Free Online Guide for Apache Wicket framework

Apache Wicket User Guide -
Reference Documentation

Authors: Andrea Del Bene, Martin Grigorov, Carsten Hufe, Christian Kroemer, Daniel Bartl, Paul Bor, Tobias
Soloschenko, Joachim Rohde

Version: 6.x

Table of Contents

1 Introduction
2 How to use the example code
3 Why should I learn Wicket?
3.1 We all like spaghetti :-) ...
3.2 Component oriented frameworks - an overview
3.3 Benefits of component oriented frameworks for web development
3.4 Wicket vs the other component oriented frameworks
4 Wicket says Hello world!
4.1 Wicket distribution and modules
4.2 Configuration of Wicket applications
4.3 The HomePage class
4.4 Wicket Links
4.5 Summary
5 Wicket as page layout manager
5.1 Header, footer, left menu, content, etc...
5.2 Here comes the inheritance!
5.3 Divide et impera!
5.4 Markup inheritance with the wicket:extend tag
5.5 Summary
6 Keeping control over HTML
6.1 Hiding or disabling a component
6.2 Modifing tag attributes
6.3 Generating tag attribute 'id'
6.4 Creating in-line panels with WebMarkupContainer
6.5 Working with markup fragments
6.6 Adding header contents to the final page

6.7 Using stub markup in our pages/panels

http://www.apache.org/

6.8
6.9

How to render component body only

Hiding decorating elements with the wicket:enclosure tag

6.10 Surrounding existing markup with Border

6.11 Summary

7 Components lifecycle

7.1
7.2
7.3
7.4
7.5
7.6

Lifecycle stages of a component
Hook methods for component lifecycle
Initialization stage

Rendering stage

Removing stage

Summary

8 Page versioning and caching

8.1
8.2
8.3
8.4

Stateful pages vs stateless
Stateful pages
Stateless pages

Summary

9 Under the hood of the request processing

9.1
9.2

Class Application and request processing

Request and Response classes

9.3 The director of request processing - RequestCycle

9.4
9.5
9.6

Session Class
Exception handling

Summary

10 Wicket Links and URL generation

10.1
10.2
10.3
10.4
10.5
10.6
10.7

PageParameters

Bookmarkable links

Automatically creating bookmarkable links with tag wicket:link
External links

Stateless links

Generating structured and clear URLs

Summary

11 Wicket models and forms

111
11.2
11.3
114
11.5
11.6
11.7
11.8
11.9

What is a model?

Models and JavaBeans

Wicket forms

Component DropDownChoice

Model chaining

Detachable models

Using more than one model in a component
Use models!

Summary

12 Wicket forms in detail

12.1 Default form processing
12.2 Form validation and feedback messages
12.3 Input value conversion
12.4 Validation with JSR 303
12.5 Submit form with an IFormSubmittingComponent
12.6 Nested forms
12.7 Multi-line text input
12.8 File upload
12.9 Creating complex form components with FormComponentPanel
12.10 Stateless form
12.11 Working with radio buttons and checkboxes
12.12 Selecting multiple values with ListMultipleChoices and Palette
12.13 Summary
13 Displaying multiple items with repeaters
13.1 The RepeatingView Component
13.2 The ListView Component
13.3 The RefreshingView Component
13.4 Pageable repeaters
13.5 Summary
14 Internationalization with Wicket
14.1 Localization
14.2 Localization in Wicket
14.3 Bundles lookup algorithm
14.4 Localization of component's choices
14.5 Internationalization and Models
14.6 Summary
15 Resource management with Wicket
15.1 Static vs dynamic resources
15.2 Resource references
15.3 Package resources
15.4 Adding resources to page header section
15.5 Context-relative resources
15.6 Resource dependencies
15.7 Aggregate multiple resources with resource bundles
15.8 Put JavaScript inside page body
15.9 Header contributors positioning
15.10 Custom resources
15.11 Mounting resources
15.12 Shared resources
15.13 Customizing resource loading
15.14 CssHeaderltem and JavaScriptHeaderltem compression

15.15 Summary

16 An example of integration with JavaScript
16.1 What we want to do...
16.2 ...and how we will do it
16.3 Summary
17 Wicket advanced topics
17.1 Enriching components with behaviors
17.2 Generating callback URLs with IRequestListener
17.3 Initializers
17.4 Using JMX with Wicket
17.5 Generating HTML markup from code
17.6 Summary
18 Working with AJAX
18.1 How to use AJAX components and behaviors
18.2 Build-in AJAX components
18.3 Built-in AJAX behaviors
18.4 Using an activity indicator
18.5 AJAX request attributes and call listeners
18.6 Creating custom AJAX call listener
18.7 Summary
19 Integration with enterprise containers
19.1 Integrating Wicket with EJB
19.2 Integrating Wicket with Spring
19.3 JSR-330 annotations
19.4 Summary
20 Native WebSockets
20.1 How does it work ?
20.2 How to use
20.3 Client-side APIs
20.4 Testing
20.5 Differences with Wicket-Atmosphere module.
20.6 FAQ
21 Security with Wicket
21.1 Authentication
21.2 Authorizations
21.3 Using HTTPS protocol
21.4 URLs encryption in detail
21.5 Package Resource Guard
21.6 Summary
22 Test Driven Development with Wicket
22.1 Utility class WicketTester
22.2 Testing Wicket forms
22.3 Testing markup with TagTester

22.4 Summary
23 Test Driven Development with Wicket and Spring
23.1 Configuration of the runtime environment
23.2 Configuration of the JUnit based integration test environment
23.3 Summary
24 Wicket Best Practices
24.1 Encapsulate components correctly
24.2 Put models and page data in fields
24.3 Correct naming for Wicket IDs
24.4 Avoid changes at the component tree
24.5 Implement visibilities of components correctly
24.6 Always use models
24.7 Do not unwrap models within the constructor hierarchy
24.8 Pass models extended components
24.9 Validators must not change any data or models
24.10 Do not pass components to constructors
24.11 Use the Wicket session only for global data
24.12 Do not use factories for components
24.13 Every page and component must be tested
24.14 Avoid interactions with other servlet filters
24.15 Cut small classes and methods
24.16 The argument "Bad documentation”
24.17 Summary
25 Wicket Internals
25.1 Page storing
26 Working with Maven (Appendix)
26.1 Switching Wicket to DEPLOYMENT mode
26.2 Creating a Wicket project from scratch and importing it into our favourite IDE
27 Project WicketStuff (Appendix)
27.1 What is project WicketStuff
27.2 Module tinymce
27.3 Module wicketstuff-gmap3
27.4 Module wicketstuff-googlecharts
27.5 Module wicketstuff-inmethod-grid
27.6 Module wicketstuff-rest-annotations
27.7 Module stateless
28 Lost In Redirection With Apache Wicket (Appendix)
29 Contributing to this guide (Appendix)

1 Introduction

Wicket has been around since 2004 and it has been an Apache project since 2007. During these years it has
proved to be a solid and valuable solution for building enterprise web applications.

Wicket core developers have done a wonderful job with this framework and they continue to improve it release
after release. However Wicket never provided a freely available documentation and even if you can find on
Internet many live examples and many technical articles on it (most of them at Wicket Library and at Wicket in
Action), the lack of an organized and freely available documentation has always been a sore point for this
framework.

That's quite an issue because many other popular frameworks (like Spring, Hibernate or Struts) offer a vast and
very good documentation which substantially contributed to their success.

This document is not intended to be a complete reference for Wicket but it simply aims to be a straightforward
introduction to the framework that should significantly reduce its learning curve. What you will find here reflects
my experience with Wicket and it's strictly focused on the framework. The various Wicket-related topics are
gradually introduced using pragmatic examples of code that you can find in the according repository on Github.

However remember that Wicket is a vast and powerful tool, so you should feel confident with the topics exposed
in this document before starting to code your real applications!

For those who need further documentation on Wicket, there are many good books available for this framework.

Hope you'll find this guide helpful. Have fun with Wicket!
Andrea Del Bene, adelbene@apache.org

PS: this guide is based on Wicket 6. However if you are using an older version you should find this guide useful
as well, but it's likely that the code and the snippets won't work with your version.

PPS: although I've tried to do my best working on this tutorial, this document is a work in progress and may
contain errors and/or omissions. That's why any feedback of any kind is REALLY appreciated!

Project started by G'.#o% sy s: 0

http://www.wicket-library.com/
http://wicketinaction.com
http://wicketinaction.com
https://github.com/bitstorm/Wicket-tutorial-examples
http://wicket.apache.org/learn/books/
http://comsysto.com/

2 How to use the example code

Most of the code you will find in this document is available as a Git repository and is licensed under the ASF 2.0.
To get a local copy of the repository you can run the clone command from shell:

git clone https://github.con bitstorm Wcket-tutorial -exanples.git

A If you are using Wicket 6.x remember to switch to branch wi cket - 6. x

If you aren't used to Git, you can simply download the whole source as a zip archive:

bitstorm / Wicket-tutorial-examples I Pull Request

Code Network Pull Requests 0 Issues 0

This repo contains code examples for my personal Wicket tutorial

SSH Git Read-Only https://github.com/bitstorm/Wicket-tutori

P branch: master - Files = Commits Branches 1

The repository contains a multi-module Maven project. Every subproject is contained in the relative folder of the
repository:

TeslAjaxEvenlsExample 9 days ago Added license header [bilstonm]
UploadSingleFile 22 days ago Clean up [bitstosm]
UsernameCustom\alidator 22 days ago Clean up [bitstorm]
E .gitignore 4 months ago Added PageDataViewExample [andrea]
B vLicensE 5 months ago Added Apache License 2.0 header [andrea]
B header.txt S months ago Component JQuery DateField was made self-contained [andrea)
B pom.xmi S days ago -Fixed project StatelessPage [bitstorm]

When the example code is used in the document, you will find the name of the subproject it belongs to. If you
don't have any experience with Maven, you can read Appendix A where you can learn the basic commands
needed to work with the example projects and to import them into your favourite IDE (NetBeans, IDEA or
Eclipse).

https://github.com/bitstorm/Wicket-tutorial-examples

3 Why should | learn Wicket?

Software development is a challenging activity and developers must keep their skills up-to-date with new
technologies.

But before starting to learn the last “coolest” framework we should always ask ourself if it is the right tool for us
and how it can improve our everyday job. Java's ecosystem is already full of many well-known web frameworks,
so why should we spend our time learning Wicket?

This chapter will show you how Wicket is different from other web frameworks you may know and it will explain
also how it can improve your life as web developer.

3.1 We all like spaghetti :-) ...

...but we all hate spaghetti code! That's why in the first half of the 2000s we have seen the birth of so many web
frameworks. Their mission was to separate our business code from presentation layer (like JSP pages).

Some of theme (like Struts, Spring MVC, Velocity, etc...) have become widely adopted and they made the MVC
pattern very popular among developers. However, none of these frameworks offers a real object-oriented (OO)
abstraction for web pages and we still have to take care of web-related tasks such as HTTP request/response
handling, URLs mapping, storing data into user session and so on.

The biggest limit of MVC frameworks is that they don't do much to overcome the impedance mismatch between
the stateless nature of HTTP protocol and the need of our web applications of handling a (very complex) state.

To overcome these limits developers have started to adopt a new generation of component oriented web
frameworks designed to provide a completely different approach to web development.

3.2 Component oriented frameworks - an overview

Component oriented frameworks differ from classic web frameworks in that they build a model of requested page
on the server side and the HTML sent back to the client is generated according to this model. You can think of
the model as if it was an “inverse” JavaScript DOM, meaning that:

1. is built on server-side
2. is built before HTML is sent to client

3. HTML code is generated using this model and not vice versa.

- Page model is Html is generated ;
Cller;t reql.éests ted by according to page Htm: {:sdr;t::{ned
hed framework model.

General schema of page request handling for a component oriented framework

With this kind of framework our web pages and their HTML components (forms, input controls, links, etc...), are
pure class instances. Since pages are class instances they live inside the JVM heap and we can handle them as
we do with any other Java class. This approach is very similar to what GUI frameworks (like Swing or SWT) do
with desktop windows and their components. Wicket and the other component oriented frameworks bring to web
development the same kind of abstraction that GUI frameworks offer when we build a desktop application. Most
of those kind of frameworks hide the details of the HTTP protocol and naturally solve the problem of its stateless
nature.

3.3 Benefits of component oriented frameworks for web development

At this point some people may still wonder why OOP is so important also for web development and what benefits
it can bring to developers. Let's quickly review the main advantages that this paradigm can offer us:

® Web pages are objects: web pages are not just text files sent back to the client. They are object instances
and we can harness OOP to design web pages and their components. With Wicket we can also apply
inheritance to HTML markup in order to build a consistent graphic layout for our applications (we will see
markup inheritance in chapter 4.2).

®* We don't have to worry about application's state: pages and components can be considered stateful
entities. They are Java objects and they can keep a state inside them and reference other objects. We can
stop worrying about keeping track of user data stored inside the Ht t pSessi on and we can start managing
them in a natural and transparent way.

® Testing web applications is much easier: since pages and components are pure objects, you can use
JUnit to test their behavior and to ensure that they render as expected. Wicket has a set of utility classes for
unit testing that simulate user interaction with web pages, hence we can write acceptance tests using just
JUnit without any other test framework (unit testing is covered in chapter 21).

3.4 Wicket vs the other component oriented frameworks

Wicket is not the only component oriented framework available in the Java ecosystem. Among its competitors we
can find GWT (from Google), JSF (from Oracle), Vaadin (from Vaadin Ltd.), etc... Even if Wicket and all those
other frameworks have their pros and cons, there are good reasons to prefer Wicket over them:

® Wicket is 100% open source: Wicket is a top Apache project and it doesn't depend on any private
company. You don't have to worry about future licensing changes, Wicket will always be released under
Apache license 2.0 and freely available.

® Wicket is a community driven project: The Wicket team supports and promotes the dialogue with the
framework's users through two mailing lists (one for users and another one for framework developers) and
an Apache JIRA (the issue tracking system). Moreover, as any other Apache project, Wicket is developed
paying great attention to user feedbacks and to suggested features.

® Wicket is just about Java and good old HTML: almost all web frameworks force users to adopt special
tags or to use server side code inside HTML markup. This is clearly in contrast with the concept of
separation between presentation and business logic and it leads to a more confusing code in our pages. In
Wicket we don't have to take care of generating HTML inside the page itself, and we won't need to use any
tag other than standard HTML tags. All we have to do is to attach our components (Java instances) to the
HTML tags using a simple tag attribute called wi cket : i d (we will shortly see how to use it).

® With Wicket we can easily use JavaBeans and POJO in our web tier: one of the most annoying and
error-prone task in web development is collecting user input through a form and keeping form fields
updated with previously inserted values. This usually requires a huge amount of code to extract input from
request parameters (which are strings), parse them to Java types and store them into some kind of
variable. And this is just half of the work we have to do as we must implement the inverse path (load data
from Java to the web form).Moreover, most of the times our forms will use a JavaBean or a POJO as
backing object, meaning that we must manually map form fields with the corresponding object fields and
vice versa. Wicket comes with an intuitive and flexible mechanism that does this mapping for us without any
configuration overhead (using a convention over configuration approach) and in a transparent way. Chapter
10 will introduce the concept of Wicket model and we will learn how to harness this entity with forms.

® No complex XML needed: Wicket was designed to minimize the amount of configuration files needed to
run our applications. No XML file is required except for the standard deployment descriptor web.xml (unless
you are using Servlet 3 or a later version. See Chapter 4 for more details).

http://wicket.apache.org/help/email.html
https://issues.apache.org/jira/browse/WICKET
http://en.wikipedia.org/wiki/Plain_Old_Java_Object

4 Wicket says “Hello world!”

Wicket allows us to design our web pages in terms of components and containers, just like AWT does with
desktop windows. Both frameworks share the same component-based architecture: in AWT we have a W ndows
instance which represents the physical windows containing GUI components (like text fields, radio buttons,
drawing areas, etc...), in Wicket we have a WebPage instance which represents the physical web page
containing HTML components (pictures, buttons, forms, etc...) .

Javaawt.Component + java.awt.Component org.apache.wicket.Component + org.apache.wicket.Component
: N
Fat Fis
Java.awt Window org.apache.wicket WebPage |
+ add(in c: java.awl.Companent) - + add(in c: org.apache wicket Component) ¥

In both frameworks we find a base class for GUI components called Conponent. Wicket pages can be
composed (and usually are) by many components, just like AWT windows are composed by Swing/AWT
components. Both frameworks promote the reuse of presentation code and GUI elements building custom
components. Even if Wicket already comes with a rich set of ready-to-use components, building custom
components is a common practice when working with this framework. We'll learn more about custom
components in the next chapters.

4.1 Wicket distribution and modules

Wicket is available as a binary package on the main site http://wicket.apache.org . Inside this archive we can find
the distribution jars of the framework. Each jar corresponds to a sub-module of the framework. The following
table reports these modules along with a short description of their purpose and with the related dependencies:

Contains the main classes of the framework, like class wicket-request,
Conponent and Appl i cati on. wicket-util

wicket-core

This module contains the classes involved into web request

wicket-request . wicket-util

processing.
. . Contains general-purpose utility classes for functional areas such

wicket-util . : . : None
as I/0, lang, string manipulation, security, etc...

wicket-datetime Contains _speC|aI purpose components designed to work with wicket-core
date and time.

wicket-bean-validation Provides support for JSR 303 standard validation. wicket-core

Contains utility classes and components to help developers with wicket-core,

wicket-devutils tasks such as debugging, class inspection and so on. wicket-extensions

Contains a vast set of built-in components to build a rich Ul for

our web application (Ajax support is part of this module). I COETE

wicket-extensions

wicket-auth-roles Provides support for role-based authorization. wicket-core

This module provides common classes to support Inversion Of

10

http://wicket.apache.org

wicket-ioc Control. It's used by both Spring and Guice integration module. wicket-core

. . This module provides integration with the dependency injection wicket-core,
wicket-guice

framework developed by Google. wicket-ioc
wicket-spring This module provides integration with Spring framework. mgk;:ggre,

This module provides panels and utility class to integrate Wicket

wicket-velocity with Velocity template engine. wicket-core
. . This module provides panels and utility class to integrate Wicket .
wicket-jmx . . wicket-core
with Java Management Extensions.
. . . Provides integration with Java agent libraries and instrumentation _ .
wicket-objectsizeof-agent wicket-core

tools.

Please note that the core module depends on the utility and request modules, hence it cannot be used without
them.

4.2 Configuration of Wicket applications

In this chapter we will see a classic Hello World! example implemented using a Wicket page with a built-in
component called Label (the code is from project the HelloWorldExample). Since this is the first example of the
guide, before looking at Java code we will go through the common artifacts needed to build a Wicket application
from scratch.

% All the example projects presented in this document have been generated using Maven
and the utility page at http://wicket.apache.org/start/quickstart.html . Appendix A contains
the instructions needed to use these projects and build a quickstart application using
Apache Maven. All the artifacts used in the next example (files web.xml, HomePage.class
and HomePage.html) are automatically generated by Maven.

Wicket application structure

A Wicket application is a standard Java EE web application, hence it is deployed through a web.xml file placed
inside folder WEB-INF:

» = build
=
¥ [=-WebContent
» = META-INF
| mwEBINE
* = lib
(%] web.xml

lllustration : The standard directory structure of a Wicket application

The content of web.xml declares a servlet filter (class
or g. apache. wi cket. Prot ocol . http. Wcket Fi |l ter) which dispatches web requests to our Wicket
application:

<?xm version="1.0" encodi ng="UTF-8""?>
<web- app>
<di spl ay- nane>W cket Test </ di spl ay- name>
<filter>
<filter-nane>Test Application</filter-nanme>
<filter-class>org. apache. w cket.protocol.http. WcketFilter</filter-class>
<init-paran>
<par am nane>appl i cat i onCl assNane</ par am nane>
<par am val ue>org. w cket Tut ori al . W cket Appl i cati on</ param val ue>
</init-paranr
</[filter>
<filter-mappi ng>

11

http://wicket.apache.org/start/quickstart.html

<filter-nane>Test Application</filter-name>
<url-pattern>/*</url-pattern>
</filter-mappi ng>
</ web- app>

Since this is a standard servlet filter we must map it to a specific set of URLs through the <fi | t er - mappi ng>
tag). In the xml above we have mapped every URL to our Wicket filter.

If we are using Servlet 3 or a later version, we can of course use a class in place of web.xml to configure our
application. The following example uses annotation @WebFilter.

@\ebFilter(value = "/*", initParans = { @bl nitParanm name = "applicationC assNane", val ue =
"com myconpany. W cket Appl i cation"),

@\ebl ni t Paran{ nane="filter Mappi ngUr | Pattern", value="/*") })
public class ProjectFilter extends WcketFilter {

}

% Wicket can be started in two modes named respectively DEVELOPMENT and
DEPLOYMENT. The first mode activates some extra features which help application
development, like resources monitoring and reloading, full stack trace rendering of
exceptions, an AJAX debugger window, etc... The DEPLOYMENT mode turns off all
these features optimizing performances and resource consumption. In our example
projects we will use the default mode which is DEVELOPMENT. Chapter 24.1 contains
the chapter “Switching Wicket to DEPLOYMENT mode* where we can find further details
about these two modes as well as the possible ways we have to set the desired one. In
any case, DO NOT deploy your applications in a production environment without switching
to DEPLOYMENT mode!

The application class

If we look back at web.xml we can see that we have provided the Wicket filter with a parameter called
applicationCl assNane. This value must be the fully qualified class name of a subclass of
or g. apache. wi cket. Appl i cati on. This subclass represents our web application built upon Wicket and it's
responsible for configuring it when the server is starting up. Most of the times our custom application class won't
inherit directly from class Application, but rather from class

or g. apache. w cket . prot ocol . htt p. WebAppl i cati on which provides a closer integration with servlet
infrastructure. Class Appl i cat i on comes with a set of configuration methods that we can override to customize
our application's settings. One of these methods is get HonmePage() that must be overridden as it is declared
abstract:

public abstract C ass<? extends Page> get HonePage()

As you may guess from its name, this method specifies which page to use as homepage for our application.
Another important method isinit () :

protected void init()

This method is called when our application is loaded by the web server (Tomcat, Jetty, etc...) and is the ideal
place to put our configuration code. The Appl i cati on class exposes its settings grouping them into interfaces
(you can find them in package or g. apache. wi cket . setti ngs). We can access these interfaces through
getter methods that will be gradually introduced in the next chapters when we will cover the related settings.

The current application's instance can be retrieved at any time calling static method Appl i cati on. get () in
our code. We will give more details about this method in chapter 9.3. The content of the application class from
project HelloWorldExample is the following:

12

public class W cket Applicati on extends WebApplication
{

@verride
public d ass<? extends WebPage> get HonePage()

return HomePage. cl ass;

@verride
public void init()
{

super.init();
/1 add your configuration here

Since this is a very basic example of a Wicket application, we don't need to specify anything inside the i ni t
method. The home page of the application is the HonmePage class. In the next paragraph we will see how this
page is implemented and which conventions we have to follow to create a page in Wicket.

A Declaring a W cket Fi | t er inside web.xml descriptor is not the only way we have to

kickstart our application. If we prefer to use a servlet instead of a filter, we can use class
org. apache. w cket . protocol . http. W cket Servl et . See the JavaDoc for further

details.

4.3 The HomePage class

To complete our first Wicket application we must explore the home page class that is returned by the
Appl i cation's method get HomePage() seen above. In Wicket a web page is a subclass of
or g. apache. wi cket . WebPage. This subclass must have a corresponding HTML file which will be used by the
framework as template to generate its HTML markup. This file is a regular plain HTML file (its extension must be
html).

By default this HTML file must have the same name of the related page class and must be in the same package:

TR R L R A]

{8 HomePage.html

M HomePage.java

m= . — L [l

lllustration :Page class and its related HTML file

If you don't like to put class and html side by side (let's say you want all your HTML files in a separated folder)
you can use Wicket settings to specify where HTML files can be found. We will cover this topic later in chapter
15.9.

The Java code for the HorePage class is the following:

package org.w cket Tutorial ;

i mport org.apache.w cket.request. mapper. par anet er. PagePar anet er s;
i mport org.apache.w cket. mar kup. ht Ml . basi c. Label ;
i nport org. apache. wi cket. mar kup. ht ni . WebPage;

public class HonePage extends WebPage {
publ i ¢ HomePage() {
add(new Label ("hel | oMessage”, "Hello WcketWorld!"));
}

Apart from subclassing WebPage, HonePage defines a constructor that adds a Label component to itself.

Method add(Component component) is inherited from ancestor class
or g. apache. wi cket . Mar kupCont ai ner and is used to add children components to a web page. We'll see
more about Mar kupCont ai ner later in chapter 5.2. Class

or g. apache. wi cket . mar kup. ht ml . basi c. Label is the simplest component shipped with Wicket. It just
inserts a string (the second argument of its constructor) inside the corresponding HTML tag. Just like any other
Wicket component, Label needs a textual id (' hel | oMessage' in our example) to be instantiated. At runtime

13

Wicket will use this value to find the HTML tag we want to bind to the component. This tag must have a special
attribute called wi cket : i d and its value must be identical to the component id (comparison is case-sensitive!).

Here is the HTML markup for HonePage (file HomePage.html):

<! DOCTYPE htm >

<htm >
<head>
<neta charset="utf-8" />
<title>Apache Wcket HelloWrld</title>
</ head>
<body>

<di v wi cket:id="hel | oMessage" >
[Label 's nessage goes here]
</div>
</ body>
</htm >

We can see that the wi cket : i d attribute is set according to the value of the component id. If we run this
example we will see the text Hel | o W cket Wor | d! Inside a <di v> tag.

A Label replaces the original content of its tag (in our example Label ' s nmessage goes
her e) with the string passed as value (Hel | o W cket Wor | d! in our example).

@ If we specify a wicket:id attribute for a tag without adding the corresponding
component in our Java code, Wicket will throw a Conponent Not Found Exception. On

the contrary if we add a component in our Java code without specifying a corresponding
wi cket : i d attribute in our markup, Wicket will throw a W cket Runt i neExcept i on.

4.4 Wicket Links

The basic form of interaction offered by web applications is to navigate through pages using links. In HTML a link
is basically a pointer to another resource that most of the time is another page. Wicket implements links with
component or g. apache. wi cket . mar kup. ht m . I i nk. Li nk, but due to the component-oriented nature of
the framework, this component is quite different from classic HTML links. Following the analogy with GUI
frameworks, we can consider Wicket link as a “click” event handler: its purpose is to perform some actions (on
server side!) when the user clicks on it.

That said, you shouldn't be surprised to find an abstract method called onCl i ck() inside the Li nk class. In the
following example we have a page with a Li nk containing an empty implementation of onCl i ck:

public class HonePage extends WebPage {
publ i ¢ HonePage() {
add(new Link("id"){
@verride
public void onCick() {
) /11ink code goes here

b)é

By default after onCl i ck has been executed, Wicket will send back to the current page to the client web
browser. If we want to navigate to another page we must use method set ResponsePage of class Conponent :

public class HonePage extends WebPage {
publ i ¢ HonmePage() {
add(new Link("id"){
@verride
public void onClick() {
//we redirect browser to another page
set ResponsePage(Anot her Page. cl ass) ;

14

1)

In the example above we used a version of set ResponsePage which takes as input the class of the target
page. In this way a new instance of Anot her Page will be created each time we click on the link. The other
version of set ResponsePage takes in input a page instance instead of a page class:

@verride

public void onCick() {
//we redirect browser to another page.
Anot her Page anot her Page = new Anot her Page() ;
set ResponsePage(anot her Page) ;

The difference between using the first version of set ResponsePage rather than the second one will be
illustrated in chapter 8, when we will introduce the topic of stateful and stateless pages. For now, we can
consider them as equivalent.

Wicket comes with a rich set of link components suited for every need (links to static URL, Ajax-enhanced links,
links to a file to download, links to external pages and so on). We will see them in chapter 10.

A We can specify the content of a link (i.e. the text of the picture inside it) with its method
set Body. This method takes in input a generic Wicket model, which will be the topic of

chapter 11.

4.5 Summary

In this chapter we have seen the basic elements that compose a Wicket application. We have started preparing
the configuration artifacts needed for our applications. As promised in chapter 2.4, we needed to put in place just
a minimal amount of XML with an application class and a home page. Then we have continued our “first contact”
with Wicket learning how to build a simple page with a label component as child. This example page has shown
us how Wicket maps components to HTML tags and how it uses both of them to generate the final HTML
markup. In the last paragraph we had a first taste of Wicket links and we have seen how they can be considered
as a “click” event listener and how they can be used to navigate from a page to another.

15

5 Wicket as page layout manager

Before going ahead with more advanced topics, we will see how to maintain a consistent layout across our site
using Wicket and its component-oriented features. Probably this is not the most interesting use we can get out of
Wicket, but it is surely the simplest one so it's the best way to get our hands dirty with some code.

5.1 Header, footer, left menu, content, etc...

There was a time in the 90s when Internet was just a buzzword and watching a plain HTML page being rendered
by a browser was a new and amazing experience. In those days we used to organize our page layout using the
<f rane> HTML tag. Over the years this tag has almost disappeared from our code and it survives only in few
specific domains. For example is still being used by JavaDoc.

With the adoption of server side technologies like JSP, ASP or PHP the tag <f r ame> has been replaced by a
template-based approach where we divide our page layout into some common areas that will be present in each
page of our web application. Then, we manually insert these areas in every page including the appropriate
markup fragments.

In this chapter we will see how to use Wicket to build a site layout. The sample layout we will use is a typical
page layout consisting of the following areas:

® a header which could contain site title, some logos, a navigation bar, etc...
® aleft menu with a bunch of links to different areas/functionalities of the site.
® afooter with generic informations like web master's email, the company address, etc...

® acontent area which usually contains the functional part of the page.

The following picture summarises the layout structure:

; Header
Menu Content
Footer

Once we have chosen a page layout, our web designer can start building up the site theme. The result is a
beautiful mock of our future web pages. Over this mock we can map the original layout areas:

16

Jug arenda Gestione Anagrafica ;

; Header :
B - - o e ey R) R R R) R] (R) (e T = T (e = e] o
E :: Archivio Ospiti
E & :, Num. Ospite Nome Cognome Data di nascita Cittadinanza Sesso E
ks ; Home 4F % andrea del bene 15/05/1980 qui M 1
B> 6 U ot HF % pino rossi 23/11/1990 i M i
: Cce ke ar % tizio calop 21/03/1992 q M

HES \; Nuowo 05 '
"h pite o 3 items found, displaying all ikems.
* 7 Ricerca Accoglienza | & 4

ut i

> .' Report :: Expart options: CSW CSV Excel Excel POF PDF :
l: [

W " :
[} W H
: i ;
] 'l "
: i Content ;
Menu i :

 powered by (:E. @ Sprlng 0 Firefox

Footer

I
Now in order to have a consistent layout across all the site, we must ensure that each page will include the
layout areas seen above. With an old template-based approach we must manually put them inside every page. If
we were using JSP we would probably end up using i ncl ude directive to add layout areas in our pages. We

would have one i ncl ude for each of the areas (except for the content):

Jug n Gestione Anagrafica :
; Yo ude = fcnmmnm’jug4TendaHeader.jsp"% ;
E |" Archivio Ospiti .
P I:1 :
E > EE MNum. Ospite Nome Cognome Data di nascita Cittadinanza Sesso E
ke ; . i gh andrea del bene 19/05/1980 qui M ;
i 3 ek Cept i % pino rossi 23/11/1990 i M ;
e Cerca Osplte ‘ o tizio calop 21/03/1992 q M ;
: ’h Nuove Ospite :E 3 Items found, displaying all items. H
"> #™ Ricerca Accoglienza 3 4 :
E> . Repart EE Expaft aptions: CSW CSW Excel Excel PCF PDF E
| <%@include file= :: <div id=" " :
"gekhnnensplteﬂenu.ﬁtm div id Content !
lln},@} .- E

EPuwered by 11_& d . . pl'ﬂ'lg . c Firefox ;

= rediscover the web
< /“@’Ihcl file=' ..fcnmmnnf]ugd-Tendaanter jsp"%:a

A For the sake of simplicity we can consider each included area as a static HTML fragment.

Now let's see how we can handle the layout of our web application using Wicket.

17

5.2 Here comes the inheritance!

The need of ensuring a consistent layout across our pages unveiled a serious limit of the HTML: the inability to
apply inheritance to web pages and their markup. Wouldn't be great if we could write our layout once in a page
and then inherit it in the other pages of our application? One of the goals of Wicket is to overcome this kind of
limit.

Markup inheritance

As we have seen in the previous chapter, Wicket pages are pure Java classes, so we can easily write a page
which is a subclass of another parent page. But in Wicket inheritance is not limited to the classic object-oriented
code inheritance. When a class subclasses a WebPage it also inherits the HTML file of the parent class. This
type of inheritance is called markup inheritance. To better illustrate this concept let's consider the following
example where we have a page class called GenericSitePage with the corresponding HTML file
GenericSitePage.html. Now let's create a specific page called Or der CheckQut Page where users can check out
their orders on our web site. This class extends Generi cSit ePage but we don't provide it with any
corresponding HTML file. In this scenario Or der CheckQut Page will use GenericSitePage.html as markup file:

® webPage

® GeneralSitePage

GeneralSitePage.html J/

® ordercheckOutPage

Markup inheritance comes in handy for page layout management as it helps us avoid the burden of checking that
each page conforms to the site layout. However to fully take advantage of markup inheritance we must first learn
how to use another important component of the framework that supports this feature: the panel.

@ If no markup is found (nor directly assigned to the class, neither inherited from an
ancestor) a Mar kupNot FoundExcept i on is thrown.

Panel class

Class or g. apache. wi cket . mar kup. ht nl . panel . Panel is a special component which lets us reuse GUI
code and HTML markup across different pages and different web applications. It shares a common ancestor
class with WebPage class, which is or g. apache. wi cket . Mar kupCont ai ner :

18

© org.apache.wicket.MarkupContainer

& MarkupContainer(id: String)

& MarkupContainer(id: String, model: IModel<?>)

@ add(childs: Component[]): MarkupContainer

@ addOrReplace(childs: Component[]): MarkupContainer

@ contains(component: Component, recurse: boolean): boolean

@ iterator(): java.util.lterator<Component>

@ iterator(comparator: Comparator<Component=): lterator<Component=
& remove(component: Component): MarkupContainer

@ remove(id: String): MarkupContainer

@ removeall(): MarkupContainer

@ renderAssociatedMarkup({openTagName: Skring, exceptionMessage: String): void
@

@

@

@

@

@

replace(child: Component): MarkupContainer
visitChildren(clazz: Class<?=, visitor: Visitor<5,R=): R
visitChildren(visitor: Visitor<Component,R=): R
visitChildren(): ComponentHierarchylterator
visitChildren(clazz: Class<?=): ComponentHierarchylterator
get(index: int): Component

@ get(path: String): IRequestableComponent

© org.apache.wicket.markup.html.panel.Panel ® org.apache.wicket.markup.htmlWebPage
@ Panel(id: String) & webPage()
@ Panel(id: String, model: IModel<?>) <« webPage(model: IModel<?>)

< webPage()

lllustration: Hierarchy of WebPage and Panel classes

Subclasses of Mar kupCont ai ner can contain children components that can be added with method
add(Conponent . ..) (seen in chapter 3.3). Mar kupCont ai ner implements a full set of methods to manage
children components. The basic operations we can do on them are:

® add one or more children components (with method add).
® remove a specific child component (with method r enove).

® retrieve a specific child component with method get (String). The string parameter is the id of the
component or its relative path if the component is nested inside other Mar kupCont ai ner s. This path is a
colon-separated string containing also the ids of the intermediate containers traversed to get to the child
component. To illustrate an example of component path, let's consider the code of the following page:

MyPanel nyPanel = new MyPanel ("innerContainer");
add(myPanel) ;

Component MyPanel is a custom panel containing only a label having " nane" as id. Under those conditions we
could retrieve this label from the container page using the following path expression:

Label nanme = (Label)get ("inner Contai ner: nane");

® replace a specific child component with a new component having the same id (with method r epl ace).

® jterate thought children components with the iterator returned by method it erator or using visitor
patternl with methods vi si t Chi | dr en.

Both Panel and WebPage have their own associated markup file which is used to render the corresponding
component. If such file is not provided, Wicket will apply markup inheritance looking for a markup file through

19

their ancestor classes. When a panel is attached to a container, the content of its markup file is inserted into its
related tag.

While panels and pages have much in common, there are some notable differences between these two
components that we should keep in mind. The main difference between them is that pages can be rendered as
standalone entities while panels must be placed inside a page to be rendered. Another important difference is
the content of their markup file: for both WebPage and Panel this is a standard HTML file, but Panel uses a
special tag to indicate which part of the whole file will be considered as markup source. This tag is
<wi cket : panel >. A markup file for a panel will typically look like this:

<htm >

<head>

<meta http-equi v="Cont ent - Type" content="text/htm ; charset=UTF-8">
</ head>

<body>

<wi cket : panel >
<!-- Your nmarkup goes here -->
</ wi cket: panel >
</ body>
</htnm >

The HTML outside tag <wi cket : panel > will be removed during rendering phase. The space outside this tag
can be used by both web developers and web designers to place some mock HTML to show how the final panel

should look like.
5.3 Divide et impera!

Let's go back to our layout example. In chapter 5.1 we have divided our layout in common areas that must be
part of every page. Now we will build a reusable template page for our web application combining pages and
panels. The code examples are from project MarkuplnheritanceExample.

Panels and layout areas

First, let's build a custom panel for each layout area (except for ‘content' area). For example given the header
area

we can build a panel called Header Panel with a related markup file called HeaderPanel.html containing the
HTML for this area:

<htm >
<head>
<meta http-equi v="Cont ent - Type" content="text/htm ; charset=UTF-8">

</ head>
<body>
<wi cket : panel >
<tabl e wi dt h="100% style="border: Opx none;">
<t body>
<tr>
<t d>
<ing alt="Jug4Tenda" src="w cketlLayout files/logo_jug4tenda.gif">
</td>
<t d>
<h1>Cesti one Anagrafica</hl>
</td>
</tr>
</t body>
</ tabl e>
</ wi cket: panel >
</ body>
<htm >

The class for this panel simply extends base class Panel :

20

package hel | oWor | d. | ayout Tenda,;
i mport org.apache. w cket. mar kup. ht Ml . panel . Panel ;
public class HeaderPanel extends Panel {

publ i c Header Panel (String id) {
super (i d);

For each layout area we will build a panel like the one above that holds the appropriate HTML markup. In the end
we will have the following set of panels:

® HeaderPanel
® FooterPanel

®* MenuPanel

Content area will change from page to page, so we don't need a reusable panel for it.

Template page

Now we can build a generic template page using our brand new panels. Its markup is quite straightforward :

<htm >
<head>
<meta http-equiv="Content-Type" content="text/htm; charset=UTF-8">

<I--Include CSS->

</ head>
<body>
<di v id="header" wi cket:id="header Panel ">header </ di v>
<di v id="body">
<di v id="nmenu" wi cket:id="nenuPanel " >nmenu</div>

L <div id="content" wicket:id="contentConponent">content</div>
S | V>
<div id="footer" w cket:id="footerPanel">footer</div>
</ body>
</htm >

The HTML code for this page implements the generic left-menu layout of our site. You can note the 4 <di v>
tags used as containers for the corresponding areas. The page class contains the code to physically assemble
the page and panels:

package hel | oWorl d. | ayout Tenda;

i mport org.apache. w cket. mar kup. ht ml . WebPage;
i mport org.apache.w cket. Conponent ;
i mport org.apache.w cket. mar kup. ht ml . basi c. Label ;

public class JugTenpl ate extends WbPage {
public static final String CONTENT |D = "content Conponent";

private Conponent header Panel ;
private Conponent nenuPanel ;
private Conponent footerPanel;

public JugTenpl ate(){

add(header Panel = new Header Panel (" header Panel ")) ;
add(menuPanel = new MenuPanel (" nmenuPanel ")) ;
add(f oot er Panel = new Foot er Panel ("f oot er Panel "));

add(new Label (CONTENT I D, "Put your content here"));

//getters for |ayout areas
/...

}

Done! Our template page is ready to be used. Now all the pages of our site will be subclasses of this parent page
and they will inherit the layout and the HTML markup. They will only substitute the Label inserted as content

21

area with their custom content.

Final example

As final example we will build the login page for our site. We will call it Si npl eLogi nPage. First, we need a
panel containing the login form. This will be the content area of our page. We will call it Logi nPanel and the
markup is the following:

<htm >
<head>
</ head>
<body>
<w cket : panel >
<div style="margin: auto; width: 40%">
<form id="Iogi nFornm' method="get">
<fieldset id="login" class="center">
<l egend >Logi n</| egend>
Usernane: <input type="text" id="usernanme"/>

Password: <input type="password" id="password" />
<p>
<i nput type="submit" nanme="|ogin" val ue="Iogin"/>
</ p>
</fieldset>
</form
</ di v>
</ wi cket: panel >
</ body>
</htm >

The class for this panel just extends Panel class so we won't see the relative code. The form of this panel is for
illustrative purpose only. We will see how to work with Wicket forms in chapters 11 and 12. Since this is a login
page we don't want it to display the left menu area. That's not a big deal as Conponent class exposes a method
called set Vi si bl e which sets whether the component and its children should be displayed.

The resulting Java code for the login page is the following:

package hel | oWorl d. | ayout Tenda,;

i nport hel | oWorl d. Logi nPanel ;

i mport org.apache.w cket. event. Broadcast ;

i mport org.apache.w cket.event.|Event Si nk;

public class SinplelLogi nPage extends JugTenpl ate {
public Sinpl eLogi nPage() {
super () ;
repl ace(new Logi nPanel (CONTENT_I D)) ;
get MenuPanel (). set Vi si bl e(fal se);

Obviously this page doesn't come with a related markup file. You can see the final page in the following picture:

e
Jug &Tenda Gestione Anagrafica Accogl ienze[} fi@

Username:

Passward:

| togin

) I @ Sprmg ‘, FlrefoX. .

22

5.4 Markup inheritance with the wicket:extend tag

With Wicket we can apply markup inheritance using another approach based on the tag <wi cket : chi | d>. This
tag is used inside the parent's markup to define where the children pages/panels can “inject” their custom
markup extending the markup inherited from the parent component. An example of a parent page using the tag
<wi cket : chi | d> is the following:

<htm >
<head>
<nmeta http-equi v="Cont ent - Type" content="text/htm ; charset=UTF-8">
</ head>
<body>
This is parent body!
<wi cket: child/>
</ body>
</htn >

The markup of a child page/panel must be placed inside the tag <wi cket : ext end>. Only the markup inside
<wi cket : ext end> will be included in final markup. Here is an example of child page markup:

<htm >
<head>
<meta http-equi v="Cont ent-Type" content="text/htm ; charset=UTF-8">
</ head>
<body>

<wi cket : ext end>

This is child body!

</ w cket : ext end>
</ body>
</htm >

Considering the two pages seen above, the final markup generated for child page will be the following:

<htm >
<head>
<meta http-equi v="Cont ent - Type" content="text/htm ; charset=UTF-8">
</ head>
<body>
This is parent body!
<wi cket: chil d>
<wi cket : ext end>
This is child body!
</ w cket : ext end>
</wi cket: chi | d>
</ body>
</htnm >

Our example revisited

Applying <wi cket : chi | d> tag to our layout example, we obtain the following markup for the main template
page:

<htm >
<head>
<meta http-equiv="Content-Type" content="text/htm ; charset=UTF-8">
</ head>
<body>
<di v id="header" wi cket:id="header Panel ">header </ di v>
<di v id="body">
<di v id="nmenu" wi cket:id="nenuPanel " >menu</di v>
<wi cket: child/>
</ di v>
<div id="footer" wi cket:id="footerPanel">footer</div>
</ body>
</htm >

23

We have replaced the <di v> tag of the content area with the tag <wi cket : chi | d>. Going forward with our
example we can build a login page creating class Si npl eLogi nPage which extends the JugTenpl at e page,

but with a related markup file like this:

<htm >
<head>
</ head>
<body>
<wi cket : ext end>
<div style="margin: auto; wdth: 40%">
<form id="1oginFornm' nethod="get">
<fieldset id="login" class="center">
<l egend >Logi n</| egend>
User nane: <input type="text" id="usernanme"/>

Password: <input type="password" id="password" />
<p>
<i nput type="submit" nanme="login" val ue="Iogin"/>
</ p>
</fieldset>
</ fornp
</ di v>
</ w cket : ext end>
</ body>
</htnm >

As we can see this approach doesn't require to create custom panels to use as content area and it can be useful

if we don't have to handle a GUI with a high degree of complexity.

5.5 Summary

Wicket applies inheritance also to HTML markup making layout management much easier and less error-prone.

Defining a master template page to use as base class for the other pages is a great way to build a consistent

layout and use it across all the pages on the web site. During the chapter we have also introduced the Panel

component, a very important Wicket class that is primarily designed to let us divide our pages in smaller and

reusable Ul components.

24

6 Keeping control over HTML

Many Wicket newbies are initially scared by its approach to web development because they have the impression
that the component-oriented nature of the framework prevents them from having direct control over the
generated markup. This is due to the fact that many developers come from other server-side technologies like
JSP where we physically implement the logic that controls how the final HTML is generated.

This chapter will prevent you from having any initial misleading feeling about Wicket showing you how to control
and manipulate the generated HTML with the built-in tools shipped with the framework.

6.1 Hiding or disabling a component

At the end of the previous chapter we have seen how to hide a component calling its method set Vi si bl e. In a
similar fashion, we can also decide to disable a component using method set Enabl ed. When a component is
disabled all the links inside it will be in turn disabled (they will be rendered as) and it can not fire
JavaScript events.

Class Conponent provides two getter methods to determinate if a component is visible or enabled: i sVi si bl e
and i sEnabl ed.

Even if nothing prevents us from overriding these two methods to implement a custom logic to determinate the
state of a component, we should keep in mind that methods i sVi si bl e and i sEnabl ed are called multiple
times before a component is fully rendered. Hence, if we place non-trivial code inside these two methods, we can
sensibly deteriorate the responsiveness of our pages.

As we will see in the next chapter, class Conponent provides method onConf i gur e which is more suited to
contain code that contributes to determinate component states because it is called just once during rendering
phase.

6.2 Modifing tag attributes

To modify tag attributes we can use class or g. apache. wi cket . Attri but eModi fi er. This class extends
or g. apache. wi cket . behavi or. Behavi or and can be added to any component via the Conponent 's add
method. Class Behavi or is used to expand component functionalities and it can also modify component
markup. We will see this class in detail later in chapter 17.1.

As first example of attribute manipulation let's consider a Label component bound to the following markup:

Suppose we want to add some style to label content making it red and bolded. We can add to the label an
AttributeMdi fier which creates the tag attribute st yl e with value " col or: red; f ont - wei ght : bol d":

| abel . add(new Attri buteModifier("style", "color:red;font-weight:bold"));

If attribute styl e already exists in the original markup, it will be replaced with the value specified by
Attribut eModi fier. If we don't want to overwrite the existing value of an attribute we can use subclass
Attri but eAppender which will append its value to the existing one:

| abel . add(new AttributeAppender("style", "color:red;font-weight:bold"));

We can also create attribute modifiers using factory methods provided by class Attri but eModi fi er and it's

25

also possible to prepend a given value to an existing attribute:

//replaces existing value with the given one
| abel . add(AttributeModifier.replace("style", "color:red;font-weight:bold"));

/ | appends the given value to the existing one
| abel . add(Attri but eModi fier. append("style", "color:red;font-weight:bold"));

/] prepends the given value to the existing one
| abel . add(Attribut eModi fier. prepend("style", "color:red;font-weight:bold"));

6.3 Generating tag attribute 'id’

Tag attribute i d plays a crucial role in web development as it allows JavaScript to identify a DOM element.
That's why class Conponent provides two dedicated methods to set this attribute. With method
set Qut put Mar kupl d(bool ean out put) we can decide if the i d attribute will be rendered or not in the final
markup (by default is not rendered). The value of this attribute will be automatically generated by Wicket and it
will be unique for the entire page. If we need to specify this value by hand, we can use method
set Mar kupl d(String id). The value of the id can be retrieved with method get Mar kupl d() .

6.4 Creating in-line panels with WebMarkupContainer

Create custom panels is a great way to handle complex user interfaces. However, sometimes we may need to
create a panel which is used only by a specific page and only for a specific task.

In situations like these component or g. apache. wi cket . mar kup. ht ml . WebMar kupCont ai ner is better
suited than custom panels because it can be directly attached to a tag in the parent markup without needing a
corresponding html file (hence it is less reusable). Let's consider for example the main page of a mail service
where users can see a list of received mails. Suppose that this page shows a notification box where user can
see if new messages have arrived. This box must be hidden if there are no messages to display and it would be
nice if we could handle it as if it was a Wicket component.

Suppose also that this information box is a <di v> tag like this inside the page:

<di v wicket:id="informati onBox">

//here's the body

You' ve got new nessages.
</ di v>

Under those conditions we can consider using a WebMar kupCont ai ner component rather than implementing a
new panel. The code needed to handle the information box inside the page could be the following:

[/ Page initialization code

WebMar kupCont ai ner i nformati onBox = new WebMar kupCont ai ner ("i nformati onBox");
i nf or mat i onBox. add(new Label (" nessagesNunber", nessagesNunber));

add(i nf or mat i onBox) ;

/11f there are no new nessages, hide informationBox
i nf or mat i onBox. set Vi si bl e(fal se);

As you can see in the snippet above we can handle our information box from Java code as we do with any other
Wicket component.

6.5 Working with markup fragments

Another circumstance in which we may prefer to avoid the creation of custom panels is when we want to
conditionally display in a page small fragments of markup. In this case if we decided to use panels, we would end
up having a huge number of small panel classes with their related markup file.

To better cope with situations like this, Wicket defines component Fragnent in package
or g. apache. wi cket . mar kup. ht m . panel . Just like its parent component WebMar kupCont ai ner,
Fragment doesn't have its own markup file but it uses a markup fragment defined in the markup file of its parent

26

container, which can be a page or a panel. The fragment must be delimited with tag <wi cket : f ragnent > and
must be identified by a wi cket : i d attribute. In addition to the component id, Fr agrment 's constructor takes as
input also the id of the fragment and a reference to its container.

In the following example we have defined a fragment in a page and we used it as content area:

Page markup:

<htm >
<b66y>
" <div wicket:id="contentArea"></di v>
<wi cket: fragment w cket:id="fragnentld">

<!-- Fragnent markup goes here -->
</ wi cket: fragnment >
</ body>
</htnm >
Java code:
Fragnent fragnent = new Fragnent ("contentArea", "fragnentld", this);

add(fragment);

Fragments can be very helpful with complex pages or components. For example let's say that we have a page
where users can register to our forum. This page should first display a form where user must insert his/her
personal data (hame, username, password, email and so on), then, once the user has submitted the form, the
page should display a message like “Your registration is complete! Please check your mail to activate your user
profile.”.

Instead of displaying this message with a new component or in a new page, we can define two fragments: one
for the initial form and one to display the confirmation message. The second fragment will replace the first one
after the form has been submitted:

Page markup:

<htm >
<body>
<di v wicket:id="contentArea"></div>
<wi cket: fragment w cket:id="fornFrag">
<!-- Form nmar kup goes here -->
</ wi cket: fragment >
<wi cket: fragment w cket:id="nessageFrag">

<I-- Message markup goes here -->
</ wi cket: fragnment >
</ body>
</htnm >
Java code:
Fragnent fragnent = new Fragnent ("contentArea", "fornFrag", this);

add(fragment);

[/ form has been submtted
Fragnent fragnment = new Fragnent ("contentArea", "nmessageFrag", this);
repl ace(fragnent);

6.6 Adding header contents to the final page

Panel's markup can also contain HTML tags which must go inside header section of the final page, like tags
<scri pt>or <styl e>. To tell Wicket to put these tags inside page <head>, we must surround them with the
<wi cket : head> tag.

Considering the markup of a generic panel, we can use <wi cket : head> tag in this way:

27

<wi cket : head>
<script type="text/javascript">
function myPanel Function(){

</script>

<styl e>
. myPanel C ass{
font-wei ght: bol d;
color: red

</styl e>
</ wi cket : head>
<body>
<wi cket : panel >

</ wi cket : panel >
</ body>

Wicket will take care of placing the content of <wi cket : head> inside the <head> tag of the final page.

A The <wi cket : head> tag can also be used with children pages/panels which extend
parent markup using tag <wi cket : ext end>.

& The content of the <wi cket: head> tag is added to the header section once per
component class. In other words, if we add multiple instances of the same panel to a
page, the <head> tag will be populated just once with the content of <wi cket : head>.

@ The <wi cket: head> tag is ideal if we want to define small in-line blocks of CSS or
JavaScript. However Wicket provides also a more sophisticated technique to let
components contribute to header section with in-line blocks and resource files like CSS or
JavaScript files. We will see this technique later in chapter 15.

6.7 Using stub markup in our pages/panels

Wicket's <wi cket : r enpve> tag can be very useful when our web designer needs to show us how a page or a
panel should look like. The markup inside this tag will be stripped out in the final page, so it's the ideal place for
web designers to put their stub markup:

<ht ml >
<head>

</ head>
<body>
<wi cket:renove>
<l-- Stub nmarkup goes here -->
</ wi cket: renove>
</ body>
</htm >

6.8 How to render component body only

When we bind a component to its corresponding tag we can choose to get rid of this outer tag in the final
markup. If we call method set Render BodyOnl y(t rue) on a component Wicket will remove the surrounding
tag.

For example given the following markup and code:

HTML markup:

<htm >
<head>
<title>Hello world page</title>
</ head>
<body>

i <div wicket:id="helloWrld">[helloWrld]</div>
i </body>
i </htm >

Java code:

Label |abel = new Label ("helloWrld", “Hello World!");
| abel . set Render BodyOnl y(true);
add(| abel) ;

the output will be:

<htm >
<head>
<title>Hello world page</title>
</ head>
<body>
Hel I o Worl d!
</ body>
</htm >

As you can see the <di v> tag used for component Label is not present in the final markup.

6.9 Hiding decorating elements with the wicket:enclosure tag

Our data are rarely displayed alone without a caption or other graphic elements that make clear the meaning of
their value. For example:

<| abel >Tot al armount: </| abel ></ span>

Wicket comes with a nice utility tag called <wi cket : encl osur e> that automatically hides those decorating
elements if the related data value is not visible. All we have to do is to put the involved markup inside this tag.
Applying <wi cket : encl osur e> to the previous example we get the following markup:

<wi cket : encl osur e>
<l abel >Total anount: </|abel ></ span>
</ wi cket : encl osur e>

Now if component t ot al Amount is not visible, its description (Tot al anount :) will be automatically hidden. If
we have more than a Wicket component inside <wi cket : encl osur e> we can use chi | d attribute to specify
which component will control the overall visibility:

<wi cket : encl osure chil d="t ot al Amount ">

<| abel >Tot al amount: </| abel ></ span><br/ >

<| abel >Expect ed delivery date: </I|abel ></ span>
</w cket : encl osure>

chi | d attribute supports also nested components with a colon-separated path:

<wi cket: encl osure chil d="t ot al Amount Cont ai ner: t ot al Amount " >
<di v wi cket:i d="t ot al Anrount Cont ai ner" >
<| abel >Tot al anmount: </| abel ></ span>
</ di v>
<| abel >Expect ed delivery date: </I|abel >
</w cket : encl osur e>

6.10 Surrounding existing markup with Border

29

Component or g. apache. wi cket . mar kup. ht m . bor der . Bor der is a special purpose container created to
enclose its tag body with its related markup. Just like panels and pages, borders also have their own markup file
which is defined following the same rules seen for panels and pages. In this file <wi cket : bor der > tag is used
to indicate which part of the content is to be considered as border markup:

<?xm version="1.0" encodi ng="UTF-8"?>
<htm xm ns="http://ww.w3. org/ 1999/ xht mi " xm ns: wi cket="http://w cket.apache. org">
<head></ head>
<body>

<l-- everything above <wi cket:border> tag will be discarded...-->

<wi cket : bor der >

<di v>
foo

<wi cket : body/ >

buz

</ di v>

</ w cket : bor der >

<l-- everything below </w cket: border> tag will be discarded...-->
</ body>
</htnm >

The <wi cket : body/ > tag used in the example above is used to indicate where the body of the tag will be
placed inside border markup. Now if we attached this border to the following tag

bar
</ span>

we would obtain the following resulting HTML:

<di v>
foo

bar

buz

</ div>
</ span>

Bor der can also contain children components which can be placed either inside its markup file or inside its
corresponding HTML tag. In the first case children must be added to the border component with method
addToBor der (Conponent . . .), while in the second case we must use the add(Conponent . . .) method.

The following example illustrates both use cases:

Border class:

public class My/Border extends Border {

public MyBorder(String id) {
super (i d);

Border Markup:

<?xm version="1.0" encodi ng="UTF-8""?>
<htm xm ns="http://ww.w3.org/ 1999/ xht Ml " xm ns: wi cket="http://w cket.apache. org">
<head></ head>
<body>

<wi cket: bor der >

<di v>
<di v wi cket:id="chil dMar kup"></di v>
<wi cket : body/ >

</ di v>
</ w cket : bor der >

30

</ body>
</htm >

Border tag:

<di v wi cket:id="nyBorder">

</ div>

Initialization code for border:

MyBor der mnyBorder = new MyBorder (" nyBorder");

nmyBor der . addToBor der (new Label (" chi | dvar kup", "Child inside markup."));
nmyBor der . add(new Label ("chil dTag", "Child inside tag."));

add(myBor der) ;

6.11 Summary

In this chapter we have seen the tools provided by Wicket to gain complete control over the generated HTML.
However we didn't see yet how we can repeat a portion of HTML with Wicket. With classic server-side
technologies like PHP or JSP we use loops (like whi | e or for) inside our pages to achieve this result. To
perform this task Wicket provides a special-purpose family of components called repeaters and designed to
repeat their markup body to display a set of items.

But to fully understand how these components work, we must first learn more of Wicket's basics. That's why
repeaters will be introduced later in chapter 13.

31

/ Components lifecycle

Just like applets and servlets, also Wicket components follow a lifecycle during their existence. In this chapter we
will analyze each stage of this cycle and we will learn how to make the most of the hook methods that are
triggered when a component moves from one stage to another.

7.1 Lifecycle stages of a component

During its life a Wicket component goes through three basic stages:
1. Initialization: a component is instantiated by Wicket and prepared for the rendering phase.

2. Rendering: in this stage Wicket generates component markup. If a component contains children (i.e. is a
subclass of Mar kupCont ai ner) it must first wait for them to be rendered before starting its own rendering.

3. Removing: this stage is triggered when a component is explicitly removed from its component hierarchy,
i.e. when its parent invokes r enove(conponent) on it. This stage is facultative and is never triggered for
pages.

The following picture shows the state diagram of component lifecycle:

ln l

Once a component has been removed it can be added again to a container, but the initialization stage won't be
executed again.

% If you read the JavaDoc of class Conponent you will find a more detailed description of
component lifecycle. However this description introduces some advanced topics we didn't
covered yet hence, to avoid confusion, in this chapter some details have been omitted and
they will be covered later in the next chapters.

For now you can consider just the simplified version of the lifecycle described above.

7.2 Hook methods for component lifecycle

Class Conponent comes with a number of hook methods that can be overridden in order to customize
component behavior during its lifecycle. In the following table these methods are grouped according to the stage
in which they are invoked (and they are sorted by execution order):

Initialization onlnitialize

onConfigure, onBeforeRender, onRender, onComponentTag, onComponentTagBody,

Rendering . afterRenderChildren, onAfterRender

Removing onRemove

32

Now let's take a closer look at each stage and to at hook methods.

7.3 Initialization stage

This stage is performed at the beginning of the component lifecycle. During initialization, the component has
already been inserted into its component hierarchy so we can safely access to its parent container or to its page
with methods get Par ent () or get Page() . The only method triggered during this stage isonlnitialize().
This method is a sort of “special” constructor where we can execute a custom initialization of our component.

Since onlnitialize is similar to a regular constructor, when we override this method we have to call
super.onlnitialize inside its body, usually as first instruction.

7.4 Rendering stage

This stage is triggered each time a component is rendered by Wicket, typically when its page is requested or
when it is refreshed via AJAX.

Method onConfigure

Method onConf i gur e() has been introduced in order to provide a good point to manage the component states
such as its visibility or enabled state. This method is called before the render phase starts. As stated in chapter
6.1, i sVi si bl e and i sEnabl ed are called multiple times when a page or a component is rendered, so it's
highly recommended not to directly override these method, but rather to use onConfi gure to change
component states. On the contrary method onBef or eRender (see the next paragraph) is not indicated for this
task because it will not be invoked if component visibility is set to false.

Method onBeforeRender

The most important hook method of this stage is probably onBef or eRender () . This method is called before a
component starts its rendering phase and it is our last chance to change its children hierarchy.

If we want add/remove children components this is the right place to do it. In the next example (project
LifeCycleStages) we will create a page which alternately displays two different labels, swapping between them
each time it is rendered:

public class HonePage extends WbPage

private Label firstLabel;
private Label secondLabel;

publ i ¢ HonmePage() {
firstLabel = new Label ("l abel", "First |abel");
secondLabel = new Label ("Il abel", "Second |abel");

add(firstLabel);
add(new Link("rel oad"){

@verride
public void onClick() {
}

1)
}

@verride
protected voi d onBef oreRender () {
i f(contains(firstLabel, true))
repl ace(secondLabel) ;
el se
repl ace(firstLabel);

super . onBef or eRender () ;

}

The code inside onBef or eRender () is quite trivial as it just checks which label among fi r st Label and
secondLabel is currently inserted into the component hierarchy and it replaces the inserted label with the other
one.

This method is also responsible for invoking children onBef or eRender () so if we decide to override it we have
to call super. onBef or eRender () . However, unlike onl ni ti al i ze(), the call to superclass method should

33

be placed at the end of method's body in order to affect children's rendering with our custom code.

Please note that in the example above we can trigger the rendering stage pressing F5 key or clicking on link
“reload”.

@ If we forget to call superclass version of methods onlnitialize() or
onBef or eRender () , Wicket will throw an | | | egal St at eExcept i on with the following
message:

java.lang. ||| egal St at eExcepti on: org.apache.wicket.Component has not
been properly initialized. Something in the hierarchy of <page
cl ass nanme> has not called super.onlnitialize()/onBeforeRender()
in the override of onlnitialize()/ onBeforeRender() nethod

Method onComponentTag

Method onConponent Tag(Conponent Tag) is called to process component tag, which can be freely
manipulated through its argument of type or g. apache. wi cket . mar kup. Conponent Tag. For example we
can add/remove tag attributes with methods put (String key, String value) and renove(String
key), or we can even decide to change the tag or rename it with method set Nane(Stri ng) (the following
code is taken from project OnComponentTagExample):

Markup code:

<head>
<nmeta charset="utf-8" />
<title></title>
</ head>
<body>
<hl wi cket:id="hel | oMessage" ></ hl>
</ body>

Java code:

public class HonePage extends WebPage {
publ i c HomePage() {
add(new Label ("hel | oMessage", "Hello World"){

@verride

protected voi d onConponent Tag(Conponent Tag tag) {
super . onConponent Tag(tag) ;
[/ Turn the hl tag to a span
tag. set Nane("span");
[/ Add formatting style
tag. put ("style", "font-weight:bold");

}
1),
}

Generated markup:

<head>
<meta charset="utf-8" />
<title></title>
</ head>
<body>
Hel | o Wrl d</ span>
</ body>

Just like we do with onl ni ti al i ze, if we decide to override onConponent Tag we must remember to call the
same method of the super class because also this class may also customize the tag. Overriding
onConponent Tag is perfectly fine if we have to customize the tag of a specific component, but if we wanted to
reuse the code across different components we should consider to use a behavior in place of this hook method.

We have already seen in chapter 6.2 how to use behavior Attri but eModi fi er to manipulate the tag's
attribute. In chapter 17.1 we will see that base class Behavi or offers also a callback method named

onConponent Tag(Conponent Tag, Conponent) that can be used in place of the hook method

onConponent Tag(Conponent Tag) .

Methods onComponentTagBody

Method onConponent TagBody(Mar kupSt r eam Conponent Tag) is called to process the component tag's
body. Just like onConponent Tag it takes as input a Conponent Tag parameter representing the component
tag. In addition, we also find a Mar kupSt r eamparameter which represents the page markup stream that will be
sent back to the client as response.

onComponent TagBody can be wused in combination with the Conponent's method

r epl aceConponent TagBody to render a custom body under specific conditions. For example (taken from
project OnComponentTagExample) we can display a brief description instead of the body if the label component
is disabled:

public class HonePage extends WebPage {
publ i c HomePage() {

add(new Label ("hel | oMessage", "Hello World"){
@verride
protected voi d onConponent TagBody(Mar kupSt r eam nmar kupSt ream Conponent Tag tag) {

i f(!isEnabled())
repl aceConponent TagBody(mar kupStream tag, "(the conmponent is disabled)");
el se
super . onConponent TagBody(mar kupStream tag);

}
1),
}

Note that the original version of onConponent TagBody is invoked only when we want to preserve the standard
rendering mechanism for the tag's body (in our example this happens when the component is enabled).

7.5 Removing stage

This stage is triggered when a component is removed from its container hierarchy. The only hook method for this
phase is onRenove() . If our component still holds some resources needed during rendering phase, we can
override this method to release them.

Once a component has been removed we are free to add it again to the same container or to a different one.
Starting from version 6.18.0 Wicket added a further hook method called onReAdd() which is triggered every
time a previously removed component is re-added to a cointainer. Please note that while onl nitiali ze is
called only the very first time a component is added, onReAdd is called every time it is re-added after having
been removed.

7.6 Summary

In this chapter we have seen which stages compose the lifecycle of Wicket components and which hook
methods they provide. Overriding these methods we can dynamically modify the component hierarchy and we
can enrich the behavior of our custom components.

35

8 Page versioning and caching

This chapter explains how Wicket manages page instances, underlining the difference between stateful and
stateless pages. The chapter also introduces some advanced topics like Java Serialization and multi-level cache.
However, to understand what you will read you are not required to be familiar with these concepts.

8.1 Stateful pages vs stateless

Wicket pages can be divided into two categories: stateful and stateless pages. Stateful pages are those which
rely on user session to store their internal state and to keep track of user interaction. On the contrary stateless
pages are those which don't change their internal state during their lifecycle and they don't need to occupy space
into user session.

From Wicket's point of view the biggest difference between these two types of page is that stateful pages are
versioned, meaning that they will be saved into user session every time their internal state has changed. Wicket
automatically assigns a session to the user the first time a stateful page is requested. Page versions are stored
into user session using Java Serialization mechanism. Stateless pages are never versioned and that's why they
don't require a valid user session. If we want to know whether a page is stateless or not, we can call the
isPageStateless() method of class Page.

In order to build a stateless page we must comply with some rules to ensure that the page won't need to use
user session. These rules are illustrated in paragraph 8.3 but before talking about stateless pages we must first
understand how stateful pages are handled and why they are versioned.

8.2 Stateful pages

Stateful pages are versioned in order to support browser's back button: when this button is pressed Wicket must
respond by rendering the same page instance previously used.

A new page version is created when a stateful page is requested for the first time or when an existing instance is
modified (for example changing its component hierarchy). To identify each page version Wicket uses a
session-relative identifier called page id. This is a unique number and it is increased every time a new page
version is created.

In the final example of the previous chapter (project LifeCycleStages), you may have noticed the number
appended at the end of URL. This number is the page id we are talking about:

= { i localhost:8080/LifeCycleStage 0

(&) Apache Wichet

First label
| Reload

In this chapter we will use a revised version of this example project where the component hierarchy is modified
inside the Link's onClick()method. This is necessary because Wicket creates a new page version only if the page
is modified before its method onBeforeRender() is invoked. The code of the new home page is the following:

public class HonePage extends WbPage

private static final |ong serial VersionU D = 1L;
private Label firstLabel;
private Label secondLabel;

36

publ i ¢ HonmePage() {
firstLabel = new Label ("l abel", "First |abel");
secondLabel = new Label ("Il abel", "Second |abel");

add(firstLabel);

add(new Link("rel oad"){
@verride
public void onCick() {
i f(getPage().contains(firstLabel, true))
get Page() . repl ace(secondLabel) ;
el se
get Page() . repl ace(firstlLabel);

1)

———

Now if we run the new example (project LifeCycleStagesRevisited) and we click on the “Reload” button, a new
page version is created and the page id is increased by one:

@= | @ localhost:B080/Pageversioning §= | @ localhost:8080/PageVersioning

©
& Apache Wicket

First label Second label
Reload Reload

If we press the back button the page version previously rendered (and serialized) will be retrieved (i.e.
deserialized) and it will be used again to respond to our request (and page id is decremented):

F localhost:B080/PageVersioning \F‘ ' localhost: 8080/ PageVersioning
|I,.ar"_"w..,l I'""’ ; . h
() Apachz Wicket
Second label First label
Reload | Reload

* For more details about page storing you can take a look at paragraph "Page storing" from
chapter "Wicket Internals". The content of this paragraph is from wiki page
https://cwiki.apache.org/confluence/display/WICKET/Page+Storage.

As we have stated at the beginning of this chapter, page versions are stored using Java serialization, therefore
every object referenced inside a page must be serializable. In paragraph 11.6 we will see how to overcome this
limit and work with non-serializable objects in our components using detachable Wicket models.

Using a specific page version with PageReference

To retrieve a specific page version in our code we can use class or g. apache. wi cket . PageRef er ence by
providing its constructor with the corresponding page id:

/11 oad page version with page id = 3

PageRef er ence pageRef erence = new PageRef erence(3);
//1oad the rel ated page instance

Page page = pageReference. get Page();

To get the related page instance we must use the method getPage.

37

Turning off page versioning

If for any reason we need to switch off versioning for a given page, we can call its method setVersioned(false).

Pluggable serialization

Starting from version 1.5 it is possible to choose which implementation of Java serialization will be used by
Wicket to store page versions. Wicket serializes pages using an implementation of interface
org. apache. wi cket.serialize.lSerializer. The default implementation is
org. apache. wi cket.serialize.java.JavaSerializer and it uses the standard Java serialization
mechanism based on classes ObjectOutputStream and ObjectinputStream. However on Internet we can find
other interesting serialization libraries like Kryo or Fast which perform faster then the standard implementation.
The serializer in use can be customized with the setSerializer(ISerializer) method defined by setting interface
org. apache. wi cket. settings. | Franmewor kSet ti ngs.

We can access this interface inside the method init of the class Application using the getFrameworkSettings()
method :

@verride
public void init()
{

super.init();
get Franewor kSet ti ngs().set Seri alizer(yourSerializer);

A serializer based on Kryo library and another one based on Fast are provided by the WicketStuff project. You
can find more information on this project, as well as the instructions to use its modules, in Appendix B.

Page caching

By default Wicket persists versions of pages into a session-relative file on disk, but it uses a two-levels cache to
speed up this process. The first level of the cache uses a http session attribute called
“wicket:persistentPageManagerData-<APPLICATION_NAME>" to store pages. The second level cache stores
pages into application-scoped variables which are identified by a session id and a page id.

The following picture is an overview of these two caching levels:

Persistent store (disk files by default)

Application scoped cache (second level)

Session scoped cache (first level)

The session-scoped cache is faster then the other memory levels but it contains only the pages used to serve
the last request. Wicket allows us to set the maximum amount of memory allowed for the application-scoped
cache and for the page store file. Both parameters can be configured via setting interface
org. apache. wi cket . settings.| StoreSettings.

This interface provides the setMaxSizePerSession(Bytes bytes) method to set the size for page store file. The

38

https://github.com/EsotericSoftware/kryo
http://ruedigermoeller.github.io/fast-serialization/

Bytes parameter is the maximum size allowed for this file:

@verride
public void init()
{

super.init();
get StoreSettings().set MaxSi zePer Sessi on(Byt es. ki | obyt es(500));

Class or g. apache. wi cket. util .l ang. Byt es is an utility class provided by Wicket to express size in bytes
(for further details refer to the JavaDoc). For the second level cache we can use the setinmemoryCacheSize(int
inmemoryCacheSize) method. The integer parameter is the maximum number of page instances that will be
saved into application-scoped cache:

@verride
public void init()
{

super.init();
get StoreSettings().setlnnmenoryCacheSi ze(50);

Page expiration

Page instances are not kept in the user session forever. They can be discarded when the limit set with the
setMaxSizePerSession method is reached or (more often) when user session expires. When we ask Wicket for a
page id corresponding to a page instance removed from the session, we bump into a PageExpiredException and
we get the following default error page:

4] |{:j localhost:8080/LifeCycleStages)

Page Expired
The page you requested has expired.

Return to home page

This error page can be customized with the setPageExpiredErrorPage method of the
org. apache. wi cket . settings. | Applicati onSettings interface:

@verride
public void init()
{

super.init();
get ApplicationSettings().setPageExpiredErrorPage(
Cust onExpi r edEr r or Page. cl ass) ;

The page class provided as custom error page must have a public constructor with no argument or a constructor
that takes as input a single PageParameters argument (the page must be bookmarkable as described in
paragraph 10.1.1).

8.3 Stateless pages

Wicket makes it very easy to build stateful pages, but sometimes we might want to use an “old school” stateless
page that doesn't keep memory of its state in the user session. For example consider the public area of a site or
a login page: in those cases a stateful page would be a waste of resources or even a security threat, as we will
see in paragraph paragraph 12.10.

In Wicket a page can be stateless only if it satisfies the following requirements:

39

1. it has been instantiated by Wicket (i.e. we don't create it with operator new) using a constructor with no
argument or a constructor that takes as input a single PageParameters argument (class PageParameters
will be covered in chapter 10.1).

2. All its children components (and behaviors) are in turn stateless, which means that their method isStateless
must return true.

The first requirement implies that, rather than creating a page by hand, we should rely on Wicket's capability of
resolving page instances, like we do when we use method setResponsePage(Class page).

In order to comply with the second requirement it could be helpful to check if all children components of a page
are stateless. To do this we can leverage method visitChildren and the visitor pattern to iterate over components
and test if their method isStateless actually returns true:

@verride

protected void onlnitialize() {
super.onlnitialize();

visitChildren(new | Visitor<Conmponent, Void>() {
@verride
public void conponent (Conponent conponent, |Visit<Void> argl) {
i f(!conponent.isStatel ess())
System out. println("Conponent " + conponent.getld() + " is not
statel ess");

1)

Alternatively, we could use the St at el essConponent utility annotation along with the St at el essChecker
class (they are both in package or g. apache. wi cket. devutils. st atel ess). St at el essChecker will
throw an |11 egal Argunent Excepti on if a component annotated with St at el essConponent doesn't
respect the requirements for being stateless. To use St at el essConponent annotation we must first add the
St at el essChecker to our application as a component render listener:

@verride
public void init()
{

super.init();
get Conponent Post OnBef or eRender Li st ener s() . add(new St at el essChecker());

% Most of the Wicket's built-in components are stateful, hence they can not be used with a
stateless page. However some of them have also a stateless version which can be
adopted when we need to keep a page stateless. In the rest of the guide we will point out
when a built-in component comes also with a stateless version.

A page can be also explicitly declared as stateless setting the appropriate flag to true with the
setStatelessHint(true) method. This method will not prevent us from violating the requirements for a stateless
page, but if we do so we will get the following warning log message:

@ Page '<page class>' is not stateless because of component with path '<component path>'

8.4 Summary

In this chapter we have seen how page instances are managed by Wicket. We have learnt that pages can be
divided into two families: stateless and stateful pages. Knowing the difference between the two types of pages is
important to build the right page for a given task.

However, to complete the discussion about stateless pages we still have to deal with two topics we have just
outlined in this chapter: class PageParameters and bookmarkable pages. The first part of chapter 10 will cover
these missing topics.

40

9 Under the hood of the request
processing

Although Wicket was born to provide a reliable and comprehensive object oriented abstraction for web
development, sometimes we might need to work directly with “raw” web entities such as user session, web
request, query parameters, and so on. For example this is necessary if we want to store an arbitrary parameter
in the user session.

Wicket provides wrapper classes that allow us to easily access to web entities without the burden of using the
low-level APIs of Java Servlet Specification. However it will always be possible to access standard classes (like
HttpSession, HitpServletRequest, etc...) that lay under our Wicket application. This chapter will introduce these
wrapper classes and it will explain how Wicket uses them to handle the web requests initiated by the user's
browser.

9.1 Class Application and request processing

Beside configuring and initializing our application, the Application class is responsible for creating the internal
entities used by Wicket to process a request. These entities are instances of the following classes:
RequestCycle, Request, Response and Session.

The next paragraphs will illustrate each of these classes, explaining how they are involved into request
processing.

9.2 Request and Response classes

The Request and Response classes are located in package org. apache. wi cket.request and they
provide an abstraction of the concrete request and response used by our web application.

Both classes are declared as abstract but if our application class inherits from WebAppl i cat i on it will use their
sub classes Ser vl et WebRequest and Ser vl et WbResponse, both of them located inside the package
or g. apache. wi cket . protocol . http. servl et. Servl et WebRequest and Ser vl et WebResponse wrap
respectively a Ht t pSer vl et Request and a Htt pSer vl et Response object. If we need to access to these
low-level objects we can call Request's method get Cont ai ner Request () and Response's method
get Cont ai ner Response() .

9.3 The “director” of request processing - RequestCycle

Class org. apache. wi cket.request. cycl e. Request Cycl e is the entity in charge of serving a web
request. Our application class creates a new Request Cycle on every request with its method
creat eRequest Cycl e(request, response).

Method cr eat eRequest Cycl e is declared as final, so we can't override it to return a custom subclass of
Request Cycl e. Instead, we must build a request cycle provider implementing interface
org. apache. wi cket . | Request Cycl eProvi der, and then we must tell our application class to use it via the
set Request Cycl eProvi der method.

The current running request cycle can be retrieved at any time by calling its static method
Request Cycl e. get () . Strictly speaking this method returns the request cycle associated with the current (or
local) thread, which is the thread that is serving the current request. A similar get () method is also implemented
in classes org. apache. w cket. Application (as we have seen in paragraph 4.2.2) and
or g. apache. wi cket . Sessi on in order to get the application and the session in use by the current thread.

A The implementation of the get method takes advantage of the standard class
j ava. |l ang. ThreadLocal . See its JavaDoc for an introduction to local-thread variables.

41

Class or g. apache. wi cket . Conponent provides the get Request Cycl e() method which is a convenience
method that internally invokes Request Cycl e. get () :

public final RequestCycle getRequestCycle() {
return Request Cycle.get();

RequestCycle and request processing

Ay This paragraph will provide just the basic informations about what happens behind the
scenes of request processing. When you work with Wicket it's unlikely to have a need for
customizing this process, so we won't cover this topic in detail.

In order to process a request, Request Cycl e delegates the task to another entity which implements interface
or g. apache. wi cket . request. | Request Handl er. There are different implementations of this interface,
each suited for a particular type of requested resource (a page to render, an AJAX request, an URL to an
external page, etc.).

To resolve the right handler for a given HTTP request, the Request Cycl e uses a set of objects implementing
the org. apache. wi cket.request. | Request Mapper interface. The mapping interface defines the
get Conpati bi I i tyScor e(Request request) method which returns a score indicating how compatible the
request mapper is for the current request. Request Cycl e will choose the mapper with the highest score and it
will call its mapRequest (Request request) method to get the proper handler for the given request. Once
Request Cycl e has resolved a request handler, it invokes its method respond(| Request Cycle
request Cycl e) to start request processing.

The following sequence diagram recaps how a request handler is resolved by the Request Cycl e:

RequestCycle : IRequestMapper : IRequestHandler :

[For every'aﬁailab le IRequestMapper]

getCompatibilityScore

int

mapRequest

SEES}

IRequestHandler

respond

void >|:|

Developers can create additional implementations of IRequestMapper and add them to their application via the
mount(IRequestMapper mapper) method of the WebApplication class. In paragraph 10.6 we will see how Wicket
uses this method to add built-in mappers for mounted pages.

Generating URL with the urlFor and mapUrIFor methods

The RequestCycle is also responsible for generating the URL value (as CharSequence) for the following entities:

® apage class, via the ur | For (Cl ass<C> pageC ass, PagePar aneters paraneters) method

42

® an IRequestHandler via the ur | For (| Request Handl er handl er) method

® a ResourceReference via the url For(ResourceReference reference, PageParaneters
par ans) method (resource entities will be introduced in chapter 15).

The overloaded ur | For method from above also has a corresponding version that returns an instance of
or g. apache. wi cket . request. Url instead of a Char Sequence. This version has the prefix 'map’ in its
name (i.e. it has mapUr | For as full name).

Method setResponsePage

The Request Cycl e class contains the implementation of the set ResponsePage method we use to redirect a
user to a specific page (see paragraph 4.4). The namesake method of class
or g. apache. wi cket. Conponent is just a convenience method that internally invokes the actual
implementation on current request cycle:

public final void setResponsePage(final Page page) ({
get Request Cycl e() . set ResponsePage(page) ;

RequestCycle's hook methods and listeners

The RequestCycle comes with some hook methods which can be overridden to perform custom actions when
request handling reaches a specific stage. These methods are:

®* onBeginRequest(): called when the RequestCycle is about to start handling the request.
®* onEndRequest(): called when the RequestCycle has finished to handle the request

® onDetach(): called after the request handling has completed and the RequestCycle is about to be
detached from its thread. The default implementation of this method invokes detach() on the current
session (the Session class will be shortly discussed in paragraph 9.4).

Methods onBeforeRequest and onEndRequest can be used if we need to execute custom actions before and
after business code is executed, such as opening a Hibernate/JPA session and closing it when code has
terminated.

A more flexible way to interact with the request processing is to use the listener interface
or g. apache. wi cket . request . cycl e. | Request Cycl eLi st ener . In addition to the three methods already
seen for RequestCycle, this interface offers further hooks into request processing:

®* onBeginRequest(RequestCycle cycle): (see the description above)
®* onEndRequest(RequestCycle cycle): (see the description above)
® onDetach(RequestCycle cycle): (see the description above)

® onRequestHandlerResolved(RequestCycle cycle, IRequestHandler handler): called when an
IRequestHandler has been resolved.

® onRequestHandlerScheduled(RequestCycle cycle, IRequestHandler handler): called when an
IRequestHandler has been scheduled for execution.

® onRequestHandlerExecuted(RequestCycle cycle, IRequestHandler handler): called when an
IRequestHandler has been executed.

® onException(RequestCycle cycle, Exception ex): called when an exception has been thrown during
request processing.

® onExceptionRequestHandlerResolved(RequestCycle rc, IRequestHandler rh, Exception ex): called
when an IRequestHandler has been resolved and will be used to handle an exception.

®* onUrIMapped(RequestCycle cycle, IRequestHandler handler, Url url): called when an URL has been
generated for an IRequestHandler object.

To use the request cycle listeners we must add them to our application which in turn will pass them to the new
Request Cycl e's instances created with cr eat eRequest Cycl e method:

@verride
public void init() {

super.init();

| Request Cycl eLi st ener nyLi st ener;
/l1istener initialization...
get Request Cycl eLi st ener s() . add(myLi st ener)

The get Request Cycl eLi steners method returns an instance of class
or g. apache. wi cket . request. cycl e. Request Cycl eLi st ener Col | ecti on. This class is a sort of typed
collection for | Request Cycl eLi st ener and it also implements the Composite pattern .

9.4 Session Class

In Wicket we use class or g. apache. wi cket . Sessi on to handle session-relative informations such as client
informations, session attributes, session-level cache (seen in paragraph 8.2), etc...

In addition, we know from paragraph 8.1 that Wicket creates a user session to store versions of stateful pages.
Similarly to what happens with RequestCycle, the new Session's instances are generated by the Appl i cati on
class with the newSessi on(Request request, Response response) method. This method is not
declared as final, hence it can be overridden if we need to use a custom implementation of the Session class.

By default if our custom application class is a subclass of WebApplication, method newSession will return an
instance of class or g. apache. wi cket . prot ocol . htt p. WebSessi on. As we have mentioned talking about
Request Cycl e, also class Session provides a static get () method which returns the session associated to the
current thread.

Session and listeners

Similar to the Request Cycl e, class or g. apache. wi cket . Sessi on also offers support for listener entities.
With Session these entities must implement the callback interface or g. apache. wi cket . | Sessi onLi st ener
which exposes only the onCr eat ed(Sessi on sessi on) method. As you might guess from its name, this
method is called when a new session is created. Session listeners must be added to our application using a
typed collection, just like we have done before with request cycle listeners:

@verride
public void init(){

super.init();

[/listener initialization...
| Sessi onLi st ener nyLi st ener;
//add a custom session |istener
get Sessi onLi st eners().add(myLi st ener)

Handling session attributes

The Session class handles session attributes in much the same way as the standard interface
javax.servlet.http.HttpSession. The following methods are provided to create, read and remove session
attributes:

® setAttribute(String name, Serializable value): creates an attribute identified by the given name. If the
session already contains an attribute with the same name, the new value will replace the existing one. The
value must be a serializable object.

® getAttribute(String name): returns the value of the attribute identified by the given name, or null if the
name does not correspond to any attribute.

44

http://en.wikipedia.org/wiki/Composite_pattern

®* removeAttribute(String name): removes the attribute identified by the given name.

By default class WebSession will use the underlying HTTP session to store attributes. Wicket will automatically
add a prefix to the name of the attributes. This prefix is returned by the WebApplication's method
getSessionAttributePrefix().

Accessing to the HTTP session

If for any reason we need to directly access to the underlying HttpSession object, we can retrieve it from the
current request with the following code:

Ht t pSessi on session = ((Servl et WbRequest) Request Cycl e. get ()
. get Request ()) . get Cont ai ner Request () . get Sessi on() ;

Using the raw session object might be necessary if we have to set a session attribute with a particular name
without the prefix added by Wicket. Let's say for example that we are working with Tomcat as web server. One of
the administrative tools provided by Tomcat is a page listing all the active user sessions of a given web
application:

Sessions Administration for /admin/myApp

Tips:

 Click on a column to sorf.
« Toview a session details andfor remove a session attributes, click on its id.

—Active HipSessions informations
Refresh sessions list | 1 active Sessions

Guessed User
name

Guessed

Session Id Type Lincals

i 2012-06-15
BC56322A3DEF48E8B568B086F97FTFFE ENGLISH [

12:04:00

Mr BadGuy

Invalidate selected Sessions

Return to main page

Tomcat allows us to set the values that will be displayed in columns “Guessed locale” and “Guessed User
name”. One possible way to do this is to use session attributes named “Locale” and “userName” but we can't
create them via Wicket's Session class because they would not have exactly the name required by Tomcat.
Instead, we must use the raw HttpSession and set our attributes on it:

Ht t pSessi on session = ((Servl et WbRequest) Request Cycl e. get ().
get Request ()). get Cont ai ner Request (). get Sessi on();

session. setAttri bute("Local e", "ENGLISH");
session. setAttribute("userNane", "M BadGQuy");

Temporary and permanent sessions

Wicket doesn't need to store data into user session as long as the user visits only stateless pages. Nonetheless,
even under these conditions, a temporary session object is created to process each request but it is discarded at
the end of the current request. To know if the current session is temporary, we can use the isTemporary()
method:

Session. get().isTenporary();

45

If a session is not temporary (i.e. it is permanent), it's identified by an unique id which can be read calling the
getld() method. This value will be null if the session is temporary.

Although Wicket is able to automatically recognize when it needs to replace a temporary session with a
permanent one, sometimes we may need to manually control this process to make our initially temporary session
permanent.

To illustrate this possible scenario let's consider project BindSessionExample where we have a stateless home
page which sets a session attribute inside its constructor and then it redirects the user to another page which
displays with a label the session attribute previously created. The code of the two pages is as follows:

Home page:

public class HonePage extends WebPage {
publ i ¢ HonePage(final PageParaneters paraneters) {
Session.get().setAttribute("usernane", "tomy");
Sessi on. get (). bind();

set ResponsePage(Di spl aySessi onPar anet er. cl ass) ;

}

Target page:

public class Displ aySessi onPar anet er ext ends WebPage {

public Di spl aySessi onParaneter() {
super () ;
add(new Label ("usernane", (String) Session.get().getAttribute("usernane")));

}

Again, we kept page logic very simple to not over-bloat the example with unnecessary code. In the snippet above
we have also bolded Session's bind() method which converts temporary session into a permanent one. If the
home page has not invoked this method, the session with its attribute would have been discarded at the end of
the request and the page DisplaySessionParameter would have displayed an empty value in its label.

Discarding session data

Once a user has finished using our web application, she must be able to log out and clean any session data. To
be sure that a permanent session will be discarded at the end of the current request, class Session provides the
invalidate() method. If we want to immediately invalidate a given session without waiting for the current request
to complete, we can invoke the invalidateNow() method.

@ Remember that invalidateNow() will immediately remove any instance of components (and
pages) from the session, meaning that once we have called this method we won't be able
to work with them for the rest of the request process.

Storing arbitrary objects with metadata

JavaServer Pages Specificationl defines 4 scopes in which a page can create and access a variable. These
scopes are:

® request: variables declared in this scope can be seen only by pages processing the same request. The
lifespan of these variables is (at most) equal to the one of the related request. They are discarded when the
full response has been generated or when the request is forwarded somewhere else.

® page: variables declared in this scope can be seen only by the page that has created them.

® session: variables in session scope can be created and accessed by every page used in the same session
where they are defined.

46

® application: this is the widest scope. Variables declared in this scope can be used by any page of a given
web application.

Although Wicket doesn't implement the JSP Specification (it is rather an alternative to it), it offers a feature called
metadata which resembles scoped variables but is much more powerful. Metadata is quite similar to a Java Map
in that it stores pairs of key-value objects where the key must be unique. In Wicket each of the following classes
has its own metadata store: RequestCycle, Session, Application and Component.

The key used for metadata is an instance of class or g. apache. wi cket. Met aDat aKey<T>. To put an
arbitrary object into metadata we must use the setMetaData method which takes two parameters as input: the
key used to store the value and the value itself. If we are using metadata with classes Session or Component,
data object must be serializable because Wicket serializes both session and component instances. This
constraint is not applied to metadata of classes Application and RequestCycle which can contain a generic
object. In any case, the type of data object must be compatible with the type parameter T specified by the key.

To retrieve a previously inserted object we must use the get Met aDat a(Met aDat aKey<T> key) method. In
the following example we set a j ava. sql . Connect i on object in the application's metadata so it can be used
by any page of the application:

Application class code:

public static MetaDat aApp extends WebAppli cation{
[/ Do some stuff...
/**
* Metadata key definition
*
/
public static MetaDat aKey<Connection> connectionKey = new Mt aDat aKey<Connection> (){};

/**

* Application's initialization
*/

@verride
public void init(){

super.init();
Connecti on connecti on;
//connection initialization...
set Met aDat a(connect i onKey, connecti on);
// Do some other stuff..

————

Code to get the object from the metadata:

Connection connection = Application. get().getMtaData(Met aDat aApp. connecti onKey) ;

Since MetaDataKey<T> class is declared as abstract, we must implement it with a subclass or with an
anonymous class (like we did in the example above).

9.5 Exception handling

Wicket uses a number of custom exceptions during the regular running of an application. We have already seen
PageExpi r edExcepti on raised when a page version is expired. Other examples of such exceptions are
Aut hori zati onExcepti on and Rest art ResponseExcept i on. We will see them later in the next chapters.
All the other exceptions raised during rendering phase are handled by an implementation of
org. apache. wi cket . request. | Excepti onMapper which by default is class

or g. apache. wi cket . Def aul t Excepti onMapper . If we are working in DEVELOPMENT mode this mapper
will redirect us to a page that shows the exception stacktrace (page Excepti onEr r or Page). On the contrary, if
application is running in DEPLOYMENT mode Def aul t Except i onMapper will display an internal error page
which by default is or g. apache. wi cket . mar kup. ht m . pages. | nt er nal Err or Page. To use a custom
internal error page we can change application settings like this:

get ApplicationSettings().setlnternal ErrorPage(MI nternal ErrorPage. cl ass) ;

47

We can also manually set if Wicket should display the exception with Except i onEr r or Page or if we want to
use the internal error page or if we don't want to display anything at all when an unexpected exception is thrown:

/I show default devel oper page
get ExceptionSettings().set Unexpect edExcepti onDi spl ay(| ExceptionSetti ngs. SHON EXCEPTI ON_PAGE

//show i nternal error page

get ExceptionSettings().set Unexpect edExcepti onDi spl ay(

| Except i onSet ti ngs. SHOVN | NTERNAL ERROR PAGE);

/I show no exception page when an unexpected exception is thrown
get ExceptionSettings().set Unexpect edExcepti onDi spl ay(

| Except i onSet ti ngs. SHON NO_EXCEPTI ON_PAGE) ;

Developers can also decide to use a custom exception mapper instead of Def aul t Except i onMapper . To do
this we must override Appl i cat i on's method get Except i onMapper Provi der :

@verride
public I Provider<Il Excepti onMapper> get Excepti onMapper Provi der ()
{
/...
}
The method returns an instance of or g. apache. wi cket. util .| Provi der that should return our custom

exception mapper.

Ajax requests

To control the behavior in Ajax requests the application may use
org. apache. wi cket.settings.| ExceptionSettings#

set Aj axError Handl i ngSt rat egy(| Excepti onSetti ngs. Aj axError Strat egy). By default if an error
occurs during the processing of an Ajax request Wicket will render the configured error page. By configuring
org. apache. wi cket.settings.| ExceptionSettings.

Aj axError Strat egy#l NVOKE_FAI LURE_HANDLER as the default strategy the application will call the
JavaScript onFai | ur e callback(s) instead.

9.6 Summary

In this chapter we had a look at how Wicket internally handles a web request. Even if most of the time we won't
need to customize this internal process, knowing how it works is essential to use the framework at 100%.

Entities like Application and Session will come in handy again when we will tackle the topic of security in chapter
21.

10 Wicket Links and URL
generation

Up to now we used component Link to move from a page to another and we have seen that it is quiet similar to a
“click” event handler (see paragraph 4.4).

However this component alone is not enough to build all possible kinds of links we may need in our pages.
Therefore, Wicket offers other link components suited for those tasks which can not be accomplished with a
basic Link.

Besides learning new link components, in this chapter we will also see how to customize the page URL
generated by Wicket using the encoding facility provided by the framework and the page parameters that can be
passed to a target page.

10.1 PageParameters

A common practice in web development is to pass data to a page using query string parameters (like
?paramNamel=paramValul¶mName2=paramValueZ2...). Wicket offers a more flexible and object oriented
way to do this with models (we will see them in the next chapter). However, even if we are using Wicket, we still
need to use query string parameters to exchange data with other Internet-based services. Consider for example
a classic confirmation page which is linked inside an email to let users confirm important actions like password
changing or the subscription to a mailing list. This kind of page usually expects to receive a query string
parameter containing the id of the action to confirm.

Query string parameters can also be referred to as named parameters. In Wicket they are handled with class
or g. apache. wi cket . request. mapper. par anet er. PagePar anet ers. Since named parameters are
basically name-value pairs, PageParameters works in much the same way as Java Map providing two methods
to create/modify a parameter (add(String hame, Object value) and set(String name, Object value)), one method
to remove an existing parameter (remove(String name)) and one to retrieve the value of a given parameter
(get(String name)) . Here is a snippet to illustrate the usage of PageParameters:

PagePar anet er s
//add a couple

pagePar anet er s.

pagePar aneters =
of paraneters

pagePar anet er s. add(" nanme", "John");
pagePar anet er s. add("age", 28);
/Iretrieve the value of 'age' paraneter

get ("age");

new PagePar aneters();

Now that we have seen how to work with page parameters, let's see how to use them with our pages.

PageParameters and bookmarkable pages

Base class Page comes with a constructor which takes as input a PageParameters instance. If we use this
superclass constructor in our page, PageParameters will be used to build the page URL and it can be retrieved
at a later time with the Page's getPageParameters() method.

In the following example taken from the PageParametersExample project we have a home page with a link to a
second page that uses a version of setResponsePage method that takes as input also a PageParameters to
build the target page (named PageWithParameters). The code for the link and for the target page is the
following:

Link code:

add(new Li nk("pageW t hl ndexParam') {
@verride

49

public void onCick() {

PagePar anet ers pagePar anet ers = new PagePar anet ers();
pagePar anet ers. add("foo", "foo");
pagePar anet ers. add("bar", "bar");

set ResponsePage(PageW t hPar anet er s. cl ass, pageParaneters);

1)

Target page code:

public class PageWthParaneters extends WebPage {
/] Override superclass constructor
publ i ¢ PageW t hPar anet er s(PagePar anet ers paraneters) {
super (par aneters);

The code is quite straightforward and it's more interesting to look at the URL generated for the target page:

<app root >/ PagePar anet er sExanpl e/ wi cket / bookmar kabl e/
org.w cket Tut ori al . PageW t hPar anet er s?f oo=f oo&bar =bar

At first glance the URL above could seem a little weird, except for the last part which contains the two named
parameters used to build the target page.

The reason for this “strange” URL is that, as we explained in paragraph 8.3, when a page is instantiated using a
constructor with no argument or using a constructor that accepts only a PageParameters, Wicket will try to
generate a static URL for it, with no session-relative informations. This kind of URL is called bookmarkable
because it can be saved by the users as a bookmark and accessed at a later time.

A bookmarkable URL is composed by a fixed prefix (which by default is bookmarkable) and the qualified name of
the page class (org.wicketTutorial.PageWithParameters in our example). Segment wicket is another fixed prefix
added by default during URL generation. In paragraph 10.6 we will see how to customize fixed prefixes with a
custom implementation of IMapperContext interface.

Indexed parameters

Besides named parameters, Wicket also supports indexed parameters. These kinds of parameters are rendered
as URL segments placed before named parameters. Let's consider for example the following URL:

<appl i cati on pat h>/f oo/ bar ?1&baz=baz

The URL above contains two indexed parameters (foo and bar) and a query string consisting of the page id and
a named parameter (baz). Just like named parameters also indexed parameters are handled by the
PageParameters class. The methods provided by PageParameters for indexed parameters are set(int index,
Object object) (to add/modify a parameter), remove(int index)(to remove a parameter) and get(int index) (to read
a parameter).

As their name suggests, indexed parameters are identified by a numeric index and they are rendered following
the order in which they have been added to the PageParameters. The following is an example of indexed
parameters:

PagePar anet ers pagePar anet ers = new PagePar anet ers();
//add a coupl e of paraneters

pagePar anet ers. set (0, "foo");

pagePar aneters. set (1, "bar");

[lretrieve the value of the second paraneter ("bar")
pagePar anet ers. get (1) ;

50

Project PageParametersExample comes also with a link to a page with both indexed parameters and a nhamed
parameter:

add(new Li nk("pageW t hNanedl ndexPar ant') {

@verride
public void onCick() {

PagePar anet ers pagePar aneters = new PagePar anet ers();
pagePar anet ers. set (0, "foo");
pagePar anet ers. set (1, "bar");
pagePar anet er s. add(" baz", "baz");

set ResponsePage(PageW t hPar anet ers. cl ass, pageParaneters);
}

1)

The URL generated for the linked page (PageWithParameters) is the one seen at the beginning of the
paragraph.

10.2 Bookmarkable links

A link to a bookmarkable page <can be built with the Ilink component
or g. apache. wi cket . mar kup. ht mi . | i nk. Bookmar kabl ePageLi nk:

Bookmar kabl ePageLi nk bpl =new Bookmar kabl ePagelLi nk(PageW t hPar anet er s. cl ass, pagePar anet ers) ;

The specific purpose of this component is to provide an anchor to a bookmarkable page, hence we don't have to
implement any abstract method like we do with Link component.

10.3 Automatically creating bookmarkable links with tag wicket:link

Bookmarkable pages can be linked directly inside markup files without writing any Java code. Using
<wicket:link> tag we ask Wicket to automatically add bookmarkable links for the anchors wrapped inside it. Here
is an example of usage of <wicket:link> tag taken from the home page of the project
BookmarkablePageAutoLink:

<! DOCTYPE htm >
<htm xm ns:w cket="http://w cket.apache. org">
<head>
<meta charset="utf-8" />
<title>Apache Wcket Quickstart</title>
</ head>
<body>
<div id="bd">
<wi cket: link>
HonePage</ a><br/ >
SubPackagePage</ a>
</w cket:link>
</ di v>
</ body>
</htm >

The key part of the markup above is the href attribute which must contain the package-relative path to a page.
The home page is inside package org.wicketTutorial which in turns contains the sub package anotherPackage.
This package hierarchy is reflected by the href attributes: in the first anchor we have a link to the home page
itself while the second anchor points to page SubPackagePage which is placed into sub package
anotherPackage. Absolute paths are supported as well and we can use them if we want to specify the full
package of a given page. For example the link to SubPackagePage could have been written in the following
(more verbose) way:

 SubPackagePage</ a>

51

If we take a look also at the markup of SubPackagePage we can see that it contains a link to the home page
which uses the parent directory selector (relative path):

<! DOCTYPE htm >
<htm xnl ns:w cket="http://w cket.apache. org">
<head>
<meta charset="utf-8" />
<title>Apache Wcket Quickstart</title>
</ head>
<body>
<di v id="bd">
<w cket:|ink>
HonePage</ a><br/ >
SubPackagePage</ a>
</wi cket:link>
</ di v>
</ body>
</htm >

Please note that any link to the current page (aka self link) is disabled. For example in the home page the self
link is rendered like this:

<enrHonePage</ en»</ span>

The markup used to render disabled links can be customized using the markup settings (interface
IMarkupSettings) available in the application class:

@verride
public void init()
{

super.init();

//wrap disabled links with tag
get Mar kupSet ti ngs() . set Def aul t Bef or eDi sabl edLi nk("");
get Mar kupSetti ngs() . set Def aul t Af t er Di sabl edLi nk("");

The purpose of <wicket:link> tag is not limited to just simplifying the usage of bookmarkable pages. As we will
see in chapter 13, this tag can also be adopted to manage web resources like pictures, CSS files, JavaScript
files and so on.

10.4 External links

Since Wicket uses plain HTML markup files as templates, we can place an anchor to an external page directly
inside the markup file. When we need to dynamically generate external anchors, we can use link component
or g. apache. wi cket . mar kup. ht m . I i nk. Ext er nal Li nk. In order to build an external link we must
specify the value of the href attribute using a model or a plain string. In the next snippet, given an instance of
Person, we generate a Google search query for its full name:

Html:

<a w cket:id="external Site">Search me on Googl e! </ a>

Java code:

Person person = new Person("John", "Smith");

String full Name = person. get Ful | Nanme();

/| Space characters nust be replaced by character '+

String googleQuery = "http://ww. googl e. conf search?g=" + full Nane.replace(" ", "+");
add(new External Li nk("external Site", googleQuery));

Generated anchor:

52

Search ne on Googl e! </ a>

If we need to specify a dynamic value for the text inside the anchor, we can pass it as an additional constructor
parameter:

Html:

<a wi cket:id="external Site">Label goes here...

Java code:
Person person = new Person("John", "Smth");
String full Name = person. get Ful | Nane() ;
String googleQuery = "http://ww. googl e. conf search?g=" + full Nane.replace(" ", "+");
String linkLabel = "Search '" + fullName + "' on Google.";
add(new External Li nk("external Site", googleQuery, I|inkLabel));

Generated anchor:

Search 'John Smith' on Coogle. </ a>

10.5 Stateless links

Component Link has a stateful nature, hence it cannot be used with stateless pages. To use links with these
kinds of pages Wicket provides the convenience

org. apache. wi cket . markup. ht m . I i nk. St at el essLi nk component which is basically a subtype of Link
with the stateless hint set to true.

Please keep in mind that Wicket generates a new instance of a stateless page also to serve stateless links, so
the code inside the onClick() method can not depend on instance variables. To illustrate this potential issue let's
consider the following code (from the project StatelessPage) where the value of the variable index is used inside
onclick():

public class Statel essPage extends WebPage {
private int index = O;

public Statel essPage(PageParaneters paranmeters) {
super (par aneters) ;

@verride
protected void onlnitialize() {
super.onlnitialize();
set St at el essHi nt (true);

add(new St at el essLi nk("statel essLink") {

@verride
public void onCick() {
/11t will always print zero
System out. print| n(i ndex++);
b
}
}

The printed value will always be zero because a new instance of the page is used every time the user clicks on
the statelessLink link.

10.6 Generating structured and clear URLsS

53

Having structured URLSs in our site is a basic requirement if we want to build an efficient SEO strategy, but it also
contributes to improve user experience with more intuitive URLs. Wicket provides two different ways to control
URL generation. The first (and simplest) is to “mount” one or more pages to an arbitrary path, while a more
powerful technique is to use custom implementations of IMapperContext and IPageParametersEncoder
interfaces. In the next paragraphs we will learn both of these two techniques.

Mounting a single page

With Wicket we can mount a page to a given path in much the same way as we map a servlet filter to a desired
path inside file web.xml (see paragraph 4.2). Using mountPage(String path, Class <T> pageClass) method of the
WepApplication class we tell Wicket to respond with a new instance of pageClass whenever a user navigates to
the given path. In the application class of the project MountedPagesExample we mount MountedPage to the
"IpageMount" path:

@verride
public void init()
{

super.init();
nmount Page("/ pageMbunt ", Munt edPage. cl ass) ;
/I Qther initialization code...

The path provided to mountPage will be used to generate the URL for any page of the specified class:

[lit will return "/pageMunt"
Request Cycl e. get (). url For (Mount edPage. cl ass) ;

Under the hood the mountPage method mounts an instance of the request mapper
or g. apache. wi cket . request . mapper . Mount edMapper configured for the given path:

public final <T extends Page> void nmountPage(final String path,final C ass<T> pageC ass) {
nmount (new Mount edMapper (pat h, pageCd ass));

Request mappers and the Application's method mount have been introduced in the previous chapter (paragraph
9.3).

Using parameter placeholders with mounted pages

The path specified for mounted pages can contain dynamic segments which are populated with the values of the
named parameters used to build the page. These segments are declared using special segments called
parameter placeholders. Consider the path used in the following example:

nount Page("/ pageMunt / ${f oo}/ ot her Segni', Munt edPageW t hPl acehol der. cl ass) ;

The path used above is composed by three segments: the first and the last are fixed while the second will be
replaced by the value of the named parameter foo that must be provided when the page
MountedPageWithPlaceholder is instantiated:

Java code:

PagePar anet ers pagePar aneters = new PagePar aneters();
pagePar anet ers. add("foo", "foo");

set ResponsePage(Mount edPageW t hPl acehol der . cl ass, pagePar anet er s)

Generated URL:

<Appl i cation pat h>/ pageMount/ f oo/ ot her Segm

On the contrary if we manually insert an URL like '<web app path>/pageMount/bar/otherSegm’, we can read
value 'bar' retrieving the named parameter foo inside our page.

Place holders can be declared as optional using the '# character in place of '$"

nmount Page("/ pageMount / #{ f oo}/ ot her Segnt’, Mount edPageOpt i onal Pl acehol der. cl ass);

If the named parameter for an optional placeholder is missing, the corresponding segment is removed from the
final URL:

Java code:

PagePar anet er s pagePar anet ers = new PagePar anet ers() ;
set ResponsePage(Mount edPageW t hPl acehol der . cl ass, pagePar aneters);

Generated URL:

<Appl i cati on pat h>/ pageMount/ ot her Segm

Mounting a package

In addition to mounting a single page, Wicket allows to mount all of the pages inside a package to a given path.
Method mountPackage(String path, Class<T> pageClass) of class WepApplication will mount every page inside
pageClass's package to the specified path.

The resulting URL for package-mounted pages will have the following structure:

<Appl i cati on pat h>/ nount edPat h/ <PageC assNanme>[opti onal query stri ng]

For example in the MountedPagesExample project we have mounted all pages inside the subpackage
org.tutorialWicket.subPackage with this line of code:

nmount Package("/ mount Package", St at ef ul PackageMount . cl ass);

StatefulPackageMount is one of the pages placed into the desired package and its URL will be:

<Appl i cati on pat h>/ nount Package/ St at ef ul PackageMount ?1

Similarly to what is done by the mountPage method, the implementation of the mountPackage method mounts
an instance of or g. apache. wi cket . request . napper . PackageMapper to the given path.

Providing custom mapper context to request mappers
Interface or g. apache. wi cket . request. mapper. | Mapper Cont ext is used by request mappers to create

new page instances and to retrieve static URL segments used to build and parse page URLs. Here is the list of
these segments:

55

® Namespace: it's the first URL segment of non-mounted pages. By default its value is wicket.

® I|dentifier for non-bookmarkable URLSs: it's the segment that identifies non bookmarkable pages. By default
its value is page.

® |dentifier for bookmarkable URLs: it's the segment that identifies bookmarkable pages. By default its value
is bookmarkable (as we have seen before in paragraph 10.1.1).

® |dentifier for resources: it's the segment that identifies Wicket resources. Its default value is resources. The
topic of resource management will be covered in chapter 15.

IMapperContext provides a getter method for any segment listed above. By default Wicket uses class
or g. apache. wi cket . Def aul t Mapper Cont ext as mapper context.

Project CustomMapperContext is an example of customization of mapper context where we use index as
identifier for non-bookmarkable pages and staticURL as identifier for bookmarkable pages. In this project,
instead of implementing our mapper context from scratch, we used DefaultMapperContext as base class
overriding just the two methods we need to achieve the desired result (getBookmarkableldentifier() and
getPageldentifier()). The final implementation is the following:

public class Customvapper Cont ext extends Def aul t Mapper Cont ext {

@verride
public String get Bookmarkabl el dentifier() {
return "stati cURL";

@verride
public String getPageldentifier() {
return "index";

Now to use a custom mapper context in our application we must override the newMapperContext() method
declared in the Application class and make it return our custom implementation of IMapperContext:

@verride
protected | Mapper Cont ext newVapper Cont ext () {
return new Cust oniVapper Cont ext () ;

Controlling how page parameters are encoded with IPageParametersEncoder

Some request mappers (like MountedMapper and PackageMapper) can delegate page parameters
encoding/decoding to interface or g. apache. wi cket . request. napper. paranet er. | Page
Par amet er sencoder. This entity exposes two methods: encodePageParameters() and
decodePageParameters(): the first one is invoked to encode page parameters into an URL while the second one
extracts parameters from the URL.

Wicket comes with a built-in implementation of this interface which encodes named page parameters as URL
segments using the following pattern: /paramNamel/paramValuel/paramName2/param Value2...

This built-in encoder is

org. apache. wi cket . request. mapper. paranet er. Ur | Pat hPagePar anet er sencoder class. In the
PagePar anet er sEncoder Exanpl e project we have manually mounted a Mount edMapper that takes as input
also an Ur | Pat hPagePar anet er sencoder :

@verride
public void init() {

super.init();

mount (new Mount edMapper ("/ nount edPat h", Mount edPage. cl ass, new
Ur | Pat hPagePar anet er sencoder ()));

}

56

The home page of the project contains just a link to the MountedPage web page. The code of the link and the
resulting page URL are:

Link code:

add(new Li nk("nmount edPage") {

@verride
public void onCick() {

PagePar anet ers pagePar anet ers = new PagePar anet ers();
pagePar anet ers. add("foo", "foo");
pagePar anet ers. add("bar", "bar");

set ResponsePage(Mount edPage. cl ass, pagePar aneters);

1)

Generated URL:

<Appl i cati on pat h>/ nount edPat h/ f oo/ f oo/ bar/ bar ?1

Encrypting page URLs

Sometimes URLs are a double—edged sword for our site because they can expose too many details about the
internal structure of our web application making it more vulnerable to malicious users.

To avoid this kind of security threat we can use the Crypt oMapper request mapper which wraps an existing
mapper and encrypts the original URL producing a single encrypted segment:

@ localhost: 8080/t C:::D

Typically, Crypt oMapper is registered into a Wicket application as the root request mapper wrapping the
default one:

@verride

public void init() {
super.init();
set Root Request Mapper (new Crypt oMapper (get Root Request Mapper (), this));
/I pages and resources nust be nobunted after we have set CryptoMapper
mount Page("/foo/", HonePage. cl ass);

As pointed out in the code above, pages and resources must be mounted after having set Cr ypt oMapper as
root mapper, otherwise the mounted paths will not work.

@ By default Crypt oMapper encrypts page URLs with a cipher that might not be strong
enough for production environment. Paragraph 21.4 will provide a more detailed
description of how Wicket encrypts page URLs and we will see how to use stronger
ciphers.

10.7 Summary

Links and URLs are not trivial topics as they may seem and in Wicket they are strictly interconnected.
Developers must choose the right trade-off between producing structured URLs and avoiding to make them
verbose and vulnerable.

In this chapter we have explored the tools provided by Wicket to control how URLs are generated. We have
started with static URLs for bookmarkable pages and we have seen how to pass parameters to target pages with

57

PageParameters. In the second part of the chapter we focused on mounting pages to a specific path and on
controlling how parameters are encoded by Wicket. Finally, we have also seen how to encrypt URLs to prevent
security vulnerabilities.

58

11 Wicket models and forms

In Wicket the concept of “model” is probably the most important topic of the entire framework and it is strictly
related to the usage of its components. In addition, models are also an important element for internationalization,
as we will see in paragraph 12.6. However, despite their fundamental role, in Wicket models are not difficult to
understand but the best way to learn how they work is to use them with forms. That's why we haven't talked
about models so far, and why this chapter discusses these two topics together.

11.1 What is a model?

Model is essentially a facade interface which allows components to access and modify their data without
knowing any detail about how they are managed or persisted. Every component has at most one related model,
while a model can be shared among different components. In Wicket a model is any implementation of the
interface or g. apache. wi cket . nodel . | Model :

€] org.apache.wicket.Component

model: IModel<?=
setDefaultModel(model: IModel<?=): void @ org.apache.wicket. model.IModel<T>
setDefaultModelObject{object: Object): void Lo
getDefaultModel(): IModel<?=
getDefaultModelObject(): Object
onModelChanged(): void

<+ onModelChanging(): void

@ getObject(): T
0.1 0.* | & setObject{object: T): void

o @ @ @ @0

The IModel interface defines just the methods needed to get and set a data object (getObject() and setObject()),
decoupling components from concrete details about the persistence strategy adopted for data. In addition, the
level of indirection introduced by models allows access data object only when it is really needed (for example
during the rendering phase) and not earlier when it may not be ready to be used.

Any component can get/set its model as well as its data object using the 4 public shortcut methods listed in the
class diagram above. The two methods onModelChanged() and onModelChanging() are triggered by Wicket
each time a model is modified: the first one is called after the model has been changed, the second one just
before the change occurs. In the examples seen so far we have worked with Label component using its
constructor which takes as input two string parameters, the component id and the text to display:

add(new Label ("hel | oMessage", "Hello WcketWrld!"));

This constructor internally builds a model which wraps the second string parameter. That's why we didn't mention
label model in the previous examples. Here is the code of this constructor:

public Label (final String id, String |abel) {
this(id, new Model <String>(Ilabel));

Class or g. apache. wi cket . nodel . Mbdel is a basic implementation of | Model . It can wrap any object that
implements the interface java.io.Serializable. The reason of this constraint over data object is that this model is
stored in the web session, and we know from chapter 6 that data are stored into session using serialization.

A In general, Wicket models support a detaching capability that allows us to work also with
non-serializable objects as data model. We will see the detaching mechanism later in this
chapter.

59

http://en.wikipedia.org/wiki/Facade_pattern

Just like any other Wicket components, Label provides a constructor that takes as input the component id and
the model to use with the component. Using this constructor the previous example becomes:

add(new Label ("hel | oMessage", new Mddel <String>("Hello WcketWorld!'")));

& The Model class comes with a bunch of factory methods that makes it easier to build new
model instances. For example the of(T object) method creates a new instance of Model
which wraps any Object instance inside it. So instead of writing

new Model<String>("Hello WicketWorld!")
we can write
Model.of("Hello WicketWorld!")

If the data object is a List, a Map or a Set we can use similar methods called ofList, ofMap
and ofSet. From now on we will use these factory methods in our examples.

It's quite clear that if our Label must display a static text it doesn't make much sense to build a model by hand
like we did in the last code example. However is not unusual to have a Label that must display a dynamic value,
like the input provided by a user or a value read from a database. Wicket models are designed to solve these
kinds of problems.

Let's say we need a label to display the current time stamp each time a page is rendered. We can implement a
custom model which returns a new Date instance when the getObject() method is called:

| Model tinmeStanpMbdel = new Mdel <String>(){

@verride
public String getObject() {
return new Date().toString();

IE
add(new Label ("ti nmeStanp", tinmeStanphdel));

Even if sometimes writing a custom model could be a good choice to solve a specific problem, Wicket already
provides a set of IModel implementations which should fit most of our needs. In the next paragraph we will see a
couple of models that allow us to easily integrate JavaBeans with our web applications and in particular with our
forms.

& By default the class Component escapes HTML sensitive characters (like '<', '>' or '&')
from the textual representation of its model object. The term 'escape’ means that these
characters will be replaced with their corresponding HTML entity (for example '<' becomes
‘< *). This is done for security reasons as a malicious user could attempt to inject markup
or JavaScript into our pages. If we want to display the raw content stored inside a model,
we can tell the Component class not to escape characters by calling the
setEscapeModelStrings(false) method.

11.2 Models and JavaBeans

One of the main goals of Wicket is to use JavaBeans and POJO as data model, overcoming the impedance
mismatch between web technologies and OO paradigm. In order to make this task as easy as possible, Wicket
offers two special model classes: org.apache.w cket.nodel. PropertyModel and
or g. apache. wi cket . nodel . ConpoundPr opert yModel . We will see how to use them in the next two
examples, using the following JavaBean as the data object:

public class Person inplenents Serializable {

private String nane;
private String surnang;
private String address;
private String email;

private String passport Code;

60

http://en.wikipedia.org/wiki/Character_entity_reference

private Person spouse;
private List<Person> children;

public Person(String nane, String surnane) ({
t hi s. name = nane;
this.surname = surnane;

}

public String getFul | Narme(){
return nane + " " + surnane;
}

/*
* Getters and setters for private fields
*/

PropertyModel

Let's say we want to display the name field of a Person instance with a label. We could, of course, use the Model
class like we did in the previous example, obtaining something like this:

Person person = new Person();
/11 oad person's data...

Label |abel = new Label ("nanme", new Model (person. get Nane()));

However this solution has a huge drawback: the text displayed by the label will be static and if we change the
value of the field, the label won't update its content. Instead, to always display the current value of a class field,
we should use the or g. apache. wi cket . nodel . Propert yModel model class:

Per son person = new Person();
/11 oad person's data...

Label |abel = new Label ("nane", new PropertyModel (person, "nanme"));

PropertyModel has just one constructor with two parameters: the model object (person in our example) and the
name of the property we want to read/write ("name" in our example). This last parameter is called property
expression. Internally, methods getObject/setObject use property expression to get/set property's value. To
resolve class properties PropertyModel uses class or g. apache. wi cket. util. | ang. Property Resolver
which can access any kind of property, private fields included.

Just like the Java language, property expressions support dotted notation to select sub properties. So if we want
to display the name of the Person's spouse we can write:

Label |abel = new Label ("spouseNane", new PropertyMdel (person, "spouse.nane"));

% PropertyModel is null-safe, which means we don't have to worry if property expression
includes a null value in its path. If such a value is encountered, an empty string will be
returned.

If property is an array or a List, we can specify an index after its name. For example, to display the name of the
first child of a Person we can write the following property expression:

Label |abel = new Label ("firstChildNane", new PropertyMdel (person, "children.0.nane"));

Indexes and map keys can be also specified using squared brackets:

61

children[0] . nane ...
mapFi el d[key] . subfield ...

CompoundPropertyModel and model inheritance

Class or g. apache. wi cket . nodel . ConpoundPr oper t yModel is a particular kind of model which is usually
used in conjunction with another Wicket feature called model inheritance. With this feature, when a component
needs to use a model but none has been assigned to it, it will search through the whole container hierarchy for a
parent with an inheritable model. Inheritable models are those which implement interface
or g. apache. wi cket . nodel . | Conponent | nheritedMbdel and ConpoundPropertyMdel is one of
them. Once a ConpoundPr opertyMddel has been inherited by a component, it will behave just like a
PropertyModel using the id of the component as property expression. As a consequence, to make the most of
CompoundPropertyModel we must assign it to one of the containers of a given component, rather than directly to
the component itself.

For example if we use CompoundPropertyModel with the previous example (display spouse's name), the code
would become like this:

/| set ConpoundPropertyMdel as nodel for the container of the |abel
set Def aul t Model (new ConpoundPr opert yMdel (person));

Label |abel = new Label ("spouse. nane");
add(| abel) ;

Note that now the id of the label is equal to the property expression previously used with PropertyModel. Now as
a further example let's say we want to extend the code above to display all of the main informations of a person
(name, surname, address and email). All we have to do is to add one label for every additional information using
the relative property expression as component id:

[/ Create a person nanmed 'John Smith'
Person person = new Person("John", "Smth");
set Def aul t Model (new ConpoundPr opertyMdel (person));

add(new Label ("nane"));

add(new Label ("surnanme"));
add(new Label ("address"));
add(new Label ("email"));
add(new Label ("spouse. nane"));

CompoundPropertyModel can save us a lot of boring coding if we choose the id of components according to
properties name. However it's also possible to use this type of model even if the id of a component does not
correspond to a valid property expression. The method bind(String property) allows to create a property model
from a given CompoundPropertyModel using the provided parameter as property expression. For example if we
want to display the spouse's name in a label having "xyz" as id, we can write the following code:

/] Create a person naned 'John Snith'

Person person = new Person("John", "Smith");

ConpoundPr oper t yModel conpoundModel ;

set Def aul t Model (conpoundModel = new ConpoundPr opertyMdel (person));

add(new Label ("xyz", conpoundModel . bi nd("spouse. nane")));

CompoundPropertyModel are particularly useful when used in combination with Wicket forms, as we will see in
the next paragraph.

My Model is referred to as static model because the result of its method getObject is fixed and
it is not dynamically evaluated each time the method is called. In contrast, models like
PropertyModel and CompoundProperty Model are called dynamic models.

62

11.3 Wicket forms

Web applications use HTML forms to collect user input and send it to the server. Wicket provides
or g. apache. wi cket . mar kup. ht i . f or m For mclass to handle web forms. This component must be bound
to <form> tag. The following snippet shows how to create a very basic Wicket form in a page:

Html:

<form wi cket:id="forni>
<i nput type="submt" val ue="submit"/>
</fornp

Java code:

Form form = new Form("forni){

@verride
protected void onSubmit() {
Systemout.println("Formsubmtted.");

]c’;\ijd(forn);

Method onSubmit is called whenever a form has been submitted and it can be overridden to perform custom
actions. Please note that a Wicket form can be submitted using a standard HTML submit button which is not
mapped to any component (i.e. it does not have a wicket:id attribute). In the next chapter we will continue to
explore Wicket forms and we will see how to submit forms using special components which implement interface
org. apache. wi cket . mar kup. html . form | For nSubm tter.

Form and models

A form should contain some input fields (like text fields, check boxes, radio buttons, drop-down lists, text areas,
etc.) to interact with users. Wicket provides an abstraction for all these kinds of elements with component
org.apache.wicket.markup.html.form.FormComponent:

o

© FormComponent

- N

|

l © TextField | ® Button | © checkBox TG TExtAreaT T@ DropDownChoice
[n = LF

The purpose of FormComponent is to store the corresponding user input into its model when the form is
submitted. The form is responsible for mapping input values to the corresponding components, avoiding us the
burden of manually synchronizing models with input fields and vice versa.

L1

P

Login form

As first example of interaction between the form and its models, we will build a classic login form which asks for
username and password (project LoginForm).

63

@ The topic of security will be discussed later in chapter 20. The following form is for
example purposes only and is not suited for a real application. If you need to use a login

form you should consider to use component
or g. apache. wi cket . aut hrol es. aut hent i cati on. panel . Si gnl nPanel shipped
with Wicket.

This form needs two text fields, one of which must be a password field. We should also use a label to display the
result of login processl. For the sake of simplicity, the login logic is all inside onSubmit and is quite trivial.

The following is a possible implementation of our form:

public class Logi nForm extends Form {

private TextField usernaneFi el d;
private PasswordText Fi el d passwor dFi el d;
private Label |oginStatus;

public Logi nForm(String id) {
super (i d);

user nanmeFi el d = new Text Fi el d("usernane", Mdel.of (""));
passwor dFi el d = new Passwor dText Fi el d(" password", Model.of (""));
| ogi nSt at us = new Label ("I ogi nSt at us", Model.of (""));

add(user naneFi el d) ;
add(passwor dFi el d) ;
add(| ogi nSt at us) ;

public final void onSubm
String usernane =
String password =

t() {
(String)usernaneFi el d. get Def aul t Model Obj ect () ;
(Stri

String) passwor dFi el d. get Def aul t Model Cbj ect () ;

i f(usernane. equal s("test") && password. equal s("test"))
| ogi nSt at us. set Def aul t Model Qbj ect (" Congratul ati ons!");
el se
| ogi nSt at us. set Def aul t Model Obj ect ("W ong usernane or password!");

Inside form's constructor we build the three components used in the form and we assign them a model
containing an empty string:

user nanmeFi el d = new Text Fi el d("usernane", Mdel.of (""));
passwor dFi el d = new Passwor dText Fi el d(" password", Model.of (""));
| ogi nSt at us = new Label ("l ogi nSt atus", Model.of (""));

If we don't provide a model to a form component, we will get the following exception on form submission:

java.l ang. |1l egal St at eExcepti on: Attenpt to set nodel object on null nodel of conponent:

Component TextField corresponds to the standard text field, without any particular behavior or restriction on the
allowed values. We must bind this component to the <input> tag with the attribute type set to "text".
PasswordTextField is a subtype of TextFiled and it must be used with an <input> tag with the attribute type set
to"password". For security reasons component PasswordTextField cleans its value at each request, so it wil be
always empty after the form has been rendered. By default PasswordTextField fields are required, meaning that
if we left them empty, the form won't be submitted (i.e. onSubmit won't be called). Class FormComponent
provides method setRequired(boolean required) to change this behavior. Inside onSubmit, to get/set model
objects we have used shortcut methods setDefaultModelObject and getDefaultModelObject. Both methods are
defined in class Component (see class diagram from lllustration 9.1).

The following are the possible markup and code for the login page:

Html:

<ht m >

<head>
<title>Login page</title>
</ head>
<body>
<form id="l ogi nForni' nmet hod="get" wi cket:id="1|ogi nForni >
<fiel dset>
<l egend styl e="col or: #F90">Logi n</| egend>
<p wi cket:id="1o0ginStatus"></p>
User nane: <i nput w cket:id="usernane" type="text" id=
"usernane" />

Passwor d: <i nput w cket:id="password" type="password" id=
"password" />
<p>
<i nput type="submt" name="Login" val ue="Logi n"/>
</ p>
</fieldset>
</fornp
</ body>
</htm >

Java code:

public class HonePage extends WebPage {
publ i c HomePage(final PageParaneters paraneters) {

super (par anet er s)
add(new Logi nForm(" I ogi nForni"));

————

The example shows how Wicket form components can be used to store user input inside their model. However
we can dramatically improve the form code using CompoundPropertyModel and its ability to access the
properties of its model object. The revisited code is the following (the LoginFormRevisited project):

public class Logi nForm ext ends Forn{

private String usernane
private String password
private String | ogi nStat us;

public Logi nForm(String id) {
super (id);
set Def aul t Model (new ConpoundPr opertyModel (this));

add(new Text Fi el d("usernane"));
add(new Passwor dText Fi el d(" password"));
add(new Label ("l ogi nStatus"))

}

public final void onSubmit() {
i f(usernane. equal s("test") && password. equal s("test"))
| oginStatus = "Congratul ations!";
el se
| oginStatus = "Wong usernane or password !";

In this version the form itself is used as model object for its CompoundPropertyModel. This allows children
components to have direct access to form fields and use them as backing objects, without explicitly creating a
model for themselves.

65

Keep in mind that when CompoundPropertyModel is inherited, it does not consider the ids
of traversed containers for the final property expression, but it will always use the id of the
visited child. To understand this potential pitfall, let's consider the following initialization
code of a page:

[/ Create a person naned 'John Snith'

Person person = new Person("John", "Smith");
//Create a person naned 'Jill Snmith'

Per son spouse = new Person("Jill", "Smith");
/1Set Jill as John's spouse

per son. set Spouse(spouse) ;

set Def aul t Model (new ConpoundPr opertyMdel (person));

WebMar kupCont ai ner spouseCont ai ner = new WebMar kupCont ai ner (" spouse");
Label nane;

spouseCont ai ner. add(nane = new Label ("nane"));

add(spouseCont ai ner) ;

The value displayed by label "name" will be "John" and not the spouse's name "Jill" as you
may expect. In this example the label doesn't own a model, so it must search up its
container hierarchy for an inheritable model. However, its container (WebMarkup
Container with id 'spouse’) doesn't own a model, hence the request for a model is
forwarded to the parent container, which in this case is the page. In the end the label
inherits CompoundPropertyModel from page but only its own id is used for the property
expression. The containers in between are never taken into account for the final property
expression.

11.4 Component DropDownChoice

Class org. apache. wi cket. mar kup. ht m . f or m Dr opDownChoi ce is the form component needed to

display a list of possible options as a drop-down list where users can select one of the proposed options. This

component must be used with <select> tag:

Html:

</fornm

<form wi cket:id="forn>
Select a fruit: <select wicket:id="fruits"></select>
<di v><i nput type="submt" val ue="subm t"/></div>

Java code:

List<String> fruits = Arrays. asLi st("apple", "strawberry", "waternelon");
form add(new Dr opDownChoi ce<String>("fruits", new Mdel (), fruits));

Screenshot of generated page:

Select a fruit: [Choose One =

| submit |

In addition to the component id, in order to build a DropDownChoice we need to provide to its constructor two

-

Choose One
apple
strawberry
watermelon

further parameters:

® a model containing the current selected item. This parameter is not required if we are going to inherit a

CompoundPropertyModel for this component.

® alist of options to display which can be supplied as a model or as a regular java.util.List.

66

In the example above the possible options are provided as a list of String objects. Now let's take a look at the
markup generated for them:

<sel ect nanme="fruits" wcket:id="fruits">
<option val ue="" sel ect ed="sel ect ed">Choose One</ opti on>
<option val ue="0">appl e</ opti on>
<option val ue="1">strawberry</option>
<option val ue="2">wat er nel on</ opti on>
</ sel ect >

The first option is a placeholder item corresponding to a null model value. By default DropDownChoice cannot
have a null value so users are forced to select a not-null option. If we want to change this behavior we can set
the nullValid flag to true via the setNullValid method. Please note that the placeholder text (“Chose one”) can be
localized, as we will see in chapter 14. The other options are identified by the attribute value. By default the value
of this attribute is the index of the single option inside the provided list of choices, while the text displayed to the
user is obtained by calling toString()on the choice object. This default behavior works fine as long as our options
are simple objects like strings, but when we move to more complex objects we may need to implement a more
sophisticated algorithm to generate the value to use as the option id and the one to display to user. Wicket has
solved this problem with org. apache. w cket. mar kup. ht m . f orm | Choi ceRender interface. This
interface defines method getDisplayValue(T object) that is called to generate the value to display for the given
choice object, and method getldValue(T object, int index) that is called to generate the option id. The built-in
implementation of this interface is class or g. apache. wi cket . mar kup. ht m . f or m Choi ceRender er which
renders the two values using property expressions.

In the following code we want to show a list of Person objects using their full name as value to display and using
their passport code as option id:

Java code:

Li st <Per son> persons;

/[llnitialize the list of persons here...

Choi ceRender er personRenderer = new Choi ceRenderer ("ful | Nane", "passport Code");
f orm add(new Dr opDownChoi ce<Stri ng>("persons", new Mdel <Person>(), persons,
per sonRenderer));

The choice renderer can be assigned to the DropDownChoice using one of its constructor that accepts this type
of parameter (like we did in the example above) or after its creation invoking setChoiceRenderer method.

11.5 Model chaining

Models that implement the interface or g. apache. wi cket . nodel . | Chai ni ngModel can be used to build a
chain of models. These kinds of models are able to recognize whether their model object is itself an
implementation of IModel and if so, they will call getObject on the wrapped model and the returned value will be
the actual model object. In this way we can combine the action of an arbitrary number of models, making exactly
a chain of models. Chaining models allows to combine different data persistence strategies, similarly to what we
do with chains of 1/O streams. To see model chaining in action we will build a page that implements the
List/Detail View pattern, where we have a drop-down list of Person objects and a form to display and edit the
data of the current selected Person.

The example page will look like this:

List of persons | Choose One =

Name:
Surname:
Address:
Email:

| Save |
What we want to do in this example is to chain the model of the DropDownChoice (which contains the selected

67

http://java.sun.com/developer/technicalArticles/Streams/ProgIOStreams

Person) with the model of the Form. In this way the Form will work with the selected Person as backing object.
The DropDownChoice component can be configured to automatically update its model each time we change the
selected item on the client side. All we have to do is to override method wantOnSelectionChangedNotifications to
make it return true. In practice, when this method returns true, DropDownChoice will submit its value every time
JavaScript event onChange occurs, and its model will be consequently updated. To leverage this functionality,
DropDownChoice doesn't need to be inside a form.

The following is the resulting markup of the example page:

<body>
LLS} of persons <sel ect wicket:id="persons"></sel ect>

<form wi cket:id="forni>
<div style="display: table;">
<div style="display: table-row ">
<div style="display: table-cell;">Name: </div>
<div style="display: table-cell;">
<i nput type="text" w cket:id="nanme"/>
</ di v>
</ div>
<div style="display: table-row ">
<di v style="display: table-cell;">Surnane: </div>
<div style="display: table-cell;">
<input type="text" w cket:id="surname"/>
</ di v>
</ di v>
<div style="display: table-row ">
<div style="display: table-cell;">Address: </div>
<div style="display: table-cell;">
<input type="text" w cket:id="address"/>
</ di v>
</ div>
<div style="display: table-row ">
<div style="display: table-cell;">Email: </div>
<div style="display: table-cell;">
<i nput type="text" w cket:id="emil"/>
</ di v>
</ di v>
</ di v>
<i nput type="submt" val ue="Save"/>
</ fornm
</ body>

The initialization code for DropDownChoice is the following:

Model <Person> |i st Model = new Mddel <Per son>()

Choi ceRender er <Per son> per sonRender = new Choi ceRender er <Person>("ful | Nane") ;

per sonsLi st = new Dr opDownChoi ce<Per son>("persons", |istMdel, |oadPersons(), personRender) {
@verride

prot ect ed bool ean want OnSel ecti onChangedNoti fi cati ons() {
return true

As choice render we have used the basic implementation provided with the org.apache.wicket
.markup.html.form.ChoiceRenderer class that we have seen in the previous paragraph. loadPersons() is just an
utility method which generates a list of Person instances. The model for DropDownChoice is a simple instance of
the Model class.

Here is the whole code of the page (except for the loadPersons() method):

public class PersonListDetails extends WbPage {
private Form form
private DropDownChoi ce<Person> personsLi st;

public PersonListDetail s(){
Model <Person> | i st Model = new Model <Person>();
Choi ceRender er <Per son> per sonRender = new Choi ceRender er <Per son>("ful | Nane") ;

per sonsLi st = new Dr opDownChoi ce<Per son>("persons", |istMdel, |oadPersons(),
per sonRender) {
@verride

protected bool ean want OnSel ecti onChangedNoti fi cations() {

68

return true;
}
b
add(personsLi st);

form= new Forn("forn', new ConpoundPropertyMdel <Person>(li st Mdel));
form add(new Text Fi el d("nane"));
form add(new Text Fi el d("surnane"));
form add(new Text Fi el d("address"));
form add(new TextField("enmail"));

add(fo;n);

/1l oadPer sons()
1.

The two models work together as a pipeline where the output of method getObject of Model is the model object
of CompoundPropertyModel. As we have seen, model chaining allows us to combine the actions of two or more
models without creating new custom implementations.

11.6 Detachable models

In chapter 6 we have seen how Wicket uses serialization to store page instances. When an object is serialized,
all its referenced objects are recursively serialized. For a page this means that all its children components, their
related models as well as the model objects inside them will be serialized. For model objects this could be a
serious issue for (at least) two main reasons:

1. The model object could be a very large instance, hence serialization would become very expensive in terms
of time and memory.

2. We simply may not be able to use a serializable object as model object. In paragraphs 1.4 and 9.2 we
stated that Wicket allows us to use a POJO as backing object, but POJOs are ordinary objects with no
prespecified interface, annotation or superclass, hence they are not required to implement the standard
Serializable interface.

To cope with these problems IModel extends another interface called IDetachable.

€ org.apache.wicket.model.IDetachable
@ detach(): void

X

© org.apache.wicket.model.IModel<T>

@ getObjeck(): T
@ setObject(object: T): void

This interface provides a method called detach() which is invoked by Wicket at the end of web request
processing when data model is no more needed but before serialization occurs. Overriding this method we can
clean any reference to data object keeping just the information needed to retrieve it later (for example the id of
the table row where our data are stored). In this way we can avoid the serialization of the object wrapped into the
model overcoming both the problem with non-serializable objects and the one with large data objects.

Since IModel inherits from IDetachable, every model of Wicket is “detachable”, although not all of them
implement a detaching policy (like the Model class). Usually detaching operations are strictly dependent on the
persistence technology adopted for model objects (like a relational db, a NoSQL db, a queue, etc), so it's not
unusual to write a custom detachable model suited for the persistence technology chosen for a given project. To
ease this task Wicket provides abstract model LoadableDetachableModel. This class internally holds a transient
reference to a model object which is initialized the first time getObject()is called to precess a request. The

69

http://en.wikipedia.org/wiki/Plain_Old_Java_Object#Definition

concrete data loading is delegated to abstract method T load(). The reference to a model object is automatically

set to null at the end of the request by the detach() method.

The following class diagram summarizes the methods defined inside LoadableDetachableModel.

® org.apache.wicket.model.LoadableDetachableModel

detach(): void
getObjeck(): T
isAttached(): boolean
load(): T

onAktach(): void
onDetach(): void
setObject(object: T): void

]

® - L 0@

onDetach and onAttach can be overridden in order to obtain further control over the detaching procedure.

Now as example of a possible use of LoadableDetachableModel, we will build a model designed to work with
entities managed via JPA. To understand the following code a basic knowledge of JPA is required even if we

won't go into the detail of this standard.

@ The following model is provided for example purposes only and is not intended to be used
in production environment. Important aspects such as transaction management are not
taken into account and you should rework the code before considering to use it.

public class JpaLoadabl eMbdel <T> ext ends Loadabl eDet achabl eMbdel <T> {

private EntityManagerFactory entityManager Factory;
private C ass<T> entityd ass;
private Serializable identifier;
private List<Object> constructorParans;

publ i c JpaLoadabl eModel (EntityManager Factory entityManager Factory, T entity) {
super () ;
PersistenceUnitUtil util = entityManager Factory. getPersistenceUnitUil();

this.entityManager Factory = entityManager Factory;
this.entityCass = (Cass<T>) entity.getd ass();
this.identifier = (Serializable) util.getldentifier(entity);

set Obj ect (entity);
}

@verride
protected T load() {
T entity = null;
if(identifier '=null) {
EntityManager entityManager = entityManager Factory. createEntityManager();
entity = entityManager.find(entityC ass, identifier);

return entity;

@verride
protected void onDetach() {
super . onDet ach();

T entity = getObject();

Persi stenceUnit Uil persistenceUtil =
entityManager Fact ory. get Persi stenceUnit Uil ();
if(entity == null) return;

identifier = (Serializable) persistenceUtil.getldentifier(entity);

}

The constructor of the model takes as input two parameters: an implementation of the JPA interface
javax.persistence.EntityManagerFactory to manage JPA entities and the entity that must be handled by this

70

http://en.wikipedia.org/wiki/Java_Persistence_API

model. Inside its constructor the model saves the class of the entity and its id (which could be null if the entity
has not been persisted yet). These two informations are required to retrieve the entity at a later time and are
used by the load method.

onDetach is responsible for updating the entity id before detachment occurs. The id can change the first time an
entity is persisted (JPA generates a new id and assigns it to the entity). Please note that this model is not
responsible for saving any changes occurred to the entity object before it is detached. If we don't want to loose
these changes we must explicitly persist the entity before the detaching phase occurs.

@ Since the model of this example holds a reference to the EntityManager Factory, the
implementation in use must be serializable.

11.7 Using more than one model in a component

Sometimes our custom components may need to use more than a single model to work properly. In such a case
we must manually detach the additional models used by our components. In order to do this we can overwrite
the Component's onDetach method that is called at the end of the current request. The following is the generic
code of a component that uses two models:

/**
*

* fooMbdel is used as nmain nodel while beeMddel nust be manual | y detached

*
/
public class Conponet TwoMbdel s ext ends Conponent {

private | Model <Bee> beeMbdel ;

publ i ¢ Conponet TwoModel s(String id, |NMdel<Foo> fooMdel, | Mdel <Bee> beeMddel) {
super (i d, fooModel);
thi s. beeMbdel = beeModel ;
}

@verride
public void onDetach() {
i f (beeModel !
beeMbddel . det ach();

= null)

super . onDet ach();
}
}

When we overwrite onDetach we must call the super class implementation of this method, usually as last line in
our custom implementation.

11.8 Use models!

Like many people new to Wicket, you may need a little time to fully understand the power and the advantages of
using models. Taking your first steps with Wicket you may be tempted to pass row objects to your components
instead of using models:

/**
*
* NOT TO DO passing row objects to conmponents instead of using nodels!
*
*/
public class CustonConponent extends Conponent {
private FooBean fooBean;

publ i ¢ CustonConponent (String id, FooBean fooBean) ({

super (id);
this. fooBean = fooBean;

/l...some other ugly code :)...

That's a bad practice and you must avoid it. Using models we do not only decouple our components from the
data source, but we can also relay on them (if they are dynamic) to work with the most up-to-date version of our
model object. If we decide to bypass models we lose all these advantages and we force model objects to be

71

serialized.

11.9 Summary

Models are at the core of Wicket and they are the basic ingredient needed to taste the real power of the
framework. In this chapter we have seen how to use models to bring data to our components without littering
their code with technical details about their persistence strategy. We have also introduced Wicket forms as
complementary topic. With forms and models we are able to bring our applications to life allowing them to
interact with users. But what we have seen in this chapter about Wicket forms is just the tip of the iceberg. That's
why the next chapter is entirely dedicated to them.

72

12 Wicket forms in detail

In the previous chapter we have only scratched the surface of Wicket forms. The Form component was not only
designed to collect user input but also to extend the semantic of the classic HTML forms with new features.

One of such features is the ability to work with nested forms (they will be discussed in paragraph 12.6).

In this chapter we will continue to explore Wicket forms learning how to master them and how to build effective
and user-proof forms for our web applications.

12.1 Default form processing

In paragraph 11.3 we have seen a very basic usage of the Form component and we didn't pay much attention to
what happens behind the scenes of form submission. In Wicket when we submit a form we trigger the following
steps on server side:

1. Form validation: user input is checked to see if it satisfies the validation rules set on the form. If validation
fails, step number 2 is skipped and the form should display a feedback message to explain to user what
went wrong. During this step input values (which are simple strings sent with a web request) are converted
into Java objects. In the next paragraphs we will explore the infrastructures provided by Wicket for the three
sub-tasks involved with form validation, which are: conversion of user input into objects, validation of user
input, and visualization of feedback messages.

2. Updating of models: if validation succeeds, the form updates the model of its children components with the
converted values obtained in the previous step.

3. Invoking callback methods onSubmit() or onError(): if we didn't have any validation error, method
onSubmit() is called, otherwise onError() will be called. The default implementation of both these methods
is left empty and we can override them to perform custom actions.

M, Please note that the model of form components is updated only if no validation error
occurred (i.e. step two is performed only if validation succeeds).

Without going into too much detail, we can say that the first two steps of form processing correspond to the
invocation of one or more Form's internal methods (which are declared protected and final). Some examples of
these methods are validate(), which is invoked during validation step, and updateFormComponentModels(),
which is used at the step that updates the form field models.

The whole form processing is started invoking public method process(IFormSubmitter) (Later in paragraph 12.5
we will introduce interface IFormSubmitter).

12.2 Form validation and feedback messages

A basic example of a validation rule is to make a field required. In paragraph 11.3 we have already seen how this
can be done calling setRequired(true) on a field. However, to set a validation rule on a FormComponent we must
add the corresponding validator to it.

A validator is an implementation of the or g. apache. wi cket . val i dati on. | Val i dat or interface and the
For mConponent has a version of method add which takes as input a reference of this interface.

For example if we want to use a text field to insert an email address, we could use the built-in validator
EmailAddressValidator to ensure that the inserted input will respect the email format local-part@domain :

TextField email = new TextField("email");
enui | . add(Emai | Addr essVal i dat or. get | nst ance());

73

http://en.wikipedia.org/wiki/Email_address

Wicket comes with a set of built-in validators that should suit most of our needs. We will see them later in this
chapter.

Feedback messages and localization

Wicket generates a feedback message for each field that doesn't satisfy one of its validation rules. For example
the message generated when a required field is left empty is the following

Field '<label>" is required.

<label> is the value of the label model set on a FormComponent with method setLabel(IModel <String> model). If
such model is not provided, component id will be used as the default value.

The entire infrastructure of feedback messages is built on top of the Java internationalization (I18N) support and
it uses resource bundles to store messages.

& The topics of internationalization will be covered in chapter 14. For now we will give just
few notions needed to understand the examples from this chapter.

By default resource bundles are stored into properties files but we can easily configure other sources as
described later in paragraph 14.2.

Default feedback messages (like the one above for required fields) are stored in the file Application. properties
placed inside Wicket the org.apache.wicket package. Opening this file we can find the key and the localized
value of the message:

Required=Field '${label}"' is required.

We can note the key (Required in our case) and the label parameter written in the expression language
(${label}). Scrolling down this file we can also find the message used by the Email AddressValidator:

Emai | Addr essVal i dat or =The val ue of '${label}' is not a valid enmnil address.

By default FormComponent provides 3 parameters for feedback message: input (the value that failed validation),
label and name (this later is the id of the component).

@ Remember that component model is updated with the user input only if validation
succeeds! As a consequence, we can't retrieve the wrong value inserted for a field from its
model. Instead, we should use getValue() method of FormComponent class. (This method
will be introduced in the example used later in this chapter)

Displaying feedback messages and filtering them

To display feedback messages we must use component
org. apache. wi cket . mar kup. ht m . panel . FeedbackPanel . This component automatically reads all the
feedback messages generated during form validation and displays them with an unordered list:

<ul cl ass="feedbackPanel ">
<l'i class="feedbackPanel ERROR" >
Fi el d ' Usernane' is required.

</ ul >

CSS classes "feedbackPanel" and "feedbackPanelERROR" can be used in order to customize the style of the
message list:

A s Field "Username’ is required.

74

http://docs.oracle.com/javase/tutorial/i18n/resbundle/index.html
http://en.wikipedia.org/wiki/Expression_Language

The component can be freely placed inside the page and we can set the maximum amount of displayed
messages with the setMaxMessages() method.

Error messages can be filtered using three built-in filters:
® ComponentFeedbackMessageFilter: shows only messages coming from a specific component.

® ContainerFeedbackMessageFilter: shows only messages coming from a specific container or from any of
its children components.

® ErrorLevelFeedbackMessageFilter: shows only messages with a level of severity equals or greater than a
given lower bound. Class FeedbackMessage defines a set of static constants to express different levels of
severity: DEBUG, ERROR, WARNING, INFO, SUCCESS, etc.... Levels of severity for feedback messages
are discussed later in this chapter.

These filters are intended to be used when there are more than one feedback panel (or more than one form) in
the same page. We can pass a filter to a feedback panel via its constructor or using the setFilter method. Custom
filters can be created implementing the IFeedbackMessageFilter interface. An example of custom filter is
illustrated later in this paragraph.

Built-in validators

Wicket already provides a number of built-in validators ready to be used. The following table is a short reference
where validators are listed along with a brief description of what they do. The default feedback message used by
each of them is reported as well:

EmailAddressValidator

Checks if input respects the format local-part@domain.
Message:

The value of "${label}' is not a valid email address.

UrlValidator

Checks if input is a valid URL. We can specify in the constructor which protocols are allowed (http://, https://, and
ftp://).

Message:

The val ue of "${label}' is not a valid URL.

DateValidator

Validator class that can be extended or used as a factory class to get date validators to check if a date is bigger
than a lower bound (method minimum(Date min)), smaller than a upper bound (method maximum(Date max)) or
inside a range (method range(Date min, Date max)).

Messages:
The value of '${label}' is less than the m ni mum of ${mi ninun}.
The value of '${label}' is larger than the maxi mum of ${maxi munt.

The val ue of '${label}' is not between ${mi ni nun} and ${nmaxi nuni.

RangeValidator

Validator class that can be extended or used as a factory class to get validators to check if a value is bigger than
a given lower bound (method minimum(T min)), smaller than a upper bound (method maximum(T max)) or inside
a range (method range(T min,T max)).

The type of the value is a generic subtype of java.lang.Comparable and must implement Serializable interface.

Messages:

75

The val ue of '${label}' nust be at |east ${m ninun}.
The val ue of '${label}' nust be at nost ${nmaxinmun}.

The val ue of '${label}' nust be between ${mi ni mun} and ${nmaxi nun}.

StringValidator

Validator class that can be extended or used as a factory class to get validators to check if the length of a string
value is bigger then a given lower bound (method minimumLength (int min)), smaller then a given upper bound
(method maximumLength (int max)) or within a given range (method lengthBetween(int min, int max)).

To accept only string values consisting of exactly n characters, we must use method exactLength(int length).
Messages:

The value of '${label}' is shorter than the mnini mum of ${mi ni munm characters.

The value of '${label}' is longer than the nmaxi mum of ${maxi nun} characters.

The value of "${label}' is not between ${m ni mun} and ${mexi mun} characters |ong.

The value of '"${label}' is not exactly ${exact} characters |ong.

CreditCardValidator

Checks if input is a valid credit card number. This validator supports some of the most popular credit cards (like
“American Express", "MasterCard", “Visa” or “Diners Club”).

Message:

The credit card nunber is invalid.

EqualPasswordInputValidator

This validator checks if two password fields have the same value.
Message:

${| abel 0} and ${I abel 1} nust be equal .

Overriding standard feedback messages with custom bundles

If we don't like the default validation feedback messages, we can override them providing custom properties files.
In these files we can write our custom messages using the same keys of the messages we want to override. For
example if we wanted to override the default message for invalid email addresses, our properties file would
contain a line like this:

Enai | Addr essVal i dat or=Man, your enmil address is not good!

As we will see in the next chapter, Wicket searches for custom properties files in various positions inside the
application's class path, but for now we will consider just the properties file placed next to our application class.
The name of this file must be equal to the name of our application class:

HomePage.html

= HomePage.java

icketApplication.java

WicketApplication.propertie

The example project OverrideMailMessage overrides email validator's message with a new one which also
reports the value that failed validation:

76

Emai | Addr essVal i dat or=The value '${input}' inserted for field '${label}' is not a
valid enail address.

Email: \no good

| Submit Query |

* The value 'no good' inserted for field 'email’ is not a valid email address.

Creating custom validators

If our web application requires a complex validation logic and built-in validators are not enough, we can
implement our own custom validators. For example (project UsernameCustomValidator) suppose we are working
on the registration page of our site where users can create their profile choosing their username. Our registration
form should validate the new username checking if it was already chosen by another user. In a situation like this
we may need to implement a custom validator that queries a specific data source to check if a username is
already in use.

For the sake of simplicity, the validator of our example will check the given username against a fixed list of three
existing usernames.

A custom validator must simply implement interface IValidator:

public class UsernaneValidator inplenments |Validator<String> {
Li st <String> existingUsernanes = Arrays. asLi st ("bi gJack", "anonynmous", "nrSmth");

public void validate(lValidatable<String> validatable) {
String chosenUser Name = val i dat abl e. get Val ue() ;

i f(existingUsernanes. contai ns(chosenUser Nane)) {
Val idati onError error = new ValidationError(this);
Random random = new Random() ;

error.setVari abl e("suggest edUser Nane",
val i dat abl e. get Val ue() + random nextlnt());
val i databl e. error(error);

The only method defined inside IValidator is validate(lValidatable<T> validatable) and is invoked during
validation's step. Interface IValidatable represents the component being validated and it can be used to retrieve
the component model (getModel()) or the value to validate (getValue()).

The custom validation logic is all inside IValidator's method validate. When validation fails a validator must use
IValidatable's method error(lIVValidationError error) to generate the appropriate feedback message. In the code
above we used the ValidationError class as convenience implementation of the IValidationError interface which
represents the validation error that must be displayed to the user. This class provides a constructor that uses the
class name of the validator in input as key for the resource to use as feedback message (i.e.
'‘UsernameValidator' in the example). If we want to specify more then one key to use to locate the error message,
we can use method addKey(String key) of ValidationError class.

In our example when validation fails, we suggest a possible username concatenating the given input with a
pseudo-random integer. This value is passed to the feedback message with a variable named
suggestedUserName. The message is inside application's properties file:

User naneVal i dat or =The username ' ${i nput}’ is already in use. Try with
' ${ suggest edUser Nane}"

To provide further variables to our feedback message we can use method setVariable(String name, Object
value) of class ValidationError as we did in our example.

The code of the home page of the project will be examined in the next paragraph after we have introduced the
topic of flash messages.

Using flash messages

77

So far we have considered just the error messages generated during validation step. However Wicket's
Component class provides a set of methods to explicitly generate feedback messages called flash messages.
These methods are:

® debug(Serializable message)

® info(Serializable message)

® success(Serializable message)

® warn(Serializable message)

® error(Serializable message)

® fatal(Serializable message)
Each of these methods corresponds to a level of severity for the message. The list above is sorted by increasing
level of severity.

In the example seen in the previous paragraph we have a form which uses success method to notify user when
the inserted username is valid. Inside this form there are two FeedbackPanel components: one to display the
error message produced by custom validator and the other one to display the success message. The code of the
example page is the following:

HTML:

<body>
<form wi cket:id="forni>
Usernanme: <input type="text" w cket:id="usernane"/>

<i nput type="submt"/>
</ fornmp
<di v style="col or:green" w cket:id="succesMessage">
</ di v>
<div style="col or:red" wicket:id="feedbackMessage">
</div>
</ body>

Java code:

public class HonePage extends WebPage {

publ i c HonePage(final PageParaneters paraneters) {
Form form = new Forn("forni"){
@verride
protected void onSubmit() {
super.onSubm t();
success("Usernane is good!");

IiE
TextField mail;

formadd(mai|l = new TextFi el d("usernanme", Model.of("")));
mai | . add(new UsernaneVal i dator ());

add(new FeedbackPanel ("feedbackMessage",
new Exact ErrorLevel Filter(FeedbackMessage. ERROR))) ;
add(new FeedbackPanel ("succesMessage",
new Exact ErrorLevel Filter(FeedbackMessage. SUCCESS))) ;

add(fornm;
}
cl ass ExactErrorLevel Filter inplenments | FeedbackMessageFilter{
private int errorlevel;

public ExactErrorLevel Filter(int errorLevel){

this.errorlLevel = errorlevel;
}
publ i ¢ bool ean accept (FeedbackMessage nessage) {
return nmessage. getLevel () == errorlLevel;
} . o
/I User naneVal i dat or definition
/...
}

78

The two feedback panels must be filtered in order to display just the messages with a given level of severity
(ERROR for validator message and SUCCESS for form's flash message). Unfortunately the built-in message
filter ErrorLevelFeedbackMessagekFilter is not suitable for this task because its filter condition does not check for
an exact error level (the given level is used as lower bound value). As a consequence, we had to build a custom
filter (inner class ExactErrorLevelFilter) to accept only the desired severity level (see method accept of interface
IFeedbackMessageFilter).

My Since version 6.13.0 Wicket provides the additional filter class
org.apache.wicket.feedback.ExactLevelFeedbackMessageFilter to accept only feedback
messages of a certain error level.

12.3 Input value conversion

Working with Wicket we will rarely need to worry about conversion between input values (which are strings
because the underlying HTTP protocol) and Java types because in most cases the default conversion
mechanism will be smart enough to infer the type of the model object and perform the proper conversion.
However, sometimes we may need to work under the hood of this mechanism to make it properly work or to
perform custom conversions. That's why this paragraph will illustrate how to control input value conversion.

The component that is responsible for converting input is the FormComponent itself with its convertinput()
method. In order to convert its input a FormComponent must know the type of its model object. This parameter
can be explicitly set with method setType(Class<?> type):

/1this f
|

el d nmust receive an integer val ue
Text Fi e i

i
d integerField = new Text Fi el d("nunber", new Mdel ()).set Type(lnteger.class));

If no type has been provided, FormComponent will try to ask its model for this information. The PropertyModel
and CompoundPropertyModel models can use reflection to get the type of object model. By default, if
FormComponent can not obtain the type of its model object in any way, it will consider it as a simple String.

Once FormComponent has determined the type of model object, it can look up for a converter, which is the entity
in charge of converting input to Java object and vice versa. Converters are instances of
org. apache. wi cket.util.convert.| Converter interface and are registered by our application class on
start up.

To get a converter for a specific type we must call method getConverter(Class<C> type) on the interface
IConverterLocator returned by Application's method getConverterLocator():

[lretrieve converter for Bool ean type
Application. get().getConverterlLocator().getConverter(Bool ean. cl ass);

/A Components which are subclasses of AbstractSingleSelectChoice don't follow the schema
illustrated above to convert user input.

These kinds of components (like DropDownChoice and RadioChoicel) use their choice
render and their collection of possible choices to perform input conversion.

Creating custom application-scoped converters

The default converter locator used by Wicket is or g. apache. wi cket. ConverterLocat or. This class
provides converters for the most common Java types. Here we can see the converters registered inside its
constructor:

public ConverterLocator()

79

set (Bool ean. TYPE, Bool eanConverter. | NSTANCE) ;

set (Bool ean. cl ass, Bool eanConvert er. | NSTANCE) ;

set (Byte. TYPE, ByteConverter.|NSTANCE);

set (Byte. cl ass, ByteConverter.|NSTANCE);

set (Character. TYPE, CharacterConverter.|NSTANCE);
set (Character.class, CharacterConverter.|NSTANCE);
set (Doubl e. TYPE, Doubl eConverter. | NSTANCE) ;
set (Doubl e. cl ass, Doubl eConverter.| NSTANCE) ;
set (Fl oat. TYPE, Fl oat Converter. | NSTANCE);

set (Fl oat . cl ass, Fl oat Converter. | NSTANCE);

set (I nteger. TYPE, |ntegerConverter.|NSTANCE);
set (I nteger.cl ass, |ntegerConverter.| NSTANCE);
set (Long. TYPE, LongConverter.| NSTANCE);

set (Long. cl ass, LongConverter. | NSTANCE);

set (Short. TYPE, Short Converter. | NSTANCE);

set (Short. cl ass, ShortConverter. | NSTANCE);

set (Date. cl ass, new DateConverter());

set (Cal endar. cl ass, new Cal endar Converter());
set (j ava. sql . Dat e. cl ass, new Sqgl Dat eConverter());
set (j ava. sql . Ti ne. cl ass, new Sql Ti mreConverter());
set (] ava. sql . Ti mest anp. cl ass, new Sqgl Ti nest anpConverter());
set (Bi gDeci mal . cl ass, new Bi gDeci mal Converter());

If we want to add more converters to our application, we can override Application's method newConverterLocator
which is used by application class to build its converter locator.

To illustrate how to implement custom converters and use them in our application, we will build a form with two
text field: one to input a regular expression pattern and another one to input a string value that will be split with
the given pattern.

The first text field will have an instance of class java.util.regex.Pattern as model object. The final page will look
like this (the code of this example is from the CustomConverter project):

42 |{::} localhost:8080/CustomConverter/?1

RegExp Patter: |(fox|lazy)
String to split: |The quick brown fox jumps over the lazy dog

| Submit Query |

¢ Tokens for the given string and pattern:
- The quick brown
- jumps over the
- dog

The conversion between Pattern and String is quite straightforward. The code of our custom converter is the
following:

public class RegExpPatternConverter inplenments |Converter<Pattern> {

@verride

public Pattern convertToObject(String value, Locale locale) {
return Pattern.conpile(val ue);

}

@verride
public String convertToString(Pattern value, Locale |ocale) {
return value.toString();

Methods declared by interface IConverter take as input a Locale parameter in order to deal with locale-sensitive
data and conversions. We will learn more about locales and internationalization in paragraph 14.

Once we have implemented our custom converter, we must override method newConverterLocator() inside our
application class and tell it to add our new converter to the default set:

80

@verride
protected | ConverterLocator newConverterLocator ()
ConverterlLocat or defaul tLocator = new ConverterLocator();
def aul t Locat or. set (Pattern. cl ass, new RegExpPatternConverter());

return defaul tLocator;

Finally, in the home page of the project we build the form which displays (with a flash message) the tokens
obtained splitting the string with the given pattern:

public class HonePage extends WebPage {
private Pattern regExpPattern;
private String stringToSplit;

publ i c HonmePage(final PageParaneters paraneters) {
Text Fi el d regExpPatternTxt;
TextField stringToSplitTxt;

Form form = new Forn("fornt){
@verride
protected void onSubmit () {
super.onSubm t();
String nessageResult = "Tokens for the given string and pattern:
";
String[] tokens = regExpPattern.split(stringToSplit);

for (String token : tokens) {
messageResult += "- " + token + "
";

success(nmessageResul t);

}
b

f orm set Def aul t Model (new ConpoundPr opertyModel (this));

form add(regExpPatternTxt = new TextFi el d("regExpPattern"));
form add(stringToSplitTxt = new TextField("stringToSplit"));
add(new FeedbackPanel ("feedbackMessage") . set EscapeModel Strings(fal se));
add(form;
}
}

A If the user input can not be converted to the target type, FormComponent will generate the
default error message “The value of '${label}' is not a valid ${type}.”. The bundle key for
this message is IConverter.

12.4 Validation with JSR 303

Standard JSR 303 defines a set of annotations and APIs to validate our domain objects at field-level. Wicket has
introduced an experimental support for this standard since version 6.4.0 and with version 6.14.0 it has became
an official Wicket module (named wi cket - bean-val i dati on). In this paragraph we will see the basic steps
needed to use JSR 303 validation in our Wicket application. Code snippets are from example project
JSR303val i dati on.

In the example application we have a form to insert the data for a new Per son bean and its relative Addr ess.
The code for class Per son is the following

public class Person inplenents Serializabl e{

@\ot Nul |
private String namne;

/I regul ar expression to validate an emai|l address
@attern(regexp =

"N _A-Za-z0-9-]+(.[_A-Za-z0-9-]+)*[A-Za-z0-9-1+(.[A-Za-z0-9-1+)*((.[A-Za-z]{2,}){1}%$)")
private String email;

@ange(mn = 18, nmax = 150)
private int age;

Past Not Nul |
private Date birthDay;

@\ot Nul |

private Address address;

81

You can note the JSR 303 annotations used in the code above to declare validation constraints on class fields.

Class Addr ess has the following code:

public class Address inplenments Serializable {

@\ot Nul |
private String city;

@\ot Nul |
private String street;

@attern(regexp = "\\d+", nessage = "{address.invalidZ pCode}")
private String zi pCode;

You might have noted that in class Addr ess we have used annotation Pattern using also attribute
message which contains the key of the bundle to use for validation nessage. OQur
custom bundl e i s contained inside HomePage.properties@:

address. i nval i dZi pCode=The inserted zip code is not valid.

To tell Wicket to use JSR 303, we must register bean validator on Application's startup:

public class W cket Application extends WebApplication {

@verride
public void init(){
super.init();

new BeanVal i dati onConfi guration().configure(this);

}
}

The last step to harness JSR 303 annotations is to add validator
or g. apache. wi cket . bean. val i dati on. PropertyVal i dat or to our corresponding form components:

publ i c HonePage(final PageParaneters paraneters) {
super (paraneters);

set Def aul t Model (new ConpoundPr opert yMddel <Per son>(new Person()));
For nkVoi d> form = new For mxVoi d>("forni);

form add(new Text Fi el d("nane") . add(new PropertyValidator()))

form add(new TextFiel d("enuail").add(new PropertyValidato

form add(new Text Fi el d("age").add(new PropertyValidator (
/...

r0)));
)

Now we can run our application an see that JSR 303 annotations are fully effective:

82

JSR303 validation form

Name bitstorm
Email b@t.com
Age 0
Birthday
Street avenue
Zip code dsdas
City MY
submit

® ‘age’ must be between 18 and 150
o 'birthDay' is required.
* The inserted zip code is not valid.

12.5 Submit form with an IFormSubmittingComponent

Besides submitting forms with a standard HTML submit button, Wicket allows us to use special components
which implement interface IFormSubmittingComponent. This entity is a subinterface of IFormSubmitter:

© org.apache.wicket.markup.html.form.IFormSubmitter

a getForm(): Form=?=

& getDefaultFormProcessing(): boolean
a onSubmikt(): void

a onError(): void

© org.apache.wicket.markup.html.form.IFormSubmittingComponent

& setDefaultFormProcessing(defaultFormProcessing: boolean): Component
a getlnputName(): String

At the beginning of this chapter we have seen that form processing is started by process method which takes as
input an instance of IFormSubmitter. This parameter corresponds to the IFormSubmittingComponent clicked by a
user to submit the form and it is null if we have used a standard HTML submit button (like we have done so far).

A submitting component is added to a form just like any other child component using method add(Component...).

A form can have any number of submitting components and we can specify which one among them is the default
one by calling the Form's method setDefaultButton(IFormSubmittingComponent component). The default
submitter is the one that will be used when user presses 'Enter' key in a field of the form. In order to make the
default button work, Wicket will add to our form a hidden <div> tag containing a text field and a submit button
with some JavaScript code to trigger it:

<di v styl e="wi dt h: Opx; hei ght: Opx; posi ti on: absol ut e; | eft:-100px; t op: - 100px; over f| ow: hi dden" >
<i nput type="text" autoconplete="off"/>
<i nput type="submt" nane="submi t2" onclick=" var b=docunent...."/>

</ di v>

Just like Wicket forms, interface IFormSubmitter defines methods onSubmit and onError. These two methods
have the priority over the namesake methods of the form, meaning that when a form is submitted with an

83

[FormSubmitter, the onSubmit of the submitter is called before the one of the form. Similarly, if validation errors
occurs during the first step of form processing, submitter's method onError is called before the form's one.

Ay Starting with Wicket version 6.0 interface IFormSubmitter defines a further callback
method called onAfterSubmit(). This method is called after form's method onSubmit() has
been executed.

Components Button and SubmitLink

Component or g. apache. wi cket. markup. ht m . form Button is a basic implementation of a form
submitter. It can be used with either the <input> or <button> tags. The string model received as input by its
constructor is used as button label and it will be the value of the markup attribute value.

In the following snippet we have a form with two submit buttons bound to an <input> tag. One of them is set as
default button and both have a string model for the label:

HTML:
<body>
<form wi cket:id="forni>
Usernanme: <input type="text" w cket:id="usernane"/>

<i nput type="submt" w cket:id="submt1"/>
<input type="submit" w cket:id="submt2"/>
</ form
</ body>
Java code:

public class HonePage extends WebPage {

publ i c HonePage(final PageParaneters paraneters) {
Form form = new Form("forni);

form add(new Text Fi el d("user nane", Model.of ("")));
form add(new Button("submt1", Model.of ("First submtter")));
Button secondSubnitter;
form add(secondSubnitter = new Button("subm t2", Mdel.of ("Second subnmitter")));

form set Def aul t Butt on(secondSubmi tter);
add(form;

Generated markup:

<form wi cket:id="fornl' id="forml" nethod="post" action="?0-1.IFornSubm tListener-forni>
<di v>

<! -- Code generated by Wcket to handle the default button -->

</ di v>
User name: <input type="text" wi cket:id="usernane" val ue="" name="usernane"/>

<i nput ty
submitter"/>
<i nput type="submt" w cket:id="submt2" name="submnmit2" id="subm t22" val ue="Second
submitter"/>
</ fornm

pe="submt" w cket:id="subm t1" name="subm t1" id="submit13" val ue="First

Another component that can be used to submit a form is

or g. apache. wi cket . mar kup. ht m . f orm Subni t Li nk. This component uses JavaScript to submit the
form. Like the name suggests, the component can be used with the <a> tag but it can be also bound to any other
tag that supports the event handler onclick. When used with the <a> tag, the JavaScript code needed to submit
the form will be placed inside href attribute while with other tags the script will go inside the event handler onclick.

A notable difference between this component and Button is that SubmitLink can be placed outside the form it
must submit. In this case we must specify the form to submit in its constructor:

HTML:

<htm xm ns:w cket="http://w cket.apache. org">
<head>
</ head>
<body>
<form wi cket:id="fornm>
Pgs/sword: <i nput type="password" w cket:id="password"/>

</ fornmp
<button wi cket:id="external Submtter">
Submi t
</ but t on>
</ body>
</htm >

Java code:

public class HonePage extends WebPage {

publi c HonmePage(final PageParaneters paraneters) {
Form form = new Form("forni);

form add(new Passwor dText Fi el d(" password", Model.of ("")));
/Ispecify the formto submt
add(new Subm tLi nk("external Submtter", form);
add(form;

Disabling default form processing

With an IFormSubmittingComponent we can choose to skip the default form submission process by setting the
appropriate flag to false with the setDefaultFormProcessing method. When the default form processing is
disabled only the submitter's onSubmit is called while form's validation and models updating are skipped.

This can be useful if we want to implement a “Cancel” button on our form which redirects user to another page
without validating his/her input.

When we set this flag to false we can decide to manually invoke the form processing by calling the
process(IFormSubmittingComponent) method.

12.6 Nested forms

As you might already known, HTLM doesn't allow to have nested forms. However with Wicket we can overcome
this limitation by adding one or more form components to a parent form.

This can be useful if we want to split a big form into smaller ones in order to reuse them and to better distribute
responsibilities among different components. Forms can be nested to an arbitrary level:

<f orm wi cket : i d="out er For ni' >
<form wi cket : i d="i nner For i >
<form wi cket : i d="veryl nner For m' >
</ forme

</ form
</fornme

When a form is submitted also its nested forms are submitted and they participate in the validation step. This
means that if a nested form contains invalid input values, the outer form won't be submitted. On the contrary,
nested forms can be singularly submitted without depending on the status of their outer form.

85

To submit a parent form when one of its children forms is submitted, we must override its method
wantSubmitOnNestedFormSubmit and make it return true.

12.7 Multi-line text input

HTML provides a multi-line text input control with <textarea> tag. The Wicket counterpart for this kind of control is
or g. apache. wi cket . mar kup. ht ml . f or m Text Ar ea component:

HTML:

<textarea wi cket:id="description" rows="5" col s="40"></textarea>

Java code:

form add(new Text Area("description", Mdel.of("")));

Component TextArea is used just like any other single-line text field. To specify the size of the text area we can
write attributes rows and cols directly in the markup file or we can create new attribute modifiers and add them to
our TextArea component.

12.8 File upload

Wicket supports file uploading with the FileUploadField component which must be used with the <input> tag
whose type attribute must be set to "file". In order to send a file on form submission we must enable multipart
mode calling MultiPart(true)on our form.

In the next example (project UploadSingleFile) we will see a form which allows users to upload a file into the
temporary directory of the server (path /tmp on Unix/Linux systems):

HTML:

<htm >
<head>
</ head>
<body>
<h1>Upl oad your file here!</hl>
<form wi cket:id="fornl>
<i nput type="file" w cket:id="fileUpl oadField"/>
<i nput type="subnit" val ue="Upl oad"/>
</ form
<di v wicket:id="feedbackPanel ">
</ div>
</ body>
</htm >

Java code:

public class HonePage extends WebPage {
private FileUpl oadField fileUpl oadFi el d;

publ i c HonePage(final PageParaneters paraneters) {
fileUpl oadField = new Fil eUpl oadFi el d("fil eUpl oadFi el d");

Form form = new Form("forni){

@verride
protected void onSubmit () {
super . onSubm t () ;

Fil eUpl oad fil eUpload = fil eUpl oadFi el d. get Fi | eUpl oad();

try {
File file = new Fil e(System getProperty("java.io.tnpdir") + "/" +
fileUpl oad.getCientFileNane());

fileUpload.witeTo(file);
} catch (I OException e) {
e.printStackTrace();

86

}
be

formsetMiltiPart(true);
//set alimt for uploaded file's size
form set MaxSi ze(Byt es. ki | obyt es(100));
formadd(fil eUpl oadFi el d);
add(new FeedbackPanel ("feedbackPanel ")) ;
add(form;

The code that copies the uploaded file to the temporary directory is inside the onSubmit method of the Form
class. The uploaded file is handled with an instance of class FileUpload returned by the getFileUpload() method
of the FileUploadField class. This class provides a set of methods to perform some common tasks like getting
the name of the uploaded file (getClientFileName()), coping the file into a directory (writeTo(destinationFile)),
calculating file digest (getDigest (digestAlgorithm)) and so on.

Form component can limit the size for uploaded files using its setMaxSize(size) method. In the example we have
set this limit to 100 kb to prevent users from uploading files bigger than this size.

& The maximum size for uploaded files can also be set at application's level using the
setDefaultMaximumUploadSize(Bytes maxSize) method of the IApplicationSettings
interface:

@verride
public void init()
{

get ApplicationSettings().setDefaultMxi mumJpl oadSi ze(Byt es. ki | obyt es(100));
}

Upload multiple files

If we need to upload multiple files at once and our clients support HTML5, we can still use FileUploadField
adding attribute "multiple" to its tag. If we can not rely on HTML5, we can use the MultiFileUploadField
component which allows the user to upload an arbitrary number of files using a JavaScript-based solution. An
example showing how to use this component can be found in Wicket module wicket-examples in file
MultiUploadPage.java. The live example is hosted at
http://www.wicket-library.com/wicket-examples-6.0.x/upload/multi .

12.9 Creating complex form components with FormComponentPanel

In chapter 5.2.2 we have seen how to use class Panel to create custom components with their own markup and
with an arbitrary number of children components.

While it's perfectly legal to use Panel also to group form components, the resulting component won't be itself a
form component and it won't participate in the form's submission workflow.

This could be a strong limitation if the custom component needs to coordinate its children during sub-tasks like
input conversion or model updating. That's why in Wicket we have the

or g. apache. wi cket . mar kup. ht m . f or m For nConmponent Panel component which combines the features
of a Panel (it has its own markup file) and a FormComponent (it is a subclass of FormComponent).

A typical scenario in which we may need to implement a custom FormComponentPanel is when our web
application and its users work with different units of measurement for the same data.

To illustrate this possible scenario, let's consider a form where a user can insert a temperature that will be
recorded after being converted to Kelvin degrees (see the example project CustomForm ComponentPanel).

The Kelvin scale is wildly adopted among the scientific community and it is one of the seven base units of the
International System of Units , so it makes perfect sense to store temperatures expressed with this unit of
measurement.

87

http://www.wicket-library.com/wicket-examples-6.0.x/upload/multi
http://en.wikipedia.org/wiki/International_System_of_Units

However, in our everyday life we still use other temperature scales like Celsius or Fahrenheit, so it would be nice
to have a component which internally works with Kelvin degrees and automatically applies conversion between
Kelvin temperature scale and the one adopted by the user.

In order to implement such a component, we can make a subclass of FormComponentPanel and leverage the
convertlnput and onBeforeRender methods: in the implementation of the convertinput method we will convert
input value to Kelvin degrees while in the implementation of onBeforeRender method we will take care of
converting the Kelvin value to the temperature scale adopted by the user.

Our custom component will contain two children components: a text field to let user insert and edit a temperature
value and a label to display the letter corresponding to user's temperature scale (F for Fahrenheit and C for
Celsius). The resulting markup file is the following:

<htm >
<head>
</ head>
<body>
<wi cket : panel >
Regi stered tenperature: <input size="3" maxl ength="3"
W cket:id="registeredTenperature"/>
<l abel wicket:id="mesuranmentUnit"></|abel >
</ wi cket : panel >
</ body>
</htm >

As shown in the markup above FormComponentPanel uses the same <wicket:panel> tag used by Panel to
define its markup. Now let's see the Java code of the new form component starting with the onlinitialize() method:

public class TenperatureDegreeFi el d extends For nConponent Panel <Doubl e> {
private TextFi el d<Doubl e> user Degr ee;

public TenperatureDegreeField(String id) {
super (i d);

publ i c Tenperat ureDegreeFi el d(String id, |Mdel <Double> nodel) {
super (i d, nodel);

@verride
protected void onlnitialize() {
super.onlnitialize();

Abst ract ReadOnl yModel <Stri ng> | abel Model =new Abst ract ReadOnl yModel <Stri ng>() {
@verride
public String getObject() {
i f(getLocal e().equal s(Local e. US))
return "°F";
return "°C';
}
IE

add(new Label ("nesuranmentUnit", | abel Mbdel));
add(user Degr ee=new Text Fi el d<Doubl e>("regi st eredTenperature”, new
Model <Doubl e>()));
user Degr ee. set Type(Doubl e. cl ass) ;

Inside the onlnitialize method we have created a read-only model for the label that displays the letter
corresponding to the user's temperature scale. To determinate which temperature scale is in use, we retrieve the
Locale from the session by calling Component's getLocale() method (we will talk more about this method in

paragraph 14). Then, if locale is the one corresponding to the United States, the chosen scale will be Fahrenheit,
otherwise it will be considered as Celsius.

In the final part of onlnitialize() we add the two components to our custom form component. You may have
noticed that we have explicitly set the type of model object for the text field to double. This is necessary as the
starting model object is a null reference and this prevents the component from automatically determining the type
of its model object.

Now we can look at the rest of the code containing the convertinput and onBeforeRender methods:

/1 continued exanpl e

88

@verride

protected void convertlnput() {
Doubl e user DegreeVal = userDegree. get Convertedl nput ();
Doubl e kel vi nDegr ee;

i f(getlLocal e(). equal s(Local e. US)){
kel vi nDegree = userDegreeVal + 459.67;
Bi gDeci mal bdKel vin = new Bi gDeci mal (kel vi nDegr ee) ;
Bi gDeci mal fraction = new Bi gDeci mal (5). di vi de(new Bi gDeci nal (9));

kel vi nDegree = bdKel vin. mul tiply(fraction).doubl evVal ue();
}el se{
kel vi nDegree = user DegreeVal + 273.15;
}

set Convert edl nput (kel vi nDegr ee) ;

@verride
protected voi d onBef oreRender () {
super . onBef or eRender () ;

Doubl e kel vi nDegree = (Doubl e) get Def aul t Model Obj ect () ;
Doubl e user DegreeVal = null;

i f(kelvinDegree == null) return;

i f(getLocal e(). equal s(Local e. US)){
Bi gDeci mal bdKel vin = new Bi gDeci mal (kel vi nDegr ee) ;
Bi gDeci mal fraction = new Bi gDeci mal (9). di vi de(new Bi gDeci nal (5));

kel vi nDegree = bdKel vin. multiply(fraction).doubl eVal ue();
user DegreeVal = kel vinDegree - 459.67;
}el sef
user DegreeVal = kel vi nDegree - 273. 15;
}

user Degr ee. set Model Obj ect (user DegreeVal) ;
}
}

Since our component does not directly receive the user input, convertinput() must read this value from the inner
text field using FormComponent's getConvertedinput() method which returns the input value already converted to
the type specified for the component (Double in our case). Once we have the user input we convert it to kelvin
degrees and we use the resulting value to set the converted input for our custom component (using method
setConvertedinput(T convertedinput)).

Method onBeforeRender() is responsible for synchronizing the model of the inner textfield with the model of our
custom component. To do this we retrieve the model object of the custom component with the
getDefaultModelObject() method, then we convert it to the temperature scale adopted by the user and finally we
use this value to set the model object of the text field.

12.10 Stateless form

In chapter 8 we have seen how Wicket pages can be divided into two categories: stateful and stateless. Pages
that are stateless don't need to be stored in the user session and they should be used when we don't need to
save any user data in the user session (for example in the public area of a site).

Besides saving resources on server-side, stateless pages can be adopted to improve user experience and to
avoid security weaknesses. A typical situation where a stateless page can bring these benefits is when we have
to implement a login page.

For this kind of page we might encounter two potential problems if we chose to use a stateful page. The first
problem occurs when the user tries to login without a valid session assigned to him. This could happen if the
user leaves the login page opened for a period of time bigger than the session's timeout and then he decides to
log in. Under these conditions the user will be redirected to a 'Page expired' error page, which is not exactly a
nice thing for user experience.

The second problem occurs when a malicious user or a web crawler program attempts to login into our web
application, generating a huge number of page versions and consequently increasing the size of the user
session.

To avoid these kinds of problems we should build a stateless login page which does not depend on a user
session. Wicket provides a special version of the Form component called StatelessForm which is stateless by
default (i.e its method getStatelessHint() returns true), hence it's an ideal solution when we want to build a
stateless page with a form. A possible implementation of our login form is the following (example project
StatelessLoginForm):

89

HTML:

<htm >
<head>
<nmeta charset="utf-8" />
</ head>
<body>
<di v>Session is <b wicket:id="sessionType"></div>

<di v>Type 'user' as correct credential s</div>
<form w cket:id="forn>
<fiel dset>
Usernanme: <input type="text" w cket:id="username"/>

Password: <i nput type="password" wi cket:id="password"/>

<i nput type="submt"/>
</fieldset>
</ fornp

<div w cket:id="feedbackPanel "></di v>
</ body>
</htm >

Java code:

public class HonePage extends WebPage {
private Label sessionType;
private String password;
private String usernaneg;

publ i c HonmePage(final PageParaneters paraneters) {
St at el essForm form = new Statel essForn("form'"){
@verride
protected void onSubmit() {
/Isign in if usernanme and password are “user”
i f("user".equal s(usernane) && usernane. equal s(password))
i nfo("Usernane and password are correct!");
el se
error("Wong usernane or password");
}
IE

form add(new Passwor dText Fi el d("password"));
form add(new Text Fi el d("usernane"));

add(form set Def aul t Model (new ConpoundPr opertyMdel (this)));

add(sessi onType = new Label ("sessionType", Model.of ("")));
add(new FeedbackPanel ("feedbackPanel "));

@verride
protected voi d onBef oreRender () {
super . onBef or eRender () ;

i f(getSession().isTenporary())
sessi onType. set Def aul t Mbdel Obj ect ("t enporary");
el se
sessi onType. set Def aul t Model Cbj ect (" per nanent") ;

Label sessionType shows if current session is temporary or not and is set inside onBeforeRender(): if our page is
really stateless the session will be always temporary. We have also inserted a feedback panel in the home page
that shows if the credentials are correct. This was done to make the example form more interactive.

12.11 Working with radio buttons and checkboxes

In this paragraph we will see which components can be used to handle HTML radio buttons and checkboxes.
Both these input elements are usually grouped together to display a list of possible choices:

90

Select a car
SUV O Minivan ' Station wagon ©

Select some fruits
Apple @ Watermelon 8 Strawberry

A check box can be used as single component to set a boolean property. For this purpose Wicket provides the
or g. apache. wi cket . mar kup. ht ml . f orm CheckBox component which must be attached to <input
type="checkbox".../> tag. In the next example (project SingleCheckBox) we will consider a form similar to the one
used in paragraph 11.5 to edit a Person object, but with an additional checkbox to let the user decide if she
wants to subscribe to our mailing list or not. The form uses the following bean as backing object:

public class Registrationlnfo inplenments Serializable {

private String namne;
private String surnane;
private String address;
private String email;
private bool ean subscri beli st;

[*Cetters and setters*/

The markup and the code for this example are the following:

HTML:
<form wi cket:id="forn>
<div style="display: table;">
<div style="display: table-row ">
<di v style="display: table-cell;">Nanme: </div>
<div style="display: table-cell;">
<i nput type="text" w cket:id="nanme"/>
</ di v>
</ div>
<div style="display: table-row ">
<di v style="display: table-cell;">Surnane: </div>
<div style="display: table-cell;">
<i nput type="text" w cket:id="surnane"/>
</ div>
</ div>
<div style="display: table-row ">
<div style="display: table-cell;">Address: </div>
<div style="display: table-cell;">
<input type="text" w cket:id="address"/>
</ di v>
</ di v>
<div style="display: table-row ">
<div style="display: table-cell;">Emil: </div>
<div style="display: table-cell;">
<input type="text" w cket:id="email"/>
</ di v>
</div>
<div style="display: table-row ">
<div style="display: table-cell;">Subscribe |ist:</div>
<div style="display: table-cell;">
<i nput type="checkbox" w cket:id="subscribeList"/>
</ di v>
</ di v>
</ div>
<i nput type="submt" val ue="Save"/>
</fornmp
Java code:

publ i c HonePage(final PageParaneters paraneters) {
Regi strationlnfo registrtionlnfo = new Registrationlnfo();
regi strtionlnfo.setSubscribelList(true);

Form form = new Fornm("forni,
new ConpoundPr opertyMdel <Regi strati onlnfo>(registrtionlnfo));

form add(new Text Fi el d("nane"));

91

form add(new Text Fi el d("surnanme"));
form add(new Text Fi el d("address"));
form add(new TextField("email"));

form add(new CheckBox("subscribelList"));

?dd(forn);

Please note that the checkbox will be initially selected because we have set to true the subscribe flag during the
model object creation (with instruction registrtioninfo.setSubscribeList(true)):

Name:

Sumame:

Address:

Email:

Subscribe list: &

| Save |

Working with grouped checkboxes

When we need to display a given number of options with checkboxes, we can use the
or g. apache. wi cket . mar kup. ht m . f or m CheckBoxMuil ti pl eChoi ce component. For example, If our
options are a list of strings, we can display them in this way:

HTML:

<di v wi cket:id="checkG oup">

<i nput type="checkbox"/>It will be replaced by the actual checkboxes...
</ di v>
Java code:
List<String> fruits = Arrays. asLi st("apple", "strawberry", "waternelon");

form add(new CheckBoxMil ti pl eChoi ce("checkG oup", new ListMdel <String>(new
ArrayList<String>()), fruits));

Screenshot:

| apple

| strawberry

I watermelon

This component can be attached to a <div> tag or to a tag. No specific content is required for this tag as
it will be populated with the actual checkboxes. Since this component allows multiple selection, its model object
is a list. In the example above we have used model class or g. apache. wi cket . nodel . util.Li st Model
which is specifically designed to wrap a List object.

By default CheckBoxMultipleChoice inserts a
 tag as suffix after each option. We can configure both the
suffix and the prefix used by the component with the setPrefix and setSuffix methods.

When our options are more complex objects than simple strings, we can render them using an IChoiceRender,
as we did for DropDownChoice in paragraph 11.5:

HTML:

<di v wi cket:id="checkG oup">
<i nput type="checkbox"/>It will be replaced by actual checkboxes...
</ di v>

92

Java code:

Person john = new Person("John", "Smth");
Person bob = new Person("Bob", "Smith");
Person jill = new Person("Jill", "Smth");

Li st <Person> theSnmiths = Arrays. asLi st(john, bob, jill);
Choi ceRenderer render = new Choi ceRenderer ("nane");
form add(new CheckBoxMil ti pl eChoi ce("checkG oup", new ListMdel <String>(new ArrayList<String
>()).
theSm ths, render));

Screenshot:

1 John
['Bob
CHJill

How to implement a "Select all" checkbox

A nice feature we can offer to users when we have a group of checkboxes is a “special” checkbox which
selects/unselects all the other options of the group:

What genres are you interested in?

& All of them
& Fantasy & Science Fiction & Children's & Humour & Science & Technology

Wicket comes with a couple of utility components that make it easy to implement such a feature. They are
CheckboxMultipleChoiceSelector and CheckBoxSelector classes, both inside package
or g. apache. wi cket . mar kup. ht m . f orm The difference between these two components is that the first
works with an instance of CheckBoxMultipleChoice while the second takes in input a list of CheckBox objects:

[* CheckboxMul ti pl eChoi ceSel ect or usage: */

CheckBoxMul ti pl eChoi ce checkG oup;
/I checkGroup Initialization..
CheckboxMuil ti pl eChoi ceSel ector cbnts = new CheckboxMul ti pl eChoi ceSel ector ("id", checkG oup);

/* CheckBoxSel ect or usage: */

CheckBox checkBox1, checkBox2, checkBox3;
[/ checks initialization...
CheckBoxSel ect or cbnts = new CheckBoxSel ector("id", checkBox1l, checkBox2, checkBox3);

Working with grouped radio buttons

For groups of radio buttons we can use the org. apache. w cket. mar kup. ht m . f or m Radi oChoi ce
component which works in much the same way as CheckBoxMultipleChoice:

HTML:

<di v wi cket:id="radi oG oup">
<i nput type="radio"/>lt will be replaced by actual radio buttons...
</ div>

Java code:

93

List<String> fruits = Arrays. asLi st("apple", "strawberry", "waternelon");
form add(new Radi oChoi ce("radi oG oup", Model.of (""), fruits));

Screenshot:

_ apple
O strawberry
_ watermelon

Just like CheckBoxMultipleChoice, this component provides the setPrefix and setSuffix methods to configure the
prefix and suffix for our options and it supports IChoiceRender as well. In addition, RadioChoice provides the
wantOnSelectionChangedNotifications() method to notify the web server when the selected option changes (this
is the same method seen for DropDownChoice in paragraph 9.4).

12.12 Selecting multiple values with ListMultipleChoices and Palette

Checkboxes work well when we have a small amount of options to display, but they quickly become chaotic as
the number of options increases. To overcome this limit we can use the <select> tag switching it to
multiple-choice mode with attribute multiple="multiple":

watermelon

Now the user can select multiple options by holding down Ctrl key (or Command key for Mac) and selecting
them.

To work with multiple choice list Wicket provides the
or g. apache. wi cket . mar kup. ht ml . f orm Li st Mul ti pl eChoi ce component:

HTML:

<sel ect wicket:id="fruits">
<opti on>choi ce 1</ option>
<opti on>choi ce 2</option>
</ sel ect >

Java code:

List<String> fruits = Arrays. asLi st("apple", "strawberry", "waternelon");
form add(new ListMiltipleChoice("fruits”, new ListMdel <String>(new ArrayList<String>()),
fruits));

Screenshot:

apple
strawberry
watermelon

This component must be bound to a <select> tag but the attribute multiple="multiple" is not required as it will
automatically be added by the component.

The number of visible rows can be set with the setMaxRows(int maxRows) method.

Component Palette

While multiple choice list solves the problem of handling a big number of multiple choices, it is not much intuitive
for end users. That's why desktop GUIs have introduced a more complex component which can be generally
referred to as multi select transfer component (it doesn't have an actual official name):

[New (%]

Steps Fields

1. Choose Template s

2, Mame and location SELndy), Eoee

3. Query counkry _name

4. Fields counkry _continent

5, Group by, country _region

6, Finish counkry_surfacearea
country_indepyear
country_population
country_lifeexpeckancy
counkry _anp
country_gnpold -

country_localnanme
counkry_governmentform
country_headofskake
counkry_capikal
counkry_codez

=

[< Back H Mext = Einish Help

This kind of component is composed by two multiple-choice lists, one on the left displaying the available options
and the other one on the right displaying the selected options. User can move options from a list to another by
double clicking on them or using the buttons placed between the two list.

Built-in or g. apache. wi cket . ext ensi ons. mar kup. htnl . f orm pal ette. Pal ett e component provides
an out-of-the-box implementation of a multi select transfer component. It works in a similar way to
ListMultipleChoice:

HTML:

<div wi cket:id="palette">
Select will be replaced by the actual content...
<select multiple="nultiple">
<opti on>opti onl</option>
<opt i on>opt i on2</ opti on>
<opti on>opti on3</ opti on>

</ di v>
Java code:
Person john = new Person("John", "Smith");
Person bob = new Person("Bob", "Smith");
Person jill = new Person("Jill", "Smth");
Person andrea = new Person("Andrea", "Smth");
Li st <Person> theSnmiths = Arrays. asLi st(john, bob, jill, andrea);

Choi ceRenderer render = new Choi ceRenderer ("nanme");

form add(new Pal ette("pal ette", Mdel.of(new ArrayList<String>()), new ListMdel <String>
(theSm ths), render, 5, true));

Screenshot:

95

Available Selected

John
Bob
Jill
Andrea

EElkE

The last two parameters of the Palette's constructor (an integer value and a boolean value) are, respectively, the
number of visible rows for the two lists and a flag to choose if we want to display the two optional buttons which
move selected options up and down. The descriptions of the two lists (“Available” and “Selected”) can be
customized providing two resources with keys palette.available and palette.selected.

The markup of this component uses a number of CSS classes which can be extended/overriden to customize the
style of the component. We can find these classes and see which tags they decorate in the default markup file of
the component:

<tabl e cel | spaci ng="0" cel | paddi ng="2" cl ass="pal ette">
<tr>
<td cl ass="header header Avai | abl e">[avai | abl e
header] </ span></td>
<t d> </t d>
<td cl ass="header header Sel ect ed">[sel ect ed
header] </ span>
</td>
</[tr>
<tr>
<td cl ass="pane choi ces">
<sel ect w cket:id="choices" class="choi cesSel ect">[choi ces] </ sel ect>
</td>
<td class="buttons">
<button type="button" wi cket:id="addButton" class="button add"><div/>
</ but t on><br/ >
<button type="button" wi cket:id="renpveButton" class="button renove"><div/>
</ but t on><br/ >
<button type="button" wi cket:id="noveUpButton" class="button up"><div/>
</ but t on><br/ >
<button type="button" w cket:id="nmoveDownButton" class="button down"><div/>
</ but t on><br/ >
</td>
<td cl ass="pane sel ection">
<sel ect class="sel ectionSel ect" w cket:id="sel ection">[sel ection]</select>
</td>
</[tr>
</t abl e>

12.13 Summary

Forms are the standard solution to let users interact with our web applications. In this chapter we have seen the
three steps involved with the form processing workflow in Wicket. We have started looking at form validation and
feedback messages generation, then we have seen how Wicket converts input values into Java objects and vice
versa.

In the second part of the chapter we learnt how to build reusable form components and how to implement a
stateless form. We have ended the chapter with an overview of the built-in form components needed to handle
standard input form elements like checkboxes, radio buttons and multiple selections lists.

96

13 Displaying multiple items with
repeaters

A common task for web applications is to display a set of items. The most typical scenario where we need such
kind of visualization is when we have to display some kind of search result. With the old template-based
technologies (like JSP) we used to accomplish this task using classic for or while loops:

<htm >

<head>

<meta http-equi v="Cont ent - Type" content="text/htm ; charset=UTF-8">
<title>Insert title here</title>

</ head>
<body>
<%
for(int i = 12; i<=32; i++) {
%
<di v>Hel l o! I'mindex n°<% %</div>
<%
}
%
</ body>

To ease this task Wicket provides a number of special-purpose components called repeaters which are designed
to use their related markup to display the items of a given set in a more natural and less chaotic way.

In this chapter we will see some of the built-in repeaters that come with Wicket.

13.1 The RepeatingView Component

Component or g. apache. wi cket . mar kup. r epeat er. Repeati ngVi ew is a container which renders its
children components using the tag it is bound to. It can contain an arbitrary number of children elements and we
can obtain a new valid id for a new child calling its method newChildld(). This component is particularly suited
when we have to repeat a simple markup fragment, for example when we want to display some items as a HTML
list:

HTML:

<li wicket:id="listltens"></1i>

Java Code:

RepeatingView listltens = new RepeatingView"listltens");
|'istltens.add(new Label (listltenms. newChildld(), "green"));
listltems.add(new Label (1istltenms.newChildlid(), "blue")):
listltens.add(new Label (listltens.newChildld(), "red"));

Generated markup:

green</I|i>
blue
red

</ ul >

97

As we can see in this example, each child component has been rendered using the parent markup as if it was its
own.

13.2 The ListView Component

As its name suggests, component or g. apache. wi cket . markup. html . i st. Li st Vi ew is designed to
display a given list of objects which can be provided as a standard Java List or as a model containing the
concrete List. ListView iterates over the list and creates a child component of type
or g. apache. wi cket . mar kup. ht ml . [i st. Li st |t emfor every encountered item.

Unlike RepeatingView this component is intended to be used with complex markup fragments containing nested
components.

To generate its children, ListView calls its abstract method populateltem(Listitem<T> item) for each item in the
list, so we must provide an implementation of this method to tell the component how to create its children
components. In the following example we use a ListView to display a list of Person objects:

HTML:

<body>
<div id="bd" style="display: table;">
<di v wicket:id="persons" style="display: table-row ">

<div style="display: table-cell;">Full nane: </div>
<di v wi cket:id="full Nane" style="display: table-cell;"></div>
</ di v>
</ div>
</ body>

Java Code (Page Constructor):

publ i c HonePage(final PageParaneters paraneters) {
Li st <Per son> persons = Arrays. asLi st (new Person("John", "Smith"),
new Person("Dan", "Wng"));

add(new Li st Vi ew<Person>("persons", persons) {
@verride
protected void popul atelten(Listltem<Person> item {
i tem add(new Label ("ful | Name", new PropertyMdel (item getMdel (), "full Nane"

)))s

1)
}

Screenshot of generated page:

Full name: John Smith
Full name: Dan Wang

In this example we have displayed the full name of two Person's instances. The most interesting part of the code
is the implementation of method populateltem where parameter item is the current child component created by
ListView and its model contains the corresponding element of the list. Please note that inside populateltem we
must add nested components to the i t emobject and not directly to the Li st Vi ew.

ListView and Form

By default Li st Vi ewreplaces its children components with new instances every time is rendered. Unfortunately
this behavior is a problem if Li st Vi ewis inside a form and it contains form components. The problem is caused
by the fact that children components are replaced by new ones before form is rendered, hence they can't keep
their input value if validation fails and, furthermore, their feedback messages can not be displayed.

To avoid this kind of problem we can force Li st Vi ew to reuse its children components using its method
setReuseltems and passing true as parameter. If for any reason we need to refresh children components after
we have invoked setReuseltems(true), we can use MarkupContainer's method renoveAl | () to force
Li st Vi ewto rebuild them.

98

13.3 The RefreshingView Component

Component or g. apache. wi cket . mar kup. r epeat er. Ref reshi ngVi ew is a subclass of RepeatingView
that comes with a customizable rendering strategy for its children components.

RefreshingView defines abstract methods populateltem(ltem) and getitemModels(). The first method is similar to
the namesake method seen for ListView, but it takes in input an instance of class
or g. apache. wi cket . mar kup. repeat er. | tem which is a subclass of Listltem RefreshingView is
designed to display a collection of models containing the actual items. An iterator over these models is returned
by the other abstract method getltemModels.

The following code is a version of the previous example that uses Ref r eshi ngVi ewin place of Li st Vi ew.

HTML:

<body>
<div id="bd" style="display: table;">
<di v wicket:id="persons" style="display: table-row ">

<div style="display: table-cell;">Full nanme: </div>
<div w cket:id="full Nane" style="display: table-cell;"></div>
</ di v>
</ div>
</ body>

Java Code (Page Constructor):

publ i c HonmePage(final PageParaneters paraneters) {
//define the |ist of nodels to use
final List<lMdel <Person>> persons = new Arrayli st <l Mbdel <Per son>>();

per sons. add(Mbdel . of (new Person("John", "Smth")));
per sons. add(Mbdel . of (new Person("Dan", "Wng")));

add(new Refreshi ngVi ew<Per son>("persons") {

@verride
protected void popul atelten(ltenxPerson> item {
i tem add(new Label ("ful |l Name", new PropertyModel (item getMdel (), "full Nanme")));

}

@verride
protected Iterator<lMdel <Person>> getltenibdel s() {

return persons.iterator();

}
1)

Item reuse strategy

Similar to Li st Vi ew, the default behavior of the Ref r eshi ngVi ewis to replace its children with new instances
every time is rendered. The strategy that decides if and how children components must be refreshed is returned
by method get | t enReuseSt r at egy. This strategy is an implementation of interface lltemReuseStrategy. The
default implementation used by Ref r eshi ngVi ewis class Def aul t | t enReuseSt r at egy but Wicket provides
also strategy Reusel f Model sEqual Strat egy which reuses an item if its model has been returned by the
iterator obtained with method get | t emVbdel s.

To set a custom strategy we must use method set | t enReuseSt r at egy.

13.4 Pageable repeaters

Wicket offers a number of components that should be used when we have to display a big number of items (for
example the results of a select SQL query).

All these components implement interface

org. apache. wi cket. mar kup. ht nl . navi gati on. pagi ng. | Pageabl e and use interface

| Dat aPr ovi der (placed in package or g. apache. wi cket . mar kup. r epeat er . dat a) as data source. This
interface is designed to support data paging. We will see an example of data paging later in paragraph 13.4.2.

99

The methods defined by IDataProvider are the following:

¢ jterator(long first, long count): returns an iterator over a subset of the entire dataset. The subset starts from
the item at position first and includes all the next count items (i.e. it's the closed interval first,first+count).

® size(): gets the size of the entire dataset.

®* model(T object): this method is used to wrap an item returned by the iterator with a model. This can be
necessary if, for example, we need to wrap items with a detachable model to prevent them from being
serialized.

Wicket already provides implementations of IDataProvider to work with a List as data source (ListDataProvider)
and to support data sorting (SortableDataProvider).

Component DataView

Class or g. apache. wi cket . mar kup. r epeat er . dat a. Dat aVi ew s the simplest pageable repeater shipped
with Wicket. DataView comes with abstract method populateltem(ltem) that must be implemented to configure
children components. In the following example we use a DataView to display a list of Person objects in a HTML
table:

HTML:
<t abl e>
<tr>
<t h>Nane</ t h><t h>Sur enanme</ t h><t h>Addr ess</t h><t h>Emai | </ t h>
</[tr>
<tr wicket:id="rows">
<td wi cket:id="dat aRow'></td>
</[tr>
</t abl e>
Java Code:

[/ met hod | oadPersons is defined el sewhere
Li st <Per son> persons = | oadPersons();
Li st Dat aPr ovi der <Per son> | i st Dat aProvi der = new Li st Dat aPr ovi der <Per son>(per sons) ;

Dat aVi ew<Per son> dat aVi ew = new Dat aVi ew<Per son>("rows", |i st DataProvider) {

@verride
protected void popul atelten(lten<Person> iten) {
Person person = item get Model Obj ect () ;
Repeat i ngVi ew repeati ngVi ew = new Repeati ngVi ew("dat aRow") ;

repeati ngVi ew. add(new Label (repeati ngVi ew. newChi | dl d(), person.getNanme()));
repeati ngVi ew. add(new Label (repeati ngVi ew. newChi | dl d(), person. get Surenane
repeati ngVi ew. add(new Label (repeati ngVi ew. newChi | dl d(), person. get Address(
repeati ngVi ew. add(new Label (repeati ngVi ew. newChi | dl d(), person.getEmail())
item add(repeati ngVi ew) ;

I d ()));
I d 1))
Id)

15
add(dat avi ew) ;

Please note that in the code above we have used also a RepeatingView component to populate the rows of the
table.

In the next paragraph we will see a similar example that adds support for data paging.

Data paging
To enable data paging on a pageable repeater, we must first set the number of items to display per page with
method setltemsPerPage(long items). Then, we must attach the repeater to panel PagingNavigator (placed in

package or g. apache. w cket. mar kup. ht ml . navi gati on. pagi ng) which is responsible for rendering a
navigation bar containing the links illustrated in the following picture:

100

Project PageDataViewExample mixes a DataView component with a PagingNavigator to display the list of all
countries of the world sorted by alphabetical order. Here is the initialization code of the project home page:

HTML:

<t abl e>
<tr>
<t h>| SO 3166- 1</t h><t h>Nane</t h><t h>Long nane</th><t h>Capi t al </t h><t h>Popul ati on</th>
</[tr>
<tr wi cket:id="rows">
<td w cket:id="dat aRow'></t d>
</[tr>
</t abl e>

Java Code:

publ i c HonmePage(final PageParaneters paraneters) {
super (paraneters);
/I method | oadCountriesFronCsv is defined el sewhere in the class.
/11t reads countries data froma csv file and returns each row as an array of Strings.
List<String[]> countries = | oadCountriesFronCsv();
Li st Dat aProvi der<String[]> |istDataProvider = new ListDataProvider<String[]>(countries);

Dat aVi ew<String[]> dataVi ew = new DataVi ew<String[]>("rows", |istDataProvider) {
@verride
protected void populatelten(lten<String[]> iten) {
String[] countriesArr = item get Model Object();
Repeat 1 ngVi ew repeati ngVi ew = new Repeati ngVi ew("dat aRow") ;

for (int i =0; i < countriesArr.length; i++){
repeati ngVi ew. add(new Label (repeatingVi ew. newChildld(), countriesArr[i]));

}
I tem add(repeatingVi ew);
}
b
dat aVi ew. set | t ensPer Page(15) ;

add(dat avi ew) ;
add(new Pagi ngNavi gat or (" pagi ngNavi gator", dataView));

The data of a single country (ISO code, name, long name, capital and population) are handled with an array of
strings. The usage of PagingNavigator is quite straightforward as we need to simply pass the pageable repeater
to its constructor.

To explore the other pageable repeaters shipped with Wicket you can visit the page at
http://www.wicket-library.com/wicket-examples/repeater/ where you can find live examples of these components.

Ay Wicket provides also component PageableListView which is a sublcass of ListView that
implements interface IPageable, hence it can be considered a pageable repeater even if it
doesn't use interface IDataProvider as data source.

13.5 Summary

In this chapter we have explored the built-in set of components called repeaters which are designed to repeat
their own markup in output to display a set of items. We have started with component Repeat i ngVi ew which
can be used to repeat a simple markup fragment.

Then, we have seen components Li st Vi ewand Ref r eshi ngVi ew which should be used when the markup to
repeat contains nested components to populate.

Finally, we have discussed those repeaters that support data paging and that are called pageable repeaters. We
ended the chapter looking at an example where a pageable repeater is used with panel PagingNavigator to
make its dataset navigable by the user.

101

http://www.wicket-library.com/wicket-examples/repeater/

14 Internationalization with Wicket

In chapter 12.2 we have seen how the topic of localization is involved in the generation of feedback messages
and we had a first contact with resource bundles. In this chapter we will continue to explore the localization
support provided by Wicket and we will learn how to build pages and components ready to be localized in
different languages.

14.1 Localization

As we have seen in paragraph 12.2, the infrastructure of feedback messages is built on top of Java
internationalization (i18n) support, so it should not be surprising that the same infrastructure is used also for
localization purpose. However, while so far we have used only the <ApplicationClassName>.properties file to
store our custom messages, in this chapter we will see that also pages, components, validators and even Java
packages can have their own resource bundles. This allows us to split bundles into multiple files keeping them
close to where they are used. But before diving into the details of internationalization with Wicket, it's worthwhile
to quickly review how i18n works under Java, see what classes are involved and how they are integrated into
Wicket.

& Providing a full description of Java support for i18n is clearly out of the scope of this
document. If you need more informations about this topic you can find them in the
JavaDocs and in the official i18n tutorial .

Class Locale and ResourceBundle

Class java.util.Locale represents a specific country or language of the world and is used in Java to retrieve other
locale-dependent informations like numeric and date formats, the currency in use in a country and so on. Such
kind of informations are accessed through special entities called resource bundles which are implemented by
classjava. util . Resour ceBundl e. Every resource bundle is identified by a full name which is built using four
parameters: a base name (which is required), a language code, a country code and a variant (which are all
optional). These three optional parameters are provided by an instance of Locale with its three corresponding
getter methods: getLanguage(), getCountry() and getVariant(). Parameter language code is a lowercase ISO 639
2-letter code (like zh for Chinese, de for German and so on) while country code is an uppercase I1SO 3166
2-letter code (like CN for China, DE for Germany and so on). The final full name will have the following structure
(NOTE: tokens inside squared brackets are optional):

<base nane>[<l anguage code>] <COUNTRY_CODE>[_<variant code>]]]

For example a bundle with MyBundle as base name and localized for Mandarin Chinese (language code zh,
country code CH, variant cmn) will have MyBundle_zh CH_cmn as full name. A base name can be a fully
qualified class name, meaning that it can include a package name before the actual base name. The specified
package will be the container of the given bundle. For example if we use org.foo.MyBundle as base name, the
bundle named MyBundle will be searched inside package org.foo. The actual base name (MyBundle in our
example) will be used to build the full name of the bundle following the same rules seen above.
Resour ceBundl e is an abstract factory class, hence it exposes a number of factory methods named getBundle
to load a concrete bundle. Without going into too much details we can say that a bundle corresponds to a file in
the classpath. To find a file for a given bundle, getBundle needs first to generate an ordered list of candidate
bundle names. These names are the set of all possible full names for a given bundle. For example if we have
org.foo.MyBundle as base name and the current locale is the one seen before for Mandarin Chinese, the
candidate names will be:

1. org.foo.MyBundle_zh_CH_cmn
2. org.foo.MyBundle_zh CH

102

http://docs.oracle.com/javase/tutorial/i18n/index.html

3. org.foo.MyBundle_zh
4. org.foo.MyBundle

The list of these candidate names is generated starting from the most specific one and subtracting an optional
parameter at each step. The last name of the list corresponds to the default resource bundle which is the most
general name and is equal to the base name. Once that getBundle has generated the list of candidate names, it
will iterate over them to find the first one for which is possible to load a class or a properties file. The class must
be a subclass of Resour ceBundl e having as class hame the full name used in the current iteration. If such a
class is not found, getBundle will try to locate a properties file having a file name equals to the current full name
(Java will automatically append extension .properties to the full name). For example given the resource bundle of
the previous example, Java will search first for class org.foo.MyBundle zh CH _cmn and then for file
MyBundle_zh CH_cmn.properties inside package org.foo. If no file is found for any of the candidate names, a
MissingResourceException will be thrown. Bundles contains local-dependent string resources identified by a key
that is unique in the given bundle. So once we have obtained a valid bundle we can access these objects with
method getString (String key).

As we have seen before working with feedback messages, in Wicket most of the times we will work with
properties files rather than with bundle classes. In paragraph 12.2 we used a properties file having as base name
the class name of the application class and without any information about the locale. This file is the default
resource bundle for a Wicket application. In paragraph 14.3 we will explore the algorithm used in Wicket to locate
the available bundles for a given component. Once we have learnt how to leverage this algorithm, we will be able
to split our bundles into more files organized in a logical hierarchy.

14.2 Localization in Wicket

A component can get the current locale in use calling its method getLocale(). By default this method will be
recursively called on component's parent containers until one of them returns a valid locale. If no one of them
returns a locale, this method will get the one associated with the current user session. This locale is
automatically generated by Wicket in accordance with the language settings of the browser.

Developers can change the locale of the current session with Session's method setlLocale (Locale locale):

Sessi on. get (). set Local e(l ocal e)

Style and variation parameters for bundles

In addition to locale's informations, Wicket supports two further parameters to identify a resource bundle: style
and variation. Parameter style is a string value and is defined at session-level. To set/get the style for the current
session we can use the corresponding setter and getter of class Session:

Session.get().setStyle("nyStyle");
Session.get().getStyle();

If set, style's value contributes to the final full name of the bundle and it is placed between the base name and
the locale's informations:

<base name>[style][<language code>] <COUNTRY_CODE>[<variant code>]]]

Wicket gives the priority to candidate names containing the style information (if available). The other parameter
we can use for localization is variation. Just like style also variation is a string value, but it is defined at
component-level. The value of variation is returned by Component's method getVariation(). By default this
method returns the variation of the parent component or a null value if a component hasn't a parent (i.e. it's a
page). If we want to customize this parameter we must overwrite method getVariation and make it return the
desired value.

Variation's value contributes to the final full name of the bundle and is placed before style parameter:

103

<base name>[variation][_style][<language code>] <COUNTRY_CODE>[<variant code>]]]

Using UTF-8 for resource bundles

Java uses the standard character set ISO 8859-11 to encode text files like properties files. Unfortunately ISO
8859-1 does not support most of the extra-European languages like Chinese or Japanese. The only way to use
properties files with such languages is to use escaped Unicode characters, but this leads to not human-readable
files. For example if we wanted to write the word ‘website’ in simplified Chinese (the ideograms are) we should
write the Unicode characters u7F51u7AD9. For this reason ISO 8859-11 is being replaced with another
Unicode-compliant character encoding called UTF-8. Text files created with this encoding can contain Unicode
symbols in plain format. Wicket provides a useful convention to use properties file encoded with UTF-8. We just
have to add prefix . ut f 8. to file extension (i.e. . ut f 8. properti es).

& If you want to use UTF-8 with your text files, make sure that your editor/IDE is actually
using this character encoding. Some OS like Windows use a different encoding by default.

Using XML files as resource bundles

Starting from version 1.5, Java introduced the support for XML files as resource bundles. XML files are generally
encoded with character sets UTF-8 or UTF-16 which support every symbol of the Unicode standard. In order to
be a valid resource bundle the XML file must conform to the DTD available at
http://java.sun.com/dtd/properties.dtd .

Here is an example of XML resource bundle taken from project LocalizedGreetings (file
WicketApplication_zh.properties.xml) containing the translation in simplified Chinese of the greeting message
“Welcome to the website!”:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE properties SYSTEM "http://java.sun.conl dtd/ properties.dtd">
<properties>
<entry key="greeti ngMessage"></entry>
</ properties>

To use XML bundles in Wicket we don't need to put in place any additional configuration. The only rule we have
to respect with these files is to use properties.xml as extension while their base name follows the same rules
seen so far for bundle names.

Reading bundles from code

Class Component makes reading bundles very easy with method getString(String key). This method searches
for a resource with the given key looking into the resource bundles visited by the lookup algorithm illustrated in
paragraph 14.3. For example if we have a greeting message with key greetingMessage in our application's
resource bundle, we can read it from our component code with this instruction:

get String("greetingMessage");

Localization of bundles in Wicket

In paragraph 12.2 we have used as resource bundle the properties file placed next to our application class. This
file is the default resource bundle for the entire application and it is used by the lookup algorithm if it doesn't find
any better match for a given component and locale. If we want to provide localized versions of this file we must
simply follow the rules of Java i18n and put our translated resources into another properties file with a name
corresponding to the desired locale. For example project LocalizedGreetings comes with the default application's
properties file (WicketApplication.properties) containing a greeting message:

104

http://en.wikipedia.org/wiki/ISO/IEC_8859-1
http://en.wikipedia.org/wiki/List_of_Unicode_characters
http://java.sun.com/dtd/properties.dtd

greeti ngMessage=Wel cone to the site!

Along with this file we can also find a bundle for German (WicketApplication_de.properties) and another one in
XML format for simplified Chinese (WicketApplication_zh.properties.xml). The example project consists of a
single page (HomePage.java) displaying the greeting message. The current locale can be changed with a
drop-down list and the possible options are English (the default one), German and simplified Chinese:

& | @ localhost:8080/LocalizedGreetings/?0-1.IFormSubmitListener-form

|_C|E -

- |

| Change locale |

Willkommen auf der Webseite!

The label displaying the greeting message has a custom read-only model which returns the message with
method getString. The initialization code for this label is this:

Abst ract ReadOnl yModel <Stri ng> nodel = new Abstract ReadOnl yModel <String>() {
@verride
public String get ject() {
return getString("greeti ngMessage");
}

b

add(new Label ("greeti ngMessage", nodel));

Class org. apache. wi cket . nodel . Abstract ReadOnl yMbdel is a convenience class for implementing
read-only models. In this project we have implemented a custom read-only model for illustrative purposes only

because Wicket already provides built-in models for the same task. We will see them in paragraph paragraph
14.5.

The rest of the code of the home page builds the stateless form and the drop-down menu used to change the
locale.

Li st<Local e> | ocal es = Arrays. asLi st (Local e. ENGLI SH, Local e. CH NESE, Local e. GERVAN) ;
final DropDownChoi ce<Local e> changelLocal e =
new Dr opDownChoi ce<Local e>("changelLocal e", new Mdel <Local e>(), |ocal es);

St at el essForm form = new St at el essForn("form') {
@verride
protected void onSubmit() {

Sessi on. get (). set Local e(changeLocal e. get Model Obj ect());
}
IE

set St at el essHi nt (true);
add(form add(changeLocal e))

Localization of markup files

Although resource bundles exist to extract local-dependent elements from our code and from Ul components, in
Wicket we can decide to provide different markup files for different locale settings. Just like standard markup
files, by default localized markup files must be placed next to component's class and their file name must contain
the locale's informations. In the following picture, CustomPanel comes with a standard (or default) markup file
and with another one localized for German:

105

¥ = com
¥ = mycompany
¥ = componenks

B CustomPanel_de.html

CustomPanel.html
(3] CustomPanel.java

When the current locale corresponds to German country (language code de), markup file CustomPanel_de.html
will be used in place of the default one.

Reading bundles with tag <wicket:message>

String resources can be also retrieved directly from markup code using tag <wicket:message>. The key of the
desired resource is specified with attribute key:

<wi cket: nessage key="greeti ngMessage" >nessage goes here</wi cket: message>

By default the resource value is not escaped for HTML entities. To do that use the escape attribute:

<wi cket: nessage key="greeti ngMessage" escape="true">nessage goes here</w cket: nessage>

wi cket : nessage can be adopted also to localize the attributes of a tag. The name of the attribute and the
resource key are expressed as a colon-separated value. In the following markup the content of attribute val ue
will be replaced with the localized resource having 'key4value' as key:

<i nput type="subm t" val ue="Preview val ue" w cket: message="val ue: key4val ue"/ >

If we want to specify multiple attributes at once, we can separate them with a comma:

<i nput type="submt" val ue="Preview val ue" w cket: nessage="val ue: key4val ue, title: key4dtitle"
/>

14.3 Bundles lookup algorithm

As we hinted at the beginning of this chapter, by default Wicket provides a very flexible algorithm to locate the
resource bundles available for a given component. In this paragraph we will learn how this default lookup
algorithm works and which options it offers to manage our bundle files.

Localizing pages and panels

Similarly to application class, also component classes can have their own bundle files having as base name the
class name of the related component and placed in the same package. So for example if class CustomPanel is a
custom panel we created, we can provide it with a default bundle file called CustomPanel.properties containing
the textual resources used by this panel. This rule applies to page classes as well:

106

CustomPage.html

(3] CustomPage.java
CustomPage.properties
CustomPanel.html

(3] customPanel.java
CustomPanel.properties

One fundamental thing to keep in mind when we work with these kinds of bundles is that the lookup algorithm
gives priority to the bundles of the containers of the component that is requesting a localized resource. The more
a container is higher in the hierarchy, the bigger is its priority over the other components. This mechanism was
made to allow containers to overwrite resources used by children components. As a consequence the values
inside the resource bundle of a page will have the priority over the other values with the same key defined in the
bundles of children components.

To better grasp this concept let's consider the component hierarchy depicted in the following picture:

CustomPage| - - - - - - - -« - - — - - - -
9 {Contains the panel} | CustomPanel

{Owns the re'!uurce bundle} {0wns the resource bundle}

1
1

v ¥
#CustomPage. properties #CustomPanel.properties
message=Wellcome! message=Hello!

If CustomPanel tries to retrieve the string resource having 'message' as key, it will get the value 'Wellcome!" and
not the one defined inside its own bundle file.

The default message-lookup algorithm is not limited to component hierarchy but it also includes the class
hierarchy of every component visited in the search strategy described so far. This makes bundle files inheritable,
just like markup files. When the hierarchy of a container component is explored, any ancestor has the priority
over children components. Consider for example the hierarchy in the following picture:

107

#BasePage.properties

BasePage| - - = = = = = = = = — = = ~ 5
9 {Owns the resource bundle} | mceSagewellcome!

CustomPage| - - - - - - — - - - _ _ = = = =>| CustomPanel
|

|
|
|
1
I
{0wns the resource hundle}:
I
|

y

#CustomPanel.properties
message=Hello!

Similarly to the previous example, the bundle owned by CustomPanel is overwritten by the bundle of page class
BasePage (which has been inherited by CustomPage).
Component-specific resources

In order to make a resource specific for a given child component, we can prefix the message key with the id of
the desired component. Consider for example the following code and bundle of a generic page:

Page code:

add(new Label ("I abel ", new Resour ceModel ("I abel Val ue")));
add(new Label ("anot her Label ", new Resour ceModel ("I abel Val ue")));

Page bundle:

| abel Val ue=Def aul t val ue
anot her Label . | abel Val ue=Vval ue for anot her Label

Label with id anotherLabel will display the value 'Value for anotherLabel' while label label will display 'Default
value'. In a similar fashion, parent containers can specify a resource for a nested child component prepending
also its relative path (the path is dot-separated):

Page code:

Form form = new Fornm("forni);
f orm add(new Label ("anot her Label ", new Resour ceModel ("I abel Val ue")));
add(forn);

Page bundle:

108

| abel Val ue=Def aul t val ue
anot her Label . | abel Val ue=Val ue for anot her Label
f orm anot her Label . | abel Val ue=Val ue for anot herLabel inside form

With the code and the bundle above, the label inside the form will display the value 'Value for anotherLabel
inside form'.

Package bundles

If no one of the previous steps can find a resource for the given key, the algorithm will look for package bundles.
These bundles have wi cket - package as base name and they can be placed in one of the package of our
application:
¥ = com
¥ = mycompany
¥ = subpackage

HomePady.html

(5] HomePage.java

[J] LoginFormStateless.java

LoginPage.html

(] LoginPage.java

UnauthorizedPage.html

(4] UnauthorizedPage.java

& wicket-package.properties

(3] wicketApplication.java
B wicket-package.properties

Packages are traversed starting from the one containing the component requesting for a resource and going up
to the root package.

Bundles for feedback messages

The algorithm described so far applies to feedback messages as well. In case of validation errors, the
component that has caused the error will be considered as the component which the string resource is relative
to. Furthermore, just like application class and components, validators can have their own bundles placed next to
their class and having as base name their class name. This allows us to distribute validators along with the
messages they use to report errors:

¥ i com.mycompany.validators
> I MyValidator.java

& MyValidator.properties

Validator's resource bundles have the lowest priority in the lookup algorithm. They can be overwritten by
resource bundles of components, packages and application class.

Extending the default lookup algorithm

Wicket implements the default lookup algorithm using the strategy pattern. The concrete strategies are
abstracted with the interface org. apache.w cket.resource. | oader. | StringResourcelLoader. By
default Wicket uses the following implementations of | St ri ngResour ceLoader (sorted by execution order):

1. ComponentStringResourcelLoader: implements most of the default algorithm. It searches for a given
resource across bundles from the container hierarchy, from class hierarchy and from the given component.

109

2. PackageStringResourcelLoader: searches into package bundles.

3. ClassStringResourcelLoader: searches into bundles of a given class. By default the target class is the
application class.

4. ValidatorStringResourceLoader: searches for resources into validator's bundles. A list of validators is
provided by the form component that failed validation.

5. InitializerStringResourceLoader: this resource allows internationalization to interact with the initialization
mechanism of the framework that will be illustrated in paragraph 17.3.

Developer can customize lookup algorithm removing default resource loaders or adding custom implementations
to the list of the resource loaders in use. This task can be accomplished using method
getStringResourcelLoaders of setting interface or g. apache. wi cket . setti ngs. | ResourceSetti ngs:

@verride
public void init()
{

super.init();
/lretrieve | ResourceSettings and then the list of resource |oaders
Li st<l StringResour ceLoader> resourcelLoaders = get ResourceSettings().
get Stri ngResour ceLoader s();
//custom ze the list...

14.4 Localization of component's choices

Components that inherit from Abstract Choi ce (such as Dr opDownChoi ce, CheckBoxMuil ti pl eChoi ce
and Radi oChoi ce) must override method | ocal i zeDi spl ayVal ues and make it return true to localize the
values displayed for their choices. By default this method return false so values are displayed as they are. Once
localization is activated we can use display values as key for our localized string resources. In project
LocalizedChoicesExample we have a drop-down list that displays four colors (green, red, blue, and yellow) which
are localized in three languages (English, German and Italian). The current locale can be changed with another
drop-down menu (in a similar fashion to project Local i zedG eet i ngs). The code of the home page and the
relative bundles are the following:

Java code:

publ i c HonmePage(final PageParaneters paraneters) {
super (par aneters) ;

Li st<Local e> | ocal es = Arrays. asLi st (Local e. ENGLI SH, Local e. | TALI AN, Local e. GERVAN) ;
Li st<String> colors = Arrays. asList("green", "red", "blue", "yellow');

final DropDownChoi ce<Local e> changelLocal e = new Dr opDownChoi ce<Local e>("changeLocal e",
new Mbdel <Local e>(), |ocal es);

St at el essForm form = new Statel essForm("fornt){

@verride
protected void onSubmit() {

Sessi on. get (). set Local e(changelLocal e. get Model Qbj ect());
}

B

Dr opDownChoi ce<Stri ng> sel ect Col or = new DropDownChoi ce<Stri ng>("sel ect Col or", new
Mbdel <String>(), colors){
@verride

prot ect ed bool ean | ocal i zeDi spl ayVal ues() {
return true;

b

form add(sel ect Col or);
add(form add(changelLocal €));
}

Default bundle (English):

sel ect Col or. nul | =Sel ect a col or
green=G een

r ed=Red

bl ue=Bl ue

yel | ow=Yel | ow

110

German bundle:

sel ect Col or. nul | =Wahl en Si e ei ne Farbe
green=G un

r ed=Rot

bl ue=Bl au

yel | ow=Gel b

Italian bundle:

sel ect Col or. nul | =Scegli un col ore
green=Ver de

red=Rosso

bl ue=Bl u

yel l ow=G al | o

Along with the localized versions of colors names, in the bundles above we can also find a custom value for the
placeholder text (“Select a color ") used for null value. The resource key for this resource is 'null' or '<component
id>.null" if we want to make it component-specific.

14.5 Internationalization and Models

Internationalization is another good chance to taste the power of models. Wicket provides two built-in models to
better integrate our components with string resources: they are ResourceModel and StringResourceModel.

ResourceModel

Model org. apache. wi cket. nmodel . ResourceModel acts just like the read-only model we have
implemented in paragraph 14.3. It simply retrieves a string resource corresponding to a given key:

//build a ResourceMddel for key 'greeti ngMessage'
new Resour ceMbdel ("greeti ngMessage");

We can also specify a default value to use if the requested resource is not found:

//build a ResourceMbdel with a default val ue
new Resour ceMbdel (" not Exi sti ngResource", "Resource not found.");

StringResourceModel

Model or g. apache. wi cket . nmodel . Stri ngResour ceMbdel allows to work with complex and dynamic
string resources containing parameters and property expressions. The basic constructor of this model takes in
input a resource key and another model. This further model can be used by both the key and the related
resource to specify dynamic values with property expressions. For example let's say that we are working on an
e-commerce site which has a page where users can see an overview of their orders. To handle the state of
user's orders we will use the following bean and enum (the code is from project StringResourceModelExample):

Bean:

public class Order inplenents Serializable {

private Date orderDate;
private ORDER _STATUS st at us;

public Order(Date orderDate, ORDER STATUS status) ({
super () ;
this.orderDate = orderDate;

111

this.status = status;

/I Getters and setters for private fields

Enum:

publ i c enum ORDER_STATUS {

PAYMENT _ACCEPTED(0),
I N_PROGRESS(1) ,
SHIPPI NG 2)

DEL| VERED(3) ;

private int code;

/I Getters and setters for private fields
}

Now what we want to do in this page is to print a simple label which displays the status of an order and the date
on which the order has been submitted. All the informations about the order will be passed to a
StringResourceModel with a model containing the bean Order. The bundle in use contains the following
key/value pairs:

order St at us
order St at us

order St at us

or der St at us.

. 0=Your
. 1=Your
2=Your
. 3=Your

paynment submitted on ${orderDate} has been accepted.
order subnmitted on ${orderDate} Is in progress.
order subnmitted on ${orderDate} has been shi pped.
order subnitted on ${orderDate} has been deli vered.

The values above contain a property expression (${orderDate}) that will be evaluated on the data object of the
model. The same technique can be applied to the resource key in order to load the right resource according to
the state of the order:

O der order = new Order(new Date(), ORDER STATUS. | N _PROGRESS);
add(new Label ("order Status", new StringResourceMdel ("orderStatus. ${stat us. code}",
Model . of (order))));

As we can see in the code above also the key contains a property expression (${status.code}) which makes its
value dynamic. In this way the state of an object (an Order in our example) can determinate which resource will
be loaded by StringResourceModel. If we don't use properties expressions we can provide a null value as model
and in this case StringResourceModel will behave exactly as a ResourceModel. StringResourceModel supports
also the same parameter substitution used by standard class java.text.MessageFormat. Parameters can be
generic objects but if we use a model as parameter, StringResourceModel will use the data object inside it as
actual value (it will call getObject on the model). Parameters are passed to constructor as a vararg argument.
Here is an example of usage of parameter substitution:

Java code:

PropertyModel propertyMdel = new PropertyMdel <O der>(order, "orderDate");

[/build a string nodel with two paraneters: a property nodel and an integer val ue

Stri ngResourceMbdel srm = new StringResourcelMbdel ("order Status. delay", null, propertyMdel,
3);

Bundle:

order St at us. del ay=Your order submitted on ${0} has been del ayed by {1} days.

One further parameter we can specify when we build a StringResourceModel is the component that must be
used by the lookup algorithm. Normally this parameter is not relevant, but if we need to use a particular bundle
owned by a component not considered by the algorithm, we can specify this component as second parameter. If

112

we pass all possible parameters to StringResourceModel's constructor we obtain something like this:

new StringResourceMdel ("nyKey", nyConponent, nyMdel, paranl, paran2, paranB,...);

14.6 Summary

Internationalization is a mandatory step if we want to take our applications (and our business!) abroad. Choosing
the right strategy to manage our localized resources is fundamental to avoid to make a mess of them. In this
chapter we have explored the built-in support for localization provided by Wicket, and we have learnt which
solutions it offers to manage resource bundles. In the final part of the chapter we have seen how to localize the
options displayed by a component (such as DropDownChoice or RadioChoice) and we also introduced two new
models specifically designed to localize our components without introducing in their code any detail about
internationalization.

113

15 Resource management with
Wicket

One of the biggest challenge for a web framework is to offer an efficient and consistent mechanism to handle
internal resources such as CSS/JavaScript files, picture files, pdf and so on. Resources can be static (like an
icon used across the site) or dynamic (they can be generated on the fly) and they can be made available to users
as a download or as a simple URL.

In paragraph 6.6 we have already seen how to add CSS and JavaScript contents to the header section of the
page. In the first half of this chapter we will learn a more sophisticated technique that allows us to manage static
resources directly from code and “pack” them with our custom components.

Then, in the second part of the chapter we will see how to implement custom resources to enrich our web
application with more complex and dynamic functionalities.

15.1 Static vs dynamic resources

In Wicket a resource is an entity that can interact with the current request and response and It must implement
interface or g. apache. wi cket. request.resource. | Resource. This interface defines just method
respond(IResource.Attributes attributes) where the nested class IResource. Attributes provides access to
request, response and page parameters objects.

Resources can be static or dynamic. Static resources don't entail any computational effort to be generated and
they generally correspond to a resource on the filesystem. On the contrary dynamic resources are generated on
the fly when they are requested, following a specific logic coded inside them.

An example of dynamic resource is the built-in class CaptchalmageResource in package
or g. apache. wi cket . ext ensi ons. mar kup. ht ml . capt cha which generates a captcha image each time is
rendered.

As we will see in paragraph 15.10, developers can build custom resources extending base class
or g. apache. wi cket . request. resour ce. Abst r act Resour ce.

15.2 Resource references

Most of the times in Wicket we won't directly instantiate a resource but rather we will use a reference to it.
Resource references are represented by abstract class

org. apache. wi cket . request. resour ce. Resour ceRef er ence which returns a concrete resource with
factory method getResource(). In this way we can lazy-initialize resources loading them only the first time they
are requested.

15.3 Package resources

With HTML we use to include static resources in our pages using tags like <script>, <link> or . This is what
we have done so far writing our custom panels and pages. However, when we work with a component-oriented
framework like Wicket, this classic approach becomes inadequate because it makes custom components hardly
reusable. This happens when a component depends on a big number of resources. In such a case, if somebody
wanted to use our custom component in his application, he would be forced to know which resources it depends
on and make them available.

To solve this problem Wicket allows us to place static resource files into component package (like we do with
markup and properties files) and load them from component code.

These kinds of resources are called package resources (a CSS and a JavaScript file in this screenshot):

114

¥ 8 com.mycompany.components

M CustomPanel.java

CustomPanel.html
style.css
Xxquery.min.js

With package resources custom components become independent and self-contained and client code can use
them without worrying about their dependencies.

To load package resources Wicket provides class
org. apache. wi cket. request. resour ce. PackageResour ceRef er ence.

To identify a package resource we need to specify a class inside the target package and the name of the desired
resource (most of the times this will be a file name).

In the following example taken from project ImageAsPackageRes, CustomPanel loads a picture file available as
package resource and it displays it in a tag using the built-in component
or g. apache. w cket . mar kup. ht i . i mage. | mage:

HTML:

<htm >
<head>. .. </ head>
<body>
<wi cket : panel >
Package resource image: <ing w cket:id="packageResPicture"/>
</ wi cket : panel >
</ body>
</htnm >

Jave Code:

public class CustonPanel extends Panel {

public CustonPanel (String id) {
super (i d);
PackageResour ceRef erence resourceRef erence =
new PackageResour ceRef erence(get C ass(), "cal endar.jpg");
add(new | mage(" packageResPi cture", resourceReference));

Wicket will take care of generating a valid URL for file calendar.jpg. URLs for package resources have the
following structure:

<path to application root>/w cket/resource/<fully qualified classnane>/<resource
file name>-<ver-<id>>(.file extension)

In our example the URL for our picture file calendar.jpg is the following:
./ wi cket/resource/org.w cket Tutori al . Cust onPanel / cal endar -ver-1297887542000. j pg

The first part of the URL is the relative path to the application root. In our example our page is already at the
application's root so we have only a single-dotted segment. The next two segments, wicket and resource, are
respectively the namespace and the identifier for resources seen in paragraph 10.6.4.

The fourth segment is the fully qualified name of the class used to locate the resource and it is the scope of the
package resource. In the last segment of the URL we can find the name of the resource (the file name).

As you can see Wicket has automatically appended to the file name a version identifier (ver-1297887542000).
When Wicket runs in DEVELOPMENT mode this identifier contains the timestamp in millisecond indicating the
last time the resource file was modified. This can be useful when we are developing our application and resource
files are frequently modified. Appending the timestamp to the original name we are sure that our browser will use
always the last version of the file and not an old, out of date, cached version.

When instead Wicket is running in DEPLOYMENT mode, the version identifier will contain the MD5 digest of the
file instead of the timestamp. The digest is computed only the first time the resource is requested. This perfectly

115

makes sense as static resources don't change so often when our application runs into production environment
and when this appends the application is redeployed.

M Package resources can be localized following the same rules seen for resource bundles
and markup files:

¥ = org
¥ (= wicketTutorial

& calendar_fr.jpg

i, calendar.jpg
CustomPanel.html

(3] customPanel.java
In the example illustrated in the picture above, if we try to retrieve package resource

calendar.jpg when the current locale is set to French, the actual file returned will be
calendar_fr.jpg.

Inline Image - embedded resource reference content

In some components like in the inline image resource references are going to be translated to other
representations like base64 content.

Java Code:

add(new I nlinelmage("inline", new PackageResour ceRef erence(getd ass(),"i nage2.gif"

)))s

Using package resources with tag <wicket:link>

In paragraph 10.3 we have used tag <wicket:link> to automatically create links to bookmarkable pages. The
same technique can be used also for package resources in order to use them directly from markup file. Let's
assume for example that we have a picture file called icon.png placed in the same package of the current page.
Under these conditions we can display the picture file using the following markup fragment:

<wi cket : | ink>
<ing src="icon.png"/>
</ wi cket:|ink>

In the example above Wicket will populate the attribute src with the URL corresponding to the package resource
icon.png. <wicket:link> supports also tag <link> for CSS files and tag <script> for JavaScript files.

15.4 Adding resources to page header section

Wicket comes with interface org. apache. w cket. markup. ht ml . | Header Cont ri but or which allows
components and behaviors (which will be introduced later in paragraph 17.1) to contribute to the header section
of their page. The only method defined in this interface is r ender Head(| Header Response response)
where | Header Response is an interface which defines method r ender (Headerltem it en) to write static
resources or free-form text into the header section of the page.

Header entries are instances of abstract class or g. apache. wi cket . mar kup. head. Header | t em Wicket
provides a set of built-in implementations of this class suited for the most common types of resources. With the
exception of Pri ori t yHeader | t em every implementation of Header | t emis an abstract factory class:

® CssHeaderltem: represents a CSS resource. Factory methods provided by this class are f or Ref er ence
which takes in input a resource reference, f or Url which creates an CSS item from a given URL and

116

f or CSS which takes in input an arbitrary CSS string and an optional id value to identify the resource.

® JavaScriptHeaderltem: represents a JavaScript resource. Just like CssHeader | t emit provides factory
methods f or Ref er ence and f or Url along with method f or Scri pt which takes in input an arbitrary
string representing the script and an optional id value to identify the resource. Method f or Ref er ence also
supports boolean parameter def er which renders the namesake attribute in the script tag (def er attribute
indicates that our script must be execute only after the page has loaded).

® OnDomReadyHeaderltem: it adds JavaScript code that will be executed after the DOM has been built, but
before external files (such as picture, CSS, etc...) have been loaded. The class provides a factory method
forScri pt which takes in input an arbitrary string representing the script to execute.

® OnEventHeaderltem: the JavaScript code added with this class is executed when a specific JavaScript
event is triggered on a given DOM element. The factory method is forScript(String target,
String event, CharSequence javaScript), where target is the id of a DOM element (or the
element itself), event is the event that must trigger our code and javaScript is the code to execute.

® OnLoadHeaderltem: the JavaScript code added with this class is executed after the whole page is loaded,
external files included. The factory method is f or Scri pt (Char Sequence javaScri pt).

® PriorityHeaderltem: it wraps another header item and ensures that it will have the priority over the other
items during rendering phase.

® StringHeaderltem: with this class we can add an arbitrary text to the header section. Factory method is
forString(Char Sequence string).

®* MetaDataHeaderltem: starting from version 6.17.0, Wicket provides this class to handle meta informations
such as <meta> tags or canonical link element. The available factory methods are f or Li nkTag and
f or Met aTag which can be used to create respectively a <link> tag or a <meta> one. We can add tag
attribute to an existing instance of Met aDat aHeader | t em with method addTagAttri bute(String
attributeNanme, Object attributeVal ue). See JavaDoc for further details on this class.

® HtmlimportHeaderltem: introduced in Wicket 6.19.0, provides a HTML5 functionality to include other
wicket pages (other html files) into the current generated. Factory methods provided by this class are
forl mport Li nkTag which takes the page class or the url of the page / html to be included.

In the following example our custom component loads a CSS file as a package resource (placed in the same
package) and it adds it to header section.

public class MyConponent extends Conponent {

@verride
public void renderHead(| Header Response response) {
PackageResour ceRef erence cssFile =
new PackageResour ceReference(this.getC ass(), "style.css");
CssHeader | tem cssltem = CssHeader|tem for Ref erence(cssFil e);

response. render (csslten);

}

15.5 Context-relative resources

In web applications, it's quite common to have one or more root context folders containing css/js files. These
resources are normally referenced with an absolute path inside link/script tags:

<script src="/msc/js/jscript.js"></script>
<link type="text/css" rel="styl esheet" href="/m sc/css/thenes/style.css" />

To handle this kind of resources from code we can use resource reference class
or g. apache. wi cket . request. resource. Cont ext Rel ati veResour ceRef erence. To build a new
instance of this class we must specify the root context path of the resource we want to use:

Cont ext Rel at i veResour ceRef erence resource = new Cont ext Rel ati veResour ceRef er ence(
"/msc/js/jscript.js");

117

http://en.wikipedia.org/wiki/Canonical_link_element

By default when our application runs in DEPLOYMENT mode Cont ext Rel ati veResour ceRef er ence will
automatically load the minified version of the specified resource using 'min' as postfix. In the example above it
will load ‘/miscl/js/jscript.min.js'. We can force Cont ext Rel ati veResour ceRef erence to always use the
not-minified resource passing an additional flag to class constructor:

[1it will always use '/msc/js/jscript.js'
Cont ext Rel at i veResour ceRef erence resource = new Cont ext Rel ati veResour ceRef er ence(
"/msc/js/jscript.js", false);

The minified postfix can be customized with an optional string parameter:

[1it will use '/msc/js/jscript.mnified.js" in DEPLOYMENT node
Cont ext Rel at i veResour ceRef erence resource = new Cont ext Rel ati veResour ceRef er ence(
"/msc/js/jscript.js", "mnified");

Cont ext Rel ati veResour ceRef er ence is usually used with the header item classes we have seen before in
this chapter to create entries for the page header section.

Picture files

For picture files Wicket provides a specific component with class
or g. apache. wi cket . mar kup. ht ml . i mage. Cont ext | mage which is meant to be used with tag

[/build the conponent specifying its id and picture's context path
Cont ext | mage i mrage = new Cont ext | mage(" nmyPi cture", "/m sc/ings/ mypic.png");

15.6 Resource dependencies

Class ResourceReference allows to specify the resources it depends on overriding method
get Dependenci es() . The method returns an iterator over the set of Header | t ens that must be rendered
before the resource referenced by Resour ceRef er ence can be used. This can be really helpful when our
resources are JavaScript or CSS libraries that in turn depend on other libraries.

For example we can use this method to ensure that a custom reference to JQueryUl library will find JQuery
already loaded in the page:

Ul jqueyuiUrl = Url.parse("https://ajax.googl eapis.com aj ax/|ibs/jqueryui/" +
"1.10.2/jquery-ui.mn.js");

Ur | Resour ceRef erence jqueryui Ref = new Url Resour ceRef erence(j queyui Url){
@verride
public Iterabl e<? extends Headerl|ten> get Dependencies() {
Application application = Application.get();
Resour ceRef erence jqueryRef = application. getJavaScriptLi brarySettings().
get JQuer yRef erence() ;

return Arrays. asLi st(JavaScri pt Header|tem f or Ref erence(j queryRef));
IE

Please note that in the code above we have built a resource reference using a URL to the desired library instead
of a package resource holding the physical file.

The same method get Dependenci es() is defined also for class Header | t em

15.7 Aggregate multiple resources with resource bundles

One of the best practices to make our web application faster and reduce its latency is to reduce the number of
requests to the server to load page resources like JavaScript or CSS files. To achieve this goal some

118

JavaScript-based build tools (like Grunt) allow to merge multiple files used in a page into a single file that can be
loaded in a single request. Wicket provides class or g. apache. wi cket . Resour ceBundl es to aggregate
multiple resource references into a single one. A resource bundle can be declared during application initialization
listing all the resources that compose it:

@verride
public void init() {
super.init();

get Resour ceBundl es() . addJavaScri pt Bundl e(W cket Appl i cati on. cl ass,
"jqueryUi Js",
j queryJsRef erence
J quer yUi JsRef er ence) ;

get Resour ceBundl es() . addCssBundl e(W cket Appl i cati on. cl ass,
"] queryUi Css",
j quer yCssRef erence
J quer yUi CssRef erence);

To declare a new resource bundle we need to provide a scope class (W cket Appl i cati on. cl ass in our
example) and an unique name. Now, when one of the resources included in the bundle is requested, the entire
bundle is rendered instead.

Ay A specific resource reference can not be shared among different resource bundles (i.e. it
can be part of only one bundle).

15.8 Put JavaScript inside page body

Some web developers prefer to put their <script> tags at the end of page body instead of inside the <head> tags:

<ht ml >

<head>
//no <script> tag here...
</ head>

<body>

<script>

//one or nore <script> tags at the end of the body
</script>

</ body>

</htm >

In Wicket we can achieve this result providing a custom | Header ResponseDecor at or to a our application and
using Wicket tag <wicket:container/> to indicate where we want to render our scripts inside the page. Interface
| Header ResponseDecor at or defines method | Header Response decorate(l Header Response
response) which allows to decorate or add funtionalities to Wicket | Header Response. Our custom
| Header ResponseDecor at or can be registered in the application with method
set Header ResponseDecor at or . Anytime Wicket creates an instance of | Header Response, it will call the
registered | Header ResponseDecor at or to decorate the header response.

In the example project Scri pt | nsi deBody we can find a custom | Header ResponseDecor at or that renders
CSS into the usual <head> tag and put JavaScricpt header items into a specific container (tag
<wicket:container/>) Wicket already comes with class JavaScri pt Fi | t er edl nt oFoot er Header Response
which wraps a | Header Response and renders in a given container all the instances of
JavaScri pt Header | t em The following code is taken from the Application class of the project:

/1.

"@ﬁwerride
public void init()

set Header ResponseDecor at or (new JavaScri pt ToBucket ResponseDecor at or ("f oot er - cont ai ner "

))s

119

/**
* Decorates an original |HeaderResponse and renders all javascript itens
* (JavaScri ptHeaderltem, to a specific container in the page.
*/

static class JavaScri pt ToBucket ResponseDecor at or i npl enents | Header ResponseDecor at or

private String bucket Nane;

publ i c JavaScri pt ToBucket ResponseDecorator (String bucket Nanme) {
t hi s. bucket Nane = bucket Nane;
}

@verride
publi c | Header Response decor at e(| Header Response response) {
return new JavaScri pt Fi | t er edl nt oFoot er Header Response(response, bucket Nane) ;

As you can see in the code above the "bucket" that will contain JavaScript tags is called " f oot er - cont ai ner "
. To make a use of it the developer have to add a special component called Header ResponseCont ai ner in his

page:

add(new Header ResponseCont ai ner ("sonel d", "filterNane"))

Please note that Header ResponseCont ai ner's needs also a name for the corresponding header response's

filter. The markup of our page will look like this:

<ht ml >

<header >
//no <script> tag here...
</ header >

<body>

<l-- here we will have our JavaScript tags -->
<wi cket : contai ner w cket:id="soneld"/>

</ body>

</htnm >

The code of the home page is the following:

publ i c HonePage(fi nal PageParaneters paraneters) {
super (par aneters);

add(new Header ResponseCont ai ner ("f oot er-contai ner", "footer-container"));

@verride
public void render Head(| Header Response response) {
response. render (JavaScri pt Header | t em f or Ref er ence(new
PackageResour ceRef erence(get G ass(),
"javasciptLibrary.js")));

response. r ender (OnEvent Header I tem for Script("'logo'", "click", "alert('Cicked nme!')"))

Looking at the code above you can note that our page adds two script to the header section: the first is an
instance of JavaScri pt Header |t emand will be rendered in the Header ResponseCont ai ner while the

second will follow the usual behavior and will be rendered inside <head> tag.

15.9 Header contributors positioning

Starting from version 6.15.0 we can specify where header contributors must be rendered inside <head> tag

using the placeholder tag <wi cket : header-itens/ >:

<head>

120

<met a charset="UTF-8"/>

<wi cket : header-itens/>

<script src="my-nonkey- patch-of -wi cket -aj ax.] s"></scri pt>
</ head>

With the code above all header contributions done by using IHeaderResponse in your Java code or the special
<wi cket: head> tag will be put between the <meta> and <script> elements, i.e. in the place of
<wi cket : header-itens/>.

This way you can make sure that some header item is always before or after the header items managed by
Wicket.

<wi cket : header-itens/ > can be used only in the page's <head> element and there could be at most one
instance of it.

15.10 Custom resources

In Wicket the best way to add dynamic functionalities to our application (such as csv export, a pdf generated on
the fly, etc...) is implementing a custom resource. In this paragraph as example of custom resource we will build
a basic RSS feeds generator which can be used to publish feeds on our site (project CustomResourceMounting).
Instead of generating a RSS feed by hand we will use Rome framework and its utility classes.

As hinted above in paragraph 15.1, class Abstract Resour ce can be used as base class to implement new
resources. This class defines abstract method newResour ceResponse which is invoked when the resource is
requested. The following is the code of our RSS feeds generator:

public class RSSProducer Resource extends Abstract Resource {

@verride
prot ect ed ResourceResponse newResour ceResponse(Attributes attributes) {
Resour ceResponse resour ceResponse = new Resour ceResponse();
resour ceResponse. set Cont ent Type("text/xm ");
resour ceResponse. set Text Encodi ng("utf-8");

resour ceResponse. set Wit eCal | back(new WiteCal | back()

@verride
public void witeData(Attributes attributes) throws | OException

Qut put St ream out put St ream = attri butes. get Response(). get Qut put Strean() ;
Witer witer = new QutputStreamWiter (outputStrean);
SyndFeedQut put out put = new SyndFeedQut put () ;
try {
out put . out put (get Feed(), writer);
} catch (FeedException e)
throw new W cket Runti meException("Problens witing feed to response...");
}
}
1)

return resourceResponse;

}
/1 method get Feed() ...

Method newResour ceResponse returns an instance of Resour ceResponse representing the response
generated by the custom resource. Since RSS feeds are based on XML, in the code above we have set the type
of the response to text/xml and the text encoding to utf-8.

To specify the content that will be returned by our resource we must also provide an implementation of inner
class Wi t eCal | back which is responsible for writing content data to response’s output stream. In our project
we used class SyndFeedOutput from Rome framework to write our feed to response. Method get Feed() is just
an utility method that generates a sample RSS feed (which is an instance of interface
com sun. syndi cat i on. f eed. synd. SyndFeed).

Now that we have our custom resource in place, we can use it in the home page of the project. The easiest way
to make a resource available to users is to expose it with link component Resour ceLi nk:

add(new Resour ceLi nk("rssLi nk", new RSSProducer Resource()));

121

In the next paragraphs we will see how to register a resource at application-level and how to mount it to an
arbitrary URL.

15.11 Mounting resources

Just like pages also resources can be mounted to a specific path. Class WebAppl i cat i on provides method
nount Resour ce which is almost identical to nount Page seen in paragraph 10.6.1:

@verride
public void init() {
super.init();
/lresource nounted to path /fool/ bar
Resour ceRef erence resourceReference = new ResourceReference("rssProducer”){
RSSReader Resour ce rssResource = new RSSReader Resource() ;
@verride
public | Resource getResource() {
return rssResource;

mount Resour ce("/foolbar", resourceReference);

}

With the configuration above (taken from project Cust onResour ceMount i ng) every request to /foo/bar will be
served by the custom resource built in the previous paragraph.

Parameter placeholders are supported as well:

@verride
public void init() {
super.init();
//resource nmounted to path /foo with a required indexed paraneter
Resour ceRef erence resourceRef erence = new Resour ceReference("rssProducer") {
RSSReader Resour ce rssResource = new RSSReader Resource();
@verride
public | Resource getResource() {
return rssResource;

Dk
nmount Resour ce("/ bar/ ${baz}", resourceReference);

}

15.12 Shared resources

Resources can be added to a global registry in order to share them at application-level. Shared resources are
identified by an application-scoped key and they can be easily retrieved at a later time using reference class
Shar edResour ceRef erence. The global registry can be accessed with Application's method
get Shar edResour ces. In the following excerpt of code (taken again from project Cust onResour ceMbunt i ng
) we register an instance of our custom RSS feeds producer as application-shared resource:

//init application's nethod
@verride
public void init()({
RSSPr oducer Resour ce rssResource = new RSSProducer Resource();
...
get Shar edResour ces() . add(" gl obal RSSProducer", rssResource);
}

Now to use an application-shared resource we can simply retrieve it using class Shar edResour ceRef er ence
and providing the key previously used to register the resource:

add(new Resour ceLi nk("gl obal RssLi nk", new Shar edResour ceRef er ence(" gl obal RSSPr oducer")));

The URL generated for application shared resources follows the same pattern seen for package resources:

./ wi cket/resource/ org. apache. wi cket. Appl i cati on/ gl obal RSSPr oducer

122

The last segment of the URL is the key of the resource while the previous segment contains the scope of the
resource. For application-scoped resources the scope is always the fully qualified name of class Appl i cati on.
This should not be surprising since global resources are visible at application level (i.e. the scope is the
application).

M, Package resources are also application-shared resources but they don't need to be
explicitly registered.

A Remember that we can get the URL of a resource reference using method
url For (Resour ceRef erence resourceRef, PageParaneters parans)
available with both class Request Cycl e and class Conponent .

15.13 Customizing resource loading

Wicket loads application's resources delegating this task to a resource locator represented by interface
org. apache. wi cket.core. util.resource.| ocator.| ResourceStreamnlocat or. To retrieve or modify
the current resource locator we can use the getter and setter methods defined by setting interface
| Resour ceSet tings:

//init application's nethod
@verride
public void init()({
/1 get the resource |ocator
get Resour ceSet tings().get ResourceStreaniocator();
//set the resource |ocator
get ResourceSettings().set ResourceStreaniocator (nyLocator);

The default locator used by Wicket is class Resour ceSt r eanlLocat or which in turn tries to load a requested
resource using a set of implementations of interface | Resour ceFi nder. This interface defines method
find(d ass class, String pathnane) which tries to resolve a resource corresponding to the given class
and path.

The default implementation of | Resour ceFi nder used by Wicket is Cl assPat hResour ceFi nder which
searches for resources into the application class path. This is the implementation we have used so far in our
examples. However some developers may prefer storing markup files and other resources in a separate folder
rather than placing them side by side with Java classes.

To customize resource loading we can add further resource finders to our application in order to extend the
resource-lookup algorithm to different locations. Wicket already comes with two other implementations of
IResourceFinder designed to search for resources into a specific folder on the file system. The first is class Pat h
and it's defined in package or g. apache. wi cket.util.fil e. The constructor of this class takes in input an
arbitrary folder that can be expressed as a string path or as an instance of Wicket utility class Fol der (in
package or g. apache. wi cket. util.file). The second implementation of interface | Resour ceFi nder is
class WebAppl i cat i onPat h which looks into a folder placed inside webapp's root path (but not inside folder
WEB-INF).

Project CustomFolder4dMarkupExample uses WebAppl i cat i onPat h to load the markup file and the resource
bundle for its home page from a custom folder. The folder is called markupFolder and it is placed in the root path
of the webapp. The following picture illustrates the file structure of the project:

123

¥ (= src
¥ % main
¥ & java
¥ & org
[¥} HomePage.java
[} WicketApplication.java
B [resources
¥ =% webapp
¥ % markupFolder
Y i org
¥ = wicketTutorial
E) HomePage.html
E) HomePage.properties

As we can see in the picture above, we must preserve the package structure also in the custom folder used as
resource container. The code used inside application class to configure WebApplicationPath is the following:

@verride
public void init()

get Resour ceSet ti ngs() . get Resour ceFi nders() . add(
new WebAppl i cati onPat h(get Servl et Cont ext (), "markupFol der"));

Method getResourceFinders() defined by setting interface IResourceSettings returns the list of resource finders
defined in our application. The constructor of WebApplicationPath takes in input also an instance of standard
interface javax.servlet.ServletContext which can be retrieved with WebApplication's method getServletContext().

Ay By default, if resource files can not be found inside application classpath, Wicket will
search for them inside “resources” folder. You may have noted this folder in the previous
picture. It is placed next to the folder “java” containing our source files:

¥ [src
¥ =% main
¥ i java
¥ i org
[/ HomePage.java
[} WicketApplication.java
¥ & webapp
¥ & markupFolder
Y i org
¥ =% wicketTutorial

[HomePage.html
El HomePage.properties

This folder can be used to store resource files without writing any configuration code.

124

15.14 CssHeaderltem and JavaScriptHeaderltem compression

Introduced in Wicket 6.20.0 / Wicket 7.0.0 there is a default way to be used in which the output of all
CssHeaderltems / JavaScriptHeaderltems is modified before they are cached and delivered to the client. You
can add a so called Compressor by receiving the resource settings and invoke #setJavaScriptCompressor(...) /
#setJavaScriptCompressor(...). If you want to add several Compressors use
org. apache. wi cket.resource. CompositeCssConmpressor or

or g. apache. wi cket . resour ce. Conposi t eJavaScri pt Conpr essor

Java Code:

public class Wcket Application extends WebApplication

@verride
public d ass<? extends WebPage> get HonePage()

return HonePage. cl ass;
@verride
public void init()
{

super.init();
get Resour ceSet ti ngs() . set CssConpressor (new CssUr |l Repl acer ());

In the previous example you see that a or g. apache. wi cket . resource. CssUr| Repl acer is added which
does not compress the content, but replaces all urls in CSS files and applies a Wicket representation for them by
automatically wrapping them into PackageResourceReferences. Here is an example where you can see what
Wicket does with the url representation.

HomePage (in package my/company/): Java Code:

f'ésponse. render (CssRef er enceHeader | t em f or Ref er ence(new
PackageResour ceRef er ence(HonmePage. cl ass, "res/css/ mycss.css")));

mycss.css (in package my/company/res/css/): CSS:

body{
background-i mage: url ('../images/ sone. png');

some.png (in package my/company/res/images/): <blob>

Output of mycss.css: CSS:

body{
background-i mage: url ('../i mages/ sone-ver-1425904170000. png') ;

If you add a url which looks like this background-image:url('../images/some.png?embedBase64"); Wicket is going
to embed the complete image as base64 string with its corresponding mime type into the css file. It looks like the
following code block demonstrates.

Output of mycss.css: CSS:

body/{

125

background-i nmage: url (data:i mage/ png; base64, ROl GODI h1wATAX. .. .);

15.15 Summary

In this chapter we have learnt how to manage resources with the built-in mechanism provided by Wicket. With
this mechanism we handle resources from Java code and Wicket will automatically take care of generating a
valid URL for them. We have also seen how resources can be bundled as package resources with a component
that depends on them to make it self-contained.

Then, in the second part of the chapter, we have built a custom resource and we have learnt how to mount it to
an arbitrary URL and how to make it globally available as shared resource.

Finally, in the last part of the paragraph we took a peek at the mechanism provided by the framework to
customize the locations where the resource-lookup algorithm searches for resources.

126

16 An example of integration with
JavaScript

It's time to put into practice what we have learnt so far in this guide. To do this we will build a custom date
component consisting of a text field to edit a date value and a fancy calendar icon to open a JavaScript
datepicker. This chapter will also illustrate an example of integration of Wicket with a JavaScript library like

JQuery and its child project JQuery Ul .
16.1 What we want to do...

For end-users a datepicker is one of the most appreciated widget. It allows to simply edit a date value with the
help of a user-friendly pop-up calendar. That's why nearly all Ul frameworks provide a version of this widget.

Popular JavaScript libraries like YUl and JQuery come with a ready-to-use datepicker to enrich the user
experience of our web applications. Wicket already provides a component which integrates a text field with a
calendar widget from YUI library, but there is no built-in component that uses a datepicker based on JQuery
library.

As both JQuery and its child project JQueryUl have gained a huge popularity in the last years, it's quite
interesting to see how to integrate them in Wicket building a custom component. In this chapter we will create a
custom datepicker based on the corresponding widget from JQueryUl project:

| @ localhost:8085/CustomDatepicker/

My custom JQuery datepicker: [|]ﬁ

‘_ﬂ |Sep :] 2012 :| ﬂ_‘

Me Tu We Th Fr Sa Su

1| 2

3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22
24 25 26 27 28 29 30

@ On Internet you can find different libraries that already offer a strong integration between
Wicket and JQuery. The goal of this chapter is to see how to integrate Wicket with a
JavaScript framework building a simple homemade datepicker which is not intended to
provide every feature of the original JavaScript widget.

What features we want to implement

Before starting to write code, we must clearly define what features we want to implement for our component. The
new component should:

® Be self-contained: we must be able to distribute it and use it in other projects without requiring any kind of
additional configuration.

® Have a customizable date format: developer must be able to decide the date format used to display date

127

http://jquery.com/
http://jqueryui.com/

value and to parse user input.

® Be localizable: the pop-up calendar must be localizable in order to support different languages.

That's what we'd like to have with our custom datepicker. In the rest of the chapter we will see how to implement
the features listed above and which resources must be packaged with our component.

16.2 ...and how we will do it

Our new component will extend the a built-in text field
or g. apache. wi cket . ext ensi ons. markup. html . form Dat eText Field which already uses a
java.util.Date as model object and already performs conversion and validation for input values. Since the
component must be self-contained, we must ensure that the JavaScript libraries it relies on (JQuery and JQuery
Ul) will be always available.

Starting from version 6.0 Wicket has adopted JQuery as backing JavaScript library so we can use the version
bundled with Wicket for our custom datepicker.

To make JQuery Ul available we should instead go to its official site, download the required artifacts and use
them as package resources of our component.

Component package resources

JQuery Ul needs the following static resources in order to work properly:
® jquery-ui.min.js: the minified version of the library.
® jquery-ui.css: the CSS containing the style used by JQuery Ul widgets.
® jquery-ui-il8n.min.js: the minified JavaScript containing the built-in support for localization.

® Folder 'images': the folder containing picture files used by JQuery Ul widgets.

In the following picture we can see these package resources with our component class (named
JQueryDateField):

) HomePage.html

[/} HomePage.java

[} JQueryDateField.java
[} WicketApplication.jave
&, calendar.jpg

[} JOQDatePicker.js

Along with the four static resources listed above, we can find also file calendar.jpg, which is the calendar icon
used to open the pop up calendar, and file JQDatePicker.js which contains the following custom JavaScript code
that binds our component to a JQuery Ul datepicker:

function initJQDatepicker(inputld, countrylsoCode, dateFormat, cal endarlcon) {
var | ocalizedArray = $.datepicker.regi onal [countryl soCode] ;
| ocal i zedArray[' buttonlnage'] = cal endarl con;
| ocal i zedArray[' dateFormat'] = dat eFornat;
i ni t Cal endar (| ocal i zedArray);
$("#" + inputld).datepicker(localizedArray);

IE

function initcCal endar (| ocalizedArray){
| ocal i zedArray[' changeMonth'] = true;
| ocal i zedArray[' changeYear'] = true;
| ocal i zedArray[' showOn'] = '"button';

128

| ocal i zedArray[' buttonl mageOnly'] = true;

Function initJQDatepicker takes in input the following parameters:
® inputld: the id of the HTML text field corresponding to our custom component instance.

® countrylsoCode: a two-letter low-case ISO language code. It can contain also the two-letter upper-case
ISO country code separated with a minus sign (for example en-GB)

® dateFormat: the date format to use for parsing and displaying date values.

® calendarlcon: the relative URL of the icon used as calendar icon.

As we will see in the next paragraphs, its up to our component to generate this parameters and invoke the
initJQDatepicker function.

Function initCalendar is a simple utility function that sets the initialization array for datepicker widget. For more
details on JQuery Ul datepicker usage see the documentation at http://jqueryui.com/ datepicker.

Initialization code

The initialization code for our component is contained inside its method onlnitialize and is the following:

@verride

protected void onlnitialize() {
super.onlnitialize();
set Qut put Mar kupl d(true);

datePattern = new ResourcelMbdel ("jqueryDateFi el d. shortDatePattern”, "nm dd/yy")
.get Obj ect ();
countryl soCode = new ResourceModel ("j queryDat eFi el d. countryl soCode", "en-GB")

.get Obj ect ();

PackageResour ceRef erence resour ceRef erence =
new PackageResour ceRef erence(get d ass(), "cal endar.jpg");

url Forlcon = url For(resourceRef erence, new PageParaneters());
dat eConverter = new PatternDateConverter(datePattern, false);
}

@verride
public <Date> | Converter<Date> get Converter(C ass<Date> type) {
return (I Converter<Date>) dateConverter;

The first thing to do inside onlnitialize is to ensure that our component will have a markup id for its related text
field. This is done invoking setOutputMarkupld(true).

Next, JQueryDateField tries to retrieve the date format and the ISO language code that must be used as
initialization parameters. This is done using class Resour ceMddel which searches for a given resource in the
available bundles. If no value is found for date format or for ISO language code, default values will be used
(‘'mm/dd/yy' and 'en-GB").

To generate the relative URL for calendar icon, we load it as package resource reference and then we use
Conponent 's method urlFor to get the URL value (we have seen this method in paragraph 9.3.2).

The last configuration instruction executed inside onlnitialize is the instantiation of the custom converter used by
our component. This converter is an instance of the built-in class
org. apache. wi cket . dateti ne. PatternDat eConvert and must use the previously retrieved date format
to perform conversion operations. Now to tell our component to use this converter we must return it overriding
For mConponent 's method get Converter.

Header contributor code
The rest of the code of our custom component is inside method r ender Header , which is responsible for adding

to page header the bundled JQuery library, the three files from JQuery Ul distribution, the custom file
JQDatePicker.js and the invocation of function i ni t JQDat epi cker :

129

@verride
public voi d render Head(| Header Response response) {
super . render Head(r esponse) ;

[1if conmponent is disabled we don't have to | oad the JQueryU datepicker
i f(!1sEnabl edl nHi erarchy())
return;
//add bundl ed JQuery
| JavaScri ptLi brarySettings javaScriptSettings =
get Appli cation().getJavaScriptLibrarySettings();
response. render (JavaScri pt Header | t em
for Ref erence(j avaScri pt Setti ngs. get JQueryReference()));

/I add package resources
response. render (JavaScri pt Header | t em

f or Ref er ence(new PackageResour ceRef erence(getCl ass(), "jquery-ui.mn.js")));
response. render (JavaScri pt Header | t em

f or Ref er ence(new PackageResour ceRef erence(getC ass(), "jquery-ui-il8n.mn.js")));
response. render (CssHeader | tem)

I

f or Ref er ence(new PackageResour ceRef erence(get Cl ass(), "jquery-ui.css")
/ladd customfile JQDatePicker.js. Reference JQatePickerRef is a static fie
response. render (JavaScri pt Header | t em f or Ref er ence(JQDat ePi cker Ref)) ;

)
d

/ladd the init script for datepicker
String jqueryDateFormat = datePattern.replace("yyyy",
String initScript = ";initJQDatepicker('" + getMarkupld
"', """ + jqueryDateFormat + "',
response. r ender (OnLoadHeader | tem for Script(initScript));

" "

). toLower Case() ;
+ "', '" + countryl soCode +
+

yy
0
[nmeon + url Forl COn +l|l) ; u;

If component is disabled the calendar icon must be hidden and no datepicker must be displayed. That's why
render Header is skipped if component is not enabled.

To get a reference to the bundled JQuery library we used the JavaScript setting interface
| JavaScri pt Li brarySettings and its method get JQuer yRef er ence.

In the last part of r ender Header we build the string to invoke function i ni t JQDat epi cker using the values
obtained inside onlnitialize. Unfortunately the date format used by JQuery Ul is different from the one adopted in
Java so we have to convert it before building the JavaScript code. This init script is rendered into header section
using a OnLoadHeader | t emto ensure that it will be executed after all the other scripts have been loaded.

A If we add more than one instance of our custom component to a single page, static
resources are rendered to the header section just once. Wicket automatically checks if a
static resource is already referenced by a page and if so, it will not render it again.

This does not apply to the init script which is dynamically generated and is rendered for
every instance of the component.

@ Our datepicker is not ready yet to be used with AJAX. In chapter 18 we will see how to
modify it to make it AJAX-compatible.

16.3 Summary

In this brief chapter we have seen how custom components can be integrated with DHTML technologies. To do
so we have used most of what we have learnt in this guide. Now we are able to build complex components with a
rich user experience. However this is not enough yet to develop Web 2.0 applications. We still have to cover a
fundamental technology like AJAX and some other Wicket-related topics that will help us building our application
in more modular and efficient way.

130

http://en.wikipedia.org/wiki/Dynamic_HTML
http://en.wikipedia.org/wiki/Web_2.0

17 Wicket advanced topics

In this chapter we will learn some advanced topics which have not been covered yet in the previous chapters but
which are nonetheless essential to make the most of Wicket and to build sophisticated web applications.

17.1 Enriching components with behaviors

With class or g. apache. wi cket . behavi or. Behavi or Wicket provides a very flexible mechanism to share
common features across different components and to enrich existing components with further functionalities. As
the class name suggests, Behavi or adds a generic behavior to a component modifying its markup and/or
contributing to the header section of the page (Behavi or implements the interface | Header Cont ri but or).

One or more behaviors can be added to a component with Conponent 's method add(Behavi or. ..), while to
remove a behavior we must use method r enove(Behavi or) .

Here is a partial list of methods defined inside class Behavi or along with a brief description of what they do:
* peforeRender(Component component): called when a component is about to be rendered.
* afterRender(Component component): called after a component has been rendered.

® onComponentTag(Component component, ComponentTag tag): called when component tag is being
rendered.

® getStatelessHint(Component component): returns if a behavior is stateless or not.
® bind(Component component): called after a behavior has been added to a component.
¢ unbind(Component component): called when a behavior has been removed from a component.

® detach(Component component): overriding this method a behavior can detach its state before being
serialized.

® jsEnabled(Component component): tells if the current behavior is enabled for a given component. When
a behavior is disabled it will be simply ignored and not executed.

® isTemporary(Component component): tells component if the current behavior is temporary. A temporary
behavior is discarded at the end of the current request (i.e it's executed only once).

® onConfigure(Component component): called right after the owner component has been configured.

® onRemove(Component component): called when the owner component has been removed from its
container.

® renderHead(Component component, IHeaderResponse response): overriding this method behaviors
can render resources to the header section of the page.

For example the following behavior prepends a red asterisk to the tag of a form component if this one is required:

public class RedAsteriskBehavi or extends Behavior {

@verride
public voi d beforeRender (Conponent conponent) {
Response response = conponent. get Response();
StringBuffer asterisktH m = new StringBuffer(200);

i f (conmponent i nstanceof FormConponent
&& ((For mConponent) conponent) . i sRequired()){
asteri skH nl . append(" <b styl e="col or:red;font-size: medi un'>*");

response.wite(asteriskHn);

131

Since method bef or eRender is called before the coupled component is rendered, we can use it to prepend
custom markup to component tag. This can be done writing our markup directly to the current Response object,
as we did in the example above.

Please note that we could achieve the same result overriding component method onBef or eRender . However
using a behavior we can easily reuse our custom code with any other kind of component without modifying its
source code. As general best practice we should always consider to implement a new functionality using a
behavior if it can be shared among different kinds of component.

Behaviors play also a strategic role in the built-in AJAX support provided by Wicket, as we will see in the next
chapter.

17.2 Generating callback URLs with IRequestListener

With Wicket it's quite easy to build a callback URL that executes a specific method on server side. This method
must be defined in a functional interface (i.e. an an interface that defines just one method) that inherits from
built-in or g. apache. wi cket . | Request Li st ener and it must be a void method with no parameters in input:

public interface | M/Listener extends |RequestListener

/**
* Called when the relative callback URL is requested.
*/

voi d nyCal | backMet hod() ;

To control how the method will be invoked we must use class
or g. apache. wi cket . Request Li st ener | nt er f ace. In Wicket is a common practice to instantiate this class
as a public static field inside the relative callback interface:

public interface | M/Listener extends |RequestListener

/**Request Li stener|nterface instance*/
public static final RequestListenerlnterface | NTERFACE = new
Request Li st ener | nterface(l M/Li st ener. cl ass);
/**
* Call ed when the relative callback URL is requested.
*/
voi d nyCal | backMet hod() ;

By default Request Li st ener | nt er f ace will respond rendering the current page after the callback method
has been executed (if we have a non-AJAX request). To change this behavior we can use setter method
set Render PageAfter | nvocati on(bool ean).

Now that our callback interface is complete we can generate a callback URL with Conponent 's method

url For (Request Li stenerlnterface, PageParaneters) or with method url For (Behavi or,

Request Li st ener |l nterface, PageParaneters) if we are using a callback interface with a behavior (see
the following example).

Project CallbackURLExample contains a behavior (class OnChangeSi ngl eChoi ceBehavi or) that implements
a callback interface to update the model of an Abstract Si ngl eSel ect Choi ce component when user
changes the selected option (it provides the same functionality of method
want OnSel ect i onChangedNoti fi cati ons).

Instead of a custom callback interface, OnChangeSi ngl eChoi ceBehavi or implements built-in interface

or g. apache. wi cket . behavi or. | Behavi or Li st ener which is designed to generate a callback URL for
behaviors. The callback method defined in this interface is onRequest () and the following is the
implementation provided by OnSel ect i onChangedNot i fi cati ons:

@verride

public void onRequest () {
Request request = Request Cycle.get().getRequest();
| Request Par anet ers request Paraneters = request. get Request Paraneters();
StringVal ue choiceld = request Par anet er s. get Par anet er Val ue(" choi cel d") ;

132

/I boundConponent is the conponent that the behavior it is bound to.
boundConponent . set Def aul t Model Obj ect (convert Choi cel dToChoi ce(choi celd.toString()));

When invoked via URL, the behavior expects to find a request parameter (choiceld) containing the id of the
selected choice. This value is used to obtain the corresponding choice object that must be used to set the model
of the component that the behavior is bound to (boundComponent). Method convert Choi cel dToChoi ce isin
charge of retrieving the choice object given its id and it has been copied from class
Abst ract Si ngl eSel ect Choi ce.

Another interesting part of OnChangeSi ngl eChoi ceBehavi or is its method onConponent Tag where some
JavaScript “magic” is used to move user's browser to the callback URL when event “change” occurs on bound
component:

@verride
public voi d onConponent Tag(Conponent conponent, Conponent Tag tag) {
super . onConponent Tag(conponent, tag);

Char Sequence cal | BackURL = get Cal | backUr | () ;
String separatorChar = (callBackURL.toString().indexOr('?') > -1 2?2 "&" : "?2");

String final Script = "var isSelect = $(this).is('select');n" +
"var component;n" +
"if(isSelect)n" +
" conponent = $(this);n" +

"else n" +
conmponent = $(this).find("input:radio:checked);n" +
"wi ndow. | ocation. href="" + cal |l BackURL + separatorChar +

"choiceld='" + " + "conponent.val ()";
tag. put ("onchange", final Script);
}

The goal of onConponent Tag is to build an onchange handler that forces user's browser to move to the
callback URL (modifing standard property window.location.href). Please note that we have appended the
expected parameter (choiceld) to the URL retrieving its value with a JQuery selector suited for the current type of
component (a drop-down menu or a radio group). Since we are using JQuery in our JavaScript code, the
behavior comes also with method r ender Head that adds the bundled JQuery library to the current page.

Method get Cal | backUr | () is used to generate the callback URL for our custom behavior and it has been
copied from built-in class Abst r act Aj axBehavi or :

publ i ¢ Char Sequence get Cal | backUr | (){
i f (boundConponent == null){
throw new |11 egal Argunent Excepti on(
"Behavi or nust be bound to a conponent to create the URL");

}
final RequestListenerlinterface rli;
rii = | Behavi orLi st ener. | NTERFACE;
return boundConponent.url For(this, rli, new PageParaneters());

Static field | Behavi or Li st ener. | NTERFACE is the implementation of RequestListenerinterface
defined inside callback interface | Behavi or Li st ener .

The home page of project Cal | backURLExanpl e contains a Dr opDownChoi ce and a Radi oChoi ce which
use our custom behavior. There are also two labels to display the content of the models of the two components:

133

Radio choices. Model value: Green
“'Red

' Blue

® Green

“Yellow

Select choices. Model value: Red
Red -

-

A Implementing interface | Behavi or Li st ener makes a behavior stateful because its
callback URL is specific for a given instance of component.

As final note it's interesting to see how Wicket internally uses callback URLs for its standard link component.
Class org. apache. wi cket. mar kup. html . 1i nk. Li nk implements interface
org. apache. wi cket . mar kup. ht mi . I i nk. I Li nkLi st ener which in turn extends | Request Li st ener:

public interface ILinkListener extends |RequestListener

[** Listener interface */
public static final RequestListenerlnterface | NTERFACE = new RequestLi stenerlnterface(
I Li nkLi st ener. cl ass);

/**

* Called when a link is clicked.
*/
voi d onLi nkC i cked();

The implementation of method onLi nkC i cked simply delegates event handling to our custom version of
onCl i ck:

@verride
public final void onLinkd icked()

/'l 1 nvoke subcl ass handl er
ond ick();

Wicket events infrastructure

Starting from version 1.5 Wicket offers an event-based infrastructure for inter-component communication. The
infrastructure is based on two simple interfaces (both in package org. apache. w cket.event) :
| Event Sour ce and | Event Si nk.

The first interface must be implemented by those entities that want to broadcast en event while the second
interface must be implemented by those entities that want to receive a broadcast event.

The following entities already implement both these two interfaces (i.e. they can be either sender or receiver):
Conponent, Sessi on, Request Cycl e and Appl i cati on. | Event Sour ce exposes a single method named
send which takes in input three parameters:

® sink: an implementation of | Event Si nk that will be the receiver of the event.

® broadcast: a Br oadcast enum which defines the broadcast method used to dispatch the event to the sink
and to other entities such as sink children, sink containers, session object, application object and the
current request cycle. It has four possible values:

134

BREADTH The event is sent first to the specified sink and then to all its children components following a
breadth-first order.

The event is sent to the specified sink only after it has been dispatched to all its children

DEPTH components following a depth-first order.

BUBBLE The event is sent first to the specified sink and then to its parent containers.

EXACT The event is sent only to the specified sink.

® payload: a generic object representing the data sent with the event.

Each broadcast mode has its own traversal order for Sessi on, Request Cycl e and Appl i cati on. See
JavaDoc of class Br oadcast for further details about this order.

Interface | Event Si nk exposes callback method onEvent (| Event <?> event) which is triggered when a sink
receives an event. The interface | Event represents the received event and provides getter methods to retrieve
the event broadcast type, the source of the event and its payload. Typically the received event is used checking
the type of its payload object:

@verride
public void onEvent (I Event event) ({
/1if the type of payload is MyPayl oadCl ass perform sone actions
i f (event. get Payl oad() instanceof M/Payl oadd ass) {
/ / execut e sone business code.
}el sef
} // ot her business code
}

Project | nt er Conponet sEvent sExanpl e provides a concrete example of sending an event to a component
(named 'container in the middle') using all the available broadcast methods:

Click on the links below to send an event to the container in the middle using one of the
supported broadcast methods.

A panel at the bottom of the page will display the order in which the event has been received
by sinks (page, components, session and application).

Breadth mode

Dapth mode
Bubbla mods
Exact rrode

I'rmt Lher conlainer in Uhe rniclele

I'm the Inner campansnt.

« I'm the containar in the middie and | received an event,
s I'rm the page and | recomed snoevenl.

= I'm the sesslan and | received an event.

= I'm the applicaton and | receied an event.

17.3 Initializers

Some components or resources may need to be configured before being used in our applications. While so far
we used Application's init method to initialize these kinds of entities, Wicket offers a more flexible and modular
way to configure our classes.

During application's bootstrap Wicket searches for any properties file named wicket.properties placed in one of
the classpath roots visible to the application. When one of these files is found, the initializer defined inside it will
be executed. An initializer is an implementation of interface or g. apache. wi cket.lInitializer and is
defined inside wicket.properties with a line like this:

initializer=org.w cketTutorial.M/Initializer

135

The fully qualified class name corresponds to the initializer that must be executed. Interface Il nitializer
defines method init(Application) which should contain our initialization code, and method
destroy(Appl i cation) which is invoked when application is terminated:

public class Mylnitializer inplenments Ilnitializer{
public void init(Application application) {
//linitialization code
}

public void destroy(Application application) {
/code to execute when application is term nated
}

Only one initializer can be defined in a single wicket.properties file. To overcome this limit we can create a main
initializer that in turn executes every initializer we need:

public class Mainlnitializer inplements IInitializer{

public void init(Application application) {
new Anot herlnitializer().init(application);
new Yet Anot herlnitializer().init(application);
/...

}
[/ destroy...

17.4 Using JMX with Wicket

JMX (Java Management Extensions) is the standard technology adopted in Java for managing and monitoring
running applications or Java Virtual Machines. Wicket offers support for IMX through module wicket-jmx. In this
paragraph we will see how we can connect to a Wicket application using JMX. In our example we will use
JConsole as JMX client. This program is bundled with Java SE since version 5 and we can run it typing jconsole
in our OS shell.

Once JConsole has started it will ask us to establish a new connection to a Java process, choosing between a
local process or a remote one. In the following picture we have selected the process corresponding to the local
instance of Jetty server we used to run one of our example projects:

136

Java Monitoring & Management Console

Connection Window Help

)] JConsole: New Conneckion

New Connection

{® Local Process:

Name ||PID |
org.eclipse.equinox.launcher_1.3.0.v20120... | 3314 |
sun.tools.jconsole.JConsole 7199

runjettyrun.Bootstrap
org.eclipse.equinox.launcher_1.3.0.v20120... 3211

Remote Process:

Usage: <hostname=:<port> OR service:jmx:<protocol=:<sap>

Username: Password:

| Cancell | Connect |

I|Q| JConsole: New Connection

After we have established a JMX connection, JConsole will show us the following set of tabs:

Java Monitoring & Management Console

Connection Window Help

pid: 7883 runjettyrun.Bootstrap

Overview Memory Threads | Classes VM Summary MBeans

Time Range: All -
Heap Memory Usage Threads
40 Mb - 20 ;
30 Mb T Used l_'
4 25 387000 —
20 Mb | / 151
10 Mb | -
L~
0.0 Mb ! 101
19:05 19:10 19:15 19:20 19

JMX exposes application-specific informations using special objects called MBeans (Manageable Beans), hence
if we want to control our application we must open the corresponding tab. The MBeans containing the
application's informations is named or g. apache. wi cket . app. <filter/servl et nane>.

In our example we have used wicket.test as filter name for our application:

137

Java Monitoring & Management Console
Connaction Window Halp

pid: 7883 runjettyrun.Bootskrap

Overview Mamory Threads cClasses | WM Summary| MBeans

Jidimplementation Attribute values
com.sun.managemeankt Mame value
java.lang .
java.nio

1awig H) .
org.apache.wicket.app.wicket.test
- T Appives -

= Attributes|
» Operations

» i@ ApplicationSettings
» @@ DebugSettings

= @ MarkupSettings
.
[
[
B

ApplicationClass com.mycompany.WicketApplication
ConfigurationType DEPLOYMENT

HomePageClass com.mycompany.subpackage.ValidatorPage
MarkupCachesize 0

WicketWersion nfa

L e

@ PageSektings
@ RequestCycleSettings
@ ResourceSettings
i@ SecuritySettings
F @@ SessionSettings
v i@ StoreSetktings
v (@ RequestLogger
* Attributes
= Operations |Refresh |

I.Q pid: 7883 runjettyrun.Bookstrap |

As we can see in the picture above, every MBean exposes a node containing its attributes and another node
showing the possible operations that can be performed on the object. In the case of a Wicket application the
available operations are clearMarkupCache and clearLocalizerCache:

Java Monitoring & Management Console
Connaction Window Halp

£ pid: T883 runjettyrun.Bootskrap

Overview Mamory Threads Classes WM Summary MBeans =am
= JMimplementation = | Operation invecation

* com.sUn.management void

* jawva.lang ,:learMarkuptache ()

* jawva.nio

java.util.logging

org.apache.wicket.app.wicket.test
* i@ Application
» Attributes
clearMarkupCache
clearLocalizerCache
@ ApplicationSettings ,
i@ Debugsettings void |elearLocalizercache | ()
@ MarkupSettings
i@ PageSettings
i@ RequestCycleSettings
i@ Resourcesettings
@ SecuritySettings
i@ SessionSettings
» @ StoreSettings
v (@ RequestLogger
* Attributes -

'.g pid: 7883 runjektyrun.Bo nl:sl:rip|

T 7T T 9T Y ?TYY

With these two operations we can force Wicket to clear the internal caches used to load components markup and
resource bundles. This can be particularly useful if we have our application running in DEPLOYMENT mode and
we want to publish minor fixes for markup or bundle files (like spelling or typo corrections) without restarting the
entire application. Without cleaning these two caches Wicket would continue to use cached values ignoring any
change made to markup or bundle files.

Some of the exposed properties are editable, hence we can tune their values while the application is running. For
example if we look at the properties of Appl i cati onSetti ngs we can set the maximum size allowed for an
upload modifying the attribute DefaultMaximumUploadSize:

138

Java Monitoring & Management Console

Connection Window Help

2 pid: 7074 runjettyrun.Bootstrap

Owverview Memory Threads Classes | VM Summary (MBeans =l=
= IMimplementation Attribute values
s I:um.lsunimanagement MName Value |
L4 N 3]
- }::: :ir;g AccessDeniedPage org.apache.wicket.markup.html.pa... |
. i i ClassResolver org.apache.wicket.application.Defa...
ot L) DefaultMaximumUploadsi 8388608T '
* org.apache.wicket.app.wicket.tesk L DA ; ‘
v @ application InternalErrorPage org.apache.wicket.markup.html.pa... |
» Atbributas PageExpiredErrorPage org.apache.wicket.markup.htmlpa...
» Operations UnexpectedExceptionDisplay SHOW_INTERMAL_ERROR_PAGE
* i@ ApplicationSettings
= @ DebugSettings

17.5 Generating HTML markup from code

So far, as markup source for our pages/panels we have used a static markup file, no matter if it was inherited or
directly associated to the component. Now we want to investigate a more complex use case where we want to
dynamical generate the markup directly inside component code.

To become a markup producer, a component must simply implement interface
or g. apache. wi cket . mar kup. | Mar kupResour ceSt r eanPr ovi der. The only method defined in this
interface is get Mar kupResour ceSt r ean(Mar kupCont ai ner, C ass<?>) which returns an utility interface
called | Resour ceSt r eamrepresenting the actual markup.

In the following example we have a custom panel without a related markup file that generates a simple <div> tag
as markup:

public class AutoMar kupGenPanel extends Panel inplenments | MarkupResourceStreanProvider {
publ i ¢ Aut oMar kupGenPanel (String id, |Mdel<?> nodel) {
super (i d, nodel);

@verride

publ i c | Resour ceStream get Mar kupResour ceSt r eanm(Mar kupCont ai ner cont ai ner,
Cl ass<?> cont ai ner Cl ass)
String markup = "<wi cket: panel ><di v>Panel narkup</di v></wi cket: panel >";
StringResourceStream resourceStream = new StringResour ceStrean(mar kup) ;

return resourceStream

}

Class StringResourceStream is a resource stream that uses a String instance as backing object.

Avoiding markup caching

As we have seen in the previous paragraph, Wicket uses an internal cache for components markup. This can be
a problem if our component dynamical generates its markup when it is rendered because once the markup has
been cached, Wicket will always use the cached version for the specific component. To overwrite this default
caching policy, a component can implement interface | Mar kupCacheKeyPr ovi der .

This interface defines method get CacheKey(Mar kupCont ai ner, C ass<?>) which returns a string value
representing the key used by Wicket to retrieve the markup of the component from the cache. If this value is null
the markup will not be cached, allowing the component to display the last generated markup each time it is
rendered:

public class NoCacheMar kupPanel extends Panel inplenents | MarkupCacheKeyProvi der {
publ i c NoCacheMar kupPanel (String id, |Mdel<?> nodel)
super (i d, nodel);

/**
* CGenerate a dynami ¢ HTM. mar kup that changes every tine

* the conponent is rendered
*/

139

@verride

public | ResourceStream get Mar kupResour ceSt r ean(Mar kupCont ai ner cont ai ner,
Cl ass<?> cont ai ner Cl ass)
String markup = "<w cket: panel ><di v>Panel with current nanotinme: " + System
.nanoTi nme() +
"</ di v></wi cket: panel >";
StringResourceStream resourceStream = new Stri ngResourceSt rean(mar kup) ;

return resourceStream

/**
* Avoi d mar kup caching for this conponent
*/
@verride
public String get CacheKey(Mar kupCont ai ner arg0, O ass<?> argl) {

return null;

17.6 Summary

In this chapter we have introduced some advanced topics we didn't have the chance to cover yet. We have
started talking about behaviors and we have seen how they can be used to enrich existing components
(promoting a component-oriented approach). Behaviors are also fundamental to work with AJAX in Wicket, as
we will see in the next chapter.

After behaviors we have learnt how to generate callback URLs to execute a custom method on server side
defined inside a specific callback interface.

The third topic of the chapter has been the event infrastructure provided in Wicket for inter-component
communication which brings to our components a desktop-like event-driven architecture.

Then, we have introduced a new entity called initializer which can be used to configure resources and
component in a modular and self-contained way.

We have also looked at Wicket support for JIMX and we have seen how to use this technology for monitoring and
managing our running applications.

Finally we have introduced a new technique to generate the markup of a component from its Java code.

140

18 Working with AJAX

AJAX has become a must-have for nearly all kinds of web application. This technology does not only help to
achieve a better user experience but it also allows to improve the bandwidth performance of web applications.
Using AJAX usually means writing tons of JavaScript code to handle asynchronous requests and to update user
interface, but with Wicket we can leave all this boilerplate code to the framework and we don't even need to write
a single line of JavaScript to start using AJAX.

In this chapter we will learn how to leverage the AJAX support provided by Wicket to make our applications fully
Web 2.0 compliant.

18.1 How to use AJAX components and behaviors

Wicket support for AJAX is implemented in file wicket-ajax-jquery.js which makes complete transparent to Java
code any detail about AJAX communication.

AJAX components and behaviors shipped with Wicket expose one or more callback methods which are executed
when they receive an AJAX request. One of the arguments of these methods is an instance of interface
or g. apache. wi cket . aj ax. Aj axRequest Tar get .

For example component AjaxLink (in package or g. apache. wi cket . aj ax. mar kup. ht m) defines abstract
method onCl i ck(Aj axRequest Tar get target) which is executed when user clicks on the component:

new Aj axLi nk("aj axLi nk") {
@verride
public void onCick(A axRequest Target target) {
) //some server side code...

Using AjaxRequestTarget we can specify the content that must be sent back to the client as response to the
current AJAX request. The most commonly used method of this interface is probably add(Conponent ...
component s) . With this method we tell Wicket to render again the specified components and refresh their
markup via AJAX:

new Aj axLi nk("aj axLi nk") {
@verride
public void onCick(A axRequest Target target) {
/I nmodi fy the nodel of a |abel and refresh it on browser
| abel . set Def aul t Model Obj ect (" Anot her val ue 4 |abel.");
target.add(l abel);

Components can be refreshed via Ajax only if they have rendered a markup id for their related tag. As a
consequence, we must remember to set a valid id value on every component we want to add to
Aj axRequest Tar get . This can be done using one of the two methods seen in paragraph 6.3:

final Label |abel = new Label ("I abel Conponent™, "Initial value.");
/] aut ogenerate a markup id
| abel . set Qut put Mar kupl d(true);
add(| abel) ;
1.
new Aj axLi nk("aj axLi nk"){
@verride
public void onCick(Aj axRequest Target target) ({
/I modi fy the nodel of a label and refresh it on client side
| abel . set Def aul t Mbdel Cbj ect (" Anot her value 4 | abel.");

141

http://en.wikipedia.org/wiki/Web_2.0

target.add(l abel);

Another common use of AjaxRequestTarget is to prepend or append some JavaScript code to the generated
response. For example the following AJAX link displays an alert box as response to user's click:

new A axLi nk("aj axLi nk") {
@verride
public void onCick(A axRequest Target target) ({
target.appendJavaScript(";alert('Hello!!");");

@ Repeaters component that have
or g. apache. wi cket . mar kup. r epeat er. Abst r act Repeat er as base class (like

Li st Vi ew, Repeat i ngVi ew, etc...) can not be directly updated via AJAX.

If we want to refresh their markup via AJAX we must add one of their parent containers to
the Aj axRequest Tar get .

The standard implementation of AjaxRequest Target used by Wicket is class
or g. apache. wi cket . aj ax. Aj axRequest Handl er. To create new instances of Aj axRequest Target a
Wicket application uses the provider object registered with method set Aj axRequest Tar get Pr ovi der :

set Al axRequest Tar get Provi der (
| Cont ext Provi der <Aj axRequest Target, Page> aj axRequest Tar get Provi der)

The provider is an implementation of interface or g. apache. wi cket . util .| Cont ext Provi der, hence to
use custom implementations of Aj axRequest Tar get we must register a custom provider that returns the
desired implementation:

private static class M/Cust omAj axRequest Tar get Provi der i npl enents
| Cont ext Provi der <Aj axRequest Target, Page>

{
@verride
publi ¢ Aj axRequest Tar get get (Page page)
{
return new MyCust omdj axRequest Target () ;
}

%% During request handling Aj axRequest Handl er sends an event to its application to notify
the entire component hierarchy of the current page:

/1" page' is the associ ated Page instance
page. send(app, Broadcast.BREADTH, this);

The payload of the event is the Aj axRequest Handl er itself.

18.2 Build-in AJAX components

Wicket distribution comes with a number of built-in AJAX components ready to be used. Some of them are the
ajaxified version of common components like links and buttons, while others are AJAX-specific components.

AJAX components are not different from any other component seen so far and they don't require any additional

142

configuration to be used. As we will shortly see, switching from a classic link or button to the ajaxified version is
just a matter of prepending “Ajax” to the component class name.

This paragraph provides an overview of what we can find in Wicket to start writing AJAX-enhanced web
applications.

Links and buttons

In the previous paragraph we have already introduced component AjaxLink. Wicket provides also the ajaxified
versions of submitting components SubmitLink and Button which are simply called AjaxSubmitLink and
AjaxButton. These components come with a version of methods onSubmit, onError and onAfterSubmit that takes
in input also an instance of Aj axRequest Tar get .

Both components are in package or g. apache. wi cket . aj ax. mar kup. htm . form

Fallback components

Building an entire site using AJAX can be risky as some clients may not support this technology. In order to
provide an usable version of our site also to these clients, we can use components Aj axFal | backLi nk and
Aj axFal | backBut t on which are able to automatically degrade to a standard link or to a standard button if
client doesn't support AJAX.

AJAX Checkbox

Class org. apache. wi cket. aj ax. mar kup. ht m . f or m Aj axCheckBox is a checkbox component that
updates its model via AJAX when user changes its value. Its AJAX callback method is
onUpdat e(Aj axRequest Target target). The component extends standard checkbox component
CheckBox adding an Aj axFor nConponent Updat i ngBehavi or to itself (we will see this behavior later in
paragraph 18.3.3).

AJAX editable labels

An editable label is a special label that can be edited by the user when she/he clicks on it. Wicket ships three
different implementations for this component (all inside package
or g. apache. wi cket . ext ensi ons. aj ax. mar kup. ht m):

® AjaxEditableLabel: it's a basic version of editable label. User can edit the content of the label with a text
field. This is also the base class for the other two editable labels.

* AjaxEditableMultiLineLabel: this label supports multi-line values and uses a text area as editor
component.

® AjaxEditableChoicelLabel: this label uses a drop-down menu to edit its value.

Base component AjaxEditableLabel exposes the following set of AJAX-aware methods that can be overriden:

® onEdit(AjaxRequestTarget target): called when user clicks on component. The default implementation
shows the component used to edit the value of the label.

® onSubmit(AjaxRequestTarget target): called when the value has been successfully updated with the new
input.
® onError(AjaxRequestTarget target): called when the new inserted input has failed validation.

® onCancel(AjaxRequestTarget target): called when user has exited from editing mode pressing escape
key. The default implementation brings back the label to its initial state hiding the editor component.

Wicket module wicket-examples contains page class Edi t abl eLabel Page. j ava which shows all these three
components together. You can see this page in action at
http://www.wicket-library.com/wicket-examples-6.0.x/ajax/editable-label :

143

http://www.wicket-library.com/wicket-examples-6.0.x/ajax/editable-label

[go back]

Click on the area with a green outline to begin an inplace edit Press enter or outside the area o save, pless esc to cancel.

The quick brown | fox | jumped over the lazy | dog |.

click to edit multiple lines:

multiple
lines of
textual content

click to select another site; The Server Side

This page has been refreshed: 0 times. refresh

Autocomplete text field

On Internet we can find many examples of text fields that display a list of suggestions (or options) while the user
types a text inside them. This feature is known as autocomplete functionality.

Wicket offers an out-of-the-box implementation of an autocomplete text field with component
or g. apache. wi cket . ext ensi ons. aj ax. mar kup. ht nl . aut oconpl et e. Aut oConpl et eText Fi el d.

When using AutoCompleteTextField we are required to implement its abstract method getChoices(String input)
where the input parameter is the current input of the component. This method returns an iterator over the
suggestions that will be displayed as a drop-down menu:

[go back]

The textfield below will autocomplete country names. It utilizes AutoCompleteTextField in wicket-extensions.

Selected value is: g
Country: [g|

Guatemala
Greece

Germany

Suggestions are rendered using a render which implements interface | Aut oConpl et eRender er . The default
implementation simply calls toString() on each suggestion object. If we need to work with a custom render we
can specify it via component constructor.

AutoCompleteTextField supports a wide range of settings that are passed to its constructor with class
Aut oConpl et eSet ti ngs.

One of the most interesting parameter we can specify for Aut oConpl et eText Fi el d is the throttle delay which
is the amount of time (in milliseconds) that must elapse between a change of input value and the transmission of
a new Ajax request to display suggestions. This parameter can be set with method set Thrott| eDel ay(int):

144

Aut oConpl et eSettings settings = new Aut oConpl et eSettings();

/lset throttle to 400 ns: conponent will wait 400ns before displaying the options
settings. set Throttl eDel ay(400);

Il ..

Aut oConpl eteText Fiel d field = new Aut oConpl et eText Fi el d<T>("fiel d", nodel) {

@verride
protected Iterator getChoices(String arg0) {
//return an iterator over the options
}

Wicket module wicket-examples contains page class Aut oConpl et ePagePage. j ava which shows an example
of autocomplete text field. The running example is available at
http://www.wicket-library.com/wicket-examples-6.0.x/ajax/autocomplete .

Modal window

Class or g. apache. wi cket . ext ensi ons. aj ax. mar kup. ht ml . nodal . Modal W ndow is an
implementation of a modal window based on AJAX:

Modal window example

Open the window! Modal window
I'm a modal window!

E——————————————————————————————————

The content of a modal window can be either another component or a page. In the first case the id of the
component used as content must be retrieved with method getContentld().

If instead we want to use a page as window content, we must implement the inner interface
Modal W ndow. PageCr eat or and pass it to method set PageCr eat or. The page used as content will be
embedded in a <iframe> tag.

To display a modal window we must call its method show(Aj axRequest Target target). This is usually
done inside the AJAX callback method of another component (like an Aj axLi nk). The following markup and
code are taken from project Basi cModal W ndowExanpl e and illustrate a basic usage of a modal window:

HTML:
<body>
<h2>Mbdal W ndod exanpl e</ h2>
<a wi cket: i d="openW ndow'>Cpen the w ndow </ a>
<di v wi cket:id="nodal W ndow'></ di v>
</ body>
Java Code:
publ i c HonePage(final PageParaneters paraneters) {
super (paraneters);
final Mdal Wndow nodal Wndow = new Modal W ndow(" nodal W ndow") ;
Label |abel = new Label (nodal W ndow. get Contentld(), "I'm a nodal wi ndow ");

145

http://www.wicket-library.com/wicket-examples-6.0.x/ajax/autocomplete
http://en.wikipedia.org/wiki/Modal_window

nodal W ndow. set Cont ent (| abel) ;
nodal W ndow. set Titl e(" Modal wi ndow') ;

add(nodal W ndow) ;
add(new Aj axLi nk(" openW ndow") {
@verride
public void onClick(Aj axRequest Target target) {
modal W ndow. show(t ar get) ;

}
B)e

Just like any other component also Mbdal W ndow must be added to a markup tag, like we did in our example
using a <div> tag. Wicket will automatically hide this tag in the final markup appending the style value
display:none. The component provides different setter methods to customize the appearance of the window:

® setTitle(String): specifies the title of the window

® setResizable(boolean): by default the window is resizeable. If we need to make its size fixed we can use
this method to turn off this feature.

® setlnitialWidth(int) and setlnitialHeight(int): set the initial dimensions of the window.
® setMinimalWidth(int) and setMinimalHeight(int): specify the minimal dimensions of the window.

® setCookieName(String): this method can be used to specify the name of the cookie used on client side to
store size and position of the window when it is closed. The component will use this cookie to restore these
two parameters the next time the window will be opened. If no cookie name is provided, the component will
not remember its last position and size.

® setCssClassName(String): specifies the CSS class used for the window.
® setAutoSize(boolean): when this flag is set to true the window will automatically adjust its size to fit
content width and height. By default it is false.

The modal window can be closed from code using its method cl ose(Aj axRequest Target target). The
currently opened window can be closed also with the following JavaScript instruction:

W cket . W ndow. get (). cl ose();

Modal W ndow gives the opportunity to perform custom actions when window is closing. Inner interface
Modal W ndow. W ndowCl osedCal | back can be implemented and passed to window's method
set W ndowCl osedCal | back to specify the callback that must be executed after window has been closed:

nodal W ndow. set W ndowCl osedCal | back(new Modal W ndow. W ndowCl osedCal | back() {
@verride

public void onCl ose(Aj axRequest Target target) {
/ /| cust om code...

1)

Tree repeaters

Class org. apache. w cket. ext ensi ons. mar kup. ht nl . repeater.tree. Abstract Tree is the base
class of another family of repeaters called tree repeaters and designed to display a data hierarchy as a tree,
resembling the behavior and the look & feel of desktop tree components. A classic example of tree component
on desktop is the tree used by nearly all file managers to navigate file system:

146

@ Desktop Name
Docurmenti

= ¢ Risorse del computer > bin
[= Z# Disco locale (Z:) » [l boot
I==) apache-maven-2.2.1 _
|5 Documents and Settings > cdrom
=) eclipse
2 dev
=) glassfisha
I3 Programmmi v elkc
: b acpi
I $hf_migt P
) $MEUninstallKB9 158654 2 alternatives
E FMEninstall=PSEPSCLPE
I5) addins > apm
I AppPatch = apparmor
|50 assembly
) Canfig [3 apparmor.d

I Connection Wizard

Because of their highly interactive nature, tree repeaters are implemented as AJAX components, meaning that
they are updated via AJAX when we expand or collapse their nodes.

The basic implementation of a tree repeater shipped with Wicket is component Nest edTr ee. In order to use a
tree repeater we must provide an implementation of interface | Tr eePr ovi der which is in charge of returning
the nodes that compose the tree.

Wicket comes with a built-in implementation of ITreeProvider called TreeModelProvider that works with the same
tree model and nodes used by Swing component j avax. swi ng. JTr ee. These Swing entities should be
familiar to you if you have previously worked with the old tree repeaters (components Tr ee and Tr eeTabl e)
that have been deprecated with Wicket 6 and that are strongly dependent on Swing-based model and nodes.
Tr eeModel Provi der can be used to migrate your code to the new tree repeaters.

In the next example (project CheckBoxAj axTr ee) we will build a tree that displays some of the main cities of
three European countries: Italy, Germany and France. The cities are sub-nodes of a main node representing the
relative county. The nodes of the final tree will be also selectable with a checkbox control. The whole tree will
have the classic look & feel of Windows XP. This is how our tree will look like:

=- 1 =3 Cities of Europe
=) Italy

Ul & Germany

=] =3 France
C) [Paris
©) [Toulouse
©) [Strasbourg
©) [J Bordeaux
C1J Lyon

We will start to explore the code of this example from the home page. The first portion of code we will see is
where we build the nodes and the Tr eeModel Provi der for the three. As tree node we will use Swing class
j avax. swi ng. tree. Def aul t Mut abl eTr eeNode:

public class HonePage extends WebPage {
publ i ¢ HonePage(fi nal PageParaneters paraneters) {
super (par aneters);
Def aul t Mut abl eTr eeNode root = new Def aul t Mut abl eTreeNode("Cities of Europe");

addNodes(addNodes(root, "ltaly"), "Rone", "Venice", "MIlan", "Florence");
addNodes(addNodes(root, "Germany"),"Stuttgart","Mnich", "Berlin", "Dussel dorf",
"Dresden");

addNodes(addNodes(root, "France"), "Paris","Toul ouse", "Strasbourg","Bordeaux", "Lyon"
)

Def aul t TreeMbdel treeMbdel = new Defaul t TreeModel (root);

147

Tr eeModel Provi der <Def aul t Mut abl eTr eeNode> nodel Provi der = new
Tr eeMbdel Provi der <Def aul t Mut abl eTr eeNode>(treeMdel){
@verride

public | Model <Def aul t Mut abl eTr eeNode> nodel (Def aul t Mut abl eTr eeNode obj ect) {
return Mdel . of (obj ect);

/}To be conti nued. ..

Nodes have been built using simple strings as data objects and invoking custom utility method addNodes which
converts string parameters into children nodes for a given parent node. Once we have our tree of
Def aul t Mut abl eTr eeNodes we can build the Swing tree model (Def aul t Tr eeMbdel) that will be the
backing object for a Tr eeModel Pr ovi der. This provider wraps each node in a model invoking its abstract
method model. In our example we have used a simple Model as wrapper model.

Scrolling down the code we can see how the tree component is instantiated and configured before being added
to the home page:

// Continued from previous sni ppet ...
Nest edTr ee<Def aul t Mut abl eTr eeNode> tree = new Nest edTr ee<Def aul t Mut abl eTr eeNode>("tree",
nodel Provi der)
{

@verride
prot ected Conponent newCont ent Conponent (String id, |Mdel <Defaul t Mut abl eTr eeNode>nodel)
return new CheckedFol der <Def aul t Mut abl eTr eeNode>(i d, this, nodel);

IE
/I sel ect Wndows themne
tree. add(new W ndowsThene());

add(tree);

/1inplementation of addNodes
/...

}

To use tree repeaters we must implement their abstract method newCont ent Conponent which is called
internally by base class Abst ract Tr ee when a new node must be built. As content component we have used
built-in class CheckedFol der which combines a Fol der component with a CheckBox form control.

The final step before adding the tree to its page is to apply a theme to it. Wicket comes with two behaviors,
WindowsTheme and HumanTheme, which correspond to the classic Windows XP theme and to the Human
theme from Ubuntu.

Our checkable tree is finished but our work is not over yet because the component doesn't offer many
functionalities as it is. Unfortunately neither NestedTree nor CheckedFolder provide a means for collecting
checked nodes and returning them to client code. It's up to us to implement a way to keep track of checked
nodes.

Another nice feature we would like to implement for our tree is the following user-friendly behavior that should
occur when a user checks/unchecks a node:

®* When a node is checked also all its children nodes (if any) must be checked. We must also ensure that all
the ancestors of the checked node (root included) are checked, otherwise we would get an inconsistent
selection.

®* When a node is unchecked also all its children nodes (if any) must be unchecked and we must also ensure
that ancestors get unchecked if they have no more checked children.

The first goal (keeping track of checked node) can be accomplished building a custom version of
CheckedFol der that uses a shared Java Set to store checked node and to verify if its node has been checked.
This kind of solution requires a custom model for checkbox component in order to reflect its checked status when
its container node is rendered. This model must implement typed interface | Model <Bool ean> and must be
returned by CheckedFol der 's method newCheckBoxModel .

For the second goal (auto select/unselect children and ancestor nodes) we can use CheckedFol der 's callback
method onUpdate(AjaxRequestTarget) that is invoked after a checkbox is clicked and its value has been
updated. Overriding this method we can handle user click adding/removing nodes to/from the Java Set.

148

Following this implementation plan we can start coding our custom CheckedFol der (named
Aut ocheckedFol der):

public class AutocheckedFol der <T> ext ends CheckedFol der <T> {

private | TreeProvi der<T> treeProvider;
private | Mddel <Set <T>> checkedNodes;
private | Mdel <Bool ean> checkboxMbdel ;

publ i ¢ Aut ocheckedFol der(String id, AbstractTree<T> tree,
| Model <T> nodel , | Model <Set <T>> checkedNodes) {
super(id, tree, nodel);
this.treeProvider = tree. getProvider();
t hi s. checkedNodes = checkedNodes;

}

@verride
prot ect ed | Model <Bool ean> newCheckBoxMbdel (| Model <T> nodel) {
checkboxMbdel = new CheckModel ();
return checkboxMbdel ;

}

@verride
protected void onUpdat e(Aj axRequest Target target) {
super . onUpdat e(t arget);
T node = get Model Obj ect ();
bool ean nodeChecked = checkboxMbdel . get Obj ect () ;

addRenpveSubNodes(node, nodeChecked);
addRenoveAncest or Nodes(node, nodeChecked);

}
cl ass CheckMbdel extends Abstract CheckBoxMbdel {
@verride
publ i ¢ bool ean isSel ected()
return checkedNodes. get Cbj ect (). cont ai ns(get Model Object());
@verride
public void select() {
checkedNodes. get Obj ect () . add(get Mbdel Obj ect ());
}
@verride
public void unselect() {
checkedNodes. get Obj ect (). renove(get Model Cbj ect());
}

The constructor of this new component takes in input a further parameter which is the set containing checked
nodes.

Class CheckModel is the custom model we have implemented for checkbox control. As base class for this model
we have used Abstract CheckBoxModel which is provided to implement custom models for checkbox
controls.

Methods addRenpveSubNodes and addRenoveAncest or Nodes are called to automatically add/remove
children and ancestor nodes to/from the current Set. Their implementation is mainly focused on the navigation of
tree nodes and it heavily depends on the internal implementation of the tree, so we won't dwell on their code.

Now we are just one step away from completing our tree as we still have to find a way to update the checked
status of both children and ancestors nodes on client side. Although we could easily accomplish this task by
simply refreshing the whole tree via AJAX, we would like to find a better and more performant solution for this
task.

When we modify the checked status of a node we don't expand/collapse any node of the three so we can simply
update the desired checkboxes rather than updating the entire tree component. This alternative approach could
lead to a more responsive interface and to a strong reduction of bandwidth consumption.

With the help of JQuery we can code a couple of JavaScript functions that can be used to check/ uncheck all the
children and ancestors of a given node. Then, we can append these functions to the current Aj axRequest at
the end of method onUpdate:

@verride
protected voi d onUpdat e(A axRequest Target target) {
super . onUpdat e(t arget);

149

T node = get Model Ooj ect () ;
bool ean nodeChecked = checkboxMbdel . get Obj ect () ;

addRenoveSubNodes(node, nodeChecked);
addRenmoveAncest or Nodes(node, nodeChecked);
updat eNodeOnCl i ent Si de(target, nodeChecked);

protected void updat eNodeOnCl i ent Si de(Aj axRequest Target target,
bool ean nodeChecked) {
target. appendJavaScri pt ("; CheckAncest or sAndChi | dren. checkChi I dren(' " + get Markupld() +

'," + nodeChecked + ");");

target. appendJavaScri pt ("; CheckAncest or sAndChi | dren. checkAncestors('" + get Markupld() +
"', " + nodeChecked + ");");
}

The JavaScript code can be found inside file autocheckedFolder.js which is added to the header section as
package resource:

@verride
public voi d render Head(| Header Response response) {
PackageResour ceRef erence scriptFile = new PackageResour ceReference(this.getC ass(),
"aut ocheckedFol der.js");
response. render (JavaScri pt Header |t em f or Ref erence(scriptFile));

Working with hidden components

When a component is not visible its markup and the related id attribute are not rendered in the final page, hence
it can not be updated via AJAX. To overcome this problem we must use Component's method
set Qut put Mar kupPl acehol der Tag(t r ue) which has the effect of rendering a hidden tag containing
the markup id of the hidden component:

final Label |abel = new Label ("I abel Conponent", "Initial value.");
[/ make | abel invisible
| abel . set Vi si bl e(fal se);

//ensure that |abel will |eave a placeholder for its markup id
| abel . set Qut put Mar kupPl acehol der Tag(true);
add(| abel) ;

/...
new Aj axLi nk("aj axLi nk") {
@verride
public void onCick(A axRequest Target target) {
[/turn | abel to visible
| abel . set Vi si bl e(true);
target.add(l abel);

Please note that in the code above we didn't invoked method set Qut put Markupl d(true) as
set Qut put Mar kupPl acehol der Tag already does it internally.

18.3 Built-in AJAX behaviors

In addition to specific components, Wicket offers also a set of built in AJAX behaviors that can be used to easily
add AJAX functionalities to existing components. As we will see in this paragraph AJAX behaviors can be used
also to ajaxify components that weren't initially designed to work with this technology. All the following behaviors
are inside package or g. apache. wi cket . aj ax.

AjaxEventBehavior

AjaxEventBehavior allows to handle a JavaScript event (like click, change, etc...) on server side via AJAX. Its
constructor takes in input the name of the event that must be handled. Every time this event is fired for a given

150

component on client side, the callback method onEvent (Al axRequest Target target) is executed.
onEvent is abstract, hence we must implement it to tell Aj axEvent Behavi or what to do when the specified
event occurs.

In project Aj axEvent Behavi or Exanpl e we used this behavior to build a “clickable” Label component that
counts the number of clicks. Here is the code from the home page of the project:

HTML:

<body>

<div w cket:id="clickCounterLabel"></div>

User has clicked tinme/s on the |abel above.
</ body>

Java Code:

public class HonePage extends WebPage {
publ i c HomePage(fi nal PageParaneters paraneters) {
super (par aneters);

final CickCounterLabel clickCounterlLabel =
new Cl i ckCount er Label ("clickCounterlLabel", "Cick on nme!");
final Label clickCounter =
new Label ("clickCounter", new PropertyMdel (clickCounterlLabel, "clickCounter"));

cl i ckCount er Label . set Qut put Mar kupl d(true);
cl i ckCount er Label . add(new Al axEvent Behavi or ("click"){

@verride
protected voi d onEvent (A axRequest Target target) {
cli ckCount er Label . cl i ckCount er ++;
target.add(clickCounter);

}
1),

add(clickCounterLabel);
add(clickCount er. set Qut put Mar kupl d(true));

}

class dickCounterlLabel extends Label {
public int clickCounter;

public dickCounterlLabel (String id) {
super (i d);

public dickCounterlLabel (String id, |Mdel<?> nodel) {
super (i d, nodel);

public dickCounterlLabel (String id, String |abel) {
super (id, |abel);

In the code above we have declared a custom label class named Cl i ckCount er Label that exposes a public
integer field called clickCounter. Then, in the home page we have attached a Aj axEvent Behavi or to our
custom label to increment clickCounter every time it receives a click event.

The number of clicks is displayed with another standard label named cl i ckCount er .

AjaxFormSubmitBehavior

This behavior allows to send a form via AJAX when the component it is attached to receives the specified event.
The component doesn't need to be inside the form if we use the constructor version that, in addition to the name
of the event, takes in input also the target form:

Form form = new Form("forni);

Button submtButton = new Button("subm tButton");

//submit formwhen button is clicked

subni t But t on. add(new Aj axFor nSubmi t Behavi or (form "click"){}):
add(forn);

add(subm t Butt on);

151

AjaxFormComponentUpdatingBehavior

This behavior updates the model of the form component it is attached to when a given event occurs. The
standard form submitting process is skipped and the behavior validates only its form component.

The behavior doesn't work with radio buttons and checkboxes. For these kinds of components we must use
Aj axFor nChoi ceConponent Updat i ngBehavi or :

Form form = new Form("forni);
TextField textField = new TextFiel d("textField", Mdel.of(""));
[lupdate the nodel of the text field each tine event "change" occurs
t ext Fi el d. add(new Aj axFor mConponent Updat i ngBehavi or (" change") {
@verride
prot;a;:t ed voi d onUpdat e(Al axRequest Target target) {

?’:\Ziij(for m add(textField));

AbstractAjaxTimerBehavior

Abst ract Aj axTi mer Behavi or executes callback method onTi ner (Aj axRequest Target target) at a
specified interval. The behavior can be stopped and restarted at a later time with methods
st op(Al axRequest Target target) andrestart (A axRequest Target target):

Label dynami cLabel = new Label ("dynam cLabel ");

[/trigger an AJAX request every three seconds

dynam cLabel . add(new Abstract Al axTi mer Behavi or (Dur ati on. seconds(3)) {
@verride
prot;a;:t ed void onTi mer (A axRequest Target target) {
}

§):
add(dynam cLabel) ;

&% As side effect AJAX components and behaviors make their hosting page stateful. As a
consequence they are unfit for those pages that must stay stateless. Project WicketStuff
provides a module with a stateless version of the most common AJAX components and
behaviors. You can find more informations on this module in Appendix B.

18.4 Using an activity indicator

One of the things we must take care of when we use AJAX is to notify user when an AJAX request is already in
progress. This is usually done displaying an animated picture as activity indicator while the AJAX request is
running.

Wicket comes with a variant of components Aj axBut t on, Aj axLi nk and Aj axFal | backLi nk that display a
default activity indicator during AJAX request processing. These components are respectively
I ndi cati ngAj axButton, | ndi catingA axLi nk and | ndi cati ngAj axFal | backLi nk.

The default activity indicator used in Wicket can be easily integrated in our components using behavior
AjaxIndicatorAppender (available in package or g. apache. wi cket . ext ensi ons. aj ax. mar kup. ht nl) and
implementing the interface | Aj ax| ndi cat or Awar e (in package or g. apache. wi cket . aj ax).

I Aj axl ndi cat or Awar e declares method get Aj axl ndi cat or Mar kupl d() which returns the id of the
markup element used to display the activity indicator. This id can be obtained from the AjaxIndicatorAppender
behavior that has been added to the current component. The following code snippet summarizes the steps
needed to integrate the default activity indicator with an ajaxified component:

152

[11-1nplenent interface | A axlndi catorAware
public class MyConponent extends Conponent inplenments |Aj axlndicatorAware {
/12-Instantiate an Aj axl ndi cat or Appender
private Aj axlndi cat or Appender i ndi catorAppender =
new Aj ax| ndi cat or Appender () ;

public MyConponent (String id, |Mdel<?> nodel) {
super (i d, nodel);
/13- Add the A axl ndi cat or Appender to the conmponent
add(i ndi cat or Appender) ;

}
//4-Return the narkup id obtained from A axl ndi cat or Appender
public String getA axl ndi cat or Mar kupl d() {

return indicat or Appender. get Mar kupl d() ;

If we need to change the default picture used as activity indicator, we can override method
get I ndi cator Url () of Aj axl ndi cat or Appender and return the URL to the desired picture.

18.5 AJAX request attributes and call listeners

Starting from version 6.0 Wicket has introduced two entities which allow us to control how an AJAX request is
generated on client side and to specify the custom JavaScript code we want to execute during request handling.
These entities are class Aj axRequest Attri but es and interface | Aj axCal | Li st ener, both placed in
package or g. apache. wi cket . aj ax. attri butes.

AjaxRequestAttributes exposes the attributes used to generate the JavaScript call invoked on client side to start
an AJAX request. Each attribute will be passed as a JSON parameter to the JavaScript function

W cket . Aj ax. aj ax which is responsible for sending the concrete AJAX request. Every JSON parameter is
identified by a short name. Here is a partial list of the available parameters:

u The callback URL used to serve the AJAX request that will be sent.

C The id of the component that wants to start the AJAX call.

e A list of event (click, change, etc...) that can trigger the AJAX call. domready
m The request method that must be used (GET or POST). GET

f The id of the form that must be submitted with the AJAX call.

If the AJAX call involves the submission of a form, this flag indicates whether the data

mp must be encoded using the encoding mode “multipart/form-data”. false
sc The input name of the submitting component of the form

async A boolean parameter that indicates if the AJAX call is asynchronous (true) or not. true
wr Specifies the type of data returned by the AJAX call (XML, HTML, JSON, etc...). XML

ih, bh, pre, This is a list of the listeners that are executed on client side (they are JavaScript
bsh, ah, sh, scripts) during the lifecycle of an AJAX request. Each short name is the abbreviation of
fh, coh, dh one of the methods defined in the interface IAjaxCallListener (see below).

An empty
list

A A full list of the available request parameters as well as more details on the related
JavaScript code can be found at
https://cwiki.apache.org/confluence/display/WICKET/Wicket+Ajax .

Parameters 'u' (callback URL) and 'c' (the id of the component) are generated by the AJAX behavior that will
serve the AJAX call and they are not accessible through Aj axRequest Attri but es.

Here is the final AJAX function generate for the behavior used in example project Aj axEvent Behavi or
Example:

153

http://en.wikipedia.org/wiki/JSON
https://cwiki.apache.org/confluence/display/WICKET/Wicket+Ajax

W cket . Al ax. aj ax({"u":"./?0-1.1Behavi orLi stener.0-clickCounterLabel", "e":"click",

"c":"clickCounterlLabel 1"});

Even if most of the times we will let Wicket generate request attributes for us, both AJAX components and
behaviors give us the chance to modify them overriding their method updateAj axAttri butes
(A axRequest Attributes attributes).

One of the attribute we may need to modify is the list of | Aj axCal | Li st eners returned by method
get Aj axCal | Li steners().

| Aj axCal | Li st ener defines a set of methods which return the JavaScript code (as a Char Sequence) that
must be executed on client side when the AJAX request handling reaches a given stage:

® getlnitHandler(Component): (backported from Wicket 7.x into Aj axCal |l Li stener) returns the
JavaScript code that will be executed on initialization of the Ajax call, immediately after the causing event.
The code is executed in a scope where it can use variable attrs, which is an array containing the JSON
parameters passed to Wicket.Ajax.ajax.

® getBeforeHandler(Component): returns the JavaScript code that will be executed before any other
handlers returned by IAjaxCallListener. The code is executed in a scope where it can use variable attrs,
which is an array containing the JSON parameters passed to Wicket.Ajax.ajax.

® getPrecondition(Component): returns the JavaScript code that will be used as precondition for the AJAX
call. If the script returns false then neither the Ajax call nor the other handlers will be executed. The code is
executed in a scope where it can use variable attrs, which is the same variable seen for getBeforeHandler.

® getBeforeSendHandler(Component): returns the JavaScript code that will be executed just before the
AJAX call is performed. The code is executed in a scope where it can use variables attrs, jgXHR and
settings:

® attrs is the same variable seen for getBeforeHandler.
® jgXHR is the the jQuery XMLHttpRequest object used to make the AJAX call.
® settings contains the settings used for calling jQuery.ajax().

® getAfterHandler(Component): returns the JavaScript code that will be executed after the AJAX call. The
code is executed in a scope where it can use variable attrs, which is the same variable seen before for
getBeforeHandler.

® getSuccessHandler(Component): returns the JavaScript code that will be executed if the AJAX call has
successfully returned. The code is executed in a scope where it can use variables attrs, jgXHR, data and
textStatus:

® attrs and jgXHR are same variables seen for getBeforeSendHandler:

® data is the data returned by the AJAX call. Its type depends on parameter wr (Wicket AJAX
response).

® textStatus it's the status returned as text.

® getFailureHandler(Component): returns the JavaScript code that will be executed if the AJAX call has
returned with a failure. The code is executed in a scope where it can use variable attrs, which is the same
variable seen for getBeforeHandler.

® getCompleteHandler(Component): returns the JavaScript that will be invoked after success or failure
handler has been executed. The code is executed in a scope where it can use variables attrs, jgXHR and
textStatus which are the same variables seen for getSuccessHandler.

® getDoneHandler(Component): (backported from Wicket 7.x into Aj axCal | Li st ener) returns the
JavaScript code that will be executed after the Ajax call is done, regardless whether it was sent or not. The
code is executed in a scope where it can use variable attrs, which is an array containing the JSON
parameters passed to Wicket.Ajax.ajax.

In the next paragraph we will see an example of custom | Aj axCal | Li st ener designed to disable a
component during AJAX request processing.

154

18.6 Creating custom AJAX call listener

Displaying an activity indicator is a nice way to notify user that an AJAX request is already running, but
sometimes is not enough. In some situations we may need to completely disable a component during AJAX
request processing, for example when we want to avoid that impatient users submit a form multiple times. In this
paragraph we will see how to accomplish this goal building a custom and reusable | Aj axCal | Li st ener. The
code used in this example is from project Cust omAj axLi st ener Exanpl e.

What we want for our listener

The listener should execute some JavaScript code to disable a given component when the component it is
attached to is about to make an AJAX call. Then, when the AJAX request has been completed, the listener
should bring back the disabled component to an active state.

When a component is disabled it must be clear to user that an AJAX request is running and that he/she must
wait for it to complete. To achieve this result we want to disable a given component covering it with a
semi-transparent overlay area with an activity indicator in the middle.

The final result will look like this:

Press 'submit’ to disable the form for (at least)
three seconds.

How to implement the listener

The listener will implement methods get Bef or eHandl er and get Af t er Handl er : the first will return the code
needed to place an overlay <div> on the desired component while the second must remove this overlay when
the AJAX call has completed.

To move and resize the overlay area we will use another module from JQueryUl library that allows us to position
DOM elements on our page relative to another element.

So our listener will depend on four static resources: the JQuery library, the position module of JQuery Ul, the
custom code used to move the overlay <div> and the picture used as activity indicator. Except for the activity
indicator, all these resources must be added to page header section in order to be used.

Ajax call listeners can contribute to header section by simply implementing interface

| Component Awar eHeader Cont ri but or. Wicket provides adapter class AjaxCallLi stener that
implements both | Aj axCal | Li st ener and | Conponent Awar eHeader Cont ri but or . We will use this class
as base class for our listener.

JavaScript code

Now that we know what to do on the Java side, let's have a look at the custom JavaScript code that must be
returned by our listener (file moveHiderAndIndicator.js):

Di sabl eConponent Li stener = {
di sabl eEl ement: function(el ementld, activelconUrl){
var hiderld = elenentld + "-disable-layer";
var indicatorld = elementld + "-indicator-picture";

elenentld = "#" + el enentld;
/lcreate the overlay <div>
$(elenentld).after('<div id="" + hiderld

155

http://jqueryui.com/position/

+ '" style="position:absol ute;">'

+ '<ing id="" + indicatorld + '" src="' + activelconUl + "'"/>'
+ '</div>");
hiderld = "#" + hiderld;

/lset the style properties of the overlay <div>

$(hiderld).css('opacity', '0.8");

$(hiderld).css('text-align', 'center');

$(hi derld).css(' background-col or', 'WiteSnoke');

$(hiderld).css('border', '1px solid DarkGay');

//set the dinmention of the overlay <div>

$(hiderid).width($(el enentld).outerWdth());

$(hiderld). height($(el ementld).outerHeight());

/I positioning the overlay <div> on the conponent that must be di sabl ed.

$(hiderld).position({of: $(elenentld),at: 'top left', nmy: "top left'});

[l positioning the activity indicator in the mddl e of the overlay <div>
$("#" + indicatorld).position({of: $(hiderld), at: 'center center',

my: 'center center'});
e
//function hi deConponent

Function DisableComponentListener.disableElement places the overlay <div> an the activity indicator on the
desired component. The parameters in input are the markup id of the component we want to disable and the

URL of the activity indicator picture. These two parameters must be provided by our custom listener.

The rest of custom JavaScript contains function DisableComponentListener.hideComponent which is just a

wrapper around the JQuery function remove():

hi deConponent : function(el enentld){
var hiderld = elenentld + "-disable-Iayer";
$('# + hiderld).renmove();
}

IE

Java class code

The code of our custom listener is the following:

public class Di sabl eConponent Li st ener extends Aj axCal |l Li stener {
private static PackageResourceReference custonftcri pt Ref erence = new

private static PackageResourceReference jqueryU PositionRef = new
private static PackageResourceReference indicatorReference =

private Conponent target Conponent;

publ i ¢ Di sabl eConponent Li st ener (Conponent tar get Conponent) {
thi s.target Conponent = target Conponent;

@verride
publ i c Char Sequence get Bef or eHandl er (Conponent conponent) {
Char Sequence indicatorUl = getlndicatorUrl (conponent);

+ """ + "' 4 jndicatorUrl +|||);n;

}

@verride
publ i ¢ Char Sequence get Conpl et eHandl er (Conponent conponent) {
return "; Di sabl eConponent Li st ener . hi deConponent (' "
+ target Conponent. get Markupld() + "');";

}

prot ect ed Char Sequence get | ndi cator Ul (Conponent conponent) {
return conponent. url For (i ndi cat or Reference, null);
}

@verride
public voi d render Head(Conponent conponent, | Header Response response) {
Resour ceRef erence j queryReference =
Appl i cation.get().getJavaScriptLibrarySettings().getJQueryReference();
response. render (JavaScri pt Header | t em f or Ref er ence(j quer yRef erence)) ;
response. render (JavaScri pt Header | t em f or Ref er ence(] quer yUi Posi ti onRef));
response. render (JavaScri pt Header | t em f or Ref er ence(cust onf5cri pt Ref erence));

PackageResour ceRef er ence(Di sabl eConponent Li st ener. cl ass, "noveH der Andl ndi cator.js");
PackageResour ceRef er ence(Di sabl eConponent Li st ener. cl ass, "jquery-ui-position.mn.js");

new PackageResour ceRef er ence(D sabl eConponent Li stener. cl ass, "aj ax-|oader.gif");

return "; Di sabl eConponent Li st ener. di sabl eEl enent (' " + target Conponent . get Mar kupl d()

156

As you can see in the code above we have created a function (get | ndi cat or Ur |) to retrieve the URL of the
indicator picture. This was done in order to make the picture customizable by overriding this method.

Once we have our listener in place, we can finally use it in our example overwriting method
updat eAj axAt tri but es of the AJAX button that submits the form:

1.
new Aj axButton("aj axButton"){
@verride
protected voi d updat eAj axAttributes(Aj axRequest Attributes attributes) {
super . updat eAj axAttri butes(attri butes);
attributes.get Al axCal | Li steners().add(new Di sabl eConponent Li stener(form);

Global listeners

So far we have seen how to use an AJAX call listener to track the AJAX activity of a single component. In
addition to these kinds of listeners, Wicket provides also global listeners which are triggered for any AJAX
request sent from a page.

Global AJAX call events are handled with JavaScript. We can register a callback function for a specific event of
the AJAX call lifecycle with function W cket.Event. subscri be(' <event Name>', <call back
Functi on>). The first parameter of this function is the name of the event we want to handle. The possible
names are:

® ‘/ajax/call/init": called on initialization of an ajax call

® ‘'/ajax/call/before': called before any other event handler.

® ‘'/ajax/call/beforeSend": called just before the AJAX call.

® ‘'[ajax/call/after’; called after the AJAX request has been sent.

® ‘'/ajax/call/success" called if the AJAX call has successfully returned.
® ‘/ajax/call/failure: called if the AJAX call has returned with a failure.
® ‘'/ajax/call/complete': called when the AJAX call has completed.

® ‘'/ajax/call/done": called when the AJAX call is done.

® ‘/dom/node/removing": called when a component is about to be removed via AJAX. This happens when
component markup is updated via AJAX (i.e. the component itself or one of its containers has been added
to Aj axRequest Tar get)

® ‘'/dom/node/added": called when a component has been added via AJAX. Just like '/dom/node/removing’,
this event is triggered when a component is added to Aj axRequest Tar get .

The callback function takes in input the following parameters: attrs, jgXHR, textStatus, jgEvent and errorThrown.
The first three parameters are the same seen before with | Aj axCal | Li st ener while jgEvent is an event
internally fired by Wicket. The last parameter errorThrown indicates if an error has occurred during the AJAX call.

To see a basic example of use of a global AJAX call listener, let's go back to our custom datepicker created in
chapter 16. When we built it we didn't think about a possible use of the component with AJAX. When a complex
component like our datepicker is refreshed via AJAX, the following two side effects can occur:

® After been refreshed, the component loses every JavaScript handler set on it. This is not a problem for our
datepicker as it sets a new JQuery datepicker every time is rendered (inside method renderHead).

® The markup previously created with JavaScript is not removed. For our datepicker this means that the icon
used to open the calendar won't be removed while a new one will be added each time the component is
refreshed.

157

To solve the second unwanted side effect we can register a global AJAX call listener that completely removes
the datepicker functionality from our component before it is removed due to an AJAX refresh (which fires event
'/dom/node/removing’).

Project Cust onDat epi cker Aj ax contains a new version of our datepicker which adds to its JavaScript file
JQDatePicker.js the code needed to register a callback function that gets rid of the JQuery datepicker before the
component is removed from the DOM:

W cket . Event . subscri be('/doni node/ renovi ng',
function(jqgEvent, attributes, jqgXHR, errorThrown, textStatus) {
var componentld = "'#" + attributes['id'];
i f($(conponent | d). datepi cker !== undefi ned)
$(conponent | d) . dat epi cker (' destroy');

The code above retrieves the id of the component that is about to be removed using parameter attributes. Then it
checks if a JQuery datepicker was defined for the given component and if so, it removes the widget calling
function destroy.

18.7 Summary

AJAX is another example of how Wicket can simplify web technologies providing a good component and object
oriented abstraction of them.

In this chapter we have seen how to take advantage of the AJAX support provided by Wicket to write
AJAX-enhanced applications. Most of the chapter has been dedicated to the built-in components and behaviors
that let us adopt AJAX without almost any effort.

In the final part of the chapter we have seen how Wicket physically implements an AJAX call on client side using
AJAX request attributes. Then, we have learnt how to use call listeners to execute custom JavaScript during
AJAX request lifecycle.

158

19 Integration with enterprise
containers

Writing a web application is not just about producing a good layout and a bunch of “cool” pages. We must also
integrate our presentation code with enterprise resources like data sources, message queues, business objects,
etc...

The first decade of 2000s has seen the rising of new frameworks (like Spring) and new specifications (like EJB
3.1) aimed to simplify the management of enterprise resources and (among other things) their integration with
presentation code.

All these new technologies are based on the concepts of container and dependency injection. Container is the
environment where our enterprise resources are created and configured while dependency injection is a pattern
implemented by containers to inject into an object the resources it depends on.

Wicket can be easily integrated with enterprise containers using component instantiation listeners. These entities
are instances of interface or g. apache. wi cket . appl i cati on. | Conponent | nst anti ati onLi st ener and
can be registered during application's initialization. IComponentinstantiationListener defines callback method
onlnstantiation(Component component) which can be used to provide custom instantiation logic for Wicket
components.

Wicket distribution and project WicketStuff already provide a set of built-in listeners to integrate our applications
with EJB 3.1 compliant containers (like JBoss Seam) or with some of the most popular enterprise frameworks
like Guice or Spring.

In this chapter we will see two basic examples of injecting a container-defined object into a page using first an
implementation of the EJB 3.1 specifications (project OpenEJB) and then using Spring.

19.1 Integrating Wicket with EJB

WicketStuff provides a module called wicketstuff-javaee-inject that contains component instantiation listener
JavaEEConponent | nj ect or. If we register this listener in our application we can use standard EJB
annotations to inject dependencies into our Wicket components.

To register a component instantiation listener in Wicket we must use Application's method
get Conponent I nstanti ati onLi steners which returns a typed collection of
| Conponent I nst anti ati onLi st eners.

The following initialization code is taken from project Ej bl nj ect i onExanpl e:

public class W cket Applicati on extends WebApplication
/] Constructor. ..

@verride
public void init()
{

super.init();
get Conponent | nst anti ati onLi st eners().add(new JavaEEConponent | nj ector(this));

In this example the object that we want to inject is a simple class containing a greeting message:

@managedBean
public class EnterpriseMessage {
public String message = "Wl cone to the EJB world!'";

159

http://spring.io/
http://en.wikipedia.org/wiki/Enterprise_JavaBeans
http://en.wikipedia.org/wiki/Enterprise_JavaBeans
http://en.wikipedia.org/wiki/Dependency_Injection
https://github.com/wicketstuff
http://code.google.com/p/google-guice/
http://openejb.apache.org/

Please note that we have used annotation ManagedBean to decorate our object. Now to inject it into the home
page we must add a field of type EnterpriseMessage and annotate it with annotation @EJB:

public class HonePage extends WebPage {

@JB
private EnterpriseMessage enterpriseMessage;
/lgetter and setter for enterpriseMessage...

publ i c HomePage(fi nal PageParaneters paraneters) {
super (par aneters) ;

add(new Label ("nessage", enterpriseMessage. nessage));

}

That is all. We can point the browser to the home page of the project and see the greeting message injected into
the page:

& | @ localhost:8080/EjbinjectionExample/

Welcome to the E)B world!

19.2 Integrating Wicket with Spring

If we need to inject dependencies with Spring we can use listener
or g. apache. wi cket . spring.injection.annot. SpringConponentl njector provided by module

wicket-spring.

For the sake of simplicity in the example project Spri ngl nj ecti onExanpl e we have used Spring class
Annot ati onConfi gAppl i cati onCont ext to avoid any XML file and create a Spring context directly from
code:

public class Wcket Application extends WebApplication
/'l Constructor. ..

@verride
public void init()
{

super.init();

Annot at i onConf i gAppl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onContext();
/I Scan package for annotated beans
ctx.scan("org. w cket Tutori al . ej bBean");
ctx.refresh();

get Conponent | nst anti ati onLi steners().add(new Spri ngConponentl|njector(this, ctx));
}
}

As we can see in the code above, the constructor of Spri ngConponent | nj ect or takes in input also an
instance of Spring context.

The injected object is the same used in the previous project Ej bl nj ect i onExanpl e, it differs only for the
greeting message:

@managedBean
public class EnterpriseMessage {
public String nmessage = "Wl cone to the Spring world!";

160

In the home page of the project the object is injected using Wicket annotation @SpringBean:

public class HonePage extends WebPage {
@pr i ngBean
private EnterpriseMessage enterpriseMessage;
/lgetter and setter for enterpriseMessage.. .

publ i c HomePage(final PageParaneters paraneters) {
super (par anet ers) ;

add(new Label ("nessage", enterpriseMessage. nessage));

}

By default Spri ngBean searches into Spring context for a bean having the same type of the annotated field. If
we want we can specify also the name of the bean to use as injected object and we can declare if the
dependency is required or not. By default dependencies are required and if they can not be resolved to a
compatible bean, Wicket will throw an |1 | | egal St at eExcept i on:

/I set the dependency as not required, i.e the field can be left null
@pr i ngBean(nane="anot her Nane", required=fal se)
private EnterpriseMessage enterpri seMessage;

19.3 JSR-330 annotations

Spring (and Guice) users can use standard JSR-330 annotations to wire their dependencies. This will make their
code more interoperable with other containers that support this standard:

//inject a bean specifying its name with JSR-330 annotations
@ nj ect
@Nanmed(" anot her Nange")
private EnterpriseMessage enterpri seMessage;

19.4 Summary
In this chapter we have seen how to integrate Wicket applications with Spring and with an EJB container. Module

wicket-examples contains also an example of integration with Guice (see application class
or g. apache. wi cket . exanpl es. gui ce. Gui ceAppl i cati on).

161

http://jcp.org/en/jsr/detail?id=330

20 Native WebSockets

WebSockets is a technology that provides full-duplex communications channels over a single TCP connection.
This means that once the browser establish a web socket connection to the server the server can push data
back to the browser without the browser explicitly asking again and again whether there is something new for it.

Wicket Native WebSockets modules provide functionality to integrate with the non-standard APIs provided by
different web containers (like Apache Tomcat and Jetty) and standard JSR356 implementations.

@ Native WebSocket works only when both the browser and the web containers support
WebSocket technology. There are no plans to add support to fallback to long-polling,
streaming or any other technology that simulates two way communication. Use it only if
you really know that you will run your application in an environment that supports
WebSockets. Currently supported web containers are Jetty 7.5+ , Tomcat 7.0.27+ and
JBoss WildFly 8.0.0+. Supported browsers can be found at caniuse.com.

20.1 How does it work ?

Each of the modules provide a specialization of or g. apache. wi cket . prot ocol . htt p. Wcket Fi | t er that
registers implementation specific endpoint when an HTTP request is upgraded to WebSocket one. Later Wicket
uses this endpoint to write data back to the browser and read data sent by it.

WebSockets communication can be used in a Wicket page by using

or g. apache. wi cket . prot ocol . ws. api . WebSocket Behavi or or in a IResource by exteding
or g. apache. wi cket . protocol . ws. api . WebSocket Resour ce. When a client is connected it is being
registered in a application scoped registry using as a key the application name, the client http session id, and the
id of the page or the resource name that registered it. Later when the server needs to push a message it can use
this registry to filter out which clients need to receive the message.

When a message is received from the client Wicket wraps it in | WebSocket Message and calls
WebSocketBehavior#onMessage() or WebSocketResource#onMessage() where the application logic can react
on it. The server can push plain text and binary data to the client, but it can also add components for re-render,
prepend/append JavaScript as it can do with Ajax.

20.2 How to use

® Classpath dependency

Depending on the web container that is used the application has to add a dependency to either:

= for Jetty 9.0.x

<dependency>
<gr oupl d>or g. apache. wi cket </ gr oupl d>
<artifactld>w cket-native-websocket-jetty9</artifactld>
<version>. .. </version>

</ dependency>

= for Jetty 7.x and 8.x

<dependency>
<gr oupl d>or g. apache. wi cket </ gr oupl d>
<artifactld>w cket-native-websocket-jetty</artifactld>
<version>. .. </version>

</ dependency>

162

http://en.wikipedia.org/wiki/WebSocket
http://tomcat.apache.org/
http://www.eclipse.org/jetty/
https://www.jcp.org/en/jsr/detail?id=356
http://caniuse.com/#search=websocket
http://en.wikipedia.org/wiki/WebSocket#WebSocket_protocol_handshake

® for Tomcat 7.0.27+ (the old, non-JSR356 implementation)

<dependency>
<gr oupl d>or g. apache. wi cket </ gr oupl d>
<artifactld>w cket-native-websocket-tontat</artifactld>
<versi on>...</version>

</ dependency>

® for JSR356 complaint implementations (at the moment are supported: Tomcat 8.0+, Tomcat 7.0.47+, Jetty
9.1.0+ and JBoss Wildfly 8.0.0+)

<dependency>
<gr oupl d>or g. apache. wi cket </ gr oupl d>
<artifactld>w cket-native-websocket-javax</artifactld>
<version>. .. </version>

</ dependency>

% All web containers providing JSR356 implementation are built with Java 7. This is the
reason why wi cket - nati ve- websocket - j avax module is available only with Wicket
7.x. If your application runs with JRE 7.x then you can use
wi cket - nat i ve- websocket - j avax together with the latest version of Wicket 6.x.

Beware that the APIl/implementation of wi cket-native-websocket-javax may
change before Wicket 7.0.0 is released!

&y The examples above show snippets for Maven's pom.xml but the application can use any
other dependency management tool like Gradle, SBT, ...

®* web.xml

In VEB- | NF/ web. xm replace the usage of WicketFilter with any of the following depending on the web
container that is used:

For Jetty 9.0.x:

<filter-class>org. apache. w cket.protocol.ws.jetty9.Jetty9WebSocketFilter</filter-class>

For Jetty 7.5+ and 8.x:

<filter-class>org. apache. w cket.protocol.ws.jetty7.Jetty7WbSocketFilter</filter-class>

For Tomcat 7.0.27+ (old implementation):

<filter-class>org. apache. w cket. protocol .ws.tontat 7. Toncat 7WebSocket Filter</filter-class>

For JSR356 complaint web containers (at the moment: Tomcat 7.0.47+, Tomcat 8.x and Jetty 9.1.x):

<filter-class>org. apache. wi cket. protocol .ws.|avax. JavaxWebSocketFilter</filter-class>

®* WebSocketBehavior

or g. apache. wi cket . protocol . ws. api . WebSocket Behavi or is similar to Wicket Ajax behaviors that you
may have used. Add WebSocketBehavior to the page (or to any component in the page) that will use web socket
communication:

163

http://www.gradle.org/
http://www.scala-sbt.org/

public class MyPage extends WhbPage {
public MyPage()
add(new WebSocket Behavi or () {

@verride
protected void onMessage(WebSocket Request Handl er handl er, Text Message nessage)

String nmeg = nessage. get Text () ;
/1 do something with nmsg

}
1)
}

Use nessage. get Text () to read the message sent by the client and use handl er. push(Stri ng) to push a
text message to the connected client. Additionally you can use handl er . add(Conponent . . .) to add Wicket
components for re-render, handl er #pr ependJavaScri pt (Char Sequence) and
handl er #appendJavaScri pt (Char Sequence) as you do with Aj axRequest Tar get .

® WebSocketResource

Wicket allows one thread at a time to use a page instance to simplify the usage of the pages in multithreaded
enviroment. When a WebSocket message is sent to a page Wicket needs to acquire the lock to that page to be
able to pass the | WebSocket Message to the WebSocket Behavi or. This may be problematic when the
application needs to send many messages from the client to the server. For this reason Wicket provides

WebSocket Resour ce - an IResource implemetation that provides the same APIs as WebSocket Behavi or .
The benefit is that there is no need of synchronization as with the pages and the drawback is that

WebSocket Request handl er #add(Conponent . . .) method cannot be used because there is no access to
the components in an | Resour ce.

To register such WebSocket resource add such line to Your Appl i cati on#i ni t () method:

get Shar edResour ces() . add("soneNane", new MyWebSocket Resource());

and

page. add(new BaseWebSocket Behavi or (" soneNane")) ;

to any page. This will prepare the JavaScript connection for you.

® WebSocket connection registry

To push data to one or more clients the application can use the | WebSocket Connect i onRegi st ry to find all
registered connections and send data to all/any of them:

Application application = Application.get(applicati onNane);

WebSocket Setti ngs webSocket Settings = WebSocket Setti ngs. Hol der. get (application);

| WebSocket Connect i onRegi stry webSocket Connecti onRegi stry =

webSocket Set ti ngs. get Connecti onRegi stry();

| WebSocket Connecti on connection = webSocket Connecti onRegi stry. get Connecti on(applicati on,
sessionld, key);

20.3 Client-side APIs

By adding a (Base)WbSocketBehavior to your component(s) Wicket will contribute
wi cket - websocket -j query. j s library which provides some helper functions to write your client side code.
There is a default websocket connection per Wicket Page opened for you which you can use like:

W cket . WebSocket . send(' {nsg: "ny nessage"}').

164

To close the default connection:

W cket . WebSocket . cl ose()

Wicket.WebSocket is a simple wrapper around the native window.WebSocket APl which is used to intercept the
calls and to fire special JavaScript events (Wicket.Event PubSub). Once a page that contributes
(Base) WebSocket Behavi or is rendered the client may react on messages pushed by the server by
subscribing to the ' / websocket / nessage' event:

W cket . Event . subscri be("/websocket/ nessage", function(jgEvent, nessage) {
var data = JSON. parse(nessage);
processDat a(data); // does sonething with the pushed nessage

1)

Here is a table of all events that the application can subscribe to:

/websocket/open jgEvent A WebSocket connection has been just opened
jqEvent, .
/websocket/message A message has been received from the server
message
/websocket/closed jgEvent A WebSocket connection has been closed
. An error occurred in the communication. The connection will be
/websocket/error jgEvent closed

20.4 Testing

The module provides or g. apache. wi cket . protocol . ws. util.tester.WbSocket Test er which gives
you the possibility to emulate sending and receiving messages without the need to run in a real web container,
as WicketTester does this for HTTP requests. Check WebSocketTesterBehaviorTest and
WebSocketTesterResourceTest for examples.

20.5 Differences with Wicket-Atmosphere module.

Wicket-Atmosphere experimental module provides integration with Atmosphere and let it handle the
inconsistencies in WebSocket protocol support in different browsers and web containers. If either the browser or
the web container do not support WebSockets then Atmosphere will downgrade (depending on the configuration)
to either long-polling, streaming, server-side events, jsonp, ... to simulate the long running connection.

20.6 FAQ

1. Request and session scoped beans do not work.

The Web Socket communication is not processed by Servlet Filters and Listeners and thus the Dependency
Injection libraries have no chance to export the request and session bean proxies.

165

https://github.com/apache/wicket/blob/master/wicket-native-websocket/wicket-native-websocket-core/src/test/java/org/apache/wicket/protocol/ws/util/tester/WebSocketTesterBehaviorTest.java?source=c
https://github.com/apache/wicket/blob/master/wicket-native-websocket/wicket-native-websocket-core/src/test/java/org/apache/wicket/protocol/ws/util/tester/WebSocketTesterResourceTest.java
https://github.com/Atmosphere/atmosphere

21 Security with Wicket

Security is one of the most important non-functional requirements we must implement in our applications. This is
particularly true for enterprise applications as they usually support multiple concurrent users, and therefore they
need to have an access control policy.

In this chapter we will explore the security infrastructure provided by Wicket and we will learn how to use it to
implement authentication and authorizations in our web applications.

21.1 Authentication

The first step in implementing a security policy is assigning a trusted identity to our users, which means that we
must authenticate them. Web applications usually adopt a form-based authentication with a login form that asks
user for a unique username and the relative password:

Log in

Don't have an account? Create one.

Username: | |

Password: | |

[Remember me (up to 30 days)

| Log in || E-mail new password |

Wicket supports form-based authentication with session class Aut henti cat edWebSessi on and application
class Aut henti cat edWebAppli cati on, both placed inside package
or g. apache. wi cket . aut hrol es. aut henti cati on.

AuthenticatedWebSession

Class AuthenticatedWebSession comes with the following set of public methods to manage user authentication:

® authenticate(String username, String password): this is an abstract method that must be implemented
by every subclass of Aut henti cat edWebSessi on. It should contain the actual code that checks for
user's identity. It returns a boolean value which is true if authentication has succeeded or false otherwise.

® signin(String username, String password): this method internally calls authenticate and set the flag
signedin to true if authentication succeeds.

® isSignedin():getter method for flag signedin.
® signOut(): sets the flag signedin to false.

® invalidate(): calls signOut and invalidates session.

@ Remember that signOut does not discard any session-relative data. If we want to get rid of
these data, we must invoke method invalidate instead of signOut.

Another abstract method we must implement when we use Aut henti cat edWebSessi on is getRoles which is
inherited from parent class Abst r act Aut hent i cat edWebSessi on. This method can be ignored for now as it
will be discussed later when we will talk about role-based authorization.

166

AuthenticatedWebApplication

Class AuthenticatedWebApplication provides the following methods to support form-based authentication:

® getWebSessionClass(): abstract method that returns the session class to use for this application. The
returned class must be a subclass of Abst r act Aut hent i cat edWebSessi on.

® getSigninPageClass(): abstract method that returns the page to use as sign in page when a user must be
authenticated.

® restartResponseAtSigninPage(): forces the current response to restart at the sign in page. After we have
used this method to redirect a user, we can make her/him return to the original page calling Conponet's
method cont i nueToOri gi nal Desti nation().

The other methods implemented inside Aut hent i cat edWebAppl i cat i on will be introduced when we will talk
about authorizations.

A basic example of authentication

Project Basi cAut henti cat i onExanpl e is a basic example of form-based authentication implemented with
classes Aut hent i cat edWebSessi on and Aut hent i cat edWebAppl i cati on.

The homepage of the project contains only a link to page Aut hent i cat edPage which can be accessed only if
user is signed in. The code of Aut hent i cat edPage is this following:

public class AuthenticatedPage extends WebPage {

@verride

protected void onConfigure() {
super . onConfi gure();
Aut hent i cat edWebAppl i cati on app = (Authenti cat edWebApplication)Application.get();
/1if user is not signed in, redirect himto sign in page
i f(!AuthenticatedWebSessi on. get().isSignedin())

) app. rest art ResponseAt Si gnl nPage() ;

@verride
protected void onlnitialize() {
super.onlnitialize();
add(new Li nk("goToHonmePage") {

@verride
public void onCick() {
set ResponsePage(get Appl i cati on().get HonePage());

}
1)
add(new Li nk("logQut") {
@verride
public void onCick() {

Aut hent i cat edWebSessi on. get (). invalidate();
set ResponsePage(get Appl i cati on() . get HonePage()) ;

}
1)

Page Aut hent i cat edPage checks inside onConfigure if user is signed in and if not, it redirects her/him to the
sign in page with method r est art ResponseAt Si gnl nPage. The page contains also a link to the homepage
and another link that signs out user.

The sign in page is implemented in class Si gnl nPage and contains the form used to authenticate users:

public class SignlnPage extends WbPage {
private String usernang;
private String password;

@verride
protected void onlnitialize() {
super.onlnitialize();

Stat el essForm form = new St atel essForn("form') {
@verride

167

protected void onSubmit() {
i f(Strings.isEnpty(usernane))
return;

bool ean aut hResult = Authenti catedWbSessi on. get (). signln(usernane, password);
//if authentication succeeds redirect user to the requested page
i f(authResul t)
conti nueToOri gi nal Destination();
}
b
f orm set Def aul t Model (new ConpoundPr opertyModel (this));

form add(new Text Fi el d("usernanme"));
f orm add(new Passwor dText Fi el d(" password"));

add%forn);
}

The form is responsible for handling user authentication inside its method onSubmit. The username and
password are passed to Aut henti cat edWebSessi on's method si gnl n(user nane, password) and if
authentication succeeds, the wuser is redirected to the original page with method
conti nueToOri gi nal Desti nati on.

The session class and the application class used in the project are reported here:

Session class:

public class Basi cAut henti cati onSessi on extends Aut henti cat edWebSessi on {

publ i ¢ Basi cAut henti cati onSessi on(Request request) {
super (request) ;

@verride
public bool ean authenticate(String usernanme, String password) {
/luser is authenticated if both usernanme and password are equal to 'w cketer'
return usernane. equal s(password) && usernane. equal s("w cketer");

}
@verride
public Roles getRoles() {
return null;
}

Application class:

public class W cket Application extends AuthenticatedWebApplication{
@verride
publ i c d ass<HonePage> get HomePage() {
return HonePage. cl ass;

@verride
protected C ass<? extends Abstract Aut henti cat edWebSessi on> get WebSessi ond ass() {
return Basi cAut henti cati onSessi on. cl ass;

@verride
protected C ass<? extends WebPage> get Si gnl nPaged ass() {
return SignlnPage. cl ass;
}

The authentication logic inside authenticate has been kept quite trivial in order to make the code as clean as
possible. Please note also that session class must have a constructor that accepts an instance of class Request

Redirecting user to an intermediate page

Method r est art ResponseAt Si gnl nPage is an example of redirecting user to an intermediate page before
allowing him to access to the requested page. This method internally throws exception

168

or g. apache. wi cket . Rest art ResponseAt | nt er cept PageExcepti on which saves the URL of the
requested page into session metadata and then redirects user to the page passed as constructor parameter (the
sign in page).

Component's method redirectTol ntercept Page(Page) works in much the same way as
rest art ResponseAt Si gnl nPage but it allows us to specify which page to use as intermediate page:

redi rect Tol nt er cept Page(i nt er nedi at ePage) ;

My Since both restartResponseAt SignlnPage and redirect Tol nter cept Page
internally throw an exception, the code placed after them will not be executed.

21.2 Authorizations

The authorization support provided by Wicket is built around the concept of authorization strategy which is
represented by interface | Aut hori zati onStr at egy (in package or g. apache. wi cket . aut hori zati on):

public interface |AuthorizationStrategy

/linterface nethods
<T extends | Request abl eConponent> bool ean i slnstanti ati onAuthori zed(C ass<T>
conponent C ass) ;
bool ean i sActi onAut hori zed(Conponent conponent, Action action);

[/ default authorization strategy that allows everything
public static final |AuthorizationStrategy ALLOWALL = new | Aut horizationStrategy()

{
@verride
public <T extends | Requestabl eConponent > bool ean islnstantiati onAuthorized(final C ass<T>
c)
return true;

}
@verride
publ i ¢ bool ean i sActi onAut hori zed(Conponent c, Action action)

return true;
}
b
}

This interface defines two methods:
® jsinstantiationAuthorized checks if user is allowed to instantiate a given component.

® jsActionAuthorized checks if user is authorized to perform a given action on a component's instance. The
standard actions checked by this method are defined into class Action and are Action.ENABLE and
Action.RENDER.

Inside | Aut hori zati onStrategy we can also find a default implementation of the interface (called
ALLOW_ALL) that allows everyone to instantiate every component and perform every possible action on it. This
is the default strategy adopted by class Appl i cat i on.

To change the authorization strategy in use we must register the desired implementation into security settings
(interface | Securi tySetti ngs) during initialization phase with method setAuthorization Strategy:

/] Application class code...

@verride
public void init()
{

super.init();
get SecuritySettings().
set Aut hori zati onStrat egy(nyAut hori zati onStr at egy) ;

}
..

169

If we want to combine the action of two or more authorization strategies we can chain them with strategy
ConpoundAut hori zat i onSt r at egy which implements composite pattern for authorization strategies.

Most of the times we won't need to implement an | Aut hori zat i onSt r at egy from scratch as Wicket already
comes with a set of built-in strategies. In the next paragraphs we will see some of these strategies that can be
used to implement an effective and flexible security policy.

SimplePageAuthorizationStrategy

Abstract class SimplePageAuthorizationStrategy (in package

or g. apache. wi cket . aut hori zati on. strat egi es. page) is a strategy that checks user authorizations
calling abstract method i sAut hori zed only for those pages that are subclasses of a given supertype. If
i sAut hori zed returns false, the user is redirected to the sign in page specified as second constructor
parameter:

Si npl ePageAut hori zati onStrat egy authorizationStrategy = new Sinpl ePageAut hori zati onSt rat egy(
PageCl assToCheck. cl ass, Signl nPage. cl ass)
prot ect ed bool ean i sAut hori zed()

/ / Aut hent i cati on code...

By default Si npl ePageAut hori zati onStrat egy checks for permissions only on pages. If we want to
change this behavior and check also other kinds of components, we must override method
i SAct i onAut hori zed and implement our custom logic inside it.

Role-based strategies

At the end of paragraph 21.1 we have introduced AbstractAuthenticatedWebSession's method getRoles which is
provided to support role-based authorization returning the set of roles granted to the current user.

In Wicket roles are simple strings like “BASIC_USER” or “ADMIN” (they don't need to be capitalized) and they
are handled with class org. apache. w cket. aut hrol es. aut hori zati on. strat egi es. rol e. Rol es.
This class extends standard HashSet collection adding some functionalities to check whether the set contains
one or more roles. Class Rol es already defines roles Roles.USER and Roles.ADMIN.

The session class in the following example returns a custom “SIGNED _IN" role for every authenticated user and
it adds an Roles.ADMIN role if username is equal to superuser;

cl ass Basi cAut henti cati onRol esSessi on extends Aut henti cat edWebSessi on {
private String userNaneg;

publ i c Basi cAut henti cati onRol esSessi on(Request request) {
super (request) ;

@verride
publi ¢ bool ean authenticate(String usernane, String password) {
bool ean aut hResul t = fal se;

aut hResult = //sone authentication logic...

i f (authResul t)
user Name = user nane;

return aut hResult;

}

@verride
public Roles getRoles() {
Rol es resul t Rol es = new Rol es();

i f(isSignedin())
resul t Rol es. add(" SI GNED_| N') ;

i f (user Nane. equal s("superuser"))
resul t Rol es. add(Rol es. ADM N) ;

return resultRoles;

170

Roles can be adopted to apply security restrictions on our pages and components. This can be done using one
of the two built-in authorization strategies that extend super class
Abstract Rol eAut hori zati onStrat egyW cket: Met aDat aRol eAut hori zati onStrategy and
Annot at i onsRol eAut hori zat i onSt r at egy

The difference between these two strategies is that Met aDat aRol eAut hori zati onStrat egy handles
role-based authorizations with Wicket metadata while Annot ati onsRol eAut hori zati onStrat egy uses
Java annotations.

A Application class Aut henti cat edWebAppl i cation already sets
Met aDat aRol eAut hori zati onStrat egy and
Annot at i onsRol eAut hori zati onStrat egy as its own authorization strategies (it
uses a compound strategy as we will see in paragraph 21.2).

The code that we will see in the next examples is for illustrative purpose only. If our
application class inherits from Aut henti cat edWebAppl i cati on we won't need to
configure anything to use these two strategies.

Using roles with metadata

Strategy Met aDat aRol eAut hori zati onStr at egy uses application and components metadata to implement
role-based authorizations. The class defines a set of static methods authorize that can be used to specify which
roles are allowed to instantiate a component and which roles can perform a given action on a component.

The following code snippet reports both application and session classes from project
Met aDat aRol esSt r at egyExanpl e and illustrates how to use Met aDat aRol eAut hori zati onStrat egy to
allow access to a given page (AdminOnlyPage) only to ADMIN role:

Application class:

public class Wcket Application extends AuthenticatedWbApplication{
@verride
public d ass<? extends WbPage> get HonePage() {
return HonePage. cl ass;

@verride
protected C ass<? extends AbstractAut henti cat edWebSessi on> get WebSessi onCl ass() {
return Basi cAut henti cati onSessi on. cl ass;
}

@verride
protected O ass<? extends WebPage> get Si gnl nPageC ass() {

return SignlnPage. cl ass;

@verride
public void init()
get SecuritySett
this));
Met aDat aRol eAut hori zat i onSt r at egy. aut hori ze(Adm nOnl yPage. cl ass, Rol es. ADM N) ;

i ngs().setAuthorizationStrategy(new Mt abDat aRol eAut hori zati onStrat egy/(

Session class:

public class Basi cAut henticati onSession extends AuthenticatedWebSession {
private String usernane;

publ i ¢ Basi cAut henti cati onSessi on(Request request) {
super (request) ;

@verride)))
public bool ean authenticate(String usernanme, String password) {
/luser is authenticated if usernane and password are equal

171

bool ean aut hResult = usernane. equal s(password);

i f(authResult)
thi s. usernane = user nane;

return aut hResul t;

public Rol es getRoles() {
Rol es resul t Rol es = new Rol es();
/1if user is signed in add the relative role
if(isSignedin())
resul t Rol es. add("SI GNED_| N") ;
/1if usernane is equal to 'superuser' add the ADM N rol e
i f(usernane! = null && usernane. equal s("superuser"))
resul t Rol es. add(Rol es. ADM N) ;

return resul t Rol es;

@verride
public void signQut() {
super. si gnQut () ;
username = nul | ;

The code that instantiates Met aDat aRol eAut hori zati onStrat egy and set it as application's strategy is
inside application class method init.

Any subclass of Abstract Rol eAut hori zati onStrat egyW cket needs an implementation of interface
| Rol eChecki ngSt r at egy to be instantiated. For this purpose in the code above we used the application class
itself because its base class AuthenticatedWebApplication already implements interface

| Rol eChecki ngSt r at egy. By default Aut hent i cat edWebAppl i cat i on checks for authorizations using the
roles returned by the current Abstract Aut henti cat edWebSessi on. As final step inside init we grant the
access to page Adm nOnl yPage to ADMIN role calling method authorize.

The code from session class has three interesting methods. The first is authenticate which considers as valid
credentials every pair of username and password having the same value. The second notable method is
getRoles which returns role SIGNED _IN if user is authenticated and it adds role ADMIN if username is equal to
superuser. Finally, we have method signOut which has been overridden in order to clean the username field
used internally to generate roles.

Now if we run the project and we try to access to Adni nOnl yPage from the home page without having the
ADMIN role, we will be redirected to the default access-denied page used by Wicket:

@ @ localhost:8080/MetaDataRolesStrateq)

Access Denied
You do not have access to the page you requested.

Return to home page

The access-denied page can be customized using method set AccessDeni edPage(Cl ass<? extends
Page>) of setting interface | Appl i cati onSetti ngs:

/] Application class code...
@verride
public void init(){
get Appl i cationSettings().setAccessDeni edPage(
MyCust omAccessDeni edPage. cl ass) ;

Just like custom “Page expired” page (see chapter 8.2.5), also custom “Access denied” page must be
bookmarkable.

172

Using roles with annotations

Strategy Annot at i onsRol eAut hori zati onSt r at egy relies on two built-in annotations to handle role-based
authorizations. These annotations are Aut hori zel nstanti ati on and Aut hori zeActi on. As their names
suggest the first annotation specifies which roles are allowed to instantiate the annotated component while the
second must be used to indicate which roles are allowed to perform a specific action on the annotated
component.

In the following example we use annotations to make a page accessible only to signed-in users and to enable it
only if user has the ADMIN role:

@\t hori zel nstanti ati on("SI GNED_| N')
@\ut hori zeAction(action = "ENABLE"', roles = {"ADM N'})
public class MyPage extends WebPage {

/I Page cl ass code...

Remember that when a component is not enabled, user can render it but he can neither click on its links nor
interact with its forms.

Example project AnnotationsRol esStrategyExanple is a revisited version of
Met aDat aRol esSt r at egyExanpl e where we use Annot ati onsRol eAut hori zati onStrategy as
authorization strategy. To ensure that page Adm nOnl yPage is accessible only to ADMIN role we have used the
following annotation:

@\ut hori zel nstanti ati on("ADM N")
public class Adm nOnl yPage extends WebPage {
/| Page cl ass code...

Catching an unauthorized component instantiation

Interface IUnauthorizedComponentinstantiationListener (in package or g. apache. wi cket . aut hori zati on)
is provided to give the chance to handle the case in which a user tries to instantiate a component without having
the permissions to do it. The method defined inside this interface is
onUnaut hori zedl nstanti ati on(Conponent) and it is executed whenever a user attempts to execute an
unauthorized instantiation.

This listener must be registered into application's security settings with method setUnauthorized
Conponent I nst anti ati onLi st ener defined by setting interface | SecuritySettings. In the following
code snippet we register a listener that redirect user to a warning page if he tries to do a not-allowed
instantiation:

public class W cket Application extends AuthenticatedWebApplication{
/'] Appl i cation code...
@verride
public void init(){
get SecuritySettings().setUnaut hori zedConponent | nstanti ati onLi stener (
new | Unaut hori zedConponent I nstanti ati onLi stener() {

@verride
public voi d onUnaut hori zedl nst anti ati on(Conponent conponent) {
conponent . set ResponsePage(Aut hWar ni ngPage. cl ass) ;

}
1)

In addition to interface | Rol eChecki ngSt r at egy, class Aut hent i cat edWebAppl i cati on implements also
| Unaut hori zedConponent | nst anti ati onLi st ener and registers itself as listener for unauthorized
instantiations.

By default Aut hent i cat edWebAppl i cati on redirects users to sign-in page if they are not signed-in and they

173

try to instantiate a restricted component. Otherwise, if users are already signed in but they are not allowed to
instantiate a given component, an Unaut hori zedl nst anti at i onExcept i on will be thrown.

Strategy RoleAuthorizationStrategy

Class Rol eAuthorizationStrategy is a compound strategy that combines both
Met aDat aRol eAut hori zati onStrat egy and Annot at i onsRol eAut hori zati onStr at egy.

This is the strategy used internally by Aut hent i cat edWebAppl i cati on.

21.3 Using HTTPS protocol

HTTPS is the standard technology adopted on Internet to create a secure communication channel between web
applications and their users.

In Wicket we can easily protect our pages with HTTPS mounting a special request mapper called H t psMapper
and using annotation RequireHttps with those pages we want to serve over this protocol. Both these two entities
are in package or g. apache. wi cket . protocol . htt ps.

HttpsMapper wraps an existing mapper and redirects incoming requests to HTTPS if the related response must
render a page containing annotation Requi r eHt t ps. Most of the times the wrapped mapper will be the root
one, just like we saw before for Cr ypt oMapper in paragraph 10.6.

Another parameter needed to build a Ht t psMapper is an instance of class Ht t psConfi g. This class allows us
to specify which ports must be used for HTTPS and HTTP. By default the port numbers used by these two
protocols are respectively 443 and 80.

The following code is taken from project Ht t psPr ot ocol Exanpl e and illustrates how to enable HTTPS in our
applications:

/] Application class code...
@verride
public void init()({
set Root Request Mapper (new Ht t psMapper (get Root Request Mapper (),
new Ht t psConfi g(8080, 443)));

Now we can use annotation RequireHttps to specify which pages must be served using HTTPS:

@Requi reHtt ps
public class HonePage extends WebPage {
publ i ¢ HonePage(fi nal PageParaneters paraneters) {
super (par aneters);

If we want to protect many pages with HTTPS without adding annotation Requi r eHt t ps to each of them, we
can annotate a marker interface or a base page class and implement/extend it in any page we want to make
secure:

/1 Marker interface:
@Requi reHtt ps

public interface | Marker{
}

/| Base cl ass:
@Requi reHtt ps
public class BaseC ass extends WebPage{
§/Page code...

/'l Secure page inheriting from Based ass:
public class HttpsPage extends BaseC ass{
/| Page code...

}

/| Secure page inplenenting | Marker:
public class HtpsPage inplenments | Marker{

174

/| Page code...
}

21.4 URLs encryption in detail

In chapter 10.6 we have seen how to encrypt URLs using Cr ypt oMapper request mapper. To encrypt/decrypt
page URLs Cr ypt oMapper uses an instance of or g. apache. wi cket . util.crypt.| Crypt interface:

public interface |Crypt
{

String encrypt Ul Safe(final String plainText);
String decryptUl Safe(final String encryptedText);

The default implementation for this interface is class or g. apache. wi cket. util.crypt. SunJceCrypt. It
provides password-based cryptography using PBEW t hMD5AndDES algorithm coming with the standard security
providers in the Java Runtime Environment.

& For better security it is recommended to install Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files for your version of JDK/JRE and use stronger
algorithms. See this example of a custom | Cr ypt implementation for inspiration.

By using Cr ypt oMapper (| Request Mapper w appedMapper, Application application) constructor
the mapper will use the configured org.apache.w cket.util.crypt.|CryptFactory from
or g. apache. wi cket.settings. | SecuritySettings#getCryptFactory(). To use a stronger
cryptography mechanism there are the following options:

® The first option is to use constructor CryptoMapper (| Request Mapper w appedMapper,
| Provi der<I Crypt > crypt Provi der) and give it an implementation of
org.apache. wi cket.util.lProvider that returns a custom
org. apache.w cket.util.crypt.|Crypt.

&y org.apache. wicket.util.IProvider is a single-method interface that acts as
object supplier:

public interface |Provider<T>

T get();

®* The second option is to register a cipher factory at application level with method
set Crypt Factory(I Crypt Factory crypt Fact ory) of interface | SecuritySetti ngs:

@verride
public void init() {
super.init();
get SecuritySettings().setCryptFactory(new SoneCrypt Factory());
set Root Request Mapper (new Crypt oMapper (get Root Request Mapper (), this));

Since version 6.19.0 Wicket uses
org. apache. wi cket.core. util.crypt. Keyl nSessi onSunJceCrypt Factory as a default factory for

175

http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://github.com/apache/wicket/blob/42ce1faa57d3617ccaa443045537306fabf4d71a/wicket-util/src/test/java/org/apache/wicket/util/crypt/UnlimitedStrengthJurisdictionPolicyTest.java#L67

I Crypt objects. This factory generates a unique key for each user that is stored in her HTTP session. This way
it helps to protect the application against CSRF attacks - the <form> action url will be encrypted in such way that
it will be unique for each user of the application. The url itself serves as encrypted token.

@ org.apache.wicket.core.util.crypt.Keyl nSessi onSunJceCrypt Factory
binds the http session if it is not already bound! If the application needs to run in stateless
mode then the application will have to provide a custom implementation of
| Crypt Fact or y that stores the user specific keys by other means.

21.5 Package Resource Guard

Wicket internally uses an entity called package resource guard to protect package resources from external
access. This entity is an implementation of interface
or g. apache. wi cket . mar kup. ht ml . | PackageResour ceGuar d.

By default Wicket applications use as package resource guard class Secur ePackageResour ceCGuar d, which
allows to access only to the following file extensions (grouped by type):

JavaScript files .js

CSSfiles .CSS

HTML pages .html

Textual files Axt

Flash files .swf

Picture files .png, .jpg, .jpegy, .gif, .ico, .cur, .bmp, .svg

Web font files .eot, .ttf, .woff

To modify the set of allowed files formats we can add one or more patterns with method addPat t er n(St ri ng)
. The rules to write a pattern are the following:

® patterns start with either a "+" or a "-". In the first case the pattern will add one or more file to the set while
starting a pattern with a “-” we exclude all the files matching the given pattern. For example pattern
“-web.xml” excludes all web.xml files in all directories.

® wildcard character “*” is supported as placeholder for zero or more characters. For example pattern
“+* mp4” adds all the mp4 files inside all directories.

® subdirectories are supported as well. For example pattern “+documents/*.pdf” adds all pdf files under
“documents” directory. Character “*” can be used with directories to specify a nesting level. For example
“+documents/*/*.pdf” adds all pdf files placed one level below “documents” directory.

® a double wildcard character “**” indicates zero or more subdirectories. For example pattern
“+documents/**/*.pdf" adds all pdf files placed inside “documents” directory or inside any of its
subdirectories.

Patterns that allow to access to every file with a given extensions (such as “+*.pdf") should be always avoided in
favour of more restrictive expressions that contain a directory structure:

/] Application class code...
@verride

public void init()

{

| PackageResour ceCuar d packageResour ceGuard = application. get ResourceSettings()
. get PackageResour ceGuard() ;

i f (packageResourceCuard i nstanceof SecurePackageResourceGuard)

{

Secur ePackageResour ceGuard guard = (Secur ePackageResour ceGuar d)
packageResour ceQuar d;

/I Al'low to access only to pdf files placed in the “public” directory.

guard. addPat t ern(" +public/*. pdf");

}

=

176

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#Encrypted_Token_Pattern

21.6 Summary

In this chapter we have seen the components and the mechanisms that allow us to implement security policies in
our Wicket-based applications. Wicket comes with an out of the box support for both authorization and
authentication.

The central element of authorization mechanism is the interface | Aut hori zati onSt r at egy which decouples
our components from any detail about security strategy. The implementations of this interface must decide if a
user is allowed to instantiate a given page or component and if she/he can perform a given action on it.

Wicket natively supports role-based authorizations with strategies Met aDat aRol eAut hori zati onStr at egy
and Annot at i onsRol eAut hori zati onSt r at egy. The difference between these two strategies is that the
first offers a programmatic approach for role handling while the second promotes a declarative approach using
built-in annotations.

After having explored how Wicket internally implements authentication and authorization, in the last part of the
chapter we have learnt how to configure our applications to support HTTPS and how to specify which pages
must be served over this protocol.

In the last paragraph we have seen how Wicket protects package resources with a guard entity that allows us to
decide which package resources can be accessed from users.

177

22 Test Driven Development with
Wicket

Test Driven Development has become a crucial activity for every modern development methodology. This
chapter will cover the built-in support for testing provided by Wicket with its rich set of helper and mock classes
that allows us to test our components and our applications in isolation (i.e without the need for a servlet
container) using JUnit, the de facto standard for Java unit testing.

In this chapter we will see how to write unit tests for our applications and components and we will learn how to
use helper classes to simulate user navigation and write acceptance tests without the need of any testing
framework other than JUnit.

The JUnit version used in this chapter is 4.x.

22.1 Utility class WicketTester

A good way to start getting confident with Wicket unit testing support is looking at the test case class
Test HomePage that is automatically generated by Maven when we use Wicket archetype to create a new
project:
¥ (= src

* =% main

¥ % test

¥ & java
¥ &x org
¥ =% wicketTutorial
[4} Start.java

I TestHomePage.java

Here is the content of TestHomePage:

public class Test HonePage{
private W cket Tester tester;

@Bef ore
public void setUp(){
tester = new Wcket Tester(new W cket Application());

}
@est
public voi d honmepageRender sSuccessful | y(){
/lstart and render the test page
tester. start Page(HonmePage. cl ass);
[l assert rendered page cl ass
tester. assert Render edPage(HonePage. cl ass) ;

The central class in a Wicket testing is or g. apache. wi cket. util .tester. W cket Test er. This utility class

provides a set of methods to render a component, click links, check if page contains a given component or a
feedback message, and so on.

The basic test case shipped with Test HonmePage illustrates how W cket Test er is typically instantiated (inside
method set Up()). In order to test our components, WicketTester needs to use an instance of

178

http://en.wikipedia.org/wiki/Test-driven_development

WebAppl i cat i on. Usually, we will use our application class as WebAppl i cat i on, but we can also decide to
build WicketTester invoking its no-argument constructor and letting it automatically build a mock web application
(an instance of class or g. apache. wi cket . nock. MockAppl i cati on).

The code from Test HonmePage introduces two basic methods to test our pages. The first is method st ar t Page
that renders a new instance of the given page class and sets it as current rendered page for WicketTester. The
second method is assertRenderedPage which checks if the current rendered page is an instance of the given
class. In this way if TestHomePage succeeds we are sure that page HomePage has been rendered without any
problem. The last rendered page can be retrieved with method get Last Render edPage.

That's only a taste of what W cket Test er can do. In the next paragraphs we will see how it can be used to test
every element that composes a Wicket page (links, models, behaviors, etc...).

Testing links

A click on a Wicket link can be simulated with method cl i ckLi nk which takes in input the link component or the
page-relative path to it.

To see an example of usage of clickLink, let's consider again project Li f eCycl eSt agesRevi sit ed. As we
know from chapter 5 the home page of the project alternately displays two different labels (“First label” and
“Second label”), swapping between them each time button "reload" is clicked. The code from its test case checks
that label has actually changed after button "reload" has been pressed:

/...
@est
public void sw tchLabel Test (){
/lstart and render the test page
tester. start Page(HomePage. cl ass) ;
[l assert rendered page cl ass
tester. assert Render edPage(HonePage. cl ass) ;
/] assert rendered | abel
tester.assertLabel ("label", "First |abel");
[/simulate a click on "reload" button
tester.clickLink("rel oad");
//assert rendered | abel
tester.assertLabel ("l abel", "Second |abel");

In the code above we have used cl i ckLi nk to click on the "reload" button and force page to be rendered
again. In addition, we have used also method assert Label that checks if a given label contains the expected
text.

By default cl i ckLi nk assumes that AJAX is enabled on client side. To switch AJAX off we can use another
version of this method that takes in input the path to the link component and a boolean flag that indicates if AJAX
must be enabled (true) or not (false).

similate a click on a button without AJAX support
ster.clickLink("rel oad", false);

~— e~
~m ~—

Testing component status

WicketTester provides also a set of methods to test the states of a component. They are:
® assertEnabled(String path)/assertDisabled(String path): they test if a component is enabled or not.
® assertVisible(String path)/assertinvisible(String path): they test component visibility.
® assertRequired(String path): checks if a form component is required.

In the test case from project Cust onDat epi cker Aj ax we used assert Enabl ed/assert Di sabl ed to check
if button "update" really disables our datepicker:

179

/...

@est

public void testDi sabl eDat ePi cker Wt hButton(){
/lstart and render the test page
tester. start Page(HonePage. cl ass) ;
[l assert that datepicker is enabled
tester. assert Enabl ed("f orm dat epi cker");
/lclick on update button to di sabl e dat epi cker
tester.clickLi nk("update");
[l assert that datepicker is disabled
tester. assertDi sabl ed("form dat epi cker");

Testing components in isolation

Method st art Conponent (Conponent) can be used to test a component in isolation without having to create
a container page for this purpose. The target component is rendered and both its methods onlnitiali ze()
and onBef or eRender () are executed. In the test case from project Cust onfor nConponent Panel we used
this method to check if our custom form component correctly renders its internal label:

/...
@est
public void test CustonPanel Cont ai nsLabel (){
Tenper at ureDegreeFiel d field = new Tenperat ureDegreeFi el d("field", Mdel.of(0.00));
//Use standard JUnit class Assert
Assert.assertNul |l (field.get("nmesuranentUnit"));
tester.start Conponent (field);
Assert.assertNot Nul | (field.get("nmesuranmentUnit"));

If test requires a page we can use st art Conponent | nPage(Conponent) which automatically generates a
page for our component.

Testing the response

W cket Test er allows us to access to the last response generated during testing with method
get Last Response. The returned value is an instance of class MockHttpServletResponse that provides helper
methods to extract informations from mocked request.

In the test case from project Cust onResour ceMount i ng we extract the text contained in the last response with
method get Docunent and we check if it is equal to the RSS feed used for the test:

/...

@est

public void test Mount edResour ceResponse() throws | OExcepti on,

FeedExcepti on{tester. start Resource(new RSSProducer Resource());
String responseTxt = tester.getlLast Response().get Docunent ();
/Iwite the RSS feed used in the test into a ByteArrayQutput Stream
Byt eAr r ayQut put St r eam out put Stream = new Byt eArrayCQut put St rean() ;
Witer witer = new Qutput StreanWiter (output Strean;
SyndFeedQut put out put = new SyndFeedQut put () ;

out put . out put (RSSPr oducer Resour ce. get Feed(), witer);
//the response and the RSS nust be equal
Assert.assert Equal s(responseTxt, outputStreamtoString());

To simulate a request to the custom resource we used method st art Resour ce which can be used also with
resource references.

Testing URLSs

W cket Test er can be pointed to an arbitrary URL with method execut eUr| (String url). This can be

180

useful to test mounted pages, resources or request mappers:

the resource was nmapped at '/foo/ bar'
ster.executelr| ("./foo/bar");

/
/
t
Il .

~o ~—

Testing AJAX components

If our application uses AJAX to refresh components markup, we can test if Aj axRequest Tar get contains a
given component with W cket Test er 's method assert Conponent OnAj axResponse:

test if Aj axRequest Target contains a conponent (using its instance)

test if Aj axRequest Target contains a conponent (using its path)

/1

/1t

test er. assert Conponent OnAj axResponse(anount Label) ;
/1

/1

te

ster. assert Conponent OnAj axResponse(" pat hToLabel : | abel 1 d");

It's also possible to use method i sConponent OnAj axResponse(Conponent

has been added to Aj axRequest Tar get :

cnp) to know if a component

1.
//test if Aj axRequestTarget does NOT contai n anount Label

assert Fal se(tester.isConponent OnAj axResponse(anount Label));
...

Testing AJAX events

Behavior Aj axEvent Behavi or and its subclasses can be tested simulating AJAX events with W cket Test er
's method execut eAj axEvent (Conponent cnp, String event). Here is the sample code from project
Test Aj axEvent sExanpl e:

Home page code:

public class HonePage extends WebPage {
public static String INNT_VALUE = "Initial value";
public static String OTHER VALUE = "Q her val ue";

publ i ¢ HonmePage(fi nal PageParaneters paraneters) {
super (paraneters);

Label | abel;

add(| abel = new Label ("l abel", INIT_VALUE));

| abel . add(new Aj axEvent Behavi or ("click") {
@verride

protected void onEvent (A axRequest Target target) {
// change | abel's data object
get Conponent () . set Def aul t Model Obj ect (
OTHER_VALUE) :
target. add(get Component ());

}) . set Qut put Mar kupl d(true);
/..

Test method:

181

@est
public void testA axBehavi or () {
/lstart and render the test page
tester. start Page(HonePage. cl ass) ;
//test if label has the initial expected val ue

tester.assertLabel ("l abel", HonePage.|N T_VALUE);
//simul ate an AJAX "click" event

test er. execut eAj axEvent ("Il abel ", "click");

/ltest if |abel has changed as expected
tester.assertLabel ("l abel", HonePage. OTHER VALUE);

Testing AJAX behaviors

To test a generic AJAX behavior we can simulate a request to it using W cket Tester's method
execut eBehavi or (Abst ract Aj axBehavi or behavi or):

/...
Aj axFor mConponent Updat i ngBehavi or aj axBehavi or =
new Aj axFor mConponent Updat i ngBehavi or (" change") {
@verride
protected voi d onUpdat e(A axRequest Target target) {
/...
}

cbrrponent . add(aj axBehavi or) ;
/...
/| execut e AJAX behavior, i.e. onUpdate will be invoked

t est er. execut eBehavi or (aj axBehavi or));
/1. ..

Using a custom servlet context

In paragraph 15.13 we have seen how to configure our application to store resource files into a custom folder
placed inside webapp root folder (see project Cust ontol der 4Mar kupExanpl e).

In order to write testing code for applications that use this kind of customization, we must tell W cket Test er
which folder to use as webapp root. This is necessary as under test environment we don't have any web server,
hence it's impossible for W cket Test er to retrieve this parameter from servlet context.

Webapp root folder can be passed to W cket Test er's constructor as further parameter like we did in the test
case of project Cust onfol der 4Mar kupExanpl e:

public class Test HonePage{
private W cket Tester tester;

@Bef ore
public void setUp(){
//build the path to webapp root fol der
File curDirectory = new Fil e(System get Property("user.dir"));
File webContextDir = new File(curDirectory, "src/min/webapp");

tester = new W cket Tester (new W cket Application(), webContextDir.getAbsol utePath());

//test nethods...

& After a test method has been executed, we may need to clear any possible side effect
occurred to the Applicati on and Sessi on objects. This can be done invoking
W cket Test er 's method destroy() :

@\ ter

public void tearDown() {
[/clear any side effect occurred during test.
tester.destroy();

182

22.2 Testing Wicket forms

Wicket provides utility class FormTester that is expressly designed to test Wicket forms. A new FormTester is
returned by W cket Tester's method newFor nifester (String, bool ean) which takes in input the
page-relative path of the form we want to test and a boolean flag indicating if its form components must be filled
with a blank string:

/...

[lcreate a new formtester without filling its form conponents with a blank string
For niTest er fornifester = tester.newFornTester("forni', false);

Il ..

For niTest er can simulate form submission with method submit which takes in input as optional parameter the
submitting component to use instead of the default one:

1.

[lcreate a new formtester without filling its form conmponents with a blank string
FormTester forniTester = tester.newForniester("fornt', false);

[/submt formw th default submitter

;?rmTester.subm't();

//submit formusing inner conponent 'button' as alternate button
fornflester.submt("button");

If we want to submit a form with an external link component we can use method subni t Li nk(String path,
bool ean pageRel ati ve) specifying the path to the link.

In the next paragraphs we will see how to use W cket Test er and For nifest er to interact with a form and with
its children components.

Setting form components input

The purpose of a HTML form is to collect user input. For mTest er comes with the following set of methods that
simulate input insertion into form's fields:

® setValue(String path, String value): inserts the given textual value into the specified component. It can be
used with components Text Fi el d and Text Ar ea. A version of this method that accepts a component
instance instead of its path is also available.

® setValue(String checkboxld, boolean value): sets the value of a given CheckBox component.

® setFile(String formComponentld, File file, String contentType): sets a Fil e object on a
Fi | eUpl oadFi el d component.

® select(String formComponentld, int index): selects an option among a list of possible options owned by
a component. It supports components that are subclasses of Abst r act Choi ce along with Radi oGr oup
and CheckG oup.

® selectMultiple(String formComponentld, int indexes): selects all the options corresponding to the given
array of indexes. It can be used with multiple-choice components like CheckGroup or
Li st Mul ti pl eChoi ce.

set Val ue is used inside method i nsert User nanmePasswor d to set the username and password fields of the
form used in project St at el essLogi nForm

protected void insertUsernanePassword(String usernane, String password) {
/lstart and render the test page
tester. start Page(HomePage. cl ass) ;
FornTester fornilester = tester.newrornrester("forn');
//set credentials
forniTest er. set Val ue("usernane", usernane);
fornlest er. set Val ue(" password", password);
[/submt form
fornTester.submt();

183

Testing feedback messages

To check if a page contains one or more expected feedback messages we can use the following methods
provided by W cket Tester:

® assertFeedback(String path, String... messages): asserts that a given panel contains the specified
messages

® assertinfoMessages(String... expectedinfoMessages): asserts that the expected info messages are
rendered in the page.

® assertErrorMessages(String... expectedErrorMessages): asserts that the expected error messages are
rendered in the page.

assertlnfoMessages and assertErrorMessages are used in the test case from project
St at el essLogi nFor mto check that form generates a feedback message in accordance with the login result:

@est

public void testMessageFor Successful Logi n() {
i nser User nanePasswor d("user", "user");
tester.assert|nfoMessages("Usernanme and password are correct!");

@est

public void testMessageFor Fail edLogin (){
i nser User nanmePasswor d("“w ongCredential ", "w ongCredential");
tester.assert Error Messages("Wong usernane or password");

Testing models

Component model can be tested as well. With method assert Model Val ue we can test if a specific component
has the expected data object inside its model.

This method has been used in the test case of project Model Chai ni ngExanpl e to check if the form and the
drop-down menu share the same data object:

@est
public void testFornSel ect SaneMdel Obj ect () {
PersonLi stDetails personListDetails = new PersonListDetail s();
Dr opDownChoi ce dr opDownChoi ce = (DropDownChoi ce) personLi stDetails.get("persons");
Li st choi ces = dropDownChoi ce. get Choi ces() ;
//sel ect the second option of the drop-down nmenu
dr opDownChoi ce. set Model Obj ect (choi ces. get(1));

/lstart and render the test page
tester.startPage(personListDetails);
[l assert that form has the same data object used by drop-down nenu
tester. assert Mbdel Val ue("forn', dropDownChoi ce. get Model Qbject());

22.3 Testing markup with TagTester

If we need to test component markup at a more fine-grained level, we can use class TagTest er from package
org. apache. wicket.util.tester.

This test class allows to check if the generated markup contains one or more tags having a given attribute with a
given value. TagTester can not be directly instantiated but it comes with three factory methods that return one or
more TagTester matching the searching criteria. In the following test case (from project TagTest er Exanpl e)
we retrieve the first tag of the home page (a tag) having attribute class equal to myClass:

HomePage markup:

<htm xm ns:w cket="http://w cket.apache. org">

184

<head>
<neta charset="utf-8" />
<title></title>

</ head>

<body>
</ span>
<di v class="nmyd ass"></di v>

</ body>

</htm >

Test method:

@est
public voi d honePageMar kupTest ()

//start and render the test page

tester. start Page(HonePage. cl ass) ;

/lretrieve response's markup

String responseTxt = tester.getlLast Response().getDocunent();

TagTester tagTester = TagTester.createTagByAttribute(responseTxt, "class", "nyC ass")

Assert.assert Not Nul | (tagTester);
Assert.assert Equal s("span", tagTester.getNane());

Li st <TagTester> tagTesterLi st = TagTester.createTagsByAttribute(responseTxt,
"class", "nyd ass", false)

Assert . assert Equal s(2, tagTesterlList.size());

The name of the tag found by TagTester can be retrieved with its method getName. Method
creat eTagsByAt tri but e returns all the tags that have the given value on the class attribute. In the code
above we have used this method to test that our markup contains two tags having attribute class equal to
myClass.

Another utility class that comes in handy when we want to test components markup is Conponent Render er in
package or g. apache. w cket.core. util.string. The purpose of this class is to render a page or a
component in isolation with its static methods r ender Conponent and r ender Page. Both methods return the
generated markup as Char Sequence:

@est
public voi d custonConponent Mar kupTest ()

/linstantiate MyConponent
MyConponent nyConponent = //...

/I render and save conponent markup
String conponent Markup = Conponent Render er . r ender Conponent (myConponent) ;

/I performtest operations
/...

}

22.4 Summary

With a component-oriented framework we can test our pages and components as we use to do with any other
Java entity. Wicket offers a complete support for writing testing code, offering built-in tools to test nearly all the
elements that build up our applications (pages, containers, links, behaviors, etc...).

The main entity discussed in this chapter has been class W cket Test er which can be used to write unit tests
and acceptance tests for our application, but we have also seen how to test forms with For mlest er and how to
inspect markup with TagTest er .

In addition to learning how to use the utility classes provided by Wicket for testing, we have also experienced the
innovative approach of Wicket to web testing that allows to test components in isolation without the need of
running our tests with a web server and depending only on JUnit as testing framework.

185

23 Test Driven Development with
Wicket and Spring

Since the development of many web applications is mostly based on the Spring framework for dependency
injection and application configuration in general, it's especially important to get these two frameworks running
together smoothly not only when deployed on a running server instance itself but rather during the execution of
JUnit based integration tests as well. Thanks to the W cket Test er API provided by the Wicket framework itself,
one can easily build high-quality web applications while practicing test driven development and providing a
decent set of unit and integration tests to be executed with each build. As already mentioned previously,
integration and configuration of our web applications is based on a lightweight Spring container meaning that the
integration of Spring's Appl i cat i onCont ext and a WicketTester API is essential to get our integration tests
running. In order to explain how to achieve that integration in an easy and elegant fashion in your integration test
environment, we'll first take a look at a configuration of these 2 framework beauties in a runtime environment.

23.1 Configuration of the runtime environment

In order to get the Wicket framework up to speed when your server is up and running, you usually configure a
W cket Fi | t er instance in your web application deployment descriptor file (web. xmi) while passing it a single
init parameter called appl i cati onCl assNane that points to your main implementation class extending

or g. apache. wi cket . protocol . htt p. WebAppl i cati on where all of your application-wide settings and
initialization requirements are dealt with:

<filter>
<filter-name>w cketfilter</filter-nanme>
<filter-class>org. apache. w cket.protocol.http. WcketFilter</filter-class>
<i nit-parane
<par am nane>appl i cat i onCl assNane</ par am nane>
<par am val ue>com consyst 0. webapp. MyWWebAppl i cat i on</ param val ue>
</i ni t-paran>
</filter>

In case you want to get Wicket application up and running while leaving the application configuration and
dependency injection issues to the Spring container, the configuration to be provided within the deployment
descriptor looks slightly different though:

<web- app>
<filter>
<filter-name>w cketfilter</filter-name>
<filter-class>org. apache. w cket.protocol.http. WcketFilter</filter-class>
<i ni t - paran>
<par am nane>appl i cat i onFact or yCl assNane</ par am nane>
<par am val ue>or g. apache. wi cket . spri ng. Spri ngWebAppl i cati onFact or y</ par am val ue>
</init-paranr
</filter>
<listener>
<l i stener-cl ass>org. spri ngframewor k. web. cont ext . Cont ext Loader Li st ener
</listener-class>
</listener>
<cont ext - par an>
<par am nanme>cont ext Confi gLocat i on</ par am nane>
<par am val ue>/ W\EB- | NF/ appl i cat i onCont ext . xnl </ par am val ue>
</ cont ext - par an>
</ web- app>

The additional configuration part containing listener and context parameter definition is a usual Spring container
related configuration detail. ContextLoaderListener is an implementation of standard Serviet API
ServletContextListener interface provided by the Spring framework itself and is responsible for looking up an
according bean definition file(s) specified by the context param above and creating an ApplicationContext

186

instance during servlet context initialization accordingly. When integrating an ApplicationContext instance with
Wicket, one of the beans defined in the above mentioned Spring bean definition file has to be your own specific
extension of org. apache. wi cket. protocol . htt p. WebAppl i cati on. You can either define a suitable
bean in the bean definition file itself:

<beans>
<bean i d="nyWebApp" cl ass="com consysto. webapp. M\yWebAppl i cation"/>
</ beans>

or use powerful classpath scanning feature of the Spring framework and annotate the MyWebApplication
implementation with the appropriate @omnponent annotation accordingly while enabling the Spring container to
scan the according package(s) of your application for relevant bean definitions:

<beans>
<cont ext : conponent - scan base- package="com consyst o. webapp" />
<cont ext : conponent - scan base- package="com consyst 0. webapp. servi ce" />
<cont ext : conponent - scan base- package="com consyst 0. webapp. reposi tory" />
</ beans>

Either way, if everything goes well, you'll get a pre-configured ApplicationContext all set up during the startup of
your web container. One of the beans in the ApplicationContext will be your own extension of Wicket's
WebApplication type. SpringWebApplicationFactory implementation provided by the Wicket framework itself that
you have defined as the appl i cat i onFact or yCl assNane in the configuration of your WicketFilter will then be
used in order to retrieve that very same WebApplication bean out of your Spring ApplicationContext. The Factory
expects one and only one extension of Wicket's very own WebApplication type to be found within the
ApplicationContext instance at runtime. If no such bean or more than one bean extending WebApplication is
found in the given ApplicationContext an according lllegalStateException will be raised and initialization of your
web application will fail:

Map<?, ?> beans = BeanFactoryUil s. beansOf Typel ncl udi ngAncest or s(ac, WebAppl i cati on. cl ass
fal se, false)
i f (beans.size() == 0)

throw new |11 egal St at eException("bean of type [" + WebApplication.class. get Nanme() +
"] not found");

if (beans.size() > 1)

throw new ||| egal St at eException("nmore than one bean of type [" +
WebAppl i cation. cl ass. get Nane() + "] found, must have only one");

After the WebApplication bean has been successfully retrieved from the ApplicationContext via
SpringWebApplicationFactory, WicketFilter will then, as part of its own initialization process, trigger both
internallnit() and init() methods of the WebApplication bean. The latter one is the exact spot where the last piece
of the runtime configuration puzzle between Wicket and Spring is to be placed :

@Conponent
public class MyWebApplication extends WebApplication {

@verride
protected void init() {
super.init();

get Conponent | nstanti ati onLi st eners().add(new Spri ngConponent | nj ector(this));
}

}

SpringComponentinjector provided by the Wicket framework enables you to get dependencies from the
ApplicationContext directly injected into your Wicket components by simply annotating these with the according
@pr i ngBean annotation.

23.2 Configuration of the JUnit based integration test environment

187

One of the main features of Apache Wicket framework is the ability to easily write and run plain unit tests for your
Pages and all other kinds of Components that even include the verification of the rendering process itself by
using JUnit framework and the WicketTester APl only. When using Spring framework for application
configuration together with Wicket, as we do, you can even use the same tools to easily write and run full blown
integration tests for your web application as well. All you have to do is use Spring's TestContext framework
additionally to configure and run your JUnit based integration tests. The Spring Framework provides a set of
Spring specific annotations that you can use in your integration tests in conjunction with the TestContext
framework itself in order to easily configure an according ApplicationContext instance for your tests as well as for
appropriate transaction management before, during and after your test execution. Following code snippet
represents a simple JUnit 4 based test case using Spring's specific annotations in order to initialize an
ApplicationContext instance prior to executing the test itself:

@RunW t h(Spri ngJUni t 4Cl assRunner. cl ass)

@Cont ext Confi guration(l ocati ons = {"cl asspat h: \EB- | NF/ appl i cati onCont ext . xml "})
@ransacti onConfiguration(transacti onManager = "txManager", defaultRollback = fal se)
public class Logi nPageTest {

private W cket Tester tester;

@\ut owi r ed

private ApplicationContext ctx;
@\ut owi r ed

private MyWebApplication nyWebApplication;
@Bef ore

public void setUp() {
tester = new W cket Tester (nyWebAppl i cation);
}

@est
@ransact i onal
@®ol | back(true)
public voi d test Render MyPage() {
tester. startPage(Logi nPage. cl ass);
tester. assert Render edPage(Logi nPage. cl ass) ;
tester.assert Component ("l ogi n", Logi nConponent. cl ass);

By defining three annotations on the class level (see code snippet above) in your test, Spring's TestContext
framework takes care of preparing and initializing an ApplicationContext instance having all the beans defined in
the according Spring context file as well as the transaction management in case your integration test includes
some kind of database access. Fields marked with @\ut owi r ed annotation will be automatically dependency
injected as well so that you can easily access and use these for your testing purposes. Since MyWebApplication,
which extends Wicket's WebApplication type and represents the main class of our web application, is also a
bean within the ApplicationContext managed by Spring, it will also be provided to us by the test framework itself
and can be easily used in order to initialize a WicketTester instance later on during the execution of the test's
setUp() method. With this kind of simple, annotation based test configuration we are able to run an integration
test that verifies whether a LoginPage gets started and initialized, whether the rendering of the page runs
smoothly and whether the page itself contains a LoginComponent that we possibly need in order to process
user's login successfully.

When you run this test though, you'll unfortunately get the following exception raised:

java. | angal | | egal St at eException: No WebApplicati onContext found: no ContextLoaderLi stener
regi stered?
at org. springfranmewor k. web. cont ext . support. WebAppl i cati onContext Util s.
get Requi redVebAppl i cat i onCont ext (\WebAppl i cati onContextUtils.java: 84)
at org.apache. w cket.spring.injection.annot.
Spri ngConponent | nj ect or. <i ni t >(Spri ngConponent | nj ector.java: 72)
at com consyst 0. servi cepl at f or m ui webapp. M\WebAppl i cati on.
initializeSpringConponentl! njector(M/WbApplication.java:59)
at com consyst 0. servi cepl at f or m ui webapp. M/\WWebAppl i cati on.
i ni t(MyWebApplication.java: 49)
at org.apache. wi cket. protocol . http. WcketFilter.
init(WcketFilter.java: 719)
at org.apache. w cket. protocol . http. MockWebAppl i cati on.
<i ni t >(MockWebAppl i cati on.java: 168)
at org.apache.w cket.util.tester.BaseW cket Tester.
<i ni t >(BaseW cket Test er. j ava: 219)
at org.apache.w cket.util.tester. Wcket Tester.
<init>(Wcket Tester.java: 325)
at org.apache.w cket.util.tester. Wcket Tester.
<init>(Wcket Tester.java: 308)

188

http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/testing.html#testcontext-framework

As you can see above, the Exception gets raised during the initialization of the W cket Test er instance even
before the actual test method gets executed. Even though we have applied rather cool and simple annotation
based test configuration already described and passed in perfectly well prepared ApplicationContext instance to
the WicketTester instance in the constructor, somewhere down the rabbit hole someone complained that no
WebApplicationContext instance could have been found which seems to be required in order to initialize the
WicketTester properly.

——

ni -
IniB] gy

T

<init>

pelReguradietlapbcationContesl
[

IllegalState
Exception!!!

The problem that we run against here is due to the fact that SpringComponentinjector during its own initialization
is trying to get hold of an according Spring's ApplicationContext instance that would normally be there in a
runtime environment but does not find any since we are running in a test environment currently.
SpringComponentinjector delegates to Spring's own WebApplicationContextULtils class to retrieve the instance of
ApplicationContext out of the ServletContext which is perfectly fine for a runtime environment but is unfortunately
failing in a test environment:

public static WebApplicationContext getRequiredWbApplicationContext (ServletContext sc)
throws |11 egal StateException {

WebAppl i cati onCont ext wac = get WebAppl i cati onCont ext (sc);
1f (wac == null) {
throw new |11 egal St at eExcepti on("No WebAppl i cati onContext found: no
Cont ext Loader Li st ener regi stered?");

return wac;

If you still remember we defined a ContextLoaderListener in our web.xml file as part of the configuration of our
runtime environment that makes sure an according WebApplicationContext instance gets initialized and
registered against the ServletContext properly. Luckily, this problem can easily be solved if we slightly change
the way we initialize SpringComponentinjector in our main MyWebApplication class. Apart from the constructor
that we have used so far, there is another constructor in the SpringComponentinjector class that expects the
caller to provide it with an according ApplicationContext instance rather than trying to resolve one on its own:

publ i c SpringConponent | njector (\WebApplicati on webapp, ApplicationContext ctx,
bool ean wr apl nPr oxi es)

i{f (webapp == null)

throw new Il egal Argunent Excepti on("Argunent [[webapp]] cannot be null");

}
if (ctx == null)
throw new |11 egal Argunment Exception("Argunent [[ctx]] cannot be null");
}

/] store context in application's netadata ...
webapp. set Met aDat a(CONTEXT_KEY, new Appl i cati onCont ext Hol der (ctx));

/1 ...and create and register the annotation aware injector

189

I nj ect or Hol der . set | nj ect or (new Annot Spri ngl nj ect or (new Cont ext Locat or (),
wr apl nProxi es)) ;

In order to use this constructor instead of the one we used previously, we now obviously need to get hold of the
Appl i cati onCont ext instance on our own in our MyWebAppl i cat i on implementation. The easiest way to
do this is to use Spring's own concept of lifecycle callbacks provided to the beans managed by the Spring
container. Since our M\yWebAppl i cati on is also a bean managed by the Spring container at runtime (enabled
by the classpath scanning and @onponent annotation on a type level), we can declare it to implement
Appl i cati onCont ext Awar e interface which ensures that it gets provided with the Appl i cati onCont ext
instance that it runs in by the Spring container itself during startup.

public interface ApplicationContextAware {
voi d set Appl i cati onCont ext (Applicati onContext applicationContext) throws BeansException;

}

So the relevant parts of MyWebAppl i cat i on type will now look something like the following code snippet:

@onponent
public class MyWebApplication extends WebApplication inplenents ApplicationContextAwnare {
@verride
protected void init() {
addConponent | nst anti ati onLi st ener (new Spri ngConponent | njector(this, ctx, true));

public voi d setApplicati onContext (ApplicationContext applicationContext) throws
BeansException {
this.ctx = applicationContext;
}

For additional clarification of how MyWebAppl i cat i on now relates to both Wicket and Spring framework here is
an according class diagram:

WebApplication
internalInit()
init()

extends
MyWebApplication ApplicationContext
_______________ Aware

gy implements
zztiialimtian[ontext{ J g Sethpp’ Loationlombaxt(.)

23.3 Summary
With the configuration outlined above, no additional modifications are required to the test itself. It's going to turn

green now. This way you can use exactly the same Spring context configuration that you'd use in your runtime
environment for running your JUnit based integration tests as well.

190

http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factory-aware

24 \Wicket Best Practices

This section is addressed to developers, who have already made their first experiences with Apache Wicket.
Developers who get into Wicket often have difficulties with it because they apply the typical JSF and Struts
patterns and approaches. These frameworks primarily use procedural programming methods. In contrast Wicket
is strongly based on object oriented patterns. So forget all Struts and JSF patterns, otherwise you won't have fun
with Wicket in the long run.

24.1 Encapsulate components correctly

A component should be self-contained. The user of a component should neither have to know nor care about its
internal structure. She should just be familiar with its external interfaces and its documentation in order to be able
to use it. This means in detail: Every component that extends Wicket's own Panel type (thus is a Panel itself)
must provide its own HTML template. In contrast, when a component extends the classes
WebMar kupCont ai ner or For m there is no HTML template. This implies that you should add components
through composition in WebMar kupCont ai ner or For m

Listing 1:

/| Poor conponent
public class RegistrationForm extends FornkRegi stration> {
public RegistrationForn(String id, |Mdel<Registration> reghWbdel) {
super (i d, new ConpoundPropertyMdel <Regi stration>(reghbdel))
/1 Wong: RegistrationForm provides its own conponents
add(new Text Fi el d("usernane"));
add(new TextFiel d("firstnane"));
add(new Text Fi el d("| ast nanme"));

This snippet is an example for a poor component. The user of the Regi st rati onFor mmust know the internal
structure of the markup and component in order to use it.

Listing 2:
public class RegistrationPage extends Page {
public Registrati onPage(| Mbdel <Regi strati on> reghbdel) {
Formk?> form = new Regi strati onForn("formn');
form add(new Submi tButton("register"”) {
public void onSubm t() {
/1 do sonething
}
b))
add(form;
}
<htm >
<body>
<form wi cket:id="forni>
<l-- These are internal structure information from RegistrationForm -->
Usernanme <i nput type="text" wi cket:id="usernane"/>
First nanme <input type="text" w cket:id="firstname"/>
Last nanme <input type="text" wicket:id="|astnane"/>
<I-- Above new conponents from page which the user knows -->
<i nput type="submit" wicket:id="register" val ue="Register"/>
</ fornmp
</ body>
</htnm >

191

The code above shows the usage of the poor component in the Regi strati onPage. You can see that the
input fields firstname, | ast nane and user nane get used, even though these components are not added
explicitly to the Regi strati onPage. Avoid this, because other developers cannot directly see that the
components were added in Regi st r ati onPage class.

Listing 3:

/1 Good conponent
public class Registrationl nput Panel extends Panel {
publi ¢ Regi strationlnputPanel (String id, |Mdel<Registration> reghodel) {
super (i d, reghodel);
| Model <Regi stration> conpound = new ConpoundPropertyMdel <Regi stration(regnodel)
For mkRegi stration> form = new FornxkRegi strati on>("forn', conpound);
/1 Correct: Add conponents to Form over the instance variable
form add(new Text Fi el d("usernane"));
form add(new TextField("firstnanme"));
form add(new Text Fi el d("I| ast nane"));

add(forn;
}
}
<htm >
<body>
<w cket : panel >
<form wi cket:id="forni>
User name <input type="text" w cket:id="usernane"/>
First nane <input type="text" w cket:id="firstname"/>
Last nanme <input type="text" wi cket:id="|astnane"/>
</fornmp
</ wi cket: panel >
</ body>
</htnm >

Now we have a properly encapsulated input component which provides its own markup. Furthermore you can
see the correct usage of a Wicket For m The components get added by calling f or m add(Conponent) on the
instance variable. On the other hand, it is allowed to add behaviours and validators over inheritance, because
those do not have markup ids which must be bound.

With that, the usage of Regi strati onl nput Panel is much more intuitive. There is no markup of other
embedded components present anymore, just markup of components which get directly added. The
Regi strati onPage provides its own form that delegates the submit to all Wicket nested forms which are

contained in the component tree.

Listing 4:

public class RegistrationPage extends Page {
public Registrati onPage(| Mddel <Regi stration> reghdel) {
Formc?> form = new Fornm("forni);
form add(new Regi strationl nput Panel ("regi stration", reghMdel);
form add(new Submi tButton("register") {
public void onSubmt() {
/1 do sonething

}
1
add(forn;
}
<htm >
<body>
<form wi cket:id="forn>
<div wicket:id="registration">
Di spl ay the Regi strationl nput Panel
</ di v>
<i nput type=& dquo; submi t & dquo; wi cket:id="register" value="Register"/>
</fornmp
</ body>
</htm >

192

24.2 Put models and page data in fields

In contrast to Struts, Wicket pages and components are no singletons, they are stateful and session-scoped.
This enables us to store user-specific information within pages and components. The information should be
stored in fields. This way you can access the information within a class while avoiding long method signatures
only for passing the same information around. Instances of components can exist for several requests. For
example, a page with a form which gets submitted and produces validation errors uses the same page instance.
Furthermore the same page instance gets used when the user presses the back button of the browser and
resubmits this formular again. Information which gets passed by the constructor should be assigned to fields
(normally this must be models). When storing information in fields you should consider that the information is
serializable, because the pages are stored using Java serialization. By default Wicket stores pages on the hard
disk. A non-serializable object leads to Nul | Poi nt er Excepti ons and NonSeri al i zabl eExcepti ons.
Additionally, big data (like binary stuff) should not be stored directly in fields because this can cause performance
losses and memory leaks during serialization and deserialization. In this case, you should use the
Loadabl eDet achabl eMbdel which can be assigned to a field because this provides an efficient mechanism to
load and detach data.

24.3 Correct naming for Wicket IDs

For many developers, naming is a dispensable thing, but | think it is one of the major topics in software
development. With the help of correct naming, you can easily identify the business aspects of a software
component. Additionally good naming avoids unneccessary and bad comments.

Bad namings for Wicket-IDs are bi rt hdat eText Fi el d, fi r st naneFi el d and addr essPanel . Why? The
naming contains two aspects: A technical aspect ("TextField") and the business aspect ("birthdate"). Only the
the business aspect is relevant because both the HTML template as well as the Java code already contain the
technical details ("new Text Fi el d(" bi rt hdat e"))". Additionally, such names add a lot of effort when you do
technical refactorings, e.g. if you have to replace a Text Fi el d by a Dat ePi cker and the Wicket ID
bi rt hdat eText Fi el d becomes bi rt hdat eDat ePi cker . Another reason for avoiding technical aspects in
Wicket IDs is the ConpoundPr opert yModel . This model delegates the properties to its child components
named by Wicket IDs (see listing 3). For example the TextField usernanme automatically calls
set Usernane() and getUsernanme() on the Registration object. A setter like
set User naneText fi el d() would be very inconvenient here.

24.4 Avoid changes at the component tree

You should consider Wicket's component tree a constant and fixed skeleton which gets revived when its model is
filled with data like a robot without brain. Without brain the robot is not able to do anything and is just a dead and
fixed skeleton. However, when you fill it with data, it becomes alive and can act. There is no need for changing
hardware when filling him with data. In Wicket, you should manipulate the component tree as little as possible.
Consequently, you should avoid calling methods like Conponent.repl ace(Conponent) and
Conmponent . renove(Conponent) . Calling these methods indicates missing usage or misusage of Wicket's
models. Furthermore the component trees should not be constructed using conditions (see listing 5). This
reduces the possibility of reusing the same instance significantly.

Listing 5:

[/ typical for struts
i f (MySession. get().isNotLoggedin()) {
add(new Logi nBoxPanel ("1 ogin"))

el se {
add(new Enpt yPanel ("l ogin"))

Instead of constructing Logi nBoxPanel conditionally, it is recommended to always add the panel and control
the visibility by overriding i sVi si bl e() . So the component Logi nBoxPanel is responsible for displaying itself.
We move the responsibility into the same component which executes the login. Brilliant! Cleanly encapsulated
business logic. There is no decision from outside, the component handles all the logic. You can see another
example in "Implement visibilities of components correctly”.

24.5 Implement visibilities of components correctly

193

Visibility of components is an important topic. In Wicket you control any component's visibility via the methods
i sVi sible() and set Vi si bl e() . These methods are within Wicket's base class Conponent and therefore it
is applicable for every component and page. Let's have a look at a concrete example of Logi nBoxPanel . The
panel just gets displayed when the user is not logged in.

Listing 6:

/| Poor inplenentation

Logi nBoxPanel | ogi nBox = new Logi nBoxPanel ("I ogi n");
| ogi nBox. set Vi si bl e(MySessi on. get (). i sNot Loggedin());
add(| ogi nBox) ;

Listing 6 shows a poor implementation, because a decision about the visibility is made while instanciating the
component. Again, in Wicket instances of components exist for several requests. To reuse the same instance
you have to call | ogi nBox. set Vi si bl e(fal se). This is very unhandy, because we always have to call
set Vi si bl e() and manage the visibility. Furthermore you are going to duplicate the states, because visible is
equal to "not logged in". So we have two saved states, one for the business aspect "not logged in" and one for
the technical aspect "visible". Both is always equal. This approach is error-prone and fragile, because we always
have to pay attention to setting the correct information every time. But this is often forgotten because the logic is
widely spread over the code. The solution is the Hollywood principle: "Don't call us, we'll call you.". Take a look at
the following diagram illustrating an application flow with some calls. We avoid three calls through the
Hollywood-Principle and we just have to instanciate the Logi nBoxPanel .

Instanciate LoginPanel

Call page LoginPanel . setVisible(true)

Execute login

LoginPanel.setVisible(false)

Actions

M LoginPanel.setVisible(true)

Listing 7:

public class Logi nBoxPanel {
[/ constructor etc.
@verride
publ i c bool ean isVisi bl e(
return MySessi on. get (
}

% . i{sNot LoggedI n();

Now the control over visibility has been inverted, the Logi nBoxPanel decides on its visibility autonomously. For
each call of i sVi si bl e() there is a refreshed interpretion of the login state. Hence, there is no additional state
that might be outdated. The logic is centralized in one line code and not spread throughout the application.
Furthermore, you can easily identify that the technical aspect i sVi si bl e() correlates to the business aspect
"logged in". The same rules can be applied to the method i sEnabl ed() . If i sEnabl ed() returns false the

components get displayed in gray. Forms which are within an inactive or invisible component do not get
executed.

Note that there are cases in which you cannot avoid to call the methods set Vi si bl e() and set Enabl ed() .
An example: The user presses a button to display an inlined registration form. In general, you can apply the
following rules: data driven components override these methods and delegates to the data model. User triggered
events call the method set Vi si bl e(bool ean). You can also override these methods with inline
implementations:

Listing 8:

194

http://en.wikipedia.org/wiki/Hollywood_Principle

new Label ("headl i ne", headlineMdel) {
@verride
publ i c bool ean isVisible() {
/] Hi dden headline if text starts with "Berlusconi"
String headline = get Model Obj ect () ;
return headline.startWth("Berl usconi");

Note: Some people insist on overriding i sVi si bl e() being a bad thing. The method i sVi si bl e() gets
called very often (more than once for each request!), so you have to ensure that the calls within i sVi si bl e()
are cheap. The main point is that the visibility of a component should be controlled by its own and not be
controlled by other components. This avoids a wide-spread logic over the whole application. Another way you
can realize this is to override onConfi gur e() and set the visibility there. This method gets called once during
each request.

24.6 Always use models

Always use models - period! Do not pass raw objects directly to components. Instances of pages and
components can exist for several requests. If you use raw objects, you cannot replace them later. An example is
an entity which gets loaded at each request within a Loadabl eDet achabl eMbdel . The entity manager creates
a new object reference, but the page would keep the obsolete instance. Always pass | Model in the constructor
of your components:

Listing 9:

public class Registrationl nput Panel extends Panel {
/] Correct: The class Registration gets w apped by | Mdel
publi ¢ Regi strationlnputPanel (String id, |Mdel<Registration> reghbdel) {
) // add conponents

This code can use any implementation of | Model , e.g. the class Model , a Propert yModel or a custom
implementation of Loadabl eDet achabl eMbdel which loads and persists the values automatically. The model
implementations gets very easy to replace. You - as a developer - just need to know: if | call

| Model . get Obj ect (), | will get an object of type Regi strati on. Where the object comes from is within the
responsibility of the model implementation and the calling component. For example you can pass the model
while instanciating the component. If you avoid using models, you will almost certainly have to modify the
component tree sooner or later which forces you to duplicate states and thus produce unmaintainable code.
Additionally, you should use models due to serialization issues. Objects which get stored in fields of pages and
components get serialized and deserialized on each request. This can be inefficient in some cases.

24.7 Do not unwrap models within the constructor hierarchy

Avoid unwrapping models within the constructor hierarchy, i.e. do not call | Model . get Obj ect () within any
constructor. As already mentioned, a page instance can exist for several page requests, so you might store
obsolete and redundant infomation. It is reasonable to unpack Wicket Models at events (user actions), that are
methods like onUpdat e(), ond i ck() or onSubmit)@:

Listing 10:

new Fornm("register") {
public void onSubm t() {
/1 correct, unwap nodel in an event call
Regi stration reg = registrati onivbdel . get Obj ect ()
user Service.regi ster(reg);

An additional possibility to unwrap models is via overriding methods like i sVi si bl e(), i sEnabl ed() or

195

http://www.mail-archive.com/dev@wicket.apache.org/msg07123.html

onBef or eRender () .

24.8 Pass models extended components

Always try to pass models on to the parent component. By that, you ensure that at the end of every request the
method | Model . det ach() gets called. This method is responsible for a data cleanup. Another example: you
have implemented your own model which persists the data in the det ach() method. So the call of det ach() is
necessary for that your data gets persisted. You can see an exemplary passing to the super constructor here:

Listing 11:

public class Registrationl nput Panel extends Panel {
public RegistrationlnputPanel (String id, |Mdel <Registration> reghdel) ({
super (i d, reghodel)
/] add conponents

24.9 Validators must not change any data or models
Validators should just validate. Consider a bank account form which has a BankFor nVal i dat or . This validator

checks the bank data over a webservice and corrects the bank name. Nobody would expect that a validator
modifies information. Such logic has to be located in For m onSubni t () or in the event logic of a button.

24.10 Do not pass components to constructors

Do not pass entire components or pages to constructors of other components.

Listing 12:

// Bad sol ution
public class SettingsPage extends Page {
public SettingsPage (| Mdel <Settings> settingsivbdel, final Whbpage backToPage) {
Fornx?> form = new Forn("forn');
/1 add conponents
form add(new Submi t Button("changeSettings") {
public void onSubmt() {
/1 do sonet hi ng
set ResponsePage(backToPage) ;

1
add(forn;

The Set t i ngsPage expects the page which should be displayed after a successful submit to be passed to its
constructor. This solution works, but is very bad practice. You need to know during the instanciation of
Set t i ngsPage where you want to redirect the user. This requires a predetermined order of instanciation. It is
better to order the instanciation based on business logic (e.g. the order in the HTML template). Furthermore, you
need an unnecessary instance of the next success page which might never be displayed. The solution is once
again the Hollywood principle. For this you create an abstract method or a hook:

Listing 13:

/| Good sol ution
public class SettingsPage extends Page {
public SettingsPage (| Mdel <Settings> settingshdel) {
Fornx?> form = new Forn("forn);
/1 add conponents
form add(new Submi t Button("changeSettings") {
public void onSubmt() {
/1 do sonet hi ng
onSet ti ngsChanged() ;

1
add(form;

/'l hook

196

protected void onSettingsChanged() {

/1l The usage of the new conponent
Li nk<Voi d> settings = new Li nk<Voi d>("settings") {
public void onCick() {
set ResponsePage(new SettingsPage(settingsWodel) {
@verride
protected void onSettingsChanged() ({
/'l reference to the current page
set ResponsePage(this);
}
b))
}

}
add(settings);

This solution has more code, but it is more flexible and reuseable. We can see there is an event
onSet ti ngsChanged() and this event is called after a successful change. Furthermore, there is the possibility
to execute additional code besides setting the next page. For example, you can display messages or persist
information.

24.11 Use the Wicket session only for global data

The Wicket session is your own extension of Wicket's base session. It is fully typed. There is no map structure to
store information unlike the servlet session. You just should use Wicket's session for global data. Authentication
is a good example for global data. The login and user information is required on nearly each page. For a blog
application it would be good to know whether the user is an author who is allowed to compose blog entries. So
you are able to hide or or show links to edit a blog entry. In general you should store the whole authorization
logic in Wicket's session, because it is a global thing and you would expect it there. Data of forms and flows
which only span certain pages should not stored in the session. This data can be passed from one page to the
next via the constructor (see listing 14). As a consequence of this, the models and data have a clearly defined
lifecycle that reflects the corresponding the page flow.

Listing 14:

public class MyPage extends WbPage {
| Model <MyDat a> nyDat aMobdel ;

public MyPage(l Model <MyDat a> nyDat avbdel) {
t hi s. nyDat aMbdel = nyDat aModel ;
Li nk<Voi d> next = new Li nk<Voi d>("next") {
public void onCick() {
/1 do sonet hi ng
set ResponsePage(new Next Page(nmyDat aMbdel)) ;

gdd(next);

You should pass concrete information to the page. All models can simply be stored in fields because Wicket
pages are user-specific instances and no singletons in contrast to Struts. The big advantage of this approach is
that the data gets automatically cleaned up when a user completes or exits the page flow. No manual cleanup
anymore! This is basically an automatic garbage collector for your session.

24.12 Do not use factories for components

The factory pattern is useful, but nevertheless not suitable for Wicket components.

Listing 15:

public class CnsFactory {
public Label getCnsLabel (String markupld, final String url) {
| Model <String> fragnent = new Abstract ReadOnl yModel <String>() {
@verride
public String getObject() {
return | oadSoneContent (url);

Label result = new Label (mar kupl d, fragnment);

197

resul t. set Render BodyOnl y(true);
resul t.set EscapeModel Strings(fal se);
return result;

}

public String | oadContent(String url) {
/1 | oad some content
}

}

/'l create the conmponent within the page:
public class MyPage extends WbPage {
@pr i ngBean
CnsFactory cnsFactory;

public MyPage() {
add(cnsFactory. get CnsLabel ("id", "http://url.to.load.from'));
}

}

This approach for adding a label from the CnsFact or y to a page seems to be okay at first glance, but it comes
with some disadvantages. There is no possibility to use inheritance anymore. Furthermore, there is no possibility
to override i sVi si bl e() and i sEnabl ed() . The factory could also be a Spring service which instanciates the
component. A better solution is to create a CrsLabel .

Listing 16:

public class CnsLabel extends Label {
@Bpr i ngBean
CnsResour ce cnsResour ce;
public CnsLabel (String id, |Mdel<String> url Mdel) {
super (id, urlMdel);
| Model <String> fragnent = new Abstract ReadOnl yModel <Stri ng>(){
@verride
public String getoject() {
return cnsResource. | oadSoneCont ent (ur | Model . get Obj ect ());
}

set Render BodyOnl y(true);
set EscapeMbdel Strings(false);
}
}

/] create the conponent within a page
public class MyPage extends WebPage {
public MyPage() {
add(new CnsLabel ("id", Mdel.of ("http://url.to.load.from')));

The label in listing 16 is clearly encapsulated in a component without using a factory. Now you can easily create
inline implementations and override i sVi si bl e() or other stuff. Naturally, you might claim "I need a factory to
initialize some values in the component, e.g. a Spring service.". For this you can create a implementation of
| Component | nstanti ati onLi stener. This listener gets called on the super-constructor of every
component. The most popular implementation of this interface is the Spri ngConponent | nj ect or which
injects Spring beans in components when the fields are annotated with @pr i ngBean. You can easliy write and
add your own implementation of | Conponent | nst anti ati onLi st ener. So there is no reason for using a
factory anymore. More information about the instanciation listener is located in Wicket's JavaDoc.

24.13 Every page and component must be tested

Every page and component should have a test. The simplest test just renders the component and validates its
technical correctness. For example, a child component should have a matching wicket id in the markup. If the
wicket id is not correctly bound - through a typo or if it was just forgotten - the test will fail. An advanced test
could test a form, where a backend call gets executed and validated over a mock. So you can validate your
component's behaviour. This is a simple way to detect and fix technical and business logic bugs during the build
process. Wicket is very suitable for a test driven development approach. For instance, if you run a unit test which
fails and shows a message that the wicket id not bound, you will avoid an unneccessary server startup (a server
startup takes longer than running a unit test). This reduces the development turnaround. A disadvantage is the
difficult testing possibility of AJAX components. However, the testing features of Wicket are much more
sophisticated than in other web frameworks.

198

24.14 Avoid interactions with other servlet filters

Try to get within the Wicket world whenever possible. Avoid the usage of other servlet filters. For this you can
use the Request Cycl e and override the methods onBegi nRequest () and onEndRequest () . You can apply
the same to the Ht t pSessi on. The equivalent in Wicket is the WebSessi on. Just extend the WebSessi on and
override the newSessi on() -method from the Application class. There are very few reasons to access the
servlet interfaces. An example could be to read an external cookie to authenticate a user. Those parts should be
properly encapsulated and avoided when possible. For this example, you could do the handling within the Wicket
session because this is an authentication.

24.15 Cut small classes and methods

Avoid monolithic classes. Often | have seen that developers put the whole stuff into constructors. These classes
are getting very unclear and chaotic because you use inline implementations over serveral levels. It is
recommended to group logical units and extract methods with a correct business naming. This enhances the
clarity and the understandability of the business aspect. When a developer navigates to a component, he is not
interested in the technical aspect at first, however he just need the business aspect. To retrieve technical
information of a component you can navigate to the method implementation. In case of doubt you should
consider to extract seperate components. Smaller components increase the chances of reuse and make testing
easier. Listing 17 shows an example of a possible structuring.

Listing 17:

public class Bl ogEdi t Page extends WebPage {
private | Mdel <Bl og> bl oghbdel ;

publ i c Bl ogEdi t Page(| Mbdel <Bl og> bl oghbdel) {
super (new PagePar aneters());
t hi s. bl ogvbdel = bl oghbdel ;
) add(creat eBl ogEdi t Forn());

private FornxBl og> createBl ogEdi t Form() {
For nxBl og> form = newBl ogEdi t Forn() ;
form add(creat eHeadl i neFi el d());
form add(createContentField());
form add(createTagField());
form add(createVi ewRi ght Panel ());
form add(creat eCorment Ri ght Panel ());
f orm set Qut put Mar kupl d(true);
return form

}

/! nore nethods here

24.16 The argument "Bad documentation”

It is a widespread opinion that Wicket has a bad documentation. This argument is just partly correct. There are a
lot of code samples and snippets which can be used as code templates. Furthermore, there is a big community
that answers complex questions very quickly. In Wicket it is very hard to document everything, because nearly
everything is extensible and replaceable. If a component is not completely suitable, you will extend or replace it.
Working with Wicket means permanently navigating through code. For example, just consider validators. How
can | find all navigators that exist? Open the interface | Val i dat or (Eclipse: Ctrl + Shift + T) and then open the
type hierachy (Crtl + T). Now we can see all the validators existing in Wicket and our project.

199

Type hierarchy of 'org.apache.wicket.validation.IValidator':

4 W3 Validator<T> - org.apachewicket.validation
CompoundValidator<T> - org.apachewicket.validation
MaximumValidator<Z> - org.apache.wicket.validation.validator
MinimumValidator<Z> - org.apache.wicket.validation.validator
RangeValidator<Z> - org.apache.wicket.validation.validator
@ HoursValidator - org.apache.wicket.extensions.yui.calendar.DateTimeField
INullAcceptingValidator<T> - org.apache.wicket.validation
®" AbstractValidator<T> - org.apache.wicket.validation.validator
@ CreditCardValidator - org.apache.wicket.validation.validator
4 ©@" DateValidator - org.apache.wicket.validation.validator
@° MaximumValidator - org.apache.wicket.validation.validator.DateValidator
@ ° MinimumValidator - org.apache.wicket.validation.validator.DateValidator
(@ ° RangeValidator - org.apache.wicket.validation.validator.DateValidator
4 @" NumberValidator<T> - org.apache.wicket.validation.validator
4 % DoubleMaximumValidator - org.apache.wicket.validation.validator, NumberValidator
Qs new DoubleMaximumValidator({..} - org.apache.wicket.validation.validator
4 (O°F DoubleMinimumValidator - org.apache.wicket.validation.validator.NumberValidator
QS new DoubleMinimumValidater() {...} - org.apache.wicket.validation.validator
@s DoubleRangeValidator - org.apache.wicket.validation.validator.NumberValidator
(® % MaximumValidator - org.apache.wicket.validation.validator.NumberValidator
(9% MinimumValidator - org.apache.wicket.validation.validator.NumberValidator
(CE RangeValidator - org.apache.wicket.validation.validator.NumberValidator
4 @* StringValidator - org.apache.wicket.validation.validator
(®° ExactLengthValidator - org.apache.wicket.validation.validator.StringValidator
(CH LengthBetweenValidator - org.apache.wicket.validation.validator.5tringValidator
@ MaximumLengthValidater - org.apache.wicket.validation.validator.StringValidator
(8% MinimumlengthValidator - org.apache.wicket.validation.validator.StringValidator
4 @ PatternValidator - org.apache.wicket.validation.validator
4 O EmailaddressValidator - org.apache.wicket.validation.validator
® EmailtddressPattemValidator - org.apache.wicket.validation.validator

@0 000

® RfcCompliantEmailAddressValidator - org.apachewicket.extensions.validation.validator

24.17 Summary

The best practices presented in this chapter should help you to write better and more maintainable code in
Wicket. All described methodologies were already proven in a few Wicket projects. If you follow these advices,

your Wicket projects will get future-proof and hopefully successful.

200

25 Wicket Internals

25.1 Page storing

During request handling, Wicket manages page instances through interface
org. apache. wi cket . request. handl er. | PagePr ovi der . This interface creates a new page instance or
loads a previously serialized page instance if we provide the corrisponding page id. | PagePr ovi der delegates
page creation and retrieval to interface or g. apache. wi cket . r equest . mapper . | PageSour ce. When page
class is provided | PageSour ce delegates page creation to interface or g. apache. wi cket . | PageFact ory,
while when page id is provided it uses interface or g. apache. wi cket . page. | PageManager to load the
previously serialized page.

The following workflow diagram summarizes the mechanism seen so far:

IPageManager

IPageProvider ——> IPageSource

IPageFactory

IPageManager

or g. apache. wi cket . page. | PageManager 's task is to manage which pages have been used in a request
and store their last state in the backing stores, namely | PageSt ore. The default implementation
or g. apache. wi cket . page. PageSt or eManager collects all stateful pages which have been used in the
request cycle (more than one page can be used in a single request if for example set ResponsePage() or
Rest art ResponseExcept i on is used). At the end of the request all collected page instances are being stored
in the first level cache - http session. They are stored in http session attribute named
"wi cket : persi st ent PageManager Dat a- APPLI CATI ON_NANME" and passed to the underlying | PageSt or e
. When the next http request comes | PagePr ovi der will ask for page with specific id and PageSt or eManager
will look first in the http session and if no match is found then it will delegate to the IPageStore. At the end of the
second request the http session based cache is being overwritten completely with the newly used page
instances.

To setup another | PageManager implementation use
or g. apache. wi cket . Appl i cati on. set PageManager Pr ovi der (| PageManager Pr ovi der) . The
custom | PageManager implementation may or may not use | PageSt or e/ | Dat aSt or e.

IPageStore

or g. apache. wi cket . pageSt or e. | PageSt or e's role is to mediate the storing and loading of pages done by
the underlying | Dat aSt or e. The default implementation
org. apache. wi cket . pageSt or e. Def aul t PageSt or e pre-processes the pages before passing them to

201

| Dat aSt or e#st oreDat a(String, i nt, byte) and to post-processes them after
| Dat aSt or e#get Data(String, int). The processing consists of transforming the page instance to
or g. apache. wi cket . pageSt or e. Def aul t PageSt ore. Seri al i zedPage. This is a struct of:

sessionld: String,
pageld : int,
data : byte[]

}

i.e. this is the serialized page instance (data) plus additional information needed to be able to easily find it later
(sessionld, pageld).

When a Seri al i zedPage has to be stored Def aul t PageSt or e stores it in a application scoped cache
({sessionld, pageld} -> SerializedPage) and additionally gives it to the underlying

| Dat aSt or e#st or eDat a(sessi onl d, pagel d, data). The application scoped cache is used as second
level cache. Getting a page from it is slower than the http session based cache in PageSt or eManager because
the page has to be deserialized, but is faster than the underlying | Dat aSt or e which stores the page bytes in
some persistent store.

The size of the application scoped cache is configurable via
org. apache. wi cket.settings.| StoreSettings. setlnmenoryCacheSi ze(int).

IDataStore

or g. apache. wi cket . pageSt ore. | Dat aSt or e is used to persist Wicket pages (as bytes) to a persistent
store like e.g. files or databases. The default implementation is

or g. apache. wi cket . pageSt or e. Di skDat aSt or e which as its name says stores the pages in files. The
location of the folder where the files are stored is configurable via
org. apache. wi cket.settings.| StoreSettings.setFileStoreFol der(File), by default the web
container's work folder is used (ServletContext attribute ‘'javax.servlet.context.tempdir’). In this folder a sub-folder
is created named ' appl i cati onNane-fil estore'. This folder contains a sub-folder for each active http
session. This session folder contains a single file named 'data’ which contains the bytes for the pages. The size
of this 'data’ file is configurable via

org. apache. wi cket.settings.| StoreSettings. set MaxSi zePer Sessi on(Byt es) . When this size is
exceeded the newly stored files overwrite the oldest ones.

AsynchronousDataStore

By default Wicket wraps Di skDat aSt or e with

or g. apache. wi cket . pageSt or e. Asynchr onousDat aSt or e. The role of Asynchr onousDat aSt or e is to
detach the http worker thread from waiting for the write of the page bytes to the disk. To disable it use:
org. apache. wi cket . settings.| StoreSettings. set Asynchronous(fal se). AsynchronousDataStore
can delay the storage of pages' bytes for at most

org. apache. wi cket.settings.| StoreSettings. set AsynchronousQueueCapacity(int) pages. If
this capacity is exceeded then the page's bytes are written synchronously to the backing | Dat aSt or e.

DebugDiskDataStore

Wicket provides an extension of Di skDat aSt or e that can be used to browse the content of the 'data’ files
created by Di skDat aSt or e. This extension can be found in wicket-devutils.jar and needs to be enabled in the
i ni t -method of your application via

DebugDi skDat aSt ore. regi ster(this);

The debug information can be seen at http://host:port/context/wicket/internal/debug/diskDataStore

HttpSessionDataStore

202

In some environments like Google AppEngine it is not allowed to write to the file system and thus
Di skDat aSt or e cannot be used. In this case

org. apache. wi cket . pageSt ore. menory. Ht t pSessi onDat aSt or e can be used as replacement. This
implementation of | Dat aSt or e is not persistent and puts all the data in the http session. Wicket comes with 2
default eviction strategies to keep the size of the http session reasonable:

® org.apache.wicket.pageStore.memory.PageNumberEvictionStrategy - specifies how many pages can
be hold

® org.apache.wicket.pageStore.memory.MemorySizeEvictionStrategy - specifies the maximum amount
of memory for pages per http session.

To configure it:

My App#i ni t ()

¢ super.init();

set PageManager Provi der (new Def aul t PageManager Provi der (t hi s)
‘ protected | DataStore newbDat aStore()

return new HttpSessi onDat aSt or e(get PageManager Cont ext (), new
PageNunber Evi cti onStrat egy(20));
}

}
}

DebugBar

Further insights which can be valueable during debugging can be retrieved using the
or g. apache. wi cket . devutils. debugbar. DebugBar from wicket-devutils.jar. It's a panel which you

simply add:

Java:

add(new DebugBar (" debug"));

HTML:

203

26 Working with Maven (Appendix)

26.1 Switching Wicket to DEPLOYMENT mode

As pointed out in the note in paragraph 4.2, Wicket can be started in two modes, DEVELOPMENT and
DEPLOYMENT. When we are in DEVELOPMENT mode Wicket warns us at application startup with the following
message:

R O S S O O I O S O R O S O

*** WARNI NG W cket is running in DEVELOPMENT node. ok
* k% NANNNANNNNNNNN * k%
*** Do NOT deploy to your l|ive server(s) w thout changing this. ***
*** See Application#get ConfigurationType() for nore infornation. ***

R R S S S R R S R R R T S S R R S O R R O R S S R

As we can read Wicket itself discourages us from using DEVELOPMENT mode into production environment. The
running mode of our application can be configured in four different ways. The first one is adding a filter parameter
inside deployment descriptor web.xml:

<filter>
<filter-nanme>w cket. MApp</filter-nanme>
<filter-class>org. apache. w cket.protocol.http. WcketFilter</filter-class>
<init-paran>
<par am name>appl i cati onC assNanme</ par am nane>
<par am val ue>org. w cket Tut ori al . W cket Appl i cati on</ param val ue>
</init-paran>
<init-paran>
<par am name>conf i gur at i on</ par am nanme>
<par am val ue>depl oynent </ par am val ue>
</init-paran>
</filter>

The additional parameter is written in bold. The same parameter can be also expressed as context parameter:

<cont ext - par an>
<par am nanme>conf i gur at i on</ par am nane>
<par am val ue>depl oynent </ par am val ue>
</ cont ext - par an»>

The third way to set the running mode is using system property wicket.configuration. This parameter can be
specified in the command line that starts up the server:

java -Dwi cket. confi guration=depl oynent

The last option is to set it in your Java code (e.qg. in the init-method of your WebApplication):

set Confi gurati onType(Runti meConfi gurati onType. DEPLOYMENT) ;

Remember that system properties overwrite other settings, so they are ideal to ensure that on production
machine the running mode will be always set to DEPLOYMENT.

26.2 Creating a Wicket project from scratch and importing it into our favourite

204

IDE

%% In order to follow the instructions of this paragraph you must have Maven installed on your
system. The installation of Maven is out of the scope of this guide but you can easily find
an extensive documentation about it on Internet. Another requirement is a good Internet
connection (a flat ADSL is enough) because Maven needs to connect to its central
repository to download the required dependencies.

From Maven to our IDE

Wicket project and its dependencies are managed using Maven. This tool is very useful also when we want to
create a new project based on Wicket from scratch. With a couple of shell commands we can generate a new
project properly configured and ready to be imported into our favourite IDE. The main step to create such a
project is to run the command which generates project's structure and its artifacts. If we are not familiar with
Maven or we simply don't want to type this command by hand, we can use the utility form on Wicket site at
http://wicket.apache.org/start/quickstart.html :

APACHE (wvi) WICKET

o
Meet Wicket @ create a Wicket Quickstart
Homea Thera are two really good reasons Lo creale a Wickel quickstart. The first is if you just wanl to get
Introduction started wsimg Wicket quickly. The guickstart will set up a ready-to-use project in under a minute
Features (depending on your bandwidth). Another great reason to create a quickstart s to accompany a bug
Buzz report. If you report a bug in JIRA or on the mailing list, the core developers may not be able bo
Vision recreate it easily. In most cases, you'll be told *please create a quickstart and attach It to a JIRA Issue”, I
= you don't know how to do that, don't worry - just follow the instructions below. (I you ere submitting a
Blogs quickstart for an Issue report, please be sure to read the subheading below - “Submitting a quickstart
Tixr @n issun report”
Get Started
' Quickstarts are made from a Maven ERoIae aE. 50, you will need to have Maven 2 installed and working
Download (from the command line) before following this.
Wicket
Qulckstart Creating & quidkstart provides only a very basic starking point fior your Wicket project. If you are looking
More Tor examplas of kow to wse Wicker and Ibs various features, please refer fo the wicket-axample projects
archetypes Esaad)
Get help Creating the project - with Maven
. _L’e“r“ To creste your project, copy and paste the command line generated after byping in the groupld,
Eximplni artifactld and wersion.
Components Groupld: (7
Projects [mm.mycnmpany |
Wiki ArtifactId: [rnyprquI:t |P'.I
Reference
gulda Version: | 151 we | [7)
Books Command [0 Srcietype genarate =
IDE plugins Line: |-ParshelypeGroupld-org. apache . wicket)
Releases -DarchetypeVersion=1.5.1 -Ogroupld=con.nyconpany
Wicket 1.5 -DarchetypeRepositary-h1tps: //repository . apache.args -
{docs) -Canteractiverode=Talse I

Here we have to specify the root package of our project (Groupld), the project name (Artifactld) and which
version of Wicket we want to use (Version). Once we have run the resulting command in the OS shell, we will
have a new folder with the same name of the project (i.e the Artifactld). Inside this folder we can find a file called
pom.xml. This is the main file used by Maven to manage our project. For example, using “org.wicketTutorial” as
Groupld and “MyProject” as Artifactld, we would obtain the following artifacts:

. MyPr oj ect
| pom xm
I
---src
+---main
| +---java

| | ---org ,
| | ---wicket Tutorial

205

http://wicket.apache.org/start/quickstart.html

HormePage. ht m
HonePage. j ava
W cket Appl i cation.java

---resources
| og4j . properties

| = JL

- -webapp
---V\EB- | NF
web. xm

===0Esh
---java
---org
---w cket Tutori a
Test HonePage. j ava

Amongst other things, file pom.xml contains a section delimited by tag <dependencies> which declares the
dependencies of our project. By default the Maven archetype will add the following Wicket modules as
dependencies:

<dependenci es>

<l-- WCKET DEPENDENCI ES -->

<dependency>
<gr oupl d>or g. apache. wi cket </ gr oupl d>
<artifactld>w cket-core</artifactld>
<versi on>${w cket . versi on} </ versi on>

</ dependency>

<dependency>
<groupl d>or g. apache. wi cket </ gr oupl d>
<artifactld>w cket-ioc</artifactld>
<versi on>${w cket . versi on} </ versi on>

</ dependency>

<!-- OPTI ONAL DEPENDENCY

<dependency>
<groupl d>or g. apache. wi cket </ gr oupl d>
<artifactld>w cket - extensions</artifactld>
<versi on>${w cket . versi on} </ versi on>

</ dependency>

-->

</de§éndencies>

If we need to use more Wicket modules or additional libraries, we can add the appropriate XML fragments here.

Importing a Maven project into our IDE

Maven projects can be easily imported into the most popular Java IDEs. However, the procedure needed to do
this differs from IDE to IDE. In this paragraph we can find the instructions to import Maven projects into three of
the most popular IDEs among Java developers : NetBeans, JetBrains IDEA and Eclipse.

NetBeans Starting from version 6.7, NetBeans includes Maven support, hence we can start it and directly open
the folder containing our project:

206

Open Project

Look In: [JWicketBuild 3@ f# &

—

* > Wicket-tutorial-examples " Project Name:

» lils AjaxEventBehaviorExample : : "
. " Wicket tuk l E

» file AnnotationsRolesStrategyExample (o1~ LILONS brojec

» s Bas!cAuthanl:.lcal:lunExample Open Required Projects:

» lile BasicModalwindowExample

¢ il BindSessionExample AjaxEventBehaviorExample (Ajax '

» lils BookmarkablePageAutoLink S R S — [

= mJCdilnjECtiﬂnEIimple AnnotationsRolessktra .:-:'I_',-ENEI'H:.

» lile CheckBoxAjaxTree BasicAuthenticationExample (B2

» fis ClickToAnotherPage o

» ﬁ'CustumAjaxListﬂnarEximpla Basici '."'_Icl.-"."|llJ".".-'.':):dll|-'|.-'_" Bas L

¢ lile CustomConverter D e/ ~
File Name: fhomefandrea/WicketBuild/wicket-tutorial-examples Open Pf'ﬂ.i“tj
Files of Type: |projact Folder - | Cancel

Intellj IDEA Intellj IDEA comes with a Maven importing functionality that can be started under “File/New
Project/Import from external model/Maven”. Then, we just have to select the pom.xml file of our project:

J| Select File or Directory to Import

Select directory with existing sources,

Eclipse project { project) or classpath (.classpath) file,
Mawven project file {pom.:xml},

Gradle build scripk (*.gradle).

'Y IR
|C:'|,D|:u:uments and Settings\Administr atort WicketBuildymy projectipom. xml

= [WicketBuild
= G rvproject
[*7 .settings
[src
4 Classpath
& project
117 porm, zml
[*] workspace
. -

Hide path

Eclipse If our IDE is Eclipse the import procedure is a little more complex. Before opening the new project we
must generate the Eclipse project artifacts running the following command from project root:

mvn ecli pse: eclipse

Now to import our project into Eclipse we must create a classpath variable called M2_REPO that must point to
your local Maven repository. This can be done selecting “Window/Preferences” and searching for “Classpath
Variables”. The folder containing our local Maven repository is usually under our user folder and is called .m2 (for
example under Unix system is /Thome/<myUserName>/.m2/repository):

207

5 @ Preferences

|-;.-:te filter text 4 | Classpath Variables -
@ General — Aclasspath variable can be added to a project's class path. It can be used to
+| Ant define the location of a AR file that isn't part of the workspace. Non

modifiable classpath variables are set intemally (for example, JRE_UB,
JRE_SRC, and JRE_SRCROOT depend on the |RE setting).

Defined classpath variables:

+ Data Management
+| DBViewer Plugin

GlassFish Preferen
& ECLIPSE_HOME (non modifiable) - fhomefadelbenefeclips MNew...

+/ Help : - ;
£ Install/Update i JRE_LIB (non mudli."lable, deprecated) - jusr/libfjvm/java-6 -
2| Java (2 JRE_SRC (non modifiable, deprecated) - (empty) =

% Appearance L JRE_SRCROOT (non medifiable, deprecated) - (empty) Remove

[JUNIT_HOME (non modifiable, deprecated) - /home/adelb

= Build Path
User Librarie: (= WICKET_HOME - Thommerateibene/eclipse/plugins/wicketh
+ Code Stvle (= wicket_temp - /nome/adelbene/tmp

Once we have created the classpath variable we can go to “File/Import.../Existing Project into Workspace”, select

the directory of the project and press “Finish”:

Import Projects E f
Select a directory to search for existing Eclipse projects. "4

O Select root directory: thmefadelbeneMicketBuildeasicWicketHelID‘| | Browse... |

1 Select archive file: Browse...

Projects:

+ BasicWicketHelloWorld {fhome}adelbeneﬂ‘u’icketBuiIdeasicWicketl Select All |

| Deselect All |
| Refresh |
< J >
@pmjects into wo@
Working sets
|| Add project to working sets
Working sets: o Select...
@ < Back MNext = Cancel | | Finish

. ~

Once the project has been imported into Eclipse, we are free to use our favourite plug-ins to run it or debug it

(like for example "run-jetty-run": http://code.google.com/p/run-jetty-run/).

208

Please note the option “Copy projects into workspace” in the previous illustration. If we
select it, the original project generated with Maven won't be affected by the changes made
inside Eclipse because we will work on a copy of it under the current workspace.

If we modify the pom.xml file (for example adding further dependencies) we must
regenerate project's artifacts and refresh the project (F5 key) to reflect changes into
Eclipse.

Speeding up development with plugins.

Now that we have our project loaded into our IDE we could start coding our components directly by hand.
However it would be a shame to not leverage the free and good Wicket plugins available for our IDE. The
following is a brief overview of the most widely used plugins for each of the three main IDEs considered so far.

NetBeans NetBeans offers Wicket support through ‘NetBeans Plugin for Wicket' hosted at
http://plugins.netbeans.org/plugin/3586/wicket-1-4-support . This plugin is released under CDDL-1.0 license. You
can find a nice introduction guide to this plugin at
http://netbeans.org/kb/docs/web/quickstart-webapps-wicket.html .

Intellj IDEA For JetBrain IDEA we can use WicketForge plugin, hosted at Google Code
http://code.google.com/p/wicketforge/ . The plugin is released under ASF 2.0 license.

Eclipse With Eclipse we can install one of the plugins that supports Wicket. As of the writing of this document,
the most popular is probably Qwickie, available in the Eclipse Marketplace and hosted on Google Code at
http://code.google.com/p/gwickie/ . QWickie is released under ASF 2.0 license.

209

http://plugins.netbeans.org/plugin/3586/wicket-1-4-support
http://netbeans.org/kb/docs/web/quickstart-webapps-wicket.html
http://code.google.com/p/wicketforge/
http://code.google.com/p/qwickie/

27 Project WicketStuff (Appendix)

27.1 What is project WicketStuff

WicketStuff is an umbrella project that gathers different Wicket-related projects developed and maintained by the
community. The project is hosted on GitHub at https://github.com/wicketstuff/core . Every module is structured as
a parent Maven project containing the actual project that implements the new functionality and an example
project that illustrates how to use it in our code. The resulting directory structure of each module is the following:

<nmpdul e name>- par ent

+- - - <nodul e nanme>
- --<nmodul e name>- exanpl es

So far we have introduced only modules Kryo Serializer and JavaEE Inject, but WicketStuff comes with many
other modules that can be used in our applications. Some of them come in handy to improve the user experience
of our pages with complex components or integrating some popular web services (like Google Maps) and
JavaScript libraries (like TinyMCE).

This appendix provides a quick overview of what WicketStuff offers to enhance the usability and the
visually-appealing of our pages.

d Every WicketStuff module can be downloaded as JAR archive at http://mvnrepository.com
. This site provides also the XML fragment needed to include it as a dependency into our
pom.xml file.

27.2 Module tinymce

Module tinymce offers integration with the namesake JavaScript library that turns our “humble” text-areas into a
full-featured HTML WYSIWYG editor:

HO|e 7 ufs| = === sves « Pamgapn = FontFamiy = FontSze -
AR EE RS- o LB F@en | O T A--
A ERETE i | —n:Zl:K, » || E2H| S| v | @

[TinyMCE is & platiorm independent web based Javascipt HTML WY SIWYG editor conied released as Open Sowee under LEPL by Maxiecode Systems AB. |8 has the abilily to conwer
HTML TEXTAREA hiekds or other HTML ekements 10 edior instances. TinyMCE ts wery easy to inlegase into other Gonient Management Sysiems.

Wie ecommend Bimtox and Gopghe

Path: p Words:54

To “tinyfy” a textarea component we must use behavior TinyMceBehavior:

Text Area text Area = new Text Area("textArea", new Mdel (""));
t ext Area. add(new Ti nyMceBehavi or ());

By default TinyMceBehavior adds only a basic set of functionalities to our textarea:

210

https://github.com/wicketstuff/core
http://maps.google.com/
http://www.tinymce.com/
http://mvnrepository.com

To add more functionalities we must use class TinyMCESettings to register additional TinyMCE plugins and to
customize the toolbars buttons. The following code is an excerpt from example page FullFeaturedTinyMCEPage:

Ti nyMCESet ti ngs settings = new Ti nyMCESetti ngs(
Ti nyMCESet t | ngs. Thene. advanced) ;
1.

[l first tool bar

1.

settings. add(Button. newdocunent, Ti nyMCESetti ngs. Tool bar.first,
Ti nyMCESet t i ngs. Posi tion. before);

settings. add(Button.separator, TinyMCESettings. Tool bar.first,
Ti nyMCESet ti ngs. Posi tion. before);

settings. add(Button. fontsel ect, TinyMCESettings. Tool bar.first,

y Ti nyMCESet ti ngs. Position.after);

/] other settings
settings. set Tool bar Al'i gn(
Ti nyMCESettings. Align.left);
settings. set Tool bar Locat i on(
Ti nyMCESet t i ngs. Locati on. t op);
settings. set St at usbar Locati on(
Ti nyMCESet t i ngs. Locati on. bottom;
?/etti ngs. set Resi zi ng(true);
Text Area text Area = new Text Area("ta", new Model (TEXT));
t ext Area. add(new Ti nyMceBehavi or (settings));

For more configuration examples see pages inside package wicket.contrib.examples.tinymce in the example
project of the module.

27.3 Module wicketstuff-gmap3

Module wicketstuff-gmap3 integrates Google Maps service with Wicket providing component
org.wicketstuff.gmap.GMap. If we want to embed Google Maps into one of our pages we just need to add
component GMap inside the page. The following snippet is taken from example page SimplePage:

HTML:

ébody>
<di v w cket:id="map" >Map</di v>
</ body>

Java code:

public class SinplePage extends W cket Exanpl ePage
publ i c Si npl ePage()
{

Gvap nap = new Gvap("map");

map. set St r eet Vi ewCont r ol Enabl ed(f al se) ;

map. set Scal eCont r ol Enabl ed(true);

map. set Scr ol | Wheel ZoonEnabl ed(true);

map. set Cent er (new GLat Lng(52. 47649, 13.228573));

211

http://maps.google.com

add(map) ;

The component defines a number of setters to customize its behavior and appearance. More info can be found
on wiki page https://github.com/wicketstuff/core/wiki/Gmap3 .

27.4 Module wicketstuff-googlecharts

To integrate the Google Chart tool into our pages we can use module wicketstuff-googlecharts. To display a
chart we must combine the following entities: component Chart, interface IChartData and class ChartProvider, all
inside package org.wicketstuff.googlecharts. The following snippet is taken from example page Home:

HTML:

" <h2>Hel | o Worl d</ h2>
<ing w cket:id="hell oWrld"/>

Java code:

| Chart Data data = new Abstract ChartDat a(){
public double[][] getData(){
return new double[][] { { 34, 22 } };

e

Chart Provi der provider = new Chart Provi der (new Di nensi on(250, 100), ChartType. Pl E_ 3D, data);
provi der. set Pi eLabel s(new String[] { "Hello", "Wrld" });
add(new Chart ("hell oWorl d", provider));

Displayed chart:

Hello World

— World

Hello

As we can see in the snippet above, component Chart must be used with tag while the input data returned
by IChartData must be a two-dimensional array of double values.

27.5 Module wicketstuff-inmethod-grid

Module wicketstuff-inmethod-grid implements a sophisticated grid-component with class com.
inmethod.grid.datagrid.DataGrid.

Just like pageable repeaters (seen in paragraph 13.4) DataGrid provides data pagination and uses interface
IDataProvider as data source. In addition the component is completely ajaxified:

212

https://github.com/wicketstuff/core/wiki/Gmap3
https://developers.google.com/chart/

ID First Name Last Name Home Phone Cell Phone
347 Abby Gonzalez 710-555-1577 677-555-1601
360 Abby Moore 510-555-4672 471-555-7145
374 Abby Allen 883-555-5658 328-5355-3650
383 Abby Murray 876-555-6527 673-555-2368
389 Abby Clark 251-555-7726 312.555-7068
521 Abby Gomez 326-555-3855 221.555-6578
572 Abby Davis 226-555-2267 504-555-1256
579 Abby Williams 623-555-5207 736-555-7468
580 Abby Wilson 738-555-8637 524-.555-7745
616 Abby Fisher 487-555-3461 265-555-5456
656 Abby Fisher 838-555-3550 475-555-4836
339 Abner Rose 807-555-6466 422-555-1237
349 Abner Williams 757-555-6081 852.555-8773
428 Abner Bailey 370-555-2806 603-555-4278
448 Abner Clark 571-555-2535 536-555-5675
456 Abner Fisher 611-555-8481 336-555-1360
470 Abner Clark 445-555-2035 746-555-2151
488 Abner Ortiz 737-555-2574 707-555-4505
507 Abner Rose 864-555-1223 651-555-7400
510 Abner Black 840-555-7446 584-555-2416
Showing 1 to 20 of 330 1
DataGrid supports also editable cells and row selection:
0o First Name Last Name Home Phone Cell Phone Edit
Tl 347 Ahh'_.r Gonzalez f10-255-1577 67 r-3535-1601
| 360 Abby Moare 510-555-4672 471-555-7145
Tl 374 Abby allen £83-555-5658 328-555-5650
Tl 383 abby Murray 876-555-6527 673-555-2368
| 380 abby Clark 251-555.-7726 312-555-T068
M 521 abby Gomez 326-555-3855 221-555-6578
O 572 abby Davis 226-555-2267 504-555-1256
| 574 Abby Williams 623-555.5207 T36-555-T468
B 580 Abby Wilson T38-555-8637 524-555-7745 e
= 616 Abby Fisher 487-555-3461 265-555-5456 & B
The following snippet illustrate how to wuse DataGrid and is taken from wiki page

https://github.com/wicketstuff/core/wiki/InMethodGrid :

HTML:

“<div wicket:id="grid" >Gid</div>

Java code:

final List<Person> personList = //load a |ist of Persons
final ListDataProvider |istDataProvider = new ListDataProvider(personList);
[/ define grid s colums
Li st<l Gri dCol unm> cols = (List) Arrays. asLi st (
new PropertyCol um(new Mdel ("First Nane"), "firstNanme"),
new PropertyCol um(new Mdel ("Last Nane"), "lastNanme"));

DataGid grid = new DefaultDataGid("grid", new DataProvi der Adapter(Ili stDataProvider),
col s);
add(grid);

In the code above we have used convenience class DefaultDataGrid that is a subclass of DataGrid and it already
comes with a navigation toolbar.

The example pages are under package com.inmethod.grid.examples.pages in the example project which is
hosted at http://www.wicket-library.com/inmethod-grid/data-grid/simple .

213

https://github.com/wicketstuff/core/wiki/InMethodGrid
http://www.wicket-library.com/inmethod-grid/data-grid/simple

27.6 Module wicketstuff-rest-annotations

REST-based API are becoming more and more popular around the web and the number of services based on
this architecture is constantly increasing.

Wicket is well-known for its capability of transparently handling the state of web applications on server side, but it
can be also easily adopted to create RESTful services. WicketStuff module for REST provides a special resource
class and a set of annotations to implement REST APIs/services in much the same way as we do it with Spring
MVC or with the standard JAX-RS.

The module provides class Abst r act Rest Resour ce as generic abstract class to implement a Wicket resource
that handles the request and the response using a particular data format (XML, JSON, etc...). Subclassing
Abst r act Rest Resour ce we can create custom resources and map their pubblic methods to a given subpath
with annotation Met hodMappi ng. The following snippet is taken from resource Per sonsRest Resour ce inside
module ' r est annot at i ons- exanpl es' :

@kt hodMappi ng("/ persons")
publi ¢ Li st <PersonPoj o> get Al | Persons() {
[/ met hod mapped at subpath "/persons" and HTTP nethod CGET
}

@kt hodMvappi ng(val ue = "/ persons/{personl ndex}", httpMethod = H t pMet hod. DELETE)
public voi d del et ePerson(int personl ndex) ({
/I met hod mapped at subpath "/persons/{personlndex}" and HTTP net hod DELETE.
/| Segnent {personlndex} will contain an integer value as index.

@kt hodMappi ng(val ue = "/ persons”, httpMethod = Htt pMet hod. POST)
public voi d createPerson(@equest Body PersonPoj o personPoj o) {
//creates a new i nstance of PersonPojo reading it fromrequest body
}

Met hodMappi ng requires to specify the subpath we want to map the method to. In addition we can specify also
the HTTP method that must be used to invoke the method via REST (GET, POST, DELETE, PATCH, etc...).
This value can be specified with enum class Ht t pMet hod and is GET by default. In the code above we can see
annotation Request Body which is used to extract the value of a method parameter from the request body
(method createPerson). To write/read objects to response/from request, Abst r act Rest Resour ce uses an
implementation of interface | WebSer i al Deser i al which defines the following methods:

public interface |WbSerial Deserial {

public voi d object ToResponse(Obj ect target Obj ect, WebResponse response, String m neType)
throws Exception;

public <T> T request ToObj ect (WebRequest request, C ass<T> argCl ass, String nm nmeType) throws
Excepti on;

publ i c bool ean i sM meTypeSupported(String m nmeType);
}

To convert segments value (which are strings) to parameters type, Abst r act Rest Resour ce uses the standard
Wicket mechanism based on the application converter locator:

/lreturn the converter for type clazz
| Converter converter = Application.get().getConverterLocator().getConverter(clazz);
//convert string to object
return converter.convert ToObj ect (val ue, Session.get().getlLocale());

In order to promote the principle of convention over configuration, we don't need to use any annotation to map
method parameters to path parameters if they are declared in the same order. If we need to manually bind
method parameters to path parameters we can use annotation Pat hPar am

@kt hodMvappi ng(val ue = "/vari abl e/ {pl}/order/{p2}", produces = RestM neTypes. PLAI N _TEXT)
public String testParanmOut Of Order (Pat hParan("p2") String textParam PathParan("pl") int
i nt Param {

214

/I met hod paraneter textParamis taken from path param'p2', while intParam uses 'pl'

As JSON is de-facto standard format for REST API, the project comes also with a ready-to-use resource (
GsonRest Resour ce) and a serial/deserial (GsonSeri al Deser i al) that work with JSON format (both inside
module ' r est annot ati ons-j son'). These classes use Gson as JSON library.

Abst ract Rest Resour ce supports role-based authorizations for mapped method with annotation
Aut hori zel nvocati on:

@kt hodMvappi ng(value = "/adm n", httpMethod = HttpMethod. GET)
@\ut hori zel nvocat i on(" ROLE_ADM N")
public void testMethodAdm nAuth() {

To use annotation Aut hori zel nvocat i on we must specify in the resource construcor an instance of Wicket
interface | Rol eChecki ngSt r at egy.

To read the complete documentation of the module and to discover more advanced feature please refer to the
project homepage

27.7 Module stateless

Wicket makes working with AJAX easy and pleasant with its component-oriented abstraction. However as side
effect, AJAX components and behaviors make their hosting page stateful. This can be quite annoying if we are
working on a page that must be stateless (for example a login page). In this case an obvious solution would be to
roll out our own stateless components/behaviors, but Wicketstuff alredy offers such kind of artifacts with
st at el ess module. Here you can find the stateless version of the basic AJAX componets and behaviors shiped
with Wicket, like St at el essAj axSubmi t Li nk, St at el essAj axFal | backLi nk,

St at el essAj axEvent Behavi or, St at el essAj axFor nSubni t Behavi or etc... A short introduction to this
module can be found on its home page .

215

https://github.com/wicketstuff/core/blob/master/jdk-1.7-parent/wicketstuff-restannotations-parent
https://github.com/wicketstuff/core/tree/master/jdk-1.7-parent/stateless-parent

28 Lost In Redirection With
Apache Wicket (Appendix)

Quite a few teams have already got stuck into the following problem when working with wicket forms in a
clustered environment while having 2 (or more) tomcat server with enabled session replication running.

In case of invalid data being submitted with a form instance for example, it seemed like according error
messages wouldn’t be presented when the same form page gets displayed again. Sometimes! And sometimes
they would! One of those nightmares of rather deterministic programmer’s life. This so called Lost In Redirection
problem, even if it looks like a wicket bug at first, is rather a result of a default setting in wicket regarding the
processing of form submissions in general. In order to prevent another wide known problem of double form
submissions, Wicket uses a so called REDIRECT_TO_BUFFER strategy for dealing with rendering a page after
web form’s processing (@see IRequestCycleSettings#RenderStrategy).

What does the default RenderStrategy actually do?

Both logical parts of a single HTTP request, an action and a render part get processed within the same request,
but instead of streaming the render result to the browser directly, the result is cached on the server first.

Biog of fhe day
Ao X (G fEnmmnes] @O

Lest In Redirection with Apache Wicket

R i W g v g S G W mams = weper
WA T Y AR P S O e e s, B
ST BATTIETSR AT SROTE TH T AT 4 TR SR
T e T P ST S o S s 8
T Sl P BT B AL O M R, BT B
B T P ey pp—
ey Tt o P e el S T ik L L ket P
it o L e wman S LA, i a b i
Vo 0. gy o b el el b e o s b 1F b
hrrvm ey B e, A s S i st =gy,
TEy iy arvargan Dt paprm © e e e

Wickat is cool wab framework indead HTTF POST

» | Request Processing Action Part

Request Processing Rendering Part

Request For Redirect @ HTTP Status Code 302

Caching BufferedResponse in WebApplication's bufferedResponses Map

WebApplica tion# addBuFferedResponsel....)

S

216

Wicket will create an according BufferedHttpServletResponse instance that will be used to cache the resulting
HttpServletResponse within the WebApplication.

That's where the already rendered buffered
responses get stered walting For the redirect to
come back and stream ‘em back fo the browser!

£ webApplication
ﬁ' log Logger
! applicationKey String
i) bufferedResponses ConcurrentHashMap<String, Map <String, BufferecHtipServietResponsess ~————----=
i requestCycleProcessor IRequestCycleProcessor
i sessionAttributePrefix String
[wicketFilrer WicketFilter

T've been cached for new but as soon as
@ o redirect comes and pleks me up T will

be presentad fo the werld in all my

oyl
" Ll

© BufferedHutipServietResponse

i sl StringBufferWriter
i pw PrintWriter
i cookies List=Cookiex
I status int
i headers Map«<String, Object>
i realResponse HrtpServietResponse
I redirect String
i) contentType String
i byteBufTer byte(]
I locale Locale
I encoding String

After the buffered response is cached the HTTP status code of 302 get’s provided back to the browser resulting
in an additional GET request to the redirect URL (which Wicket sets to the URL of the Form itself). There is a
special handling code for this case in the WicketFilter instance that then looks up a Map of buffered responses
within the WebApplication accordingly. If an appropriate already cached response for the current request is
found, it get's streamed back to the browser immediately. No additional form processing happens now. The
following is a code snippet taken from WicketFilter:

/1 Are we using REDI RECT_TO BUFFER?

i f (webApplication. get Request Cycl eSettings().getRenderStrategy() ==
| Request Cycl eSet ti ngs. REDI RECT_TO _BUFFER)

{

/1 Try to see if there is a redirect stored

/] try get an existing session

| Sessi onSt ore sessionStore = webApplication. get SessionStore();
String sessionld = sessionStore. get Sessi onl d(request, false);
if (sessionld !'= null)

Buf f eredHt t pSer vl et Response buf f eredResponse = nul | ;
String queryString = servl et Request. get QueryString();
/1 1ook for buffered response

if (!'Strings.isEnpty(queryString))

buf f eredResponse = webAppl i cati on. popBufferedResponse(sessi onld,
queryString);

el se

buf f eredResponse = webAppl i cati on. popBufferedResponse(sessi onld,
rel ativePat h);

217

/] if a buffered response was found

i{f (buf f eredResponse = null)

buf f er edResponse. wri t eTo(ser vl et Response) ;

/] redirect responses are ignored for the request
/1 1 ogger...

return true;

So what happens in case you have 2 server running your application with session replication and load balancing
turned on while using the default RenderStrategy described above?

Since a Map of buffered responses is cached within a WebApplication instance that does not get replicated
between the nodes obviously, a redirect request that is suppose to pick up the previously cached response
(having possibly form violation messages inside) potentially get’s directed to the second node in your cluster by
the load balancer. The second node does not have any responses already prepared and cached for your user.
The node therefore handles the request as a completely new request for the same form page and displays a

fresh new form page instance to the user accordingly.
@ Cached Response
-

Tomcat 1
vz POST
-
1N Session Replication
.
Load Balancer “cer after pOST l Session replication with fully
enabled round-robin load
Cl OFF I balancing
Sticky Sessions i @
Tomcat 2

Unfortunately, there is currently no ideal solution to the problem described above. The default RenderStrategy
used by Apache Wicket simply does not work well in a fully clustered environment with load balancing and
session replication turned on. One possibility is to change the default render strategy for your application to a so
called ONE_PASS RENDER RenderStrategy which is the more suitable option to use when you want to do
sophisticated (non-sticky session) clustering. This is easily done in the init method of your own subclass of
Wicket's WebApplication :

@verride
protected void init() {
get Request Cycl eSettings() . set Render Strat egy/(
| Request Cycl eSet ti ngs. ONE_PASS RENDER) ;

ONE_PASS_RENDER RenderStrategy does not solve the double submit problem though! So this way you'd
only be trading one problem for another one actually.

You could of course turn on the session stickiness between your load balancer (apache server) and your tomcat
server additionally to the session replication which would be the preferred solution in my opinion.

218

— '““f”

I POST & GET after POST (Session A)
AN
-— ,
SN Session Replication
Y
Load Balancer o071 g GET after POST (Session B) l Session replication used for

this scenario as well.
Sticky Sessions

fallover only,
m sticky sessions turned on in
- %7
Tomcat 2

Session replication would still provide you with failover in case one of the tomcat server dies for whatever reason
and sticky sessions would ensure that the Lost In Redirection problem does not occur any more.

219

29 Contributing to this guide
(Appendix)

You can contribute to this guide by following these steps:
® The guide uses Grails GDoc to generate the final HTML/PDF so you should consult with its syntax.
® Clone Apache Wicket's GIT repository site

git clone https://github.con apache/ w cket.git

® Edit the .gdoc files in wicket/wicket-user-guide/src/docs/guide folder

® To preview your changes run "mvn clean package -P guide" in the wicket/wicket-user-guide folder (in
eclipse use a run configuration)

® Navigate to wicket/wicket-user-guide/target/guide/6.x and open one of the following files a browser / pdf
viewer:

® index.html (multi page version)
® guide/single.html (single page version)
® guide/single.pdf (single page pdf version)
® Create a ticket in Apache Wicket's JIRA
® Commit and push the changes to your forked Apacke Wicket's GIT repository and create a pull request

on github

Thank you!

Copyright 2013-2016 — The Apache Software Foundation — (Generated on: 2017-12-30 - 23:17:21 +0000)

220

http://grails.org/WikiSyntax
https://github.com/apache/wicket.git
https://issues.apache.org/jira/browse/WICKET
http://www.apache.org/

