

Schindler Elevator Ltd Switzerland

K-LC1 RADAR TRANSCEIVER

We, Schindler elevators Ltd

Zugerstrasse 13, CH-6030 EBIKON, Switzerland

USER MANUAL

Features

24 GHz K-band miniature transceiver

180MHz sweep FM input (n.a. for K-LC1a_V2)

Dual 4 patch antenna

Single balanced mixer with 50MHz bandwidth

Beam aperture 80°/34°

15dBm EIRP output power

25x25mm2 surface, 6mm thickness

Lowcost design

3 pin version K-LC1a_V2 available

Applications

General purpose movement detectors

Security systems

Object speed measurement systems

Simple shortrange ranging detection

Highspeed shortrange data transmission

Industrial sensors

Description

K-LC1a is a 8 patch Doppler module with an asymmetrical beam for lowcost short distance applications. Its typical applications are movement sensors in the security and automatic door domain. In building automation this module may be an alternative for infrared PIR or AIR systems thanks to its outstanding performance/cost ratio.

The module is extremely small and lightweight.

With its IF bandwidth from DC to 50MHz it opens many new applications.

FSK is possible thanks to the unique RFbeam oscillator design. This allows to use this lowcost module even in ranging applications.

Powerful starterkits with signal conditioning and visualization is available from RFbeam.

Find more informations at www.rfbeam.ch.

Characteristics

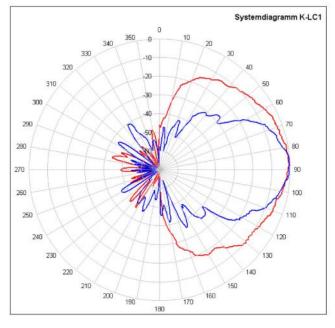
arameter	Conditions / Notes	Symbol	Min	Тур	Max	Unit
perating conditions						
Supply voltage		Vœ	4.75	5.0	5.25	V
Supply current	VCO Pin open	I _{cc}		35	45	mA
VCO pin resistance	Driving voltage source Note 1	R _{veo}		570		Ω
Operating temperature		Top	-20		+60	"C
Storage temperature		T _{st}	-20		+80	°C

nsmitter	,					
Transmitter frequency	VCO pin left open, Tamb=-20"C +60"C	fix	24.075	24.125	24.175	GHz
Frequency drift vs temperature	V _{cc} =5.0V, -20"C +60"C Note 2	A f _{TX}	20	-1		MHz/°C
Frequency tuning range		Δ f _{vnn}		180		MHz
VCO sensitivity		Swa		-80		MHz/V
VCO Modulation Bandwidth	Δf=20MHz	Byco		3		MHz
Output power	EIRP	Pix	+12	+15	+17	dBm
Output power deviation	Full VCO tuning range	Δ Ρτχ			+/- 1	dBm
Spurious emission	According to ETSI 300 440	Paper			-30	dBm
Turn-on time	Until oscillator stable, ∆f _{TX} < 5MHz	ton	a la	11		μs

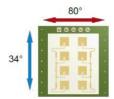
eceiver					
Mixer Conversion loss	$f_{\rm IF} = 1 \text{kHz}$, IF load = $1 \text{k}\Omega$	D _{mixer1}	-6		dB
2	$f_{\rm IF}$ = 20MHz, IF load = 50Ω	D _{mixer2}	-11		dB
Antenna Gain	F _{TX} =24.125GHz Note 3	G _{Ant}	8.6		dB
Receiver sensitivity	f_{iF} =500Hz,B=1kHz,R _{iF} =1k Ω ,S/N=6dB	P _{RX1}	-96		dBm
	f_{iF} =1MHz,B=20MHz,R _{IF} =50 Ω ,S/N=6dB	P _{RX1}	-84		dBm
Overall sensitivity	$f_{lF} = 500 Hz, B = 1kHz, R_{lF} = 1k\Omega, S/N = 6dB$	D _{system}	-111		dBc
output					
IF resistance		R _{IF}	50		Ω
IF frequency range	-3dB Bandwidth, IF load = 50Ω	f _{IF}	0	50	MHz
IF noise power	$f_{\rm IF}$ =500Hz, IF load = 50 Ω	P _{IFnoise1}	-134		dBm/H
	$f_{\rm IF}$ =1MHz, IF load = 50Ω	P _{IFnoise2}	-164		dBm/H
IF noise voltage	f_{iF} =500Hz, IF load = 1k Ω	U _{IFnoise1}	-147		dBV/Hz
4	f_{iF} =500Hz, IF load = 1k Ω	U _{IFnoise1}	45		nV/√Hz
IF output offset voltage	Full VCO range, no object in range	U _{IF}	10	200	mV
Supply rejection	Rejection supply pins to IF output	D _{supply}	26		dB

Parameter	Conditions / Notes	Symbol	Min Typ M	ax Unit
Antenna				
Horizontal -3dB beamwidth	E-Plane	W _o	80	۰
Vertical -3dB beamwidth	H-Plane	We	34	0
Horiz, sidelobe suppression		Dq	-12	dB
Vertical sidelobe suppression		D ₀	-12	dB
Body				
Outline Dimensions			25*25*6	mm³
Weight			4.5	g
Connector	5pin single row jumper			1000

Note 1: The VCP input has an internal voltage source with approx. 0.9 VDC. For driving this pin it is necessary to source and sink current


Note 2: Transmit frequency stays within 24.075 to 24.175GHz over specified temperature range when the VCO pin is left open

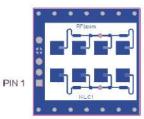
Note 3: Theoretical value, given by design.


On this module the connector pin for the modulation input is not present. So this low-impedance input is always not connected, what is the best case. So there will never be any 'unwanted' modulation

Antenna System Diagram

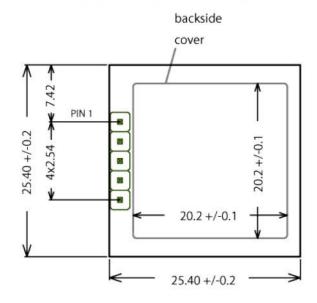
This diagram shows module sensitivity in both azimuth and elevation directions. It incorporates the transmitter and receiver antenna characteristics.

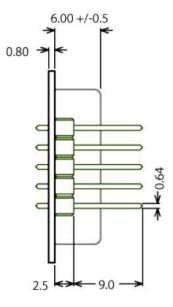
Horizontal 80°, vertical 34° pattern at IF output voltage -6dB (corresponds to -3dB Tx power)


Remarks: The broader the antenna, the narrower the beam.

FM Characteristics

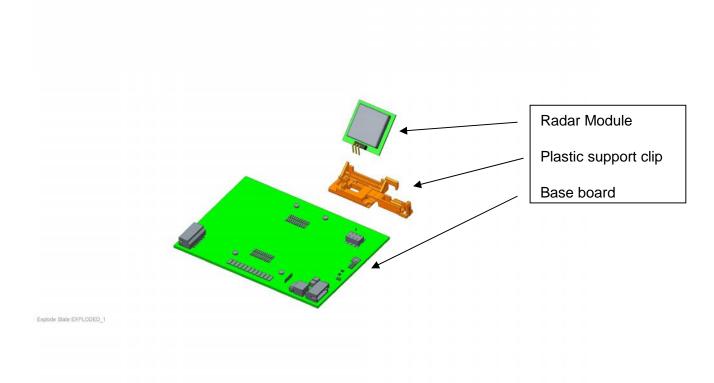
VCO Voltage generates an output signal even without an object in range because of the finite isolation between transmitter and receiver path. This effect is called self-mixing and leads to a DC signal that depends on the carrier frequency / the VCO voltage.


Pin Configuration


Pin	Description	Typical Value
1 *)	nc	<u>124005</u>
2	VCC	5VDC supply
3	IF output	load 1kOhm
4	GND	ground
5 *)	VCO in	Open = f ₀

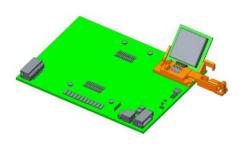
^{*)} not present in the option K-LC1a_V2

Outline Dimensions

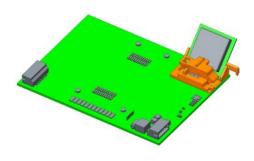

All Dimensions in mm

All values given are typical unless otherwise specified.

ASSEMBLY INFORMATION


Features

The radar module is mounted on a card reader pcb board and locked by a plastic support clip.



Assembly Diagram

- Step 1: Place the plastic support on the Card reader board PCB.
- Step 2: Insert the radar module into base board radar connector.

Step 3: Close the support clip locker

Step 4: Place the card reader with radar inside your Port device For example:

NOTE: The marking label oft he host appliance of the present radar module must contains the following inscription:

"Contains FCC ID: XFIPORTRADARVER1"

Application Notes

Sensitivity and Maximum Range

The values indicated here are intended to give you a 'feeling' of the attainable detection range with this module. It is not possible to define an exact RCS (radar cross section) value of real objects because reflectivity depends on many parameters.

Please note, that range values also highly depend on the performance of signal processing, environment conditions (i.e. rain, fog), housing of the module and other factors. For simple detection purposes (security applications e.g.) without the need of speed measurements, range may be enhanced by further reducing the IF bandwidth. With 250Hz bandwidth and a simple comparator, we get already a 25m detection range.

FCC in formations:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency

energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- —Reorient or relocate the receiving antenna.
- —Increase the separation between the equipment and receiver.
- —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- —Consult the dealer or an experienced radio/TV technician for help.

FCC ID: XFIPORTRADARVER1