
 SMC-90M 802.11 b/g/n Wifi Module

SMC-90M is an 802.11b/g/n Wireless USB interface LGA module that enables devices

with high performance wireless connectivity.

FEATURES

• PHY data rate up to 144.4 Mbps using 20MHz bandwidth,

SPECIFICATIONS

Standards IEEE 802.11 b/g/n

Chipset AP6212

Frequency Band 2.4 - 2.483 GHz

Encryption 64/128 bit WEP, WPA,WPA2, IEEE 802.1x

Mode

2.4GHz Band:

 802.11n (HT20, MCS7)

 802.11g (54Mbps)

 802.11b

Receive Sensitivity

2.4GHz:

802.11b: -80 dBm max. @ 11Mbps

802.11g: -65 dBm max. @ 54Mbps

802.11n (HT20): -64 dBm max. @ 144.4Mbps

DC Voltage 3.3V (Typical)

Host Interface USB 2.0

Antenna Onboard antenna (1T1R)

Host Connector Wifi Module

Temperature
Operating: 0 ~ 70 Celsius

Storage: -20 ~ 70 Celsius

Humidity Storage: 10 ~ 80% (Non Condensing)

Dimensions (L x W x H) 38.5 x 23.0 x 2.85 mm

*Specifications are subject to change without further notice.

FEDERAL COMMUNICATIONS COMMISSION INTERFERENCE STATEMENT

This equipment has been tested and found to comply with the limit s for a Class B digital device, pursuant to
Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy
and, if not installed and used in accordance with the instructions, may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment does cause harmful interference to radio or television reception, which can be determined by turning
the equipment of f and on, the user is encouraged to try to correct the interference by one or more of the
following measures:

-- Reorient or relocate the receiving antenna.
-- Increase the separation between the equipment and receiver.
-- Connect the equipment into an outlet on a circuit different from that to which

the receiver is connected.
-- Consult the dealer or an experienced radio/TV technician for help.

CAUTION:
Any changes or modifications not expressly approved by the party responsible for compliance could void
the user's authority to operate the equipment.
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1)
This device may not cause harmful interference, and (2) this device must accept any interference received,
including interference that may cause undesired operation.

Safety warning notice:
RF exposure warning: End user to keep at least 20 cm distance from the
antennas of the device.

OEM INTEGRATION INSTRUCTIONS

This device is intended only for OEM integrators under the following conditions:

The antenna must be installed such that 20 cm is maintained between the antenna and users, and the

transmitter module may not be co-located with any other transmitter or antenna. The module shall not be

used with any other antenna than the certified integral on-board PCB antenna.

As long those conditions above are met, further transmitter test will not be required. However, the OEM

integrator is still responsible for testing their end-product for any additional compliance requirements

required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).

Validity of using the module certification:

In the event that these conditions cannot be met (for example certain computer configurations or co-location

with another transmitter), then the FCC authorization for this module in combination with the host

equipment is no longer considered valid and the FCC ID of the module cannot be used on the final

product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product

(including the transmitter) and obtaining a separate FCC authorization.

End product labeling:

This transmitter module is authorized only for use in device where the antenna may be installed such that

20 cm may be maintained between the antenna and users. The final end product must be labeled in a

visible area with the following: “Contains FCC ID: 2ABDZSMC90”.

Information that must be placed in the end user manual:

The OEM integrator has to be aware not to provide information to the end user regarding how to install or

remove this RF module in the user's manual of the end product which integrates this module. The end

user manual shall include all required regulatory information/warning as show in this manual.

 1

Quick Start Guide for Driver Compilation and Installation

Contents

Introduction ...1

1. Using install.sh Script for PC-Linux ...1

2. Decompress the driver source tar ball ...1

3. Selecting Chip Type with make_drv Script (for compound release)2

4. Compilation Settings in Makefile ...2

4.1. Adding or Selecting Target Platform ...2

4.2. Platform Setting Section in Detail ...3

4.3. Other Compilation Settings...4

5. Integrating Driver Source into Linux Kernel Tree...5

6. Compiling Driver ...6

6.1. Compiling Driver in Driver Source Folder ..6

6.2. Compiling Driver under Kernel Tree...6

7. Driver Installation ..6

Introduction

In this document, we introduce two ways to compile and install our Wi-Fi driver:

1) Using install.sh script for PC-Linux and 2) Step by step manually. The former

targets for end users who are not familiar with Linux system, while the later for

engineers who want to port our Wi-Fi driver onto different platforms.

1. Using install.sh Script for PC-Linux

For driver compilation and installation in PC-Linux, we provide an install.sh

script to do the duties automatically. If you want to use our Wi-Fi solutions to access

network on PC-Linux, you can just run install.sh script and then control Wi-Fi with

utilities such as Network Manager. For further information about Wi-Fi station mode,

please refer to:

 document/Quick_Start_Guide_for_Station_Mode.pdf.

If you want to apply our Wi-Fi solutions on other embedded platforms, you

should read and check the following paragraphs.

2. Decompress the driver source tar ball

The driver source tar ball is located in the driver folder of our software package.

For example, to decompress rtl8188C_8192C_8192D_usb_linux_v3.3.0_2920.20111123.tar.gz:

root@driver/# tar zxvf rtl8188C_8192C_8192D_usb_linux_v3.3.0_2920.20111123.tar.gz

 2

3. Selecting Chip Type with make_drv Script (for compound release)

Our driver source release has two types: 1) single release, which can build out

driver only for single chip type, and 2) compound release, which can build out drivers

for multiple chip types separately.

For compound release driver, you will see make_drv script after you decompress

the driver tar ball located in driver folder. Before compiling driver source, executing

the make_drv to select the target chip type to compile. For example:

4. Compilation Settings in Makefile

4.1. Adding or Selecting Target Platform

The default target platform is PC-Linux, if you do not want to compile driver for

other platforms you can skip this section.

To add or select target platform for compilation, we provide two sections in

Makefile: 1) platform selection section and 2) platform setting section. First, you

should look at the platform selection section of Makefile:

The platform selection section consists of entries with ‘CONFIG_PLATFORM_’

prefix. Only one entry is allowed to be set with value ‘y’ and others with ‘n’. The

CONFIG_PLATFORM_I386_PC = y

CONFIG_PLATFORM_ANDROID_X86 = n

CONFIG_PLATFORM_ARM_S3C2K4 = n

CONFIG_PLATFORM_ARM_PXA2XX = n

CONFIG_PLATFORM_ARM_S3C6K4 = n

CONFIG_PLATFORM_MIPS_RMI = n

CONFIG_PLATFORM_RTD2880B = n

CONFIG_PLATFORM_MIPS_AR9132 = n

CONFIG_PLATFORM_MT53XX = n

CONFIG_PLATFORM_RTK_DMP = n

root@rtl8188C_8192C_8192D_usb_linux_v3.3.0_2920.20111123# ./make_drv

Please select chip type(1/2):

1) RTL8192cu

2) RTL8192du

#? 1

You have selected RTL8192cu

 3

‘CONFIG_PLATFORM_I386_PC’ is selected by default.

We can select an existing entry or add a new entry for your target platform. For

example, to add and select a new entry, ‘CONFIG_PLATFORM_NEW’:

Second, you should create and/or modify the corresponding entry inside platform

setting section. For example, adding the following entry in platform setting section for

‘CONFIG_PLATFORM_NEW’ we just add:

4.2. Platform Setting Section in Detail

l EXTRA_CFLAGS

The EXTRA_CFLAGS is usually used to carry some additional settings at

compilation time through macro definitions.

Macro Effect

CONFIG_BIG_ENDIAN Define some internal data structure as big endian.

CONFIG_LITTLE_ENDIAN Define some internal data structure as little endian.

CONFIG_MINIMAL_MEMORY_USAGE For better performance in powerful platform, we

allocate large physical continuous memory as TX/RX

IO buffers. In some embedded platform, there is

chance to fail to allocate memory. Define this macro to

prevent this situation.

CONFIG_PLATFORM_ANDROID Older Android kernel do not has CONFIG_ANDROID

defined. Define this macro to force the Android

corresponding code inside our driver to be compiled.

For newer Android kernel, it has no need to define this

macro, otherwise, warning message about redefinition

will show up

ifeq ($(CONFIG_PLATFORM_NEW), y)

EXTRA_CFLAGS += -DCONFIG_LITTLE_ENDIAN

ARCH := arm

CROSS_COMPILE := /opt/ new/toolchain/arm-eabi-4.4.3/bin/arm-eabi-

KSRC := /opt /new/kernel

endif

CONFIG_PLATFORM_I386_PC = n

CONFIG_PLATFORM_NEW = y

 4

l ARCH

The ARCH is used to specify the architecture of the target platform CPU, such as:

arm, mips, i386, etc.

l CROSS_COMPILE

The CROSS_COMPILE is used to specify the toolchain prefix used for driver

compilation.

l KSRC

The KSRC is used to specify the path of kernel source used for driver

compilation

l MODULE_NAME

Different module name is assigned to drivers for different chips:

If you want to change the module name, you can set value of MODULE_NAME

here. For example, setting module name as ‘wlan’:

4.3. Other Compilation Settings

We still have some compilation settings could be applied. For settings and further

information about power saving mode, please refer to:

 document/HowTo_enable_the_power_saving_functionality.pdf.

If you know what the macro means in the autoconf file, you could modify the

Chip type Default module name

RTL8192CU-series 8192cu

RTL8192CE-series 8192ce

RTL8192DU-series 8192du

RTL8192DE-series 8192de

RTL8723AS-series 8723as

RTL8723AU-series 8723au

RTL8189ES-series 8189es

RTL8188EU-series 8188eu

ifeq ($(CONFIG_PLATFORM_NEW), y)

EXTRA_CFLAGS += -DCONFIG_LITTLE_ENDIAN

ARCH := arm

CROSS_COMPILE := /opt/ new/toolchain/arm-eabi-4.4.3/bin/arm-eabi-

KSRC := /opt /new/kernel

MODULE_NAME := wlan

endif

 5

configuration by yourself. See the following table for the autoconf file you should

modify for a specific chip type:

5. Integrating Driver Source into Linux Kernel Tree

This paragraph is for integrating our driver source into Linux kernel tree and

building system. If you have no need to do this, simply skip this paragraph.

For compound release driver source, make_drv should be execute to select chip

type for the driver source. Please refer to:

“3. Selecting Chip Type with make_drv Script (for compound release)”.

For different chip types, we have different suggestions for <compile_flag> and

<folder_name> to use for the integration process:

Assuming the driver source is for RTL8192CU-series, to integrate driver source

into kernel building system, go through the following steps:

1). Copy the driver source folder into drivers/net/wireless/ and rename it as

<folder_name>, rtl8192cu.

Chip type Autoconf file to modify

RTL8192CU-series autoconf_rtl8192c_usb_linux.h

RTL8192CE-series autoconf_rtl8192c_pci_linux.h

RTL8192DU-series autoconf_rtl8192d_usb_linux.h

RTL8192DE-series autoconf_rtl8192d_pci_linux.h

RTL8723AS-series autoconf_rtl8723a_sdio_linux.h

RTL8723AU-series autoconf_rtl8723a_usb_linux.h

RTL8189ES-series autoconf_rtl8189e_sdio_linux.h

RTL8188EU-series autoconf_rtl8188e_usb_linux.h

Chip type <compile_flag> <folder_name>

RTL8192CU-series CONFIG_RTL8192CU rtl8192cu

RTL8192CE-series CONFIG_RTL8192CE rtl8192du

RTL8192DU-series CONFIG_RTL8192DU rtl8192du

RTL8192DE-series CONFIG_RTL8192DE rtl8192de

RTL8723AS-series CONFIG_RTL8723AS rtl8723as

RTL8723AU-series CONFIG_RTL8723AU rtl8723au

RTL8189ES-series CONFIG_RTL8189ES rtl8189es

RTL8188EU-series CONFIG_RTL8188EU rtl8188eu

 6

2). Add the following line into drivers/net/wireless/Makefile, CONFIG_RTL8192CU

is for <compile_flag>, rtl8192cu is for <folder_name>:

3). Add the following line into drivers/net/wireless/Kconfig, rtl8192cu is for

<folder_name>:

4). Config kernel, for example, with ‘make menuconfig’ command to select ‘y’ or ‘m’

for our driver.

5). Now, you can build kernel with ‘make’ command.

6. Compiling Driver

6.1. Compiling Driver in Driver Source Folder

For compiling driver in the original driver source folder, simply cd into the

driver source folder and start build driver with ‘make’ command.

If everything goes well, it will produce a MODULE_NAME.ko file. The

MODULE_NAME is specified in Makefile. Please refer to:

“MODULE_NAME” in “4.2. Platform Setting Section in Detail”.

6.2. Compiling Driver under Kernel Tree

For compiling driver under kernel tree, please refer to:

“5. Integrating Driver Source into Linux Kernel Tree”.

7. Driver Installation

If you have compiled Wi-Fi driver as kernel module and produced a .ko file such

as 8192cu.ko, you should insert driver module with ‘insmod’ command:

As for driver compiled in kernel, it has no need to do ‘insmod’ command.

root@rtl8188C_8192C_8192D_usb_linux_v3.3.0_2920.20111123# insmod 8192cu.ko

root@rtl8188C_8192C_8192D_usb_linux_v3.3.0_2920.20111123# ./make

source "drivers/net/wireless/rtl8192cu/Kconfig"

obj-$(CONFIG_RTL8192CU) += rtl8192cu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

