
CyDER Master Algorithm
Release 1.0.0

LBNL - Building Technology and Urban Systems Division

Jan 25, 2018

CONTENTS

1 Introduction 1

2 Installation and Configuration 3
2.1 Running PyFMI with Python 3.4 on Windows 32 bit . 3

2.1.1 Requirements . 3
2.1.2 Compilation . 3

3 Usage of CYMDIST as an FMU 5

4 Co-simulation 7
4.1 Solving Algebraic Loops between CYMDIST and GridDyn . 7
4.2 Coupling CYMDIST and GridDyn FMUs using PyFMI . 8

5 Notation 11

6 Glossary 13

7 Acknowledgments 15

8 Disclaimers 17

9 Copyright and License 19
9.1 Copyright . 19
9.2 License Agreement . 19

i

ii

CHAPTER

ONE

INTRODUCTION

This user manual explains how to install and use PyFMI to couple the CYMDISTToFMU with other FMUs such as a
GridDyn FMU.

1

CyDER Master Algorithm, Release 1.0.0

2 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION AND CONFIGURATION

This chapter describes how to install PyFMI on Windows.

Running PyFMI with Python 3.4 on Windows 32 bit

PyFMI is a python package which can be used to import and run a CYMDIST FMU. In PyFMI version 2.3.1, a master
algorithm was added to import and link multiple FMUs for co-simulation. At time of writing, there was no PyFMI
2.3.1 executable available for Python 3.4 for Windows 32bit (See PyPyi.). The next steps describe requirements and
steps to perform to compile PyFMI version 2.3.1 from source.

Note: To avoid having to recompile PyFMI dependent libraries from source, we recommend to use pre-compiled
Windows binaries whenever available.

Requirements

The next table shows the list of Python modules and softwares used to compile version 2.3.1 of PyFMI from source so
it can run with Python 3.4 on Windows 32 bit.

Install PyFMI dependencies with

pip install -r fmu\master\bin\pyfmi-dependencies.txt

Below is a table with dependencies which fail to install using pip. For those, we recommend to use the MS Windows
installer directly.

Modules Version Link
FMI Library 2.0.2 (binaries) http://www.jmodelica.org/downloads/FMIL/FMILibrary-2.0.2-win32.zip
Scipy 0.16.1 https://sourceforge.net/projects/scipy/files/scipy/0.16.1
lxml 3.4.4 https://pypi.python.org/pypi/lxml/3.4.4
Assimulo 2.7b1 https://pypi.python.org/pypi/Assimulo/2.7b1
PyFMI 2.3.1 (source) https://pypi.python.org/pypi/PyFMI

Note: PyFMI needs a C-compiler to compile the source codes. We used the Microsoft Visual Studio 10 Professional.

Compilation

To compile PyFMI from source, run

3

https://pypi.python.org/pypi/PyFMI
http://www.jmodelica.org/downloads/FMIL/FMILibrary-2.0.2-win32.zip
https://sourceforge.net/projects/scipy/files/scipy/0.16.1
https://pypi.python.org/pypi/lxml/3.4.4
https://pypi.python.org/pypi/Assimulo/2.7b1
https://pypi.python.org/pypi/PyFMI

CyDER Master Algorithm, Release 1.0.0

python setup.py install --fmil-home=path_to_FMI_Library\

where path_to_FMI_Library\ is the path to the FMI library.

4 Chapter 2. Installation and Configuration

CHAPTER

THREE

USAGE OF CYMDIST AS AN FMU

The following requirements must be met to import and run a CYMDIST FMU:

1. CYME version 7.2 must be installed. CYME can be downloaded from www.cyme.com.

2. The CYMDIST Python API directory must be added to the PYTHONPATH. This directory contains scripts
needed at runtime by the CYMDIST FMU.

The CYMDIST Python API directory is in the installation folder of CYME. It can typically be found in
path_to_CYME/CYME/cympy, where path_to_CYME is the path to the installation folder of CYME 7.2.

To add the CYMDIST Python API scripts folder to the PYTHONPATH, add path_to_CYME/CYME to
the PYTHONPATH with following steps:

• In Search, search for and then select: System (Control Panel).

• Click the Advanced system settings link.

• Click Environment Variables. In the section System Variables, find a variable named PYTHONPATH
environment variable and select it. If the variable does not exist, create it. Click Edit.

• In the Edit System Variable (or New System Variable) window, specify the value of the PYTHON-
PATH environment variable which should be in our case path_to_CYME/CYME.

3. The CYMDIST installation directory must be added to the system PATH. This directory contains runtime DLLS
(mkl_core.dll, mkl_def.dll) that are needed at runtime by the CYMDIST FMU.

4. Upon request, the simulation results are saved in a result file which is created in the current working directory.
The name of the result file is xxx_result_.pickle, where xxx is the FMU model name as defined in the
XML input file.

5

https://www.cyme.com

CyDER Master Algorithm, Release 1.0.0

6 Chapter 3. Usage of CYMDIST as an FMU

CHAPTER

FOUR

CO-SIMULATION

This section explains how to link a CYMDIST FMU with another FMU for co-simulation. We used the GridDyn
FMU for the simulation coupling and explain the problematic caused by coupling the two tools with the solution
implemented in CyDER.

Solving Algebraic Loops between CYMDIST and GridDyn

Coupling GridDyn FMU to CYMDIST creates an algebraic loop that requires an iterative solution. Solving this
nonlinear system of equations is not likely to be robust, because GridDyn and CYMDIST both contain iterative solvers.
Therefore, the residual function of this algebraic loop will have numerical noise which is caused by the embedded
iterative solvers. To avoid this problem, LLNL proposes to approximate CYMDIST by a polynomial and then solve the
coupled system of equations that is formed by this polynomial and GridDyn. Details about approximating CYMDIST
with a polynomial are discussed in the next sections. On occasion, this will require that CYMDIST to be called
multiple times with varying input, but the same state variables, in order to compute its polynomial approximation.

Next, we describe how the system model needs to be configured to allow GridDyn to approximate CYMDIST as
a polynomial. We consider the case where CYMDIST is coupled to GridDyn. For the discussion, we use 𝑝 for
parameters (which do not change in time), 𝑢 for inputs, which may change in time, 𝑦 for outputs and 𝑡 for time. We
will denote with subscript 𝑔 quantities of GridDyn, and with subscript 𝑐 quantities of CYMDIST. We will use 𝑓() to
denote a function with unassigned variables.

Hence, the GridDyn model is of the form

𝑦𝑔 = 𝑓𝑔(𝑝𝑔, 𝑢𝑔, 𝑡),

while the CYMDIST model is of the form

𝑦𝑐 = 𝑓𝑐(𝑝𝑐, 𝑢𝑐, 𝑡).

Note that we make the assumption that both models only take voltage or current as inputs, that is, we assume 𝑢𝑔 = 𝑦𝑐
and 𝑢𝑐 = 𝑦𝑔 , and the CYMDIST model has no state. These models are connected as shown in :num:‘Figure #fig-
couplingwloop‘.

To implement the computation, these models are encapsulated as FMUs. To approximate CYMDIST as a polynomial,
we will need to also propagate parameters 𝑝𝑔 and a connection list that declares the connection between 𝑦𝑔 and 𝑢𝑐 and
between 𝑦𝑐 and 𝑢𝑔 . We will call this connection list 𝑝𝑙. Hence, the CYMDIST FMU needs to be a function of the form

𝑦𝑐 = 𝑓𝑐(𝑝𝑐, 𝑢𝑐, 𝑡),

while the GridDyn FMU is of the form

𝑦𝑔 = 𝑓𝑔(𝑝𝑔, 𝑝𝑐, 𝑝𝑙, 𝑢𝑔, 𝑡).

Hence, the GridDyn model needs to take additional parameters the parameters 𝑝𝑐 to parameterize the CYMDIST
model, and 𝑝𝑙 to connect the outputs to the inputs. The CYMDIST FMU is an FMU-ME 2.0, because it needs to

7

CyDER Master Algorithm, Release 1.0.0

Fig. 4.1: Coupling of CYMDIST with GridDyn with algebraic loop.

be evaluated by GridDyn without advancing time when approximating it as a polynomial, which is not allowed for
FMI-CS 2.0.

As CYMDIST obtains from GridDyn the input 𝑢𝑐 that corresponds to the solution of the closed loop, the FMUs are
connected as in :num:‘Figure #fig-couplingwoloop‘.

Fig. 4.2: Coupling of CYMDIST with GridDyn without algebraic loop.

The sequence of evaluations will be as follows: During instantiation, both FMUs get their parameters assigned. The
GridDyn parameters include the parameters for CYMDIST 𝑝𝑐 and the output-input connection list 𝑝𝑙. Then, GridDyn
will instantiate a CYMDIST FMU, and connect 𝑢𝑐 to 𝑦𝑔 . This CYMDIST FMU, which we call 𝑓*

𝑐 (, ,), will not be
visible to the outside. When GridDyn is invoked, it will approximate 𝑓*

𝑐 (, ,), compute a converged solution using this
approximation, and compute the output 𝑦𝑔 . The master algorithm will then assign 𝑢𝑔 := 𝑦𝑐 and evaluate the FMU
𝑓𝑔(𝑝𝑔, 𝑝𝑐, 𝑝𝑙, 𝑢𝑔, 𝑡), which completes the time step.

Coupling CYMDIST and GridDyn FMUs using PyFMI

Next, we showed a snippet of the master algorithm which is used to couple a CYMDIST FMU (CYMDIST.FMU) with
a GridDyn FMU (GridDyn.fmu).

Line imports the PyFMI modules which is needed for the coupling.

Line 25 loads the CYMDIST FMU

Line 26 loads the GridDyn FMU. We used in this example a GridDyn FMU which models the IEEE 14-Bus System.

Line 28 and 29 set-up the parameters for the simulation.

8 Chapter 4. Co-simulation

CyDER Master Algorithm, Release 1.0.0

Line 32 - 37 create the vector of input and output names for both FMUs.

Line 45 - 53 get the value references of the CYMDIST and GridDyn variables

Line 69 and 70 initialize the FMUs.

Line 73 calls event update for the CYMDIST FMU. This is required by CYMDIST which is a model exchange FMU
and hence needs to call this function prior to entering the continous time mode.

Line 74 CYMDIST enters in continuous time mode.

Line 77 In the loop, CYMDIST and GridDyn are evaluated.

First, The outputs of GridDyn are retrieved. these outputs must be the coverged solution between CYMDIST and
GridDyn at the time when GridDyn is invoked.

Second, The outputs of GridDyn are set as inputs of CYMDIST at the same time instant. CYMDIST computes the
outputs at that time instant and send the updated outputs.

Line 88 and 89 complete the simulation and terminate both FMUs.

1 from pyfmi import load_fmu
2

3 def simulate_cymdist_griddyn14bus_fmus():
4 """Simulate coupled GridDyn and CYMDIST FMUs.
5

6 """
7 # Simulation parameters
8 start_time = 0.0
9 stop_time = 300

10 step_size = 300
11

12 # Path to the CYMDIST configuration file
13 path_config=os.path.abspath("config.json")
14 # Conversion to byte for PyFMI
15 cymdist_con_val_str = bytes(path_config, 'utf-8')
16

17 griddyn_input_valref=[]
18 griddyn_output_valref=[]
19 griddyn_output_values=[]
20

21 cymdist_input_valref=[]
22 cymdist_output_valref=[]
23 cymdist_output_values=[]
24

25 cymdist = load_fmu("../fmus/CYMDIST/CYMDIST.fmu", log_level=7)
26 griddyn=load_fmu("../fmus/griddyn/griddyn14bus.fmu", log_level=7)
27

28 cymdist.setup_experiment(start_time=start_time, stop_time=stop_time)
29 griddyn.setup_experiment(start_time=start_time, stop_time=stop_time)
30

31 # Define the inputs
32 cymdist_input_names = ['VMAG_A', 'VMAG_B', 'VMAG_C', 'VANG_A', 'VANG_B', 'VANG_C']
33 cymdist_output_names = ['IA', 'IB', 'IC', 'IAngleA', 'IAngleB', 'IAngleC']
34

35 griddyn_input_names = ['Bus11_IA', 'Bus11_IB', 'Bus11_IC',
36 'Bus11_IAngleA', 'Bus11_IAngleB', 'Bus11_IAngleC']
37 griddyn_output_names = ['Bus11_VA', 'Bus11_VB', 'Bus11_VC',
38 'Bus11_VAngleA', 'Bus11_VAngleB', 'Bus11_VAngleC']
39

40 # Get the value references of griddyn inputs

4.2. Coupling CYMDIST and GridDyn FMUs using PyFMI 9

CyDER Master Algorithm, Release 1.0.0

41 for elem in griddyn_input_names:
42 griddyn_input_valref.append(griddyn.get_variable_valueref(elem))
43

44 # Get the value references of griddyn outputs
45 for elem in griddyn_output_names:
46 griddyn_output_valref.append(griddyn.get_variable_valueref(elem))
47

48 # Get the value references of cymdist inputs
49 for elem in cymdist_input_names:
50 cymdist_input_valref.append(cymdist.get_variable_valueref(elem))
51

52 # Get the value references of cymdist outputs
53 for elem in cymdist_output_names:
54 cymdist_output_valref.append(cymdist.get_variable_valueref(elem))
55

56 # Set the flag to save the results
57 cymdist.set("_saveToFile", 0)
58 # Get the initial outputs from griddyn
59 # Get value reference of the configuration file
60 cymdist_con_val_ref = cymdist.get_variable_valueref("_configurationFileName")
61

62 # Set the configuration file
63 cymdist.set_string([cymdist_con_val_ref], [cymdist_con_val_str])
64

65 # Set the value of the multiplier
66 griddyn.set('multiplier', 3.0)
67

68 # Initialize the FMUs
69 cymdist.initialize()
70 griddyn.initialize()
71

72 # Call event update prior to entering continuous mode.
73 cymdist.event_update()
74 cymdist.enter_continuous_time_mode()
75

76 # Co-simulation loop
77 for tim in np.arange(start_time, stop_time, step_size):
78 cnt+=1
79 # Get the outputs from griddyn
80 griddyn_output_values = (griddyn.get_real(griddyn_output_valref))
81 # set the time in cymdist
82 cymdist.time = tim
83 # Set the inputs of cymdist
84 cymdist.set_real(cymdist_input_valref, griddyn_output_values)
85 # Get the outputs of cymdist
86 cymdist_output_values = (cymdist.get_real(cymdist_output_valref))
87 # Terminate FMUs
88 cymdist.terminate()
89 griddyn.terminate()
90

91 if __name__ == '__main__':
92 simulate_cymdist_griddyn14bus_fmus()

10 Chapter 4. Co-simulation

CHAPTER

FIVE

NOTATION

This chapter shows the formatting conventions used throughout the User Guide.

The command-line is an interactive session for issuing commands to the operating system. Examples include a DOS
prompt on Windows, a command shell on Linux, and a Terminal window on MacOS.

The User Guide represents a command window like this:

This is a comment.
> (This is the command prompt, where you enter a command)
(If shown, this is sample output in response to the command)

Note that your system may use a different symbol than “>” as the command prompt (for example, “$”). Furthermore,
the prompt may include information such as the name of your system, or the name of the current subdirectory.

11

CyDER Master Algorithm, Release 1.0.0

12 Chapter 5. Notation

CHAPTER

SIX

GLOSSARY

Dymola Dymola, Dynamic Modeling Laboratory, is a modeling and simulation environment for the Modelica lan-
guage.

Functional Mock-up Interface The Functional Mock-up Interface (FMI) is the result of the Information Technology
for European Advancement (ITEA2) project MODELISAR. The FMI standard is a tool independent standard to
support both model exchange and co-simulation of dynamic models using a combination of XML-files, C-header
files, C-code or binaries.

Functional Mock-up Unit A simulation model or program which implements the FMI standard is called Functional
Mock-up Unit (FMU). An FMU comes along with a small set of C-functions (FMI functions) whose input
and return arguments are defined by the FMI standard. These C-functions can be provided in source and/or
binary form. The FMI functions are called by a simulator to create one or more instances of the FMU. The
functions are also used to run the FMUs, typically together with other models. An FMU may either require the
importing tool to perform numerical integration (model-exchange) or be self-integrating (co-simulation). An
FMU is distributed in the form of a zip-file that contains shared libraries, which contain the implementation of
the FMI functions and/or source code of the FMI functions, an XML-file, also called the model description file,
which contains the variable definitions as well as meta-information of the model,additional files such as tables,
images or documentation that might be relevant for the model.

Modelica Modelica is a non-proprietary, object-oriented, equation-based language to conveniently model complex
physical systems containing, e.g., mechanical, electrical, electronic, hydraulic, thermal, control, electric power
or process-oriented subcomponents.

MODELISAR MODELISAR is an ITEA 2 (Information Technology for European Advancement) European project
aiming to improve the design of systems and of embedded software in vehicles.

PyFMI PyFMI is a package for loading and interacting with Functional Mock-Up Units (FMUs), which are compiled
dynamic models compliant with the Functional Mock-Up Interface (FMI).

Python Python is a dynamic programming language that is used in a wide variety of application domains.

13

CyDER Master Algorithm, Release 1.0.0

14 Chapter 6. Glossary

CHAPTER

SEVEN

ACKNOWLEDGMENTS

The development of this documentation was supported by the Assistant Secretary for Energy Efficiency and Renewable
Energy, Office of Building Technologies of the U.S. Department of Energy, under contract No. xxx.

The following people contributed to the development of this program:

• Thierry Stephane Nouidui, Lawrence Berkeley National Laboratory

• Jonathan Coignard, Lawrence Berkeley National Laboratory

• Michael Wetter, Lawrence Berkeley National Laboratory

15

CyDER Master Algorithm, Release 1.0.0

16 Chapter 7. Acknowledgments

CHAPTER

EIGHT

DISCLAIMERS

This document was prepared as an account of work sponsored by the United States Government. While this document
is believed to contain correct information, neither the United States Government nor any agency thereof, nor The
Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any
agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the
University of California.

17

CyDER Master Algorithm, Release 1.0.0

18 Chapter 8. Disclaimers

CHAPTER

NINE

COPYRIGHT AND LICENSE

Copyright

“CyDER v01” Copyright (c) 2017, The Regents of the University of California, through Lawrence Berkeley National
Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

If you have questions about your rights to use or distribute this software, please contact Berkeley Lab’s Innovation &
Partnerships Office at IPO@lbl.gov.

NOTICE. This Software was developed under funding from the U.S. Department of Energy and the U.S. Government
consequently retains certain rights. As such, the U.S. Government has been granted for itself and others acting on its
behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software to reproduce, distribute copies to the
public, prepare derivative works, and perform publicly and display publicly, and to permit others to do so.

License Agreement

“CyDER v01” Copyright (c) 2017, The Regents of the University of California, through Lawrence Berkeley National
Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy
nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

19

mailto:IPO@lbl.gov

CyDER Master Algorithm, Release 1.0.0

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written
license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free,
perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute,
and sublicense such enhancements or derivative works thereof, in binary and source code form.

20 Chapter 9. Copyright and License

INDEX

D
Dymola, 13

F
Functional Mock-up Interface, 13
Functional Mock-up Unit, 13

M
Modelica, 13
MODELISAR, 13

P
PyFMI, 13
Python, 13

21

	Introduction
	Installation and Configuration
	Running PyFMI with Python 3.4 on Windows 32 bit
	Requirements
	Compilation

	Usage of CYMDIST as an FMU
	Co-simulation
	Solving Algebraic Loops between CYMDIST and GridDyn
	Coupling CYMDIST and GridDyn FMUs using PyFMI

	Notation
	Glossary
	Acknowledgments
	Disclaimers
	Copyright and License
	Copyright
	License Agreement

