Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA20170 http://www.rheintech.com

## Appendix J: Manual

Please refer to the following pages.

Client: STI Engineering Model: RFI-900 250 FCC ID: P5MRFI900 Standards: FCC Part 90 Report #: 2018010





Communications & Electronics Engineers



22 Boulder Rd Malaga 6090 Western Australia

**Telephone:** +61 8 9209 0900 **Facsimile:** +61 8 9248 2833

Email: sales@stiengineering.com.au

Web: www.stiengineering.com.au

# **RFI-148 & RFI-900 HIGH OUTPUT POWER PAGING TRANSMITTERS**



**USER MANUAL** 

# RFI-148 & RFI-900 High Output Power Paging Transmitters

**User Manual** 

# **DISCLAIMER**

© 2018 STI Engineering Pty Ltd. All rights reserved.

STI Engineering reserves the right to make improvements on the product in this manual at any time without notice.

No part of this manual may be produced, copied, translated, or transmitted in any form or by any means without the written permission of STI Engineering.

Information provided in this manual is intended to be accurate and reliable. However, STI Engineering assumes no responsibility for its use or infringements upon the rights of third parties that may result from its use.



# **Contents**

| 1. Introduction                                              | 0  |
|--------------------------------------------------------------|----|
| 2. Installation                                              | 7  |
| 2.1 General Considerations                                   |    |
| 2.2 External Antennas                                        |    |
| 2.3 Product Installation                                     |    |
| 2.3.1 Installation Guidelines to Ensure Safe Exposure Levels | 9  |
| 2.3.2 Typical Installation                                   |    |
| 2.4 Safety and Compliance                                    |    |
| 2.4.1 Human Exposure to Emissions, Safe Distances            |    |
| 2.4.2 Equipment Installation                                 |    |
|                                                              |    |
| 3. Configuration                                             |    |
| 3.1 Overview                                                 |    |
| 3.2 Cruise Control                                           |    |
| 3.2.1 Installation                                           |    |
| 3.2.2 Connecting to the Paging Transmitter                   |    |
| 3.2.4 Sensor Gauges                                          |    |
| 3.2.5 Firmware Update                                        |    |
| 3.3 SNMP                                                     |    |
| 3.4 Terminal Menu Interface                                  |    |
| 3.5 Hayes AT Command Interface                               |    |
| 3.5.1 List Slicing Syntax                                    |    |
| 3.5.2 Sequenced AT Commands                                  |    |
| 3.6 Front Panel Interface                                    |    |
| 3.7 LIU Interface                                            |    |
| 4. Operation                                                 | 21 |
| 4.1 Serial Port Operation                                    | 21 |
| 4.1.1 Overview                                               |    |
| 4.1.2 Configuration 4.1.3 Statistics                         |    |
|                                                              |    |
| 4.2 Ethernet Operation 4.2.1 Overview                        |    |
| 4.2.1 Overview                                               |    |
| 4.2.3 Statistics                                             |    |
| 4.3 Transmitter Operation                                    | 22 |
| 4.3.1 Transmit Power                                         |    |
| 4.3.2 Channel Selection                                      |    |
| 4.3.3 Push-To-Talk (PTT)                                     |    |
| 4.3.5 Absolute Delay Adjustment                              |    |
| 4.3.6 RF Diagnostics                                         |    |
| 4.4 Data                                                     |    |
| 4.4.1 4-Level Deviation Mapping                              |    |
| 4.4.2 Carrier Offset                                         |    |
|                                                              |    |
| 4.5 Fan Control                                              | 27 |



| 4.5.1 Fan Override                                       |    |
|----------------------------------------------------------|----|
| 4.5.2 Self-Test                                          | 28 |
| 5. Diagnostics                                           | 29 |
| 5.1 Status Monitoring                                    | 29 |
| 5.1.1 Conditional Cut-off Checking                       |    |
| 5.1.2 Minimum and Maximum Sensor History                 |    |
| 5.2 Faults                                               |    |
| 5.2.1 Fault Actions                                      |    |
| 5.2.3 Combined Fault                                     |    |
| 5.2.4 Hardware Alarm Outputs                             |    |
| 5.3 Remote Firmware Update and Snapshot                  |    |
| 5.3.1 Update                                             | 31 |
| 5.3.2 Snapshot                                           |    |
| 5.4 Time                                                 |    |
| 5.4.1 Real Time Clock                                    |    |
| 5.4.2 SIVIT CHOIL                                        |    |
| 6. Internal Encoding                                     | 34 |
| 6.1 Overview                                             |    |
| 6.2 POCSAG Settings                                      | 34 |
| 6.3 Protocols Supported                                  |    |
| 6.3.1 TNPP                                               |    |
| 6.3.2 PET                                                |    |
| 6.3.3 TAP                                                |    |
| 6.4 Test Functions                                       |    |
| 7. Hot Standby Operation                                 | 20 |
| 7. Hot Standby Operation 7.1 Overview                    |    |
|                                                          |    |
| 7.2 Configuration                                        |    |
| 7.3 Operation                                            |    |
| 7.4 Switchover Faults                                    |    |
| 7.5 Hardware Feedback                                    |    |
|                                                          |    |
| Appendix A Technical Specifications                      |    |
| A.1 Type Approvals                                       | 42 |
| A.2 RFI-148/900250 Specifications                        |    |
| A.3 Serial Connectors                                    |    |
| A.3.1 Rear Serial Port                                   |    |
| A.3.2 Front Serial Port (DCE)                            |    |
| A.4 LIU Interface                                        |    |
| Appendix B Controller Configurations                     | 48 |
| B.1 Motorola NIU Controller / FLEX Mode                  |    |
| B.2 Glenayre C2000 Controller / FLEX Mode                |    |
| B.3 Glenayre C2000 Controller / POCSAG Mode              |    |
| B.4 Zetron Model 66 Transmitter Controller / POCSAG Mode | 49 |



| Appendix C Management Reference            | 50 |
|--------------------------------------------|----|
| C.1 Serial Port Diagnostics                | 50 |
| C.2 SNMP Diagnostic Parameters             |    |
| Appendix D Hayes AT Reference              | 54 |
| Appendix E Sensor and Fault List Reference | 88 |
| Appendix F Product Identification Table    | 92 |
| Appendix G Troubleshooting                 | 93 |
| G.1 Configuring Sensor Cutoffs             |    |
| G.2 Fault LED Active                       |    |
| G.2.2 High Transmit Power                  |    |
| G.2.3 High VSWR                            |    |
| G.2.4 Disable Transmit                     | 95 |
| G.3 Unit Won't Transmit                    | 96 |
| G.3.1 PTT Override                         |    |
| G.3.2 Hardware or Auto PTT                 |    |
| G.3.3 Profile Definition                   |    |
| G.4 Unit Transmits at Low Power            | 97 |
| Appendix H Glossary                        | 98 |



## 1. Introduction

The RFI-148 and RFI-900 are high power output paging transmitters operating in the VHF and UHF band, respectively.

- RFI-148: VHF band operation (138 MHz 174 MHz) with 2.5 MHz switching bandwidth
- RFI-900: UHF band operation (929 MHz 932 MHz) with 3 MHz switching bandwidth
- Up to 250 W (54 dBm) maximum transmit power
- Compatible with:
  - POCSAG 512, 1200, 2400 bps (2-level FSK).
  - FLEX 1600 (2-level FSK), 3200 (2- or 4-level FSK), 6400 bps (4-level FSK).
- Windows GUI for configuration and diagnostics over serial or network (Cruise Control).
- SNMP diagnostics.
- TNPP and PET/TAP support (decoder) over serial or network.
- POCSAG encoder with in-built deployment test and modulation self-test feature.
- DSP precision modulation.
- Integrated isolator.
- RF diagnostics port for in-rack receiver.
- Remote firmware update capability.
- Software selectable frequency offset.
- Adjustable absolute delay correction.
- Hardware alarm outputs.
- Front panel indicators for power output and diagnostics.
- High frequency stability and external reference option.





## 2. Installation

## 2.1 General Considerations

There are a number of rules to observe when installing a paging transmitter.

Antenna selection is vital to a good RF link. Different antennas are required depending on the application. Please contact your antenna manufacturer or STI Engineering for correct antenna selection.

Antenna placement has a significant impact on RF link performance. In general, higher antenna placement results in a better communication link. A vantage point should be chosen to clear the propagation ellipsoid. An unobstructed, line-of-sight link will always perform better than a cluttered or obstructed link.

Obstructions, such as walls and poles, will distort the antenna radiation pattern and VSWR, resulting in less efficient transmission and reception.

Antennas in close proximity are potential sources of mutual interference. A transmitter can cause overload of a nearby receiver, if due precautions are not taken in antenna location. Moreover, transmitters in close proximity may cause intermodulation. Slight adjustments in antenna placement may help solving interference problems.

All items of radio equipment, such as antennas, are sources of RF radiation. They should thus be placed away from electrical equipment, such as computers, telephones or answering machines.

Serial cable runs between radio modem and attached terminal equipment (eg RTU or PC) should be kept as small as possible. A maximum cable capacitance of 2,400 pF is recommended for transfer rates up to 19.2 kbit/s. If a non-shielded, 30 pF / foot cable is used, the maximum length should be limited to 80 feet (approximately 24m). For higher interface speeds, the length of the serial cable should be shortened.

Long serial cables should also be avoided in areas with frequent lightning activity or static electricity build-up. Nearby lightning strikes or high levels of static electricity may lead to interface failure.

The Ethernet cable from the RFI-148/900250 to the Ethernet switch must be less than 10 metres long.

STI Engineering supplies a range of external data interface converters for applications requiring long cable runs.

#### 2.2 External Antennas

Long antenna feed lines cause RF loss, both in transmission and reception levels, and degrade link performance. When long cable runs are required use a suitable low-loss cable.

As an example, RG58 (tinned-copper braid) will exhibit a loss of 7.1 dB / 30 m at 148 MHz - 174 MHz, whereas RG58 CellFoil will exhibit 3 dB less (4.2 dB / 30 m).

Antennas should not be located within close reach of people, due to radiation hazard. Exposure guidelines should be followed at all times.



Use extreme caution when installing antennas and follow all instructions provided. Because external antennas are subject lightning strikes, STI Engineering recommends protecting all antennas against lighting strike by using lightning surge arrestors.

#### 2.3 Product Installation

The back panel of the AC model paging transmitter is shown below in Figure 1.

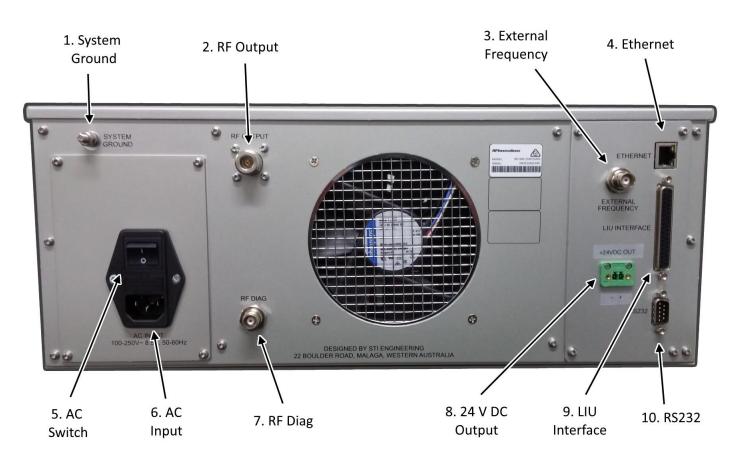



Figure 1: Paging Transmitter Back Panel (AC model shown)

- **1.** *System Ground:* External connection for system ground. When connecting a 24 VDC supply the negative line is connected to the system ground. When connecting a -48 VDC supply the positive line is connected to the system ground
- 2. *RF Output:* Modulated RF output from the paging transmitter. N-type female connector.
- **3.** External Frequency: External reference input for accurate channel synthesis. BNC female connector.
- **4.** *Ethernet:* Ethernet connection for configuration and diagnostics over UDP. RJ45 connector. The Ethernet cable from the RFI-148/900250 to the Ethernet switch must be less than 10 metres long.
- **5. AC Switch:** Power switch.

# **Appendix A Technical Specifications**

- **6.** *Power Supply Input:* The power supply input is model-specific. The AC input connector is shown in Figure 1.
  - **a.** 24VDC Model: 20 to 31.2 VDC input range for 24 V nominal. Phoenix terminal block connector.
  - **b.** -48VDC Model: -40.5 to -57 VDC input range for -48 V nominal. Phoenix terminal block connector.
  - c. 110/240VAC Model: 100 to 250 VAC, 50 to 60 Hz
- 7. **RF Diag:** Sniffer port for diagnostics. TNC female connector.
- 8. **24V DC Output (RFI-900 only):** Enabled via Cruise Control (*Encoder Interface* → 24 V DC *Output*), the RFI-900 can source up to 2A at 24V to an external load. Phoenix terminal block connector (plug supplied).
- **9.** *LIU Interface*: Combined alarm and encoder interface. DC-37 female connector.
- 10. RS-232: Rear serial port.
  - **a.** RFI-148: DE-9 male connector (DTE)
  - **b.** RFI-900: DE-9 female connector (DCE).

## 2.3.1 Installation Guidelines to Ensure Safe Exposure Levels

The following installation guidelines ensure that safe exposure levels to radio frequency radiation are not exceeded:

- 1. Ensure the unit is switched off, and the mains power supply is unplugged.
- 2. Properly connect antennas, and RF cabling.
- 3. Connect other cabling, leaving power cables last.
- 4. Ensure that the safe distance limits in Table 1 are met before powering and operating the unit, using physical exclusion barriers if necessary.



### 2.3.2 Typical Installation

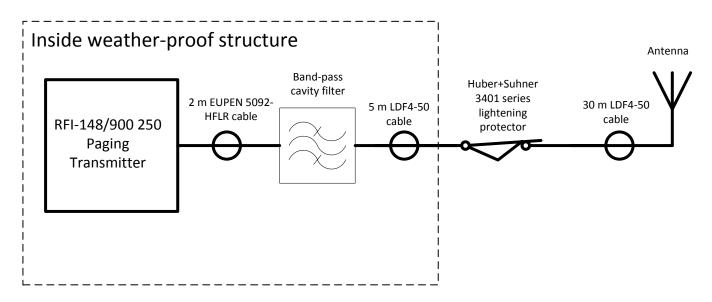



Figure 2: Typical installation components

In a typical installation the RFI-148/900 250 will be housed in a weather-proof structure. Inside the weather-proof structure a 2 m EUPEN 5092-HLFR cable will connect the antenna port of the RFI-148/900 250 to the input of a band-pass cavity filter (CV1417-0111-11 for RFI-148 or CV9296-0511-11 for RFI-900) . A 5 m run of LDF4-50 cable will connect to the output of the band-pass cavity filter, exit the weather-proof structure into the input of a Huber+Suhner 3401 series lightening protector mounted on the outside of the weather-proof structure. A 50 m run of LDF4-50 cable will connect to the output of the Huber+Suhner 3401 series lightening protector, run across to a 30 m antenna tower via a cable tray, then run up the tower to an antenna (COL54 for RFI148 or COL806 for RFI-900) mounted at the top. The installation is completely fenced off and secured with lock and key.

Antenna

High rise building distance > 40 m

Antenna
height ≈
30 m

Weather-proof
structure containing
RFI-148/900 250
paging transmitter

Installation is completely
fenced off.

A clear installation will provide optimal radio signal propagation.

Figure 3: Typical installation site



## 2.4 Safety and Compliance

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

# 2.4.1 Human Exposure to Emissions, Safe Distances

| RF radiation source                  | Safe distance | Notes                                             |  |
|--------------------------------------|---------------|---------------------------------------------------|--|
| RFI-148/900 250 mechanical enclosure | > 15 cm       |                                                   |  |
| Transmit signal RF cabling           | > 15 cm       |                                                   |  |
| Antenna < 6 dBi gain                 | > 7 m         | These distances are used to                       |  |
| Antenna < 8 dBi gain                 | > 8 m         | determine the minimum antenna height and distance |  |
| Antenna < 10 dBi gain                | > 10 m        | to nearest high-rise habitable structures         |  |
| Antenna < 12 dBi gain                | > 13 m        |                                                   |  |
| Antenna < 14 dBi gain                | > 16 m        |                                                   |  |

Table 1: Human exposure to emissions, safe distances

For further information on human RF exposure, contact your local health department. For example, Health Canada's Safety Code 6 provides a comprehensive set of Canadian guidelines.

# 2.4.2 Equipment Installation

Any devices that connect to the data ports must comply with clause 4.7 of EN 60950-1.

The installation should be in accordance with EN 50310:2010.

#### 2.4.3 Modifications

**CAUTION:** Changes or modifications not expressly approved by STI Engineering will void the user's authority to operate the equipment legally, as well as any warranty provided.



# 3. Configuration

#### 3.1 Overview

There are six interfaces available for configuration and diagnostic information to be monitored:

- Cruise Control management interface: All configuration and diagnostics parameters can be accessed using the Windows-based Cruise Control Graphical User Interface (GUI).
- SNMP interface: Support for diagnostics using SNMP through the RFI SNMP Proxy agent.
- *Terminal menu interface:* A navigable menu system is available that has all the configuration and diagnostics that Cruise Control provides.
- *AT command interface:* The AT command interface provides a subset of the configuration and diagnostic information available over Cruise Control with ASCII Hayes attention commands. For a list of AT commands see Appendix D Hayes AT Reference.
- *Front panel interface:* The front panel consists of six status LEDs and a transmit power gauge.
- *LIU interface:* The combined LIU interface has digital inputs and alarm outputs for limited configuration and diagnostic output.

#### 3.2 Cruise Control

This section outlines how to use Cruise Control with the paging transmitter. For more information see the Cruise Control User Manual. Figure 4 below is a screenshot of Cruise Control running on Windows 10.

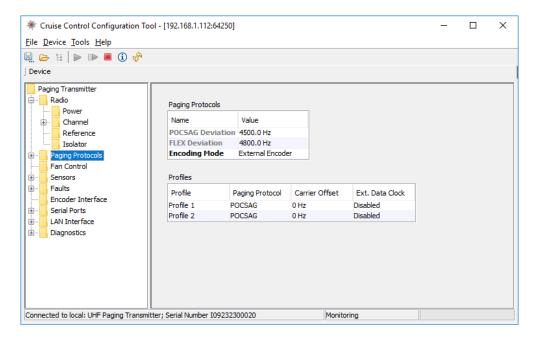



Figure 4: Cruise Control Interface



#### 3.2.1 Installation

The requirements for using the Cruise Control application are:

- Pentium III+ Processor.
- Windows XP (x86) or Windows 7 (x86 and x64).
- At least 1 available serial port or a network connection to the device.

## 3.2.2 Connecting to the Paging Transmitter

#### **SERIAL**

To connect to a device with RS-232, attach the paging transmitter to the PC running Cruise Control via a serial port. Configure the Cruise Control communication settings using <code>Device -> Configure Communications</code>, ensure that <code>Serial</code> is selected from the dropdown box and enter in the serial settings (The front serial port is locked to 19200 8N1).

Use the Device -> Connect to Local Device menu item to connect to the local device.

#### **ETHERNET**

To connect to a device over a network, the device IP address must be known. Configure the Cruise Control communication settings using Device -> Configure Communications, ensure that UDP is selected from the dropdown box and enter the device IP address. For the UDP port, enter 64250, 64251 or 64252.

The paging transmitter listens on UDP ports 64250, 64251 and 64252 for data and will not allow more than one simultaneous session per port. If the paging transmitter does not respond to Cruise Control on a UDP port, try another port as a connection could already be active on that port.

Use the Device -> Connect to Local Device menu item to connect to the device.

# 3.2.3 Device Navigation

Once all the settings have been downloaded from the device, the available configuration groups are displayed in a tree on the left. Items that can be configured in each group are displayed in tables on the right. The names of editable items are displayed in black. Read only items have their names in grey.

# 3.2.4 Sensor Gauges

Cruise Control can provide real-time operational information for paging transmitters using the Sensor Gauges plugin. A screenshot of the Sensor Gauges plugin is shown below in Figure 5.

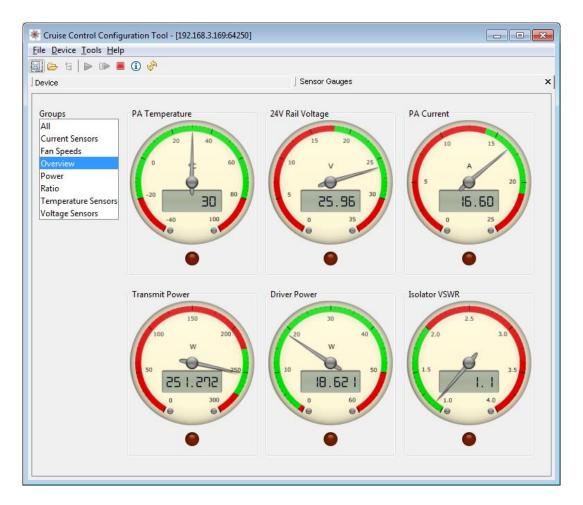



Figure 5: Cruise Control Sensor Gauges Plugin

To view Sensor Gauges for a paging transmitter, first connect to the paging transmitter using Cruise Control. Then use the Tools -> Plugins -> Sensor Gauges menu item to open the Sensor Gauges plugin.

The Sensor Gauges will automatically update, with the needles showing the current value of the gauge parameter. The green region indicates the expected normal operating value for the parameter. The upper and lower cut-off values for the sensor (see section 0) determine the range of the green region. There is a red indicator below each gauge which turns on when the parameter exceeds the upper or lower cut-off value.

The Groups option box on the left shows the different groups of gauges available, grouped by the unit of measurement of the sensor. There are also two additional groups, overview and all. The overview group provides a subset of the most informative gauges for quick diagnostic troubleshooting. The all group shows all of the gauges.

## 3.2.5 Firmware Update

Cruise Control supports the updating of device firmware. Cruise Control will only allow firmware images that are compatible with the paging transmitter to be uploaded. For more information, see section 0.



#### **3.3 SNMP**

RFI SNMP Proxy is an SNMP agent which allows configuration and diagnostics via SNMP. RFI SNMP Proxy can be installed on a Windows or Debian Linux system, including embedded devices capable of running Linux.

In smaller networks, RFI SNMP Proxy may be run on the same machine as an SNMP network monitoring application. SNMP communication may be done via IP loopback as shown in Figure 6. Alternatively, RFI SNMP Proxy may run on existing embedded devices connected to the transmitter by Ethernet, as shown in Figure 7.

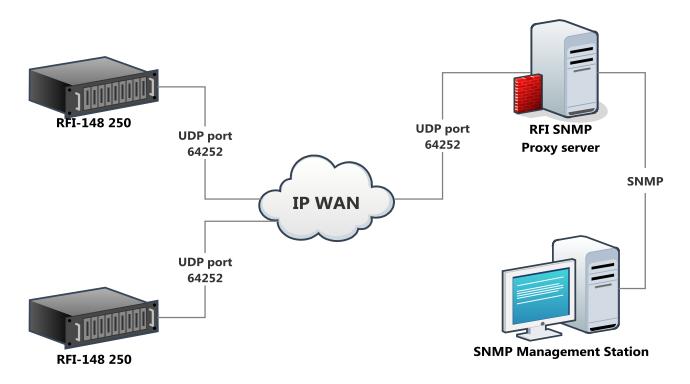



Figure 6: RFI SNMP Proxy running on a central server

SNMP versions 1 and 2c are supported. The community string 'public' should be used when issuing SNMP requests. RFI SNMP Proxy is compatible with standard SNMP managers and other SNMP client applications. An SMI MIB file defining OIDs for this product is available from STI Engineering.

RFI SNMP Proxy communicates with the paging transmitter via a proprietary protocol using UDP port 64252 through the Ethernet interface.

Not all configuration and diagnostic parameters may be accessed via SNMP. See Appendix C.2 for a list of values which may be accessed via SNMP.

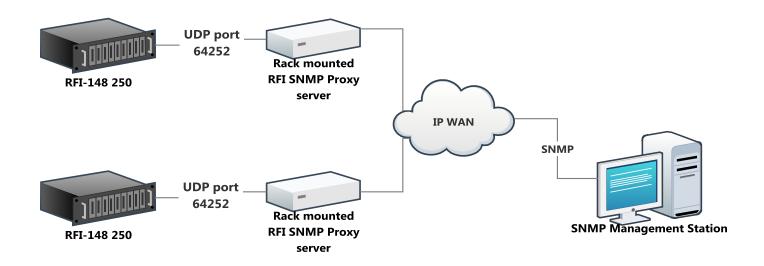



Figure 7: RFI SNMP Proxy running on embedded hardware on remote sites

#### 3.4 Terminal Menu Interface

The terminal menu provides access to all configuration parameters in the radio.

To access the terminal menu execute the AT? command at the Hayes AT command interface. See section 3.5 on page 17 for information on executing AT commands. The terminal menu will not be started if it is open on another port, instead the BUSY response is returned.

The terminal menu is available over serial, UDP (ports 64250 and 64251) and TCP (port 23).

# 3.5 Hayes AT Command Interface

The paging transmitter supports Hayes ATtention commands. These are used to query and change device configuration and probe performance parameters. AT commands are available via serial port, and via TCP port 23 on the Ethernet interface.

The format for the query and configuration AT command is:

#### Where:

- AT is the attention code. All AT commands must be prefixed with AT. This is case insensitive, so At, aT, or at can also be used.
- xxx is the actual command. The list of valid AT commands is given in Appendix D on page 54.
- <[II, I2, ... In]> is an optional section that allows the specification of an index. Indexes are used to access one of an array of similar items. For example, the paging transmitter has a list of sensor values which can be accessed using the ATI90 indexer. The command ATI90[0] will read the PA temperature, while the command ATI90[1] will read the driver temperature.
- <=value> is an optional section that is used to set the value of a configuration parameter. If this section is omitted, then the value of the configuration parameter will be displayed.
- <TERM> is the terminator for the AT command. A terminator can consist of a carriage return (ASCII value 13<sub>Decimal</sub>) or a carriage return followed by a line feed (ASCII value 10<sub>Decimal</sub>).



A response is generated for each AT command issued. Responses to AT commands are shown in Table 2.

| Response<br>Code | Response<br>Number | Description                                                                                                                  |  |  |
|------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| OK               | 0                  | Returned whenever a command is entered that is executed correctly.                                                           |  |  |
| ERROR            | 4                  | Returned whenever a command is invalid or could not be executed.                                                             |  |  |
| BUSY             | 7                  | Returned when an attempt is made to enable the menu via AT? but the menu system is already enabled on the other serial port. |  |  |

Table 2: AT command response codes

## 3.5.1 List Slicing Syntax

Multiple indexes of an indexer can be queried in a single AT command using the list slicing syntax. AT command sets cannot be used with the list slicing syntax. The list slice syntax uses the colon ':' operator to indicate a range of indexes to retrieve. Each value retrieved is printed on a new line.

For example, the AT command for retrieving a single sensor value is I90[n] where n is the index of the sensor. To retrieve the first four sensor values (PA, Driver, PA Ambient, and Isolator temperatures) the following syntax can be used:

```
ATI90[0:3]
45
42
39
30
OK
```

Figure 8: List slicing syntax on the current sensor value

Running the list slice operator ':' without specifying the range will return the length of the indexer:

```
ATI90[:]
27
OK
```

Figure 9: List slicing syntax for the length of an indexer

# 3.5.2 Sequenced AT Commands

A series of get AT commands can be concatenated into a single AT command, known as a sequenced AT command. AT command sets cannot be sequenced. A sequenced AT command begins with the attention code, AT, followed by a number of commands, followed by the terminator.

For example, the AT commands for the serial number, current channel, and main serial port baud rate are I6, S54 and S100[0], respectively. These commands can be run separately:



```
ATI6
F00012K01000
OK
ATS54
1
OK
ATS100[0]
8
OK
```

Figure 10: Separate AT commands

Alternatively, they can be concatenated and run as a sequenced command:

```
ATI6S54S100[0]
F00012K01000
1
8
OK
```

Figure 11: Sequenced AT command

#### 3.6 Front Panel Interface

The front panel interface consists of six status LEDs and a transmit power gauge. The panel is illustrated in Figure 12 and the function of each LED is described in Table 3.

| LED             | Colour    | Description                                                                                                          |  |
|-----------------|-----------|----------------------------------------------------------------------------------------------------------------------|--|
| Transmit On     | Green     | Turns on when the transmitter is on.                                                                                 |  |
| Fault           | Red       | Turns on when any fault is active. Will flash in unison with the Serial/Ethernet LED if there are serial errors.     |  |
| Low Power       | Red       | Turns on when the sensed transmit power is lower than the lower cut-off value as specified in the sensor parameters. |  |
| High VSWR       | Red       | Turns on when the isolator VSWR is higher than the higher cut-<br>off value as specified in the sensor parameters.   |  |
| Serial/Ethernet | Green     | Flashes when serial or Ethernet data is transmitted or received.                                                     |  |
| Power           | Green     | Turns on/off at 1 Hz while power is supplied.                                                                        |  |
| Power Gauge     | Green/Red | A bar graph displaying current transmit power.                                                                       |  |

Table 3: Front panel LED descriptions

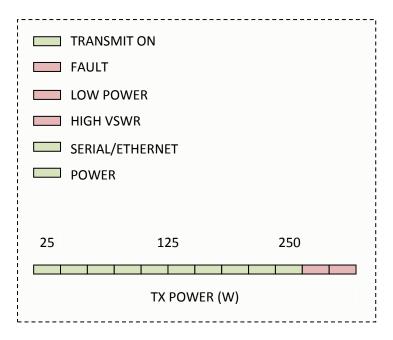



Figure 12: Front Panel Display

#### 3.7 LIU Interface

The LIU interface is a DC-37 female connector at the rear of the paging transmitter. The pin-out for the LIU Interface can be found in Appendix A.4. The LIU interface has nine digital inputs<sup>1</sup> and fourteen alarm outputs. The alarm outputs are numbered 1 to 13 with an additional combined alarm and are configurable. The digital inputs are:

- Frequency Select 1
- Frequency Select 2
- Frequency Select 3
- Frequency Select 4
- Protocol Select
- Hardware PTT
- Tx Data L-bit
- Tx Data H-bit
- Transmit Clock
- Aux Input 1 (RFI-148 only)

Use of the hardware PTT, protocol select and frequency select inputs are all optional and may be disabled in software. The use of the transmit clock is optional for 2-level protocols, but required for 4-level protocols.

-

<sup>&</sup>lt;sup>1</sup> RFi-148 has an extra, general purpose input "Aux Input 1," for a combined total of 10.



# 4. Operation

### 4.1 Serial Port Operation

Serial Ports -> [Rear|Front] Settings

## 4.1.1 Overview

The RFI-148/900250 has two RS-232 serial ports, providing support as shown in Table 1. The serial port pin-outs can be found in Appendix A.3 on page 45.

| Serial Ports |                       |                                                         |                  |  |
|--------------|-----------------------|---------------------------------------------------------|------------------|--|
| <b>T</b>     | <b>Connector Type</b> | Female DE9 (DCE)  TX, RX, GND.                          |                  |  |
| Front        | Supported             |                                                         |                  |  |
|              | G                     | RFI-148                                                 | RFI-900          |  |
| <b>D</b>     | Connector Type        | Male DE9 (DTE)                                          | Female DE9 (DCE) |  |
| Rear         | Supported             | TX, RX, and GND, RTS and DTR outputs CTS and DCD inputs |                  |  |

Table 4: Serial port availability.

## 4.1.2 Configuration

The rear serial port supports the following configuration options:

• Baud rate: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600 or 115200.

• Data bits: 7 or 8.

• Parity: None, odd, or even.

• Stop bits: 1 or 2.

The front serial port is locked into a specific configuration to ensure a fail-safe way to communicate with the paging transmitter:

• Baud rate: 19200.

• Data bits: 8.

• Parity: None.

• Stop bits: 1.

#### 4.1.3 Statistics

Statistics are maintained for both serial ports. These statistics are listed in Table 21 in Appendix C.1. All statistics are reset if power is removed.

# **Appendix A Technical Specifications**

These statistics may be useful in troubleshooting. For example, Rx framing errors may indicate that the serial port configuration does not match the serial port configuration of the link partner.

## **4.2 Ethernet Operation**

LAN Interface

#### 4.2.1 Overview

The paging transmitter has one 10BASE-T/100BASE-TX Ethernet port. Auto-negotiation of link speed is supported, including duplex mode. There is also a software override for forcing the parameters of the link.

## 4.2.2 IP Addressing

The paging transmitter supports IPv4. The paging transmitter may have a statically assigned IP address or obtain an IP address as a DHCP client.

A static IP address may be configured with a single static address. A subnet mask and default gateway may be configured to allow communication across sub-networks.

The paging transmitter may act as a DHCP client. This allows a DHCP server to assign an IP address to the paging transmitter. By default, the DHCP client is enabled and the hostname of the paging transmitter is of the form "rfi-serial\_number" where serial\_number is the factory assigned serial number of the unit. If the unit does not receive an IP address from the DHCP server, the IP interface will not work.

#### 4.2.3 Statistics

Both IP and Ethernet packet statistics are independently recorded and presented as combined figures for all active data streams since the transmitter was last powered-up. A power-cycle of the transmitter clears this data.

# 4.3 Transmitter Operation

#### 4.3.1 Transmit Power

Radio -> Power

The RFI-148/900250 supports transmit power from 20 to 250 Watts in 1 Watt increments.

#### **POWER FOLDBACK**

The power foldback is a configurable percentage which calculates the power to foldback to when the scale transmit power fault action is latched. For example, for a transmit power of 250 W and a power foldback of 50%, the transmitter will transmit at 125 W when the scale transmit power fault action is latched. See section 5.2.1 for more information on fault actions.

#### 4.3.2 Channel Selection

Radio -> Channel

The RFI-148/900250 has up to sixteen radio channels. Each channel represents a transmit frequency.



The channel frequencies can be set anywhere within the radio switching bandwidth, but must equal integer multiples of the raster frequency.

The channel to be used can be set by adjusting the current channel setting.

Encoder Interface -> Encoder Channel Control

#### **ENCODER CHANNEL CONTROL**

The active channel can be set by adjusting the current channel setting in software. Alternatively, "Encoder Channel Control" may be enabled and the channel set through the LIU interface as shown in Table 5 below. If encoder channel control is used, the channel cannot be changed in software.

| Channel | CH4 | СНЗ | CH2 | CH1 |
|---------|-----|-----|-----|-----|
| 1       | N/C | N/C | N/C | N/C |
| 2       | N/C | N/C | N/C | Gnd |
| 3       | N/C | N/C | Gnd | N/C |
| 4       | N/C | N/C | Gnd | Gnd |
| 5       | N/C | Gnd | N/C | N/C |
| 6       | N/C | Gnd | N/C | Gnd |
| 7       | N/C | Gnd | Gnd | N/C |
| 8       | N/C | Gnd | Gnd | Gnd |
| 9       | Gnd | N/C | N/C | N/C |
| 10      | Gnd | N/C | N/C | Gnd |
| 11      | Gnd | N/C | Gnd | N/C |
| 12      | Gnd | N/C | Gnd | Gnd |
| 13      | Gnd | Gnd | N/C | N/C |
| 14      | Gnd | Gnd | N/C | Gnd |
| 15      | Gnd | Gnd | Gnd | N/C |
| 16      | Gnd | Gnd | Gnd | Gnd |

Table 5: Channel selection via LIU Interface

# 4.3.3 Push-To-Talk (PTT)

There are three methods available to turn the transmitter on:

• **Software PTT:** Software PTT is available using Hayes AT commands, through the Cruise Control GUI, or through the terminal menu interface. It is also selected implicitly when enabling TNPP or PET/TAP on either a serial or Ethernet stream.



# **Appendix A Technical Specifications**

- *Hardware PTT*: Hardware PTT is available through the LIU connector. Hardware PTT can be configured to be active high or active low. The delay from hardware PTT to transmitter on and data ready is 10 ms.
- *Auto PTT*: Auto PTT is performed by detecting a change in the data bits on the LIU and turning on the transmitter. When using auto PTT some preamble will be lost; some encoders may need to increase preamble time.

Hardware PTT can be enabled using the "Encoder Hardware PTT" option and auto PTT can be enabled using the "Auto PTT" option in the "Encoder Interface" menu. Hardware PTT and auto PTT cannot both be enabled at the same time.

#### PTT TURN OFF DELAY

Radio -> PTT Turn Off Delay

The unit has the option to leave the transmitter on for a set duration after receiving a PTT off signal. This delay is driven by software and typically accurate to 100 ms.

#### TRANSMIT TIMEOUT

Radio -> Transmit Timeout

The unit can automatically raise a fault if the transmitter has been transmitting for too long. By default, the transmit timeout feature is disabled. If enabled, the transmit timeout fault causes the transmitter to key down and set the PTT system override to disable transmit. See section 5.2.1 for more information on fault actions.

Radio -> PTT Override

#### **PTT OVERRIDE**

Transmitter PTT can be completely disabled which stops the paging transmitter from transmitting. PTT override can be changed using the "PTT override" setting.

In some cases the paging transmitter will disable itself from transmitting. If PTT override is disabling transmit the "PTT Override Status" will describe what caused the override. There are five circumstances where the paging transmitter will override PTT:

- *User*: The PTT override has been configured to "Disable Transmit".
- *Listening:* The isolator mode is set for listening (for operation of the isolator see section 0).
- *Fault:* The disable transmit fault action is active (for more on fault actions see section 0).
- **Loading Config:** Cruise Control is loading a configuration file.
- *In Standby:* The unit is in Standby due to the Hot Standby operation (see section 7 Hot Standby Operation).

PTT is enabled once the source of the override is addressed.



#### HARDWARE PTT EDGE OR LEVEL DETECTION

The transmitter keys up due to the rising or falling edge of the hardware PTT signal – it is based on edge detection rather than sampling. However, there are three exceptions to this case where the hardware PTT signal is sampled to check for key up:

- When the unit powers up.
- When the hardware PTT configuration is changed from Disabled to Enabled.
- When the unit comes out of PTT Override.

#### 4.3.4 External Reference

Radio -> Reference

The transmitter supports an external reference for channel frequency generation.

To use the external reference, a 5 or 10 MHz sine or square wave -20 dBm to +15 dBm signal must be applied to the "External Frequency" input BNC connector on the back panel. The "Reference Mode" must then be configured to "External With Failover". The paging transmitter will use the internal reference by default.

The external reference frequency must be configured correctly in order to lock to the external reference. By default the external reference is configured to 10 MHz.

#### **AUTOMATIC REFERENCE SWITCHOVER**

If the external reference is selected as the default reference, the transmitter will switch to the internal reference in the event of the external reference failing. There are two conditions which characterise an external reference failure:

- The external reference is not detected. The external reference won't be detected if it is less than the specified input power.
- Cannot lock to external reference. If the frequency difference between the internal and external reference drifts too far, the paging transmitter will not lock to the external reference.

**NOTE:** If the paging transmitter is transmitting when reference switchover occurs, there may be data loss.

Radio -> Absolute Delay Adjustment

# 4.3.5 Absolute Delay Adjustment

The paging transmitter can insert a small artificial delay on data presented on the LIU interface before it is passed to the digital synthesiser. The delay adjustment can be set from 0 to 40 ms in 5  $\mu$ s steps. The additional net delay is accurate to  $\pm$  3  $\mu$ s.

Absolute delay adjustment can be used for matching delay in:

• Simulcast networks where transmitters from different manufacturers are used.



• Radio and leased line simulcast systems.

## 4.3.6 RF Diagnostics

Radio -> Isolator

The paging transmitter provides an RF diagnostics port output on the back panel. The RF diagnostics port can be configured for two different modes using the "Isolator Mode" setting:

- Set for Transmitting: The RF diagnostics port will output a signal identical to that of RF out but at a much lower power level.
- Set for Listening: Insertion loss from RF out to RF diag is decreased to 12 dB. This is a special mode of operation used for network testing. **NOTE:** While in listening mode, PTT override is forced to disable transmit.

#### LISTEN MODE TIMEOUT

A timeout can be enabled for listening mode. When the listening mode timeout is enabled, the isolator mode will automatically revert to transmitting mode after the timeout expires. The timeout starts when the isolator mode is set to listening mode. By default, the listening mode timeout is disabled.

#### ISOLATOR FEEDBACK

The isolator feedback is a read-only field that indicates the isolator status when the isolator is in listening mode. When the isolator mode is set to listening, the feedback status will change to "Switching" for one second and then change to "Listening Mode". However, if the status changes to "Listening Failure" then there may be a hardware failure of the mechanical attenuation switch-out.

#### 4.4 Data

The RFI-148/900250 supports the following modulation formats:

- **POCSAG:** Baud rates of 512, 1200 and 2400 bps (2-level FSK) are supported.
- *FLEX:* Baud rates of 1600 (2-level FSK), 3200 (2-level or 4-level FSK) and 6400 bps (4-level FSK) are supported.
- *Custom:* A customizable deviation and FSK level at baud rates up to 6400 bps. See section 0.

2-level FSK protocol data may optionally be clocked into the paging transmitter using the external data clock or may run asynchronously. 4-level FSK protocols must use the external data clock.

Encoder Interface -> 4-Level Operation

# 4.4.1 4-Level Deviation Mapping

When using 4-level FSK the deviation with respect to the H and L bits is outlined in Table 6 below. Note that two interpretations of the H-bit/L-bit are available, denoted as "Legacy" and "Normal" and configurable

# **Appendix A Technical Specifications**

via  $Encoder\ Interface \rightarrow 4$ -Level Operation. The "Legacy/Normal" operation was introduced in firmware 4.0, firmware versions prior to this operate implicitly in "Legacy" mode.

| H-Bit | L-bit | Deviation from Carrier (Hz) |                  |  |
|-------|-------|-----------------------------|------------------|--|
|       |       | Legacy                      | Normal           |  |
| N/C   | N/C   | $+\frac{F_d}{3}$            | $+\frac{F_d}{3}$ |  |
| N/C   | Gnd   | $+F_d$                      | $-\frac{F_d}{3}$ |  |
| Gnd   | N/C   | $-\frac{F_d}{3}$            | $+F_d$           |  |
| Gnd   | Gnd   | $-F_d$                      | $-F_d$           |  |

Table 6: Custom 4-level deviation frequency offsets

Where  $F_d$  is the deviation frequency in Hz.

Paging Protocols -> Profile [1|2] -> Carrier Offset

#### 4.4.2 Carrier Offset

The carrier offset setting is provided for use in simulcast paging networks. The offset from the carrier frequency can be specified for each protocol. The carrier offset can be set from +5000 to -5000 Hz in increments of 1 Hz.

#### 4.4.3 Custom Deviation

Paging Protocols -> Advanced

The transmitter supports generation of non-standard paging protocol settings. When the paging protocol custom is selected, the custom deviation and FSK level are used for that protocol. The custom deviation setting is useful for legacy paging systems with non-standard protocols and/or paging receivers.

Fan Control

#### 4.5 Fan Control

The transmitter has two fans for cooling; the front fan is an intake and the rear fan is the exhaust. The fans turn on at the configured fan turn on temperature, and then turn off at the configured fan turn off temperature. The temperature reference is configurable to either individual sensors, the hottest of all sensors on the PA and Isolator ('PA Group Sensors').

#### 4.5.1 Fan Override

There is a fan override feature available to force the fans to turn on at full speed. When fan override is set to always on the fans will turn on and ignore the reference temperature.



## 4.5.2 Self-Test

The fan controller has a self-test feature which causes the fans to run at full speed for a minute so fan operation can be verified. The self-test feature runs once every 24 hours by default.



# 5. Diagnostics

# **5.1 Status Monitoring**

Sensors -> Sensor Configuration

The paging transmitter has a number of sensors which are continuously monitored. The sensors are used to monitor:

- Internal voltage and current levels.
- Ambient and transmitter temperature.
- Fan operation.
- Transmitted and reflected power.

Each sensor has configurable upper and lower cut-offs that will cause a fault when exceeded. For example, if the driver temperature upper cut-off is exceeded, the high driver temperature fault will be set active.

A full list of sensors, units of measure, and range of values can be found in Appendix E.

## 5.1.1 Conditional Cut-off Checking

Some sensors are only compared against their upper and lower cut-offs under certain conditions, such as when the transmitter is on. The following sensors have conditional cut-off checking:

During transmission:

- Exciter current.
- PA current.
- Driver current.
- Reverse power.
- Transmit power.
- Driver power.
- Exciter power.
- Isolator VSWR.

While the fans are turned on to full speed:

- Front and rear fan current.
- Front and rear fan RPM.

A sensor that falls outside its cut-offs while its checking condition is met will cause the respective fault to become active. A non-latching fault will only be cleared once it has returned to within its cut-offs while its checking condition is met. A latching fault must be cleared in software.



## 5.1.2 Minimum and Maximum Sensor History

When a sensor exceeds a previous minimum or maximum value for that sensor, the new minimum or maximum value is saved to non-volatile storage. The minimum and maximum sensor values also use the conditional cut-off checking. For example, minimum and maximum transmit power values are only recorded during transmission. The sensor history can be cleared to aid in troubleshooting.

Faults -> Fault Configuration

#### 5.2 Faults

Undesirable operating conditions are reported using the faults feature of the paging transmitter. In most circumstances the paging transmitter should not have any active faults. Active faults indicate incorrect setup, a hardware issue or misconfiguration of the paging transmitter.

Faults can be in one of four states:

- *Inactive:* The fault is inactive.
- *Fleeting:* The source of the fault is currently active; however it has not been active longer than the minimum fault duration setting.
- Active: The source of the fault is currently active.
- Latched:
  - o For Faults: The fault was previously active but the source of the fault is no longer present.
  - o For Fault Actions: The fault action has been carried out.

A list of possible faults can be found in Appendix E.

#### 5.2.1 Fault Actions

Each fault can be configured to perform an action when the fault transitions from the inactive (or fleeting) to the active or latched state. The actions that are taken due to a fault are called *Fault Actions*. There are five fault actions:

- Reference switchover: The paging transmitter switches to the internal reference.
- *Disable transmission:* Any current transmission is interrupted, the transmitter is keyed down and future transmissions are disabled.
- *Scale transmit power:* Transmit power is reduced to a configured percentage. See section 0.
- Enable PA current fold-back: The PA current fold-back is engaged.
- Enable reverse power fold-back: The reverse power fold-back is engaged.

# **Appendix A Technical Specifications**

Each fault action operates as a fault itself; therefore when a fault action is taken, it can be seen as latched in the faults menu and logged in the fault history. Fault actions are latch-only and can only be cleared through user intervention. Any actions performed are reverted once the fault action is cleared.

## 5.2.2 Fleeting Faults

The minimum fault duration parameter determines how long the source of a fault is active until it is reported to the fault interface. A fault that does not reach the minimum fault duration will not be logged, activate a hardware alarm or trigger a fault action.

#### 5.2.3 Combined Fault

The combined fault is an optional fault that will become active if any fault within the combined fault set becomes active. Each fault can be configured to be part of the combined fault set. The combined fault will only become inactive when all of the faults in the combined fault set return to inactive. The combined fault has a dedicated alarm output.

## 5.2.4 Hardware Alarm Outputs

A hardware alarm output can be assigned to each fault (see Appendix A.4 for the LIU interface pin-outs). When the fault is in the active or latched state, the respective alarm will be set to active. Multiple faults can share the same alarm output. The alarm output will only be set inactive if all of the faults that use that alarm output are inactive.

A list of hardware alarms available can be found in section 3.7.

## 5.3 Remote Firmware Update and Snapshot

Diagnostics -> Firmware Update

# 5.3.1 **Update**

The remote firmware update feature is used to upload a firmware image to a paging transmitter for feature additions and/or bug fixes. Remote firmware update requires a Cruise Control connection to the paging transmitter and a valid RFI-148/900250 firmware image file.

The firmware update process has two stages: uploading the firmware image to the paging transmitter and applying the firmware image.

#### FIRMWARE IMAGE UPLOAD

To upload the firmware image to the paging transmitter first connect to the transmitter using Cruise Control. In the Cruise Control interface select <code>Device -> Load Firmware</code> from the toolbar. In the new window that appears, navigate to the directory where the firmware image file is located, select the file and click <code>Upload</code>. The upload process is displayed on the status bar in Cruise Control, near the bottom right. Once the upload is finished, the status will display "Monitoring".

Note that at this point the firmware image has not been applied. The firmware image is kept in non-volatile storage until it is required.



Once the firmware image has been uploaded, at any later date the firmware image can be applied.

#### APPLYING FIRMWARE IMAGE

To apply an uploaded firmware image, run the "Update Firmware Now" routine. The paging transmitter will reset to apply the image and will be unresponsive for up to one minute. Note that while the paging transmitter is applying the firmware image, it will not transmit, respond to AT commands or connect with Cruise Control.

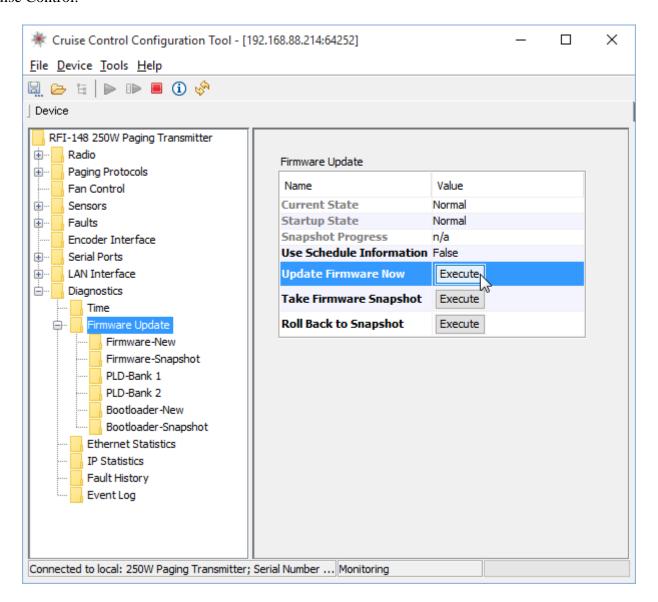



Figure 13: "Update Firmware Now" routine

When the firmware starts up after applying the new image the "Version String" can be inspected to ensure the new firmware image was loaded.

## 5.3.2 Snapshot

The paging transmitter has a firmware "Snapshot" used for recovering the paging transmitter to a previous state. The snapshot contains a backup of the current firmware and configuration.



# **Appendix A Technical Specifications**

To create a snapshot, run the "Take Firmware Snapshot" routine. The paging transmitter will continue operating normally during the snapshot process, which takes up to one minute to complete. The progress of the snapshot is displayed in the "Snapshot Progress" field.

The snapshot can be reverted to at any stage. This can be useful to revert back to a 'known good state' if the paging transmitter has been misconfigured or has been updated with an unwanted firmware update. To revert to the snapshot run the "Roll Back to Snapshot" routine. The paging transmitter will reset and take up to ninety seconds to revert back to the snapshot firmware and configuration. After reverting to a snapshot the paging transmitter will start up with the firmware update exception fault latched to notify that the snapshot was used.

By default, the paging transmitter has a factory snapshot that contains default factory firmware and configuration.

#### **5.4 Time**

#### 5.4.1 Real Time Clock

Diagnostics -> Time

A battery-backed real time clock is used to track the passage of time. An accurate time is not essential for the operation of the transmitter, but aids diagnostics and troubleshooting. The time is used for:

- Generating time stamps for:
  - o The transmitter fault history.
  - o Firmware update images.
- Transmitter uptime since power-up.
- A short history of transmitter events (PTT on, off).

#### TIME ZONE

The time zone can be specified in hours and minutes as an offset from Coordinated Universal Time (UTC).

LAN Interface -> SNTP

#### 5.4.2 SNTP Client

The transmitter supports time synchronisation using the Simple Network Time Protocol (SNTP) version 4. The SNTP client can be disabled or set to unicast mode. In unicast mode, the paging transmitter will query the configured time server for time updates at a configurable interval. By default the SNTP client is disabled.



# 6. Internal Encoding

#### 6.1 Overview

The RFI PTX supports both internal and external page message encoding:

- *External Encoding:* The historical and most common way of interfacing to the RFI PTX is by clocking in pre-encoded paging data using the TTL inputs on the LIU. The RFI PTX will typically interface with a Base Station Controller (BSC) that provides the encoded data.
- *Internal Encoding:* The RFI PTX supports internal encoding of the POCSAG paging standard for generating messages when submitted through the serial or Ethernet ports. Messages can be submitted using the industry standard TNPP, TAP, or PET protocols. A custom protocol developed by STI Engineering also provides an additional simple datagram protocol for submitting pages: "Page Datagram".

This section provides an overview of the internal encoding functionality.

When internal encoding is in use, the Hardware PTT and Auto PTT functions are disabled.

Paging Protocols -> POCSAG

## **6.2 POCSAG Settings**

The RFI PTX has several options for the POCSAG protocol in order to support differing networks:

- Preamble Length: The POCSAG preamble is used to wake up paging receivers and allow them to lock to the incoming signal. A default value of 576 bits is used which is the de facto standard for POCSAG.
- Function Override: Allows the function bits in a POCSAG address codeword to be overridden to this value. By default the function bits will follow the message encoding (00: Numeric, 01: Tone-only, 11: Alpha-numeric). The function bits have also been known as the "Group Code".
- Purge Timeout: The RFI PTX waits up until the purge timer in order to collate incoming page subsmissions into a single large transmission. This saves on overhead of having to repeat the preamble. Shorter Purge Timeouts will produce lower latency on page submission to transmission, at the possible expense of lower throughput when sending many page
   Paging Protocols -> POCSAG -> Page Repeat Rules messages.

#### PAGE REPEATING

The RFI PTX supports a set of rules that trigger the repetition of a submitted page messages. When a rule is enabled any messages which match the cap code will be repeated *Count* number of times every *Delay* seconds.



## **6.3 Protocols Supported**

Paging Protocols -> Encoding Mode

All protocols are accessible through either the rear serial port or the Ethernet port via TCP or UDP port 64250.

6.3.1 TNPP

Paging Protocols -> TNPP

The RFI PTX supports the ETE REQ and CAP PAGE block types. The TNPP station address is configurable.

6.3.2 PET

Paging Protocols -> TAP/PET

The RFI PTX supports the PG1 and PG3 page submission types. Note that the page "zone" for PG3 has no effect on the RFI PTX and it only accepts this value for backwards compatibility. Also accepted is a password up to length 6 characters. The password is not checked and also exists only for backwards compatibility.

There are several options available to allow for differences in PET implementations:

- Line Separator: The RFI PTX can print either a carriage return (<CR>) or a carriage return and line feed (<CR><LF>) for line separation. Note that the RFI PTX only accepts lines separated by <CR>.
- Timeout: The timeout while expecting the next command string is configurable. The RFI PTX starts a timer when it is expecting more data. If the timeout expires the RFI PTX PET parsing returns to either the *Idle* or *Logged In* state.
- Baud Rate: Due to PET not having a way to submit baud rate with page messages, the baud rate must be pre-configured. Standard POCSAG baud rates of 512, 1200, and 2400 are supported.
- Stay Logged In: This option allows the RFI PTX to remain in the *Logged In* state (ie, after the PG1 and password sequence) so messages can be submitted without having to handshake the connection each time. This option can be used in conjunction with Implied Login to skip handshaking altogether.
- Implied Login: If the <STX> character (the start of a message submission) is sent to the RFI PTX this option allows the RFI PTX to transition directly to message submission state and skip the login handshaking.
- Detect Numeric Pages: Encode a paging message as numeric if all characters within the message fit the numeric encoding scheme (ie, all characters are any of the following: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '!', 'U', '', '-', ']', '[').

Paging Protocols -> TAP/PET

#### 6.3.3 TAP

The TAP protocol is treated the same as PET, however with some extensions:



• Group Code: The RFI PTX can be configured to accept a group code that trails the pager ID during a message submission. The group code can be 'A', 'B', 'C', or 'D' when set for "Trailing Character", or '1', '2', '3', '4' when set to "Trailing Digit".

## 6.3.4 Page Datagram

Paging Protocols -> Page Datagram

The Page Datagram protocol is request-response. The maximum datagram length including the sync and CRC-32 fields is 265 bytes. Any datagrams larger than this will be dropped without response.

The general format of the protocol is (size in bytes of field shown in parenthesis):

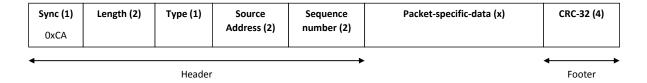



Figure 14: Page datagram generic format

The general fields are:

- Sync (1): The datagram sync byte, always 0xCA
- Length (2): The length of the datagram, minus the 3-byte header (sync, length)
- Type (1): The type of the page datagram, see below
- Source Address (2): The address of the RTU to which the reply (if any) should be sent. This can be set to 0xFFFF if unused
- Sequence number (2): An incrementing sequence number for confirming replies. This can be set to 0 if unused
- Packet-specific-data (x): Changes depending on the type field. Each type is shown in the following section
- CRC-32 (4): 32-bit CRC generated by the polynomial 0xEDB8832, with a starting value of 0xFFFFFFF and the resulting value XOR'd with 0xFFFFFFF. The CRC-32 is generated over the whole datagram excluding the Sync and CRC field.

#### **PAGE SUBMIT**

Submits a page message for transmission by the RFI PTX. The format of the page submit packet is shown in Figure 15.

| <header></header> | Message<br>length (2) | Baud rate<br>(2) | Page<br>class (1) | Cap code<br>(4) | Function override (1) | Message (x) | <footer></footer> |
|-------------------|-----------------------|------------------|-------------------|-----------------|-----------------------|-------------|-------------------|
|                   | 10118111 (2)          | \-,              | 0.035 (2)         | ( ' '           | 01011100 (2)          |             |                   |

Figure 15: Page submission packet format

The fields are:

- <header>: The generic header shown in Figure 14 with the type field set to 0
- Message length (2): The length of the "Message (x)" field (the only variable length portion of this packet)

- Baud rate (2): The baud rate as an integer (ie, 512, 1200, 2400).
- Page class (1): Determines the encoding of the message, one of:
  - o 0: Numerical encoding
  - 1: A tone-only message no message codewords are sent, only an address codeword. The message field should be empty
  - 3: Alpha numeric encoding
- Cap code (4): Also known as pager ID, pager address, pager number, etc. The destination cap code for this message. For POCASG the valid cap codes are 1 to (2^21)-1
- Function override (1): When set to 0, does not override the "function" bits in the address codeword and instead uses the page class to determine the function bits. When set to 1 through 4 will encode the page as per the page class format, however it will override the function bits to this value.
- Message (x): 0 to 239 bytes long message
- <footer>: The generic footer shown in Figure 14

## SUBMIT RESPONSE

A reply datagram generated by the RFI PTX. The format of the submit response is shown in Figure 16.

| <header></header> | Response<br>code (4) | <footer></footer> |
|-------------------|----------------------|-------------------|
|                   |                      |                   |

Figure 16: Submit response packet format

## The fields are:

- <header>: The generic header shown in Figure 14 with the type field set to 1.
- Response code (4): A 32-bit response code:
  - o 0x0: Page submission succeeded
  - o 0x1: Page submission failed: too many pages in queue
  - o 0x2: Unknown datagram type field
  - 0x3: Unexpected packet length
  - o 0x4: Page submission failed: general error
  - o 0x10: Nothing was performed this is a link test reply
- <footer>: The generic footer shown in Figure 14.

#### **LINK TEST**

A link test is a query with no side effects that confirms the RFI PTX is "alive" and receiving datagrams. The reply to a link test query is a submit response but with the response code of 0x10.

The format of the link test query is shown in Figure 17.



Figure 17: Link test query packet format

## The fields are:

- <header>: The generic header shown in Figure 14 with the type field set to 2.
- <footer>: The generic footer shown in Figure 14.

## **6.4 Test Functions**

Paging Protocols -> Test

When internal encoding is enabled the RFI PTX can generate test messages as a simple means to confirm site operation or perform extended site surveys.



# 7. Hot Standby Operation

## 7.1 Overview

Encoder Interface -> Hot Standby

Hot standby operation allows the transmitter to operate in sites with high uptime requirements. It features automatic fail-over to a secondary transmitter. Hot standby operation is an optional variant to the RFI-148 and RFI-900 that requires an additional external control unit ("RFI-PHSB": **P**aging transmitting **H**ot-Standby **B**ox). The installation of such a system is illustrated in Figure 18.

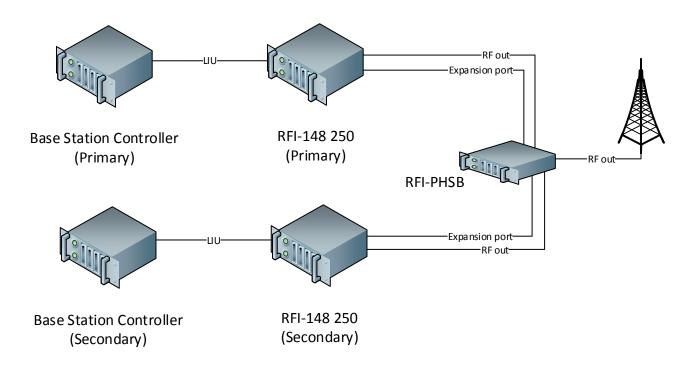



Figure 18: Hot standby system

The RFI-PHSB contains a high power RF switch to ensure minimal signal loss from the active RFI-148 250 to the antenna.

The pair of RFI-148 250 transmitters assume either a Primary or Secondary role. The role of the transmitter is determined by which port it is connected to the RFI-PHSB, there are two ports "Primary" and "Secondary". The typical behaviour is that the Primary RFI-148 250 is keying up and sending paging data.

# 7.2 Configuration

The hot standby operation is configured with the *Standby Mode* setting:

- Disabled (Default): The PTX is not operating in a hot standby environment and operates as normal
- Hardware: The Can Go Active signal is presented on pin 17 of the LIU. Active High.
- Software: The *Can Go Active* signal is controlled via Hayes AT command or Cruise Control.



Any changes to Standby Mode or installing the expansion port connector requires a power cycle to take effect.

## 7.3 Operation

The Primary RFI-148 250 has control of the RF switch position. The default switch position, when no Primary unit exists or the RFI-PHSB is unpowered, is for the Secondary unit. Upon power up the Primary unit will always favour itself for the RF switch position, but the power up default is to leave the switch in the Secondary unit position.

The Primary unit will change the RF switch to itself when <u>all</u> three signals <u>satisfy</u> the conditions:

- "Can Go Active" is True
  - o For Hardware Standby Mode: Pin 17 is HIGH
  - For Software Standby Mode: "Can Go Active (SW)" is set to "True" (Hayes command: ATM12=1)"
- "TX Fault" is False (See section 7.4 below)
- "PTT" is Inactive

The Primary unit will change the RF switch to the Secondary unit if <u>any</u> two signals <u>violate</u> the conditions:

- "Can Go Active" is True
- "TX Fault" is False

Both the Primary and Second units know what position the switch is in. If the unit does not hold the switch position, transmission is disabled using the "PTT Override" feature. In this case "PTT Override Status" will read "DISABLED:In Standby". Because of this behaviour, the Base Station Controllers providing encoded paging data and PTT need not know of the RF switch position.

Faults -> Fault Configuration -> Go Standby

#### 7.4 Switchover Faults

An additional option per fault is provided that is the source of the "TX Fault" signal. By default, any faults that would usually cause paging messages to fail to transmit will assert the "TX Fault" signal. This is configurable per-fault within the Faults menu as the "Go Standby" option.

Encoder Interface -> External I/O

#### 7.5 Hardware Feedback

Two open-collector MOSFET outputs report a summary of the unit state:

• IN STANDBY (LIU pin 23): Active when the unit is in Standby mode (ie, PTT disabled)



IS PRIMARY (LIU pin 24): Active if the unit is the Primary unit



# **A.1 Type Approvals**

| RFI-148                 |                                          |                              |  |  |
|-------------------------|------------------------------------------|------------------------------|--|--|
| Australia / New Zealand | AS NZS 4769.1                            | Australian Supplier ID: N161 |  |  |
| FCC                     | CFR 47 Part 15 and Part 90               | FCC ID P5MRFI148             |  |  |
| ETSI                    | ETSI EN 300 113, EN 301<br>489, EN 60950 | N/A                          |  |  |

Table 7: RFI-148 type approvals

| RFI-900 |                            |                  |
|---------|----------------------------|------------------|
| FCC     | CFR 47 Part 15 and Part 90 | FCC ID P5MRFI900 |

Table 8: RFI-900 type approvals

# A.2 RFI-148/900250 Specifications

| RF Operating Bandwidth                    | RFI-148                                                                                      | RFI-900           |  |  |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------|-------------------|--|--|--|
|                                           | 138 MHz – 174 MHz                                                                            | 929 MHz – 932 MHz |  |  |  |
| RF Switching Bandwidth                    | RFI-148                                                                                      | RFI-900           |  |  |  |
|                                           | 2.5 MHz                                                                                      | 3MHz              |  |  |  |
| RF Channel Spacing                        | 12.5 kHz, 20 kHz, 25 kHz                                                                     |                   |  |  |  |
| RF Channel Occupation                     |                                                                                              |                   |  |  |  |
| POCSAG 512                                | 6.25 kHz (wide) 3.18 kHz (narr                                                               | ow)               |  |  |  |
| POCSAG 1200                               | 6.30 kHz (wide) 3.20 kHz (narr                                                               | ow)               |  |  |  |
| POCSAG 2400                               | 7.45 kHz (wide) 3.78 kHz (narr                                                               | ow)               |  |  |  |
| FLEX-2 1600                               | 6.90 kHz (wide) 3.50 kHz (narrow)                                                            |                   |  |  |  |
| FLEX-2 3200                               | 7.30 kHz (wide) 3.70 kHz (narrow)                                                            |                   |  |  |  |
| FLEX-4 3200                               | 7.00 kHz (wide) 3.55 kHz (narrow)                                                            |                   |  |  |  |
| FLEX-4 6400                               | 7.80 kHz (wide) 3.95 kHz (narrow)                                                            |                   |  |  |  |
| RF Frequency Raster                       | Selectable: 30kHz, 25 kHz, 20 kHz, 15kHz, 12.5 kHz, 10 kHz, 7.5kHz, 6.25 kHz, 5 kHz, 2.5kHz. |                   |  |  |  |
| RF Output                                 | 20 to 250 Watts +/- 0.5 dB                                                                   |                   |  |  |  |
| RF Diag                                   | Transmitting mode power level: -50 dBm Listening mode insertion loss: 12 dB +/- 2 dB         |                   |  |  |  |
| Internal Reference                        | Frequency: 10 MHz                                                                            |                   |  |  |  |
| Internal reference                        | Stability: +/- 1 ppm (-30 to +75 degrees C)                                                  |                   |  |  |  |
| External Reference Frequency: 5 or 10 MHz |                                                                                              |                   |  |  |  |
|                                           | Amplitude: -20 to 15 dBm                                                                     |                   |  |  |  |

| Modulation                                 | <ul> <li>POCSAG 512, 1200, 2400 bps (2-level FSK).</li> <li>FLEX 1600 (2-level FSK), 3200 (2- or 4-level FSK), 6400 bps (4-level FSK).</li> </ul>                                                                                                                                                                                                               |                                                                                                                                                                                                                                    |                             |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| Real-time Clock                            | Time drift: 1 hour after 10 years Battery life: 43 years (estimated)                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    |                             |  |
| Ethernet Port                              | 10BASE-T/100BASE-TX, auto-negotiating.                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |                             |  |
| Serial Ports                               | Baud rates (rea<br>19200, 38400,<br>Data bits (rear<br>Parity (rear po<br>Stop bits (rear<br>Flow control (rear<br>Control lines (rear                                                                                                                                                                                                                          | nous full-duplex RS-232 ar port only): 300, 600, 1200 57600, 115200 bps port only): 7 or 8 rt only): None, odd, or even port only): 1 or 2 rear port only): None or hard rear port only): RTS, CTS, I figuration locked to 19200 8 | dware (RTS/CTS)<br>DTR, DCD |  |
|                                            | Rear Port                                                                                                                                                                                                                                                                                                                                                       | RFI-148                                                                                                                                                                                                                            | RFI-900                     |  |
|                                            | Rear Port                                                                                                                                                                                                                                                                                                                                                       | DTE                                                                                                                                                                                                                                | DCE                         |  |
|                                            | <ul> <li>TTL Schmitt trigger with internal 100 KΩ pull-up.</li> <li>Frequency Select 1</li> <li>Frequency Select 2</li> <li>Frequency Select 3</li> <li>Frequency Select 4</li> <li>Protocol Select</li> <li>Hardware PTT</li> <li>Tx Data L-bit</li> <li>Tx Data H-bit</li> <li>Transmit Clock</li> <li>Aux Input 1 (General purpose, RFI-148 only)</li> </ul> |                                                                                                                                                                                                                                    |                             |  |
| Alarm Outputs                              | Open-collector                                                                                                                                                                                                                                                                                                                                                  | Darlington with 500 mA si                                                                                                                                                                                                          | nk current.                 |  |
| Input Voltage (Model specific)             | -48VDC Mode<br>110/240V AC                                                                                                                                                                                                                                                                                                                                      | l: 20 V to 31.2 V for 24 V no<br>el: -40.5 V to -57 V for -48 V<br>Model: 100 to 250 V AC, 50                                                                                                                                      | V nominal                   |  |
| Operating Temperature 24 V DC and -48 V DC | -30 to 55 °C                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                             |  |
| Operating Temperature 110/240VAC           | -30 to 50 <sup>0</sup> C                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                    |                             |  |
| Connectors (DC model)                      | mount plug Ph<br>Front Serial Po                                                                                                                                                                                                                                                                                                                                | rminal block Phoenix Conta<br>oenix Contact 1967456.<br>ort: DE-9 RS-232 Female (D<br>DC-37 Female                                                                                                                                 |                             |  |



|                          | RF Output: N-type female $50~\Omega$<br>RF Diag: TNC female $50~\Omega$<br>External Reference Input: BNC female |  |                             |                           |
|--------------------------|-----------------------------------------------------------------------------------------------------------------|--|-----------------------------|---------------------------|
|                          | Rear Serial Port RFI-9                                                                                          |  |                             | RFI-148                   |
|                          |                                                                                                                 |  | DE-9 RS-232<br>Female (DCE) | DE-9 RS-232<br>Male (DTE) |
| DC Output (RFI-900 only) | Voltage 24V Max. Load 2A                                                                                        |  |                             |                           |
|                          |                                                                                                                 |  |                             |                           |

Table 9: RFI-148/900250 Specifications

|                                    | RFI-148 current draw |                  |  |  |  |
|------------------------------------|----------------------|------------------|--|--|--|
| Typical Current Draw at 24 V DC.   | AMCA, FCC            | ETSI             |  |  |  |
|                                    | • Idle: 0.6 A        | • Idle: 0.6 A    |  |  |  |
|                                    | • 20 W: 5.85 A       | • 20 W: 6.03 A   |  |  |  |
|                                    | • 100 W: 11.58 A     | • 100 W: 11.79 A |  |  |  |
|                                    | • 250 W: 17.28 A     | • 250 W: 19.05 A |  |  |  |
| Typical Current Draw at - 48 V DC. | AMCA, FCC            | ETSI             |  |  |  |
|                                    | • Idle: 0.5 A        | • Idle: 0.5 A    |  |  |  |
|                                    | • 20 W: 3.42 A       | • 20 W: 3.52 A   |  |  |  |
|                                    | • 100 W: 6.51 A      | • 100 W: 6.89 A  |  |  |  |
|                                    | • 250 W: 10.31 A     | • 250 W: 11.48 A |  |  |  |
| Typical Current Draw at            | ACMA, FCC            | ETSI             |  |  |  |
| 240 V AC                           | • Idle: 0.10 A       | • Idle: 0.10 A   |  |  |  |
|                                    | • 20 W: 0.79 A       | • 20 W: 0.82 A   |  |  |  |
|                                    | • 100 W: 1.43 A      | • 100 W: 1.46 A  |  |  |  |
|                                    | • 250 W: 2.14 A      | • 250 W: 2.36 A  |  |  |  |

Table 10: RFI-148 current draw

| RFI-900 current draw             |                                                                                                                                                                 |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Typical Current Draw at 120 V AC | Figures quoted are with fans on unless specified.  • Idle (Fans off): 0.48 A  • 20 W: 2.01 A  • 50 W: 2.84 A  • 100 W: 3.93 A  • 200 W: 5.56 A  • 250 W: 6.22 A |  |  |

Table 11: RFI-900 current draw



## **A.3 Serial Connectors**

## A.3.1 Rear Serial Port

| Pin  | Function | Direction |         |  |
|------|----------|-----------|---------|--|
| PIII | Function | RFI-148   | RFI-900 |  |
| 1    | DCD      | Input     | Output  |  |
| 2    | RxD      | Input     | Output  |  |
| 3    | TxD      | Output    | Input   |  |
| 4    | DTR      | Output    | Input   |  |
| 5    | GND      |           |         |  |
| 6    | N/A      |           |         |  |
| 7    | RTS      | Output    | Input   |  |
| 8    | CTS      | Input     | Output  |  |
| 9    | N/A      |           |         |  |

Table 12: Back Panel Connector Pin OutRFI-900

# A.3.2 Front Serial Port (DCE)

| Pin | Function | Direction |
|-----|----------|-----------|
| 1   | N/A      |           |
| 2   | RxD      | Output    |
| 3   | TxD      | Input     |
| 4   | N/A      |           |
| 5   | GND      |           |
| 6   | N/A      |           |
| 7   | N/A      |           |
| 8   | N/A      |           |
| 9   | N/A      |           |

Table 13: Front Connector Pin Out

## A.4 LIU Interface

| Pin | Function        | Label | Direction |
|-----|-----------------|-------|-----------|
| 1   | Protocol Select | PRO   | Input     |
| 2   | Alarm 3         | ALM3  | Output    |
| 3   | Alarm 10        | ALM10 | Output    |
| 4   | Alarm 11        | ALM11 | Output    |



| 5               | Frequency         | Select 4                                                             | CH4         | Input  |
|-----------------|-------------------|----------------------------------------------------------------------|-------------|--------|
| 6               | Frequency         | Select 3                                                             | CH3         | Input  |
| 7               | Frequency         | Select 2                                                             | CH2         | Input  |
| 8               | Frequency         | Select 1                                                             | CH1         | Input  |
| 9               | GND               |                                                                      | GND         |        |
| 10              | GND               |                                                                      | GND         |        |
| 11              | Hardware l        | PTT                                                                  | PTT         | Input  |
| 12              | Combined          | Alarm                                                                | COMB        | Output |
| 13 <sup>2</sup> | Auxiliary I       | nput 1                                                               | Aux Input 1 | Input  |
| 14              | Alarm 1           |                                                                      | ALM1        | Output |
| 15              | Tx Data L-        | bit                                                                  | LB          | Input  |
| 16              | Tx Data H-        | -bit                                                                 | НВ          | Input  |
| 17              | LIU Detect        | t OR Hot Standby "Can Go Active"                                     | DET         | Input  |
| 18              | Tx Data Cl        | ock                                                                  | CLK         | Input  |
| 19              | GND               |                                                                      | GND         |        |
| 20              | Alarm 2           |                                                                      | ALM2        | Output |
| 21              | Alarm 7           |                                                                      | ALM7        | Output |
| 22              | Alarm 4           |                                                                      | ALM4        | Output |
| 23              | Alarm 12 <u>C</u> | <u>DR</u> Hot Standby "IN STANDBY"                                   | ALM12       | Output |
| 24              | Alarm 13 <u>C</u> | <u>DR</u> Hot Standby "IS PRIMARY"                                   | ALM13       | Output |
| 25              | N/A               |                                                                      |             |        |
| 26              | Alarm 9           |                                                                      | ALM9        | Output |
| 27              | N/A               |                                                                      |             |        |
| 28              | N/A               |                                                                      |             |        |
| 29              | Alarm 5           |                                                                      | ALM5        | Output |
| 30              | Alarm 6           |                                                                      | ALM6        | Output |
| 31              | Alarm 8           |                                                                      | ALM8        | Output |
| 32              | +5 V              |                                                                      | 5V          | Output |
| 33              | +5 V              |                                                                      | 5V          | Output |
| 24              | RFI-148           | +12 V                                                                | 12V         | 04     |
| 34              | RFI-900           | +24V                                                                 | 24V         | Output |
|                 | RFI-148           | +12 V                                                                | 12V         | 0 4 4  |
| 35              | RFI-900           | +24V                                                                 | 24V         | Output |
| 36              | RFI-148           | +24 V nominal (Note: identical to DC input voltage for 24 VDC model) | 24V         | Output |

 $<sup>^{2}</sup>$  A general purpose input available on the RFI-148 only.



|    | RFI-900 | 1-900 +48 V nominal (Note: identical to DC input voltage) 48V        |     |        |
|----|---------|----------------------------------------------------------------------|-----|--------|
| 37 | RFI-148 | +24 V nominal (Note: identical to DC input voltage for 24 VDC model) | 24V | Ontout |
|    | RFI-900 | +48 V nominal (Note: identical to DC input voltage)                  | 48V | Output |

Table 14: LIU Interface Pin Out

|                                  | Non-exciter-based build                              | Exciter-based build                                                                  |
|----------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|
| Interface standards              | 5 V CMOS                                             | 5 V CMOS                                                                             |
|                                  | 5 V TTL (with modification)                          | 5 V TTL                                                                              |
|                                  | 3.3 TTL (with modification)                          | 3.3 TTL                                                                              |
|                                  | 3.3 CMOS (with modification)                         | 3.3 CMOS                                                                             |
| Input resistance                 | Schmitt trigger with internal 33 K $\Omega$ pull-up. | Schmitt trigger with internal 100 KΩ pull-up (148P306-B), 33 KΩ pull-up (148P306-C). |
| Nominal logic high input voltage | 3.3 V to 5 V                                         | 3.3 V to 5 V                                                                         |
| Minimum logic high input voltage | 3.5 V                                                | 2.5 V                                                                                |
| Maximum logic high input voltage | 12 V                                                 | 12 V                                                                                 |
| Nominal logic low input voltage  | 0 V                                                  | 0 V                                                                                  |
| Maximum logic low input voltage  | 1.5 V                                                | 0.5 V                                                                                |
| Minimum logic low input voltage  | -12 V                                                | -12 V                                                                                |
| Over voltage protection          | ±12 V                                                | ±12 V                                                                                |

Table 15: LIU Encoder Input Specifications

|                        | Non-exciter-based build | Exciter-based build       |
|------------------------|-------------------------|---------------------------|
| Output transistor type | Open collector MOSFET   | Open collector Darlington |
| Maximum sink current   | 500 mA                  | 50 mA                     |
| Maximum output voltage | 50 V                    | 12 V                      |

Table 16: LIU Alarm Output Specifications



# **Appendix B Controller Configurations**

The following section provides example wiring between the transmitter and some common controllers.

## **B.1 Motorola NIU Controller / FLEX Mode**

| External NIU(TB3, TB4) | Transmitter (LIU, DC37) |
|------------------------|-------------------------|
| TB3-2: Tx Clock        | DC37-18: CLK            |
| TB3-4: Tx key          | DC37-11: PTT            |
| TB3-8: GND             | DC37-19: GND            |
| TB4-2: Rx FQ1          | DC37-15: LB             |
| TB4-3: Rx FQ2          | DC37-16: HB             |

Table 17: Motorola NIU Controller / FLEX Mode Connection

## **B.2 Glenayre C2000 Controller / FLEX Mode**

| C2000 (J4)         | Transmitter (LIU, DC37) |
|--------------------|-------------------------|
| J4-10: GND         | DC37-19: GND            |
| J4-26: TXKEY+      | DC37-11: PTT            |
| J4-3: TD0+, MSB    | DC37-16: HB             |
| J4-34: TD1+, LSB   | DC37-15: LB             |
| J4-18: Data Clock+ | DC37-18: CLK            |
| J4-7: Freq2        | DC37-6: CH3             |
| J4-6: Freq1        | DC37-7: CH2             |
| J4-36: Freq0       | DC37-8: CH1             |

Table 18: Glenayre C2000 Controller / FLEX Mode Connection

# **B.3 Glenayre C2000 Controller / POCSAG Mode**

| Encoder | Transmitter (LIU, DC37) |
|---------|-------------------------|
| Tx Data | DC37-15: LB             |
| PTT     | DC37-11: PTT            |
| GND     | DC37-19: GND            |

Table 19: Glenayre C2000 Controller / POCSAG Mode Connection



# **B.4 Zetron Model 66 Transmitter Controller / POCSAG Mode**

| Model 66          | Transmitter (DC37) |
|-------------------|--------------------|
| DIG DATA (pin 10) | DC37-15: LB        |
| DIG PTT (pin 7)   | DC37-11: PTT       |
| GND (pin 3)       | DC37-19: GND       |

Table 20: Zetron Model 66 Controller / POCSAG Mode Connection



# **Appendix C Management Reference**

# **C.1 Serial Port Diagnostics**

| Name         | Description                                                                                                                           | AT         |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------|------------|
| Rx Total     | The size of the input buffer.                                                                                                         | I20[p,0]   |
| Rx Used      | The number of bytes currently stored in the input buffer.                                                                             | I20[p,1]   |
| Rx Bytes     | The total number of bytes received.                                                                                                   | [120[p,2]  |
| Rx Errors    | The total number of receive errors that have occurred. Sum of Rx Overflows, Rx Overruns, Rx Framing, and Rx Parity errors.            | I20[p,3]   |
| Rx Overflows | The number of receive overflow errors that have occurred. An overflow occurs when data is received, but the buffer is full.           | I20[p,4]   |
| Rx Overruns  | The number of overrun errors that have occurred. An overrun occurs when the device is overloaded and cannot handle the incoming data. | I20[p,5]   |
| Rx Framing   | The number of framing errors that have occurred. Framing errors usually occur due to mismatched serial port baud rates.               | [ 120[p,6] |
| Rx Parity    | The number of serial parity errors that have been detected.                                                                           | I20[p,7]   |
| Tx Total     | The size of the output buffer.                                                                                                        | I20[p,8]   |
| Tx Used      | The number of bytes currently stored in the output buffer.                                                                            | I20[p,9]   |
| Tx Bytes     | The total number of bytes that have been transmitted.                                                                                 | I20[p,10]  |
| Tx Errors    | The total number of errors that have occurred while transmitting. This is equal to the Tx Overflows count.                            | I20[p,11]  |
| Tx Overflows | The number of transmit overflow errors that have occurred. This occurs when there is data to transmit, but the buffer is full.        | I20[p,12]  |

Table 21: Serial Port Statistics



# **C.2 SNMP Diagnostic Parameters**

Table 22 outlines the parameters accessible by SNMP. An 'R' under the access column indicates the parameter is read-only; an 'R/W' indicates read-write.

| <b>SNMP Textual Name</b> | Access | Description                                                                         |
|--------------------------|--------|-------------------------------------------------------------------------------------|
| Diagnostics              |        |                                                                                     |
| rfiDiagTimeLcl           | R      | The current local time (in seconds since Jan 1 1970).                               |
| rfiDiagTimeLclstring     | R      | The current local time.                                                             |
| rfiDiagTimeUp            | R      | Seconds since the radio powered up.                                                 |
| rfiDiagTimeUtc           | R/W    | The current UTC (in seconds since Jan 1 1970).                                      |
| Fan Control              |        |                                                                                     |
| rfiFanCtrlForce          | R/W    | Manual fan override (allows fans to be forced on).                                  |
| rfiFanCtrlSensor         | R/W    | Temperature sensor used for fan control.                                            |
| rfiFanCtrlTempOff        | R/W    | Sensed temperature below which fans will be turned off.                             |
| rfiFanCtrlTempOn         | R/W    | Sensed temperature above which fans will be turned on.                              |
| rfiFanSensTemp           | R      | Current temperature at sensor used for fan control.                                 |
| Faults                   |        |                                                                                     |
| rfiFaultHistTblFault     | R      | The fault that occurred.                                                            |
| rfiFaultHistTblTime      | R      | The time that the fault occurred.                                                   |
| rfiFaultTblAction        | R/W    | Configured action to be taken when this fault occurs.                               |
| rfiFaultTblActtime       | R      | Duration for which this fault has been active, or 0 if the fault is not active.     |
| rfiFaultTblCount         | R/W    | The number of times this fault has occurred since the statistics were reset.        |
| rfiFaultTblLatch         | R/W    | Configured latching mechanism for this fault.                                       |
| rfiFaultTblName          | R      | Name of the fault in this row of the table.                                         |
| rfiFaultTblStatus        | R      | Indicates whether or not this fault condition is currently active.                  |
| Identity                 |        |                                                                                     |
| rfiIdApproval            | R      | International type approval code which applies to this device.                      |
| rfiIdFwver               | R      | Version information for the firmware loaded in this device.                         |
| rfiIdMfdate              | R      | Date on which this device was manufactured.                                         |
| rfiIdOphours             | R      | An approximation of the total number of hours that this device has been powered up. |
| rfiIdProdstr             | R      | The model name for this device.                                                     |
| rfiIdSerialno            | R      | Factory assigned serial number for this device.                                     |
| Paging Protocols         |        |                                                                                     |

| rfiPageProtSelect      | R/W | Active protocol profile.                                                                                                                                                                            |  |
|------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| rfiPageProtTblOffset   | R/W | Configured carrier frequency offset for this profile.                                                                                                                                               |  |
| rfiPageProtTblProt     | R/W | Configured paging protocol for this profile.                                                                                                                                                        |  |
| Radio Parameters       |     |                                                                                                                                                                                                     |  |
| rfiRadioFrqChSelect    | R/W | Currently selected radio channel number.                                                                                                                                                            |  |
| rfiRadioFrqChTblNo     | R   | Radio channel number.                                                                                                                                                                               |  |
| rfiRadioFrqChTblTxfrq  | R/W | Radio channel transmit frequency.                                                                                                                                                                   |  |
| rfiRadioFrqRefCur      | R   | The current reference being used to generate channel frequencies.                                                                                                                                   |  |
| rfiRadioFrqRefExt      | R   | The state of the external reference.                                                                                                                                                                |  |
| rfiRadioFrqRefMode     | R/W | The reference selection method.                                                                                                                                                                     |  |
| rfiRadioIsolatorFeed   | R   | Hardware feedback from the isolator attentuation switchout mechanism.                                                                                                                               |  |
| rfiRadioIsolatorMode   | R/W | Sets the isolator for normal transmission (high attenuation on RF diag port) or for listening to signal from antenna, for network testing (low attenuation on RF diag port, transmission disabled). |  |
| rfiRadioTxDelay        | R/W | Applies an artificial transmission delay to all data. Can be used for matching delay in heterogeneous transmitter networks.                                                                         |  |
| rfiRadioTxIdletime     | R   | Time since last transmission ended (if not transmitting), or zero if currently transmitting.                                                                                                        |  |
| rfiRadioTxOntime       | R   | Time since current transmission started (if transmitting), or zero if not currently transmitting.                                                                                                   |  |
| rfiRadioTxPttAuto      | R/W | Setting to enable or disable the automatic Push-To-Talk on data feature.                                                                                                                            |  |
| rfiRadioTxPttAutoTmout | R/W | No-data timeout for the automatic PTT feature.                                                                                                                                                      |  |
| rfiRadioTxPttOverride  | R/W | Master override allowing transmission to be completely disabled, regardless of PTT inputs.                                                                                                          |  |
| rfiRadioTxPttStatus    | R   | If PTT is currently disabled, describes what is the source of the override.                                                                                                                         |  |
| rfiRadioTxPttTofftime  | R/W | Delay before turning off the transmitter after PTT off is signalled.                                                                                                                                |  |
| rfiRadioTxPwrCtrlLvl   | R/W | Transmitter output power setting.                                                                                                                                                                   |  |
| rfiRadioTxStatus       | R   | Current transmission status. May be off, on, or waiting for PTT delay to expire before turning off.                                                                                                 |  |
| rfiRadioTxTimeout      | R/W | Continuous transmission time, in seconds, which will cause a Transmit Timeout fault to occur. By default this will disable further transmission until the fault is cleared.                         |  |
| rfiRadioTxTimeouten    | R/W | Enable or disable the transmit timeout feature.                                                                                                                                                     |  |
| Sensors                |     |                                                                                                                                                                                                     |  |



# **Appendix C Management Reference**

| rfiSensTblCutoffHi | R/W | Upper cutoff value for this sensor. Measurements which exceed this cutoff cause a fault. |
|--------------------|-----|------------------------------------------------------------------------------------------|
| rfiSensTblCutoffLo | R/W | Lower cutoff value for this sensor. Measurements lower than this cutoff cause a fault.   |
| rfiSensTblFault    | R   | Current fault status associated with this sensor.                                        |
| rfiSensTblMax      | R   | Maximum recorded sensor value since the statistics were reset.                           |
| rfiSensTblMin      | R   | Minimum recorded sensor value since the statistics were reset.                           |
| rfiSensTblName     | R   | Name of the fault in this row of the table.                                              |
| rfiSensTblVal      | R   | Current measured sensor value.                                                           |

Table 22: SNMP Diagnostic Parameters



# **Appendix D Hayes AT Reference**

## **AT-only commands**

## **Print All Sensors**

Legacy command for printing all sensor values as a comma separated list.

ATI100: Runs the Print All Sensors routine

#### **Print Faults Mask**

Prints a comma separated list of active faults, each fault represented by their index. Prints 'None.' if there are no faults active.

ATI101: Runs the Print Faults Mask routine

## **Print Upper Limits**

Legacy command for printing all sensor upper cutoff values as a comma separated list.

ATI102: Runs the Print Upper Limits routine

## **Print Lower Limits**

Legacy command for printing all sensor lower cutoff values as a comma separated list.

ATI103: Runs the Print Lower Limits routine

#### **Print Sensor Minimums**

Legacy command for printing all sensor minimum recorded values since last sensor history reset as a comma separated list.

ATI105: Runs the Print Sensor Minimums routine

#### **Print Sensor Maximums**

Legacy command for printing all sensor maximum recorded values since last sensor history reset as a comma separated list.

ATI106: Runs the Print Sensor Maximums routine

#### **Read Faults Detailed**

Print all active faults, in the format "<FaultNumber>:<ActiveDuration>:<Counter>, ..."

ATI180: Runs the Read Faults Detailed routine

#### **Online**

(Alias for ATO) Exit command parsing mode and go online

ATO0: Runs the Online routine.

#### Online

Exit command parsing mode and go online

ATO: Runs the Online routine.

#### Reset

Perform a software reset

AT&T9: Runs the Reset routine.

#### **RUF Init**

Initialise the length for a .ruf file transfer

ATU1=n: Runs the RUF Init routine where n is the length of the .ruf file in bytes.

#### **RUF Block**



Send a data block as part of a .ruf file transfer, the CRC over the data is returned ATU2=*n*: Runs the RUF Block routine where *n* is the .ruf file data block.

#### **RUF Status**

Query the status of an in-progress .ruf file transfer ATU4: Runs the RUF Status routine.

#### **RUF Ouerv**

Query the most recently completed .ruf file transfer ATU5: Runs the RUF Query routine.

## **RUF Update**

Execute an update to the most recently transferred .ruf file ATU6: Runs the RUF Update routine.

#### Save All

Write through all AT command sets since power-on-reset to EEPROM AT&W: Runs the Save All routine.

#### **Password**

Set the device password

AT%23=n: Runs the Password routine where n is the new password.

## **Open Menu**

Open the terminal menu on this stream AT?: Runs the Open Menu routine.

#### **Stream Index**

Show the index number of this stream AT&S0: Runs the Stream Index routine.

## **Cruise Control Menu**

## **Product String**

The model name for this device.

ATI0: Returns the current value of Product String.

## **Manufacture Date**

Date on which this device was manufactured.

ATI5: Returns the current value of Manufacture Date.

#### **Serial Number**

Factory assigned serial number for this device.

ATI6: Returns the current value of Serial Number.

## Radio Menu

#### **Current Transmit Time**

Time since current transmission started (if transmitting), or zero if not currently transmitting. ATP119: Returns the current value of Current Transmit Time.

## **Transmitter Idle Time**

Time since last transmission ended (if not transmitting), or zero if currently transmitting. ATP116: Returns the current value of Transmitter Idle Time.



#### **PTT Override Status**

If PTT is currently disabled, describes what is the source of the override.

ATP6: Returns the current value of PTT Override Status.

#### **PTT Override**

Master override allowing transmission to be completely disabled, regardless of PTT inputs.

ATP7: Returns the current value of PTT Override.

ATP7=n sets PTT Override to n

Values accepted:

0 = Enable Transmit

1 = Disable Transmit

## **PTT Turn Off Delay**

Delay before turning off the transmitter after PTT off is signalled.

ATP112: Returns the current value of PTT Turn Off Delay.

ATP112=n[.m]: Sets the value of PTT Turn Off Delay to n s, given that  $0.000 \le n \le 65.535$ .

#### **Enable Transmit Timeout**

Enable or disable the transmit timeout feature.

ATP117: Returns the current value of Enable Transmit Timeout.

ATP117=n sets Enable Transmit Timeout to n

Values accepted:

0 = False

1 = True

## **Transmit Timeout**

Continuous transmission time, in seconds, which will cause a Transmit Timeout fault to occur. By default this will disable further transmission until the fault is cleared.

ATP118: Returns the current value of Transmit Timeout.

ATP118=n[.m]: Sets the value of Transmit Timeout to n s, given that  $0.000 \le n \le 4294967.295$ .

## **Absolute Delay Adjustment**

Applies an artificial transmission delay to all data. Can be used for matching delay in heterogeneous transmitter networks.

ATI154: Returns the current value of Absolute Delay Adjustment.

ATI154=n[.m]: Sets the value of Absolute Delay Adjustment to n ms, given that  $0.000 \le n \le 40.000$ .

## **Power Menu**

#### **Transmitter Status**

Current transmission status. May be off, on, or waiting for PTT delay to expire before turning off.

ATP115: Returns the current value of Transmitter Status.

#### (Distributer) Max Tx Power

Override the maximum configurable transmit power to a sublevel of the radios capabilities.

ATS209: Returns the current value of Max Tx Power.

ATS209=n: Sets the value of Max Tx Power to n W, given that  $20 \le n \le 250$ .

#### Tx Power



Transmitter output power setting.

ATS45: Returns the current value of Tx Power.

ATS45=n: Sets the value of Tx Power to n W, given that  $20 \le n \le 250$ .

#### **Power Foldback**

The percent of transmit power in Watts to foldback to when the scale transmit power fault action goes active.

ATP120: Returns the current value of Power Foldback.

ATP120=n: Sets the value of Power Foldback to n %%, given that  $0 \le n \le 100$ .

#### **Transmit On**

Software PTT method to key up the transmitter.

ATP3: Runs the Transmit On routine.

## **Transmit Off**

Software PTT method to key down the transmitter.

ATP2: Runs the Transmit Off routine.

## **Channel Menu**

#### Tx Range

ATS183: Returns the current value of Tx Range.

## **Current Tx Freq**

ATS184: Returns the current value of Current Tx Freq.

#### Raster

Read-only node for viewing the raster frequency of the radio.

ATS185: Returns the current value of Raster.

#### **Channel Width**

Read-only node for viewing the channel width of the radio.

ATS186: Returns the current value of Channel Width.

#### **Current Channel**

Currently selected radio channel number.

ATS54: Returns the current value of Current Channel.

ATS54=n: Sets the value of Current Channel to n, given that  $1 \le n \le 17$ .

#### (Distributer) Channel Count

Number of channels that can be switched between using the current channel setting.

ATS210: Returns the current value of Channel Count.

ATS210=n: Sets the value of Channel Count to n, given that  $1 \le n \le 16$ .

## **Advanced Menu**

## (Distributer) Tx Base Freq

Minimum transmit frequency.

ATS211: Returns the current value of Tx Base Freq.

ATS211=n[.m]: Sets the value of Tx Base Freq to n MHz, given that  $130.000000 \le n \le 1050.000000$ .

#### (Distributer) Bandwidth



The amount of usable frequncies available to the radio.

ATS212: Returns the current value of Bandwidth.

ATS212=n[.m]: Sets the value of Bandwidth to n MHz, given that  $1.000000 \le n \le 100.000000$ .

## (Distributer) Raster

Frequency raster. All channel frequencies must be divisible by the raster.

ATS57: Returns the current value of Raster.

ATS57=n sets Raster to n

Values accepted:

0 = 0.001 kHz

1 = 2.500 kHz

2 = 5.000 kHz

3 = 6.250 kHz

4 = 7.500 kHz

5 = 10.000 kHz

6 = 12.500 kHz

7 = 15.000 kHz

8 = 20.000 kHz

9 = 25.000 kHz

10 = 30.000 kHz

#### **Channel Width**

The radios channel width.

ATS66: Returns the current value of Channel Width.

ATS66=*n* sets Channel Width to *n* 

Values accepted:

0 = 12.500 KHz

1 = 25.000 KHz

## **Channel Table**

## Tx Freq

Radio channel transmit frequency.

ATS55[a]: Returns the current value of Tx Freq.

ATS55[a]=n/m: Sets the value of Tx Freq to n MHz, given that 130.000000 <= n <= 1050.000000. Where:

a = Channel Table table index (starting from 1)

## Reference Menu

## **Current Reference**

The current reference being used to generate channel frequencies.

ATI122: Returns the current value of Current Reference.

#### **External Reference**

The state of the external reference.

ATI123: Returns the current value of External Reference.

#### Reference Mode

The reference selection method.

ATI120: Returns the current value of Reference Mode.

ATI120=*n* sets Reference Mode to *n* 

Values accepted:



0 = Internal

1 = External With Failover

## Ext. Ref. Frequency

Configures the frequency of the external reference.

ATI121: Returns the current value of Ext. Ref. Frequency.

ATI121=n sets Ext. Ref. Frequency to n

Values accepted:

0 = 5 MHz

1 = 10 MHz

## **Isolator Menu**

## **Feedback**

Hardware feedback from the isolator attentuation switchout mechanism.

ATP33: Returns the current value of Feedback.

## **Isolator Mode**

Sets the isolator for normal transmission (high attenuation on RF diag port) or for listening to signal from antenna, for network testing (low attenuation on RF diag port, transmission disabled).

ATP31: Returns the current value of Isolator Mode.

ATP31=n sets Isolator Mode to n

Values accepted:

0 = Set for Transmitting

1 = Set for Listening

## **Listening Mode Timeout**

A timeout in seconds that starts when the isolator is set to listening mode. When the timeout expires the isolator will automatically return to transmitting mode.

ATP35: Returns the current value of Listening Mode Timeout.

ATP35=n[.m]: Sets the value of Listening Mode Timeout to n s, given that  $0.000 \le n \le 65.535$ .

## **Enable Listening Timeout**

Enables or disables listening mode timeout.

ATP34: Returns the current value of Enable Listening Timeout.

ATP34=*n* sets Enable Listening Timeout to *n* 

Values accepted:

0 = Disabled

1 = Enabled

# **Paging Protocols Menu**

#### **POCSAG Deviation**

ATP105: Returns the current value of POCSAG Deviation.

## **FLEX Deviation**

ATP106: Returns the current value of FLEX Deviation.

## **Encoding Mode**

Configure the encoding source for paging transmitter data.

ATN10: Returns the current value of Encoding Mode.

ATN10=n sets Encoding Mode to n

Values accepted:



0 = External Encoder

1 = TNPP Serial

2 = TNPP TCP:64250

3 = TNPP UDP:64250

4 = PET/TAP Serial

5 = PET/TAP TCP:64250

6 = PET/TAP UDP:64250

## PET/TAP Menu

#### **Current State**

ATN43: Returns the current value of Current State.

#### **Line Separator**

The line separator output between new lines. Configurable for compatibility across terminals.

ATN15: Returns the current value of Line Separator.

ATN15=n sets Line Separator to n

Values accepted:

0 =

1 =

#### **Timeout**

Intercharacter timeout before purging input buffer and reverting to idle state.

ATN16: Returns the current value of Timeout.

ATN16=n[.m]: Sets the value of Timeout to n s, given that  $0.5 \le n \le 10.0$ .

## **Baud Rate**

Baud rate at which encoded POSCAG pages are sent over the air.

ATN19: Returns the current value of Baud Rate.

ATN19=n sets Baud Rate to n

Values accepted:

0 = 512

1 = 1200

2 = 2400

## Stay Logged In

Remains logged in indefinitely after receiving a valid login string.

ATN41: Returns the current value of Stay Logged In.

ATN41=n sets Stay Logged In to n

Values accepted:

0 = False

1 = True

## **Implied Login**

Option to skip login sequence if a <STX> is read while waiting for wake up sequence.

ATN42: Returns the current value of Implied Login.

ATN42=n sets Implied Login to n

Values accepted:

0 = Disabled

1 = PG1

2 = PG3



## **Detect Numeric Pages**

When enabled, will encode a POCSAG page in numeric format (rather than alpha-numeric) if the message is wholly formed by digits.

ATN14: Returns the current value of Detect Numeric Pages.

ATN14=n sets Detect Numeric Pages to n

Values accepted:

0 = False

1 = True

## **Group Code**

Allows the use of the final character or digit in the Pager ID field of a message submission to determine the function bits of the paging message.

ATN13: Returns the current value of Group Code.

ATN13=n sets Group Code to n

Values accepted:

0 = None

1 = Trailing Character

2 = Trailing Digit

## **Reset Statistics**

Reset the TAP/PET statistics accumulated since start-up.

ATN17: Runs the Reset Statistics routine.

## **Statistics Table**

Name

#### Value

ATN18[a]: Returns the current value of Value.

Where: a = Statistics table index (starting from 0)

## TNPP Menu

#### Address

The address of this TNPP node.

ATN23: Returns the current value of Address.

ATN23=n: Sets the value of Address to n, given that  $0 \le n \le 65535$ .

## **Promiscuous Mode**

When enabled, this node will accept packets destined for any address.

ATN24: Returns the current value of Promiscuous Mode.

ATN24=n sets Promiscuous Mode to n

Values accepted:

0 = False

1 = True

## **Transparent CRC support**

ATN25: Returns the current value of Transparent CRC support.

ATN25=n sets Transparent CRC support to n

Values accepted:

0 = False

1 = True



## **Address Extension support**

ATN26: Returns the current value of Address Extension support.

ATN26=n sets Address Extension support to n

Values accepted:

0 = False

1 = True

## **Multi-Block support**

ATN27: Returns the current value of Multi-Block support.

ATN27=*n* sets Multi-Block support to *n* 

Values accepted:

0 = False

1 = True

## **Large Packet support**

ATN28: Returns the current value of Large Packet support.

ATN28=*n* sets Large Packet support to *n* 

Values accepted:

0 = False

1 = True

#### **Reset TNPP Statistics**

ATN22: Runs the Reset TNPP Statistics routine.

## **TNPP Statistics Table**

#### Name

ATN20[a]: Returns the current value of Name.

Where: a = TNPP Statistics table index (starting from 0)

#### Count

ATN21[a]: Returns the current value of Count.

Where: a = TNPP Statistics table index (starting from 0)

## **POCSAG Menu**

## **Preamble Length**

Length of the preamble sent prior to paging data.

ATN30: Returns the current value of Preamble Length.

ATN30=n: Sets the value of Preamble Length to n bit, given that  $32 \le n \le 2304$ .

#### **Function Override**

Override the function bits in the address codeword. Default ('Message Encoding') is to set the function bits based on message encoding: Numeric: 00, Tone: 01, Alpha-numeric: 11.

ATN11: Returns the current value of Function Override.

ATN11=n sets Function Override to n

Values accepted:

0 = Message Encoding

1 = Always 00

2 = Always 01

3 = Always 10

4 = Always 11



## **Purge Timeout**

Duration to wait to collate paging messages for sending over the air.

ATN29: Returns the current value of Purge Timeout.

ATN29=n: Sets the value of Purge Timeout to n ms, given that  $250 \le n \le 5000$ .

#### **Reset Statistics**

ATN40: Runs the Reset Statistics routine.

## **Page Repeat Rules Table**

#### Enabled

Whether this rule is enabled.

ATN36[a]: Returns the current value of Enabled.

ATN36[a]=n sets Enabled to n

Values accepted:

0 = False

1 = True

Where: a = Page Repeat Rules table index (starting from 0)

## Capcode

The Capcode to match for this rule. 0 matches any capcode, all other integers match the specific capcode.

ATN37[a]: Returns the current value of Capcode.

ATN37[a]=n: Sets the value of Capcode to n, given that  $0 \le n \le 2097152$ . Where: a = Page Repeat Rules table index (starting from 0)

#### **Delay**

The delay to insert between page repetitions.

ATN38[a]: Returns the current value of Delay.

ATN38[a]=n: Sets the value of Delay to n s, given that  $4 \le n \le 60$ . Where: a = Page Repeat Rules table index (starting from 0)

#### Count

The number of times to repeat pages.

ATN39[a]: Returns the current value of Count.

ATN39[a]=n: Sets the value of Count to n, given that  $1 \le n \le 5$ . Where: a = Page Repeat Rules table index (starting from 0)

## **POCSAG MAC Statistics Table**

#### Name

ATN34[a]: Returns the current value of Name.

Where: a = POCSAG MAC Statistics table index (starting from 0)

#### **Count**

ATN35[a]: Returns the current value of Count.

Where: a = POCSAG MAC Statistics table index (starting from 0)

## **Test Menu**

#### Status

ATG171: Returns the current value of Status.

## Message



ATG172: Returns the current value of Message.

ATG172=s: Sets the value of Message to s, given that  $0 \le length(s) \le 30$ .

## **Encoding**

ATG173: Returns the current value of Encoding.

ATG173=n sets Encoding to n

Values accepted:

0 = Alpha-numeric

1 = Numeric

## Capcode

ATG174: Returns the current value of Capcode.

ATG174=n: Sets the value of Capcode to n, given that  $1 \le n \le 2097152$ .

#### **Baud Rate**

ATG175: Returns the current value of Baud Rate.

ATG175=n sets Baud Rate to n

Values accepted:

0 = 512

1 = 1200

2 = 2400

## **Append**

ATG176: Returns the current value of Append.

ATG176=n sets Append to n

Values accepted:

0 = Nothing

1 = Count

2 = Timestamp

3 = Count and Timestamp

#### **Interval**

ATG177: Returns the current value of Interval.

ATG177=n: Sets the value of Interval to n s, given that  $1 \le n \le 120$ .

#### **Duration**

ATG178: Returns the current value of Duration.

ATG178=n: Sets the value of Duration to n mins, given that  $0 \le n \le 720$ .

## **Begin Survey**

ATG180: Runs the Begin Survey routine.

## **Stop Survey**

ATG181: Runs the Stop Survey routine.

## **Send One Message**

ATG182: Runs the Send One Message routine.

## **Advanced Menu**

**Custom Deviation** 



The deviation of the custom paging protocol.

ATP103: Returns the current value of Custom Deviation.

ATP103=n[.m]: Sets the value of Custom Deviation to n Hz, given that  $0.0 \le n \le 4800.0$ .

#### **Custom FSK level**

The FSK-levels of the custom paging protocol.

ATP104: Returns the current value of Custom FSK level.

ATP104=*n* sets Custom FSK level to *n* 

Values accepted:

0 = 2-level

1 = 4-level

## **Profiles Table**

## **Paging Protocol**

Configured paging protocol for this profile.

ATP91[a]: Returns the current value of Paging Protocol.

ATP91[a]=n sets Paging Protocol to n

Values accepted:

0 = POCSAG

1 = FLEX-2

2 = FLEX-4

3 = Custom

Where: a = Profiles table index (starting from 0)

#### **Carrier Offset**

Configured carrier frequency offset for this profile.

ATP92[a]: Returns the current value of Carrier Offset.

ATP92[a]=[+/-]n: Sets the value of Carrier Offset to n Hz, given that  $-4000 \le n \le 4000$ . Where: a =

Profiles table index (starting from 0)

## **Ext. Data Clock**

Configures whether to use an external clock to synchronise data. An external clock is mandatory for 4-level protocols.

ATP93[a]: Returns the current value of Ext. Data Clock.

ATP93[a]=n sets Ext. Data Clock to n

Values accepted:

0 = Disabled

1 = Enabled

Where: a = Profiles table index (starting from 0)

## **Fan Control Menu**

## Sensed Temp.

Current temperature at sensor used for fan control.

ATP109: Returns the current value of Sensed Temp..

## **Time Until Fan Test**

ATP111: Returns the current value of Time Until Fan Test.

#### Fan Override

Manual fan override (allows fans to be forced on).

ATP22: Returns the current value of Fan Override.



ATP22=n sets Fan Override to n

Values accepted:

0 = Normal

1 = Always On

## **Sensor To Use**

Temperature sensor used for fan control.

ATP108: Returns the current value of Sensor To Use.

ATP108=*n* sets Sensor To Use to *n* 

Values accepted:

0 = Baseband Sensor

1 = PA Sensor

2 = Driver Sensor

3 = PA/Driver Ambient Sensor

4 = Isolator Sensor

5 = Baseband Thermistor

6 = PA Group Average

7 = Hottest Sensor

8 = PA Group Sensors

## Turn On Temp.

Sensed temperature above which fans will be turned on.

ATP20: Returns the current value of Turn On Temp..

ATP20=[+/-]n: Sets the value of Turn On Temp. to  $n \deg C$ , given that  $-128 \le n \le 127$ .

## Turn Off Temp.

Sensed temperature below which fans will be turned off.

ATP21: Returns the current value of Turn Off Temp..

ATP21=[+/-]n: Sets the value of Turn Off Temp. to  $n \deg C$ , given that  $-128 \le n \le 127$ .

#### **Fan Test Interval**

Interval in hours between fan self-tests.

ATP110: Returns the current value of Fan Test Interval.

ATP110=n: Sets the value of Fan Test Interval to n hrs, given that  $12 \le n \le 48$ .

## Sensors Menu

## (Distributer) Fault Reporting

ATI203: Returns the current value of Fault Reporting.

ATI203=*n* sets Fault Reporting to *n* 

Values accepted:

0 = Disabled

1 = Enabled

#### (Distributer) Fail-safes

ATI204: Returns the current value of Fail-safes.

ATI204=n sets Fail-safes to n

Values accepted:

0 = Disabled

1 = Enabled

# **Sensor Configuration Menu**



#### **Reset Cutoffs**

ATI207: Runs the Reset Cutoffs routine.

#### Reset Min/Max

Reset the historical minimums and maximums of monitored sensor values.

ATI104: Runs the Reset Min/Max routine.

#### **Status Parameters Table**

#### Name

Name of the sensor and its unit in this row of the table.

ATI176[a]: Returns the current value of Name.

Where: a = Status Parameters table index (starting from 0)

#### Current

Current measured sensor value.

ATI90[a]: Returns the current value of Current.

Where: a = Status Parameters table index (starting from 0)

#### **Relevant Value**

The current measured sensor value if it is relevant. Otherwise -2000000

ATI99[a]: Returns the current value of Relevant Value.

Where: a = Status Parameters table index (starting from 0)

#### Maximum

Maximum recorded sensor value since the statistics were reset.

ATI91[a]: Returns the current value of Maximum.

Where: a = Status Parameters table index (starting from 0)

## Minimum

Minimum recorded sensor value since the statistics were reset.

ATI92[a]: Returns the current value of Minimum.

Where: a = Status Parameters table index (starting from 0)

#### **Current State**

Current fault status associated with this sensor.

ATI177[a]: Returns the current value of Current State.

Where: a = Status Parameters table index (starting from 0)

#### **Upper Cutoff**

Upper cutoff value for this sensor. Measurements which exceed this cutoff cause a fault.

ATI93[a]: Returns the current value of Upper Cutoff.

Where: a = Status Parameters table index (starting from 0)

#### **Hysteresis**

Hysteresis value for this sensor. When a sensor is near the cutoff value this helps reduce excessive fault toggling.

ATI97[a]: Returns the current value of Hysteresis.

ATI97[a]=n: Sets the value of Hysteresis to n, given that  $0 \le n \le 65535$ . Where: a = Status Parameters table index (starting from 0)

#### **Lower Cutoff**



Lower cutoff value for this sensor. Measurements lower than this cutoff cause a fault.

ATI96[a]: Returns the current value of Lower Cutoff.

Where: a = Status Parameters table index (starting from 0)

#### Reset Sensor Min/Max

Reset the historical minimum and maximum for this sensor.

ATI181[a]: Runs the Reset Sensor Min/Max routine.

Where: a = Status Parameters table index (starting from 0)

## **Sensor Interpolation Menu**

## **Transmit Power Variation Table**

#### Name

Name of the sensor and its unit in this row of the table.

ATG156[a]: Returns the current value of Name.

Where: a = Transmit Power Variation table index (starting from 0)

## **20W Lower Cutoff**

ATG157[a]: Returns the current value of 20W Lower Cutoff.

ATG157[a]=[+/-]n: Sets the value of 20W Lower Cutoff to n, given that  $-2147483648 \le n \le n$ 

2147483647. Where: a = Transmit Power Variation table index (starting from 0)

## 20W Upper Cutoff

ATG158[a]: Returns the current value of 20W Upper Cutoff.

ATG158[a]=[+/-]n: Sets the value of 20W Upper Cutoff to n, given that -2147483648 <= n <= 2147483647.

Where: a = Transmit Power Variation table index (starting from 0)

## **50W Lower Cutoff**

ATG159[a]: Returns the current value of 50W Lower Cutoff.

ATG159[a]=[+/-]n: Sets the value of 50W Lower Cutoff to n, given that  $-2147483648 \le n \le n$ 

2147483647. Where: a = Transmit Power Variation table index (starting from 0)

## **50W Upper Cutoff**

ATG160[a]: Returns the current value of 50W Upper Cutoff.

ATG160[a]=[+/-]n: Sets the value of 50W Upper Cutoff to n, given that -2147483648 <= n <= 2147483647.

Where: a = Transmit Power Variation table index (starting from 0)

#### 100W Lower Cutoff

ATG161[a]: Returns the current value of 100W Lower Cutoff.

ATG161[a]=[+/-]n: Sets the value of 100W Lower Cutoff to n, given that -2147483648  $\leq n \leq n$ 

2147483647. Where: a = Transmit Power Variation table index (starting from 0)

## 100W Upper Cutoff

ATG162[a]: Returns the current value of 100W Upper Cutoff.

ATG162[a]=[+/-]n: Sets the value of 100W Upper Cutoff to n, given that  $-2147483648 \le n \le n$ 

2147483647. Where: a = Transmit Power Variation table index (starting from 0)

#### 200W Lower Cutoff

ATG163[a]: Returns the current value of 200W Lower Cutoff.

ATG163[a]=[+/-]n: Sets the value of 200W Lower Cutoff to n, given that  $-2147483648 \le n \le n$ 

2147483647. Where: a = Transmit Power Variation table index (starting from 0)



## 200W Upper Cutoff

ATG164[a]: Returns the current value of 200W Upper Cutoff.

ATG164[a]=[+/-]n: Sets the value of 200W Upper Cutoff to n, given that  $-2147483648 \le n \le n$ 

2147483647. Where: a = Transmit Power Variation table index (starting from 0)

#### 250W Lower Cutoff

ATG165[a]: Returns the current value of 250W Lower Cutoff.

ATG165[a]=[+/-]n: Sets the value of 250W Lower Cutoff to n, given that  $-2147483648 \le n \le n$ 

2147483647. Where: a = Transmit Power Variation table index (starting from 0)

## 250W Upper Cutoff

ATG166[a]: Returns the current value of 250W Upper Cutoff.

ATG166[a]=[+/-]n: Sets the value of 250W Upper Cutoff to n, given that -2147483648 <= n <=

2147483647. Where: a = Transmit Power Variation table index (starting from 0)

## **Other Table**

#### Name

Name of the sensor and its unit in this row of the table.

ATG167[a]: Returns the current value of Name.

Where: a = Other table index (starting from 0)

#### **Lower Cutoff**

ATG169[a]: Returns the current value of Lower Cutoff.

ATG169[a]=[+/-]n: Sets the value of Lower Cutoff to n, given that  $-2147483648 \le n \le 2147483647$ .

Where: a = Other table index (starting from 0)

## **Upper Cutoff**

ATG168[a]: Returns the current value of Upper Cutoff.

ATG168[a]=[+/-]n: Sets the value of Upper Cutoff to n, given that  $-2147483648 \le n \le 2147483647$ .

Where: a = Other table index (starting from 0)

## **Temperature Sensors Table**

**Voltage Sensors Table** 

**Current Sensors Table** 

**Fan Speeds Table** 

**Power Table** 

**Ratio Table** 

**Faults Menu** 

#### **Total Faults Counter**

ATI156: Returns the current value of Total Faults Counter.

#### **Active Faults**

ATI157: Returns the current value of Active Faults.

## **Combined Fault Status**

The status of the combined alarm.

ATI158: Returns the current value of Combined Fault Status.

#### **Overview Filter**



ATI155: Returns the current value of Overview Filter.

ATI155=*n* sets Overview Filter to *n* 

Values accepted:

0 = Show All

1 = Show Active/Latched

2 = Show Counter > 0

#### **Clear All Faults**

Clears all active faults and reverts all fault actions that have been taken.

ATI151: Runs the Clear All Faults routine.

## **Fault Configuration Menu**

## **Combined Fault Ext. Alarm**

The hardware alarm associated with the combined alarm.

ATI173: Returns the current value of Combined Fault Ext. Alarm.

ATI173=n sets Combined Fault Ext. Alarm to n

Values accepted:

0 = ALM1

1 = ALM2

2 = ALM3

3 = ALM4

4 = ALM5

5 = ALM6

6 = ALM7

7 = ALM8

8 = ALM9

9 = COMB

10 = ALM10

11 = ALM11

12 = ALM12

13 = ALM13

14 = None

## **Min. Fault Duration**

The minimum duration a parameter must be in its fault condition before it is reported.

ATI172: Returns the current value of Min. Fault Duration.

ATI172=n[.m]: Sets the value of Min. Fault Duration to n s, given that  $0.000 \le n \le 65.535$ .

## **Fault Beeper**

ATI174: Returns the current value of Fault Beeper.

ATI174=*n* sets Fault Beeper to *n* 

Values accepted:

0 = Never

1 = Activity

2 = Heartbeat

## **Reset Counters**

ATI163: Runs the Reset Counters routine.

## **Faults Table**

**Fault Name** 



Name of the fault in this row of the table.

ATI164[a]: Returns the current value of Fault Name.

Where: a = Faults table index (starting from 0)

#### **Status**

Indicates whether or not this fault condition is currently active.

ATI165[a]: Returns the current value of Status.

Where: a = Faults table index (starting from 0)

#### **Active Duration**

Duration for which this fault has been active, or 0 if the fault is not active.

ATI170[a]: Returns the current value of Active Duration.

Where: a = Faults table index (starting from 0)

#### Ext. Alarm

The hardware alarm that will be asserted when this fault is active.

ATI166[a]: Returns the current value of Ext. Alarm.

ATI166[a]=n sets Ext. Alarm to n

Values accepted:

0 = ALM1

1 = ALM2

2 = ALM3

3 = ALM4

4 = ALM5

5 = ALM6

6 = ALM7

7 = ALM8

8 = ALM9

9 = COMB

10 = ALM10

11 = ALM11

12 = ALM12

13 = ALM13

14 = None

Where: a = Faults table index (starting from 0)

#### **Fault Action**

Configured action to be taken when this fault occurs.

ATI167[a]: Returns the current value of Fault Action.

ATI167[a]=n sets Fault Action to n

Values accepted:

0 = None

1 = Reference Switchover

2 = Disable Transmit

3 = Scale Transmit Power

4 = Enable PA0 Current Foldback

5 = Enable PA90 Current Foldback

6 = Enable Reverse Power Foldback

Where: a = Faults table index (starting from 0)

## **Latching Mechanism**



Configured latching mechanism for this fault.

ATI168[a]: Returns the current value of Latching Mechanism.

ATI168[a]=n sets Latching Mechanism to n

Values accepted:

0 = None

1 = SW Reset

Where: a = Faults table index (starting from 0)

# **Triggers Combined**

Allows this fault to assert the combined alarm (COMB) in addition to it's configured alarm.

ATI169[a]: Returns the current value of Triggers Combined.

ATI169[a]=n sets Triggers Combined to n

Values accepted:

0 = False

1 = True

Where: a = Faults table index (starting from 0)

# Go Standby

Configures this fault as a TX FAULT for the purposes of entering standby mode when Hot Standby operation is enabled

ATM17[a]: Returns the current value of Go Standby.

ATM17[a]=n sets Go Standby to n

Values accepted:

0 = False

1 = True

Where: a = Faults table index (starting from 0)

#### **Counter**

The number of times this fault has occurred since the statistics were reset.

ATI171[a]: Returns the current value of Counter.

ATI171[a]=n: Sets the value of Counter to n, given that  $0 \le n \le 65535$ . Where: a = Faults table index (starting from 0)

# **Faults Overview Table**

#### **Fault**

ATI159[a]: Returns the current value of Fault.

Where: a = Faults Overview table index (starting from 0)

#### **Status**

ATI160[a]: Returns the current value of Status.

Where: a = Faults Overview table index (starting from 0)

#### **Active Duration**

ATI161[a]: Returns the current value of Active Duration. Where: a = Faults Overview table index (starting from 0)

# Counter

ATI162[a]: Returns the current value of Counter.

Where: a = Faults Overview table index (starting from 0)

# **Encoder Interface Menu**



#### **Encoder Detected**

ATP102: Returns the current value of Encoder Detected.

#### **Data Idle Duration**

ATP94: Returns the current value of Data Idle Duration.

#### 24 V DC Current

ATP126: Returns the current value of 24 V DC Current.

#### **Data Idle Timeout**

Configurable timeout for detecting the encoder data inputs as idle, which will cause the encoder data idle fault to go active.

ATP95: Returns the current value of Data Idle Timeout.

ATP95=n[.m]: Sets the value of Data Idle Timeout to n s, given that  $0.000 \le n \le 4294967.295$ .

# **Report Data Idle**

Enable or disable reporting of idle encoder data fault.

ATP96: Returns the current value of Report Data Idle.

ATP96=*n* sets Report Data Idle to *n* 

Values accepted:

0 = False

1 = True

# **4-Level Operation**

Allows swapping of L-/H-bit.

ATP124: Returns the current value of 4-Level Operation.

ATP124=n sets 4-Level Operation to n

Values accepted:

0 = Normal

1 = Legacy

#### **Encoder Protocol Control**

Allows the active protocol profile to be toggled by hardware input.

ATP99: Returns the current value of Encoder Protocol Control.

ATP99=*n* sets Encoder Protocol Control to *n* 

Values accepted:

0 = Disabled

1 =Enabled

#### **Encoder Channel Control**

Allows the active channel to be toggled by hardware input.

ATS180: Returns the current value of Encoder Channel Control.

ATS180=*n* sets Encoder Channel Control to *n* 

Values accepted:

0 = Disabled

1 = Enabled

#### **Encoder Hardware PTT**

Allows transmitter PTT to be controlled by hardware input.

ATP97: Returns the current value of Encoder Hardware PTT.



ATP97=n sets Encoder Hardware PTT to n

Values accepted:

0 = Disabled

1 = Enabled

# **Tx On Active Level**

Configures which state is considered to be active with hardware PTT.

ATP98: Returns the current value of Tx On Active Level.

ATP98=n sets Tx On Active Level to n

Values accepted:

0 = Active Low

1 = Active High

# **Auto PTT**

Setting to enable or disable the automatic Push-To-Talk on data feature.

ATP100: Returns the current value of Auto PTT.

ATP100=n sets Auto PTT to n

Values accepted:

0 = Disabled

1 = Enabled

#### **Auto PTT Timeout**

No-data timeout for the automatic PTT feature.

ATP101: Returns the current value of Auto PTT Timeout.

ATP101=n[.m]: Sets the value of Auto PTT Timeout to n s, given that  $0.000 \le n \le 65.535$ .

# **Active Profile**

Active protocol profile.

ATP90: Returns the current value of Active Profile.

ATP90=n sets Active Profile to n

Values accepted:

0 = Profile 1

1 = Profile 2

# **Aux Input 1 Debounce**

ATP121: Returns the current value of Aux Input 1 Debounce.

ATP121=n[.m]: Sets the value of Aux Input 1 Debounce to n s, given that  $0.5 \le n \le 120.0$ .

# **Aux Input 1 Active Level**

ATP122: Returns the current value of Aux Input 1 Active Level.

ATP122=n sets Aux Input 1 Active Level to n

Values accepted:

0 = Low

1 = High

# **Clock Edge**

Configures the clock edge to use when using an external data clock.

ATI152: Returns the current value of Clock Edge.

ATI152=n sets Clock Edge to n

Values accepted:



0 = Rising-edge

1 = Falling-edge

#### **Data Invert**

Set to true to invert data internally before modulation.

ATI153: Returns the current value of Data Invert.

ATI153=n sets Data Invert to n

Values accepted:

0 = Normal

1 = Inverted

# 24 V DC Output

ATP125: Returns the current value of 24 V DC Output.

ATP125=n sets 24 V DC Output to n

Values accepted:

0 = Disabled

1 = Enabled

# 24 V DC Cycle

ATP127: Runs the 24 V DC Cycle routine.

# **External I/O Table**

#### Name

ATR248[a]: Returns the current value of Name. Where: a = External I/O table index (starting from 0)

#### **Direction**

ATR249[a]: Returns the current value of Direction. Where: a = External I/O table index (starting from 0)

# State

ATR250[a]: Returns the current value of State.

Where: a = External I/Otable index (starting from 0)

# **Hot Standby Menu**

#### Role

ATM13: Returns the current value of Role.

#### State

ATM14: Returns the current value of State.

# **RF Switch**

ATM15: Returns the current value of RF Switch.

# Can Go Active (HW)

ATM11: Returns the current value of Can Go Active (HW).

#### **TX Fault**

ATM16: Returns the current value of TX Fault.

# **Standby Mode**



ATM10: Returns the current value of Standby Mode.

ATM10=*n* sets Standby Mode to *n* 

Values accepted:

0 = Disabled

1 = Hardware

2 = Software

# Can Go Active (SW)

ATM12: Returns the current value of Can Go Active (SW).

ATM12=n sets Can Go Active (SW) to n

Values accepted:

0 = False

1 = True

# **Serial Ports Menu**

#### **Main DTR State**

The state of the DTR input on the main serial port.

ATS92: Returns the current value of Main DTR State.

# **Main RTS State**

The state of the RTS input on the main serial port.

ATS93: Returns the current value of Main RTS State.

#### **Main Flow Control**

Configures flow control methods for the main serial port

ATS104: Returns the current value of Main Flow Control.

ATS104=*n* sets Main Flow Control to *n* 

Values accepted:

0 = None

2 = Hardware (RTS / CTS)

#### **Main DCD Mode**

Configures the behaviour of the DCD output on the main serial port.

ATS90: Returns the current value of Main DCD Mode.

ATS90=n sets Main DCD Mode to n

Values accepted:

0 = Always High

1 = Always Low

2 = Mirrors DCD

3 = Mirrors CTS

4 = Follows TX

# **Main CTS Mode**

Configures the behaviour of the CTS output on the main serial port.

ATS91: Returns the current value of Main CTS Mode.

ATS91=n sets Main CTS Mode to n

Values accepted:

0 = Always High

1 = Always Low

2 = Mirrors DCD



- 3 = Mirrors CTS
- 4 = Follows TX

# **Settings Table**

#### **Baud Rate**

The baud rate configured for this serial port.

ATS100[a]: Returns the current value of Baud Rate.

ATS100[a]=n sets Baud Rate to n

Values accepted:

- 1 = 300
- 2 = 600
- 3 = 1200
- 4 = 2400
- 5 = 4800
- 6 = 9600
- 8 = 19200
- 9 = 38400
- 10 = 57600
- 11 = 115200

Where: a = Settings table index (starting from 0)

#### **Data Bits**

The number of data bits configured for this serial port.

ATS102[a]: Returns the current value of Data Bits.

ATS102[a]=n sets Data Bits to n

Values accepted:

0 = 7

1 = 8

Where: a = Settings table index (starting from 0)

# **Parity**

The parity configuration for this serial port.

ATS101[a]: Returns the current value of Parity.

ATS101[a]=n sets Parity to n

Values accepted:

- 0 = None
- 1 = Even
- 2 = Odd

Where: a = Settings table index (starting from 0)

# **Stop Bits**

The number of stop bits used on this serial port.

ATS103[a]: Returns the current value of Stop Bits.

ATS103[a]=n sets Stop Bits to n

Values accepted:

0 = 1

1 = 2

Where: a = Settings table index (starting from 0)

#### **Reset Statistics**



ATS189[a]: Runs the Reset Statistics routine. Where: a = Settings table index (starting from 0)

#### **Statistics Table**

#### Name

ATS188[a,b]: Returns the current value of Name.

Where: a = Settings table index (starting from 0) b = Statistics table index (starting from 0)

#### Value

Shows statistics for serial port events.

ATI20[a,b]: Returns the current value of Value.

Where: a = Settings table index (starting from 0) b = Statistics table index (starting from 0)

# **LAN Interface Menu**

# **Ethernet Menu**

#### **Local MAC Address**

The factory-assigned Ethernet MAC address of the unit.

ATR46: Returns the current value of Local MAC Address.

#### **Link Status**

ATR255: Returns the current value of Link Status.

# **Auto Negotiation Status**

ATR256: Returns the current value of Auto Negotiation Status.

# **Link Speed**

ATR257: Returns the current value of Link Speed.

# **Link Duplex**

ATR258: Returns the current value of Link Duplex.

#### **Auto Negotiation**

Configure whether the Ethernet interface will automatically detect link speed and duplex.

ATR259: Returns the current value of Auto Negotiation.

ATR259=n sets Auto Negotiation to n

Values accepted:

0 = Force

1 = Auto-negotiate

# **Forced Link Speed**

Configures the speed to use when the link parameters are forced.

ATR260: Returns the current value of Forced Link Speed.

ATR260=*n* sets Forced Link Speed to *n* 

Values accepted:

0 = 10 Mbps

1 = 100 Mbps

# **Forced Link Duplex**

Configures duplex when the link parameters are forced.

ATR261: Returns the current value of Forced Link Duplex.



ATR261=*n* sets Forced Link Duplex to *n* 

Values accepted:

0 = Half duplex

1 = Full duplex

# TCP/IP Menu

#### **IP Address**

A read-only string that shows the current IP address of the unit. If DHCP is enabled this will be the IP address assigned by the DHCP server. If DHCP is disabled this will be the configured static IP address. ATI70: Returns the current value of IP Address.

#### **Subnet Mask**

ATI201: Returns the current value of Subnet Mask.

#### **Gateway**

ATI202: Returns the current value of Gateway.

#### **Bcast Addr**

ATI205: Returns the current value of Bcast Addr.

#### **TCP Idle Timeout**

Idle time before a TCP connection times out.

ATG48: Returns the current value of TCP Idle Timeout.

ATG48=n: Sets the value of TCP Idle Timeout to n s, given that  $0 \le n \le 65535$ .

#### **UDP Idle Timeout**

Idle time before a UDP connection times out.

ATG96: Returns the current value of UDP Idle Timeout.

ATG96=n: Sets the value of UDP Idle Timeout to n s, given that  $20 \le n \le 600$ .

# **DHCP Client**

Enables or disables the DHCP client of this unit. When disabled, the unit will use the configured static IP address.

ATI71: Returns the current value of DHCP Client.

ATI71=*n* sets DHCP Client to *n* 

Values accepted:

0 = Disabled

1 = Enabled

#### Hostname

The hostname of the unit.

ATI72: Returns the current value of Hostname.

ATI72=s: Sets the value of Hostname to s, given that  $0 \le length(s) \le 26$ .

# **Static IP Configuration Table**

#### 1st Octet

Get or set the 1st Octet of either IP address, subnet mask or gateway.

ATI80[a]: Returns the current value of 1st Octet.

ATI80[a]=n: Sets the value of 1st Octet to n, given that  $0 \le n \le 255$ . Where: a = Static IP Configuration table index (starting from 0)



#### 2nd Octet

Get or set the 2nd Octet of either IP address, subnet mask or gateway.

ATI81[a]: Returns the current value of 2nd Octet.

ATI81[a]=n: Sets the value of 2nd Octet to n, given that  $0 \le n \le 255$ . Where: a = Static IP Configuration table index (starting from 0)

#### 3rd Octet

Get or set the 3rd Octet of either IP address, subnet mask or gateway.

ATI82[a]: Returns the current value of 3rd Octet.

ATI82[a]=n: Sets the value of 3rd Octet to n, given that  $0 \le n \le 255$ . Where: a = Static IP Configuration table index (starting from 0)

#### 4th Octet

Get or set the 4th Octet of either IP address, subnet mask or gateway.

ATI83[a]: Returns the current value of 4th Octet.

ATI83[a]=n: Sets the value of 4th Octet to n, given that  $0 \le n \le 255$ . Where: a = Static IP Configuration table index (starting from 0)

# **SNTP Menu**

#### **Status**

ATG8: Returns the current value of Status.

# **Last Sync**

ATG2: Returns the current value of Last Sync.

# **Last Query Latency**

ATG5: Returns the current value of Last Query Latency.

#### Mode

ATG1: Returns the current value of Mode.

ATG1=n sets Mode to n

Values accepted:

0 = Disabled

1 = Unicast

#### **Server IP**

ATG3: Returns the current value of Server IP.

ATG3=s: Sets the value of Server IP to s, given that  $0 \le length(s) \le 32$ .

# **Query Interval**

ATG4: Returns the current value of Query Interval.

ATG4=n: Sets the value of Query Interval to n mins, given that  $1 \le n \le 2880$ .

# **Request Timeout**

ATG6: Returns the current value of Request Timeout.

ATG6=n[.m]: Sets the value of Request Timeout to n s, given that  $0.000 \le n \le 65.535$ .

# **Send Request**

ATG7: Runs the Send Request routine.

# **UDP Connections Table**



#### **Local Port**

ATG49[a]: Returns the current value of Local Port.

Where: a = UDP Connections table index (starting from 0)

#### Remote IP

ATG50[a]: Returns the current value of Remote IP.

Where: a = UDP Connections table index (starting from 0)

#### **Remote Port**

ATG51[a]: Returns the current value of Remote Port.

Where: a = UDP Connections table index (starting from 0)

# **Diagnostics Menu**

# (Distributer) Estimated Life Uptime

An approximation of the total number of hours that this device has been powered up.

ATI206: Returns the current value of Estimated Life Uptime.

#### **Total Tx Time**

ATG155: Returns the current value of Total Tx Time.

#### **Startup Reason**

ATG9: Returns the current value of Startup Reason.

#### **Startup Config**

ATG154: Returns the current value of Startup Config.

#### **Approval Code**

International type approval code which applies to this device.

ATI175: Returns the current value of Approval Code.

#### **EEPROM Status**

Displays the EEPROM status at start-up. Blank or Invalid EEPROM could indicate a hardware fault.

ATR10: Returns the current value of EEPROM Status.

#### **Build Date**

The date the firmware was compiled.

ATR9: Returns the current value of Build Date.

#### **Firmware Version**

Version information for the firmware loaded in this device.

ATI4: Returns the current value of Firmware Version.

# **FPGA Version**

Version information for the FPGA image loaded into this device.

ATI18: Returns the current value of FPGA Version.

#### **Bootloader Version**

ATI130: Returns the current value of Bootloader Version.

# (Distributer) Assertion Messages



ATG170: Returns the current value of Assertion Messages.

ATG170=n sets Assertion Messages to n

Values accepted:

0 = Disabled

1 = Enabled

#### **Software Reset**

ATG10: Runs the Software Reset routine.

# **Time Menu**

# **Uptime**

Seconds since the radio powered up.

ATG16: Returns the current value of Uptime.

# **Local Time**

The current local time (in seconds since Jan 1 1970).

ATG11: Returns the current value of Local Time.

# **Battery Status**

ATG13: Returns the current value of Battery Status.

#### **Local Time**

The current local time.

ATG12: Returns the current value of Local Time.

#### **Startup Date**

ATG17: Returns the current value of Startup Date.

#### **Power Off Date**

ATG14: Returns the current value of Power Off Date.

# **UTC**

The current UTC (in seconds since Jan 1 1970).

AT%63: Returns the current value of UTC.

AT%63=n: Sets the value of UTC to n s, given that  $0 \le n \le -1$ .

# **Time String Format**

ATG15: Returns the current value of Time String Format.

ATG15=n sets Time String Format to n

Values accepted:

0 = DoW MMM DD HH:MM:SS YYYY

1 = "DD/MM/YYYY"

2 = DD/MM/YYYY

3 = "DD/MM/YYYY HH:MM:SS"

4 = DD/MM/YYYY HH:MM:SS

5 = "YYYY/MM/DD HH:MM:SS"

6 = YYYY/MM/DD HH:MM:SS

# Time Zone (UTC +/-) Table

#### **Hours**



The hours portion of the time zone.

ATG18[a]: Returns the current value of Hours.

ATG18[a]=[+/-]n: Sets the value of Hours to n hrs, given that -12 <= n <= 14. Where: a = Time Zone (UTC +/-) table index (starting from 0)

#### **Minutes**

The minutes portion of the time zone.

ATG19[a]: Returns the current value of Minutes.

ATG19[a]=n: Sets the value of Minutes to n mins, given that  $0 \le n \le 59$ . Where: n = 1 Time Zone (UTC +/-) table index (starting from 0)

# Firmware Update Menu

# **Current State**

ATU50: Returns the current value of Current State.

#### **Startup State**

ATU46: Returns the current value of Startup State.

# **Snapshot Progress**

Displays the completion status of a firmware snapshot being created.

ATU11: Returns the current value of Snapshot Progress.

#### **Use Schedule Information**

Use the schedule information in the CCMP-FIRMWARE-SCHEDULE packet to determine when to update to the new firmware image.

ATU47: Returns the current value of Use Schedule Information.

ATU47=*n* sets Use Schedule Information to *n* 

Values accepted:

0 = False

1 = True

# **Update Firmware Now**

Update the firmware to the most recent uploaded firmware image. This operation cannot be reversed and can cause configuration loss.

ATU17: Runs the Update Firmware Now routine.

# **Take Firmware Snapshot**

Trigger a firmware snapshot to be created. The progress of the snapshot creation can be tracked under the node 'Snapshot Progress'.

ATU10: Runs the Take Firmware Snapshot routine.

# **Roll Back to Snapshot**

'Roll Back' to the most recent firmware snapshot. This will load the firmware and configuration saved on the most recent firmware snapshot. This operation cannot be reversed.

ATU15: Runs the Roll Back to Snapshot routine.

# Firmware Update Table

ATU48[a]: Returns the current value of .

Where: a = table index (starting from 0)

#### Available



Displays availability of the firmware image saved into this memory bank. True means an image is available, false means there is no image.

ATU20[a]: Returns the current value of Available.

Where: a = table index (starting from 0)

# **Type**

ATU49[a]: Returns the current value of Type.

Where: a = table index (starting from 0)

#### Version

The firmware version of the firmware image loaded into this memory bank.

ATU21[a]: Returns the current value of Version.

Where: a = table index (starting from 0)

# **Timestamp**

The creation date or upload date of the firmware image loaded into this memory bank.

ATU22[a]: Returns the current value of Timestamp.

Where: a = table index (starting from 0)

# (Distributer) Load Image

ATU51[a]: Runs the Load Image routine. Where: a = table index (starting from 0)

# **Ethernet Statistics Menu**

# **Ethernet Summary Statistics Table**

#### Name

ATR251[a]: Returns the current value of Name.

Where: a = Ethernet Summary Statistics table index (starting from 0)

#### Value

ATR252[a]: Returns the current value of Value.

Where: a = Ethernet Summary Statistics table index (starting from 0)

# **Ethernet Error Statistics Table**

#### Name

ATR253[a]: Returns the current value of Name.

Where: a = Ethernet Error Statistics table index (starting from 0)

#### Value

ATR254[a]: Returns the current value of Value.

Where: a = Ethernet Error Statistics table index (starting from 0)

# **Ethernet Data Statistics Table**

#### Name

#### Value

ATR303[a]: Returns the current value of Value.

Where: a = Ethernet Data Statistics table index (starting from 0)

# **IP Statistics Menu**



# **IP Statistics Table**

#### Name

ATG34[a]: Returns the current value of Name.

Where: a = IP Statistics table index (starting from 0)

#### Value

ATG35[a]: Returns the current value of Value.

Where: a = IP Statistics table index (starting from 0)

# **Protocol Statistics Table**

#### **Protocol**

ATG36[a]: Returns the current value of Protocol.

Where: a = Protocol Statistics table index (starting from 0)

#### **Transmitted**

ATG37[a]: Returns the current value of Transmitted.

Where: a = Protocol Statistics table index (starting from 0)

# **Re-Transmitted**

ATG38[a]: Returns the current value of Re-Transmitted.

Where: a = Protocol Statistics table index (starting from 0)

#### Received

ATG39[a]: Returns the current value of Received.

Where: a = Protocol Statistics table index (starting from 0)

#### **Forwarded**

ATG40[a]: Returns the current value of Forwarded.

Where: a = Protocol Statistics table index (starting from 0)

# **Dropped**

ATG41[a]: Returns the current value of Dropped.

Where: a = Protocol Statistics table index (starting from 0)

# **Checksum Error**

ATG42[a]: Returns the current value of Checksum Error.

Where: a = Protocol Statistics table index (starting from 0)

# **Length Error**

ATG43[a]: Returns the current value of Length Error.

Where: a = Protocol Statistics table index (starting from 0)

# **Memory Error**

ATG44[a]: Returns the current value of Memory Error.

Where: a = Protocol Statistics table index (starting from 0)

#### **Routing Error**

ATG45[a]: Returns the current value of Routing Error.

Where: a = Protocol Statistics table index (starting from 0)

# **Protocol Error**



ATG46[a]: Returns the current value of Protocol Error. Where: a = Protocol Statistics table index (starting from 0)

# **Error**

ATG47[a]: Returns the current value of Error.

Where: a = Protocol Statistics table index (starting from 0)

# **Fault History Menu**

# (Distributer) Reset Fault History

ATG179: Runs the Reset Fault History routine.

# **Fault History Table**

#### Time

The time that the fault occurred.

ATG20[a]: Returns the current value of Time.

Where: a = Fault History table index (starting from 0)

#### **Fault**

The fault that occurred.

ATG21[a]: Returns the current value of Fault.

Where: a = Fault History table index (starting from 0)

# **Event Log Menu**

#### Level

The granularity of information to write to the event log.

ATS60: Returns the current value of Level.

ATS60=n sets Level to n

Values accepted:

0 = Faults

1 = Warnings

2 = Status

3 = Information

4 = Debugging

# **Clear Event Log**

Clears all entries in the event log.

ATS65: Runs the Clear Event Log routine.

# Filters Table

#### **Type**

ATS181[a]: Returns the current value of Type.

Where: a = Filters table index (starting from 0)

#### **Status**

ATS182[a]: Returns the current value of Status.

ATS182[a]=n sets Status to n

Values accepted:

0 = Disabled

1 = Enabled

Where: a = Filters table index (starting from 0)



# **Transmission Log Table**

#### Time

ATP113[a]: Returns the current value of Time.

Where: a = Transmission Log table index (starting from 0)

# **Event**

ATP114[a]: Returns the current value of Event.

Where: a = Transmission Log table index (starting from 0)



# **Appendix E Sensor and Fault List Reference**

| Index | Sensor                      | Unit                | Range                 | Default Upper<br>Cut-off | Default Lower<br>Cut-off |
|-------|-----------------------------|---------------------|-----------------------|--------------------------|--------------------------|
| 0     | PA Temp                     | °C                  | -40 to 126            | 75                       | -20                      |
| 1     | Driver Temp                 | °C                  | -40 to 126            | 70                       | -20                      |
| 2     | PA Ambient Temp             | °C                  | -40 to 126            | 70                       | -20                      |
| 3     | Isolator Temp               | °C                  | -40 to 126            | 60                       | -20                      |
| 4     | Baseband Temp 1             | °C                  | -40 to 126            | 60                       | -20                      |
| 5     | Baseband Thermistor         | °C                  | -42 to 152            | 60                       | -20                      |
| 6     | Baseband Voltage            | mV                  | 0 to 32991            | 49000                    | 46500                    |
| 7     | 24V Voltage                 | mV                  | 0 to 14833            | 25930                    | 23040                    |
| 8     | 5V Voltage                  | mV                  | 0 to 6649             | 5380                     | 4810                     |
| 9     | 3.3V Voltage                | mV                  | 0 to 4347             | 3510                     | 3170                     |
| 10    | Baseband Current            | mA                  | 0 to 3296             | 2490                     | 40                       |
| 11    | 24V Current                 | mA                  | 0 to 3296             | 3110                     | 200                      |
| 12    | 5V Current                  | mA                  | 0 to 2197             | 2640                     | 800                      |
| 13    | 3.3V Current                | mA                  | 0 to 3296             | 1130                     | 670                      |
| 14    | PA0 Current <sup>3</sup>    | mA                  | 0 to 24951            | 7330                     | 4500                     |
| 15    | PA90 Current <sup>3</sup>   | mA                  | 0 to 24951            | 7330                     | 4500                     |
| 16    | Driver Current              | mA                  | 0 to 2495             | 390                      | 90                       |
| 17    | Supply Current <sup>3</sup> | mA                  | 0 to 30742            | 16170                    | 40                       |
| 18    | Rear Fan Current            | mA                  | 0 to 1636             | 470                      | 50                       |
| 19    | Front Fan Current           | mA                  | 0 to 1636             | 470                      | 50                       |
| 20    | Rear Fan Speed              | RPM                 | 0 to 32767            | 4440                     | 1320                     |
| 21    | Front Fan Speed             | RPM                 | 0 to 32767            | 4440                     | 1320                     |
| 22    | Reverse Power <sup>3</sup>  | mW                  | 0 to 86000            | 1730                     | 0                        |
| 23    | Transmit Power <sup>3</sup> | mW                  | 0 to 650000 (typical) | 281000                   | 222000                   |
| 24    | Driver Power <sup>3</sup>   | mW                  | 0 to 1714000          | 2640                     | 800                      |
| 25    | Exciter Power               | mW                  | 0 to 21977            | 680                      | 220                      |
| 26    | Isolator VSWR               | 10 <sup>-3</sup> :1 | 0 to 9000             | 2500                     | 0                        |

Table 23: Sensor Reference

 $^3$  Measurement varies according to Tx Power – these values apply to Tx Power = 250W.

# STI Engineering Appendix E Sensor and Fault List Reference

| Index | Fault                       | Latching     | Default Fault Action | Default Alarm |
|-------|-----------------------------|--------------|----------------------|---------------|
| 0     | High PA Temperature         | Configurable | Disable Transmit     | ALM7          |
| 1     | High Driver Temperature     | Configurable | Disable Transmit     | ALM7          |
| 2     | High PA Ambient Temperature | Configurable | None                 | ALM7          |
| 3     | High Isolator Temperature   | Configurable | Disable Transmit     | ALM7          |
| 4     | High Baseband 1 Temperature | Configurable | None                 | ALM7          |
| 5     | High Baseband 2 Temperature | Configurable | None                 | ALM7          |
| 6     | High Baseband Voltage       | Configurable | None                 | ALM1          |
| 7     | High 24V Voltage            | Configurable | None                 | ALM1          |
| 8     | High 5V Voltage             | Configurable | None                 | ALM1          |
| 9     | High 3.3V Voltage           | Configurable | None                 | ALM1          |
| 10    | High Baseband Current       | Configurable | None                 | ALM1          |
| 11    | High 24V Current            | Configurable | None                 | ALM1          |
| 12    | High 5V Current             | Configurable | None                 | ALM1          |
| 13    | High 3.3V Current           | Configurable | None                 | ALM1          |
| 14    | High PA0 Current            | Configurable | Disable Transmit     | ALM1          |
| 15    | High PA90 Current           | Configurable | Disable Transmit     | ALM1          |
| 16    | High Driver Current         | Configurable | None                 | ALM1          |
| 17    | High Supply Current         | Configurable | None                 | ALM1          |
| 18    | High Rear Fan Current       | Configurable | None                 | ALM8          |
| 19    | High Front Fan Current      | Configurable | None                 | ALM8          |
| 20    | High Rear Fan RPM           | Configurable | None                 | ALM8          |
| 21    | High Front Fan RPM          | Configurable | None                 | ALM8          |
| 22    | High Reverse Power          | Configurable | Disable Transmit     | None          |
| 23    | High Transmit Power         | Configurable | Disable Transmit     | ALM4          |
| 24    | High Driver Power           | Configurable | None                 | None          |
| 25    | High DDS Power              | Configurable | None                 | ALM4          |
| 26    | High Isolator VSWR          | Configurable | Disable Transmit     | ALM6          |
| 27    | Low PA Temperature          | Configurable | None                 | None          |
| 28    | Low Driver Temperature      | Configurable | None                 | None          |
| 29    | Low PA Ambient Temperature  | Configurable | None                 | None          |
| 30    | Low Isolator Temperature    | Configurable | None                 | None          |
| 31    | Low Baseband 1 Temperature  | Configurable | None                 | None          |

# STI Engineering Appendix E Sensor and Fault List Reference

| 32 | Low Baseband 2 Temperature | Configurable | None                 | None |
|----|----------------------------|--------------|----------------------|------|
| 33 | Low Baseband Voltage       | Configurable | None                 | ALM1 |
| 34 | Low 24V Voltage            | Configurable | None                 | ALM1 |
| 35 | Low 5V Voltage             | Configurable | None                 | ALM1 |
| 36 | Low 3.3V Voltage           | Configurable | None                 | ALM1 |
| 37 | Low Baseband Current       | Configurable | None                 | ALM1 |
| 38 | Low 24V Current            | Configurable | None                 | ALM1 |
| 39 | Low 5V Current             | Configurable | None                 | ALM1 |
| 40 | Low 3.3V Current           | Configurable | None                 | ALM1 |
| 41 | Low PA0 Current            | Configurable | None                 | ALM1 |
| 42 | Low PA90 Current           | Configurable | None                 | ALM1 |
| 43 | Low Driver Current         | Configurable | None                 | ALM1 |
| 44 | Low Supply Current         | Configurable | None                 | ALM1 |
| 45 | Low Rear Fan Current       | Configurable | None                 | ALM8 |
| 46 | Low Front Fan Current      | Configurable | None                 | ALM8 |
| 47 | Low Rear Fan RPM           | Configurable | None                 | ALM8 |
| 48 | Low Rear Fan RPM           | Configurable | None                 | ALM8 |
| 49 | Low Reverse Power          | Configurable | None                 | None |
| 50 | Low Transmit Power         | Configurable | None                 | ALM5 |
| 51 | Low Driver Power           | Configurable | None                 | None |
| 52 | Low DDS Power              | Configurable | None                 | None |
| 53 | Low Isolator VSWR          | Configurable | None                 | None |
| 54 | External Reference Fail    | Configurable | Reference Switchover | ALM2 |
| 55 | Software Fault             | Configurable | None                 | None |
| 56 | Exciter Out-of-Lock        | Configurable | Disable Transmit     | ALM9 |
| 57 | Efficiency Warning         | Configurable | None                 | None |
| 58 | Transmit Timeout           | Latch-only   | Disable Transmit     | None |
| 59 | Encoder Data Idle          | Configurable | None                 | None |
| 60 | PA Current Foldback        | Configurable | None                 | None |
| 61 | Reverse Power Foldback     | Configurable | Disable Transmit     | None |
| 62 | Invalid Calibration        | Latch-only   | Disable Transmit     | None |
| 63 | Watch Dog Reset            | Latch-only   | None                 | None |
| 64 | Assertion Reset            | Latch-only   | None                 | None |
| 65 | Firmware Update Exception  | Latch-only   | None                 | None |



# STI Engineering Appendix E Sensor and Fault List Reference

| 66 | Mass Storage                  | Configurable | None             | None |
|----|-------------------------------|--------------|------------------|------|
| 67 | Module                        | Latch-only   | Disable transmit | None |
| 68 | Reference Switchover          | Latch-only   | None             | ALM3 |
| 69 | Disable Transmission          | Latch-only   | None             | None |
| 70 | Scale Transmit Power          | Latch-only   | None             | None |
| 71 | Enable PA0 Current Foldback   | Latch-only   | None             | None |
| 72 | Enable PA90 Current Foldback  | Latch-only   | None             | None |
| 73 | Enable Reverse Power Foldback | Latch-only   | None             | None |

Table 24: Fault Reference



# **Appendix F Product Identification Table**

Table 25 shows the Paging Transmitter product identification. The green shaded items are the available configurations. This table should be used when ordering a Paging Transmitter.

| FREQUENCY<br>BAND |     | MAXIMUM TX<br>POWER |       | POWER<br>SUPPLY |                | INTEGRATED<br>ISOLATOR |            | RELEASE |                     | OTHER<br>FEATURES |                       |
|-------------------|-----|---------------------|-------|-----------------|----------------|------------------------|------------|---------|---------------------|-------------------|-----------------------|
| 148               | VHF | 250                 | 250 W | Е               | 24 VDC         | ND                     | Not Fitted | A       | Australia and<br>US | Н                 | Hot standby operation |
| 900               | UHF |                     |       | Т               | -48 VDC        | CD                     | Fitted     | Е       | Europe              |                   |                       |
|                   |     |                     |       | P               | 110/240<br>VAC |                        |            |         |                     |                   |                       |

Table 25: Paging Transmitter product identification table

For example, the product code for a 250 W Paging Transmitter supplied from -48 VDC, with an integrated isolator and released for Europe is RFI-148 250TCDE.



# **Appendix G Troubleshooting**

This section outlines steps that can be taken in response to issues with the paging transmitter.

# **G.1 Configuring Sensor Cutoffs**

Changing the paging transmitter transmit power should also include changing the sensor cutoffs. The factory default settings for the paging transmitter is for 20 W transmit power, including reasonable sensor cutoffs for this transmit power. If the transmit power is increased, then the sensor cutoffs also need to be similarly increased. Please contact STI Engineering for accessing Cruise Control configuration files with recommended sensor cutoffs for common transmit power settings.

# **G.2 Fault LED Active**

The paging transmitter has several different indicators that a fault is currently active. The easiest method to determine fault status is to observe the front panel of the unit. If the red fault LED is on then the transmitter has an active fault. The fault status can also be interrogated using Cruise Control.

To determine the type of fault that is active, connect to the paging transmitter using Cruise Control (for information on using Cruise Control see section 3.2). The front serial port of the paging transmitter has a configuration locked to 19200 8N1 (19200 baud, 8 data bits, even parity, and 1 stop bit). Once connected with Cruise Control, navigate to the Faults group and Cruise Control will display a view similar to the one shown in Figure 19 below.



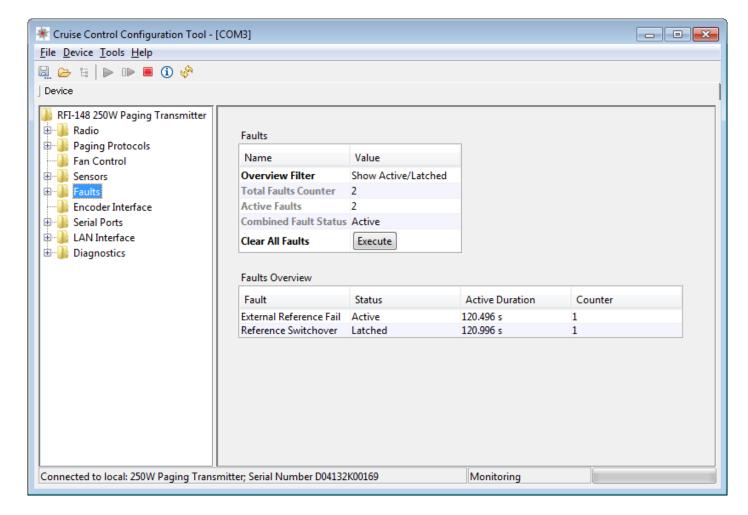



Figure 19: Cruise Control Faults Overview

In the case of Figure 19, the external reference fail and reference switchover faults are active. See the headings below to diagnose some common active faults.

# G.2.1 External Reference Fail

The external reference fail fault goes active when the transmitter is configured to use the external reference, but it cannot be locked to.

If an external reference is not in use, change the reference mode to internal and then run the clear all faults routine to clear the fault LED.

If an external reference is required:

- Ensure the external reference is plugged in.
- Ensure the external reference is within specification (see Table 9).
- Ensure the external reference frequency is configured correctly.



# G.2.2 High Transmit Power

A high transmit power fault could indicate a hardware issue, however it is usually due to incorrect configuration. The high transmit power fault will go active when the sensed transmit power exceeds the transmit power upper cutoff. A high transmit power fault is usually seen in tandem with high PA current and foldback faults.

If the transmit power setting has been increased without changing the sensor cutoff values then this is likely the cause of the fault. See appendix G.1 for troubleshooting sensor cutoffs. For information on sensor cutoffs see section 0.

# G.2.3 High VSWR

The high VSWR fault goes active when there is too much power being reflected into the RF out connection. When diagnosing a VSWR fault ensure the guidelines on human exposure to RF emissions are followed in section 0. To diagnose a high VSWR fault:

- Ensure an antenna is attached to the RF out port.
- Ensure the paging transmitter is configured for the correct operating frequency and the correct channel number is selected.
- Ensure the antenna is tuned to the operating frequency.
  - o Also ensure any in-line devices (such as a cavity filter) are tuned to the correct frequency.
- Ensure there are no open circuits in the cable run from the paging transmitter to the antenna.
- If possible, visually inspect the antenna for damage.

# G.2.4 Disable Transmit

The disable transmit fault is a fault action automatically performed by the firmware due to other faults being active. The disable transmit fault action is caused by critical faults in the paging transmitter to stop hardware damage or transmitting off frequency. A list of faults that will cause disable transmit and how to troubleshoot them follows.

# G.2.4.1 High PA or Driver Temperature

The temperature on the PA module has exceeded the sensor cutoff values (80  $^{\circ}$ C by default). To troubleshoot high PA temperature:

- Ensure the fans are configured to turn on at a reasonable temperature. The factory default is recommended and has the fans turn on at  $40 \, ^{\circ}$ C.
- Check the ambient air temperature where the paging transmitter is installed. When transmitting at 250 W with an ambient temperature of 60 °C, the paging transmitter is expected to reach 80 °C. Ensure proper air circulation and/or air conditioning in the area the paging transmitter is installed.



• Ensure the fans are working. Check for blockages of the fan intake and exhaust.

# G.2.4.2 High Reverse Power or Reverse Power Foldback

A high reverse power fault indicates a hardware failure of the circulator inside the paging transmitter. Failure of the circulator can cause RF spectrum splatter, so transmit is disabled. Return the unit to STI Engineering for repair.

# G.2.4.3 Exciter Out-of-Lock

An exciter out-of-lock fault indicates that the channel frequencies can no longer be generated. There are two possible causes of an exciter out-of-lock:

- If an external reference is in use: the external reference frequency has drifted too far from the configured reference frequency. Check the accuracy of the external reference.
- A critical hardware failure in the paging transmitter. Return the unit to STI Engineering for repair.

# G.2.4.4 Transmit Timeout

The transmit timeout fault goes active when the unit has been transmitting for longer than the transmit timeout duration. The transmit timeout fault can either be disabled, or the timeout can be increased.

# **G.3 Unit Won't Transmit**

There could be several causes for the paging transmitting not transmitting, each is explained below.

# G.3.1 PTT Override

The paging transmitter PTT override can disable the transmitter from transmitting. The status of PTT override is displayed in the PTT Override Status field under the radio settings:

- *Enabled:* Transmitting is enabled.
- **DISABLED:** User: Transmitting is disabled because the user-configurable option PTT Override is set to disable transmit. To enable transmit again, set PTT override to enable transmit.
- **DISABLED:**Fault: Transmitting is disabled because the disable transmit fault action is active. See section G.2.4 for troubleshooting a disable transmit fault action.
- **DISABLED:Listening:** Transmitting is disabled because the isolator mode is set for listening. To enable transmitting again, the isolator mode must be set for transmitting.
- **DISABLED:Loading Config:** Transmitting is disabled while Cruise Control is loading a configuration file.



# G.3.2 Hardware or Auto PTT

When troubleshooting hardware or auto PTT, ensure the following:

- The paging transmitter can transmit with the "Transmit On" routine in Cruise Control.
- Hardware PTT or auto PTT is enabled.

#### For hardware PTT:

- The correct hardware PTT active level is configured, active low or active high.
- Toggling the hardware PTT state is reflected in the "Ext I/O" table in Cruise Control in the Encoder Interface group. If this does not work, it indicates a cabling issue with the hardware PTT input.

#### For auto PTT:

• Toggling the L-bit state is reflected in the "Ext I/O" table in Cruise Control in the Encoder Interface group. If this does not work, it indicates a cabling issue with the L-bit input.

# G.3.3 Profile Definition

If the RFI-900 reports that it is transmitting ( $Radio \rightarrow Power \rightarrow Transmitter\ Status$ ), yet LIU L-Bit activity does not produce modulated data, ensure that the selected modulation profile ( $Encoder\ Interface \rightarrow Active\ Profile$ ) is not configured to use an external data clock (via the LIU) unless you are providing one ( $Paging\ Protocols \rightarrow Profiles \rightarrow Ext.\ Data\ Clock$ ).

# **G.4 Unit Transmits at Low Power**

If the unit is transmitting at low power as indicated by the front panel power gauge or transmit power sensor there could be several causes. Ensure:

- The required transmit power is configured.
- There are no faults active. A unit configured to transmit at a high power level needs similarly higher sensor cutoffs, see appendix G.1.

Otherwise, low transmit power could indicate a hardware failure. If troubleshooting fails, return the unit to STI Engineering for repair.



# **Appendix H Glossary**

| BNC    | Bayonet Neill-Concelman (Connector)              |
|--------|--------------------------------------------------|
| CTS    | Clear To Send                                    |
| DCD    | Data Carrier Detect                              |
| DCE    | Data Communications Equipment (radio modem)      |
| DTE    | Data Terminal Equipment (computer device)        |
| DTR    | Data Terminal Ready                              |
| EIRP   | Effective Isotropic Radiated Power               |
| GUI    | Graphical User Interface                         |
| PA     | Power Amplifier                                  |
| POCSAG | Post Office Code Standardisation Advisory Group  |
| PET    | Motorola Page Entry (now TAP)                    |
| PTT    | Push-To-Talk                                     |
| RF     | Radio Frequency                                  |
| RSSI   | Received Signal Strength Indicator               |
| RTS    | Request To Send                                  |
| Rx     | Received                                         |
| SNMP   | Simple Network Management Protocol               |
| SNTP   | Simple Network Time Protocol                     |
| TAP    | Telelocator Alphanumeric Protocol (formerly PET) |
| TNC    | Threaded Neill-Concelman (Connector)             |
| TNPP   | Telelocator Network Paging Protocol              |
| Tx     | Transmitted                                      |
| UTC    | Coordinated Universal Time                       |
| VHF    | Very High Frequency                              |
| VSWR   | Voltage Standing Wave Ratio                      |
|        |                                                  |

Table 26: Glossary

# Index

| Appendix                                 |    |
|------------------------------------------|----|
| Controller Configurations                |    |
| Glenayre C2000 Controller / FLEX Mode    | 48 |
| Glenayre C2000 Controller / POCSAG Mode  | 48 |
| Motorola NIU Controller / FLEX Mode      |    |
| Zetron Model 66 Controller / POCSAG Mode | 49 |
| Configuration                            | 13 |
| Auto PTT                                 |    |
| Carrier Offset                           |    |
| Channel Selection                        |    |
| Combined Fault                           |    |
| Default Reference                        |    |
| Delay Correction                         |    |
| Encoder Frequency Control                |    |
| Encoder Hardware PTT                     |    |
| Encoder Protocol Control                 |    |
| External Reference                       |    |
| Isolator Mode                            |    |
| Minimum Fault Duration                   |    |
| PTT System Override                      |    |
| PTT Turn Off Delay                       |    |
| Sensor Cut-off                           |    |
| Serial Ports                             |    |

| SNTP                            |     |
|---------------------------------|-----|
| Transmit Power                  |     |
| Transmit Timeout                |     |
|                                 |     |
| Diagnostics and Troubleshooting |     |
| Serial Port Statistics          | 21  |
|                                 |     |
| Fault Reference                 | 88  |
| Classes                         | 0.0 |
| Glossary                        | 98  |
| Installation                    |     |
| Product                         | 8   |
| Introduction                    |     |
|                                 |     |
| Operation                       | 21  |
| Serial Ports                    | 21  |
|                                 |     |
| Sensor Reference                | 88  |
| Technical Specifications        | 40  |
| Paging Transmitter              |     |
| <u> </u>                        |     |
| Serial Ports                    | 43  |