

72

You	might	wonder	why	the	label	got	so	big	and	bold	by	default.	This	is	coming	from	the
default	stylesheet.	The	stylesheet	is	a	good	starting	point	for	further	customization.	All
properties	of	the	data	grid	can	be	configured	in	code	as	well	as	in	CSS,	and	the
stylesheet	lists	all	possible	style	properties.

The	number	list	showcased	multiple	selection.	When	a	cell	is	selected,	it	receives	the
CSS	pseudo	class	of		selected	.	By	default	it	will	behave	mostly	like	a		ListView		row
with	regards	to	selection	styles.	You	can	access	the		selectionModel		of	the	data	grid	to
listen	for	selection	changes,	see	what	items	are	selected	etc.

Summary

Functional	constructs	work	well	with	data	controls	like		TableView	,		TreeView	,	and	others	we
have	seen	in	this	chapter.	Using	the	builder	patterns,	you	can	quickly	and	functionally
declare	how	data	is	displayed.

In	Chapter	7,	we	will	embed	controls	in	layouts	to	create	more	complex	UI's	easily.

5.	Data	Controls

73

https://github.com/edvin/tornadofx/blob/master/src/main/resources/tornadofx/datagrid.css

Type-Safe	CSS
While	you	can	create	plain	text	CSS	style	sheets	in	JavaFX,	TornadoFX	provides	the	option
to	bring	type-safety	and	compiled	CSS	to	JavaFX.	You	can	conveniently	choose	to	create
styles	in	its	own	class,	or	do	it	inline	within	a	control	declaration.

Inline	CSS

The	quickest	and	easiest	way	to	style	a	control	on	the	fly	is	to	call	a	given		Node	's	inline
	style	{	}		function.	All	the	CSS	properties	available	on	a	given	control	are	available	in	a
type-safe	manner,	with	compilation	checks	and	auto-completion.

For	example,	you	can	style	the	borders	on	a		Button		(using	the		box()		function),	bold	its
font,	and	rotate	it	(Figure	6.1).

button("Press	Me")	{

				style	{

								fontWeight	=	FontWeight.EXTRA_BOLD

								borderColor	+=	box(

																top	=	Color.RED,

																right	=	Color.DARKGREEN,

																left	=	Color.ORANGE,

																bottom	=	Color.PURPLE

)

								rotate	=	45.deg

				}

				setOnAction	{	println("You	pressed	the	button")	}

}

Figure	6.1

This	is	especially	helpful	when	you	want	to	style	a	control	without	breaking	the	declaration
flow	of	the		Button	.	However,	keep	in	mind	the		style	{	}		will	replace	all	styles	applied	to
that	control	unless	you	pass		true		for	its	optional		append		argument.

6.	Type	Safe	CSS

74

style(append	=	true)	{

					

}

Some	times	you	want	to	apply	the	same	styles	to	many	nodes	in	one	go.	The		style	{	}	
function	can	also	be	applied	to	any	Iterable	that	contains	Nodes:

vbox	{

				label("First")

				label("Second")

				label("Third")

				children.style	{

								fontWeight	=	FontWeight.BOLD

				}

}

The		fontWeight		style	is	applied	to	all	children	of	the	vbox,	in	essence	all	the	labels	we
added.

When	your	styling	complexity	passes	a	certain	threshold,	you	may	want	to	consider	using
Stylesheets	which	we	will	cover	next.

Applying	Style	Classes	with	Stylesheets

If	you	want	to	organize,	re-use,	combine,	and	override	styles	you	need	to	leverage	a
	Stylesheet	.	Traditionally	in	JavaFX,	a	stylesheet	is	defined	in	a	plain	CSS	text	file	included
in	the	project.	However,	TornadoFX	allows	creating	stylesheets	with	pure	Kotlin	code.	This
has	the	benefits	of	compilation	checks,	auto-completion,	and	other	perks	that	come	with
statically	typed	code.

To	declare	a		Stylesheet	,	extend	it	onto	your	own	class	to	hold	your	customized	styles.

import	tornadofx.*

class	MyStyle:	Stylesheet()	{

}

Next,	you	will	want	to	specify	its		companion	object		to	hold	class-level	properties	that	can
easily	be	retrieved.	Declare	a	new		cssclass()	-delegated	property	called		tackyButton	,	and
define	four	colors	we	will	use	for	its	borders.

6.	Type	Safe	CSS

75

import	javafx.scene.paint.Color

import	tornadofx.*

class	MyStyle:	Stylesheet()	{

				companion	object	{

								val	tackyButton	by	cssclass()

								private	val	topColor	=	Color.RED

								private	val	rightColor	=	Color.DARKGREEN

								private	val	leftColor	=	Color.ORANGE

								private	val	bottomColor	=	Color.PURPLE

				}

}

Note	also	you	can	use	the		c()		function	to	build	colors	quickly	using	RGB	values	or	color
Strings.

		private	val	topColor	=	c("#FF0000")

		private	val	rightColor	=	c("#006400")

		private	val	leftColor	=	c("#FFA500")

		private	val	bottomColor	=	c("#800080")

Finally,	declare	an		init()		block	to	apply	styling	to	the	classes.	Define	your	selection	and
provide	a	block	that	manipulates	its	various	properties.	(For	compound	selections,	call	the
	s()		function,	which	is	an	alias	for	the		select()		function).	Set		rotate		to	10	degrees,
define	the		borderColor		using	the	four	colors	and	the		box()		function,	make	the	font	family
"Comic	Sans	MS",	and	increase	the		fontSize		to	20	pixels.	Note	that	there	are	extension
properties	for		Number		types	to	quickly	yield	the	value	in	that	unit,	such	as		10.deg		for	10
degrees	and		20.px		for	20	pixels.

6.	Type	Safe	CSS

76

import	javafx.scene.paint.Color

import	tornadofx.*

class	MyStyle:	Stylesheet()	{

				companion	object	{

								val	tackyButton	by	cssclass()

								private	val	topColor	=	Color.RED

								private	val	rightColor	=	Color.DARKGREEN

								private	val	leftColor	=	Color.ORANGE

								private	val	bottomColor	=	Color.PURPLE

				}

				init	{

								tackyButton	{

												rotate	=	10.deg

												borderColor	+=	box(topColor,rightColor,bottomColor,leftColor)

												fontFamily	=	"Comic	Sans	MS"

												fontSize	=	20.px

								}

				}

}

Now	you	can	apply	the		tackyButton		style	to	buttons,	labels,	and	other	controls	that	support
these	properties.	While	this	styling	can	work	with	other	controls	like	labels,	we	are	going	to
target	buttons	in	this	example.

First,	load	the		MyStyle		stylesheet	into	your	application	by	including	it	as	contructor
parameter.

class	MyApp:	App(MyView::class,	MyStyle::class)	{

				init	{

								reloadStylesheetsOnFocus()

				}

}

The		reloadStylesheetsOnFocus()		function	call	will	instruct	TornadoFX	to	reload	the
Stylesheets	every	time	the		Stage		gets	focus.	You	can	also	pass	the		--live-
stylesheets		argument	to	the	application	to	accomplish	this.

Important:	For	the	reload	to	work,	you	must	be	running	the	JVM	in	debug	mode	and	you
must	instruct	your	IDE	to	recompile	before	you	switch	back	to	your	app.	Without	these	steps,
nothing	will	happen.	This	also	applies	to		reloadViewsOnFocus()		which	is	similar,	but	reloads
the	whole	view	instead	of	just	the	stylesheet.	This	way,	you	can	evolve	your	UI	very	rapidly
in	a	"code	change,	compile,	refresh"	manner.

6.	Type	Safe	CSS

77

You	can	apply	styles	directly	to	a	control	by	calling	its		addClass()		function.	Provide	the
	MyStyle.tackyButton		style	to	two	buttons	(Figure	6.2).

class	MyView:	View()	{

				override	val	root	=	vbox	{

								button("Press	Me")	{

												addClass(MyStyle.tackyButton)

								}

								button("Press	Me	Too")	{

												addClass(MyStyle.tackyButton)

								}

				}

}

Figure	6.2

Intellij	IDEA	can	perform	a	quickfix	to	import	member	variables,	allowing
	addClass(MyStyle.tackyButton)		to	be	shortened	to		addClass(tackyButton)		if	you	prefer.

You	can	use		removeClass()		to	remove	the	specified	style	as	well.

Targeting	Styles	to	a	Type

One	of	the	benefits	of	using	pure	Kotlin	is	you	can	tightly	manipulate	UI	control	behavior	and
conditions	using	Kotlin	code.	For	example,	you	can	apply	the	style	to	any		Button		by
iterating	through	a	control's		children	,	filtering	for	only	children	that	are	Buttons,	and
applying	the		addClass()		to	them.

class	MyView:	View()	{

				override	val	root	=	vbox	{

								button("Press	Me")

								button("Press	Me	Too")

								children.asSequence()

																.filter	{	it	is	Button	}

																.forEach	{	it.addClass(MyStyle.tackyButton)	}

				}

}

6.	Type	Safe	CSS

78

Infact,	manipulating	classes	on	several	nodes	at	once	is	so	common	that	TornadoFX
provides	a	shortcut	for	it:

children.filter	{	it	is	Button	}.addClass(MyStyle.tackyButton)	}

You	can	also	target	all		Button		instances	in	your	application	by	selecting	and	modifying	the
	button		in	the		Stylesheet	.	This	will	apply	the	style	to	all	Buttons.

import	javafx.scene.paint.Color

import	tornadofx.*

class	MyStyle:	Stylesheet()	{

				companion	object	{

								val	tackyButton	by	cssclass()

								private	val	topColor	=	Color.RED

								private	val	rightColor	=	Color.DARKGREEN

								private	val	leftColor	=	Color.ORANGE

								private	val	bottomColor	=	Color.PURPLE

				}

				init	{

								button	{

												rotate	=	10.deg

												borderColor	+=	box(topColor,rightColor,leftColor,bottomColor)

												fontFamily	=	"Comic	Sans	MS"

												fontSize	=	20.px

								}

				}

}

import	javafx.scene.layout.VBox

import	tornadofx.*

class	MyApp:	App(MyView::class,	MyStyle::class)	{

				init	{

								reloadStylesheetsOnFocus()

				}

}

class	MyView:	View()	{

				override	val	root	=	vbox	{

								button("Press	Me")

								button("Press	Me	Too")

				}

}

6.	Type	Safe	CSS

79

Figure	6.3

Note	also	you	can	select	multiple	classes	and	control	types	to	mix-and-match	styles.	For
example,	you	can	set	the	font	size	of	labels	and	buttons	to	20	pixels,	and	create	tacky
borders	and	fonts	only	for	buttons	(Figure	6.4).

class	MyStyle:	Stylesheet()	{

				companion	object	{

								private	val	topColor	=	Color.RED

								private	val	rightColor	=	Color.DARKGREEN

								private	val	leftColor	=	Color.ORANGE

								private	val	bottomColor	=	Color.PURPLE

				}

				init	{

								s(button,	label)	{

												fontSize	=	20.px

								}

								button	{

												rotate	=	10.deg

												borderColor	+=	box(topColor,rightColor,leftColor,bottomColor)

												fontFamily	=	"Comic	Sans	MS"

								}

				}

}

class	MyApp:	App(MyView::class,	MyStyle::class)	{

				init	{

								reloadStylesheetsOnFocus()

				}

}

class	MyView:	View()	{

				override	val	root	=	vbox	{

								label("Lorem	Ipsum")

								button("Press	Me")

								button("Press	Me	Too")

				}

}

6.	Type	Safe	CSS

80

Figure	6.4

Multi-Value	CSS	Properties

Some	CSS	properties	accept	multiple	values,	and	TornadoFX	Stylesheets	can	streamline
this	with	the		multi()		function.	This	allows	you	to	specify	multiple	values	via	a		varargs	
parameter	and	let	TornadoFX	take	care	of	the	rest.	For	instance,	you	can	nest	multiple
background	colors	and	insets	into	a	control	(Figure	6.5).

label("Lore	Ipsum")	{

				style	{

								fontSize	=	30.px

								backgroundColor	=	multi(Color.RED,	Color.BLUE,	Color.YELLOW)

								backgroundInsets	=	multi(box(4.px),	box(8.px),	box(12.px))

				}

}

Figure	6.5

The		multi()		function	should	work	wherever	multiple	values	are	accepted.	If	you	want	to
only	assign	a	single	value	to	a	property	that	accepts	multiple	values,	you	will	need	to	use	the
	plusAssign()		operator	to	add	it	(Figure	6.6).

6.	Type	Safe	CSS

81

label("Lore	Ipsum")	{

				style	{

								fontSize	=	30.px

								backgroundColor	+=	Color.RED

								backgroundInsets	+=	box(4.px)

				}

}

Figure	6.6

Nesting	Styles

Inside	a	selector	block	you	can	apply	further	styles	targeting	child	controls.

For	instance,	define	a	CSS	class	called		critical	.	Make	it	put	an	orange	border	around	any
control	it	is	applied	to,	and	pad	it	by	5	pixels.

class	MyStyle:	Stylesheet()	{

				companion	object	{

								val	critical	by	cssclass()

				}

				init	{

								critical	{

												borderColor	+=	box(Color.ORANGE)

												padding	=	box(5.px)

								}

				}

}

But	suppose	when	we	applied		critical		to	any	control,	such	as	an		HBox	,	we	want	it	to	add
additional	stylings	to	buttons	inside	that	control.	Nesting	another	selection	will	do	the	trick.

6.	Type	Safe	CSS

82

class	MyStyle:	Stylesheet()	{

				companion	object	{

								val	critical	by	cssclass()

				}

				init	{

								critical	{

												borderColor	+=	box(Color.ORANGE)

												padding	=	box(5.px)

												button	{

																backgroundColor	+=	Color.RED

																textFill	=	Color.WHITE

												}

								}

				}

}

Now	when	you	apply		critical		to	say,	an		HBox	,	all	buttons	inside	that		HBox		will	get	that
defined	style	for		button		(Figure	6.7)

class	MyApp:	App(MyView::class,	MyStyle::class)	{

				init	{

								reloadStylesheetsOnFocus()

				}

}

class	MyView:	View()	{

				override	val	root	=	hbox	{

								addClass(MyStyle.critical)

								button("Warning!")

								button("Danger!")

				}

}

Figure	6.7

There	is	one	critical	thing	to	not	confuse	here.	The	orange	border	is	only	applied	to	the	HBox
since	the		critical		class	was	applied	to	it.	The	buttons	do	not	get	an	orange	border
because	they	are	children	to	the		HBox	.	While	their	style	is	defined	by		critical	,	they	do
not	inherit	the	styles	of	their	parent,	only	those	defined	for		button	.

6.	Type	Safe	CSS

83

If	you	want	the	buttons	to	get	an	orange	border	too,	you	need	to	apply	the		critical		class
directly	to	them.	You	will	want	to	use	the		and()		to	apply	specific	styles	to	buttons	that	are
also	declared	as		critical	.

class	MyStyle:	Stylesheet()	{

				companion	object	{

								val	critical	by	cssclass()

				}

				init	{

								critical	{

												borderColor	+=	box(Color.ORANGE)

												padding	=	box(5.px)

												and(button)	{

																backgroundColor	+=	Color.RED

																textFill	=	Color.WHITE

												}

								}

				}

}

class	MyApp:	App(MyView::class,	MyStyle::class)	{

				init	{

								reloadStylesheetsOnFocus()

				}

}

class	MyView:	View()	{

				override	val	root	=	hbox	{

								addClass(MyStyle.critical)

								button("Warning!")	{

												addClass(MyStyle.critical)

								}

								button("Danger!")	{

												addClass(MyStyle.critical)

								}

				}

}

Figure	6.8

6.	Type	Safe	CSS

84

Now	you	have	orange	borders	around	the		HBox		as	well	as	the	buttons.	When	nesting
styles,	keep	in	mind	that	wrapping	the	selection	with		and()		will	cascade	styles	to	children
controls	or	classes.

Mixins
There	are	times	you	may	want	to	reuse	a	set	of	stylings	and	apply	them	to	several	controls
and	selectors.	This	prevents	you	from	having	to	redundantly	define	the	same	properties	and
values.	For	instance,	if	you	want	to	create	a	set	of	styling	called		redAllTheThings	,	you	could
define	it	as	a	mixin	as	shown	below.	Then	you	can	reuse	it	for	a		redStyle		class,	as	well	as
a		textInput	,	a		label	,	and	a		passwordField		with	additional	style	modifications	(Figure
6.9).

Stylesheet

6.	Type	Safe	CSS

85

import	javafx.scene.paint.Color

import	javafx.scene.text.FontWeight

import	tornadofx.*

class	Styles	:	Stylesheet()	{

				companion	object	{

								val	redStyle	by	cssclass().

				}

				init	{

								val	redAllTheThings	=	mixin	{

												backgroundInsets	+=	box(5.px)

												borderColor	+=	box(Color.RED)

												textFill	=	Color.RED

								}

								redStyle	{

												+redAllTheThings

								}

								s(textInput,	label)	{

												+redAllTheThings

												fontWeight	=	FontWeight.BOLD

								}

								passwordField	{

												+redAllTheThings

												backgroundColor	+=	Color.YELLOW

								}

				}

}

App	and	View

6.	Type	Safe	CSS

86

class	MyApp:	App(MyView::class,	Styles::class)

class	MyView	:	View("My	View")	{

				override	val	root	=	vbox	{

								label("Enter	your	login")

								form	{

												fieldset{

																field("Username")	{

																				textfield()

																}

																field("Password")	{

																				passwordfield()

																}

												}

								}

								button("Go!")	{

												addClass(Styles.redStyle)

								}

				}

}

Figure	6.9

The	stylesheet	is	applied	to	the	application	by	adding	it	as	a	constructor	parameter	to	the
App	class.	This	is	a	vararg	parameter,	so	you	can	send	in	a	comma	separated	list	of	multiple
stylesheets.	If	you	want	to	load	stylesheets	dynamically	based	on	some	condition,	you	can
call		importStylesheet(Styles::class		from	anywhere.	Any	UIComponent	opened	after	the
call	to		importStylesheet		will	get	the	stylesheet	applied.	You	can	also	load	normal	text	based
css	stylesheets	with	this	function:

importStylesheet("/mystyles.css")

Loading	a	text	based	css	stylesheet

If	you	find	you	are	repeating	yourself	setting	the	same	CSS	properties	to	the	same	values,
you	might	want	to	consider	using	mixins	and	reusing	them	wherever	they	are	needed	in	a
	Stylesheet	.

6.	Type	Safe	CSS

87

Modifier	Selections
TornadoFX	also	supports	modifier	selections	by	leveraging		and()		functions	within	a
selection.	The	most	common	case	this	is	handy	is	styling	for	"selected"	and	cursor	"hover"
contexts	for	a	control.

If	you	wanted	to	create	a	UI	that	will	make	any		Button		red	when	it	is	hovered	over,	and	any
selected		Cell		in	data	controls	such	as		ListView		red,	you	can	define	a		Stylesheet		like
this	(Figure	6.10).

Stylesheet

import	javafx.scene.paint.Color

import	tornadofx.Stylesheet

class	Styles	:	Stylesheet()	{

				init	{

								button	{

												and(hover)	{

																backgroundColor	+=	Color.RED

												}

								}

								cell	{

												and(selected)	{

																backgroundColor	+=	Color.RED

												}

								}

				}

}

App	and	View

import	tornadofx.*

class	MyApp:	App(MyView::class,	Styles::class)

class	MyView	:	View("My	View")	{

				val	listItems	=	listOf("Alpha","Beta","Gamma").observable()

and

				override	val	root	=	vbox	{

								button("Hover	over	me")

								listview(listItems)

				}

}

6.	Type	Safe	CSS

88

Figure	6.10	-	A	cell	is	selected	and	the		Button		is	being	hovered	over.	Both	are	now	red.

Whenever	you	need	modifiers,	use	the		select()		function	to	make	those	contextual	style
modifications.

Control-Specific	Stylesheets
If	you	decide	to	create	your	own	controls	(often	by	extending	an	existing	control,	like
	Button),	JavaFX	allows	you	to	pair	a	stylesheet	with	it.	In	this	situation,	it	is	advantageous
to	load	this		Stylesheet		only	when	this	control	is	loaded.	For	instance,	if	you	have	a
	DangerButton		class	that	extends		Button	,	you	might	consider	creating	a		Stylesheet	
specifically	for	that		DangerButton	.	To	allow	JavaFX	to	load	it,	you	need	to	override	the
	getUserAgentStyleSheet()		function	as	shown	below.	This	will	convert	your	type-safe
	Stylesheet		into	plain	text	CSS	that	JavaFX	natively	understands.

class	DangerButton	:	Button("Danger!")	{

				init	{

								addClass(DangerButtonStyles.dangerButton)

				}

				override	fun	getUserAgentStylesheet()	=	DangerButtonStyles().base64URL.toExternalF

orm()

}

class	DangerButtonStyles	:	Stylesheet()	{

				companion	object	{

								val	dangerButton	by	cssclass()

				}

				init	{

								dangerButton	{

												backgroundInsets	+=	box(0.px)

												fontWeight	=	FontWeight.BOLD

												fontSize	=	20.px

												padding	=	box(10.px)

								}

				}

}

6.	Type	Safe	CSS

89

The		DangerButtonStyles().base64URL.toExternalForm()		expression	creates	an	instance	of	the
	DangerButtonStyles	,	and	turns	it	into	a	URL	containing	the	entire	stylesheet	that	JavaFX
can	consume.

Conclusion
TornadoFX	does	a	great	job	executing	a	brilliant	concept	to	make	CSS	type-safe,	and	it
further	demonstrates	the	power	of	Kotlin	DSL's.	Configuration	through	static	text	files	is	slow
to	express	with,	but	type-safe	CSS	makes	it	fluent	and	quick	especially	with	IDE	auto-
completion.	Even	if	you	are	pragmatic	about	UI's	and	feel	styling	is	superfluous,	there	will	be
times	you	need	to	leverage	conditional	formatting	and	highlighting	so	rules	"pop	out"	in	a	UI.
At	minimum,	get	comfortable	using	the	inline		style	{	}		block	so	you	can	quickly	access
styling	properties	that	cannot	be	accessed	any	other	way	(such	as		TextWeight).

6.	Type	Safe	CSS

90

Layouts	and	Menus
Complex	UI's	require	many	controls.	It	is	likely	these	controls	need	to	be	grouped,
positioned,	and	sized	with	set	policies.	Fortunately	TornadoFX	streamlines	many	layouts	that
come	with	JavaFX,	as	well	as	features	its	own	proprietary		Form		layout.

TornadoFX	also	has	type-safe	builders	to	create	menus	in	a	highly	structured,	declarative
way.	Menus	can	be	especially	cumbersome	to	build	using	conventional	JavaFX	code,	and
Kotlin	really	shines	in	this	department.

Builders	for	Layouts
Layouts	group	controls	and	set	policies	about	their	sizing	and	positioning	behavior.
Technically,	layouts	themselves	are	controls	so	therefore	you	can	nest	layouts	inside
layouts.	This	is	critical	for	building	complex	UI's,	and	TornadoFX	makes	maintenance	of	UI
code	easier	by	visibly	showing	the	nested	relationships.

VBox

A		VBox		stacks	controls	vertically	in	the	order	they	are	declared	inside	its	block	(Figure	7.1).

vbox	{

				button("Button	1").setOnAction	{

								println("Button	1	Pressed")

				}

				button("Button	2").setOnAction	{

								println("Button	2	Pressed")

				}

}

Figure	7.1

You	can	also	call		vboxConstraints()		within	a	child's	block	to	change	the	margin	and	vertical
growing	behaviors	of	the		VBox	.

7.	Layouts	and	Menus

91

vbox	{

				button("Button	1")	{

									vboxConstraints	{

												marginBottom	=	20.0

												vGrow	=	Priority.ALWAYS

										}

				}

				button("Button	2")

}

You	can	use	a	shorthand	extension	property	for		vGrow		without	calling		vboxConstraints()	.

vbox	{

				button("Button	1")	{

											vGrow	=	Priority.ALWAYS

				}

				button("Button	2")

}

HBox

	HBox		behaves	almost	identically	to		VBox	,	but	it	stacks	all	controls	horizontally	left-to-right
in	the	order	declared	in	its	block.

hbox	{

				button("Button	1").setOnAction	{

								println("Button	1	Pressed")

				}

				button("Button	2").setOnAction	{

								println("Button	2	Pressed")

				}

}

Figure	7.2

You	can	also	call		hboxconstraints()		within	the	a	child's	block	to	change	the	margin	and
horizontal	growing	behaviors	of	the		HBox	.

7.	Layouts	and	Menus

92

hbox	{

				button("Button	1")	{

								hboxConstraints	{

																marginRight	=	20.0

										hGrow	=	Priority.ALWAYS

						}

				}

				button("Button	2")

}

You	can	use	a	shorthand	extension	property	for		hGrow		without	calling		hboxConstraints()	.

hbox	{

				button("Button	1")	{

										hGrow	=	Priority.ALWAYS

				}

		button("Button	2")

}

FlowPane

The		FlowPane		lays	out	controls	left-to-right	and	wraps	to	the	next	line	on	the	boundary.	For
example,	say	you	added	100	buttons	to	a		FlowPane		(Figure	7.3).	You	will	notice	it	simply
lays	out	buttons	from	left-to-right,	and	when	it	runs	out	of	room	it	moves	to	the	"next	line".

flowpane	{

			for	(i	in	1..100)	{

								button(i.toString())	{

												setOnAction	{	println("You	pressed	button	$i")	}

								}

			}

}

Figure	7.3

7.	Layouts	and	Menus

93

Notice	also	when	you	resize	the	window,	the		FlowLayout		will	re-wrap	the	buttons	so	they	all
can	fit	(Figure	7.4)

Figure	7.4

The		FlowLayout		is	not	used	often	because	it	is	often	simplistic	for	handling	a	large	number
of	controls,	but	it	comes	in	handy	for	certain	situations	and	can	be	used	inside	other	layouts.

BorderPane

The		BorderPane		is	a	highly	useful	layout	that	divides	controls	into	5	regions:		top	,		left	,
	bottom	,		right	,	and		center	.	Many	UI's	can	easily	be	built	using	two	or	more	of	these
regions	to	hold	controls	(Figure	7.5).

7.	Layouts	and	Menus

94

borderpane	{

				top	=	label("TOP")	{

								useMaxWidth	=	true

								style	{

												backgroundColor	=	Color.RED

								}

				}

				bottom	=	label("BOTTOM")	{

								useMaxWidth	=	true

								style	{

												backgroundColor	=	Color.BLUE

								}

				}

				left	=	label("LEFT")	{

								useMaxWidth	=	true

								style	{

												backgroundColor	=	Color.GREEN

								}

				}

				right	=	label("RIGHT")	{

								useMaxWidth	=	true

								style	{

												backgroundColor	=	Color.PURPLE

								}

				}

				center	=	label("CENTER")	{

								useMaxWidth	=	true

								style	{

												backgroundColor	=	Color.YELLOW

								}

				}

}

FIGURE	7.5

You	will	notice	that	the		top		and		bottom		regions	take	up	the	entire	horizontal	space,	while
	left	,		center	,	and		right		must	share	the	available	horizontal	space.	But		center		is
entitled	to	any	extra	available	space	(vertically	and	horizontally),	making	it	ideal	to	hold	large
controls	like		TableView	.	For	instance,	you	may	vertically	stack	some	buttons	in	the		left	
region	and	put	a		TableView		in	the		center		region	(Figure	7.6).

7.	Layouts	and	Menus

95

borderpane	{

				left	=	vbox	{

								button("REFRESH")

								button("COMMIT")

				}

				center		=	tableview<Person>	{

								items	=	listOf(

																Person("Joe	Thompson",	33),

																Person("Sam	Smith",	29),

																Person("Nancy	Reams",	41)

).observable()

								column("NAME",Person::name)

								column("AGE",Person::age)

				}

}

Figure	7.6

	BorderPane		is	a	layout	you	will	likely	want	to	use	often	because	it	simplifies	many	complex
UI's.	The		top		region	is	commonly	used	to	hold	a		MenuBar		and	the		bottom		region	often
holds	a	status	bar	of	some	kind.	You	have	already	seen		center		hold	the	focal	control	such
as	a		TableView	,	and		left		and		right		hold	side	panels	with	any	peripheral	controls	(like
Buttons	or	Toolbars)	not	appropriate	for	the		MenuBar	.	We	will	learn	about	Menus	later	in	this
section.

Form	Builder

TornadoFX	has	a	helpful		Form		control	to	handle	a	large	number	of	user	inputs.	Having
several	input	fields	to	take	user	information	is	common	and	JavaFX	does	not	have	a	built-in
solution	to	streamline	this.	To	remedy	this,	TornadoFX	has	a	builder	to	declare	a		Form		with
any	number	of	fields	(Figure	7.7).

7.	Layouts	and	Menus

96

form	{

				fieldset("Personal	Info")	{

								field("First	Name")	{

												textfield()

								}

								field("Last	Name")	{

												textfield()

								}

								field("Birthday")	{

												datepicker()

								}

				}

				fieldset("Contact")	{

								field("Phone")	{

												textfield()

								}

								field("Email")	{

												textfield()

								}

				}

				button("Commit")	{

								action	{	println("Wrote	to	database!")}

				}

}

Figure	7.7

7.	Layouts	and	Menus

97

	

7.	Layouts	and	Menus

98

Awesome	right?	You	can	specify	one	or	more	controls	for	each	of	the	fields,	and	the		Form	
will	render	the	groupings	and	labels	for	you.

You	can	choose	to	lay	out	the	label	above	the	inputs	as	well:

fieldset("FieldSet",	labelPosition	=	VERTICAL)

Each		field		represents	a	container	with	the	label	and	another	container	for	the	input	fields
you	add	inside	it.	The	input	container	is	by	default	an		HBox	,	meaning	that	multiple	inputs
within	a	single	field	will	be	laid	out	next	to	each	other.	You	can	specify	the		orientation	
parameter	to	a	field	to	make	it	lay	out	multiple	inputs	below	each	other.	Another	use	case	for
Vertical	orientation	is	to	allow	an	input	to	grow	as	the	form	expands	vertically.	This	is	handy
for	displaying	TextAreas	in	Forms:

form	{

				fieldset("Feedback	Form",	labelPosition	=	VERTICAL)	{

								field("Comment",	VERTICAL)	{

												textarea	{

																prefRowCount	=	5

																vgrow	=	Priority.ALWAYS

												}

								}

								buttonbar	{

												button("Send")

								}

				}

}

Figure	7.8

7.	Layouts	and	Menus

99

The	example	above	also	uses	the		buttonbar		builder	to	create	a	special	field	with	no	label
while	retaining	the	label	indent	so	the	buttons	line	up	under	the	inputs.

You	bind	each	input	to	a	model,	and	you	can	leave	the	rendering	of	the	control	layouts	to	the
	Form	.	For	this	reason	you	will	likely	want	to	use	this	over	the		GridPane		if	possible,	which
we	will	cover	next.

Nesting	layouts	inside	a	Form

You	can	wrap	both	fieldsets	and	fields	with	any	layout	container	of	your	choosing	to	create
complex	form	layouts.

7.	Layouts	and	Menus

100

form	{

				hbox(20)	{

								fieldset("Left	FieldSet")	{

												hbox(20)	{

																vbox	{

																				field("Field	l1a")	{	textfield()	}

																				field("Field	l2a")	{	textfield()	}

																}

																vbox	{

																				field("Field	l1b")	{	textfield()	}

																				field("Field	l2b")	{	textfield()	}

																}

												}

								}

								fieldset("Right	FieldSet")	{

												hbox(20)	{

																vbox	{

																				field("Field	r1a")	{	textfield()	}

																				field("Field	r2a")	{	textfield()	}

																}

																vbox	{

																				field("Field	r1b")	{	textfield()	}

																				field("Field	r2b")	{	textfield()	}

																}

												}

								}

				}

}

The	HBoxes	are	configured	with	a	spacing	of	20	pixels,	using	the	parameter	for	the		hbox	
builder.	It	can	also	be	specified	as		hbox(spacing	=	20)		for	clarity.

Figure	7.9

GridPane

If	you	want	to	micromanage	the	layout	of	your	controls,	the		GridPane		will	give	you	plenty	of
that.	Of	course	it	requires	more	configuration	and	code	boilerplate.	Before	proceeding	to	use
a		GridPane	,	you	might	want	to	consider	using		Form		or	other	layouts	that	abstract	layout
configuration	for	you.

7.	Layouts	and	Menus

101

One	way	to	use		GridPane		is	to	declare	the	contents	of	each		row	.	For	any	given		Node		you
can	call	its		gridpaneConstraints		to	configure	various		GridPane		behaviors	for	that		Node	,
such	as		margin		and		columnSpan		(Figure	7.10)

	gridpane	{

					row	{

									button("North")	{

													useMaxWidth	=	true

													gridpaneConstraints	{

																	marginBottom	=	10.0

																	columnSpan	=	2

													}

									}

					}

				row	{

								button("West")

								button("East")

				}

				row	{

								button("South")	{

												useMaxWidth	=	true

												gridpaneConstraints	{

																marginTop	=	10.0

																columnSpan	=	2

												}

								}

				}

}

Figure	7.11

Notice	how	there	is	a	margin	of		10.0		between	each	row,	which	was	declared	for	the
	marginBottom		and		marginTop		of	the	"North"	and	"South"	buttons	respectively	inside	their
	gridpaneConstraints	.

Alternatively,	you	can	explicitly	specify	the	column/row	index	positions	for	each		Node		rather
than	declaring	each		row		of	controls.	This	will	accomplish	the	exact	layout	we	built
previously,	but	with	column/row	index	specifications	instead.	It	is	a	bit	more	verbose,	but	it

7.	Layouts	and	Menus

102

gives	you	more	explicit	control	over	the	positions	of	controls.

gridpane	{

					button("North")	{

									useMaxWidth	=	true

									gridpaneConstraints	{

													columnRowIndex(0,0)

													marginBottom	=	10.0

													columnSpan	=	2

									}

					}

				button("West").gridpaneConstraints	{

								columnRowIndex(0,1)

				}

				button("East").gridpaneConstraints	{

								columnRowIndex(1,1)

				}

				button("South")	{

								useMaxWidth	=	true

								gridpaneConstraints	{

												columnRowIndex(0,2)

												marginTop	=	10.0

												columnSpan	=	2

								}

				}

}

These	are	all	the		gridpaneConstraints		attributes	you	can	modify	on	a	given		Node	.	Some
are	expressed	as	simple	properties	that	can	be	assigned	while	others	are	assignable
through	functions.

7.	Layouts	and	Menus

103

Attribute Description

columnIndex:	Int The	column	index	for	the	given	control

rowIndex:	Int The	row	index	for	the	given	control

columnRowIndex(columnIndex:	Int,
rowIndex:	Int) Specifes	the	row	and	column	index

columnSpan:	Int The	number	of	columns	the	control	occupies

rowSpan:	Int The	number	of	rows	the	control	occupies

hGrow:	Priority The	horizonal	grow	priority

vGrow:	Priority The	vertical	grow	priority

vhGrow:	Priority Specifies	the	same	priority	for		vGrow		and
	hGrow	

fillHeight:	Boolean Sets	whether	the		Node		fills	the	height	of	its
area

fillWidth:	Boolean Sets	whether	the		Node		filles	the	width	of	its
area

fillHeightWidth:	Boolean Sets	whether	the		Node		fills	its	area	for	both
height	and	width

hAlignment:	HPos The	horizonal	alignment	policy

vAlignment:	VPos The	vertical	alignment	policy

margin:	Int The	margin	for	all	four	sides	of	the		Node	

marginBottom:	Int The	margin	for	the	bottom	side	of	the		Node	

marginTop:	Int The	margin	for	the	top	side	of	the		Node	

marginLeft:	Int The	left	margin	for	the	left	side	of	the		Node	

marginRight:	Int The	right	margin	for	the	right	side	of	the		Node	

marginLeftRight:	Int The	right	and	left	margins	for	the		Node	

marginTopBottom:	Int The	top	and	bottom	marins	for	a		Node	

Additionally,	if	you	need	to	configure		ColumnConstraints	,	you	can	call
	gridpaneColumnConstraints		on	any	child		Node	,	or		constraintsForColumn(columnIndex)		on
the		GridPane		itself.

7.	Layouts	and	Menus

104

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/ColumnConstraints.html

gridpane	{

				row	{

								button("Left")	{

												gridpaneColumnConstraints	{

																percentWidth	=	25.0

												}

								}

								button("Middle")

								button("Right")

				}

				constraintsForColumn(1).percentWidth	=	50.0

}

StackPane

A		StackPane		is	a	layout	you	will	use	less	often.	For	each	control	you	add,	it	will	literally	stack
them	on	top	of	each	other	not	like	a		VBox	,	but	literally	overlay	them.

For	instance,	you	can	create	a	"BOTTOM"		Button		and	put	a	"TOP"		Button		on	top	of	it.
The	order	you	declare	controls	will	add	them	from	bottom-to-top	in	that	same	order	(Figure
7.10).

class	MyView:	View()	{

				override	val	root	=		stackpane	{

								button("BOTTOM")	{

											useMaxHeight	=	true

											useMaxWidth	=	true

											style	{

															backgroundColor	+=	Color.AQUAMARINE

															fontSize	=	40.0.px

											}

								}

								button("TOP")	{

												style	{

																backgroundColor	+=	Color.WHITE

												}

								}

				}

}

Figure	7.11

7.	Layouts	and	Menus

105

TabPane

A		TabPane		creates	a	UI	with	different	screens	separated	by	"tabs".	This	allows	switching
between	different	screens	quickly	and	easily	by	clicking	on	the	corresponding	tab	(Figure
7.11).	You	can	declare	a		tabpane()		and	then	declare	as	many		tab()		instances	as	you
need.	For	each		tab()		function	pass	in	the	name	of	the		Tab		and	the	parent		Node		control
to	populate	it.

	tabpane	{

				tab("Screen	1",	VBox())	{

								button("Button	1")

								button("Button	2")

				}

				tab("Screen	2",	HBox())	{

								button("Button	3")

								button("Button	4")

				}

}

Figure	7.12

	TabePane		is	an	effective	tool	to	separate	screens	and	organize	a	high	number	of	controls.
The	syntax	is	somewhat	succinct	enough	to	declare	complex	controls	like		TableView		right
inside	the		tab()		block	(Figure	7.13).

7.	Layouts	and	Menus

106

tabpane	{

		tab("Screen	1",	VBox())	{

						button("Button	1")

						button("Button	2")

		}

		tab("Screen	2",	HBox())	{

						tableview<Person>	{

										items	=	listOf(

														Person(1,"Samantha	Stuart",LocalDate.of(1981,12,4)),

														Person(2,"Tom	Marks",LocalDate.of(2001,1,23)),

														Person(3,"Stuart	Gills",LocalDate.of(1989,5,23)),

														Person(3,"Nicole	Williams",LocalDate.of(1998,8,11))

).observable()

										column("ID",Person::id)

										column("Name",	Person::name)

										column("Birthday",	Person::birthday)

										column("Age",Person::age)

						}

		}

}

Figure	7.13

7.	Layouts	and	Menus

107

Like	many	builders,	the		TabPane		has	several	properties	that	can	adjust	the	behavior	of	its
tabs.	For	instance,	you	can	call		tabClosingPolicy		to	get	rid	of	the	"X"	buttons	on	the	tabs	so
they	cannot	be	closed.

class	MyView:	View()	{

				override	val	root	=		tabpane	{

								tabClosingPolicy	=	TabPane.TabClosingPolicy.UNAVAILABLE

								tab("Screen	1",	VBox())	{

												button("Button	1")

												button("Button	2")

								}

								tab("Screen	2",	HBox())	{

												button("Button	3")

												button("Button	4")

								}

				}

}

Builders	for	Menus
Creating	menus	can	be	cumbersome	to	build	in	a	strictly	object-oriented	way.	But	using
type-safe	builders,	Kotlin's	functional	constructs	make	it	intuitive	to	declare	nested	menu
hierarchies.

MenuBar,	Menu,	and	MenuItem

It	is	not	uncommon	to	use	navigable	menus	to	keep	a	large	number	of	commands	on	a	user
interface	organized.	For	instance,	the		top		region	of	a		BorderPane		is	typically	where	a
	MenuBar		goes.	There	you	can	add	menus	and	submenus	easily	(Figure	7.5).

menubar	{

			menu("File")	{

							menu("Connect")	{

											item("Facebook")

											item("Twitter")

							}

							item("Save")

							item("Quit")

			}

			menu("Edit")	{

							item("Copy")

							item("Paste")

			}

}

7.	Layouts	and	Menus

108

Figure	7.14

You	can	also	optionally	provide	keyboard	shortcuts,	graphics,	as	well	as	an		action		function
parameter	for	each		item()		to	specify	the	action	when	it	is	selected	(Figure	7.14).

menubar	{

					menu("File")	{

									menu("Connect")	{

													item("Facebook",	graphic	=	fbIcon).action	{	println("Connecting	Facebook!"

)	}

													item("Twitter",	graphic	=	twIcon).action	{	println("Connecting	Twitter!")

	}

									}

									item("Save","Shortcut+S").action	{

													println("Saving!")

									}

									menu("Quit","Shortcut+Q").action	{

													println("Quitting!")

									}

					}

					menu("Edit")	{

									item("Copy","Shortcut+C").action	{

													println("Copying!")

									}

									item("Paste","Shortcut+V").action	{

													println("Pasting!")

									}

					}

	}

Figure	7.14

7.	Layouts	and	Menus

109

Separators

You	can	declare	a		separator()		between	two	items	in	a		Menu		to	create	a	divider	line.	This
is	helpful	to	group	commands	in	a		Menu		and	distinctly	separate	them	(Figure	7.15).

	menu("File")	{

					menu("Connect")	{

									item("Facebook")

									item("Twitter")

					}

					separator()

					item("Save","Shortcut+S")	{

									println("Saving!")

					}

					item("Quit","Shortcut+Q")	{

									println("Quitting!")

					}

	}

Figure	7.15

7.	Layouts	and	Menus

110

ContextMenu

Most	controls	in	JavaFX	have	a		contextMenu		property	where	you	can	assign	a		ContextMenu	
instance.	This	is	a		Menu		that	pops	up	when	the	control	is	right-clicked.

A		ContextMenu		has	functions	to	add		Menu		and		MenuItem		instances	to	it	just	like	a
	MenuBar	.	It	can	be	helpful	to	add	a		ContextMenu		to	a		TableView<Person>	,	for	example,	and
provide	commands	to	be	done	on	a	table	record	(Figure	7.16).	There	is	a	builder	called
	contextmenu		that	will	build	a		ContextMenu		and	assign	it	to	the		contextMenu		property	of	the
control.

tableview(persons)	{

					column("ID",	Person::id)

					column("Name",	Person::name)

					column("Birthday",	Person::birthday)

					column("Age",	Person::age)

					contextmenu	{

									item("Send	Email").action	{

													selectedItem?.apply	{	println("Sending	Email	to	$name")	}

									}

									item("Change	Status").action	{

													selectedItem?.apply	{	println("Changing	Status	for	$name")	}

									}

					}

	}

Figure	7.16

7.	Layouts	and	Menus

111

Note	there	are	also		RadioMenuItem		and		CheckMenuItem		variants	of		MenuItem		available.

The		menuitem		builders	take	the	action	to	perform	when	the	menu	is	selected	as	the	op
block	parameter.	Unfortunately,	this	breaks	with	the	other	builders,	where	the	op	block
operates	on	the	element	that	the	builder	created.	Therefore,	the		item		builder	was
introduced	as	an	alternative,	where	you	operate	on	the	item	itself,	so	that	you	must	call
	setOnAction		to	assign	the	action.	The		menuitem		builder	is	not	deprecated,	as	it	solves	the
common	case	in	a	more	concise	way	than	the		item		builder.

ListMenu
TornadoFX	comes	with	a	list	menu	that	behaves	and	looks	more	like	a	typical		ul/li		based
HTML5	menu.

7.	Layouts	and	Menus

112

The	following	code	example	shows	how	to	use	the		ListMenu		with	the	builder	pattern:

listmenu(theme	=	"blue")	{

				item(text	=	"Contacts",	graphic	=	Styles.contactsIcon())	{

								//	Marks	this	item	as	active.

								activeItem	=	this

								whenSelected	{	/*	Do	some	action	*/	}

				}

				item(text	=	"Projects",	graphic	=	Styles.projectsIcon())

				item(text	=	"Settings",	graphic	=	Styles.settingsIcon())

}

The	following	Attributes	can	be	used	to	configure	the		ListMenu	:

7.	Layouts	and	Menus

113

Attribute Builder-
Attribute Type Default Description

orientation yes Orientation VERTICAL

Configures	the
orientation	of	the
	ListMenu	.	Possible
orientations:

VERTICAL
HORIZONTAL

iconPosition yes Side LEFT

Configures	the	icon
position	of	the		ListMenu	.
Possible	positions:

TOP
BOTTOM
LEFT
RIGHT

theme yes String null

Currently	supported
themes		blue	,		null	.	If
	null		is	set	the	default
gray	theme	is	used.

tag yes Any? null
The	Tag	can	be	any
	object		or		null	,	it	can
be	useful	to	identify	the
	ListMenu	

activeItem no ListMenuItem? null

Represent's	the	current
active		ListMenuItem		of
the		ListMenu	.	To	select
a		ListMenu		on	creation,
just	assign	the	specific
	ListItem		to	this
property	(have	a	look	at
the	contacts
	ListMenuItem		in	the
code	example	above.)

Css	Properties

7.	Layouts	and	Menus

114

Css-Class Css-
Property Default Description

	.list-menu	
-fx-graphic-
fixed-size 2em The	graphic

size.

	.list-menu

.list-item	
-fx-cursor hand The	cursor

symbol.

	.list-menu

.list-item	
-fx-padding 10

The	padding
for	each
	item	

	.list-menu

.list-item	

-fx-
background-
color

-fx-shadow-highlight-color,	-fx-outer-
border,	-fx-inner-border,	-fx-body-
color

The	color	of
the		item	

	.list-menu

.list-item	

-fx-
background-
insets

0	0	-0.5	0,	0,	0.5,	1.5 The	insets	of
each		item	.

	.list-menu

.list-item

.label	
-fx-text-fill -fx-text-base-color

The	text
color	of	each
	item	.

Pseudo	Classes

Pseudo-
Class

Css-
Property Default Description

	.list-menu

.list-

item:active	

-fx-
background-
color

-fx-focus-color,	-fx-inner-border,	-
fx-body-color,	-fx-faint-focus-color,
-fx-body-color

The	color	will	be
set	if	the		item	
is	active.

	.list-menu

.list-

item:active	

-fx-
background-
insets

-0.2,	1,	2,	-1.4,	2.6
Insets	will	be	set
if	the		item		is
active.

	.list-menu

.list-

item:hover	
-fx-color -fx-hover-base The	hover	color.

Have	a	look	at	the	default	Stylesheet	for	the	ListMenu

Item

The		item		builder	allows	to	create		items		for	the		ListMenu		in	a	very	convenient	way.	The
following	syntax	is	supported:

7.	Layouts	and	Menus

115

https://github.com/edvin/tornadofx/blob/master/src/main/resources/tornadofx/listmenu.css

item("SomeText",	graphic	=	SomeNode,	tag	=	SomeObject)	{

				//	Marks	this	item	as	active.

				activeItem	=	this

				//	Do	some	action	when	selected

				whenSelected	{	/*	Action	*/	}

}

Attribute Builder-
Attribute Type Default Description

text yes String? null The	text	which	should	be	set	for	the
given		item	.

tag yes Any? null
The	Tag	can	be	any		object		or		null	
and	can	be	useful	to	identify	the
	ListItem	

graphic yes Node? null
The		graphic		can	be	any		Node		and
will	be	displayed	beside	the	given
	text	.

Function Description

	whenSelected	
A	convince	function,	which	will	be	called	anytime	the	given
	ListMenuItem		is	selected.

Filling	the	parent	container

The		useMaxWidth		property	can	be	used	to	fill	the	parent	container	horizontally.	The
	useMaxHeight		property	will	fill	the	parent	container	vertically.	These	properties	actually
applies	to	all	Nodes,	but	is	especially	useful	for	the		ListMenu	.

SqueezeBox
JavaFX	has	an	Accordion	control	that	lets	you	group	a	set	of		TilePanes		together	to	form	an
accordion	of	controls.	The	JavaFX	Accordion	only	lets	you	open	a	single	accordion	fold	at	a
time,	and	it	has	some	other	shortcomings.	To	solve	this,	TornadoFX	comes	with	the
	SqueezeBox		component	that	behaves	and	looks	very	similar	to	the	Accordion,	while
providing	some	enhancements.

7.	Layouts	and	Menus

116

squeezebox	{

				fold("Customer	Editor",	expanded	=	true)	{

								form	{

												fieldset("Customer	Details")	{

																field("Name")	{	textfield()	}

																field("Password")	{	textfield()	}

												}

								}

				}

				fold("Some	other	editor",	expanded	=	true)	{

								stackpane	{

												label("Nothing	here")

								}

				}

}

Figure	7.17

A	Squeezebox	showing	two	folds,	both	expanded	by	default

You	can	tell	the	SqueezeBox	to	only	allow	a	single	fold	to	be	expanded	at	any	given	time	by
passing		multiselect	=	false		to	the	builder	constructor.

You	can	optionally	allow	folds	to	be	closable	by	clicking	a	cross	in	the	right	corner	of	the	title
pane	for	the	fold.	You	enable	the	close	buttons	on	a	per	fold	basis	by	passing		closeable	=
true		to	the		fold		builder.

7.	Layouts	and	Menus

117

squeezebox	{

				fold("Customer	Editor",	expanded	=	true,	closeable	=	true)	{

								form	{

												fieldset("Customer	Details")	{

																field("Name")	{	textfield()	}

																field("Password")	{	textfield()	}

												}

								}

				}

				fold("Some	other	editor",	closeable	=	true)	{

								stackpane	{

												label("Nothing	here")

								}

				}

}

Figure	7.18

This	SqueezeBox	has	closeable	folds

The		closeable		property	can	of	course	be	combined	with		expanded	.

Another	important	difference	between	the	SqueezeBox	and	the	Accordion	is	the	way	it
distributes	overflowing	space.	The	Accordion	will	extend	vertically	to	fill	its	parent	container
and	push	any	folds	below	the	currently	opened	ones	all	the	way	to	the	bottom.	This	creates
an	unnatural	looking	view	if	the	parent	container	is	very	large.	The	squeezebox	probably
does	what	you	want	by	default	in	this	regard,	but	you	can	add		fillHeight	=	true		to	get	a
similar	look	as	the	Accordion.I

7.	Layouts	and	Menus

118

You	can	style	the	SqueezeBox	like	you	style	a	TitlePane.	The	close	button	has	a	css	class
called		close-button		and	the	container	has	a	css	class	called		squeeze-box	.

Drawer
The	Drawer	is	a	navigation	component	much	like	a	TabPane,	but	it	organizes	each	drawer
item	in	a	vertically	or	horizontally	placed	button	bar	on	either	side	of	the	parent	container.	It
resembles	the	tool	drawers	found	in	many	popular	business	applications	and	IDEs.	When	an
item	is	selected,	the	content	for	the	item	is	displayed	next	to	or	above/below	the	buttons	in	a
content	area	spanning	the	height	or	width	of	the	control	and	the	preferred	width	or	height	of
the	content,	depending	on	whether	it	is	docked	in	a	vertical	or	horizontal	side	of	the	parent.
In		multiselect		mode	it	will	even	let	you	open	multiple	drawer	items	simutaneously	and
have	them	share	the	space	between	them.	They	will	always	open	in	the	order	of	the
corresponding	buttons.

7.	Layouts	and	Menus

119

class	DrawerView	:	View("TornadoFX	Info	Browser")	{

				override	val	root	=	drawer	{

								item("Screencasts",	expanded	=	true)	{

												webview	{

																prefWidth	=	470.0

																engine.userAgent	=	iPhoneUserAgent

																engine.load(TornadoFXScreencastsURI)

												}

								}

								item("Links")	{

												listview(links)	{

																cellFormat	{	link	->

																				graphic	=	hyperlink(link.name)	{

																								setOnAction	{

																												hostServices.showDocument(link.uri)

																								}

																				}

																}

												}

								}

								item("People")	{

												tableview(people)	{

																column("Name",	Person::name)

																column("Nick",	Person::nick)

												}

								}

			}

			class	Link(val	name:	String,	val	uri:	String)

			class	Person(val	name:	String,	val	nick:	String)

			//	Sample	data	variables	left	out	(iPhoneUserAgent,	TornadoFXScreencastsURI,	people

	and	links)

}

Figure	7.19

7.	Layouts	and	Menus

120

The	drawer	can	be	configured	to	show	the	buttons	on	the	right	side,	and	you	can	choose	to
support	opening	multiple	drawer	items	simultaneously.	When	running	in	multiselect	mode,	a
header	will	appear	above	the	content,	which	will	help	to	distinguish	the	items	in	the	content
area.	You	can	control	the	header	appearance	with	the	boolean		showHeader		parameter.	It	will
default	true	when	multiselect	is	enabled	and	false	otherwise.

7.	Layouts	and	Menus

121

drawer(side	=	Side.RIGHT,	multiselect	=	true)	{

				//	Everything	else	is	identical

}

Figure	7.20

Drawer	with	buttons	on	the	right	side,	multiselect	mode	and	title	panes

When	the	Drawer	is	added	next	to	something,	you	can	choose	whether	the	content	area	of
the	Drawer	should	displace	the	nodes	next	to	it	(default)	or	float	over	it.	The
	floatingContent		property	is	by	default	false,	causing	the	Drawer	to	displace	the	content

7.	Layouts	and	Menus

122

next	to	it.

You	can	control	the	size	of	the	content	area	further	using	the		maxContentSize		and
	fixedContentSize		properties	of		Drawer	.	Depending	on	the		dockingSide	,	those	properties
will	constrain	either	the	width	or	the	height	of	the	content	area.

The		Workspace		features	built	in	support	for	the	Drawer	control.	The		leftDrawer	,
	rightDrawer		and		bottomDrawer		properties	of	any	Workspace	will	let	you	dock	drawer	items
into	them.	Read	more	about	this	in	the	Workspace	chapter.

Converting	observable	list	items	and	binding
to	layouts
TODO

Summary
By	now	you	should	have	the	tools	to	quickly	create	complex	UI's	with	layouts,	tabbed	panes,
as	well	as	other	controls	to	manage	controls.	Using	these	in	conjunction	with	the	data
controls,	you	should	be	able	to	turn	around	UI's	in	a	fraction	of	the	time.

When	it	comes	to	builders,	you	have	reached	the	top	of	the	peak	and	have	everything	you
need	to	be	productive.	All	that	is	left	to	cover	are	charts	and	shapes,	which	we	will	cover	in
the	next	two	chapters.

7.	Layouts	and	Menus

123

Charts
JavaFX	comes	with	a	handy	set	of	charts	to	quickly	display	data	visualizations.	While	there
are	more	comprehensive	charting	libraries	like	JFreeChart	and	Orson	Charts	which	work
fine	with	TornadoFX,	the	built-in	JavaFX	charts	satisfy	a	majority	of	visualization	needs.
They	also	have	elegant	animations	when	data	is	populated	or	changed.

TornadoFX	comes	with	a	few	builders	to	streamline	the	declaration	of	charts	using	functional
constructs.

PieChart
The		PieChart		is	a	common	visual	aid	to	illustrate	proportions	of	a	whole.	It	is	structurally
simpler	than	XY	charts	which	we	will	learn	about	later.	Inside	a		piechart()		builder	you	can
call	the		data()		function	to	pass	multiple	category-value	pairs	(Figure	8.1).

piechart("Desktop/Laptop	OS	Market	Share")	{

				data("Windows",	77.62)

				data("OS	X",	9.52)

				data("Other",	3.06)

				data("Linux",	1.55)

				data("Chrome	OS",	0.55)

}

Figure	8.1

8.	Charts

124

http://docs.oracle.com/javafx/2/charts/chart-overview.htm
http://www.jfree.org/jfreechart/
http://www.object-refinery.com/orsoncharts/

Note	you	can	also	provide	an	explicit		ObservableList<PieChart.Data>		prepared	in	advance.

val	items	=	listOf(

								PieChart.Data("Windows",	77.62),

								PieChart.Data("OS	X",	9.52),

								PieChart.Data("Other",	3.06),

								PieChart.Data("Linux",	1.55),

								PieChart.Data("Chrome	OS",	0.55)

).observable()

piechart("Desktop/Laptop	OS	Market	Share",	items)

The	block	following		piechart		can	be	used	to	modify	any	of	the	attributes	of	the		PieChart	
just	like	any	other	control	builder	we	covered.	You	can	also	leverage		for()		loops,
Sequences,	and	other	iterative	tools	within	a	block	to	add	any	number	of	data	items.

8.	Charts

125

val	items	=	listOf(

								PieChart.Data("Windows",	77.62),

								PieChart.Data("OS	X",	9.52),

								PieChart.Data("Other",	3.06),

								PieChart.Data("Linux",	1.55),

								PieChart.Data("Chrome	OS",	0.55)

).observable()

piechart("Desktop/Laptop	OS	Market	Share")	{

				for	(item	in	items)	{

								data.add(item)

				}

}

Map-Based	Data	Sources

Sometimes	you	may	want	to	build	a	chart	using	a		Map		as	a	datasource.	Using	the	Kotlin
	to		operator,	you	can	construct	a		Map		in	a	Kotlin-esque	way	and	then	pass	it	to	the		data	
function.

	val	items	=	mapOf(

								"Windows"	to	77.62,

								"OS	X"	to	9.52,

								"Other"	to	3.06,

								"Linux"	to	1.55,

								"Chrome	OS"	to	0.55

)

piechart("Desktop/Laptop	OS	Market	Share")	{

				data(items)

}

XY	Based	Charts
Most	charts	often	deal	with	one	or	more	series	of	data	points	on	an	XY	axis.	The	most
common	are	bar	and	line	charts.

Bar	Charts

You	can	represent	one	or	more	series	of	data	points	through	a		BarChart	.	This	chart	makes
it	easy	to	compare	different	data	points	relative	to	their	distance	from	the	X	or	Y	axis	(Figure
8.2).

8.	Charts

126

	barchart("Unit	Sales	Q2	2016",	CategoryAxis(),	NumberAxis())	{

				series("Product	X")	{

								data("MAR",	10245)

								data("APR",	23963)

								data("MAY",	15038)

				}

				series("Product	Y")	{

								data("MAR",	28443)

								data("APR",	22845)

								data("MAY",	19045)

				}

}

Figure	8.2

Above,	the		series()		and		data()		functions	allow	quick	construction	of	data	structures
backing	the	charts.	On	construction,	you	will	need	to	construct	the	proper		Axis		type	for
each	X	and	Y	axis.	In	this	example,	the	months	are	not	necessarily	numeric	but	rather
Strings.	Therefore	they	are	best	represented	by	a		CategoryAxis	.	The	units,	already	being
numeric,	are	fit	to	use	a		NumberAxis	.

8.	Charts

127

In	the		series()		and		data()		blocks,	you	can	customize	further	properties	like	colors.
You	can	even	call		style()		to	quickly	apply	type-safe	CSS	to	the	chart.

LineChart	and	AreaChart
A		LineChart		connects	data	points	on	an	XY	axis	with	lines,	quickly	visualizing	upward	and
downward	trends	between	them	(Figure	8.3)

linechart("Unit	Sales	Q2	2016",	CategoryAxis(),	NumberAxis())	{

				series("Product	X")	{

								data("MAR",	10245)

								data("APR",	23963)

								data("MAY",	15038)

				}

				series("Product	Y")	{

								data("MAR",	28443)

								data("APR",	22845)

								data("MAY",	19045)

				}

}

Figure	8.3

8.	Charts

128

The	backing	data	structure	is	not	much	different	than	a		BarChart	,	and	you	use	the
	series()		and		data()		functions	in	the	same	manner.

You	can	also	use	a	variant	of		LineChart		called		AreaChart	,	which	will	shade	the	area	under
the	lines	a	distinct	color,	as	well	as	any	overlaps	(Figure	8.4).

Figure	8.4

8.	Charts

129

Multiseries

You	can	streamline	the	declaration	of	more	than	one	series	using	the		multiseries()	
function,	and	call	the		data()		functions	with		varargs		values.	We	can	consolidate	our
previous	example	using	this	construct:

linechart("Unit	Sales	Q2	2016",	CategoryAxis(),	NumberAxis())	{

				multiseries("Product	X",	"Product	Y")	{

								data("MAR",	10245,	28443)

								data("APR",	23963,	22845)

								data("MAY",	15038,	19045)

				}

}

This	is	just	another	convenience	to	reduce	boilerplate	and	quickly	declare	your	data
structure	for	a	chart.

8.	Charts

130

ScatterChart

A		ScatterChart		is	the	simplest	representation	of	an	XY	data	series.	It	plots	the	points
without	bars	or	lines.	It	is	often	used	to	plot	a	large	volume	of	data	points	in	order	to	find
clusters.	Here	is	a	brief	example	of	a		ScatterChart		plotting	machine	capacities	by	week	for
two	different	product	lines	(Figure	8.5).

scatterchart("Machine	Capacity	by	Product/Week",	NumberAxis(),	NumberAxis())	{

				series("Product	X")	{

								data(1,24)

								data(2,22)

								data(3,23)

								data(4,19)

								data(5,18)

				}

				series("Product	Y")	{

								data(1,12)

								data(2,15)

								data(3,9)

								data(4,11)

								data(5,7)

				}

}

Figure	8.5

8.	Charts

131

BubbleChart

	BubbleChart		is	another	XY	chart	similar	to	the		ScatterPlot	,	but	there	is	a	third	variable	to
control	the	radius	of	each	point.	You	can	leverage	this	to	show,	for	instance,	output	by	week
with	the	bubble	radii	reflecting	number	of	machines	used	(Figure	8.6).

8.	Charts

132

	bubblechart("Machine	Capacity	by	Output/Week",	NumberAxis(),	NumberAxis())	{

				series("Product	X")	{

								data(1,24,1)

								data(2,46,2)

								data(3,23,1)

								data(4,27,2)

								data(5,18,1)

				}

				series("Product	Y")	{

								data(1,12,1)

								data(2,31,2)

								data(3,9,1)

								data(4,11,1)

								data(5,15,2)

				}

}

Figure	8.6

8.	Charts

133

Summary
Charts	are	a	an	effective	way	to	visualize	data,	and	the	builders	in	TornadoFX	help	create
them	quickly.	You	can	read	more	about	JavaFX	charts	in	Oracle's	documentation.	If	you
need	more	advanced	charting	functionality,	there	are	libraries	like	JFreeChart	and	Orson
Charts	you	can	leverage	and	interop	with	TornadoFX,	but	this	is	beyond	the	scope	of	this
book.

8.	Charts

134

http://docs.oracle.com/javase/8/javafx/user-interface-tutorial/charts.htm
http://www.jfree.org/jfreechart/
http://www.object-refinery.com/orsoncharts/

Shapes	and	Animation
JavaFX	comes	with	nodes	that	represent	almost	any	geometric	shape	as	well	as	a		Path	
node	that	provides	facilities	required	for	assembly	and	management	of	a	geometric	path	(to
create	custom	shapes).	JavaFX	also	has	animation	support	to	gradually	change	a		Node	
property,	creating	a	visual	transition	between	two	states.	TornadoFX	seeks	to	streamline	all
these	features	through	builder	constructs.

Shape	Basics
Every	parameter	to	the	shape	builders	are	optional,	and	in	most	cases	default	to	a	value	of
	0.0	.	This	means	that	you	only	need	to	provide	the	parameters	you	care	about.	The
builders	have	positional	parameters	for	most	of	the	properties	of	each	shape,	and	the	rest
can	be	set	in	the	functional	block	that	follows.	Therefore	these	are	all	valid	ways	to	create	a
rectangle:

rectangle	{

				width	=	100.0

				height	=	100.0

}

rectangle(width	=	100.0,	height	=	100.0)

rectangle(0.0,	0.0,	100.0,	100.0)

The	form	you	choose	is	a	matter	of	preference,	but	obviously	consider	the	legibility	of	the
code	you	write.	The	examples	in	this	chapter	specify	most	of	the	properties	inside	the	code
block	for	clarity,	except	when	there	is	no	code	block	support	or	the	parameters	are
reasonably	self-explanatory.

Positioning	within	the	Parent

Most	of	the	shape	builders	give	you	the	option	to	specify	the	location	of	the	shape	within	the
parent.	Whether	or	not	this	will	have	any	effect	depends	on	the	parent	node.	An		HBox		will
not	care	about	the		x		and		y		coordinates	you	specify	unless	you	call		setManaged(false)	
on	the	shape.	However,	a		Group		control	will.	The	screenshots	in	the	following	examples	will
be	created	by	wrapping	a		StackPane		with	padding	around	a		Group	,	and	finally	the	shape
was	created	inside	that		Group		as	shown	below.

9.	Shapes	and	Animation

135

class	MyView:	View()	{

				override	val	root	=		stackpane	{

							group	{

												//shapes	will	go	here

							}

				}

}

Rectangle
	Rectangle		defines	a	rectangle	with	an	optional	size	and	location	in	the	parent.	Rounded
corners	can	be	specified	with	the		arcWidth		and		arcHeight		properties	(Figure	9.1).

rectangle	{

				fill	=	Color.BLUE

				width	=	300.0

				height	=	150.0

				arcWidth	=	20.0

				arcHeight	=	20.0

}

Figure	9.1

9.	Shapes	and	Animation

136

Arc
	Arc		represents	an	arc	object	defined	by	a	center,	start	angle,	angular	extent	(length	of	the
arc	in	degrees),	and	an	arc	type	(OPEN	,		CHORD	,	or		ROUND)	(Figure	9.2)

arc	{

				centerX	=	200.0

				centerY	=	200.0

				radiusX	=	50.0

				radiusY	=	50.0

				startAngle	=	45.0

				length	=	250.0

				type	=	ArcType.ROUND

}

Figure	9.2

Circle
	Circle		represents	a	circle	with	the	specified		radius		and		center	.

circle	{

				centerX	=	100.0

				centerY	=	100.0

				radius	=	50.0

}

9.	Shapes	and	Animation

137

CubicCurve
	CubicCurve		represents	a	cubic	Bézier	parametric	curve	segment	in	(x,y)	coordinate	space.
Drawing	a	curve	that	intersects	both	the	specified	coordinates	(startX	,		startY)	and
(endX	,		enfY),	using	the	specified	points	(controlX1	,		controlY1)	and	(controlX2	,
	controlY2)	as	Bézier	control	points.

cubiccurve	{

				startX	=	0.0

				startY	=	50.0

				controlX1	=	25.0

				controlY1	=	0.0

				controlX2	=	75.0

				controlY2	=	100.0

				endX	=	150.0

				endY	=	50.0

				fill	=	Color.GREEN

}

9.	Shapes	and	Animation

138

Ellipse
	Ellipse		represents	an	ellipse	with	parameters	specifying	size	and	location.

ellipse	{

				centerX	=	50.0

				centerY	=	50.0

				radiusX	=	100.0

				radiusY	=	50.0

				fill	=	Color.CORAL

}

Line
Line	is	fairly	straight	forward.	Supply	start	and	end	coordinates	to	draw	a	line	between	the
two	points.

line	{

				startX	=	50.0

				startY	=	50.0

				endX	=	150.0

				endY	=	100.0

}

9.	Shapes	and	Animation

139

Polyline
A		Polyline		is	defined	by	an	array	of	segment	points.		Polyline	is	similar	to		Polygon	,
except	it	is	not	automatically	closed.

polyline(0.0,	0.0,	80.0,	40.0,	40.0,	80.0)

QuadCurve
The		Quadcurve	represents	a	quadratic	Bézier	parametric	curve	segment	in	(x,y)	coordinate
space.	Drawing	a	curve	that	intersects	both	the	specified	coordinates	(startX	,		startY)
and	(endX	,		endY),	using	the	specified	point	(controlX	,		controlY)	as	Bézier	control	point.

9.	Shapes	and	Animation

140

quadcurve	{

				startX	=	0.0

				startY	=	150.0

				endX	=	150.0

				endY	=	150.0

				controlX	=	75.0

				controlY	=	0.0

				fill	=	Color.BURLYWOOD

}

SVGPath
	SVGPath	represents	a	shape	that	is	constructed	by	parsing	SVG	path	data	from	a	String.

svgpath("M70,50	L90,50	L120,90	L150,50	L170,50	L210,90	L180,120	L170,110	L170,200	L70,

200	L70,110	L60,120	L30,90	L70,50")	{

				stroke	=	Color.DARKGREY

				strokeWidth	=	2.0

				effect	=	DropShadow()

}

9.	Shapes	and	Animation

141

Path
	Path		represents	a	shape	and	provides	facilities	required	for	basic	construction	and
management	of	a	geometric	path.	In	other	words,	it	helps	you	create	a	custom	shape.	The
following	helper	functions	can	be	used	to	constuct	the	path:

	moveTo(x,	y)	

	hlineTo(x)	

	vlineTo(y)	

	quadqurveTo(controlX,	controlY,	x,	y)	

	lineTo(x,	y)	

	arcTo(radiusX,	radiusY,	xAxisRotation,	x,	y,	largeArcFlag,	sweepFlag)	

	closepath()	

9.	Shapes	and	Animation

142

path	{

				moveTo(0.0,	0.0)

				hlineTo(70.0)

				quadqurveTo	{

								x	=	120.0

								y	=	60.0

								controlX	=	100.0

								controlY	=	0.0

				}

				lineTo(175.0,	55.0)

				arcTo	{

								x	=	50.0

								y	=	50.0

								radiusX	=	50.0

								radiusY	=	50.0

				}

}

Animation
JavaFX	has	tools	to	animate	any		Node		by	gradually	changing	one	or	more	of	its	properties.
There	are	three	components	you	work	with	to	create	animations	in	JavaFX.

	Timeline		-	A	sequence	of		KeyFrame		items	executed	in	a	specified	order

	KeyFrame		-	A	"snapshot"	specifying	value	changes	on	one	or	more	writable	properties
(via	a		KeyValue)	on	one	or	more	Nodes

	KeyValue		-	A	pairing	of	a		Node		property	to	a	value	that	will	be	"transitioned"	to

9.	Shapes	and	Animation

143

A		KeyValue		is	the	basic	building	block	of	JavaFX	animation.	It	specifies	a	property	and	the
"new	value"	it	will	gradually	be	transitioned	to.	So	if	you	have	a		Rectangle		with	a
	rotateProperty()		of		0.0	,	and	you	specify	a		KeyValue		that	changes	it	to		90.0		degrees,	it
will	incrementally	move	from		0.0		to		90.0		degrees.	Put	that		KeyValue		inside	a		KeyFrame	
which	will	specify	how	long	the	animation	between	those	two	values	will	last.	In	this	case
let's	make	it	5	seconds.	Then	finally	put	that		KeyFrame		in	a		Timeline	.	If	you	run	the	code
below,	you	will	see	a	rectange	gradually	rotate	from	`0.0`	to	`90.0`	degrees	in	5	seconds
(Figure	9.1).

val	rectangle	=	rectangle(width	=	60.0,height	=	40.0)	{

				padding	=	Insets(20.0)

}

timeline	{

				keyframe(Duration.seconds(5.0))	{

								keyvalue(rectangle.rotateProperty(),90.0)

				}

}

Figure	9.1

In	a	given		KeyFrame	,	you	can	simultaneously	manipulate	other	properties	in	that	5-second
window	too.	For	instance	we	can	transition	the		arcWidthProperty()		and
	arcHeightProperty()		while	the		Rectangle		is	rotating	(Figure	9.2)

timeline	{

								keyframe(Duration.seconds(5.0))	{

												keyvalue(rectangle.rotateProperty(),90.0)

												keyvalue(rectangle.arcWidthProperty(),60.0)

												keyvalue(rectangle.arcHeightProperty(),60.0)

								}

}

Figure	9.2

9.	Shapes	and	Animation

144

Interpolators

You	can	also	specify	an		Interpolator		which	can	add	subtle	effects	to	the	animation.	For
instance,	you	can	specify		Interpolator.EASE_BOTH		to	accelerate	and	decelerate	the	value
change	at	the	beginning	and	end	of	the	animation	gracefully.

val	rectangle	=	rectangle(width	=	60.0,	height	=	40.0)	{

				padding	=	Insets(20.0)

}

timeline	{

				keyframe(5.seconds)	{

								keyvalue(rectangle.rotateProperty(),	180.0,	interpolator	=	Interpolator.EASE_B

OTH)

				}

}

Cycles	and	AutoReverse

You	can	modify	other	attributes	of	the		timeline()		such	as		cycleCount		and		autoReverse	.
The		cycleCount		will	repeat	the	animation	a	specified	number	of	times,	and	setting	the
	isAutoReverse		to	true	will	cause	it	to	revert	back	with	each	cycle.

timeline	{

				keyframe(5.seconds)	{

								keyvalue(rectangle.rotateProperty(),	180.0,	interpolator	=	Interpolator.EASE_B

OTH)

				}

				isAutoReverse	=	true

				cycleCount	=	3

}

To	repeat	the	animation	indefinitely,	set	the		cycleCount		to		Timeline.INDEFINITE	.

Shorthand	Animation

9.	Shapes	and	Animation

145

If	you	want	to	animate	a	single	property,	you	can	quickly	animate	it	without	declaring	a
	timeline()	,		keyframe()	,	and		keyset()	.	Call	the		animate()		extension	function	on	that
propert	and	provide	the		endValue	,	the		duration	,	and	optionally	the		interoplator	.	This	is
much	shorter	and	cleaner	if	you	are	animating	just	one	property.

rectangle.rotateProperty().animate(endValue	=	180.0,	duration	=	5.seconds)

Summary
In	this	chapter	we	covered	builders	for	shape	and	animation.	We	did	not	cover	JavaFX's
	Canvas		as	this	is	beyond	the	scope	of	the		TornadoFX		framework.	It	could	easily	take	up
more	than	several	chapters	on	its	own.	But	the	shapes	and	animation	should	allow	you	to	do
basic	custom	graphics	for	a	majority	of	tasks.

This	concludes	our	coverage	of	TornadoFX	builders	for	now.	Next	we	will	cover	FXML	for
those	of	us	that	have	need	to	use	it.

9.	Shapes	and	Animation

146

FXML	and	Internationalization
TornadoFX's	type-safe	builders	provide	a	fast,	easy,	and	declarative	way	to	construct	UI's.
This	DSL	approach	is	encouraged	because	it	is	more	flexible,	reliable,	and	simpler.
However,	JavaFX	also	supports	an	XML-based	structure	called	FXML	that	can	also	build	a
UI	layout.	TornadoFX	has	tools	to	streamline	FXML	usage	for	those	that	need	it.

If	you	are	unfamiliar	with	FXML	and	are	perfectly	happy	with	type-safe	builders,	please	feel
free	to	skip	this	chapter.	If	you	need	to	work	with	FXML	or	feel	you	should	learn	it,	please
read	on.	You	can	also	take	a	look	at	the	official	FXML	documentation	to	learn	more.

Reasons	for	Considering	FXML
While	the	developers	of	TornadoFX	strongly	encourage	using	type-safe	builders,	there	are
situations	and	factors	that	might	cause	you	to	consider	using	FXML.

Separation	of	Concerns

With	FXML	it	is	easy	to	separate	your	UI	logic	code	from	the	UI	layout	code.	This	separation
is	just	as	achievable	with	type-safe	builders	by	utilizing	MVP	or	other	separation	pattern.	But
some	programmers	find	FXML	forces	them	to	maintain	this	separation	and	prefer	it	for	that
reason.

WYSIWYG	Editor

FXML	files	also	can	be	edited	and	processed	by	Scene	Builder,	a	visual	layout	tool	that
allows	building	interfaces	via	drag-and-drop	functionality.	Edits	in	Scene	Builder	are
immediately	rendered	in	a	WYSIWYG	("What	You	See	is	What	You	Get")	pane	next	to	the
editor.

If	you	prefer	making	interfaces	via	drag-and-drop,	or	have	trouble	building	UI's	with	pure
code,	you	might	consider	using	FXML	simply	to	leverage	Scene	Builder.

The	Scene	Builder	tool	was	created	by	Oracle/Sun	but	is	now	maintained	by	Gluon,	an
innovative	company	that	invests	heavily	in	JavaFX	technology,	especially	for	the	mobile
market.

Compatibility	with	Existing	Codebases

10.	FXML

147

https://docs.oracle.com/javase/8/javafx/fxml-tutorial/why_use_fxml.htm
http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
http://gluonhq.com/labs/scene-builder/

If	you	are	converting	an	existing	JavaFX	application	to	TornadoFX,	there	is	a	strong	chance
your	UI	was	constructed	with	FXML.	If	you	hesitate	to	transition	legacy	FXML	to	TornadoFX
buidlers,	or	would	like	to	put	that	off	as	long	as	possible,	TornadoFX	can	at	least	streamline
the	processing	of	FXML.

How	FXML	works
The		root		property	of	a		View		represents	the	top	level		Node		containing	a	hierarchy	of
children	Nodes,	which	makes	up	the	user	interface.	When	you	work	with	FXML,	you	do	not
instantiate	this	root	node	directly,	but	instead	ask	TornadoFX	to	load	it	from	a	corresponding
FXML	file.	By	default,	TornadoFX	will	look	for	a	file	with	the	same	name	as	your	view	with
the		.fxml		file	ending	in	the	same	package	as	your		View		class.	You	can	also	override	the
FXML	location	with	a	parameter	if	you	want	to	put	all	your	FXML	files	in	a	single	folder	or
organize	them	some	other	way	that	does	not	directly	correspond	to	your		View		location.

A	Simple	Example
Let's	create	a	basic	user	interface	that	presents	a		Label		and	a		Button	.	We	will	add
functionality	to	this	view	so	when	the		Button		is	clicked,	the		Label		will	update	its		text	
with	the	number	of	times	the		Button		has	been	clicked.

Create	a	file	named		CounterView.fxml		with	the	following	content:

10.	FXML

148

<?import	javafx.geometry.Insets?>

<?import	javafx.scene.control.Button?>

<?import	javafx.scene.control.Label?>

<?import	javafx.scene.layout.BorderPane?>

<?import	javafx.scene.layout.VBox?>

<?import	javafx.scene.text.Font?>

<BorderPane	xmlns="http://javafx.com/javafx/null"	xmlns:fx="http://javafx.com/fxml/1">

				<padding>

								<Insets	top="20"	right="20"	bottom="20"	left="20"/>

				</padding>

				<center>

								<VBox	alignment="CENTER"	spacing="10">

												<Label	text="0">

																

																				

																

												</Label>

												<Button	text="Click	to	increment"	/>

								</VBox>

				</center>

</BorderPane>

You	may	notice	above	you	have	to		import		the	types	you	use	in	FXML	just	like	coding
in	Java	or	Kotlin.	Intellij	IDEA	should	have	a	plugin	to	support	using	ALT+ENTER	to
generate	the		import		statements.

If	you	load	this	file	in	Scene	Builder	you	will	see	the	following	result	(Figure	9.1).

Figure	9.1

Next	let's	load	this	FXML	into	TornadoFX.

Loading	FXML	into	TornadoFX

10.	FXML

149

We	have	created	an	FXML	file	containing	our	UI	structure,	but	now	we	need	to	load	it	into	a
TornadoFX		View		for	it	to	be	usable.	Logically,	we	can	load	this		Node		hierarchy	into	the
	root		node	of	our		View	.	Define	the	following		View		class:

class	CounterView	:	View()	{

				override	val	root	:	BorderPane	by	fxml()

}

Note	that	the		root		property	is	defined	by	the		fxml()		delegate.	The		fxml()		delegate
takes	care	of	loading	the	corresponding		CounterView.fxml		into	the		root		property.	If	we
placed		CounterView.fxml		in	a	different	location	(such	as		/views/)	that	is	different	than
where	the		CounterView		file	resides,	we	would	add	a	parameter.

class	CounterView	:	View()	{

				override	val	root	:	BorderPane	by	fxml("/views/CounterView.fxml")

}

We	have	laid	out	the	UI,	but	it	has	no	functionality	yet.	We	need	to	define	a	variable	that
holds	the	number	of	times	the		Button		has	been	clicked.	Add	a	variable	called		counter		and
define	a	function	that	will	increment	its	value:

class	CounterView	:	View()	{

				override	val	root	:	BorderPane	by	fxml()

				val	counter	=	SimpleIntegerProperty()

				fun	increment()	{

								counter.value	+=	1

				}

}

We	want	the		increment()		function	to	be	called	whenever	the		Button		is	clicked.	Back	in	the
FXML	file,	add	the		onAction		attribute	to	the	button:

<Button	text="Click	to	increment"	onAction="#increment"/>

Since	the	FXML	file	automatically	gets	bound	to	our		View,		we	can	reference	functions	via
the		#functionName		syntax.	Note	that	we	do	not	add	parenthesis	to	the	function	call,	and	you
cannot	pass	parameters	directly.	You	can	however	add	a	parameter	of	type
	javafx.event.ActionEvent		to	the		increment		function	if	you	want	inspect	the	source		Node	
of	the	action	or	check	what	kind	of	action	triggered	the	button.	For	this	example	we	do	not
need	it,	so	we	leave	the		increment		function	without	parameters.

10.	FXML

150

FXML	file	locations
By	default,	build	tools	like	Maven	and	Gradle	will	ignore	any	extra	resources	you	put	into
your	source	root	folders,	so	if	you	put	your	FXML	files	there	they	won't	be	available	at
runtime	unless	you	specifically	tell	your	build	tool	to	include	them.	This	could	still	be
problematic	because	IDEA	might	not	pick	up	your	custom	resource	location	from	the	build
file,	once	again	resulting	in	failure	at	runtime.	For	that	resource,	we	recommend	that	you
place	your	FXML	files	in		src/main/resources		and	either	follow	the	same	folder	structure	as
your	packages,	or	put	them	all	in	a		views		folder	or	similar.	The	latter	requires	you	to	add
the	FXML	location	parameter	to	the		fxml		delegate,	and	might	be	messy	if	you	have	a	large
number	of	Views,	so	going	with	the	default	is	a	good	idea.

Accessing	Nodes	with	the		fxid		delegate
Using	just	FXML,	we	have	wired	the		Button		to	call		increment()		every	time	it	is	called.	We
still	need	to	bind	the		counter		value	to	the		text		property	of	the		Label	.	To	do	this,	we	need
an	identifier	for	the		Label	,	so	in	our	FXML	file	we	add	the		fx:id		attribute	to	it.

<Label	fx:id="counterLabel">

Now	we	can	inject	this		Label		into	our		View		class:

val	counterLabel	:	Label	by	fxid()

This	tells	TornadoFX	to	look	for	a		Node		in	our	structure	with	the		fx:id		property	with	the
same	name	as	the	property	we	defined	(which	is	"counterLabel").	It	is	also	possible	to	use
another	property	name	in	the		View		and	add	a	name	parameter	to	the		fxid		delegate:

val	myLabel	:	Label	by	fxid("counterLabel")

Now	that	we	have	a	hold	of	the		Label	,	we	can	use	the	binding	shortcuts	of	TornadoFX	to
bind	the		counter		value	to	the		text		property	of	the		counterLabel	.	Our	whole		View		should
now	look	like	this:

10.	FXML

151

class	CounterView	:	View()	{

				override	val	root	:	BorderPane	by	fxml()

				val	counter	=	SimpleIntegerProperty()

				val	counterLabel:	Label	by	fxid()

				init	{

								counterLabel.bind(counter)

				}

				fun	increment()	{

								counter.value	+=	1

				}

}

Our	app	is	now	complete.	Every	time	the	button	is	clicked,	the		label		will	increment	its
count.

Internationalization
JavaFX	has	strong	support	for	multi-language	UI's.	To	support	internationalization	in	FXML,
you	normally	have	to	register	a	resource	bundle	with	the		FXMLLoader		and	it	will	in	return
replace	instances	of	resource	names	with	their	locale-specific	value.	A	resource	name	is	the
key	in	the	resource	bundle	prepended	with		%	.

TornadoFX	makes	this	easier	by	supporting	a	convention	for	resource	bundles:	Create	a
resource	bundle	with	the	same	base	name	as	your		View	,	and	it	will	be	automatically
loaded,	both	for	use	programatically	within	the		View		and	from	the	FXML	file.

Let's	internationalize	the	button	text	in	our	UI.	Create	a	file	called		CounterView.properties	
and	add	the	following	content:

clickToIncrement=Click	to	increment

If	you	want	to	support	multiple	languages,	create	a	file	with	the	same	base	name	followed	by
an	underscore,	and	then	the	language	code.	For	instance,	to	support	French	create	the	file
	CounterView_fr.properties	.	The	closest	geographical	match	to	the	current	locale	will	be
used.

clickToIncrement=Cliquez	sur	incrément

Now	we	swap	the	button	text	with	the	resource	key	in	the	FXML	file.

10.	FXML

152

<Button	text="%clickToIncrement"	onAction="#increment"/>

If	you	want	to	test	this	functionality	and	force	a	different		Locale	,	regardless	which	one	you
are	currently	in,	override	it	by	assigning		FX.local		when	your		App		class	is	initialized.

class	MyApp:	App()	{

				override	val	primaryView	=	MyView::class

				init	{

								FX.locale	=	Locale.FRENCH

				}

}

You	should	then	see	your		Button		use	the	French	text	(Figure	9.2).

Figure	9.2

Internationalization	with	Type-Safe	Builders

Internationalization	is	not	limited	for	use	with	FXML.	You	can	also	use	it	with	type-safe
builders.	Set	up	your		.properties		files	as	specified	before.	But	instead	of	using	an
embedded		%clickToIncrement		text	in	an	FXML	file,	use	the		messages[]		accessor	to	look	up
the	value	in	the		ResourceBundle	.	Pass	this	value	as	the		text		for	the		Button	.

	button(messages["clickToIncrement"])	{

					setOnAction	{	increment()	}

	}

Summary

10.	FXML

153

FXML	is	helpful	to	know	as	a	JavaFX	developer,	but	it	is	definitely	not	required	if	you	are
content	with	TornadoFX	type-safe	builders	and	do	not	have	any	existing	JavaFX	applications
to	maintain.	Type-safe	builders	have	the	benefit	of	using	pure	Kotlin,	allowing	you	to	code
anything	you	want	right	within	the	structure	declarations.	FXML's	benefits	are	primarily
separation	of	concerns	between	UI	and	functionality,	but	even	that	can	be	accomplished	with
type-safe	builders.	It	also	can	be	built	via	drag-and-drop	through	the	Scene	Builder	tool,
which	may	be	preferable	for	those	who	struggle	to	build	UI's	any	other	way.

10.	FXML

154

Editing	Models	and	Validation
TornadoFX	doesn't	force	any	particular	architectural	pattern	on	you	as	a	developer,	and	it
works	equally	well	with	both	MVC,	MVP,	and	their	derivatives.

To	help	with	implementing	these	patterns	TornadoFX	provides	a	tool	called		ViewModel		that
helps	cleanly	separate	your	UI	and	business	logic,	giving	you	features	like	rollback/commit
and	dirty	state	checking.	These	patterns	are	hard	or	cumbersome	to	implement	manually,	so
it	is	advised	to	leverage	the		ViewModel		and		ViewModelItem		when	it	is	needed.

Typically	you	will	use	the		ItemViewModel		when	you	are	creating	a	facade	in	front	of	a	single
object,	and	a		ViewModel	for	more	complex	situations.

A	Typical	Use	Case
Say	you	have	a	given	domain	type		Person	.	We	allow	its	two	properties	to	be	nullable	so
they	can	be	inputted	later	by	the	user.

import	tornadofx.*

class	Person(name:	String?	=	null,	title:	String?	=	null)	{

				val	nameProperty	=	SimpleStringProperty(this,	"name",	name)

				var	name	by	nameProperty

				val	titleProperty	=	SimpleStringProperty(this,	"title",	title)

				var	title	by	titleProperty	

}

(Notice	the	import,	you	need	to	import	at	least		tornadofx.getValue		and		tornadofx.setValue	
for	the	by	delegate	to	work)*[]:

Consider	a	Master/Detail	view	where	you	have	a		TableView		displaying	a	list	of	people,	and
a		Form		where	the	currently	selected	person's	information	can	be	edited.	Before	we	get	into
the		ViewModel	,	we	will	create	a	version	of	this		View		without	using	the		ViewModel	.

11.	Editing	Models	and	Validation

155

https://en.wikipedia.org/wiki/Model–view–controller
https://en.wikipedia.org/wiki/Model–view–presenter

Figure	11.1

Below	is	code	for	our	first	attempt	in	building	this,	and	it	has	a	number	of	problems	we	will
address.

import	javafx.scene.control.TableView

import	javafx.scene.control.TextField

import	javafx.scene.layout.BorderPane

import	tornadofx.*

class	Person(name:	String?	=	null,	title:	String?	=	null)	{

				val	nameProperty	=	SimpleStringProperty(this,	"name",	name)

				var	name	by	nameProperty

				val	titleProperty	=	SimpleStringProperty(this,	"title",	title)

				var	title	by	titleProperty	

}

class	PersonEditor	:	View("Person	Editor")	{

				override	val	root	=	BorderPane()

				var	nameField	:	TextField	by	singleAssign()

				var	titleField	:	TextField	by	singleAssign()

				var	personTable	:	TableView<Person>	by	singleAssign()

				//	Some	fake	data	for	our	table

				val	persons	=	listOf(Person("John",	"Manager"),	Person("Jay",	"Worker	bee")).obser

11.	Editing	Models	and	Validation

156

vable()

				var	prevSelection:	Person?	=	null

				init	{

								with(root)	{

												//	TableView	showing	a	list	of	people

												center	{

																tableview(persons)	{

																				personTable	=	this

																				column("Name",	Person::nameProperty)

																				column("Title",	Person::titleProperty)

																				//	Edit	the	currently	selected	person

																				selectionModel.selectedItemProperty().onChange	{

																								editPerson(it)

																								prevSelection	=	it

																				}

																}

												}

												right	{

																form	{

																				fieldset("Edit	person")	{

																								field("Name")	{

																												textfield()	{

																																nameField	=	this

																												}

																								}

																								field("Title")	{

																												textfield()	{

																																titleField	=	this

																												}

																								}

																								button("Save").action	{

																												save()

																								}

																				}

																}

												}

								}

				}

				private	fun	editPerson(person:	Person?)	{

								if	(person	!=	null)	{

												prevSelection?.apply	{

																nameProperty.unbindBidirectional(nameField.textProperty)

																titleProperty.unbindBidirectional(titleField.textProperty)

												}

												nameField.bind(person.nameProperty)

												titleField.bind(person.titleProperty)

												prevSelection	=	person

								}

11.	Editing	Models	and	Validation

157

				}

				private	fun	save()	{

								//	Extract	the	selected	person	from	the	tableView

								val	person	=	personTable.selectedItem!!

								//	A	real	application	would	persist	the	person	here

								println("Saving	${person.name}	/	${person.title}")

				}

}

We	define	a		View		consisting	of	a		TableView		in	the	center	of	a		BorderPane		and	a		Form		on
the	right	side.	We	define	some	properties	for	the	form	fields	and	the	table	itself	so	we	can
reference	them	later.

While	we	build	the	table,	we	attach	a	listener	to	the	selected	item	so	we	can	call	the
	editPerson		function	when	the	table	selection	changes.	The		editPerson		function	binds	the
properties	of	the	selected	person	to	the	text	fields	in	the	form.

Problems	with	our	initial	attempt
At	first	glance	it	might	look	OK,	but	when	we	dig	deeper	there	are	several	issues.

Manual	binding

Every	time	the	selection	in	the	table	changes,	we	have	to	unbind/rebind	the	data	for	the	form
fields	manually.	Apart	from	the	added	code	and	logic,	there	is	another	huge	problem	with
this:	the	data	is	updated	for	every	change	in	the	text	fields,	and	the	changes	will	even	be
reflected	in	the	table.	While	this	might	look	cool	and	is	technically	correct,	it	presents	one	big
problem:	what	if	the	user	does	not	want	to	save	the	changes?	We	have	no	way	of	rolling
back.	So	to	prevent	this,	we	would	have	to	skip	the	binding	altogether	and	manually	extract
the	values	from	the	text	fields,	then	create	a	new		Person		object	on	save.	In	fact,	this	is	a
pattern	found	in	many	applications	and	expected	by	most	users.	Implementing	a	"Reset"
button	for	this	form	would	mean	managing	variables	with	the	initial	values	and	again
assigning	those	values	manually	to	the	text	fields.

Tight	Coupling

Another	issue	is	when	it	is	time	to	save	the	edited	person,	the	save	function	has	to	extract
the	selected	item	from	the	table	again.	For	that	to	happen	the	save	function	has	to	know
about	the		TableView	.	Alternatively	it	would	have	to	know	about	the	text	fields	like	the
	editPerson		function	does,	and	manually	extract	the	values	to	reconstruct	a		Person		object.

11.	Editing	Models	and	Validation

158

Introducing	ViewModel
The		ViewModel		is	a	mediator	between	the		TableView		and	the		Form	.	It	acts	as	a
middleman	between	the	data	in	the	text	fields	and	the	data	in	the	actual		Person		object.	As
you	will	see,	the	code	is	much	shorter	and	easier	to	reason	about.	The	implementation	code
of	the		PersonModel		will	be	shown	shortly.	For	now	just	focus	on	its	usage.

class	PersonEditor	:	View("Person	Editor")	{

				override	val	root	=	BorderPane()

				val	persons	=	listOf(Person("John",	"Manager"),	Person("Jay",	"Worker	bee")).obser

vable()

				val	model	=	PersonModel(Person())

				init	{

								with(root)	{

												center	{

																tableview(persons)	{

																				column("Name",	Person::nameProperty)

																				column("Title",	Person::titleProperty)

																				//	Update	the	person	inside	the	view	model	on	selection	change

																				model.rebindOnChange(this)	{	selectedPerson	->

																								person	=	selectedPerson	?:	Person()

																				}

																}

												}

												right	{

																form	{

																				fieldset("Edit	person")	{

																								field("Name")	{

																												textfield(model.name)

																								}

																								field("Title")	{

																												textfield(model.title)

																								}

																								button("Save")	{

																												enableWhen(model.dirty)

																												action	{

																																save()

																												}

																								}

																								button("Reset").action	{

																												model.rollback()

																								}

																				}

																}

												}

								}

				}

11.	Editing	Models	and	Validation

159

				private	fun	save()	{

								//	Flush	changes	from	the	text	fields	into	the	model

								model.commit()

								//	The	edited	person	is	contained	in	the	model

								val	person	=	model.person

								//	A	real	application	would	persist	the	person	here

								println("Saving	${person.name}	/	${person.title}")

				}

}

class	PersonModel(var	person:	Person)	:	ViewModel()	{

				val	name	=	bind	{	person.nameProperty	}

				val	title	=	bind	{	person.titleProperty	}

}

This	looks	a	lot	better,	but	what	exactly	is	going	on	here?	We	have	introduced	a	subclass	of
	ViewModel		called		PersonModel	.	The	model	holds	a		Person		object	and	has	properties	for
the		name		and		title		fields.	We	will	discuss	the	model	further	after	we	have	looked	at	the
rest	of	the	client	code.

Note	that	we	hold	no	reference	to	the		TableView		or	the	text	fields.	Apart	from	a	lot	less
code,	the	first	big	change	is	the	way	we	update	the		Person		inside	the	model:

model.rebindOnChange(this)	{	selectedPerson	->

				person	=	selectedPerson	?:	Person()

}

The		rebindOnChange()		function	takes	the		TableView		as	an	argument	and	a	function	that	will
be	called	when	the	selection	changes.	This	works	with		ListView	,	TreeView	,
	TreeTableView	,	and	any	other		ObservableValue		as	well.	This	function	is	called	on	the	model
and	has	the		selectedPerson		as	its	single	argument.	We	assign	the	selected	person	to	the
	person		property	of	the	model,	or	a	new		Person		if	the	selection	was	empty/null.	That	way
we	ensure	that	there	is	always	data	for	the	model	to	present.

When	we	create	the	TextFields,	we	bind	the	model	properties	directly	to	it	since	most		Node	
builders	accept	an		ObservableValue		to	bind	to.

field("Name")	{

				textfield(model.name)

}

Even	when	the	selection	changes,	the	model	properties	persist	but	the	values	for	the
properties	are	updated.	We	totally	avoid	the	manual	binding	from	our	previous	attempt.

11.	Editing	Models	and	Validation

160

Another	big	change	in	this	version	is	that	the	data	in	the	table	does	not	update	when	we	type
into	the	text	fields.	This	is	because	the	model	has	exposed	a	copy	of	the	properties	from	the
person	object	and	does	not	write	back	into	the	actual	person	object	before	we	call
	model.commit()	.	This	is	exactly	what	we	do	in	the		save		function.	Once		commit		has	been
called,	the	data	in	the	facade	is	flushed	back	into	our	person	object	and	the	table	will	now
reflect	our	changes.

Rollback
Since	the	model	holds	a	reference	to	the	actual		Person		object,	we	can	can	reset	the	text
fields	to	reflect	the	actual	data	in	our		Person		object.	We	could	add	a	reset	button	like	this:

button("Reset").action	{

				model.rollback()

}

When	the	button	is	pressed,	any	changes	are	discarded	and	the	text	fields	show	the	actual
	Person		object	values	again.

The	PersonModel
We	never	explained	how	the		PersonModel		works	yet,	and	you	probably	have	been
wondering	about	how	the		PersonModel		is	implemented.	Here	it	is:

class	PersonModel(var	person:	Person)	:	ViewModel()	{

				val	name	=	bind	{	person.nameProperty	}

				val	title	=	bind	{	person.titleProperty	}

}

It	can	hold	a		Person		object,	and	it	has	defined	two	strange-looking	properties	called		name	
and		title		via	the		bind		delegate.	Yeah	it	looks	weird,	but	there	is	a	very	good	reason	for
it.	The		{	person.nameProperty	}		parameter	for	the		bind		function	is	a	lambda	that	returns	a
property.	This	returned	property	is	examined	by	the		ViewModel	,	and	a	new	property	of	the
same	type	is	created.	It	is	then	put	into	the		name		property	of	the		ViewModel	.

When	we	bind	a	text	field	to	the		name		property	of	the	model,	only	the	copy	is	updated	when
you	type	into	the	text	field.	The		ViewModel		keeps	track	of	which	actual	property	belongs	to
which	facade,	and	when	you	call		commit		the	values	from	the	facade	are	flushed	into	the
actual	backing	property.	On	the	flip	side,	when	you	call		rollback		the	exact	opposite
happens:	The	actual	property	value	is	flushed	into	the	facade.

11.	Editing	Models	and	Validation

161

The	reason	the	actual	property	is	wrapped	in	a	function	is	that	this	makes	it	possible	to
change	the		person		variable	and	then	extract	the	property	from	that	new	person.	You	can
read	more	about	this	below	(rebinding).

Dirty	Checking
The	model	has	a		Property		called		dirty	.	This	is	a		BooleanBinding		which	you	can	observe
to	enable	or	disable	certain	features.	For	example,	we	could	easily	disable	the	save	button
until	there	are	actual	changes.	The	updated	save	button	would	look	like	this:

button("Save")	{

				enableWhen(model.dirty)

				action	{

								save()

				}

}

There	is	also	a	plain		val		called		isDirty		which	returns	a		Boolean		representing	the	dirty
state	for	the	entire	model.

One	thing	to	note	is	that	if	the	backing	object	is	being	modified	while	the		ViewModel		is	also
modified	via	the	UI,	all	uncommitted	changes	in	the		ViewModel		are	being	overridden	by	the
changes	in	the	backing	object.	That	means	the	data	in	the		ViewModel		might	get	lost	if
external	modification	of	the	backing	object	takes	place.

val	person	=	Person("John",	"Manager")

val	model	=	PersonModel(person)

model.name.value	=	"Johnny"			//modify	the	ViewModel

person.name	=	"Johan"									//modify	the	underlying	object

println("		Person	=	${person.name},	${person.title}")													//output:			Person	=

	Johan,	Manager

println("Is	dirty	=	${model.isDirty}")																												//output:	Is	dirty	=

	false

println("			Model	=	${model.name.value},	${model.title.value}")			//output:				Model	=

	Johan,	Manager

As	can	be	seen	above	the	changes	in	the		ViewModel		got	overridden	when	the	underlying
object	was	modified.	And	the		ViewModel		was	not	flagged	as		dirty	.

Dirty	Properties

11.	Editing	Models	and	Validation

162

You	can	check	if	a	specific	property	is	dirty,	meaning	that	it	has	been	changed	compared	to
the	backing	source	object	value.

val	nameWasChanged	=	model.isDirty(model.name)

There	is	also	an	extension	property	version	that	accomplishes	the	same	task:

val	nameWasChanged	=	model.name.isDirty

The	shorthand	version	is	an	extension		val		on		Property<T>		but	it	will	only	work	for
properties	that	are	bound	inside	a		ViewModel	.	You	will	find		model.isNotDirty		properties	as
well.

If	you	need	to	dynamically	react	based	on	the	dirty	state	of	a	specific	property	in	the
	ViewModel	,	you	can	get	a	hold	of	a		BooleanBinding		representing	the	dirty	state	of	that	field
like	this:

val	nameDirtyProperty	=	model.dirtyStateFor(PersonModel::name)

Extracting	the	Source	Object	Value
To	retrieve	the	backing	object	value	for	a	property	you	can	call
	model.backingValue(property)	.

val	person	=	model.backingValue(property)

Supporting	Objects	that	Do	Not	Expose	JavaFX
Properties
You	probably	wondered	how	to	deal	with	domain	objects	that	do	not	use	JavaFX	properties.
Maybe	you	have	a	simple	POJO	with	getters	and	setters,	or	normal	kotlin		var		type
properties.	Since		ViewModel		requires	JavaFX	properties,	TornadoFX	comes	with	powerful
wrappers	that	can	turn	any	type	of	property	into	an	observable	JavaFX	property.	Here	are
some	examples:

11.	Editing	Models	and	Validation

163

//	Java	POJO	getter/setter	property

class	JavaPersonViewModel(person:	JavaPerson)	:	ViewModel()	{

				val	name	=	bind	{	person.observable(JavaPerson::getName,	JavaPerson::setName)	}

}

//	Kotlin	var	property

class	PersonVarViewModel(person:	Person)	:	ViewModel()	{

				val	name	=	bind	{	person.observable(Person::name)	}

}

As	you	can	see,	it	is	easy	to	convert	any	property	type	to	an	observable	property.

Specific	Property	Subtypes	(IntegerProperty,
BooleanProperty)
If	you	bind,	for	example,	an		IntegerProperty	,	the	type	of	the	facade	property	will	look	like
	Property<Int>		but	it	is	infact	an		IntegerProperty		under	the	hood.	If	you	need	to	access	the
special	functions	provided	by		IntegerProperty	,	you	will	have	to	cast	the	bind	result:

val	age	=	bind(Person::ageProperty)	as	IntegerProperty

Similarily,	you	can	expose	a	read	only	property	by	specifying	a	read	only	type:

val	age	=	bind(Person::ageProperty)	as	ReadOnlyIntegerProperty

The	reason	for	this	is	an	unfortunate	shortcoming	on	the	type	system	that	prevents	the
compiler	from	differentiating	between	overloaded		bind		functions	for	these	specific	types,	so
the	single		bind		function	inside		ViewModel		inspects	the	property	type	and	returns	the	best
match,	but	unfortunately	the	return	type	signature	has	to	be		Property<T>		for	now.

Rebinding
As	you	saw	in	the		TableView		example	above,	it	is	possible	to	change	the	domain	object	that
is	wrapped	by	the		ViewModel	.	This	test	case	sheds	some	more	light	on	that:

11.	Editing	Models	and	Validation

164

@Test	fun	swap_source_object()	{

				val	person1	=	Person("Person	1")

				val	person2	=	Person("Person	2")

				val	model	=	PersonModel(person1)

				assertEquals(model.name,	"Person	1")

				model.rebind	{	person	=	person2	}

				assertEquals(model.name,	"Person	2")

}

The	test	creates	two		Person		objects	and	a		ViewModel	.	The	model	is	initialised	with	the	first
person	object.	It	then	checks	that		model.name		corresponds	to	the	name	in		person1	.	Now
something	weird	happens:

model.rebind	{	person	=	person2	}

The	code	inside	the		rebind()		block	above	will	be	executed	and	all	the	properties	of	the
model	are	updated	with	values	from	the	new	source	object.	This	is	actually	analogous	to
writing:

model.person	=	person2

model.rebind()

The	form	you	choose	is	up	to	you,	but	the	first	form	makes	sure	you	do	not	forget	to	call
rebind.	After		rebind		is	called,	the	model	is	not	dirty	and	all	values	will	reflect	the	ones	form
the	new	source	object	or	source	objects.	It's	important	to	note	that	you	can	pass	multiple
source	objects	to	a	view	model	and	update	all	or	some	of	them	as	you	see	fit.

Rebind	Listener

Our		TableView		example	called	the		rebindOnChange()		function	and	passed	in	a		TableView	
as	the	first	argument.	This	made	sure	that	rebind	was	called	whenever	the	selection	of	the
	TableView		changed.	This	is	actually	just	a	shortcut	to	another	function	with	the	same	name
that	takes	an	observable	and	calls	rebind	whenever	that	observable	changes.	If	you	call	this
function,	you	do	not	need	to	call	rebind	manually	as	long	as	you	have	an	observable	that
represent	the	state	change	that	should	cause	the	model	to	rebind.

As	you	saw,		TableView		has	a	shorthand	support	for	the
	selectionModel.selectedItemProperty	.	If	not	for	this	shorthand	function	call,	you	would	have
to	write	it	like	this:

11.	Editing	Models	and	Validation

165

model.rebindOnChange(table.selectionModel.selectedItemProperty())	{

				person	=	it	?:	Person()

}

The	above	example	is	included	to	clarify	how	the		rebindOnChange()		function	works	under
the	hood.	For	real	use	cases	involving	a		TableView	,	you	should	opt	for	the	shorter	version
or	use	the		ItemViewModel	.

ItemViewModel
When	working	with	the		ViewModel		you	will	notice	some	repetitive	and	somewhat	verbose
tasks.	They	include	calling		rebind		or	configuring		rebindOnChange		to	change
the	source	object.	The		ItemViewModel		is	an	extension	to	the		ViewModel		and	in	almost	all
use	cases	you	would	want	to	inherit	from	this	instead	of	the		ViewModel		class.

The		ItemViewModel		has	a	property	called		itemProperty		of	the	specified	type,	so	our
	PersonModel		would	now	look	like:

class	PersonModel	:	ItemViewModel<Person>()	{

				val	name	=	bind(Person::nameProperty)	

				val	title	=	bind(Person::titleProperty)

}

You	will	notice	we	no	longer	need	to	pass	in	the		var	person:	Person		in	the	constructor.	The
	ItemViewModel		now	has	an	observable	property	called
	itemProperty		and	getters/setters	via	the		item		property.	Whenever	you	assign	something
to		item		or	via		itemProperty.value	,	the	model	is
automatically	rebound	for	you.	There	is	also	an	observable		empty		boolean	value	you	can
use	to	check	if	the		ItemViewModel		is	currently	holding	a		Person	.

The	binding	expressions	need	to	take	into	account	that	it	might	not	represent	any	item	at	the
time	of	binding.	That	is	why	the	binding
expressions	above	now	use	the	null	safe	operator.

We	just	got	rid	of	some	boiler	plate,	but	the		ItemViewModel		gives	us	a	lot	more	functionality.
Remember	how	we	bound	the	selected	person	from	the		TableView		to	our	model	earlier?

//	Update	the	person	inside	the	view	model	on	selection	change

model.rebindOnChange(this)	{	selectedPerson	->

				person	=	selectedPerson	?:	Person()

}

11.	Editing	Models	and	Validation

166

Using	the		ItemViewModel		this	can	be	rewritten:

//	Update	the	person	inside	the	view	model	on	selection	change

bindSelected(model)

This	will	effectively	attach	the	listener	we	had	to	write	manually	before	and	make	sure	that
the		TableView		selection	is	visible	in	the	model.

The		save()		function	will	now	also	be	slightly	different,	since	there	is	no		person		property	in
our	model:

private	fun	save()	{

				model.commit()

				val	person	=	model.item

				println("Saving	${person.name}	/	${person.title}")

}

The	person	is	extracted	from	the		itemProperty		using	the		item		getter.

When	working	with	the	ItemViewModel()	and	POJO's	starting	at	1.7.1	you	can	create	the
bindings	as	follows

data	class	Person(val	firstName:	String,	val	lastName:	String)

class	PersonModel	:	ItemViewModel<Person>()	{

				val	firstname	=	bind	{	item?.firstName?.toProperty()	}

				val	lastName	=	bind	{	item?.lastName?.toProperty()	}

}

OnCommit	callback

Sometimes	it's	desirable	to	do	a	specific	action	after	the	model	was	successfully	committed.
The		ViewModel		offers	two	callbacks,		onCommit		and		onCommit(commits:	List<Commit>)	,	for
that.

The	first	function	onCommit	,	has	no	parameters	and	will	be	called	after	a	successful	commit,
right	before	the	optional		successFn		is	invoked	(see:		commit).
The	second	function	will	be	called	in	the	same	order	and	with	the	addition	of	passing	a	list	of
committed	properties	along.
Each		Commit		in	the	list,	consists	of	the	original		ObservableValue	,	the		oldValue		and	the
	newValue	

and	a	property		changed	,	to	signal	if	the		oldValue		is	different	then	the		newValue	.

11.	Editing	Models	and	Validation

167

Let's	look	at	an	example	how	we	can	retrieve	only	the	changed	objects	and	print	them	to
	stdout	.

To	find	out	which	object	changed	we	defined	a	little	extension	function,	which	will	find	the
given	property	and
if	it	was	changed	will	return	the	old	and	new	value	or	null	if	there	was	no	change.

class	PersonModel	:	ItemViewModel<Person>()	{

				val	firstname	=	bind(Person::firstName)

				val	lastName	=	bind(Person::lastName)

				override	val	onCommit(commits:	List<Commit>)	{

							//	The	println	will	only	be	called	if	findChanged	is	not	null	

							commits.findChanged(firstName)?.let	{	println("First-Name	changed	from	${it.fir

st}	to	${it.second}")}

							commits.findChanged(lastName)?.let	{	println("Last-Name	changed	from	${it.first

}	to	${it.second}")}

				}

				private	fun	<T>	List<Commit>.findChanged(ref:	Property<T>):	Pair<T,	T>?	{

								val	commit	=	find	{	it.property	==	ref	&&	it.changed}

								return	commit?.let	{	(it.newValue	as	T)	to	(it.oldValue	as	T)	}

				}

}

Injectable	Models
Most	commonly	you	will	not	have	both	the		TableView		and	the	editor	in	the	same		View	.	We
would	then	need	to	access	the		ViewModel		from	at	least	two	different	views,	one	for	the
	TableView		and	one	for	the	form.	Luckily,	the		ViewModel		is	injectable,	so	we	can	rewrite	our
editor	example	and	split	the	two	views:

class	PersonList	:	View("Person	List")	{

				val	persons	=	listOf(Person("John",	"Manager"),	Person("Jay",	"Worker	bee")).obser

vable()

				val	model	:	PersonModel	by	inject()

				override	val	root	=	tableview(persons)	{

								title	=	"Person"

								column("Name",	Person::nameProperty)

								column("Title",	Person::titleProperty)

								bindSelected(model)

				}

}

11.	Editing	Models	and	Validation

168

The	person		TableView		now	becomes	a	lot	cleaner	and	easier	to	reason	with.	In	a	real
application	the	list	of	persons	would	probably	come	from	a	controller	or	a	remoting	call
though.	The	model	is	simply	injected	into	the		View	,	and	we	will	do	the	same	for	the	editor:

class	PersonEditor	:	View("Person	Editor")	{

				val	model	:	PersonModel	by	inject()

				override	val	root	=	form	{

								fieldset("Edit	person")	{

												field("Name")	{

																textfield(model.name)

												}

												field("Title")	{

																textfield(model.title)

												}

											button("Save")	{

																enableWhen(model.dirty)

																action	{

																				save()

																}

												}

												button("Reset").action	{

																model.rollback()

												}

								}

				}

				private	fun	save()	{

								model.commit()

								println("Saving	${model.item.name}	/	${model.item.title}")

				}

}

The	injected	instance	of	the	model	will	be	the	exact	same	one	in	both	views.	Again,	in	a	real
application	the	save	call	would	probably	be	offloaded
to	a	controller	asynchronously.

When	to	Use		ViewModel		vs		ItemViewModel	
This	chapter	has	progressed	from	the	low-level	implementation		ViewModel		into	a
streamlined		ItemViewModel	.	You	might	wonder	if	there	are	any	use	cases	for	inheriting	from
	ViewModel		instead	of		ItemViewModel		at	all.	The	answer	is	that	while	you	would	typically
extend		ItemViewModel		more	than	90%	of	the	time,	there	are	some	use	cases	where	it	does
not	make	sense.	Since	ViewModels	can	be	injected	and	used	to	keep	navigational	state	and
overall	UI	state,	you	might	use	it	for	situations	where	you	do	not	have	a	single	domain	object

11.	Editing	Models	and	Validation

169

-	you	could	have	multiple	domain	objects	or	just	a	collection	of	loose	properties.	In	this	use
case	the		ItemViewModel		does	not	make	any	sense,	and	you	might	implement	the
	ViewModel		directly.	For	common	cases	though,		ItemViewModel		is	your	best	friend.

There	is	one	potential	issue	with	this	approach.	If	we	want	to	display	multiple	"pairs"	of
lists	and	forms,	perhaps	in	different	windows,	we	need	a	way	to	separate	and	bind	the
model	belonging	to	a	spesific	pair	of	list	and	form.	There	are	many	ways	to	deal	with
that,	but	one	tool	very	well	suited	for	this	is	the	scopes.	Check	out	the	scope
documentation	for	more	information	about	this	approach.

Validation
Almost	every	application	needs	to	check	that	the	input	supplied	by	the	user	conforms	to	a
set	of	rules	or	are	otherwise	acceptable.	TornadoFX	sports	an	extensible	validation	and
decoration	framework.

We	will	first	look	at	validation	as	a	standalone	feature	before	we	integrate	it	with	the
	ViewModel	.

Under	the	Hood
The	following	explanation	is	a	bit	verbose	and	does	not	reflect	the	way	you	would	write
validation	code	in	your	application.	This	section	will	provide	you	with	a	solid	understanding	of
how	validation	works	and	how	the	individual	pieces	fit	together.

Validator

A		Validator		knows	how	to	inspect	user	input	of	a	specified	type	and	will	return	a
	ValidationMessage		with	a		ValidationSeverity		describing	how	the	input	compares	to	the
expected	input	for	a	specific	control.	If	a		Validator		deems	that	there	is	nothing	to	report	for
an	input	value,	it	returns		null	.	A	text	message	can	optionally	accompany	the
	ValidationMessage	,	and	would	normally	be	displayed	by	the		Decorator		configured	in	the
	ValidationContext	.	We	will	cover	more	on	decorators	later.

The	following	severity	levels	are	supported:

	Error		-	Input	was	not	accepted
	Warning		-	Input	is	not	ideal,	but	accepted
	Success		-	Input	is	accepted
	Info		-	Input	is	accepted

11.	Editing	Models	and	Validation

170

There	are	multiple	severity	levels	representing	successful	input	to	easier	provide	the
contextually	correct	feedback	in	most	cases.	For	example,	you	might	want	to	give	an
informational	message	for	a	field	no	matter	the	input	value,	or	specifically	mark	fields	with	a
green	checkbox	when	they	are	entered.	The	only	severity	that	will	result	in	an	invalid	status
is	the		Error		level.

ValidationTrigger

By	default	validation	will	happen	when	the	input	value	changes.	The	input	value	is	always	an
	ObservableValue<T>	,	and	the	default	trigger	simply	listens	for	changes.	You	can	however
choose
to	validate	when	the	input	field	looses	focus,	or	when	a	save	button	is	clicked	for	instance.
The	following	ValidationTriggers	can	be	configured	for	each	validator:

	OnChange		-	Validate	when	input	value	changes,	optionally	after	a	given	delay	in
milliseconds
	OnBlur		-	Validate	when	the	input	field	looses	focus
	Never		-	Only	validate	when		ValidationContext.validate()		is	called

ValidationContext

Normally	you	would	validate	user	input	from	multiple	controls	or	input	fields	at	once.	You	can
gather	these	validators	in	a		ValidationContext		so	you	can	check	if	all	validators	are	valid,	or
ask	the	validation	context	to	perform	validation	for	all	fields	at	any	given	time.	The	context
also	controls	what	kind	of	decorator	will	be	used	to	convey	the	validation	message	for	each
field.	See	the	Ad	Hoc	validation	example	below.

Decorator
The		decorationProvider		of	a		ValidationContext		is	in	charge	of	providing	feedback	when	a
	ValidationMessage		is	associated	with	an	input.	By	default	this	is	an	instance	of
	SimpleMessageDecorator	which	will	mark	the	input	field	with	a	colored	triangle	in	the	topper
left	corner	and	display	a	popup	with	the	message	while	the	input	has	focus.

11.	Editing	Models	and	Validation

171

Figure	11.2	The	default	decorator	showing	a	required	field	validation	message

If	you	don't	like	the	default	decorator	look	you	can	easily	create	your	own	by	implementing
the		Decorator		interface:

interface	Decorator	{

				fun	decorate(node:	Node)

				fun	undecorate(node:	Node)

}

You	can	assign	your	decorator	to	a	given		ValidationContext		like	this:

context.decorationProvider	=	MyDecorator()

Tip:	You	can	create	a	decorator	that	applies	CSS	style	classes	to	your	inputs	instead
of	overlaying	other	nodes	to	provide	feedback.

Ad	Hoc	Validation

11.	Editing	Models	and	Validation

172

While	you	will	probably	never	do	this	in	a	real	application,	it	is	possible	to	set	up	a
	ValidationContext		and	apply	validators	to	it	manually.	The	following
example	is	actually	taken	from	the	internal	tests	of	the	framework.	It	illustrates	the	concept,
but	is	not	a	practical	pattern	in	an	application.

//	Create	a	validation	context

val	context	=	ValidationContext()

//	Create	a	TextField	we	can	attach	validation	to

val	input	=	TextField()

//	Define	a	validator	that	accepts	input	longer	than	5	chars

val	validator	=	context.addValidator(input,	input.textProperty())	{

				if	(it!!.length	<	5)	error("Too	short")	else	null

}

//	Simulate	user	input

input.text	=	"abc"

//	Validation	should	fail

assertFalse(validator.validate())

//	Extract	the	validation	result

val	result	=	validator.result

//	The	severity	should	be	error

assertTrue(result	is	ValidationMessage	&&	result.severity	==	ValidationSeverity.Error)

//	Confirm	valid	input	passes	validation

input.text	=	"longvalue"

assertTrue(validator.validate())

assertNull(validator.result)

Take	special	note	of	the	last	parameter	to	the		addValidator		call.	This	is	the	actual	validation
logic.	The	function	is	passed	the
current	input	for	the	property	it	validates	and	must	return	null	if	there	are	no	messages,	or	an
instance	of		ValidationMessage		if	something
is	noteworthy	about	the	input.	A	message	with	severity		Error		will	cause	the	validation	to
fail.	As	you	can	see,	you	don't	need	to	instantiate
a	ValidationMessage	yourself,	simply	use	one	of	the	functions		error	,		warning	,		success	
or		info		instead.

Validation	with	ViewModel

11.	Editing	Models	and	Validation

173

Every	ViewModel	contains	a		ValidationContext	,	so	you	don't	need	to	instantiate	one
yourself.	The	Validation	framework	integrates	with	the	type
safe	builders	as	well,	and	even	provides	some	built	in	validators,	like	the		required		validator.
Going	back	to	our	person	editor,	we	can
make	the	input	fields	required	with	this	simple	change:

field("Name")	{

				textfield(model.name).required()

}

That's	all	there	is	to	it.	The	required	validator	optionally	takes	a	message	that	will	be
presented	to	the	user	if	the	validation	fails.	The	default	text
is	"This	field	is	required".

Instead	of	using	the	built	in		required		validator	we	can	express	the	same	thing	manually:

field("Name")	{

				textfield(model.name).validator	{

								if	(it.isNullOrBlank())	error("The	name	field	is	required")	else	null

				}

}

If	you	want	to	further	customize	the	textfield,	you	might	want	to	add	another	set	of	curly
braces:

field("Name")	{

				textfield(model.name)	{

								//	Manipulate	the	text	field	here

								validator	{

												if	(it.isNullOrBlank())	error("The	name	field	is	required")	else	null

								}

				}

}

Binding	buttons	to	validation	state
You	might	want	to	only	enable	certain	buttons	in	your	forms	when	the	input	is	valid.	The
	model.valid		property	can	be	used	for	this	purpose.	Since
the	default	validation	trigger	is		OnChange	,	the	valid	state	would	only	be	accurate	when	you
first	try	to	commit	the	model.	However,	if	you	want

11.	Editing	Models	and	Validation

174

to	bind	a	button	to	the		valid		state	of	the	model	you	can	call		model.validate(decorateErrors
=	false)		to	force	all	validators	to	report	their	results	without
actually	showing	any	validation	errors	to	the	user.

field("username")	{

				textfield(username).required()

}

field("password")	{

				passwordfield(password).required()

}

buttonbar	{

				button("Login",	ButtonBar.ButtonData.OK_DONE).action	{

								enableWhen	{	model.valid	}

								model.commit	{

												doLogin()

								}

				}

}

//	Force	validators	to	update	the	`model.valid`	property

model.validate(decorateErrors	=	false)

Notice	how	the	login	button's	enabled	state	is	bound	to	the	enabled	state	of	the	model	via
	enableWhen	{	model.valid	}		call.	After	all
the	fields	and	validators	are	configured,	the		model.validate(decorateErrors	=	false)		make
sure	the	valid	state	of	the	model	is	updated
without	triggering	error	decorations	on	the	fields	that	fail	validation.	The	decorators	will	kick
in	on	value	change	by	default,	unless	you
override	the		trigger		parameter	to		validator	.	The		required()		build	in	validator	also
accepts	this	parameter.	For	example,	to	run	the	validator
only	when	the	input	field	looses	focus	you	can	call
	textfield(username).required(ValidationTrigger.OnBlur)	.

Validation	in	dialogs
The		dialog		builder	creates	a	window	with	a	form	and	a	fieldset	and	let's	you	start	adding
fields	to	it.	Some	times	you	don't	have	a	ViewModel	for	such	cases,	but	you	might	still	want
to
use	the	features	it	provides.	For	such	situations	you	can	instantiate	a	ViewModel	inline	and
hook	up	one	or	more	properties	to	it.	Here	is	an	example	dialog	that	requires	the	user	to
enter	some	input	in	a	textarea:

11.	Editing	Models	and	Validation

175

dialog("Add	note")	{

				val	model	=	ViewModel()

				val	note	=	model.bind	{	SimpleStringProperty()	}

				field("Note")	{

								textarea(note)	{

												required()

												whenDocked	{	requestFocus()	}

								}

				}

				buttonbar	{

								button("Save	note").action	{

												model.commit	{	doSave()	}

								}

				}

}

Figure	11.3	A	dialog	with	a	inline	ViewModel	context

Notice	how	the		note		property	is	connected	to	the	context	by	specifying	it's	bean	parameter.
This	is	crucial	for	making	the	field	validation	available.

Partial	commit
It's	also	possible	to	do	a	partial	commit	by	suppling	a	list	of	fields	you	want	to	commit	to
avoid	committing	everything.	This	can	be	convenient	in	situations	where	you	edit	the	same
ViewModel	instance	from	different	Views,	for	example	in	a	Wizard.	See	the	Wizard	chapter

11.	Editing	Models	and	Validation

176

for	more	information	about	partial	commit,	and	the	corresponding	partial	validation	features.

TableViewEditModel
If	you	are	pressed	for	screen	real	estate	and	do	not	have	space	for	a	master/detail	setup
with	a		TableView	,	an	effective	option	is	to	edit	the		TableView		directly.	By	enabling	a	few
streamlined	features	in	TornadoFX,	you	can	not	only	enable	easy	cell	editing	but	also	enable
dirty	state	tracking,	committing,	and	rollback.	By	calling		enableCellEditing()		and
	enableDirtyTracking()	,	as	well	as	accessing	the		tableViewEditModel		property	of	a
	TableView	,	you	can	easily	enable	this	functionality.

When	you	edit	a	cell,	a	blue	flag	will	indicate	its	dirty	state.	Calling		rollback()		will	revert
dirty	cells	to	their	original	values,	whereas		commit()		will	set	the	current	values	as	the	new
baseline	(and	remove	all	dirty	state	history).

11.	Editing	Models	and	Validation

177

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View("My	View")	{

				val	controller:	CustomerController	by	inject()

				var	tableViewEditModel:	TableViewEditModel<Customer>	by	singleAssign()

				override	val	root	=		borderpane	{

								top	=	buttonbar	{

												button("COMMIT").setOnAction	{

																tableViewEditModel.commit()

												}

												button("ROLLBACK").setOnAction	{

																tableViewEditModel.rollback()

												}

								}

								center	=	tableview<Customer>	{

												items	=	controller.customers

												isEditable	=	true

												column("ID",Customer::idProperty)

												column("FIRST	NAME",	Customer::firstNameProperty).makeEditable()

												column("LAST	NAME",	Customer::lastNameProperty).makeEditable()

												enableCellEditing()	//enables	easier	cell	navigation/editing

												enableDirtyTracking()	//flags	cells	that	are	dirty

												tableViewEditModel	=	editModel

								}

				}

}

class	CustomerController	:	Controller()	{

				val	customers	=	listOf(

												Customer(1,	"Marley",	"John"),

												Customer(2,	"Schmidt",	"Ally"),

												Customer(3,	"Johnson",	"Eric")

).observable()

}

class	Customer(id:	Int,	lastName:	String,	firstName:	String)	{

				val	lastNameProperty	=	SimpleStringProperty(this,	"lastName",	lastName)

				var	lastName	by	lastNameProperty

				val	firstNameProperty	=	SimpleStringPorperty(this,	"firstName",	firstName)	

				var	firstName	by	firstNameProperty

				val	idProperty	=	SimpleIntegerProperty(this,	"id",	id)	

				var	id	by	idProperty

}

11.	Editing	Models	and	Validation

178

Figure	11.4	A		TableView		with	dirty	state	tracking,	with		rollback()		and		commit()	
functionality.

Note	also	there	are	many	other	helpful	properties	and	functions	on	the		TableViewEditModel	.
The		items		property	is	an		ObservableMap<S,	TableColumnDirtyState<S>>		mapping	the	dirty
state	of	each	record	item		S	.	If	you	want	to	filter	out	and	commit	only	dirty	records	so	you
can	persist	them	somewhere,	you	can	have	your	"Commit"		Button		perform	this	action
instead.

button("COMMIT").action	{

				tableViewEditModel.items.asSequence()

												.filter	{	it.value.isDirty	}

												.forEach	{

																println("Committing	${it.key}")

																it.value.commit()

												}

}

There	are	also		commitSelected()		and		rollbackSelected()		to	only	commit	or	rollback	the
selected	records	in	the		TableView	.

11.	Editing	Models	and	Validation

179

OSGi
This	chapter	is	geared	primarily	towards	folks	who	already	have	familiarity	with	OSGi,	which
stands	for	Open	Services	Gateway	Initiative.	The	idea	behind	OSGi	is	adding	and
removing	modules	to	a	Java	application	without	the	need	for	restarting.	TornadoFX	supports
OSGi	and	allows	highly	modular	and	dynamic	applications.

If	you	have	no	interest	in	OSGi	currently,	you	are	welcome	to	skip	this	chapter.	However,	it	is
highly	recommended	to	at	least	know	what	it	is	so	you	can	identify	moments	in	the	future
that	make	it	handy.

TornadoFX	comes	with	the	metadata	needed	for	an	OSGi	runtime	to	detect	and	enable	it.
When	the		tornadofx.jar		is	loaded	in	an	OSGi	container,	a	number	of	services	are
automatically	installed	in	the	runtime.	These	services	enable	some	very	interesting	features
which	we	will	discuss.

OSGi	Introduction
Please	be	familiar	with	the	basics	of	OSGi	before	you	continue	this	chapter.	To	get	a	quick
overview	of	OSGi	technology	you	can	check	out	the	tutorials	on	the	OSGi	Alliance	website.
The	Apache	Felix	tutorials	are	also	a	good	starting	point	reference	for	basic	OSGi	patterns.

Services
When	the	TornadoFX	JAR	is	loaded,	you	can	create	your	own	TornadoFX	bundle	and	create
your	application	any	way	you	like.	However,	some	usage	patterns	are	so	typical	and	useful
that	TornadoFX	has	built-in	support	for	them.

Dynamic	Applications

The	dynamic	nature	of	OSGi	lends	itself	well	to	GUI	applications	in	general.	The	ability	to
have	certain	functionality	come	and	go	as	the	environment	changes	can	be	powerful.
JavaFX	itself	is	unfortunately	written	in	a	way	that	prevents	you	from	starting	another
JavaFX	application	after	the	initial	application	shuts	down.	To	circumvent	this	shortcoming
and	enable	you	to	stop	and	start	your	application	as	many	times	as	you	want,	TornadoFX
provides	a	way	to	register	your		App		class	with	an	application	proxy	which	will	keep	the
JavaFX	environment	running	even	when	your	application	shuts	down.

12.	OSGi

180

https://www.osgi.org/
http://enroute.osgi.org/book/150-tutorials.html
https://www.osgi.org/
http://felix.apache.org/documentation/tutorials-examples-and-presentations/apache-felix-osgi-tutorial.html

To	get	started,	implement	a		BundleActivator		that	provides	a	means	to		start()		and
	stop()		an		App	.	Registering	your	application	for	this	functionality	can	be	done	by	calling
	context.registerApplication		with	your		App		class	as	the	single	parameter	in	your	bundle
	Activator	:

class	Activator	:	BundleActivator	{

				override	fun	start(context:	BundleContext)	{

								context.registerApplication(MyApp::class)

				}

				override	fun	stop(context:	BundleContext)	{

				}

}

If	you	prefer	OSGi	declarative	services	instead,	this	will	have	the	same	effect	provided	that
you	have	the	OSGi	DS	bundle	loaded:

@Component

class	AppRegistration	:	ApplicationProvider	{

				override	val	application	=	MyApp::class

}

Provided	that	the	TornadoFX	bundle	is	available	in	your	container,	this	is	enough	to	start
your	application	automatically	once	the	bundle	is	activated.	You	can	now	stop	and	start	it	as
many	times	as	you	like	by	stopping	and	starting	the	bundle.

Dynamic	Stylesheets

You	can	provide	type-safe	stylesheets	to	other	TornadoFX	bundles	by	registering	them	in	an
	Activator	:

class	Activator	:	BundleActivator	{

				override	fun	start(context:	BundleContext)	{

								context.registerStylesheet(Styles::class)

				}

				override	fun	stop(context:	BundleContext)	{

				}

}

Using	OSGi	Declarative	Services	the	registration	looks	like	this:

12.	OSGi

181

@Component

class	StyleRegistration	:	StylesheetProvider	{

				override	val	stylesheet	=	Styles::class

}

Whenever	this	bundle	is	loaded,	every	active		View		will	have	this	stylesheet	applied.	When
the	bundle	is	unloaded,	the	stylesheet	is	automatically	removed.	If	you	want	to	provide
multiple	stylesheets	based	on	the	same	style	classes,	it	is	a	good	idea	to	create	one	bundle
that	exports	the		cssclass		definitions,	so	that	your	Views	can	reference	these	styles,	and
the	stylesheet	bundles	can	create	selectors	based	on	them.

Dynamic	Views

A	cool	aspect	of	OSGi	is	the	ability	to	have	UI	elements	pop	up	when	they	become	available.
A	typical	use	case	could	be	a	"dashboard"	application.	In	this	example,	the	base	application
bundle	contains	a		View		that	can	hold	other	Views,	and	tells	the	TornadoFX	OSGi	Runtime
that	it	would	like	to	automatically	embed	Views	if	they	meet	certain	criteria.

For	instance,	we	can	create	a		View		that	contains	a		VBox	.	We	tell	the	TornadoFX	OSGi
Runtime	that	we	would	like	to	have	other	Views	embedded	into	it	if	they	are	tagged	with	the
discriminator	dashboard:

class	Dashboard	:	View()	{

				override	val	root	=	VBox()

				init	{

								title	=	"Dashboard	Application"

								addViewsWhen	{	it.discriminator	==	"dashboard"	}

				}

}

If	the		addViewsWhen		function	returns	true,	the		View		is	added	to	the		VBox	.	To	offer	up	Views
to	this	Dashboard,	another	bundle	would	declare	that	it	wants	to	export	it's	View	by	setting
the		dashboard		discriminator.	Here	we	register	a	fictive		MusicPlayer		view	to	be	docked	into
the	dashboard	when	it's	bundle	becomes	active.

class	Activator	:	BundleActivator	{

				override	fun	start(context:	BundleContext)	{

								context.registerView(MusicPlayer::class,	"dashboard")

				}

				override	fun	stop(context:	BundleContext)	{

				}

}

12.	OSGi

182

Again,	the	OSGi	Declarative	Services	way	of	exporting	the	View	would	look	like	this:

@Component

class	MusicPlayerRegistration	:	ViewProvider	{

				override	val	discriminator	=	"dashboard"

				override	fun	getView()	=	find(MusicPlayer::class)

}

The		addViewsWhen		function	is	smart	enough	to	inspect	the		VBox		and	find	out	how	to	add
the	child	View	it	was	presented.	It	can	also	figure	out	that	if	you	call	the	function	on	a
	TabPane		it	would	create	a	new		Tab		and	set	the	title	to	the	child	View	title	etc.	If	you	would
like	to	do	something	custom	with	the	presented	Views,	you	can	return		false		from	the
function	so	that	the	child	View	will	not	be	added	automatically	and	then	do	whatever	you
want	with	it.	Even	though	the	Tab	example	is	supported	out	of	the	box,	you	could	do	it
explicitly	like	this:

tabPane.addViewsWhen	{

				if	(it.discriminator	==	"dashboard")	{

								val	view	=	it.getView()

								tabPane.tab(view.title,	view.root)

				}

				false

}

Manual	handling	of	dynamic	Views

Create	your	first	OSGi	bundle
A	good	starting	point	is	the		tornadofx-maven-osgi-project		template	in	the	TornadoFX	IntelliJ
IDEA	plugin.	This	contains	everything	you	need	to	build	OSGi	bundles	from	your	sources.
The	OSGI	IDEA	plugin	makes	it	very	easy	to	setup	and	run	an	OSGi	container	directly	from
the	IDE.	There	is	a	screencast	at	https://www.youtube.com/watch?v=liOFCH5MMKk	that
shows	these	concepts	in	action.

OSGi	Console
TornadoFX	has	a	built	in	OSGi	console	from	which	you	can	inspect	bundles,	change	their
state	and	even	install	new	bundles	with	drag	and	drop.	You	can	bring	up	the	console	with
	Alt-Meta-O		or	configure	another	shortcut	by	setting		FX.osgiConsoleShortcut		or
programmatically	opening	the		OSGIConsole		View.

12.	OSGi

183

https://www.youtube.com/watch?v=liOFCH5MMKk

Requirements
To	run	TornadoFX	in	an	OSGi	container,	you	need	to	load	the	required	bundles.	Usually	this
is	a	matter	of	dumping	these	jars	into	the		bundle		directory	of	the	container.	Note	that	any
jar	that	is	to	be	used	in	an	OSGi	container	needs	to	be	"OSGi	enabled",	which	effectively
means	adding	some	OSGi	specific	entries	the		META-INF/MANIFEST.MF		file.

We	provided	a	complete	installation	with	Apache	Felix	and	TornadoFX	already	installed	at
http://tornadofx.tornado.no/felix-tornadofx-5.4.0.zip.	Remember	to	swap	the		tornadofx.jar	
for	the	latest	version,	as	this	bundle	is	most	likely	lagging	a	couple	of	versions	behind.

These	are	the	required	artifacts	for	any	TornadoFX	application	running	in	an	OSGi	container.
Your	container	might	already	be	bundle	with	some	of	these,	so	check	the	container
documentation	for	further	details.

12.	OSGi

184

http://tornadofx.tornado.no/felix-tornadofx-5.4.0.zip

Artifact Version Binary

JavaFX	8	OSGi	Support 8.0 jar

TornadoFX 1.5.5 jar

Kotlin	OSGI	Bundle* 1.0.3 jar

Configuration	Admin** 1.8.10 jar

Commons	Logging 1.2 jar

Apache	HTTP-Client 4.5.2 jar

Apache	HTTP-Core 4.4.5 jar

JSON 1.0.4 jar

	*		The	Kotlin	OSGi	bundle	contains	special	versions	of		kotlin-stdlib		and		kotlin-
reflect		with	the	required	OSGi	manifest	information.

	**		This	links	to	the	Apache	Felix	implementation	of	the	OSGi	Config	Admin	interface.	Feel
free	to	use	the	implementation	from	your	OSGi	container	instead.	Some	containers,	like
Apache	Karaf,	already	has	the	Config	Admin	bundle	loaded,	so	you	won't	need	it	there.

12.	OSGi

185

http://repo1.maven.org/maven2/no/tornado/javafx-osgi/8.0/javafx-osgi-8.0.jar
http://repo1.maven.org/maven2/no/tornado/tornadofx/1.5.5/tornadofx-1.5.5.jar
http://repo1.maven.org/maven2/org/jetbrains/kotlin/kotlin-osgi-bundle/1.0.3/kotlin-osgi-bundle-1.0.3.jar
http://www-eu.apache.org/dist//felix/org.apache.felix.configadmin-1.8.10.jar
http://repo1.maven.org/maven2/commons-logging/commons-logging/1.2/commons-logging-1.2.jar
http://repo1.maven.org/maven2/org/apache/httpcomponents/httpclient-osgi/4.5.2/httpclient-osgi-4.5.2.jar
http://repo1.maven.org/maven2/org/apache/httpcomponents/httpcore-osgi/4.4.5/httpcore-osgi-4.4.5.jar
http://repo1.maven.org/maven2/org/glassfish/javax.json/1.0.4/javax.json-1.0.4.jar
http://felix.apache.org

13.	TornadoFX	IDEA	Plugin
To	save	time	in	using	TornadoFX,	you	can	install	a	convenient	Intellij	IDEA	plugin	to
automatically	generate	project	templates,	Views,	injections,	and	other	TornadoFX	features.
Of	course,	you	do	not	have	to	use	this	plugin	which	was	done	throughout	this	book.	But	it
adds	some	convenience	to	build	TornadoFX	applications	a	little	more	quickly.

Installing	the	Plugin
In	the	Intellij	IDEA	workspace,	press	CONTROL	+	SHIFT	+	A	and	type	"Plugins",	then	press
ENTER.	You	will	see	a	dialog	to	search	and	install	plugins.	Click	the	Browse	Repositories
button	(Figure	13.1).

Figure	13.1	After	bringing	up	the	Plugins	dialog,	click	Browse	Repositories.

13.	TornadoFX	IDEA	Plugin

186

You	will	then	see	a	list	of	3rd	party	plugins	available	to	install.	Search	for	"TornadoFX",	select
it,	and	click	the	green	Install	button	(Figure	13.2).

Figure	13.2	Search	for	"TornadoFX"	and	click	Install

Wait	for	it	to	finish	installing	and	the	restart	Intellij	IDEA.

TornadoFX	Project	Templates

The	TornadoFX	plugins	has	some	Maven	and	Gradle	project	templates	to	quickly	create	a
configured	TornadoFX	application.

In	Intellij	IDEA,	navigate	to	File	->	New	->	Project...	(Figure	13.3).

Figure	13.3

13.	TornadoFX	IDEA	Plugin

187

You	will	then	see	a	dialog	to	create	a	new	TornadoFX	project.	You	can	create	Gradle	and
Maven	flavors,	with	or	without	OSGi	support.	Let's	create	a	Gradle	one	for	demonstration
(Figure	13.4).

Figure	13.4

13.	TornadoFX	IDEA	Plugin

188

In	the	next	dialog,	give	your	project	a	name,	a	location	folder,	and	a	base	package	with	your
domain	(Figure	13.5).	Then	click	Finish.

Figure	13.5

You	may	be	prompted	to	import	the	project	as	a	Gradle	project,	and	click	on	that	prompt	if
you	encounter	it.	You	will	then	have	a	TornadoFX	application	configured	and	set	up,
including		App	,		View	,	and		Styles		entities	set	up	(Figure	13.6).

Figure	13.6

13.	TornadoFX	IDEA	Plugin

189

A	generated	TornadoFX	project	with	a	Gradle	configuration.	

These	steps	apply	to	the	Maven	and	OSGi	wizards	as	well,	and	do	not	forget	to	put	your
project	on	a	version	tracking	system	like	GIT!.

Creating	Views
You	can	create	Views,	Fragments,	and	FXML	files	quickly	with	the	plugin.	You	can	right	click
a	folder	in	the	Project,	then	navigate	the	popup	menu	to	New	->	TornadoFX	View	(Figure
13.7).

Figure	13.7

13.	TornadoFX	IDEA	Plugin

190

You	will	then	come	to	a	dialog	to	dictate	how	the		View		is	constructed.	You	even	have	the
option	of	specifying	it	as	a		Fragment		instead	through	the	Type	parameter,	as	well	as	an
FXML	via	Kind.	Finally,	you	can	specify	the		Node		type	for	the	Root,	which	should	default	to
a		BorderPane	.

Figure	13.8

Click	OK	and	a	new	View		will	generated	and	added	to	your	project	(Figure	13.9).

Figure	13.9	A	new		View		generated	with	the	TornadoFX	plugin

13.	TornadoFX	IDEA	Plugin

191

Injecting	Components
One	last	minor	convenience.	You	can	generate	TornadoFX		Component		injections	quickly
with	the	plugin.	For	instance,	if	you	right	click	the	class	body	of	the		MainView	,	you	can
generate	the		MyOtherView		as	an	injected	property	(Figure	13.10).

Figure	13.10

13.	TornadoFX	IDEA	Plugin

192

You	can	then	use	a	dialog	to	select	the		MyOtherView		as	the	injected	property,	then	click	OK
(Figure	13.11).

Figure	13.11

13.	TornadoFX	IDEA	Plugin

193

Generating	TornadoFX	Properties
One	of	the	most	helpful	features	in	the	plugin	is	the	ability	to	convert	plain	Kotlin	properties
into	TornadoFX	properties.

Say	you	have	a	simple	domain	class	called		Client	.

class	Client(id:	Int,	name:	String)	{

				val	id:	Int	=	id

				val	name:	String	=	name

}

If	you	click	on	a	property	and	then	the	intent	lightbulb,	or	press	ALT+ENTER,	you	should	see
a	menu	popup	with	an	option	to	convert	it	to	a	TornadoFX	Property	(Figure	13.12).

Figure	13.12

13.	TornadoFX	IDEA	Plugin

194

Do	this	for	each	property	and	your		Client		class	should	now	look	like	this.

class	Client(id:	Int,	name:	String)	{

				var	id	by	property(id)

				fun	idProperty()	=	getProperty(Client::id)

				var	name	by	property(name)

				fun	nameProperty()	=	getProperty(Client::name)

}

Your		Client		now	uses	JavaFX	properties	instead	of	plain	properties.	Notice	the	primary
constructor	will	pass	the	intial	values	to	the		property()		delegates,	but	you	do	not	have	to
provide	initial	values	if	they	are	not	desired.

This	is	a	time-saving	feature	when	creating	domain	types	for	data	controls.	Next	we	will
cover	how	to	generate		TableView		columns.

Generating	Columns	for	a	TableView
Another	handy	feature	you	can	do	with	the	plugin	also	is	generating	columns	for	a
	TableView	.	If	you	have	a		TableView<Person>	,	you	can	put	the	cursor	on	its	declaration,
press	ALT	+	ENTER,	and	get	a	prompt	to	generate	the	columns	(Figure	13.13).

Figure	13.13

13.	TornadoFX	IDEA	Plugin

195

You	will	then	see	a	dialog	to	confirm	which		Person		properties	to	generate	the	columns	on
(Figure	14.14).

Figure	13.14

Press	"OK"	and	the	columns	will	then	be	generated	for	you	(Figure	13.15).

Figure	13.15

13.	TornadoFX	IDEA	Plugin

196

Note	that	at	the	time	of	writing	this	guide,	for	a	given		TableView<T>	,	this	feature	only	works	if
the	properties	on		T		follow	the	JavaFX	convention	using	the		Property		delgates.

Summary
The	TornadoFX	plugin	has	some	time-saving	conveniences	that	you	are	welcome	to	take
advantage	of.	Of	course,	you	do	not	have	to	use	the	plugin	because	it	merely	provides
shortcuts	and	generates	code.	In	time,	there	may	be	more	features	added	to	the	plugin	so
be	sure	to	follow	the	project	on	GitHub	for	future	developments.

13.	TornadoFX	IDEA	Plugin

197

14.	Scopes
Scope	is	a	simple	construct	that	enables	some	interesting	and	helpful	behavior	in	a
TornadoFX	application.

When	you	use		inject()		or		find()		to	locate	a		Controller		or	a		View	,	you	will	by	default
get	back	a	singleton	instance,	meaning	that	wherever	you	locate	that	object	in	your	code,
you	will	get	back	the	same	instance.	Scopes	provide	a	way	to	make	a		View		or		Controller	
unique	to	a	smaller	subset	of	instances	in	your	application.

It	can	also	be	used	to	run	multiple	versions	of	the	same	application	inside	the	same	JVM,	for
example	with	JPro,	which	exposes	TornadoFX	application	in	a	web	browser.

A	Master/Detail	example
In	an	MDI	Application	you	can	open	an	editor	in	a	new	window,	and	ensure	that	all	the
injected	resources	are	unique	to	that	window.	We	will	leverage	that	technique	to	create	a
person	editor	that	allows	you	to	open	a	new	window	to	edit	each	person.

We	start	by	defining	a	table	interface	where	you	can	double	click	to	open	the	person	editor	in
a	separate	window.

class	PersonList	:	View("Person	List")	{

				val	ctrl:	PersonController	by	inject()

				override	val	root	=	tableview<Person>()	{

								column("#",	Person::idProperty)

								column("Name",	Person::nameProperty)

								onUserSelect	{	editPerson(it)	}

								asyncItems	{	ctrl.people()	}

				}

				fun	editPerson(person:	Person)	{

								val	editScope	=	Scope()

								val	model	=	PersonModel()

								model.item	=	person

								setInScope(model,	editScope)

								find(PersonEditor::class,	editScope).openWindow()

				}

}

14.	Scopes

198

http://jpro.io/
https://en.wikipedia.org/wiki/Multiple_document_interface

The		edit		function	creates	a	new		Scope		and	injects	a		PersonModel		configured	with	the
selected	user	into	that	scope.	Finally,	it	retrieves	a		PersonEditor		in	the	context	of	the	new
scope	and	opens	a	new	window.

When	the		PersonEditor		is	initialized,	it	will	look	up	a		PersonModel		via	injection.	The	default
context	for		inject		and		find		is	always	the	scope	that	created	the	component,	so	it	will
look	in	the		personScope		we	just	created.

val	model:	PersonModel	by	inject()

Breaking	Out	of	the	Current	Scope
When	no	scope	is	defined,	injectable	resources	are	looked	up	in	the	default	scope.	There	is
an	item	representing	that	scope	called		DefaultScope	.	In	the	above	example,	the	editor
might	have	called	out	to	a		PersonController		to	perform	a	save	operation	in	a	database	or
via	a	REST	call.	This		PersonController		is	most	probably	stateless,	so	there	is	no	need	to
create	a	separate	controller	for	each	edit	window.	To	access	the	same	controller	in	all	editor
windows,	we	supply	the	scope	we	want	to	find	the	controller	in:

val	controller:	PersonController	by	inject(DefaultScope)

This	effectively	makes	the		PersonController		a	true	singleton	object	again,	with	only	a	single
instance	in	the	whole	application.

The	default	scope	for	new	injected	objects	are	always	the	current	scope	for	the	component
that	calls		inject		or		find	,	and	consequently	all	objects	created	in	that	injection	run	will
belong	to	the	supplied	scope.

Keeping	State	in	Scopes
In	the	previous	example	we	used	injection	on	a	scope	level	to	get	a	hold	of	our	resources.	It
is	also	possible	to	subclass		Scope		and	put	arbitrary	data	in	there.	Each	TornadoFX
	Component		has	a		scope		property	that	gives	you	access	to	that	scope	instance.	You	can
even	override	it	to	provide	the	custom	subclass	so	you	don't	need	to	cast	it	on	every
occasion:

override	val	scope	=	super.scope	as	PersonScope

14.	Scopes

199

Now	whenever	you	access	the		scope		property	from	your	code,	it	will	be	of	type
	PersonScope	.	It	now	contains	a		PersonModel		that	will	only	be	available	to	this	scope:

class	PersonScope	:	Scope()	{

				val	model	=	PersonModel()

}

Let's	change	our	previous	example	slightly	to	access	the	model	inside	the	scope	instead	of
using	injection.	First	we	change	the	editPerson	function:

fun	editPerson(person:	Person)	{

				val	editScope	=	PersonScope()

				editScope.model.item	=	person

				find(PersonEditor::class,	editScope).openWindow()

}

The	custom	scope	already	has	an	instance	of		PersonModel	,	so	we	just	configure	the	item	for
that	scope	and	open	the	editor.	Now	the	editor	can	override	the	type	of	scope	and	access
the	model:

//	Cast	scope

override	val	scope	=	super.scope	as	PersonScope

//	Extract	our	view	model	from	the	scope

val	model	=	scope.model

Both	approaches	work	equally	well,	but	depending	on	your	use	case	you	might	prefer	one
over	the	other.

Global	application	scope
As	we	hintet	to	initially,	you	can	run	multiple	applications	in	the	same	JVM	and	keep	them
completely	separate	by	using	scopes.	By	default,	JavaFX	does	not	support	multi	tenancy,
and	can	only	start	a	single	JavaFX	application	per	JVM,	but	new	technologies	are	emerging
that	leverages	multitenancy	and	will	even	expose	your	JavaFX	based	applications	to	the
web.	One	such	technology	is	JPro.io,	and	TornadoFX	supports	multitenancy	for	JPro
applications	by	leveraging	scopes.

There	is	no	special	JPro	classes	in	TornadoFX,	but	supporting	JPro	is	very	simple	by
leveranging	scopes:

Using	TornadoFX	with	JPro

14.	Scopes

200

JPro	will	create	a	new	instance	of	your	App	class	for	each	new	web	user.	Also,	to	access	the
JPro	WebAPI	you	need	to	get	access	to	the	stage	created	for	each	user.	In	this	example	we
subclass		Scope		to	create	a	special	JProScope	that	contains	the	stage	that	was	given	to
each	application	instance:

class	JProScope(val	stage:	Stage)	:	Scope()	{

				val	webAPI:	WebAPI	get()	=	WebAPI.getWebAPI(stage)

}

The	next	step	is	to	subclass		JProApplication		to	define	our	entry	point.	This	app	class	is	in
addition	to	our	existing	TornadoFX	App	class,	which	boots	the	actual	application:

class	Main	:	JProApplication()	{

				val	app	=	OurTornadoFXApp()

				override	fun	start(primaryStage:	Stage)	{

								app.scope	=	JProScope(primaryStage)

								app.start(primaryStage)

				}

				override	fun	stop()	{

								app.stop()

								super.stop()

				}

}

Whenever	a	new	user	visits	our	site,	the		Main		class	is	created,	together	with	a	new
instance	of	our	actual	TornadoFX	application.

In	the		start		function	we	assign	a	new		JProScope		to	the	TornadoFX	app	instance	and	then
call		app.start	.	From	there	on	out,	all	instances	created	using		inject		and		find		will	be	in
the	context	of	that	JPro	instance.

As	usual,	you	can	break	out	of	the		JProScope		to	access	JVM	level	globals	by	supplying	the
	DefaultScope		or	any	other	shared	scope	to	the		inject		or		find		functions.

We	should	provide	a	utility	function	that	makes	it	easy	to	access	the	JPro	WebAPI	from	any
Component:

val	Component.webAPI:	WebAPI	get()	=	(scope	as	JProScope).webAPI

The		scope		property	of	any		Component		will	be	the		JProScope		so	we	can	cast	it	and	access
the		webAPI		property	we	defined	in	our	custom	scope	class.

14.	Scopes

201

14.	Scopes

202

15.	EventBus
An		EventBus		is	a	versatile	tool	with	a	multitude	of	use	cases.	Depending	on	your	coding
style	and
preferences,	you	might	want	to	reduce	coupling	between	controllers	and	views	by	passing
messages
instead	of	having	hard	references	to	each	other.	The	TornadoFX	event	bus	can	make	sure
that	the	messages	are	received	on	the	appropriate	thread,	without	having	to	do	that
concurrency	house-keeping	manually.

People	use	event	buses	for	many	different	use	cases.	TornadoFX	does	not	dictate	when	or
how	you	should
use	them,	but	we	want	to	show	you	some	of	the	advantages	it	can	provide	to	you.

Structure	of	the	EventBus
As	with	any	typical	event	bus	implementation,	you	can	fire	events	as	well	as	subscribe	and
unsubscribe
to	events	on	the	bus.	You	create	an	event	by	extending	the		FXEvent		class.	In	some	cases,
an	event
can	be	just	a	signal	to	some	other	component	to	trigger	something	to	happen.	In	other
cases,	the
event	can	contain	data	which	will	be	broadcast	to	the	subscribers	of	this	event.	Let	us	look	at
a	couple	of
event	definitions	and	how	to	use	them.

Picture	a	UI	where	the	user	can	click	a		Button		to	refresh	a	list	of	customers.	The		View	
knows	nothing	of	where	the	data	is	coming	from	or	how	it	is	produced,	but	it	subscribes
to	the	data	events	and	uses	the	data	once	it	arrives.	Let	us	create	two	event	classes	for	this
use	case.

First	we	define	an	event	signal	type	to	notify	any	listeners	that	we	want	some	customer	data:

import	tornadofx.EventBus.RunOn.*

object	CustomerListRequest	:	FXEvent(BackgroundThread)

15.	EventBus

203

This	event	object	is	an	application-wide		object	.	Because	it	will	never	need	to	contain	data,
it	will	simply	be
broadcast	to	say	that	we	want	the	customer	list.	The		RunOn		property	is	set	to
	BackgroundThread	,	to	signal
that	the	receiver	of	this	event	should	operate	off	of	the	JavaFX	Application	Thread.	That
means	it	will	be
given	a	background	thread	by	default,	so	that	it	can	do	heavy	work	without	blocking	the	UI.
In	the	example	above,	we	have	added	a	static	import	for	the		RunOn		enum,	so	that	we
just	write		BackgroundThread		instead	of		EventBus.RunOn.BackgroundThread	.	Your	IDE	will	help
you	to	make	this	import	so	your
code	looks	cleaner.

A	button	in	the	UI	can	fire	this	event	by	using	the		fire		function:

button("Load	customers").action	{

				fire(CustomerListRequest)

}

A		CustomerController		might	listen	for	this	event,	and	load	the	customer	list	on	demand
before	it	fires	an	event
with	the	actual	customer	data.	First	we	need	to	define	an	event	that	can	contain	the
customer	list:

class	CustomerListEvent(val	customers:	List<Customer>)	:	FXEvent()

This	event	is	a		class		rather	than	an		object	,	as	it	will	contain	actual	data	and	vary.	Also,	it
did	not	specify	another	value	for	the		RunOn		property,	so	this	event	will	be	emitted	on	the
JavaFX	Application	Thread.

A	controller	can	now	subscribe	to	our	request	for	data	and	emit	that	data	once	it	has	it:

class	CustomerController	:	Controller()	{

				init	{

								subscribe<CustomerListRequest>	{

												val	customers	=	loadCustomers()

												fire(CustomerListEvent(customers))

								}

				}

				fun	loadCustomers():	List<Customer>	=	db.selectAllCustomers()

}

Back	in	our	UI,	we	can	listen	to	this	event	inside	the	customer	table	definition:

15.	EventBus

204

tableview<Customer>	{

			column("Name",	Customer::nameProperty)

			column("Age",	Customer::ageProperty)

			subscribe<CustomerListEvent>	{	event	->

							items.setAll(event.customers)

			}

}

We	tell	the	event	bus	that	we	are	interested	in		CustomerListEvent	s,	and	once	we	have	such
an	event	we
extract	the	customers	from	the	event	and	set	them	into	the		items		property	of	the
	TableView	.

Query	Parameters	In	Events
Above	you	saw	a	signal	used	to	ask	for	data,	and	an	event	returned	with	that	data.	The
signal	could	just	as	well
contain	query	parameters.	For	example,	it	could	be	used	to	ask	for	a	specific	customer.
Imagine	these	events:

class	CustomerQuery(val	id:	Int)	:	FXEvent(false)

class	CustomerEvent(val	customer:	Customer)	:	FXEvent()

Using	the	same	procedure	as	above,	we	can	now	signal	our	need	for	a	specific		Customer	,
but	we	now	need	to	be
more	careful	with	the	data	we	get	back.	If	our	UI	allows	for	multiple	customers	to	be	edited	at
once,	we	need	to
make	sure	that	we	only	apply	data	for	the	customer	we	asked	for.	This	is	quite	easily
accounted	for	though:

15.	EventBus

205

class	CustomerEditor(val	customerId:	Int)	:	View()	{

			val	model	:	CustomerModel

			override	val	root	=	form	{

							fieldset("Customer	data")	{

										field("Name")	{

														textfield(model.name)

										}

										//	More	fields	and	buttons	here

							}

			}

			init	{

							subscribe<CustomerEvent>	{

											if	(it.customer.id	==	customerId)

															model.item	=	it.customer

							}

							fire(CustomerQuery(customerId))

			}

}

The	UI	is	created	before	the	interesting	bit	happens	in	the		init		function.	First,	we
subscribe	to		CustomerEvent	s,
but	we	make	sure	to	only	act	once	we	retrieve	the	customer	we	were	asking	for.	If	the
	customerId		matches,
we	assign	the	customer	to	the		item		property	of	our		ItemViewModel	,	and	the	UI	is	updated.

A	nice	side	effect	of	this	is	that	our	customer	object	will	be	updated	whenever	the	system
emits	new	data
for	this	customer,	no	matter	who	asked	for	them.

Events	and	Threading
When	you	create	a	subclass	of		FXEvent	,	you	dictate	the	value	of	the		runOn		property.	It	is
	ApplicationThread	

by	default,	meaning	that	the	subscriber	will	receive	the	event	on	the	JavaFX	Application
Thread.	This	is	useful	for	events
coming	from	and	going	to	other	UI	components,	as	well	as	backend	services	sending	data	to
the	UI.	If	you	want	to
signal	something	to	a	backend	service,	one	which	is	likely	to	perform	heavy,	long-running
work,	you	should	set		runOn	
to		BackgroundThread	,	making	sure	the	subscriber	will	operate	off	of	the	UI	thread.	The
subscriber	now	no	longer	needs	to
make	sure	that	it	is	off	of	the	UI	thread,	so	you	remove	a	lot	of	thread-related	house	keeping

15.	EventBus

206

calls.	Used	correctly
this	is	convenient	and	powerful.	Used	incorrectly,	you	will	have	a	non	responsive	UI.	Make
sure	you	understand
this	completely	before	playing	with	events,	or	always	wrap	long	running	tasks	in		runAsync
{}	.

Scopes
The	event	bus	emits	messages	across	all	scopes	by	default.	If	you	want	to	limit	signals	to	a
certain	scope,	you
can	supply	the	second	parameter	to	the		FXEvent		constructor.	This	will	make	sure	that	only
subscribers	from	the
given	scope	will	receive	your	event.

class	CustomerListRequest(scope:	Scope)	:	FXEvent(BackgroundThread,	scope)

The		CustomerListRequest		is	not	an	object	anymore	since	it	needs	to	contain	the	scope
parameter.	You	would	now	fire
this	event	from	any	UI	Component	like	this:

button("Load	customers").action	{

				fire(CustomerListRequest(scope))

}

The	scope	parameter	from	your		UIComponent		is	passed	into	the		CustomerListRequest	.
When	customer	data	comes
back,	the	framework	takes	care	of	discriminating	on	scope	and	only	apply	the	results	if	they
are	meant	for	you.	You
do	not	need	to	mention	the	scope	to	the	subscribe	function	call,	as	the	framework	will
associate	your	subscription
with	the	scope	your	are	in	at	the	time	you	create	the	subscription.

subscribe<CustomerListEvent>	{	event	->

			items.setAll(event.customers)

}

Invalidation	of	Event	Subscribers

15.	EventBus

207

In	many	event	bus	implementations,	you	are	left	with	the	task	of	deregistering	the
subscribers	when	your	UI	components
should	no	longer	receive	them.	TornadoFX	takes	an	opinionated	approach	to	event	cleanup
so	you	do	not	have	to	think	about	it	much.

Subscriptions	inside		UIComponents		like		View		and		Fragment		are	only	active	when	that
component	is	docked.	That	means	that	even	if	you	have	a		View		that	has	been	previously
initialized	and	used,event	subscriptions	will	not	reach	it	unless	the		View		is	docked	inside	a
window	or	some	other	component.	Once	the	view	is	docked,	the	events	will	reach	it.	Once	it
is	undocked,	the	events	will	no	longer	be	delivered	to	your	component.	This	takes	care	of
the	need	for	you	to	manually	deregister	subscribers	when	you	discard	of	a	view.

For		Controllers		however,	subscriptions	are	always	active	until	you	call		unsubscribe	.	You
need	to	keep
in	mind	that	controllers	are	lazily	loaded,	so	if	nothing	references	your	controller,	the
subscriptions	will
never	be	registered	in	the	first	place.	If	you	have	such	a	controller	with	no	other	references,
but	you	want
it	to	subscribe	to	events	right	away,	a	good	place	to	eagerly	load	it	would	be	the		init		block
of	your		App		subclass:

class	MyApp	:	App(MainView::class)	{

				init	{

								//	Eagerly	load	CustomerController	so	it	can	receive	events

								find(CustomerController::class)

				}

}

Duplicate	Subscriptions
To	avoid	registering	your	subscriptions	multiple	times,	make	sure	you	do	not	register	the
event	subscriptions	in		onDock()		or	any	other	callback	function	that	might	be	invoked	more
than	once	for	the	duration	of	the	component	lifecycle.	The	safest	place	to	create	event
subscriptions	is	in	the		init		block	of	the	component.

Should	I	use	events	for	UI	logic	everywhere?
Using	events	for	everything	might	seem	like	a	noble	idea,	and	some	people	might	prefer	it
because	of	the	loose	coupling
it	facilitates.	However,	the		ItemViewModel		with	injection	is	often	a	more	streamlined	solution

15.	EventBus

208

to	passing	data	and	keeping	UI	state.	This	example	was	provided	to	explain	how	the	event
system	works,	not	to	convince	you	to	write	your	UIs	this	way	all	the	time.

Many	feel	that	events	might	be	better	suited	for	passing	signals	rather	than	actual	data,	so
you	might	also	consider	subscribing	to	signals	and	then	actively	retrieving	the	data	you	need
instead.

Unsubscribe	after	event	is	processed
In	some	situations	you	might	want	to	only	want	to	trigger	your	listener	a	certain	amount	of
times.	Admittedly,	this	is	not	very	convenient.	You	can	pass	the		times	=	n		parameter	to
subscribe	to	control	how	many	times	the	event	is	triggered	before	it	is	unsubscribed:

object	MyEvent	:	FXEvent()

class	MyView	:	View()	{

				override	val	root	=	stackpane	{

								paddingAll	=	100

								button("Fire!").action	{

												fire(MyEvent)

								}

				}

				init	{

								subscribe<MyEvent>(times	=	2)	{

												alert(INFORMATION,	"Event	received!",	"This	message	should	only	appear	twi

ce.")

								}

				}

}

You	can	also	manually	unsubscribe	based	on	an	arbitrary	condition,	or	simply	after	the	first
run:

15.	EventBus

209

class	MyView	:	View()	{

				override	val	root	=	stackpane	{

								paddingAll	=	100

								button("Fire!").action	{

												fire(MyEvent)

								}

				}

				init	{

									subscribe<MyEvent>	{

												alert(INFORMATION,	"Event	received!",	"This	message	should	only	appear	onc

e.")

												unsubscribe()

								}

				}

}

15.	EventBus

210

Workspaces
Java	Business	applications	have	traditionally	been	based	on	one	of	the	Rich	Client
Frameworks,
namely	NetBeans	Platform	or	Eclipse	RCP.	An	important	reason	for	choosing	an	RCP
platform	has	been	the
workspace	like	functionality	they	provide.	Some	important	features	of	a	workspace	are:

Common	action	buttons	that	tie	to	the	state	of	the	docked	view	(Save,	Refresh	etc)
Context	based	UI	nodes	added	to	the	common	workspace	interface
Navigation	stack	for	traversing	visited	views,	controlled	through	back	and	forward
buttons	like	a	web	browser
Menu	system	with	dynamic	contributions	and	modifications

TornadoFX	has	begun	to	bridge	the	gap	between	the	RCP	platforms	by	providing
Workspaces.	While	still	in	it's	infancy,
the	default	functionality	is	a	solid	foundation	for	business	applications	in	need	of	the	features
discussed	above.

The	simplest	possible	Workspace	app
To	kick	off	a	Workspace	app,	all	you	need	to	do	is	to	subclass		App		and	set	the	primary
	View		to		Workspace::class	.
The	result	can	be	seen	below	(Figure	16.1).

class	MyApp	:	App(Workspace::class)

Figure	16.1

16.	Workspaces

211

The	resulting	Workspace	consists	of	a	button	bar	with	four	default	buttons	and	an	empty
content	area	below	it.
The	content	area	can	house	any		UIComponent	.	You	add	a	component	to	the		content		area
by	calling		workspace.dock()		on	it.	If	you
show	the	Workspace	without	a	docked	View,	it	will	by	default	only	take	up	the	space	needed
for	the	buttons.	The	window	in	Figure	16.1
was	resized	after	it	was	opened.

Let's	pretend	we	have	a		CustomerList		component	that	we	would	like	to	dock	in	the
Workspace	as	the	application	starts.
We	do	this	by	overriding	the		onBeforeShow		callback:

class	MyApp	:	App(Workspace::class)	{

				override	fun	onBeforeShow(view:	UIComponent)	{

								workspace.dock<CustomerList>()

				}

}

Figure	16.2

16.	Workspaces

212

The	complete	code	of	the	Customer	List	is	not	important	for	us,	suffice	it	to	say	that	it
displays	a	TableView	and
lists	some	Customers.	What	is	interesting	however,	is	that	the	Refresh	button	in	the
Workspace	was	enabled
when	the		CustomerList		was	docked,	while	the	Save	button	remained	disabled.

Leveraging	the	Workspace	buttons

Whenever	a		UIComponent		is	docked	in	the	Workspace,	the	Refresh,	Save	and	Delete
buttons	will	be	enabled	by	default.	This	happensbecause	the	Workspace	looks	at	the
	refreshable	,		savable		and		deletable		properties	in	the	docked	component.	Every
	UIComponent	returns	a	boolean	property	with	the	default	value	of		true	,	which	the
Workspace	then	connects	to	the	enabled	state	of	these	buttons.	In	the		CustomerList	
example,	we	made	sure	the	Save	button	was	always	disabled	by	overriding	this	property:

override	val	savable	=	SimpleBooleanProperty(false)

We	can	achieve	the	same	result	by	calling		disableSave()		in	the		init		block,	same	goes	for
	disableRefresh()		and		disableDelete()	.

We	didn't	touch	the	other	buttons,	so	they	remain		true		as	per	the	default.	Whenever	the
	Refresh		button
is	called,	it	will	fire	the		onRefresh		function	in	the		View	.	You	can	override	this	to	provide

16.	Workspaces

213

your	refresh	action:

override	val	onRefresh()	{

				customerTable.asyncItems	{	customerController.listCustomers()	}

}

Same	goes	for	the	Delete	button.	We	will	revisit	the	Save	button	and	introduce	a	neat	trick
to	only	activate	it	when	there	are	dirty	changes	later	in	this	chapter.

Tabbed	Views

You	may	at	one	point	dock	a	View	containing	a	TabPane	inside	of	a	Workspace,	and	then
add	tabs	which	represents	further	UIComponents.	You	can	quite	easily	proxy	the	savable,
refreshable	and	deletable	state	and	actions	from	the	Workspace	onto	the	View	represented
by	the	currently	active	Tab.	Consider	a	Customer	Editor	which	has	tabs	for	editing	customer
data,	and	one	for	editing	contacts	for	that	customer.	Whenever	the	user	selects	one	of	the
tabs,	the	buttons	in	the	Workspace	should	interact	with	the	state	and	actions	from	the
selected	tab	view.

class	CustomerEditor	:	View("Customer	Editor")	{

				override	val	root	=	tabpane	{

								tab(CustomerBasicDataEditor::class)

								tab(ContactListEditor::class)

								connectWorkspaceActions()

				}

}

That	single	call	to		connectWorkspaceActions()		takes	care	of	everything	for	us.	The	actual
implementation	of	the	two	sub	views	are	omitted	for	brevity,	but	you	can	imagine	that	they
share	a		CustomerViewModel		injected	into	the	scope	they	share	for	example.

The	actual	implementation	of		connectWorkspaceActions		is	quite	simple,	and	reveals	what's
going	on	under	the	cover:

fun	TabPane.connectWorkspaceActions()	{

				savableWhen	{	savable	}

				whenSaved	{	onSave()	}

				deletableWhen	{	deletable	}

				whenDeleted	{	onDelete()	}

				refreshableWhen	{	refreshable	}

				whenRefreshed	{	onRefresh()	}

}

16.	Workspaces

214

This	function	is	declared	inside		UIComponent	,	so	the		savableWhen	,		deletableWhen		and
	refreshableWhen		are	performed	on	the	UIComponent.	Those	state	are	then	bound	to	the
	savable	,		deletable		and		refreshable		state	of	the	TabPane.	But	wait	-	a	TabPane	doesn't
have	those	functions?!	Yes,	in	TornadoFX	it	has	:)	You	can	probably	guess	that	the
implementation	is	again	another	proxy	into	the	currently	selected	Tab	in	the	TabPane,	and	a
lookup	the	UIComponent	represented	by	the		content		property	of	that	Tab.	Whenever	the
Tab	changes	(or	when	the	content	of	the	tab	changes),	the	underlying	UIComponent	is
looked	up,	and	the	pertinent	states	are	bound	to	the	Workspace.

It	would	also	be	possible	to	bind	these	states	and	connect	the	actions	more	explicitly.	You
will	never	or	seldom	need	to	do	that,	but	the	following
example	might	help	your	understanding	of	the	proxy	mechanism.

class	TooExplicitCustomerEditor	:	View()	{

				override	val	root	=	tab	{

								...

				}

				override	val	savable	=	root.savable

				override	val	refreshable	=	root.refreshable

				override	val	deletable	=	root.deletable

				override	fun	onSave()	{

								root.onSave()

				}

				override	fun	onDelete()	{

								root.onDelete()

				}

				override	fun	onRefresh()	{

								root.onRefresh()

				}

}

As	mentioned,	you	never	need	to	do	this	and	should	always	use	the
	connectWorkspaceActions		call,	but	you	might	want	to	override	one	of		onSave	,		onDelete	or
	onRefresh		to	perform	some	action	in	the	main	editor	before	calling	the	same	action	inside
the	active	tab	by	calling		root.onXXX	.	Let's	say	that	the	refresh	call	in	the	main	editor	reloads
the	customer,	but	you	also	want	to	have	the	contact	list	refresh	if	that	view	is	currently	active.
This	could	be	done
like	this:

16.	Workspaces

215

class	CustomerEditor	:	View()	{

				val	customerController	:	CustomerController	by	inject()

				val	customer:	CustomerModel	by	inject()

				override	val	root	=	tabpane	{

								tab(CustomerBasicDataEditor::class)

								tab(ContactListEditor::class)

								connectWorkspaceActions()

				}

				override	val	onRefresh()	{

								runAsync	{

												customerController.getCustomer(customer.id.value)

								}	ui	{

												customer.item	=	it

												root.onRefresh()

								}

				}

}

This	little	trick	enables	you	to	handle	the	actual	reload	of	the	customer	in	the	main	view
instead	of	reimplementing	it	in	every	tab.

Forwarding	button	state	and	actions

As	we	have	seen,	the	currently	docked	View	controls	the	Workspace	buttons.	Some	times
you	dock	nested	Views	inside	the	main	View,	and	you	would	like	that	nested	View	to	control
the	buttons	and	actions	instead.	This	can	easily	be	done	with	the		forwardWorkspaceActions	
function.	You	can	change	the	forwarding	however	you	see	fit,	for	example	on	focus	or	on
click	on	some	component	inside	the	nested	View.

class	CustomerEditor	:	View()	{

				override	val	root	=	hbox	{

								val	basicDataEditor	=	find<CustomerBasicDataEditor>()

								add(basicDataEditor)

								forwardWorkspaceActions(basicDataEditor)

								add(ContactListEditor::class)

				}

}

Modifying	the	default	workspace

The	default	workspace	only	gives	you	basic	functionality.	As	your	application	grows	you	will
want	to	suplement	the
toolbar	with	more	buttons	and	controls,	and	maybe	a		MenuBar		above	it.	For	small

16.	Workspaces

216

modifications	you	can	augment
it	in	the		onBeforeFunction		as	we	did	above,	but	you	will	most	probably	want	to	subclass	as
the	customizations
become	more	advanced.	The	following	code	and	image	is	taken	from	a	real	world	CRM
application:

class	CRMWorkspace	:	Workspace()	{

				init	{

								add(MainMenu::class)

								add(RestProgressBar::class)

								add(SearchView::class)

				}

}

The		CRMWorkspace		loads	three	other	views	into	it.	One	providing	a		MenuBar	,	then	the	default
	RestProgressBar		is
added,	and	lastly	a		SearchView		providing	a	search	input	field	is	added.

The	Workspace	has	a	pretty	good	idea	about	where	to	place	whatever	you	add	to	it.	For
example,	buttons	will	by	default
be	added	after	the	four	default	buttons,	while	other	components	are	added	to	the	far	right	of
the	ToolBar.	The	MenuBar
is	automatically	added	above	the	ToolBar,	at	the	top	of	the	screen.

Figure	16.3	shows	how	it	looks	in	production,	with	a	little	bit	of	custom	styling	and	a
	CustomerEditor		docked	into	it.
This	application	happens	to	be	in	Norwegian,	and	some	of	the	information	in	the	Customer
card	has	been	removed.

Figure	16.3

16.	Workspaces

217

You	will	notice	that	the	Save	button	is	enabled	in	this	View.	This	is	because	the		savable	
property	is	bound	to
the	dirty	state	property	of	the	view	model:

val	model:	CustomerModel	by	inject()

override	val	savable	=	model.dirty

When	a	customer	is	loaded,	the	Save	button	will	stay	disabled	until	an	edit	has	been	made.
To	save,	we	override	the		onSave		function:

override	fun	onSave()	{

				runAsync	{

								customerController.save(customer.item)

				}	ui	{	saved	->

								customer.update(saved)				

				}

}

This	particular		customerController.save		call	will	return	the		Customer		from	the	server	once	it
is	saved.	If	the	server	made	any	changes
to	our	customer	object,	they	would	have	been	reflected	in	the	saved	customer	we	got	back.
For	that	reason,	we	call
	customer.update(saved)		which	is	function	you	get	for	free	if	you	implement		JsonModel	.	This

16.	Workspaces

218

makes	sure	that	changes
from	the	server	is	pushed	back	into	the	model.	This	is	completely	optional,	and	you	might
just	want	to	do		customerController.save(customer.item)	.

Title	and	heading
When	a	view	is	docked,	the	title	of	the	Workspace	will	match	the	title	of	that	view.	There	is
also	a	heading
text	in	the	workspace	that	by	default	shows	the	same	text	as	the	title.	The	heading	can	be
overriden	by	assigning	to
the		heading		variable	or	binding	to	the		headingProperty		property.	If	you	want	to	completely
remove	the	heading,	augment
the	workspace	with		workspace.headingContainer.removeFromParent()		or	just	hide	it.	You	can
also	put	whatever
nodes	you	want	inside	the	heading	container.	You	saw	this	trick	in	the	CRM	screenshot,
where	a	Gravator	icon	was	placed
to	the	left	of	the	customer	name.

Dynamic	elements	in	the	ToolBar
Some	views	might	need	more	buttons	or	functionality	added	to	the	ToolBar,	but	once	you
navigate	away	from	the	view	it
wouldn't	make	sense	to	keep	them	around.	The	Workspace	will	actually	track	whatever
elements	you	add	to	it	while	a	view	is
docked	and	remove	those	changes	when	the	view	is	undocked.	The	perfect	place	to	add
these	extra	buttons	would	be	the		onDock	
call	of	the	view.

Every		UIComponent		has	a	property	called		workspace		which	will	point	to	the	current
Workspace	for	the	current	Scope.	Let's
add	an	"Add	Customer"	button	to	the	Workspace	whenever	the		CustomerList		is	docked:

override	fun	onDock()	{

				with	(workspace)	{

								button("Add	Customer").action	{	

												addCustomer()	

								}

				}

}

16.	Workspaces

219

The	Workspace	will	now	look	like	in	Figure	16.4

It	looks	like	a	default	button.	You	can	remove	the	border	around	the	button	by	adding	the
	icon-only		css	class	to	it.	Optionally
you	can	configure	an	icon	for	the	graphic	node	if	you	like.	The	built	in	icons	are	svg	shapes
added	in	the	built	in		workspace.css	
but	feel	free	to	add	your	icon	in	any	way	you	see	fit.	Let's	add	an	icon	from	the
FontAwesomeFX	library	and	make	it	look	like
the	other	buttons:

button("Add	Customer")	{

				addClass("icon-only")

				graphic	=	FontAwesomeIconView(PLUS_CIRCLE).apply	{

								style	{

												fill	=	c("#818181")

								}

								glyphSize	=	18

				}

				action	{	addCustomer()	}

}

16.	Workspaces

220

In	a	real	application	you	would	use	a	css	class	so	you	don't	need	to	configure	the	fill	for
every	button	you	add.	The	result	can	be	seen	in	Figure	16.5:

Figure	16.5

Navigating	between	docked	views
Our	Customer	List	is	configured	so	that	whenever	you	double	click	a	customer	you	will	be
taken	to	an	editor	for	that	customer.
The	TableView	binds	the	selected	user	to	a		CustomerModel		view	model	object,	and	the
action	is	performed	like	this:

tableview(customers)	{

				column("First	Name",	Customer::firstNameProperty)

				column("Last	Name",	Customer::lastNameProperty)

				bindSelected(model)

				onUserSelect	{	workspace.dock<CustomerEditor>()	}

}

16.	Workspaces

221

The	only	thing	we	need	to	do	is	actually	dock	the		CustomerEditor		when	the	user	selects	a
row.	Since	the		CustomerEditor	
will	be	looked	up	in	the	same	scope	we	are	currently	in,	it	will	have	access	to	the	selected
customer	as	well:

class	CustomerEditor	:	Fragment("Customer	Editor")	{

				val	customer:	CustomerModel	by	inject()

				override	val	savable	=	customer.dirty

				override	val	headingProperty	=	customer.fullName

				override	val	root	=	form	{

								fieldset("Customer	Details")	{

												field("First	Name")	{

																textfield(customer.firstName)

												}

												field("Last	Name")	{

																textfield(customer.lastName)

												}

								}

				}

				override	fun	onSave()	{

								customer.commit()

				}

				override	fun	onRefresh()	{

								customer.rollback()

				}

}

The	customer	model	is	injected,	and	will	contain	the	selected	customer	from	the	list.	The
	savable		property	is	bound
to	the		dirty		property	of	the	model	and	the		headingProperty		is	bound	to	a		StringBinding	
called		fullName	,	which
concatinates	the	first	and	last	names	and	updates	whenever	they	are	changed.	The	form
fields	bind	to	the	name	properties
and	lastly	the		onSave		and		onRefresh		functions	are	implemented	to	react	to	the
corresponding	Workspace	buttons.

Figure	16.6

16.	Workspaces

222

We	can	see	that	the		title		and		heading		are	indeed	displaying	separate	information.	Since
we	haven't	made	any	edits
yet,	the	Save	button	is	disabled,	while	the	Refresh	button	is	available,	and	would	roll	back
any	changes	made
since	the	last	commit.

The		back		button	is	enabled	as	well,	and	clicking	it	would	navigate	back	to	the	Customer
list.	This	is	a	very	powerful
feature	which	enables	browser	like	navigation	in	your	application	with	very	little	effort	on	your
part.	The	Workspace
keeps	a	navigation	stack	of	configurable	depth.	By	default	it	will	contain	10	previously
docked	views.	You	can	configure	the
	maxViewStackDepth		to	change	the	number	of	views	held	in	the	navigation	stack.

Alternative	to	overriding		onSave		and
	onRefresh	

16.	Workspaces

223

Some	times	you	want	to	access	an	object	in	one	of	the	workbench	button	actions	but	you
want	to	avoid	creating	a	variable
for	that	object.	Instead	you	can	use	the		whenSaved		and		whenRefreshed		callbacks,	which	can
be	configured	from	anywhere.
Important:	They	are	alternatives	to		onSave		and		onRefresh		so	you	should	only	do	one	or
the	other.	Let's	say	we	want	to
refresh	a	TableView	when	the	Refresh	button	is	clicked.	We	can	configure	this	inside	the
builder	for	the	TableView:

tableview	{

				whenRefreshed	{	

								asyncItems	{	controller.loadItems()	}	

				}				

}

This	is	a	handy	alternative	in	some	situations,	but	make	sure	you	only	choose	one	of	the
strategies.

Advanced	scope	navigation
When	you	leverage	injected	view	models	together	with	a	navigation	stack,	some	interesting
challenges	appear	that	need
to	be	addressed.	If	you	removed	the	Back	button
(workspace.backButton.removeFromParent())	or	set	the		maxViewStackDepth		to
	0		you	can	disregard	this	particular	challenge,	but	to	leverage	this	powerful	navigation
paradigm,	there	are	some	things
you	need	to	think	about.

Consider	our	prevous	example	with	an	injected		CustomerModel		that	represents	the	currently
selected	customer	in	the		CustomerList	
while	also	being	used	by	the		CustomerEditor		to	edit	that	same	customer.	Then	let's	assume
that	there	is	a	way	to	search	for
a	customer	and	edit	it,	perhaps	using	a		TextField		in	the	ToolBar	of	the	Workspace	as	a
search	entry	point.	If	you	search	for
a	new	customer	and	go	on	to	edit	it,	then	navigate	back	to	the	previous	customer	editor,	it
would	suddenly	operate	on	the
last	customer	you	set	in	the		CustomerModel	.	You	can	probably	imagine	the	ensuing	havoc.

Fortunately,	the	scoping	support	stretches	far	into	the	Workspace	feature	and	provides	some
handy	tools	for	this	particular	situation.

16.	Workspaces

224

We	need	to	find	a	way	to	contain	the	scope	for	the	pair	of	CustomerList	and	CustomerEditor
so	they	can	work	together	while	allowing
other	views	to	use	the		CustomerModel	,	but	in	a	different	scope.	It's	actually	quite	easy.
Whenever	you	create	a	new		CustomerList	,
also	create	a	new	Scope.	If	you	were	to	do	this	manually,	it	would	look	something	like	this:

//	Create	a	new	scope,	but	keep	the	current	workspace

val	newScope	=	Scope(workspace)

//	Find	the	CustomerList	in	the	new	scope

val	customerList	=	find<CustomerList>(newScope)

//	Dock	the	customerList	in	the	workspace

workspace.dock(customerList)

Those	three	distinct	operations	can	be	performed	in	a	single	call:

workspace.dockInNewScope<CustomerList>()

When	the	CustomerList	docks	the	CustomerEditor	later	on,	it	happens	in	this	new	scope.
But	what	about	the	search	field?

We	would	need	to	provide	a	separate	scope	for	the		CustomerEditor		that	should	show	the
result	of	the	search,	but
were	we	would	also	also	need	to	inject	the	customer	model	containing	the	selected
customer	into	the	new	scope.	This
following	code	is	imagined	inside	the	action	that	selects	a	customer	from	the	search	result:

fun	editCustomer(customer:	Customer)	{

//	Create	a	view	model	for	the	customer

val	model	=	CustomerModel(customer)

//	Create	a	new	scope,	but	keep	the	current	workspace

val	newScope	=	Scope(workspace)

//	Insert	the	customer	model	into	the	new	scope

newScope.set(model)

//	Find	the	CustomerEditor	in	the	new	scope

val	editor	=	find<CustomerEditor>(newScope)

//	Dock	the	editor

workspace.dock(editor)

}

16.	Workspaces

225

That's	a	lot	of	steps.	Fortunately,	we	can	do	that	as	well	in	a	single	call:

fun	editCustomer(customer:	Customer)	{

				workspace.dockInNewScope<CustomerEditor>(CustomerModel(customer))

}

The		dockInNewScope		function	takes	a	vararg	list	of	injectable	objects	to	insert	into	the	new
scope	before	looking
up	our	CustomerEditor	and	docking	it.

Separating	scopes	this	way	makes	sure	we	can	utilize	injected	view	models	without	being
afraid	of	other	views	stepping
on	our	data.	It	is	a	pragmatic	approach	to	an	intricate	problem.	It	also	gives	you	a	way	of
bleeding	injectables
into	new	scopes,	should	your	use	case	require	it.

Custom	ViewStack	optimizations
Some	use	cases	might	require	you	to	make	sure	that	the	user	cannot	go	back	to	a	certain
view	after	he	has	navigated
to	the	prior	view.	You	can	remove	your	self	from	the	View	Stack	on	unDock	like	this:

override	fun	onUndock()	{

				workspace.viewStack.remove(this)

}

Docking	multiple	views	in	the	editor	area
The	Workspace	provides	an	alternative	way	to	navigate	between	views.	Instead	of	back	and
forward	buttons,	you	can	choose
to	dock	multiple	views	inside	a	TabPane	in	the	editor	area.	The	Workspace	has	a
	navigationMode		property	that	lets
you	change	how	the	views	are	represented	in	the	editor	area.	The	default	is
	Workspace.NavigationMode.Stack	.	The	following	example
creates	a	tabbed	Workspace	that	automatically	docks	two	views	inside	it	when	it's	created:

16.	Workspaces

226

class	TabbedWorkspace:	Workspace("Tabbed	Workspace",	NavigationMode.Tabs)	{

				init	{

								dock<FirstView>()

								dock<SecondView>()

				}

}

Figure	16.7

A	Workspace	in	Tabs	mode	automatically	hides	the	navigation	buttons	as	they	are	no
longer	needed

You	can	create	a	starting	point	for	this	Workspace	from	a	normal		App		class:

class	TabbedWorkspaceApp	:	App(TabbedWorkspace::class)

The	views	docked	inside	the	Workspace	tabs	will	have	their		onDock		function	called
whenever	they	are	added	and
also	when	they	are	subsequently	chosen	as	the	active	Tab.	Correspondingly,	the		onUndock	
function	is	called
whenever	it	is	no	longer	the	active	Tab,	as	well	as	when	it's	removed	from	the	TabPane
using	the	close	button	on	the	tab.

16.	Workspaces

227

You	can	control	the	closable	state	of	a	View	docked	inside	the	TabPane	via	the		closeable	
property	in		UIComponent	.
It	returns	a		BooleanExpression		with	the	default	value	of		true		but	you	can	override	it	to	bind
against	another
property	or	simply	return	another		SimpleBooleanValue(false)		to	make	it	uncloseable.	This
example	makes	sure	you
cannot	close	the	tab	before	the	CustomerModel	inside	it	is	committed	or	rolled	back:

class	CustomerEditor	:	View("Customer	Editor")	{

				val	customer:	CustomerModel	by	inject()

				override	val	closeable	=	customer.dirty.not()

}

Drawer	navigation
The	Workspace	has	built	in	support	for	the	Drawer	control.	You	can	access
	workspace.leftDrawer		and		workspace.rightDrawer		to
add	items	to	each	drawer.	They	will	show	up	on	either	the	left	or	right	side	whenever	you
have	added	one	or	more	items	to	them.

Items	added	from	a	View	in		onDock		will	automatically	be	removed	when	the	View	is
undocked.	Items	added	directly	in	the	Workspace
subclass,	from	the		onBeforeShow		App	callback	or	from	any	other	place	will	stay	until	they
are	manually	removed.

The	combination	of	static	and	dynamic	drawer	items	makes	for	a	very	powerful	navigation
and	menu	structure.	Only	your	imagination	is	the	limit!

The	following	example	creates	a	customize	Workspace	primed	with	a	docked	Customer
Editor	in	the	editor	area	and	the	three
drawer	items	we	created	in	the	Drawer	chapter	configured	statically	in	the		leftDrawer		of	the
Workspace:

16.	Workspaces

228

//	A	Form	based	View	we	will	dock	in	the	workspace	editor	area

class	CustomerEditor	:	View("Customer	Editor")	{

				override	val	root	=	form	{

								fieldset(title)	{

												field("Name")	{	textfield()	}

												field("Username")	{	textfield()	}

												button("Save")

								}

				}

}

class	DrawerWorkspace	:	Workspace()	{

				init	{

								//	Dock	the	Customer	Editor	by	default

								dock<CustomerEditor>()

				}

				init	{

								//	Add	items	to	the	left	drawers

								with(leftDrawer)	{

												item("Screencasts")	{

																webview	{

																				prefWidth	=	470.0

																				engine.userAgent	=	iPhoneUserAgent

																				engine.load(TornadoFXScreencastsURI)

																}

												}

												item("Links")	{

																listview(links)	{

																				cellFormat	{	link	->

																								graphic	=	hyperlink(link.name).action	{

																												hostServices.showDocument(link.uri)

																								}

																				}

																}

												}

												item("People")	{

																tableview(people)	{

																				column("Name",	Person::name)

																				column("Nick",	Person::nick)

																}

												}

								}

				}

				//	Sample	data	and	configuration	omitted	for	this	example

}

In	Figure	16.8	we	have	expanded	the	Links	drawer	item.	Notice	how	it	pushes	the	Customer
Editor	to	the	right.

16.	Workspaces

229

Figure	16.8

By	right	clicking	the	drawer	and	checking	the		Floating	drawers		option,	the	expanded
drawer	item	content	will
instead	float	above	the	content,	like	in	Figure	16.9:

Figure	16.9

16.	Workspaces

230

This	could	be	a	good	idea	depending	on	the	available	space	and	the	nature	of	the	docked
content.	You	can	change	the
floating	drawer	mode	in	code	as	well,	by	setting		leftDrawer.floatingDrawers	=	true	.

Remember	that	Views	can	contribute	drawer	items	programmatically	in	their		onDock	
callback.	Use	this	to
provide	extra	tools	for	an	advanced	editor	for	example.	They	can	easily	communicate
between	each	other
using	ViewModels.	It	is	recommended	to	create	a	new	scope	to	make	it	easier	for	these	view
parts	to	work	in	concert
on	shared	data	structures.

Vetoing	navigation	from	the	docked	View

16.	Workspaces

231

The	currently	docked	View	will	receive	a	callback	whenever	the	Back	or	Forward	buttons	of
the	Workspace	is	clicked.	These	functions
are	called		onNavigateBack		and		onNavigateForward	.	The	default	implementation	returns	true
to	signal	that	the	navigation	should	proceed.
You	can	however	return	false	to	stop	the	navigation	and	instead	implement	your	own	logic	to
decide	what	happens	in	the	UI	when	one	of	the
navigation	buttons	are	clicked.

16.	Workspaces

232

Internationalization
TornadoFX	makes	it	very	easy	to	support	multiple	languages	in	your	app.

Internationalization	in	Components

Each		Component		has	access	to	a	property	called		messages		of	type		ResourceBundle	.	This
can	be	used	to	look	messages	in	the	current	locale	and	assign	them	to	controls
programmatically:

class	MyView:	View()	{

				init	{

								val	helloLabel	=	Label(messages["hello"])

				}

}

A	label	is	programmatically	configured	to	get	it's	text	from	a	resource	bundle

As	well	of	the	shorthand	syntax		messages["key"]	,	all	other	functions	of	the		ResourceBundle	
class	is	available	as	well.

The	bundle	is	automatically	loaded	by	looking	up	a	base	name	equal	to	the	fully	qualified
class	name	of	the		Component	.	For	a	Component	named		views.CustomerList	,	the
corresponding	resource	bundle	in		/views/CustomerList.properties		will	be	used.	All	normal
variants	of	the	resource	bundle	name	is	supported,	see	ResourceBundle	Javadocs	for	more
information.

Internationalization	in		FXML	

When	an		FXML		file	is	loaded	via	the		fxml		delegate	function,	the	corresponding		messages	
property	of	the	component	will	be	used	in	exactly	the	same	way.

<HBox>

				<Label	text="%hello"/>

</HBox>

The	message	with	key		hello		will	be	injected	into	the	label.

Default	Global	Messages

17.	Internationalization

233

https://docs.oracle.com/javase/8/docs/api/java/util/ResourceBundle.html

You	can	add	a	global	set	of	messages	with	the	base	name		Messages		(for	example
	Messages_en.properties)	at	the	root	of	the	class	path.

Automatic	lookup	in	parent	bundle

When	a	key	is	not	found	in	the	component	bundle,	or	when	there	is	no	bundle	for	the
currrent	component,	the	global	resource	bundle	is	consulted.	As	such,	you	might	use	the
global	bundle	for	all	resources,	and	place	overrides	in	the	per	component	bundle.

Friendly	error	messages

In	stead	of	throwing	an	exception	when	a	key	is	not	available	in	your	bundle,	the	value	will
simply	be		[key]	.	This	makes	it	easy	to	spot	your	errors,	and	your	UI	is	still	fully	functional
while	you	add	the	missing	keys.

Configuring	the	locale

The	default	locale	is	the	one	retrieved	from		Locale.getDefault()	.	You	can	configure	a
different	locale	by	issuing:

FX.locale	=	Locale("my-locale")

The	global	bundle	will	automatically	be	changed	to	the	bundle	corresponding	to	the	new
locale,	and	all	subsequently	loaded	components	will	get	their	bundle	in	the	new	locale	as
well.

Overriding	resource	bundles

If	you	want	to	change	the	bundle	for	a	component	after	it's	been	initialized,	or	if	you	simply
want	to	load	a	spesific	bundle	without	relying	on	the	conventions,	simply	assign	the	new
bundle	to	the		messages		property	of	the	component.

If	you	want	to	use	the	overriden	resource	bundle	to	load		FXML	,	make	sure	you	change	the
bundle	before	you	load	the	root	view:

class	MyView:	View()	{

				init	{	messages	=	ResourceBundle.getBundle("MyCustomBundle")	}

				override	val	root	=	HBox	by	fxml()

}

17.	Internationalization

234

A	manually	overriden	resource	bundle	is	used	by	the		FXML		file	corresponding	to	the
View

The	same	technique	can	be	used	to	override	the	global	bundle	by	assigning	to
	FX.messages	.

Startup	locale

You	can	override	the	default	locale	as	early	as	the		App		class		init		function	by	assigning	to
	FX.locale	.

Controllers	and	Fragments	as	well

The	same	conventions	are	valid	for		Controllers		and		Fragments	,	since	the	functionality	is
made	available	to	their	common	super	class,		Component	.

17.	Internationalization

235

Config	settings	and	state
Saving	application	state	is	a	common	requirement	for	desktop	apps.	TornadoFX	has	several
features	which	facilitates	saving	of	UI	state,	preferences	and	general	app	configuration
settings.

The		config		helper
Each	component	can	have	arbitrary	configuration	settings	that	will	be	saved	as	property	files
in	a	folder	called		conf		inside	the	current	program	folder.

Below	is	a	login	screen	example	where	login	credentials	are	stored	in	the	view	specific
config	object.

18.	Config	Settings	and	State

236

class	LoginScreen	:	View()	{

				val	loginController:	LoginController	by	inject()

				val	username	=	SimpleStringProperty(this,	"username",	config.string("username"))

				val	password	=	SimpleStringProperty(this,	"password",	config.string("password"))

				override	val	root	=	form	{

							fieldset("Login")	{

											field("Username:")	{	textfield(username)	}

											field("Password:")	{	textfield(password)	}

											buttonbar	{

																button("Login").action	{

																				runAsync	{

																								loginController.tryLogin(username.value,	password.value)

																				}	ui	{	success	->

																								if	(success)	{

																												with(config)	{

																																	set("username"	to	username.value)

																																	set("password"	to	password.value)

																																	save()

																												}

																												showMainScreen()

																								}

																				}

																}

												}

							}

				}

				fun	showMainScreen()	{

								//	hide	LoginScreen	and	show	the	main	UI	of	the	application

				}

}

Login	screen	with	credentials	stored	in	the	view	specific	config	object

The	UI	is	defined	with	the		TornadoFx		type	safe	builders,	which	basically	contains	a		form	
with	two		TextField	's	and	a		Button	.	When	the	view	is	loaded,	we	assign	the	username	and
password	values	from	the	config	object.	These	values	might	be	null	at	this	point,	if	no	prior
successful	login	was	performed.	We	then	bind	the		username		and		password		to	the
corresponding		TextField	's.

Last	but	not	least,	we	define	the	action	for	the	login	button.	Upon	login,	it	calls	the
	loginController#tryLogin		function	which	takes	the	username	and	password	from	the
	StringBindings		(which	represent	the	input	of	the		TextField	s),	calls	out	to	the	service	and
returns	true	or	false.

18.	Config	Settings	and	State

237

If	the	result	is	true,	we	update	the	username	and	password	in	the	config	object	and	calls
save	on	it.	Finally,	we	call		showMainScreen		which	could	hide	the	login	screen	and	show	the
main	screen	of	the	application.

Please	not	that	the	example	is	not	a	best	practise	for	storing	sensitive	data,	it	merely
illustrates	how	you	can	use	the	config	object.

Data	types	and	default	values
	config		also	supports	other	data	types.	It	is	a	nice	practise	to	wrap	multiple	operations	on
the	config	object	in	a		with		block.

//	Assign	to	x,	default	to	50.0

var	x	=	config.double("x",	50.0)

var	showPrices	=	config.boolean("showPrices",	boolean)

with	(config)	{

				set("x",	root.layoutX)

				set("showPrices",	showPrices)

				save()

}

Configurable	config	path
The		App		class	can	override	the	default	path	for	config	files	by	overriding		configBasePath	.

class	MyApp	:	App(WelcomeView::class)	{

				override	val	configBasePath:	Paths.get("/etc/myapp/conf")

}

The	path	can	also	be	relative,	which	means	the	path	will	be	created	inside	the	current
working	directory.	By	default,	the	base	path	is		conf	.

Override	config	path	per	component
By	default,	a	file	called		viewClass.properties		is	created	inside	the		configBasePath	.	This
can	be	overriden	per	component:

class	MyView	:	View()	{

				override	val	configPath	=	Paths.get("some/other/path/myview.properties")

18.	Config	Settings	and	State

238

You	can	also	create	the	View	spesific	config	file	below	the		configBasePath	,	which	would
make	sense	in	most	situations.	You	do	this	by	accessing	the	App	class	through	the		app	
property	of	the	View.

class	MyView	:	View()	{

				override	val	configPath	=	app.configBasePath.resolve("myview.properties")

Global	application	config
The	App	class	also	has	a		config		property	and	a	corresponding		configPath		property.	By
default,	the	configuration	for	the	app	class	is	named		app.config	.	This	can	be	overridden	the
same	way	you	do	for	a	View	config.

The	global	configuration	can	be	accessed	by	any	component	at	any	time	in	the	life	cycle	of
the	application.	Simply	access		app.config		from	anywhere	to	read	or	write	your	global
configuration.

JSON	configuration	settings
The		config		object	supports		JsonObject	,		JsonArray		and		JsonModel	.	You	set	them	using
	config.set("key"	to	value)		and	retrieve	them	using		config.jsonObject("key")	,
	config.jsonArray("key")		and		config.jsonModel("key")	.

The		preferences		helper
As	the		config		helper	stores	the	information	in	a	folder	called		conf		per	component	(view,
controller)	the		preferences		helper	will	save	settings	into	an	OS	specific	way.	In	Windows
systems	they	will	be	stored		HKEY_CURRENT_USER/Software/JavaSoft/....		on	Mac	os	in
	~/Library/Preferences/com.apple.java.util.prefs.plist		and	on	Linux	system	in		~/.java	.
Where	the		config		helper	saves	per	component.	The		preferences		helper	is	meant	to	be
used	application	wide:

preferences("application")	{

			putBoolean("boolean",	true)

			putString("String",	"a	string")

}

Retrieving	preferences:

18.	Config	Settings	and	State

239

var	bool:	Boolean	=	false

var	str:	String	=	""

preferences("test	app")	{

				bool	=	getBoolean("boolean	key",	false)

				str	=	get("string",	"")

}

The		preferences		helper	is	a	TornadoFX	builder	around	java.util.Preferences

18.	Config	Settings	and	State

240

http://docs.oracle.com/javase/8/docs/technotes/guides/preferences/overview.html

JSON	and	REST
JSON	has	become	the	new	standard	for	data	exchange	over	HTTP.	Working	with	JSON	with
the	data	types	defined	in		javax.json		is	not	hard,	but	a	bit	cumbersome.	The	TornadoFX
JSON	support	comes
in	two	forms:	Enhancements	to	the		javax.json		objects	and	functions	and	a	specialized
REST	client	that	does	HTTP	as	well	as	automatic	conversion	between	JSON	and	your
domain	models.

To	facilitate	conversion	between	these	JSON	objects	and	your	model	objects,	you	can
choose	to	implement	the	interface	JsonModel	and	one	or	both	of	the	functions		updateModel	
and		toJSON	.

Later	in	this	chapter	we	will	introduce	the	REST	client,	but	the	JSON	Support	can	also	be
used	standalone.	The	REST	client	calls	certain	functions	on	JsonModel	objects	during	the
lifecycle	of	an	HTTP	request.

	updateModel		is	called	to	convert	a	JSON	object	to	your	domain	model.	It	receives	a	JSON
object	from	which	you	can	update	the	properties	of	your	model	object.

	toJSON		is	called	to	convert	your	model	object	to	a	JSON	payload.	It	receives	a
	JsonBuilder		where	you	can	set	the	values	of	the	model	object.

class	Person	:	JsonModel	{

				var	id	by	property<Int>()

				fun	idProperty()	=	getProperty(Person::id)

				var	firstName	by	property<String>()

				fun	firstNameProperty()	=	getProperty(Person::firstName)

				var	lastName	by	property<String>()

				fun	lastNameProperty()	=	getProperty(Person::lastName)

				val	phones	=	FXCollections.observableArrayList<Phone>()

				override	fun	updateModel(json:	JsonObject)	{

								with(json)	{

												id	=	int("id")

												firstName	=	string("firstName")

												lastName	=	string("lastName")

												phones.setAll(getJsonArray("phones").toModel())

								}

				}

				override	fun	toJSON(json:	JsonBuilder)	{

19.	JSON	and	REST

241

								with(json)	{

												add("id",	id)

												add("firstName",	firstName)

												add("lastName",	lastName)

												add("phones",	phones.toJSON())

								}

				}

}

class	Phone	:	JsonModel	{

				var	id	by	property<Int>()

				fun	idProperty()	=	getProperty(Phone::id)

				var	number	by	property<String>()

				fun	numberProperty()	=	getProperty(Phone::number)

				override	fun	updateModel(json:	JsonObject)	{

								with(json)	{

												id	=	int("id")

												number	=	string("number")

								}

				}

				override	fun	toJSON(json:	JsonBuilder)	{

								with(json)	{

												add("id",	id)

												add("number",	number)

								}

				}

}

JsonModel	with	getters/setters	and	property()	accessor	functions	to	be	JavaFX
Property	compatible

When	you	implement		JsonModel		you	also	get	the		copy		function,	which	creates	a	copy	of
your	model	object.

Tornado	FX	also	comes	with	special	support	functions	for	reading	and	writing	JSON
properties.	Please	see	the	bottom	of	Json.kt	for	an	exhaustive	list.

All	the	JSON	retrieval	functions	accepts	a	vararg	argument	for	the	key	in	the	JSON
document.	The	first	key	available	in	the	document	will	be	used	to	retrieve	the	value.	This
makes	it	easier	to	work	with	slightly	inconsistent	JSON	schemes	or	can	be	used	as	a	ternary
to	provide	a	fallback	value	for	example.

Configuring	datetime

19.	JSON	and	REST

242

https://github.com/edvin/tornadofx/blob/master/src/main/java/tornadofx/Json.kt

The		datetime(key)		function	used	to	retrieve	a		LocalDateTime		object	from	JSON	will	by
default	expect	a	value	of	"Seconds	since	epoch".	If	your	external	webservice	expects
"Milliseconds	since	epoch"	instead,
you	can	either	send		datetime(key,	millis	=	true)		or	configure	it	globally	by	setting
	JsonConfig.DefaultDateTimeMillis	=	true	.

Generating	JSON	objects
The		JsonBuilder		is	an	abstraction	over		javax.json.JsonObjectBuilder		that	supports	null
values.	Instead	of	blowing	up,	it	silently	dismisses	the	missing	entry,	which	enables	you	to
build	your	JSON	object	graph
more	fluently	without	checking	for	nulls.

REST	Client
The	REST	Client	that	makes	it	easy	to	perform	JSON	based	REST	calls.	The	underlying
HTTP	engine	interface	has	two	implementations.	The	default	uses	HttpURLConnection	and
there	is	also	an	implementation	based	on	Apache	HttpClient.	It	is	easy	to	extend	the
	Rest.Engine		to	support	other	http	client	libraries	if	needed.

To	use	the	Apache	HttpClient	implementation,	simply	call		Rest.useApacheHttpClient()		in	the
	init		method	of	your	App	class	and	include	the		org.apache.httpcomponents:httpclient	
dependency	in	your	project	descriptor.

Configuration
If	you	mostly	access	the	same	api	on	every	call,	you	can	set	a	base	uri	so	subsequent	calls
only	need	to	include	relative	urls.	You	can	configure	the	base	url	anywhere	you	like,	but	the
	init		function	of	your		App		class	is	a	good	place	to	do	it.

class	MyApp	:	App()	{

				val	api:	Rest	by	inject()

				init	{

								api.baseURI	=	"http://contoso.com/api"

				}

}

19.	JSON	and	REST

243

Basic	operations
There	are	convenience	functions	to	perform		GET	,		PUT	,		POST		and		DELETE		operations.

class	CustomerController	:	Controller()	{

				val	api	=	Rest	by	inject()

				fun	loadCustomers():	ObservableList<Customer>	=

								api.get("customers").list().toModel()

}

CustomerController	with	loadCustomers	call

So,	what	exactly	is	going	on	in	the		loadCustomers		function?	First	we	call
	api.get("customers")		which	will	perform	the	call	and	return	a		Response		object.	We	then
call		Response.list()		which	will	consume	the	response	and	convert	it	to	a
	javax.json.JsonArray	.	Lastly,	we	call	the	extension	function		JsonArray.toModel()		which
creates	one		Customer		object	per		JsonObject		in	the	array	and	calls		JsonModel.updateModel	
on	it.	In	this	example,	the	type	argument	is	taken	from	the	function	return	type,	but	you	could
also	write	the	above	method	like	this	if	you	prefer:

fun	loadCustomers()	=	api.get("customers").list().toModel<Customer>()

How	you	provide	the	type	argument	to	the		toModel		function	is	a	matter	of	taste,	so	choose
the	syntax	you	are	most	comfortable	with.

These	functions	take	an	optional	parameter	with	either	a		JsonObject		or	a		JsonModel		that
will	be	the	payload	of	your	request,	converted	to	a	JSON	string.

The	following	example	updates	a	customer	object.

fun	updateCustomer(customer:	Customer)	=	api.put("customers/${customer.id}",	customer)

If	the	api	endpoint	returns	the	customer	object	to	us	after	save,	we	would	fetch	a	JsonObject
by	calling		one()		and	then		toModel()		to	convert	it	back	into	our	model	object.

fun	updateCustomer(customer:	Customer)	=

				api.put("customers/${customer.id}",	customer).one().toModel<Customer>()

Query	parameters

19.	JSON	and	REST

244

Query	parameters	needs	to	be	URL	encoded.	The		Map.queryString		extension	value	will
turn	any	map	into	a	properly	URL	encoded	query	string:

val	params	=	mapOf("id"	to	1)

api.put("customers${params.queryString}",	customer).one().toModel<Customer>()

This	will	call	the	URI		customers?id=1	.

Error	handling
If	an	I/O	error	occurs	during	the	processing	of	the	request,	the	default	Error	Handler	will
report	the	error	to	the	user.	You	can	of	course	catch	any	errors	yourself	instead.	To	handle
HTTP	return	codes,	you	might	want	to	inspect	the		Response		before	you	convert	the	result	to
JSON.	Make	sure	you	always	call		consume()		on	the	response	if	you	don't	extract	data	from
it	using	any	of	the	methods		list()	,		one()	,		text()		or		bytes()	.

fun	getCustomer(id:	Int):	Customer	{

				val	response	=	api.get("some/action")

				try	{

								if	(response.ok())

												return	response.one().toModel()

								else	if	(response.statusCode	==	404)

												throw	CustomerNotFound()

								else

												throw	MyException("getCustomer	returned	${response.statusCode}	${response.

reason}")

				}	finally	{

								response.consume()

				}

}

Extract	status	code	and	reason	from		HttpResponse	

	response.ok()		is	shorthand	for		response.statusCode	==	200	.

Authentication
Tornado	FX	makes	it	very	easy	to	add	basic	authentication	to	your	api	requests:

api.setBasicAuth("username",	"password")

19.	JSON	and	REST

245

To	configure	authentication	manually,	configure	the		requestInterceptor		of	the	engine	to	add
custom	headers	etc	to	the	request.	For	example,	this	is	how	the	basic	authentication	is
implemented	for	the		HttpUrlEngine	:

requestInterceptor	=	{	request	->

				val	b64	=	Base64.getEncoder().encodeToString("$username:$password".toByteArray(UTF

_8))

				request.addHeader("Authorization",	"Basic	$b64")

}

For	a	more	advanced	example	of	configuring	the	underlying	client,	take	a	look	at	how	basic
authentication	is	implemented	in	the		HttpClientEngine.setBasicAuth		function	in	Rest.kt.

Intercepting	calls
You	can	for	example	show	a	login	screen	if	an	HTTP	call	fails	with	statusCode	401:

api.engine.responseInterceptor	=	{	response	->

				if	(response.statusCode	==	401)

								showLoginScreen("Invalid	credentials,	please	log	in	again.")

}

Setting	timeouts
You	can	configure	the	read	timeout	for	the	default	provider	by	using	a		requestInterceptor	
and	casting	the	request	to		HttpURLRequest		before	yo	operate	on	it.

api.engine.requestInterceptor	=	{

				(it	as	HttpURLRequest).connection.readTimeout	=	5000

}

You	can	configure	the		connectionTimeout		of	the		HTTPUrlConnection		object	above	in	the
same	way.

Connect	to	multiple	API's
You	can	create	multiple	instances	of	the		Rest		class	by	subclassing	it	and	configuring	each
subclass	as	you	wish.	Injection	of	subclasses	work	seamlessly.	Override	the		engine	
property	if	you	want	to	use	another	engine	than	the	default.

19.	JSON	and	REST

246

https://github.com/edvin/tornadofx/blob/master/src/main/java/tornadofx/Rest.kt

Default	engine	for	new	Rest	instances
The	engine	used	by	a	new	Rest	client	is	configured	with	the		engineProvider		of	the	Rest
class.	This	is	what	happens	when	you	call		Rest.useApacheHttpClient	:

Rest.engineProvider	=	{	rest	->	HttpClientEngine(rest)	}

The		engineProvider		returns	a	concrete		engine		implementation	that	is	given	the
current		Rest		instance	as	argument.

You	can	override	the	configured		engine		in	a		Rest		instance	at	any	time.

Proxy
A	proxy	can	be	configured	either	by	implementing	an	interceptor	that	augments	each	call,	or,
preferably	once	per	Rest	client	instance:

rest.proxy	=	Proxy(Proxy.Type.HTTP,	InetSocketAddress("127.0.0.1",	8080))

Sequence	numbers
If	you	do	multiple	http	calls	they	will	not	be	pooled	and	returned	in	the	order	you	executed
the	calls.	Any	http	request	will	return	as	soon	as	it	is	available.	If	you	want	to	handle	them	in
sequence,	or	even	discard	older	results,	you	can	use	the		Response.seq		value	which	will
contain	a		Long		sequence	number.

Progress	indicator
Tornado	FX	comes	with	a	HTTP	ProgressIndicator	View.	This	view	can	be	embedded	in	your
application	and	will	show	you	information	about	ongoing	REST	calls.	Embed	the
	RestProgressBar		into	a	ToolBar	or	any	other	parent	container:

toolbar.add(RestProgressBar::class)

19.	JSON	and	REST

247

Dependency	Injection
TODO:	This	page	is	snipped	from	the	Wiki	and	needs	a	rewrite

	View		and		Controller		are	singletons,	so	you	need	some	way	to	access	the	instance	of	a
specific	component.	Tornado	FX	supports	dependency	injection,	but	you	can	also	lookup
components	with	the		find		function.

val	myController	=	find(MyController::class)

When	you	call		find	,	the	component	corresponding	to	the	given	class	is	looked	up	in	a
global	component	registry.	If	it	did	not	exist	prior	to	the	call,	it	will	be	created	and	inserted
into	the	registry	before	the	function	returns.

If	you	want	to	declare	the	controller	referance	as	a	field	member	however,	you	should	use
the		inject		delegate	instead.	This	is	a	lazy	mechanism,	so	the	actual	instance	will	only	be
created	the	first	time	you	call	a	function	on	the	injected	resource.	Using		inject		is	always
prefered,	as	it	allows	your	components	to	have	circular	dependencies.

val	myController:	MyController	by	inject()

Third	party	injection	frameworks
TornadoFX	makes	it	easy	to	inject	resources	from	a	third	party	dependency	injection
framework,	like	for	example	Guice	or	Spring.	All	you	have	to	do	is	implement	the	very	simple
	DIContainer		interface	when	you	start	your	application.	Let's	say	you	have	a	Guice	module
configured	with	a	fictive		HelloService	.	Start	Guice	in	the		init		block	of	your		App		class
and	register	the	module	with	TornadoFX:

val	guice	=	Guice.createInjector(MyModule())

FX.dicontainer	=	object	:	DIContainer	{

				override	fun	<T	:	Any>	getInstance(type:	KClass<T>)

								=	guice.getInstance(type.java)

}

The	DIContainer	implementation	is	configured	to	delegate	lookups	to
	guice.getInstance	

20.	Dependency	Injection

248

To	inject	the		HelloService		configured	in		MyModule	,	use	the		di		delegate	instead	of	the
	inject		delegate:

val	MyView	:	View()	{

				val	helloService:	HelloService	by	di()

}

The		di		delegate	accepts	any	bean	type,	while		inject		will	only	allow	beans	of	type
	Injectable	,	which	includes	TornadoFX's		View		and		Controller	.	This	keeps	a	clean
separation	between	your	UI	beans	and	any	beans	configured	in	the	external	dependency
injection	framework.

Setting	up	for	Spring
Above	the	setup	for	Guice	is	shown.	Setting	up	for	Spring,	in	this	case	using		beans.xml		as
	ApplicationContext		is	done	as	follows:

beans.xml

<?xml	version	=	"1.0"	encoding	=	"UTF-8"?>

<beans	xmlns	=	"http://www.springframework.org/schema/beans"

							xmlns:xsi	=	"http://www.w3.org/2001/XMLSchema-instance"

							xmlns:context	=	"http://www.springframework.org/schema/context"

							xsi:schemaLocation	=	"http://www.springframework.org/schema/beans

			http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

			http://www.springframework.org/schema/context

			http://www.springframework.org/schema/context/spring-context-3.0.xsd">

				<context:component-scan	base-package="no.tornadofx.fxsample.springexample"/>

				<context:annotation-config/>

</beans>

This	sets	Spring	up	to	scan	for	beans.

Application	startup

20.	Dependency	Injection

249

class	SpringExampleApp	:	App(SpringExampleView::class)	{

				init	{

								val	springContext	=	ClassPathXmlApplicationContext("beans.xml")

								FX.dicontainer	=	object	:	DIContainer	{

												override	fun	<T	:	Any>	getInstance(type:	KClass<T>):	T	=	springContext.get

Bean(type.java)

								}

				}

}

This	initialized	the	spring	context	and	hooks	it	into	tornadoFX	via	the		FX.dicontainer	.	Now
you	can	inject	Spring	beans	like	this:

val	helloBean	:	HelloBean	by	di()

It	is	quite	common	in	the	Spring	world	to	name	a	bean	like	so:

<bean	id	=	"helloWorld"	class	=	"com.tutorialspoint.HelloWorld">

					<property	name	=	"message"	value	=	"Hello	World!"/>

</bean>

The	bean	is	then	accessible	using	the		id	.	This	can	be	done	in	tornadoFX	too:

class	SpringExampleApp	:	App(SpringExampleView::class)	{

				init	{

								val	springContext	=	ClassPathXmlApplicationContext("beans.xml")

								FX.dicontainer	=	object	:	DIContainer	{

												override	fun	<T	:	Any>	getInstance(type:	KClass<T>):	T	=	springContext.get

Bean(type.java)

												override	fun	<T	:	Any>	getInstance(type:	KClass<T>,	name:	String):	T	=	spr

ingContext.getBean(type.java,name)

								}

				}

}

The	second		getInstance		uses	both	the	type	of	the	bean	and	the	id	of	the	bean.
Instantiating	a	bean	is	down	as:

val	helloBean	:	HelloBean	by	di("helloWorld")

20.	Dependency	Injection

250

Wizard
Some	times	you	need	to	ask	the	user	for	a	lot	of	information	and	asking	for	it	all	at	once
would	result	in	a	too	complex	user	interface.	Perhaps	you	also	need	to	perform	certain
operations	while	or	after	you	have	requested	the	information.

For	these	situations,	you	can	consider	using	a	wizard.	A	wizard	typically	has	two	or	more
pages.	It	lets	the	user	navigate	between	the	pages	as	well	as	complete	or	cancel	the
process.

TornadoFX	has	a	powerful	and	customizable	Wizard	component	that	lets	you	do	just	that.	In
the	following	example	we	need	to	create	a	new	Customer	and	we	have	decided	to	ask	for
the	basic	customer	info	on	the	first	page	and	the	address	information	on	the	next.

Let's	have	a	look	at	two	simple	input	Views	that	gather	said	information	from	the	user.	The
	BasicData		page	asks	for	the	name	of	the	customer	and	the	type	of	customer	(Person	or
Company).	By	now	you	can	probably		CustomerModel		guess	how	the		Customer		and
	CustomerModel		objects	look,	so	we	won't	repeat	them	here.

21.	Wizard

251

class	BasicData	:	View("Basic	Data")	{

				val	customer:	CustomerModel	by	inject()

				override	val	root	=	form	{

								fieldset(title)	{

												field("Type")	{

																combobox(customer.type,	Customer.Type.values().toList())

												}

												field("Name")	{

																textfield(customer.name).required()

												}

								}

				}

}

class	AddressInput	:	View("Address")	{

				val	customer:	CustomerModel	by	inject()

				override	val	root	=	form	{

								fieldset(title)	{

												field("Zip/City")	{

																textfield(customer.zip)	{

																				prefColumnCount	=	5

																				required()

																}

																textfield(customer.city).required()

												}

								}

				}

}

By	themselves,	these	views	don't	do	much,	but	put	together	in	a	Wizard	we	start	to	see	how
powerful	this	input	paradigm	can	be.	Our	initial	Wizard	code	is	only	this:

class	CustomerWizard	:	Wizard("Create	customer",	"Provide	customer	information")	{

				val	customer:	CustomerModel	by	inject()

				init	{

								graphic	=	resources.imageview("/graphics/customer.png")

								add(WizardStep1::class)

								add(WizardStep2::class)

				}

}

The	result	can	be	seen	in	Figure	21.1.

21.	Wizard

252

Figure	21.1

Just	by	looking	at	the	Wizard	the	user	can	see	what	he	will	be	asked	to	provide,	how	he	can
navigate	between	the	pages	and	how	to	complete	or	cancel	the	process.

Since	the	Wizard	itself	is	basically	just	a	normal		View	,	it	will	respond	to	the		openModal		call.
Let's	imagine	a	button	that	opens	the	Wizard:

button("Add	Customer").action	{

				find<CustomerWizard>	{

								openModal()

				}

}

Page	navigation
By	default,	the		Back		and		Next		buttons	are	available	whenever	there	are	more	pages
either	previous	or	next	in	the	wizard.

For		Next		navigation	however,	whether	the	wizard	actually	navigates	to	the	next	page	is
dependent	upon	the		completed		state	of	the	current	page.	Every		View		has	a		completed	
property	and	a	corresponding		isCompleted		variable	you	can	manipulate.

21.	Wizard

253

When	the		Next		or		Finish		button	is	clicked,	the		onSave		function	of	the	current	page	is
called,	and	the	navigation	action	is	only	performed	if	the	current	page's		completed		value	is
	true	.	Every		View		is	completed	by	default,	that's	why	we	can	navigate	to	page	number	two
without	completing	page	one	first.	Let's	change	that.

In	the		BasicData		editor,	we	override	the		onSave		function	to	perform	a	partial	commit	of	the
	name		and		type		fields,	because	that's	the	only	two	fields	the	user	can	change	on	that	page.

override	fun	onSave()	{

				isComplete	=	customer.commit(customer.name,	customer.type)

}

The	commit	function	now	controls	the	completed	state	of	our	wizard	page,	hence	controller
whether	the	user	is	allowed	to	navigate	to	the	address	page.	If	we	try	to	navigate	without
filling	in	the	name,	we	will	be	granted	by	the	validation	error	message	in	Figure	21.2:

Figure	21.2

We	could	go	on	to	do	the	same	for	the	address	editor,	taking	care	to	only	commit	the
editable	fields:

override	fun	onSave()	{

				isComplete	=	customer.commit(customer.zip,	customer.city)

}

21.	Wizard

254

If	the	user	clicks	the	Finish	button,	the		onSave		function	in	the	Wizard	itself	is	activated.	If	the
Wizard's		completed		state	is	true	after	the		onSave		call,	the	wizard	dialog	is	closed,	provided
that	the	user	calls		super.onSave()	.	In	such	a	scenario,	the	Wizard	itself	needs	to	handle
whatever	should	happen	in	the		onSave		function.	Another	possibility	is	to	configure	a
callback	that	will	be	executed	whenever	the	wizard	is	completed.	With	that	approach,	we
need	access	the	completed	customer	object	somehow,	so	we	inject	it	into	the	wizard	itself	as
well:

class	CustomerWizard	:	Wizard()	{

				val	customer:	CustomerModel	by	inject()

}

Let's	revisit	the	button	action	that	activated	the	wizard	and	add	an		onComplete		callback	that
extracts	the	customer	and	inserts	it	into	a	database	before	it	opens	the	newly	created
Customer	object	in	a	CustomerEditor	View:

button("Add	Customer").action	{

				find<CustomerWizard>	{

								onComplete	{

												runAsync	{

																database.insert(customer.item)

												}	ui	{

																workspace.dockInNewScope<CustomerEditor>(customer.item)

												}

								}

								openModal()

				}

}

Wizard	scoping
In	our	example,	both	of	the	Wizard	pages	share	a	common	view	model,	namely	the
	CustomerModel	.	This	model	is	injected	into	both	pages,	so	it	should	be	the	same	instance.
But	what	if	other	parts	of	the	application	is	already	using	the		CustomerModel		in	the	same
scope	we	created	the	Wizard	from?	It	turns	out	that	this	is	not	even	an	issue,	because	the
	Wizard		base	class	implements		InjectionScoped		which	makes	sure	that	whenever	you
inject	a		Wizard		subclass,	a	new	scope	is	automatically	activated.	This	makes	sure	that
whatever	resources	we	require	inside	the	Wizard	will	be	unique	and	not	shared	with	any
other	part	of	the	application.

It	also	means	that	if	you	need	to	inject	existing	data	into	a	Wizard's	scope,	you	must	do	so
manually:

21.	Wizard

255

val	wizard	=	find<MyWizard>()

wizard.scope.set(someExistingObject)

wizard.openModal()

Improving	the	visual	cues
Un	until	now,	the		Next		button	was	enabled	whenever	there	was	another	page	to	navigate
forward	to.	The		Finish		button	was	also	always	enabled.	This	might	be	fine,	but	you	can
improve	the	cues	given	to	your	users	by	only	enabling	those	buttons	when	it	would	make
sense	to	click	them.	By	looking	into	the		Wizard		base	class,	we	can	see	that	the	buttons	are
bound	to	the	following	boolean	expressions:

open	val	canFinish:	BooleanExpression	=	SimpleBooleanProperty(true)

open	val	canGoNext:	BooleanExpression	=	hasNext

The		canFinish		expression	is	bound	to	the		Finish		button	and	the		canGoNext		expression	is
bound	to	the		Next		button.	The		Wizard		class	also	includes	some	boolean	expressions	that
are	unused	by	default.	Two	of	those	are		currentPageComplete		and		allPagesComplete	.	These
expressions	are	always	up	to	date,	and	we	can	use	them	in	our		CustomerWizard		to	improve
the	user	experience.

class	CustomerWizard	:	Wizard()	{

				override	val	canFinish	=	allPagesComplete

				override	val	canGoNext	=	currentPageComplete

}

With	this	redefinition	in	place,	the		Next		and		Finish		buttons	will	only	be	enabled	whenever
the	new	conditions	are	met.	This	is	what	we	want,	but	we're	not	done	yet.	Remember	how
we	only	updated		isCompleted		whenever		onSave		was	called?	You	might	also	remember
that		onSave		was	called	whenever		Next		or		Finish		was	clicked?	It	looks	like	we	have
ourselves	a	good	old	Catch22	situation	here,	folks!

The	solution	is	however	quite	simple:	Instead	of	evaluating	the	completed	state	on	save,	we
will	do	it	whenever	a	change	is	made	to	any	of	our	input	fields.	We	need	to	make	sure	that
we	supply	the		autocommit		parameter	to	each	binding	in	our	ViewModel:

21.	Wizard

256

class	CustomerModel	:	ItemViewModel<Customer>()	{

				val	name	=	bind(Customer::nameProperty,	autocommit	=	true)

				val	zip		=	bind(Customer::zipProperty,	autocommit	=	true)

				val	city	=	bind(Customer::cityProperty,	autocommit	=	true)

				val	type	=	bind(Customer::typeProperty,	autocommit	=	true)

}

The	input	fields	in	our	wizard	pages	are	bound	to	these	properties,	and	whenever	a	change
is	made,	the	underlying	Customer	object	will	be	updated.	We	no	longer	need	to	call
	customer.commit()		in	our		onSave		callback,	but	we	do	need	to	redefine	the		complete	
boolean	expression	in	each	wizard	page.

Here	is	the	new	definition	in	the		BasicData		View:

override	val	complete	=	customer.valid(customer.name)

And	here	is	the	definition	in	the		AddressInput		View:

override	val	complete	=	customer.valid(customer.street,	customer.zip,	customer.city)

We	bind	the	completed	state	of	our	wizard	pages	to	an	ever	updating	boolean	expression
which	indicates	whether	the	editable	properties	for	that	page	is	valid	or	not.

Remember	to	delete	the		onSave		functions	as	we	no	longer	need	them.	If	you	run	the
application	with	these	changes	you	will	see	how	much	more	expressive	the	Wizard	becomes
in	terms	of	telling	the	user	when	he	can	proceed	and	when	he	can	finish	the	process.	Using
this	approach	will	also	convey	that	any	non-filled	data	is	optional	once	the		Finish		button	is
enabled.

Here	is	the	completely	rewritten	wizard	and	pages:

21.	Wizard

257

class	CustomerWizard	:	Wizard()	{

				val	customer:	CustomerModel	by	inject()

				override	val	canGoNext	=	currentPageComplete

				override	val	canFinish	=	allPagesComplete

				init	{

								add(BasicData::class)

								add(AddressInput::class)

				}

}

class	BasicData	:	View("Basic	Data")	{

				val	customer:	CustomerModel	by	inject()

				override	val	complete	=	customer.valid(customer.name)

				override	val	root	=	form	{

								fieldset(title)	{

												field("Type")	{

																combobox(customer.type,	Customer.Type.values().toList())

												}

												field("Name")	{

																textfield(customer.name).required()

												}

								}

				}

}

class	AddressInput	:	View("Address")	{

				val	customer:	CustomerModel	by	inject()

				override	val	complete	=	customer.valid(customer.zip,	customer.city)

				override	val	root	=	form	{

								fieldset(title)	{

												field("Zip/City")	{

																textfield(customer.zip)	{

																				prefColumnCount	=	5

																				required()

																}

																textfield(customer.city).required()

												}

								}

				}

}

Styling	and	adapting	the	look	and	feel

21.	Wizard

258

There	are	many	built	in	options	you	can	configure	to	change	the	look	and	feel	of	the	wizard.
Common	for	them	all	is	that	they	have	observable/writable	properties	which	you	can	bind	to
over	just	set	in	your	wizard	subclass.	For	each	accessor	below	there	will	be	a	corresponding
	accessorProperty	.

Modifying	the	steps	indicator

Steps

The	steps	list	is	on	the	left	of	the	wizard.	It	has	the	following	configuration	options:

Name Description

showSteps Set	to		false		to	remove	the	steps	view	completely

stepsText Change	the	header	from	"Steps"	to	any	desired	String

showStepsHeader Remove	the	header

enableStepLinks Set	to		true		to	turn	each	step	description	into	a	hyperlink

stepLinksCommits Set	to		false		to	no	longer	require	that	the	current	page	is	valid
before	navigating	to	the	new	page

numberedSteps Set	to		true		to	add	the	index	number	before	each	step
description

Navigation

You	can	change	the	text	of	the	navigation	buttons	and	control	navigation	flow	with	Enter:

Name Description

backButtonText Change	the	text	of	the		Back		button

nextButtonText Change	the	text	of	the		Next		button

cancelButtonText Change	the	text	of	the		Cancel		button

finishButtonText Change	the	text	of	the		Finish		button

enterProgresses Enter	goes	to	next	page	when	complete	and	finish	on	last	page

Header	area

Name Description

showHeader Set	to		false		to	remove	the	header

graphic A	node	that	will	show	up	on	the	far	right	of	the	header

21.	Wizard

259

Structural	modifications

The	root	of	the		Wizard		class	is	a		BorderPane	.	The	header	will	be	in	the		top		slot,	the	steps
are	in	the		left		slot,	the	pages	are	in	the		center		slot	and	the	buttons	are	in	the		bottom	
slot.	You	can	change/hide/add	styling	and	set	properties	to	these	nodes	as	you	see	fit	to
alter	the	design	and	layout	of	the	Wizard.	A	good	place	to	do	this	would	be	in	the		onDock	
callback	of	your	wizard	subclass.	It	is	completely	valid	change	the	layout	in	any	way	you	see
fit,	you	can	even	remove	the		BorderPane		and	move	the	other	parts	into	another	layout
container	for	example.

21.	Wizard

260

Appendix	A	-	Reference

A1	-	Property	Delegates
Kotlin	is	packed	with	great	language	features,	and	delegated	properties	are	a	powerful	way
to	specify	how	a	property	works	and	create	re-usable	policies	for	those	properties.	On	top	of
the	ones	that	exist	in	Kotlin's	standard	library,	TornadoFX	provides	a	few	more	property
delegates	that	are	particularly	helpful	for	JavaFX	development.

Single	Assign

It	is	often	ideal	to	initialize	properties	immediately	upon	construction.	But	inevitably	there	are
times	when	this	simply	is	not	feasible.	When	a	property	needs	to	delay	its	initialization	until	it
is	first	called,	a	lazy	delegate	is	typically	used.	You	specify	a	lambda	instructing	how	the
property	value	is	initialized	when	its	getter	is	called	the	first	time.

val	fooValue	by	lazy	{	buildExpensiveFoo()	}

But	there	are	situations	where	the	property	needs	to	be	assigned	later	not	by	a	value-
supplying	lambda,	but	rather	some	external	entity	at	a	later	time.	When	we	leverage	type-
safe	builders	we	may	want	to	save	a		Button		to	a	class-level	property	so	we	can	reference	it
later.	If	we	do	not	want		myButton		to	be	nullable,	we	need	to	use	the		lateinit		modifier.

class	MyView:	View()	{

				lateinit	var	myButton:	Button

				override	val	root	=	vbox	{

								myButton	=	button("New	Entry")

				}

}

The	problem	with		lateinit		is	it	can	be	assigned	multiple	times	by	accident,	and	it	is	not
necessarily	thread	safe.	This	can	lead	to	classic	bugs	associated	with	mutability,	and	you
really	should	strive	for	immutability	as	much	as	possible	(Effective	Java	by	Bloch,	Item	#13).

By	leveraging	the		singleAssign()		delegate,	you	can	guarantee	that	property	is	only
assigned	once.	Any	subsequent	assignment	attempts	will	throw	a	runtime	error,	and	so	will
accessing	it	before	a	value	is	assigned.	This	effectively	gives	us	the	guarantee	of

Appendix	A	-	Supplementary	Topics

261

https://kotlinlang.org/docs/reference/delegated-properties.html
https://kotlinlang.org/docs/reference/properties.html#late-initialized-properties

immutability,	although	it	is	enforced	at	runtime	rather	than	compile	time.

class	MyView:	View()	{

				var	myButton:	Button	by	singleAssign()

				override	val	root	=	vbox	{

								myButton	=	button("New	Entry")

				}

}

Even	though	this	single	assignment	is	not	enforced	at	compile	time,	infractions	can	be
captured	early	in	the	development	process.	Especially	as	complex	builder	designs	evolve
and	variable	assignments	move	around,		singleAssign()		is	an	effective	tool	to	mitigate
mutability	problems	and	allow	flexible	timing	for	property	assignments.

By	default,		singleAssign()		synchronizes	access	to	its	internal	value.	You	should	leave	it
this	way	especially	if	your	application	is	multithreaded.	If	you	wish	to	disable	synchronization
for	whatever	reason,	you	can	pass	a		SingleAssignThreadSafetyMode.NONE		value	for	the	policy.

var	myButton:	Button	by	singleAssign(SingleAssignThreadSafetyMode.NONE)

JavaFX	Property	Delegate

Do	not	confuse	the	JavaFX		Property		with	a	standard	Java/Kotlin	"property".	The		Property	
is	a	special	type	in		JavaFX		that	maintains	a	value	internally	and	notifies	listeners	of	its
changes.	It	is	proprietary	to	JavaFX	because	it	supports	binding	operations,	and	will	notify
the	UI	when	it	changes.	The		Property		is	a	core	feature	of	JavaFX	and	has	its	own
JavaBeans-like	pattern.

This	pattern	is	pretty	verbose	however,	and	even	with	Kotlin's	syntax	efficiencies	it	still	is
pretty	verbose.	You	have	to	declare	the	traditional	getter/setter	as	well	as	the		Property		item
itself.

	class	Bar	{

				private	val	fooProperty	by	lazy	{	SimpleObjectProperty<T>()	}

				fun	fooProperty()	=	fooProperty

				var	foo:	T

								get()	=	fooProperty.get()

								set(value)	=	fooProperty.set(value)

}

Appendix	A	-	Supplementary	Topics

262

Fortunately,	TornadoFX	can	abstract	most	of	this	away.	By	delegating	a	Kotlin	property	to	a
JavaFX		property()	,	TornadoFX	will	get/set	that	value	against	a	new		Property		instance.	To
follow	JavaFX's	convention	and	provide	the		Property		object	to	UI	components,	you	can
create	a	function	that	fetches	the		Property		from	TornadoFX	and	returns	it.

class	Bar	{

				var	foo	by	property<String>()

				fun	fooProperty()	=	getProperty(Bar::foo)

}

Especially	as	you	start	working	with		TableView		and	other	complex	controls,	you	will	likely
find	this	pattern	helpful	when	creating	model	classes,	and	this	pattern	is	used	in	several
places	throughout	this	book.

Note	you	do	not	have	to	specify	the	generic	type	if	you	have	an	initial	value	to	provide	to	the
property.	In	the	below	example,	it	will	infer	the	type	as	`String.

class	Bar	{

				var	foo	by	property("baz")

				fun	fooProperty()	=	getProperty(Bar::foo)

}

Alternative	Property	Syntax

There	is	also	an	alternative	syntax	which	produces	almost	the	same	result:

import	tornadofx.getValue

import	tornadofx.setValue

class	Bar	{

				val	fooProperty	=	SimpleStringProperty()

				var	foo	by	fooProperty

}

Here	you	define	the	JavaFX	property	manually	and	delegate	the	getters	and	setters	directly
from	the	property.	This	might	look	cleaner	to	you,	and	so	you	are	free	to	choose	whatever
syntax	you	are	most	comfortable	with.	However,	the	first	alternative	creates	a	JavaFX
compliant	property	in	that	it	exposes	the		Property		via	a	function	called		fooProperty()	,
while	the	latter	simply	exposes	a	variable	called		fooProperty	.	For	TornadoFX	there	is	no
difference,	but	if	you	interact	with	legacy	libraries	that	require	a	property	function	you	might
need	to	stick	with	the	first	one.

FXML	Delegate

Appendix	A	-	Supplementary	Topics

263

If	you	have	a	given		MyView		View	with	a	neighboring	FXML	file		MyView.fxml		defining	the
layout,	the		fxid()		property	delegate	will	retrieve	the	control	defined	in	the	FXML	file.	The
control	must	have	an		fx:id		that	is	the	same	name	as	the	variable.

<Label	fx:id="counterLabel">

Now	we	can	inject	this		Label		into	our		View		class:

val	counterLabel	:	Label	by	fxid()

Otherwise,	the	ID	must	be	specifically	passed	to	the	delegate	call.

val	myLabel	:	Label	by	fxid("counterLabel")

Please	read	Chapter	10	to	learn	more	about	FXML.

A2	-	TableView	Advanced	Column	Resizing
The	SmartResize	policy	brings	the	ability	to	intuitively	resize	columns	by	providing	sensible
defaults	combined	with	powerful	and	dynamic	configuration	options.

To	apply	the	resize	policy	to	a		TableView		we	configure	the		columnResizePolicy	.	For	this
exercise	we	will	use	a	list	of	hotel	rooms.	This	is	our	initial	table	with	the		SmartResize		policy
activated:

tableview(rooms)	{

				column("#",	Room::id)

				column("Number",	Room::number)

				column("Type",	Room::type)

				column("Bed",	Room::bed)

				columnResizePolicy	=	SmartResize.POLICY

}

Here	is	a	picture	of	the	table	with	the	SmartResize	policy	activated	(Figure	5.7):

Figure	A2.1

Appendix	A	-	Supplementary	Topics

264

The	default	settings	gave	each	column	the	space	it	needs	based	on	its	content,	and	gave
the	remaining	width	to	the	last	column.	When	you	resize	a	column	by	dragging	the	divider
between	column	headers,	only	the	column	immediately	to	the	right	will	be	affected,	which
avoids	pushing	the	columns	to	the	right	outside	the	viewport	of	the		TableView	.

While	this	often	presents	a	pleasant	default,	there	is	a	lot	more	we	can	do	to	improve	the
user	experience	in	this	particular	case.	It	is	evident	that	our	table	did	not	need	the	full	800
pixels	it	was	provided,	but	it	gives	us	a	nice	chance	to	elaborate	on	the	configuration	options
of	the		SmartResize		policy.

The	bed	column	is	way	too	big,	and	it	seems	more	sensible	to	give	the	extra	space	to	the
Type	column,	since	it	might	contain	arbitrary	long	descriptions	of	the	room.	To	give	the	extra
space	to	the	Type	column,	we	change	its	column	definition	(Figure	5.8):

column("Type",	Room::type).remainingWidth()

Figure	A2.2

Appendix	A	-	Supplementary	Topics

265

Now	it	is	apparent	the	Bed	column	looks	cramped,	being	pushed	all	the	way	to	the	left.	We
configure	it	to	keep	its	desired	width	based	on	the	content	plus	50	pixels	padding:

column("Bed",	Room:bed").contentWidth(padding	=	50.0)

The	result	is	a	much	more	pleasant	visual	impression	(Figure	5.9)	:

Figure	A2.3

This	fine-tuning	may	not	seem	like	a	big	deal,	but	it	means	a	lot	to	people	who	are	forced	to
stare	at	your	software	all	day!	It	is	the	little	things	that	make	software	pleasant	to	use.

Appendix	A	-	Supplementary	Topics

266

If	the	user	increases	the	width	of	the	Number	column,	the	Type	column	will	gradually
decrease	in	width,	until	it	reaches	its	default	width	of	10	pixels	(the	JavaFX	default).	After
that,	the	Bed	column	must	start	giving	away	its	space.	We	don't	ever	want	the	Bed	column
to	be	smaller	that	what	we	configured,	so	we	tell	it	to	use	its	content-based	width	plus	the
padding	we	added	as	its	minimum	width:

column("Bed",	Room:bed").contentWidth(padding	=	50.0,	useAsMin	=	true)

Trying	to	decrease	the	Bed	column	either	by	explicitly	expanding	the	Type	column	or
implicitly	by	expanding	the	Number	column	will	simply	be	denied	by	the	resize	policy.	It	is
worth	noting	that	there	is	also	a		useAsMax		choice	for	the		contentWidth		resize	type.	This
would	effectively	result	in	a	hard-coded,	unresizable	column,	based	on	the	required	content
width	plus	any	configured	padding.	This	would	be	a	good	policy	for	the	#	column:

column("#",	Room::id).contentWidth(useAsMin	=	true,	useAsMax	=	true)

The	rest	of	the	examples	will	probably	not	benefit	the	user,	but	there	are	still	other	options	at
your	disposal.	Try	to	make	the	Number	column	25%	of	the	total	table	width:

column("Number",	Room::number).pctWidth(25.0)

When	you	resize	the		TableView	,	the	Number	column	will	gradually	expand	to	keep	up	with
our	25%	width	requirement,	while	the	Type	column	gets	the	remaining	extra	space.

Figure	A2.4

Appendix	A	-	Supplementary	Topics

267

An	alternative	approach	to	percentage	width	is	to	specify	a	weight.	This	time	we	add	weights
to	both	Number	and	Type:

column("Number",	Room::number).weigthedWidth(1.0)

column("Type",	Room::type).weigthedWidth(3.0)

The	two	weighted	columns	share	the	remaining	space	after	the	other	columns	have	received
their	fair	share.	Since	the	Type	column	has	a	weight	that	is	three	times	bigger	than	the
Number	column,	its	size	will	be	three	times	bigger	as	well.	This	will	be	reevaluated	as	the
	TableView		itself	is	resized.

Figure	A2.5

This	setting	will	make	sure	we	keep	the	mentioned	ratio	between	the	two	columns,	but	it
might	become	problematic	if	the		TableView		is	resized	to	be	very	small.	The	the	Number
column	would	not	have	space	to	show	all	of	its	content,	so	we	guard	against	that	by
specifying	that	it	should	never	grow	below	the	space	it	needs	to	show	its	content,	plus	some
padding,	for	good	measure:

column("Number",	Room::number).weigthedWidth(1.0,	minContentWidth	=	true,	padding	=	10

.0)

This	makes	sure	our	table	behaves	nicely	also	under	constrained	width	conditions.

Dynamic	content	resizing

Appendix	A	-	Supplementary	Topics

268

Since	some	of	the	resizing	modes	are	based	on	the	actual	content	of	the	columns,	they
might	need	to	be	reevaluated	even	when	the	table	or	it's	columns	aren't	resized.	For
example,	if	you	add	or	remove	content	items	from	the	backing	list,	the	required	content
measurements	might	need	to	be	updated.	For	this	you	can	call	the		requestResize		function
after	you	have	manipulated	the	items:

SmartResize.POLICY.requestResize(tableView)

In	fact,	you	can	ask	the	TableView	to	ask	the	policy	for	you:

tableView.requestResize()

Statically	setting	the	content	width

In	most	cases	you	probably	want	to	configure	your	column	widths	based	on	either	the	total
available	space	or	the	content	of	the	columns.	In	some	cases	you	might	want	to	configure	a
specific	width,	that	that	can	be	done	with	the		prefWidth		function:

column("Bed",	Room::bed).prefWidth(200.0)

A	column	with	a	preferred	width	can	be	resized,	so	to	make	it	non-resizable,	use	the
	fixedWidth		function	instead:

column("Bed",	Room::bed).fixedWidth(200.0)

When	you	hard-code	the	width	of	the	columns	you	will	most	likely	end	up	with	some	extra
space.	This	space	will	be	awarded	to	the	right	most	resizable	column,	unless	you	specify
	remainingWidth()		for	one	or	more	column.	In	that	case,	these	columns	will	divide	the	extra
space	between	them.

In	the	case	where	not	all	columns	can	be	afforded	their	preferred	width,	all	resizable
columns	must	give	away	some	of	their	space,	but	the		SmartResize		Policy	makes	sure	that
the	column	with	the	biggest	reduction	potential	will	give	away	its	space	first.	The	reduction
potential	is	the	difference	between	the	current	width	of	the	column	and	its	defined	minimum
width.

Appendix	A	-	Supplementary	Topics

269

Appendix	B	-	Tools	and	Utilities

Layout	Debugger
When	you're	creating	layouts	or	working	on	CSS	it	some	times	help	to	be	able	to	visualise
the	scene	graph	and	make	live	changes	to	the	node	properties	of	your	layout.	The
absolutely	best	tool	for	this	job	is	definitely	the	Scenic	View	tool	from	FX	Experience,	but
some	times	you	just	need	to	get	a	quick	overview	as	fast	as	possible.

Debugging	a	scene

Simply	hit	Alt-Meta-J	to	bring	up	the	built	in	debugging	tool	Layout	Debugger.	The	debugger
attaches	to	the	currently	active		Scene		and	opens	a	new	window	that	shows	you	the	current
scene	graph	and	properties	for	the	currently	selected	node.

Usage

While	the	debugger	is	active	you	can	hover	over	any	node	in	your	View	and	it	will	be
automatically	highlighted	in	the	debugger	window.	Clicking	a	node	will	also	show	you	the
properties	of	that	node.	Some	of	the	properties	are	editable,	like		backgroundColor	,		text	,
	padding		etc.

When	you	hover	over	the	node	tree	in	the	debugger,	the	corresponding	node	is	also
highlighted	directly	in	the	View.

Appendix	B	-	Tools	and	Utilities

270

http://fxexperience.com/scenic-view/
http://fxexperience.com/

Stop	a	debugging	session

Close	the	debugger	window	by	hitting		Esc		and	the	debugger	session	ends.	You	can	debug
multiple	scenes	simultaneously,	each	debugging	session	will	open	a	new	window
corresponding	to	the	scene	you	debug.

Configurable	shortcut

The	default	shortcut	for	the	debugger	can	be	changed	by	setting	an	instance	of
	KeyCodeCombination		into		FX.layoutDebuggerShortcut	.	You	can	even	change	the	shortcut
while	the	app	is	running.	A	good	place	to	configure	the	shortcut	would	be	in	the		init		block
of	your		App		class.

Adding	features

While	this	debugger	tool	is	in	no	way	a	replacement	for	Scenic	View,	we	will	add	features
based	on	reasonable	feature	requests.	If	the	feature	adds	value	for	simple	debugging
purposes	and	can	be	implemented	in	a	small	amount	of	code,	we	will	try	to	add	it,	or	better

Appendix	B	-	Tools	and	Utilities

271

https://github.com/edvin/tornadofx/issues

yet,	submit	a	pull	request.	Have	a	look	at	the	source	code	to	familiarise	yourself	with	the
tool.

TODO
There	are	a	lot	of	utilities	and	miscellaneous	"odds	and	ends"	in	TornadoFX.	Somehow	we
need	to	organize	and	group	all	of	them	into	a	few	chapters.	Here	is	the	proposed	outline.
Feel	free	to	make	edits	to	this	document	until	we	are	all	happy	with	the	direction.

This	is	a	bit	challenging	to	organize	because	some	of	these	utilities	are	helpful	but	often	hard
to	categorize.	We	can	always	throw	items	into	the	Appendix	if	they	do	not	fit	anywhere.

Entering	fullscreen

To	enter	fullscreen	you	need	to	get	a	hold	of	the	current		stage		and	call		stage.isFullScreen
=	true	.	The	primary	stage	is	the	active	stage	unless	you	opened	a	modal	window	via
	view.openModal()		or	manually	created	a	stage.	The	primary	stage	is	available	in	the
variable		FX.primaryStage	.	To	open	the	application	in	fullscreen	on	startup	you	should
override		start		in	your	app	class:

class	MyApp	:	App(MyView::class)	{

				override	fun	start(stage:	Stage)	{

								super.start(stage)

								stage.isFullScreen	=	true

				}

}

In	the	following	example	we	toggle	fullscreen	mode	in	a	modal	window	via	a	button:

button("Toggle	fullscreen")	{

				setOnAction	{

								with	(modalStage)	{	isFullScreen	=	!isFullScreen	}

				}

}

10.	Concurrency	and	Error	Handling
Async	Task	Execution
Async	Items	for	Data	Components
FX	Run	and	Wait
Error	Handler

Appendix	B	-	Tools	and	Utilities

272

https://github.com/edvin/tornadofx/pulls
https://github.com/edvin/tornadofx/blob/master/src/main/java/tornadofx/LayoutDebugger.kt
https://github.com/edvin/tornadofx/wiki/Async-Task-Execution#async-task-execution
https://github.com/edvin/tornadofx/wiki/Async-Task-Execution#async-items-for-data-driven-components
https://github.com/edvin/tornadofx/wiki/Error-Handler#error-handler

11.	Data	Tools
JsonModal
REST	Client
SortedFilteredList

Mention	SortedFilteredList.refilter()	which	causes	the	existing	predicate	to	be
reevaluated

Clipboard
Resources

12.	Configuration
Program	Parameters	and	Hot	View	Reloading
Internationalization
Component	Configuration
Preferences

13.	Java	Interop
POJO	Binding
JavaFX	Interop

14.	TornadoFX	Plugin
Configuring	an	Application
Add	View
Inject	Component
Intentions

Convert	field	members	to	JavaFX	Properties
Add	TableView	Columns

Project	Templates

Appendix
Third	Party	Injection
Logging
List	of	Extension	Functions

Appendix	B	-	Tools	and	Utilities

273

https://github.com/edvin/tornadofx/wiki/JsonModel
https://github.com/edvin/tornadofx/wiki/REST-Client
https://github.com/edvin/tornadofx/wiki/Utilities#sortedfilteredlist
https://github.com/edvin/tornadofx/wiki/Resources
https://github.com/edvin/tornadofx/wiki/Config
https://github.com/edvin/tornadofx/pull/107
https://github.com/edvin/tornadofx/wiki/Utilities#pojo-binding
https://github.com/edvin/tornadofx/wiki/Integrate-with-existing-JavaFX-Applications
https://github.com/edvin/tornadofx/wiki/Dependency-Injection#third-party-injection-frameworks
https://github.com/edvin/tornadofx/wiki/Logging

Logging
	Component		has	a	lazy	initialized	instance	of		java.util.Logger		named		log	.	Usage:

log.info	{	"Log	message	here"	}

TornadoFX	makes	no	changes	to	the	logging	capabilities	of		java.util.Logger	.	See	the
javadoc	for	more	information.

Build	tools

Maven
The	Tornadofx	plugin	for	Intellij	can	crete	3	types	of	maven	projects.

1.	 A	standard	maven	project
2.	 An	OSGI	enabled	maven	project
3.	 An	OSGI	enabled	maven	project	where	the	views	are	exposed	declarativly.

All	three	projects	create	a	working	and	compilable	project	that	can	serve	as	a	starting	point.
If	you	do	not	want	to	use	the	plugin	to	create	the	project	that	the	pom.xml	needs	to	have	at	a
minimum:

<properties>

			<kotlin.version>1.1.1</kotlin.version>

			<tornadofx.version>1.7.0</tornadofx.version>

</properties>

<build>

				<plugins>

								<plugin>

												<groupId>org.jetbrains.kotlin</groupId>

												<artifactId>kotlin-maven-plugin</artifactId>

												<version>${kotlin.version}</version>

												<configuration>

																<jvmTarget>1.8</jvmTarget>

												</configuration>

												<executions>

																<execution>

																				<id>compile</id>

																				<phase>process-sources</phase>

																				<goals>

																								<goal>compile</goal>

																				</goals>

																</execution>

Appendix	B	-	Tools	and	Utilities

274

https://docs.oracle.com/javase/8/docs/api/java/util/logging/Logger.html

																<execution>

																				<id>test-compile</id>

																				<phase>test-compile</phase>

																				<goals>

																								<goal>test-compile</goal>

																				</goals>

																</execution>

												</executions>

								</plugin>

								<plugin>

												<groupId>org.apache.maven.plugins</groupId>

												<artifactId>maven-compiler-plugin</artifactId>

												<executions>

																<execution>

																				<id>compile</id>

																				<phase>compile</phase>

																				<goals>

																								<goal>compile</goal>

																				</goals>

																</execution>

																<execution>

																				<id>testCompile</id>

																				<phase>test-compile</phase>

																				<goals>

																								<goal>testCompile</goal>

																				</goals>

																</execution>

												</executions>

								</plugin>

		

</plugins>

</build>

<dependencies>

				<dependency>

								<groupId>org.jetbrains.kotlin</groupId>

								<artifactId>kotlin-stdlib</artifactId>

								<version>${kotlin.version}</version>

				</dependency>

				<dependency>

								<groupId>no.tornado</groupId>

								<artifactId>tornadofx</artifactId>

								<version>${tornadofx.version}</version>

				</dependency>

				<dependency>

								<groupId>org.jetbrains.kotlin</groupId>

								<artifactId>kotlin-test</artifactId>

								<version>${kotlin.version}</version>

								<scope>test</scope>

				</dependency>

</dependencies>

Appendix	B	-	Tools	and	Utilities

275

Note

Starting	with	TornadoFX	version	1.7.1	you	must	configure	the	kotlin	compiler	plugin	to	target
	jvmTarget	1.8		as	in	the	example	above.

Appendix	B	-	Tools	and	Utilities

276

	Introduction
	1. Why TornadoFX?
	2. Setting Up
	3. Components
	4. Basic Controls
	5. Data Controls
	6. Type Safe CSS
	7. Layouts and Menus
	8. Charts
	9. Shapes and Animation
	10. FXML
	11. Editing Models and Validation
	12. OSGi
	13. TornadoFX IDEA Plugin
	14. Scopes
	15. EventBus
	16. Workspaces
	17. Internationalization
	18. Config Settings and State
	19. JSON and REST
	20. Dependency Injection
	21. Wizard
	Appendix A - Supplementary Topics
	Appendix B - Tools and Utilities

