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Abstract: We present a high bandwidth piezoelectric-actuated mirrorfor
length stabilization of an optical cavity. The actuator displays a transfer
function with a flat amplitude response and greater than 135◦ phase margin
up to 200 kHz, allowing a 180 kHz unity gain frequency to be achieved in a
closed servo loop. To the best of our knowledge, this actuator has achieved
the largest servo bandwidth for a piezoelectric transducer(PZT). The
actuator should be very useful in a wide variety of applications requiring
precision control of optical lengths, including laser frequency stabilization,
optical interferometers, and optical communications.
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Rev. A77, 053809 (2008).

7. M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, ”Optical atomic coherence
at the 1-second time scale,” Science314, 1430 - 1433 (2006).

8. M. J. Thorpe and J. Ye, ”Cavity-enhanced direct frequencycomb spectroscopy,” Appl. Phys. B91, 397-414
(2008).

9. I. Coddington, W. C. Swann, N. R. Newbury, ”Coherent Multiheterodyne Spectroscopy Using Stabilized Optical
Frequency Combs,” Phys. Rev. Lett.100, 013902 (2008).
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1. Introduction

Laser systems actively stabilized against phase and frequency fluctuations [1, 2, 3, 4, 5, 6] have
become essential tools for a variety of applications such asoptical atomic clocks [7], high res-
olution spectroscopy [8, 9], optical frequency synthesis [10, 11], coherent optical communica-
tions [12, 13, 14, 15, 16], and the search for gravitational waves [17]. One of the most common
type of actuator used to stabilize an optical system is a mirror mounted on a servo-controlled
piezoelectric transducer (PZT), which changes an optical frequency or phase by adjusting a
relevant optical path length. Traditionally, PZT actuators have been used for low bandwidth
feedback (≈ 5 kHz) in conjunction with a high bandwidth actuator such as an electro-optic
modulator (EOM) or an acousto-optic modulator (AOM) [18]. Whereas such configurations
are able to achieve very large servo bandwidths, AOMs and EOMs could limit the overall sys-
tem power, add complexity, and introduce dispersion which must be carefully controlled in
femtosecond laser systems. Hence, a high bandwidth PZT-based system is desirable.

When utilized in a servo loop, the bandwidth of PZT actuatorsis typically limited by strong
mechanical resonances between 20 and 40 kHz [19, 20]. Mechanical resonances in the actuator
response are problematic since the amplitude response is usually accompanied by significant
phase shifts, which can lead to positive feedback in the vicinity of the resonance, causing insta-
bilities in the lock. Therefore, the ideal actuator would have a flat amplitude and phase response
over the entire bandwidth of the feedback loop so that the lock performance is completely de-
termined by the servo controller.

Here we present a simple actuator with a flat amplitude and phase response to frequencies



above 200 kHz, followed by small resonances that minimally affect lock stability. This actuator
outperforms previously reported high performance actuators that rely on complicated designs
involving multiple PZTs and highly engineered mechanical systems [21]. The closed loop be-
havior of the actuator is demonstrated by locking an external Fabry-Perot cavity to a continuous
wave (CW) laser with a Pound-Drever-Hall (PDH) scheme [22] where a unity gain frequency
of ≈180 kHz is achieved. The actuator should be of wide utility ina variety of applications
including the stabilization of both laser frequency and optical interferometers.

2. Design Principles

A typical PZT actuator consists of a mirror attached to a PZT,which is itself affixed to a
massive mounting structure to absorb shocks. To obtain an actuator with a flat response, each
of the constituent parts, including the adhesive, should bechosen to increase the frequency
and minimize the quality factor (Q) of any mechanical resonances. In our actuator, we push
the resonances to higher frequencies by choosing rigid materials with a high speed of sound
and by using a small mirror and PZT. Normal modes of the mounting structure are damped by
filling the mounting structure with lead, and the intrinsic piezoelectric resonances are damped
by introducing irregularity to the PZT surface. In the following subsections, we present detailed
discussions of these design principles. A schematic of the final design for the mounting structure
is shown in Fig. 1 (a), and a photograph of the complete actuator in a mirror mount is shown in
Fig. 1 (b).

Fig. 1. Schematic of the PZT mounting structure that was usedfor the experiments de-
scribed here. Dimensions are in inches. (b) A photograph of the actuator in a mirror mount.

To evaluate different designs, we measured the mechanical response of the actuator at dif-
ferent Fourier frequencies (actuator’s transfer function) by placing the actuator in one arm of
a Michelson interferometer. For small excursions about themidpoint of the optical fringe, the
interference signal is linearly proportional to the changein the relative length between the two
arms of the interferometer. The overlapped beam is incidenton a photodetector with a flat re-
sponse over all the frequencies of interest, and the amplitude and phase response of the actuator
is then measured with a network analyzer. In addition, we also measure the PZT resonances
directly on a network analyzer by measuring the frequency-dependent electrical impedance.

2.1. Mounting Structure

Typically, the most troublesome mechanical resonances arelongitudinal compression waves of
the mounting structure and shearing modes causing drumhead-like vibrations of the mounting



face. One approach is to push the resonances to higher frequencies by reducing the physical
dimensions of the mounting structure. Unfortunately, thisis a poor strategy for longitudinal
waves since a typical amplitude for such resonances can be ashigh as 20 dB, which would
require a reduction of the servo gain by an order of magnitudegiven a typical integral gain
slope [23]. In contrast, we have found that tapering the mounting structure so that the front face
matches the size of the PZT and the mirror is effective at dealing with drumhead modes, which
typically have a much lower Q.

A more effective approach to mitigating the effects of the longitudinal resonances is damping.
This is very effectively achieved by drilling out the back ofa copper mounting structure and
filling it with lead. Such techniques have been used previously in PZT actuators but have not
been described [24]. For most effective damping, we have found that the tip of the lead should
reach within≈ 1mm of the mounting surface. The benefit of the lead inside thecopper mounting
structure is clearly indicated in Fig. 2, which compares thetransfer functions of two actuators
utilizing the same PZT [25], mirror, bonding agent, and the same mounting structures before
and after it is filled with lead. The copper mounting structure without lead (bottom curve) shows
many sharp resonances that are effectively damped out by theaddition of the lead (top curve).
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Fig. 2. Amplitude transfer functions for PZT actuators measured with a Michelson inter-
ferometer. The actuators were constructed with a stack PZT [25] and a rectangular mirror
of the same size mounted on a (bottom curve) copper mount of the same size as described
in Fig. 1 and (top curve) the same mount filled with lead. The two curves have been offset
for clarity.

2.2. Mirror and Adhesive

Insights into the choice of the mirror geometry and adhesivecan be gained by modeling the
actuator as a system of coupled oscillators where the mirror, PZT, and mounting structure com-
prise the masses, with the adhesive acting as the spring. Theresonant frequencies of the system
can be pushed to higher values by increasing the spring constantk or decreasing the mass of
the mirror by thinning the mirror substrate. Treating the adhesive as a bar in compression mode
gives a spring constantk =

EA
L , whereA, L andE are the bar’s cross sectional area, length,

and Young’s Modulus, respectively. In practice, we applieda pressure of∼ 106 Pa while the
rigid (High E) adhesive [26] cured to ensure a thin layer. The mirror diameter should also be
matched to the size of the PZT to mitigate drumhead vibrations of either the mirror or PZT.



2.3. Choice of PZT

Another essential criterion in the design of a high bandwidth PZT actuator is the type and
geometry of PZT used [27]. There are two common PZT geometries, tubular and disk. Tubular
PZTs are best suited to very low bandwidth (∼ few 100 Hz) applications requiring large travel
and the ability to monitor the transmitted light through thePZT-mounted mirror. Disk PZTs are
a better choice for high bandwidth actuators because they typically have much higher unloaded
resonance frequencies. Disk PZT’s are available as either asingle piece of piezoelectric ceramic
(HV PZT) or as a stack composed of many thin layers of piezoelectric material. HV PZTs have
a small sensitivity of 0.5 nm/V, independent of the thickness [28], and hence typically require
hundreds of volts to operate. Stack PZTs, on the other hand, have much larger total travel
ranges and sensitivities because each layer in the stack moves in concert. Thus, their sensitivity
is increased by the number of layers in the stack.

While stack PZT’s are very convenient for achieving large displacements (∼ µm) at low
voltages, their large capacitance requires a driver with a high output current in order to reach
the voltage slew rates required at high frequencies. With a suitable driver [29], we were able
able to achieve a∼ 100 kHz servo bandwidth with a 7.5-mm diameter,≈ 2-mm-thick mirror
on a 5×5×2 mm stack PZT [25] using the mounting structure presented inFig. 1. While the
actuator showed a very flat amplitude response out to 150 kHz,it exhibited pronounced phase
roll-off (90◦ phase margin at 100 kHz).

We have found that HV PZTs show superior phase response over stack PZTs at frequencies
above 100 kHz. In addition, simple modifications can be performed on HV PZTs to further
improve their phase response. The quality factor for an intrinsic piezoelectric resonance will
be the strongest for perfectly flat, parallel surfaces. Thus, the resonances can be damped out
by introducing irregularity to the surface of one of the sides. Cutting the PZT’s thickness on
a diamond saw roughens the surface while simultaneously pushing the resonances to higher
frequencies. A major concern during this operation is the depoling of the PZT. In practice, we
have found that cutting the PZT slowly leads to no significantchange in the sensitivity of PZT,
as verified by interferometric measurements.

Intrinsic piezoelectric resonances correspond to maximumconversion of electrical to me-
chanical energy. The damping effects of surface rougheningwere evaluated by measuring the
frequency dependent impedance as shown in Fig. 3, where the curves have been normalized
against the frequency dependence of an equivalent capacitor. The sharp resonances of the com-
mercial PZT with both electrodes intact are effectively damped by scraping off the negative
electrode and roughening the surface with an abrasive. Electrical contact was made with cop-
per tape firmly attached to the cut surface.

Actuators were constructed using both an unmodified HV PZT of0.1 in. thickness and a HV
PZT of the same shape that had the negative side cut off on a diamond saw with a final thickness
of 0.07 inches. For the PZT without the negative terminal, the cut side was electrically grounded
directly to the mounting structure and the phase response for both actuators was recorded with
an interferometer as shown in Fig. 4. Although the response functions still show resonances
due to a mismatch in the size of the mirror and PZT, it is clear that shortening the PZT and
roughening one of its surfaces flatten out the overall phase response. A third actuator made with
an uncut but roughened surface PZT showed a phase response inbetween the two presented in
Fig. 4.

3. Final Design and Closed-Loop Performance

Our final actuator utilized all of the design principles presented in the preceding section. The
actuator consisted of a 3×5×1 mm mirror and a HV PZT of approximately the same size (cut
to≈ 0.1 in. thick) mounted on the mounting structure shown in Fig. 1. The transfer function of
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Fig. 3. The frequency-dependent impedance measured with a network analyzer for a com-
mercial HV PZT with both electrodes intact (a) and the same PZT that has had the ground
electrode removed and the surface roughed up with an abrasive (b).
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Fig. 4. Interferometric measurement of phase responses foran actuator built with a com-
mercial PZT (0.1 in. thick) and one that has been cut with a diamond saw (0.07 in. thick).

this actuator shown in Fig. 5 demonstrates the flat amplitudeand phase response with a greater
than 135◦ phase margin past 200 kHz.

Although the HV actuator presented in Fig. 5 has a much smaller capacitance (on the order
of a few nF) than the stack PZT, its response can still be limited due to the finite current output
of HV amplifiers. Our HV PZT actuator was driven with both a lowcurrent (3 mA), 1-kV
amplifier at low frequencies where the need for gain is largest and a high current (50 mA), 200-
V amplifier at frequencies above 1 kHz to adequately drive thecapacitive load. The outputs of
the two amplifiers were combined with a bias tee. The crossover frequency and the gain of the
individual amplifiers were adjusted until the voltage at theinput to the PZT had a flat response
over the bandwidth of the actuator.

The closed loop performance of the actuator was measured by using it to lock the frequency
of an external Fabry-Perot cavity to a CW Nd:YAG laser using aPDH feedback [22]. The
actuator showed excellent performance, achieving a unity gain frequency of≈180 kHz and>
40-dB noise suppression at low frequencies, as shown in Fig.6. Achieving such a high unity
gain frequency allows a robust lock with a superior low frequency performance as well as
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Fig. 5. Transfer function measured with a Michelson interferometer for∼ 1 mm thick HV
PZT disk and∼1 mm thick mirror on the lead-filled copper mount presented inFig 1.

sufficient noise suppression at high frequencies for most applications. While Fig. 6 shows a
significant servo bump above 200 kHz, this contributes negligibly to the rms phase noise since
the phase noise power spectral density is given by the frequency noise power spectral density
weighted by 1/f 2. This illustrates the importance of a high bandwidth servo loop since the
integrated rms phase noise should be roughly inversely proportional to the servo bandwidth.
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Fig. 6. The converted frequency noise power spectral density of the in-Loop error signal for
PDH lock with the PZT described in Fig. 5. In the unlocked casethe cavity was manually
held on resonance. Panel (a) a full frequency span 0 - 500 kHz,(b) zoomed-in to 50 kHz.

4. Conclusion

We have developed a high-bandwidth PZT actuator with superior response functions that should
be of wide utility in applications for stabilization of lasers and optical interferometers. The
performance relies on the combination of large dynamic range enjoyed by traditional PZTs
and high bandwidth typically reserved for actuators such asEOMs and AOMs. The actuator’s



simple implementation and 180 kHz servo bandwidth removes virtually all of the common
laboratory noise such as sound and vibration, making it a superior choice for most applications.
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