
WEC8500/WEC8050 (APC)

Operation Manual

COPYRIGHT

This manual is proprietary to SAMSUNG Electronics Co., Ltd. and is protected by copyright. No information contained herein may be copied, translated, transcribed or duplicated for any commercial purposes or disclosed to the third party in any form without the prior written consent of SAMSUNG Electronics Co., Ltd.

TRADEMARKS

Product names mentioned in this manual may be trademarks and/or registered trademarks of their respective companies.

This manual should be read and used as a guideline for properly installing and operating the product.

All reasonable care has been made to ensure that this document is accurate. If you have any comments on this manual, please contact our documentation centre at the following homepage:

Homepage: http://www.samsungdocs.com

INTRODUCTION

Purpose

This manual describes the overview, management, and setup of WEC8500/WEC8050 that is a Samsung Wireless Enterprise (W-EP) Access Point Controller (APC). This manual is written for WEC8500 version 1.4.4, WEC8050 version 1.0.0.

Document Content and Organization

This manual consists of ten Chapters, three Annexes, and a list of Abbreviations.

CHAPTER 1. Access Point Controller System Overview

This chapter describes the main functions, network configuration, external configuration and service scenario of APC.

CHAPTER 2. Basic System Configuration

This chapter describes how to configure to use Command Line Interface (CLI) and Web UI.

CHAPTER 3. Data Network Function

This chapter describes how to set up the data network such as interface, Virtual Local Area Network (VLAN), L3, or Quality of Service (QoS), etc. of APC.

CHAPTER 4. AP Connection Management

This chapter describes the connection management function of APC and Samsung W-EP wireless LAN Access Point (AP).

CHAPTER 5. WLAN Management

This chapter describes how to set up the Wireless Local Area Network (WLAN) of APC.

CHAPTER 6. Wi-Fi Configuration

This chapter describes how to configure the Wireless Fidelity (Wi-Fi) of APC, QoS, and country code.

CHAPTER 7. WLAN Additional Service

This chapter describes how to set up WLAN additional services available in the APC.

CHAPTER 8. Security

This chapter describes how to set up security related setting such as Remote Authentication Dial-In User Service (RADIUS) server available in the APC, unauthorized AP detection and blocking function, guest access, WEB pass-through, Network Address Translation (NAT), firewall function, etc.

CHAPTER 9. IP Application

This chapter describes the Internet Protocol (IP) application functions available in the APC such as Domain Naming Service (DNS), Network Time Protocol (NTP), File Transfer Protocol (FTP)/sFTP, or Telnet/SSH.

CHAPTER 10. System Management

This chapter describes the various system management functions available in the APC.

ANNEX A. CLI Command Structure

Command structure available in the CLI of APC.

ANNEX B. Open Source Announcement (WEC8500/WEC8050)

Open source list used in the APC and its license notice.

ANNEX C. Open Source Announcement (WEA302/WEA303/WEA312/WEA313/WEA403/WEA412)

Open source list used in the Samsung W-EP wireless LAN AP and its license notice.

ABBREVIATION

Describes the acronyms used in this manual.

Conventions

The following types of paragraphs contain special information that must be carefully read and thoroughly understood. Such information may or may not be enclosed in a rectangular box, separating it from the main text, but is always preceded by an icon and/or a bold title.

NOTE

Indicates additional information as a reference.

Console Screen Output

- The lined box with 'Courier New' font will be used to distinguish between the main content and console output screen text.
- 'Bold Courier New' font will indicate the value entered by the operator on the console screen.

Revision History

VERSION	DATE OF ISSUE	REMARKS
6.0	12. 2014.	Updated the content overall in accordance with the package version 2.4.0
5.0	05. 2014.	Updated the content overall in accordance with the package version 2.0.0
4.0	01. 2014.	Changed contents1.3.1 WEC8500 Configuration and Functions4.2.6.3 Tech Support Information
3.0	10. 2013.	- Updated the content overall in accordance with the package version (WEC8500 version 1.4.4, WEC8050 version 1.0.0) - Added contents for WEC8050
2.0	06. 2013.	 Updated the content overall in accordance with the package version 1.3.0 Added contents 3.4.6 OS-AWARE 7.4.2 DPC Configuration 7.4.3 DCS Configuration 7.4.4 CHDC Configuration Changed contents 7.10 Clustering 10.8.2 System Upgrade
1.0	03. 2013.	First Version

TABLE OF CONTENTS

INTROD	UCTIO	ON	3		
	Purpos	se	3		
	Document Content and Organization				
	Conventions				
	Conso	le Screen Output	5		
	Revisi	on History	5		
CHAPT	ER 1.	Access Point Controller System Overview	21		
1.1	APC C	Overview	21		
1.2	Netwo	rk Configuration	23		
1.3	APC C	Configuration and Functions	26		
	1.3.1	WEC8500 Configuration and Functions	26		
	1.3.2	WEC8050 Configuration and Functions	30		
1.4	APC A	pplication Configuration and Service Scenario	32		
	1.4.1	Basic Configuration	32		
	1.4.2	Configuration of Multiple APC for Redundancy	33		
	1.4.3	Clustering Configuration using Multiple APC (WEC8500)	34		
	1.4.4	Configuration of Multiple Sites Consisting of Headquarter and Branches	37		
1.5	NAT C	onfiguration between AP and APC	39		
CHAPT	ER 2.	Basic System Configuration	40		
2.1	Basic	System Configuration	40		
	2.1.1	CLI Connection	40		
	2.1.2	Managing Operator Account	41		
	2.1.3	APC Management Port Configuration	42		
	2.1.4	SNMP Community Configuration	42		
	2.1.5	CLI Basic Usage	42		
2.2	Using	Web UI	45		
	2.2.1	Web UI Connection	45		
	2.2.2	WEC Main Window	46		
	2.2.3	Managing Operator Account	47		

2.3	Initial	Setup Wizard	48
	2.3.1	Overview	48
	2.3.2	Connecting	48
	2.3.3	How to Use	49
CHAPT	ER 3.	Data Network Function	52
3.1	Port C	onfiguration	52
	3.1.1	Port management	52
3.2	Interfa	ce Configuration	56
	3.2.1	Interface management	56
	3.2.2	Managing Interface Group	59
3.3	VLAN	Configuration	61
	3.3.1	VLAN	61
	3.3.2	Bridge	63
	3.3.3	Spanning Tree	66
3.4	Layer	3 Protocol Configuration	70
	3.4.1	IP Address Configuration	70
	3.4.2	Static Routing Configuration	70
	3.4.3	IP Multicast Routing Configuration	71
	3.4.4	PIM Configuration	72
	3.4.5	OSPF Configuration	72
	3.4.6	VRRP Configuration	110
	3.4.7	Configuring IPWATCHD	113
3.5	QoS		114
	3.5.1	ACL Configuration	114
	3.5.2	Class-map Configuration	118
	3.5.3	Policy-map Configuration	119
	3.5.4	Service Policy Configuration	120
	3.5.5	Time Profile	121
	3.5.6	OS-AWARE	124
3.6	Multic	ast to Unicast	127
3.7	IP Mul	ticast Configuration	127
	3.7.1	IP Multicast Routing Configuration	127
	3.7.2	PIM Configuration	127
3.8	IGMP S	Snooping	130
3.9	Deep F	Packet Inspection	133
	3.9.1	Configuring Profile and Application Rule	133

	3.9.2	Configuring Application Group	134
	3.9.3	Checking Statistics by Category	134
СНАРТ	ER 4.	AP Connection Management	139
4.1	APC N	Management	139
	4.1.1	Managing APC List	139
	4.1.2	Management Interface Configuration	141
	4.1.3	CAPWAP Configuration	142
	4.1.4	AP Registration (Auto Discovery) Configuration	144
	4.1.5	Managing AP File Transmission	145
	4.1.6	APC Redundancy Configuration	145
4.2	AP Ma	anagement	151
	4.2.1	AP Group Configuration	151
	4.2.2	Configuring Remote AP Group	167
	4.2.3	AP Time Synchronization per Group	173
	4.2.4	AP Configuration	175
	4.2.5	Information Management	186
	4.2.6	Outdoor AP Configuration	189
	4.2.7	AP Package Upgrade	190
	4.2.8	Remote AP Package Upgrade	195
СНАРТ	ER 5.	WLAN Management	204
5.1	WLAN	N Configuration	204
	5.1.1	Basic WLAN Configuration	204
	5.1.2	WLAN Additional Configuration	207
	5.1.3	WLAN-based ACL Configuration	209
	5.1.4	Managing Root Service	211
	5.1.5	MCS Configuration Management by WLAN	214
5.2	Local	Switching	217
5.3	Secur	ity and Authentication	220
	5.3.1	Initialization of WLAN Security Function	220
	5.3.2	WPA/WPA2 PSK Configuration	222
	5.3.3	WPA/WPA2 802.1x Configuration	225
	5.3.4	Static WEP Configuration	229
	5.3.5	Dynamic WEP Configuration	231
5.4	DHCP	Configuration	234
	5.4.1	DHCP Server	234
	5.4.2	DHCP Relay	242

	5.4.3	DHCP Proxy	243
	5.4.4	Option 82 Configuration	244
	5.4.5	Primary/Secondary Server Configuration	246
5.5	Radio	Service Configuration	249
СНАРТ	ER 6.	Wi-Fi Configuration	251
6.1	802.11	1a/b/g/n/ac Radio Property	251
	6.1.1	802.11a/b/g Configuration	251
	6.1.2	802.11n Configuration	256
	6.1.3	802.11ac Configuration	257
6.2	Wi-Fi	QoS Configuration	259
	6.2.1	QoS Configuration of Wireless Terminal	259
	6.2.2	QoS Configuration of AP	261
	6.2.3	Configuring QoS Profile of a Specific Terminal	265
	6.2.4	Voice Optimization Configuration	267
6.3	802.11	1h Configuration	268
6.4	Count	try Code	270
СНАРТ	ER 7.	WLAN Additional Services	274
7.1	Mana	ging Wireless Terminal	274
	7.1.1	Information Retrieval Functions	274
	7.1.2	Connection History related Configuration	275
7.2	Hando	over Management	276
	7.2.1	Connection History Information	276
	7.2.2	AirMove Configuration	276
	7.2.3	Inter APC Handover Configuration	278
7.3	Call A	Admission Control (CAC) Configuration	279
	7.3.1	SIP ALG Configuration	279
	7.3.2	Voice CAC Configuration	281
	7.3.3	Video CAC Configuration	283
7.4	Radio	Resource Management (RRM)	285
	7.4.1	RRM Configuration	285
	7.4.2	DPC Configuration	286
	7.4.3	DCS Configuration	288
	7.4.4	CHDC Configuration	290
	7.4.5	Sleeping Cell Detection	294
	7.4.6	Energy Saving Groups	296

	7.4.7	Energy Saving Auto Classification	297
7.	5 Locati	ion Tracking	300
7.	6 Spect	rum Analysis	301
	7.6.1	Retrieving Spectrum Analysis Data	301
	7.6.2	Spectrum Analysis Configuration	304
	7.6.3	Interference Type Configuration	306
7.	7 Contro	olling Usage per User	307
7.	8 Remo	te Packet Capture	309
7.	9 Cluste	ering	311
7.	10 Limitii	ng the Number of Connected Users	315
	7.10.1	Limiting Connections per Radio	315
	7.10.2	Connection Limitation per WLAN	316
7.	11 Voice	Statistics and Communication Failure Detection	318
	7.11.1	Voice Statistics Function	318
	7.11.2	Detecting WLAN-based Communication Failure	320
7.	12 Voice	Signal and Media Monitoring	321
	7.12.1	Checking Voice Related Wireless Information	321
	7.12.2	Checking Voice Related Quality Information	326
7.	13 Multic	ast Stream Admission Control	329
	7.13.1	Configuring Admission Control	329
7.	14 Wi-Fi	Band Steering	331
	7.14.1	Activating Band Steering Function	331
7.	15 Wi-Fi	Load Balancing	334
	7.15.1	Activating Load Balancing Function	334
7.	16 Statio	n-based Adaptive Load Balancing	336
	7.16.1	Basic Setting of Station-based Adaptive Load Balancing	336
	7.16.2	Setting AP Group Parameter	337
	7.16.3	S Setting AP Parameters	339
CHAI	PTER 8.	Security	341
8.	1 RADIL	JS Server Configuration	341
-	8.1.1	External RADIUS Server	
	8.1.2	Internal RADIUS Server	347
8.	2 Unaut	horized AP/Terminal Detection and Blocking	351
	8.2.1	Enabling Detection Function	
	8.2.2	Detection	

	8.2.	3 Enabling Blocking Function	370
	8.2.	4 Blocking	370
8	3.3 Cap	tive Portal	374
	8.3.	1 Configuring Guest Authentication	374
	8.3.	2 Configuring Guest ACL	376
	8.3.	3 Configuring Web Authentication	378
	8.3.	4 Configuring Web Authentication on MAC Authentication Failure	381
	8.3.	5 Configuring Web Pass-through	385
	8.3.	6 Configuring One Time Redirection	387
	8.3.	7 Redirection Address Format	389
8	3.4 NAT	and Firewall Configuration	390
	8.4.	1 Firewall Configuration	390
	8.4.	2 Access List Configuration	391
	8.4.	3 NAT Configuration	392
8	8.5 MA	C Filter	396
8	3.6 Ope	erator Authentication through Interoperation with TACACS+ Server	399
	8.6.	1 Configuring External TACACS+ Server	399
	8.6.	2 Configuring Authentication Type of Operator Account	402
8	3.7 Role	e Based Access Control	403
	8.7.	1 Configuring Role Profile	403
	8.7.	2 Configuring Derivation Profile	404
	8.7.	3 Configuring ACL Profile	407
	8.7.	4 Configuration Synchronization (Remote AP Group)	411
8	3.8 Exte	ernal BYOD Server	414
	8.8.	1 Configuring External BYOD Server	414
	8.8.	2 Captive Portal Configuration	416
СНА	PTER 9). IP Application	419
9).1 DNS	S	419
	9.1.	1 DNS Client Configuration	419
	9.1.	2 DNS Proxy Configuration	420
9	.2 NTF		422
9	.3 FTP	/sFTP	425
9	.4 Telr	net/SSH	428
o	5 Utili	ties	430

CHAPT	ER 10.	System Management	431
10.1	SNMP C	Configuration	431
	10.1.1	SNMP Community	431
	10.1.2	SNMP Trap	432
10.2	System	Management	434
	10.2.1	Retrieving System Information	434
	10.2.2	System Reboot	439
10.3	System	Resource Management	441
	10.3.1	Retrieving System Status	441
	10.3.2	Retrieving and Configuring Threshold	444
10.4	Managii	ng Alarm and Event	445
	10.4.1	Retrieving Current Alarm	446
	10.4.2	Retrieving History	447
	10.4.3	External Transmission Configuration	449
	10.4.4	Alarm Filter and Level Configuration	449
10.5	Managii	ng Traffic Performance	451
	10.5.1	Managing History Information	451
	10.5.2	Managing Real-time Information Collection	452
10.6	Managii	ng License Key	453
	10.6.1	Managing SLM License (Activation) Key	453
	10.6.2	Managing Old License Key	456
10.7	Syslog	Configuration	459
10.8	Upgrade	e	461
	10.8.1	Checking Package Version	
	10.8.2	System Upgrade	461
10.9	Configu	ıration Management	464
10.10	Debug a	and Diagnosis	466
	10.10.1	Process	466
	10.10.2	Retrieving Crash Information	468
10.11	File Mar	nagement	471
	10.11.1	Retrieving Configuration of Current Directory	471
	10.11.2	Retrieving Directory List	472
	10.11.3	Revising File	473
	10.11.4	Retrieve File Content	473
	10.11.5	File Download and Upload	474
	10.11.6	Package File	474
	10.11.7	Retrieving Storage Media	476

	10.11	.8 Managing File in Web UI	477
	10.11	9 Statistics Function	480
ANNEX	A.	CLI Command Structure	522
A.1	confi	gure	522
A.2	show		552
A.3	clear		564
A.4	debu	g	566
A.5	file		569
A.6	Etc		569
ANNEX	В.	Open Source Announcement (WEC8500/WEC8050)	570
ANNEX	C.	Open Source Announcement (WEA302/WEA303/	
		WEA312/WEA313/WEA403/WEA412)	599
ABBRE	VIATI	ON	624

LIST OF FIGURES

Figure 1. System Structure for Wireless Enterprise Solution	22
Figure 2. W-EP Network Configuration	23
Figure 3. WEC8500 Interface-Front/Back	26
Figure 4. System LED Configuration	26
Figure 5. Management Port Configuration	27
Figure 6. Optic port configuration	28
Figure 7. Power module configuration	29
Figure 8. WEC8050 interface-Front/Back	30
Figure 9. Status LED configuration	30
Figure 10. Ethernet Port Configurations	31
Figure 11. Basic Configuration of W-EP Wireless LAN System	32
Figure 12. Example of W-EP Wireless LAN System Configuration for Redundancy	33
Figure 13. Example of W-EP Wireless LAN System Configuration for Distributed Clustering	
Service	35
Figure 14. Example of W-EP Wireless LAN System Configuration for Centralized Clustering	
Service	36
Figure 15. Example of W-EP Wireless LAN System Configuration for Multiple Sites consisting	ng of
Headquarter and Branches	37
Figure 16. AP-APC NAT Environment Configuration Diagram	39
Figure 17. Web UI Connection Window	45
Figure 18. WEC Main Window	46
Figure 19. Operator Account Management Window	47
Figure 20. Operator Account Addition Window	47
Figure 21. Initial Setup Wizard Welcome Screen	49
Figure 22. Move to the setup step of the initial setup wizard	49
Figure 23. Port Management Window	54
Figure 24. Port Configuration Change Window	55
Figure 25. Interfaces Window (1)	57
Figure 26. Interfaces Window (2)	57
Figure 27. Interfaces Window (3)	58
Figure 28. Interface Group Window (1)	59
Figure 29. Interface Group Window (2)	60
Figure 30. Spanning Tree Configuration Window (1)	68
Figure 31. Spanning Tree Configuration Window (2)	69
Figure 32. Spanning Tree Configuration Window (3)	69
Figure 33. Static Routing Configuration Window	71
Figure 34 OSPF Configuration Window	73

Figure 35. VRRP-Operation Window	112
Figure 36. VRRP-Circuit Failover Window (1)	112
Figure 37. VRRP-Circuit Failover Window (2)	112
Figure 38. IPWATCHD Configuration Window	113
Figure 39. ACL Configuration Window	115
Figure 40. Window where a Time Profile is Applied to ACL	115
Figure 41. ACL Interface Configuration Window (1)	116
Figure 42. ACL Interface Configuration Window (2)	116
Figure 43. Admin ACL Configuration Window	118
Figure 44. Time Profile Configuration Window (1)	121
Figure 45. Time Profile Configuration Window (2)	122
Figure 46. Applying to ACL	123
Figure 47. IP Multicast Configuration Window	127
Figure 48. PIM-SM Configuration Window (1)	128
Figure 49. PIM-SM Configuration Window (2)	128
Figure 50. PIM-SM Configuration Window (3)	129
Figure 51. PIM-SM Configuration Window (4)	129
Figure 52. IGMP Snooping Config Window	131
Figure 53. IGMP Snooping Mroute Creation Window (1)	131
Figure 54. IGMP Snooping Mroute Creation Window (2)	132
Figure 55. IGMP Snooping Mroute Creation Window (3)	132
Figure 56. IGMP Snooping Mroute Creation Window (4)	132
Figure 57. APC List Management Window	140
Figure 58. Management interface configuration	141
Figure 59. AP Registration Method Setup Window	144
Figure 60. Redundancy Configuration Window	148
Figure 61. AP retrieving window	149
Figure 62. AP redundancy Configuration Window	150
Figure 63. AP groups configuration Window	152
Figure 64. AP Group Addition Window	152
Figure 65. General Configuration Window for AP Group	155
Figure 66. AP Add/Remove Window for AP Group	157
Figure 67. WLAN Add/Remove Window for AP Group	158
Figure 68. 802.11a/n Window for AP Group	159
Figure 69. 802.11b/g/n Window for AP Group	160
Figure 70. Advanced Configuration Window for AP Group	166
Figure 71. Remote AP Group Add/Remove Window	168
Figure 72. Local Authentication Configuration Window for Remote AP Group	169
Figure 73 Window for Configuring Tunneling Forwarding of Remote AP Group	171

Figure 74. Window for Configuring Local Bridging Forwarding of Remote AP Group	172
Figure 75. AP Time Synchronization Configuration Options	174
Figure 76. Adding Access Points	175
Figure 77. AP Profile Setting (1)	179
Figure 78. AP Profile Setting (2)	181
Figure 79. AP mode configuration	182
Figure 80. AP CLI Account Add/Remove Window	183
Figure 81. AP SNMP v1/v2c Community Configuration Window	185
Figure 82. AP v3 User Configuration Window	185
Figure 83. AP Ports window	187
Figure 84. AP Ports detail information window	187
Figure 85. AP Tech Support Information Receiving Window	188
Figure 86. Outdoor AP Create Window	190
Figure 87. AP upgrade	193
Figure 88. AP upgrade-global	193
Figure 89. AP upgrade-individual	194
Figure 90. AP upgrade-advanced	195
Figure 91. Remote AP Group Upgrade Activation_1	196
Figure 92. Remote AP Group Upgrade Activation_2	197
Figure 93. Checking Master AP Configuration	198
Figure 94. Checking Master AP Configuration	198
Figure 95. AP Package Configuration	200
Figure 96. Starting AP Upgrade	201
Figure 97. Restarting and Upgrading AP	203
Figure 98. WLAN basic configuration (1)	206
Figure 99. WLAN basic configuration (2)	206
Figure 100. WLAN-based ACL configuration	210
Figure 101. Root service management (1)	213
Figure 102. Root service management (2)	213
Figure 103. MCS by WLAN: 802.11a/n/ac Configuration Management window	216
Figure 104. MCS by WLAN: 802.11b/g/n Configuration Management window	216
Figure 105. Local Switching Configuration Window of WLAN	218
Figure 106. Split ACL Configuration Window of WLAN Allocated to AP	219
Figure 107. VLAN/ACL/Pre-Auth.ACL Configuration Window of WLAN Allocated to AP	219
Figure 108. Initialization of WLAN security function	221
Figure 109. WPA/WPA2 PSK configuration	224
Figure 110. WPA/WPA2 802.1x Configuration (1)	227
Figure 111. WPA/WPA2 802.1x Configuration (2)	228
Figure 112. Static WEP configuration	230

Figure 113.	Dynamic WEP Configuration Window	.233
Figure 114.	DHCP server configuration	.234
Figure 115.	DHCP Pool (1)	.240
Figure 116.	DHCP Pool (2)	.240
Figure 117.	DHCP Relay	.242
Figure 118.	DHCP Proxy	.243
Figure 119.	Option 82 configuration (1)	.245
Figure 120.	Option 82 configuration (2)	.245
Figure 121.	Primary/Secondary server configuration (1)	.247
Figure 122.	Primary/Secondary server configuration (2)	.247
Figure 123.	Primary/Secondary server configuration (3)	.248
Figure 124.	Radio service configuration	.250
Figure 125.	802.11a/b/g/n radio (1)	.254
Figure 126.	802.11a/b/g/n radio (2)	.255
Figure 127.	QoS configuration of a wireless terminal (1)	.260
Figure 128.	QoS configuration of a wireless terminal (2)	.260
Figure 129.	QoS configuration of AP (wireless section)	.264
Figure 130.	Configuring QoS profile of a specific terminal	.266
Figure 131.	Configuring voice optimization	.267
Figure 132.	Configuring 802.11h	.269
Figure 133.	Country code window (1)	.272
Figure 134.	Country code window (2)	.273
Figure 135.	Information viewing window	.275
Figure 136.	Handover window	.278
Figure 137.	SIP ALG configuration window	.280
Figure 138.	Admission control configuration of 802.11a/n	.282
Figure 139.	802.11a/n Admission Control Configuration Window	.284
Figure 140.	RRM configuration window	.286
Figure 141.	DPC settings	.287
Figure 142.	DCS settings	.290
Figure 143.	CHDC settings	.293
Figure 144.	Spectrum Analysis Data	.304
Figure 145.	Controlling Usage per User	.308
Figure 146.	Clustering window	.314
Figure 147.	Clustering addition window	.314
Figure 148.	Configuring connection limitation per radio	.316
Figure 149.	Configuring connection limitation per WLAN	.317
Figure 150.	Voice statistics	.319
Figure 151.	Detecting WLAN-based communication failure	.320

Figure 152. VoIP Stations Retrieval Screen	324
Figure 153. Active Call Retrieval Screen	325
Figure 154. Complete Calls Retrieval Screen	325
Figure 155. 802.11a/n Admission Control Configuration Window	330
Figure 156. Band Steering Function On/Off and Band Setting	333
Figure 157. Configuring Load Balancing Function	335
Figure 158. RADIUS server configuration	343
Figure 159. RADIUS Server MAC Authentication Configuration Window	346
Figure 160. Wireless Intrusion General Configuration Window	351
Figure 161. Managed Rule Configuration Window	353
Figure 162. Managed Addition Window	353
Figure 163. Unmanaged Rule Configuration Window	355
Figure 164. Unmanaged Rule Addition Window	355
Figure 165. List Window to Manually Change Classification	357
Figure 166. Classification Change Window in AP Detail Screen	357
Figure 167. List Window to Manually Remove	358
Figure 168. Manual Remove Change Window in AP Detail Screen	359
Figure 169. Configuration Window for Unauthorized AP Detection Option	360
Figure 170. Configuration Window for Unauthorized Station Detection Option	362
Figure 171. Configuration Window for Channel Validation	363
Figure 172. AP blacklist Configuration Window	365
Figure 173. Managed AP Window	365
Figure 174. Station blacklist Search/Configuration Window	366
Figure 175. Managed Station Search Window	366
Figure 176. Managed SSID Window	367
Figure 177. Managed/Neighbor AP Search/Configuration Window	368
Figure 178. Managed/Neighbor AP List Addition Window	368
Figure 179. Station Allowed Limit Configuration Window	369
Figure 180. Wireless Intrusion Containment General Configuration Window	370
Figure 181. List Window for Blocking AP	371
Figure 182. List Window for Blocking Station	372
Figure 183. Automatic Blocking Configuration Window	373
Figure 184. Guest User Configuration Window	375
Figure 185. Guest User List Window	376
Figure 186. Guest Auth Configuration Window	376
Figure 187. Access List Addition Window	377
Figure 188. Access List Entry Addition Window	377
Figure 189. WLAN Guest Configuration Window	380
Figure 190. WLAN Web Policy Configuration Window	380

Figure 191. Web Auth Configuration Window	380
Figure 192. WLAN Guest Configuration Window	383
Figure 193. WLAN Layer 2 Security Configuration Window	383
Figure 194. WLAN Web Policy Configuration Window	384
Figure 195. Web Auth Configuration Window	384
Figure 196. WLAN Guest Configuration Window	386
Figure 197. Web Pass-through Configuration Window	386
Figure 198. WLAN Guest Configuration Window	388
Figure 199. One Time Redirection Configuration Window	388
Figure 200. Firewall configuration (1)	390
Figure 201. Firewall configuration (2)	391
Figure 202. Access-list configuration	392
Figure 203. NAT configuration (1)	394
Figure 204. NAT configuration (2)	395
Figure 205. MAC configuration	397
Figure 206. MAC entry configuration window(1)	397
Figure 207. MAC entry configuration(2)	398
Figure 208. MAC entry configuration(3)	398
Figure 209. TTACACS+ Server Configuration Window	401
Figure 210. Operator Account Authentication Type Configuration Window	402
Figure 211. Role Profile Configuration	404
Figure 212. Role Profile Add Configuration	404
Figure 213. Derivation Profile Configuration	405
Figure 214. Derivation Profile Add Configuration	405
Figure 215. Derivation Profile Configuration	406
Figure 216. Derivation Profile Add Configuration	406
Figure 217. Wlan Derivation Profile Configuration	407
Figure 218. Acl Profile Configuration	408
Figure 219. Acl Profile Add Configuration	409
Figure 220. Acl Profile Edit Configuration	409
Figure 221. Remote Ap Group-Alc Profile Configuration	410
Figure 222. ACL Configuration Synchronization - All	412
Figure 223. ACL Configuration Synchronization - Remote Group	412
Figure 224. ACL Configuration Synchronization - Remote AP	413
Figure 225. External BYOD Server Configuration Window	415
Figure 226. DNS client	420
Figure 227. DNS proxy	421
Figure 228. NTP client configuration	424
Figure 229. FTP/SFTP server configuration	427

Figure 230. Telnet/SSH server configuration	429
Figure 231. Adding SNMP community	432
Figure 232. SNMP trap configuration	433
Figure 233. System information	437
Figure 234. Reboot (APC)	439
Figure 235. Reboot (AP)	440
Figure 236. Configuring SNMP alarm threshold	444
Figure 237. Current alarm	446
Figure 238. History	448
Figure 239. Configuring alarm filter and level	450
Figure 240. SLM License Search and Configuration Window	455
Figure 241. Old License Installation Check Window	458
Figure 242. Syslog window	460
Figure 243. Package upgrade (APC)	463
Figure 244. DB Backup/Restore	465
Figure 245. File management window	477

CHAPTER 1. Access Point Controller System Overview

1.1 APC Overview

The Samsung Access Pointer Controller (APC) comprehensively manages the user information and traffics while managing an Access Point (AP), i.e. a device that provides wireless connection service for a user terminal in a Wi-Fi environment. There are two types depending on the AP capacity; WEC8500 and WEC8050. It comprehensively manages all the APs and provides services in a wireless LAN environment. Because AP and APC are connected in tunneling, all the user traffics are exchanged and processed.

The APC is typically installed at a position where it can be connected to a backbone switch, core switch or router in a network of enterprise environment and it controls a wireless LAN AP and provides the functions for Wireless LAN (WLAN) services such as handover and QoS, security/authentication, etc. The Samsung WEC8500 provides its services up to 500 APs. It can provide its services up to 10,000 connected user devices. Meanwhile, the WEC8050 can accommodate maximum 75 APs and provides the service to maximum 1500 user devices.

The APC provides a WLAN network environment through AP management and also provides various communication services required by enterprise customers in a wireless environment by interoperating with other enterprise solutions. It provides Wireless Enterprise (W-EP) solution in an enterprise environment by making the collaboration applications such as telephone, message, or communicator, etc., that has been used in a legacy wire environment, be able to be used in a wireless terminal such as smart phone, tablet PC, or notebook.

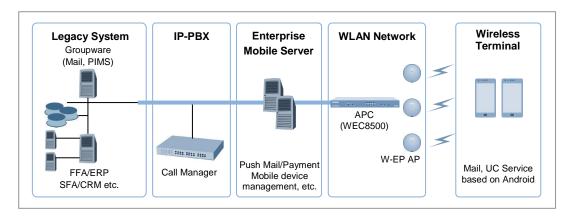


Figure 1. System Structure for Wireless Enterprise Solution

The Samsung W-EP solution, as shown in figure, comprehensively includes various enterprise applications which are provided by wire/wireless infrastructure products and wireless terminals. The WLAN network, a wireless infrastructure solution that provides mobility in an enterprise environment, consists of W-EP wireless LAN Access Point (AP), W-EP AP Controller (APC), and Wireless Enterprise WLAN Manager (WEM). The Samsung APC and W-EP wireless LAN AP are core devices that provide various services such as user authentication, wireless management, voice and data service, etc. in the 802.11-based Wi-Fi environment. The WEM provides convenient configuration environment, various statistics, and event information to an operator.

Term

In this manual, the WEC8500/WEC8050 and APC commonly represent Samsung AP Controller. In addition, the AP means Samsung W-EP wireless LAN AP.

1.2 Network Configuration

The network configuration of Samsung W-EP solution that includes APC is shown below.

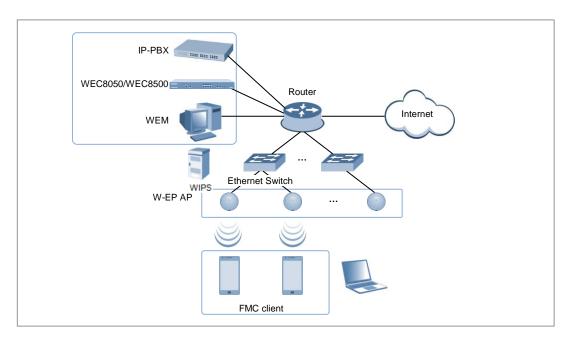


Figure 2. W-EP Network Configuration

IP-PBX

As an enterprise call manager, it is a switch required to provide the Fixed Mobile Convergence (FMC) function to a wireless terminal (optional).

APC (WEC8500/WEC8050)

The APC manages all the W-EP wireless LAN APs installed in an enterprise communication environment and it also manages user information and traffics. Because the W-EP wireless LAN network configuration uses a centralized structure where all the wireless user traffics are in tunneling through the APC, the APC is one of the most important elements related to traffic management and throughput in the W-EP environment. An APC is typically installed at a position where it can be connected to a backbone switch, core switch or router in a network. It controls the W-EP wireless LAN AP and provides handover, QoS, and security/authentication functions.

WEM

In the W-EP wireless LAN environment, various services are provided through a complex network configuration. As many users are involved, its management is complex and difficult. A normal network administrator can hardly handle any problematic issue as well as a normal management task. The WEM is a Network Management System (NMS) that efficiently manages this kind of W-EP wireless LAN network and service environment. It manages a WLAN network, retrieves and configures the status of APC or W-EP wireless LAN AP.

W-EP AP (W-EP Wireless LAN AP)

The W-EP wireless LAN AP is a device that provides wireless connection service to a user terminal. It should be installed by considering the service area or region that will be provided in an enterprise environment. Typically, the number of W-EP wireless LAN APs is determined by considering the size of installation area and the number of users to secure service coverage.

Ethernet Switch

Typically, because an AP is installed in a user area, use a Power over Ethernet (PoE) switch that does not use a power line for the beauties of environment, etc. Install the W-EP wireless LAN APs by considering current consumption and the power capacity PoE switch. In addition, because power drop may occur if the distance between the switch and W-EP wireless LAN AP, the relationship between distance and power must be considered. Typically, the distance between these two must be 100 m or less in order to avoid power drop.

Wireless terminal/FMC Client

Terminal that provides the 802.11a/b/g/n interface such as smart phone, tablet PC, or notebook computer, etc. In an Android smart phone, an enterprise Voice over IP (VoIP) application equipped with the Samsung voice engine is called a FMC client (The FMC client is an option).

Wireless additional service

In the W-EP environment, various application services are required as well as basic wireless connection services.

The Wireless Intrusion Prevention System (WIPS) provides a security service that is one of the most important elements in an enterprise environment. The WIPS can seamlessly receive wireless connection service through the security services such as unauthorized terminal, unauthorized AP, or ad hoc connection blocking, etc.

Location service that manages the location of a terminal in a wireless environment is also an application service required in an enterprise environment. With this, it is possible to manage the location of an effective user or an unauthorized user.

IP application service

The IP application servers required in an existing wire network including Dynamic Host Configuration Protocol (DHCP) server, DNS server, web server, or RADIUS authentication server are also used in the W-EP environment. Especially, the DHCP server and RADIUS authentication server play a critical role in the wireless environment.

WIPS Solution

It monitors the properness of the implementation of the wireless network infrastructure by detecting penetration via unauthorized wireless equipment installed in the internal network, the detoured gateway segment of the internal officers and employees who illegally connect to the commercial WLAN service, etc. and provides the wireless network invasion detection which implements the safe and effective wireless network environment by detecting security vulnerabilities.

1.3 APC Configuration and Functions

1.3.1 WEC8500 Configuration and Functions

The Configuration and the purpose of each item of WEC8500 are as follows:

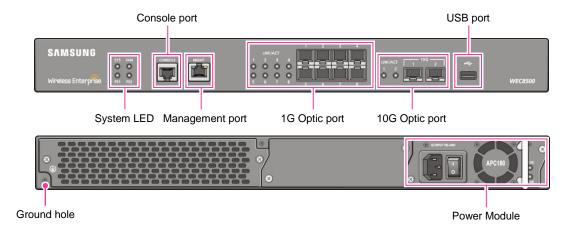


Figure 3. WEC8500 Interface-Front/Back

System LED

System LED indicates the various statuses of system. Each LED displays the following information.

Figure 4. System LED Configuration

LED	Status	Description	
SYS	Green	The system is operating normally	
	Orange	The system is now booting	
	Red	Preparing the system for booting	
FAN (fan module)	Green	The installed FAN module is operating normally	
	Orange	The system is now booting	
	Red	Fan module fault has occurred	
PS1 (power module 1)	Green	Normal operation of installed power module 1	
	Red	Power is turned off or a fault occurred while the power module 1 is installed.	
	Off	Power module 1 is not installed.	
PS2 (power	Green	Normal operation of installed power module 2	

LED	Status	Description	
module 2)	Red	Power is turned off or a fault occurred while the power module 2 is installed.	
	Off	Power module 2 is not installed.	

Console port (RS232C)

A console port is used to check the operational status of WEC8500 or for input through the CLI. Its basic requirements are as follows:

• Baud rate: 115200 bps

• Character size: 8 characters

Parity: None

Stop bit: 1, Data bit: 8Flow control: None

Management port (1 GE UTP)

The WEC8500 provides a 10/100/1000BASE-T port (RJ-45) for management purpose. It is working in 10/100 Mbps half duplex/full duplex mode or in 1000 Mbps full duplex mode. Because it supports the automatic MDI/MDI-X function, you can use a straight-through cable for all the network connections to a PC, server, switch, or network hub.

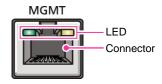


Figure 5. Management Port Configuration

Configuration item	Status	Description
LED	Green	Turned on for link connection
	Orange	Blinking for data exchange
Connector	-	Connector for UTP cable connection

When connecting a cable to the management port, make sure to check if the cable complies with the 10 BASE-T, 100 BASE-TX, or 1000 BASE-T.

- Cable type: UTP or STP cable using RJ-45 connector
 - 10 BASE-T: Category 3 or higher
 - 100 BASE-TX: Category 5 or higher
 - 1000 BASE-T: Category 5 or higher (Category 5e or higher is recommended)
- Isolate from wireless frequency disturbing waves
- Shut down electrical surge

- Separate the electrical wiring of a switch or related devices and the electromagnetic area of network data line
- Cable or connector and safe connection without damaged cable sheath

The 1000 BASE-T standard does not support the forced mode. The auto-negotiation function must be always used for 1000 BASE-T port or trunk connection.

Optic port

It provides two 10 GbE Optic ports and eight 1 GbE Optic ports and the operational status of each port is displayed in LED.

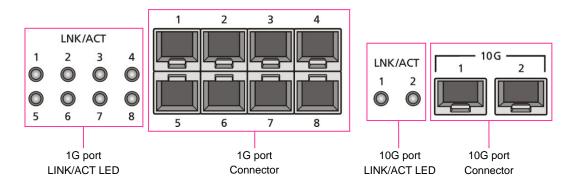


Figure 6. Optic port configuration

Configuration item	Port/LED	Description
10 GE ports	LINK/ACT 1, LINK/ACT 2	LINK/ACT status of each port - Turned on for link connection - Blinking for data exchange
	10G 1, 10G 2	10 GbE Optic module connector
1 GE port	LINK/ACT 1~LINK/ACT 8	LINK/ACT status of each port - Turned on for link connection - Blinking for data exchange
	1G 1~1G 8	1 GbE Optic module connector

USB port (Host 2.0)

The WEC8500 provides a USB host port that supports the upgrade of WEC8500 operation software.

A typical USB memory stick is supported.

Power module

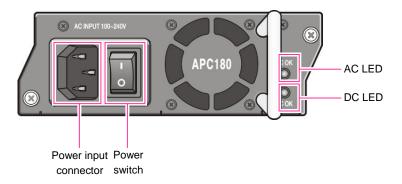


Figure 7. Power module configuration

Configuration item	Description
Power input connector	Connector to connect the power cable to
Power switch	Switch to turn on/off power
AC LED	Turned on when there is a normal AC power input.
DC LED	Turned on when there is a normal DC power output.

1.3.2 WEC8050 Configuration and Functions

The configuration and the purpose of each item of WEC8050 are as follows:

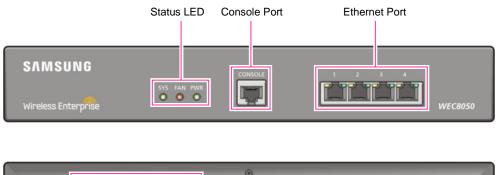


Figure 8. WEC8050 interface-Front/Back

Status LED

This LED indicates the various statuses of system. Each LED displays the following information.

Figure 9. Status LED configuration

LED	Status	Description	
SYS	Green	The system is operating normally	
	Orange	The system is now booting	
	Red	Preparing the system for booting	
FAN	Green	The installed FAN module is operating normally	
	Orange	The system is now booting	
	Red	Fan fault	
PWR	PWR Green The power is supplied normally		
	Off	The power is turned off or not supplied	

Console port (RS232C)

A console port is provided to check the operational status of WEC8050 or for input through the CLI.

Its basic requirements are as follows:

Default baud rate: 115200 bpsCharacter size: 8 Characters

Parity: None

Stop bit: 1, Data bit: 8
Flow control: None

Ethernet port

It has 4 10/100/1000 Base-T ports.

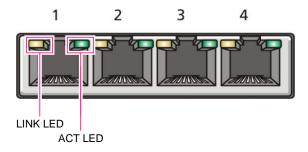


Figure 10. Ethernet Port Configurations

LED	Status	Description
ACT	Orange blinking	Blinking while data exchanging
	Off	No data exchanging
LINK	Green	Link connection display
	Off	No link connection

1.4 APC Application Configuration and Service Scenario

1.4.1 Basic Configuration

To provide wireless connection service using a wireless LAN in the W-EP environment, the W-EP wireless LAN AP that helps a terminal connect to the network through wireless and an APC that controls the terminal are basically required. Especially, the role of APC is critical to guarantee QoS of various services and provide high level of security functions in an Enterprise communication environment. As various elements are required in the W-EP environment, it is necessary to intuitively or organically manage each element via WEM.

In addition, the IP application servers including authentication server, DHCP server, or DNS server which is a basic network configuration element in a wire enterprise environment are also interoperated to provide more convenient and various mobile services to users. One outstanding example is the FMC service that provides enterprise level VoIP in a wireless LAN. With this, the wire/wireless integrated voice service can be provided.

An example of service configuration diagram using the W-EP wireless LAN system is shown in the below figure. The configuration diagram is based on Samsung APC (WEC8500).

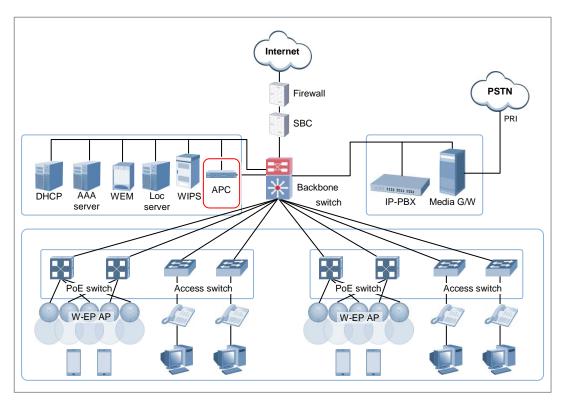


Figure 11. Basic Configuration of W-EP Wireless LAN System

The basic W-EP wireless LAN network configuration is a centralized structure where all the wireless user traffics go through tunneling between APC and W-EP wireless LAN AP. Therefore, the network information such as subnet information allocated to a wireless user depends on the configuration of backbone network where the APC is connected.

This provides the following advantages during network configuration and setup.

- Installing the APC is just adding it to a legacy data center or backbone network.
 Therefore, the possibility of physical change of core network can be reduced.
 In addition, separate design of wire/wireless network is easy using the APC as a boundary.
- No dramatic network change is required to install the W-EP wireless LAN AP.
 An AP installed in a user area is located in various local network environments in a wide region. Although it is unavoidable to install or expand a PoE switch, the modification of local network where wire users are already configured can be minimized.
- Because the APC relays all the user traffics, it can restrict a wireless attacker's effects and provide differentiated service for each user.

1.4.2 Configuration of Multiple APC for Redundancy

The APC provides the redundancy function to guarantee QoS for various services and provide service stability in the W-EP environment.

An example of service configuration diagram for redundancy is shown in the below figure.

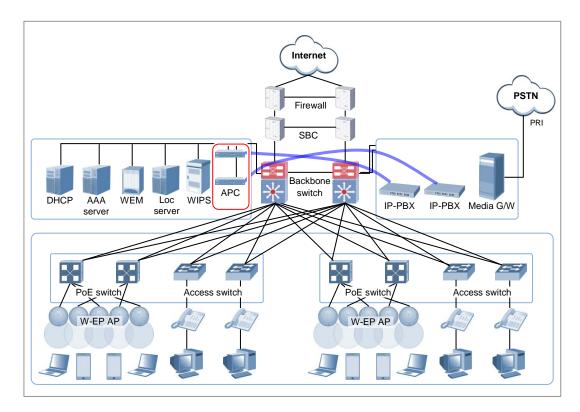


Figure 12. Example of W-EP Wireless LAN System Configuration for Redundancy

In this configuration, several APC s are used to minimize service disruption caused by a disconnected APC and to enhance service sustainability. Basically, two or more APC s must be installed in the same site for APC redundancy. The redundancy configuration includes active-active configuration, active-standby configuration, and many-to-one configuration. An operator can select a configuration based on the number of available APC s and redundancy level.

1.4.3 Clustering Configuration using Multiple APC (WEC8500)

The W-EP environment has various area sizes, user density and number of users. If only a single APC is required for service and management, the complexity of network configuration or management is not high. However, if the capacity of a single APC is not sufficient, multiple APC s must be installed for service. The WEC8500 is a Samsung APC model providing the clustering environment.

To set up a wireless LAN network in an environment where multiple WEC8500s are installed, the integrated management system and user service must be provided through clustering configuration between the WEC8500s. This allows inter APC handover. The WEC8500s configured in a cluster provides a service just like a single WEC8500 through periodic information exchange.

Inter APC handover

The inter APC handover is a handover between APCs. A clustering group is used to provide this function and this clustering group means a virtual area.

Maximum 12 WEC8500s can be bound to a single group. An APC in a group cannot be added to another group.

It provides layer 3 handover and the handover is supported when a terminal moves to an APC which have different subnets. A serving APC is called as an anchor APC and a target APC is called as a foreign APC. The control path and also the tunnel for data traffic between APCs provide security using IPSec.

The inter APC handover provides this function both in the standard Wi-Fi handover and Samsung's unique AirMove method.

1.4.3.1 Configuration of Distributed Clustering Service

The configuration of distributed clustering is to install each WEC8500 in a building or a local site according to its capacity. This option can be used when there is no integrated backbone configuration in a site or networks are separated for each building. It is suitable for a site where several buildings are apart from each other.

An example of service configuration diagram is shown in the below figure.



Figure 13. Example of W-EP Wireless LAN System Configuration for Distributed Clustering Service

1.4.3.2 Configuration of Centralized Clustering Service

In the centralized cluster configuration, all the WEC8500s in a site are installed in the center. This is suitable when all the networks in a site are configured around the backbone. This option is suitable for a site where several buildings are close to each other or a large building where a seamless handover service is required using one or more WEC8500s. Better performance can be obtained if there is a single backbone network and it is preferable in terms of installation or maintenance because its service configuration is simple.

An example of service configuration diagram is shown in the below figure.

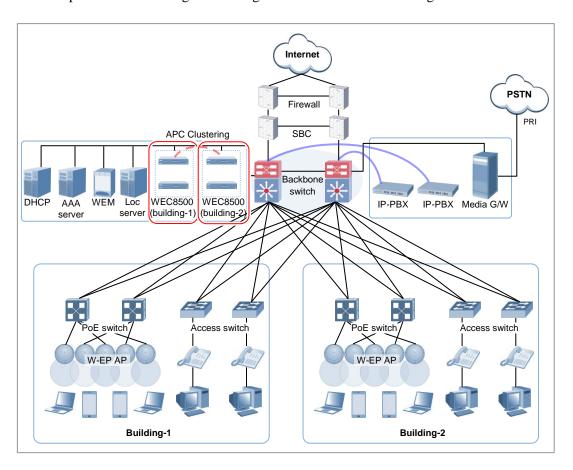


Figure 14. Example of W-EP Wireless LAN System Configuration for Centralized Clustering Service

1.4.4 Configuration of Multiple Sites Consisting of Headquarter and Branches

The W-EP wireless LAN network environment usually consists of one headquarter and several branches.

In this case, there are two types of network configuration.

- Hierarchical type: A APC is installed in a branch as well as headquarter.
- Branch AP type: A APC is installed only in a headquarter and only a W-EP wireless LAN AP is installed in a branch.

In the hierarchical type, it is advantageous that each branch can use each different service policy. However, the management in headquarter is complex and many low-capacity APCs must be installed, so the branch AP type is commonly used.

The branch AP type has the same structure as a basic W-EP wireless LAN configuration. A single difference is that a W-EP wireless LAN AP installed in a branch is located at a remote place. The APC in headquarter provides a wireless LAN service in the headquarter building and also provides a wireless LAN service to a remote W-EP wireless LAN AP installed in a branch. As the APC in headquarter manages all the W-EP wireless LAN APs using the same policy, it is easy to use and cost-effective.

An example of service configuration diagram for the branch AP type is shown in the below figure.

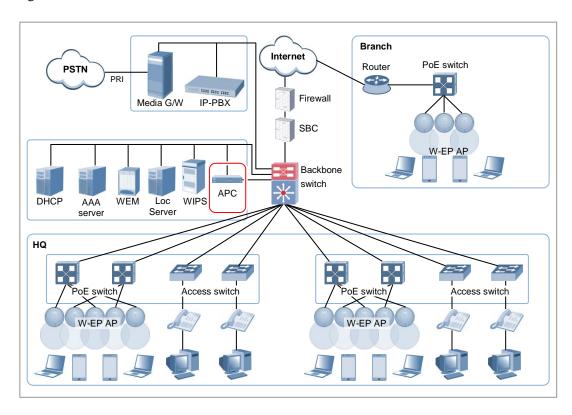


Figure 15. Example of W-EP Wireless LAN System Configuration for Multiple Sites consisting of Headquarter and Branches

If user traffics are concentrated on a single centralized APC when there are many branches or they are far from headquarter, performance may be deteriorated due to the time delay of packet transmission, etc. Therefore, use different operation schemes according to the location of W-EP wireless LAN AP in the configuration of headquarter and branches. In other words, the local W-EP wireless LAN AP in a headquarter does traffic tunneling to an APC and the branch AP installed in a branch switches a user traffic directly to a destination address without tunneling to the APC. Even at this time, the APC in headquarter manages all the W-EP wireless LAN APs and users.

1.5 NAT Configuration between AP and APC

The APC system provides the same services even when the APC or AP is in a NAT environment.

If the APC system is in a NAT environment and obtaining a public IP address is difficult, the APC can be configured to use a private IP address by enabling port mapping on the existing NAT equipment, so that it can provide services to APs on the public IP network and APs existing under other NAT networks.

Using this feature requires that the NAT equipment be applied with the following port settings:

Service	TCP Port	UDP Port	Description
General	20, 21	-	FTP Server
	22	-	Secure Shell
	23	-	Telnet
	80, 443	-	HTTP Web Server
	123	123	NTP
AP-APC	-	5246, 5247	CAPWAP
Connection			

An example of service configuration diagram for the NAT environment is illustrated below.

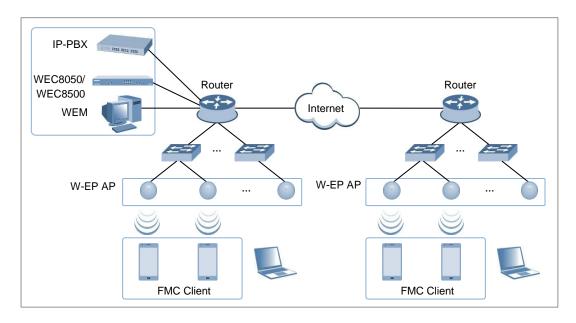


Figure 16. AP-APC NAT Environment Configuration Diagram

CHAPTER 2. Basic System Configuration

In this chapter, the basic system configuration using web and Command Line Interface (CLI) is introduced and how to use CLI and Web UI is described.

2.1 Basic System Configuration

2.1.1 CLI Connection

Connecting to APC using CLI is as follows:

- Direct connection to the system console port
- Telnet or SSH connection through an Ethernet port

When the booting of APC is completed, log into the system as follows:

1) For the first connection, log in using ID: 'samsung' and Password: 'samsung'.

```
USERNAME : samsung
PASSWORD : samsung

THIS IS YOUR FIRST LOGIN AFTER USER ACCOUNT HAS BEEN CREATED.

YOU MUST CHANGE YOUR PASSWORD.

ENTER LOGIN PASSWORD : samsung
ENTER NEW PASSWORD : *******
CONFIRM NEW PASSWORD : *******
PASSWORD SUCCESSFULLY CHANGED
WEC8500 #
```

2) After the first login, you must change the password. Use the changed password for the next login.

The default ID of APC is set to 'samsung' that has an administrator privilege.

2.1.2 Managing Operator Account

An operator who has an administrator privilege (level 1) can create or delete a new operator account. When creating an account, specify the account's privilege level (level 1-4).

To set up operator account related functions, go to configure mode by executing the following command.

```
WEC8500# configure terminal
WEC8500/configure #
```

Adding or deleting an account

The commands used to create or delete an account are as follows:

- mgmt-user [USERNAME] [USERLEVEL] description [DESCRIPTION]: Adds a user
- no mgmt-user [USERNAME]: Deletes a user

Parameter	Description
USERNAME	User ID
USERLEVEL	User level
DESCRIPTION	Adds user information

```
WEC8050/configure# mgmt-user test 1 description "test account"

PASSWORD : ********

CONFIRM PASSWORD : ********

USER(test) CREATED.

WEC8050/configure# no mgmt-user test user(test) deleted.
```

Retrieving account information

To check user account information use the 'show mgmt-users' command.

Changing Password

Use the 'password' command to change the password for your account.

The 'password' command must be executed in the highest user mode.

```
WEC8500# password

CURRENT PASSWORD : *******

NEW PASSWORD : *******

CONFIRM NEW PASSWORD : *******
```

2.1.3 APC Management Port Configuration

To connect to the APC remotely using telnet/SSH or web, it is necessary to set up an IP address to the management port.

Set up the management port as follows:

1) Go to configure → 'mgmt0' interface configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# interface mgmt0
```

2) Set up an IP address.

WEC8500/configure/interface mgmt0# ip address 100.100.100.1/24

In case of WEC8050, there is no management (mgmt0) port. After establishing an IP address in one of ports ge1 to ge4 by referring to the contents of 'Port Configuration' and then using the CLI, connect the Ethernet cable to the port.

2.1.4 SNMP Community Configuration

To connect to the web server of APC, it is necessary to add Simple Network Management Protocol (SNMP) community through CLI. For more information, see '10.1 SNMP Configuration'.

2.1.5 CLI Basic Usage

The CLI is a text command based interface used to change or retrieve the system settings. Several users can change the settings at the same time using the CLI of the same system. Because privilege per user is already configured, a user can execute a command allowed by the user's privilege. Various commands are available for each system function. For more information, see ANNEX 'CLI Command Structure'.

Command Help

The CLI provides a help for all the commands. To see a help for a command and parameter, enter '?'. Based on an input character, it shows a help for a command or parameter that can be entered.

Category	Description
?	Displays the command list and help at the current level
Command ?	Displays the parameter and help required for a command

A usage example is given below.

```
WEC8500# show ?
    80211a
                            Display 802.11a network settings
    80211bg
                            Display 802.11bg network settings
    80211h
                            Display 802.11h configuration
    access-list
                            List IP access lists
    alarm
                            Show alarm information
                            Show ap information
    ap
                            Show ap debug information
    ap-debug
    . . .
    vap
                            Show vap information
                            Show package version information
    version
                            Display VLAN information
    vlan
    vqm
                            Show vqm command
    vrrp
                            VRRP information
    wids
                            Wids command
                            Wips command
    wireless-acl-list
                           Show wireless-acl-list
                            Show wlan information
    wlan
WEC8500#
```

Command automatic completion function

The CLI supports the command automatic completion function using the TAB key. When you press the TAB key after entering the first few characters of a command, the rest characters of the command that starts with the entered characters is automatically entered. If there are several commands that start with the entered characters, press the TAB key to jump to the next command. The below example shows the 'show', 'save', or 'ssh' command is entered in order by entering 's' and pressing the TAB key.

```
WEC8500# s
```

[When the TAB key is pressed]

```
WEC8500# show
```

[When the TAB key is pressed once again]

```
WEC8500# save
```

Command error

When a command that is not supported by the system is entered, an error message is displayed.

```
WEC8500# command-unknown

^
Error : Command 'command-unknown' does not exist
```

When a parameter that is not supported by a command is entered, an error message according to the situation is displayed.

```
WEC8500# configure test

% Invalid parameter (mandatory)
```

Command modes

When the 'exit' command is entered, the mode is changed to the upper command mode.

2.2 Using Web UI

2.2.1 Web UI Connection

To use the WEC, i.e. Web UI of APC system, the IP address of ethernet port must be set up. When connecting to the IP address of APC ethernet port in a web browser, the below login window is displayed. Log in using a default connection account 'samsung'.

After the first login, you go through the course of changing the password. If you have changed the password by connecting to the CLI, you don't have to go through the course of changing the password.

Figure 17. Web UI Connection Window

2.2.2 WEC Main Window

The WEC Main window consists of menu bar, sub-menus, and detail windows of each menu.

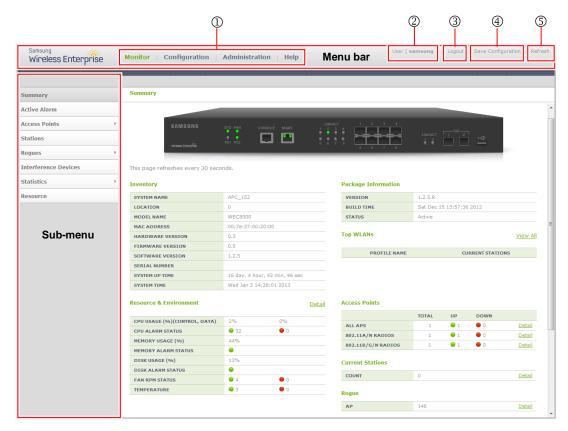


Figure 18. WEC Main Window

Menu bar

The menu bar consists of the following items:

- ①: Provides detail configuration or retrieval function for each item. When you select each item, lower menus in the sub-menus area are displayed.
- ②: Displays a user login ID.
- ③: Logs out from the WEC.
- ④: Saves the current configuration information into the system.
- ⑤: Refreshes the screen.

Sub-menus

This provides the detail menus for Monitor, Configuration, Administration, or Help in the menu bar.

2.2.3 Managing Operator Account

To add a operator account in Web UI, follow the below procedure.

In the menu bar of **<WEC Main window>**, select **<Administration>** and then select **<Local Management Users>** menu in the sub menu. The subtree shows the **<APC>** and **<AP>** menu items. Select **<APC>**.

You can add or delete a operator account in the WEC.

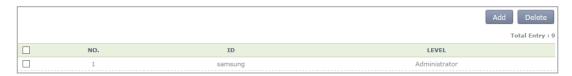


Figure 19. Operator Account Management Window

1) To add an account, click the **Add>** button.

Figure 20. Operator Account Addition Window

- 2) Enter an item according to each parameter description, and click the **Apply**> button.
 - ID: Username to add
 - PASSWORD: User's initial password
 - CONFIRM PASSWORD: Re-enter the initial password
 - LEVEL: User privilege
 - 1 (Administrator): Administrator privilege that allows to execute all the commands
 - 2 (Operator): Can change system configuration.
 - 3 (Monitor): Can retrieve system status.
 - 4 (Lobby Ambassador): Temporary user

2.3 Initial Setup Wizard

2.3.1 Overview

The initial setup wizard aims to finish the basic settings by guiding the settings required for the basic WLAN service in order when the APC is installed. It supports only the basic settings to operate the WLAN service and the settings which are additional or are not frequently used are not supported here. They must be made through the general WEC screen.

2.3.2 Connecting

Connecting condition

If being connected to the WEC as web UI at the factory reset state or while there is no WLAN, the APC system is connected to the Initial Setup Wizard instead of the general WEC screen.

Connecting at the factory reset state

The connection at the factory reset state is available through the management port.

- 1) Connect the Ethernet cable to the management port and then to the PC.
- 2) The default IP address of the management port is 192.168.1.2. After configuring the IP address of the PC fit for the bandwidth, open the web browser.
- 3) Enter 192.168.1.2 in the address bar of the browser to access.

In case of WEC8050, there is no management (mgmt0) port. After establishing the IP address in one of ports ge1 to ge4 by using the CLI first on reference to '3.1 Port Configuration', connect the Ethernet cable to the port.

Access while the IP address is set

If the IP address of the APC is set, check whether the APC and the PC are networked and then open the web browser before accessing the IP address.

2.3.3 How to Use

If the access to the APC is made through the web browser, follow the login procedure as shown in '2.2.1 Web UI Connection'. After that, you can see the Welcome message by connecting to the wizard.

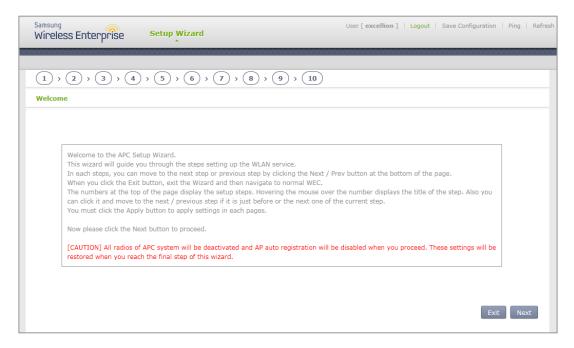


Figure 21. Initial Setup Wizard Welcome Screen

Press the Next button to move to the configuration step 1 and then start the basic settings. Press the Exit button to close the wizard and then move to the general WEC screen. Start the wizard and then deactivate all wireless communications of the APC system as well as the function of automatically registering the AP. The settings are recovered at the last step of the wizard.

Description on the Screen

Figure 22. Move to the setup step of the initial setup wizard

- ①: Show the current setup step and the whole setup step by being located on the top of the screen. When you hover the mouse over each number, it shows the name of the step and you can click to move to the step just before or after the current step.
- ②: When you press the Next button, you move to the next setup step and when you press the Prev button, you return to the previous setup step.
- ③: Press the Exit button to close the wizard and then move to the general WEC screen. In the case, you cannot return back to the initial setup wizard screen. If the APC restarts while the WLAN is not created, you can go to the wizard screen again.

Setup Step

The initial setup wizard consists of the following setup steps: After setting up the description desired on each screen, click the Apply button to apply the modifications to the system.

1) General setup:

- Set up basic information including the name, location, contact number, etc. of the system.
- Set up the basic country code and the basic environment.
- Set up the system time and the time zone. Click the PC TIME button to change the time of the APC by setting to the time of the PC.

2) Interfaces:

• Create interfaces. For more information, refer to '3.2.1 Interface Management' and '3.3.1 VLAN'.

3) Interface groups:

- Create interface groups and assign the interfaces created at the previous step.
- For more information, refer to '3.2.2 Managing Interface Group'

4) Default Gateway:

• Set up a default gateway of the system. The default gateway is a default path to be used when the APC communicates with another equipment on the TCP/IP network.

5) WLAN:

- Create a WLAN. For more information, refer to '5. WLAN Management'.
- If the L2 Security Type corresponds to one of the following conditions, move to the step of setting up a RADIUS server. For more information on creating a RADIUS server, refer to '8.1.1 External RADIUS Server'.
 - (1) 802.1x
 - (2) Static WEP + 802.1x
 - (3) +WPA2 and enabled 802.1x

6) DHCP proxy:

• When an external DHCP server is used, configure settings of proxy or relay.

7) DHCP internal server:

• Configure a DHCP internal server. For more information, refer to '5.4.1 DHCP Server'.

8) **DNS**:

 The APC gets DNS information from a DNS server and provides the DNS relay function that relays the DNS server and a client. If a DNS server is connected to the APC and a UE connected to the APC configures the DNS server as the APC, the DNS service can be received.

9) NTP:

• If the APC is configured as a NTP client, it receives the Coordinated Universal Time (UTC) information from the configured NTP server and synchronizes the local time.

10) Finish:

• Finish the basic settings to configure the WLAN of the APC and then close the wizard

CHAPTER 3. Data Network Function

In this chapter, how to set up the data network functions of APC including VLAN, link aggregation, and layer 3 protocol is described.

3.1 Port Configuration

The APC port is configured with a physical interface.

- Physical interface of 11 ports except WEC8500 console port
- Physical interface of 4 ports except WEC8050 console port

3.1.1 Port management

The WEC8500 Management port is used to manage the WEC8500. It does not support VLAN and its interface name is 'mgmt0'. The 8 ports at the right side of Management port are 10/100/1000 BASE T-ports and their names are GE1-8.

To the right side of the 10/100/1000 BASE T-ports, there are two Gigabit ports, i.e. XE1 and XE2. In case of WEC8050, there is no management (mgmt0) port. After establishing the IP address in one of ports ge1 to ge4 by using the CLI first, connect the Ethernet cable to the port.

Configuration using CLI

To configure the port related function, enter into the interface mode by entering the 'interface [INTERFACE NAME]' command in the configure mode.

An example of entering into the interface setup mode of the management port is shown below.

WEC8500# configure terminal
WEC8500/configure# interface mgmt0
WEC8500/configure/interface mgmt0#

The port related CLI commands are as follows:

[auto-nego, speed, duplex]

The commands used to configure an auto-nego, speed, and duplex addresses are shown below. To delete the configuration, enter the 'no' parameter.

```
WEC8500/configure/interface gel# speed-duplex ?

10-full Set 10Mb/s full-duplex

10-half Set 10Mb/s half-duplex

100-full Set 100Mb/s full-duplex

100-half Set 100Mb/s half-duplex

1000-full Set 1000Mb/s full-duplex

2000-full Set 1000Mb/s full-duplex

Set 1000Mb/s full-duplex

Set 1000Mb/s half-duplex

Set 1000Mb/s half-duplex

Set 1000Mb/s half-duplex
```

[admin status]

This is a command that makes the port not working. The 'no' parameter is used to restart the port.

```
shutduown
no shutdown
```

[flow control]

This is a command that operates flow control to the port. The 'no' parameter is used to stop the flow control.

```
flowcontrol on no flowcontrol on
```

[switch port]

This is a command that changes the port to the L2 mode. The 'no' parameter is used to change it to the L3 mode.

```
switchport
no switchport
```

[ip address]

This is a command that configures a static IP address. To delete the configuration, enter the 'no' parameter.

- ip address {A.B.C.D/mask length}
- no ip address {A.B.C.D} {A.B.C.D}
- no ip address {A.B.C.D/mask length}

Below is an example of port setting to enter the initial setup wizard upon the initial installation of WEC8050.

```
WEC8500/configure/interface gel# no shutdown
WEC8500/configure/interface gel# flowcontrol on
WEC8500/configure/interface gel# no switchport
WEC8500/configure/interface gel# ip address 192.168.1.2/24
```

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** → **<Ports>** menu in the sub-menus. Operator can configure the ports.

The Ports initial window is shown below.

Operator can check the current status of each port.

Figure 23. Port Management Window

The auto-nego, speed, or duplex can be configured only when the cable type is Copper.

They cannot be configured if the cable type is Optic (The auto-nego should always be enabled whether the cable type is copper or optic).

[Port Configuration Change]

- 1) In the Ports initial window, click the <INTERFACE NAME> button to go to port configuration change window.
- 2) In the port configuration change window, the auto-nego, speed, duplex, admin status, flow control, mtu size, switch port, or ip address, etc. can be configured.

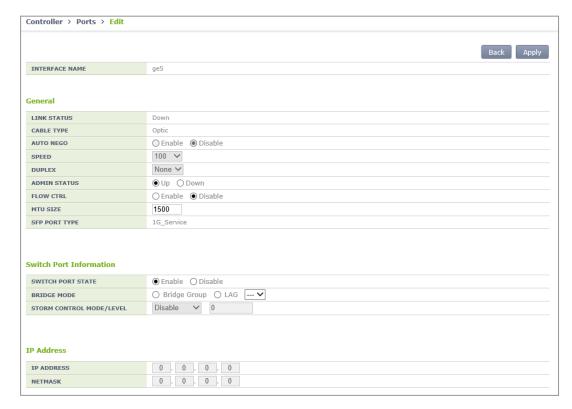


Figure 24. Port Configuration Change Window

3.2 Interface Configuration

The WEC8500 interface consists of the following physical interface and virtual interface.

- Physical interface of 11 ports except console port
- 1024 virtual interfaces using VLAN

There are two types of WEC8050 interface as shown below; physical interface and virtual interface.

- Physical interface of 4 ports except console port
- 128 virtual interfaces using VLAN

3.2.1 Interface management

The WEC8500 Management port is used to manage the WEC8500. It does not support VLAN and its interface name is 'mgmt0'. The 8 ports at the right side of Management port are 10/100/1000 BASE T-ports and their names are GE1-8.

To the right side of the 10/100/1000 BASE T-ports, there are two Gigabit ports, i.e. XE1 and XE2.

Configuration using CLI

To configure the interface related function, go to the interface mode by entering the 'interface [INTERFACE_NAME]' command in the configure mode. An example of entering into the interface mode of the management port is shown below.

```
WEC8500# configure terminal
WEC8500/configure# interface mgmt0
WEC8500/configure/interface mgmt0#
```

The interface related CLI commands are as follows:

[ip address]

This is a command that configures a static IP address. The 'no' parameter is used to delete the configuration.

- ip address {A.B.C.D/mask length}
- no ip address {A.B.C.D} {A.B.C.D}
- no ip address {A.B.C.D/mask length}

[ip address dhcp]

This is a command that configures a dynamic IP address using DHCP. The 'no' parameter is used to delete the configuration.

- ip address dhcp
- no ip address dhcp

[shutdown]

This is a command that makes the interface not working. The 'no' parameter is used to restart the interface.

- shutdown
- no shutdown

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Interfaces>** menu in the sub-menus. You can configure an interface and VLAN.

The Interface initial window is shown below.

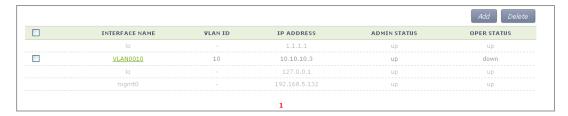


Figure 25. Interfaces Window (1)

[Adding VLAN]

- 1) In the Interface initial window, click the **<Add>** button to go to VLAN creation window.
- 2) Enter an INTERFACE NAME and VLAN ID in the VLAN creation window. The INTERFACE NAME describes a VLAN to create and English characters without a space, numbers, and '_' can be used. The VLAN ID is the number from 1 to 4094 and it specifies a unique VLAN value.
 - Click the **Apply**> button to go to detail configuration screen.

Figure 26. Interfaces Window (2)

3) Perform detail configuration in the VLAN detail configuration window.

If you specify PRIMARY DHCP SERVER or SECONDARY DHCP SERVER in the DHCP area, you can specify the configuration of a DHCP server.

After configuration, click the **<Apply>** button to apply it to the system.

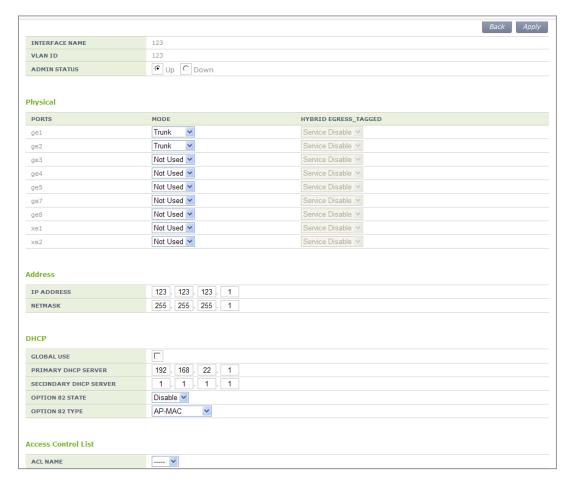


Figure 27. Interfaces Window (3)

[Deleting VLAN]

In the Interface initial window, click the **Delete**> button to delete a selected VLAN. The select VLAN cannot be deleted if it is being used in the system.

3.2.2 Managing Interface Group

To use WLAN and other services, it is necessary to configure an interface into an interface group.

Configuration using CLI

An example of entering into the group configuration mode of ifg_01 interface is shown below.

```
WEC8500# configure terminal
WEC8500/configure# if-group ifg_01
```

Interface Group related commands are as follows:

[Creating or Deleting Interface group]

This command creates an interface group. Use 'no' parameter to delete an interface group.

- if-group [INTERFACE_GROUP_NAME]
- no if-group [INTERFACE_GROUP_NAME]

[Adding or deleting Interface]

This command adds an interface to an interface group being configured. Use 'no' parameter to delete an interface.

- add-if[INTERFACE_IP_ADDRESS]
- no add-if[INTERFACE_ IP_ADDRESS]

[Retrieving Interface Group Status]

This command retrieves the configuration status of an interface group.

• show if-group

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller> → <Interfaces Groups>** menu in the sub-menus. Click the **<Add>** or **<Delete>** button to add or delete an interface group.

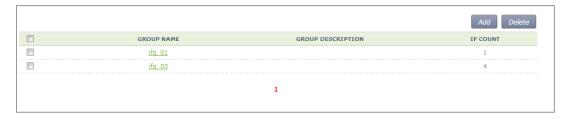


Figure 28. Interface Group Window (1)

Follow the below procedure to add an interface group.

- 1) In the Interface group initial window, click the **Add>** button.
- Enter information on GROUP NAME and GROUP DESCRIPTION and then add or delete an interface to or from an interface group.

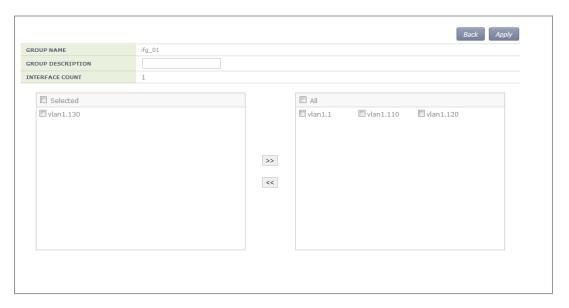


Figure 29. Interface Group Window (2)

3) Click the **<Apply>** button to apply the configuration.

3.3 VLAN Configuration

3.3.1 VLAN

Configuration using CLI

To configure VLAN, go to the VLAN interface mode by executing the following command.

```
WEC8500# configure terminal
WEC8500/configure# interface vlan
WEC8500/configure/interface vlan#
```

The related command is shown below and the range of VLAN ID is 1-4094.

[vlan bridge]

This command creates VLAN. The 'no' parameter is used to delete VLAN.

- vlan [VLAN_ID] bridge 1
- no vlan [VLAN_ID] bridge 1

[switchport access vlan]

This command set the VLAN mode to the access or hybrid mode. The 'no' parameter is used to delete the VLAN configuration.

• switchport {access/hybrid} vlan [VLAN_ID]

[switchport mode]

This command configures the mode of switch port. The 'no' parameter is used to delete the configuration.

- switchport mode {access/hybrid/trunk}
- no switchport mode

[switchport hybrid allowed vlan]

This command configures the mode of switch port to hybrid. The 'no' parameter is used to delete the configuration.

- switchport hybrid allowed vlan: Configures VLAN to hybrid.
- switchport hybrid allowed vlan all: Configures all the allowed VLANs to hybrid.
- switchport hybrid allowed vlan none: Stops VLAN data transmission/reception.
- switchport hybrid allowed vlan add [VLAN_ID]: Adds VLAN to the hybrid mode.
- switchport hybrid allowed vlan remove [VLAN_ID]: Deletes VLAN from the hybrid mode.
- no switchport hybrid vlan: Deletes all the hybrid settings.

[switchport trunk allowed vlan]

This command configures the mode of switch port to trunk. The 'no' parameter is used to delete the configuration.

- switchport trunk allowed vlan: Configure VLAN to the trunk mode.
- switchport trunk allowed vlan all: Configure all the VLANs to the trunk mode.
- switchport trunk allowed vlan none: Stops VLAN data transmission/reception.
- switchport trunk allowed vlan add [VLAN_ID]: Adds VLAN to the trunk mode.
- switchport trunk allowed vlan remove [VLAN_ID]: Removes VLAN with the trunk mode.
- no switchport trunk vlan: Removes all the trunk settings.

[show vlan]

This command retrieves VLAN configuration status.

- show vlan [VLAN_ID]: Displays specific VLAN information.
- show vlan all bridge 1: Displays all the VLAN information.
- show vlan brief: Displays all the VLAN information briefly.
- show vlan dynamic bridge 1: Displays dynamic VLAN information.
- show vlan static bridge 1: Displays static VLAN information.

[Typical configuration procedure]

The typical configuration procedure of VLAN is as follows:

```
WEC8500# configure terminal
WEC8500/configure# bridge 1 protocol mstp
WEC8500/configure # vlan database
WEC8500/configure/vlan#vlan {2-4094} bridge 1
WEC8500/configure/vlan# exit
WEC8500/configure# interface vlan1.{2-4094}
```

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller> > <Interfaces>** menu in the sub-menus.

For more information about configuration procedure, see '3.2.1 Interface Management'.

3.3.2 Bridge

To set up bridge related functions, go to configure mode by executing the following command

```
WEC8500# configure terminal
```

The bridge related commands are as follows:

[bridge address]

This command configures a bridge address. The 'no' parameter is used to clear the configuration.

- bridge 1 address [MAC] [forward/discard] [IFNAME]
- no bridge 1 address [MAC] [forward/discard] [IFNAME]

Parameter	Description
MAC	MAC address. Entered in the format of HHHH.HHHH.HHHH.
forward/discard	forward: Configures forward matching frame.discard: Configures discard matching frame.
IFNAME	Interface name of a bridge.

[bridge ageing time]

This command configures the age-out time of a bridge. The 'no' parameter is used to clear the configuration.

- bridge-group 1 ageing-time [AGEINGTIME]
- no bridge-group 1 ageing-time

Parameter	Description
AGEINGTIME	age-out time (range: 10-1000000 s)

[bridge protocol]

This command creates a bridge in one of the IEEE 802.1Q Spanning-Tree Protocol (STP), IEEE802.1s multiple STP (MSTP), or IEEE 802.1W Rapid STP (RSTP) protocol.

- bridge 1 protocol [PROTOCOL]
- no bridge 1 protocol

Parameter	Description
PROTOCOL	Protocol to configure (ieee/mstp/rstp) - ieee: STP - mstp: MSTP

Parameter	Description
	- rstp: RSTP

[clear mac address-table]

This command deletes the filtering database of a default bridge.

• clear mac address-table [OPTION] [KIND] [WORD]

Parameter	Description
OPTION	Filtering database option (static/multicast) - static: Filtering database item that is configured as static - multicast: Filtering database item that is automatically configured by the multicast protocol
KIND	Filtering database type (address/vlan/interface) - address: Filtering database using a MAC address - vlan: Filtering database using the VLAN information interface: Filtering database using the interface information
WORD	Option

[clear mac address-table dynamic]

This command deletes bridge operation among the filtering database of a default bridge.

• clear mac address-table dynamic [KIND] [WORD]

Parameter	Description
KIND	Filtering database type (address/vlan/interface) - address: Filtering database using a MAC address - vlan: Filtering database using the VLAN information interface: Filtering database using the interface information
WORD	Option

[clear mac address-table dynamic bridge]

This command deletes the filtering database of bridge operation.

- clear mac address-table dynamic bridge [BRIDGE_NAME]
- clear mac address-table dynamic [address/interface/vlan] [WORD] bridge [NAME]

Parameter	Description
KIND	Filtering database type (address/vlan/interface)
	- address: Filtering database using a MAC address
	- vlan: Filtering database using the VLAN information.
	- interface: Filtering database using the interface information
WORD	Option
BRIDGE_NAME	Bridge name

[show bridge]

This command retrieves bridge information.

• show bridge

[show interface switchport bridge]

This command retrieves the bridge information, i.e. the layer 2 protocol characteristic information of the current VLAN, of a switch port.

• show interface switchport bridge [BRIDGE_NAME]

Parameter	Description
BRIDGE_NAME	Bridge name

[switchport]

This command configures a switch port, i.e. the layer 2 protocol characteristic information of the current VLAN. The 'no' parameter is used for default configuration. Go to interface mode and then execute the command.

- switchport
- no switchport

3.3.3 Spanning Tree

Configuration using CLI

To set up spanning tree related functions, go to configure mode by executing the following command.

WEC8500# configure terminal

The related command is as follows.

[bridge forward-time]

This command configures the forward time of a bridge. The 'no' parameter is used for default configuration.

- bridge 1 forward-time [FORWARD_DELAY]
- no bridge 1 forward-time

Parameter	Description
FORWARD_DELAY	Forward time delay (range: 4-30 s, default: 15)

[bridge hello-time]

This command configures the hello time of a bridge. The time required when a bridged LAN is changed to Bridge Protocol Data Units (BPDUs) is called as hello-time. The 'no' parameter is used for default configuration.

- bridge 1 hello-time [HELLOTIME]
- no bridge 1 hello-time

Parameter	Description
HELLOTIME	Hello BPDU interval (range: 1-10 s)

[bridge instance priority]

This command configures the bridge priority of MST instance. The 'no' parameter is used to delete priority.

- bridge 1 instance [INSTANCE_ID] priority [BRIDGE_PRIORITY]
- no bridge 1 instance [INSTANCE_ID]

Parameter	Description
INSTANCE_ID	Instance ID (range: 1-64)
BRIDGE_PRIORITY	Bridge priority (range: 0-61440)

[bridge max-age]

This command configures the max-age of a bridge. The 'no' parameter is used for default configuration.

- bridge 1 max-age [MAXAGE]
- no bridge 1 max-age

Parameter	Description
MAXAGE	Configures a maximum time (range: 6-40 s)

[bridge max-hops]

This command configures the maximum allowed number of hops of a Bridge Protocol Data Unit (BPDU) bridge in the MST area.

The 'no' parameter is used for default configuration.

- bridge 1 max-hops [HOP_COUNT]
- no bridge 1 max-hops

Parameter	Description
HOP_COUNT	Maximum allowed number of hops

[bridge multiple-spanning-tree enable]

This command configures a MSTP bridge. The 'no' parameter is used to clear the configuration.

- bridge 1 multiple-spanning-tree enable
- no bridge 1 multiple-spanning-tree enable

[bridge rapid-spanning-tree enable]

This command configures a RSTP bridge. The 'no' parameter is used to clear the configuration.

- bridge 1 rapid-spanning-tree enable
- no bridge 1 rapid-spanning-tree enable(bridge-forward)

[bridge spanning-tree enable]

This command configures a STP bridge. The 'no' parameter is used to clear the configuration.

- bridge 1 spanning-tree enable
- no bridge 1 spanning-tree enable(bridge-forward)

[bridge priority]

This command configures the priority of a bridge. The 'no' parameter is used to delete a priority.

- bridge 1 priority [PRIORITY]
- no bridge 1 priority

Parameter	Description
PRIORITY	Bridge priority (range: 0-61440)

[bridge shutdown]

This command clears bridge settings. The 'no' parameter is used to restart a bridge.

- bridge shutdown [1-32]
- no bridge shutdown [1-32]

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<MSTP>** menu in the sub-menus.

The sub-menus of the MSTP menu are as follows:

- Config: Configures the spanning tree.
- Instance: Manages the MSTP VLAN instance.
- Port: Manages the MSTP port.

[Configuring Spanning Tree]

After selecting the **<Config>** menu, enter configuration information and then click the **<Apply>** button.

Figure 30. Spanning Tree Configuration Window (1)

[Managing the MSTP VLAN instance]

When you select the **<Instance>** menu, the configured MSTP VLAN Instance list is displayed on the window. Click the **<Add>** or **<Delete>** button to add or delete an instance.

Figure 31. Spanning Tree Configuration Window (2)

[Managing MSTP Port]

When you select the **Port>** menu, the configured MSTP Port list is displayed on the window. Click the **Add>** or **Delete>** button to add or delete a port.

Figure 32. Spanning Tree Configuration Window (3)

3.4 Layer 3 Protocol Configuration

This provides the IP address configuration and static/dynamic routing configuration of an interface. The APC provides the Open Shortest Path First (OSPF) routing protocol.

3.4.1 IP Address Configuration

The procedure for IP address configuration is given below.

1) Go to configure → interface configuration mode of CLI.

```
WEC8500# configure terminal WEC8500/configure# interface ge2
```

2) Set up an IP address.

```
WEC8500/configure/interface ge2# ip address 100.100.100.1/24
```

3) Enable the interface.

WEC8500/configure/interface ge2# no shutdown

3.4.2 Static Routing Configuration

Configuration using CLI

1) Go to configure mode of CLI.

WEC8500# configure terminal

2) Configure static routing.

WEC8500/configure# ip route 10.2.3.0/24 30.30.30.2

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** → **<Network>** → **<Static Route>** menu in the sub-menus.

The configured static route list is displayed on the window. When you click the **<Add>** or **<Delete>** button, you can add or delete a static routing entry.

Figure 33. Static Routing Configuration Window

After adding or deleting an entry, check if the information is reflected to the list in the Static Route window. If the added information is not displayed, it means the added routing information is not enabled. If the operational status of an interface that will be used as a routing result is not UP, check the interface status through CLI or Web UI. Because only enabled routing entries are listed in the Web UI, you cannot remove a disabled routing entry.

3.4.3 IP Multicast Routing Configuration

1) Go to configure mode of CLI.

WEC8500# configure terminal
WEC8500/configure#

- 2) Enable or disable multicast-routing.
 - ip multicast-routing
 - · no multicast-routing
- 3) Check multicast-routing using the 'show running-config network' command.

3.4.4 PIM Configuration

The procedure for Protocol Independent Multicast (PIM) configuration is given below.

1) Go to configure \rightarrow interface configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# interface ge2
```

2) Configure the PIM sparse mode to an interface.

```
WEC8500/configure/interface ge2# ip pim sparse-mode
```

3) Check a configured PIM using the 'show running-config network' command. To check the multicast-routing table, use the 'show ip mroute' command.

3.4.5 OSPF Configuration

3.4.5.1 General settings

Configuration using CLI

1) Go to configure \rightarrow ospf configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# router ospf
WEC8500/configure# router ospf ?
1 - 10 OSPF process ID
```

2) Configure the process ID from 1 to 10.

```
WEC8500/configure# router ospf ?

1 - 10 OSPF process ID

WEC8500/configure# router ospf 2

WEC8500/configure/router/ospf 2#
```

Parameter	Description
OSPF process ID	Configure the process ID from 1 to 10.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<General>** menu in the sub-menus.

The OSPF initial window is shown below.

Figure 34. OSPF Configuration Window

Click the **Add>** button and configure the PROCESS ID to 1-10 in the below screen.

Configuration using CLI

1) Go to configure \rightarrow ospf configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# router ospf
WEC8500/configure# router ospf ?
1 - 10 OSPF process ID
WEC8500/configure# router ospf 2
WEC8500/configure/router/ospf 2#
```

2) The detail configuration items of a process ID are as follows:

```
WEC8500/configure/router/ospf 2# ?
    area
                              OSPF area parameters
    auto-cost
                              Calculate OSPF interface cost according
to bandwidth
                             Enable specific OSPF feature
    capability
                             OSPF compatibility list
    compatible
    default-information
                             Control distribution of default
information
                             Set metric of redistributed routes
    default-metric
    distance
                             Define an administrative distance
    distribute-list
                              Filter networks in routing updates
```

exit Exit from router mode host. OSPF stub host entry max-concurrent-dd Maximum number allowed to process DD concurrently Maximum number of ospf area maximum-area neighbor Specify a neighbor router network Enable routing on an IP network OSPF specific commands ospf Control overflow overflow passive-interface Suppress routing updates on an interface redistribute Redistribute information from another routing protocol Router-id for the OSPF process router-id summary-address Configure IP address summaries Adjust routing timers timers

3) Router ID configuration

Enter an IP address to use.

Parameter	Description
OSPF router-id in IP address	Enter an IP address.

4) AUTO COST configuration

Enter an OSPF cost value (1-4294967) to use.

Parameter	Description
reference-bandwidth	Enter a value from 1-4294967.

5) CAPABILITY OPAQUE configuration Enter the capability opaque.

Parameter	Description
Capability opaque	Enabled when the CLI is entered.

6) COMPATIBLE RFC configuration Enter the compatible rfc1583.

Parameter	Description
compatible rfc1583	Enabled when the CLI is entered.

7) DEFAULT METRIC configuration Enter the DEFAULT METRIC (1-16777214) to use.

Parameter	Description
Default metric	Enter a value from 1-16777214.

8) MAX CONCURRENT DD configuration Enter the MAX CONCURRENT DD (1-65535) to use.

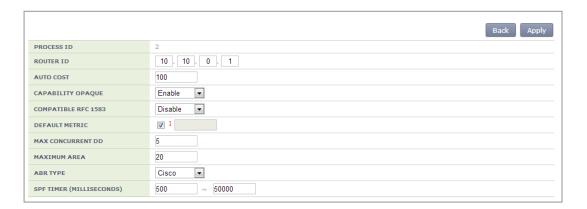
9) MAXIMUM AREA configuration Enter the DEFAULT METRIC (1-4294967294) to use.

```
WEC8500/configure/router/ospf 2# maximum-area ?

1 - 4294967294 Area limit

WEC8500/configure/router/ospf 2# maximum-area 3 ?

<cr>
WEC8500/configure/router/ospf 2# maximum-area 3
```


10) SPF TIMER (MILLISECONDS) configuration Configure the SPF TIMER (MILLISECONDS) value.

```
WEC8500/configure/router/ospf 2# timers ?
                             OSPF SPF timers
WEC8500/configure/router/ospf 2# timers spf ?
    exp
                             Use exponential backoff delays
WEC8500/configure/router/ospf 2# timers spf exp ?
 0 - 2147483647
                            Minimum Delay between receiving a change
to SPF calculation in
                            milliseconds
WEC8500/configure/router/ospf 2# timers spf exp 3 ?
 0 - 2147483647
                            Maximum Delay between receiving a change
to SPF calculation in
                             milliseconds
WEC8500/configure/router/ospf 2# timers spf exp 3 100 ?
WEC8500/configure/router/ospf 2# timers spf exp 3 100
```

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<General>** menu in the sub-menus.

Click a PROCESS ID that user wants to configure. The OSPF configuration window is shown below.

Use the value configured in 'Configuration using CLI' as a user-defined value in the below screen.

The value configured in 'Configuration using CLI' is shown in the below screen.

3.4.5.2 Default Information Configuration of General Settings

Configuration using CLI

1) Detail configuration of OSPF default-information

```
WEC8500/configure/router/ospf 2# default-information ?
originate Distribute a default route
WEC8500/configure/router/ospf 2# default-information originate ?
always Always advertise default route
metric OSPF default metric
metric-type OSPF metric type for default routes
route-map Route map reference
```

2) Configuration of default-information ALWAYS

3) Configuration of default-information METRIC Configure the OSPF metric (0-16777214) value.

4) Configuration of default-information METRIC-TYPE Configure the OSPF metric-type (1/2) value.

5) Configuration of default-information ROUTE MAP Enter the name of pointer to route-map entries.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<General>** menu in the sub-menus.

Click a PROCESS ID that user wants to configure. The OSPF configuration window is shown below.

Use the value configured in 'Configuration using CLI' as a user-defined value in the below screen.

3.4.5.3 Distance Configuration of General Settings

Configuration using CLI

1) Detail configuration of OSPF distance

```
WEC8500/configure/router/ospf 2# distance ?

admin OSPF Administrative distance ospf OSPF Distance
```

2) Distance admin configuration Enter the OSPF Admin distance value.

The OSPF Admin distance is displayed as GENERAL in the Web UI.

3) Configuration of EXTERNAL distance ospf Enter the OSPF EXTERNAL distance value.

```
WEC8500/configure/router/ospf 2# distance ospf ?
external External routes
inter-area Inter-area routes
intra-area Intra-area routes
WEC8500/configure/router/ospf 2# distance ospf external ?
1 - 255 <1-255> Distance for external/inter-
area/intra-area routes
WEC8500/configure/router/ospf 2# distance ospf external 50
WEC8500/configure/router/ospf 2#
```

4) Configuration of INTER-AREA distance ospf Enter the OSPF INTER-AREA distance value.

5) Configuration of INTRA-AREA distance ospf Enter the OSPF INTRA-AREA distance value.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<General>** menu in the sub-menus.

Click a PROCESS ID that user wants to configure. The OSPF configuration window is shown below.

Use the value configured in 'Configuration using CLI' as a user-defined value in the below screen.

3.4.5.4 Overflow Configuration of General Settings

Configuration using CLI

1) Detail configuration of OSPF overflow

```
WEC8500/configure/router/ospf 2# overflow ?

database

Database

WEC8500/configure/router/ospf 2# overflow database ?
external External link states
0 - 4294967294

Maximum number of LSAs

WEC8500/configure/router/ospf 2# overflow database
```

2) Overflow external configuration

Enter the maximum number of LSAs and time to recover (0 not recover) value.

```
WEC8500/configure/router/ospf 2# overflow ?
     database
                              Database
WEC8500/configure/router/ospf 2# overflow database ?
 external
                             External link states
 0 - 4294967294
                              Maximum number of LSAs
WEC8500/configure/router/ospf 2# overflow database external ?
 0 - 2147483647
                              Maximum number of LSAs
WEC8500/configure/router/ospf 2# overflow database external 3 ?
 0 - 65535
                              Time to recover (0 not recover)
WEC8500/configure/router/ospf 2# overflow database external 3 10 ?
WEC8500/configure/router/ospf 2# overflow database external 3 10
```

3) Configuration of maximum number of LSAs

Enter the maximum number of LSAs and hard limit value.

```
WEC8500/configure/router/ospf 2# overflow ?

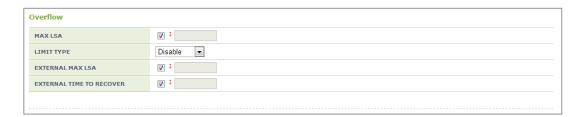
database

Database

WEC8500/configure/router/ospf 2# overflow database ?
external
External link states
0 - 4294967294

Maximum number of LSAs
```

Enter the maximum number of LSAs and soft limit value.


```
WEC8500/configure/router/ospf 2# overflow ?
     database
                              Database
WEC8500/configure/router/ospf 2# overflow database ?
 external
                              External link states
 0 - 4294967294
                              Maximum number of LSAs
WEC8500/configure/router/ospf 2# overflow database 100 ?
 hard
                              Hard limit; Instance will be shutdown if
exceed
 soft
                              Soft limit; Warning will be given if
exceed
WEC8500/configure/router/ospf 2# overflow database 100 soft ?
 <cr>
WEC8500/configure/router/ospf 2# overflow database 100 soft
```

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<General>** menu in the sub-menus.

Click a PROCESS ID that user wants to configure. The OSPF configuration window is shown below.

Use the value configured in 'Configuration using CLI' as a user-defined value in the below screen.

3.4.5.5 Network Configuration

Configuration using CLI

Go to configure \rightarrow ospf configuration mode of CLI.

```
WEC8500/configure/router/ospf 2# ?
                             OSPF area parameters
    auto-cost
                             Calculate OSPF interface cost according
to bandwidth
                           Enable specific OSPF feature
    capability
                            OSPF compatibility list
    compatible
    default-information Control distribution of default
information
    default-metric Set metric of redistributed routes
    distance
                             Define an administrative distance
    distribute-list Filter networks in routing updates
    exit
                            Exit from router mode
    host
                            OSPF stub host entry
    max-concurrent-dd
                            Maximum number allowed to process DD
concurrently
                            Maximum number of ospf area
    maximum-area
    neighbor
                             Specify a neighbor router
    network
                             Enable routing on an IP network
                            OSPF specific commands
    ospf
    overflow
                             Control overflow
    passive-interface Suppress routing updates on an interface redistribute Redistribute information from another
routing protocol
    router-id
                            Router-id for the OSPF process
                          Configure IP address summaries
    summary-address
    timers
                             Adjust routing timers
WEC8500/configure/router/ospf 2# network ?
 A.B.C.D
                             Network number
 A.B.C.D/M
                             OSPF network prefix
```

Configuration using Web UI

In the menu bar of <WEC Main window>, select <Configuration> and then select the <Controller $> \rightarrow <$ Network $> \rightarrow <$ OSPF $> \rightarrow <$ Network> menu in the sub-menus.

The OSPF initial window is shown below.

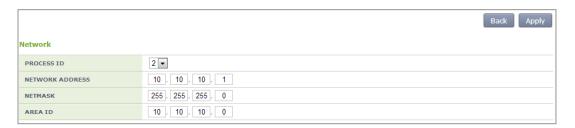
3.4.5.6 Configuration of Network Details

Configuration using CLI

1) Go to configure \rightarrow ospf configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# router ospf
WEC8500/configure# router ospf ?
1 - 10 OSPF process ID
```

2) Network configuration


Configure the ADDRESS, NETMASK, and AREA ID of a user-defined network.

```
WEC8500/configure/router/ospf 2\# network ?
 A.B.C.D
                             Network number
 A.B.C.D/M
                              OSPF network prefix
WEC8500/configure/router/ospf 2# network 100.100.100.1 ?
                              OSPF wild card bits (network mask)
WEC8500/configure/router/ospf 2# network 100.100.100.1 255.255.255.0 ?
                              Set the OSPF area ID
     area
WEC8500/configure/router/ospf 2# network 100.100.100.1 255.255.255.0 ?
                              Set the OSPF area ID
     area
WEC8500/configure/router/ospf 2# network 100.100.1 255.255.255.0
area ?
 0 - 4294967295
                              OSPF area ID as a decimal value
                              OSPF area ID in IP address format
 A.B.C.D
WEC8500/configure/router/ospf 2# network 100.100.100.1 255.255.255.0
area 3 ?
 <cr>
WEC8500/configure/router/ospf 2# network 100.100.100.1 255.255.255.0
area 3
```

Parameter	Description
NETWORK ADDRESS	Network number OSPF network prefix
NETMASK	OSPF wild card bits (network mask)
AREA ID	OSPF area ID as a decimal value/ OSPF area ID in IP address format

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<Network>** menu in the sub-menus.

Enter the NETWORK ADDRESS, NETMASK, and AREA ID and click the **<Apply>** button.

3.4.5.7 Redistribute Configuration

Configuration using CLI

Go to configure \rightarrow ospf configuration mode of CLI.

```
WEC8500/configure/router/ospf 2# ?
                             OSPF area parameters
    area
                             Calculate OSPF interface cost according
    auto-cost
to bandwidth
    capability
                           Enable specific OSPF feature
                             OSPF compatibility list
    compatible
    default-information
                             Control distribution of default
information
    default-metric
                           Set metric of redistributed routes
    distance
                            Define an administrative distance
    distribute-list
                           Filter networks in routing updates
    exit
                             Exit from router mode
    host
                             OSPF stub host entry
    max-concurrent-dd
                            Maximum number allowed to process DD
concurrently
                             Maximum number of ospf area
    maximum-area
                             Specify a neighbor router
    neighbor
    network
                             Enable routing on an IP network
    ospf
                             OSPF specific commands
                             Control overflow
    overflow
    passive-interface redistribute
                             Suppress routing updates on an interface
    redistribute
                             Redistribute information from another
routing protocol
    router-id
                             Router-id for the OSPF process
    summary-address
                             Configure IP address summaries
                             Adjust routing timers
    timers
WEC8500/configure/router/ospf 2# redistribute ?
 connected
                             Connected
                             Static routes
 static
                             Open Shortest Path First (OSPF)
 ospf
WEC8500/configure/router/ospf 2# redistribute
```

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<Redistribute>** menu in the sub-menus.

The OSPF Redistribute initial window is shown below.

Configuration using CLI

1) Connected configuration

The metric, metric-type, route-map, tag detail setting and default setting can be configured.

```
WEC8500/configure/router/ospf 2# redistribute ?
 connected
                              Connected
 static
                              Static routes
                              Open Shortest Path First (OSPF)
WEC8500/configure/router/ospf 2# redistribute connected ?
     metric
                              OSPF default metric
                             OSPF metric type for default routes
    metric-type
                             Route map reference
    route-map
                             Set tag for routes redistributed into
     tag
OSPF
```

2) Metric configuration

```
WEC8500/configure/router/ospf 2# redistribute connected ?
                             OSPF default metric
    metric
    metric-type
                             OSPF metric type for default routes
     route-map
                             Route map reference
                            Set tag for routes redistributed into
     tag
OSPF
WEC8500/configure/router/ospf 2# redistribute connected metric ?
 1 - 16777214
                              OSPF metric
WEC8500/configure/router/ospf 2# redistribute connected metric 3 ?
 <cr>
WEC8500/configure/router/ospf 2# redistribute connected metric 3
```

Parameter	Description
metric	Enter a value from 1-16777214.

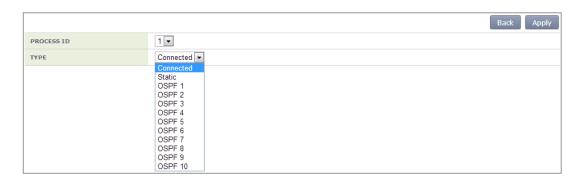
3) Metric-type configuration

```
WEC8500/configure/router/ospf 2# redistribute connected metric-type ?

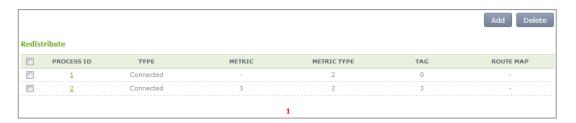
1 Set OSPF External Type 1 metrics
2 Set OSPF External Type 2 metrics
WEC8500/configure/router/ospf 2# redistribute connected metric-type
1 ?

<cr>
WEC8500/configure/router/ospf 2# redistribute connected metric-type 1
```

Parameter	Description
metric-type	Select 1 or 2.


4) Route-map configuration

Parameter	Description
route-map entries	Enter <word>.</word>


5) Tag configuration

Parameter	Description
Tag value	Enter a tag value from 0-4294967295.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<Redistribute>** menu in the sub-menus.



After configuring Redistribute default, select a PROCESS ID for detail configuration.

Configuring Redistribute details

Configure the details of metric, metric-type, route-map, or tag, etc. which is configured in CLI.

3.4.5.8 AREA Configuration

The Area configuration includes Stub, Not So Stubby Areas (NSSA), Virtual-Link, Range, or Detail.

1) Stub configuration

Configuration using CLI

Parameter	Description
no-summary	Select Stub or No Summary.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<Area>** \rightarrow **<Stub>** menu in the sub-menus.

In the Stub add page, configure the details and click the **<Apply>** button. Then, the initial window is changed as shown below.

2) NSSA configuration

Configuration using CLI

```
WEC8500/configure/router/ospf 2# area 1 nssa ?

default-information-originate Originate Type 7 default into NSSA area

no-redistribution No redistribution into this NSSA area
no-summary Do not send summary LSA into NSSA translator-role NSSA-ABR Translator role
```

default-information-originate configuration CLI of NSSA

The metric, metric-type, no-redistribution, no-summary, or translator-role details can be configured.

Metric configuration of NSSA default-information-originate

Parameter	Description
OSPF metric	Enter a value from 0-16777214.

Metric-type configuration of NSSA default-information-originate

Parameter	Description
OSPF metric-type	Select 1 or 2.

Configuring no-redistribution of NSSA default-information-originate

```
WEC8500/configure/router/ospf 1# area 2 nssa default-information-
originate ?

metric OSPF default metric
metric-type OSPF metric type for default routes
no-redistribution No redistribution into this NSSA area
no-summary Do not send summary LSA into NSSA
translator-role NSSA-ABR Translator role
<cr>
WEC8500/configure/router/ospf 1# area 2 nssa default-information-
originate no-redistribution ?
<cr>
WEC8500/configure/router/ospf 1# area 2 nssa default-information-
originate no-redistribution
```

Parameter	Description
no-redistribution	Enable/Disable Configuration

Configuring no-summary NSSA default-information-originate

Parameter	Description
no-summary	Enable/Disable Configuration

Configuring translator-role of NSSA default-information-originate

```
WEC8500/configure/router/ospf 1# area 2 nssa default-information-
originate translator-role ?
 always
                            Translate always
                           Candidate for translator (default)
 candidate
 never
                            Do not translate
WEC8500/configure/router/ospf 1# area 2 nssa default-information-
originate translator-role always ?
 no-summary
                           Do not send summary LSA into NSSA
WEC8500/configure/router/ospf 1# area 2 nssa default-information-
originate translator-role candidate ?
 no-redistribution
                           No redistribution into this NSSA area
                           Do not send summary LSA into NSSA
 no-summary
 <cr>
WEC8500/configure/router/ospf 1# area 2 nssa default-information-
originate translator-role never ?
 no-redistribution
                           No redistribution into this NSSA area
 no-summary
                           Do not send summary LSA into NSSA
 <cr>
WEC8500/configure/router/ospf 1# area 2 nssa default-information-
originate translator-role never
```

Parameter	Description
always	Translate always
candidate	Candidate for translator (default)
never	Do not translate

After the configuration of each parameter is finished, enable or disable the noredistribution or no-summary parameter.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<Area>** \rightarrow **<NSSA>** menu in the sub-menus.

The default window is shown below.

The default configuration screen is shown below.

The NSSA window screen is shown as below after detail configuration is completed.

If you select a Process ID after NSSA default configuration, operator can do detail configuration.

3) Virtual-Link configuration

Configuration using CLI

```
WEC8500/configure/router/ospf 1# area 2 ?
     authentication
                             Enable authentication
     default-cost
                             Set the summary-default cost of a NSSA
or stub area
    filter-list
                             Filter networks between OSPF areas
                             Specify a NSSA area
    nssa
     range
                              Summarize routes matching address/mask
(border routers only)
     shortcut
                             Configure the area's shortcutting mode
                             Configure OSPF area as stub
     stub
     virtual-link
                             Define a virtual link and its parameters
WEC8500/configure/router/ospf 1# area 2 virtual-link ?
 A.B.C.D
                              ID (IP addr) associated with virtual
link neighbor
WEC8500/configure/router/ospf 1# area 2 virtual-link 10.10.10.1 ?
     authentication Enable authentication
     authentication-key
                             Set authentication key
     dead-interval
                             Dead router detection time
    hello-interval
message-digest-key
retransmit-interval
LSA retransmit interval
LSA transmission delay
 <cr>
```

To configure the Virtual-Link, enter an ID (router ID of OSPF that is connected via Virtual) and configure the detail items. The detail items include authentication, authentication-key, dead-interval, hello-interval, message-digest-key, retransmit-interval, or transmit-delay, etc.

Authentication configuration

Operator can configure authentication and message-digest.

Authentication-key configuration

Enter 8-character word to be used as an authentication key. Use the entered 8-character as an authentication key.

Dead-interval configuration

The default value of dead-interval is 4 times of hello-interval. Because the default hello-interval is configured to 10 sec., the dead-interval will be 40 seconds if the hello-interval is not configured. In addition, operator can change it to a value between 1 second and 65535 seconds.

Hello-interval configuration

The default hello-interval is 10 seconds. In addition, operator can change it to a value between 1 second and 65535 seconds.

Message-digest-key configuration

The message-digest-key configures a key ID between 1 and 255. After key ID configuration, configure the authentication key by using the md5 algorithm. Operator can enter maximum 16 characters.

When you enter an authentication key, the message-digest-key configuration is completed.

Retransmit-interval configuration

The default retransmit-interval is 5 seconds. In addition, operator can change it to a value between 1 second and 65535 seconds.

Transmit-delay configuration

The default transmit-delay is 1 second. In addition, operator can change it to a value between 1 second and 65535 seconds.

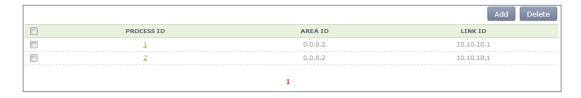
```
WEC8500/configure/router/ospf 2# area 2 virtual-link 10.10.10.1 transmit-delay ?

1 - 65535 Seconds
WEC8500/configure/router/ospf 2# area 2 virtual-link 10.10.10.1 transmit-delay 5
WEC8500/configure/router/ospf 2#
```

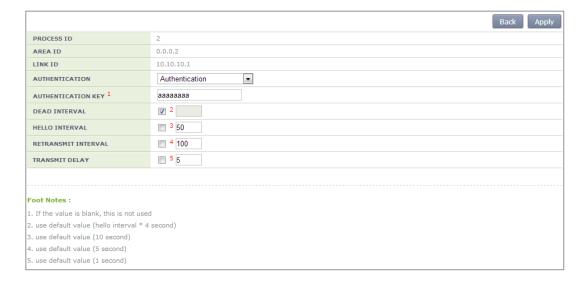
Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<Area>** \rightarrow **<Virtual-Link>** menu in the sub-menus.

The default window is shown below.



Unlike other configurations, there are two tabs at the top; General page and Authentication page.


Start configuration in the General page for the basic configuration of Virtual-Link.

In the default configuration page, configure PROCESS ID, AREA ID, or LINK ID. For detail configuration, select a PROCESS ID you want. Operator can do detail configuration for an item you select.

The detail configuration page is shown below.

The Authentication page of a Virtual-Link is shown below.

Click the **<Select Virtual-Link>** button.

Select a PROCESS ID that you have selected in the General page.

And then, configure Digest Key or Digest Authentication.

Just like CLI configuration, select a digest key between 1 and 255 and enter a key whose length is 16-character or less for digest authentication.

4) Range configuration

Configuration using CLI

To configure the Range detail items, start detail configuration after entering an Area range prefix value.

```
WEC8500/configure/router/ospf 2# area 2 range ?

A.B.C.D/M Area range prefix

WEC8500/configure/router/ospf 2# area 2 range 10.10.10.1/16 ?

advertise Advertise this range (default)

not-advertise DoNotAdvertise this range

<cr>
WEC8500/configure/router/ospf 2# area 2 range 10.10.10.1/16
```

The detail items include advertise or no-advertise configuration Configure whether to advertise to the range or not.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<Area>** \rightarrow **<Range>** menu in the sub-menus.

The configuration page is as follows:

5) Detail configuration

Configuration using CLI

This is additional explanations for Area. Operator can configure authentication, default-cost, or shortcut.

```
WEC8500/configure/router/ospf 2# area 2 ?
    authentication
                           Enable authentication
    default-cost
                             Set the summary-default cost of a NSSA
or stub area
                             Filter networks between OSPF areas
    filter-list
                             Specify a NSSA area
    nssa
    range
                             Summarize routes matching address/mask
(border routers only)
    shortcut
                             Configure the area's shortcutting mode
                             Configure OSPF area as stub
    stub
    virtual-link
                             Define a virtual link and its parameters
```

Authentication configuration

Operator can select whether to use authentication or message-digest function.

```
WEC8500/configure/router/ospf 2# area 2 authentication ?
message-digest Use message-digest authentication
<cr>
WEC8500/configure/router/ospf 2# area 2 authentication message-
digest ?
<cr>
WEC8500/configure/router/ospf 2# area 2 authentication message-digest
```

Default-cost configuration

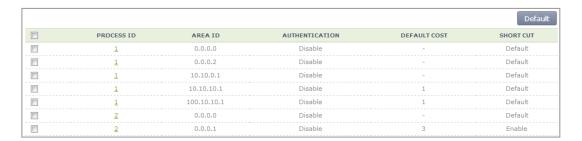
Configure a value between 0 and 1677215 as a default-cost. However, operator can configure the default-cost value in AREA ID whether a stub or NSSA is configured. If you try to configure the default-cost in an ID where neither the two items are configured, the following error phrase is displayed.

'% The area is neither stub, nor NSSA'

Shortcut configuration

For Shortcut configuration, operator can select one out of 3 selections including default, disable, and enable.

```
WEC8500/configure/router/ospf 2# area 0.0.0.1 shortcut ?


default Set default shortcutting behavior
disable Disable shortcutting through the area
enable Enable shortcutting through the area
WEC8500/configure/router/ospf 2# area 0.0.0.1 shortcut enable

WEC8500/configure/router/ospf 2#
```

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<Area>** \rightarrow **<Detail>** menu in the sub-menus.

The configuration page is as follows:

Select a PROCESS ID for detail configuration. As mentioned in the CLI, the Stub or NSSA must be configured to the PROCESS ID in a window where default-cost is selected. If a PROCESS ID without the configuration is completed, the detail configuration can not be performed. Therefore, the below default-cost configuration is available only when the Stub or NSSA is configured to the ID.

3.4.5.9 Summary Configuration

Configuration using CLI

```
WEC8500/configure/router/ospf 2# summary-address ?

A.B.C.D/M IP summary prefix

WEC8500/configure/router/ospf 2# summary-address 1.1.1.1/16 ?

not-advertise Suppress routes that match the prefix tag Set tag

<cr>
WEC8500/configure/router/ospf 2# summary-address 1.1.1.1/16

WEC8500/configure/router/ospf 2#
```

Parameter	Description
summary-address	A.B.C.D/M

Operator can perform detail configuration only when you enter a summary-address. The detail configuration includes advertise or TAG configuration.

1) Advertise Configuration

The default is set to Enable. Therefore, if no-advertise is selected in the CLI, the configuration is changed to Disable.

2) Tag

A tag is a user-defined 32-bit tag value between 0 and 4294967295. A tag also has a default value and it is 0.

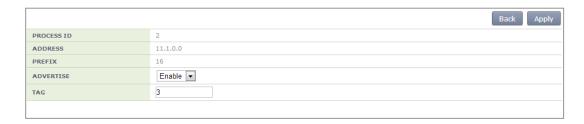
```
WEC8500/configure/router/ospf 2# summary-address 11.1.1.1/16

WEC8500/configure/router/ospf 2# summary-address 11.1.1.1/16 tag ?

0 - 4294967295 32-bit tag value

WEC8500/configure/router/ospf 2# summary-address 11.1.1.1/16 tag 3
```

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<Summary>** menu in the sub-menus.


The configuration page is as follows:

After default configuration, select a PROCESS ID for detail configuration.

The detail configuration includes advertise and TAG configuration mentioned in the CLI.

Unlike CLI, there is no no-advertise. A user can change the default Enable to Disable.

3.4.5.10 Passive Interface Configuration

Configuration using CLI

Parameter	Description
Interface Name	Enter the name of an interface to use directly.

A user directly enters an interface name for Passive-interface configuration. Also, a user can enter an address to the interface.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<Passive Interface>** menu in the sub-menus.

The configuration page is as follows:

After selecting a PROCESS ID that a user will use, select an interface to apply.

Among the interface items displayed on the screen, configure the interface that a user wants.

3.4.5.11 Interface General Configuration

Configuration using CLI

Unlike other OSPF configurations, the interface general does not enter into the OSPF mode. Perform related configuration at the interface that a user wants. Therefore, the CLI configuration is as follows:

1) Go to configure \rightarrow interface configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure#
WEC8500/configure# interface ge2
```

2) The items for detail configuration are as follows:

```
WEC8500/configure/interface ge2# ip ospf ?
                          Address of interface
    address
    authentication Enable authentication authentication-key Authentication password (key)
    cost.
                             Interface cost
    database-filter
                            Filter OSPF LSA during synchronization
and flooding
    dead-interval
                            Interval after which a neighbor is
declared dead
                             Disable OSPF
    disable
    hello-interval
                             Time between HELLO packets
    message-digest-key
                            Message digest authentication password
(key)
    mtu
                            OSPF interface MTU
                            Time between HELLO packets
    mtu-ignore
    network
                            Network type
    priority
                             Router priority
    retransmit-interval Time between retransmitting lost link
state advertisements
                            Link state transmit delay
    transmit-delay
```

DISABLE OSPF configuration

```
WEC8500/configure/interface ge2# ip ospf disable ?
all All functionality
WEC8500/configure/interface ge2# ip ospf disable all ?
<cr>
WEC8500/configure/interface ge2# ip ospf disable all
```

MTU configuration

The default does not use Maximum Transmission Unit (MTU) configuration. The range of MTU user configuration is 576-65535.

```
WEC8500/configure/interface ge2# ip ospf mtu ?
576 - 65535
WEC8500/configure/interface ge2# ip ospf mtu 600
WEC8500/configure/interface ge2#
```

Network Type configuration

The network type includes 4 types, i.e. broadcast, non-broadcast, point-to-point, and point-to-multipoint. The Ethernet is broadcast configuration.

```
WEC8500/configure/interface ge2# ip ospf network ?
broadcast Specify OSPF broadcast multi-access
network
non-broadcast Specify OSPF NBMA network
```

```
point-to-point Specify OSPF point-to-point network point-to-multipoint Specify OSPF point-to-multipoint network WEC8500/configure/interface ge2# ip ospf network
```

Authentication configuration

This is CLI that selects whether to use user authentication.

```
WEC8500/configure/interface ge2# ip ospf authentication ?

message-digest Use message-digest authentication
null Use null authentication
<cr>
WEC8500/configure/interface ge2# ip ospf authentication message-
digest ?
<cr>
WEC8500/configure/interface ge2# ip ospf authentication null ?
<cr>
WEC8500/configure/interface ge2# ip ospf authentication null ?
<cr>
WEC8500/configure/interface ge2# ip ospf authentication null
```

OSPF Cost configuration

Enter a cost value between 1 and 65535.

DATABASE-FILTER configuration

```
WEC8500/configure/interface ge2# ip ospf database-filter ?

all Filter all LSA

WEC8500/configure/interface ge2# ip ospf database-filter all ?

out Outgoing LSA

WEC8500/configure/interface ge2# ip ospf database-filter all out ?

<cr>
WEC8500/configure/interface ge2# ip ospf database-filter all out ?
```

Dead-interval configuration

The default value of dead-interval is 4 times of hello-interval. Because the default hello-interval is configured to 10 sec., the dead-interval will be 40 seconds if the hello-interval is not configured. In addition, operator can change it to a value between 1 second and 65535 seconds.

```
WEC8500/configure/interface ge2# ip ospf dead-interval ?
1 - 65535 Seconds
```

Hello-interval configuration

The default hello-interval is 10 seconds. In addition, operator can change it to a value between 1 second and 65535 seconds.

```
WEC8500/configure/interface ge2# ip ospf hello-interval ?

1 - 65535 Seconds

WEC8500/configure/interface ge2# ip ospf hello-interval 50 ?

<cr>
WEC8500/configure/interface ge2# ip ospf hello-interval 50

WEC8500/configure/interface ge2#
```

Retransmit-interval configuration

The default retransmit-interval is 5 seconds. In addition, operator can change it to a value between 1 second and 65535 seconds.

```
WEC8500/configure/interface ge2# ip ospf retransmit-interval ?

1 - 65535 Seconds (default: 5)

WEC8500/configure/interface ge2# ip ospf retransmit-interval 100 ?

<cr>
WEC8500/configure/interface ge2# ip ospf retransmit-interval 100

WEC8500/configure/interface ge2#
```

TRANSMIT DELAY configuration

The default transmit-delay is 1 second. In addition, operator can change it to a value between 1 second and 65535 seconds.

```
WEC8500/configure/interface ge2# ip ospf transmit-delay ?

1 - 65535 Seconds

WEC8500/configure/interface ge2# ip ospf transmit-delay 400

WEC8500/configure/interface ge2#
```

MTU IGNORE configuration

The default configuration is Disable. If you configure CLI, it is changed to Enable.

PRIORITY configuration

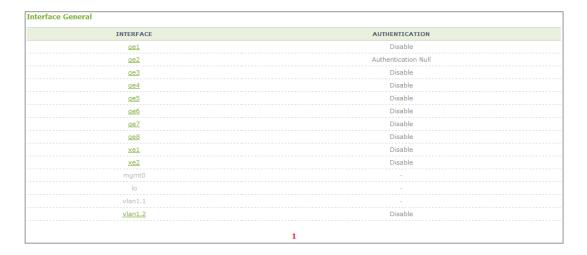
The default OSPF Priority value is 1. A user can configure the priority between 1 and 255.

```
WEC8500/configure/interface ge2# ip ospf priority ?

0 - 255 Priority

WEC8500/configure/interface ge2# ip ospf priority 2
```

Configuration using Web UI


In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<OSPF>** \rightarrow **<Interface General>** menu in the submenus.

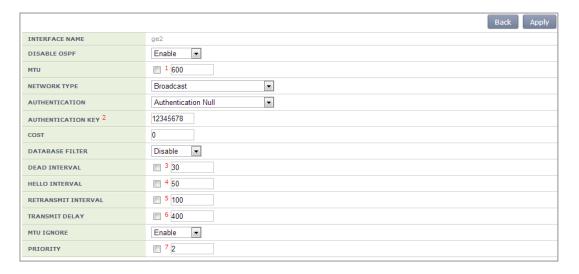
The configuration page is as follows:

As shown in the below figure, the currently enabled interface items are displayed.

When you select an interface for detail configuration, operator can go to the detail item configuration page.

The Interface General item is also divided into General configuration and Authentication window as a tab.

The General configuration screen is as follows:


```
General Authentication

Controller > Network > OSPF > Interface General > General

Interface General
```

The detail item configuration page is as follows:

When you select the name of an enabled interface, the below detail item configuration page is displayed.

After entering a value that a user wants for the item configured in the above CLI, click the **<Apply>** button.

Authentication configuration

Just as General configuration, click the Authentication configuration in the tab. Then, the page for authentication related detail configuration is displayed as shown below. Select an interface that a user wants to configure, and enter the key string (1-255) of the configuration.

The verification page after configuration is as follows:

3.4.6 VRRP Configuration

The Virtual Router Redundancy Protocol (VRRP) is an Internet protocol that provides the backup router operation method in a LAN. If a fault occurs with a router that transmits a packet from a host in a LAN, decide a virtual IP address in a DHCP manually or by default by using a virtual router fault recovery protocol and share it among routers. Once a primary router and a backup router are decided, the backup router becomes a primary router when a fault occurs with the primary router.

Configuration using CLI

To configure the VRRP related function, go to configure → router mode of CLI, enter a router ID and interface name to go to the VRRP configuration mode.

```
WEC8500# configure terminal
WEC8500/configure# router
WEC8500/configure# router vrrp
WEC8500/configure# router vrrp 1 vlan1.10
WEC8500/configure/router/vrrp#
```

The following commands are provided.

[advertisement-interval]

This command configures the advertisement interval of VRRP in second. A user can configure the interval from 1 to 10.

• advertisement-interval [INTERVAL]

Parameter	Description
INTERVAL	Advertisement interval (range: 1-10 s)

[circuit-failover]

Enter an interface to configure and its priority.

• circuit-failover [WORD] [PRIORITY]

Parameter	Description
WORD	Interface name
PRIORITY	Priority setup (range: 1-100)

[enable/disable]

This command enables or disables the VRRP session.

- enable
- disable

[preempt-delay]

This command configures the preempt delay time.

• preempt-delay [DELAY_TIME]

Parameter	Description
DELAY_TIME	Preempt delay time (range: 0-3600 s)

[preempt-mode]

This command configures whether to use the preempt mode.

• preempt-mode [MODE]

Parameter	Description
MODE	- true: Use the preempt mode
	- false: Stop using the preempt mode.

[priority]

This command configures a priority.

priority [PRIORITY]

Parameter	Description
PRIORITY	Priority setup (range: 1-255)

[virtual-ip]

This command configures an IP address to use in the VRRP and configure the IP address as master or backup.

- virtual-ip [A.B.C.D]
- virtual-ip [A.B.C.D] [MODE]

Parameter	Description
A.B.C.D	IP address
MODE	IP configuration mode (backup/master)
	- backup: Backup router configuration master: Master configuration.

[show vrrp]

This command retrieves VRRP configuration.

show vrrp

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<VRRP>** menu in the sub-menus.

The VRRP menu provides two sub menus, i.e. Operation and Circuit Failover.

[Operation]

When you click the **<Enable>**/**<Disable>** button, you can Enable or disable VRRP. In addition, when you click the **<Add>** or **<Delete>** button, you can add or delete VRRP configuration.

Figure 35. VRRP-Operation Window

[Circuit Failover]

When you click the Circuit Failover menu, the VRRP list is displayed on the window.

Figure 36. VRRP-Circuit Failover Window (1)

To perform detail configuration, select one of VRRP items.

After selecting a configuration you want select the **Apply**> button to apply the configuration.

Figure 37. VRRP-Circuit Failover Window (2)

3.4.7 Configuring IPWATCHD

The IP WATCH Deamon (IPWATCHD) provides the function of detecting active or passive IP collision. Regardless of IP collision attacker or victim, the information including source ip/mac is transmitted as an evm fault event when the IP collision occurs. At the collision time, the Gratuitous Address Resolution Protocol (GARP) reply is transmitted 3 times to the unicast at every 1 second.

It supports the rate-limit function to deal with an intended ARP attack. Although ARP is entered from a host that is not in the same subnet, it generates GARP by recognizing it as a target if the host has the same APC IP.

Configuration using CLI

To configure the IPWATCHD function, enter into the configure mode of CLI. Configure a TIMEOUT value (that a user wants) to detect an IP address collision. Operator can enter a value between 10 and 300 seconds.

```
WEC8500# configure terminal
WEC8500/configure#
WEC8500/configure# ipwatch ?
defend-interval Ipwatch defend-interval configuration
WEC8500/configure# ipwatch defend-interval ?
10 - 300 Ipwatch defend-interval value(seconds)
WEC8500/configure# ipwatch defend-interval 30
```

Parameter	Description
VALUE	Enter a defend-interval (10-300 sec).

The default TIMEOUT value for IP address collision detection is 30 seconds. When the time is configured, the IPWATCHD daemon is restarted and a log and GARP is generated if there is an IP collision.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Network>** \rightarrow **<ARP>** menu in the sub-menus.

After entering a time value (10-300 seconds) that a user wants in the TIMEOUT FOR IP ADDRESS CONFLICT DETECTION window, click the **<Apply>** button. Then, the configuration is applied.

The default value before user configuration is 30 as shown in the below figure.

Figure 38. IPWATCHD Configuration Window

3.5 **QoS**

The Access Control List (ACL) allows or blocks a specific network traffic based on an operator's configuration. The APC provides QoS using ACL.

3.5.1 ACL Configuration

3.5.1.1 Access List Configuration

You can create or delete an access list for ACL configuration. To delete an access list, an operator can enter the name of an access list directly or enter a command by copying a value retrieved from the 'show running-config network'. But, if the access list is being used in the WLAN ACL or Admin ACL, etc., you cannot delete it. Therefore, check if it is being used in the WLAN ACL or Admin ACL first of all.

Configuration using CLI

1) Go to fqm mode where you can configure the configure \rightarrow rule of CLI.

```
APC# configure terminal
APC/configure# fqm-mode
```

- 2) Create an access list by entering the 'access-list' command. The 'no' parameter is used to delete an access list.
 - access-list [ip/ipv6/mac] [ACL_NAME] [deny/permit/time-profile] seq [seq_NUM] [1/*/ahp/eigrp/esp/gre/icmp/igmp/igrp/ip/nos/ospf/pcp/pim/17/6/ tcp/udp/1-255] [any/A.B.C.D A.B.C.D] eq [eq_VALUE] [any/A.B.C.D A.B.C.D] eq [eq_VALUE] [[[dscp [*|[0-63]]|precedence [*|[0-7])]]]]

An example of entering a command is shown below.

• Creating Access list 'acl1':

```
APC# configure terminal
APC/configure# fqm-mode
APC/configure# access-list ip acl1 permit seq 1 icmp any any
```

• Deleting Access list 'acl1':

```
APC# configure terminal
APC/configure# fqm-mode
APC/configure# no access-list ip acl1 permit seq 1 icmp any any
```

3) Check a created access list using the 'show running-config network' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Security>** \rightarrow **<Access Control Lists>** \rightarrow **<IP ACL>** menu in the sub-menus.

The initial window of ACL rule configuration is shown below. When you click the **Add** or **Delete** button, you can add or delete ACL rule.

Figure 39. ACL Configuration Window

To change the configuration of ACL rule, click ACL NAME to change. You can change the configuration using the **<Add>** or **<Delete>** button. In addition, if there is a time profile in an ACL name, the IP ALC window is changed as shown below. After selecting a time profile, click the **<Apply>** button to apply the time profile to the ACL.

Figure 40. Window where a Time Profile is Applied to ACL

3.5.1.2 ACL Rule Configuration

Configuration using CLI

1) Go to interface configuration mode where you will apply the configure \rightarrow ACL rule of CLL

```
APC# configure terminal
APC/configure# interface [name]
APC/configure/interface [name]#
```

- 2) Configure ACL to an interface.
 - ip access-group [MODE] [DIRECTION] [ACL_NAME]

Parameter	Description
MODE	Configuration mode (fw/fqm)
DIRECTION	Application direction configuration (in/out)

Parameter	Description
ACL_NAME	ACL name to configure

An example of entering a command that configures 'acl1' to the 'ge2' interface is shown below.

```
APC# configure terminal
APC/configure# interface ge2
APC/configure/interface ge2#ip access-group fqm in acl1
```

3) To check the configuration information, use the 'show running-config network' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Security>** \rightarrow **<Access Control Lists>** \rightarrow **<Access Group (Interface)>** menu in the submenus.

The initial window of WLAN ACL configuration is shown below. When you click the <**Add>** or <**Delete>** button, you can add or delete ACL rule.

Figure 41. ACL Interface Configuration Window (1)

To perform detail configuration, select an interface in the list.

Figure 42. ACL Interface Configuration Window (2)

The types of interfaces you can configure are retrieved. In the INTERFACE, select an interface. For DIRECTION, select Ingress or Egress. For ACL NAME, select an item (name) that is configured in the ACL List configuration.

To apply the changed configuration, click the **Apply**> button.

3.5.1.3 WLAN ACL Configuration

1) Go to the fqm mode to configure the configure \rightarrow ACL rule of CLI.

```
APC# configure terminal APC/configure# fqm-mode
```

- 2) Configure WLAN ACL by entering the 'ip access-group wireless' command.
 - ip access-group wireless [ACL_NAME]

Parameter	Description
ACL_NAME	ACL name to configure

3) To check the configuration information, use the 'show running-config network' command.

3.5.1.4 Admin ACL Configuring

Configuration using CLI

1) Go to the fqm mode to configure the configure \rightarrow ACL rule of CLI.

```
APC# configure terminal
APC/configure# fqm-mode
```

- 2) Configure Admin ACL by entering the 'ip access-group wireless' command.
 - ip access-group system [ACL_NAME]

Parameter	Description
ACL_NAME	ACL name to configure

3) To check the configuration information, use the 'show running-config network' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Security>** \rightarrow **<Access Control Lists>** \rightarrow **<Access Group (System)>** menu in the submenus.

The initial window of Access Group is shown below. After selecting a configuration, click the **Apply**> button to configure Admin ACL.

Figure 43. Admin ACL Configuration Window

3.5.2 Class-map Configuration

1) Go to the fqm mode to configure the configure \rightarrow ACL rule of CLI.

APC# configure terminal
APC/configure# fqm-mode

- 2) Go to Class-map mode.
 - class-map c1
- 3) Select match-all or match-any.
 - match-type [MODE]

Parameter	Description
MODE	Match mode configuration (match-all/match-any)

4) Perform detail configuration according to match criteria.

Match Criteria	Description
access-group	match access-group [ACCESS_GROUP_NAME]
class	match class [CLASS_NAME]
COS	match cos [COS_VALUE/any]
destination IP range	match dst ip range [A.B.C.D] [A.B.C.D]
IP	match ip dscp [DSCP_VALUE/any] match ip precedence [IP_PRECEDENCE_VALUE/any] match ip tos [TOS_VALUE/any]
protocol	match protocol [PROTOCOL_VALE/any]
source IP range	match src ip range [A.B.C.D] [A.B.C.D]

- 5) Exit the Class-map mode.
 - exit
- 6) To check the configuration information, use the 'show running-config network' command.

3.5.3 Policy-map Configuration

1) Go to the fqm mode to configure the configure \rightarrow ACL rule of CLI.

```
APC# configure terminal APC/configure# fqm-mode
```

- 2) Go to policy-map mode. To delete a policy map, enter 'no' parameter in front of the command.
 - policy-map [POLICY_MAP_NAME]
 - no policy-map [POLICY_MAP_NAME]
- 3) By using the class name configured in the class-map, go to the input mode.
 - class [CLASSMAP_NAME]
- 4) Configure a policy-map using the following command.

[Bandwidth to a class of traffic]

• bandwidth percentage [PERCENTAGE_VALUE]

[Configure set action]

- mark cos [COS_VALUE]
- mark ip dscp [DSCP_VALUE]
- mark ip precedence [PRECEDENCE_VALUE]
- mark priority [PRIORITY_VALUE]

[Configure police action]

police trtcm cir [1-1000] cbs [125000-125000000] pir [1-1000] pbs [125000-125000000] conform-action(drop|(dscp [0-63]|ip [0-7])|transmit) exceedaction(drop|(dscp [0-63]|ip [0-7])|transmit) violate-action(drop|(dscp [0-63]|ip [0-7])|transmit)(color-aware|color-blind|)

[Peak rate to a class of traffic]

• queue-limit [QUEUE_NUM]

[Peak rate to a class of traffic]

- shape-peak [PEAK_RATE]
- 5) Exit the policy-map mode.
 - exit
- 6) To check the configuration information, use the 'show running-config network' command.

3.5.4 Service Policy Configuration

Apply the policy configured in the policy-map to an interface.

1) Go to configure \rightarrow interface configuring mode to apply the service policy of CLI.

```
APC# configure terminal
APC/configure# interface ge2
APC/configure/interface ge2#
```

- 2) Apply the policy configured in the policy-map to an interface. The 'no' parameter is used to delete the policy.
 - service-policy [DIRECTION] [POLICY_NAME]
 - no service-policy [DIRECTION] [POLICY_NAME]

Parameter	Description
DIRECTION	Application direction configuration (in/out)
POLICY_NAME	Policy to apply

An example of entering a command is shown below.

```
APC/configure/interface ge2# service-policy in p1
APC/configure/interface ge2# no service-policy in p1
```

3) To check the configuration information, use the 'show running-config network' command.

3.5.5 Time Profile

The procedure of configuring a time profile and applying it to ACL is described.

3.5.5.1 Time Profile Configuration

Configuration using CLI

1) Go to configure of $CLI \rightarrow fqm \mod e$.

```
APC# configure terminal
APC/configure# fqm-mode
```

- 2) Configure a time profile. The 'no' parameter is used to delete a time profile.
 - time-profile [PROFILE_NAME]
 day-start (any|YY[-MM[-DD[THH[:MM[:SS]]]]])
 day-stop (any|YY[-MM[-DD[THH[:MM[:SS]]]]])
 time-start (any|HH:MM[:SS])
 time-stop (any|HH:[MM:SS])
 monthdays (any|[0-31])
 weekdays (any|VARIABLE))
 - no time-profile [PROFILE_NAME]

Parameter	Description
PROFILE_NAME	Name of a time profile to configure

3) To check the configured time profile, use the 'show running-config network' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Security>** \rightarrow **<Access Control Lists>** \rightarrow **<Time Profile>** menu in the sub-menus.

The configured time profile list is displayed on the window. When you click the **<Add>** or **<Delete>** button, you can add or delete a time profile.

Figure 44. Time Profile Configuration Window (1)

Select an item in the list and perform detail configuration.

Figure 45. Time Profile Configuration Window (2)

After finishing configuration in the window, click the **Apply**> button to apply it to the system.

3.5.5.2 Applying to ACL

Configuration using CLI

1) Go to the fqm mode to configure the configure \rightarrow ACL rule of CLI.

```
APC# configure terminal
APC/configure# fqm-mode
```

- 2) Apply a time-profile to ACL. The 'no' parameter is used to delete a time profile.
 - access-list ip [ACL_NAME] time-profile [PROFILE_NAME]
 - no access-list ip [ACL_NAME] time-profile [PROFILE_NAME]

Parameter	Description
ACL_NAME	ACL name to configure
PROFILE_NAME	Name of a time profile to configure

An example of applying 't1' to 'acl' is shown below.

```
APC# configure terminal
APC/configure# fqm-mode
access-list ip acl1 time-profile t1
```

3) To check the configuration information, use the 'show running-config network' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Security>** \rightarrow **<Access Control Lists>** \rightarrow **<IP** ACL> menu in the sub-menus.

To change the configuration of ACL rule, click ACLNAME to change. You can change the configuration using the **<Add>** or **<Delete>** button. In addition, if there is a time profile in an ACL name, the IP ACL window is changed as shown below. After selecting a time profile, click the **<Apply>** button to apply the time profile to the ACL.



Figure 46. Applying to ACL

3.5.5.3 ACL (Time-Profile) Rule Configuration

Configuration using CLI

1) Go to configure \rightarrow interface configuration mode of CLI.

```
APC# configure terminal
APC/configure# interface ge2
```

- 2) Configure ACL to the interface. The 'no' parameter is used to delete ACL.
 - ip access-group [MODE] [DIRECTION] [ACL_NAME]
 - no ip access-group [fw/fqm] [DIRECTION] [ACL_NAME]

Parameter	Description
MODE	Configuration mode (fw/fqm)
	For ACL rule configuration, select 'fqm' (The 'fw' is used for firewall configuration.)
DIRECTION	Application direction configuration (in/out)
ACL_NAME	ACL name to configure

3) To check the configuration information, use the 'show running-config network' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Security>** \rightarrow **<Access Control Lists>** \rightarrow **<Access Group (Interface)>** menu in the submenus.

Perform configuration by referring to 'ACL Rule Configuration'.

3.5.6 OS-AWARE

OS-AWARE is a function to use the option value of the DHCP Discover/Request transmitted from a station to check the type of the operating system used by the station.

The procedures to set OS-AWARE and apply the OS-AWARE settings to ACL are described below.

3.5.6.1 OS-AWARE Configuration

Configuration using CLI

1) Go to configure \rightarrow os-aware mode of CLI.

- 2) Set the OS-AWARE. Use the 'delete' parameter to delete the OS-AWARE.
 - os-aware [OS_AWARE NAME] dhcp-option [OPTION_NUM] dhcp-option [OPTION_NUM] eq[VALUE] os-type [OS_TYPE NAME]
 - delete os-aware [OS_AWARE NAME]
 - update os-aware [OS_AWARE NAME] dhcp-option [OPTION_NUM] dhcp-option [OPTION_NUM] eq [VALUE] os-type [OS_TYPE NAME]

Parameter	Description
OS_AWARE NAME	os-aware name to configure
SEQUENCE_NUM	Fingerprint pattern match sequence(1~255)
OPTION_NUM	dhcp option value (1~255)
VALUE	Fingerprint value(HEX)
OS_TYPE NAME	os-type name to configure(Unknown, android, ios, windows, mac)

os-aware 'window7' creation:

```
APC# configure terminal
APC/configure# os-aware
APC/configure/os-aware # os-aware window7 seq 5 dhcp-option 1 eq AA
os-type windows
```

os-aware 'window7' modification:

```
APC# configure terminal
APC/configure# os-aware
APC/configure/os-aware # os-aware window7 seq 8 dhcp-option 2 eq FF
os-type windows
```

os-aware 'window7' deletion:

```
APC# configure terminal
APC/configure# os-aware
APC/configure/os-aware # no os-aware window7
```

 Check the settings by using the 'show OS-AWARE-all' or 'show OS-AWARE-[OS_AWARE NAME]' commands.
 'show OS-AWARE-all' retrieves all OS-AWARE information and 'show OS-AWARE-

'show OS-AWARE-all' retrieves all OS-AWARE information and 'show OS-AWARE-[OS_AWARE NAME]' only retrieves user defined information out of all OS-AWARE information.

=======				=======		
PLD_INDEX OS_TYPE	OS_NAME		REFCNT	OPTION	LENGTH	FINGERPRINT
1	======= ==============================	0	0	5	2	1234 windows

3.5.6.2 Applying to ACL

Configuration using CLI

1) Go to configure \rightarrow fqm mode to set the ACL rule of CLI.

```
APC# configure terminal
APC/configure# fqm-mode
```

- 2) Apply the OS-AWARE to ACL. Use the 'no' parameter to delete the OS-AWARE
 - access-list [ip/ipv6/mac] [ACL_NAME] [deny/permit/time-profile] seq [seq_NUM] [1/*/ahp/eigrp/esp/gre/icmp/igmp/igrp/ip/nos/ospf/pcp/pim/17/6/tcp/udp/1-255] [any/A.B.C.D A.B.C.D] eq [eq_VALUE] [any/A.B.C.D A.B.C.D] eq [eq_VALUE] os-aware[OS_AWARE NAME] [[[dscp [*|[0-63]]|precedence [*|[0-7])]]]]
 - no access-list [ip/ipv6/mac] [ACL_NAME] [deny/permit/time-profile] seq [seq_NUM] [1/*/ahp/eigrp/esp/gre/icmp/igmp/igrp/ip/nos/ospf/pcp/pim/17/6/tcp/udp/1-255] [any/A.B.C.D A.B.C.D] eq [eq_VALUE] [any/A.B.C.D A.B.C.D] eq [eq_VALUE] os-aware[OS_AWARE NAME] [[[dscp [*|[0-63]]|precedence [*|[0-7])]]]]]

Parameter	Description
OS_AWARE NAME	os-aware name to configure

An example of applying 'window7' to 'acl' is as follows.

```
APC# configure terminal
APC/configure# fqm-mode
access-list ip acl1 permit seq 1 icmp any any os-aware window7
```

3) To check the configuration information, use the 'show running-config network' command.

3.6 Multicast to Unicast

Execute the 'show multi2uni-list' command to check the list of wireless terminals that use the multicast to unicast function.

3.7 IP Multicast Configuration

3.7.1 IP Multicast Routing Configuration

Configuration using CLI

1) Go to configure mode of CLI.

WEC8500# configure terminal

- 2) Enable or disable the routing function for IP multicast.
 - ip multicast-routing: Enable
 - no ip multicast-routing: Disable

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Multicast>** \rightarrow **<IP Multicast>** menu in the sub-menus.

After selecting Enable/Disable in the IP Multicast window, click the **<Apply>** button to apply the configuration.

Figure 47. IP Multicast Configuration Window

3.7.2 PIM Configuration

As a multicast layer3 transmission protocol, the PIM has two modes, i.e. Dense mode and Sparse mode. The WEC8500 supports only PIM Sparse mode and the PIM Sparse mode can be configured for each interface.

Configuration using CLI

1) Go to configure of CLI \rightarrow mode where you want to perform configuration.

```
WEC8500# configure terminal
WEC8500/configure# interface ge2
```

2) Perform PIM configuration.

ip pim sparse-mode: Enableno ip pim sparse-mode: Disable

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Multicast>** \rightarrow **<PIM-SM>** menu in the sub-menus. When you click the **<Add>** or **<Delete>** button, you can add or delete PIM-SM configuration.

Figure 48. PIM-SM Configuration Window (1)

Follow the below procedure to add a PIM.

- 1) In the PIM-SM initial window, click the **<Add>** button.
- 2) Click the **<Select Interface>** button.

Figure 49. PIM-SM Configuration Window (2)

3) Select an interface to add.

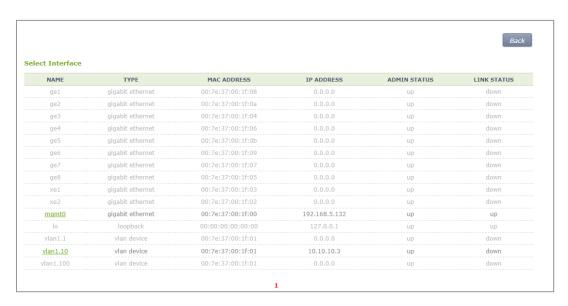


Figure 50. PIM-SM Configuration Window (3)

4) The selected interface is displayed on the window. Click the **<Apply>** button to apply the configuration.

Figure 51. PIM-SM Configuration Window (4)

3.8 IGMP Snooping

Configuration using CLI

Use the 'ip igmp snooping' command to enable or disable Internet Group Management Protocol (IGMP) Snooping.

- ip igmp snooping
- no ip igmp snooping

When this command is executed in the Configure mode, the IGMP Snooping of a bridge is enabled or disabled. If it is executed in the interface mode, the IGMP Snooping of an interface is enabled or disabled.

Configuring the IGMP Snooping of a bridge:

```
WEC8500# configure terminal
WEC8500/configure# ip igmp snooping
```

Configuring the IGMP Snooping of a VLAN interface:

```
WEC8500# configure terminal
WEC8500/configure# interface vlan1.10
WEC8500/configure/interface vlan1.10# ip igmp snooping
```

In addition, a specific function of the IGMP Snooping functions of a VLAN interface can be enabled or disabled as shown in the below command.

[ip igmp snooping fast-leave]

This command enables or disables the Fast-Leave function. (Default: Enable status)

- ip igmp snooping fast-leave
- no ip igmp snooping fast-leave

[ip igmp snooping querier]

This command enables or disables the Querier function. (Default: Enable status)

- ip igmp snooping querier
- no ip igmp snooping querier

[ip igmp snooping report-suppression]

This command enables or disables the Report-suppression function. (Default: Enable status)

- ip igmp snooping report-suppression
- no ip igmp snooping report-suppression

[ip igmp snooping mroute]

This command enables or disables the Mroute function.

- ip igmp snooping mroute [INTERFACE]
- no ip igmp snooping mroute [INTERFACE]

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** → **<Multicast>** → **<IGMP Snooping>** menu in the sub-menus.

[Config]

Enables or disables the IGMP Snooping function or configures related functions. To perform configuration for STATE, FAST LEAVE, QUERIER STATE, or REPORT SUPRESSION STATE, select Enable or Disable and click the **<Apply>** button.

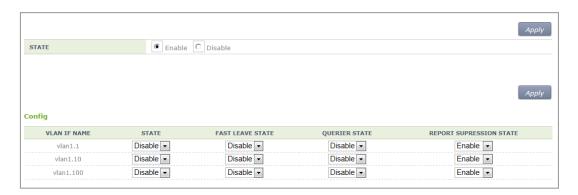


Figure 52. IGMP Snooping Config Window

[Mroute]

The PIM-SM initial window is shown below. When you click the **<Add>** or **<Delete>** button, you can add or delete PIM-SM configuration.

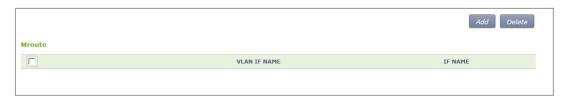


Figure 53. IGMP Snooping Mroute Creation Window (1)

1) In the PIM-SM initial window, click the **<Add>** button.

2) Click the **<Select Vlan>** button.

Figure 54. IGMP Snooping Mroute Creation Window (2)

3) Select a VLAN interface that will be added to the Mroute.

Figure 55. IGMP Snooping Mroute Creation Window (3)

4) The selected interface is displayed on the window. Click the **<Apply>** button to apply the configuration.

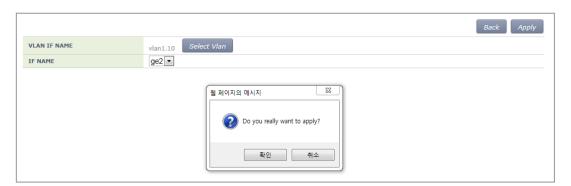


Figure 56. IGMP Snooping Mroute Creation Window (4)

3.9 Deep Packet Inspection

It supports QoS by application. It may allow drop, bandwidth contract, and DSCP marking and it provides statistics by detailed category. The application of DPI in a unit of WLAN is possible and it also provides a monitoring function.

3.9.1 Configuring Profile and Application Rule

A profile is a set of application rules and each rule includes the QoS settings of the application.

The profile must set at least one application rule.

Configuration using CLI

1) Enter the DPI Configuration mode.

```
APC# configure terminal
APC/configure# dpi
APC/configure/dpi#
```

2) Make a profile and add an application rule.

```
APC/configure/dpi# profile [NAME]

APC/configure/dpi/profile [NAME]# rule [APPLICATION]

APC/configure/dpi/profile [NAME]/rule [APPLICATION]# action permit

APC/configure/dpi/profile [NAME]/rule [APPLICATION]# mark [DSCP]

APC/configure/dpi/profile [NAME]/rule [APPLICATION]# bw-contract

upstream [BW_CNT]

APC/configure/dpi/profile [NAME]/rule [APPLICATION]# bw-contract

downstream [BW_CNT]

APC/configure/dpi/profile [NAME]# enable
```

Parameter	Description
NAME	Profile name
APPLICATION	Application name
DSCP	DSCP value
BW_CNT	Bandwidth Contract. Kbps

3) Designate a WLAN where the profile is applied.

```
APC# configure terminal
APC/configure# wlan [ID]
APC/configure/wlan [ID]# dpi-profile [NAME]
```

Parameter	Description
NAME	Profile name
ID	WLAN ID

3.9.2 Configuring Application Group

Possible to configure one or more applications as a group.

Configuration using CLI

1) Enter the DPI Configuration mode.

```
APC# configure terminal
APC/configure# dpi
APC/configure/dpi#
```

2) Make a group and add an application.

```
APC/configure/dpi# app-group [NAME]
APC/configure/dpi/app-group [NAME]# application [APPLICATION]
```

Parameter	Description
NAME	Group name
APPLICATION	Application name

3.9.3 Checking Statistics by Category

The category provides statistical information by application, WLAN, station, device-ostype, and group.

Configuration using CLI

1) Check the statistical information on all applications.

```
APC# show dpi stat application

Accumulated Application Stat
```

Upstrea	ID am Byte	Downstream Packet Count	Upstream Packet Count Downstream Byte	
 Upstrea	am Kbps	*	Downstream Kbps	
- I	-		Drop	1
Drop			Drop	
-	1	BITTORRENT		
0	_	0		
_	3	FTP_DATA		
0		0	0	
	4	TELNET	0	
0	-	0	0	
1	5	TFTP	0	
0	6	0	0	-
0	6	VIMEO		1
0	7	0	0	1
0	7	YAHOO_MSG_VOIP		1
0	0	0	0	
	8	YOUTUBE		
54		2	220	
	9	VSHARE		
0		0	0	
	10	FLASH_YAHOO		
0		0	0	
	11	BING	0	
0		0	0	
	12	DNS	0	
0	4.0	0	0	
	13	FLASH	0	
0	1.4	0	0	
0	14	FTP	0	1
0	1 5	0 GMAIL	0	1
∩	15	GMAIL	0	1
0	17		0	1
0	17	GOOGLE	0	1
U I	18	·		1
0	ΤΟ	GOOGLE_EARTH 0		1
U I	19	GOOGLE GROUPS		l I
0	13	GOOGLE_GROUPS	0	I I
U I	20	GOOGLE MAPS		I I
0	20	GOOGLE_MAPS	0	1
U I	21	HTTP		l I
0	∠ ⊥	0		I I
U I	22	HTTP SECURE		I I
162	22	HITP_SECORE	193	I I
102		TWITTER		I I
I	23	TWITTER 0		- 1

1	24	1	YAHOO_MAIL	1	0	l
0	0.5	1	0	1	0	
	25		YAHOO_SEARCH		0	
0	26	l	0 ORKUT	1	0	l I
0	20	1	0	1	0	l I
	27	i	FACEBOOK		0	I
0		1	0	1	0	I
	28	1	LINKEDIN		0	I
0			0	1	0	!
	29		VOICETALKSIGNAL		0	
0	30	1	0 KAKAOTALK VOIP	1	0	l I
0	30	1	CARACIALK_VOIF		0	!
ı	51		COMMON PATTERNS	1	0	i
0		İ	_ 0		0	I
RANK Upstream Downstre	l n Byte		Application Name Downstream Packet Coun	Upstream Packet t	Count	
1 162 193	I	22	HTTP_SECURE 3		3	1
193	1	8 I	YOUTUBE	1	1	1
54	ı	J	2	ı	-	
220		i	-			'
APC#						

2) Check the statistical information on specific applications.

```
3 packets
 | Downstream Byte .....
193 bytes
 | Upstream Packet Drop Count .....
0 packets
 | Upstream Drop Byte .....
0 bytes
 | Downstream Packet Drop Count .....
0 packets
 | Downstream Drop Byte .....
0 bytes
 | Top 10 Stations
                                  I----2--
--3----4----5----6----7----8----9---|%
 | 1. 00:12:47:F3:CF:A4 100.00%
                               355 bytes
| Top 10 Stations (History)
                                   1----1----2--
| Top 10 WLANs
                                   1----1----2--
--3----4----5----6----7----8----9---|%
                             355 bytes
|----2--
 | Top 10 Device types
| 1. Samsung SM-P900 100.00%
                               355 bytes
|----2--
 | Top 10 OS types
--3----4----5----6----7----8----9---|%
 | 1. Android 4.4.2 100.00%
                              355 bytes
APC#
```

Parameter	Description
APPLICATION	Application name

3) Check the statistical information on all WLANs.

APC# show dpi stat wlan

4) Check the statistical information on specific WLANs.

APC# show dpi stat wlan [ID]

Parameter	Description
ID	WLAN ID

5) Check the statistical information on all stations.

APC# show dpi stat station

6) Check the statistical information on specific stations.

APC# show dpi stat station [MAC]

파라미터	설명
MAC	Station MAC

7) Check the statistical information on all device-os-types.

APC# show dpi stat device-os-type

8) Check the statistical information on specific device-os-types.

APC# show dpi stat device-os-type [TYPE]

Parameter	Description
TYPE	Device of OS type name

9) Check the statistical information on all application groups.

APC# show dpi stat group

10) Check the statistical information on specific application groups.

APC# show dpi stat group [NAME]

Parameter	Description
NAME	Application group name

CHAPTER 4. AP Connection Management

This chapter describes the various configuration methods to manage the connection between the APC and AP.

4.1 APC Management

4.1.1 Managing APC List

To enable the APC system to provide the cluster or redundancy service, several APC systems must be installed at a site and each APC must have the information of other APC systems.

Therefore, the APC system provides the function of managing the list of APCs that will provide the cluster or redundancy function. And the APCs added to the APC list are used during cluster or redundancy configuration.

One APC system that will be saved in the APC list consists of an APC name and Medium Access Control (MAC) information. For the MAC address of another APC system, enter the MAC address retrieved from the Monitor \rightarrow Summary \rightarrow Inventory \rightarrow MAC Address menu of system WEC screen.

By default, its own system information is added to the APC list. For the APC, operator can only change its name, but cannot delete it forcibly or change its MAC address.

The maximum number of APC systems that can be registered per model is as follows:

APC Model	The maximum number of APC systems that can be registered
WEC8500	12
WEC8050	2

Configuration using CLI

The procedures for configuration are as follows.

1) Go to configure mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# apc
WEC8500/configure/apc-list#
```

2) Go to the apc-list item of CLI.

```
WEC8500/configure# apc
WEC8500/configure/apc/apc-list#
```

- 3) Add, delete or change APC.
 - add-apc [APC_NAME] [MAC_ADDRESS]
 - del-apc [APC_NAME]
 - change-apc [CURRENT_APC_NAME] [NEW_APC_NAME]
 - change-mac [APC_NAME] [MAC_ADDRESS]

Parameter	Description
APC_NAME	APC name
CURRENT_APC_NAME	Current APC name (before change)
NEW_APC_NAME	APC name after change
IP_ADDRESS	APC MAC address (xx:xx:xx:xx:xx) In the APC system, enter the system mac address output parameter value of 'show system info' command.)

4) To check the configured APC list, execute the 'show apc-list' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller> → <APC Lists>** menu in the sub-menus. Operator can add a new APC by clicking the **<Add>** button in the figure.

Figure 57. APC List Management Window

4.1.2 Management Interface Configuration

The APC can communicate with a W-EP wireless LAN AP using management interface. This is one of the information that must be configured first of all for wireless LAN service.

Configuration using CLI

To configure management interface, execute the command as follows:

1) Go to configure mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure#
```

- 2) Configure a management interface.
 - apc ap-mgmt-if [IP_ADDRESS]

Parameter	Description	
IP_ADDRESS	IP address of APC that is used for communication with a W-EP wireless LAN AP	

3) To check the configured IP information, use the 'show apc summary' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<General>** menu in the sub-menus.

After entering a configuration in the AP Management of the window, click the **<Apply>** button.

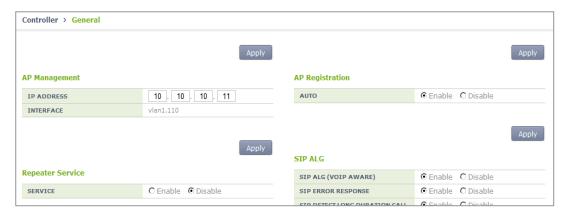


Figure 58. Management interface configuration

4.1.3 CAPWAP Configuration

A secured tunnel is created between APC and W-EP wireless LAN AP using Control And Provisioning Wireless Access Point (CAPWAP), i.e. a standard protocol, and data is transmitted through the tunnel. An encrypted data is used for both wire and wireless sections, high security is provided.

The CAPWAP channel consists of control channel and data channel depending on the type of packet being transmitted/received. The control channel handles provisioning and configuration/control messages and the data channel transmits the data traffic exchanged with a wireless terminal through CAPWAP tunneling. Because the control channel transmits the wireless LAN configuration information, there should be no data loss. Therefore, the re-transmission function is basically provided. In addition, the Datagram Transmission Layer Security (DTLS) is mandatorily used for the security of transmitted data. Meanwhile, as user data traffic is transmitted through the data channel, a faster response is preferred instead of packet transmission reliability. Therefore, the retransmission function is not provided and the DTLS function is also optional.

For CAPWAP configuration, execute the following commands.

1) Go to configure \rightarrow apc \rightarrow capwap of CLI.

```
WEC8500# configure terminal
WEC8500/configure# apc
WEC8500/configure/apc/capwap#
WEC8500# configure terminal
WEC8500/configure# apc
WEC8500/configure/apc/capwap#
```

- 2) Configure the CAPWAP function using the following commands.
 - add-multicast-if [VLAN_ID]: Configure a VLAN ID for multicast interface.
 - auto-discovery: Configures the function of automatically detecting and registering an AP.
 - auto-discovery-ap-group [AP_GROUP_ID]: Configures an AP group that will be working when an AP is automatically registered.
 - change-state-pending-timer [TIMER]: Configures the maximum waiting time until
 the APC receives the Change State Event Request message from an AP after
 transmitting the Configuration Status Response message to the AP (RFC 5415).
 - ctr-src-port [port]: Changes the CAPWAP Control port (RFC5415).
 - date-check-timer [TIMER]: Configures the maximum waiting time until the APC receives Data Channel Keep-alive (default: 30 seconds)
 - discovery-by-broadcast: Configures whether to allow connection to CAPWAP broadcast.

- discovery-by-multicast: Configures whether to allow connection to CAPWAP multicast. (The 'add-multicast-if' must be configured before configuring whether to allow multicast connection.)
- discovery-del-timer: If the Join message is not received after receiving a Discovery message, this configures the timeout to discard the previously received Discovery messages.
- dtls-session-delete [TIMER]: Configures the waiting time to disconnect DTLS when releasing the connection between an AP and CAPWAP.
- retransmit-interval [INTERVAL]: Configures the re-transmission interval of CAPWAP control packet retransmission.
- max-retransmit [COUNT]: Configures maximum number of retransmission when there is no answer for CAPWAP control packet transmission.
- wait-dtls-timer [TIMER]: Configures the maximum time until the AP waits without receiving the DTLS handshake message from the APC (RFC 5415) (default: 60 seconds)
- wait-join-timer [TIMER]: Configures the maximum time until the APC receives the Join message after finishing DTLS handshake (RFC 5415) (default: 60 seconds)
- window-size [size]: Configures the maximum number of packets that can be transmitted without response during CAPWAP control packet transmission.

An example of entering a command is shown below.

WEC8500/configure/apc/capwap# date-check-timer 30

To check the configured CAPWAP information, use the 'show apc capwap summary' command.

4.1.4 AP Registration (Auto Discovery) Configuration

The APC provides the AP auto-discovery function that automatically registers APs in the same network without having to configure any settings in advance. To configure the function, execute the following commands.

Configuration using CLI

1) Go to configure \rightarrow apc \rightarrow capwap of CLI.

```
WEC8500# configure terminal
WEC8500/configure# apc
WEC8500/configure/apc # capwap
WEC8500/configure/apc/capwap #
```

- 2) Configure the automatic registration function.
 - auto-discovery
- 3) Configure an AP group that will be working after AP automatic registration.
 - auto-discovery-ap-group [AP_GROUP_ID]

Parameter	Description
AP_GROUP_ID	ap-group that will be working after AP automatic registration

4) To check the configured information, use the 'show apc capwap summary' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** → **<General>** menu from the sub-menus.

After entering a configuration in the AP Registration of the window, click the **<Apply>** button.

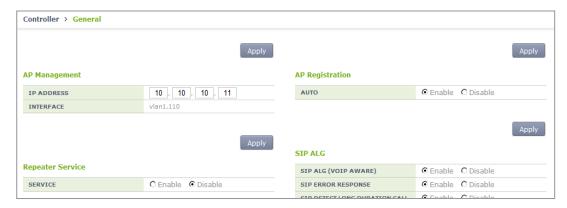


Figure 59. AP Registration Method Setup Window

4.1.5 Managing AP File Transmission

It provides the configuration and transmission management function for the tech support file of the AP.

4.1.5.1 Tech Support Information File

1) Go to configure \rightarrow APC mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# apc
WEC8500/configure/apc#
```

- 2) Configure a file transmission method to collect the AP Tech support information.
 - tech-support [MODE]

Parameter	Description
MODE	Selects file transmission method (ftp/sftp/http) tftp is not supported.

- 3) If AP debug information collection is failed, configure maximum number of retries.
 - tech-support max-retry [COUNT]

Parameter	Description
COUNT	Number of retries.

4) To check the configuration information, use the 'show ap tech-support' command.

4.1.6 APC Redundancy Configuration

An operator can add a backup APC to an AP to make the backup APC provide the service even when an APC fault occurs.

The maximum number of backup APCs that can be registered to one AP per model is as follows:

APC Model	The maximum number of APC systems that can be registered
WEC8500	3 (Primary Server, Secondary Server, Tertiary Server)
WEC8050	2 (Primary Server, Secondary Server)

If a fault occurs to the primary APC while an AP is connected to the primary APC, the AP is connected to the secondary APC. If a fault also occurs to the secondary APC, the AP is connected to the tertiary APC. For reference, the WEC8050 model does not support a tertiary APC.

Operator can also configure fallback to return to the original APC from the backup APC during the service. If the fallback operation is configured, the AP periodically performs health check to check whether the primary APC can be connected. When the connection is required, it can immediately perform fallback according to the fallback option or can perform fallback on a specified time. The reason why configuring fallback time zone is to minimize the service interruption due to fallback by making it happens when the load is low.

In an APC, operator can configure the primary and backup APCs of an AP in the following steps.

- Register APCs to the APC list.
 In the 'APC List Management', how to add the APC list is described.
- Add the APCs in the APC list to redundancy.
 If necessary, configure the fallback function.
 And then, operator can configure the APCs added to redundancy as the primary, secondary, or tertiary server of an AP.
- 3) Configure a primary, secondary, and tertiary server per AP. To make an AP operate in redundancy configuration, configure the Discovery Type of the AP as 'APC Referal'. Use the Multi-Set function of WEC to configure several APs at the same time.

Configuration using CLI

- 1) By referring to the 'AP List Management', add the APC list that will be used as a backup APC.
- 2) After entering into the configure → redundancy mode, add or delete the APCs in the APC list. If necessary, configure the fallback function.

```
WEC8500# configure terminal
WEC8500/configure# redundancy
WEC8500/configure/redundancy#
```

- add-apc [APC_NAME] [IP_ADDRESS] [PORT]
- del-apc [APC_NAME]
- · fallback-enable now
- fallback-enable at-time [FALLBACK START-END TIME]
- fallback-interval [INTERVAL]

Parameter	Description
APC_NAME	Name of an APC to be added or deleted to/from redundancy The APC must be an APC registered in the APC list.
IP ADDRESS	IP address of an APC to add
	This address is an IP required by an AP to connect to the APC.
	Therefore, you must enter the AP Management IP address of the APC.

Parameter	Description
PORT	CAPWAP PORT number of the APC to add
	This port number is required by an AP to connect to the APC. If no port
	number is entered, it is set to 5246, the default port number of CAPWAP
	protocol. It is recommended not to use a different port number if it is
	specially required.
FALLBACK START-	Enter the time zone where an AP connected to the backup (secondary or
END TIME	tertiary) APC can do fallback.
	The input format is as follows:
	- Format: hh:mm-hh:mm
	- Example: 2:00-5:00 ← Fallback is available between 2pm and 5pm.
INTERVAL	Configures the interval that an AP connected to the backup (secondary or
	tertiary) APC attempts fallback (second).
	If a specific time is not entered, the default is 120 seconds.
	The minimum is 60 seconds and the maximum is 1800 seconds.

3) Enter into the configure → AP configuration mode of CLI and configure a primary, secondary, and tertiary server. To make an AP operate in redundancy configuration, configure the Discovery of the AP as 'apc-referal'.

```
WEC8500# configure terminal
WEC8500/configure# ap ap_1
WEC8500/configure/ap ap_1#
```

- · discovery apc-referal
- primary-apc [APC_NAME]
- secondary-apc [APC_NAME]
- tertiary-apc [APC_NAME]

Parameter	Description
APC_NAME	Enter the name of an APC registered to redundancy.
	- Primary apc: The first APC that the AP attempts to connect.
	It is usually configured with the currently connected APC.
	- Secondary-apc, tertiary-apc: APC that the AP attempts to connect when
	there is no response from the primary-apc.
DISCOVERY_TYPE	Discovery Type
	- ap-followed: Discovery type is set by AP.
	- apc-referal: Discovery type is set by APC using the backup APC lists.
	To apply the priority of APC to which the AP will be connected, operator needs to select the apc-referal.
	- DHCP: Discovery type is interoperating with the DHCP server. To use this
	mode, IP ADDRESS POLICY of the AP must be set to DHCP.
	- Auto: Discovery type is automatically changed by the AP for automatic
	connection to the APC.

- 4) To check the configured apc list, execute the 'show apc summary' command.
- To check the redundancy information, execute the 'show redundancy summary' command.
- 6) To check the configured AP profile, execute the 'show ap detail [AP_PROFILE_NAME]' command.

By referring to the 'APC List Management', add the APC list that will be used as a backup APC.

1) In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** → **<Redundancy>** menu in the sub-menus. Operator can add or delete the APC list that will be used for redundancy. If necessary, operator can configure the fallback function.

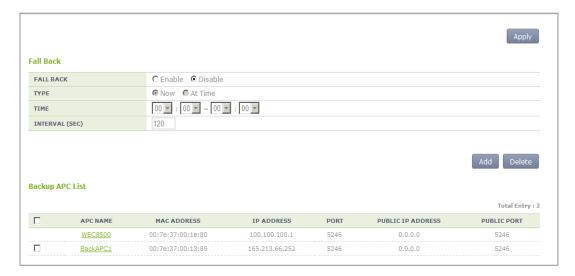


Figure 60. Redundancy Configuration Window

Parameter	Description
APC NAME	Name of an APC to be added or deleted to/from redundancy
	The APC must be an APC registered in the APC list.
MAC ADDRESS	Because this is a MAC address configured during registration to the APC list,
	an operator does not have to enter this at the redundancy
	configuration stage.
IP_ADDRESS	IP address of an APC to add
	This address is an IP required by an AP to connect to the APC.
	Therefore, you must enter the AP Management IP address of the APC.
PORT	CAPWAP PORT number of the APC to add
_	If no port number is entered, it is set to 5246, the default port number of

Parameter	Description
	CAPWAP protocol. It is recommended not to use a different port number if it is
	specially required.
PUBLIC_IP_ADD	PUBLIC IP address of the APC to add
RESS	This address is an IP required by an AP to connect to the APC. If the APC is in
	the NAT environment, you must enter an official IP configured in the NAT
	instead of the private IP of APC.
PUBLIC_PORT	PUBLIC CAPWAP PORT number of the APC to add
	This port number is required by an AP to connect to the APC. If the APC is
	under the NAT environment, you must enter the port number configured in the
	NAT instead of the actual CAPWAP port number of APC.
FALLBACK	Enter the time zone where an AP connected to the backup (secondary or
START-END	tertiary) APC can do fallback.
TIME	The input format is as follows:
	Format: hh:mm-hh:mm
	Example: 2:00-5:00 ← Fallback is available between 2pm and 5pm.
INTERVAL	Configures the interval that an AP connected to the backup (secondary or
	tertiary) APC attempts fallback (second).
	If a specific time is not entered, the default is 120 seconds.
	The minimum is 60 seconds and the maximum is 1800 seconds.

2) In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Access Points>** menu in the sub-menus. Click the name of AP Profile to which the redundancy function will be applied. After configuring the DISCOVERY TYPE of AP to 'APC Referal', select the PRIMARY CONTROLLER NAME, SECONDARY CONTROLLER NAME, and TERTIARY CONTROLLER NAME. For the WEC8500 model, the TERTIARY CONTROLLER NAME is not shown in the menu.

Figure 61. AP retrieving window

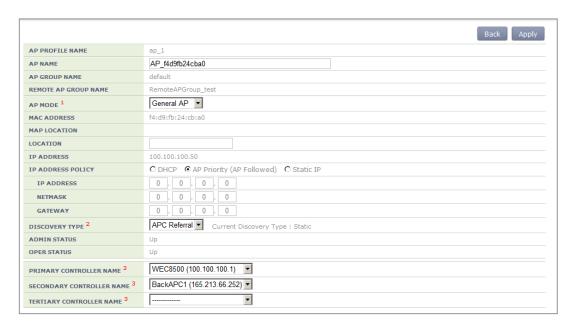


Figure 62. AP redundancy Configuration Window

Parameter	Description
APC_NAME	Enter the name of an APC registered to redundancy.
	- Primary apc: The first APC that the AP attempts to connect. It is usually configured with the currently connected APC.
	- Secondary-apc, tertiary-apc: APC that the AP attempts to connect when there is no response from the primary-apc.
DISCOVERY_TYPE	Discovery Type
	- ap-followed: Discovery type is set by AP.
	- apc-referal: Discovery type is set by APC using the backup
	APC lists. To apply the priority of APC to which the AP will
	be connected, operator needs to select the apc-referal.
	- Auto: Discovery type is automatically changed by the AP for
	automatic connection to the APC.
	- DHCP: Discovery type is interoperating with the DHCP
	server. To use this mode, IP ADDRESS POLICY of the AP
	must be set to DHCP.

4.2 AP Management

4.2.1 AP Group Configuration

The APC manages the services provided to the AP by group. An operator can add or delete several APs to/from a group. It is also possible to add/remove WLANs to/from an AP group so that the same WLAN services can be provided for each group.

When the APC is installed for the first time, a 'default' group is created. When the AP information is created first time, the AP is automatically added to the 'default' group. If the 'auto-discovery' mode is enabled in the APC, an AP connected to the APC is automatically added to the 'default' group. For reference, operator can specify a specific AP group where an AP will be added during auto-discovery configuration.

An operator can manage the services per group by creating a new AP group and can move or a specific AP to another group or delete it in the original group. The APs deleted in a group are automatically moved to the 'default' group.

When a new AP group is created, it is possible to configure AP information for each group. If the Overwrite option is enabled for each setting, the respective setting is applied to all APs within the group.

Generally, up to 16 WLANs can be added to an AP group. However, if a root AP is contained in an AP group, only up to 15 WLANs can be added to the group.

If the AP group information is changed, i.e. if an AP moves to another group, the AP uses the WLAN of a new group. Therefore, some existing WLANs in the AP are deleted and some new WLANs can be added. The detail example is shown below.

(Example) Default group: Includes wlan1, wlan2, wlan3, and wlan4.

New group: Includes wlan4, wlan5, and wlan6.

When the AP_1 moves from the default group to a new group

The APC asks the AP_1 to delete the wlan1, wlan2, and wlan3.

The APC asks the AP_1 to add the wlan5 and wlan6.

Configuration using CLI

To manage an AP group, execute the command as follows.

1) Go to configure mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure#
```

- 2) Create or delete an AP group. Use 'no' parameter in front of the command to delete an AP group.
 - ap-group [AP_GROUP_NAME]
 - no ap-group [AP_GROUP_NAME]
- 3) Add or delete an AP to or from the AP group. Use 'no' parameter in front of the command to delete an AP from the AP group. But, for a default AP group, you cannot delete an AP from the group. If you delete an AP from other AP groups other than the default group, the deleted AP is included into the default AP group.
 - add-ap [AP_NAME]
 - no add-ap [AP_NAME]
- 4) Use the 'show ap-group summary' command to check the AP group information.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<AP Groups>** menu in the sub-menus. It provides the group configuration of the AP. Click the **<Add>** or **<Delete>** button to add or delete a group.

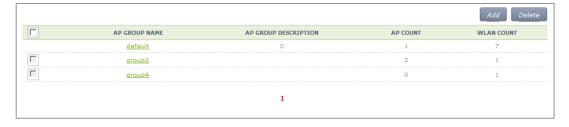


Figure 63. AP groups configuration Window

Figure 64. AP Group Addition Window

4.2.1.1 General AP Group Settings

To aid management of APs in groups, the APC allows configuration of settings which can be applied commonly to each group. The following functions are provided:

Parameter	Description
Description	This configures the description of the AP group.
AP Mode	This configures the operation mode of the AP. The operator can select General AP, Root AP, or Repeater AP.
Location	This configures the installation location information of the AP.
IP Mode	This configures the IP configuration mode of the AP. The operator can select DHCP or AP Priority.
AP Status	This configures the up/down status of the AP.
Redundancy	If the APCs are configured for redundancy, this configures the discovery type and Primary/Secondary/Tertiary Controller settings of the AP.

The APC provides the overwrite option for each AP group setting. If the Overwrite option is enabled for each setting, the respective setting is applied to all APs within the group. For example, if the Overwrite option is enabled for AP Mode and AP Mode is set to General, all the APs within the group will run as General APs.

Configuration using CLI

To configure redundancy settings for the AP group, perform the following commands:

```
WEC8500# configure terminal WEC8500/configure#
```

- 2) Enter the AP Group configuration mode.
 - ap-group [AP_GROUP_NAME]
- 3) Enter the profile configuration mode for the AP group.
 - Profile
- 4) Configure the following AP group profiles:
 - description
 - overwrite-ap-mode
 - no overwrite-ap-mode
 - ap-mode
 - overwrite-location
 - · no overwrite-location
 - · location

- overwrite-ip-mode
- no overwrite-ip-mode
- ip-mode
- overwrite-state
- no overwrite-state
- shutdown
- no shutdown
- no overwrite-redundancy
- discovery
- primary-apc
- no primary-apc
- secondary-apc
- no secondary-apc
- tertiary-apc
- · no tertiary-apc

Parameter	Description
DESCRIPTION	This contains a brief description of the AP group.
OVERWRITE-AP- MODE	If overwrite-ap-mode is enabled, the AP mode information set for the group is applied to all APs within the group.
AP-MODE	This is the AP operation mode. The following modes are available: - generalAp: General operation mode. Default value rootAp: AP mode where a repeater AP can be connected repeasterAp: AP mode that is connected to a wireless area and the APC through the root AP.
OVERWRITE- LOCATION	If overwrite-location is enabled, the location information set for the group is applied to all APs within the group.
LOCATION	This is the location information of the AP.
OVERWRITE-IP-MODE	If overwrite-ip is enabled, the IP mode information set for the group is applied to all APs within the group.
IP-MODE	This is the mode of receiving an IP address by the AP. The following modes are available: - dhcp: The AP receives IP address allocation using DHCP ap: The AP uses a manually configured IP address.
OVERWRITE-STATE	If overwrite-state is enabled, the AP state information set for the group is applied to all APs within the group.
shutdown	This sets the AP state to UP or DOWN.
OVERWRITE- REDUNDANCY	If overwrite-redundancy is enabled, the redundancy setting (primary-apc, secondary-apc, tertiary-apc) of the AP group is applied to all APs within the group.
DISCOVERY	If the APCs are configured for redundancy, this configures the method used for APs to connect to the APC. The following modes are available: - ap-followed: The discovery type and discovery list configured for the

Parameter	Description
	 AP are used. apc-referral: The APC list configured for the APC is used as the discovery list. DHCP: The APC list information relayed by DHCP option 138 (IPv4) or option 52 (IPv6) is used as the discovery list. auto: Discovery type is automatically changed by the AP for automatic connection to the APC.
PRIMARY-APC	This is the name of the primary APC server. The AP attempts to connect to this APC first.
SECONDARY-APC	This is the name of the secondary APC server. If the AP is unable to connect to the primary APC, the AP attempts to connect to this APC on its second connection attempt.
TERTIARY-APC	This is the name of the tertiary APC server. If the AP is unable to connect to the secondary APC, the AP attempts to connect to this APC on its third connection attempt. The WEC8050 model does not support Tertiary-APC.

5) Use the 'show ap-group detail [AP_GROUP_NAME]' command to check the AP group information.

Configuration using Web UI

In the menu bar of **<WEC Main Window>**, select **<Configuration>**, select **<AP Groups>** in the submenu, and then select an AP group to configure. In the 'General' tab of the AP group, configure the necessary settings. If the OVERWRITE AP CONFIG checkbox is selected, the respective setting is applied to all APs within the group.

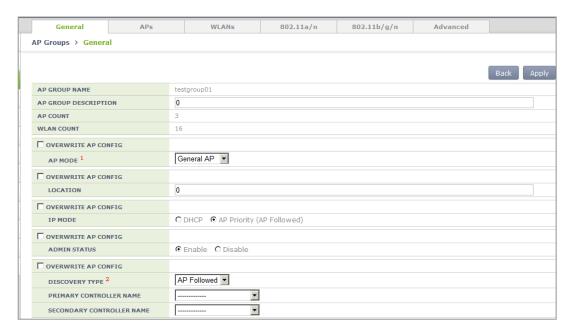


Figure 65. General Configuration Window for AP Group

4.2.1.2 Adding/Removing APs

To aid management of APs in groups, the APC allows addition/removal of APs to/from AP groups.

Configuration using CLI

```
WEC8500# configure terminal
WEC8500/configure#
```

- 2) Create an AP group or enter the AP group configuration mode.
 - ap-group [AP_GROUP_NAME]
- 3) Add/remove an AP to/from the AP group. Use 'no' parameter in front of the command to delete an AP from the AP group. However, you cannot delete an AP from a default AP group. If you delete an AP from groups other than the default group, the deleted AP is then included in the default AP group.
 - add-ap [AP_NAME]
 - no add-ap [AP_NAME]
- 4) Use the 'show ap-group summary' command to check the AP group information.

In the menu bar of **<WEC Main Window>**, select **<Configuration>**, select **<AP Groups>** in the submenu, and then select an AP group to configure. Under the 'APs' tab of the AP group, APs can be added or removed.

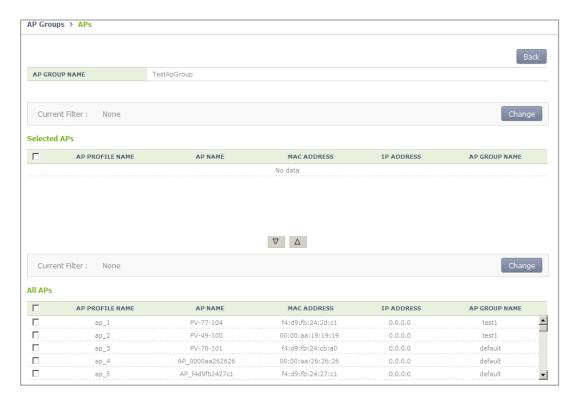


Figure 66. AP Add/Remove Window for AP Group

4.2.1.3 Adding/Removing WLANs

To allows the same WLAN services to be provided to the APs allocated to each group, the APC allows addition/removal of WLANs to/from each AP group.

Configuration using CLI

```
WEC8500# configure terminal
WEC8500/configure#
```

- 2) Create an AP group or enter the AP group configuration mode.
 - ap-group [AP_GROUP_NAME]
- 3) Add/remove an WLAN to/from the AP group. Use 'no' parameter in front of the command to delete an WLAN from the AP group.
 - add-wlan [WLAN_ID]
 - no add-wlan [WLAN_ID]

4) Use the 'show ap-group summary' command to check the AP group information.

Configuration using Web UI

In the menu bar of **<WEC Main Window>**, select **<Configuration>**, select **<AP Groups>** in the submenu, and then select an AP group to configure. Under the 'WLANs' tab of the AP group, WLANs can be added or removed.

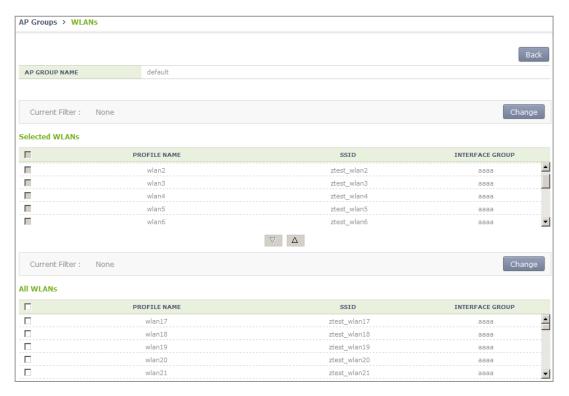


Figure 67. WLAN Add/Remove Window for AP Group

4.2.1.4 802.11a/n Configuration

Configuration using Web UI

In the menu bar of **<WEC Main Window>**, select **<Configuration>**, select **<AP Groups>** in the submenu, and then select an AP group to configure. Settings can be configured under the '802.11a/n' tab of the AP group.

Figure 68. 802.11a/n Window for AP Group

The configuration items are as follows:

[Service Configuration of AP Group]

• SERVICE: Enable or disable the radio service.

[Channel Configuration]

- CURRENT CHANNEL: Channel configuration (range: 36-165)
- CHANNEL FIX: The configured channel is configured as fixed and it is not affected by automatic adjustment functions such as RRM. When the <Monitor> → <Access Points> → <Radio> → <802.11a/n/ac> menu is selected, the channel value is shown as * (optional).

[TX Power Setting]

- TX CURRENT POWER: TX power (range: 3-23)
- TX POWER FIX: The configured TX power is configured as fixed and it is not affected by automatic adjustment functions such as RRM. When the <Monitor> → <Access Points> → <Radio> → <802.11a/n/ac> menu is selected, the TxPower value is shown as * (optional).

To check the configured channel and TX power information, go to **<Monitor>** \rightarrow **<Access Points>** \rightarrow **<Radio>** \rightarrow **<802.11a/n/ac>**.

4.2.1.5 802.11b/g/n Configuration

Configuration using Web UI

In the menu bar of **<WEC Main Window>**, select **<Configuration>**, select **<AP Groups>** in the submenu, and then select an AP group to configure. Settings can be configured under the '802.11b/g/n' tab of the AP group.

Figure 69. 802.11b/g/n Window for AP Group

The configuration items are as follows:

[Service Configuration of AP Group]

• SERVICE: Enable or disable the radio service.

[Channel Configuration]

- CURRENT CHANNEL: Channel configuration (range: 1-14)
- CHANNEL FIX: The configured channel is configured as fixed and it is not affected by automatic adjustment functions such as RRM. When the <Monitor> → <Access Points> → <Radio> → <802.11b/g/n> menu is selected, the channel value is shown as * (optional).

[TX Power Setting]

- TX CURRENT POWER: TX power (range: 3-23)
- TX POWER FIX: The configured TX power is configured as fixed and it is not affected by automatic adjustment functions such as RRM. When the <Monitor> → <Access Points> → <Radio> → <802.11b/g/n> menu is selected, the TxPower value is shown as * (optional).

To check the configured channel and TX power information, go to **<Monitor>** \rightarrow **<Access Points>** \rightarrow **<Radio>** \rightarrow **<802.11b/g/n>**.

4.2.1.6 Advanced Configuration

In order to provide the same services to the APs allocated to each group, the APC allows configuration of advanced settings for each AP group.

Configuring AP Group Profile with CLI

```
WEC8500# configure terminal
WEC8500/configure#
```

- 2) Create an AP group or enter the AP group configuration mode.
 - ap-group [AP_GROUP_NAME]
- 3) Enter the profile configuration mode for the AP group.
 - profile
- 4) Configure the following AP group profiles:
 - overwrite-apc-ap-timer
 - no overwrite-apc-ap-timer
 - · echo-interval
 - · discovery-interval
 - report-interval
 - statistics-timer
 - retransmit-interval
 - echo-retransmit-interval
 - max-echo-retransmit
 - overwrite-telnet-ssh
 - no overwrite-telnet-ssh
 - telnet-enable
 - no telnet-enable
 - ssh-enable
 - no ssh-enable
 - overwrite-console
 - no overwrite-console
 - · console-enable
 - no console-enable
 - overwrite-dtls
 - no overwrite-dtls
 - dtls-policy
 - overwrite-led-control
 - no overwrite-led-control
 - · led-config

- overwrite-vlan
- no overwrite-vlan
- vlan-support
- no vlan-support
- native-vlanId
- no native-vlanId
- overwrite-poe-type
- no overwrite-poe-type
- overwrite-uplink-bandwidth
- no overwrite-uplink-bandwidth
- uplink-bandwidth
- overwrite-temperature-alarm
- no overwrite-temperature-alarm
- temperature-alarm-on-level
- temperature-alarm-off-level
- temperature-alarm-control-type
- overwrite-link-aggregation
- no overwrite-link-aggregation
- link-aggregation
- no link-aggregation

Parameter	Description
DESCRIPTION	This contains a brief description of the AP group.
OVERWRITE-APC-AP-TIMER	If overwrite-apc-ap-timer is enabled, the APC-AP timer setting of the group is applied to all APs within the group.
ECHO-INTERvAL	Configures the time when an echo request message is transmitted to the APC where an AP joins (unit: seconds).
DISCOVERY-INTERVAL	Configures a waiting time until the CAPWAP discovery response message is received (unit: seconds).
REPORT-INTERVAL	Configures the time interval for transmitting the description error from AP to the APC (unit: seconds).
STATISTICS-TIMER	Configures the time interval for transmitting the statistical information provided by the CAPWAP (unit: seconds).
RETRANSMIT-INTERVAL	The APC waits for this length of time before retransmitting an echo request message when there is no response. The APC sets double the length of echo-interval as the echo timeout time. If no echo message is received from the AP for as long as double the length of the echo-interval, the APC judges that the AP is down (unit: seconds).
MAX-ECHO-RETRANSMIT	The APC waits for this length of time before retransmitting an echo request message when there is no response. The APC sets

Parameter	Description
	double the length of echo-interval as the echo timeout time. If no echo message is received from the AP for as long as double the length of the echo-interval, the APC judges that the AP is down (unit: seconds).
OVERWRITE-TELNET-SSH	If overwrite-telnet-ssh is enabled, the telnet and SSH settings for the AP group are applied to all APs within the group.
TELNET-ENABLE	This enables the telnet server and configures telnet port of the AP.
SSH-ENABLE	This enables the SSH server and configures SSH port of the AP.
OVERWRITE-CONSOLE	If overwrite-console is enabled, the telnet and SSH settings of the AP group are applied to all APs within the group.
CONSOLE-ENABLE	This configures whether to allow console access to the AP.
OVERWRITE-DTLS	If overwrite-dtls is enabled, the DTLS settings of the AP group are applied to all APs within the group.
DTLS-POLICY	Configures the DTLS Policy of an AP.
OVERWRITE-LED-CONTROL	If overwrite-led-control is enabled, the LED settings of the AP group are applied to all APs within the group.
LED-CONFIG	This configures whether to turn the LED on/off.
OVERWRITE-VLAN	If overwrite-vlan is enabled, the VLAN settings of the AP group are applied to all APs within the group.
VLAN-SUPPORT	This configures whether to enable the native VLAN of the AP.
NATIVE-VLANID	This configures the native VLAN value of the AP.
OVERWRITE-POE-TYPE	If the overwrite-poe-type is activated, the POE Type information set in the AP group is applied to all APs in the group.
POE-TYPE	Sets the POE Type information below. 802.3at/802.3af/auto
OVERWRITE-UPLINK- BANDWIDTH	If the overwrite-uplink-bandwidth is activated, the uplink bandwidth information set in the AP group is applied to all APs in the group.
UPLINK-BANDWIDTH	Sets the allowed value for AP uplink bandwidth. Possible to set between 1 and 1024 Mbps and if it is set to 0, the uplink bandwidth is not restricted.
OVERWRITE- TEMPERATURE-ALARM	If the overwrite-temperature-alarm is activated, the temperature alarm information set in the AP group is applied to all APs in the group.
TEMPERATURE-ALARM-ON- LEVEL	If the temperature of the AP exceeds the Temperature-Alarm-On- Level, the temperature alarm occurs. The default is 98 and possible to set between 50 and 130.
TEMPERATURE-ALARM- OFF-LEVEL	If the temperature of the AP is less than the Temperature-Alarm-Off-Level, the temperature alarm is cleared. The default is 90 and possible to set between 50 and 130.

Parameter	Description
TEMPERATURE-ALARM-	If the temperature alarm occurs, whether the radio of the AP is
CONTROL-TYPE	set to be off or on.
OVERWRITE-LINK-	If the overwrite-link-aggregation is activated, the link aggregation
AGGREGATION	information set in the AP group is applied to all APs in the group.
LINK-AGGREGATION	In case of an AP model for 802.11ac, provide two uplink Ethernet
	ports.
	Possible to set link aggregation for two Ethernet ports.
	If link aggregation is activated, possible to set the following
	mode:
	- Both (Destination + Source)
	- Destination
	- Source

5) Use the 'show ap-group detail [AP_GROUP_NAME]' command to check the AP group information.

Configuring AirMove Service of AP Group with CLI

```
WEC8500# configure terminal
WEC8500/configure#
```

- 2) Create an AP group or enter the AP group configuration mode.
 - ap-group [AP_GROUP_NAME]
- 3) Enter the profile configuration mode for the AP group.
 - profile
- 4) Configure the AirMove service of the AP group.
 - enable: Enables/disables the AirMove service.
 - target-ap: This option is used for selecting APs which will be applied with the
 changes made to the group settings. If 'all' is selected, changes are applied to all APs
 and config priority of the APs also change to group. If 'keep-ap-config' is selected,
 only the APs whose config priority is set to group have the airmove value of the
 group applied to them.

```
WEC8500# configure terminal
WEC8500/configure# ap-group default
GroupName : default
WEC8500/configure/ap-group default# airmove
WEC8500/configure/ap-group default/airmove# ?
decision-delta Set delta value for handover decision
enable Airmove enable
exit Exit from airmove mode
```

```
Set the number of channel required during
     number-of-channel
one time scanning
                          Set the number of probe request required
    number-of-proreq
during one time scanning
    scan-time-channel
                          Set time required for one channel scanning
    scan-time-interleave Set interval time required for new scanning
start
     scan-time-service
                         Set time required for STA service during
STA's scanning
    scan-trigger-level
                          Set a trigger level for STA's scanning
start
    target-ap
                           Set config target ap
     <cr>
WEC8500/configure/ap-group default/airmove# enable ?
WEC8500/configure/ap-group default/airmove# decision-delta ?
                           Enter the value [dBm]
 1 - 100
WEC8500/configure/ap-group default/airmove# number-of-channel ?
                           Enter the number
WEC8500/configure/ap-group default/airmove# number-of-proreq ?
1 - 10
                             Enter the number
{\tt WEC8500/configure/ap-group\ default/airmove \#\ scan-time-channel\ ?}
                           Enter the time [ms]
WEC8500/configure/ap-group default/airmove# scan-time-interleave ?
 1000 - 10000
                           Enter the time [ms]
WEC8500/configure/ap-group default/airmove# scan-time-service ?
                           Enter the time [ms]
WEC8500/configure/ap-group default/airmove# scan-trigger-level ?
 -128 - 0
                          Enter the trigger level [dBm]
WEC8500/configure/ap-group default/airmove# target-ap ?
                          All
 keep-ap-config
                          Keep ap config
WEC8500/configure/ap-group default/airmove# end
```

4) Use the 'show airmove group [ap_group_name]' command to check the AP group information.

```
WEC8500# show airmove group default
Airmove Group Configurations
   Airmove State
                                    Disable
                                    Keep Ap Config
   Target AP
   Scan trigger level
                                     -70 dBm
                                   5 ms
   Scanning time for one channel
                                   100 ms
   Service time during scanning
                                    1000 ms
   Scanning interval time
   Number of probe requests
   Number of scanning channels
```

Value of station roam delta 15 WEC8500#

Configuration using Web UI

In the menu bar of **<WEC Main Window>**, select **<Configuration>**, select **<AP Groups>** in the submenu, and then select an AP group to configure. Advanced settings and AirMove settings of the AP group can be changed under the 'Advanced' tab of AP Group.

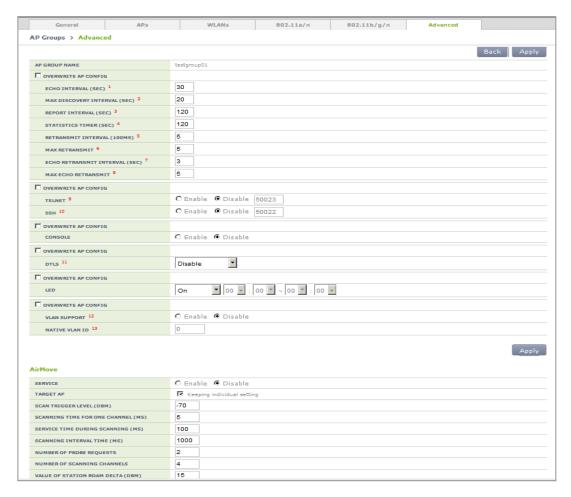


Figure 70. Advanced Configuration Window for AP Group

4.2.2 Configuring Remote AP Group

If the APs are located in an area where the APC is not located, those APs must be classified into a separate group for service. The APC can manage the APs in another area by grouping them into a remote AP group.

In the Remote AP group, the operator can configure the below information and the APs in the Remote AP group are operating based on the same configuration.

- Addition/Deletion of Remote AP
 - Possible to add or delete APs to be included in the remote AP group.
- Local Authentication
 - Radius Server
 - Possible to set a Radius server which will authenticate a station connecting to the remote AP.
 - Remote AP User List
 Possible to add or delete a user (station) to be managed in the remote AP.
- Role Based Access Control
 - Possible to apply the ACL profile.
- Tunnel Forwarding
 - Possible to add the split tunnel ACL settings of the WLAN set with the tunneling mode.
- Local Bridging Forwarding
 - Possible to add settings of VLAN ID, ACL, and Pre-Auth ACL of the WLAN set with the local bridging mode.

When an AP group is added and the remote AP group is checked, APs included in the AP group operates in the remote AP mode.

If an AP is added to or deleted from a remote AP group, the AP is rebooted and reconnected to the APC. If an AP moves between remote AP groups, the AP is not rebooted.

4.2.2.1 Addition/Removal Setting

Configuration using CLI

```
WEC8500# configure terminal WEC8500/configure#
```

- 2) Create an AP group.
 - ap-group[REMOTE_AP_GROUP_NAME]

- 3) Designate remote AP group properties to the AP group.
 - group-type remote
- 4) When the remote AP group is deleted, use the 'no' parameter in front of the ap-group command to delete the remote AP group.
 - no ap-group[REMOTE_AP_GROUP_NAME]

In the menu bar of **<WEC Main Window>**, select **<Configuration>** and then select the **<AP Groups>** menu in the sub-menus. Click the **<Add>** or **<Delete>** button to add or delete a group.

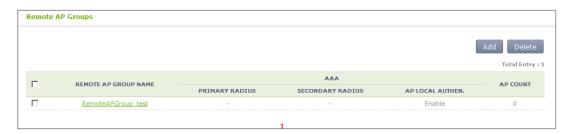


Figure 71. Remote AP Group Add/Remove Window

4.2.2.2 Local Authentication Configuration for Remote AP Group

Users (stations) accessing the remote AP and the Radius server which authenticates such users can be configured.

Configuration using CLI

To configure the local authentication of the remote AP group, perform the command as follows:

1) Go to configure → Remote AP Group configuration mode of CLI.

WEC8500# configure terminal
WEC8500/configure#

- WEC8500/configure/ap-group {remote-ap-group-name}
- $\bullet \ \ WEC8500/configure/ap-group/\{remote-ap-group-name\}\#remote$
- 2) Configure Primary Radius Server 1, Primary Radius Server 2, and Primary Radius Server 3. The RADIUS server information must be created in the radius of the security item in advance. To delete the configured RADIUS server information, enter 'no' parameter in front of the command.
 - remote primary-radius[RADIUS_SERVER_INDEX]
 - no remote primary-radius[RADIUS SERVER INDEX]
 - remote secondary-radius[RADIUS_SERVER_INDEX]

- no remote secondary-radius[RADIUS_SERVER_INDEX]
- remote tertiary-radius[RADIUS_SERVER_INDEX]
- no remote tertiary-radius[RADIUS_SERVER_INDEX]
- 3) Add or delete users (stations) connecting to the remote AP.
 - add-user [USER NAME]
 - no add-user [USER NAME]
- 4) Execute the 'show remote-ap-group detail [REMOTE AP GROUP NAME]' command to check the AP group information.

In the menu bar of **WEC Main window**>, select **Configuration**> and then select the **AP Groups**> menu in the sub-menus. After selecting the name of a remote AP group, configure a Radius server or add or delete users in "User Authentication" item of the 'Remote AP Group' tab.

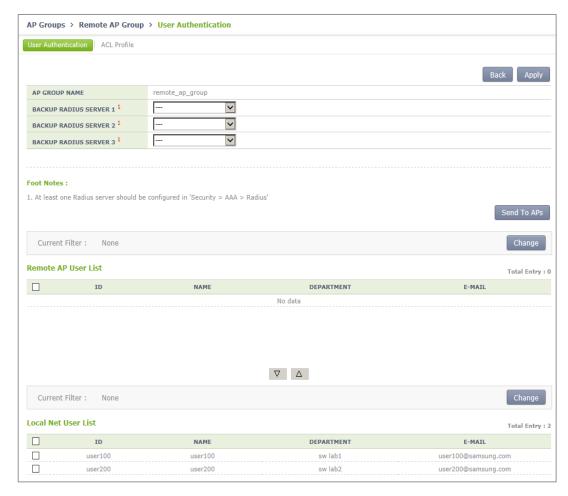


Figure 72. Local Authentication Configuration Window for Remote AP Group

4.2.2.3 Role-based Access Control Configuration of Remote AP Group

Explanation on the configuration of the role based access control of the remote AP group is separately made in the "Role Based Access Control" chapter.

4.2.2.4 Configuring Tunneling Forwarding of Remote AP Group

Possible to configure the split ACL to a WLAN set with tunneling among WLANs included in the remote AP group.

Configuration using CLI

To configure the split ACL of the remote AP group, perform the command as follows:

1) Go to configure → Remote AP Group configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure#
WEC8500/configure/ap-group [remote-ap-group-name]
WEC8500/configure/ap-group/[remote-ap-group-name]#remote
```

- 2) Designate the split ACL in the WLAN set with the tunneling mode.
 - tunneling-forwarding [WLAN-ID] [SPLIT-ACL-NAME]
- 3) Execute the 'show ap-group remote-forwarding [REMOTE AP GROUP NAME] 'command to check the AP group information.
- 4) Use the 'send-remote-acl-to-ap profile-only' command to send the ACL Profile information of the remote AP group to APs.
- 5) Use the 'send-remote-acl-to-ap all' command to send the information on the ACL Profile, Tunneling Forwarding and Local Bridging Forwarding of the remote AP group to APs.

Configuration using Web UI

In the menu bar of **<WEC Main window**>, select **<Configuration>** and then select the **<AP Groups>** menu in the sub-menus. After selecting the name of the remote AP group, you can configure Tunneling Forwarding in the "ACL Profile" item of the 'Remote AP Group' tab. In addition, you can click the "Send To APs" button to send the information on ACL Profile, Tunnel Forwarding, and Local Bridging Forwarding to APs.

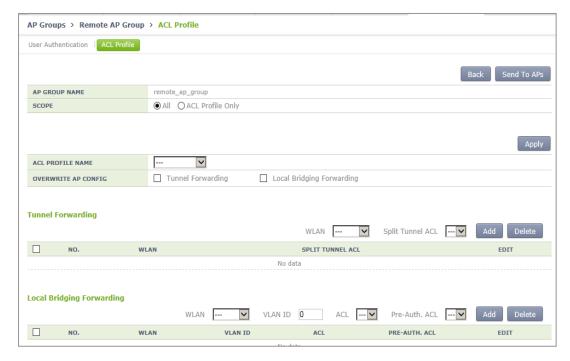


Figure 73. Window for Configuring Tunneling Forwarding of Remote AP Group

4.2.2.5 Configuring Local Bridging Forwarding of Remote AP Group

You can configure the VLAN ID, ACL, and PreAuth ACL to a WLAN set with local bridging among WLANs included in the remote AP group.

Configuration using CLI

To configure the local bridging forwarding of the remote AP group, perform the command as follows:

1) Go to configure → Remote AP Group configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure#
WEC8500/configure/ap-group [remote-ap-group-name]
WEC8500/configure/ap-group/[remote-ap-group-name]#remote
```

- 2) Configure the information on Local Bridging to the WLAN set with the tunneling mode.
 - local-bridging [WLAN-ID] { vlan-id [VLAN-ID] | acl-name [ACL-NAME] | preauth-name [PRE-AUTH-NAME] }
- 3) Execute the 'show ap-group remote-forwarding [REMOTE AP GROUP NAME]' command to check the AP group information.

- 4) Use the 'send-remote-acl-to-ap profile-only' command to send the ACL Profile information of the remote AP group to APs.
- 5) Use the 'send-remote-acl-to-ap all' command to send the information on the ACL Profile, Tunneling Forwarding and Local Bridging Forwarding of the remote AP group to APs.

In the menu bar of **<WEC Main window**>, select **<Configuration>** and then select the **<AP Groups>** menu in the sub-menus. After selecting the name of the remote AP group, you can configure Local Bridging in the "ACL Profile" item of the 'Remote AP Group' tab. In addition, you can click the "Send To APs" button to send the information on ACL Profile, Tunnel Forwarding, and Local Bridging Forwarding to APs.

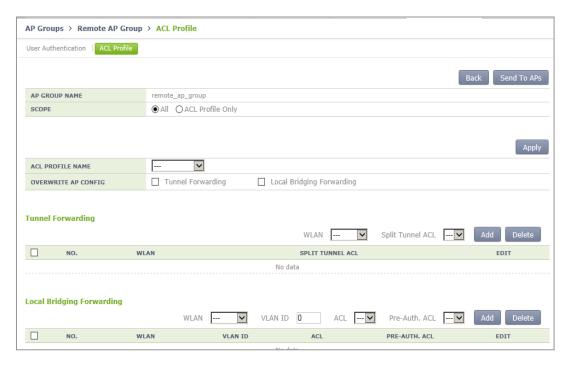


Figure 74. Window for Configuring Local Bridging Forwarding of Remote AP Group

4.2.3 AP Time Synchronization per Group

The AP can configure its time information using either the time stamp method or the NTP method.

In the Time Stamp type, the APC periodically transmits the time of APC to an AP and the AP is operating based on the received time. Unless a user changes the configuration, the default is Time Stamp type and the interval is set to 7200 seconds (2 hours).

In the NTP type, the NTP server information is transmitted to an AP and the AP synchronizes the time with the NTP server. A NTP server list must be created to transmit the NTP server information to an AP and maximum 10 lists can be added. The ntp-interval (2^N) is the interval when an AP receives the time information from the NTP server. For example, if the ntp-interval is set to 6, an AP receives the time information from the NTP server at every 2^6, i.e. 128 seconds.

The APC provides a function for configuring the time configuration method of the AP.

Configuring Time Stamp type using CLI

1) Go to configure \rightarrow apc \rightarrow ap-time-config configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# apc
WEC8500/configure/apc# ap-time-config
WEC8500/configure/apc/ap-time-config#
```

- 2) Configure how to transmit the time information to an AP using 'ac-stamp' and configure the interval.
 - · mode ac-stamp
 - ac-stamp-interval [INTERVAL]
- 3) To check the information, execute the 'show apc ap-time-config' command.

Configuring NTP type using CLI

1) Go to configure \rightarrow apc \rightarrow ap-time-config configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# apc
WEC8500/configure/apc# ap-time-config
WEC8500/configure/apc/ap-time-config#
```

2) Add the NTP server information to transmit to an AP. Maximum 10 NTP server information can be added. To delete the configured NTP server information, enter 'no' parameter in front of the command

- add-ntp [NTP_SERVER_ADDRESS]
- no add-ntp [NTP_SERVER_ADDRESS]
- ntp-interval [NUMBER]
- 3) Configure the method of transmitting the time information to an AP as 'ntp'.
 - mode ntp
- 4) Use the 'show apc ap-time-config' command to check the configured information.

In the menu bar of **<WEC Main Window>**, select **<Configuration>**, select **<NTP>** in the submenu, and then select a time setting mode of the AP (TimeStamp or NTP), timestamp interval, and NTP polling interval. Also, you can add/remove NTP server from which to fetch time access information for the AP.

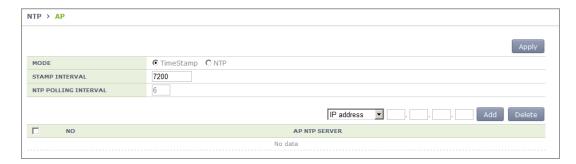


Figure 75. AP Time Synchronization Configuration Options

4.2.4 AP Configuration

The management interface of APC must be configured for the connection between APC and W-EP AP.

4.2.4.1 Configuring MAC address

Configuration using CLI

To configure AP information, execute the command as follows:

1) Go to configure \rightarrow AP configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# ap [ap profile name]
WEC8500/configure/ap ap_1#
```

If there exists the same AP when entering [ap profile name], you are guided to the mode where operator can configure the AP. If there is no same AP, the new AP information is created.

- 2) Register the MAC address of the AP.
 - profile mac [MAC_ADDRESS]
- 3) To check the information of a configured AP, use the 'show ap summary config' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Access Points>** menu in the sub-menus.

- 1) Click the **<Add>** button.
- 2) Set AP PROFILE NAME and MAC ADDRESS and click the **<Apply>** button.

Figure 76. Adding Access Points

4.2.4.2 Configuring AP Profile

Configuration using CLI

To configure an AP profile configuration, execute the command as follows:

1) Go to configure \rightarrow AP configuration \rightarrow AP profile mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# ap ap_1
WEC8500/configure/ap ap_1# profile
WEC8500/configure/ap ap_1/profile#
```

- 2) Configure the profile of an AP using the below command.
 - name [STRING]: Configures the name of an AP. If it is not entered, the 'AP_' + 'MAC address' is used as a name.

E.g. MAC address: f4:d9:fb:24:cb:a0

AP name: AP_f4d9fb24cba0

- ap-mode [generalAp/rootAp/repeaterAp/snifferAp]: Configures the AP operation mode.
- ap-stats-history-enable: Configures whether to enable the AP statistics history.
- client-ip [IP_ADDRESS]: Configures the client IP address, if the AP operation mode is set to Sniffer AP.
- console-enable: This configures whether to allow console access to the AP.
- discovery [ap-followed/apc-referal/multicast/broadcast/DHCP]: Configures the discovery type of an AP to find APC.
 - ap-followed: Finds the APC using the discovery type and discovery list configured in an AP.
 - apc-referal: Uses the APC list information configured in an APC as the discovery list
 - DHCP: Uses the APC list information that is received through DHCP option 138
 (IPv4) or option 52 (IPv6) as the discovery list.
 - auto: Discovery type is automatically changed by the AP for automatic connection to the APC.
- discovery-interval [INTERVAL]: Configures the time waiting for a CAPWAP discovery response message (unit: seconds)
- dtls-policy: Configures the DTLS Policy of an AP.
- echo-interval [INTERVAL]: Configures the time when an AP transmits an echo request to the joined APC (Unit: seconds)
- echo-retransmit-interval [INTERVAL]: Waiting time to retransmit an echo request
 message if there is no reply. The APC configures the echo timeout as much as two
 times of echo-interval. If the APC cannot receive an echo message from an AP until
 two times of echo-interval is elapsed, the APC assumes that the AP is down (Unit:
 seconds)

- edge-ap: Configures whether to enable the Edge AP function.
- edge-ap-opmode: Smart Handover is enabled as operation mode of the edge AP.
 In RSSI mode, handover is determined by looking up the RSSI value. In Force mode, handover is performed by force.
- edge-ap-threshold: Configures a threshold value for performing smart handover at the edge AP (range: -60 to -100 dBm, default: -80 dBm).
- edge-ap-window: Configures a window value for performing smart handover at the edge AP (range: 200-1000 ms, default: 200 ms).
- fragment-size [SIZE]: Configures a fragment size based on MTU to prevent the fragmentation of a CAPWAP packet that is transmitted by an AP to the APC.
- ip-mode [dhcp/static/ap]: Configures the IP address of an AP to DHCP, Static or AP Followed.
 - dhcp: Configures the AP IP operation type to DHCP
 - static: Configures the AP IP operation type to static
 - ap: Operates with an IP configured in an AP
- led-config: Configures LED on/off setting of the AP.
 - on: Sets LED of the AP on.
 - off: Sets LED of the AP off.
 - off-time: Sets LED of the AP off only for specific hours.
- local-bridging: Configures WLAN-VLAN Mapping of the Local Switching WLAN, ACL, and Pre-Authentication ACL of Captive Portal for each remote AP.
 - vlan-id: Configures a VLAN ID to allocate to the Local Switching WLAN.
 - acl-name: Configures an ACL name to allocate to the Local Switching WLAN for packet allowance/blocking.
 - pre-auth-name: Configures a Pre-Authentication ACL name for Captive Portal operation of the Local Switching WLAN.
- location [STRING]: Configures the information of location where an AP is installed.
- mac [MAC_ADDRESS]: Configures the MAC address of an AP
- max-echo-retransmit [COUNT]: Configures the maximum number of retransmission times of an echo request message.
- max-retransmit [COUNT]: Configures the maximum number of retransmission times of a CAPWAP control message.
- name [STRING]: Configures an AP name.
- native-vlanId [VLAN_ID]: Configures the native VLAN in an AP.
- primary-apc [APC_AME]: Configures the name of a primary APC.
- secondary-apc [APC_AME]: Configures the name of a secondary APC.
- tertiary-apc [APC_AME]: Configures the name of a tertiary APC. The WEC8050 model does not support the tertiary-apc function.
- repeater-whitelist [MAC ADDRESS]: Adds the Repeater AP Whitelist.
- report-interval [INTERVAL]: Configures the time interval for an AP to transmit the description error to the APC (Unit: seconds)
- retransmit-interval [INTERVAL]: Configures the waiting time until the AP retransmits a CAPWAP control message when there is no reply from the APC (unit: seconds)

- ssh-enable: Configures whether to enable the SSH server of an AP.
- static-ip [IP_ADDRESS] [NETMASK] [GATEWAY]: Configures the static IP address of an AP.
- statistics-timer [TIMER]: Configures the time interval of transmitting the statistics information provided by CAPWAP (unit: seconds)
- telnet-enable: Configures whether to enable the telnet server of an AP.
- time-config: Configure the timezone per AP.
- vlan-support: Configures whether to enable the native VLAN of an AP.
- poe-type: Set the POE Type of the AP. You can set 802.3at, 802.3af, and auto.
- uplink-bandwidth: Set the allowed value for AP uplink bandwidth. Possible to set between 1 and 1024 Mbps and if it is set to 0, the uplink bandwidth is not restricted.
- temperature-alarm-on-level: If the temperature of the AP exceeds the Temperature-Alarm-On-Level, the temperature alarm occurs. The default is 98 and possible to set between 50 and 130.
- temperature-alarm-off-level: If the temperature of the AP is less than the Temperature-Alarm-Off-Level, the temperature alarm is cleared. The default is 98 and possible to set between 50 and 130.
- temperature-alarm-control-type: If the temperature alarm occurs, set whether the radio of the AP is set to be off or on. link-aggregation: In case of an AP model for 802.11ac, provide two uplink Ethernet ports. Possible to set link aggregation for two Ethernet ports. If the link aggregation is activated, Both (Destination + Source), Destination, and Source modes are configurable.

OVERWRITE-UPLINK- BANDWIDTH	If the overwrite-uplink-bandwidth is activated, the uplink bandwidth information set in the AP group is applied to all APs in the group.
UPLINK-BANDWIDTH	Set the allowed value for AP uplink bandwidth. Possible to set between 1 and 1024 Mbps and if it is set to 0, the uplink bandwidth is not restricted.
OVERWRITE-TEMPERATURE- ALARM	If the overwrite-temperature-alarm is activated, the temperature alarm information set in the AP group is applied to all APs in the group.
TEMPERATURE-ALARM-ON- LEVEL	If the temperature of the AP exceeds the Temperature-Alarm-On-Level, the temperature alarm occurs. The default is 98 and possible to set between 50 and 130.
TEMPERATURE-ALARM-OFF- LEVEL	If the temperature of the AP is less than the Temperature- Alarm-Off-Level, the temperature alarm is cleared. The default is 90 and possible to set between 50 and 130.
TEMPERATURE-ALARM- CONTROL-TYPE	If the temperature alarm occurs, set whether the radio of the AP is set to be off or on.
OVERWRITE-LINK- AGGREGATION	If the overwrite-link-aggregation is activated, the link aggregation information set in the AP group is applied to all APs in the group.
LINK-AGGREGATION	In case of an AP model for 802.11ac, provide two uplink

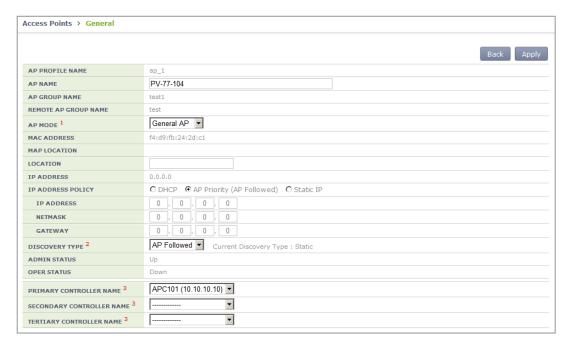
Ethernet ports. Possible to set link aggregation for two
Ethernet ports. If link aggregation is activated, possible to set
the following mode:
- Both (Destination + Source)
- Destination
- Source

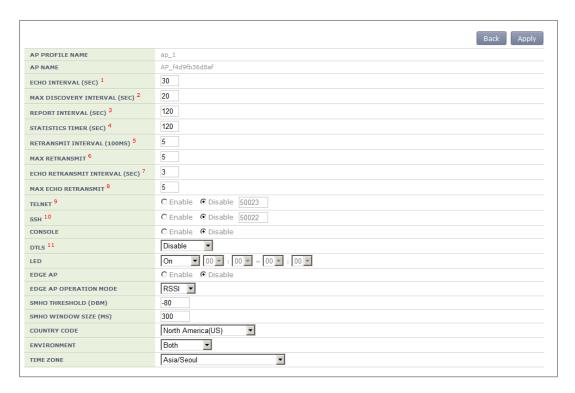
3) To check the information of a configured AP profile, use the 'show ap detail [AP NAME]' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Access Points>** \rightarrow **AP selection** \rightarrow **<General>** menu in the sub-menus.

The setting options in the General tab are as follows. Click the **<Apply>** button to apply the settings.




Figure 77. AP Profile Setting (1)

- AP NAME: AP name
- AP GROUP NAME: Indicates name of the AP GROUP to which the AP belongs.
- REMOTE AP GROUP NAME: Indicates name of the REMOTE AP GROUP to which the AP belongs.
- AP MODE: AP operational mode (General AP/Root AP/Repeater AP/Sniffer AP)
- MAC ADDRESS: Cannot be changed to the MAC address of an AP.

- MAP LOCATION
- LOCATION: Information of location where an AP is installed
- IP ADDRESS: IP address of AP
- IP ADDRESS POLICY: IP address mode
- DISCOVERY TYPE: AP discovery type
- ADMIN STATUS: AP administrative status
- OPER STATUS: Current AP operational status
 PRIMARY CONTROLLER NAME, SECONDARY CONTROLLER NAME,
 TERTIARY CONTROLLER NAME: Redundancy mode
 For WEC8050, the TERTIARY CONTROLLER NAME is not supported.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Access Points>** \rightarrow **AP** \rightarrow **<Advanced>** menu in the sub-menus.

The setting options in the Advance tab are as follows. Fill in each item and click the **<Apply>** button to apply the settings.

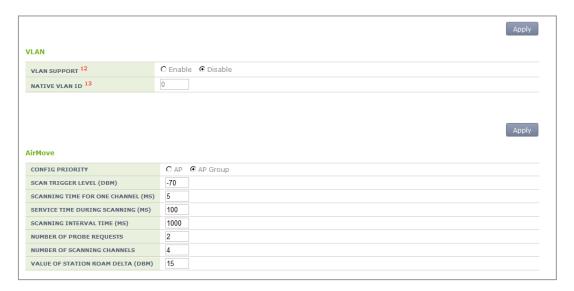


Figure 78. AP Profile Setting (2)

4.2.4.3 AP Mode Configuration

Configuration using CLI

To configure AP mode, execute the command as follows.

1) Go to configure \rightarrow AP configuration \rightarrow AP profile mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# ap ap_1
WEC8500/configure/ap ap_1# profile
WEC8500/configure/ap ap_1/profile#
```

- 2) Configure the AP mode.
 - ap-mode [MODE]

Parameter	Description
MODE	AP operation mode (generalAp/rootAp/repeaterAp/snifferAp) - generalAp: Typical operation mode. Default value rootAp: AP mode where a repeater AP can be connected repeasterAp: AP mode that is connected to a wireless area and the APC through the root AP snifferAp: AP mode where the packets operating in a wireless environment can be captured.
	- relayAp: An AP mode which connects a root AP and a repeater AP wirelessly

 To check the information of a configured AP, use the 'show ap detail [AP_NAME]' command.

In the menu bar of <WEC Main window>, select <Configuration> and then select the <Access Points $> \rightarrow$ AP selection $\rightarrow <$ General> menu in the sub-menus.

After selecting the AP MODE NAME item, click the **<Apply>** button to apply the configuration.

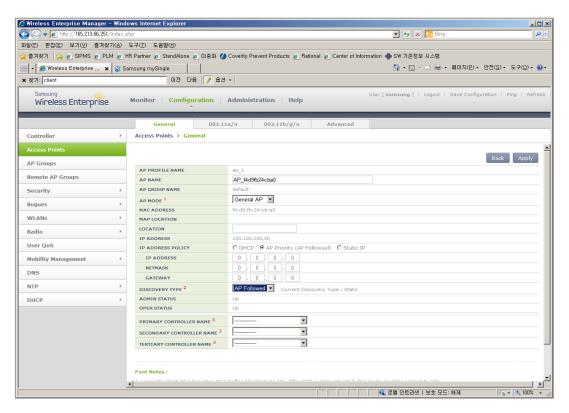


Figure 79. AP mode configuration

4.2.4.4 AP CLI Access Account

The APC operator can add or remove account information relating to the AP CLI. When the APC is first installed, a default account is provided (id: root, password: samsung).

Up to three AP CLI accounts can be added, and at least one account must be configured.

Therefore, if there is only one remaining account, it cannot be deleted.

(* While each account may be in any of the three available levels (Administrator/Operator/Monitor), there are currently no functional differences for the APs.)

Configuration using CLI

Execute the following commands to configure the AP access account.

1) Go to configure \rightarrow APC mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# apc
WEC8500/configure/apc #
```

- 2) Add an AP CLI account.
 - ap-account [ID] [PASSWORD] [LEVEL]

Parameter	Description	
ID	This is the ID of the AP CLI account.	
	Only an alphanumeric value of up to eight characters can be entered.	
Password	This is the password of the AP CLI account.	
	Only an alphanumeric value of up to eight characters can be entered.	
Level	This is the level of the AP CLI account.	
	Available values are administrator/operator/monitor.	

- 3) An account can be deleted by entering the 'no' parameter as shown below.
 - no ap-account [ID]
- 4) Use the 'show apc ap-account' command to retrieve the AP configuration information.

In the menu bar of <WEC Main Window>, select <Configuration>, and then select <Local Management Users $> \rightarrow$ AP in the submenu.

Click the 'Add' or 'Delete' button to add or delete the AP CLI account.

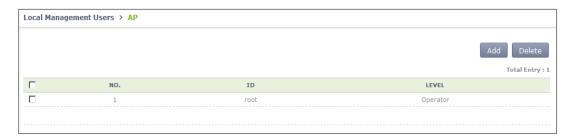


Figure 80. AP CLI Account Add/Remove Window

4.2.4.5 AP SNMP Agent Configuration

The APC operator can configure SNMP Agent settings for all APs.

Configuration using CLI

Execute the following commands to configure the SNMP Agent settings of the AP.

1) Go to configure \rightarrow snmp \rightarrow ap mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# snmp
WEC8500/configure/snmp# ap
WEC8500/configure/snmp/ap#
```

2) Configure the snap agent information of the AP.

Enable/disable SNMP of the AP.

• enable or no enable

Configure the SNMP port number of the AP.

• Port [PORT NUMBER]

Configure the Read Only Community Name of the AP.

• ro-community [COMMUNITY NAME]

Configure the Write Only Community Name of the AP.

• rw-community [COMMUNITY NAME]

Configure the user information of the AP.

• Use r[USER NAME] [AUTHENTICATION TYPE] [AUTHENTICATION KEY] [PRIVATE PROTOCOL] [PRIVATE KEY]

Parameter	Description
PORT NUMBER	This is the SNMP port number.
COMMUNITY NAME	This is the SNMP Read Only or Write Only Community name.
USER NAME	This is the SNMP user name.
AUTHENTICATION TYPE	This is the SNMP authentication type. Either of the following two can be selected: - MD5 - SHA
AUTHENTICATION KEY	A number in the range of 8 to 20 can be entered.
PRIVATE PROTOCOL	Either of the following two can be selected: - DES - AES

Parameter	Description
PRIVATE KEY	A number in the range of 8 to 20 can be entered.

3) Use the 'show snmp ap' command to retrieve the agent information configured for the AP.

Configuration using Web UI

In the menu bar of **<WEC Main Window>**, select **<Administration>**, select **<AP>** in the submenu, and then select **<v1/v2c Community>** or **<v3 User>** to configure the SNMP agent information.

Figure 81. AP SNMP v1/v2c Community Configuration Window

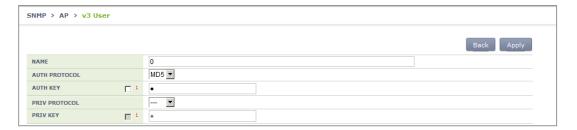


Figure 82. AP v3 User Configuration Window

4.2.5 Information Management

The APC manages the history statistics information, real-time interface statistics information, and tech support information of the AP.

AP History Statistics

The AP transmits the interface (WAN and WLAN) and CPU load/memory usage statistics information collected for 5 min. to the APC. The APC forwards the information to the WEM via FTP. If the APC does not interoperate with the WEM, the APC stores the information for 3 days.

AP real-time statistics

If the APC requests the interface information to an AP, the AP transmits the interface information (WAN and WLAN) to the APC at every 5 second and the APC stores the information in its internal DB. An operator can retrieve the information by using CLI or WEC.

AP Tech Support

If there occurs a problem with a specific AP, an operator can download the Tech Support information from the AP. Execute the following command to use the function.

The Tech Support from an AP includes the following information.

- System log message file
- System crash information file
- System report files (status/configuration information)
- Core file used to check application malfunctioning

4.2.5.1 History Statistics Information

To check the history statistics information relay status of an AP, use the 'show ap stats-history' command.

4.2.5.2 Real-time Interface Statistics Information

Configuration using CLI

1) Go to configure \rightarrow AP configuration.

```
WEC8500# configure terminal
WEC8500/configure# ap ap_1
WEC8500/configure/ap ap_1#
```

2) Configure to make real-time interface statistics information updated periodically.

```
WEC8500/configure/ap ap_1# get-if-stats
```

3) To check the interface statistics information of an AP, use the 'show ap if-stats [AP_NAME]' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Monitor>** and then select the **<Statistics>** \rightarrow **<AP Ports>** menu in the sub-menus.

As shown below, you can retrieve the real-time interface statistics of the AP.

Select an item in the list, and then you can check detail information.

Figure 83. AP Ports window

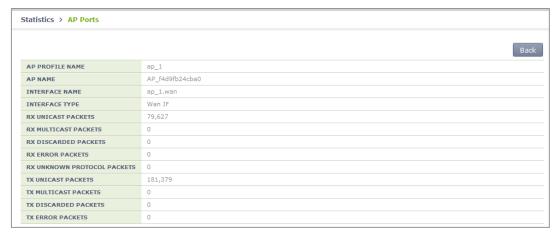


Figure 84. AP Ports detail information window

4.2.5.3 Tech Support Information

Execute the below command to download the Tech Support information from an AP.

Configuration using CLI

1) Go to configure \rightarrow AP configuration \rightarrow tech-support of CLI.

```
WEC8500# configure terminal
WEC8500/configure# ap [ap profile name]
WEC8500/configure/ap ap_1# tech-support
WEC8500/configure/ap ap_1/tech-support#
```

2) Request the coredump file of the AP.

```
WEC8500/configure/ap ap_1/tech-support# get-coredump (system / radio-coredump)
```

3) Request the crashfile of the AP.

```
WEC8500/configure/ap ap_1/tech-support# get-crash-file (system /
radio-coredump)
```

4) Request the log file of the AP.

```
WEC8500/configure/ap ap_1/tech-support# get-log-file
```

5) Use 'show ap tech-support' command to check the Tech Support file information of APs. Operator can use FTP or sFTP to download Tech Support files.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Administrator>** and then select the **<Tech Support>** → **<AP Crash>** menu in the sub-menus.

By clicking the profile name of an AP, operator can download the Tech Support file.

Figure 85. AP Tech Support Information Receiving Window

4.2.6 Outdoor AP Configuration

The APC system provides outdoor AP connection diagnostic functions for outdoor APs. The AP connection diagnostics function checks ping status of outdoor APs and displays the results on the operator's monitor.

Procedure of using the outdoor AP connection diagnostics function is as follows:

- 1) The operator creates/deletes outdoor APWEC using CLI.
- 2) The APC system periodically pings the outdoor AP to check the network connection of the AP and stores the results.
- 3) The operator uses the WEC, WEM or CLI to determine network connection status of the outdoor AP.

Concerning outdoor AP count:

- 1) Outdoor APs are not included in the AP count of the APC license.
- 2) Outdoor APs are not included in the ordinary AP count.
- 3) The maximum up-ported outdoor AP count is 300 for the WEC8500 model and 75 for the WEC8050 model.
- 4) The APC system can retrieve the total/up/down outdoor AP count using the WEC or CLI.

4.2.6.1 Outdoor AP Addition/Removal

The APC system allows creation/deletion of outdoor AP information using the WEC or CLI.

Configuration using CLI

1) Go to configure mode of CLI.

```
WEC8500# configure terminal WEC8500/configure#
```

- 2) Create or delete an AP. Use the 'no' parameter in front of the command to delete an outdoor AP.
 - outdoor-ap [PROFILE_NAME] [MAC_ADDRESS] [IP_ADDRESS]
 - no outdoor-ap [PROFILE_NAME]
- 3) Create or delete an outdoor AP. Use the 'no' parameter in front of the command to delete an outdoor AP.
- 4) Use the 'show ap summary' command to check the outdoor AP information.

In the menu bar of **<WEC Main Window>**, select **<Configuration>** and then select the **<Access Points>** menu in the sub-menus. To create an outdoor AP, click **<Add>**, select **<3rd Party Outdoor AP>**, enter AP PROFILE NAME, MAC ADDRESS, and IP ADDRESS, and then select **<Apply>**.

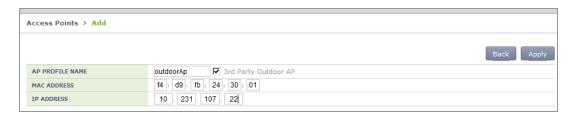


Figure 86. Outdoor AP Create Window

4.2.7 AP Package Upgrade

Configuration using CLI (Upgrade Function)

To manage the AP upgrade function, execute the command as follows:

1) Go to configure \rightarrow AP configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# ap ap_1
```

2) Request the image file of an AP to upgrade.

```
WEC8500/configure/ap ap_1# upgrade-request weafama_1.2.4.R.bin

WARNING: AP will be upgrade.

Are you sure you want to continue? (y/n) : y

WEC8500/configure/ap ap_1#
```

3) To check the upgrade file information of the requested AP, use the following command.

Configuration using CLI (Upgrade environment)

To configure AP upgrade related environment, the following command is provided. First of all, go to the configure \rightarrow AP-all \rightarrow upgrade mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# ap-all
WEC8500/configure/ap-all# upgrade
WEC8500/configure/ap-all/upgrade#
```

[select-package]

This command configures a package to use during AP upgrade.

• select-package [UPGRADE_TYPE] [FILE_NAME]

Parameter	Description
UPGRADE_TYPE	Configures upgrade type (default/quick-upgrade/predownload) - default: AP image that is referred to during provision upgrade quick-upgrade: AP image that is referred to for entire AP upgrade upon an operator's request predownload: AP image that is referred to download AP image to AP during entire AP upgrade.
FILE_NAME	Image file name that will be used for AP upgrade

[target]

During entire upgrade, you can select whether to maintain individual configured AP version of an AP or perform upgrade.

• Target [AP UPGRADE TARGET]

Parameter	Description
UPGRADE TARGET	Upgrade target (all/ keeping-individual) - all: Perform upgrade for all the APs. (default) - keeping-individual: While maintaining individually configured ap version, perform upgrade for the rest APs.

[transfer-protocol]

This command selects a transmission protocol that is used to transmit the package file of an AP from the WEC8500 to the AP.

• Transfer-protocol [AP TRANSFER MODE]

Parameter	Description
TRANSFER_MODE	File transmission protocol (ftp/sftp) - ftp: ftp is used for file transmission.
	- sftp: sftp is used for file transmission.

[max-download]

This command configures the maximum number of simultaneous downloads when transmitting the package file of an AP from the APC to the AP.

• Max-download [COUNT]

Parameter	Description
COUNT	Maximum number of simultaneous downloads of AP image file (range: 1-50, default: 10)

[max-retry]

This command configures maximum number of re-attempts when AP upgrade is failed.

• Max-retry [COUNT]

Parameter	Description
COUNT	Maximum number of AP upgrade re-attempts
	(range: 1-10, default: 3)

[start]

This command provides the entire AP upgrade function.

start [UPGRADE_TYPE]

Parameter	Description
UPGRADE_TYPE	Configures upgrade type (quick-upgrade/predownload) - quick-upgrade: Perform entire ap upgrade upon an operator's request predownload: Download ap image to ap first during entire ap upgrade.

If you perform package upgrade after configuring AP upgrade type to predownload, restart all the APs in the following methods.

```
WEC8500# configure terminal
WEC8500/configure# ap-all
WEC8500/configure/ap-all# reboot upgrade
```

[stop]

This command provides the function of stopping the image upgrade of all the APs.

stop

[show ap upgrade]

To check the upgrade information of an AP, use the following command.

• show ap upgrade summary

In the menu bar of <WEC Main window>, select <Administrator> and then select <Package Upgrade $> \rightarrow <$ AP> menu in the sub menu.

You can perform AP upgrade in the AP Upgrade tab and configure upgrade related environment in the Advanced tab.

[AP Upgrade tab]

AP Upgrade tab upgrades all the APs or a specific AP.

Figure 87. AP upgrade

The procedure of entire AP upgrade is as follows:

- 1) In the AP Upgrade window, click the **<Global>** button.
- 2) The **<Global>** area is displayed on the window. After configuring each item, click the **<Apply>** button.

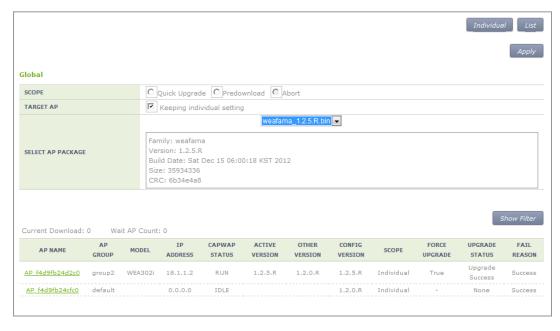


Figure 88. AP upgrade-global

- SCOPE: Selects upgrade method. To make the AP working as the package immediately after upgrade, select Quick Upgrade. To download the package to the AP, select the Predownload menu.
- TARGE AP: Select an AP target to upgrade. If you select <Keeping individual setting>, an AP that is configured as individual is excluded from upgrade.
- SELECT AP PACKAGE: Selects an AP package to upgrade.
- 3) If the SCOPE setup is Predownload upgrade, you must restart the AP once download is completed. After selecting the <**Administration>** → <**Reboot>** → <**AP>** menu, select Reboot All with Upgrade to restart the AP.

To upgrade a specific AP, follow the below procedure.

- 1) In the AP Upgrade window, click the **<Individual>** button.
- 2) The individual area is displayed on the window. After configuring each item, click the **Apply>** button.

Figure 89. AP upgrade-individual

- SCOPE: Selects upgrade method. The **<to individual>** upgrades the selected AP to a specific package and the **<to global>** makes a select AP working as global.
- FORCE UPGRADE: Enable or disable
- SELECT AP PACKAGE: Selects an AP package to upgrade...

[Advanced tab]

Configures AP upgrade related environment settings.

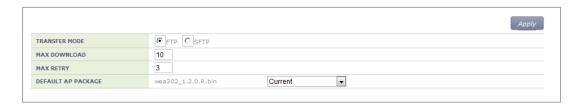


Figure 90. AP upgrade-advanced

- TRANSFER MODE: Selects a protocol that transmits an AP package.
- MAX DOWNLOAD: Configures maximum number of sessions that can be downloaded simultaneously.
- MAX RETRY: Configures maximum number of re-attempts when AP upgrade is failed.
- DEFAULT AP PACKAGE: Select an AP package that will be used for automatic upgrade during AP joint.

4.2.8 Remote AP Package Upgrade

APs in a remote group can be upgraded by downloading an AP package from a specific AP. This is useful for efficient management of APC-AP bandwidth.

A master AP can be selected for each AP package model. After downloading an AP package from the APC, the master AP allows the AP package to be downloaded to other APs in the remote group.

The operator can manage AP upgrade of the APs in the remote group by checking the AP package download status in the remote group and performing reboot and upgrade.

4.2.8.1 Activating Upgrade

The operator can enable/disable the AP upgrade in the remote group.

When the AP upgrade is enabled, version priority in AP upgrade status changes to Remote.

Configuration using CLI

Example:

```
WEC8500# configure terminal
WEC8500/configure# ap-group rUpgrade
WEC8500/configure/ap-group rUpgrade# remote
WEC8500/configure/ap-group rUpgrade/remote# upgrade
WEC8500/configure/ap-group rUpgrade/remote/upgrade# enable
WEC8500/configure/ap-group rUpgrade/remote/upgrade# no enable
```

CLI for checking configuration:

```
WEC8500 # show remote-ap-group upgrade config rUpgrade
Group Name
                    : rUpgrade
Enable
                     : Enable
Type
                    : Default
                            : FTP
Mode
                 : package/ap
Path
PortNum
                    : 21
MAXretries
                    : 3
ForceOption : Disable
weafama
                    : (APID:0, IP:0.0.0.0)
                     : ()
weafamb
                     : (APID:0, IP:0.0.0.0)
                       ()
WEC8500# show remote-ap-group upgrade list rUpgrade
  /* (RC/FR/RC) : RetryCount/FailReason/RebootCause
AP_ID Model Version(config/current) Status(RC/FR/RC)
                                                       MasterAp
  1 WEA303i Remote/1.7.0.U2 None ( 0/ 0/128)
2 WEA312i Remote/1.7.0.U2 None ( 0/ 0/128)
3 WEA303i Remote/1.7.0.U1 None ( 0/ 0/128)
   3 WEA303i
                Remote/1.7.0.U1
                                       None( 0/ 0/128)
```

Configuration using Web UI

Administration > Package Upgrade > Remote AP Group

Example:

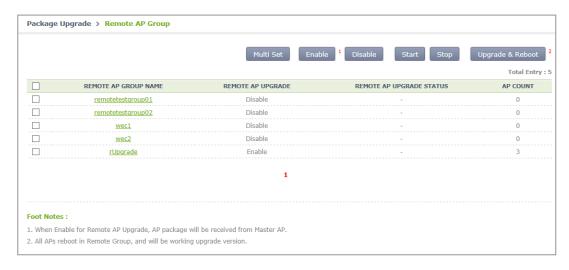


Figure 91. Remote AP Group Upgrade Activation_1

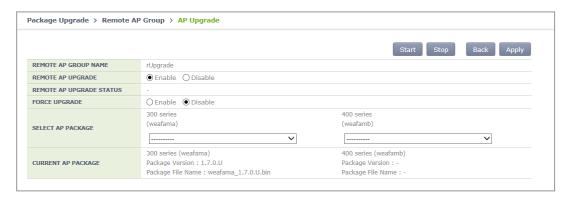


Figure 92. Remote AP Group Upgrade Activation_2

4.2.8.2 Master AP Configuration (Optional)

The operator can configure the master AP for AP upgrade in the remote group. If none is configured, a master AP is automatically selected.

Configuration using CLI

Example:

```
WEC8500# configure terminal
WEC8500/configure# ap-group rUpgrade
WEC8500/configure/ap-group rUpgrade# remote
WEC8500/configure/ap-group rUpgrade/remote# upgrade
WEC8500/configure/ap-group rUpgrade/remote/upgrade# select-masterAP
ap_1
WEC8500/configure/ap-group rUpgrade/remote/upgrade# delete-masterAP
[weafama/weafamb]
```

CLI for checking configuration:

```
WEC8500# show remote-ap-group upgrade config rUpgrade
======= Remote Ap Group Upgrade Config ===========
Group Name
                   : rUpgrade
Enable
                   : Enable
Type
                   Default
Mode
                   : FTP
Path
                   : package/ap
PortNum
                   : 21
MAXretries
                   : 3
ForceOption
                   : Disable
weafama
                   : ap_1 (APID:1, IP:10.10.10.160)
                   : ()
weafamb
                   : (APID:0, IP:0.0.0.0)
```

Administration > Package Upgrade > Remote AP Group

Example:

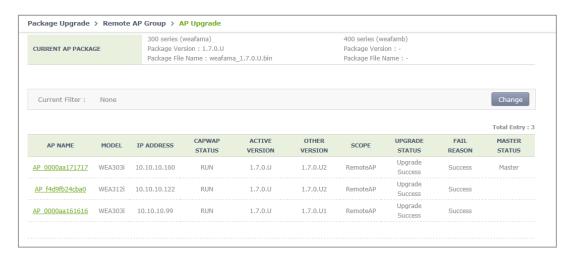


Figure 93. Checking Master AP Configuration

Figure 94. Checking Master AP Configuration

4.2.8.3 AP Package Configuration

The operator can configure an AP package to upgrade in the remote group.

Configuration using CLI

Example:

```
WEC8500# configure terminal
WEC8500/configure# ap-group rUpgrade
WEC8500/configure/ap-group rUpgrade# remote
WEC8500/configure/ap-group rUpgrade/remote# upgrade
WEC8500/configure/ap-group rUpgrade/remote/upgrade# select-package
weafama weafama_1.7.0.U.bin

WEC8500/configure/ap-group rUpgrade/remote/upgrade#delete-package
[weafama/weafamb]
```

CLI for checking configuration:

```
WEC8500# show remote-ap-group upgrade config rUpgrade
======= Remote Ap Group Upgrade Config =========
Group Name : rUpgrade Enable : Enable
                   : Default
Type
                    : FTP
Mode
Path
                   : package/ap
PortNum
                   : 21
MAXretries
ForceOption
                   : 3
                   : Disable
                    : ap_1 (APID:1, IP:10.10.10.160)
weafama
                    : weafama_1.7.0.U.bin (1.7.0.U)
                    : (APID:0, IP:0.0.0.0)
weafamb
                    : ()
```

Administration > Package Upgrade > Remote AP Group

Example:

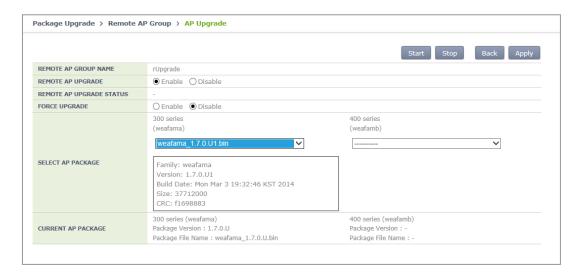


Figure 95. AP Package Configuration

4.2.8.4 Starting AP Upgrade

The operator can start or stop AP upgrade in the remote group.

Configuration using CLI

Example:

```
WEC8500# configure terminal
WEC8500/configure# ap-group rUpgrade
WEC8500/configure/ap-group rUpgrade# remote
WEC8500/configure/ap-group rUpgrade/remote# upgrade
WEC8500/configure/ap-group rUpgrade/remote/upgrade# start
WEC8500/configure/ap-group rUpgrade/remote/upgrade# stop
```

CLI for checking configuration:

```
Path
                     : package/ap
PortNum
                     : 21
                     : 3
MAXretries
ForceOption
                     : Disable
weafama
                     : ap_1 (APID:1, IP:10.10.10.160)
                     : weafama 1.7.0.U.bin (1.7.0.U)
weafamb
                      : (APID:0, IP:0.0.0.0)
WEC8500\# show remote-ap-group upgrade list rUpgrade
  /* (RC/FR/RC) : RetryCount/FailReason/RebootCause
AP ID Model
             Version(config/current) Status(RC/FR/RC) MasterAp
   1 WEA303i Remote/1.7.0.U2 DownloadSuccess( 0/ 0/128) MasterApCfg
   2 WEA312i Remote/1.7.0.U2 DownloadSuccess ( 0/ 0/146) -
   3 WEA303i Remote/1.7.0.U2 DownloadSuccess( 0/ 0/146) -
```

Administration > Package Upgrade > Remote AP Group

Example:

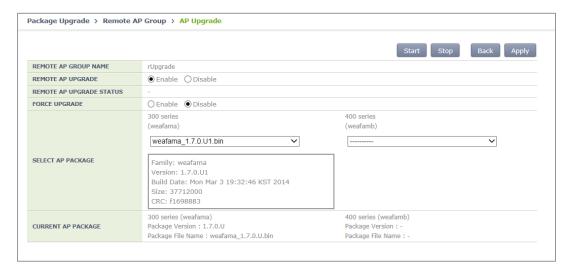


Figure 96. Starting AP Upgrade

4.2.8.5 Restarting and Upgrading AP

After downloading the AP package, APs in the remote group are restarted so that they can run on the upgraded version.

Configuration using CLI

Example:

```
WEC8500# configure terminal
WEC8500/configure# ap-group rUpgrade
WEC8500/configure/ap-group rUpgrade# remote
WEC8500/configure/ap-group rUpgrade/remote# reboot upgrade
```

CLI for checking configuration:

```
WEC8500# show remote-ap-group upgrade config rUpgrade
======== Remote Ap Group Upgrade Config ============
Group Name : rUpgrade Enable : Enable
Type
                     : Default
                     : FTP
Mode
                   : package/ap
Path
PortNum
                     : 21
PortNum
MAXretries
ForceOption
                    : 3
                 : Disable
weafama
                     : ap 1 (APID:1, IP:10.10.10.160)
                     : weafama 1.7.0.U.bin (1.7.0.U)
                      : (APID:0, IP:0.0.0.0)
weafamb
WEC8500# show remote-ap-group upgrade list rUpgrade
  /* (RC/FR/RC) : RetryCount/FailReason/RebootCause
AP ID Model Version(config/current) Status(RC/FR/RC) MasterAp
   1 WEA303i Remote/1.7.0.U Success( 0/ 0/128) MasterApCfg
2 WEA312i Remote/1.7.0.U Success( 0/ 0/146) -
   3 WEA303i Remote/1.7.0.U Success( 0/ 0/146)
```

Administration > Package Upgrade > Remote AP Group

Example:

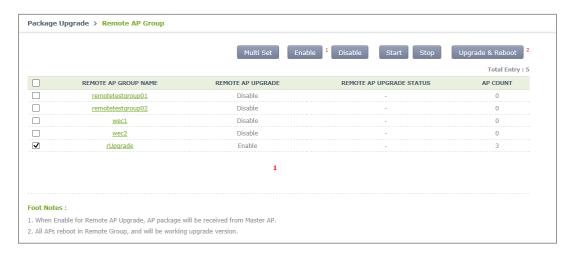


Figure 97. Restarting and Upgrading AP

CHAPTER 5. WLAN Management

This chapter describes how to create and configure WLAN that is the most fundamental basis for W-EP wireless LAN service.

5.1 WLAN Configuration

5.1.1 Basic WLAN Configuration

The WLAN profile helps configure and manage the WLAN connection service of an AP in the APC. To use WLAN service, it is necessary to basically configure AP group and interface group and specify Service Set Identifier (SSID).

Configuration using CLI

Go to the wlan configuration mode from the configure mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# wlan [WLAN ID]
```

Parameter	Description
WLAN_ID	WLAN ID (range: 1-255)

The WLAN configuration procedures are as follows:

1) Go to configure \rightarrow wlan configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# wlan 1
WEC8500/configure/wlan 1#
```

2) Add WLAN to an AP group.

Configure an AP group to which WLAN service will be provided. The AP group configuration is only possible in the AP group configuration mode instead of the wlan configuration mode. The below configuration allocates wlan 1 to the app 01 AP group.

A newly created WLAN is added to the 'default' AP group if the WLAN ID is in the range of 1-16. If its WLAN ID is 17 or above, the WLAN is not included in the AP group.

Maximum 16 WLANs can be allocated to each AP group.

```
WEC8500# configure terminal
WEC8500/configure# ap-group apg_01
WEC8500/configure/ap-group apg_01# add-wlan 1
```

- 3) Configure an interface group to which the WLAN service will be provided. Several VLAN interfaces can be added to an interface group, and the WLAN service is available only through the interface.
 - if-group [INTERFACE_GROUP_NAME]
- 4) Configure a SSID. The SSID is an ID used to connect to each wireless terminal to provide the WLAN service.

Make sure to configure a SSID to use the WLAN service.

- ssid [SSID_NAME]
- 5) Configure radio by selecting 2.4G, 5G or All (2.4G/5G).
 - radio [Radio ID: 1: 5 GHz, 2: 2.4 GHz, 3: ALL]
- 6) Configure whether to apply the WLAN service.

WEC8500/configure/wlan 1#enable

To apply the various WLAN services to multiple wireless terminals, create the WLAN service in a profile format. Once the WLAN service is started, make each AP use the WLAN service by downloading the profile.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<WLANs>** menu in the sub-menus. Select a WLAN ID to change in the WLANs screen and go to the **<General>** tab. In the screen, you can use various functions such as adding or deleting a WLAN.

Figure 98. WLAN basic configuration (1)

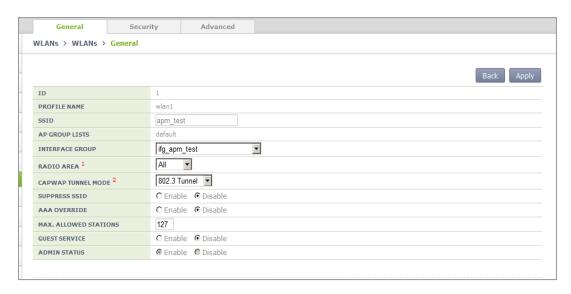


Figure 99. WLAN basic configuration (2)

You can configure various functions such as interface group and SSID, etc.

The configurations available in the General tab are as follows:

- INTERFACE GROUP: Configures an interface group.
- RADIO AREA: Configures a radio area.
- CAPWAP TUNNEL MODE/LOCAL VLAN: Configures the local switching function.
- SUPRESS SSID: Enables or disables the function.
- AAA OVERRIDE: If the WLAN is enabled with the device authentication function using a AAA server, the AAA-override function can be enabled so that the userspecific settings configured in the AAA server are applied with priority over the APC settings.
- MAXIMUM ALLOWED STATIONS: Limits the number of users per WLAN.
- GUEST SERVICE: Enables or disables the Guest service.
- ADMIN STATUS: Enables or disables the function.

5.1.2 WLAN Additional Configuration

Each wireless terminal can receive a differentiated service according to the WLAN configuration. The procedure of configuring the WLAN additional function is as follows.

Configuration using CLI

1) Go to configure \rightarrow wlan configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# wlan 1
WEC8500/configure/wlan 1
```

2) If the WLAN is enabled with the device authentication function using a AAA server, the AAA-override function can be enabled so that the user-specific settings configured in the AAA server are applied with priority over the APC settings.

```
WEC8500/configure/wlan 1# aaa-override
```

- 3) Determine whether to configure the Guest service.
 - guest-flag
- 4) Configure a VLAN ID to use locally.
 - local-vlan [VLAN_ID]

Parameter	Description
VLAN_ID	VLAN ID (range: 1-4094)

- 5) Specify the service MAC type.
 - mac-type [MAC_TYPE]

Parameter	Description	
MAC_TYPE	- localMac: An AP itself provides data service.	
	- splitMac: Provides data service through the APC.	

- 6) Select a radio bandwidth to provide the WLAN service.
 - radio [RADIO]

Parameter	Description
RADIO	- 1: 5 GHz
	- 2: 2.4 GHz
	- 3: Supports both 5/2.4 GHz

- 7) Select whether to provide the SSID as hidden. If it is set to 'hidden', the SSID is not found when other devices do searching.
 - suppress-ssid
- 8) Select the tunnel mode.
 - tunnel-mode [TUNNEL_MODE]

Parameter	Description
TUNNEL_MODE	- LocalBridging: Make all the user traffics are bridged at the AP.
	- 8023Tunnel: Make all the user traffics are transmitted in the 802.3 format
	(Not supported if the MAC type is split mac).

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<WLANs>** menu in the sub-menus. For more information about configuration, see '5.1 Basic WLAN Configuration'.

5.1.3 WLAN-based ACL Configuration

To configure ACL to apply to the WLAN service, define IP-based ACL first and then configure it to the WLAN.

Configuration using CLI

The procedures for configuration are as follows.

1) Before applying ACL, retrieve ACL that is configured as WLAN ACL.

```
WEC8500# show running-config network

fqm-mode
...
ip access-group wireless acl1
!
```

2) Go to configure \rightarrow wlan configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# wlan 1
WEC8500/configure/wlan 1
WEC8500# configure terminal
WEC8500/configure# wlan 1
WEC8500/configure/wlan 1
```

- 3) Among retrieved ACLs, enter an ACL name to apply to the WLAN with the 'acl' command.
 - acl [ACL-NAME]
- 4) To check the configured ACL, use the 'show wlan detail' command.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<WLANs>** menu in the sub-menus. Select a WLAN ID to change in the WLANs screen and go to the **<Advanced>** tab.

Figure 100. WLAN-based ACL configuration

- ACL RULE: Configures the WLAN-based ACL function.
- STATIC ADDRESS DISALLOWED
- DHCP OVERRIDE
- DHCP SERVER: Enter a DHCP server IP address.
- WMM: Configures the WiFi Multimedia (WMM) mode.
- DTIM: Enter a Delivery Traffic Indication Message (DTIM) value (1-255).
- STATION IDLE TIMEOUT: Enter a station idle timeout value. The value range is 30-3600 and it must be the multiple of 15.
- VOIP FAILURE DETECT: Configures call failure detection.

5.1.4 Managing Root Service

To provide a wireless LAN service where cable installation is difficult, a W-EP AP can be configured as a repeater mode to relay wireless LAN traffics. To configure this kind of network, the Repeater AP and Root AP are required. The Repeater AP is working as a wireless terminal and the Root AP connects a Repeater AP to a wireless terminal for connection to the APC.

The root AP must be enabled with the repeater service to allow repeater AP connections.

Configuration using CLI

1) Go to configure \rightarrow apc configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# apc
WEC8500/configure/apc#
```

- 2) Enable or disable the repeater service. The repeater service must be enabled for the repeater AP to connect to the root AP.
 - repeater-service: Enabled
 - no repeater-service: Disabled
- 3) Use the 'show wlan detail repeater' command to check the root WLAN settings.

```
WEC8500/configure/apc# show wlan detail repeater
```

[Changing to Root AP]

The procedure of changing a W-EP AP to a Root AP is as follows:

1) Go to configure mode of CLI.

```
WEC8500# configure terminal
```

2) Check the registered AP list.

```
WEC8500/configure# show ap summary
```

3) Go to AP configuration mode to change to a Root AP.

```
WEC8500/configure# ap ap_1
```

4) Configure it to a Root AP.

WEC8500/ configure/ap ap_1# profile ap-mode rootAp

5) Restart the configured AP.

[Changing to Repeater AP]

The procedure of changing a W-EP AP to a Repeater AP is as follows:

1) Go to configure mode of CLI.

WEC8500# configure terminal

2) Check the registered AP list.

WEC8500/configure# show ap summary

3) Go to AP configuration mode of an AP that will be changed to a Repeater AP.

WEC8500/configure# ap ap_2

4) Configure it to a Repeat AP.

WEC8500/configure/ap ap_2# profile ap-mode repeaterAp

5) Restart the configured AP.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** → **<General>** menu in the sub-menus. To enable repeater service, configure the INTERFACE GROUP in the Repeater Service of the window, select Enable in the SERVICE, and click the **<Apply>** button.

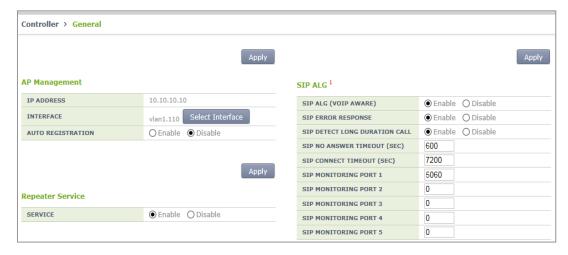


Figure 101. Root service management (1)

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Access Points>** \rightarrow **AP selection** \rightarrow **<General>** menu in the sub-menus. After selecting AP MODE item, click the **<Apply>** button and restart the AP.

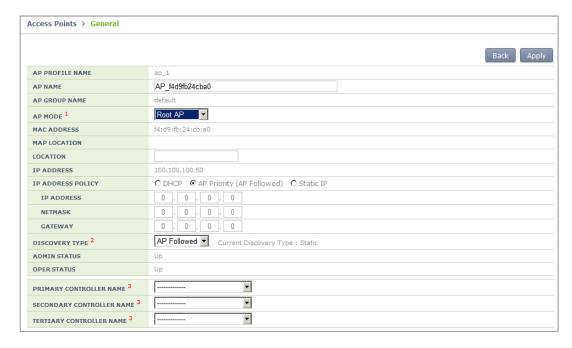


Figure 102. Root service management (2)

5.1.5 MCS Configuration Management by WLAN

This is a function of configuring data rate and MCS by WLAN. You can configure MCS, etc. by each WLAN differently because it is necessary to configure MCS, etc. differently depending on the types of services such as FMC.

Configuration using CLI

1) Go to configure → WLAN configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# wlan 1
WEC8500/configure/wlan 1
```

2) Go to 80211a or 80211b depending on the bandwidth to configure.

```
WEC8500/configure/wlan 1# 80211a
WEC8500/configure/wlan 1/80211a#
```

3) Configure the data rate. The settings described as shown below can be made only when the corresponding WLAN is set to be disabled.

```
WEC8500/configure/wlan 1/80211a# rate [MODE][RATE]
```

Parameter	Description
Mode	Mode (basic/supported) - Basic: Basic rate supported for a terminal to access to an AP Supported: A connected terminal that supports the supported rate can communicate with an AP at the supported rate.
RATE	Data rate - Range for 80211a: 6, 9, 12, 18, 24, 36, 48, or 54 Mbps - Range for 80211b: 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, or 54 Mbps

4) Configure the 802.11n Modulation and Coding Scheme (MCS) rate.

WEC8500/configure/wlan 1/80211a# mcs-11n [RATE]

Parameter	Description
RATE	MSC rate (Range: 0~23)

5) Configure the 802.11ac Modulation and Coding Scheme (MCS) rate. Only 5G bandwidth for 802.11ac MCS is configurable.

```
WEC8500/configure/wlan 1/80211a# mcs-11ac num-ss 2/3
enter the maximum MCS(7~9) for 1 spatial stream(s): 7
the maximum MCS: 7
enter the maximum MCS(7~9) for 2 spatial stream(s): 7
the maximum MCS: 7
enter the maximum MCS(7~9) for 3 spatial stream(s): 7
the maximum MCS: 7
[Wlan:1] Radio: 5GHz, number of SS: 3, max mcs: 7, 7, 7 Enable
```

6) You can check the configuration with the 'show wlan detail #' command.

```
WEC8500# show wlan detail 1
```

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<WLANs>** menu in the sub-menus. Select the WLAN ID to change in the WLANs screen and move to the **<802.11a/n/ac>** or **<802.11b/g/n>** tab depending on the bandwidth.

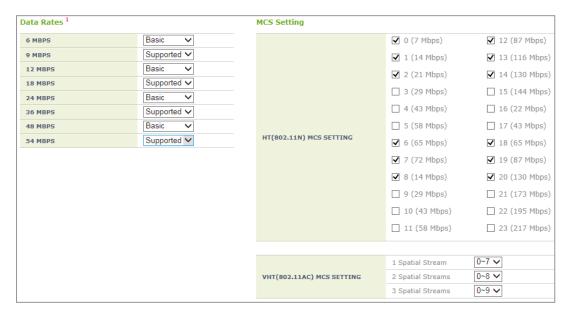


Figure 103. MCS by WLAN: 802.11a/n/ac Configuration Management window

Figure 104. MCS by WLAN: 802.11b/g/n Configuration Management window

5.2 Local Switching

The APC provides the local switching function to support a service to an individual network such as a branch office. The local switching function enables an AP to be connected to WAN for external connection in an individual network where the APC is not installed. The control packet of an AP and a wireless terminal is processed in the centralized APC and a general data packet is processed in an individual network. Therefore, if the tunnel mode of the WLAN is changed to local switching, part of the data packet forwarding process performed by the APC is performed by the AP.

The following AP functions must be configured in the WLAN which is configured for local switching:

- 1) WLAN-VLAN Mapping
 - The wireless device traffic connected to the configured local switching WLAN is forwarded by the AP with the configured VLAN tag.
- 2) ACL
 - Packet filtering ACL is performed for the wireless device traffic connected to the configured local switching WLAN.
- 3) Preauthetication ACL of Captive Portal
 - Web preauthentication packet forwarding ACL is processed for the wireless device traffic connected to the local switching WLAN configured for captive portal.

The functions above are activated only for the APs added to the remote AP group.

Configuration using CLI

The procedure of local switching configuration is as follows:

- 1) By referring to the 'Configuring Remote AP Group', add an AP to a remote AP group.
- 2) Enter into the configure → wlan configuration mode of CLI, and configure 'tunnel-mode' to 'local-bridging'.

```
WEC8500# configure terminal
WEC8500/configure# wlan 1
WEC8500/configure/wlan 1# tunnel-mode local-bridging
```

- · tunnel-mode local-bridging
- 3) Enter into the configure → AP configuration mode of CLI, and configure a local Vlan ID per WLAN.

```
WEC8500# configure terminal
WEC8500/configure# ap ap_1
WEC8500/configure/ap ap_1# profile
WEC8500/configure/ap ap_1/profile#
```

• local-bridging [WLAN_ID][VLAN_ID/ACL_NAME/PRE_AUTH_ACL_NAME]

Parameter	Description
WLAN_ID	WLAN ID (Range: 1-254) (available only for WLANs the tunnel-mode of which is local-bridging)
VLAN_ID	VLAN ID (Range: 1-4094)
ACL_NAME	ACL name to configure for the WLAN service (only for options set in IP ACL)
PRE_AUTH_ACL_NAME	ACL name to configure for pre-authentication of the WLAN (only for options set in IP ACL)

4) Operator can check the configuration information by executing the 'show remote-apgroup summary', 'show wlan detail', 'show ap local-bridging [AP_PROFILE_NAME]' command.

Configuration using Web UI

By referring to the 'Configuring Remote AP Group', add an AP to a remote AP group.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<WLANs>** menu in the sub-menus. Select a WLAN ID to change in the WLANs screen and go to the **<General>** tab. After changing the 'CAPWAP TUNNEL MODE' to 'Local Bridging', click the **<Apply>** button.

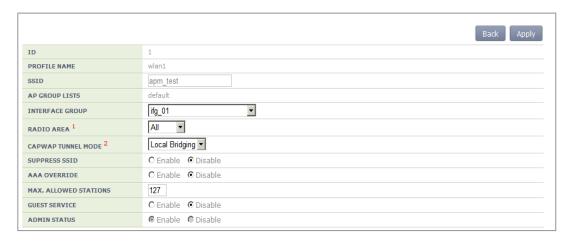


Figure 105. Local Switching Configuration Window of WLAN

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Access Points>** menu in the sub-menus. In the Access Points screen, select an AP to change and go to the **<Remote AP>** tab.

Select the WLAN set with tunneling and enter the split ACL before clicking the **<Add>** button.

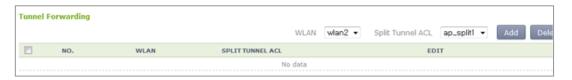


Figure 106. Split ACL Configuration Window of WLAN Allocated to AP

Select the WLAN set with local bridging and then enter VLAN ID/ACL/Pre-Auth. ACL before clicking the <**Add**> button.

Figure 107. VLAN/ACL/Pre-Auth.ACL Configuration Window of WLAN Allocated to AP

5.3 Security and Authentication

The Samsung W-EP AP/APC supports the security and authentication function defined in the IEEE 802.11-based wireless LAN security standard and its main mechanism is as follows:

- Wired Equivalent Privacy (WEP)
- Wi-Fi Protected Access Version 1 (WPA1), Wi-Fi Protected Access Version 2 (WPA2)
- Authentication type: Pre-Shared Key (PSK), 802.1X
- Encryption type: Temporal Key Integrity Protocol (TKIP), AES-CCMP

When a new WLAN is added, the initial WLAN security configuration becomes all disabled. Therefore, an operator must configure the security function.

5.3.1 Initialization of WLAN Security Function

This is a procedure to disable WLAN, where the security function is configured, to the initial status.

Configuration using CLI

An example of initializing the security function of wlan 1 is show below.

1) Go to configure \rightarrow wlan configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# wlan 1
```

2) After entering into the security configuration mode, use the 'setDefault' command to initialize the security configuration.

```
WEC8500/configure/wlan 1# security
WEC8500/configure/wlan 1/security# setDefault
```

3) After applying the changed configuration, exit the security configuration mode.

```
WEC8500/configure/wlan 1/security# apply
WEC8500/configure/wlan 1/security# exit
```

4) To check configuration information, use the 'show wlan security summary' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<WLANs>** menu in the sub-menus. Select a WLAN ID to change in the WLANs screen and go to the **<Security>** \rightarrow **<L2>** tab.

Figure 108. Initialization of WLAN security function

The configuration items available in the window are as follows.

Item		Description
PROFILE NAME		A WLAN configuration name is displayed.
L2 SECURITY TY	/PE	Layer2 security function type - None: Security function disabled (Select this to initialize the WLAN security function.) - Static WEP: Static WEP security function - 802.1x (Dynamic WEP): Dynamic WEP security function - Static WEP + 802.1x (Dynamic WEP): Static/Dynamic WEP security function - WPA + WPA2: WPA/WPA2 PSK/802.1x security function
WPA POLICY	WPA	WPA Version 1 function is enabled when selected
	ENCRYPTION TYPE	Encryption type - TKIP: TKIP type - CCMP: AES-CCMP type - Both: TKIP, AES-CCMP type
WPA2 POLICY	WPA2	The WPA Version 2 function is always enabled and cannot be changed.
	ENCRYPTION TYPE	The only supported encryption method is CCMP and this cannot be changed CCMP: AES-CCMP method
AUTH KEY MGMT	PSK/802.1x	Authentication key management type - PSK: PSK (shared key) authentication type - 802.1x: 802.1x authentication type through a RADIUS server
	PSK FORMAT	PSK key input type - ASCII: ASCII character string - HEX: Hexadecimal value
	PSK KEY	PSK key - 8-63 ASCII character string - 64-characters of hexadecimal value

Ite	m	Description
PMK LIFETIME		PMK effective time (unit: s, range: 0-1000000, default: 43200)
EAPOL REAUTH PERIOD	ENTICATION	EAP re-authentication interval (unit: s, range: 0-100000, default: 0)
STATIC WEP	WEP KEY FORMAT	key input format - ASCII: ASCII character string - HEX: Hexadecimal value
	WEP KEY SIZE	Key length - 40: 40-bit (5-byte) - 104: 104-bit (13-byte)
STATIC WEP	WEP KEY INDEX	Key index (1-4)
	WEP KEY	key value
802.1X(DYNAM IC WEP)	WEP KEY SIZE	Key length - 40: 40-bit (5-byte) - 104: 104-bit (13-byte)

After selecting the L2 Security Type as None, click the **<Apply>** button.

5.3.2 WPA/WPA2 PSK Configuration

The WPA/WPA2 PSK, one of wireless LAN authentication types, can be used in a small size network where an authentication server is not installed.

The procedure of WPA/ WPA2 PSK configuration is as follows.

Configuration using CLI

1) Go to configure \rightarrow wlan configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# wlan 1
```

2) Go to security configuration mode and initialize the configuration.

```
WEC8500/configure/wlan 1# security
WEC8500/configure/wlan 1/security# setDefault
```

3) Configure the WPA type.

```
WEC8500/configure/wlan 1/security# [WPA_TYPE]
```

Parameter	Description
WPA_TYPE	WPA type (wpa/wpa2): WPA Version 2 must be enabled at all times wpa: WPA Version 1 - wpa2: WPA Version 2

4) Configure the PSK key.

WEC8500/configure/wlan 1/security# psk [KEY_TYPE] [KEY_STRING]

Parameter	Description
KEY_TYPE	PSK key input format (ascii/hex) - ASCII: ASCII character string - HEX: Hexadecimal value
KEY_STRING	PSK key

5) Configure the encryption type.

WEC8500/configure/wlan 1/security# [WPA_TYPE] [ENC_TYPE]

Parameter	Description
WPA_TYPE	WPA type (wpa/wpa2): Use the same value as the WPA type configured before. WPA Version 2 must be enabled at all times wpa: WPA Version 1 - wpa2: WPA Version 2
ENC_TYPE	Encryption type (tkip/ccmp) - tkip: TKIP type. TKIP cannot be configured for WPA Version 2 ccmp: AES-CCMP type

6) Configure the key management algorithm to PSK.

WEC8500/configure/wlan 1/security# keymgmt psk

7) Disable the 802.1x key management algorithm.

WEC8500/configure/wlan 1/security# no keymgmt ieee8021x

8) Disable the 802.1x authentication.

```
WEC8500/configure/wlan 1/security# no ieee8021x
```

9) After applying the changed configuration, exit the security configuration mode.

```
WEC8500/configure/wlan 1/security# apply
WEC8500/configure/wlan 1/security# exit
```

10) To check the configuration information, use the following command.

```
WEC8500/configure# show wlan security summary
```

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<WLANs>** menu in the sub-menus. Select a WLAN ID to change in the WLANs screen and go to the **<Security>** \rightarrow **<L2>** tab.

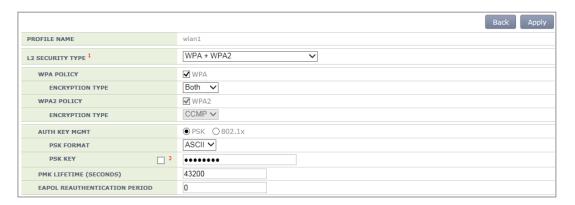


Figure 109. WPA/WPA2 PSK configuration

After selecting the L2 Security Type as WPA + WPA2 and AUTH KEY MGMT as PSK, click the **<Apply>** button.

For more information about detail configuration item, see '5.3.1 Initialization of WLAN Security Function'.

5.3.3 WPA/WPA2 802.1x Configuration

The WPA/WPA2 802.1x, one of wireless LAN authentication types does authentication through an authentication server such as a Remote Authentication Dial-In User Service (RADIUS) server.

To configure WPA/WPA2 802.1x to WLAN, execute the command as follows:

As the 802.1x authentication needs interoperation with a RADIUS server, the RADIUS server required for the WLAN security configuration must be configured first. For more information about RADIUS server configuration, see '8.1 RADIUS Server Configuration'.

Configuration using CLI

1) Go to configure \rightarrow wlan configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# wlan 1
```

2) Go to security configuration mode and initialize the configuration.

```
WEC8500/configure/wlan 1# security
WEC8500/configure/wlan 1/security# setDefault
```

3) Configure the WPA type.

WEC8500/configure/wlan 1/security# wpa_type

Parameter	Description
wpa_type	WPA type (wpa/wpa2): WPA Version 2 must be enabled at all times wpa: WPA Version 1 - wpa2: WPA Version 2

4) Configure the encryption type.

WEC8500/configure/wlan 1/security# [WPA_TYPE] [ENC_TYPE]

Parameter	Description
WPA_TYPE	WPA type (wpa/wpa2): Use the same value as the WPA type configured before. WPA Version 2 must be enabled at all times wpa: WPA Version 1 - wpa2: WPA Version 2

Parameter	Description
ENC_TYPE	Encryption type (tkip/ ccmp) - tkip: TKIP type. TKIP cannot be configured for WPA Version 2.
	- ccmp: AES-CCMP type

5) Disable the PSK key management algorithm.

```
WEC8500/configure/wlan 1/security# no keymgmt psk
```

6) Configure the key management algorithm to 802.1x.

```
WEC8500/configure/wlan 1/security# keymgmt ieee8021x
```

7) Enable the 802.1x authentication.

```
WEC8500/configure/wlan 1/security# ieee8021x
```

8) After enabling the RADIUS server function for authentication, specify the index of authentication RADIUS server. The RADIUS server information must be configured in advance.

WEC8500/configure/wlan 1/security# radius-server auth-servers
[RADIUS_SERVER_ID_LIST]

Parameter	Description
RADIUS_SERVER_ID_LIST	RADIUS server ID list (Up to 3 IDs can be configured.)

9) After enabling the RADIUS server function for accounting, specify the index of account RADIUS server. The RADIUS server information must be configured in advance.

WEC8500/configure/wlan 1/security# radius-server acct-servers [RADIUS SERVER ID LIST]

Parameter	Description
RADIUS_SERVER_ID_LIST	RADIUS server ID list (Up to 3 IDs can be configured.)

10) After applying the changed configuration, exit the security configuration mode.

```
WEC8500/configure/wlan 1/security# apply
WEC8500/configure/wlan 1/security# exit
```

11) To check the configuration information, use the following command.

```
WEC8500/configure# show wlan security summary
```

12) To check configuration information, use the 'show wlan security summary' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<WLANs>** menu in the sub-menus.

Select a WLAN ID to change in the WLANs screen and go to the **Security>** → **Radius>** tab.



Figure 110. WPA/WPA2 802.1x Configuration (1)

lte	em	Description
PROFILE NAM	ME	A WLAN configuration name is displayed.
AUTHENTIC ATION SERVER	Enable/ Disable	Whether the authentication function is enabled Enable: The authentication function is enabled Disable: The authentication function is disabled.
	RADIUS SERVER 1	Authentication server that will be used as the first priority (Can select one out of pre-configured RADIUS servers.)
	RADIUS SERVER 2	Authentication server that will be used as the second priority (Can select one out of pre-configured RADIUS servers.)
	RADIUS SERVER 3	Authentication server that will be used as the third priority (Can select one out of pre-configured RADIUS servers.)

Ito	em	Description
ACCOUNTI NG SERVER	Enable/ Disable	Whether the accounting function is enabled Enable: The accounting function is enabled Disable: The accounting function is disabled.
	RADIUS SERVER 1	Accounting server that will be used as the first priority (Can select one out of pre-configured RADIUS servers.)
	RADIUS SERVER 2	Accounting server that will be used as the second priority (Can select one out of pre-configured RADIUS servers.)
	RADIUS SERVER 3	Accounting server that will be used as the third priority (Can select one out of pre-configured RADIUS servers.)
FALLBACK TE	EST	RADIUS server Fallback attempt interval (unit: s, range: 0-500, default: 0), When set to 0, the fallback function is disabled.
ACCOUNTING INTERVAL		Accounting information transmission interval (unit: s, range: 0-10000, default: 600), When set to 0, the periodic accounting information transmission function is disabled.

Select AUTHENTICATION SERVER and ACCOUNTING SERVER as Enable and configure the rest items.

Internal RADIUS Server

Operator can use a RADIUS server in the APC. The internal RADIUS server only supports the authentication function and does not support the accounting or aaa-override, etc. To use an internal RADIUS server, select 'Internal' when selecting a RADIUS server during authentication server configuration.

2) Click the $\langle L2 \rangle$ tab.

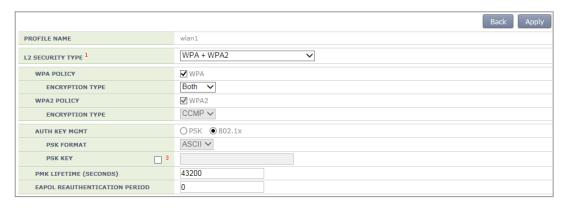


Figure 111. WPA/WPA2 802.1x Configuration (2)

Select the L2 Security Type as WPA + WPA2 and AUTH KEY MGMT as 802.1x. After configuring the rest values as required, click the **<Apply>** button. For more information about detail configuration item of L2 tab, see '5.3.1 Initialization of WLAN Security Function'.

5.3.4 Static WEP Configuration

The WEP is a security algorithm defined in the initial wireless LAN standard. It provides security by using a cryptographic key and Initial Vector (IV) to encrypt the wireless transmission data exchanged between an AP and a wireless terminal connected to a wireless LAN.

Configuration using CLI

For static WEP configuration, execute the following commands.

1) Go to configure \rightarrow wlan configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# wlan 1
```

2) Go to security configuration mode and initialize the configuration.

```
WEC8500/configure/wlan 1# security
WEC8500/configure/wlan 1/security# setDefault
```

3) Disable WPA1, WPA2, and 802.1x authentication.

```
WEC8500/configure/wlan 1/security# no wpa
WEC8500/configure/wlan 1/security# no wpa2
WEC8500/configure/wlan 1/security# no ieee8021x
```

4) Enable the WEP.

```
WEC8500/configure/wlan 1/security# wep
```

5) Configure the WEP Shared Key mode.

```
WEC8500/configure/wlan 1/security# wep shared
```

6) Use the following command to configure the cryptographic key of WEP.

```
WEC8500/configure/wlan 1/security# wep encryption [KEY_TYPE]
[KEY_STRING] [KEY_INDEX] [KEY_LENGTH]
```

Parameter	Description
KEY_TYPE	WEP key Input format of WEP cryptographic key (ascii/hex) - ASCII: ASCII character string - HEX: Hexadecimal value
KEY STRING	WEP cryptographic key
KEY_INDEX	Key index (range: 1-4)
KEY_LENGTH	Key length (Bit unit) - 40 - 104

7) After applying the changed configuration, exit the security configuration mode.

```
WEC8500/configure/wlan 1/security# apply
WEC8500/configure/wlan 1/security# exit
```

8) To check configuration information, use the 'show wlan security summary' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<WLANs>** menu in the sub-menus. Select a WLAN ID to change in the WLANs screen and go to the **<Security>** \rightarrow **<L2>** tab.

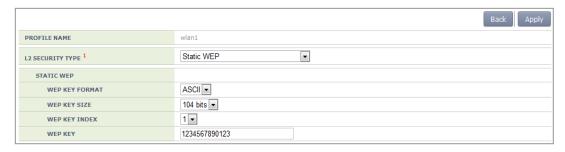


Figure 112. Static WEP configuration

Select the L2 Security Type as Static WEP. After configuring the rest values as required, click the **<Apply>** button.

For more information about detail configuration item of L2 tab, see '5.3.1 Initialization of WLAN Security Function'.

5.3.5 Dynamic WEP Configuration

The Dynamic WEP is a security algorithm that improves the security vulnerabilities of a static WEP by using 802.1x authentication. Unlike the static WEP that is based on a configured fixed key, it creates a cryptographic key by executing 802.1x authentication when a terminal is connected.

Configuration using CLI

For dynamic WEP configuration, execute the command as follows:

1) Go to configure \rightarrow wlan configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# wlan 1
```

2) Go to security configuration mode and initialize the configuration.

```
WEC8500/configure/wlan 1# security
WEC8500/configure/wlan 1/security# setDefault
```

3) Enable the 802.1x authentication.

```
WEC8500/configure/wlan 1/security# ieee8021x
```

4) To configure the length of a cryptographic key of dynamic WEP, execute the following command.

```
WEC8500/configure/wlan 1/security# ieee8021x encryption [KEY_LENGTH]
```

Parameter	Description
KEY_LENGTH	Key length (Bit unit) - 40
	- 104

5) After enabling the RADIUS server function for authentication, specify the index of authentication RADIUS server. The RADIUS server information must be configured in advance.

```
WEC8500/configure/wlan 1/security# radius-server auth-servers
[RADIUS_SERVER_ID_LIST]
```

Parameter	Description
RADIUS_SERVER_ID_LIST	RADIUS server ID list (Up to 3 IDs can be configured.)

6) After enabling the RADIUS server function for accounting, specify the index of account RADIUS server. The RADIUS server information must be configured in advance.

WEC8500/configure/wlan 1/security# radius-server acct-servers
[RADIUS_SERVER_ID_LIST]

Parameter	Description
RADIUS_SERVER_ID_LIST	RADIUS server ID list (Up to 3 IDs can be configured.)

7) After applying the changed configuration, exit the security configuration mode.

```
WEC8500/configure/wlan 1/security# apply
WEC8500/configure/wlan 1/security# exit
```

8) To check the configuration information, execute the following command.

```
WEC8500/configure# show wlan security summary
```

9) To check configuration information, execute the 'show wlan security summary' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<WLANs>** menu in the sub-menus.

- 1) Select a WLAN ID to change in the WLANs screen and go to the **<Security> → <Radius>** tab. For details about configuration, refer to the section 5.3.3.
- 2) Click the $\langle L2 \rangle$ tab.

Figure 113. Dynamic WEP Configuration Window

Select the L2 Security Type as Dynamic WEP. After configuring the rest values as required, click the **<Apply>** button.

For more information about detail configuration item of L2 tab, see '5.3.1 Initialization of WLAN Security Function'.

5.4 DHCP Configuration

The DHCP service of APC consists of DHCP server, DHCP relay, and DHCP proxy.

5.4.1 DHCP Server

5.4.1.1 DHCP Server Configuration

A DHCP server in the APC dynamically allocates an IP address to a client.

Configuration using CLI

1) Go to configure mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure #
```

- 2) To enable or disable the DHCP server, enter the 'ip dhcp' command. Use 'no' in front of the command to disable the configuration.
 - · ip dhcp enable
 - no ip dhcp enable
- 3) To check configuration information, use the 'show ip dhcp' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<DHCP>** → **<Internal Server>** menu in the sub-menus.

Figure 114. DHCP server configuration

Enable/Disable the DHCP SERVER SERVICE item in the Internal Server window to enable or disable a DHCP server.

5.4.1.2 DHCP Pool

The DHCP pool includes the range of IP address to be allocated to a client, DNS server that will be used by a DHCP client, NTP server, and default router IP address information, etc.

Configuration using CLI

[Pool Creation]

The procedure of creating a pool in an internal DHCP server and entering into the pool mode is as follows:

1) Go to configure mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure #
```

- 2) Enter the 'ip dhcp pool' command. Use 'no' in front of the command to delete a DHCP pool.
 - ip dhcp pool [POOL_NAME]
 - no ip dhcp pool [POOL_NAME]
- 3) To check configuration information, use the 'show ip dhcp' command.
 To configure the DHCP Pool related function, execute the command as follows to go to the DHCP pool mode.

```
WEC8500# configure terminal
WEC8500/configure # ip dhcp pool test
WEC8500/configure/ip/dhcp/pool test#
```

[Configuring IP address]

Before configuring a DHCP pool, you should configure a network first. If the network is not configured, you cannot execute other commands.

Enter the command as follows to configure the network bandwidth of a DHCP pool to serve. Enter 'no' parameter to delete a configured network bandwidth. After entering a separator '/' after an IP address, enter the length of a netmask address or enter a netmask address after the IP address.

- network [IP ADDRESS] [NETMASK]
- network [IP_ADDRESS]/[LENGTH]
- no network

Parameter	Description
IP_ADDRESS	IP address
NETMASK	Netmask address
LENGTH	Netmask length

[Configuring Gateway]

This command configures the gateway address of a DHCP client. Enter 'no' parameter to delete a configured address.

- default-router [IP_ADDRESS]
- no default-router

Parameter	Description
IP_ADDRESS	Gateway IP address

[Configuring DNS Server]

Up to 3 IP addresses can be configured for a DNS server. Enter 'no' parameter to delete a configured DNS server. The lower command 'all' is used to delete all the IP addresses of a configured DNS server.

- dns-server [IP_ADDRESS]
- no dns-server [IP_ADDRESS]
- no dns-server all

Parameter	Description
IP_ADDRESS	DNS Server's IP address

[Configuring Domain Name]

This command configures or deletes a domain name.

- domain-name [DOMAIN]
- no domain-name [DOMAIN]

Parameter	Description
DOMAIN	Domain name to configure (e.g. samsung APC.co.kr)

[Configuring Fixed IP Address to MAC Address]

This command configures a fixed IP address to a specific MAC address or deletes the configuration.

The 'range' of IP address to configure cannot be overlapped with the IP range and maximum 255 IP addresses can be configured. In addition, use the 'no fix-address all' command to delete all the configured values.

- fix-address [aa:bb:cc:dd:ee:ff A.B.C.D]
- no fix-address [aa:bb:cc:dd:ee:ff A.B.C.D]
- fix-address all

As shown in the below example, 100.100.100.10 can be always allocated to the IP address of a wireless terminal whose MAC address is 11:22:33:44:55:66.

```
WEC8500/configure/ip/dhcp/pool test# fix-address 11:22:33:44:55:66 100.100.100.10
```

[Configuring IP Address Lease Time]

Configure the time when a wireless terminal receives an IP address. The 'lease infinite' command configures the time infinitely. If 'no' parameter is entered in front of the command, it is configured to 24 hours (default).

- lease [TIME]
- lease infinite
- no lease

Parameter	Description
TIME	Lease time (range: 120-8640000, Unit: s)

[Configuring NTP Server]

Up to 3 IP addresses of a NTP server can be configured or deleted. In addition, use the 'no ntp-server all' command to delete all the configured addresses of a NTP server.

- ntp-server [IP_ADDRESS]
- no ntp-server [IP_ADDRESS]
- no ntp-server all

Parameter	Description
IP_ADDRESS	The IP address of the NTP server

[Ping check]

When a DHCP server allocates an IP address to a client, ping check can be used to check if an IP address to allocate is being used in the current network.

• ping-check [enable/disable]

Parameter	Description
enable/disable	Configures whether to use ping check (default: disable)

[Configuring IP Address Range]

A DHCP server configures the range of IP address to allocate to a client. The range of IP address to add is up to 16 and the IP address specified in the range cannot be duplicated with the IP address of fix-address. Enter 'no' to delete the range of configured IP address and enter 'no range all' to delete all the ranges.

- range [IP_ADDRESS]
- range [IP_ADDRESS1] [IP_ADDRESS2]
- no range [IP_ADDRESS]
- no range [IP_ADDRESS1] [IP_ADDRESS2]
- no range all

Parameter	Description
IP_ADDRESS	IP address. Use to configure one IP address.
IP_ADDRESS1	Start address of IP address range
IP_ADDRESS2	Last address of IP address range

[Capwap Access Controller Address Configuration]

Up to three IP addresses for a Capwap controller can be configured or deleted. Also, all Capwap controller addresses can be deleted using the 'no capwap-dhcp-option' command.

- capwap-dhcp-option [IP_ADDRESS]
- no capwap-dhcp-option

Parameter	Description
IP_ADDRESS	IP address of the Capwap Controller

[Configuring Option Data]

Use the 'user-option' command to configure or delete the DHCP option. Use 'no' to delete each option and use 'no user-option all' to delete all the options.

- Option: Up to 254 can be entered (1-254).
- Data type: string (character string), octet (hex string), int (32 bit integer), uint (32-bit unsigned integer), int16 (16-bit integer), uint16 (16-bit unsigned integer), ipaddress (IP address)

- Mode: Can be configured to the active/passive mode.
 - active: Although a client does not request data transmission, the DHCP server transmits user-option data (Default).
 - passive: The DHCP server transmits data upon a client's request.

Command	Description
- user-option [1-254] string [string] [active/passive]	Configures an option.
- user-option [1-254] octet aa:bb:cc [active/passive]	
- user-option [1-254] int [integer] [active/passive]	
- user-option [1-254] uint [unsigned integer] [active/passive]	
- user-option [1-254] int16 [16 bit integer] [active/passive]	
- user-option [1-254] uint16 [16 bit unsigned integer]	
[active/passive]	
- user-option [1-254] ipaddress A.B.C.D [active/passive]	
- no user-option [1-254] string [string] [active/passive]	Deletes a configured option.
- no user-option [1-254] octet aa:bb:cc [active/passive]	
- no user-option [1-254] int [integer] [active/passive]	
- no user-option [1-254] uint [unsigned integer] [active/passive]	
- no user-option [1-254] int16 [16 bit integer] [active/passive]	
- no user-option [1-254] uint16 [16 bit unsigned integer]	
[active/passive]	
- no user-option [1-254] ipaddress A.B.C.D [active/passive]	
no user-option all	Deletes all the configured
	options.

A usage example is given below.

```
WEC8500/configure/ip/dhcp/pool test# user-option 3 string "hi, there" active
WEC8500/configure/ip/dhcp/pool test# user-option 200 octet
33:4A:5C:6F:DD passive
WEC8500/configure/ip/dhcp/pool test# user-option 201 int -3000
WEC8500/configure/ip/dhcp/pool test# user-option 202 uint16 300
WEC8500/configure/ip/dhcp/pool test# user-option 203 ipaddress
111.22.22.33
```

[Retrieving Pool Information]

To check the entire information of a DHCP pool, execute the 'show ip dhcp pool' command. If you enter a pool name as a parameter as shown in 'show ip dhcp pool [POOL NAME]', you can check the information of a specific pool.

[Retrieving DHCP Lease Information]

To check the DHCP lease information, execute the 'show ip dhcp lease' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<DHCP>** → **<Internal Server>** menu in the sub-menus.

Click the **Add>** or **Delete>** button to add or delete a DHCP pool.

Figure 115. DHCP Pool (1)

The window where a DHCP pool can be added is shown below.

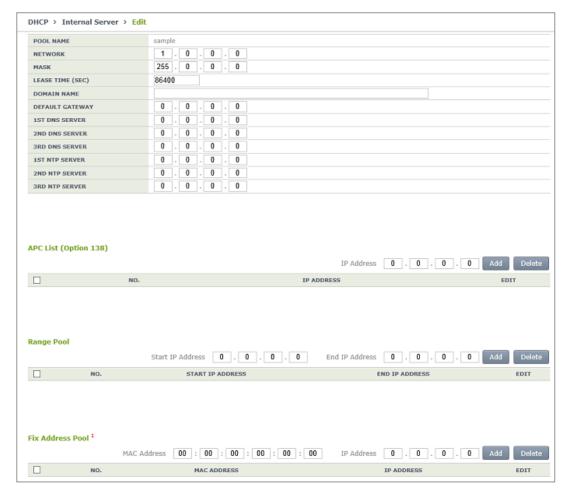


Figure 116. DHCP Pool (2)

- POOL NAME: DHCP pool name (mandatory input item)
- NETWORK: Network bandwidth IP that a DHCP server will serve (mandatory input item)
- MASK: Netmask length IP of an IP that is entered into the NETWORK item (mandatory input item)
- LEASE TIME: DHCP IP address lease time (Unit: s, default: 3600 s, Maximum value: 8640000 s)
- DOMAIN NAME: Configures a domain name that will be used by a DHCP client in a DNS.
- DEFAULT GATEWAY: Gateway IP that will be configured by a DHCP client
- 1ST/2ND/3RD DNS SERVER: Configures a DNS server that will be used by a DHCP client.
- 1ST/2ND/3RD NTP SERVER: Configures a NTP server that will be used by a DHCP client.
- APC List (Option 138): Configures APL list value corresponding to DHCP user option #138.
- Range Pool: Configures the range of IP address that will be leased to a DHCP client.
 Enter an IP address into the Start IP Address IP box and End Ip Address IP box each and then click the <Add> button to create a list. In addition, select one in the created list and click the <Delete> button to delete it. The IP address range cannot be overlapped with the IP address in a network bandwidth and also the IP address fixed to a MAC address.
- Fixed Address Pool: Configures a fixed IP address to the MAC address of a specific DHCP client.

Enter a MAC address and an IP address and click the **Add>** button to create the list. In addition, select one in the created list and click the **Delete>** button to delete it. The IP address fixed to a MAC address cannot be overlapped with the IP address in a network bandwidth and also the IP address range.

5.4.1.3 Retrieving Number of DHCP Packets

To check the number of DHCP packets that the DHCP server receives, execute the 'show ip dhcp statistics' command.

5.4.2 DHCP Relay

The DHCP relay forwards a DHCP packet received from a client through broadcast to the DHCP server. Because it switches with the DHCP proxy, the DHCP relay is enabled when the DHCP proxy is disabled.

The DHCP relay is working in the unit of interface. It is disabled in the 'mgmt0' and 'lo' interface. The DHCP relay is not working even when no IP address is configured in the interface.

Configuration using CLI

The procedure of changing to the DHCP relay is as follows:

1) Go to configure mode of CLI.

WEC8500# configure terminal

2) Switch to the DHCP relay.

The relay and proxy are operating in the switching mode. If a proxy is not used, it is operating in the relay mode.

WEC8500/configure # no ip dhcp-proxy enable

3) To check the configured DHCP information, use the 'show ip dhcp-proxy' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<DHCP>** → **<Proxy>** menu in the sub-menus.

You can configure the Proxy mode of DHCP to relay/proxy. Change the radio box for configuration in the DHCP PROXY MODE of Global Parameter item.

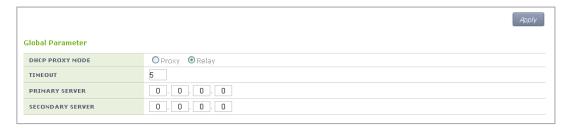


Figure 117. DHCP Relay

5.4.3 DHCP Proxy

The procedure of changing to the DHCP proxy is as follows.

Configuration using CLI

The CLI configuring a DHCP proxy is located as a command under 'ip dhcp-proxy' in the configure mode.

1) Go to configure mode of CLI.

```
WEC8500# configure terminal
```

2) Switch to the DHCP proxy.

```
WEC8500/configure#ip dhcp-proxy enable
```

- 3) To check the configured information, use the 'show ip dhcp-proxy' command.
- 4) Use the below command to check an IP address that is leased through the DHCP proxy.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<DHCP>** → **<Proxy>** menu in the sub-menus.

You can configure the Proxy mode of DHCP to relay/proxy. Change the radio box for configuration in the DHCP PROXY MODE of Global Parameter item.

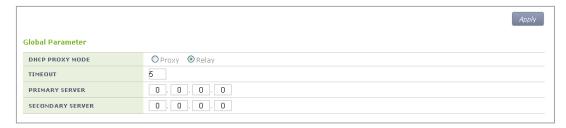


Figure 118. DHCP Proxy

5.4.4 Option 82 Configuration

The APC uses the DHCP Option 82 to provide various services during IP allocation by forwarding the information such as access control, QoS, or security policy, etc. when a wireless terminal connected to an AP receives an IP address.

The Option 82 has two fields, i.e. remote ID and circuit ID. Enter the name of an interface for which the APC constantly does relay/proxy in the circuit ID and enter a part of AP information in the remote ID accordingly. One of the following three data can be used as the remote id of Option 82.

- ap-mac: 802.11 MAC data of the AP. The length is 12-byte (Default).
- ap-mac-ssid: The character string of SSID is added to the data of AP-MAC. The length is variable.
- ap-mac-ssid: Ethernet MAC data of the AP. The length is 12-byte.

To configure Option 82 related functions, go to the interface mode by executing the following command.

```
WEC8500# configure terminal
WEC8500/configure#interface vlan10
WEC8500/configure/interface vlan10#
```

Configuration using CLI

[Configuring Option 82]

This command enables or disables the Option 82 function. It can be configured for each interface.

• dhcp option-82 [MODE]

Parameter	Description
MODE	Configures whether to use the Option 82 function (enable/disable).

[Configuring Remote ID]

The command is shown below.

• dhcp option-82 remote-id [MODE]

Parameter	Description
MODE	Specifies one out of the following three data to the Option 82 remote-id ap-mac: MAC address of an AP
	- ap-mac-ssid: MAC address and SSID of an AP- ap- ethermac: Ethernet MAC address of an AP

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller> > <Interfaces>** menu in the sub-menus. In the interface, you can see the page where you can change the Option 82.

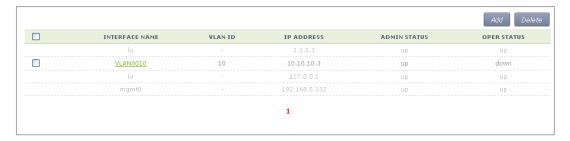


Figure 119. Option 82 configuration (1)

Select an item in the list and perform detail configuration.

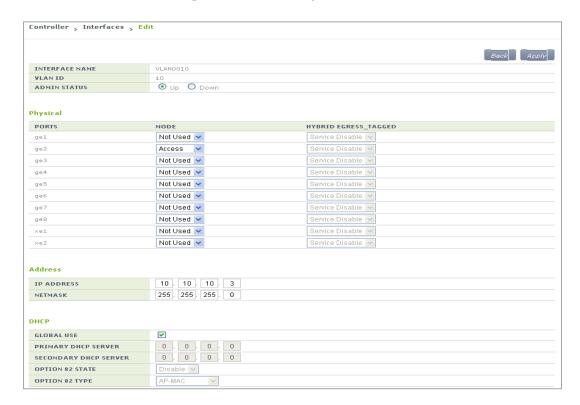


Figure 120. Option 82 configuration (2)

After unchecking the GLOBAL USE check box in the DHCP part, configure OPTION 82 STATE and OPTION 82 TYPE and then click the **<Apply>** button.

In the OPTION 82 STATE, configure Enable/Disable for Option 82 and configure ap-mac, ap-mac-ssid, or ap-ethermac for OPTION 82 TYPE.

5.4.5 Primary/Secondary Server Configuration

The DHCP relay/proxy can transmit a DHCP packet received from a client through broadcast to maximum two DHCP servers. Here, the two servers are called a primary server and a secondary server.

The configuration of primary/secondary servers can be done in the interface mode, but it is also possible in the global mode. If the configuration exists both in the interface mode and global mode, the configuration in the interface mode has a higher priority.

Configuration using CLI

[Configuration at Interface]

1) Go to configure \rightarrow interface mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure#interface [INTERFACE_NAME]
```

2) Enter the 'dhcp server' command.

To configure only a primary server, do not enter the information of a secondary server.

- dhcp server primary A.B.C.D secondary A.B.C.D: Configures both primary/ secondary servers.
- dhcp server primary A.B.C.D: Configures only a primary server.
- no dhcp server primary A.B.C.D secondary A.B.C.D: Deletes both primary/ secondary servers.
- no dhcp server primary A.B.C.D: Deletes a primary server.

[Configuration at Global]

1) Go to configure mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure#
```

2) Enter the 'ip dhcp-proxy default-dhcp-server' command.

To configure only a primary server, do not enter the information of a secondary server.

- ip dhcp-proxy default-dhcp-server primary A.B.C.D secondary A.B.C.D: Configures both global primary/secondary servers.
- ip dhcp-proxy default-dhcp-server primary A.B.C.D: Configures only a global primary server.
- no ip dhcp-proxy default-dhcp-server primary A.B.C.D secondary A.B.C.D: Deletes both global primary/secondary servers.
- no ip dhcp-proxy default-dhcp-server primary A.B.C.D: Deletes a global primary server.

Configuration using Web UI

[Configuration at Interface]

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller> > <Interfaces>** menu in the sub-menus. In the interface, you can see the page where you can change the Option 82.

Figure 121. Primary/Secondary server configuration (1)

Select an item in the list and perform detail configuration.

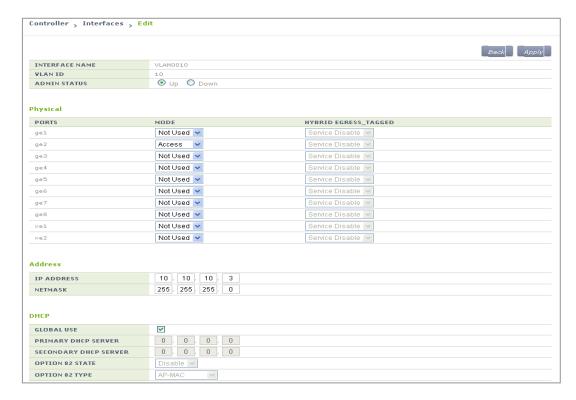


Figure 122. Primary/Secondary server configuration (2)

After unchecking the GLOBAL USE checkbox in the DHCP part, configure PRIMARY DHCP SERVER and 'SECONDARY DHCP SERVER' and then click the **<Apply>** button.

[Configuration at Global]

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the <**DHCP>** \rightarrow <**Proxy>** menu in the sub-menus.

Configure the PRIMARY SERVER and SECONDARY SERVER of the Global Parameter. If you does Global configuration, the configuration is applied to all the interfaces whose 'GLOBAL USE' checkbox is checked in the DHCP configuration of APC interface.

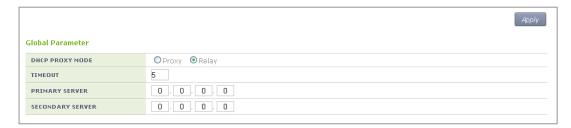


Figure 123. Primary/Secondary server configuration (3)

5.5 Radio Service Configuration

The APC supports WLAN-based radio configuration. You can enable or disable WMM based on WLAN and change DTIM and station idle timeout.

Configuration using CLI

1) Go to configure → wlan-radio-service mode of CLI.

```
APC# configure terminal

APC/configure# wlan-radio-service

APC/configure/wlan-radio-service#
```

- 2) Configure whether to enable or disable WMM.
 - wmm-mode [WLAN_ID] [MODE]

Parameter	Description
WLAN_ID	WLAN ID (range: 1-240)
MODE	WMM configuration mode (disable/enable)

- 3) Configure DTIM.
 - dtim [WLAN_ID] [DTIM]

Parameter	Description
WLAN_ID	WLAN ID (range: 1-240)
DTIM	Beacon DTIM: 1~255(default: 1)

- 4) Configure station idle timeout.
 - sta-idle-timeout [WLAN_ID] [TIMEOUT]

Parameter	Description
WLAN_ID	WLAN ID (range: 1-240)
TIMEOUT	Station idle timeout (range: 30-3600, unit: 15 s, default: 300)

5) To check the configured information, use the 'show wlan-radio-service' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<WLANs>** menu in the sub-menus. Select a WLAN ID to change in the WLANs screen and go to the **<Advanced>** tab.

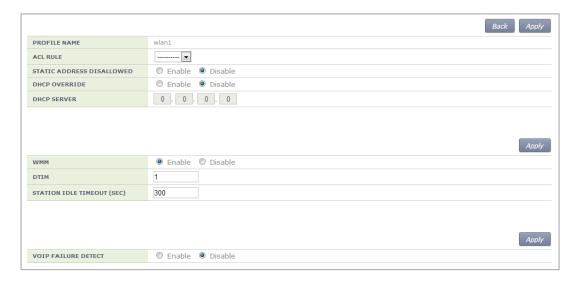


Figure 124. Radio service configuration

After configuring the below items, click the **<Apply>** button.

- WMM: Configures the WMM mode.
- DTIM: Enter a DTIM value (1-255).
- STATION IDLE TIMEOUT: Enter a station idle timeout value. The value range is 30-3600 and it must be the multiple of 15.

CHAPTER 6. Wi-Fi Configuration

This chapter describes how to manage the 802.11a, 80211.bg, 802.11n or 80211ac device of W-EP AP.

An 802.11n device supports 2.4 GHz and 5 GHz wireless bandwidth and high data processing speed.

6.1 802.11a/b/g/n/ac Radio Property

6.1.1 802.11a/b/g Configuration

The configuration of radio property for 802.11a/b/g/ac is as follows:

Configuration using CLI

1) Go to configure → radio mode to configure of CLI. The radio mode can be either '80211a' or '80211bg'.

An example of entering into 80211a is shown below.

APC# configure terminal APC/configure# 80211a APC/configure/80211a#

- 2) Configure the channel of an AP.
 - channel [CHANNEL] ap [AP_ID]: Configures the channel of an AP.
 - channel [CHANNEL] ap [AP_ID] fixed: A channel is designed to be fixed and it is not affected by the automatic adjustment function such as RRM. (When executing the 'show 80211a summary' or 'show 80211bg summary', the channel value is displayed in '*'.)

Parameter	Description
CHANNEL	Channel Configuration
	- Range for 80211a: 36-165
	- Range for 80211bg: 1-14
AP_ID	AP ID (range: 1-3000)

- 3) Configure channel of multiple APs belonging to the group.
 - channel [CHANNEL] group [GROUP_ID] all-ap/active-ap: Channel is configured for multiple APs.
 - channel [CHANNEL] group [GROUP_ID] all-ap/active-ap fixed: Channel is fixed and is not affected by automatic adjustment functions such as RRM. (Channel values are indicated as * when retrieved by 'show 80211a summary' or 'show 80211bg summary'.)

Parameter	Description
CHANNEL	Channel Configuration
	- Range for 80211a: 36-165
	- Range for 80211bg: 1-14
GROUP_ID	ID of the AP group
all-ap	Applies to all APs in the group
active-ap	Applies to all live APs in the group

- 4) Configure the TX power of an AP.
 - txPower [POWER] ap [AP_ID]: Configures a TX power.
 - txPower [POWER] ap [AP_ID]fixed: The TX power is configured as fixed and it is not affected by the automatic adjustment function such as RRM. (When executing the 'show 80211a summary' or 'show 80211bg summary', the channel value is displayed in '*'.)

Parameter	Description
POWER	TX power value (range: 3-23)
AP_ID	AP ID (range: 1-3000)

- 5) Configure TX power of multiple APs belonging to the group.
 - txPower [POWER] group [GROUP_ID] all-ap/active-ap: TX Power Setting
 - txPower [POWER] group [GROUP_ID] all-ap/active-ap fixed: TX power is fixed
 and is not affected by automatic adjustment functions such as RRM. (Channel
 values are indicated as * when retrieved by 'show 80211a summary' or 'show
 80211bg summary'.)

Parameter	Description
POWER	TX power value (range: 3-23)
GROUP_ID	ID of the AP group
all-ap	Applies to all APs in the group
active-ap	Applies to all live APs in the group

6) To check the configured channel and TX power information, use the following command.

WEC8500# show 80211a[80211bg] summary				
AP Name	MAC Address	Operation State	e Channel	TxPower
AP_f4d9fb23bfb9	F4:D9:FB:23:BF:B9	1	161	10 *
AP_f4d9fb23c2b9	F4:D9:FB:23:C2:B9	1	157	5
AP_f4d9fb23c079	F4:D9:FB:23:C0:79	1	153	5
AP_f4d9fb23baf9	F4:D9:FB:23:BA:F9	1	149	5
AP f4d9fb23beb9	F4:D9:FB:23:BE:B9	1	64	5

In this example, the AP_f4d9fb23bfb9 whose Tx Power is displayed as 10* has a fixed TX power.

- 7) Configure the beacon period of an AP.
 - beacon period [PERIOD] global

Parameter	Description
PERIOD	Beacon period (range: 40-3500)

- 8) Configure the fragmentation threshold of an AP.
 - threshold fragmentation [THRESHOLD] global

Parameter	Description
THRESHOLD	Fragmentation threshold (range: 256-8000)

- 9) Configure the data rate of an AP.
 - rate [MODE] [RATE] global

Parameter	Description
MODE	Mode (basic/supported) - basic: Basic rate at which a terminal connects to an AP supported: A connected terminal that supports the supported rate can communicate with an AP at the supported rate.
RATE	Data rate - Range for 80211a: 6, 9, 12, 18, 24, 36, 48, or 54 Mbps - Range for 80211bg: 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, or 54 Mbps

10) To check the configured beacon period, fragmentation threshold, and data rate information, uses the 'show 80211a radio-config global' command.

- 11) Configure the bandwidth of the AP. Bandwidth can be configured only for 80211a/n/ac.
 - bandwidth [BANDWIDTH] ap [AP_ID]: Bandwidth is configured for a specific AP.
 - bandwidth [BANDWIDTH] global: Bandwidth is configured for all APs.

Parameter	Description
BANDWIDTH	- 20: 20 MHz
	- 40: 40 MHz
	- 80: 80 MHz
	- 160: 160 MHz (to be supported in the future)
	- 8080: 80 + 80 MHz (to be supported in the future)
AP_ID	ID of the AP (range: 1-3000)

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Access Points>** \rightarrow **<802.11a/n>** or **<802.11b/g/n>** menu in the sub-menus. An example of selecting 802.11a/n is shown below.

Figure 125. 802.11a/b/g/n radio (1)

The configuration items are as follows:

[AP Service Configuration]

• SERVICE: Enable or disable the radio service.

[Channel Configuration]

- CURRENT CHANNEL: Configures a channel.
 - Range for 80211a: 36-165
 - Range for 80211bg: 1-14
- CHANNEL FIX: The configured channel is configured as fixed and it is not affected by the automatic adjustment function such as RRM. When selecting the <Monitor>
 → <Access Points> → <Radio> → <802.11a/n/ac> or <802.11b/g/n> menu, the channel value is displayed as *. (Optional)

[TX power Configuration]

- TX CURRENT POWER: TX Power (range: 3-23)
- TX POWER FIX: The configured TX power is configured as fixed and it is not affected by the automatic adjustment function such as RRM. When selecting the <Monitor> → <Access Points> → <Radio> → <802.11a/n/ac> or <802.11b/g/n> menu, the Tx power value is displayed as *. (Optional)

To check the configured channel and TX power information, go to **<Monitor>** \rightarrow **<Access Points>** \rightarrow **<Radio>** \rightarrow **<802.11a/n/ac>** or **<802.11b/g/n>**.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Radio>** \rightarrow **<802.11a/n/ac>** or **<802.11b/g/n>** \rightarrow **<802.11h>** menu in the sub-menus. An example of selecting 802.11a/n/ac is shown below.

Figure 126. 802.11a/b/g/n radio (2)

[General]

- BANDWIDTH: Configures bandwith (range: 20, 40, 80). Available for 802.11a/n/ac only.
- BEACON PERIOD: Beacon period (range: 40-3500)
- FRAGMENTATION THRESHOLD: AP fragmentation threshold (range: 256-8000)
- MAX. CLIENT COUNTS: Limits the number of connected clients per radio
- CONTROLLED VOICE OPTIMIZATION: Configures voice optimization.

[Data Rates]

The data rate selection options are as follows:

- Basic: Basic rate supported for a terminal to connect to an AP.
- Supported: A connected terminal that supports the supported rate can communicate with an AP at the supported rate.
- Data Rates: data rate
 - Range for 80211a: 6, 9, 12, 18, 24, 36, 48, or 54 Mbps
 - Range for 80211bg: 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, or 54 Mbps

6.1.2 802.11n Configuration

The 802.11n configuration is as follows:

Configuration using CLI

1) Go to configure \rightarrow radio mode (80211a or 80211bg) to configure of CLI.

WEC8500# configure terminal WEC8500/configure# 80211a

2) Go to the 11n-support mode.

WEC8500/configure/80211a#11n-support

3) Configure an AP so that it can support 802.11n property.

WEC8500/configure/80211a/11n-support# enable [AP_ID]

Parameter	Description
AP_ID	AP ID (range: 1-500)

4) Configure the Modulation and Coding Scheme (MCS) rate.

WEC8500/configure/80211a/11n-support# mcs [RATE] ap [AP_ID]

Parameter	Description
RATE	MSC rate (range: 0-23)
AP_ID	AP ID (range: 1-500)

5) To check the configured 11n-support information, use the 'show 80211a radio-config ap [AP ID]' command.

Configuration using Web UI

In the menu bar of <WEC Main window>, select <Configuration> and then select the <Access Points> \rightarrow <802.11a/n/ac> or <802.11b/g/n> \rightarrow <General> menu in the submenus.

Perform the configuration by referring to '6.1.1 802.11a/b/g Configuration'.

6.1.3 802.11ac Configuration

The 802.11ac configuration is as follows:

Configuration using CLI

1) Go to configure radio mode of 80211a to configure.

```
WEC8500# configure terminal WEC8500/configure# 80211a
```

2) Enter 11ac-support mode.

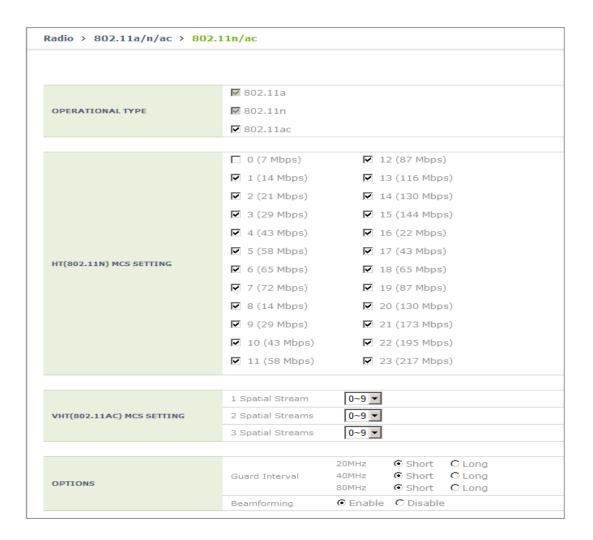
```
WEC8500/configure/80211a#11ac-support
```

3) Configure the AP so that it can support the 802.11ac property.

```
WEC8500/configure/80211a/11ac-support# enable [AP_ID]
```

Parameter	Description
AP_ID	ID of the AP (range: 1-500)

4) Configure the Modulation and Coding Scheme (MCS) rate.


Parameter	Description
RATE	MSC rate (range: 0-23)
AP_ID	ID of the AP (range: 1-500)

5) To check the configured 11ac-support information, use the 'show 80211a radio-config ap[AP_ID]' command.

Configuration using Web UI

In the menu bar of **<WEC Main Window>**, select **<Configuration>** and then select **<Access Points>** \rightarrow **<802.11a/n/ac>** or **<Radio>** \rightarrow **<802.11a/n/ac>** in the submenu.

An example of selecting 802.11a/n/ac is shown below.

[OPERATIONAL TYPE]

Enable/disable 11ac operation.

[VHT (802.11AC) MCS SETTING]

- Determine the spatial stream count for each AP model and enter maximum MCS value for each spatial stream count.
- Example: maximum of seven MCS for one spatial stream, maximum of eight MCS for two spatial streams, and maximum of nine MCS for three spatial streams
 - 1 spatial stream: 7
 - 2 spatial streams: 8
 - 3 spatial streams: 9

[OPTIONS]

- Guard-interval (11n): Select short/long for Guard-interval 20/40 Mhz respectively.
- Guard-interval (11ac): Select short/long for Guard-interval 20/40/80 Mhz respectively.

6.2 Wi-Fi QoS Configuration

The APC provides various QoS in the wire/wireless section for every packet type (voice, video, best-effort, or background). The QoS can be configured for each wireless section (2.4 GHz, 5 GHz).

6.2.1 QoS Configuration of Wireless Terminal

The system provides probable QoS by changing the Enhanced Distributed Channel Access (EDCA) parameter in a wireless section.

Configuration using CLI

To configure an EDCA profile in the upward wireless section of a wireless terminal, execute the command as follows:

1) Go to configure \rightarrow radio mode to configure of CLI.

```
APC# configure terminal
APC/configure# [80211a/80211bg]
```

- 2) Apply the EDCA profile.
 - edca-parameters [PROFILE] station

Parameter	Description
PROFILE	Configures each EDCA profile (wmm_default_sta/wmm_default_ap/
	edca_user1/edca_user2).

3) To check the application status of a configured EDCA profile, use the 'show 80211a [80211bg] qos edca-parameters wmm_default_sta' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Radio>** \rightarrow **<802.11a/n>** or **<802.11b/g/n>** \rightarrow **<QoS>** menu in the sub-menus.

In the Qos menu, there are Wired and Wireless tab. To change the Station EDCA parameter, select the Wired tab. If you want to change the AP EDCA parameter to configure the QoS of an AP wireless section, select the Wireless tab.

[Wired tab]

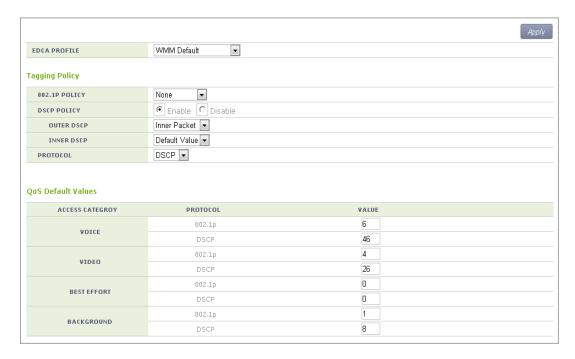


Figure 127. QoS configuration of a wireless terminal (1)

[Wireless tab]

Figure 128. QoS configuration of a wireless terminal (2)

6.2.2 QoS Configuration of AP

6.2.2.1 Wire Section

The APC provides QoS in a wire section using 802.1p and Differentiated Services Code Point (DSCP) marking and it can adjust packet traffics because it can adjust queue length depending on packet type.

Configuration using CLI

To configure the Station QoS parameter that will be applied to the wire section between APC and AP, execute the command as follows:

1) Go to configure \rightarrow QoS mode of a wireless section of CLI.

```
APC# configure terminal
APC/configure# [80211a/80211bg] qos
APC/configure/80211a/qos#
```

- 2) Configure a QoS policy to a wire section packet.
 - 802.1P Policy: enable policy [802_1P]
 - DSCP Policy: enable policy [DSCP_OUTER] [DSCP_INNER]

Parameter	Description
enable	Enables 802.1p or DSCP marking.
802_1P	802.1p configuration (user_priority/default) - user_priority: Marks the 802.1p or User Priority value of an incoming packet into the 802.1p field default: Marks pre-configured basic value to the 802.1p field.
DSCP_OUTER	DSCP Outer configuration (inner_packet/default) - inner_packet: Marks the DSCP value of an incoming packet into the Outer DSCP field default: Marks pre-configured basic value to the Outer DSCP field.
DSCP_INNER	DSCP Inner configuration (no_mark/default) - no_mark: Marks no value into the Inner DSCP field default: Marks pre-configured basic value to the Inner DSCP field.

- 3) Configure a default 802.1p value per packet.
 - dot1p-tag [PACKET_TYPE] [802.1P_TAG]

Parameter	Description
PACKET_TYPE	Packet type configuration (voice/video/best_effort/background)
802.1P_TAG	Default 802.1p value

- 4) Configure a default DSCP value per packet.
 - dscp-tag [PACKET_TYPE] [DSCPTAG]

Parameter	Description	
PACKET_TYPE	Packet type configuration (voice/video/best_effort/background)	
DSCP_TAG	Default DSCP value	

- 5) Configure a protocol to distinguish packet types.
 - protocol [PROTOCOL]

Parameter	Description
PROTOCOL	Protocol configuration (none/dot1p/dscp) - none: Determine the type of every incoming packet with best effort. - dot1p: Judge the packet type by checking the 802.1p field of an incoming packet. - dscp: Judge the packet type by checking the DSCP field of an incoming packet.

The packet judgment criteria are as follows: For example, if the packet type is voice, the 802.1p input value is 6 or 7 and the input range of DSCP value is 46-63. Also, if the packet type is video, the 802.1p input value is 4 or 5 and the input range of DSCP value is 24-45.

802.1p	DSCP	Packet type
6, 7	46~63	voice
4, 5	24~45	video
0, 3	0~7, 16~23	best effort
1, 2	8~15	background

6) To check the configured policy and QoS parameter information per packet, use the 'show 80211a[|80211bg] gos policy' command.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Radio>** \rightarrow **<802.11a/n>** or **<802.11b/g/n>** \rightarrow **<QoS>** menu in the sub-menus.

- 1) Select one out of None/Default/User Priority in the 802.1P POLICY drop-down list of Tagging Policy.
- 2) To disable a DSCP policy in the DSCP POLICY, select Disable.
- 3) To enable a DSCP policy in the DSCP POLICY, select Enable.
 - a) Select one out of Inner Packet/Default Value in the OUTER DSCP drop-down list.
 - b) Select one out of No Mark/Default Value in the INNER DSCP drop-down list.
- 4) Select one out of None/802.1p/DSCP in the PROTOCOL drop-down list.
- 5) Enter 802.1p or a DSCP value into the QoS Default Values.
- 6) Click the **<Apply>** button to apply.

6.2.2.2 Wireless Section

The system can provide QoS service in a wireless section for each AP downward packet type (voice, video, best effort, background). You can configure 802.1p and DSCP tag which are the criteria used to select access category.

Configuration using CLI

1) Go to configure \rightarrow QoS mode of a wireless section of CLI.

```
APC# configure terminal
APC/configure# [80211a/80211bg] qos
APC/configure/80211a/qos#
```

- 2) Configure 802.1p or DSCP tag value to use for a packet type.
 - ap-tags [PACKET_TYPE] [802.1P TAG] [DSCP TAG]

Parameter	Description
PACKET_TYPE	Packet type configuration (voice/video/best_effort/background)
802.1P_TAG	802.1p configuration
DSCP_TAG	DSCP tag configuration

3) To check the QoS parameter information of a configured AP, use the 'show 80211a [80211bg] gos ac-profile [PACKET TYPE]' command.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Radio>** \rightarrow **<802.11a/n>** or **<802.11b/g/n>** \rightarrow **<QoS>** menu in the sub-menus.

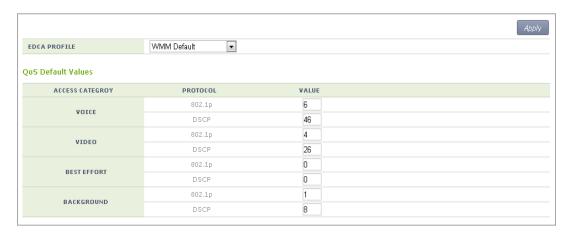


Figure 129. QoS configuration of AP (wireless section)

In the Access Point tab, enter 802.1p or a DSCP value into the QoS Default Values. Click the **<Apply>** button to apply.

6.2.3 Configuring QoS Profile of a Specific Terminal

You can configure a QoS profile that is applied to a specific wireless terminal. This QoS profile is applied from the RADIUS server of a wireless terminal during authentication.

Configuration using CLI

1) Go to configure \rightarrow QoS profile configuration mode of CLI.

```
APC# configure terminal

APC/configure# qos profile name>
APC/configure/qos Samsung #
```

- 2) Configure 802.1p and a DSCP value that will be used for each access category.
 - ac [AC] [802.1P_TAG] [DSCP_TAG]

Parameter	Description
AC	Access Category(AC_VO/AC_VI/AC_BE/AC_BK)
802.1P_TAG	802.1p configuration (range: 0-7)
DSCP_TAG	DSCP tag configuration (range: 0-63)

- 3) Configure the brief information of a profile.
 - description [DESCRIPTION]

Parameter	Description
DESCRIPTION	Profile description

- 4) Configure maximum allowed 802.1p priority value used in the Traffic Identifier (TID) field of AP QoS packet.
 - max-dot1p <802.1p tag>

Parameter	Description
802.1P_TAG	Maximum allowed 802.1p configuration (range: 0-7)

5) To check the configured QoS profile information, use the 'show qos profile' command.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<User QoS>** menu in the sub-menus. To create a QoS profile to apply to a terminal, click the **<Add>>** button in the initial window.

The QoS addition window consists of the following QoS parameters. By entering each QoS parameter, you can configure the QoS profile of a specific terminal or configure the usage control function for each user.

Figure 130. Configuring QoS profile of a specific terminal

- ID: ID (range: 1-16)
- PROFILE NAME: Profile name
- DESCRIPTION: Profile description
- MAX. DOT1P TAG: Maximum allowed 802.1p tag (range: 0-7)
- PER-USER UPSTREAM BANDWIDTH CONTRACT: Maximum upward usage (range: 0-450000)
- PER-USER DOWNSTREAM BANDWIDTH CONTRACT: Maximum downward usage (range: 0-450000)
- VOICE/VIDEO/BEST EFFORT/BACKGROUND: Enter 802.1P TAG (range: 0-7) and DSCP TAG (range: 0-64) for each item.

6.2.4 Voice Optimization Configuration

The APC configures an EDCA parameter value that is optimized for voice service to an AP in real-time.

Configuration using CLI

1) Go to configure \rightarrow radio evo mode to configure of CLI.

```
APC# configure terminal
APC/configure# [80211a|80211bg] cvo
APC/configure/80211a/cvo#
```

- 2) Enable or disable the function.
 - [no] enable
- 3) To check the configured information, use the 'show 80211a cvo config' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Radio>** \rightarrow **<802.11a/n>** or **<802.11b/g/n>** \rightarrow **<General>** menu in the sub-menus.

Figure 131. Configuring voice optimization

To enable Controlled Voice Optimization (CVO), select Enable in the CONTROLLED VOICE OPTIMIZATION. To disable it, select Disable.

6.3 802.11h Configuration

The APC supports the configuration and transmission power limitation for the Dynamic Frequency Selection (DFS) function in an AP. When the AP detects radar, an event is sent to the WEM and a detouring channel can be configured in the AP.

Configuration using CLI

For channel switching announcement related configuration and power constraint value configuration in an AP, execute the command as follows:

1) Go to configure \rightarrow 80211h configuration mode of CLI.

```
APC# configure terminal
APC/configure# 80211h
APC/configure/80211h#
```

- 2) Configure the 802.11h information.
 - channel-switch [MODE] [RESTRICTION] [SWITCH COUNT]

Parameter	Description
MODE	Whether the switching announcement function is enabled/disabled
RESTRICTION	Whether the channel packet transmission restriction mode is enabled (disable/enable)
SWITCH COUNT	Waiting time until channel switching announcement

- 3) Configure the transmission power of a wireless terminal.
 - power-constraint [VALUE]

Parameter	Description
VALUE	Transmission power(0-31 dB)

4) To check the configuration information, use the 'show 80211h configuration' command.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Radio>** \rightarrow **<802.11a/n>** \rightarrow **<802.11h>** menu in the sub-menus.

Figure 132. Configuring 802.11h

- POWER CONSTRAINT: Power constraint value (0-100)
- CHANNEL SWITCH: Enables channel switch announcement.
- RESTRICTION MODE: Configures transmission restriction.
- CHANNEL SWTICH COUNT: Enter a waiting time until channel switching announcement. Target Beacon Transmission Times (TBTT)

6.4 Country Code

You can use a country code to restrict the number of channels that can be used in an AP and the maximum transmission power of each channel.

Configuration using CLI

To configure the country code function, go to country mode first by executing the following command.

```
APC# configure terminal
APC/configure# country
APC/configure/country#
```

[Global Country Code Configuration]

If you configure a global country code, the country code can be specified to all the connected APs at the same time. The command is shown below.

set-global [COUNTRY_CODE] [VALUE]

Parameter	Description
COUNTRY_CODE	Country code to configure
VALUE	Environment configuration (both/outdoor/indoor/none)

To check the configuration information, use the 'show country global-config' command.

[AP Country Code Configuration]

To configure a country code, execute the command as follows:

• set-ap [AP_ID] [COUNTRY_CODE] [VALUE]

Parameter	Description
AP_ID	AP ID (range: 1-500)
COUNTRY_CODE	Country code to configure
VALUE	Environment configuration (both/outdoor/indoor/none)

To check the configuration information, use the 'show country ap-config [AP_ID]' command.

[Editing Country Code]

You can add or delete an operation channel per country and change maximum transmission power per channel.

The command used to add or delete a channel per country is shown below.

- add-channel [COUNTRY_CODE] [CHANNEL_NUMBER] [MAX_TX_POWER]:
 Adds a channel.
- del-channel [COUNTRY_CODE] [CHANNEL_NUMBER]: Deletes a channel.

Parameter	Description
COUNTRY_CODE	Country code to configure
CHANNEL_NUMBER	Channel to configure.
MAX _TX_POWER	Maximum transmission power per channel.

The command used to change maximum transmission power value of a channel for a specific country code is shown below.

• max-tx-power [COUNTRY_CODE] [CHANNEL_NUMBER] [MAX_TX_POWER]

Parameter	Description
COUNTRY_CODE	Country code to configure
CHANNEL_NUMBER	Channel to configure.
MAX _TX_POWER	Maximum transmission power per channel.

To check the configuration information, use the 'show country information [COUNTRY_CODE]' command.

Parameter	Description
COUNTRY_CODE	Country code to configure

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** \rightarrow **<Country>** menu in the sub-menus.

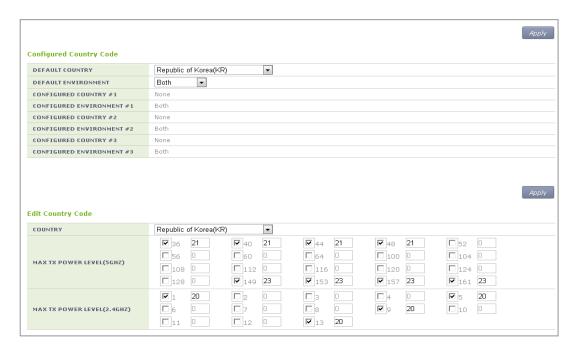


Figure 133. Country code window (1)

[Global Country Code Configuration]

- Select a country in the DEFAULT COUNTRY drop-down list of Configured Country Code item. (Only an authenticated country code is supported.)
- 2) Select an environment in the DEFAULT ENVIRONMENT drop-down list.
 - Both: The terminal operation environment includes all the environments.
 - Outdoor: The terminal operation environment is outdoor.
 - Indoor: The terminal operation environment is indoor.
 - Non-country: A terminal is operating under non-country entity.
- 3) Click the **<Apply>** button to apply.

[Editing Country Code]

In the Edit Country Code item, you can add or delete an operation channel per country or change maximum transmission power per channel.

- Select a country in the COUNTRY drop-down list of Edit Country Code item.
 (Only an authenticated country code is supported.)
- 2) Select a channel to add in the MAX TX POWER LEVEL (5 GHZ/2.4 GHZ) and enter maximum transmission power level (0-30).
- 3) In the MAX TX POWER LEVEL (5 GHZ/2.4 GHZ), unselect a channel to delete.
- 4) Click the **<Apply>** button to apply.

[AP Country Code Configuration]

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Access Points> → <General>** menu in the sub-menus.

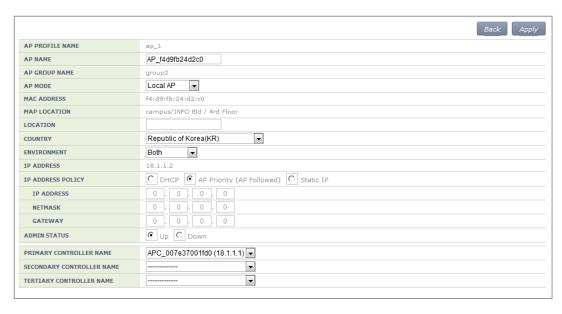


Figure 134. Country code window (2)

After selecting COUNTRY and ENVIRONMENT, click the **<Apply>** button.

CHAPTER 7. WLAN Additional Services

In this chapter, how to configure WLAN additional services such as wireless terminal management, spectrum analysis, Call Admission Control (CAC) and Radio Resource Management (RRM), etc. is described.

7.1 Managing Wireless Terminal

7.1.1 Information Retrieval Functions

Configuration using CLI

Using the following command, you can retrieve the information of a wireless terminal being serviced by the APC.

- show station summary: When you enter this command, the summary information of all the wireless terminals connected to the APC is retrieved.
- show station summary ap [AP_ID]: The information of wireless terminals of each AP is retrieved.
- show station summary bssid [BSSID_ID]: The information of wireless terminals of each BSSID is retrieved.
- show station summary wlan [WLAN_ID]: The information of wireless terminals of each WLAN is retrieved.
- show station detail [MAC_ADDRESS]: The detail information of a wireless terminal that has a specific MAC address is retrieved.
- show station stats ap-80211-stats [MAC_ADDRESS]: The WI-FI statistics information of a wireless terminal is retrieved.
- show station association history [MAC_ADDRESS]: The connection history of a wireless terminal is retrieved.
- show station stats debug all: The debug statistics information of a wireless terminal is retrieved.
- show station stats management_frame all: The debug statistics information of a wireless terminal is retrieved.

In the menu bar of **<WEC Main window>**, select **<Monitor>** and then select the **<Stations>** menu in the sub-menus. The brief information of each station is displayed in the window.

To check the detail information of a specific station, click the MAC information of the specific station in the Stations window list.

Figure 135. Information viewing window

7.1.2 Connection History related Configuration

You can configure maximum value for the connection history of a wireless terminal that will be managed in the APC.

• station number-of-assoc-tracking [COUNT]

Parameter	Description
COUNT	Maximum number of association tracking

7.2 Handover Management

The handover releases a connection with an existing AP and connects to a new AP. It provides seamless wireless LAN connection to a wireless terminal. The APC provides both 802.11 standard handover and Samsung's unique AirMove (Network Controlled Handover) handover.

7.2.1 Connection History Information

Use the 'show station association history [MAC_ADDRESS]' command to check the handover history information of a specific wireless terminal connected to the APC.

7.2.2 AirMove Configuration

Unlike the 802.11 standard handover where a wireless terminal performs the handover function by itself, the AirMove handover is performed by the collaboration between wireless terminals compatible with the APC. Therefore, the packet loss or handover time is optimized. Some Samsung smartphones such as Galaxy S2 or S3, etc. provide the AirMove function.

Configuration using CLI

To configure the AirMove related function, execute the following command to go to the handover configuration mode.

WEC8500# configure terminal
WEC8500/configure# handover

[Handover Option Configuration]

• handover [OPTION] [OPTION_DETAIL]

AirMove Configuration Item	Description
operation mode	Operation mode configuration - OPTION: opmode
	- OPTION_DETAIL: Each mode (VoIP/STA)
buffered-forwarding mode	Configures whether to use the buffered forwarding function OPTION: fwd-buffering - OPTION_DETAIL: Enable/Disable
decision delta	Configures the threshold of RSSI difference between a serving AP and a target AP OPTION: decision-delta - OPTION_DETAIL: Threshold (dBm)
scan time on channel	Configures scanning time of a wireless terminal per channel option: scan-time-channel - OPTION_DETAIL: Time (ms)

AirMove Configuration Item	Description
scan interleaving time	Configures the scanning interval of a wireless terminal OPTION: scan-time-interleave - OPTION_DETAIL: Time (ms)
Service time in scanning period	Configures a period when an wireless terminal transmits/receives an actual data traffic after scanning OPTION: scan-time-service - OPTION_DETAIL: Time (ms)
scan report level	Configures the threshold of a scan report that will be transmitted from an AP to the APC. - OPTION: scan-report-level - OPTION_DETAIL: scan report level (dBm)
Numbers of handover scan attempts per channel	Configures the scanning times of a wireless terminal per channel OPTION: number-of-proreq - OPTION_DETAIL: Number of times
Number of channels for which scan is attempted	Configures the number of channels a wireless terminal will scan at a time. - OPTION: number-of-channel - OPTION_DETAIL: Number of channels
scan trigger level	RSSI intensity at which a wireless terminal starts channel scanning - OPTION -trigger-level - OPTION_DETAIL: RSSI (dBm)
station decision delta	Configures the threshold of RSSI difference, measured in a wireless terminal, between a serving AP and a target AP. If the threshold is exceeded, a wireless terminal performs its handover. - OPTION: station-decision-delta - OPTION_DETAIL: Threshold (dBm)

An example of using the command for each configuration item is as follows:

```
WEC8500/configure# handover opmode APP
WEC8500/configure# handover buffered-forwarding enable
WEC8500/configure# handover decision-delta 10
WEC8500/configure# handover scan-time-channel 10
WEC8500/configure# handover scan-time-interleave 1000
WEC8500/configure# handover scan-time-service 200
WEC8500/configure# handover scan-report-level -90
WEC8500/configure# handover number-of-proreq 3
WEC8500/configure# handover number-of-channel 4
WEC8500/configure# handover scan-trigger-level -65
WEC8500/configure# handover station-decision-delta 10
```

To check the configuration information, use the 'show handover configuration' command.

[AirMove Enable/Disable Configuration]

The AirMove is enabled by default, so use the following command to disable it.

no handover mode NCHO

To check the configuration information, use the 'show handover configuration' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Mobility Management>** → **<Handover>** menu in the sub-menus.

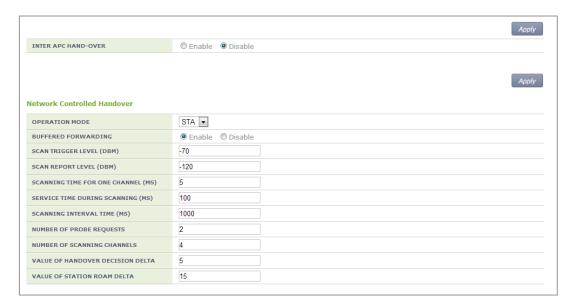


Figure 136. Handover window

You can enable or disable the intra handover function by selecting Enable/Disable in the INTER APC HAND-OVER item. After configuring a value, click the **<Apply>** button to apply.

7.2.3 Inter APC Handover Configuration

The Inter APC handover is a technology that supports handover among several APC systems. Depending on network configuration, the Inter APC L3 handover and Inter APC L2 handover services are provided.

By using the clustering service, you can configure several APC systems into a single group.

Configures whether to use the Inter APC handover.

The default value of Inter APC handover is not configured.

• handover inter-apc enable

To check the configuration information, use the 'show handover configuration' command.

7.3 Call Admission Control (CAC) Configuration

The CAC function is provided to protect existing calls from the calls incoming to a wireless LAN. The APC does not allow an additional call when maximum allowed number of calls per radio is reached.

7.3.1 SIP ALG Configuration

To make Call Admission Control (CAC) working, the Session Initiation Protocol (SIP) Application Layer Gateway (ALG) function must be enabled. The SIP ALG analyzes a SIP packet and forwards VoIP communication status to the CAC.

Configuration using CLI

The SIP ALG related commands are as follows:

- sipalg enable: Configures whether to enable the SIP ALG function.
- sipalg sip-error-resp-enable(SIP ERROR RESPONSE): Configures how to reject a received call when maximum allowed number of calls is exceeded.
 - Disable (default): No response for a received call connection request message.
 The received message is not forwarded to the called side.
 - Enable: Rejects by transmitting 503 Service Unavailable SIP response for a received call connection request message. The received message is not forwarded to a called side.
- sipalg sip-detect-long-call-enable (SIP DETECT LONG DURATION CALL): Configures whether to delete an internal resource by detecting abnormal remaining calls. The values configured in the below two timers are used to judge an abnormal remaining call.
 - SIP No Answer Timeout (SIP Long Call Setuptimer): Maximum allowed time of the status before call connection (range: 300-3600, default: 600)
 - SIP Connect Timeout (SIP Long Call EstblshTimer): Maximum allowed time for a connected call (range: 3600-86400, default: 7200)
- sipalg sip-long-call-timeout (SIP NO ANSWER TIMEOUT, SIP CONNECT TIMEOUT): Configures a time required to judge an abnormal remaining call and enter SIP No Answer Timeout and SIP Connect Timeout in order.

To enable SIP ALG, execute the command as follows:

1) Go to configure mode of CLI.

APC# configure terminal

2) Enable the SIP ALG.

APC/configure# sipalg enable

3) To check the configuration information, use the 'show sipalg configuration' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Controller>** → **<General>** menu in the sub-menus.

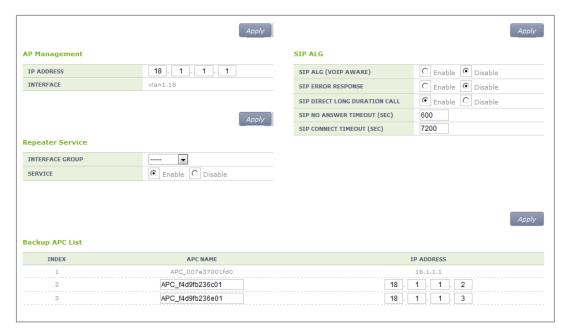


Figure 137. SIP ALG configuration window

After configuring SIP ALG that is a voice CAC related configuration in the SIP ALG, click the **<Apply>** button.

7.3.2 Voice CAC Configuration

To protect existing calls, the voice CAC function configures maximum allowed number of calls and rejects any call request when the maximum number is exceeded. You can configure the number of marginal voice calls for handover.

Configuration using CLI

For voice CAC configuration, execute the command as follows:

1) Go to configure → voice CAC mode of a wireless section of CLI.

```
APC# configure terminal
APC/configure# [80211a/80211bg] cac voice
APC/configure/80211a/cac/voice#
```

- 2) Enable or disable the voice CAC function.
 - acm [MODE]

Parameter	Description
MODE	Enables or disables the voice CAC function
	- enable: Enable
	- disable: Disable

- 3) Configure maximum allowed number of voice calls.
 - max-calls [VALUE]

Parameter	Description
VALUE	Maximum allowed number of voice calls.

- 4) Configure the number of marginal voice calls considering the handover.
 - reserved-ho-calls [VALUE]

Parameter	Description
VALUE	Number of marginal voice calls considering the handover

5) To check the configured voice CAC information, use the 'show [80211a | 80211bg] cac voice configuration' command.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Radio>** \rightarrow **<802.11a/n>** or **<802.11b/g/n>** \rightarrow **<Admission Control>** menu in the submenus.

Figure 138. Admission control configuration of 802.11a/n

After configuring the below item in the Call Admission Control, click the **<Apply>** button.

- ADMISSION CONTROL: Configures the CAC function.
- MAX CALLS: Maximum number of allowed calls (range: 2-30)
- HANDOVER CALLS: Number of marginal calls considering handover (range: 0-10) The number of allowed calls is MAX CALLS-HANDOVER CALLS.
- MINOR ALARM THRESHOLD: Configures a threshold that generates a Minor alarm (range: 0-15)
 - Enter '0' to prevent the alarm.
- MAJOR ALARM THRESHOLD: Configures a threshold that generates a Major alarm (range: 0-30)
 - Enter '0' to prevent the alarm.

7.3.3 Video CAC Configuration

To protect existing video calls, the video CAC function configures the maximum allowed number of video calls and rejects any call request when the maximum number is exceeded. You can configure the number of marginal calls for handover.

Configuration using CLI

For video CAC configuration, execute the command as follows:

1) Go to configure \rightarrow video CAC mode of a wireless section of CLI.

```
APC# configure terminal

APC/configure# [80211a/80211bg] cac video

APC/configure/80211a/cac/video#
```

- 2) Enable or disable the video CAC function.
 - acm [MODE]

Parameter	Description
Mode	Enables or disables the CAC function
	- enable: Enable
	- disable: Disable

- 3) Select a video CAC method.
 - method [method]

Parameter	Description
method	Select a video CAC method (static/chan_util)
	- static: Based on video calls
	- chan_util: Based on channel usage

- 4) Configure the maximum allowed number of calls.
 - max-calls [VALUE]

Parameter	Description
VALUE	Maximum allowed number of video calls

- 5) Configure the number of marginal calls with consideration for handover.
 - reserved-ho-calls [VALUE]

Parameter	Description
VALUE	Number of marginal calls with consideration for handover

- 6) Configure the maximum allowed usage of channels.
 - max-chan-util [VALUE]

Parameter	Description
VALUE	Maximum allowed usage of channels

- 7) Configure the usage of marginal channels with consideration for handover.
 - reserved-ho-chan-util [VALUE]

Parameter	Description
VALUE	Usage of marginal channels with consideration for handover

8) You can view the video CAC information you configured by executing the 'show [80211a | 80211bg] cac video configuration' command.

Configuration using Web UI

From the menu bar of **<WEC Main Window>**, select **<Configuration>** and then select **<Radio>** \rightarrow **<802.11a/n>** or **<802.11b/g/n>** \rightarrow **<Admission Control>** in the submenus.

Figure 139. 802.11a/n Admission Control Configuration Window

After configuring the items below in the Call Admission Control, click the **<Apply>** button.

- ADMISSION CONTROL: Configure the video CAC function
- METHOD: Select a video CAC method (static/chan_util)
- MAX CALLS: Maximum allowed number of calls (range: 2-30)
- HANDOVER CALLS: Number of marginal calls with consideration for handover (range: 0-8)

The maximum allowed number of calls becomes MAX CALLS-HANDOVER CALLS.

- MAX CHANNEL UTILIZATION (%): Maximum allowed usage of channels (range: 5-85)
- HANDOVER CHANNEL UTILIZATION (%): Usage of marginal channels with consideration for handover (range: 0-25)

7.4 Radio Resource Management (RRM)

RRM performs automatic setup function for AP's channel and Tx Power. RRM is functionally divided into Dynamic Channel Selection (DCS), Dynamic Power control (DPC), and Coverage Hole Detection and Control (CHDC). The DCS automatically sets the channels of the APs. The DPC DCS automatically sets the Tx Power of the AP. The CHDC adjusts the Tx Power when Coverage Hole occurs.

7.4.1 RRM Configuration

This section describes the settings for using the RRM function and the cluster configuration.

Configuration using CLI

To configure each function, execute the command as follows:

1) Go to configure \rightarrow rrm configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# rrm
```

2) Enable RRM. The 'no' parameter is used to disable RRM. DCS, DPC and CHDC, which are functions of RRM, can run only if the RRM is enabled.

```
WEC8500/configure/rrm# enable
```

3) In the cluster environment, set the same RF Group Name to all the connected APCs. A name must consist of up to 15 characters.

```
WEC8500/configure/rrm# rf-group-name [Name]
```

4) Configure priorities between the neighbor list of each Wlan. Go to the wireless section the configuration of which you want to change and then enter neighbor-list setup mode. You can select between rssi and handover, and the default value is rssi.

```
WEC8500/configure/rrm# 80211a
WEC8500/configure/rrm/80211a# neighbor-list
WEC8500/configure/rrm/80211a/neighbor-list# wlan-neighbor-priority
rssi/handover
```

5) To check the configured information, use the 'show rrm config-summary' command.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Radio>** \rightarrow **<802.11a/n/ac>** or **<802.11b/g/n>** \rightarrow **<RRM>** menu in the sub-menus. Enable or disable the RRM service at the top of the menu. The RRM can be set in either 802.11a/n/ac screen or 802.11b/g/n screens. Configure priorities between the neighbor list of each Wlan at the bottom of the menu.

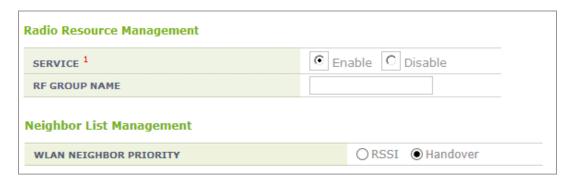


Figure 140. RRM configuration window

7.4.2 DPC Configuration

This section describes the setting options of the DPC function which automatically sets the Tx Power of the AP.

Configuration using CLI

1) Go to configure \rightarrow rrm configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# rrm
```

2) Go to the wireless section where you want to change the settings.

```
WEC8500/configure/rrm# 80211a
```

3) Set the DPC function. Enter the dpc setting mode and set it to 'enable'. Use the 'no' parameter to disable the mode. The function operates only when the RRM is set to Enable.

```
WEC8500/configure/rrm/80211a# dpc
WEC8500/configure/rrm/80211a/dpc# enable
```

4) Execute the following command to change the Received Signal Strength Indication (RSSI) threshold for neighbor AP. The default value is -70 (dBm).

```
WEC8500/configure/rrm/80211a/dpc# rssi-threshold [value]
```

5) If you need to change the RSSI threshold for the station, execute the following command. The default value is -70 (dBm). This parameter is used only in the DCS-DPC joint algorithm.

```
WEC8500/configure/rrm/80211a/dpc# rssi-threshold-for-stn [value]
```

6) Execute the following command to change the execution interval. The default value is 600 (seconds).

```
WEC8500/configure/rrm/80211a/dpc# periodic-interval [value]
```

7) Execute the following command to change the Tx Power range which is automatically set by DPC. The default minimum is 16 for 80211a and 12 for 80211b.

The default maximum is 20 for both 80211a and 80211b.

```
WEC8500/configure/rrm/80211a/dpc# txPower min [value] max [value]
```

8) Check the settings using the 'show rrm config-summary' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Radio>** \rightarrow **<802.11a/n/ac>** or **<802.11b/g/n>** \rightarrow **<RRM>** menu in the sub-menus.

Enable or disable the DPC in the SERVICE field in Dynamic TX Power Control.

Figure 141. DPC settings

7.4.3 DCS Configuration

This section describes the setting options of the DCS function which automatically sets the channel of the AP.

Configuration using CLI

1) Go to configure \rightarrow rrm configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# rrm
```

2) Go to the wireless section where you want to change the settings.

```
WEC8500/configure/rrm# 80211a
```

3) Set the DCS function. Enter the dcs setting mode and set it to 'enable'. Use the 'no' parameter to disable the mode. The function operates only when the RRM is set to Enable.

```
WEC8500/configure/rrm/80211a# dcs
WEC8500/configure/rrm/80211a/dcs# enable
```

4) Configure whether to apply the DCS-DPC joint algorithm. If the 'no' parameter is selected, the configuration is cleared.

```
WEC8500/configure/rrm/80211a/dcs# joint-algo-enable
```

5) Execute the following command to change the execution interval. The default value is 120 (seconds).

```
WEC8500/configure/rrm/80211a/dcs# periodic-interval [value]
```

6) Execute the following command to change the Channel Utilization threshold. The default value is 80 (%).

```
WEC8500/configure/rrm/80211a/dcs# channel-utilization-threshold [value]
```

7) Execute the following command to change the My Utilization threshold. The default is 10 (%) for 802.11a and 40 (%) for 802.11b.

```
WEC8500/configure/rrm/80211a/dcs# my-utilization-threshold [value]
```

8) Execute the following command to set the anchor time. The default value is start time 4, end time 5. If both start time and end time are set to the same time, Anchor Run function is disabled.

```
WEC8500/configure/rrm/80211a/dcs# anchor-time start [value] end [value]
```

9) Execute the following command to change the channels that is automatically set by the DCS. Use the 'no' parameter to disable the mode.

```
WEC8500/configure/rrm/80211a/dcs# channel [value]
```

10) Execute the following command to use the Delayed Channel Change function. To disable the configuration, enter the 'no' parameter. The default is Disable. The Delayed Channel Change function delays channel change instead of changing it immediately when a channel becomes busy due to channel utilization. If the anchor time is not configured, the default value is used at 4 o'clock.

```
WEC8500/configure/rrm/80211a/dcs# delayed-channel-change
```

11) To use the Aware Option function, execute the following command. To disable the configuration, enter the 'no' parameter. The Aware Option does not change a channel if there is a specific condition. Therefore, three functions are provided based on whether there is a voice, the association of a station, or traffic in a station. The default is that only the Voice Aware function is enabled. The Station Aware function specifies the number of stations at the same time.

```
WEC8500/configure/rrm/80211a/dcs# aware-option voice
WEC8500/configure/rrm/80211a/dcs# aware-option station [station count]
WEC8500/configure/rrm/80211a/dcs# aware-option traffic
```

12) Check the settings using the 'show rrm config-summary' command.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Radio>** \rightarrow **<802.11a/n/ac>** or **<802.11b/g/n>** \rightarrow **<RRM>** menu in the sub-menus. Enable or disable the DCS in the SERVICE field in Dynamic Channel Selection.

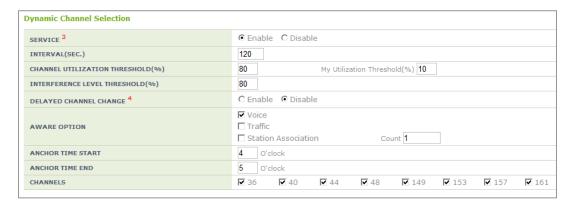


Figure 142. DCS settings

7.4.4 CHDC Configuration

This section describes the setting options of the CHDC function which adjusts the Tx Power when Coverage Hole occurs.

Configuration using CLI

1) Go to configure \rightarrow rrm configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# rrm
```

2) Go to the wireless section where you want to change the settings.

```
WEC8500/configure/rrm# 80211a
```

3) Set the CHDC function. Enter the chdc setting mode and enable it Use the 'no' parameter to disable the mode. The function operates only when the RRM is enabled.

```
WEC8500/configure/rrm/80211a# chdc
WEC8500/configure/rrm/80211a/chdc# enable
```

4) To use the pre-alarm function, operator can collect the statistics from an AP. After entering into the chdc configuration mode, complete configuration (statsCollectEnable). To disable the configuration, enter the 'no' parameter. All the functions for pre-alarm are available only when both RRM and CHDC are enabled.

```
WEC8500/configure/rrm/80211a/chdc# statsCollectEnable
Success: DBI set for DPC 11A Stats collect Enable : 1
```

5) If a coverage hole is estimated from the statistics for the pre-alarm function, a warning can be transmitted. After entering into the chdc configuration mode, complete configuration (statsWarningEnable). To disable the configuration, enter the 'no' parameter.

```
WEC8500/configure/rrm/80211a/chdc# statsWarningEnable
Success: DBI set for DPC 11A Stats Warning Enable : 1
```

6) If a coverage hole is estimated from the statistics for the pre-alarm function, CHDC can be executed. After entering into the chdc configuration mode, complete configuration (statsActionEnable). To disable the configuration, enter the 'no' parameter.

```
WEC8500/configure/rrm/80211a/chdc# statsActionEnable Success: DBI set for DPC 11A Stats Action Enable : 1
```

7) Configure the minimum value of statistics Failed Client Count for the pre-alarm function. It can be 1~75.

```
WEC8500/configure/rrm/80211a/chdc# min-failed-client-count 70 CHDC 802.11a : Set Minimum Failed Client Count Success
```

8) Configure the percentage of statistics Failed Client Count for the pre-alarm function. It can be 10~35.

```
WEC8500/configure/rrm/80211a/chdc# percent-failed-client-count 20 Success: CHDC 802.11a : Set Percentage of Failed Client Count Success
```

9) Configure the threshold of RSSI that will be added to the statistics Failed Client Count for the pre-alarm function. Configure it for Voice Frame and Data Frame. It can be - 90~-20 (dB).

```
WEC8500/configure/rrm/80211a/chdc# rssi-threshold data -75
Success: CHDC 802.11a : Set RSSI THRESHOLD(-75) Successful
WEC8500/configure/rrm/80211a/chdc# rssi-threshold voice -75
Success: CHDC 802.11a : Set RSSI THRESHOLD(-75) Successful
```

10) Configure a value that requests an interval to an AP to collect statistics for the prealarm function. The default is 120 seconds and it can be 30~3600 seconds.

```
WEC8500/configure/rrm/80211a/chdc# statsCollectInterval 60
This Value: 60 is already set
```

11) Configure the minimum value of the idle time-out count of statistics for the pre-alarm function. This parameter can have a value ranging from 0 to 1,000.

```
WEC8500/configure/rrm/80211a/chdc# min-idle-timeout-count 10 CHDC : Set Minimum IdleTimeOutCnt Success
```

12) To check the configured information, execute the 'show rrm config-summary' command. In the 'Coverage Hole Detection and Control', operator can check the current status of all the configured values.

```
WEC8500/configure/rrm/80211a/chdc# show rrm config-summary
RRM Status ..... Enabled
  Rf Group Name ... Group
                                        80211a/n
                                                          80211b/g/n
  Dynamic Power Control -----
                          .. Enabled
.. follow DCS
   DPC Enable
                                    .. follow DCS
                                                          follow DCS
   Periodic Interval
   RSSI Threshold for Neighbor AP .. -70
RSSI Threshold for Station .. -70
                                                           -70
                                                           -70
                                    .. 17 - 20 14 - 20
   TX Power Min. - Max.
Minimum Number of AP
   Elapsed Time After Last Run .. 36

Dynamic Channel Selection
  Dynamic Channel Selection -----
                                .. Enabled Enabled
   DCS Enable
   DCS-DPC Joint Algorithm Enable .. Enabled
                                                          Enabled
   Periodic Interval .. 60
                                                          60
   Anchor Time Stop .. 23
Interference Level Threshold .. 80
Channel Utilization Three
My Utilization
                                                          23
   Channel Utilization Threshold .. 99
My Utilization Threshold .. 99
                                                          80
                                                          99
   My Utilization Threshold .. 10 40
Delayed Channel Change .. Enabled Enabled
Aware-Option: Voice Call .. Enabled Enabled
Aware-Option: Traffic .. Enabled Enabled
   Aware-Option: Station Assoc. .. Enabled Enabled Station Count for Station Aware 1
   Station Count for Station Aware .. 1
   Elapsed Time After Last Run .. 36
  Coverage Hole Detection and Control -----
                               .. Enabled Enabled
   CHDC Enable
   Statistics Collect Enable .. Enabled Statistics Warning Enable .. Enabled
                                                          Enabled
                                                          Enabled
```

Statistics Action Enable	 Enabled	Enabled
RSSI Voice Threshold	 -75	-75
RSSI Data Threshold	 80	-30
Minimum Failed Client Count	 1	1
Percentage Min. Failed Count	 25	25
Minimum Idle time-out Count	 10	10
Statistics Collect Interval	 120	60
Neighbor List Management	 	
WLAN Neighbor Priority	 Handover	Handover

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Radio>** \rightarrow **<802.11a/n/ac>** or **<802.11b/g/n>** \rightarrow **<RRM>** menu in the sub-menus.

In the Coverage Hole Detection Control window, operator can enable or disable the CHDC and configure the values using the same functions as the CLI.

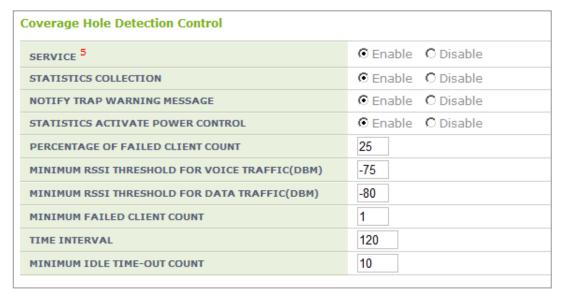


Figure 143. CHDC settings

7.4.5 Sleeping Cell Detection

This is a function that allows the APC to detect the statuses of APs that are not performing basic functions and transmit an alarm/warning.

Configuration using CLI

1) Enable/Disable: Configure whether the silent alarm detection function will be performed. (Enable: function performing, Disable: function not performing)

```
WEC8500/configure/rrm# sleep-cell-detect
WEC8500/configure/rrm/sleep-cell-detect# enable
```

 APC Threshold: Minimum number of connected users throughout the whole APC for sleeping cell detection.

If the total number of STA associations is equal to or smaller than the APC threshold, the day is judged as a holiday and consequently the sleeping cell detection is not performed.

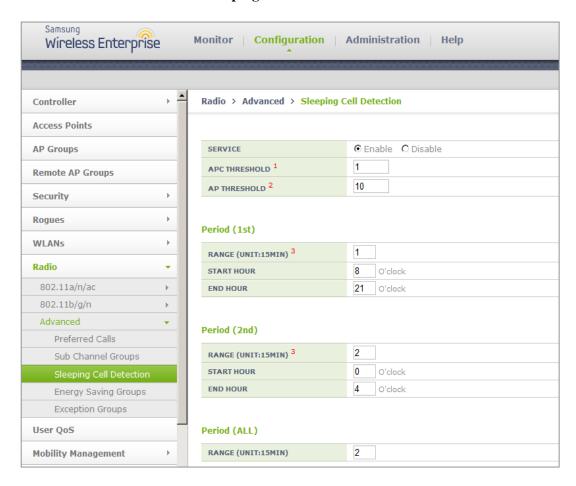
```
WEC8500/configure/rrm/sleep-cell-detect# apc-threshold
```

3) AP Threshold: Minimum number of users connected to an AP for sleeping cell detection. If the number of STA associations of an AP is equal to or smaller than the AP threshold, a silent alarm occurs.

```
WEC8500/configure/rrm/sleep-cell-detect# ap-threshold
```

4) PERIOD_1ST: Start and end times of sleeping cell detection for Specific Period 1. (For a full day, set the start and end times as the same time.)

```
WEC8500/configure/rrm/sleep-cell-detect# period 1st
```


5) PERIOD_2ND: Start and end times of sleeping cell detection start for Specific Period 2. (For a full day, set the start and end times as the same time.)

```
WEC8500/configure/rrm/sleep-cell-detect# period 2nd
```

6) PERIOD_ALL: Start and end times of sleeping cell detection for periods other than Specific Periods 1 and 2.

```
WEC8500/configure/rrm/sleep-cell-detect# period all
```

From the menu bar of **<WEC Main Window**>, select **<Configuration>** and then select **<Radio>** \rightarrow **<Advanced>** \rightarrow **<Sleeping Cell Detection>** in the submenus.

7.4.6 Energy Saving Groups

- The purpose is to reduce the power consumption of the APC by turning off the RF radios of APs without any connected STA at a specific time when the number of STAs connected to the APC drops drastically.
- The APs of the APC are divided into the active group in which APs are always in operation and the standby group in which the RF radios of APs are turned off. When the standby group (energy saving group) is defined, the APC recognizes the remaining APs as the active group. You can define up to 10 groups.

Configuration using CLI

1) Enable/Disable: Configure whether the energy saving function will be performed. (Enable: function performing, Disable: function not performing)

```
WEC8500/configure/rrm# energy-saving-group 1
WEC8500/configure/rrm/energy-saving-group 1# enable
```

2) APC Threshold: Maximum number of connected users throughout the whole APC for energy saving detection.

If the total number of STA associations is equal to or smaller than the APC threshold, the day is judged as a holiday and the energy saving function is performed according to the times set for weekends.

```
WEC8500/configure/rrm/energy-saving-group 1# apc-threshold
```

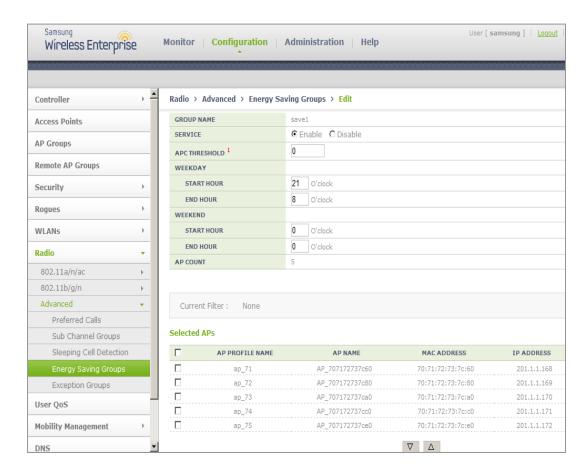
3) WEEKDAY: Start and end times of energy saving for weekdays. (For a full day, set the start and end times as the same time.)

```
WEC8500/configure/rrm/energy-saving-group 1# weekday
```

4) WEEKDEND: Start and end times of energy saving for weekends. (For a full day, set the start and end times as the same time.)

```
WEC8500/configure/rrm/energy-saving-group 1# weekend
```

5) ADD-AP: Add AP members to the energy saving group.


```
WEC8500/configure/rrm/energy-saving-group 1# add-ap
```

6) DEL-AP: Delete AP members from the energy saving group.

WEC8500/configure/rrm/energy-saving-group 1# del-ap

Configuration using Web UI

From the menu bar of <WEC Main Window>, select <Configuration> and then select <Radio> → <Advanced> → <Energy Saving Groups> → <GROUP NAME> in the submenus.

7.4.7 Energy Saving Auto Classification

The purpose of the AP without the connected STA at a specific time when the STA connected to the APC is drastically reduced is to reduce power consumption of the APC by turning off the RF radio of the AP.

The APs of the APC are classified into an active group to keep them at the operational status all the time and a standby group to make their RF radio off at the designated time. When the APC designates a standby group (energy saving group), the others are recognized as an active group.

Up to 20 groups can be designated (Same as WEC8500/WEC8050).

Energy Saving Auto Classification is not a method under which the operator configures a standby group but a method under which the system automatically classifies an energy saving group by using the analysis of each AP.

For the convenience of the operator, the existing Energy Saving Groups and Energy Saving Auto Classification functions can be used by mixture. In short, as shown in the existing method, only Energy Saving Groups or only Energy Saving Auto Classification or both can be used.

Configuration using CLI

1) Enable/Disable: Check the configuration of whether the Energy Saving Auto Classification function operates.

(Enable: Function operation, Disable: No function operation)

```
WEC8500/configure/rrm# energy-saving-auto-class WEC8500/configure/rrm/energy-saving-auto-class# enable
```

2) APC Threshold: The maximum number of all users connecting to the APC for Energy Saving Auto Classification

If the number of all STA associations is less than APC threshold, the day is considered.

If the number of all STA associations is less than APC threshold, the day is considered as a holiday and the Energy Saving Auto Classification function operates depending on the weekend setting time.

WEC8500/configure/rrm/energy-saving-auto-class# apc-threshold

3) WEEKDAY: Energy saving start/end time on a weekday (For all day, the start time and the end time are set to the same time.)

WEC8500/configure/rrm/energy-saving-auto-class# weekday


4) WEEKDEND: Energy saving start/end time on a weekend (For all day, the start time and the end time are set to the same time.)

WEC8500/configure/rrm/energy-saving-auto-class# weekend

5) UNCONDITIONAL RADIO OFF: Configure whether the AP radio is turned off unconditionally, regardless of the connection of the STA. (radio_off_unconditionally: Unconditionally off, no radio_off_unconditionally: If the STA is connected, keep the state ON.)

../configure/rrm/energy-saving-auto-class# radio off unconditionally

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select **<Radio>** \rightarrow **<Advanced>** \rightarrow **<Energy Saving>** \rightarrow **<Automatic Classification>** menus in the sub-menus.

7.5 Location Tracking

The APC tracks the location information of several terminals in a wireless LAN network based on the wireless data collected from W-EP wireless LAN APs.

To configure the location tracking function, execute the command as follows:

1) Go to configure → locationtrack configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure # locationtrack
WEC8500/configure/locationtrack #
```

2) Configure the location tracking function.

```
WEC8500/configure/locationtrack # enable
```

3) To check the configured information, execute the 'show locationtrack config' command.

- 4) Configure the MAC address of a wireless terminal for which the tracking function will be executed.
 - station [MAC_ADDRESS]
- 5) To check the location information of a wireless terminal to track, execute the 'show locationtrack station' command.

7.6 Spectrum Analysis

A non-802.11 device such as microwave oven, bluetooth, or Closed Circuit Television (CCTV), etc. deteriorates data transmitting/receiving performance because it causes interference in a wireless LAN environment. As a function that measures surrounding interference, the spectrum analysis analyzes wireless or Radio Frequency (RF) signals to resolve interference problem instantly.

7.6.1 Retrieving Spectrum Analysis Data

The spectrum analysis function of APC provides the following data.

- Sample report: Wireless capture data converted into Fast Fourier Transform (FFT)
- Duty cycle report: Channel utilization rate
- Interference report: Interference signal information

The FFT report provides the information of an AP and maximum 13 available channels and also maximum/minimum values of Received Signal Strength Indicator (RSSI) for each channel. The duty cycle report provides AP information and affected channel information. In addition, it provides duty cycle transmission data that indirectly provides channel utilization rate.

The interference report provides AP information, affected channel, or configuration information of an interferer and also interference information (RSSI or maximum/minimum frequency of an interference signal) in real-time.

Configuration using CLI

By using the following command, you can check each data.

show spectrum-analysis report [DATA] ap [AP_ID]

Parameter	Description
DATA	Spectrum analysis data type (sample/duty_cycle/interference)
AP_ID	AP ID (range: 1-500)

An example of command execution and its execution result are as follows:

FFT report

```
Operational Status..... Up
  Map Location.....
Channel Information:
  Channel Interval..... 2000 ms
  Channel..... 1 2 3 4 5 6 7 8
9 10 11 12 13
-----
Num Maximum RSSI Average RSSI
--- ------
1
   -120
           -120
          -120
 2 -120
          -120
 3 -120
 4 -120
          -120
 5 -120
          -120
          -120
 6 -120
 7 -120
          -120
          -120
  -120
          -120
9 -120
          -120
10 -120
11 -120
          -120
12 -120
          -120
          -120
13 -120
14 -120
           -120
15
  -120
           -120
           -120
16 -120
          -120
17 -120
18 -120
          -120
19 -120
          -120
20 -120
          -120
          -120
21 -120
22 -120
          -120
23 -120
           -120
24 -120
          -120
25 -120
          -120
26 -120
          -120
27 -120
           -120
28 -120
           -120
29
   -120
           -120
  -120
30
           -120
Press any key to continue (q : quit \mid enter : next line) :
```

• Duty cycle report

```
Mode..... General
 Operational Status..... Up
 Map Location.....
Affected Channels:
 Channel Interval..... 2000 ms
 Channel...... 1 2 3 4 5 6 7 8 9
10 11 12 13
Real Time Duty Cycle Report:
Current Time : 2012-06-29 00:40:13
 Channel: 1..... D: 100 %
 Channel: 2..... D: 100 %
 Channel: 3..... D: 100 %
 Channel: 4...... D: 100 %
 Channel:
     5..... D:
                         30 %
     6..... D: 100
 Channel:
 Channel:
     7..... D:
                         100
 Channel:
     8..... D:
                         100
 Channel:
     9..... D: 100
 Channel: 10..... D:
                         50 %
 Channel: 11..... D:
                         97 %
 70 %
 Channel: 13..... D: 100 %
```

Interference report

```
APC# show spectrum-analysis report interference ap 1
Interference Reporting Enabled
AP ID 1 Description:
 MAC Address.....
00:11:22:33:44:55
 Name..... AP_
01122334455
 IP Address.....
100.100.100.220
 Mode...... General
 Operational Status..... Up
 Map Location.....
Affected Channels:
 8 9 10 11 12 13
Affected Interferers:
   BlueTooth..... Enabled
   Microwave Oven..... Enabled
   802.11bgn Continuous Transmitter..... Enabled
   802.11bgn DECT-like Phone..... Enabled
```

In the menu bar of **<WEC Main window>**, select **<Monitor>** and then select the **<Interference Device>** menu in the sub-menus. You can retrieve the interference report.

Figure 144. Spectrum Analysis Data

7.6.2 Spectrum Analysis Configuration

You can configure the spectrum analysis function and also a spectrum analysis channel that will be applied to each spectrum report. The channel information is as follows:

Radio	Channel
2.4 GHz	All, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
5 GHz Low	All, 36, 40, 44, 48, 52, 56, 60, 64
5 GHz Mid	All, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136,140
5 GHz High	All, 149, 153, 157, 161, 165

To configure the spectrum analysis related function, you must go to the configuration mode of an AP for which the spectrum analysis function will be configured by executing the command as follows:

```
APC# configure terminal
APC/configure# spectrum-analysis ap 1
APC/configure/spectrum-analysis/ap 1#
```

[Enable/Disable Spectrum]

The command that enables or disables the spectrum analysis function is shown below.

• service [MODE]

Parameter	Description
MODE	Enables or disables spectrum analysis - enable: Enable (default)
	- disable: Disable

[Spectrum Analysis Report Configuration]

The command used to enable or disable each spectrum analysis data item is shown below.

configuration-request [DATA] [MODE]

Parameter	Description
DATA	Type of a report to configure (sample/duty-cycle/interference) - sample: FFT report (default: disabled) - duty-cycle: Duty cycle report (default: disabled) - interference: Interference report (default: enable)
MODE	Enables or disables each report function enable: Enable - disable: Disable

[Channel Report Interval Configuration]

The command is shown below.

• channel-interval [INTERVAL]

Parameter	Description
INTERVAL	Channel report interval (range: 1000-60000 ms, default: 1000)

[Changing Channel]

By using the following command, you can change a channel for which the spectrum analysis will be executed.

(The default is 'All' channels.)

• dot11b: 2.4 GHz wireless bandwidth

dot11aLow: 5 GHz low wireless bandwidth

• dot11aMid: 5 GHz mid wireless bandwidth

dot11aHigh: 5 GHz high wireless bandwidth

7.6.3 Interference Type Configuration

The interference type of 2.4 GHz or 5 GHz that can be detected by the W-EP wireless LAN is shown below.

Wireless bandwidth	Interference type
2.4 GHz	continuous_transmitter, cordless_phone, video_camera
5 GHz	bluetooth, continuous_transmitter, cordless_phone, microwave_oven, video_camera, zigbee

To configure an interference type, execute the command as follows:

1) Go to configure mode of CLI.

APC# configure terminal
APC/configure#

- 2) Configure an interference type. The default value of all the interference types is 'enabled'.
 - interferer 80211b zigbee: 2.4 GHz configuration
 - interferer 80211a cordless_phone: 5 GHz configuration

7.7 Controlling Usage per User

A wireless terminal can control traffic usage per user by receiving a QoS profile that specifies traffic usage (bandwidth) from the RADIUS server at the authentication stage. You can configure upward and downward usage per wireless terminal.

Configuration using CLI

The procedure of configuring a usage to a profile is as follows:

1) Go to configure mode of CLI.

APC# configure terminal

2) Create a QoS profile.

APC/configure# qos [PROFILE_NAME]
APC/configure/qos samsung#

Parameter	Description
PROFILE_NAME	Name of a QoS profile to create

- 3) Configure the downward usage in kbps.
 - bw-contract-downstream [VALUE]

Parameter	Description
VALUE	Downward usage

- 4) Configure the upward usage in kbps.
 - bw-contract-upstream [VALUE]

Parameter	Description
VALUE	Upward usage

5) To check the configured profile information, use the 'show qos profile' command.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<QoS>** menu in the sub-menus. To create a QoS profile to apply to a terminal, click the **<Add>** button in the initial window.

The QoS addition window consists of the following QoS parameters. By entering each QoS parameter, you can configure the QoS profile of a specific terminal or configure the usage control function for each user.

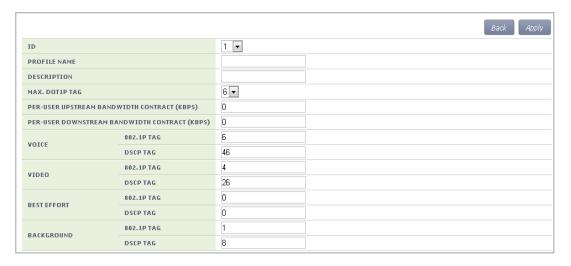


Figure 145. Controlling Usage per User

- ID: ID (range: 1-16)
- PROFILE NAME: Profile name
- DESCRIPTION: Profile description
- MAX. DOT1P TAG: Maximum allowed 802.1p tag (range: 0-7)
- PER-USER UPSTREAM BANDWIDTH CONTRACT: Maximum upward usage (range: 0-450000)
- PER-USER DOWNSTREAM BANDWIDTH CONTRACT: Maximum downward usage (range: 0-450000)
- VOICE/VIDEO/BEST EFFORT/BACKGROUND: Enter 802.1P TAG (range: 0-7) and DSCP TAG (range: 0-64) for each item.

7.8 Remote Packet Capture

APC can capture a packet exchanged between the wireless terminals on a remote PC in real-time by using the remote packet capture protocol.

To configure the remote packet capture function, you must go to the pcap mode by executing the command as follows:

```
APC# configure terminal APC/configure# pcap
```

Configuring the MAC address of a wireless terminal

Configure the MAC address of a wireless terminal whose packets will be captured.

```
APC/configure/pcap# config-filter

APC/configure/pcap/config-filter# station-mac [MAC_ADDRESS]

APC/configure/pcap/config-filter# enable-station-mac [INDEX]
```

Parameter	Description
MAC_ADDRESS	MAC address (11:22:33:44:55:66 format)
INDEX	Index number of MAC address (range: 1-10)

Configuring AP MAC address

Configure the MAC address of an AP whose packets will be captured.

```
APC/configure/pcap# config-filter

APC/configure/pcap/config-filter# ap-mac [MAC_ADDRESS]

APC/configure/pcap/config-filter# enable-ap-mac [INDEX]
```

Parameter	Description
MAC_ADDRESS	MAC address (11:22:33:44:55:66 format)
INDEX	Index number of MAC address (range: 1-10)

Configuring Filtering Mode

Capture target can be specified by configuring the filtering mode

APC/configure/pcap# filtering-mode [FILTERING MODE]

Parameter	Description
FILTERING MODE	Filtering mode - station-only: Use only the configured station MAC information.
	- ap-only: Use only the configured AP MAC information.

Starting Service

You must start the remote packet capture service to connect to a device using a program that supports the remote packet capture protocol on a remote PC.

The related commands are given below.

```
APC/configure/pcap# start-service
```

Retrieving Configuration Information

Use the 'show pcap current-config' command to retrieve the remote packet capture configuration information.

```
APC# show pcap current-config detail
- Current status : Idle
- Filtering mode : station-only
- Configured AP's MAC Information
No. MAC Addr. Filtering Matched Count
Inbound Rate Outbound Rate
______
1 F4:D9:FB:23:66:00 ----> ON
   ID Prf.
             AP Name IPv4 Addr
   _____
    2 ap_2 AP_f4d9fb236600 10.10.10.20
- Configured Station's MAC Information
No. MAC Addr. Filtering Matched Count
Inbound Rate Outbound Rate
_____
1 78:47:1D:C5:4C:85 OFF <-----
0.0
         0.0
      AP WN
      ---- ---- --------
       2 2 Ajay_2_2_4G 20.20.20.30 SE:47:59:E7 OFF <----- 0
2 FC:A1:3E:47:59:E7 OFF <-----
0.0
        0.0
      AP WN
                  SSID
                              IPv4 Addr
      ---- ----
       2 2 Ajay_2_2_4G
                             20.20.20.25
WEC8500#
```

7.9 Clustering

The clustering function comprehensively manages several APC systems in a single wireless LAN when several APC systems are used to manage a wireless LAN that cannot be managed by a single APC. The inter-APC handover function is provided by using clustering. In other words, it can provide the handover function between wireless LANs managed by different APC systems.

However, if a model is different, it is not interoperated through clustering.

Configuration using CLI

[Cluster Setting]

To use the clustering function, you must configure each APC according to the following procedure. Maximum 12 WEC8500 can be grouped in a cluster. Maximum 2 WEC8050 can be grouped in a cluster.

1) Go to configure mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure#
```

- 2) Set the interval and the number of retries to transmit the Keep-alive messages between APCs in the cluster.
 - cluster keep-alive-interval [INTERVAL]
 - cluster keep-alive-retry-count [RETRY_COUNT]

Parameter	Description
INTERVAL	Interval to transmit the Keep-alive message (Unit: s, range: 1-30, default: 10)
RETRY_COUNT	Maximum number of the transmission retries when there is no response to the Keep-alive message (range: 3-20, default: 3)

3) Enable the cluster

cluster enable: Enableno cluster enable: Disable

4) To check the configuration information, use the 'show cluster config' command.

ENABLE : YES
OWN-APC-INDEX : 1

[Adding APC to APC List]

To add an APC to the cluster, the APC must be added to the APC list first. APC information is automatically added to the APC list.

1) Go to apc-list configure mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# apc apc-list
WEC8500/configure/apc/apc-list#
```

- 2) Add the APC to the APC list.
 - add-apc [APC_NAME] [MAC_ADDRESS]

Parameter	Description
APC_NAME	APC name to be added to the APC list
MAC_ADDRESS	MAC address of the APC to be added to the APC list (system mac address output parameter value of the 'show system info' command in the APC)

[Adding APC to cluster]

After adding APC to the APC list, the APC must be added to a cluster.

1) Go to configure mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure#
```

- 2) Add the APC to a cluster.
 - cluster add-apc [INDEX] [APC_NAME] [IPV4_ADDRESS] [DB_REFRESH_ INTERVAL]

Parameter	Description
INDEX	Index in cluster (range: 1-12)
APC_NAME	APC name (maximum 18 characters)
IPV4_ADDRESS	IPv4 address
DB_REFRESH_INTERVAL	Database update interval (Unit: s, range: 60-5000, default: 120)

[Deleting APC from cluster]

Delete the APC added in cluster. To delete an APC from a cluster, you must delete the APC from the cluster configuration of all the APCs in the cluster.

1) Go to configure mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure#
```

- 2) Delete an APC from the cluster. To delete all the APC systems in a cluster, enter the 'cluster del-apc-all' command.
 - cluster del-apc [INDEX]
 - cluster del-apc-all

Parameter	Description
INDEX	Index in cluster (range: 1-12)

[Retrieving APC information added in cluster]

You can check the added APC information using the 'show cluster list-apc' command.

WEC850	0# show clust	er list-apc		
INDEX	APC-NAME	IPv4-ADDRESS	DB-REF-INT	CONNECT-STATUS
1	APC-1	192.168.87.146	120	CONNECTED[1]
2	APC-2	192.168.87.217	120	CONNECTED[1]

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Mobility Management>** → **<Clustering>** menu in the sub-menus.

The Clustering window is shown below.

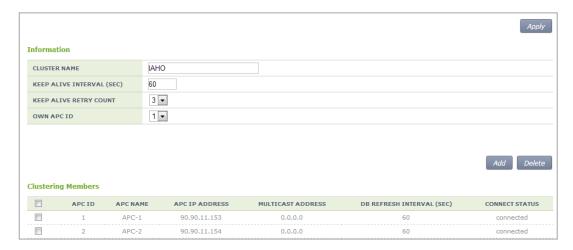


Figure 146. Clustering window

Configure a clustering configuration value in the **Information** item and then click the **Apply** button to apply. The Clustering Members item shows all the clustering members. Click the **Add** or **Delete** button to add or delete a clustering member.

The clustering addition window is shown below.

Figure 147. Clustering addition window

7.10 Limiting the Number of Connected Users

The W-EP wireless LAN system limits the number of wireless terminals connected to each AP. The limitation is per radio (2.4/5 GHz bandwidth) or WLAN for each AP.

7.10.1 Limiting Connections per Radio

Configuration using CLI

1) Go to configure mode of CLI.

APC# configure terminal APC/configure#

- 2) Configure connection limitation.
 - [RADIO] max-associated-stations [MAX_STATION] global: Configures connection limitation per wireless bandwidth. When you enter the 'global' parameter at the end, connection limitation is applied to all the APs.
 - [RADIO] max-associated-stations [MAX_STATION] [TARGET] [AP_ID]: Configures connection limitation to a specific AP.

Parameter	Description
RADIO	Wireless area to configure
	[80211bg/80211a]
	- 80211bg: 2.4 GHz area
	- 80211a: 5 GHz area
MAX-STATION	Maximum number of wireless terminals that can be connected
	(default: 127)
TARGET	Configuration range
	- AP: Index of an AP to configure
	- Global: All APs connected to an APC
AP_ID	AP ID (range: 1-500)

3) To check the configuration information, use the 'show 80211bg radio-config global' command.

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Radio>** \rightarrow **<802.11a/n>** or **<802.11b/g/n>** \rightarrow **<General>** menu in the sub-menus.

Figure 148. Configuring connection limitation per radio

After configuring MAX CLIENT COUNTS, click the **<Apply>** button.

7.10.2 Connection Limitation per WLAN

Configuration using CLI

To configure connection limitation per WLAN, execute the command as follows:

1) Go to configure \rightarrow wlan configuration mode of CLI.

APC# configure terminal
APC/configure# wlan 1
APC/configure/wlan 1#

2) Disable the WLAN.

APC/configure/wlan 1# no enable

3) Configure connection limitation.

max-associated-stations [MAX-STATION]

Parameter	Description
MAX-STATION	Maximum number of wireless terminals that can be connected (default: 127)

4) Enable the WLAN.

APC/configure/wlan 1# enable

5) To check the configured connection limitation, use the 'show wlan detail' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Radio>** \rightarrow **<802.11a/n>** or **<802.11b/g/n>** \rightarrow **<General>** menu in the sub-menus.

Figure 149. Configuring connection limitation per WLAN

After configuring MAXIMUM CONNECTIONS, click the **<Apply>** button.

7.11 Voice Statistics and Communication Failure Detection

Because APC provides voice statistics and the WLAN-based communication failure detection function, you can easily know communication failure reason.

7.11.1 Voice Statistics Function

It provides the number of successful voice communication and call time. When the CAC function is enabled, the CAC statistics is also provided.

Configuration using CLI

Use the following command to check voice statistics.

In the menu bar of **<WEC Main window>**, select **<Monitor>** and then select the **<Access Points>** \rightarrow **<Radio>** \rightarrow **<802.11a/n>** or **<802.11b/g/n>** \rightarrow AP menu in the sub-menus.

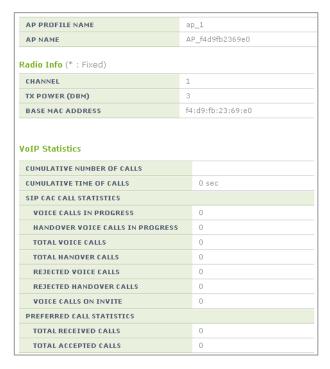


Figure 150. Voice statistics

7.11.2 Detecting WLAN-based Communication Failure

You can configure whether to detect WLAN-based communication failure.

Configuration using CLI

1) Go to configure mode of CLI.

```
APC# configure terminal
APC/configure#
```

- 2) Enable or disable communication failure detection.
 - [no] call-fail-detect [WLAN_ID]

Parameter	Description
WLAN_ID	WLAN ID (range: 1-240)

 To check the configured connection limitation information, use the 'show voip config [WLAN ID]' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<WLANs>** menu in the sub-menus. Select a WLAN ID to change in the WLANs screen and go to the **<Advanced>** tab.

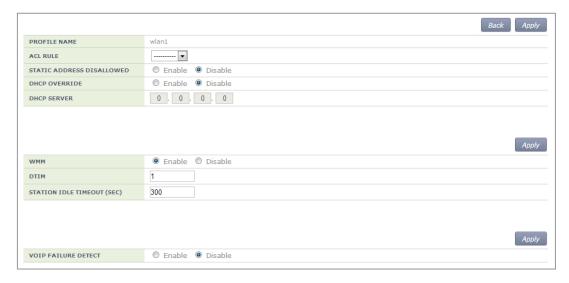


Figure 151. Detecting WLAN-based communication failure

After configuring the VOIP FAILURE DETECT item, click the **<Apply>** button.

7.12 Voice Signal and Media Monitoring

For voice call fault analysis, the APC provides VoIP wireless terminal, call information, event and RTP media voice quality statistics.

7.12.1 Checking Voice Related Wireless Information

Configuration using CLI

Execute the following command to check voice related fault analysis statistics.

1) Check the connection status of a voice wireless terminal.

2) Check the connection status of an active call.

3) Check the information of a completed call.

```
WEC8500# show voice complete-call summary
     Start Time Dur AP SSID MAC Address
Tel-no IPv4 Address Port Rat MOS LQ/CQ/PQ Pkt Cnt
____ _______
____________
 0 2013/05/11-17:24:23 26 1 uready Caller D4:88:90:1B:3C:E2
10.10.10.194 23143 GOOD 4.01/3.95/3.84 225,664
                       Callee 3C:8B:FE:2E:6F:6A
10.10.10.193 10617 POOR 2.31/2.17/2.90 221,708
 ______
 10.10.10.193 10617 FAIR 3.57/3.11/3.63 90,300
                       Callee D4:88:90:1B:3C:E2
10.10.10.194 23143 GOOD 4.06/3.91/3.94 85,140
  _____
                       uready Caller D4:88:90:1B:3C:E2
 2 2013/05/11-19:02:10 28 1
10.10.10.194 23143 POOR 3.21/2.92/3.44
                             244,756
                       Callee 3C:8B:FE:2E:6F:6A
10.10.10.193 10617 POOR 1.97/1.66/2.68
                             240,800
```

4) Check the voice signal related log.

```
WEC8500/configure# show voice sipmsg-log
                  MAC Address Msg Type
                   AP BSS
        DST IP
                                   WLAN Contents
2013-05-12 21:26:45 c8:19:f7:70:89:04 INVITE
10.10.10.65 90.90.1.100 3 f4:d9:fb:24:c8:c2 1 F:9922, T:995
0, RTP:10.10.10.65:21120
2013-05-12 21:26:44 c8:19:f7:70:89:04 200(REGISTER) RECV
90.90.1.100 10.10.10.65 3 f4:d9:fb:24:c8:c2 1 F:9961, T:996
1, Expire:600
2013-05-12 21:26:44 c8:19:f7:70:89:04 REGISTER
                                                SEND
10.10.10.65 90.90.1.100 3 f4:d9:fb:24:c8:c2 1 F:9961, T:996
1, Expire:600
2013-05-12 21:26:44 c8:19:f7:70:89:04 401(REGISTER) RECV
90.90.1.100 10.10.10.65 3 f4:d9:fb:24:c8:c2 1 F:9961, T:996
1, Expire:0
2013-05-12 21:26:44 c8:19:f7:70:89:04 REGISTER
                                               SEND
10.10.10.65 90.90.1.100 3 f4:d9:fb:24:c8:c2 1 F:9961, T:996
1, Expire:
```

5) Check a WLAN event related to a voice.

```
WEC8500# show voice event
Event Type
            MAC Address AP BSS
                                                    WLAN
Time
                Contents
-----
Deassoc During Call 78:47:1D:C2:18:11 3 F4:D9:FB:24:C8:D1 1
2013-05-12 21:22:04 wlan disconncted in AP(3) BSSID(f4:d9:fb:24:c8:d1)
during call caller(9907) \rightarrow callee(9950) duration(5) sec
CallStop C8:19:F7:70:89:04 3 F4:D9:FB:24:C8:C2 1
2013-05-12 21:22:04 caller(9922) → callee(9950) duration(62)sec
CallConnect 78:47:1D:C2:18:11 3 F4:D9:FB:24:C8:D1 1
2013-05-12 21:22:01 caller(9907) → callee(9950)
CallSetup 78:47:1D:C2:18:11 3 F4:D9:FB:24:C8:D1 1
2013-05-12 21:21:59 caller(9907) → callee(9950)
CallStop 78:47:1D:C2:18:11 3 F4:D9:FB:24:C8:D1 1
2013-05-12 21:21:47 caller(9907) → callee(9950) duration(6)sec
CallConnect 78:47:1D:C2:18:11 3 F4:D9:FB:24:C8:D1 1
2013-05-12 21:21:47 caller(9907) → callee(9950)
```

6) Check the voice related statistics.

RADIO (5												
Type 1							Upstrear Jitter					
Total		8	6	0	2	0.0	0	0	0.0		0	0
5 Min		0	0	0	0	0.0	0	0	0.0		0	0
15 Min												0
1 Hour		0	0	0	0	0.0	0	Ω	0.0		0	0
		-						Ü	•••			
-	16)	8	6	0			0					0
RADIO (2 Type 1	2.4G) ' Total	8 Voice Succ	6 Sta	0 atistis Failed	2 Acti	0.0 ve		0 nTin	0.0 		0 Downst	 ream
RADIO (2 Type 1	2.4G) '	Voice Succ	6 Stacess	0 atistis Failed Call	2 Acti Call	0.0 ve MOS	 Upstrear Jitter	0 mTim Del	0.0 ne .ay	 MOS	0 Downst Jitter	 ream
RADIO (2 Type 1 (C.4G) '	Woice Succ Call	6 Stacess	0 atistis Failed Call	2 Acti Call	0.0 ve MOS 	Upstrear Jitter	0 mTim Del 	0.0 ne ay 0.0	 MOS	O Downst Jitter 0	 ream Delay
RADIO (2 Type 1 (Total 5 Min	r.4G) Y	Voice Succ Call 3	6 Sta	0 atistis Failed Call 0 0	2 Acti Call 0 0	0.0 ve MOS 0.0	Upstrear Jitter	0 mTim Del 0 0	0.0 ne ay 0.0 0.0	 MOS 	0 Downst Jitter 0	 ream Delay
RADIO (2 Type 1 (Total 5 Min	Fotal Calls	Voice Succ Call 3 0 0	6 Sta	0 atistis Failed Call 0 0 0	2 Acti Call 0 0	0.0 ve MOS 0.0 0.0 0.0	Upstrear Jitter 0 0	0 mTim Del 0 0	0.0 ne ay 0.0 0.0	 MOS 	O Downst Jitter O O O	 ream Delay 0

Type	Total	Succes	s Faile	ed Act	ive	Upstre	eamTime	<u>:</u>	Downs	tream
	Calls	Call	Call	Call	MOS	Jitter	Delay	MOS	Jitter	Delay
Total	11	9	0	2	0.0	0	0 0.	. 0	0	0
5 Min	0	0	0	0	0.0	0	0 0.	. 0	0	0
15 Min	0	0	0	0	0.0	0	0 0.	. 0	0	0
1 Hour	0	0	0	0	0.0	0	0 0.	. 0	0	0
1 Day	11	9	0	2	0.0	0	0 0.	. 0	0	0
DEVICE)# show (Model Statisti	Name:					Build	Ver:E	210LKLJ	TLK1)
DEVICE Voice S	(Model Statisti	Name:	SHV-E2	10L, O	S Ver	:4.1.1				
DEVICE Voice S	(Model	Name:	SHV-E2	10L, 0	S Ver	:4.1.1	 eamTime		 Downs	tream
DEVICE Voice S Type	(Model Statisti Total	Name: .s .S .Call	SHV-E2	10L, 0	S Ver	:4.1.1 Upstre	 eamTime Delay	MOS	Downs	tream
DEVICE Voice S Type Total	(Model Statisti Total Calls	Name: Succes Call	SHV-E2: s Faile Call 0	10L, 0 ed Act Call	S Ver ive MOS 0.0	:4.1.1 Upstre Jitter 0	eamTime Delay	MOS	Downs Jitter	tream Delay
DEVICE S Type Total 5 Min	(Model Statisti Total Calls 	Name: Succes Call 6 0	SHV-E2: s Faile Call 0	ed Act Call 2 0	S Ver ive MOS 0.0 0.0	:4.1.1 Upstre Jitter 0	eamTime Delay 0 0.	MOS	Downs Jitter 0	tream Delay
DEVICE S Type Total 5 Min 15 Min	(Model Statisti Total Calls 8	Name: Succes Call 6 0	SHV-E2: s Faile Call 0 0	10L, 0	S Ver ive MOS 0.0 0.0	:4.1.1 Upstre Jitter 0 0 0	eamTime Delay O 0.	MOS 0 0	Downs Jitter 0 0	tream Delay 0

Check the connection status of a voice wireless terminal.
 In the menu bar of <WEC Main window>, select <Monitor> and then select the <VoIP Call> → <VoIP Stations> <Active Calls> <Complete Calls> menu in the sub-menus.

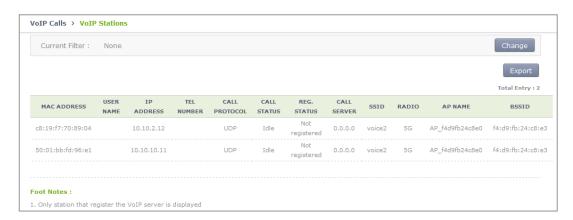


Figure 152. VoIP Stations Retrieval Screen

2) Check the connection status of an active call. In the menu bar of **<WEC Main window>**, select **<Monitor>** and then select the **<VoIP Call> → <Active Calls>**menu in the sub-menus.



Figure 153. Active Call Retrieval Screen

3) Check the information of a completed call.

In the menu bar of **<WEC Main window>**, select **<Monitor>** and then select the **<VoIP Call> → <Complete Calls>**menu in the sub-menus.

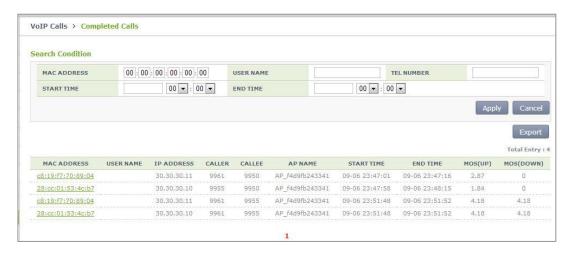


Figure 154. Complete Calls Retrieval Screen

7.12.2 Checking Voice Related Quality Information

Configuration using CLI

Execute the following command to check the voice related quality analysis (Voice Quality Monitoring) information.

1) Operator can check the voice quality analysis information of a wireless terminal that has an active call.

2) Operator can check the voice quality analysis information of a wireless terminal that has a completed call.

```
WEC8500# show voice vqm history-stats brief
_____
[CONN-1 Start Time=2013/7/19.14:47:27, Duration=75 sec(s)
Station Mac [78:47:1d:c5:4c:85: \leftrightarrow fc:a1:3e:47:59:e7:] startBssid
[f4:d9:fb:23:66:10 \leftrightarrow f4:d9:fb:23:66:10] endBssid
[f4:d9:fb:23:66:10 \leftrightarrow f4:d9:fb:23:66:10]
ssid [Ajay 2 2 4G\leftrightarrowAjay 2 2 4G] Direction [1\leftrightarrow2] wlanId [2\leftrightarrow2]
startApId [2\leftrightarrow 2] endApId [2\leftrightarrow 2]
Session id:0
SRC [I/F=ge4 Call-ID=f03c77b50564418855587192e12b889d Phone-No=9960,
IP=20.20.20.30:22458]
DST [I/F=qe4 Call-ID=ca371fce-6e10-401a-9a4e-dd53678804c6@uq1.scm.com
Phone-No=9910, IP=20.20.20.25:25407]
RTP Flow Quality Metrics:
[Flow-1] DIR==Forward Quality Ratings=Poor [MOS-LQ=2.21, MOS-CQ=1.33,
MOS-PQ=2.84]
RTP Flow Quality Metrics:
[Flow-2] DIR==Reverse Quality Ratings=Poor [MOS-LQ=2.46, MOS-CQ=1.50,
MOS-PQ=3.00]
[CONN-2 Start Time=2013/7/19.14:52:36, Duration=30 sec(s)
Station Mac [fc:a1:3e:47:59:e7: \leftrightarrow 78:47:1d:c5:4c:85:] startBssid
[f4:d9:fb:23:66:10 \leftrightarrow f4:d9:fb:23:66:10] endBssid
[f4:d9:fb:23:66:10 \leftrightarrow f4:d9:fb:23:66:10]
```

```
ssid [Ajay 2 2 4G\leftrightarrowAjay 2 2 4G] Direction [1\leftrightarrow2] wlanId [2\leftrightarrow2]
startApId [2\leftrightarrow 2] endApId [2\leftrightarrow 2]
Session id :1
SRC [I/F=ge4 Call-ID=035be38a40032eb8edb0b94e944d58d4 Phone-No=9910,
IP=20.20.20.25:25407]
DST [I/F=ge4 Call-ID=917a913e-83ae-497f-ad84-bf0ee80edf36@ug1.scm.com
Phone-No=9960, IP=20.20.30:22458]
RTP Flow Quality Metrics:
[Flow-1] DIR==Forward Quality Ratings=Fair [MOS-LQ=3.73, MOS-CQ=3.65,
MOS-PQ=3.72
RTP Flow Quality Metrics:
[Flow-2] DIR==Reverse Quality Ratings=Poor [MOS-LQ=3.30, MOS-CQ=3.06,
MOS-PO=3.491
______
[CONN-3 Start Time=2013/7/19.14:53:12, Duration=24 sec(s)
Station Mac [78:47:1d:c5:4c:85: \leftrightarrowfc:a1:3e:47:59:e7:] startBssid
[f4:d9:fb:23:66:10 \leftrightarrow f4:d9:fb:23:66:10] endBssid
[f4:d9:fb:23:66:10↔f4:d9:fb:23:66:10]
ssid [Ajay 2 2 4G\leftrightarrowAjay 2 2 4G] Direction [1\leftrightarrow2] wlanId [2\leftrightarrow2]
startApId [2\leftrightarrow 2] endApId [2\leftrightarrow 2]
Session id :2
SRC [I/F=ge4 Call-ID=a47241e5f5d3d6b7f942d0aaeddbd8ef Phone-No=9960,
IP=20.20.20.30:22458]
DST [I/F=ge4 Call-ID=65031276-a4dd-4b1c-a718-4ed3188e44a5@ug1.scm.com
Phone-No=9910, IP=20.20.20.25:25407]
RTP Flow Quality Metrics:
[Flow-1] DIR==Forward Quality Ratings=Poor [MOS-LQ=3.25, MOS-CQ=2.96,
MOS-PQ=3.47
RTP Flow Quality Metrics:
[Flow-2] DIR==Reverse Quality Ratings=Fair [MOS-LQ=3.65, MOS-CQ=3.57,
MOS-PO=3.681
WEC8500#
```

3) Operator can check the call statistics information.

```
WEC8500# show voice vqm summary-stats
______
VQM Summary Stats for last YEAR: 0 MONTH: 0 DAY: 0 0 HR: 26 MN: 44 SEC
Calls Active = 0
Calls Terminated = 3
Flows Quality Summary (Total/Good/Fair/Poor) = 6/0/2/4
Listening Call Quality (MOS) min/ave/max = 2.21/3.10/3.73
Conversational Call Quality (MOS) min/ave/max = 1.33/2.68/3.65
P.862 Raw Quality (MOS) min/ave/max = 2.84/3.36/3.72
Listening Call Quality (R-factor) min/ave/max = 45/63/77
Conversational Call Quality (R-factor) min/ave/max = 24/53/75
Packet Delay Variation (msec) ave/max = 13/25
Packet Received/Processed/Lost/Discarded = 12980/12909/93/1154
Packet Duplicate/OutOfseq = 0/135
Packet Error Stats: Ignored/Errors = 71/1
System Error Stats: Resource Unavail/Filter Mismatch/Limit Exceeded =
0/0/0
Voice Quality Alerts: Low R-factor/Excess Loss/Excess Delay/Upload =
1/6/5/0
```

```
Upload Count = 1141
Upload Ok Count = 0
Upload Fail Count = 0
Requested Count = 1141
WEC8500#
```

4) Operator can check the alarm information that occurs during call.

```
WEC8500\# show voice vqm alarms brief
VQM ActiveRfactor/ActivePktLoss/ActivePktDly/ActiveMos = 1/1/1/1
VQM QualityThresh/LossThresh/DelayThresh/MOSThresh = 50/50/195/35
ALARMS REPORTED :
Src Call Id = f03c77b50564418855587192e12b889d Dst Call Id =
Direction :Forward Type : [Low-Quality]
                                          [Excessive Burst]
[Excessive delay]
Direction :Reverse Type : [Excessive Burst] [Excessive delay]
ALARMS REPORTED :
Src\ Call\ Id = 035be38a40032eb8edb0b94e944d58d4\ Dst\ Call\ Id =
917a913e-83ae-497f-ad84-bf0ee80edf36@ug1.scm.com Session = 1
Direction :Forward Type : [Excessive Burst]
Direction :Reverse Type : [Excessive Burst] [Excessive delay]
ALARMS REPORTED :
Src Call Id = a47241e5f5d3d6b7f942d0aaeddbd8ef Dst Call Id =
65031276-a4dd-4b1c-a718-4ed3188e44a5@ug1.scm.com Session = 2
Direction :Forward Type : [Excessive Burst]
Direction :Reverse Type : [Excessive Burst]
WEC8500#
```

7.13 Multicast Stream Admission Control

The multicast stream admission control is provided to protect the currently running multicast streams from new streams that flow into the wireless LAN. When the maximum allowed usage of streams or channels per radio is reached, the APC does not allow any additional streams.

7.13.1 Configuring Admission Control

The multicast stream admission control function configures the maximum number of streams or the maximum usage of channels to protect the currently running multicast streams. It denies multicast streaming requests once the maximum number of streams or the maximum usage of channels is reached. You can set the number of marginal streams or the usage of channels with consideration for handover.

Configuration using CLI

To set multicast stream admission control, execute the following commands:

 Configuration mode of CLI→ enter the multicast stream admission control mode of the desired wireless section.

```
APC# configure terminal
APC/configure# [80211a/80211bg] msac
APC/configure/80211a/msac#
```

- 2) Enable or disable the multicast stream admission control function.
 - acm [MODE]

Parameter	Description
Mode	Whether or not to use the multicast stream admission control (enable/disable)
	- enable: Enable - disable: Disable

- 3) Configure the maximum allowed number of streams.
 - max-streams [VALUE]

Parameter	Description
VALUE	Maximum allowed number of streams

- 4) Set the maximum allowed usage of channels.
 - max-chan-util [VALUE]

Parameter	Description
VALUE	Maximum allowed usage of channels

- 5) Configure the number of marginal streams with consideration for handover.
 - reserved-ho-streams [VALUE]

Parameter	Description
VALUE	Number of marginal streams with consideration for handover

- 6) Configure the usage of marginal channels with consideration for handover.
 - reserved-ho-chan-util [VALUE]

Parameter	Description
VALUE	Usage of marginal channels with consideration for handover

7) You can view the information you configured by using the 'show[80211a | 80211bg] msac configuration' command.

Configuration using Web UI

From the menu bar of **<WEC Main Window>**, select **<Configuration>** and then select **<Radio>** \rightarrow **<802.11a/n>** or **<802.11b/g/n>** \rightarrow **<Admission Control>** in the submenus.

Figure 155. 802.11a/n Admission Control Configuration Window

After configuring the items below in the Multicast Stream Admission Control, click the **<Apply>** button.

- ADMISSION CONTROL: Configure the CAC function
- METHOD: Select the method of admission control
- MAX STREAMS: Maximum allowed number of streams (range: 1-20)
- HANDOVER STREAMS: Number of marginal streams with consideration for handover (range: 0-6)

The maximum allowed number of streams becomes MAX STREAMS-HANDOVER STREAMS.

- MAX CHANNEL UTILIZATION (%): Maximum allowed usage of channels (range: 5-85)
- HANDOVER CHANNEL UTILIZATION (%): Usage of marginal channels with consideration for handover (range: 0-30)

7.14 Wi-Fi Band Steering

This is a function of leading a UE which supports the Dual Band (2.4/5.0 GHz) to be connected to 2.4 GHz or 5.0 GHz to secure more stabilized performance if many resources are used in a specific radio.

7.14.1 Activating Band Steering Function

You can activate the Band Steering function by WLAN and the 5.0 GHz band steering is set as default upon Band Steering On.

Configuration using CLI

To activate or deactivate the Band Steering function, execute the command as follows:

1) Configure a specific WLAN which requires the steering band.

```
APC# configure terminal
APC/configure# wlan 1
APC/configure/wlan 1#
```

- 2) Activate or deactivate the Band Steering function.
 - band-steering [MODE]

Parameter	Description
Mode	Whether to configure the Band Steering function - enable: Setting
	- disable: Release (by default)

```
WEC8500/configure/wlan 1# band-steering enable
WLAN (1) band steering is On (5-GHz preferred)
WEC8500/configure/wlan 1# no band-steering enable
WLAN (1) band steering is Off
```

- 3) Select a steering band.
 - band-steering [VALUE]

Parameter	Description
VALUE	1 (5.0 GHz), 2 (2.4 GHz)

```
WEC8500/configure/wlan 1# band-steering 1
WLAN (1) band steering is On (5-GHz preferred)
WEC8500/configure/wlan 1# band-steering 2
WLAN (1) band steering is On (2.4-GHz preferred)
```

- 4) Add an entry to the dual band station database.
 - band-steering add-station [MAC]

Parameter	Description
MAC	Station MAC Address

WEC8500/configure/wlan 1# band-steering add-station 00:00:00:00:00:01 WLAN(1): add station(00:00:00:00:00:01), prefer a band(5-GHz) are set

- 5) Delete an entry from the dual band station database.
 - band-steering delete-station [MAC]

Parameter	Description
MAC	Station MAC Address

```
WEC8500/configure/wlan 1# band-steering delete-station 00:00:00:00:00:01 Deleted...
```

- 6) Delete all entries from the dual band station database.
 - band-steering delete-all

```
WEC8500/configure/wlan 1# band-steering delete-all WLAN(1): all stations are deleted...
```

Configuration using Web UI

WLAN > Advanced > BAND STEERING [Disable][2.4 GHz preferred][5 GHz preferred]

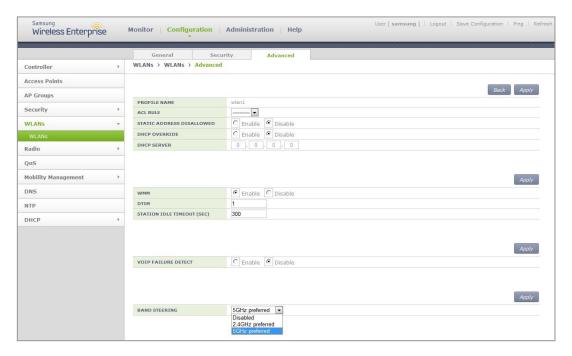


Figure 156. Band Steering Function On/Off and Band Setting

7.15 Wi-Fi Load Balancing

The load balancing function in the AP Controller is a function of load balancing by transferring the message that the connections to wireless stations among APs have been permitted or cannot be permitted based on the set threshold value and then controlling the number of stations connected to APs.

7.15.1 Activating Load Balancing Function

The setting can be made based on the WLAN and it is possible to check the load balancing function among APs for stations attempting at association to APs with the threshold value and the maximum denial count value based on station count.

Configuration using CLI

For the load balancing function, execute the command as follows:

1) Configure a specific WLAN which requires load balancing.

```
APC# configure terminal
APC/configure# wlan 1
APC/configure/wlan 1#
```

- 2) Activate or deactivate the Load Balancing function.
 - load-balancing [MODE]

Parameter	Description
Mode	Whether to configure the Load Balancing function
	- enable: Setting
	- disable: Release (by default)

```
WEC8500/configure/wlan 1# load-balancing enable
WLAN (1), Wi-Fi Load Balancing: Enable
WEC8500/configure/wlan 1# no load-balancing enable
WLAN (1), Wi-Fi Load Balancing: Disable
```

- 3) Configure the load balancing station count threshold value.
 - load-balancing threshold_station [VALUE]

Parameter	Description
VALUE	1-127 (127 by default)

WEC8500/configure/wlan 1# load-balancing threshold_station 100
Wi-Fi Load Balancing threshold: 100 stations

- 4) Configure the maximum denial count value.
 - load-balancing denial_count [VALUE]

Parameter	Description
VALUE	1-10 (2 by default)

WEC8500/configure/wlan 1# load-balancing denial_count 4
Wi-Fi Load Balancing MAX denial count: 4

Configuration using Web UI

Configure WLAN > Advanced > LOAD BALANCING[Enable] [Disable] WLAN > Advanced > THRESHOLD[Value]

WLAN > Advanced > MAXIMUM DENIAL COUNT[Value].

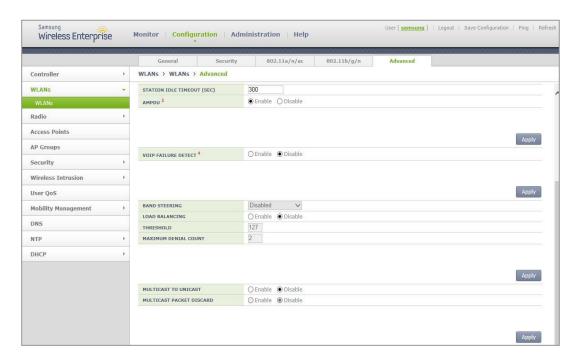


Figure 157. Configuring Load Balancing Function

7.16 Station-based Adaptive Load Balancing

Station-based Adaptive Load Balancing performs load balancing based on the number of stations and RSSI in an individual radio unit of the AP group. Configuring Basic Function and Setting Load Balancing Parameters of AP Group are available and the settings of the load balancing parameters in individual APs are available to apply a different value set only for a specific AP.

7.16.1 Basic Setting of Station-based Adaptive Load Balancing

Station-based Adaptive Load Balancing operates only when it is enabled in the setting of the basic functions and configures options applied to the overall function operation.

Configuration using CLI

To configure the basic function, execute the commands as follows:

1) Go to the configure \rightarrow load-balancing configuration mode of CLI.

```
APC# configure terminal
APC/configure# load-balancing
APC/configure/load-balancing#
```

- 2) Activate the Station-based Adaptive Load Balancing function.
 - enable
- 3) If a function of distributing stations uniformly among APs is necessary, activate the Active Load Balancing function (Default: no active).
 - active
- 4) To activate the Active Load Balancing function, set up the interval for attempting to distribute uniformly.
 - interval [NUMBER]

Parameter	Description
NUMBER	Interval for performing active load balancing (sec)

- 5) To allow load balancing among APs which use the same channel, set the following option (Default: no allow-channel):
 - allow-channel

- 6) To calibrate the RSSI value depending on types of stations, the calibration value must be set.
 - calibration mobile [NUMBER]
 - calibration pc [NUMBER]
 - calibration others [NUMBER]

Parameter	Description
NUMBER	RSSI calibration value (-dbm)
	- Default value: 0 dbm

- 7) To exclude stations where the traffic occurs from load balancing, the following option must be set (Default: no idle-station):
 - · idle-station

7.16.2 Setting AP Group Parameter

Station-based Adaptive Load Balancing must set operating parameters to the radio of the corresponding AP group because it operates in a radio unit of the AP group.

Configuration using CLI

To set AP group parameters, execute the command as follows:

1) Go to the load-balancing configuration mode in configure \rightarrow AP Group of CLI.

```
APC# configure terminal
APC/configure# ap-group lb
APC/configure/ap-group lb# load-balancing
APC/configure/ap-group lb/load-balancing#
```

2) Go to the radio to perform the Station-based Adaptive Load Balancing function.

```
APC/configure/ap-group lb/load-balancing# radio 1
APC/configure/ap-group lb/load-balancing/radio 1#
```

- 3) Activate load balancing in the corresponding radio.
 - enable
- 4) Set the interval to attempt at the Load Balancing function.
 - interval [NUMBER]

Parameter	Description
NUMBER	Interval for performing load balancing (sec)

- 5) Set the station threshold to perform the Load Balancing function.
 - threshold [NUMBER]

Parameter	Description
NUMBER	Station threshold as the standard for the performance of load
	balancing

- 6) Set the time of blocking the reconnection after the load of the station is now balanced.
 - kickout-timeout [NUMBER]

Parameter	Description
NUMBER	Reconnection limit time (0~100 sec.)

- 7) To lead the station which performs load balancing to connect to a specific AP, set the probe response limit time to other APs.
 - no-probe-timeout [NUMBER]

Parameter	Description
NUMBER	Probe response limit time (0~100 sec.)

- 8) The rssi-high value is a criterion for excluding candidates for load balancing to be selected. The station with the RSSI value higher than the set value does not attempt at load balancing (In case of the active mode, N/A).
 - rssi-high [NUMBER]

Parameter	Description
NUMBER	RSSI reference value (-100~0 dbm)

- 9) The rssi-low value is a criterion for selecting a sticky station. The station with the RSSI value lower than the set value always attempts at load balancing.
 - rssi-low [NUMBER]

Parameter	Description
NUMBER	RSSI reference value (-100~0 dbm)

7.16.3 Setting AP Parameters

Station-based Adaptive Load Balancing operates as the default value of the setting of the AP group but it is possible to set other parameter value to an individual AP. Because it operates in a radio unit, the parameters to change must be set to the individual radio of the corresponding AP must be set.

Configuration using CLI

To set AP parameters, execute the command as follows:

1) Go to the load-balancing configuration mode in configure \rightarrow AP of CLI.

```
APC# configure terminal
APC/configure# ap ap_1
APC/configure/ap ap_1# load-balancing
APC/configure/ap ap_1/load-balancing#
```

2) Go to the radio to perform the Station-based Adaptive Load Balancing function.

```
APC/configure/ap ap_1/load-balancing# radio 1
APC/configure/ap ap_1/load-balancing/radio 1#
```

- 3) Activate load balancing in the corresponding radio.
 - enable
- 4) Set the station threshold to perform the Load Balancing function.
 - interval [NUMBER]

Parameter	Description
NUMBER	Interval for performing load balancing (sec)

- 5) Set the station threshold to perform the Load Balancing function.
 - threshold [NUMBER]

Parameter	Description
NUMBER	Station threshold as the standard for the performance of load
	balancing

- 6) Set the time of blocking the reconnection after the load of the station is now balanced.
 - kickout-timeout [NUMBER]

Parameter	Description
NUMBER	Reconnection limit time (0~100 sec.)

- 7) To lead the station which performs load balancing to connect to a specific AP, set the probe response limit time to other APs.
 - no-probe-timeout [NUMBER]

Parameter	Description
NUMBER	Probe response limit time (0~100 sec.)

- 8) The rssi-high value is a criterion for excluding candidates for load balancing to be selected. The station with the RSSI value higher than the set value does not attempt at load balancing (In case of the active mode, N/A).
 - rssi-high [NUMBER]

Parameter	Description
NUMBER	Probe response limit time (0~100 sec.)

- 9) The rssi-high value is a criterion for excluding candidates for load balancing to be selected. The station with the RSSI value higher than the set value does not attempt at load balancing (In case of the active mode, N/A).
 - rssi-low [NUMBER]

Parameter	Description
NUMBER	RSSI reference value (-100~0 dbm)

CHAPTER 8. Security

The W-EP wireless LAN system supports the security function, required in a wire/wireless network environment, such as RADIUS server interoperation function, system user management, guest connection service, unauthorized AP/terminal detection and simple blocking function, firewall, access control (ACL), etc.

In this chapter, how to configure various security functions supported in the system is described.

8.1 RADIUS Server Configuration

The W-EP wireless LAN system provides the security and authentication function by interoperating with an external RADIUS server. The WEC8050 also provides the internal RADIUS server function.

8.1.1 External RADIUS Server

The W-EP wireless LAN system provides the security and authentication function by interoperating with an external RADIUS server. Follow the below procedure to interoperate with a RADIUS server.

8.1.1.1 Basic Settings

The basic steps for configuring a RADIUS server are as follows:

Configuration using CLI

1) Go to configure \rightarrow security \rightarrow radius configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# security
WEC8500/configure/wlan 1/security# radius 1
WEC8500/configure/security/radius 1#
```

2) Configure the IP address of a RADIUS server.

```
WEC8500/configure/security/radius 1# serverIp [IP_ADDRESS]
```

Parameter	Description
IP_ADDRESS	The IP address of a RADIUS server

3) Configure the key of a RADIUS server.

```
WEC8500/configure/security/radius 1# secret [KEY_TYPE] [KEY_STRING]
```

Parameter	Description
KEY_TYPE	RADIUS server key input format
	- ASCII: ASCII character string
	- HEX: Hexadecimal value
KEY_STRING	RADIUS server key

4) Enable the accounting function of a RADIUS server and configure the port number.

WEC8500/configure/security/radius 1# acct [PORT_NUMBER]

Parameter	Description
PORT_NUMBER	Accounting port number of a RADIUS server
	(range: 1-65535, default: 1813)

5) Configure the authentication port number of a RADIUS server.

WEC8500/configure/security/radius 1# auth [PORT NUMBER]

Parameter	Description
PORT_NUMBER	Accounting port number of a RADIUS server (range: 1-65535, default: 1812)

6) Configure the items related to retransmissions in RADIUS communications. You can use default values without changing configuration.

```
WEC8500/configure/security/radius 1# retransmit-interval
[RETRY_INTERVAL]
WEC8500/configure/security/radius 1# retransmit-count [RETRY_COUNT]
WEC8500/configure/security/radius 1# fo-retransmit-count
[FO_RETRY_COUNT]
```

Parameter	Description
RETRY_INTERVAL	Retransmission interval for a RADIUS message (unit: seconds, range: 1-60, default value: 2)
RETRY_COUNT	Maximum retransmission count of a RADIUS message (range: 1-20, default value: 10)
FO_RETRY_COUNT	Maximum retransmission count of a RADIUS message before a RADIUS server failover is attempted Must smaller than the RETRY_COUNT value (range: 1-10, default value: 3)

7) Exit RADIUS server configuration and security configuration mode.

```
WEC8500/configure/security/radius 1# exit
WEC8500/configure/security# exit
```

8) To check the configuration information, use the 'show security radius-server summary' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Security>** \rightarrow **<AAA>** \rightarrow **<RADIUS>** menu in the sub-menus.

If you click the **Add>** button in the RADIUS initial window, you can add a RADIUS server

The server addition window is shown below.

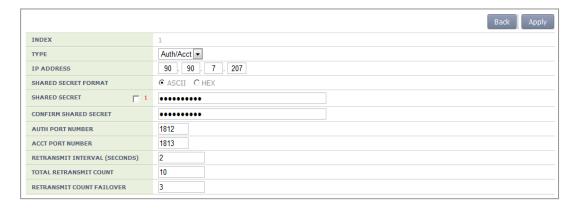


Figure 158. RADIUS server configuration

Item	Description
INDEX	ID that distinguishes RADIUS server configurations
TYPE	Selects the type of the RADIUS server - Auth: Performs authentication - Acct: Performs accounting - Auth/Acct: Performs authentication and accounting
IP ADDRESS	IP address of the RADIUS server
SHARED SECRET FORMAT	Key input format for communications with the RADIUS server - ASCII: ASCII strings - HEX: Hexadecimal values
SHARED SECRET	Key for RADIUS server communications
CONFIRM SHARED SECRET	Re-enters the key for RADIUS server communications for confirmation
AUTH PORT NUMBER	Number of the communication port for RADIUS server authentication (range: 1-65,535, default value: 1,812)
ACCT PORT NUMBER	Number of the communication port for RADIUS server accounting (range: 1-65,535, default value: 1,813)
RETRANSMIT INTERVAL	Retransmission interval for a RADIUS message (range: 1-60, default value: 2, unit: seconds)
TOTAL RETRANSMIT COUNT	Maximum retransmission count of a RADIUS message (range: 1-20, default value: 10)
RETRANSMIT COUNT FAILOVER	Maximum retransmission count of a RADIUS message before a RADIUS server failover is attempted (range: 1-10, default value: 3, must be smaller than the TOTAL RETRANSMIT value)

8.1.1.2 Configuring MAC Authentication

The MAC authentication of a RADIUS server is configured as follows:

Configuration using CLI

1) Go to configure \rightarrow security \rightarrow radius configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# security
WEC8500/configure/wlan 1/security# radius 1
WEC8500/configure/security/radius 1#
```

2) Set the password type that will be used for the MAC authentication of the device.

WEC8500/configure/security/radius 1# mac-auth-pw-type [PW_TYPE]

Parameter	Description
PW_TYPE	Password type (default value: mac) - mac: MAC address of the device. Note: it must be a string whose type must be the same as that of the MAC string which is used as a user ID when the MAC authentication of the device is performed - shared-secret: Key shared between the APC and RADIUS server

3) Set the type of separator of the device's MAC string which is used as a user ID when the MAC authentication of the device is performed.

 $\label{lem:weconfigure} $$ WEC8500/configure/security/radius 1 \# mac-auth-delimiter [DELIMITER_TYPE] $$$

Parameter	Description
DELIMITER_TYPE	Type of the MAC string separator (default: none) - none: no separator (xxxxxxxxxxx) - colon: Uses ':' as a separator (xx:xx:xx:xx:xx) - hyphen: Uses '-' as a separator (xx-xx-xx-xx-xx) - single-hyphen: Uses only one '-' in the middle (xxxxxx-xxxxxx)

4) Configure whether to use lowercase characters or uppercase characters for the device's MAC string that will be used as an ID upon the MAC authentication of the device.

WEC8500/configure/security/radius 1# mac-auth-case [CASE_TYPE]

Parameter	Description
CASE_TYPE	Case type of the device's MAC string (default value: lower) - lower: Uses lowercase - upper: Uses uppercase

5) Exit RADIUS server configuration and then security configuration mode.

WEC8500/configure/security/radius 1# exit
WEC8500/configure/security# exit

6) You can view configuration information by using the 'show security radius-server detail <server-id>' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select **<Security>** \rightarrow **<AAA>** \rightarrow **<RADIUS>** menus in the sub-menus.

After selecting a RADIUS server to configure, configure the MAC authentication item.

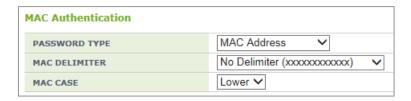


Figure 159. RADIUS Server MAC Authentication Configuration Window

Item	Description
PASSWORD TYPE	Password type
	- MAC Address: MAC address of the UE. The string in a type
	same to the MAC string used as a user ID upon the
	authentication of the MAC of the UE
	- APC Shared Secret: The shared key between the APC and
	the RADIUS server
MAC DELIMITER	MAC string delimiter type
	- No Delimiter: No delimiter (xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
	- Colon: ':' used as delimiter (xx:xx:xx:xx:xx)
	- Hyphen: '-' used as delimiter (xx-xx-xx-xx-xx)
	- Single Hyphen: Only one '-' used in the middle (xxxxxx-
	xxxxxx)
MAC CASE	English upper case and lower case types of the MAC string
	- Lower: Lower case used
	- Upper: Upper case used

8.1.2 Internal RADIUS Server

The W-EP wireless LAN system provides the security and authentication function by interoperating with an internal RADIUS server.

To use the internal RADIUS server, operator can add, delete, or edit a user (WEC8500: maximum 2048 users, WEC8050: maximum 512 users).

Configuration using CLI

To configure a local network user related function, enter into the 'radiuscm' of configure mode by executing the following command.

```
WEC8050# configure terminal
WEC8050/configure# radiuscm
```

Operator can execute various commands for Local Net Users.

[Adding User]

To add a user to the Local Net Users, execute the following command.

• Add-local-userdb {username} {password} [name] [email] [department] [home_phone] [work_phone] [mobile_phone]

Parameter	Description
Username	Login ID of a user
	- Character varying (1-63)
	- MANDATORY
	- Korean is not allowed.
	- Special characters {, }, (,), ,, ;, +=, -=,:=, =, !=, >=, >, <=, <, = - , !
	- , =*, !*, ==, #, "", ", ``, *, ?, space, & Cannot be used.
Password	User's password
	- Character varying (1-63)
	- MANDATORY
	- Korean is not allowed.
	- Special characters {, }, (,), ,, ;, +=, -=,:=, =, !=, >=, >, <=, <, = - , !
	- , =*, !*, ==, #, "", ", ``, *, ?, ∖, space, & Cannot be used.
Name	Name
	- Character varying (1-63)
	- OPTIONAL
	- Korean is not allowed.
	- Special characters ', *, ?, ; cannot be used.
email	email address
	- Character varying (1-63)
	- OPTIONAL

Parameter	Description
	- Korean is not allowed Special characters ', *, ?, ; cannot be used.
department	Division information - Character varying (1-63) - OPTIONAL - Korean is not allowed Special characters ', *, ?, ; cannot be used.
Home_phone	Home phone number - Character varying (1-63) - OPTIONAL - Korean is not allowed Special characters ', *, ?, ; cannot be used.
Work_phone	Office phone number - Character varying (1-63) - OPTIONAL - Korean is not allowed Special characters ', *, ?, ; cannot be used.
Mobile_phone	Mobile phone number. - Character varying (1-63) - OPTIONAL - Korean is not allowed. - Special characters ', *, ?, ; cannot be used.

[Modifying User]

To modify a user from the Local Net Users, execute the following command.

• modify-local-userdb {username} {password} [name] [email] [department] [home_phone] [work_phone] [mobile_phone]

[Deleting User]

To delete one user from the Local Net Users, execute the following command.

• delete-local-userdb {username}

Parameter	Description
Username	User's ID
	- Character varying (1-63) - MANDATORY
	- Korean is not allowed.
	- Special characters {, }, (,), ,, ;, +=, -=,:=, =, !=, >=, >, <=, <, = - , !
	- , =*, !*, ==, #, "", ", ``, *, ?, space, & Cannot be used.

To delete all the users from the Local Net Users, execute the following command.

Remove-all-local-userdb

[Importing User]

To import the Local Net Users list file, execute the following command.

• Import-local-userdb {filename}

Parameter	Description
Filename	File to import - CSV file format - Filename (1-512)

[Exporting User]

To export the Local Net Users list file, execute the following command.

• Export-local-userdb {filename}

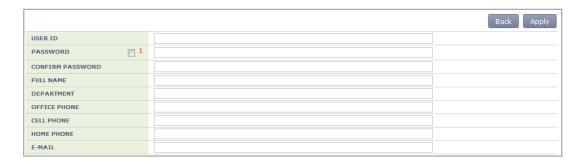
Parameter	Description
Filename	File to export - CSV file format - Filename (1-512)

[Checking User]

To check one local net user, execute the following command.

• Show radiuscm username {username}

To check all the local net users, execute the following command.


• Show radiuscm all-user

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Security>** \rightarrow **<AAA>** \rightarrow **<Local User>** menu in the sub-menus.

To add a user, click the **<Add>** button.

- 1) Enter an item according to each parameter description, and click the **Apply**> button.
 - ID: ID of a user to add
 - PASSWORD: User's initial password
 - CONFIRM PASSWORD: Repeat Password
 - FULL NAME: User's name (option)
 - DEPARTMENT: User's department information (option)
 - OFFICE PHONE: Office phone number (option)
 - CELL PHONE: Mobile phone number (option)
 - HOME PHONE: Home phone number (option)
 - E-MAIL: email (option)
- 2) Importing a local net user list

Operator can import or export the list of local users. The user list is in the CSV format. An existing data is deleted if there is new importing.

3) Exporting a local net user list

Operator can export the list of local users in the CSV format file.

8.2 Unauthorized AP/Terminal Detection and Blocking

As the security function, the W-EP wireless LAN device provides the detection service for an unauthorized AP using the Wireless Intrusion Detection System (WIDS)/WIPS function. This function detects any AP that is illegally installed without an administrator's approval and also any wireless terminals connected to the AP. If an authorized wireless terminal is connected to an unauthorized AP, some information may be exposed or the wireless LAN may be attacked in some ways. Therefore, it is important to manage the risk.

8.2.1 Enabling Detection Function

The procedure of enabling the unauthorized AP and terminal detection function is shown below.

Configuration using CLI

1) Go to configure mode of CLI.

```
WEC8500# configure terminal
```

2) Enable the detection function.

```
WEC8500/configure# wi enable
```

- 3) To check the configured information, use the following command.
 - · show wi current-config

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Wireless Intrusion>** → **<General>** menu in the sub-menus.

Click Apply after selecting Enable or Disable, then operator can configure the Wireless Intrusion service status.

Figure 160. Wireless Intrusion General Configuration Window

8.2.2 Detection

The W-EP wireless LAN system detects all the packets in a wireless LAN network, classifies unauthorized APs and wireless terminals, and creates related alarms and logs. The detected unauthorized APs are classified as follows according to the configured classification policy.

Classification type	Description
Managed AP	AP that is allowed to be used by an administrator among the detected unauthorized APs
	- Configures the managed AP classification policy.
	- An administrator can classify a specific AP as a managed AP among the manually detected unauthorized APs.
Unmanage AP	AP that is not allowed to be used by an administrator among the detected unauthorized APs and AP that can be used maliciously
	- Configures the unmanaged AP classification policy.
	An administrator can classify a specific AP as a unmanaged AP among the manually detected unauthorized APs.

8.2.2.1 Configuring the managed AP classification policy

To configure the managed type authorized AP classification policy, execute the command as follows:

Configuration using CLI

1) Go to configure \rightarrow wi \rightarrow device configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# wi
WEC8500/configure/wi# device
WEC8500/configure/wi/device#
```

- 2) Configure the managed type authorized AP policy.
 - add-classification-rule- managed [RULE_NAME] enable [PRIORITY] [SSID_TYPE] [SSID]

Parameter	Description
RULE_NAME	Classification policy name
PRIORITY	Priority number
SSID_TYPE	SSID type - managed-ssid: SSID that is used in an authorized AP that is connected to the APC user-configured-ssid [SSID]: Entered SSID (An AP that has SSID as SSID_NAME is classified as a friendly type unauthorized AP.)

Parameter	Description
SSID_NAME	SSID that is used when the SSID_TYPE is entered as user-configured-ssid

 To check the configured information, use the 'show wids device rule managed' command.

Configuration using Web UI

In the menu bar of <WEC Main window>, select <Configuration> and then select the <Wireless Intrusion> \rightarrow <Policy> \rightarrow <User Defined Rule> menu in the sub-menus. And then, select <Managed> at the upper tab.

1) By using Add, Delete, or Change, operator can add, delete, or change user defined rules.

Figure 161. Managed Rule Configuration Window

2) In the rule addition screen, operator can add a rule by entering the information and click Apply.

Figure 162. Managed Addition Window

8.2.2.2 Configuring the unmanaged AP classification policy

To configure the unmanaged type unauthorized AP classification policy, execute the command as follows:

Configuration using CLI

1) Go to configure \rightarrow wi \rightarrow device configuration mode of CLI.

```
WEC8500# configure terminal
WEC8500/configure# wi
WEC8500/configure/wi# device
WEC8500/configure/wi/device#
```

- 2) Configure the unmanaged type unauthorized AP policy.
 - add-classification-rule-unmanaged [RULE_NAME] enable [PRIORITY]
 [MATCH_TYPE] [MIN_RSSI] [MIN_DURATION] [NO_OF_MIN_ASSOC CL
 IENTS] [ENCRYPTION] [SSID_TYPE] [SSID]

Parameter	Description
RULE_NAME	Classification policy name
PRIORITY	Rule priority number
MATCH_TYPE	Enter either match-all or match-any. - match-all: Classifies as a unmanaged unauthorized AP when the detection criteria entered thereafter are all satisfied. - match-any: Classifies as a unmanaged unauthorized AP when any one of the detection criteria entered thereafter is satisfied.
MIN_RSSI	Minimum RSSI. When the RSSI value is higher than this value, it is classified as a unmanaged unauthorized AP.
MIN_DURATION	Minimum lasting time (unit: s). When the signal lasting time is higher than this value, it is classified as a unmanaged unauthorized AP.
NO_OF_MIN_ASSOCCL IENTS	Minimum number of connected terminals When the number of connected terminals is higher than this value, it is classified as a unmanaged unauthorized AP.
ENCRYPTION	 Whether to use encryption - 0: Does not use encryption. If encryption is not used, it is classified as a unmanaged unauthorized AP. - 1: Uses encryption. If encryption is used, it is classified as a malicious unauthorized AP.
SSID TYPE	SSID type - managed-ssid: SSID that is used in an authorized AP that is connected to the APC user-configured-ssid [SSID]: Entered SSID (An AP that has SSID as SSID_NAME is classified as a friendly type unauthorized AP.)
SSID_ NAME	SSID that is used when the SSID_TYPE is entered as user-configured-ssid

To check the configured information, use the 'show wids device rule unmanaged' command.

Configuration using Web UI

In the menu bar of **<WEC Main window>**, select **<Configuration>** and then select the **<Wireless Intrusion>** \rightarrow **<Policy>** \rightarrow **<User Defined Rule>** menu in the sub-menus. And then, select **<Unmanaged>** at the upper tab.

1) By using Add, Delete, or Change, operator can add, delete, or change user defined rules.

Figure 163. Unmanaged Rule Configuration Window

2) In the rule addition screen, operator can add a rule by entering the information and click Apply.

Figure 164. Unmanaged Rule Addition Window