

VHF+UHF frequency band including the following:

No	Unit namina	Description	In/out RF Port	
	Unit naming		TX	RX
1	VHF+UHF	Dual Band	1 Port	1 Port

3) Main Central Processor Unit (MCPU)

MCPU can inquire and control state of modules that are installed in BIU.

This unit can inquire and control state of four ODUs in total. Through communication, it also can inquire and control ROU that is connected with lower parts.

In addition, the unit has RS-232C port for serial communication so that it can inquire and control state of devices through PC. On the front panel, it has communication LED indicator to check communication state with ROU. It also has ALM LED indicator to show whether a device gets faulty.

For access to upper network, it has a port to insert Ethernet port and GSM modem in it.

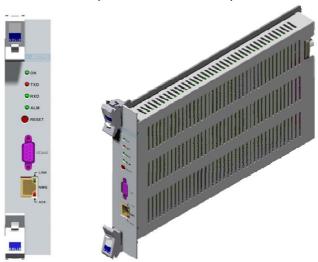


Figure 4.5 – MCPU Outer Look

In the Main Central Processor Unit, a lithium battery is installed for RTC (Real Time Control) function.

RISK OF EXPLOSION IF BATTERY IS REPLACED BY AN INCORRECT TYPE DIPOSE OF USED BATTERIES ACCORDING TO THE INSTRUCTIONS

[INSTRUCTION]

The equipment and accessories including inner lithium battery are to be disposed of safely after the life span of them and national regulation must be observed. Do not attempt to replace the lithium battery unless service personnel confirmation has first been obtained, to avoid any risk of explosion.

4) Main Power Supply Unit (MPSU)

MPSU receives -48V of input and outputs +6V and +9V of DC power.

On the front panel, this unit has an output test port and it also has DC ALM LED Indicator to show whether output gets faulty.

Figure 4.6 - MPSU Outer Look

4.1.5 Front/rear panels of BIU

1) Front panel

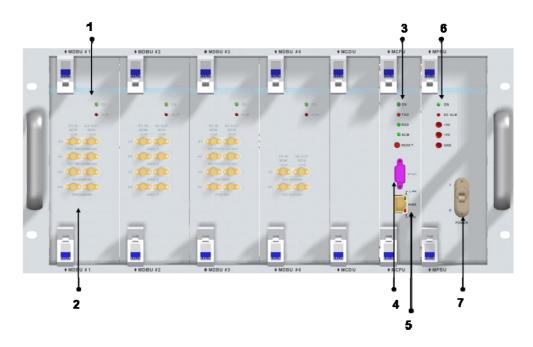


Figure 4.7 – BIU front panel Outer Look

Item	Description
1. MDBU LED	LED to show whether MDBU is installed and gets faulty
2. RF Monitor Port	20Db Coupling compared with TX Input Level
2. KF MONITO POR	20Db Coupling compared with RX Output Level
3. Alarm LED & Reset	Communication state with devices, alarm status of the system and reset
5. Alailli LED & Reset	switch
4. NMS(RS-232C port)	RS-232C port for communication and diagnosis of devices through
4. NIVIO(NO-2020 port)	PC/laptop
	Ethernet port for upper network
5. NMS(Ethernet port)	This equipment is indoor use and all the communication wirings are
	limited to inside of the building
6. Pwr Test Port & ALM	Output DC power test port and ALM LED to show abnormal state, if any
7. Power switch	Power ON/OFF switch

2) Rear panel

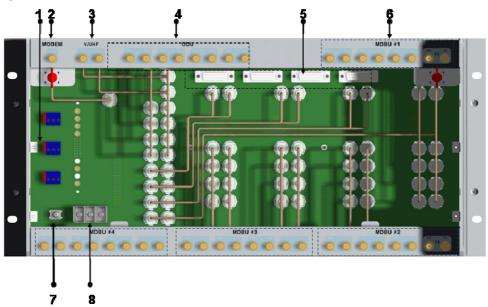


Figure 4.8 – Rear panel Outer Look

Item	Description
1. External ALM Port	Input/output terminal for dry contact
2. GSM Modem Port	GSM Modem terminal for upper network (Optional)
3. V/UHF I/O Port	RF signal interface terminal of VHF&UHF
4. ODU I/O Port	RF signal interface terminal for ODU
5. ODU signal Port	Power and signal interface terminal for ODU
6. BTS/BDA I/O Port	Input/output interface terminal of BTS/BDA
7. GND Port	System ground terminal
8. DC Input Port	Input terminal for DC -48V

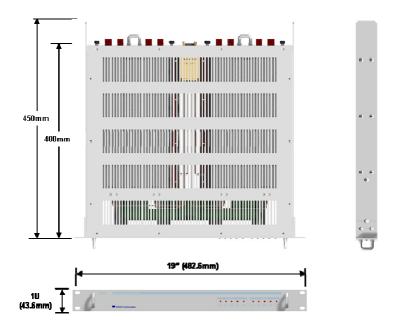
4.2 ODU (Optic distribution Unit)

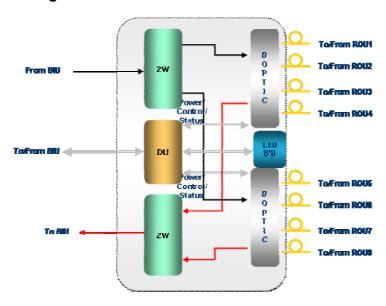
ODU receives TX RF signals from upper BIU and converts them into optical signals. The optical signals are sent to ROU through optical cables. This unit converts optical signals from ROU into RF signals and sends the converted signals to BIU.

For each shelf of the ODU, up to two DOUs (Donor Optic Unit) can be installed in it.

One DOU is supported with four optical ports. Therefore, one ODU can be connected with eight ROUs.

Up to four ODUs can be connected with BIU.




Figure 4.9 - ODU Outer Look

4.2.1 Specifications of ODU

Item	Spec.	Remark	
Size	482.6(19") x 43.6(1U) x 450	Mm	
Weight	5.7 Kg	Full Lood	
Power consumption	27 W	Full Load	

4.2.2 Block Diagram of ODU

4.2.3 ODU parts

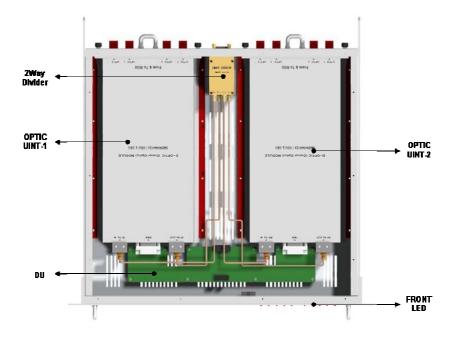


Figure 4.10 – ODU Inner Look

No.	Unit	Description	Remark
1	DOU	DOU Convert TX RF signals into optical signals; Convert RX optical signals into RF signals; Provide up to four optical ports per DOU	Max 2ea
2	2W	2Way Divider Divide TX RF signals into two; Combine two RX RF signals into one	
3	DU	Distribution Unit Distribute power and signals to DOU	
4	Shelf	19" rack, 1U	
5	Accessories	15PIN DSUB, Male to female 1pcs RF Coaxial Cable Assembly 2pcs	

4.2.4 Function by unit

1) Donor Optic Unit (DOU)

DOU makes electronic-optical conversion of TX signals and makes optical-electronic conversion of RX signals.

With an optic splitter in it, this unit divides optical signals from Laser Diode into four and then distributes them to each optical port. With a total of four Photo Diodes in RX, DOU makes optical-electronic conversion of signals received from each optical port. In addition, the unit is equipped with ATT for optical compensation made in case of optical cable loss.

With internal WDM, it uses only one optical cable to be connected with ROU.

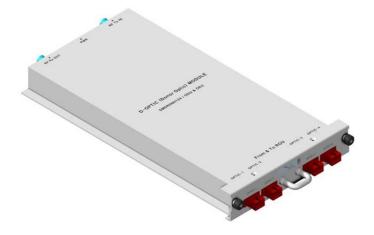


Figure 4.11 – MDBU Outer Look

2) 2Way Divider (2W)

2W is equipped with two 2-way splitters in a one-module form and the splitters work for TX/RX signals, respectively.

Designed in broadband type, the divider combines and divides 2GHz or higher of signals from FSK modem signals.

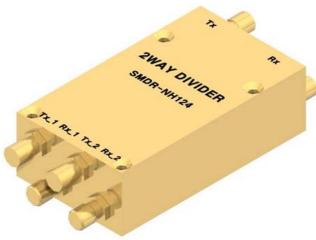


Figure 4.12 – 2Way Divider Outer Look

4.2.5 Front/rear panels of ODU

1) Front panel

Figure 4.13 – ODU front panel Outer Look

Item	Description
1,2	LED indicator to check DOU module state to see if it is abnormal

2) Rear panel

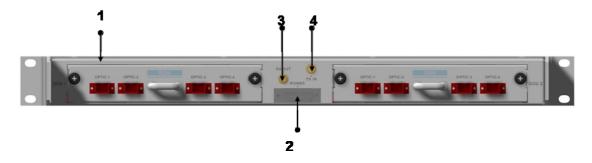


Figure 4.14 – ODU Rear panel Outer Look

Item	Description
1. Optic Port	SC/APC optical connector terminal; use one optical cable per ROU.
2. DC I/O Port	Terminal to deliver power and state values
3. RX RF Port	RX RF signal interface terminal
4. TX RF Port	TX RF signal interface terminal

4.2.6 Interface with BIU

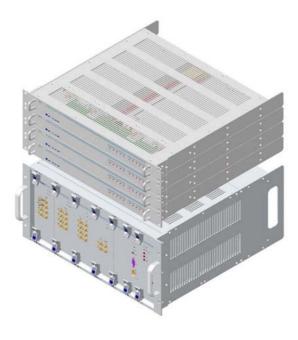
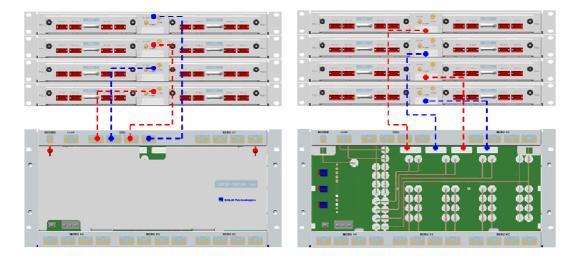
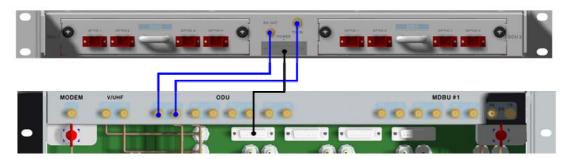



Figure 4.15 – Interface between BIU and ODU


On the top of BIU, up to four ODUs can be stacked.

In this case, it is recommended to stack the units at least 1U of an interval between BIU, for heat from BIU may climb up to ODU, which may cause flame.

As seen in the figure below, connect the coaxial cable for TX and another coaxial cable for RX with corresponding ports at the rear of BIU. For power supply and communication, connect 15Pin D-Sub Connector cable with a corresponding port.

4.3 OEU (Optic Expansion Unit)

OEU is mainly used to remotely deliver signals for Campus clusters. At the upper part, this unit combines with ODU and receives TX optical signals to convert them into RF signals. Then, it regenerates the signals to secure S/N feature and converts them into optical signals. The signals are sent to ROU through optical cables. When it receives RX optical signals from ROU, the unit converts them into RF signals to regenerate the signals and then converts them into optical signals to send them to ODU.

In OEU, one shelf can be equipped with up to two DOUs. The DOU is the same as the module used for ODU. Up to two OEUs can be connected with ODU.

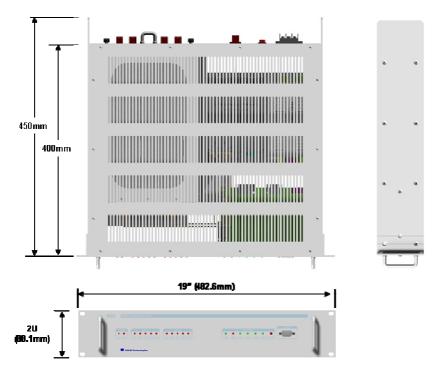
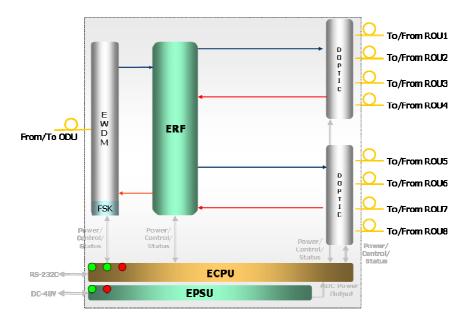



Figure 4.16 – OEU Outer Look

4.3.1 Specifications of OEU

Item	Spec.	Remark
Size	482.6(19") x 88.1(2U) x 450 mm	
Weight	9.3 Kg	5.111.
Power consumption	48 W	Full Load

4.3.2 Block Diagram of OEU

4.3.3 OEU parts

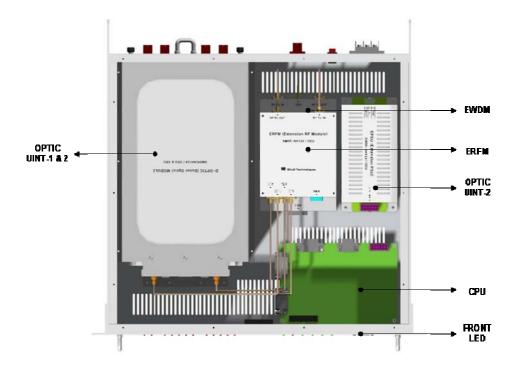


Figure 4.17 – OEU Inner Look

No.	Unit	Description	Remark
4	DOU	Donor Optic Unit	
		Convert TX RF signals into optical signals;	Max 2ea
1		Convert RX optical signals into RF signals;	IVIAX ZEA
		Provide up to four optical ports per DOU	
	EWDM	Expansion Wavelength Division Multiplexer	
2		Convert TX optical signals into RF signals;	
2		Convert RX RF signals into optical signals;	
		Compensate for optical cable loss with ODU	
		Expansion Central Processor Unit	
2	ECPU	Control and monitoring system status	
3		Control and monitoring with RS232	
		Relay state values of ROU to BIU	
4	EDCH	Expansion Power Supply Unit	
	EPSU	Input power: DC -48V, Output power: 9V, 6V	

5	ERFM	Expansion Radio Frequency Module	
		Regenerate TX signals and transmit FSK modem	
		signals;	
		Regenerate RX signals and receive FSK modem signals	
6	Shelf	19" rack, 2U	

4.3.4 Function by unit

1) Donor Optic Unit (DOU)

DOU is the same as the module used for ODU.

Figure 4.18 – MDBU Outer Look

2) Expansion Wavelength Division Multiplexer(EWDM)

EWDM module makes optical-electronic conversion of TX signals and makes electronic-optical conversion of RX signals. With an FSK modem in it, this multiplexer communicates with BIU. It also has ATT for optical compensation to compensate for optical cable loss between ODUs. Furthermore, it has internal WDM, and so, it needs only one optical cable to work with ROU.

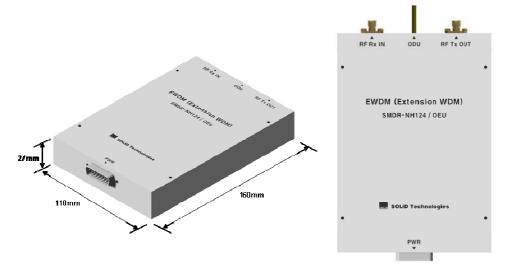


Figure 4.19 – EWDM Outer Look

3) Expansion Central Processor Unit(ECPU)

ECPU can inquire and control state of modules to be installed into OEU. This unit communicates with upper BIU while communicating with lower ROU. It also acts as communication bridge between BIU and ROU.

In addition, the unit has RS-232C port for serial communication, which enables inquiry and control of devices thorugh PC. At the front panel, communication LED indicator indicates communication state with upper BIU and lower ROU. It also has ALM LED indicator to show if a device gets faulty.

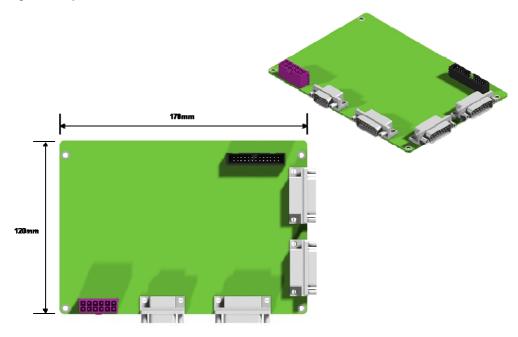


Figure 4.20 - ECPU Outer Look

4) Expansion Radio Frequency Module(ERFM)

ERFM reconstructs Signal to Noise degraded by optical modules. With an internal FSK modem, this module communicates with ROU.

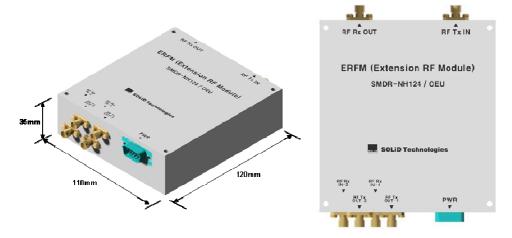


Figure 4.21 – ERFM Outer Look

5) Expansion Power Supply Unit(EPSU)

As DC/DC Converter, EPSU receives -48V of input and provides +9V and +6V of DC power required for OEU.

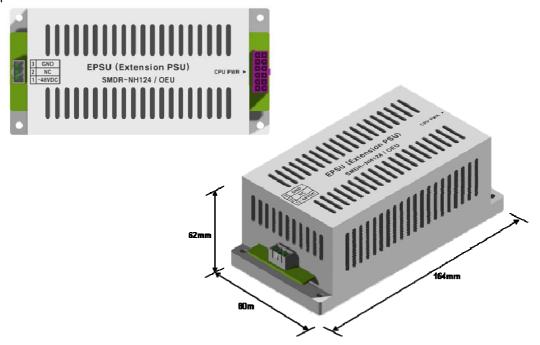


Figure 4.22 – ERFM Outer Look