
Deep features for image retrieval 
In this module, we focused on using deep learning to create non-linear features to improve the performance of 
machine learning. We also saw how transfer learning techniques can be applied to use deep features learned with 
one dataset to get great performance on a different dataset. We also built an iPython notebooks for both image 
retrieval and image classification tasks on real datasets. 

In this assignment, we are going to build new image retrieval models and explore their results on different parts of 
our image dataset. These techniques will be used at the core of the intelligent application in your capstone project. 

Follow the rest of the instructions on this page to complete your program. When you are done, instead of uploading 
your code, you will answer a series of quiz questions (see the quiz after this reading) to document your completion 
of this assignment. The instructions will indicate what data to collect for answering the quiz. 

Learning outcomes 

• Execute image retrieval code with the iPython notebook 

• Use the .sketch_summary() method to view statistics of data 

• Load and transform real, image data 

• Build image retrieval models using nearest neighbor search and deep features 

• Compare the results of various image retrieval models 

• Use the .apply() and .sum() methods on SFrames to compute functions of the data. 

Resources you will need 

You will need to install the software tools or use the free Amazon EC2 machine. Instructions for both options are 
provided in the reading for Module 1. 

Download the data and starter code 

Before getting started, you will need to download the dataset and the starter iPython notebook that we used in the 
module. 

• Download the wikipedia dataset with training images here in SFrame format: image_train_data.zip 

• Download the wikipedia dataset with test images herein SFrame format: image_test_data.zip 

• Download the image retrieval notebook from the module here: Deep Features for Image Classification.ipynb 

• Download the image retrieval notebook from the module here: Deep Features for Image Retrieval.ipynb 

• Save all of these files in the same directory (where you are calling iPython notebook from) and unzip the data files. 

Now you are ready to get started! 



Note: If you would rather use other ML tools...  

You are welcome to use any ML tool for this course, such as scikit-learn. Though, as discussed in the intro 
module,we strongly recommend you use IPython Notebook and GraphLab Create. (GraphLab Create is free for 
academic purposes.) 

If you are choosing to use other packages, we still recommend you use SFrame, which will allow you to scale to 
much larger datasets than Pandas. (Though, it's possible to use Pandas in this course, if your machine has 
sufficient memory.) The SFrame package is available in open-source under a permissive BSD license. So, you will 
always be able to use SFrames for free. 

If you are not using SFrame, here is the dataset for this assignment in CSV format, so you can use Pandas or other 
options out there: image_train_data.csv and image_test_data.csv 

Watch the videos and explore the iPython notebooks on using deep features 
for image classification and retrieval 

If you haven’t done so yet, before you start, we recommend you watch the video where we go over the iPython 
notebooks from this module. You can then open up the iPython notebook we used and familiarize yourself with the 
steps we covered in these examples. 

What you will do 

Now you are ready! We are going do four tasks in this assignment. There are several results you need to gather 
along the way to enter into the quiz after this reading. 

1. Computing summary statistics of the data: Sketch summaries are techniques for computing summary statistics 
of data very quickly. In GraphLab Create, SFrames and SArrays include a method: 

.sketch_summary() 

which computes such summary statistics. Using the training data, compute the sketch summary of the ‘label’ column 
and interpret the results. What’s the least common category in the training data? Save this result to answer the 
quiz at the end. 

2. Creating category-specific image retrieval models: In most retrieval tasks, the data we have is unlabeled, thus 
we call these unsupervised learning problems. However, we have labels in this image dataset, and will use these to 
create one model for each of the 4 image categories, {‘dog’,’cat’,’automobile’,bird’}. To start, follow these steps: 

• Split the SFrame with the training data into 4 different SFrames. Each of these will contain data for 1 of the 4 
categories above. Hint: if you use a logical filter to select the rows where the ‘label’ column equals ‘dog’, you can 
create an SFrame with only the data for images labeled ‘dog’. 

• Similarly to the image retrieval notebook you downloaded, you are going to create a nearest neighbor model using 
the 'deep_features' as the features, but this time create one such model for each category, using the 
corresponding subset of the training_data. You can call the model with the ‘dog’ data the dog_model, the one with 
the ‘cat’ data the cat_model, as so on. 



You now have a nearest neighbors model that can find the nearest ‘dog’ to any image you give it, the dog_model; 
one that can find the nearest ‘cat’, the cat_model; and so on. 

Using these models, answer the following questions. The cat image below is the first in the test data: 

 
You can access this image, similarly to what we did in the iPython notebooks above, with this command: 

image_test[0:1] 

• What is the nearest ‘cat’ labeled image in the training data to the cat image above (the first image in the test 
data)? Save this result. 

Hint: When you query your nearest neighbors model, it will return a SFrame that looks something like this: 
query_label reference_label distance rank 

0 34 42.9886641167 1 

0 45 43.8444904098 2 

0 251 44.2634660468 3 

0 141 44.377719559 4 

To understand each column in this table, see this documentation. For this question, the ‘reference_label’ column will 
be important, since it provides the index of the nearest neighbors in the dataset used to train it. (In this case, the 
subset of the training data labeled ‘cat’.) 

• What is the nearest ‘dog’ labeled image in the training data to the cat image above (the first image in the test 
data)? Save this result. 

3. A simple example of nearest-neighbors classification: When we queried a nearest neighbors model, the 
‘distance’ column in the table above shows the computed distance between the input and each of the retrieved 
neighbors. In this question, you will use these distances to perform a classification task, using the idea of a nearest-
neighbors classifier. 

• For the first image in the test data (image_test[0:1]), which we used above, compute the mean distance between 
this image at its 5 nearest neighbors that were labeled ‘cat’ in the training data (similarly to what you did in the 
previous question). Save this result. 

• Similarly, for the first image in the test data (image_test[0:1]), which we used above, compute the mean distance 
between this image at its 5 nearest neighbors that were labeled ‘dog’ in the training data (similarly to what you did 
in the previous question). Save this result. 



• On average, is the first image in the test data closer to its 5 nearest neighbors in the ‘cat’ data or in the ‘dog’ data? 
(In a later course, we will see that this is an example of what is called a k-nearest neighbors classifier, where we 
use the label of neighboring points to predict the label of a test point.) 

4. [Challenging Question] Computing nearest neighbors accuracy using SFrame operations: A nearest 
neighbor classifier predicts the label of a point as the most common label of its nearest neighbors. In this question, 
we will measure the accuracy of a 1-nearest-neighbor classifier, i.e., predict the output as the label of the nearest 
neighbor in the training data. Although there are simpler ways of computing this result, we will go step-by-step here 
to introduce you to more concepts in nearest neighbors and SFrames, which will be useful later in this 
Specialization. 

• Training models: For this question, you will need the nearest neighbors models you learned above on the training 
data, i.e., the dog_model, cat_model, automobile_model and bird_model. 

• Spliting test data by label: Above, you split the train data SFrame into one SFrame for images labeled ‘dog’, 
another for those labeled ‘cat’, etc. Now, do the same for the test data. You can call the resulting SFrames 

image_test_cat, image_test_dog, image_test_bird, image_test_automobile 

• Finding nearest neighbors in the training set for each part of the test set: Thus far, we have queried, e.g., 

dog_model.query() 

our nearest neighbors models with a single image as the input, but you can actually query with a whole set of data, 
and it will find the nearest neighbors for each data point. Note that the input index will be stored in the ‘query_label’ 
column of the output SFrame. 

Using this knowledge find the closest neighbor in to the dog test data using each of the trained models, e.g., 

dog_cat_neighbors = cat_model.query(image_test_dog, k=1) 

finds 1 neighbor (that’s what k=1 does) to the dog test images (image_test_dog) in the cat portion of the training 
data (used to train the cat_model). 

Now, do this for every combination of the labels in the training and test data. 

• Create an SFrame with the distances from ‘dog’ test examples to the respective nearest neighbors in each 
class in the training data: The ‘distance’ column in dog_cat_neighbors above contains the distance between 
each ‘dog’ image in the test set and its nearest ‘cat’ image in the training set. The question we want to answer is 
how many of the test set ‘dog’ images are closer to a ‘dog’ in the training set than to a ‘cat’, ‘automobile’ or ‘bird’. 
So, next we will create an SFrame containing just these distances per data point. The goal is to create an SFrame 
calleddog_distances with 4 columns: 

i. dog_distances[‘dog-dog’] ---- storing dog_dog_neighbors[‘distance’] 

ii. dog_distances[‘dog-cat’] ---- storing dog_cat_neighbors[‘distance’] 



iii. dog_distances[‘dog-automobile’] ---- storing dog_automobile_neighbors[‘distance’] 

iv. dog_distances[‘dog-bird’] ---- storing dog_bird_neighbors[‘distance’] 

Hint: You can create a new SFrame from the columns of other SFrames by creating a dictionary with the new 
columns, as shown in this example: 

new_sframe = graphlab.SFrame({'foo': other_sframe['foo'],'bar': some_other_sframe['bar']}
) 

The resulting SFrame will look something like this: 
dog-automobile dog-bird dog-cat dog-dog 

41.9579761457 41.7538647304 36.4196077068 33.4773590373 

46.0021331807 41.3382958925 38.8353268874 32.8458495684 

42.9462290692 38.6157590853 36.9763410854 35.0397073189 

• Computing the number of correct predictions using 1-nearest neighbors for the dog class: Now that you 
have created the SFrame dog_distances, you will learn to use the method 

.apply() 

on this SFrame to iterate line by line and compute the number of ‘dog’ test examples where the distance to the 
nearest ‘dog’ was lower than that to the other classes. You will do this in three steps: 

i. Consider one row of the SFrame dog_distances. Let’s call this variable row. You can access each distance by 
calling, for example, 

row['dog-cat'] 

which, in example table above, will have value equal to 36.4196077068 for the first row. 

Create a function starting with 

def is_dog_correct(row): 

which returns 1 if the value for row[‘dog-dog’] is lower than that of the other columns, and 0 otherwise. That is, 
returns 1 if this row is correctly classified by 1-nearest neighbors, and 0 otherwise. 

ii. Using the function is_dog_correct(row), you can check if 1 row is correctly classified. Now, you want to count how 
many rows are correctly classified. You could do a for loop iterating through each row and applying the 



functionis_dog_correct(row). This method will be really slow, because the SFrame is not optimized for this type of 
operation. 

Instead, we will use the .apply() method to iterate the function is_dog_correct for each row of the SFrame. Read 
about using the .apply() method here. 

iii. Computing the number of correct predictions for ‘dog’: You can now call: 

dog_distances.apply(is_dog_correct) 

which will return an SArray (a column of data) with a 1 for every correct row and a 0 for every incorrect one. You can 
call: 

.sum() 

on the result to get the total number of correctly classified ‘dog’ images in the test set! 

Hint: To make sure your code is working correctly, if you were to do the two steps above in this question to count the 
number of correctly classified ‘cat’ images in the test data, instead of ‘dog’, the result would be 548. 

• Accuracy of predicting dog in the test data: Using the work you did in this question, what is the accuracy of the 
1-nearest neighbor classifier at classifying ‘dog’ images from the test set? Save this result to answer the quiz at 
the end. 

 
	
  


