
UPC++ Programmer’s Guide (v1.0)

Contents
1 Introduction 3

2 Hello World in UPC++ 3

3 Installing, Compiling and Running UPC++ Programs 4

4 A Simple Example of Parallel Computation 5

5 Asynchronous Computation 7

6 Remote Procedure Calls 8

7 Global Memory 9

8 Allocating and Deallocating Memory in the Shared Segment 11

9 Distributed Objects 11

10 Atomics 13

11 A Note on Performance 14

12 Quiescence 14

13 Progress 15

14 Personas 16

1

Copyright

This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under Contract No.
DE-AC02-05CH11231 with the U.S. Department of Energy. The U.S. Government retains, and the publisher,
by accepting the article for publication, acknowledges, that the U.S. Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for U.S. Government purposes.

Legal Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While
this document is believed to contain correct information, neither the United States Government nor any
agency thereof, nor the Regents of the University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by its trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof or the Regents of the University of California.

Acknowledgments

This work was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Early development of UPC++ was supported by the Director, Office of Science, Office of Advanced Scientific
Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

2

1 Introduction

UPC++ is a C++11 library that provides Asynchronous Partitioned Global Address Space (APGAS)
programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-
memory parallel computers. The APGAS model is single program, multiple-data (SPMD), with each separate
thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as
it would in C++. However, APGAS also provides access to a global address space, which is allocated in
shared segments that are distributed over the ranks (see figure 1). UPC++ provides numerous methods for
accessing and using global memory, as will be described later in this guide. In UPC++, all operations that
access remote memory are explicit, which encourages programmers to be aware of the cost of communication
and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable
programmers to write code that scales well even on hundreds of thousands of cores.

Figure 1: APGAS Memory Model.

This guide describes the Berkeley implementation of UPC++, which uses GASNet for communication across
a wide variety of platforms, ranging from Ethernet-connected laptops to commodity InfiniBand clusters
and supercomputers with custom high-performance networks. GASNet is a language-independent, low-level
networking layer that provides network-independent, high-performance communication primitives tailored for
implementing parallel global address space languages and libraries such as UPC, UPC++, Co-Array Fortran,
Legion, Chapel, and many others. For more information about GASNet, visit http://gasnet.lbl.gov.

Although this implementation of UPC++ uses GASNet, in this guide, only the Installing, Compiling
and Running section is specific to the implementation. The Berkeley implementation of UPC++ adheres
to the implementation-independent specification, which is available at the UPC++ homepage at https:
//bitbucket.org/berkeleylab/upcxx.

The code for UPC++ can be obtained from https://bitbucket.org/berkeleylab/upcxx. Please report any
problems in the issue tracker.

2 Hello World in UPC++

The following code implements “Hello World” in UPC++:

#include <upcxx/upcxx.hpp>
#include <iostream>

// we will assume this is always used in all examples
using namespace std;

int main(int argc, char *argv[])
{

3

http://gasnet.lbl.gov
https://bitbucket.org/berkeleylab/upcxx
https://bitbucket.org/berkeleylab/upcxx
https://bitbucket.org/berkeleylab/upcxx
https://bitbucket.org/berkeleylab/upcxx/issues

// setup UPC++ runtime
upcxx::init();
// upcxx::rank_me() - get number for this rank
cout << "Hello world from rank " << upcxx::rank_me() << endl;
// close down UPC++ runtime
upcxx::finalize();
return 0;

}

All UPC++ programs need to be initialized with a call to upcxx::init() and finalized with a call to
upcxx::finalize(). These calls set up and tear down the code that implements the UPC++ runtime layer.
upcxx::init() must be called before any UPC++ features are used, and no UPC++ features should be used
after upcxx::finalize() is called (until the next call to upcxx::init()). Each UPC++ rank has a unique
number (running from 0 to N-1, given N ranks), which can be accessed by a call to upcxx::rank_me().

A UPC++ program is run with a fixed number of ranks, and it runs one copy of the program for each rank.
In the Hello World example, this program will print out a message from each of the N ranks, for example, if
N is 4, then the output could be:

Hello World from rank 2
Hello World from rank 0
Hello World from rank 3
Hello World from rank 1

Note that there is no ordering enforced between the output from each rank.

3 Installing, Compiling and Running UPC++ Programs

Presented here is a brief description of how to install UPC++ and compile and run UPC++ programs. For
more detail, consult the INSTALL.md file that comes with the distribution.

Installing

This programming guide assumes that the source code file has been extracted to a directory,
<upcxx-source-path>. From the top-level of this directory, run the install script:

./install <upcxx-install-path>

This will build the UPC++ library and install it to the <upcxx-install-path> directory. Users are
recommended to use paths to non-existent or empty directories as the installation path so that uninstallation
is as trivial as rm -rf <upcxx-install-path>. Note that the install process downloads the GASNet
communication library, so an Internet connection is required.

For Mac installations, the Xcode Command Line Tools need to be installed before invoking install, i.e.:

xcode-select --install

To build for the compute nodes of a Cray XC, the CROSS environment variable needs to be set before the
install command is invoked, i.e. CROSS=cray-aries-slurm. Additionally, because UPC++ does not currently
support the Intel compilers (usually the default for these systems), either GCC or Clang must be loaded, e.g.:

module switch PrgEnv-intel PrgEnv-gnu
cd <upcxx-source-path>
CROSS=cray-aries-slurm ./install <upcxx-install-path>

The installer will use the cc and CC compiler aliases of the loaded Cray programming environment.

The list of compatible versions of compilers for the various platforms can be found in the README.md that
comes with the distribution, under the section “System Requirements”. The install script checks that the

4

compiler is supported and if not, it aborts with an error message indicating that CXX and CC need to be set
to supported compilers, e.g. if a Mac has an old Homebrew install of gcc in /usr/local/bin, CXX and CC
will need to be set to the latest Xcode versions in /usr/bin.

Compiling

To compile against UPC++, use the <upcxx-install-path>/bin/upcxx-meta helper script. This takes a
single parameter, one of PPFLAGS, LDFLAGS or LIBFLAGS:

• PPFLAGS: Preprocessor flags which will put the UPC++ headers in the compiler’s search path and
define macros required by those headers.

• LDFLAGS: Linker flags usually belonging at the front of the link command line (before the list of object
files).

• LIBFLAGS: Linker flags belonging at the end of the link command line. These will make libupcxx and
its dependencies available to the linker.

For example, to build the hello world code given previously, using g++, execute:

upcxx="<upcxx-install-path>/bin/upcxx-meta"
g++ --std=c++11 hello-world.cpp $($upcxx PPFLAGS) $($upcxx LDFLAGS) $($upcxx LIBFLAGS)

For an example, look at the Makefile in the <upcxx-source-path>/example/prog-guide/ directory. That
directory also has code for running all of the examples given in the guide. To use the Makefile, first set the
UPCXX_INSTALL shell variable to the install path.

Running

To run a parallel UPC++ application, use the upcxx-run launcher provided in the installation directory:

<upcxx-install-path>/bin/upcxx-run <ranks> <exe> <args...>

This will run the executable and arguments <exe> <args...> in a parallel context with <ranks> number of
UPC++ ranks.

4 A Simple Example of Parallel Computation

We illustrate parallel computation in UPC++ with a simple program that does a Monte Carlo calculation
of pi. This contrived example was chosen because it provides a clear illustration of some of the properties
of parallel computation, and has a known correct answer, so we can check our implementation. The value
of pi can be calculated by repeatedly choosing a random point within the unit square, and counting the
percentage of points that fall within the unit circle quadrant (see figure 2). For a unit square with r==1,
the area of the circle quadrant is pi*r*r/4==pi/4. A point x,y is inside the circle if x*x+y*y<1. So we can
compute the ratio of the number of points inside the circle, p_in, to the total number of points, p_tot, in
order to estimate pi, i.e. pi=4*p_in/p_tot.

Figure 2: Computing pi.

5

In the program below, each rank calls a function hit() the same number of times (my_trials). The total
amount of work done is proportional to upcxx::rank_n(), which gives the total number of ranks (this is
an example of weak scaling). The hit() function returns 1 if a randomly chosen point falls within the unit
circle quadrant and 0 otherwise. Thus each rank provides an independent estimate of pi.

The final step is a call to a function, reduce_to_rank0, which uses a UPC++ collective function
(upcxx::allreduce) to sum all the separate results into a single value, so that rank 0 can estimate pi and
print out the result. The collective function is asynchronous, so we have to wait for the result (the call to
wait()). The return value for asynchronous calls is described in the Asynchronous Computation section.
The collective call also functions as a barrier, so we know that all ranks have completed their computations
before we do the final sum.

#include <iostream>
#include <cstdlib>
#include <random>
#include <upcxx/upcxx.hpp>

using namespace std;

// choose a point at random
int hit()
{

double x = static_cast<double>(rand()) / RAND_MAX;
double y = static_cast<double>(rand()) / RAND_MAX;
if (x*x + y*y <= 1.0) return 1;
else return 0;

}

// sum the hits to rank 0
int reduce_to_rank0(int my_hits)
{

// wait for a collective reduction that sums all local values
return upcxx::allreduce(my_hits, plus<int>()).wait();

}

int main(int argc, char **argv)
{

upcxx::init();
// each rank gets its own copy of local variables
int my_hits = 0;
// the number of trials to run on each rank
int my_trials = 100000;
// each rank gets its own local copies of input arguments
if (argc == 2) my_trials = atoi(argv[1]);
// initialize the random number generator differently for each rank
srand(upcxx::rank_me());
// do the computation
for (int i = 0; i < my_trials; i++) {

my_hits += hit();
}
// sum the hits and print out the final result
int hits = reduce_to_rank0(my_hits);
// only rank 0 prints the result
if (upcxx::rank_me() == 0) {

// the total number of trials over all ranks

6

int trials = upcxx::rank_n() * my_trials;
cout << "pi estimate: " << 4.0 * hits / trials << ", "

<< "rank 0 alone: " << 4.0 * my_hits / my_trials << endl;
}
upcxx::finalize();
return 0;

}

When the above code is executed with a small number of iterations-per-rank, for example:

upcxx-run 32 compute-pi 2

It gives output similar to:

pi estimate: 3.4375, rank 0 alone: 2

It can be seen that with low counts per rank, the estimate is poor for a single rank, whereas multiple threads
improve the estimate.

In the allreduce collective, std::plus was used to define the arithmetic reduction operator. Unlike MPI,
UPC++ does not provide explicit arithmetic operators for collective functions. Instead, UPC++ code is
expected to used std functions, such as std::plus or std::multiplies, etc, or to define the operations as
lambdas. An important caveat, however, is that only the std functions are eligible for hardware acceleration
(should that exist for the given system); lambdas will never be accelerated, and so may not achieve the same
performance.

5 Asynchronous Computation

Most communication operations in UPC++ are asynchronous. In the previous example, the collective call,
upcxx::allreduce, is asynchronous, so we had to wait to get the result, using wait(). However, we can
execute the wait at a later point, allowing us to overlap computation and communication. The function
prototype for upcxx::allreduce is:

template<typename T, typename BinaryOp>
upcxx::future<T> upcxx::allreduce(T &&value, BinaryOp &&op,

upcxx::team &team = upcxx::world());

The return type is a UPC++ future, which holds a value (or tuple of values) and a state (ready or not
ready). When the collective completes, the future becomes ready and can be used to access the results of the
collective. The call to wait() in the pi estimation program can be replaced by:

upcxx::future<int> my_hits_future = upcxx::allreduce(my_hits, plus<int>());
while (!my_hits_future.ready()) upcxx::progress();

First, we get the future object, and then we loop on it until it becomes ready. This loop must include a
call to the upcxx::progress function, which progresses the library and transitions futures to a ready state
when their corresponding operation completes. This common paradigm is embodied in the wait() method of
upcxx::future.

Using futures, the rank waiting for a result can do computation while waiting, effectively overlapping
computation and communication, e.g.:

upcxx::future<int> my_hits_future = upcxx::allreduce(my_hits, plus<int>());
// do unrelated work here
...
my_hits_future.wait();

7

Note that the upcxx::allreduce has a parameter, upcxx::team. UPC++ supports teams, which are ordered
sets of ranks. Collective operations apply to a team. The default team is upxx::world(), which includes
every rank. Currently, this is the only team supported.

An important feature of UPC++ is that there are no ordering guarantees with respect to asynchronous
operations, i.e. there is no guarantee that operations will complete in the order they were initiated. This
allows for more efficient implementations, but the programmer must not assume any ordering, or errors will
result.

6 Remote Procedure Calls

In our calculation of pi, instead of the upcxx::allreduce collective, we could use remote procedure calls
(RPCs). An RPC enables a calling rank to send data plus a function to operate on that data to a remote
rank. The prototype for the RPC call is:

template<typename Func, typename ...Args>
upcxx::future<R> upcxx::rpc(intrank_t r, F &&func, Args &&...args);

This executes function func on rank r and returns the result as a future of type R, which is (usually) the
return type of func. The function passed in can be a lambda. This is how it is used in the example below,
where we replace the upcxx::allreduce collective with an RPC using a lambda:

// need to declare a global variable to use with RPC
int hits = 0;
int reduce_to_rank0(int my_hits)
{

// wait for an rpc that updates rank 0's count
upcxx::rpc(0, [](int my_hits) { hits += my_hits; }, my_hits).wait();
// wait until all ranks have updated the count
upcxx::barrier();
// hits is only set for rank 0 at this point, which is OK because only
// rank 0 will print out the result
return hits;

}

The lambda simply increments the global hits variable on rank 0. The work carried out in the RPC is
done purely on rank 0, and the RPCs are serviced sequentially which ensures there is no possibility of a
race condition. Usually, this work is invoked by the UPC++ runtime inside calls to UPC++ functions. The
mechanism is called progress and is described in more detail in the Progress section. Each rank waits for the
RPC to complete (for the future to complete), and all ranks wait on a barrier (upcxx::barrier()), which
means all ranks will have completed their updates before rank 0 computes and prints the final result.

The prototype for the barrier is:

void upcxx::barrier(team &team = upcxx::world());

Like other collectives, the barrier applies to a team, which by default comprises all ranks.

In this specific case, the use of a global upcxx::barrier() is not necessary, as only rank 0 needs to be
aware when all hits have been reduced. Indeed, rank 0 knows how many hits it is expecting, therefore a
global variable hits_counter can be incremented within the RPC. Rank 0 can then poll on the value of
hits_counter and call upcxx::progress until all hits have been received.

// need to declare a global variable to use with RPC
int hits_counter = 0;
int hits = 0;
int reduce_to_rank0(int my_hits)

8

{
int expected_hits = upcxx::rank_n();
// wait for an rpc that updates rank 0's count
upcxx::rpc(0, [](int my_hits) { hits += my_hits; hits_counter++; }, my_hits).wait();
// wait until all ranks have updated the count
if(upcxx::rank_me()==0)

while(hits_counter < expected_hits) upcxx::progress();

// hits is only set for rank 0 at this point, which is OK because only
// rank 0 will print out the result
return hits;

}

Special care should be taken by developers when using lambda captures.
Even in standard C++ functions within a single rank, lambda capture-by-reference (e.g. [&foo](...)) can
be dangerous without careful attention to object lifetimes. UPC++ imposes several additional constraints:

• When a lambda expression is passed to UPC++ (for example, as an argument to upcxx::persona::lpc),
a closure is created by C++ that contains captures of stack variables. That lambda closure is hidden
from the calling program while it passes through the UPC++ library, making it difficult for developers
to correctly manage the lifetime of any reference-captured variables.

• C++ reference captures are usually implemented by the C++ compiler using pointers. If a lambda
closure containing reference captures is sent to another rank (for example, via upcxx::rpc) those
pointers are no longer valid and very likely to cause memory corruption when the references are used at
the target. (The same is also true for reference arguments or C++ pointers passed to an RPC function
without proper serialization.)

• On distributed memory platforms, variables will often reside in various locations on different ranks due
to non-symmetric stacks, making any use of capture-by-reference impossible.

Therefore, when passing C++ lambdas to UPC++ operations, reference captures are strictly prohibited.

7 Global Memory

A global pointer points to a shared object (which is an object allocated within a shared memory segment),
and is declared as follows:

upcxx::global_ptr<int> gptr = upcxx::new_<int>(upcxx::rank_me());

The call to upcxx::new_<int> allocates a new integer on the calling rank’s shared segment, and returns a
global pointer (upcxx::global_ptr) to the allocated memory. This is illustrated in figure 3, which shows that
each rank has its own private pointer (gptr) to an integer in its local shared segment. By contrast, a normal
C++ dynamic allocation (int *mine = new int) will be in private local memory. Note that we use the
integer type in this paragraph as an example, but any type T can be allocated using the upcxx::new_<T>()
function call.

A UPC++ global pointer is fundamentally different from a conventional C++ pointer: it cannot be
dereferenced using the * operator; it does not support conversions between pointers to base and derived types;
and it cannot be constructed by the C++ std::addressof operator. However, UPC++ global pointers
support pointer arithmetic and passing a pointer by value.

We can now modify our code for computing pi to use global memory to get the total number of hits. The
first step is for rank 0 to allocate a global pointer all_hits_ptr to an array so as to hold all hits values
from remote ranks using the upcxx::new_array function. This pointer is then broadcast to all ranks, which
offset this global pointer by their rank number and store the resulting global pointer in my_hits_ptr. Each
rank then puts their local hits value to the space pointed by my_hits_ptr using the upcxx::rput function

9

Figure 3: Global pointers.

(remote put). After hitting the upcxx::barrier, rank 0 can convert global pointer all_hits_ptr to a local
pointer (using the upcxx::global_ptr<T>::local function), and sum all the values from remote ranks.
Finally, rank 0 deallocates the array pointed by all_hits_ptr using the upcxx::delete_array function.

int reduce_to_rank0(int my_hits)
{

// Rank 0 creates an array the size of the number of ranks to store all
// the global pointers
upcxx::global_ptr<int> all_hits_ptr = nullptr;
if (upcxx::rank_me() == 0) {

all_hits_ptr = upcxx::new_array<int>(upcxx::rank_n());
}
// Rank 0 broadcasts the array global pointer to all ranks
all_hits_ptr = upcxx::broadcast(all_hits_ptr, 0).wait();
// All ranks offset the start pointer of the array by their rank to point
// to their own chunk of the array
upcxx::global_ptr<int> my_hits_ptr = all_hits_ptr + upcxx::rank_me();
// every rank now puts its own hits value into the correct part of the array
upcxx::rput(my_hits, my_hits_ptr).wait();
upcxx::barrier();
// Now rank 0 gets all the values stored in the array
int hits = 0;
if (upcxx::rank_me() == 0) {

// get a local pointer to the shared object on rank 0
int *local_hits_ptrs = all_hits_ptr.local();
for (int i = 0; i < upcxx::rank_n(); i++) {

hits += local_hits_ptrs[i];
}
upcxx::delete_array(all_hits_ptr);

}
return hits;

}

The remote put function is part of the one-sided communication model supported by UPC++. Also supported
is a remote get function, upcxx::rget. There are a number of variants of these two functions, the simplest
being:

template<typename T>
future<> upcxx::rput(T value, upcxx::global_ptr<T> dest);
template<typename T>

10

future<T> upcxx::rget(upcxx::global_ptr<T> src);

These operations initiate transfer of the value object to (put) or from (get) the remote rank; no coordination
is needed with the remote rank (this is why it is one-sided). These operations return a future, which becomes
ready when the transfer is complete. In our reduce_to_rank0 example, we wait on the future before entering
the upcxx::barrier, i.e.

upcxx::rput(my_hits, my_hits_ptrs).wait();

The type transferred must be serializable, in the sense of the C++ trivially-copyable concept. Support for
serialization of more complex types will be provided in subsequent versions.

In the example above, rank 0 gets the sum of the results put by remote ranks in the array pointed to by
all_hits_ptr. This array is stored in rank 0’s local memory, therefore the global pointer can be dereferenced
to a local pointer using the local method of upcxx::global_ptr, as follows:

int *local_hits_ptrs = all_hits_ptr.local();

Using this feature, we can treat all shared objects allocated on a rank as local objects.

8 Allocating and Deallocating Memory in the Shared Segment

In our example above, we used the upcxx::new_array function to allocate an array of integers on rank 0.
This function not only allocates shared objects, but calls the default class constructor for the objects being
allocated. It is paired with upcxx::delete_array which calls the destructors. The function prototypes are:

template<typename T>
upcxx::global_ptr<T> upcxx::new_array(size_t n);
template<typename T>
void upcxx::delete_array(upcxx::global_ptr<T> g);

UPC++ also provides functions for allocating and deallocating single shared objects: upcxx::new_ and
upcxx::delete_. As with upcxx::new_array_, the upcxx::new_ function calls the class constructor in
addition to allocating memory. However, since it is a single object, arguments can be passed to the constructor,
i.e. it does not have to be the default constructor. The prototypes for these functions are:

template<typename T, typename ...Args>
upcxx::global_ptr<T> upcxx::new_(Args &&...args);
template<typename T>
void upcxx::delete_(upcxx::global_ptr<T> g);

Finally, UPC++ provides functions for allocating and deallocating shared objects without calling constructors
and destructors. The upcxx::allocate function allocates enough (uninitialized) space for n shared objects
of type T on the current rank, with a specified alignment, and upcxx::deallocate frees the memory:

template<typename T, size_t alignment = alignof(T)>
upcxx::global_ptr<T> upcxx::allocate(size_t n=1);
template<typename T>
void upcxx::deallocate(upcxx::global_ptr<T> g);

9 Distributed Objects

UPC++ provides the concept of distributed object: a single logical object partitioned over a set of ranks (a
team), where every rank has the same global name for the object (i.e. a universal name), but its own local
value. Distributed objects are created with the upcxx::dist_object<T> type:

upcxx::dist_object<int> all_hits(upcxx:rank_me());

11

Each rank in a given team must call a constructor collectively for upcxx::dist_object<T>, with a value of
type T representing the rank’s instance value for the object (The rank’s rank ID in the example above.)

The need for universal distributed object naming stems primarily from RPC-based communication. If one
rank needs to remotely invoke code on a peer’s partition of a distributed object, there needs to be some
mutually agreeable identifier for referring to that object.

In the reduce_to_rank0 example below, the distributed object is an integer across all ranks (the default
upcxx::world team), and the local instance of the object can be set as if it is a regular pointer, as seen
in the line *all_hits = my_hits (a more compact version is to pass the value to the constructor, i.e.
upcxx::dist_object<int> all_hits(my_hits)). Although the constructor for a distributed object is
collective, there is no guarantee that when the constructor returns on a given rank it will be complete
on any other rank. To avoid this hazard, UPC++ provides an interlock to ensure that RPCs accessing a
dist_object are delayed until the local representative has been constructed. However in this case, we are
assigning a value into the dist_object after construction, so we insert a barrier via upcxx::barrier() to
ensure rank 0 won’t access any remote instance of the distributed object until all the ranks have provided
their contribution.

int reduce_to_rank0(int my_hits)
{

// declare a distributed on every rank
upcxx::dist_object<int> all_hits(0);
// set the local value of the distributed object on each rank
*all_hits = my_hits;
upcxx::barrier();
int hits = 0;
if (upcxx::rank_me() == 0) {

// rank 0 gets all the values
for (int i = 0; i < upcxx::rank_n(); i++) {

// fetch the distributed object from remote rank i
hits += fetch(all_hits, i).wait();

}
}
// ensure that no distributed objects are destructed before rank 0 is done
upcxx::barrier();
return hits;

}

To access the remote value of a distributed object, we define a fetch utility function, which takes the name
of the distributed object and the rank we want to fetch. This function uses an RPC to get the instance of the
distributed object of type T from the remote rank (we will use this convenience function several times in
subsequent examples).

template <typename T>
upcxx::future<T> fetch(upcxx::dist_object<T> &dobj, upcxx::intrank_t rank) {

return upcxx::rpc(rank, [](upcxx::dist_object<T> &rdobj) { return *rdobj; }, dobj);
}

Note that due the barrier mentioned above, the RPC is guaranteed to execute on the remote rank after
the remote representative of the distributed object has been assigned the hits value. However fetch does
not require this synchronization - the RPC it uses will automatically stall at the target if needed to await
construction of the local representative for a dist_object appearing as an RPC argument.

The getting of all the hits with distributed objects can also be done asynchronously, as shown below. In
this example, we use chained futures to compute the results of the asynchronous fetch operations as they
complete. All these operations are launched from rank 0. The chaining of futures starts with the construction
of a trivially ready future, using the upcxx::make_future call, with the local value of my_hits on rank 0.

12

Then rank 0 loops through each remote rank, constructing the chain of futures, and then waits on the final
combined future, f, for completion.

int reduce_to_rank0(int my_hits) {
// initialize this rank's part of the distributed object with the local value
upcxx::dist_object<int> all_hits(my_hits);
int hits = 0;
// rank 0 gets all the values asynchronously
if (upcxx::rank_me() == 0) {

upcxx::future<int> f = upcxx::make_future(my_hits);
for (int i = 1; i < upcxx::rank_n(); i++) {

// get the future value from remote rank i
upcxx::future<int> remote_rank_val = fetch(all_hits, i);
// create a future that combines f and the remote rank's result
upcxx::future<int, int> combined_f = upcxx::when_all(f, remote_rank_val);
// get the future for the combined result, summing the values
f = combined_f.then([](int a, int b) { return a + b; });

}
// wait for the chain to complete
hits = f.wait();

}
upcxx::barrier();
return hits;

}

First, rank 0 fetches the remote value for the distributed object in a future, remote_rank_val. Instead of
waiting for completion of the fetch as we did in our previous example at the beginning of this section, rank
0 combines remote_rank_val with the future f using the function upcxx::when_all, which constructs a
future, combined_f, representing readiness of all the arguments, and returns a future with a concatenated
results tuple of the arguments. We then call .then for the combined_f future, which allows us to attach
a lambda to the results of the future, i.e. when the results are ready, the lambda executes. Note that the
lambda takes as a parameter the result of the future, i.e. future.result(). At each loop, we chain a new
future onto f.

Of course, the code within the for loop can be expressed much more succinctly, as shown below — we broke
it down in the above example to make it easier to explain.

// construct the chain of futures
f = upcxx::when_all(f, fetch(all_hits, i)).then([](int a, int b) { return a + b; });

10 Atomics

UPC++ provides atomic operations on shared objects. This provides another mechanism for the
reduce_to_rank0 function in our ongoing example. Each atomic operation works on a global pointer to
an approved atomic type, which are std::int32_t, std::uint32_t, std::int64_t and std::uint64_t.
In the example below, there is a single shared object allocated on rank 0, and all other ranks atomically
increment it.

int reduce_to_rank0(int my_hits)
{

// a global pointer to the atomic counter in rank 0's shared segment
upcxx::global_ptr<int32_t> hits_ptr =

(!upcxx::rank_me() ? upcxx::new_<int32_t>(0) : nullptr);
// rank 0 allocates and then broadcasts the global pointer to all other ranks
hits_ptr = upcxx::broadcast(hits_ptr, 0).wait();

13

// now each rank updates the global pointer value using atomics for correctness
upcxx::atomic_fetch_add(hits_ptr, my_hits, memory_order_relaxed).wait();
// wait until all ranks have updated the counter
upcxx::barrier();
// once a memory location is accessed with atomics, it should only be
// subsequently accessed using atomics to prevent unexpected results
if (upcxx::rank_me() == 0) {

return upcxx::atomic_get(hits_ptr, memory_order_relaxed).wait();
} else {

return 0;
}

}

The atomic fetch and add operation is asynchronous, like most UPC++ communication operations. It returns
a future, as shown by the prototype definition:

template<typename T>
upcxx::future<T> upcxx::atomic_fetch_add(upcxx::global_ptr<T> p, T val, memory_order mo);

The only other atomic operations currently supported are put and get:

template<typename T>
upcxx::future<> upcxx::atomic_put(upcxx::global_ptr<T> p, T val, memory_order mo);

template<typename T>
upcxx::future<T> upcxx::atomic_get(upcxx::global_ptr<T> p, memory_order mo);

11 A Note on Performance

We have shown five different ways to get the result in the calculation of pi: reduction with collectives, RPCs,
rput with global memory, distributed objects and atomics. The example illustrates the use of the various
options, but in practice, they would be used in different circumstances, taking performance into account. In
our reduce_to_rank0 examples, we expect the upcxx::allreduce to be the most efficient; all of the others
essentially do a more expensive linear reduction, sometimes with contention.

12 Quiescence

Quiescence is a state in which ranks are not doing computations and no messages are currently being transferred
on the network. Quiescence is of particular importance for applications using anonymous asynchronous
operations on which no synchronization is possible on the sender’s side. For example, quiescence may need to
be achieved before destructing resources and/or exiting a upcxx computational phase.

To illustrate a simple approach to quiescence, we use the running example of computing pi. In this case, we
use a version of RPC that does not return a future:

template<typename Func, typename ...Args>
void upcxx::rpc_ff(intrank_t receiver, F &&func, Args &&..args);

The “ff” stands for “fire-and-forget”. From a performance standpoint, it has the advantage that is does not
send a response message to satisfy the future back to the rank which has issued the RPC. However, because
of this, there is no guarantee when the RPC will complete, so the only way to determine completion is using
additional code. Using upcxx::rpc_ff in the reduce_to_rank0 function, we need to add a counter, n_done,
to track completion:

14

int hits = 0;
// counts the number of ranks for which the RPC has completed
int n_done = 0;

int reduce_to_rank0(int my_hits)
{

// cannot wait for the RPC - there is no return
upcxx::rpc_ff(0, [](int my_hits) { hits += my_hits; n_done++; }, my_hits);
if (upcxx::rank_me() == 0) {

// spin waiting for RPCs from all ranks to complete
// When spinning, call the progress function to
// ensure rank 0 processes waiting RPCs
while (n_done != upcxx::rank_n()) upcxx::progress();

}
// wait until all RPCs have been processed (quiescence)
upcxx::barrier();
return hits;

}

We add a loop that spins waiting for the RPCs from all ranks to be completed. We know that rank 0 has to
execute upcxx::rank_n() RPCs (issued by other ranks). The number of RPCs which have been executed is
recorded by incrementing n_done in the body of the procedure issued by remote ranks (i.e. in the lambda
function launched by the upcxx::rpc_ff call). As long as there are still RPCs to execute, rank 0 will
call upcxx::progress to ensure that the upcxx runtime engine executes the RPCs being called on rank 0
(progress is described in more detail in the Progress section). Once n_done is equal to upcxx::rank_n(),
rank 0 knows that it is now safe to exit, and can enter the upcxx::barrier on which all the other ranks are
currently waiting.

There are multiple ways to achieve quiescence. When the number of messages to be received is known
beforehand, it is possible to implement simple mechanisms such as the one used in our reduce_to_rank0
example. There are also more powerful (and thus more expensive) quiescence algorithms, such as the counting
algorithm, that do not require the knowledge of the number of messages/RPCs beforehand. We refer the
advanced users requiring this capability to the appropriate literature.

13 Progress

Progress is a key notion of UPC++ which programmers should be aware of. The UPC++ framework does not
use any private rank (thread) to advance its internal state and keep track of any outstanding asynchronous
communication. Instead, UPC++ needs the application to give it access to the computing resource from
time to time. To do so, UPC++ defines two levels of progress: internal progress and user-level progress.
With internal progress, UPC++ may advance its internal state, but no notifications will be delivered to the
application. Thus the application cannot easily track this level of progress. With user-level progress, UPC++
may advance its internal state as well as signal completion of user-initiated operations, such as RPCs.

It is very important for any programmer to understand that UPC++ needs to be given access periodically to
the CPU. The upcxx::progress function used in our examples provides access to UPC++ explicitly.

upcxx::progress(progress_level lev = progress_level::user)

upcxx::progress is the most important function to make user-level progress, and runs pending
RPCs/callbacks on a particular rank. For the programmer, understanding which functions perform progress
is crucial, since any invocation of user-level progress may execute RPCs or callbacks. When waiting on a
future, user-level progress is also achieved.

Many UPC++ operations have a mechanism to signal completion to the application. However, for

15

performance-oriented applications, UPC++ provides an additional asynchronous operation status indicator
called progress-required. This status indicates that further advancements of the current rank or
threads internal-level progress are necessary so that completion of outstanding operations
on remote entities (e.g. notification of delivery) can be reached. Once theprogress-required‘
state has been left, UPC++ guarantees that remote ranks will see their side of the completions without any
further progress by the current rank. The programmer can query UPC++ when all operations initiated by
this rank have reached a state at which they no longer require progress using the following function:

bool upcxx::progress_required();

UPC++ provides a function called upcxx::discharge() which polls on upcxx::progress_required() and
asks for internal progress until progress is not required anymore. upcxx::discharge() is equivalent to the
following code:

while(upcxx::progress_required())
upcxx::progress(upcxx::progress_level::internal);

Any application entering a long lapse of inattentiveness (e.g. to perform expensive computations) is highly
encouraged to call upcxx::discharge() first.

14 Personas

As mentioned earlier, UPC++ does not use background ranks for progressing asynchronous operations, but
rather leaves all control to the user. The rationale is to make UPC++ as lightweight as possible. Instead of
relying on its own internal ranks (threads), UPC++ introduces the concept of personas. An object of type
upcxx::persona represents a state of the UPC++ library, and UPC++ manages a stack of active personas
per OS thread. The top of that personas stack is referred to as the current persona. Note that a persona is
current to one and only one OS thread at a time.

For any UPC++ operation issued by the current persona, the completion notification (e.g. future) will
be sent to that same persona. This is still the case even if the active upcxx::persona object is not the
current persona anymore by the time the asynchronous operation completes. The key takeaway here is that a
upcxx::persona can be used by one rank to issue operations, then passed to another rank (together with
the futures corresponding to these operations). That second rank will be then be notified of the completion
of these operations via their respective futures. This can be used, for instance, to build a progress thread — a
rank dedicated to progressing asynchronous operations.

UPC++ provides a upcxx::persona_scope class as a means of ensuring that only one OS thread is using a
particular persona at a time. Pushing and popping personas from the persona stack (hence changing the
current persona) is done with the upcxx::persona_scope type. It is built the following way:

template<typename Lock>
upcxx::persona_scope(Lock &lock, upcxx::persona &p);

The upcxx::persona_scope requires a thread locking mechanism (the Lock template argument can be any
type of lock, such as C++ std::mutex for instance) and the upcxx::persona that needs to be pushed.

As an example, we show how to reimplement the computation of pi in a master-slave paradigm. Rank 0 is the
master: it creates a persona (scheduler_persona), and issues RPCs to all the other ranks within the scope
of scheduler_persona. Rank 0 then uses OpenMP threading to spawn an additional, secondary OpenMP
thread, which has the sole purpose of making progress and accumulating the remote hits. Concurrently, the
first OpenMP thread on rank 0 enters a computational phase during which it computes its own hits. Other
ranks (slaves) call upcxx::progress until done is set to one by the RPC (See Quiescence). Note that in
this example, we use OpenMP threads, but the example would work with any threading mechanism, such as
pthreads or C++-11 threads.

16

#include <mutex>
#include <list>
#include <iostream>
#include <cstdlib>
#include <random>
#include <upcxx/upcxx.hpp>

using namespace std;

// choose a point at random
int hit()
{

double x = static_cast<double>(rand()) / RAND_MAX;
double y = static_cast<double>(rand()) / RAND_MAX;
if (x*x + y*y <= 1.0) return 1;
else return 0;

}

int done = 0;

int main(int argc, char **argv)
{

upcxx::init();
srand(upcxx::rank_me());

if (upcxx::rank_me() == 0) {
// the number of trials to run on each rank
int trials_per_rank = 100000;
if (argc == 2) trials_per_rank = atoi(argv[1]);
int hits = 0;
int my_hits = 0;

upcxx::persona scheduler_persona;
mutex scheduler_lock;
list<upcxx::future<int> > remote_rpcs;
{

// Scope block delimits domain of persona scope instance
auto scope = upcxx::persona_scope(scheduler_lock, scheduler_persona);
// All following upcxx actions will use scheduler_persona as current
for (int rank = 1; rank < upcxx::rank_n(); rank++) {

// launch computations on remote ranks and store the
// returned future in the list of remote rpcs
remote_rpcs.push_back(

upcxx::rpc(rank,
[](int my_trials) {

int my_hits = 0;
for (int i = 0; i < my_trials; i++) {

my_hits += hit();
}
done = 1;
return my_hits;

},
trials_per_rank));

}

17

// scope destructs :
// - scheduler_persona dropped from active set if it
// wasn't active before the scope's construction
// - Previously current persona revived
// - Lock released

}
#pragma omp parallel sections default(shared)
{

// This is the computational thread of rank 0
#pragma omp section
{

// do the computation
for (int i = 0; i < trials_per_rank; i++) {

my_hits += hit();
}

} // end omp section
// Launch another thread to make progress and track completion
// of the operations
#pragma omp section
{

auto scope = upcxx::persona_scope(scheduler_lock, scheduler_persona);
while (!remote_rpcs.empty()) {

upcxx::progress();
auto it = find_if(remote_rpcs.begin(), remote_rpcs.end(),

[](upcxx::future<int> & f) {return f.ready();});
if (it != remote_rpcs.end()) {

auto &fut = *it;
// accumulate the result
hits += fut.result();
// remove the future from the list
remote_rpcs.erase(it);

}
}

} // end omp section
} // end omp parallel sections
hits += my_hits;
// the total number of trials over all ranks
int trials = upcxx::rank_n() * trials_per_rank;
cout << "pi estimated as " << 4.0 * hits / trials << endl;

} else {
// other ranks progress until quiescence is reached (i.e. done == 1)
while (!done) upcxx::progress();

}
upcxx::finalize();
return 0;

}

In the example above, the hit() function calls the C function rand() which is not thread-safe. However,
this is not a bug for this particular example, because only one thread executes the OpenMP section in which
the hit function is called. If multiple threads were to perform concurrent operations, the use of thread-safe
routines would be required.

18

	Introduction
	Hello World in UPC++
	Installing, Compiling and Running UPC++ Programs
	A Simple Example of Parallel Computation
	Asynchronous Computation
	Remote Procedure Calls
	Global Memory
	Allocating and Deallocating Memory in the Shared Segment
	Distributed Objects
	Atomics
	A Note on Performance
	Quiescence
	Progress
	Personas

