
RWF01

OEM Installation Manual

 

Version 1.0

Copyright © 2019



About This Guide

This document is intended to help users set up the basic software development

environment for developing applications using hardware based on the RWF01.

Through a simple example, this document illustrates how to use ESP-IDF (Espressif

IoT Development Framework), including the menu based configuration wizard,

compiling the ESP-IDF and firmware download to the ESP32 module.

Release Notes

Date Version Release notes

2019.05 V1.0 First release.



Table of Contents

1. Introduction to RWF01 .............................................................................................1

1.1. RWF01 ..........................................................................................................................1

1.2. ESP-IDF .....................................................................................................................................1

1.3. Preparation .................................................................................................................................1

2. Get Started on RWF01 ..............................................................................................2

2.1. Standard Setup of Toolchain for Linux .......................................................................................2

2.1.1. Install Prerequisites .......................................................................................................2

2.1.2. Toolchain Setup ............................................................................................................2

2.2. Get ESP-IDF ...............................................................................................................................3

2.3. Set up Path to ESP-IDF 3.............................................................................................................

3. Start a Project .........................................................................................................................4

4. Connect ..................................................................................................................................5

5. Configure ................................................................................................................................6

6. Build and Flash .......................................................................................................................7

6.1. Build and Flash ..........................................................................................................................7

6.2. Monitor .......................................................................................................................................8



1. Introduction RWF01

1. Introduction to RWF01

1.1. RWF01

RWF01 is a powerful, generic Wi-Fi+BT+BLE MCU module that targets a wide

variety of applications, ranging from low-power sensor networks to the most

demanding tasks, such as voice encoding, music streaming and MP3 decoding.

At the core of this module is the ESP32-S0WD chip. ESP32-S0WD is a member of the

ESP32 family of chips, yet it features a single core and packs all the peripherals of its

dual-core counterpart. Available in a 5x5 mm QFN, it offers great value for money, with

its flawless performance when powering complex IoT applications.

The integration of Bluetooth, Bluetooth LE and Wi-Fi ensures that a wide range of

applications can be targeted, and that the module is future proof: using Wi-Fi allows a large

physical range and direct connection to the internet through a Wi-Fi router, while using

Bluetooth allows the user to conveniently connect to the phone or broadcast low energy

beacons for its detection. The sleep current of the ESP32 chip is less than 5 μA, making it

suitable for battery powered and wearable electronics applications. ESP32 supports a data

rate of up to 150 Mbps, and 20.5 dBm output power at the antenna to ensure the widest

physical range. As such the chip does offer industry-leading specifications and the best

performance for electronic integration, range, power consumption, and connectivity.

The operating system chosen for ESP32 is freeRTOS with LwIP; TLS 1.2 with

hardware acceleration is built in as well. Secure (encrypted) over the air (OTA)

upgrade is also supported, so that developers can continually upgrade their products

even after their release.

1.2. ESP-IDF

The Espressif IoT Development Framework (ESP-IDF for short) is a framework for

developing applications based on the Espressif ESP32. Users can develop applications in

Windows/Linux/MacOS based on ESP-IDF. It is recommended to use Linux distribution.

Lubuntu 16.04 has been used as an example in this document for illustration purposes.

1.3. Preparation

To develop applications for RWF01 you need:

• PC loaded with either Windows, Linux or Mac operating system

• Toolchain to build the Application for ESP32

• ESP-IDF that contains API for ESP32 and scripts to operate the Toolchain

• A text editor to write programs (Projects) in C, e.g. Eclipse

• The ESP32 board itself and a USB cable to connect it to the PC
 

1/8 2019.05



2. Get Started on RWF01

2. Get Started on RWF01

2.1. Standard Setup of Toolchain for Linux

The quickest way to start development with ESP32 is by installing a prebuilt toolchain.

Pick up your OS below and follow provided instructions.

2.1.1. Install Prerequisites

To compile with ESP-IDF you need to get the following packages:

• CentOS 7:

sudo yum install git wget make ncurses-devel flex bison gperf python pyserial

• Ubuntu and Debian:

sudo apt-get install git wget make libncurses-dev flex bison gperf python python-serial

• Arch:

sudo pacman -S --needed gcc git make ncurses flex bison gperf python2-pyserial

2.1.2. Toolchain Setup

ESP32 toolchain for Linux is available for download from Espressif website:

• for 64-bit Linux:

https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-61-gab8375a-5.2.0.tar.gz

• for 32-bit Linux:

https://dl.espressif.com/dl/xtensa-esp32-elf-linux32-1.22.0-61-gab8375a-

5.2.0.tar.gz Download this file, then extract it in ~/esp directory

mkdir -p ~/esp

cd ~/esp

tar -xzf ~/Downloads/xtensa-esp32-elf-linux64-1.22.0-61-gab8375a-5.2.0.tar.gz

The toolchain will be extracted into ~/esp/xtensa-esp32-elf/ directory.

To use it, you will need to update your ``PATH`` environment variable in ~/.bash profile

file. To make xtensa-esp32-elf` available for all terminal sessions, add the following line

to your ~/.bash profile file:

export PATH=$PATH:$HOME/esp/xtensa-esp32-elf/bin

Alternatively, you may create an alias for the above command. This way you can get the

toolchain only when you need it. To do this, add different line to your ~/.bash_profile file:

alias get_esp32="export PATH=$PATH:$HOME/esp/xtensa-esp32-elf/bin"

2/8 2019.05



2. Get Started on RWF01

Then when you need the toolchain you can type get_esp32 on the command line and

the toolchain will be added to your PATH.

2.2. Get ESP-IDF

Once you have the toolchain (that contains programs to compile and build the

application) installed, you also need ESP32 specific API / libraries. They are provided

by Espressif in ESP-IDF repository. To get it, open terminal, navigate to the directory

you want to put ESP-IDF, and clone it using git clone command:

cd ~/esp

git clone --recursive https://github.com/espressif/esp-idf.git

ESP-IDF will be downloaded into ~/esp/esp-idf.

Note:

• While cloning submodules on Windows platform, the git clone command may print some output

starting ': not a valid identifier.... This is a known issue but the git clone still succeeds without any

problems.

• Do not miss the --recursive option. If you have already cloned ESP-IDF without this option, run

another command to get all the submodules:

cd ~/esp/esp-idf

git submodule update --init

2.3. Set up Path to ESP-IDF

The toolchain programs access ESP-IDF using IDF PATH environment variable. This

variable should be set up on your PC, otherwise projects will not build. Setting may be

done manually, each time PC is restarted. Another option is to set up it permanently by

defining IDF PATH in user profile. To do so, follow instructions specific to :ref:`Windows

<add-idf path-to-profile-windows>`, :ref:`Linux and MacOS <add-idf path-to-profile-linux-

macos>` in section :doc:`add-idf path-to-profile`.

3/8 2019.05





4. Connect

4. Connect
You are almost there. To be able to proceed further, connect ESP32 board to PC, check

under what serial port the board is visible and verify if serial communication works. If

you are not sure how to do it, check instructions in section :doc:`establish-serial-

connection`. Note the port number, as it will be required in the next step. 

5/8 2019.05



4. Configure

!

5. Configure
Being in terminal window, go to directory of hello world application by typing cd ~/esp/

hello world. Then start project configuration utility menuconfig:

cd ~/esp/hello world

make menuconfig

If previous steps have been done correctly, the following menu will be displayed:

!

In the menu, navigate to Serial flasher config > Default serial port to configure the serial

port, where project will be loaded to. Confirm selection by pressing enter, save

configuration by selecting < Save > and then exit application by selecting < Exit >.

Here are couple of tips on navigation and use of menuconfig:

• Use up & down arrow keys to navigate the menu.

• Use Enter key to go into a submenu, Escape key to go out or to exit.

• Type ? to see a help screen. Enter key exits the help screen.

• Use Space key, or Y and N keys to enable (Yes) and disable (No) configuration

items with checkboxes “[*]“.

• Pressing ? while highlighting a configuration item displays help about that item.

• Type / to search the configuration items.

Notes:

• On Windows, serial ports have names like COM1. On MacOS, they start with /dev/cu.. On Linux,

they start with /dev/tty. (See :doc:`establish-serial-connection` for full details.)

• If you are Arch Linux user, navigate to SDK tool configuration and change the name of Python

2 interpreter from python to python2.

• Most ESP32 development boards have a 40 MHz crystal installed. However, some boards use a 26

MHz crystal. If your board uses a 26MHz crystal, or you get garbage output from serial port after code

upload, adjust the :ref:`CONFIG_ESP32_XTAL_FREQ_SEL` option in menuconfig.

6/8 2019.05





5. Build and Flash

If there are no issues, at the end of build process, you should see messages

describing progress of loading process. Finally, the end module will be reset and

“hello_world” application will start.

If you'd like to use the Eclipse IDE instead of running make, check out

the :doc:`Eclipse guide <eclipse-setup>`.

6.2. Monitor

To see if “hello world” application is indeed running, type make monitor. This command

is launching :doc:`IDF Monitor <idf-monitor>` application:

$ make monitor

MONITOR

--- idf monitor on /dev/ttyUSB0 115200 ---

--- Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ---

ets Jun 8 2016 00:22:57

rst:0x1 (POWERON RESET),boot:0x13 (SPI FAST FLASH BOOT)

ets Jun 8 2016 00:22:57

...

Several lines below, after start up and diagnostic log, you should see “Hello world!”

printed out by the application.

...

Hello world!

Restarting in 10 seconds...

I (211) cpu start: Starting scheduler on APP CPU.

Restarting in 9 seconds...

Restarting in 8 seconds...

Restarting in 7 seconds...

To exit monitor use shortcut Ctrl+]. To execute make flash and make monitor in one

shoot type make flash monitor. Check section :doc:`IDF Monitor <idf-monitor>` for

handy shortcuts and more details on using this application.

That's all what you need to get started with ESP32!

Now you are ready to try some other :idf:`examples`, or go right to developing your

own applications.

8/8 2019.05



FCC Certification Requirements.
According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile device.
And the following conditions must be met: 
1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of 
this transmitter, including any applicable source-based time- averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion 
Requirements of 2.1091.
2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the user’s body and must not transmit simultaneously with 
any other antenna or transmitter.
3.A label with the following statements must be attached to the host end product: This device contains FCC ID: A7M-RWF01.
4.To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including 
cable loss) must not exceed: � WiFi: <3dBi
5. This module must not transmit simultaneously with any other antenna or transmitter
6. The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure 
compliance with current FCC RF exposure guidelines.
For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is required to satisfy the SAR requirements of 
FCC Part 2.1093 If the device is used for other equipment that separate approval is required for all other operating configurations, including portable 
configurations with respect to 2.1093 and different antenna configurations.
For this device, OEM integrators must be provided with labeling instructions of finished products. Please refer to KDB784748 D01 v07, section 8. Page 
6/7 last two paragraphs:
A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labeled 
with an FCC ID - Section 2.926 (see 2.2 Certification (labeling requirements) above). The OEM manual must provide clear instructions explaining to the 
OEM the labeling requirements, options and OEM user manual instructions that are required (see next paragraph).
For a host using a certified modular with a standard fixed label, if (1) the module’s FCC ID is not visible when installed in the host, or (2) if the host is 
marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the FCC ID of the module is 
visible; then an additional permanent label referring to the enclosed module:“Contains Transmitter Module FCC ID: A7M-RWF01” or “Contains 
FCC ID: A7M-RWF01” must be used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the 
module and the FCC ID.
The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly 
authorized for operation as a Part 15 digital device.
The user’s manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly 
approved by the party responsible for compliance could void the user's authority to operate the equipment. In cases where the manual is provided only 
in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that 
alternative form, provided the user can reasonably be expected to have the capability to access information in that form.
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful 
interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
Changes or modifications not expressly approved by the manufacturer could void the user’s authority to operate the equipment.
To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with the module(s) installed and 
fully operational. For example, if a host was previously authorized as an unintentional radiator under the Declaration of Conformity procedure without 
a transmitter certified module and a module is added, the host manufacturer is responsible for ensuring that the after the module is installed and 
operational the host continues to be compliant with the Part 15B unintentional radiator requirements.




