
Goodman HTS Pipeline User Manual

version 1.0

Simón Torres, César Briceño and Bruno Quint

April 29, 2018

Contents
Introduction 1

License 1

Overview 1

Features Available 2

Supported Data 2

Future Implementation 2

Requirements 3

Data Requirements 3

Reference Lamp Files 3

Headers Requirements 4

File organization 5

Software Requirements 5

Setup for Remote Use 5

Establish a VNC connection 6

VNC from the Terminal 6

Setup for local installation 6

DCR (optional) 7

Compiling DCR 8

Install binary DCR 8

Running the Pipeline 9

Working with Virtual Environments 9

Prepare Data for Reduction 9

Run redccd 10

Run redspec 10

Description of custom keywords 10

General Purpose Keywords 10

Non-linear wavelength solution 11

Combined Images 11

Detected lines 11

Acknowledgements 13

Introduction
This is the User Manual for the Goodman Spectroscopic Data Reduction Pipeline. It provides an overview of the
pipeline’s main features, instructions on its use and how to run it on our dedicated Data Reduction Server, and
installation instructions for those who wish to run it on their own computers.

License
Copyright (c) 2018, NOAO/AURA, Inc. All rights reserved. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the NOAO/AURA, Inc. nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
NOAO/AURA, Inc. All rights reserved. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Overview
The Goodman Spectroscopic Data Reduction Pipeline - The Goodman Pipeline - is a Python-based package for
producing science-ready, wavelength-calibrated, 1-D spectra. The goal of The Goodman Pipeline is to provide
SOAR users with an easy to use, very well documented software for reducing spectra obtained with the Goodman
spectrograph. Though the current implementation assumes offline data reduction, our aim is to provide the capability
to run it in real time, so 1-D wavelength calibrated spectra can be produced shortly after the shutter closes.

The pipeline is primarily intended to be run on a data reduction dedicated computer. Instructions for running the
software are provided in the Running Pipeline section of this guide. The Goodman Spectroscopic Data Reduction
Pipeline project is hosted at GitHub at it’s GitHub Repository.

Currently the pipeline is separated into two main components. The initial processing is done by redccd, which trims
the images, and carries out bias and flat corrections. The spectroscopic processing is done by redspec and carries
out the following steps:

• Identifies point-source targets.

• Trace the spectra.

• Extract the spectra.

• Estimate and subtract background.

• Saves extracted (1D) spectrum, without wavelength calibration.

• Finds the wavelength solution.

• Linearize data (resample)

• Write wavelength solution to FITS header

• Create a new file for the wavelength calibrated 1D spectrum

Introduction

1

https://github.com/soar-telescope/goodman

Features Available

• Self-contained, full data reduction package for the most commonly used predefined setups with Goodman
HTS. Given the almost limitless number of possible configurations available with the Goodman instrument, only
the most popular configurations will be supported, though we will try to add as many modes as possible.

• Python based, using existing Astropy libraries as much as feasible.

• Extensively documented, using general coding standards: PEP8 – Style Guide, PEP257 – Docstrings
Convention (in-code documentation) – Google Style

• Multiplataform compatibility (tested on Linux Ubuntu, CentOS and MacOSX).

• Modular design. Could be used as a library within other Python applications.

Supported Data
We are currently supporting data older than March, 2018, however you should be able to process older data making
sure you data meets the data requirements.

Future Implementation
Here is an extensive list of the features we are planning to implement.

Additions:

• Extended Source Extraction

• Flux calibration module

• Source deblending

• Live version of The Goodman Pipeline.
Improvements:

• Method to calculate wavelength solution, giving more options in terms of models.

• Code clean up

• Documentation

• Detector Quality Monitor system (already being developed by an independent group)

Features Available

2

Requirements
We present here the data and software requirements that assure that the pipeline can perform smoothly. We
recommend to check your data and your system before running it. Otherwise, the pipeline can perform in an
unexpected way or even crash.

Data Requirements
The Goodman High Throughput Spectrograph’s data has seen some evolution in the past years in shape and most
importantly in its headers. The The Goodman Pipeline relies heavily on the data’s header so this is in fact very
important.

The headers must be FITS Compliant first of all, if not the software exits with errors.

Remember that the Goodman Spectrograph has two cameras, Blue and Red.

Recent data obtained with the Red Camera already meets all the requirements in terms of format and header cards.

Data obtained with the Blue Camera before March, 2018 is expected to have several format issues:

1. There were non fits-compliant characters in some comments. To solve that, you can edit the header using
the most recent version of AstroPy, IRAF or WCSTOOLS to remove the following keywords: PARAM0,
PARAM61, PARAM62 and PARAM63.

2. The data was defined as 3D, just like a single frame of a data cube. To solve this, you will have to read the
data and rewrite it with only two dimensions using AstroPy or IRAF.

3. Some keywords were added with time.

• INSTCONF: contains the name of the Goodman Camera used, e.g., “Blue” or “Red”.

• WAVMODE: contains the ruling number of the used grating and the mode name, e.g., “400 m1”
or “400 m2”.

• ROI: the name of the region of interest, e.g., “Spectroscopic 1x1”, “user-defined”, etc.

4. Duplicated keywords. Make sure that your data does not contain duplicated keywords.

Reference Lamp Files
Having an automatic wavelength calibration method relies on having previously calibrated reference lamps obtained
in the same configuration or mode. It is also important that the lamp names are correct, for instance HgAr is quite
different than HgArNe. Spaces between lamps are not allowed. And the name is case insensitive: you may write
“HgAr”, “HGAR” or “hgar”. The list of current lamps is the following.

List of Goodman Spectrograph supported modes

Grating Mode Filter Lamp

400 M1 None HgAr, HgArNe

400 M2 GG455 Ar, Ne, HgAr, HgArNe, CuHeAr, FeHeAr

Important

More lamps will be made public shortly.

Requirements

3

https://fits.gsfc.nasa.gov/fits_standard.html
http://www.ctio.noao.edu/soar/content/goodman-spectrograph-overview

Headers Requirements

Goodman HTS spectra have small non-linearities on their wavelength solutions. They are small but must be taken
into account.

It was necessary to implement a custom way of storing non-linear wavelength solutions that at the same time
allowed for keeping data as untouched as possible. The main reason is that linearizing the reference lamps made
harder to track down those non-linearities on the new data being calibrated and also; The documentation on how to
write non-linear solution to a FITS header is far too complex for our use case and there is no apparent effort on trying
to simplify it. Below I compile a list of required keywords for comparison lamps if they want to be used as reference
lamps. The full list of keywords is listed under New Keywords.

General Custom Keywords:

Every image processed with the Goodman Spectroscopic Pipeline will have the general keywords. The one
required for a reference lamp is the following:

GSP_FNAM = file-name.fits / Current file name

Record of detected lines in Pixel and Angstrom:

Reference lamps have a record of usable lines in its header. Initially the lamp is run through a tool that identifies
the lines and records its pixel value. The root string is GSP_P followed by a zero-padded three digit sequential
number (001, 002, etc). For instance.

GSP_P001= 499.5377036976768 / Line location in pixel value

GSP_P002= 810.5548319623747 / Line location in pixel value

GSP_P003= 831.6984711087946 / Line location in pixel value

Later, the equivalent values in angstrom are then recorded with the root string GSP_A and the same numerical
pattern as before.

GSP_A001= 5460.75 / Line location in angstrom value

GSP_A002= 5769.61 / Line location in angstrom value

GSP_A003= 5790.67 / Line location in angstrom value

GSP_P001 and GSP_A001 are a match. If any of the angstrom value entries have a value of 0 (default value) the
equivalent pair pixel/angstrom entry is ignored. Also they must be organized in an always increasing way, if they
are not, they will be ignored too.

Important

Those keywords are used to calculate the mathematical fit of the wavelength solution and are not used on
normal operation. Our philosophy here is that the line identification has to be done only once and then the model
can be fitted several times, actually you can try several models if you want. (On your own)

Requirements

4

Non-linear wavelength solution:

The method for recording the non-linear wavelength solution is actually very simple. It requires: GSP_FUNC
which stores a string with the name of the mathematical model from astropy.modeling.models. GSP_ORDR
stores the order or degree of the model. GSP_NPIX stores the number of pixels in the spectral axis. Then there
is N+1 parameter keywords where N is the order of the model defined by GSP_ORDR. The root string of the
keyword is GSP_C and the rest is a zero-padded three digit number starting on zero to N. See the example
below.

GSP_FUNC= Chebyshev1D / Mathematical model of non-linearized data

GSP_ORDR= 3 / Mathematical model order

GSP_NPIX= 4060 / Number of Pixels

GSP_C000= 4963.910057577853 / Value of parameter c0

GSP_C001= 0.9943952599223119 / Value of parameter c1

GSP_C002= 5.59241584012648e-08 / Value of parameter c2

GSP_C003= -1.2283411678846e-10 / Value of parameter c3

Warning

This method has been developed and tested to write correctly polynomial-like models. And ONLY reads
Chebyshev1D models. Other models will just be ignored. More development will be done based on request,
suggestions or needs.

File organization
redccd and redspec will look for all fits files inside the current working directory or inside the path provided with the
--raw-path (redccd)/--data-path (redspec) flag non-recursively. Make sure to have only data that contains
relevant signal. Data obtained during focus process, saturated flats, etc, must be left in another folder.

Also, if you want to avoid any problems we recommend you to follow these points.

• Delete all unnecessary files (focus, test, acquisition, unwanted exposures, etc)

• Don’t mix different ROI (Region Of Interest), Gain and Readout Noises.

• Make sure all the required file types are present: BIAS, FLAT, COMP, OBJECT.

Software Requirements
Using the pipeline remotely is the recommended method, in which case you don’t need to worry about software
requirements.

However, we provide simple instructions below.

Setup for Remote Use
The Goodman Spectroscopic Data Reduction Pipeline has been installed on a dedicated computer at SOAR. The
procedure requires to open a VNC session, for which you need to be connected to the SOAR VPN. The credentials
for the VPN are the same you used for your observing run, provided by your Support Scientist, who will also give you
the information for the data reduction computer VNC connection.

Note

IRAF is available in the data server at SOAR. Running iraf will open an xgterm and ds9 windows. iraf-only
will open xgterm but not ds9

Software Requirements

5

Establish a VNC connection

Separately, you should receive a server hostname, IP, display number and VNC-password.

VNC display number and working folder assigned to each partner.

Display Partner/Institution Folder

:1 NOAO /home/goodman/data/NOAO

:2 Brazil /home/goodman/data/BRAZIL

:3 UNC /home/goodman/data/UNC

:4 MSU /home/goodman/data/MSU

:5 Chile /home/goodman/data/CHILE

For this tutorial we will call the vnc server host name as <vnc-server> the display number is <display-number>
and your password is <password>.

The VNC connection should work with any VNC Client like TightVNC, TigerVNC, RealVNC, etc. The first two run on
Linux and can be used directly with the vncviewer command line.

VNC from the Terminal

Find the <display-number> that corresponds to you from the VNC Displays table. Open a terminal, and assuming
you have installed vncviewer.

vncviewer <vnc-server>:<display-number>

You will be asked to type in the <password> provided.

Important

The real values for <vnc-server> and <password> should be provided by your support scientist.

If the connection succeeds you will see a Centos 7 Desktop using Gnome.

Setup for local installation
The The Goodman Pipeline is completely written in Python 3.x and relies on several libraries like:

• NumPy

• SciPy

• MatPlotLib

• Pandas

• AstroPy

• AstroPy/ccdproc

• AstroPy/astroplan

• DCR

We do not recommend the installation of these libraries or the The Goodman Pipeline in your system since updates
and upgrades may ruin it. We rather recomment the use of Virtual Environments. If you are not familiar with this term,
please check the official documentation by visiting the link below:

https://docs.python.org/3/tutorial/venv.html

or

http://docs.python-guide.org/en/latest/dev/virtualenvs/

Software Requirements

6

https://docs.python.org/3/tutorial/venv.html
http://docs.python-guide.org/en/latest/dev/virtualenvs/

Another option is to install Conda, a Virtual Environment Manager, and AstroConda, the same but for astronomers.
Everything you need to know about installing both can be found in the link below:

https://astroconda.readthedocs.io/

Warning

You may find that ccdproc and astroplan do not come with Astroconda. They are not available on any Conda
channel either. That means that you will have to install them separately. You can do that by downloading the
source files and installing them by hand, or, simply activate your Virtual Environment and, then, install these two
packages using pip with

pip install ccdproc astroplan.

System installation is not recommended because can mess things up specially in Linux and Mac OS. Before you
proceed, make sure that your system has all the required libraries, as described in Setup for local installation.

Once you have Python running and all the libraries installed either using Conda/AstroConda or not, you may
download the last version available in the following address:

https://github.com/soar-telescope/goodman/releases/latest

Before carry on, make sure that your Virtual Environment is active if this is the case. There are several ways of
doing this but normally the command below should work:

$ source activate <my_environment_name>

Where <my_environment_name> is the name of your Virtual Environment (e.g. astroconda).

Now you can finally install the The Goodman Pipeline. Download the file, decompress it, and enter the directory
created during the file decompression. Test if the installation by typing:

$ python setup.py test

If you have any errors, check the traceback. If you find difficulties carring on at this poing, you may contact us using
the e-mail goodman-pipeline@ctio.noao.edu.

If no error messages start to scream at your screen, you are good to carry on with the installation.

$ python setup.py install

Note

This will install the pipeline in the currently active Python version. If you have Virtual Environments, make sure
that they are active. If not, you can add the --user option to install only for your user and avoid needing root
access.

DCR (optional)

Warning

Please cite: Pych, W., 2004, PASP, 116, 148

In terms of cosmic ray rejection we shifted to a non-python package because the results were much better
compared to LACosmic’s implementation in astropy. LACosmic was not designed to work with spectroscopy though.

The latest version of the Goodman Spectroscopic Pipeline uses a modified version of dcr to help with the pipeline’s
workflow. It is included under

<path_to_download_location>/goodman/pipeline/data/dcr-source/dcr/

Software Requirements

7

https://astroconda.readthedocs.io/
https://conda.io/docs/user-guide/tasks/manage-environments.html#activating-an-environment
https://github.com/soar-telescope/goodman/releases/latest

goodman is the folder that will be created once you untar or unzip the latest release of the The Goodman Pipeline.

Important

The changes includes deletion of all HISTORY and COMMENT keywords, which we don’t use in the pipeline. And
addition of a couple of custom keywords, such as: GSP_FNAM, which stores the name of the file being created.
GSP_DCRR which stores the reference to the paper to cite.

You are still encouraged to visit the official Link own by the author and let me remind you once more that you have to
cite the paper mentioned several times in this manual.

Compiling DCR

Compiling dcr is actually very simple.

cd <path_to_download_location>/goodman/pipeline/data/dcr-source/dcr/

Then simply type:

make

This will compile dcr and also it will create other files. The executable binary here is dcr.

We have successfully compiled dcr in several platforms, such as:

• Ubuntu 16.04

• Centos 7.1, 7.4

• MacOS Sierra

• Solaris 11

Install binary DCR

This is a suggested method. If you are not so sure what you are doing, we recommend you following this suggestion.
If you are a more advanced user you just need the dcr executable binary in your $PATH variable.

1. Open a terminal

2. In your home directory create a hidden directory .bin (Home directory should be the default when you open a
new terminal window)

mkdir ~/.bin

3. Move the binary of your choice and rename it dcr. If you compiled it, most likely it’s already called dcr so you
can ignore the renaming part of this step.

mv dcr.Ubuntu16.04 ~/.bin/dcr

Or

mv dcr ~/.bin/dcr

4. Add your $HOME/.bin directory to your $PATH variable. Open the file .bashrc and add the following line.

export PATH=$PATH:/home/myusername/.bin

Where /home/myusername is of course your home directory.

5. Close and reopen the terminal or load the .bashrc file.

source ~/.bashrc

Software Requirements

8

http://users.camk.edu.pl/pych/DCR/

Running the Pipeline
The Goodman Spectroscopic Pipeline is designed to be simple to use, however help is always necessary.

Getting Help.

This manual is intended to be the prefered method to get help. However the quickest option is using -h or
--help

redccd --help

Will print the list of arguments along with a quick explanation and default values.

It is the same for redspec

redspec --help

Working with Virtual Environments
Virtual environments are a very useful tool, the main contribution of them being:

• Portability

• Protection to the host environment

• Flexibility

If you know nothing about them we recommend you to start in the Conda site.

For the purpose of this manual we will just say that a Virtual Environment lets you have a custom set of libraries/tools
in one place, and most importantly is independent of your host system. Installation will not be discussed here but you
can visit this link for information.

Discover what environments exist in your system.

conda env list

Will print a list where the first column is the name.

Activate (enter) the virtual Environment.

source activate <venv-name>

Where <venv-name> is the name of your virtual environment. Your shell’s prompt will change to:

(<venv-name>) [user@hostname folder-name]$

Deactivate (leave) the virtual environment.

source deactivate

This time the prompt will change again to:

[user@hostname folder-name]$

Prepare Data for Reduction
If you did a good job preparing and doing the observation this should be an easy step, either way, keep in mind the
following steps.

• Remove all focus sequence.

• Remove all target acquisition or test frames.

• Using your observation’s log remove all unwanted files.

• Make sure all data has the same gain (GAIN) and readout noise (RDNOISE)

• Make sure all data has the same Region Of Interest or ROI (ROI).

The pipeline does not modify the original files unless there are problems with fits compliance, is never a bad idea to
keep copies of your original data though.

Running the Pipeline

9

https://conda.io/docs/index.html
https://conda.io/docs/user-guide/tasks/manage-environments.html

Run redccd
It is the first step in the reduction process, the main tasks are listed below.

• Create master bias

• Create master flats

• Apply Corrections:

• Overscan

• Trim image

• Detect slit and trim out non-illuminated areas

• Bias correction

• Normalized flat field correction

• Cosmic ray rejection

Run redspec
Is the spectroscopy reduction script. The task are the following:

• Classifies data and create the match of OBJECT and COMP if exists.

• Identify targets

• Extracts targets

• Saved extracted targets to 1D spectrum

• Finds wavelength solution automatically

• Linearizes data

• Saves wavelength calibrated file

The mathematical model used to define the wavelength solution is recorded in the header even though the data has
been linearized for record purpose.

Description of custom keywords
The pipeline adds several keywords to keep track of the process and in general for keeping important information
available. In the following table is a description of all the keywords added by The Goodman Pipeline, though not all of
them are added to all the images.

General Purpose Keywords
These keywords are used for record purpose, except for GSP_FNAM which is used to keep track of the file name.

General purpose keywords, added to all images at the moment of the first read.

Keyword Purpose

GSP_VERS Pipeline version.

GSP_ONAM Original file name, first read.

GSP_PNAM Parent file name.

GSP_FNAM Current file name.

GSP_PATH Path from where the file was read.

GSP_TECH Observing technique. Imaging or Spectroscopy.

GSP_DATE Date of processing.

Run redccd

10

GSP_OVER Overscan region.

GSP_TRIM Trim section.

GSP_SLIT Slit trim section. From slit-illuminated area.

GSP_BIAS Master bias file used.

GSP_FLAT Master flat file used.

GSP_NORM Master flat normalization method.

GSP_COSM Cosmic ray rejection method.

GSP_WRMS Wavelength solution RMS Error.

GSP_WPOI Number of points used to calculate RMS Error.

GSP_WREJ Number of points rejected from RMS Error Calculation.

GSP_DCRR Reference paper for DCR software (cosmic ray rejection).

Non-linear wavelength solution
Since writing non-linear wavelength solutions to the headers using the FITS standard (reference) is extremely
complex and not necessarily well documented. We came up with the solution of simply describing the mathematical
model from astropy.modeling.models. This allows for maintaining the data untouched while keeping a reliable
description of the wavelength solution.

The way it is currently implemented will work for writting for any polynomial kind of model. Reading is implemented
only for Chebyshev1D which is the model by default.

Keywords used to describe a non-linear wavelength solution.

Keyword Purpose

GSP_FUNC Name of mathematical model. astropy.modeling.models

GSP_ORDR Order of the model used.

GSP_NPIX Number of pixels.

GSP_C000 Value of parameter c0.

GSP_C001 Value of parameter c1.

GSP_C002 Value of parameter c2. This goes on depending the order.

Combined Images
Every image used in a combination of images is recorded in the header of the resulting one. The order does not
have importance but most likely the header of the first one will be used

Keywords that list all the images used to produce a combined image.

Keyword Purpose

GSP_IC01 First image used to create combined.

GSP_IC02 Second image used to create combined.

Detected lines
The reference lamp library maintains the lamps non-linearized and also they get a record of the pixel value and the
equivalent in angstrom. In the following table a three-line lamp is shown.

Run redccd

11

Description of all the keywords used to list lines in lamps in Pixel and Angstrom.

Keyword Purpose

GSP_P001 Pixel value for the first line detected.

GSP_P002 Pixel value for the second line detected.

GSP_P003 Pixel value for the third line detected.

GSP_A001 Angstrom value for the first line detected.

GSP_A002 Angstrom value for the second line detected.

GSP_A003 Angstrom value for the third line detected.

Run redccd

12

Acknowledgements
Acknowledge: Simon, Cesar, Bruno, Tina, David, DCR, cite papers.

Acknowledgements

13

	Introduction
	License
	Overview
	Features Available
	Supported Data
	Future Implementation

	Requirements
	Data Requirements
	Reference Lamp Files
	Headers Requirements

	File organization

	Software Requirements
	Setup for Remote Use
	Establish a VNC connection
	VNC from the Terminal

	Setup for local installation
	DCR (optional)
	Compiling DCR
	Install binary DCR

	Running the Pipeline
	Working with Virtual Environments
	Prepare Data for Reduction
	Run redccd
	Run redspec
	Description of custom keywords
	General Purpose Keywords
	Non-linear wavelength solution
	Combined Images
	Detected lines

	Acknowledgements

