

RTL8187SE

SINGLE-CHIP WIRELESS LAN NETWORK INTERFACE CONTROLLER w/PCI EXPRESS INTERFACE

DATASHEET

Rev. 1.0 16 January 2008 Track ID: JATR-1076-21

DRAF1

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211. Fax: +886-3-577-6047 www.realtek.com.tw

COPYRIGHT

©2008 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any langµAge in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind, neither expressed nor implied, including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

CONFIDENTIALITY

This document is confidential and should not be provided to a third-party without the permission of Realtek Semiconductor Corporation.

USING THIS DOCUMENT

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide. In that event, please contact your Realtek representative for additional information that may help in the development process.

REVISION HISTORY

Revision Release Date S		Summary			
1.0	2008/01/16	First release.			

ii

Table of Contents

1.	G	ENER	RAL DESCRIPTION	1
2.			JRES	
3.	SY	YSTEN	M APPLICATIONS	4
4.	Bl	LOCK	K DIAGRAMS	5
5.	PI		SIGNMENTS	7
	5.1.		CKAGE IDENTIFICATION	
6.	PI	IN DE	ESCRIPTIONS	8
	6.1.	Pov	WER MANAGEMENT/ISOLATION INTERFACE	8
	6.2.	PCI	I Express Interface	8
	6.3.	EEI	PROM INTERFACE	9
	6.4.	Pov	WER PINS	9
	6.5.		D INTERFACE	
	6.6.		SEBAND AND RF PINS	
	6.7.		UETOOTH CO-EXISTENCE PINS	
	6.8.	CLC	OCK AND OTHER PINS	11
7.	El	EPRO	DM (93C46 OR 93C56) CONTENTS	
8.	PO	CI EXI	XPRESS TM	12
	8.1.	PCI	I EXPRESS BUS INTERFACE	12
		1.1.	PCI Express Transmitter	
		1.2.	PCI Express Receiver	
	8.2.		I CONFIGURATION SPACE TABLE	
	8.3.		I CONFIGURATION SPACE FUNCTIONS	
	8.4.		I CONFIGURATION SPACE STATUS	
	8.	4.1.	Status	17
	8.	4.2.	RIDR (Revision ID Register)	
	8.	4.3.	PIFR (Programming Interface Register)	
		4.4.	SCR (Sub-Class Register)	
		4.5.	BCR (Base-Class Register)	
		4.6.	CLS (Cache Line Size)	
		4.7.	LTR (Latency Timer Register)	
		4.8.	HTR (Header Type Register)	
		4.9.	BIST (Built-In Self-Test) IOAR (Input Output Address Register)	
		4.10. 4.11.	IOAR (Input Output Address Register)	19
		4.11. 4.12.	MEMAR (Memory Address Register) CISPtr (CardBus Card Information Structure Pointer)	
		4.12. 4.13.	SVID (Subsystem Vendor ID)	
		4.13. 4.14.	SVID (Subsystem Vendor ID)	
		4.14. 4.15.	ILR (Interrupt Line Register)	
		4.1 <i>6</i> .	IPR (Interrupt Pin Register)	
		<i>4.17</i> .	MNGNT (Minimum Grant Timer: Read only)	
		4.18.	MXLAT (Maximum Latency Timer: Read only)	
	8.5.		FAULT VALUE AFTER POWER-ON (RSTB ASSERTED)	
Sir	ngle-	-Chip I	Wireless LAN Network Interface Controller iii Track ID: JATR-J	1076-21 Rev. 1.0

Track ID: JATR-1076-21 Rev. 1.0

8.6. PCI Power Management Functions	
8.7. Message Signaled Interrupt (MSI)	
8.7.1. MSI Capability Structure in PCI Configuration Space	
8.7.2. Message Control	
8.7.3. Message Address	
8.7.4. Message Upper Address	
8.7.5. Message Data	
9. FUNCTIONAL DESCRIPTION	
9.1.1. Transmit	
9.1.2. Receive	
9.2. LOOPBACK OPERATION	
9.3. QOS FUNCTIONS	
9.4. LED FUNCTIONS	
10. APPLICATION DIAGRAM	40
11. ELECTRICAL CHARACTERISTICS	41
11.1. Temperature Limit Ratings	41
11.2. DC CHARACTERISTICS	41
11.3. AC CHARACTERISTICS	42
11.3.1. Serial EEPROM Interface Timing (93C46(64*16)/93C56(128*16))	
11.4. PCI Express Bus Parameters	
11.4.1. Differential Transmitter Parameters	
11.4.2. Differential Receiver Parameters	
11.4.3. REFCLK Parameters	
11.4.4. Auxiliary Signal Timing Parameters	
12. MECHANICAL DIMENSIONS	49
13. ORDERING INFORMATION	50

iv

List of Tables

TABLE 1. POWER MANAGEMENT/ISOLATION INTERFACE	8
TABLE 2. PCI Express Interface	8
TABLE 3. EEPROM INTERFACE	
TABLE 4. POWER PINS	9
TABLE 5. LED INTERFACE.	
TABLE 6. BASEBAND AND RF PINS	10
TABLE 7. BLUETOOTH CO-EXISTENCE PINS	11
TABLE 8. CLOCK AND OTHER PINS.	
TABLE 9. PCI CONFIGURATION SPACE TABLE	
TABLE 10. COMMAND REGISTER IN PCI CONFIGURATION SPACE	
TABLE 11. PCI CONFIGURATION SPACE STATUS	
TABLE 12. INPUT OUTPUT ADDRESS REGISTER	
TABLE 13. MEMORY ADDRESS REGISTER	
TABLE 14. PCI CONFIGURATION SPACE TABLE	
TABLE 15. MESSAGE CONTROL	
TABLE 16. MESSAGE ADDRESS	
TABLE 17. MESSAGE UPPER ADDRESS	
TABLE 18. MESSAGE DATA	
TABLE 19. TX DESCRIPTOR FORMAT (BEFORE TRANSMITTING, OWN=1, TX COMMAND MODE 1)	
TABLE 20. TX STATUS DESCRIPTOR	
TABLE 21. TX STATUS DESCRIPTOR (AFTER TRANSMITTING, OWN=0, TX STATUS MODE)	
TABLE 22. TX STATUS DESCRIPTOR (AFTER TRANSMITTING, OWN=0, TX STATUS MODE)	
TABLE 23. RX COMMAND DESCRIPTOR (OWN=1)	
TABLE 24. RX COMMAND DESCRIPTOR (OWN=1)	
TABLE 25. RX STATUS DESCRIPTOR (OWN=0)	
TABLE 26. RX STATUS DESCRIPTOR.	
TABLE 27. TEMPERATURE LIMIT RATINGS	
TABLE 28. DC CHARACTERISTICS	
TABLE 29. EEPROM ACCESS TIMING PARAMETERS	
TABLE 30. DIFFERENTIAL TRANSMITTER PARAMETERS	
TABLE 31. DIFFERENTIAL RECEIVER PARAMETERS.	
TABLE 32. REFCLK PARAMETERS	
TABLE 33. AUXILIARY SIGNAL TIMING PARAMETERS	
TABLE 34. ORDERING INFORMATION	50

v

List of Figures

FIGURE 1. BLOCK DIAGRAM	5
FIGURE 2. RF BLOCK DIAGRAM	
FIGURE 3. PIN ASSIGNMENTS	7
FIGURE 4. MESSAGE CAPABILITY STRUCTURE	25
FIGURE 5. APPLICATION DIAGRAM	
FIGURE 6. SERIAL EEPROM INTERFACE TIMING	42
FIGURE 7. SINGLE-ENDED MEASUREMENT POINTS FOR ABSOLUTE CROSS POINT AND SWING	46
FIGURE 8. SINGLE-ENDED MEASUREMENT POINTS FOR DELTA CROSS POINT	46
FIGURE 9. SINGLE-ENDED MEASUREMENT POINTS FOR RISE AND FALL TIME MATCHING	46
FIGURE 10. DIFFERENTIAL MEASUREMENT POINTS FOR DUTY CYCLE AND PERIOD	47
FIGURE 11. DIFFERENTIAL MEASUREMENT POINTS FOR RISE AND FALL TIME	
FIGURE 12. DIFFERENTIAL MEASUREMENT POINTS FOR RINGBACK	47
FIGURE 13. REFERENCE CLOCK SYSTEM MEASUREMENT POINT AND LOADING	48
FIGURE 14. AUXILIARY SIGNAL TIMING	48

vi

1. General Description

The Realtek RTL8187SE is a low-profile highly integrated cost-effective Single-Chip Wireless LAN network interface controller that integrates a Wireless LAN MAC, a baseband processor, and 2.4GHz RF onto one chip. It provides a PCI Express bus controller, and full compliance with IEEE 802.11 and IEEE 802.11b/g specifications. It also complies with WMM, 802.11e, and CCX specifications.

To reduce protocol overhead, the RTL8187SE supports Short InterFrame Space (SIFS) burst mode to send packets back-to-back. A protection mechanism prevents collisions among 802.11b nodes.

Direct Sequence Spread Spectrum (DSSS), Complementary Code Keying (CCK), and Orthogonal Frequency Division Multiplexing (OFDM) baseband processing are implemented to support all IEEE 802.11b, and 802.11g data rates. Differential phase shift keying modulation schemes, DBPSK and DQPSK with data scrambling capability, are available, along with complementary code keying to provide data rates of 1, 2, 5.5, and 11Mbps, with long or short preamble. A high-speed Fast Fourier Transform (FFT)/Inverse Fast Fourier Transform (IFFT), combined with BPSK, QPSK, 16QAM and 64QAM modulation of the individual sub-carriers, provides data rates of 6, 9, 12, 18, 24, 36, 48 and 54Mbps, with rate-compatible punctured convolutional coding with a coding rate of 1/2, 2/3, and 3/4.

An enhanced signal detector, an adaptive frequency domain equalizer, and a soft-decision Viterbi decoder are built-in to alleviate severe multipath effects. Efficient IQ-imbalance calibration, DC offset, phase noise, frequency offset, and timing offset compensation reduce radio frequency front-end impairments. Selectable digital transmit and receive FIR filters are provided to meet the requirements of transmit spectrum masks, and to reject adjacent channel interference, respectively. Both in the transmitter and receiver, programmable scaling in the digital domain trades the $q\mu$ Antization noise against the increased probability of clipping. Robust signal detection, symbol boundary detection, and channel estimation perform well at the minimum sensitivity.

The RTL8187SE supports fast receiver Automatic Gain Control (AGC) and antenna diversity functions, and an adaptive transmit power control function to obtain better performance in the analog portions of the transceiver. It also has on-chip digital-to-analog converters and analog-to-digital converters for analog I and Q inputs and outputs, transmit TSSI and receiver RSSI inputs, and transmit and receiver AGC outputs.

It supports Advanced Configuration Power management Interface (ACPI), Legacy PCI power management, and PCI Express power management for modern operating systems that are capable of Operating System directed Power Management (OSPM). PCI MSI (Message Signaled Interrupt) function and PCI Express Device Serial Number Capability are also supported.

In addition to the ACPI feature, the RTL8187SE also supports remote wake-up (including AMD Magic Packet and Microsoft[®] wake-up frame) in both ACPI and APM environments. To support Wake on Wireless LAN from a deep power down state (e.g., D3cold, i.e. main power is off and only auxiliary power exists), the auxiliary power source must be able to provide the needed power. When auxiliary power is applied and the main power remains off, the RTL8187SE is ready and waiting for a Magic Packet or wake-up frame to wake the system up.

The RTL8187SE supports an enhanced link list descriptor-based buffer management architecture, which is an essential part of a design for a modern network interface card. It contributes to lowering CPU utilization. Also, the RTL8187SE features inter-connect PCI Express technology. PCI Express is a high-bandwidth, low pin count, serial, interconnect technology that offers significant improvements in performance over conventional PCI and also maintains software compatibility with existing PCI infrastructure. Support is also provided for Multiple BSSID, Adjustable fallback steps and fallback rates during auto rate fallback, TX Power Tracking, Enhanced three-wire mechanism, Parallel Control Interface between Baseband and RF, and Bluetooth coexistence.

DRAFT

The RTL8187SE keeps network maintenance costs low and eliminates usage barriers. The RTL8187SE is highly integrated and requires no 'glue' logic or external memory.

2. Features

64-Pin QFN with 'Green' package

State machine implementation without external memory (RAM, flash) requirement

Complies with IEEE 802.11b/g standards

Supports descriptor-based buffer management

Integrated Wireless LAN MAC and Direct Sequence Spread Spectrum/OFDM Baseband Processor in one chip

Enhanced signal detector, adaptive frequency domain equalizer, and soft-decision Viterbi decoder to alleviate severe multipath effects

Processing Gain compliant with FCC

On-Chip A/D and D/A converters for I/Q Data, AGC, and Adaptive Power Control

Supports both transmit and receive Antenna Diversity

Data rates of 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, and 54Mbps

Supports 40MHz OSC as the internal clock source. The frequency deviation of the OSC must be within 25ppm on IEEE 802.11g

PCI Express bus controller

Complies with PCI Express 1.1 and PCI Express Mini Card Electromechanical Specification Revision 1.1

PCI power management Revision 1.2

Supports PCI Express Active State Power Management (ASPM)

3

Provides PCI Express bus data transfers and PCI Express memory space or IO space mapped data transfers of the RTL8187SE's operational registers

Supports ACPI (Rev 1.0, 1.0b, 2.0)

Supports Wake-On-WLAN (WoWLAN) function and remote wake-up (Magic Packet and Microsoft[®] wake-up frame)

Supports auxiliary power auto-detect, and sets the related capability of power management registers in PCI Express configuration space

IEEE 802.11g protection mechanisms for both RTS/CTS and CTS-to-self

Burst-mode support for dramatically enhanced throughput

DSSS with DBPSK and DQPSK, CCK modulations and demodulations supported with long and short preamble

OFDM with BPSK, QPSK, 16QAM and 64QAM modulations and demodulations supported with rate compatible punctured convolutional coding with coding rate of 1/2, 2/3, and 3/4

Efficient IQ-imbalance calibration, DC offset, phase noise, frequency offset and timing offset compensation reduce analog front-end impairments

Selectable digital transmit and receiver FIR filters provided to meet transmit spectrum mask requirements and to reject adjacent channel interference

Programmable scaling both in transmitter and receiver to trade qµAntization noise against the increased probability of clipping

Fast receiver Automatic Gain Control (AGC) & antenna diversity functions

Adaptive transmit power control function

Complies with WMM, 802.11e, and CCX specifications

Complies with 802.11i and 802.11j specifications

Hardware-based IEEE 802.11i encryption/decryption engine, including 64-bit/128-bit WEP, TKIP, and AES

Supports Wi-Fi alliance WPA and WPA2 security

Supports a 32-bit general-purpose timer

Contains two large independent transmit and receive FIFO buffers

Advanced power saving mode when the LAN and wakeup function are not used

Uses 93C46 (64*16-bit EEPROM) or 93C56 (128*16-bit EEPROM) to store resource configuration and ID parameter data

LED pins for various network activity indications

Nine GPIO pins supported

Supports digital loopback capability on both ports

Flexible RF transceiver interface for different RF transceiver applications

Built-in 3.3V to 1.8V regulator

3.3V power supply required

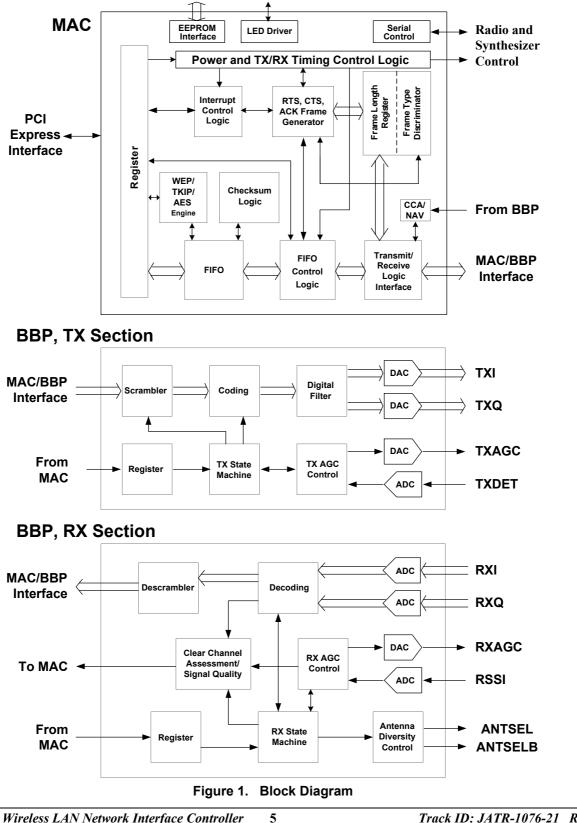
0.18µm CMOS process

DRAFT

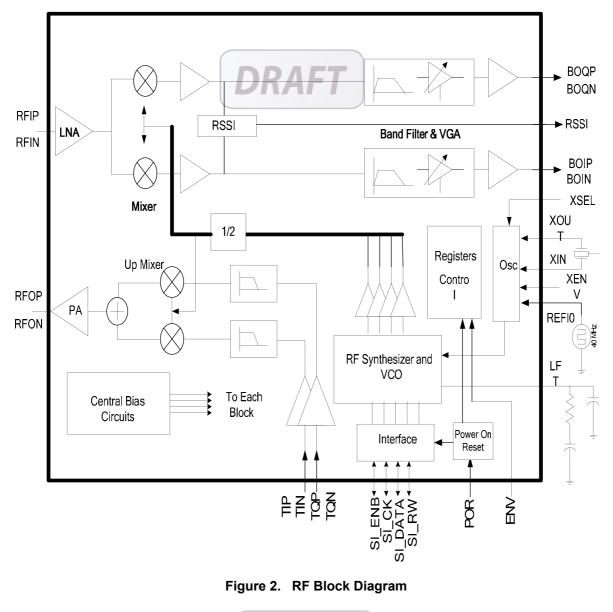
3. System Applications

Wireless PCI Express adapter

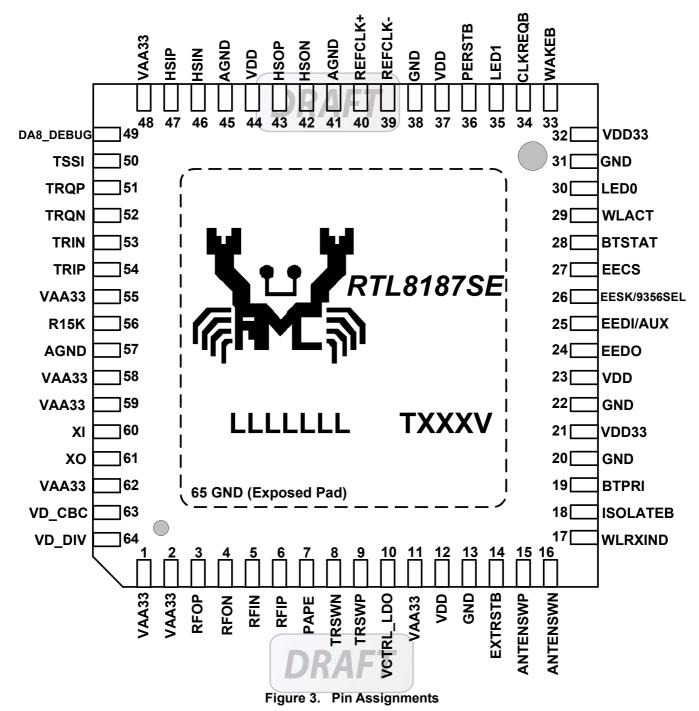
Wireless notebook Mini Card adapter


Wireless system (wireless gateway router, wireless ADSL router, wireless set-top box etc.) with PCI Express or Mini Card slot

•



Block Diagrams 4.


RF Diagram

5. Pin Assignments

5.1. Package Identification

Green package is indicated by a 'G' in the location marked 'T' in Figure 3.

6. **Pin Descriptions**

The following signal type codes are used in the tables:

I:	Input	AO:	Analog Output
DI:	Digital Input		Analog Input/Output
AI:	Analog Input	T/S:	Tri-State Bi-Directional Input/Output
0:	Output	S/T/S:	Sustained Tri-State
DO:	Digital Output	O/D:	Open Drain

6.1. Power Management/Isolation Interface

Table 1. Fower Management/Isolation Interface				
Symbol	Туре	Pin No	Description	
WAKEB	O/D	33	Power Management Event: Open drain, active low.	
			Used to reactivate the PCI Express slot's main power rails and reference clocks.	
ISOLATEB	DI	18	Isolate Pin: Active low.	
			Used to isolate the RTL8187SE-GR from the PCI Express bus. The RTL8187SE-GR will not drive its PCI Express outputs (excluding WAKEB) and will not sample its PCI Express input as long as the Isolate pin is asserted.	

Table 1 Power Management/Isolation Interface

6.2. PCI Express Interface

Symbol	Туре	Pin No	Description		
REFCLK+	Ι	40	DCI Express Differential Reference Clear Source: 100MIIz + 200mm		
REFCLK-	Ι	39	PCI Express Differential Reference Clock Source: 100MHz ±300ppm.		
HSOP	0	43	DCI European Transmit Differential Dain		
HSON	0	42	PCI Express Transmit Differential Pair.		
HSIP	Ι	47			
HSIN	Ι	46	PCI Express Receive Differential Pair.		
PERSTB	Ι	36	PCI Express Reset Signal: Active low.		
			When the PERSTB is asserted at power-on state, the RTL8187SE-GR returns		
			to a pre-defined reset state and is ready for initialization and configuration		
			after the de-assertion of the PERSTB.		
CLKREQB	O/D	34	Reference Clock Request Signal. This signal is used by the RTL8187SE-GR to request starting of the PCI Express reference clock.		

Table 2. PCI Express Interface

6.3. EEPROM Interface

Table 3. EEPROM Interface

Symbol	Туре	Pin No	Description
EESK/9356SEL	DO/DI	26	EESK in 93C46 (93C56) programming or auto-load mode.
			Input Pin as 9356 Select Pin at Initial Power-up.
		D	When this pin is pulled high with a 10K resistor, the 93C56 EEPROM is used to store the resource data for the RTL8187SE.
			The RTL8187SE latches the status of this pin at power-up to determine which EEPROM (93C46 or 93C56) is used.
			After power on and GPIO_EN[5]=1, this pin is GPIO[5].
EEDI/AUX	DO/DI	25	EEDI: Output to serial data input pin of EEPROM.
			AUX: Input pin to detect if Aux. Power exists or not on initial power-on. This pin should be connected to EEPROM. To support wakeup from ACPI D3cold or APM power-down, this pin must be pulled high to Aux. Power via a resistor. If this pin is not pulled high to Aux. Power, the RTL8187SE assumes that no Aux. Power exists.
			After power on and GPIO_EN[4]=1, this pin is GPIO[4].
EEDO	DI	24	This pin is GPIO[3] after power on and GPIO_EN[3]=1, otherwise, it is EEDO in 93C46 (93C56) programming or auto-load mode.
EECS	DO	27	EEPROM Chip Select.
			93C46 (93C56) chip select.

6.4. Power Pins

	Table 4. Power Pins						
Symbol	Туре	Pin No	Description				
VDD33	Р	21, 32	+3.3V (Digital).				
VAA33	Р	1, 2, 11, 48, 55, 58, 59,	+3.3V (Analog).				
		62					
VDD	Р	12, 23, 37, 44	+1.8V.				
GND	Р	13, 20, 22, 31, 38, 65	Ground (Digital).				
AGND	Р	41, 45, 57	Ground (Analog).				
VCTRL_LDO	AO	10	Reserve this pin for external BJT option to generate 1.8V for digital				
			core circuit.				
VD_CBC	Р	63	Reserved for external power transistor.				
VD_DIV	VD_DIV P 64		Reserved for external power transistor.				
<u></u>	-						

9

DRAFT

6.5. **LED** Interface

Table 5. LED Interface					
Symbol	Туре	Pin No	Description		
LED0	0	30	LED Pin.		
			a. PWRON: I2C_CK		
			b. After PWRON & LED_CONTROL=3'h7: GPIO[0]		
			c. Other: LED0 —		
LED1	0	35	LED Pin.		
			a. PWRON: I2C_IO		
			b. After PWRON & LED_CONTROL=3'h7: GPIO[1]		
			c. Other: LED1		

6.6. **Baseband and RF Pins**

	Table 6. Baseband and RF Pins					
Symbol	Туре	Pin No	Description			
RFOP	AO	3	2 ACHE Differential DE Dewer Amplifier Output			
RFON	AO	4	2.4GHz Differential RF Power Amplifier Output.			
RFIN	AI	5	2.4GHz Differential RF Input.			
RFIP	AI	6	2.40Hz Differential KF input.			
PAPE	DO	7	Enable Control for Optional External Power Amplifier			
TRSWN	DO	8	Control Signals for Ontional External DE T/D Switch			
TRSWP	DO	9	Control Signals for Optional External RF T/R Switch			
ANTENSWP	DO	15	Control Signals for Antonno Switch			
ANTENSWN	DO	16	Control Signals for Antenna Switch			
TSSI	AI	50	Transmit Signal Strength Indication From External Power Amplifier			
TRQP	AIO	51	Via register setting, can be programmed to one of the following four types of pins:			
			RF TXQP: Input pin for RF TX test RF RXQP: Output pin for RF RX test			
			AFE TXQP: Output pin for DAC test AFE RXQP: Input pin for ADC test			
TRQN	AIO	52	Via register setting, can be programmed to one of the following four types of pins:			
			RF TXQN: Input pin for RF TX test RF RXQN: Output pin for RF RX test			
			AFE TXQN: Output pin for DAC test AFE RXQN: Input pin for ADC test			
TRIN	AIO	53	Via register setting, can be programmed to one of the following four types of pins:			
			RF TXIN: Input pin for RF TX test RF RXIN: Output pin for RF RX test			
			AFE TXIN: Output pin for DAC test AFE RXIN: Input pin for ADC test			
TRIP	AIO	54	Via register setting, can be programmed to one of the following four types of pins:			
			RF TXIP: Input pin for RF TX test RF RXIP: Output pin for RF RX test			
			AFE TXIP: Output pin for DAC test AFE RXIP: Input pin for ADC test			

6.7. **Bluetooth Co-Existence Pins**

	Table 7. Bluetooth Co-Existence Pins									
Symbol	Туре	Pin No	Description							
WLRXIND	0	17	Wireless LAN RX Activity Indicator							
BTPRI	IO	19	Bluetooth Priority Pin This pin is GPIO[2] after power on and GPIO_EN[2]=1, otherwise, this pin is BTPRI. The BTPRI signal indicates when an important Bluetooth packet is being transmitted or received.							
BTSTAT	IO	28	Bluetooth Status This pin is GPIO[6] after power on and GPIO_EN[6]=1, otherwise, this pin is BTSTAT. The BTSTAT signal indicates when normal Bluetooth packets are being transmitted or received.							
WLACT	0	29	WLAN Activity The WLAN_Active signal indicates when WLAN is either transmitting or receiving in the 2.4GHz ISM band.							

6.8. **Clock and Other Pins**

Symbol	Туре	Pin No	Description
R15K	IO	56	This pin must be pulled low by a 15K resistor.
XI	Ι	60	Input of 40MHz Clock Reference.
XO	0	61	Output of 40MHz Clock Reference.
EXTRSTB	Ι	14	External Reset Pin: Active Low.
DA8_DEBUG	0	49	Debug Pin.

Tabla 0 Clock and Other Dine

7. EEPROM (93C46 or 93C56) Contents

The RTL8187SE supports the attachment of an external EEPROM. The 93C46 is a 1Kbit EEPROM (the 93C56 is a 2Kbit EEPROM). The EEPROM interface provides the ability for the RTL8187SE to read from, and write data to, an external serial EEPROM device. Values in the external EEPROM allow default fields in PCI configuration space and IO space to be overridden following an internal power on reset, or software EEPROM auto-load command. The RTL8187SE will auto-load values from the EEPROM to these fields in configuration space and IO space. If the EEPROM is not present, the RTL8187SE initialization uses default values for the appropriate Configuration and Operational Registers. Software can read and write to the EEPROM using 'bit-bang' accesses via the 9346CR Register.

Note: It is suggested to obtain Realtek approval before changing the default settings of the EEPROM.

8. PCI EXPRESSTM 8.1. PCI EXPRESS Bus Interface

The RTL8187SE is compliant with PCI ExpressTM Base Specification Revision 1.1, and runs at 2.5GHz signaling rate with X1 link width, i.e., one transmit and one receive differential pairs. The RTL8187SE supports 4 types of PCI Express messages; interrupt messages, error messages, power management messages, and hot-plug messages. PCI Express lane polarity reversal and link reversal are also supported to ease PCB layout constraints.

8.1.1. PCI Express Transmitter

The RTL8187SE's PCI ExpressTM block receives digital data recovered from the WLAN MAC interface and performs data scrambling with Linear Feedback Shift Register (LFSR) and 8B/10B coding technology into 10-bit code groups. Data scrambling is used to reduce the possibility of electrical resonance on the link, and 8B/10B coding technology is used to benefit embedded clocking, error detection, and DC balance by sacrificing the 25 percent overhead to the system through the addition of 2 extra bits. Then, the data code groups are passed through its serializer for packet framing to generate 2.5 Gbps serial data and transmitted onto PCB trace to its upstream device via differential driver.

8.1.2. PCI Express Receiver

The RTL8187SE's PCI ExpressTM block receives 2.5Gbps serial data from its upstream device to generate parallel data. The receiver's PLL circuits are resynchronized to maintain bit and symbol lock. Through 8B/10B decoding technology and data descrambling, the original digital data is able to be recovered and then the data is passed to the RTL8187SE's internal WLAN MAC to be transmitted on the air.

8.2. PCI Configuration Space Table

Note: The following table assumes Power Management is enabled.

<u> </u>				Table 9. PC	CI Configu	ration Spa	ce Table			
No.	Name	Туре	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00h	VID	R	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0
01h		R	VID15	VID14	VID13	VID12	VID11	VID10	VID9	VID8
02h	DID	R	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0
03h		R	DID15	DID14	DID13	DID12	DID11	DID10	DID9	DID8
04h	Command	R	0	PERRSP	0	0	0	BMEN	MEMEN	IOEN
		W	-	PERRSP	-	-	-	BMEN	MEMEN	IOEN
05h		R	0	0	0	0	0	IntDisable	0	SERREN
		W	-	-	-	-	-	IntDisable	-	SERREN
06h	Status	R	0	0	0	1	IntSt	0	0	0
07h		R	DPERR	SSERR	RMABT	RTABT	STABT	0	0	DPD
		W	DPERR	SSERR	RMABT	RTABT	STABT	-	-	DPD
08h	Revision ID	R	0	0	1	0	0	0	1	0
09h	PIFR	R	0	0	0	0	0	0	0	0
0Ah	SCR	R	1	0	0	0	0	0	0	0
0Bh	BCR	R	0	0	0	0	0	0	1	0
0Ch	CLS	RW	CLS7	CLS6	CLS5	CLS4	CLS3	CLS2	CLS1	CLS0
0Dh	LTR	R	0	0	0	0	0	0	0	0
0Eh	HTR	R	0	0	0	0	0	0	0	0
0Fh	BIST	R	0	0	0	0	0	0	0	0
10h	IOAR	R	0	0	0	0	0	0	0	IOIN
		W	-	-	-	-	-	-	-	-
11h		RW	IOAR15	IOAR14	IOAR13	IOAR12	IOAR11	IOAR10	IOAR9	IOAR8
12h		RW	IOAR23	IOAR22	IOAR21	IOAR20	IOAR19	IOAR18	IOAR17	IOAR16
13h		RW	IOAR31	IOAR30	IOAR29	IOAR28	IOAR27	IOAR26	IOAR25	IOAR24
14h- 17h					Res	erved				
18h-					Res	erved				
1Fh 20h-					Dec	erved				
2011- 27h					KC	serveu				
28h- 2Bh					Res	erved				
2Ch	SVID	R	SVID7	SVID6	SVID5	SVID4	SVID3	SVID2	SVID1	SVID0
2Dh		R	SVID15	SVID14	SVID13	SVID12	SVID11	SVID10	SVID9	SVID8
2Eh	SMID	R	SMID7	SMID6	SMID5	SMID4	SMID3	SMID2	SMID1	SMID0
2Fh		R	SMID15	SMID14	SMID13	SMID12	SMID11	SMID10	SMID9	SMID8
30h	BMAR	R	0	0	0	0	0	0	0	BROME
		W	-	- (-	-	-	-	-	BROME
31h		R	BMAR15	BMAR14	BMAR13	BMAR12	BMAR11	0	0	0
		W	BMAR15	BMAR14	BMAR13	BMAR12	BMAR11	-	_	-
32h		RW	BMAR23	BMAR22	BMAR21	BMAR20	BMAR19	BMAR18	BMAR17	BMAR1
33h		RW	BMAR31	BMAR30	BMAR29	BMAR28	BMAR27	BMAR26	BMAR25	BMAR2
34h	Cap_Ptr	R	0	1	0	0	0	0	0	0
35h-	<u>r</u>		~	1 *	-	erved	I Č	I	, v	Ĭ
3Bh					100					
3Ch	ILR	RW	IRL7	ILR6	ILR5	ILR4	ILR3	ILR2	ILR1	ILR0
	IDD	R	0	0	0	0	0	0	0	1
3Dh	IPR	K	0	U	0	0	0	0	0	1

Single-Chip Wireless LAN Network Interface Controller13w/PCI Express Interface13

Track ID: JATR-1076-21 Rev. 1.0

No.	Name	Туре	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
3Fh	MXLAT	R	0	0	0	0	0	0	0	0
40h	PMID	R	0	0	0	0	0	0	0	1
41h	NextPtr	R	0	1	0	1	0	0	0	0
42h	PMC	R	Aux I b1	Aux I b0	DSI	Reserved	PMECLK	Ŭ	Version	Ū
43h		R	PME_D3 _{cold}	PME_D3 _{hot}	PME D2	PME D1	PME D0	D2	D1	Aux I b2
44h	PMCSR	R	0	0		0	0	0	Power	State
		W	-	-		-	-	-	Power	State
45h		R	PME Status	- 1)	RAF		-	-	-	PME En
		W	PME_Status	-		-	-	-	-	PME_En
46-					Res	served		•		•
4Fh										
50h	MSIID	R	0	0	0	0	0	1	0	1
51h	NextPtr	R	0	1	1	1	0	0	0	0
52h	Message Control	R	64-bit Address	Multip	ole Message En	able	0	0	0	MSI Enable
	Control		Capable							
		W	-	Multi	ole Message En	able	-	-	0	MSI Enable
53h						erved. Always r	eturn 0			
54h-	Message	RW			64-bi	t Interrupt Mess	age Address Lo)W		
57h	Address Low									
58h- 5Bh	Message	RW		64-bit Interrupt Message Address High						
5Ch-	Address High Message Data	RW				16-bit Mess	aga Data			
5Dh	Message Data	K W				10-on Mess	age Data			
5E-					RES	ERVED				
6Fh					KL5					
70h	PCIEID	R	0	0	0	1	0	0	0	0
71h	NextPtr	R	0	0	0	0	0	0	0	0
72h-	PCIE Cap.	R	0	0	0	Legacy	0	0	0	1
73h		R	0	0	0	0	0	0	0	0
74h- 77h	Device Capability	R	L0s_acpt_ latency[1]	L0s_acpt_ latency[0]	Entend_ tag_support	0	0	Max_p	ayload_size_su	pport
	Register	R	Role Base Error rpt	0	0	0	L1_acpt_ latency[2]	L1_acpt_ latency[1]	L1_acpt_ latency[0]	L0s_acpt_la tency[2]
		R	0	0	0	0	0	0	0	0
		R	0	0	0	0	0	0	0	0
78h- 79h	Device Control Register	RW	Ν	Max_payload_size	e	Relaxed_ ordering_en	Unsupport_ rqst_rpt_en	Fatal_err_ rpt_en	Non_fatal_ err_rpt_en	Correct- able_err_ rpt_en
	.0	RW	0	Max	_read_request_s	size	No_snoop_en	Auxpwr_ PM_en	0	Entend_ tag_en
7Ah	Device Status Register	R	0	0	Transact_ ion_pending	AuxPwr_det	Upsupport_ rqst_det	Fatal_err_det	Non_fatal_ err_det	Correct- able_err_det
		W	0	0	DA		Upsupport_ rqst_det	Fatal_err_det	Non_fatal_err _det	Correcta- ble_err_det
7Bh		R	0	0	0	0	0	0	0	0
7Ch	Link	R	0	0	0		0	0	0	1
7Dh	Capability Register	R	L1_exit_ lat[0]	L0s_exit_ lat[2]	L0s_exit_ lat[1]	L0s_exit_ lat[0]	ASPM	_support	0	0
7Eh		R	0	0	0	0	0	Clock_PM	L1_exit_ lat[2]	L1_exit_ lat[1]0
7Fh		R	0	0	0	0	0	0	0	0

RTL8187SE Datasheet

No.	Name	Туре	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
80h	Link Control Register	R	Extended_ sync	Common_ clock	0	0	RCB	0	ASPM_	control
		W	Extended_ sync	Common_ clock	0	0	RCB	0	ASPM_	control
81h		R	0	0	0	0	0	0	0	Enable clock_PM
		W	0	0	0	0	0	0	0	Enable clock_PM
82h	Link Status	R	0	0	-0	1	0	0	0	1
83h	Register	R	0	0	0	Slot_clock_ cfg	0	0	0	0
84h	Slot Capability Register	R	Slot power Limit[0]	Hot-Plug Capable	Hot-Plug Surprise	Power indicator present	Attn indicator present	MRL sensor present	Power control present	Attn button present
85h		R	Slot power Limit scale[0]	Slot power Limit[7]	Slot power Limit[6]	Slot power Limit[5]	Slot power Limit[4]	Slot power Limit[3]	Slot power Limit[2]	Slot power Limit[1]
86h		R	Physical slot Number[4]	Physical slot Number[3]	Physical slot Number[2]	Physical slot Number[1]	Physical slot Number[0]	No common Complete support	Electromecha nical interlock present	Slot power Limit scale[1]
87h		R	Physical slot Number[12]	Physical slot Number[11]	Physical slot Number[1]	Physical slot Number[9]	Physical slot Number[8]	Physical slot Number[7]	Physical slot Number[6]	Physical slot Number[5]
88h	Slot Control Register	RW	Attn Indicator Control[1]	Attn Indicator Control[0]	Hot-Plug Interrupt Enable	Command Completed interrupt Enable	Presence Detect Changed Enable	MRL Sensor Changed Enable	Power Fault Detected Enable	Attn Bottom Pressed Enable
89h		RW	-	-	-	Data Link Layer State Changed Enable	Electromecha nical Interlock Control	Power Controller Control	Power Indicator Control[1]	Power Indicator Control[0]
8Ah	Slot Status Register	R	Electromecha nical Interlock Status	Presence Detect State	MRL Sensor State	Command Completed	Presence Detect Changed	MRL Sensor Changed	Power Fault Detected	Attn Botton pressed
8Bh		R				Reversed				Data Link Layer State Changed
8Ch- FFh					Rev	versed				

8.3. PCI Configuration Space Functions

The PCI configuration space is intended for configuration, initialization, and catastrophic error handling functions. The functions of the configuration space of the RTL8187SE are described below.

VID: Vendor ID. This field will be set to a value corresponding to a PCI Vendor ID in the external EEPROM. If there is no EEPROM, this field will default to a value of 10ECh, which is Realtek Semiconductor's PCI Vendor ID.

DID: Device ID. This field will be set to a value corresponding to a PCI Device ID in the external EEPROM. If there is no EEPROM, this field will default to a value of 8185h.

Command: The command register is a 16-bit register used to provide coarse control over a device's ability to generate and respond to PCI cycles.

Bit	Symbol	Description
15:11	-	Reserved.
10	INTDIS	Interrupt Disable.
		This Bit enables/disables the RTL8187SE to assert Int# signal.
		1: Force disable assertion of the Int# signal.
		0: Enable enable assertion of the Int# signal (default value after PCI reset)
9	FBTBEN	Fast Back-To-Back Enable. Does not apply to PCI Express. Must be hardwired to 0.
8	SERREN	System Error Enable.
		When set to 1, enables reporting of Non-fatal and Fatal errors detected by the device to the Root Complex. Note that errors are reported if enabled either through this bit or through the PCI-Express specific bits in the Device Control register.
7	ADSTEP	Address/Data Stepping. Does not apply to PCI Express. Must be hardwired to 0.
6	PERRSP	Parity Error Response.
		In the Status register, the Master Data Parity Error bit is set by a Requester if its Parity Error Response bit is set and either of the following two conditions occurs:
		- If the Requester receives a poisoned Completion.
		- If the Requester poisons a write request.
		If the Parity Error Response bit is cleared, the Master Data Parity Error status bit is never set.
5	VGASNOOP	VGA Palette SNOOP. Does not apply to PCI Express. Must be hardwired to 0.
4	MWIEN	Memory Write and Invalidate Cycle Enable.
		Does not apply to PCI Express. Must be hardwired to 0.
3	SCYCEN	Special Cycle Enable. Does not apply to PCI Express. Must be hardwired to 0.
2	BMEN	Bus Master Enable.
		When set to 1, the RTL8187SE is capable of acting as a PCI bus master. When set to 0, it is prohibited from acting as a bus master.
		For normal operations, this bit must be set by the system BIOS.
1	MEMEN	Memory Space Access. When set to 1, the RTL8187SE responds to memory space accesses. When set to 0, the RTL8187SE ignores memory space accesses.
0	IOEN	IO Space Access. When set to 1, the RTL8187SE responds to IO space accesses. When set to 0, the RTL8187SE ignores IO space accesses.

Table 10. Command Register in PCI Configuration Space

8.4. PCI Configuration Space Status8.4.1. Status

The status register is a 16-bit register used to record status information for PCI bus related events. Reads to this register behave normally. Writes are slightly different in that bits can be reset, but not set.

Bit Symbol Description 15 DPERR Detected Parity Error. This bit is set by the RTL8187SE whenever it receives a Poisoned Transaction Lay (TLP), regardless of the state the Parity Error Enable bit. Default value of this field 14 SSERR Signaled System Error. This bit is set when the RTL8187SE sends an ERR_FATAL or ERR_NONFATAL N the SERR Enable bit in the Command register is 1. Default value of this field is 0. 13 RMABT Received Master Abort. This bit is set when the RTL8187SE receives a Completion with Unsupported Requ Completion Status. Default value of this field is 0. 12 RTABT Received Target Abort. This bit is set when the RTL8187SE receives a Completion with Completer Abort O Status. Default value of this field is 0. 11 STABT Signaled Target Abort. This bit is set when the RTL8187SE completes a Request using Completer Abort O Status. Default value of this field is 0. 10:9 DST1~0 Device Select Timing. Does not apply to PCI Express. Must be hardwired to 0.	l is 0. Message, and uest Completion
This bit is set by the RTL8187SE whenever it receives a Poisoned Transaction Lay (TLP), regardless of the state the Parity Error Enable bit. Default value of this field14SSERRSignaled System Error. This bit is set when the RTL8187SE sends an ERR_FATAL or ERR_NONFATAL N the SERR Enable bit in the Command register is 1. Default value of this field is 0.13RMABTReceived Master Abort. This bit is set when the RTL8187SE receives a Completion with Unsupported Requ Completion Status. Default value of this field is 0.12RTABTReceived Target Abort. This bit is set when the RTL8187SE receives a Completion with Completer Abort O Status. Default value of this field is 0.11STABTSignaled Target Abort. This bit is set when the RTL8187SE completes a Request using Completer Abort O Status. Default value of this field is 0.10:9DST1~0Device Select Timing. Does not apply to PCI Express. Must be hardwired to 0.	1 is 0. Message, and uest Completion
(TLP), regardless of the state the Parity Error Enable bit. Default value of this field 14 SSERR 14 SSERR Signaled System Error. This bit is set when the RTL8187SE sends an ERR_FATAL or ERR_NONFATAL N the SERR Enable bit in the Command register is 1. Default value of this field is 0. 13 RMABT Received Master Abort. This bit is set when the RTL8187SE receives a Completion with Unsupported Requ Completion Status. Default value of this field is 0. 12 RTABT Received Target Abort. This bit is set when the RTL8187SE receives a Completion with Completer Abort O Status. Default value of this field is 0. 11 STABT Signaled Target Abort. This bit is set when the RTL8187SE receives a Completion with Completer Abort O Status. Default value of this field is 0. 11 STABT Signaled Target Abort. This bit is set when the RTL8187SE completes a Request using Completer Abort C Status. Default value of this field is 0. 10:9 DST1~0 Device Select Timing. Does not apply to PCI Express. Must be hardwired to 0.	1 is 0. Message, and uest Completion
This bit is set when the RTL8187SE sends an ERR_FATAL or ERR_NONFATAL M the SERR Enable bit in the Command register is 1. Default value of this field is 0. 13 RMABT Received Master Abort. This bit is set when the RTL8187SE receives a Completion with Unsupported Requ Completion Status. Default value of this field is 0. 12 RTABT Received Target Abort. This bit is set when the RTL8187SE receives a Completion with Completer Abort 0. 11 STABT Signaled Target Abort. This bit is set when the RTL8187SE receives a Completion with Completer Abort 0. 11 STABT Signaled Target Abort. This bit is set when the RTL8187SE completes a Request using Completer Abort 0. Status. Default value of this field is 0. 11 STABT Signaled Target Abort. This bit is set when the RTL8187SE completes a Request using Completer Abort 0. Status. Default value of this field is 0. 10:9 DST1~0 Device Select Timing. Does not apply to PCI Express. Must be hardwired to 0.	uest Completion
13 the SERR Enable bit in the Command register is 1. Default value of this field is 0. 13 RMABT 13 RMABT 14 Received Master Abort. 15 This bit is set when the RTL8187SE receives a Completion with Unsupported Requ 16 Completion Status. Default value of this field is 0. 17 RTABT 18 Received Target Abort. 19 DST1~0 10:9 DST1~0	uest Completion
This bit is set when the RTL8187SE receives a Completion with Unsupported Requ Completion Status. Default value of this field is 0. 12 RTABT Received Target Abort. This bit is set when the RTL8187SE receives a Completion with Completer Abort 0 Status. Default value of this field is 0. 11 STABT Signaled Target Abort. This bit is set when the RTL8187SE receives a Completion with Completer Abort 0 Status. Default value of this field is 0. 11 STABT Signaled Target Abort. This bit is set when the RTL8187SE completes a Request using Completer Abort 0 Status. Default value of this field is 0. 10:9 DST1~0 Device Select Timing. Does not apply to PCI Express. Must be hardwired to 0.	Completion
12 RTABT Received Target Abort. 12 RTABT Received Target Abort. 11 Status. Default value of this field is 0. 11 STABT Signaled Target Abort. 11 Default value of this field is 0. 10:9 DST1~0 Device Select Timing. Does not apply to PCI Express. Must be hardwired to 0.	Completion
This bit is set when the RTL8187SE receives a Completion with Completer Abort O Status. Default value of this field is 0. 11 STABT Signaled Target Abort. This bit is set when the RTL8187SE completes a Request using Completer Abort C Status. Default value of this field is 0. 10:9 DST1~0 Device Select Timing. Does not apply to PCI Express. Must be hardwired to 0.	-
Status. Default value of this field is 0. 11 STABT Signaled Target Abort. This bit is set when the RTL8187SE completes a Request using Completer Abort C Status. Default value of this field is 0. 10:9 DST1~0 Device Select Timing. Does not apply to PCI Express. Must be hardwired to 0.	-
This bit is set when the RTL8187SE completes a Request using Completer Abort C Status. Default value of this field is 0. 10:9 DST1~0 Device Select Timing. Does not apply to PCI Express. Must be hardwired to 0.	'ompletion
Status. Default value of this field is 0. 10:9 DST1~0 Device Select Timing. Does not apply to PCI Express. Must be hardwired to 0.	ompletion
	Simpletion
8 DPD Data Parity Error Detected.	
This bit is set by the RTL8187SE if its Parity Error Enable bit is set and either of the	ne following
two conditions occurs:	
- Requestor receives a Completion marked poisoned	
- Requestor poisons a write Request	
If the Parity Error Enable bit is cleared, this bit is never set. Default value of this fit	
7 FBBC Fast Back-To-Back Capable. Does not apply to PCI Express. Must be hardwired to	0.
6 - Reserved.	
5 66MHz 66MHz Capable. Does not apply to PCI Express. Must be hardwired to 0.	
4 NewCap Capability List.	
Indicates the presence of an extended capability list item. Since all PCI Express develocity required to implement the PCI Express capability structure, this bit must be set to 1	
3 INTSTS Interrupt Status.	
This bit reflects the interrupt status of the RTL8187SE.	
Unlike ISR bits, this bit is a read-only bit and cannot be reset by writing a 1 to this	bit. The only
way to reset this bit is to reset the ISR register.	
The setting of the 'Interrupt Disable' bit in the Command Register has no effect on the 'Interrupt Status' bit.	
Only when the 'Interrupt Disable' bit is a 0 and the 'Interrupt Status' bit is a 1, will RTL8187SE's Int# signal be asserted.	the
2:0 - Reserved.	

Table 11. PCI Configuration Space Status

8.4.2. **RIDR (Revision ID Register)**

The Revision ID register is an 8-bit register that specifies the RTL8187SE controller revision number.

8.4.3. PIFR (Programming Interface Register)

The programming interface register is an 8-bit register that identifies the programming interface of the RTL8187SE controller. The PCI 2.1 specification does not define a specific value for network devices. In the RTL8187SE controller this is PIFR = 00h.

8.4.4. SCR (Sub-Class Register)

The Sub-Class Register is an 8-bit register that identifies the function of the RTL8187SE. SCR=0x80 indicates that the RTL8187SE is identified as 'other network controller'.

8.4.5. BCR (Base-Class Register)

The Base-Class Register is an 8-bit register that broadly classifies the function of the RTL8187SE. BCR=02h indicates that the RTL8187SE is a network controller.

8.4.6. CLS (Cache Line Size)

This field is implemented by PCI Express devices as a read-write field for legacy compatibility purposes but has no impact on any PCI Express device functionality.

8.4.7. LTR (Latency Timer Register)

This register is also referred to as primary latency timer for Type 1 Configuration Space header devices. The primary/master latency timer does not apply to PCI Express. This register must be hardwired to 0.

8.4.8. HTR (Header Type Register)

Reads will return a 0, writes are ignored.

8.4.9. BIST (Built-In Self-Test)

Reads will return a 0, writes are ignored.

8.4.10. IOAR (Input Output Address Register)

This register specifies the BASE IO address, which is required to build an address map during configuration. It also specifies the number of bytes required as well as an indication that it can be mapped into IO space.

Bit	Symbol	Description
31:8	IOAR31~8	Base Input Output Address.
		This is set by software to the Base IO address for the operational register map.
7:2	IOSIZE	Input Output Size Indication.
		Read back as 0. This allows the PCI bridge to determine that the RTL8187SE requires 256 bytes of IO space.
1	-	Reserved.
0	IOIN	IO Space Indicator.
		Read only. Set to 1 by the RTL8187SE to indicate that it is capable of being mapped into IO space.

Table 12. Input Output Address Register

8.4.11. MEMAR (Memory Address Register)

This register specifies the base memory address for memory accesses to the RTL8187SE operational registers. This register must be initialized prior to accessing any RTL8187SE register with memory access.

Bit	Symbol	Description
31:8	MEM31~8	Base Memory Address.
		This is set by software to the base address for the operational register map.
7:4	MEMSIZE	Memory Size.
		These bits return 0, which indicates that the RTL8187SE requires 256 bytes of Memory Space.
3	MEMPF	Memory Pre-Fetchable.
		Read only. Set to 0 by the RTL8187SE.
2:1	MEMLOC	Memory Location Select.
		Read only. Set to 0 by the RTL8187SE. This indicates that the base register is 32 bits wide and can be placed anywhere in the 32-bit memory space.
0	MEMIN	Memory Space Indicator.
		Read only. Set to 0 by the RTL8187SE to indicate that it is capable of being mapped into memory
		space.

Table 13. Memory Address Register

8.4.12. CISPtr (CardBus Card Information Structure Pointer)

CardBus CIS Pointer. This register does not apply to PCI Express. It must be read-only and must be hardwired to 0.

DRAFT

8.4.13. SVID (Subsystem Vendor ID)

This field will be set to a value corresponding to the PCI Subsystem Vendor ID in the external EEPROM. If there is no EEPROM, this field will default to a value of 10ECh (Realtek Semiconductor's PCI Subsystem Vendor ID).

8.4.14. SMID (Subsystem ID)

This field will be set to a value corresponding to the PCI Subsystem ID in the external EEPROM. If there is no EEPROM, this field will default to a value of 8198h.

8.4.15. ILR (Interrupt Line Register)

The Interrupt Line Register is an 8-bit register used to indicate the routing of the interrupt. It is written by the POST software to set an interrupt line for the RTL8187SE.

8.4.16. IPR (Interrupt Pin Register)

The Interrupt Pin register is an 8-bit register indicating the interrupt pin used by the RTL8187SE. The RTL8187SE uses INTA interrupt pin. Read only. IPR = 01h.

8.4.17. MNGNT (Minimum Grant Timer: Read only)

This register does not apply to PCI Express. It must be read-only and must be hardwired to 0.

8.4.18. MXLAT (Maximum Latency Timer: Read only)

This register does not apply to PCI Express. It must be read-only and must be hardwired to 0.

8.5. Default Value After Power-On (RSTB Asserted)

	Table 14. PCI Configuration Space Table									
No.	Name	Туре	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00h	VID	R	1	1	1	0	1	1	0	0
01h		R	0	0	0	1	0	0	0	0
02h	DID	R	1	0	0	0	0	1	0	1
03h		R	1	0	0	0	0	0	0	1
04h	Command	R	0	0	0	0	0	0	0	0
		W	-	PERRSP	_	MWIEN	-	BMEN	MEMEN	IOEN
05h		R	0	0	0	0	0	0	0	0
		W	-		KAF	-	-	-	-	SERREN
06h	Status	R	0	0	0	NewCap	0	0	0	0
07h		R	0	0	0	0	0	0	1	0
		W	DPERR	SSERR	RMABT	RTABT	STABT	-	-	DPD
08h	Revision ID	R	0	0	1	0	0	0	1	0
09h	PIFR	R	0	0	0	0	0	0	0	0
0Ah	SCR	R	1	0	0	0	0	0	0	0

able 14. PCI Configuration Space Table

Single-Chip Wireless LAN Network Interface Controller 20 w/PCI Express Interface Track ID: JATR-1076-21 Rev. 1.0

RTL8187SE Datasheet

No.	Name	Туре	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0Bh	BCR	R	0	0	0	0	0	0	1	0
0Ch	CLS	RW	0	0	0	0	0	0	0	0
0Dh	LTR	R	0	0	0	0	0	0	0	0
		W	LTR7	LTR6	LTR5	LTR4	LTR3	LTP2	LTR1	LTR0
0Eh	HTR	R	0	0	0	0	0	0	0	0
0Fh	BIST	R	0	0	<u> </u>	0	0	0	0	0
10h	IOAR	R	0	0		0	0	0	0	1
11h		RW	0	0	0	0	0	0	0	0
12h		RW	0	0	0	0	0	0	0	0
13h		RW	0	0	0	0	0	0	0	0
14h	MEMAR	R	0	0	0	0	0	0	0	0
15h		RW	0	0	0	0	0	0	0	0
16h		RW	0	0	0	0	0	0	0	0
17h		RW	0	0	0	0	0	0	0	0
18h~					DEC	ERVED (AI	I (I)			
27h	-				KES.	EKVED (AI	LL 0)			
28h		R	0	0	0	0	0	0	0	0
29h	CISPtr	R	0	0	0	0	0	0	0	0
2Ah	CISI u	R	0	0	0	0	0	0	0	0
2Bh		R	0	0	0	0	0	0	0	0
2Ch	SVID	R	1	1	1	0	1	1	0	0
2Dh		R	0	0	0	1	0	0	0	0
2Eh	SMID	R	1	0	0	0	0	1	0	1
2Fh		R	1	0	0	0	0	0	0	1
30h	BMAR	R	0	0	0	0	0	0	0	0
		W	-	-	-	-	-	-	-	BROMEN
31h		R	0	0	0	0	0	0	0	0
		W	BMAR15	BMAR14	BMAR13	BMAR12	BMAR11	-	-	-
32h		RW	0	0	0	0	0	0	0	0
33h		RW	0	0	0	0	0	0	0	0
34h	Cap-Ptr	R	Ptr7	Ptr6	Ptr5	Ptr4	Ptr3	Ptr2	Ptr1	Ptr0
35h~		RESERVED (ALL 0)								
3Bh	-		KESEKVED (ALL 0)							
3Ch	ILR	RW	0	0	0	0	0	0	0	0
3Dh	IPR	R	0	0	0	0	0	0	0	1
3Eh	MNGNT	R	0	0		0	0	0	0	0
3Fh	MXLAT	R	0	0	0	0	0	0	0	0
40h~					RES	ERVED (AI	$\Gamma 0$			
FFh	-		RESERVED (ALL 0)							

8.6. PCI Power Management Functions

The RTL8187SE is compliant with ACPI (Rev 2.0), PCI Power Management (Rev. 1.2), and Network Device Class Power Management Reference Specification (V1.0a), such as to support an Operating System-Directed Power Management (OSPM) environment.

The RTL8187SE can monitor the network for a Wakeup Frame, a Magic Packet, or a Re-LinkOk, and notify the system via PME# when such a packet or event occurs. Then the system can be restored to a normal state to process incoming jobs.

When the RTL8187SE is in power down mode (D1 \sim D3):

The Rx state machine is stopped, and the RTL8187SE monitors the network for wakeup events such as a Magic Packet, Wakeup Frame, and/or Re-LinkOk, in order to wake up the system. When in power down mode, the RTL8187SE will not reflect the status of any incoming packets in the ISR register and will not receive any packets into the Rx FIFO buffer.

The FIFO status and packets that have already been received into the Rx FIFO before entering power down mode are held by the RTL8187SE.

Transmission is stopped. PCI bus master mode is stopped. The Tx FIFO buffer is held.

After restoration to a D0 state, the RTL8187SE transfers data that was not moved into the Tx FIFO buffer during power down mode. Packets that were not transmitted completely last time are re-transmitted.

The D3cold_support_PME bit (bit15, PMC register) and the Aux_I_b2:0 bits (bit8:6, PMC register) in PCI configuration space depend on the existence of Aux power (bit15, PMC) = 1.

If EEPROM D3cold_support_PME bit (bit15, PMC) = 0, the above 4 bits are all 0's.

Example:

If EEPROM D3c_support_PME = 1:

If aux. power exists, then PMC in PCI config space is the same as EEPROM PMC (if EEPROM PMC = C3 F7, then PCI PMC = C3 F7)

If aux. power is absent, then PMC in PCI config space is the same as EEPROM PMC except the above 4 bits are all 0's (if EEPROM PMC = C3 F7, then PCI PMC = 0376)

In the above case, if wakeup support is desired when main power is off, it is suggested that the EEPROM PMC be set to C3 F7 (Realtek EEPROM default value).

If EEPROM D3c_support_PME = 0:

If aux. power exists, then PMC in PCI config space is the same as EEPROM PMC (if EEPROM PMC = C3 77, then PCI PMC = C3 77)

If aux. power is absent, then PMC in PCI config space is the same as EEPROM PMC except the above 4 bits are all 0's (if EEPROM PMC = C3 77, then PCI PMC = 03 76)

In the above case, if wakeup support is not desired when main power is off, it is suggested that the EEPROM PMC be set to 03 76.

Magic Packet Wakeup occurs only when the following conditions are met:

The destination address of the received Magic Packet is acceptable to the RTL8187SE, e.g. a broadcast, multicast, or unicast packet addressed to the current RTL8187SE adapter.

The received Magic Packet does not contain a CRC error.

The Magic bit (CONFIG3#5) is set to 1, the PMEn bit (CONFIG1#0) is set to 1, and the PME# can be asserted in the current power state.

The Magic Packet pattern matches, i.e. 6 * FFh + MISC (can be none) + 16 * DID (Destination ID) in any part of a valid WLAN packet.

A Wakeup Frame event occurs only when the following conditions are met:

The destination address of the received Wakeup Frame is acceptable to the RTL8187SE, e.g. a broadcast, multicast, or unicast address to the current RTL8187SE adapter.

The received Wakeup Frame does not contain a CRC error.

The PMEn bit (CONFIG1#0) is set to 1.

The 16-bit CRC* of the received Wakeup Frame matches the 16-bit CRC* of the sample Wakeup Frame pattern given by the local machine's OS. Or, the RTL8187SE is configured to allow direct packet wakeup, e.g. a broadcast, multicast, or unicast network packet.

*16-bit CRC: The RTL8187SE supports two normal wakeup frames (covering 64 mask bytes from offset 0 to 63 of any incoming network packet) and three long wakeup frames (covering 128 mask bytes from offset 0 to 127 of any incoming network packet).

The PME# signal is asserted only when the following conditions are met:

The PMEn bit (bit0, CONFIG1) is set to 1.

The PME_En bit (bit8, PMCSR) in PCI Configuration Space is set to 1.

The RTL8187SE may assert PME# in the current power state or in isolation state, depending on the PME_Support (bit15-11) setting of the PMC register in PCI Configuration Space.

A Magic Packet, LinkUp, or Wakeup Frame has been received.

Note: Writing a 1 to the PME_Status (bit15) of the PMCSR register in the PCI Configuration Space clears this bit and causes the RTL8187SE to stop asserting a PME# (if enabled).

When the device is in power down mode, e.g. D1~D3, the IO, and MEM spaces are all disabled. After a RST# assertion, the device's power state is restored to D0 automatically if the original power state was $D3_{cold}$. There is no hardware delay at the device's power state transition. When in ACPI mode, the device does not support PME (Power Management Enable) from D0 (this is the Realtek default setting of the PMC register auto-loaded from EEPROM). The setting may be changed from the EEPROM, if required. The RTL8187SE also supports the legacy LAN WAKE-UP function. The LWAKE pin is used to notify legacy motherboards to execute the wake-up process whenever the device receives a wakeup event, such as Magic Packet.

8.7. Message Signaled Interrupt (MSI) 8.7.1. MSI Capability Structure in PCI Configuration Space

Capability Structure for 32-bit Message Address

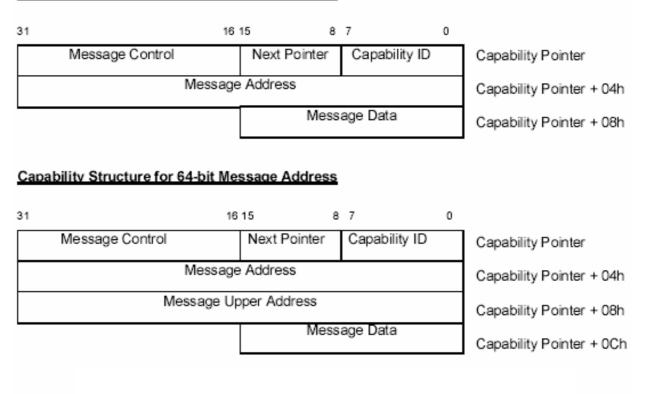


Figure 4. Message Capability Structure

8.7.2. Message Control

		Table 1	5. Message Control						
Bits	RW	Field	Description						
15:8	RO	Reserved	Reserved. Always return 0						
7	RO	64-Bit Address Capable	1: The RTL8187SE is capable of generating a 64-bit						
		DR	message address. 0: The RTL8187SE is NOT capable of generating a 64-bit message address.						
6:4	RW	Multiple Message Enable	This bit is read only and the RTL8187SE is set to 1. System software (e.g., BIOS, OS) indicates to the RTL8187SE the number of allocated messages/vectors (equal to or less than the number of requested messages/vectors).						
			This field after PCI reset is '000'. Encoding Number of Messages/Vector						
			000	1					
			001	2					
			010	4					
			011	8					
			100	16					
			101	32					
			110	Reserved					
			111	Reserved					
3:1	RO	Multiple Message Capable	Indication to system software (e.g RTL8187SE requested vectors.	g., BIOS, OS) of the number of					
			The RTL8187SE supports only o	ne vector messages/vectors.					
			Encoding	Number of Messages/Vectors					
			000	1					
			Others	Reserved					
0	RW	MSI Enable	1: Enable MSI (Also the INTx pi and INTx are mutually exclusive) 0: Disable MSI (Default value aff	, this bit is set by system software.					

8.7.3. Message Address

Table 16. Message Address

Bits	RW	Field	Description
31:02	RW	Message Address	System-Specified Message/Vector Address.
			Low DWORD aligned address for MSI memory write transaction.
01:00	RO	Reserved	Always Return '00'.
			This bit is read only.

8.7.4. Message Upper Address

Table 17. Message Upper Address										
Bits	RW	Field	Description							
31:00	RW	Message Upper Address	System-Specified Message/Vector Upper Address.							
			Upper 32 bits of a 64-bit message/vector address.							
		DR	This register is effective only when the DAC function is enabled, i.e., 64-bit addressing is enabled; bit7 in Message Control register is set.							
			If the contents of this register are 0, the RTL8187SE only performs 32-bit addressing for the memory write of the messages/vectors. This bit is read/write.							

8.7.5. Message Data

Table 18. Message Data

Bits	RW	Field	Description
15:00	RW	e	If the Message Enable bit is set, the message/vector data is driven onto the lower word of the memory write transaction's data phase. This bit is read/write.

9. Functional Description9.1. Transmit & Receive Operations

The RTL8187SE supports a descriptor-based buffer management that will significantly lower host CPU utilization. The RTL8187SE supports an infinite number of consecutive transmit descriptors, and 64 consecutive receive descriptors, in memory.

There may be a maximum of five descriptor rings. Transmit descriptor rings consist of one beacon transmit descriptor ring, one high priority descriptor ring, one normal priority descriptor ring, and one low priority descriptor ring. Each transmit descriptor ring may consist of an infinite number of 8-double-word consecutive descriptors, and the receive descriptor array may consist of up to sixty-four 4-double-word consecutive descriptors. The start address of each descriptor group should be in 256byte alignment. Software must pre-allocate enough buffers and configure all descriptor rings before transmitting and/or receiving packets.

9.1.1. Transmit

The following describes what the Tx descriptor may look like, depending on different states in each Tx descriptor.

Table 19. Tx Descriptor Format (before transmitting, OWN=1, Tx command mode 1) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 O D F L TXRATE RTSRAT С M S N BSSID TPKTSIZE (12 bits) Offset 0 R W M S S Т Т O P NO Е 0 (4 bits) S Ν S R L А (4 bits) Е E C Е = Е 1 Ν Ν F P 0 Ν R Κ С A G R Y Р Т L Е Length (15 bits) RTSDUR (16 bits) Offset 4 Ν G Е Х Т TX BUFFER ADDRESS Offset 8

28

Tx Descriptor Format (before transmitting, OWN=1, Tx command mode 1)

31	30 29	28 2	7 26 25 24 23	22 21 20	19 18	8 17	16	15	14 13	12 11	10 9 8	; 7	6	54	3	2	1 0]
		Ι	DURATION (1	6 bits)					RSVI		Frame	L_L	eng	gth (12	bit	ts)		Offset 12
								I C	(3 bit	s)								
								C										
								\bar{c}										
								A										
-				NEXT_	TV D	EC	CDI				ESS							Offset 16
P	ATE F	TIA	RTS RATE	RSVI		N				_	LSS IT (8 bits)		рт	SAG	<u> </u>	2 hi	te)	Offset 20
	ACK L			(4bits			T	KL.			11 (0 01(3)		KI	SAU		5 01	(15)	Oliset 20
	(5 bit	s)	BACK_LI		F		_											
			MIT (4 bits)		S	Ā	D B											
			ons)			С	D											
						Μ												
R S	SPC	A N	AGC (8 bi	ts)		VD bits)				DE	LAY_BOU	JNI	D (16 bits	5)			Offset 24
s V		T			(40	jits)												
D		E																
		N																
		N A																
			RAG QSIZE (16 bits)				Е	E B	CKE	Y (6 bits)	Р	Т	TPC	Т	R	HW	Offset 28
								N			- (* ****)	Т	Р	_PO		S	Len	
								-	_			=	С	LA	С		gth	
									B C			Ē N	Ē	RIT Y	$\overline{\mathrm{D}}$	D	Sele ct	
									K			IN	L N	1	E		Ci	
									Е						S			
									Y						E			
															Ν			

		.		
Table	20. Tx	Status	Descrip	tor

Offset#	Bit#	Symbol	Description								
0	31	OWN	Ownership.								
		ĺ	When set, this bit indicates that the descriptor is owned by the NIC, and the data relative to this descriptor is ready to be transmitted. When cleared, it indicates that the descriptor is owned by the host system. The NIC clears this bit when the relative buffer data is transmitted. In this case, OWN=1.								
0	30	DMA OK	DMA OK.								
			Set by the driver, reset by the RTL8187SE when TX DMA OK. If IMR's corresponding bit is set and the driver sets this bit, the RTL8187SE resets this bit and issues an interrupt right after DMA OK of the last segment (LS). If not, the RTL8187SE just resets this bit without asserting an interrupt.								
0	29	FS	First Segment Descriptor.								
			When set, this b that this descript								
0	28	LS	Last Segment D	escriptor.							
			When set, indica descriptor is poi				et, and this				
0	27:24	TXRATE	Tx Rate.								
			These five bits i		rent frame's tra	nsmission rate.					
				Bit 27	Bit 26	Bit 25	Bit 24				
			1Mbps	0	0	0	0				
			2Mbps	0	0	0	1				
			5.5Mbps	0	0	1	0				
			11Mbps	0	0	1	1				
			6Mbps	0	1	0	0				
			9Mbps	0	1	0	1				
			12Mbps	0	1	1	0				
			18Mbps	0	1	1	1				
			24Mbps	1	0	0	0				
			36Mbps	1	0	0	1				
			48Mbps	1	0	1	0				
			54Mbps	1	0	1	1				
			Reserved All other combinations								
0	23	RTSEN	RTS Enable. Set to 1, indicates that an RTS/CTS handshake shall be performed at the beginning of any frame exchange sequence where: The frame is of type Data or Management, the frame has a unicast address in the Address1 field, and the length of the frame is greater than RTSThreshold.								

Offset#	Bit#	Symbol			Description	1	
0	22:19	RTSRATE	RTS Rate.				
			These four bits	indicate the R	ΓS frame's tran	smission rate	before transmitting
			the current fram	ne, and will be	ignored if the	RTSEN bit is	set to 0.
				Bit 22	Bit 21	Bit 20	Bit 19
			1Mbps	0	0	0	0
			2Mbps	0	0	0	1
			5.5Mbps	0	0	1	0
			11Mbps	0	0	1	1
			6Mbps	0	1	0	0
			9Mbps	0	1	0	1
			12Mbps	0	1	1	0
			18Mbps	0	1	1	1
			24Mbps	1	0	0	0
			36Mbps	1	0	0	1
			48Mbps	1	0	1	0
			54Mbps	1	0	1	1
			Reserved	All other co	mbinations		
0	18	CTSEN	CTS Enable.				
0	10	CIGEN		nd CTSEN set	to 1 indicates t	hat the CTS_t	o-self protection
			mechanism will		to 1 malcates t	nat the CT5-t	o-sen protection
0	17	MOREFRAG	More Fragment				
			-		vpe frames that	t have another	fragment of the
			current packet t				C
0	16	SPLCP	Short Physical I	Layer Converg	gence Protocol	format.	
						P preamble wi	ll be added to the
			header before tr	ansmitting the	e frame.		
0	15	NO_ENCRYPT	No Encryption.				
				l be transmitte	d without encr	yption even if	Tx encryption is
0	14.10	DOCID NO	enabled.				
0	14:12	BSSID_NO TPKTSIZE	BSSID Number				
0	11:0	IFKISIZE	Transmit Packe		r of butos ram	irad to transm	it the frame
1	21	LENCEVT	This field indica		a of bytes requ	med to transm	nt the frame.
4	31	LENGEXT	Length Extension		the Length fig	ld (hits 20.16	, offset 4). This bit
			will be ignored				
4	30:16	Length	Physical Layer				r
		0.	The PLCP leng		. ,	-	nds required to
			transmit the fram				*
4	15:0	RTSDUR	Request To Sen	· /			
			These bits indic				
			current frame an	-		EN bit is set t	o 0.
8	31:0	TxBuff	32-Bit Transmit			1 . ~~	
12	31:16	DURATION	Time duration t	*	cket plus SIFS	and ACK	
12	15	MIC_CAL	Enable MIC Ca	Iculation.			

Offset#	Bit#	Symbol	Description
12	14:12	RSVD	Reserved.
12	11:0	Frame_Length	Transmit Frame Length.
			This field indicates the length in the Tx buffer, in bytes, to be transmitted.
16	31:0	NTDA	32-Bit Address of the Next Transmit Descriptor.
20	31:27	RATE_FALL	Data Rate Auto Fallback Limit.
		BACK_LIMIT	DDAFT
20	26:23	RTS_RATE_FALL BACK_LIMIT	RTS/CTS Rate Auto Fallback Limit.
20	22:19	RSVD	Reserved.
20	18	PIFS	Point Inter-Frame Space (PIFS).
			Setting this bit will cause this frame to be sent after PIFS
20	17	NO_ACM	No Admission Control Procedure.
			This packet will be sent out without being restricted by admission control procedures. For example, the management type frames shall be sent using the access category AC_VO without being restricted by admission control procedures.
20	16	RT_DB	Lifetime limited by RETRY_LIMIT (RT_DB=0) or DELAY_BOUND (RT_DB=1).
20	15:8	RETRY_LIMIT	Retry Count Limit.
20	7:0	RTSAGC	Tx RTS AGC.
24	31	RSVD	Reserved.
24	30:29	SPC	Short Preamble Count.
			00: 10 bits 01: 12 bits
			10: 14 bits 11: 16 bits
24	28	ANTENNA	Tx Antenna.
24	27:20	AGC	Tx AGC.
24	19:16	RSVD	Reserved.
24	15:0	DELAY_BOUND	Delay Bound
28	31:16	FRAG_QSIZE	Fragmentation Queue Size.
			Upon sending the first frame of a fragmentation sequence, the driver writes the queue size of the entire fragmentation exchange (including the first frame) here. MAC uses this value when counting down TXOP. This field is valid when TCR (0x40) duration processing fields are set to mode 1 or 2.
28	15	ENPMPD	Enable Power Meter Pre-Distortion Packet.
28	14	EN_BCKEY	Enable Broadcast/Multicast Key Search When Using Multiple BSSID
28	13:8	BCKEY	Specify key to use in CAM for broadcast/multicast.
28	7	PT_EN	Enable Power Tracking.
28	6	TPC_EN	Enable Transmit Power Control.
28	5:4	TPC_POLARITY	TPC Polarity Select.
			00: Neither increment nor decrement.
			01: Increment
			10: Decrement
			11: Reserved

Offset#	Bit#	Symbol	Description
28	3	TPC_DESEN	TPC Descriptor AGC Enable.
			0: Use the value of register TPC_TXAGC_OFDM as 54MHz TXAGC Base
			1: Use the value of AGC in the same descriptor as 54MHz TXAGC Base
28	1:0	HWLengthSelect	HW Length Select.
			00: No Encryption
			01: RC4 Encryption
			10: AES Encryption
		l	11: Reserved

Tx Status Descriptor (after transmitting, OWN=0, Tx status mode)

After having transmitted, the Tx descriptor becomes a Tx status descriptor.

			-								_	_					1-												-, -					_			-/
31 30	29	28	2	7 2	6 2	5 2	4 2	3	22 2	1	2(0 1	9	18	17	16	1	5 1	14	13	12	11	1	0	9	8	7	6	5		4	3		2	1	0)
O D	F	L														U	J	Г																			C
WM	S	S				R	SV	D	(11	b	its	s)				D	0	C			RT	S I	RC	I ,					Р	ac	cke	et F	RC	2			
N A												<i>_</i>				R	ŀ	ζ			(7	bi	ts)							(8	R h	oits)				
= _																	1				()	01	(0)							(00	100	'				
0 O																																					
K																																					
		M	PD	U	Exc	har	ıge	Ti	me	(1	6	bi	ts)												I	RS	V)									C
												Т	X	B	UF	FF	R_	A	DE	DR	ES	S															C
							RS	V	D (2	20	b	its)]	Fra	am	e_	Ler	ıgtl	h ((12	2 b	its	s)			C
									N	ΞX	КЛ]	ТΣ	<u> </u>	DE	SC	RI	PΤ	OF	<u>د_</u>	٩D	DF	RES	SS	<u>,</u>												C
																R	SV	D																			C
																R	SV	D																			C
																R	SV	D																			C

Table 21. Tx Status Descriptor (after transmitting, OWN=0, Tx status mode)

Offset#	Bit#	Symbol	Description
0	31	OWN	Ownership.
			When set, this bit indicates that the descriptor is owned by the NIC. When
			clear, it indicates that the descriptor is owned by the host system. The NIC
			clears this bit when the related buffer data has been transmitted. In this case, OWN=0.
0	30	DMA OK	DMA Okay.
0	29	FS	First Segment Descriptor.
0	29	F5	When set, this bit indicates that this is the first descriptor of a Tx packet,
			and that this descriptor is pointing to the first segment of the packet.
0	28	LS	Last Segment Descriptor.
Ũ	20		When set, this bit indicates that this is the last descriptor of a Tx packet,
			and that this descriptor is pointing to the last segment of the packet.
0	27:17	RSVD	Reserved.
0	16	UDR	FIFO under-run during transmission of this packet.
0	15	TOK	Transmit (Tx) OK.
			Indicates that a packet exchange sequence has completed successfully.
0	14:8	RTS RC	RTS Retry Count. The RTS RC's initial value is 0. It indicates the number
			of retries of RTS.
0	7:0	Packet RC	Packet Retry Count.
			The RC's initial value is 0. It indicates the number of retries before a
	01.17		packet was transmitted properly.
4	31:16	MPDUExchangeTime	MPDUExchangeTime corresponds to the just completed MPDU exchange. The MPDUExchangeTime equals the time required to transmit
			the MPDU sequence, i.e., the time required to transmit the MPDU plus
			the time required to transmit the expected response frame plus one SIFS.
4	15:0	RSVD	Reserved.
8	31:0	TxBuff	32-bit Transmit Buffer Address.
12	31:12	RSVD	Reserved.
12	11:0	Frame_Length	Transmit Frame Length.
			This field indicates the length in the Tx buffer, in bytes, to be transmitted.
16	31:0	NTDA	32-bit Address of Next Transmit Descriptor.
20	31:0	RSVD	Reserved.
24	31:0	RSVD	Reserved.
28	31:0	RSVD	Reserved.

Table 22. Tx Status Descriptor (after transmitting, OWN=0, Tx status mode)

9.1.2. Receive

This section describes what an Rx descriptor could look like, depending on different states in each Rx descriptor. An Rx buffer pointed to by one of the Rx descriptors should be at least 4 bytes.

Rx Command Descriptor (OWN=1)

The driver should pre-allocate Rx buffers and configure Rx descriptors before packet reception. The following describes what a Rx descriptor may look like before packet reception.

											li	D	ie	z٥	. г	X		OI	m		ma	L	es	CII	ρτο	ונכ	741	/ 11	-1)							
31	30	29	28	27	26	5 2	52	24	23	2	2	21	20	19	18	1	17	16	15	1	4 13	3	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	Е																																			Offset 0
W	0								R	S	VI) (18	bi	ts)											Вι	ıffe	er	Siz	e (12	bits	5)			
Ν	R											`																_		``			<i></i>			
=																																				
1																																				
																		RS	SV	D																Offset 4
]	RX	_B	U	JFI	FE	R_	A	DD	R	ESS	S												Offset 8
																		RS	SV]	D																Offset 12
			RSVD											Offset 16																						

Table 23. Rx Command Descriptor (OWN=1)

Table 24. Rx Command Descriptor (OWN=1)

Offset#	Bit#	Symbol	Description
0	31	OWN	Ownership.
			When set, this bit indicates that the descriptor is owned by the NIC, and is ready to receive a packet. The OWN bit is set by the driver after having pre-allocated a buffer at initialization, or the host has released the buffer to the driver. In this case, OWN=1.
0	30	EOR	End of Rx Descriptor Ring.
			This bit set to 1 indicates that this descriptor is the last descriptor of the Rx descriptor ring. Once the NIC's internal receive descriptor pointer reaches here, it will return to the first descriptor of the Rx descriptor ring after this descriptor is used by packet reception.
0	29:12	RSVD	Reserved.
0	11:0	Buffer_Size	Buffer Size.
			This field indicates the receive buffer size in bytes.
4	31:0	RSVD	Reserved.
8	31:0	RxBuff	32-bit Receive Buffer Address.
12	31:0	RSVD	Reserved.

Rx Status Descriptor (OWN=0)

When packet is received, the Rx command descriptor becomes a Rx status descriptor.

									Ta	ab	le	2	5.	R	X	Sta	at	้นร	s D	es	CI	rip	oto	or (0	0	W	N=	:0)											
31	30	29	28	27	26	25	24	23	22	2 2	21	20	1	9	18	17	7	16	15	14	1	3	12	11	1	10	9	8	7		6	5	4	3	2	2	1	0	
0	Е	F	L	D	F	S	Т	R	Х	R/	١Ť	Е	Ç	2	М	P		В		_			Ι																Offset 0
W		S	S	М			R		(4	bi	ts))				A				- 111			С			1	Fra	me	<u>]</u>	Le	ng	th	(12	2 bi	its)			
Ν	R			A	V	L	S						S	5	R	Ν	1	R	S	R			У																
=				F	F	C	W													M		3																	
0						Р														G	2	2																	
																				Т																			
																			ŦΠ																				Offset 4
																	Т	SF	TF	ł																			Offset 8
R	1	RS	VD		S	W	D			A	G	С	(8	b	its)			А																				Offset 12
S	((4 t	its))	Η		Е												N				R	SS	Ι								S	Q					
V					Ι	K	С												Т				(7	bit	s)							(8 t	oits)				
D					F	Е	R												Е													Ì			<i>_</i>				
					Т	U	Y												N																				
						Р	Р												N																				
							Т												A																				
							E D																																
							ע																																
		FO	T (8 b	its)				PV	VE)B	_0	3I2	2 (8	bit	s)			Cl		_		AS								G2				_	_	1C	Offset 16
																					(6	6 b	its))			F	EN	D	(6	bi	ts)		S	I ((41	oit	s)	

Table 26. Rx Status Descriptor

Offset#	Bit#	Symbol	Description
		•	
0	31	OWN	Ownership. When set, this bit indicates that the descriptor is owned by the NIC. When cleared, it indicates that the descriptor is owned by the host system. The NIC clears this bit when the NIC has filled this Rx buffer with a packet or part of a packet. In this case, OWN=0.
0	30	EOR	End Of Rx Descriptor Ring. This bit set to 1 indicates that this descriptor is the last descriptor of the Rx descriptor ring. Once the NIC's internal receive descriptor pointer reaches here, it will return to the first descriptor of the Rx descriptor ring after this descriptor is used by packet reception.
0	29	FS	First Segment Descriptor. When set, this bit indicates that this is the first descriptor of a received packet and that this descriptor is pointing to the first segment of the packet.
0	28	LS	Last Segment Descriptor. When set, this bit indicates that this is the last descriptor of a received packet and this descriptor is pointing to the last segment of the packet.
0	27	DMAF	RX DMA Fail. When set, this packet will be dropped by software.
0	26	FOVF	FIFO Overflow. When set, this bit indicates that the receive FIFO was exhausted before this packet was fully received.
0	25	SPLCP	Short Physical Layer Convergence Protocol format. When set, this bit indicates that a short PLCP preamble was added to the current received frame.
0	24	TRSW	T/R Switch.
0	23:20	RXRATE	Rx Rate.These four bits indicate the current frame's receiving rate.
			Bit 23 Bit 22 Bit 21 Bit 20
			1Mbps 0 0 0 0
			2Mbps 0 0 0 1
			5.5Mbps 0 0 1 0
			11Mbps 0 0 1 1
			6Mbps 0 1 0 0
			9Mbps 0 1 0 1
			12Mbps 0 1 1 0
			18Mbps 0 1 1 1 24Mbps 1 0 0 0
			24Mbps 1 0 0 0 36Mbps 1 0 0 1
			48Mbps 1 0 1 0
			43Mbps 1 0 1 0 54Mbps 1 0 1 1
			Reserved All Other Combinations
0	19	QoS	QoS Packet Received. When set, this bit indicates that a QoS packet was received.

Track ID: JATR-1076-21 Rev. 1.0

Offset#	Bit#	Symbol	Description
0	18	MAR	Multicast Address Packet Received.
			When set, this bit indicates that a multicast packet was received.
0	17	PAM	Physical Address Matched.
			When set, this bit indicates that the destination address of this Rx packet
			matches the value in the RTL8187SE's ID registers.
0	16	BAR	Broadcast Address Received.
			When set, this bit indicates that a broadcast packet was received. BAR and
		(MAR will not be set simultaneously.
0	15	RES	Receive Error.
			Valid if DMAF=0
0	14	PWRMGT	Receive Power Management Packet.
			When set, this bit indicates that the Power Management bit is set on the
		~~ ~ ~ ~ ~	received packet.
0	13	CRC32	CRC32 Error.
			When set, this bit indicates that a CRC32 error has occurred on the received
0	10	ICV	packet. A CRC32 packet can be received only when RCR_ACRC32 is set.
0	12	ICV	Integrity Check Value Error.
			When set, this bit indicates that an ICV error has occurred on the received packet. An ICV packet can be received only when RCR AICV is set.
0	11:0	Frame Length	When $OWN=0$ and $LS=1$, this bit indicates the received packet length,
0	11.0	Frame_Lengui	including CRC32, in bytes.
4	31:0	TSFTL	A snapshot of the TSFTR's least significant 32 bits. Valid only when LS is set.
8	31:0	TSFTH	A snapshot of the TSFTR's most significant 32 bits. Valid only when LS is set.
12	31:27	RSVD	Reserved.
12	26	SHIFT	0: 4-byte alignment not needed. 1: 4-byte alignment needed.
12	25	WAKEUP	The received packet is a unicast wakeup packet.
12	24	DECRYPTED	The received packet has been decrypted.
12	23:16	AGC	The AGC of the received packet.
12	15	ANTENNA	The received packet is received through this antenna.
12	14:8	RSSI	Received Signal Strength Indicator.
			The RSSI is a measure of the RF energy received by the PHY.
12	7:0	SQ	Signal Quality.
			The SQ is a measure of the quality of BAKER code lock, providing an
			effective measure during the full reception of a PLCP preamble and header.
16	31:24	FOT	Final frequency offset estimate (*2.44kHz), s(8.0)
			FOT x 2.44kHz.
16	23:16	PWdB	Received Power in dB at flag_gi2 up, s(8.1) RxPower=PWdB/2-42dBm.
16	15:10	CFO_Bias	Frequency difference between final frequency offset tracking and coarse
		_	frequency offset estimation (FOT-CFOE) x 2.44kHz.
16	9:4	SNR_LONG2END	Measured SNR in dB by the difference between LONG1 and LONG2, s(8.2)
			SnrLong = SNR_LONG2END/4dB.
16	3:0	NUM_MCSI	Number of MCSI (Masked-CSI subcarriers).

9.2. Loopback Operation

Loopback mode is normally used to verify that the logic operations have performed correctly. In loopback mode, the RTL8187SE takes frames from the transmit descriptor and transmits them up to internal Rx logic. The loopback function does not apply to an external PHYceiver.

9.3. QoS Functions

The RTL8187SE supports WMM, APSD, and IEEE 802.11e functions.

9.4. LED Functions

The RTL8187SE supports 2 LED signals in 4 configurable operation modes.

Software Control Mode: In this mode, LED can be totally controlled by software.

Tx/Rx Active Mode: Active when transmission or reception occurs. Can be configured as high active or low active.

Tx Active Mode: Active while transmitting. Can be configured as high active or low active.

Rx Active Mode: Active while receiving. Can be configured as high active or low active.

10. Application Diagram

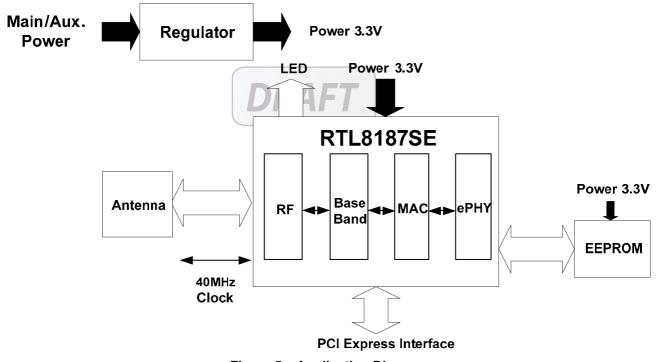


Figure 5. Application Diagram

11.Electrical Characteristics11.1.Temperature Limit Ratings

Table 27. Temperature Limit Ratings

Parameter	Minimum	Maximum	Units
Storage Temperature	-55	125	С
Ambient Operating Temperature		70	С
Junction Temperature	0	125	С

11.2. DC Characteristics

	Table 2	8. DC Characteris	tics			
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
VDD33	3.3V Supply Voltage	-	3.0	3.3	3.6	V
VDD18	1.8V Supply Voltage	-	1.7	1.8	1.9	V
V _{oh}	Minimum High Level Output Voltage	Ioh=-8mA	0.9*Vcc	-	Vcc	V
V _{ol}	Maximum Low Level Output Voltage	I _{ol=8mA}	-	-	0.1*Vcc	V
V _{ih}	Minimum High Level Input Voltage	-	0.5*Vcc	-	Vcc+0.5	V
V _{il}	Maximum Low Level Input Voltage	-	-0.5	-	0.3*Vcc	V
I _{in}	Input Current	V _{in=} V _{cc or GND}	-1.0	-	1.0	μΑ
I _{oz}	Tri-State Output Leakage Current	V _{out=} V _{cc or GND}	-10	-	10	μΑ
I _{cc}	Average Operating Supply Current	I _{out=} 0mA	_	_	242	mA

Table 29	. EEPROM	Access	Timing	Parameters
----------	----------	--------	--------	-------------------

		5				
Symbol	Parameter		Minimum	Typical	Maximum	Units
tcs	Minimum CS Low Time	9346/9356	1000/250	-	-	ns
twp	Write Cycle Time	9346/9356	-	-	10/10	ms
tsk	SK Clock Cycle Time	9346/9356	4/1	-	-	μs
tskh	SK High Time	9346/9356	1000/500	-	-	ns
tskl	SK Low Time	9346/9356	1000/250	-	-	ns
tess	CS Setup Time	9346/9356	200/50	-	-	ns
tcsh	CS Hold Time	9346/9356	0/0	-	-	ns
tdis	DI Setup Time	9346/9356	400/50	-	-	ns
tdih	DI Hold Time	9346/9356	400/100	-	-	ns
tdos	DO Setup Time	9346/9356	2000/500	-	-	ns
tdoh	DO Hold Time	9346/9356	-	_	2000/500	ns
tsv	CS to Status Valid	9346/9356	-	-	1000/500	ns

Single-Chip Wireless LAN Network Interface Controller 42 w/PCI Express Interface

Track ID: JATR-1076-21 Rev. 1.0

11.4. PCI Express Bus Parameters11.4.1. Differential Transmitter Parameters

Table 30. Differential Transmitter Parameters

Symbol	Parameter	Min	Typical	Max	Units
UI	Unit Interval	399.88	400	400.12	ps
V _{TX-DIFFp-p}	Differential Peak to Peak Output Voltage	0.800	-	1.2	V
V _{TX-DE-RATIO}	De-Emphasized Differential Output Voltage (Ratio)	-3.0	-3.5	-4.0	dB
T _{TX-EYE}	Minimum Tx Eye Width	0.75	-	-	UI
T _{TX-EYE-MEDIAN-} to-MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median	-	-	0.125	UI
T _{TX-RISE} , T _{TX-FALL}	D+/D- Tx Output Rise/Fall Time	0.125	-	-	UI
V _{TX-CM-ACp}	RMS AC Peak Common Mode Output Voltage	-	-	20	mV
V _{TX-CM-DCACTIVE-}	Absolute Delta of DC Common Mode Voltage During L0 and Electrical Idle	0	-	100	mV
V _{TX-CM-DCLINE-DELTA}	Absolute Delta of DC Common Mode Voltage between D+ and D-	0	-	25	mV
V _{TX-IDLE-DIFFp}	Electrical Idle Differential Peak Output Voltage	0	-	20	mV
V _{TX-RCV-DETECT}	The amount of voltage change allowed during Receiver Detection	-	-	600	mV
V _{TX-DC-CM}	The TX DC Common Mode Voltage	0	-	3.6	V
I _{TX-SHORT}	TX Short Circuit Current Limit	-	-	90	mA
T _{TX-IDLE-MIN}	Minimum Time Spent in Electrical Idle	50	-	-	UI
T _{TX-IDLE-} SETTO-IDLE	Maximum time to transition to a valid Electrical Idle after sending an Electrical Idle ordered set	-	-	20	UI
T _{TX-IDLE-TOTO-} DIFF-DATA	Maximum time to transition to valid TX specifications after leaving an Electrical Idle condition	-	-	20	UI
RL _{TX-DIFF}	Differential Return Loss	10	-	-	dB
RL _{TX-CM}	Common Mode Return Loss	6	-	-	dB
Z _{TX-DIFF-DC}	DC Differential TX Impedance	80	100	120	
L _{TX-SKEW}	Lane-to-Lane Output Skew	-	_	500+2UI	ps
C _{TX}	AC Coupling Capacitor	75	-	200	nF
T _{crosslink}	Crosslink Random Timeout	0	-	1	ms

Note1: Refer to PCI Express Base Specification, rev.1.1, for correct measurement environment setting of each parameter. Note2: The data rate can be modulated with an SSC (Spread Spectrum Clock) from +0 to -0.5% of the nominal data rate frequency, at a modulation rate in the range not exceeding 30 kHz – 33 kHz. The +/-300 ppm requirement still holds, which requires the two communicating ports be modulated such that they never exceed a total of 600 ppm difference.

11.4.2. **Differential Receiver Parameters**

Table 31. Differential Receiver Parameters						
Symbol	Parameter	Min.	Typical	Max.	Units	
UI	Unit Interval	399.88	400	400.12	ps	
V _{RX-DIFFp-p}	Differential Input Peak to Peak Voltage	0.175	-	1.200	V	
T _{RX-EYE}	Minimum Receiver Eye Width	0.4	-	-	UI	
T _{RX-EYE-MEDIAN-to-} MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median	-	-	0.3	UI	
V _{RX-CM-ACp}	AC Peak Common Mode Input Voltage	-	-	150	mV	
RL _{RX-DIFF}	Differential Return Loss	10	-	-	dB	
RL _{RX-CM}	Common Mode Return Loss	6	-	-	dB	
Z _{RX-DIFF-DC}	DC Differential Input Impedance	80	100	120		
Z _{RXDC}	DC Input Impedance	40	50	60		
Z _{RX-HIGH-IMP-DC}	Powered Down DC Input Impedance	200k	-	-		
V _{RX-IDLE-DET-DIFFp-p}	Electrical Idle Detect Threshold	65	-	175	mV	
T _{RX-IDLE-DET-} DIFFENTERTIME	Unexpected Electrical Idle Enter Detect Threshold Integration Time	-	-	10	ms	
L _{RX-SKEW}	Total Skew	-	-	20	ns	

Note: Refer to PCI Express Base Specification, rev.1.1, for correct measurement environment setting of each parameter.

REFCLK Parameters 11.4.3.

Table 32. REFCLK Parameters

Symbol	Parameter	100MHz Input		Units	Note
		Min	Max		
Rise Edge Rate	Rising Edge Rate	0.6	4.0	V/ns	2, 3
Fall Edge Rate	Falling Edge Rate	0.6	4.0	V/ns	2, 3
V _{IH}	Differential Input High Voltage	+150	-	mV	2
V _{IL}	Differential Input Low Voltage	-	-150	mV	2
V _{CROSS}	Absolute Crossing Point Voltage	+250	+550	mV	1, 4, 5
V _{CROSS DELTA}	Variation of V _{CROSS} Over All Rising Clock Edges	-	+140	mV	1, 4, 9
V _{RB}	Ring-Back Voltage Margin	-100	+100	mV	2, 12
T _{STABLE}	Time before V_{RB} is Allowed	500	-	ps	2, 12
T _{PERIOD AVG}	Average Clock Period Accuracy	-300	+2800	ppm	2, 10, 13
T _{PERIOD ABS}	Absolute Period (Including Jitter and Spread Spectrum)	9.847	10.203	ns	2, 6
T _{CCJITTER}	Cycle to Cycle Jitter	-	150	ps	2
V _{MAX}	Absolute Max Input Voltage	-	+1.15	V	1,7
V _{MIN}	Absolute Min Input Voltage	-	-0.3	V	1,8
Duty Cycle	Duty Cycle	40	60	%	2

Symbol	Parameter	100MHz Input		Units	Note
		Min	Max		
Rise-Fall Matching	Rising edge rate (REFCLK+) to falling edge rate (REFCLK-) matching	-	20	%	1, 14
Z _{C-DC}	Clock Source DC Impedance	40	60		1, 11

Note1: Measurement taken from single ended waveform.

Note2: Measurement taken from differential waveform.

Note3: Measured from -150 mV to +150 mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing.

Note4: Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.

Note5: Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.

Note6: Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative PPM tolerance, and spread spectrum modulation.

Note7: Defined as the maximum instantaneous voltage including overshoot.

Note8: Defined as the minimum instantaneous voltage including undershoot.

Note9: Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in VCROSS for any particular system.

Note10: Refer to Section 4.3.2.1 of the PCI Express Base Specification, Revision 1.1 for information regarding PPM considerations.

Note11: System board compliance measurements must use the test load card described in Figure16. REFCLK+ and REFCLK- are to be measured at the load capacitors CL. Single ended probes must be used for measurements requiring single ended measurements. Either single ended probes with math or differential probe can be used for differential measurements. Test load CL = 2 pF.

Note12: T_{STABLE} is the time the differential clock must maintain a minimum ± 150 mV differential voltage after rising/falling edges before it is allowed to droop back into the $V_{RB} \pm 100$ mV differential range. See Figure 15.

Note13: PPM refers to parts per million and is a DC absolute period accuracy specification. 1 PPM is 1/1,000,000th of 100.000000 MHz exactly or 100 Hz. For 300 PPM then we have a error budget of 100 Hz/PPM * 300 PPM = 30 kHz. The period is to be measured with a frequency counter with measurement window set to 100 ms or greater. The \pm 300 PPM applies to systems that do not employ Spread Spectrum or that use common clock source. For systems employing Spread Spectrum there is an additional 2500 PPM nominal shift in maximum period resulting from the 0.5% down spread resulting in a maximum average period specification of \pm 2800 PPM

Note14: Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ± 75 mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-, the maximum allowed difference should not exceed 20% of the slowest edge rate.

Note15: Refer to PCI Express Card Electromechanical Specification, rev.1.1, for correct measurement environment setting of each parameter.

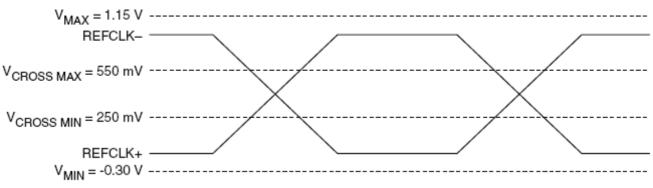


Figure 7. Single-Ended Measurement Points for Absolute Cross Point and Swing

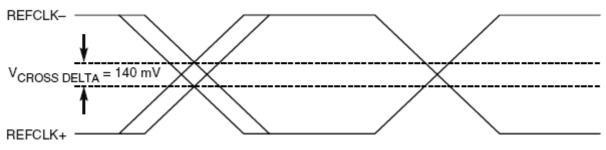


Figure 8. Single-Ended Measurement Points for Delta Cross Point

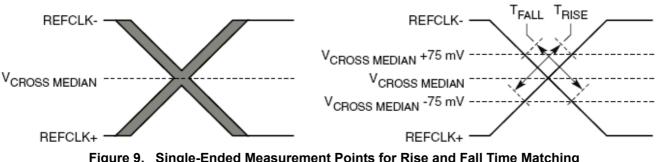


Figure 9. Single-Ended Measurement Points for Rise and Fall Time Matching

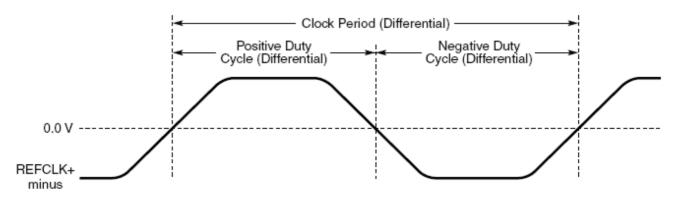


Figure 10. Differential Measurement Points for Duty Cycle and Period

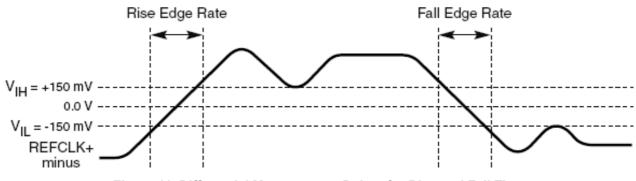


Figure 11. Differential Measurement Points for Rise and Fall Time

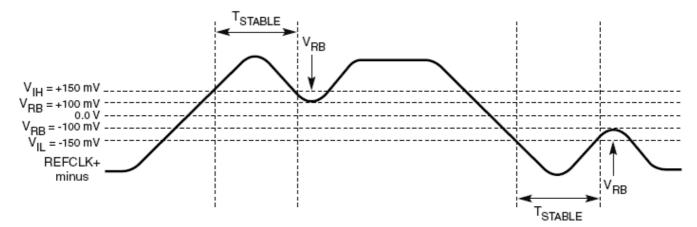


Figure 12. Differential Measurement Points for Ringback

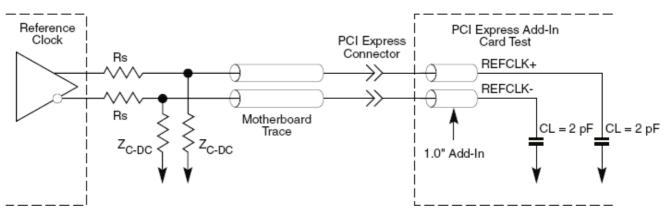
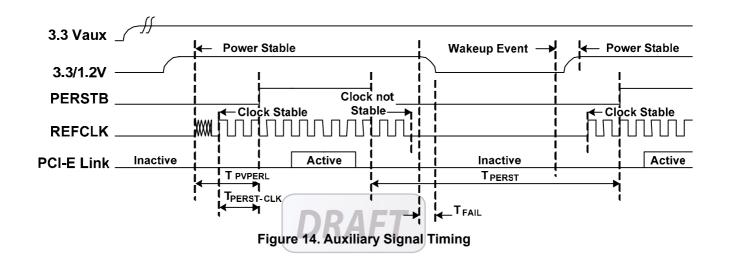
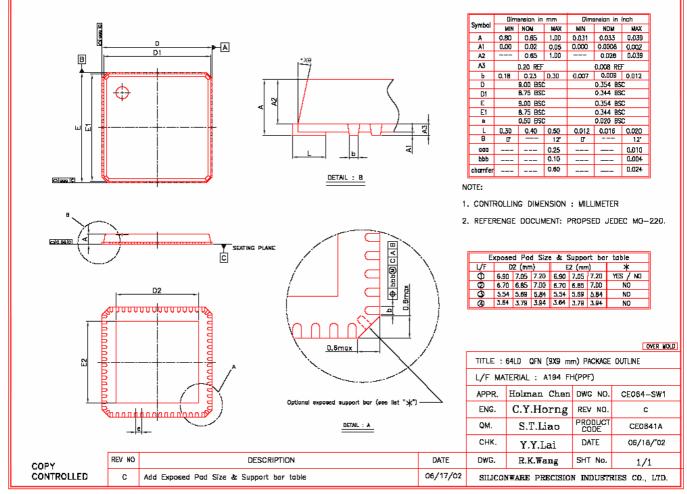



Figure 13. Reference Clock System Measurement Point and Loading

11.4.4. Auxiliary Signal Timing Parameters


Symbol	Parameter	Min	Max	Units
T _{PVPERL}	Power Stable to PERSTB Inactive	100	-	ms
T _{PERST-CLK}	REFCLK Stable before PERSTB Inactive	100	-	μs
T _{PERST}	PERSTB Active Time	100	-	μs
T _{FAIL}	Power Level Invalid to PWRGD Inactive	-	500	ns
T _{WKRF}	LANWAKEB Rise/Fall Time	-	100	ns

12. Mechanical Dimensions

Note: The RTL8187SE Exposed Pad Size is type 3.

13. Ordering Information

Table 34. Ordering Information

Part Number	Package	Status			
RTL8187SE-GR	64-Pin E-pad QFN with Green Package	Production			
Note: See page 7 for Green package identification.					

Federal Communication Commission Interference Statement This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

Reorient or relocate the receiving antenna.

Increase the separation between the equipment and receiver.

Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

Consult the dealer or an experienced radio/TV technician for help.

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

For product available in the USA/Canada market, only channel 1~11 can be operated. Selection of other channels is not possible. This device and its antenna(s) must not be co-located or operation in conjunction with any other antenna or transmitter. FCC Radiation Exposure Statement: This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

IMPORTANT NOTE: This module is intended for OEM integrator. The OEM integrator is still responsible for the FCC compliance requirement of the end product, which integrates this module. 20cm minimum distance has to be able to be maintained between the antenna and the users for the host this module is integrated into. Under such configuration, the FCC radiation exposure limits set forth for an population/uncontrolled environment can be satisfied. Any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment. USERS MANUAL OF THE END PRODUCT: In the users manual of the end product, the end user has to be informed to keep at least 20cm separation with the antenna while this end product is installed and operated. The end user has to be informed that the FCC radio-frequency exposure guidelines for an uncontrolled environment can be satisfied. The end user has to also be informed that any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment. If the size of the end product is smaller than 8x10cm, then additional FCC part 15.19 statement is required to be available in the users manual: This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference and (2) this device must accept any interference may not cause harmful interference and (2) this device to the following two conditions: (1) this device complies with Part 15.09 statement has to also be available on the label: This device complies with Part 15.09 statement has to also be available on the label: This device complies with Part 15 of FCC rules. Operation is subject to the following interference and (2) this device must accept any interference may not cause harmful interference and (2) this device must accept any interference may not cause harmful interferen

This Class B digital apparatus complies with Canadian ICES-003. Cet appareil numérique de la classe B conforme á la norme NMB-003 du Canada.

Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. For product available in the USA/Canada market, only channel 1~11 can be operated. Selection of other channels is not possible. This device and its antenna(s) must not be co-located or operation in conjunction with any other antenna or transmitter. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p) is not more than that permitted for successful communication. IC Radiation Exposure Statement: This equipment complies with IC RSS-102 radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

IMPORTANT NOTE: This module is intended for OEM integrator. The OEM integrator is still responsible for the IC compliance requirement of the end product, which integrates this module. 20cm minimum distance has to be able to be maintained between the antenna and the users for the host this module is integrated into. Under such configuration, the IC RSS-102 radiation exposure limits set forth for an population/uncontrolled environment can be satisfied. Any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment. USERS MANUAL OF THE END PRODUCT: In the users manual of the end product, the end user has to be informed to keep at least 20cm separation with the antenna while this end product is installed and operated. The end user has to be informed that the IC radio-frequency exposure guidelines for an uncontrolled environment can be satisfied. The end user has to also be informed that any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment. IC statement is required to be available in the users manual: This Class B digital apparatus complies with Canadian ICES-003. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation. LABEL OF THE END PRODUCT: The final end product must be labeled in a visible area with the following "Contains TX IC : 6317A-RTL8187SE".

Hereby, Realtek, declares that this device is in compliance with the essential requirement and other relevant provisions of the R&TTE Driective 1999/5/EC. This device will be sold in the following EEA countries : Austria, Italy, Belgium, Liechtenstein, Denmark, Luxembourg, Finland, Netherlands, France, Norway, Germany, Portugal, Greece, Spain, Iceland, Sweden, Ireland, United Kingdom, Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Slovakia, Poland, Slovenia Bulgaria, Romania. **Realtek Semiconductor Corp.**

HeadqµArters

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan. Tel: 886-3-5780211 Fax: 886-3-5776047 www.realtek.com.tw

Single-Chip Wireless LAN Network Interface Controller 5 w/PCI Express Interface