
Momentum

M1 Processor Adapter and Option Adapter User Guide

870 USE 101 10 Version 2

Data, Illustrations, Alterations

Data and illustrations are not binding. We reserve the right to alter products in line with our policy of continuous product development. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us by e-mail at techcomm@modicon.com.

Training

Schneider Electric Inc. offers suitable further training on the system.

Hotline

See addresses for Technical Support Centers at the end of this publication.

Trademarks

All terms used in this publication to denote Schneider Electric Inc. products are trademarks of Schneider Electric Inc.

All other terms used in this publication to denote products may be registered trademarks and/or trademarks of the corresponding corporations.

Copyright

All rights are reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including copying, processing or by online file transfer, without permission in writing from Schneider Electric Inc. You are not authorized to translate this document into any other language.

© 2000 Schneider Electric Inc. All rights reserved.

Momentum

M1 Processor Adapter and Option Adapter User Guide

870 USE 101 10 Version 2.0

November 2000

Document Set

Momentum I/O Bases User Guide 870 USE 002 00

Momentum Interbus Communication Adapter User Manual 870 USE 003 00

Momentum FIPIO Communication Adapter User Manual 870 USE 005 00

Momentum Ethernet Communciation Adapter User Guide 870 use 112 00

170 PNT Series Modbus Plus Communication Adapters for Momentum User Guide 870 USE 103 00

170 NEF Series Modbus Plus Communication Adapters for Momentum User Guide 870 USE 111 00

Preface

The data and illustrations found in this book are not binding. We reserve the right to modify our products in line with our policy of continuous product development. The information in this document is subject to change without notice and should not be construed as a commitment by Schneider Electric, Inc.

Schneider Electric, Inc assumes no responsibility for any errors that may appear in this document. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us through your distributor or local Square D office.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of the Publisher, Schneider Electric, Inc.

CAUTION

All pertinent state, regional, and local safety regulations must be observed when installing and using this product.

For reasons of safety and to assure compliance with documented system data, repairs to components should be performed only by the manufacturer.

Failure to observe this precaution can result in injury or equipment damage.

MODSOFT® is a registered trademark of Schneider Electric, Inc.

The following are trademarks of Schneider Electric, Inc.:

Modbus Plus Concept

Modicon 984

DIGITAL® and DEC® are registered trademarks of Digital Equipment Corporation.

IBM® and IBM AT® are registered trademarks of International Business Machines Corporation.

Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation.

©Copyright 2000, Schneider Electric, Inc.

Printed in U.S.A.

Contents

	About This Book	15
	Revision History	15
	Document Scope	16
	Validity Note	
	Related Documentation	
	User Comments	16
Part I	Getting Started	17
Chapter 1	Overview of Momentum M1 Processor Adapters	19
Section 1.1	Introducing the M1 Processor Adapters	20
	Overview	
	Front Panel illustration	
	Overview of Ports	
	Memory and Performance Characteristics	
	Power Supply	27
Section 1.2	Features of Each Processor Adapter	28
	Overview	
	171 CCS 700 00	
	171 CCS 700 10	32
	171 CCS 760 00	35
	171 CCC 760 10	38
	171 CCS 780 00	41
	171 CCC 780 10	44
	171 CCC 960 20	
	171 CCC 960 30	
	171 CCC 980 20	
	171 CCC 980 30	60

Chapter 2	Overview of Momentum Option Adapters	65
Section 2.1	Introducing the Momentum Option Adapters	
Section 2.2	Serial Option Adapter Overview Front Panel Components Specifications	67 68
Section 2.3	Modbus Plus Option Adapter Overview Front Panel Components Specifications	73 74
Section 2.4	Redundant Modbus Plus Option Adapter Overview Front Panel Components Specifications	79 80
Chapter 3	Assembling Momentum Components	87
Section 3.1	Assembling a CPU Overview Assembling a Processor Adapter and I/O Base Disassembling a Processor Adapter from an I/O Base	88 89
Section 3.2	Assembling a CPU with an Option Adapter Overview Assembling a Processor Adapter and an Option Adapter Mounting the Assembled Adapters on the I/O Base Disassembling a Module with an Option Adapter	94 95 98
Section 3.3	Installing Batteries in an Option Adapter Installation Guidelines	
Section 3.4	Labeling the CPUGuidelines for Labeling the CPU	
Part II	Communication Ports	109
Chapter 4	Using the Modbus Ports	111
Section 4.1	Modbus Port 1 Overview Modbus Port 1 Cable Accessories for Modbus Port 1	112 113

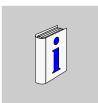
Viii 870 USE 101 10 V.2

	Pinouts for Modbus Port 1	117
Section 4.2	Modbus Port 2	119
	Overview	_
	Modbus Port 2	
	Four-Wire Cabling Schemes for Modbus RS485 Networks	
	Two-Wire Cabling Schemes for Modbus RS485 Networks	
	Cable for Modbus RS485 Networks	
	Connectors for Modbus RS485 Networks	
	Terminating Devices for Modbus RS485 Networks	
	FINDUIS TOLINIOUDUS NOTOD NETWORKS	133
Chapter 5	Using the Ethernet Port	141
Section 5.1	Ethernet Port	142
	Ethernet Port	
	Network Design Considerations	
	Security	
	Cabling Schemes	
	Pinouts	148
	Assigning Ethernet Address Parameters	149
	Using BOOTP Lite to Assign Address Parameters	152
	Reading Ethernet Network Statistics	153
	Description	154
Section 5.2	Establishing a Connection with an Ethernet Module	158
	Establishing a Connection with an Ethernet Module	159
Section 5.3	Accessing Embedded Web Pages	162
	Accessing the Web Utility Home Page	
Section 5.4	171 CCC 960 30 AND 171 CCC 980 30 Web Pages	164
	Momentum M1E Web Pages	165
	Momentum M1E Indicators	170
Chapter 6	Using the I/OBus Port	171
	I/O Bus Port	172
	How I/OBus Works	_
	Network Status Indication in the M1 Ethernet Module	
	Guidelines for I/OBus Networks	
	Cable Accessories	
	Pinouts	179
Chapter 7	Using the Modbus Plus Ports	
	Modbus Plus Features for Momentum	
	Two Types of Modbus Plus Networks	
	Standard Cabling Schemes	
	Cluster Mode Cabling Schemes	187

	Cable Accessories for Modbus Plus Networks Pinouts and Wiring Illustrations for Modbus Plus Networks Modbus Plus Addresses Peer Cop	194 198
Part III	Modsoft	203
Chapter 8	Configuring an M1 CPU with Modsoft	205
Section 8.1	Configuring the Processor Adapter Overview Selecting an M1 Processor Adapter Specifying an M1 Processor Type Default Configuration Parameters Changing the Range of Discrete and Register References Changing the Size of Your Application Logic Space Changing the Number of Segments Changing the Size of the I/O Map Establishing Configuration Extension Memory	206 207 210 212 215 217 218
Section 8.2	Configuring Option Adapter Features Overview Reserving and Monitoring a Battery Coil Setting up the Time-of-Day Clock Setting the Time Reading the Time-of-Day Clock	223 224 226 228
Section 8.3	Modifying Communication Port Parameters Overview Accessing the Port Editor Screen Parameters Which Should Not Be Changed Changing the Mode and Data Bits Changing Parity Changing the Baud Rate Changing the Modbus Address Changing the Delay Changing the Protocol on Modbus Port 2	232 233 234 235 237 238 239
Section 8.4	I/O Mapping the Local I/O Points	
Chapter 9	I/O Mapping an I/OBus Network with Modsoft	248 250

Chapter 10	Configuring a Modbus Plus Network in Modsoft with Peer Cop	257
Section 10.1	Getting Started	258
	Overview	
	Accessing the Peer Cop Configuration Extension Screen	
	The Default Peer Cop Screen	261
Section 10.2	Using Modbus Plus to Handle I/O	263
	Overview	
	Devices on the Network	_
	Defining the Link and Accessing a Node	
	Confirming the Peer Cop Summary Information	
	Specifying References for Input Data	
	Accessing the Remaining Devices	
	Completing the I/O Device Configuration in Peer Cop	278
Section 10.3	Passing Supervisory Data over Modbus Plus	281
	Overview	
	Devices on the Network	282
	Configuring a Node to Exchange Data	283
	Confirming the Peer Cop Summary Information	
	Specifying References for Input and Output Data	
	Defining the References for the Next Node	
	Defining References for the Supervisory Computer	
	Completing the Configuration	302
Chapter 11	Saving to Flash in Modsoft	303
	Preparing to Save to Flash	
	Saving to Flash	
Part IV	Concept	307
Chapter 12	Configuring an M1 CPU with Concept	309
Section 12.1	Configuring the Processor Adapter	310
	Overview	
	Selecting an M1 Processor Adapter	311
	Default Configuration Parameters	315
	Changing the Range of Discrete and Register References	
	Changing the Size of the Full Logic Area	
	Understanding the Number of Segments	
	Changing the Size of the I/O Map	
	Establishing Configuration Extension Memory for Peer Cop	324
Section 12.2	Configuring Option Adapter Features	327

		327
	Reserving and Monitoring a Battery Coil	
	Setting the Time	
	Reading the Time-of-Day Clock	
Section 12.3	Modifying Modbus Port Parameters	336
	Overview	336
	Accessing the Modbus Port Settings Dialog Box	
	Changing the Baud Rate	
	Changing Mode and Data BitsStop Bit Should Not Be Changed	
	Changing Parity	
	Changing the Delay	
	Changing the Modbus Address	
	Changing the Protocol on Modbus Port 2	343
Section 12.4	Configuring Ethernet Address Parameters and I/O Scanning	344
	Overview	
	Accessing the Ethernet / I/O Scanner Screen	
	Ethernet Configuration Options	
	Setting Ethernet Address Parameters	
	Configuring I/O	
	Completing the I/O Configuration	354
	I/O Mapping the Local I/O Points	0.57
Section 12.5		
Section 12.5	Accessing and Editing the I/O Map	
Section 12.5 Chapter 13		357
	Accessing and Editing the I/O Map	357
	Accessing and Editing the I/O Map I/O Mapping an I/OBus Network with Concept Supporting an I/O Map for an I/OBus Network Accessing an I/O Map Screen for an I/OBus Network	357361362363
	Accessing and Editing the I/O Map I/O Mapping an I/OBus Network with Concept	357361362363
Chapter 13	Accessing and Editing the I/O Map I/O Mapping an I/OBus Network with Concept Supporting an I/O Map for an I/OBus Network Accessing an I/O Map Screen for an I/OBus Network Editing the I/OBus I/O Map	357361362363
	Accessing and Editing the I/O Map I/O Mapping an I/OBus Network with Concept Supporting an I/O Map for an I/OBus Network Accessing an I/O Map Screen for an I/OBus Network	357361362363365
Chapter 13 Chapter 14	I/O Mapping an I/OBus Network with Concept Supporting an I/O Map for an I/OBus Network Accessing an I/O Map Screen for an I/OBus Network Editing the I/OBus I/O Map Configuring a Modbus Plus Network in Concept with Peer Cop	357361362363365
Chapter 13	Accessing and Editing the I/O Map I/O Mapping an I/OBus Network with Concept	357361362363365369
Chapter 13 Chapter 14	Accessing and Editing the I/O Map I/O Mapping an I/OBus Network with Concept Supporting an I/O Map for an I/OBus Network Accessing an I/O Map Screen for an I/OBus Network Editing the I/OBus I/O Map Configuring a Modbus Plus Network in Concept with Peer Cop Getting Started	357361362363365369
Chapter 13 Chapter 14	Accessing and Editing the I/O Map I/O Mapping an I/OBus Network with Concept Supporting an I/O Map for an I/OBus Network Accessing an I/O Map Screen for an I/OBus Network Editing the I/OBus I/O Map Configuring a Modbus Plus Network in Concept with Peer Cop Getting Started Overview Accessing the Peer Cop Dialog Box Adjusting the Amount of Extension Memory	357361362363365370370371373
Chapter 13 Chapter 14	Accessing and Editing the I/O Map I/O Mapping an I/OBus Network with Concept Supporting an I/O Map for an I/OBus Network Accessing an I/O Map Screen for an I/OBus Network Editing the I/OBus I/O Map Configuring a Modbus Plus Network in Concept with Peer Cop Getting Started Overview Accessing the Peer Cop Dialog Box	357361362363365370370371373
Chapter 13 Chapter 14	Accessing and Editing the I/O Map I/O Mapping an I/OBus Network with Concept Supporting an I/O Map for an I/OBus Network Accessing an I/O Map Screen for an I/OBus Network Editing the I/OBus I/O Map Configuring a Modbus Plus Network in Concept with Peer Cop Getting Started Overview Accessing the Peer Cop Dialog Box Adjusting the Amount of Extension Memory	357361362365369370371373374
Chapter 14 Chapter 14 Section 14.1	I/O Mapping an I/OBus Network with Concept Supporting an I/O Map for an I/OBus Network Accessing an I/O Map Screen for an I/OBus Network Editing the I/OBus I/O Map Configuring a Modbus Plus Network in Concept with Peer Cop Getting Started Overview Accessing the Peer Cop Dialog Box Adjusting the Amount of Extension Memory Other Default Settings in the Peer Cop Dialog Box Using Modbus Plus to Handle I/O Overview	357361362363365370371373374376
Chapter 14 Chapter 14 Section 14.1	I/O Mapping an I/OBus Network with Concept Supporting an I/O Map for an I/OBus Network Accessing an I/O Map Screen for an I/OBus Network Editing the I/OBus I/O Map Configuring a Modbus Plus Network in Concept with Peer Cop Getting Started Overview Accessing the Peer Cop Dialog Box Adjusting the Amount of Extension Memory Other Default Settings in the Peer Cop Dialog Box Using Modbus Plus to Handle I/O Overview Devices on the Network	357361362363365370371373374376376
Chapter 14 Chapter 14 Section 14.1	I/O Mapping an I/OBus Network with Concept Supporting an I/O Map for an I/OBus Network Accessing an I/O Map Screen for an I/OBus Network Editing the I/OBus I/O Map Configuring a Modbus Plus Network in Concept with Peer Cop Getting Started Overview Accessing the Peer Cop Dialog Box Adjusting the Amount of Extension Memory Other Default Settings in the Peer Cop Dialog Box Using Modbus Plus to Handle I/O Overview	357361362363365370370371373374376376377


Xİİ 870 USE 101 10 V.2

	Specifying References for Output Data	384
Section 14.3	Passing Supervisory Data over Modbus Plus Overview Devices on the Network Specifying References for Input and Output Data Defining the References for the Next Node Defining References for the Supervisory PLC	
Chapter 15	Saving to Flash with Concept	399
•	Saving to Flash	
Part V	Appendices	403
	••	
Appendix A	Ladder Logic Elements and Instructions	
	Standard Ladder Logic Elements	
	DX Loadable Support	
	A Special STAT Instruction	411
Appendix B	Run LED Flash Patterns and Error Codes	417
Index		421

870 USE 101 10 V.2 Xiii

XİV 870 USE 101 10 V.2

About This Book

Revision History

This is version 2.0 of this manual, 870 USE 101 1x, which replaces 870 USE 101 0x. The following information has been added or changed:

Version	Change
1.0	Never released.
2.0	Addition of new Ethernet-capable processors.

The most recent version of this manual is available on our web site, www.modicon.com.

About Book

Document Scope

This manual contains complete information about the Momentum M1 Processor Adapters, Option Adapters and Ethernet Adapters. It does not contain information about Momentum I/O bases or Communication Adapters.

Validity Note

This manual is valid for Modsoft 2.6.1 and Concept 2.2.

Related Documentation

You may find the following other manuals useful:

Title	Part Number
Momentum I/O Bases User Guide	870 USE 002 00
Momentum Modbus Plus PNT Series Communication Adapters User Guide	870 USE 103 00
Momentum Modbus Plus NEF Series Communication Adapters User Guide	870 USE 111 00
Quantum NOE 771 x0 Ethernet Modules User Guide	840 USE 116 00
FactoryCast User's Guide For Quantum and Premium	890 USE 152 00
Momentum Interbus Communication Adapter User Manual	870 USE 003 00
Momentum Ethernet Communication Adapter User Guide	870 USE 112 00

User Comments

We welcome your comments about this document. You can reach us by e-mail at techcomm@modicon.com.

Getting Started

At a Glance

Purpose

This part describes the M1 Processor Adapters and Option Adapters and explains how to assemble them.

In This Part

This part contains the following chapters:

For Information On	See Chapter	On Page
Overview of Momentum M1 Processor Adapters	1	19
Overview of Momentum Option Adapters	2	65
Assembling Momentum Components	3	87

Overview of Momentum M1 Processor Adapters

1

At a Glance

Purpose

A Momentum M1 Processor Adapter can be snapped onto a Momentum I/O base to create a central processing unit (CPU) that provides programmable logic control to local and distributed I/O.

This chapter describes the M1 Processor Adapters.

In This Chapter

This chapter contains the following sections:

For This Topic	See Section	On Page
Introducing the M1 Processor Adapters	1	20
Features of Each Processor Adapter	2	28

Section 1.1 Introducing the M1 Processor Adapters

Overview

Purpose

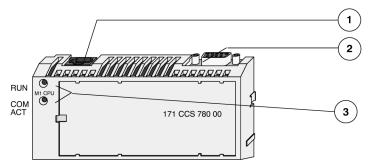
A Momentum M1 Processor Adapter stores and executes the application program, controlling the local I/O points of its host I/O base and distributed I/O devices on a common communication bus.

This section describes the front panel components, memory and performance characteristics of M1 Processor Adapters.

In This Section

This section contains the following topics:

For This Topic	See Page
Front Panel illustration	21
Overview of Ports	22
Memory and Performance Characteristics	24
Power Supply	27


Front Panel illustration

Introduction

This section provides an illustration of a typical M1 Processor Adapter.

Illustration

A typical Processor Adapter is shown in the following illustration:

Label	Description	
1	Standard port connector	
2	Optional second port connector	
3	LED indicators	

Overview of Ports

Introduction

Each Processor Adapter is equipped with at least one Modbus or Ethernet port. Some models also have a second port. The ports allow the Processor Adapter to communicate with:

- Programming panels
- Network I/O points under its control
- Network supervisory computers

Ports Per Processor Adapter

The following table indicates which ports are available with each Processor Adapter:

	Ро	rt 1	Ро	rt 2	
Processor Adapter	Ethernet Port	Modbus RS-232	Modbus RS-485	I/O Bus Port	
171 CCS 700 00		х			
171 CCS 700 10		х			
171 CCS 760 00		х		х	
171 CCC 760 10		х		х	Schneider Automation Inc.
171 CCS 780 00		х	х		
171 CCC 780 10		х	х		① 171 CCS 780 00
171 CCC 960 20	х			х	
171 CCC 960 30	х			х	
171 CCC 980 20	х		х		1. Port 1
171 CCC 980 30	х		х		1. Port 1
223 000 00			, A		2. POIL2

Ethernet Port

The Ethernet port is a standard, twisted pair, Ethernet 10BASE-T port which can communicate with programming panels, other M1 Processor Adapters with Ethernet ports, and with other Ethernet products. This port has an RJ45 connector, with an industry standard pinout.

Modbus Port 1

Modbus Port 1 is a general-purpose asynchronous serial port with dedicated RS232 slave functionality. This port has an RJ45 connector.

Continued on next page

Overview of Ports, Continued

Modbus Port 2 Modbus Port 2 is a general-purpose asynchronous serial port with dedicated

RS485 slave functionality. This port has a 9-pin D connector.

I/OBus Port

The I/OBus port is used to control and communicate with other network (non-local) I/O modules under the control of the CPU. This port has a 9-pin D connector.

Memory and Performance Characteristics

Introduction

Processor Adapters are equipped with internal memory and Flash RAM. This section explains those two types of memory and describes the memory size and performance characteristics of each Processor Adapter.

Internal Memory

Internal memory includes user memory and state RAM:

- User memory contains the control logic program and such system overhead as the Processor Adapter configuration, I/O mapping, checksum and system diagnostics.
- State RAM is the area in memory where all the input and output references for program and control operations are defined and returned.

The user may change the way internal memory is allocated by adjusting parameters for user memory and state RAM.

Flash RAM

Flash RAM contains the executive firmware, which is the operating system for the PLC. It also contains a firmware kernel, which cannot be changed. The kernel is a small portion of memory that recognizes acceptable executive firmware packages and allows them to be downloaded to the Processor Adapter.

Space is also provided in Flash so that a copy of the user program and state RAM values can be stored. This back-up capability is particularly useful in configurations where no battery is used (i.e., a Processor Adapter without an Option Adapter).

When the module is successfully communicating with other devices, if a ring adapter with battery back up is not present, it is recommended that you stop the processor and save the user program to Flash. This will save the processor's ARP cache and enable it to "remember" this information if power is lost or removed.

This procedure should also be followed whenever:

- A new or substitute device is installed on the network;
- The IP address of a network device has been changed.

Note: Some processors run both IEC and Ladder Logic and some run only IEC. See table following.

Continued on next page

Memory and Performance Characteristics, Continued

Memory Size and Clock Speed

The memory size and clock speed of each processor are described in the table below:

Processor	984LL	Flash RAM	Clock Speed	984LL Program Memory	IEC Program Memory
171 CCS 700 00	64K bytes	256K bytes	20MHz	2.4k	-
171 CCS 700 10	64K bytes	256K bytes	32MHz	2.4k	-
171 CCS 760 00	256K bytes	256K bytes	20MHz	12k	160k
171 CCC 760 10	512K bytes	512K bytes	32MHz	18k	240k
171 CCS 780 00	64K bytes	256K bytes	20MHz	2.4k	-
171 CCC 780 10	512K bytes	512K bytes	32MHz	18k	240k
171 CCC 960 20	544K bytes	512K bytes	50 MHz	18k	-
171 CCC 960 30	544K bytes	1 megabyte	50 MHz	18k	200k
171 CCC 980 20	544K bytes	512K bytes	50 MHz	18k	-
171 CCC 980 30	544K bytes	1 megabyte	50 MHz	18k	200k

^{*} In a default configuration. The amount of user memory may be increased or decreased by adjusting other parameters.

Memory and Performance Characteristics, Continued

Input and Output References

The number of registers (for 3x and 4x references) and discretes (for 0x and 1x references) supported by each processor are described in the table below:

Processor Adapter	984	LL Executive	IEC Executive		
	Registers	Discretes	Registers	Discretes	
171 CCS 700 00	2048	2048*			
171 CCS 700 10	2048	2048*			
171 CCS 760 00	4096	2048*	4096	2048 0x references 2048 1x references	
171 CCC 760 10	26048	8192 0x references 8192 1x references	26048	8192 0x references 8192 1x references	
171 CCS 780 00	2048	2048*			
171 CCC 780 10	26048	8192 0x references 8192 1x references	26048	8192 0x references 8192 1x references	
171 CCC 960 20	26048	8192 0x references 8192 1x references			
171 CCC 960 30	26048	8192 0x references 8192 1x references	11,200	4096 0x references 4096 1x references	
171 CCC 980 20	26048	8192 0x references 8192 1x references			
171 CCC 980 30	26048	8192 0x references 8192 1x references	11,200	4096 0x references 4096 1x references	
*This total	may include any	combination of 0x and 1	x references.		

Power Supply

Supplied by Base

A Processor Adapter requires 5 V, which is supplied by its I/O base.

Note: For information about the 171 CPS 111 00 TIO Power Supply Module, refer to 870 Use 002 00 V. 2 *Momentum I/O Base User Guide*

Section 1.2 Features of Each Processor Adapter

Overview

Purpose

This section provides a photograph, description of key features and LEDs, and specifications for each Processor Adapter.

In This Section

This section contains the following topics.

For This Topic	See Page
171 CCS 700 00	29
171 CCS 700 10	32
171 CCS 760 00	35
171 CCC 760 10	38
171 CCS 780 00	41
171 CCC 780 10	44
171 CCC 960 20	47
171 CCC 960 30	51
171 CCC 980 20	56
171 CCC 980 30	60

171 CCS 700 00

Overview

This section describes the 171 CCS 700 00 Processor Adapter, including key features, an illustration and specifications.

Key Features

The key features of this Processor Adapter are:

- Modbus Port 1
- 64K bytes of internal memory
- 20 MHz clock speed

Note: The Modbus port connector looks like a Ethernet port connector. Do not attempt to use an Modbus adapter as an Ethernet unit. Do not attempt to place an Ethernet connector in a Modbus connector.

Illustration

The connector and LED indicators are shown in the following illustration:

Label	Description
1	Modbus Port 1 connector
2	LED indicators

Continued on next page

171 CCS 700 00, Continued

LED Indicators

This Processor Adapter has two LED indicators, RUN and COM ACT. Their functions are described in the table below:

LED	Status	Function	
Start up	Both	Single flash. Indicates good health.	
RUN	Green	On continuously when the CPU has received power and is solving logic.	
		Flashes an error pattern if the CPU is in kernel mode. (See Run LED Flash Patterns and Error Codes on page 417)	
	Off	CPU is not powered up or is not solving logic.	
COM ACT	Green	May be on continuously or blinking. Indicates activity on Modbus port 1.	
	Off	No activity on Modbus port 1.	

Specifications

The following table contains specifications for the 171 CCS 700 00 Momentum M1 Processor Adapter:

Memory				
Internal Memory	64K bytes			
User Memory	2.4K words			
Flash RAM	256K bytes			
Clock Speed	20 MHz			
Input and Output References				
Registers	2048			
Discretes	2048 (any combination of 0x and 1x references)			
I/O Servicing				
Local I/O	Services all the points on any host Momentum I/O base			
Watchdog timeout	419 ms			
Logic solve time	0.25 ms/k ladder logic instructions			

Continued on next page

171 CCS 700 00, Continued

Specifications, Continued

Mechanical	
Weight	42.5 g (1.5 oz.)
Dimensions (HxDxW)	25.9x61.02x125mm (1.01 x 2.37 x 4.86 in)
Material (Enclosures/ bezels)	Lexan
Operating Conditions	
Temperature	0 60 degrees C
Humidity	5 95% (noncondensing)
Chemical interactions	Enclosures and bezels are made of Lexan, a polycarbonate that can be damaged by strong alkaline solutions
Altitude, full operation	2000m (6500ft)
Vibration	10 57Hz @ 0.075mm displacement amplitude 57150Hz @ 1g Ref. IEC 68-2-6 FC
Shock	+/-15g peak, 11ms, half sine wave Ref. IEC 68-2-27 EA
RFI Susceptibility/ immunity	Meets CE mark requirements for open equipment. Open equipment should be installed in an industry- standard enclosure, with access restricted to qualified service personnel.
Storage Conditions	
Temperature	-40+85 degrees C
Humidity	5 95% (noncondensing)
Safety Parameters	
Degree of protection	Unintentional access (UL 508 Type 1, NEMA250 Type 1, IP20 conforming to IEC529)
Di-electric strength	RS232 is non-isolated from logic common
Agency Approvals	UL 508, CSA, CUL, CE
	● FM class1, div2

171 CCS 700 10

Overview

This section describes the 171 CCS 700 10 Processor Adapter, including key features, an illustration and specifications.

Key Features

The key features of this Processor Adapter are:

- Modbus Port 1
- 64K bytes of internal memory
- 32 MHz clock speed

Note: The Modbus port connector looks like a Ethernet port connector. Do not attempt to use an Modbus adapter as an Ethernet unit. Do not attempt to place an Ethernet connector in a Modbus connector.

Illustration

The connector and LED indicators are shown in the following illustration:

Label	Description
1	Modbus Port 1 connector
2	LED indicators

Continued on next page

171 CCS 700 10, Continued

LED Indicators

This Processor Adapter has two LED indicators, RUN and COM ACT. Their functions are described in the table below:

LED	Status	Function	
Start up	Both	Single flash. Indicates good health.	
RUN	Green	On continuously when the CPU has received power and is solving logic.	
		Flashes an error pattern if the CPU is in kernel mode. (See Run LED Flash Patterns and Error Codes on page 417)	
	Off	CPU is not powered up or is not solving logic.	
СОМ АСТ	Green	May be on continuously or blinking. Indicates activity on Modbus port 1.	
	Off	No activity on Modbus port 1.	

Specifications

The following table contains specifications for the 171 CCS 700 10 Momentum M1 Processor Adapter:

Memory			
Internal Memory	64K bytes		
User Memory	2.4K words		
Flash RAM	256K bytes		
Clock Speed	32 MHz		
Input and Output References			
Registers	2048		
Discretes	2048 (any combination of 0x and 1x references)		
I/O Servicing			
Local I/O	Services all the points on any host Momentum I/O base		
Watchdog timeout	262 ms		
Logic solve time	0.16 ms/k ladder logic instructions		

Continued on next page

171 CCS 700 10, Continued

Specifications, Continued

Mechanical	
Weight	42.5 g (1.5 oz.)
Dimensions (HxDxW)	25.9x61.02x125mm (1.01 x 2.37 x 4.86 in)
Material (Enclosures/ bezels)	Lexan
Operating Conditions	
Temperature	0 60 degrees C
Humidity	5 95% (noncondensing)
Chemical interactions	Enclosures and bezels are made of Lexan, a polycarbonate that can be damaged by strong alkaline solutions
Altitude, full operation	2000m (6500ft)
Vibration	10 57Hz @ 0.075mm displacement amplitude 57150Hz @ 1g Ref. IEC 68-2-6 FC
Shock	+/-15g peak, 11ms, half sine wave Ref. IEC 68-2-27 EA
RFI Susceptibility/ immunity	Meets CE mark requirements for open equipment. Open equipment should be installed in an industry- standard enclosure, with access restricted to qualified service personnel.
Storage Conditions	
Temperature	-40+85 degrees C
Humidity	5 95% (noncondensing)
Safety Parameters	•
Degree of protection	Unintentional access (UL 508 Type 1, NEMA250 Type 1, IP20 conforming to IEC529)
Di-electric strength	RS232 is non-isolated from logic common
Agency Approvals	UL 508, CSA, CUL, CE
	FM class1, div2

171 CCS 760 00

Overview

This section describes the 171 CCS 760 00 Processor Adapter, including key features, an illustration and specifications.

Key Features

The key features of this Processor Adapter are:

- Modbus Port 1
- I/OBus port
- 256K bytes of internal memory
- 20 MHz clock speed

Note: The Modbus port connector looks like a Ethernet port connector. Do not attempt to use an Modbus adapter as an Ethernet unit. Do not attempt to place an Ethernet connector in a Modbus connector.

Illustration

The connectors and LED indicators are shown in the following illustration:

Label	Description	
1	Modbus Port 1 connector	
2	I/OBus port connector	
3	LED indicators	

Continued on next page

171 CCS 760 00, Continued

LED Indicators

This Processor Adapter has two LED indicators, RUN and COM ACT. Their functions are described in the table below:

LED	Status	Function
Start up	Both	Single flash. Indicates good health.
RUN	Green	On continuously when the CPU has received power and is solving logic.
		Flashes an error pattern if the CPU is in kernel mode. (See Run LED Flash Patterns and Error Codes on page 417)
	Off	CPU is not powered up or is not solving logic.
СОМ АСТ	Green	May be on continuously or blinking. Indicates activity on Modbus port 1.
	Off	No activity on Modbus port 1.

Specifications

The following table contains specifications for the 171 CCS 760 00 Momentum M1 Processor Adapter:

Memory		
Internal Memory	256K bytes	
User Memory	12K words 984LL Exec	
	160K words IEC Exec	
Flash RAM	256K bytes	
Clock Speed	20 MHz	
984LL Input and Output References		
Registers	4096	
Discretes	2048 (any combination of 0x and 1x references) 984LL	
IEC Input and Output References		
Registers	4096	
Discretes	2048 (any combination of 0x and 1x references)	

Continued on next page

171 CCS 760 00, Continued

Specifications, Continued

I/O Servicing		
Local I/O	Services all the points on any host Momentum I/O base	
Watchdog timeout	419 ms	
Logic solve time	0.25 ms/k ladder logic instructions	
Mechanical		
Weight	42.5 g (1.5 oz.)	
Dimensions (HxDxW)	25.9x61.02x125mm (1.01 x 2.37 x 4.86 in)	
Material (Enclosures/ bezels)	Lexan	
Operating Conditions		
Temperature	0 60 degrees C	
Humidity	5 95% (noncondensing)	
Chemical interactions	Enclosures and bezels are made of Lexan, a polycarbonate that can be damaged by strong alkaline solutions	
Altitude, full operation	2000m (6500ft)	
Vibration	10 57Hz @ 0.075mm displacement amplitude 57150Hz @ 1g Ref. IEC 68-2-6 FC	
Shock	+/-15g peak, 11ms, half sine wave Ref. IEC 68-2-27 EA	
RFI Susceptibility/ immunity	Meets CE mark requirements for open equipment. Open equipment should be installed in an industry- standard enclosure, with access restricted to qualified service personnel.	
Storage Conditions		
Temperature	-40 +85 degrees C	
Humidity	5 95% (noncondensing)	
Safety Parameters		
Degree of protection	Unintentional access (UL 508 Type 1, NEMA250 Type 1, IP20 conforming to IEC529)	
Di-electric strength	RS232 and I/OBus are non-isolated from logic common	
Ground continuity	30 A test on the exposed metal connector	
Agency Approvals	UL 508, CSA, CUL, CEFM class1, div2	

171 CCC 760 10

Overview

This section describes the 171 CCC 760 10 Processor Adapter, including key features, an illustration and specifications.

Key Features

The key features of this Processor Adapter are:

- Modbus Port 1
- I/OBus port
- 512K bytes of internal memory
- 32 MHz clock speed

Note: The Modbus port connector looks like a Ethernet port connector. Do not attempt to use an Modbus adapter as an Ethernet unit. Do not attempt to place an Ethernet connector in a Modbus connector.

Illustration

The connectors and LED indicators are shown in the following illustration:

Label	Description
1	Modbus Port 1 connector
2	I/OBus port connector
3	LED indicators

Continued on next page

LED Indicators

This Processor Adapter has two LED indicators, RUN and COM ACT. Their functions are described in the table below:

LED	Status	Function
Start up	Both	Single flash. Indicates good health.
RUN	Green	On continuously when the CPU has received power and is solving logic.
		Flashes an error pattern if the CPU is in kernel mode. (See Run LED Flash Patterns and Error Codes on page 417)
	Off	CPU is not powered up or is not solving logic.
COM ACT	Green	May be on continuously or blinking. Indicates activity on Modbus port 1.
	Off	No activity on Modbus port 1.

Specifications

The following table contains specifications for the 171 CCC 760 10 Momentum M1 Processor Adapter:

Memory		
Internal Memory	512K bytes	
User Memory	18K words 984LL Exec	
	240K words IEC Exec	
Flash RAM	512K bytes	
Clock Speed	32 MHz	
984LL Input and Output References		
Registers	26048	
Discretes	8192 0x references 8192 1x references	
IEC Input and Output References		
Registers	26048	
Discretes	8192 0x references 8192 1x references	

Continued on next page

Specifications, Continued

I/O Servicing	
Local I/O	Services all the points on any host Momentum I/O base
Watchdog timeout	262 ms
Logic solve time	0.16 ms/k ladder logic instructions
Mechanical	1
Weight	42.5 g (1.5 oz.)
Dimensions (HxDxW)	25.9x61.02x125mm (1.01 x 2.37 x 4.86 in)
Material (Enclosures/ bezels)	Lexan
Operating Conditions	
Temperature	0 60 degrees C
Humidity	5 95% (noncondensing)
Chemical interactions	Enclosures and bezels are made of Lexan, a polycarbonate that can be damaged by strong alkaline solutions
Altitude, full operation	2000m (6500ft)
Vibration	10 57Hz @ 0.075mm displacement amplitude 57150Hz @ 1g Ref. IEC 68-2-6 FC
Shock	+/-15g peak, 11ms, half sine wave Ref. IEC 68-2-27 EA
RFI Susceptibility/ immunity	Meets CE mark requirements for open equipment. Open equipment should be installed in an industry- standard enclosure, with access restricted to qualified service personnel.
Storage Conditions	
Temperature	-40 +85 degrees C
Humidity	5 95% (noncondensing)
Safety Parameters	
Degree of protection	Unintentional access (UL 508 Type 1, NEMA250 Type 1, IP20 conforming to IEC529)
Di-electric strength	RS232 and I/OBus are non-isolated from logic common
Ground continuity	30 A test on the exposed metal connector
Agency Approvals	 UL 508, CSA, CUL, CE FM class1, div2

171 CCS 780 00

Overview

This section describes the 171 CCS 780 00 Processor Adapter, including key features, an illustration and specifications.

Key Features

The key features of this Processor Adapter are:

- Modbus Port 1
- Modbus Port 2
- 64K bytes of internal memory
- 20 MHz clock speed

Note: The Modbus port connector looks like a Ethernet port connector. Do not attempt to use an Modbus adapter as an Ethernet unit. Do not attempt to place an Ethernet connector in a Modbus connector.

Illustration

The connectors and LED indicators are shown in the following illustration:

Label	Description
1	Modbus Port 1 connector
2	Modbus Port 2 connector
3	LED indicators

Continued on next page

171 CCS 780 00, Continued

LED Indicators

This Processor Adapter has two LED indicators, RUN and COM ACT. Their functions are described in the table below:

LED	Status	Function
Start up	Both	Single flash. Indicates good health.
RUN	Green	On continuously when the CPU has received power and is solving logic.
		Flashes an error pattern if the CPU is in kernel mode. (See Run LED Flash Patterns and Error Codes on page 417)
	Off	CPU is not powered up or is not solving logic.
COM ACT	Green	May be on continuously or blinking. Indicates activity on Modbus port 1.
	Off	No activity on Modbus port 1.

Specifications

The following table contains specifications for the 171 CCS 780 00 Momentum M1 Processor Adapter:

Memory		
Internal Memory	64K bytes	
User Memory	2.4K words	
Flash RAM	256K bytes	
Clock Speed	20 MHz	
984LL Input and Output References		
Registers	2048	
Discretes	2048 (any combination of 0x and 1x references)	
IEC Input and Output References		
Registers	2048	
Discretes	2048 (any combination of 0x and 1x references)	
I/O Servicing		
Local I/O	Services all the points on any host Momentum I/O base	
Watchdog timeout	419 ms	
Logic solve time	0.25 ms/k ladder logic instructions	

Continued on next page

171 CCS 780 00, Continued

Specifications, Continued

Mechanical			
Weight	42.5 g (1.5 oz.)		
Dimensions (HxDxW)	25.9x61.02x125mm (1.01 x 2.37 x 4.86 in)		
Material (Enclosures/ bezels)	Lexan		
Operating Conditions			
Temperature	0 60 degrees C		
Humidity	5 95% (noncondensing)		
Chemical interactions	Enclosures and bezels are made of Lexan, a polycarbonate that can be damaged by strong alkaline solutions		
Altitude, full operation	2000m (6500ft)		
Vibration	10 57Hz @ 0.075mm displacement amplitude 57150Hz @ 1g Ref. IEC 68-2-6 FC		
Shock	+/-15g peak, 11ms, half sine wave Ref. IEC 68-2-27 EA		
RFI Susceptibility/ immunity	Meets CE mark requirements for open equipment. Open equipment should be installed in an industry- standard enclosure, with access restricted to qualified service personnel.		
Storage Conditions			
Temperature	-40 +85 degrees C		
Humidity	5 95% (noncondensing)		
Safety Parameters	Safety Parameters		
Degree of protection	Unintentional access (UL 508 Type 1, NEMA250 Type 1, IP20 conforming to IEC529)		
Di-electric strength	RS232 and RS485 are non-isolated from logic common		
Ground continuity	30 A test on the exposed metal connector		
Agency Approvals	UL 508, CSA, CUL, CEFM class1, div2		

171 CCC 780 10

Overview

This section describes the 171 CCC 780 10 Processor Adapter, including key features, an illustration and specifications.

Key Features

The key features of this Processor Adapter are:

- Modbus Port 1
- Modbus Port 2
- 512K bytes of internal memory
- 32 MHz clock speed

Note: The Modbus port connector looks like a Ethernet port connector. Do not attempt to use an Modbus adapter as an Ethernet unit. Do not attempt to place an Ethernet connector in a Modbus connector.

Illustration

The connectors and LED indicators are shown in the following illustration:

Label	Description
1	Modbus Port 1 connector
2	Modbus Port 2 connector
3	LED indicators

Continued on next page

LED Indicators

This Processor Adapter has two LED indicators, RUN and COM ACT. Their functions are described in the table below:

LED	Status	Function
Start up	Both	Single flash. Indicates good health.
RUN	Green	On continuously when the CPU has received power and is solving logic.
		Flashes an error pattern if the CPU is in kernel mode. (See Run LED Flash Patterns and Error Codes on page 417)
	Off	CPU is not powered up or is not solving logic.
COM ACT	Green	May be on continuously or blinking. Indicates activity on Modbus port 1.
	Off	No activity on Modbus port 1.

Specifications

The following table contains specifications for the 171 CCC 780 10 Momentum M1 Processor Adapter:

Memory		
Internal Memory	512K bytes	
User Memory	18K words 984LL Exec	
	240k words IEC Exec	
Flash RAM	512K bytes	
Clock Speed	32 MHz	
984LL Input and Output References		
Registers	26048	
Discretes	8192 0x references	
	8192 1x references	
IEC Input and Output References		
Registers	26048	
Discretes	8192 0x references	
	8192 1x references	
I/O Servicing		
Local I/O	Services all the points on any host Momentum I/O base	
Watchdog timeout	262 ms	
Logic solve time	0.16 ms/k ladder logic instructions	

Specifications, Continued

Mechanical		
Weight	42.5 g (1.5 oz.)	
Dimensions (HxDxW)	25.9x61.02x125mm (1.01 x 2.37 x 4.86 in)	
Material (Enclosures/ bezels)	Lexan	
Operating Conditions		
Temperature	0 60 degrees C	
Humidity	5 95% (noncondensing)	
Chemical interactions	Enclosures and bezels are made of Lexan, a polycarbonate that can be damaged by strong alkaline solutions	
Altitude, full operation	2000m (6500ft)	
Vibration	10 57Hz @ 0.075mm displacement amplitude 57150Hz @ 1g Ref. IEC 68-2-6 FC	
Shock	+/-15g peak, 11ms, half sine wave Ref. IEC 68-2-27 EA	
RFI Susceptibility/ immunity	Meets CE mark requirements for open equipment. Open equipment should be installed in an industry- standard enclosure, with access restricted to qualified service personnel.	
Storage Conditions		
Temperature	-40 +85 degrees C	
Humidity	5 95% (noncondensing)	
Safety Parameters		
Degree of protection	Unintentional access (UL 508 Type 1, NEMA250 Type 1, IP20 conforming to IEC529)	
Di-electric strength	RS232 and RS485 are non-isolated from logic common	
Ground continuity	30 A test on the exposed metal connector	
Agency Approvals	 UL 508, CSA, CUL, CE FM class1, div2 	

171 CCC 960 20

Overview

This section describes the 171 CCC 960 20 Processor Adapter, including key features, a illustration and specifications.

Key Features

The key features of this Processor Adapter are:

- Ethernet port
- I/OBus port
- 544K bytes of internal memory
- 50 MHz clock speed

Note: The Ethernet port connector looks like a Modbus port connector. Do not attempt to use an Ethernet adapter as a Modbus unit. Do not attempt to place a Modbus connector in an Ethernet connector.

Illustration

The connectors and LED indicators are shown in the following illustration:

Label	Description
1	Ethernet port connector
2	I/OBus port connector
3	LED indicators

Continued on next page

LED Indicators

This Processor Adapter has three LED indicators, RUN, LAN ACT(IVE), and LAN ST(ATUS). Their functions are described in the table below:

LED	Indicato r Pattern	Status
Start up	Both	Single flash. Indicates good health.
RUN	Green	On continuously when the CPU has received power and is solving logic.
		Flashes an error pattern if the CPU is in kernel mode. (See Run LED Flash Patterns and Error Codes on page 417)
	Off	CPU is not powered up or is not solving logic.
LAN ACT	Green	May be on continuously or blinking. Indicates activity on Ethernet port.
	Off	No activity on Ethernet port.
LAN ST	Green	On continuously during normal operation.
		Fast blink indicates normal Ethernet initialization at power-up.
		3 flashes indicates no 10BASE-T link pulse detected. Check cable and hub.
		4 flashes indicates duplicate IP address detected.
		5 flashes indicates no IP address available.
	Off	No valid MAC address.

Specifications

The following table contains specifications for the 171 CCC 960 20 Momentum M1 Processor Adapter:

Memory	
Internal Memory	544K bytes
User Memory	18K words
Flash RAM	512K bytes
Clock Speed	50 MHz

Continued on next page

Specifications, Continued

Registers	26048	
Discretes	8192 0x references 8192 1x references	
I/O Servicing		
Local I/O	Services all the points on any host Momentum I/O base	
Watchdog timeout	335 ms	
Logic solve time	See formula, following	
Mechanical	•	
Weight	42.5 g (1.5 oz.)	
Dimensions (HxDxW)	25.9x61.02x125mm (1.01 x 2.37 x 4.86 in)	
Material (Enclosures/ bezels)	Lexan	
Operating Conditions		
Temperature	0 60 degrees C	
Humidity	5 95% (noncondensing)	
Chemical interactions	Enclosures and bezels are made of Lexan, a polycarbonate that can be damaged by strong alkaline solutions	
Altitude, full operation	2000m (6500ft)	
Vibration	10 57Hz @ 0.075mm displacement amplitude 57150Hz @ 1g Ref. IEC 68-2-6 FC	
Shock	+/-15g peak, 11ms, half sine wave Ref. IEC 68-2-27 EA	
RFI Susceptibility/ immunity	Meets CE mark requirements for open equipment. Open equipment should be installed in an industry- standard enclosure, with access restricted to qualified service personnel.	

Continued on next page

Specifications,Continued

Storage Conditions		
Temperature	-40 +85 degrees C	
Humidity	5 95% (noncondensing)	
Safety Parameters		
Degree of protection	Unintentional access (UL 508 Type 1, NEMA250 Type 1, IP20 conforming to IEC529)	
Di-electric strength	Ethernet is isolated from logic common 500 VDC	
Ground continuity	30 A test on the exposed metal connector	
Agency Approvals	UL 508, CSA, CUL, CE	
	FM class1, div2	

Scantime Formula for 984LL Exec

The following formula applies to the M1E Processor Adapter with the 984LL exec. Scan time = (0.25 msec/ethernet device + 0.002 msec/word) + 0.13 msec/K of logic + 0.40 msec + MBPlustime

Note:

- Modbus Plus communications will slow the M1E. If there is no MB+ ring card then MBPlustime = 0.
- If there is a MB+ ring card, then each scan will be extended 0.3 Msec even if there is no message.
- Modbus Messages will add from 1 to 2 msec per scan, depending on the length of the message.

Note:

- The formula above presumes that all MSTR blocks and all configured connections are set to go as fast as possible. In this case the M1E will attempt to exchange data with each device once per scan.
- If several devices are configured to communicate on a timed basis that is substantially larger than the scan time calculated, then the communications to those devices will be spread out over several scans. See Example, below.

Example

You have 50 ENT modules connected to a single M1E with a configured time of 50 Msec each, a total of 4k user logic and no MB+ card. The scan time for all modules configured as fast as possible would be 12.5 Msec + 0.52 Msec + 0.40 Msec = 13.42 Msec. However, since the M1E will only communicate to 1/4 of the modules (12.5 Msec/50 Msec = 1/4) on any given scan, the corrected average scan time would be $1/4 \times (12.5) + 0.52 + 0.40 \cong 4.1$ Msec.

171 CCC 960 30

Overview

This section describes the 171 CCC 960 30 Processor Adapter, including key features, an illustration and specifications.

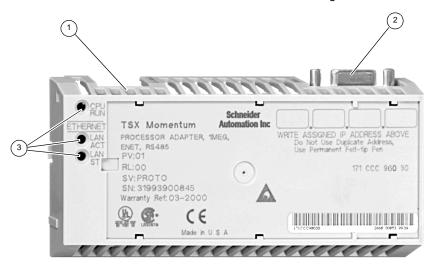
Note: The 171 CCC 960 30 units are shipped with the latest IEC exec installed.

Note: The 984LL exec used in the 171 CCC 960 30 will not operate in a 171 CCC 960 20

Key Features

The key features of this Processor Adapter are:

- Ethernet port
- I/OBus port
- 544K bytes of internal memory
- 50 MHz clock speed



Note: The Ethernet port connector looks like a Modbus port connector. Do not attempt to use an Ethernet adapter as a Modbus unit. Do not attempt to place a Modbus connector in an Ethernet connector.

Continued on next page

Illustration

The connectors and LED indicators are shown in the following illustration:

Label	Description
1	Ethernet port connector
2	I/OBus port connector
3	LED indicators

LED Indicators

This Processor Adapter has three LED indicators, RUN, LAN ACT(IVE), and LAN ST(ATUS). Their functions are described in the table below:

LED	Indicator Pattern	Status	
Start up	Both	Single flash. Indicates good health.	
RUN	Green	On continuously when the CPU has received power and is solving logic.	
		Flashes an error pattern if the CPU is in kernel mode. (See Run LED Flash Patterns and Error Codes on page 417)	
	Off	CPU is not powered up or is not solving logic.	
LAN ACT	Green	May be on continuously or blinking. Indicates activity on Ethernet port.	
	Off	No activity on Ethernet port.	
LAN ST	Green	On continuously during normal operation.	
		Fast blink indicates normal Ethernet initialization at power-up.	
		3 flashes indicates no 10BASE-T link pulse detected. Check cable and hub.	
		4 flashes indicates duplicate IP address detected.	
		5 flashes indicates no IP address available.	
	Off	No valid MAC address.	

Specifications

The following table contains specifications for the 171 CCC 960 30 Momentum M1 Processor Adapter:

Memory		
Internal Memory	544K bytes	
User Memory	18K words	984LL Exec
	200k words	IEC Exec
Flash RAM	1 Megabyte	
Clock Speed	50 MHz	

Continued on next page

Specifications, Continued

984LL Input and Output References			
Registers	26048		
Discretes	8192 0x references 8192 1x references		
IEC Input and Output R	IEC Input and Output References		
Registers	11200		
Discretes	4096 0x references 4096 1x references		
I/O Servicing			
Local I/O	Services all the points on any host Momentum I/O base		
Watchdog timeout	335 ms		
Logic solve time	See formula, following		
Mechanical			
Weight	42.5 g (1.5 oz.)		
Dimensions (HxDxW)	25.9x61.02x125mm (1.01 x 2.37 x 4.86 in)		
Material (Enclosures/ bezels)	Lexan		
Operating Conditions			
Temperature	0 60 degrees C		
Humidity	5 95% (noncondensing)		
Chemical interactions	Enclosures and bezels are made of Lexan, a polycarbonate that can be damaged by strong alkaline solutions		
Altitude, full operation	2000m (6500ft)		
Vibration	10 57Hz @ 0.075mm displacement amplitude 57150Hz @ 1g Ref. IEC 68-2-6 FC		
Shock	+/-15g peak, 11ms, half sine wave Ref. IEC 68-2-27 EA		
RFI Susceptibility/ immunity	Meets CE mark requirements for open equipment. Open equipment should be installed in an industry- standard enclosure, with access restricted to qualified service personnel.		

Continued on next page

Specifications, Continued

Storage Conditions		
Temperature	-40 +85 degrees C	
Humidity	5 95% (noncondensing)	
Safety Parameters		
Degree of protection	Unintentional access (UL 508 Type 1, NEMA250 Type 1, IP20 conforming to IEC529)	
Di-electric strength	Ethernet is isolated from logic common 500 VDC	
Ground continuity	30 A test on the exposed metal connector	
Agency Approvals	UL 508, CSA, CUL, CE	
	FM class1, div2	

Scantime Formula for 984LL Exec

The following formula applies to the M1E Processor Adapter with the 984LL exec. Scan time = (0.25 msec/ethernet device + 0.002 msec/word) + 0.13 msec/K of logic + 0.40 msec + MBPlustime

Note:

- Modbus Plus communications will slow the M1E. If there is no MB+ ring card then MBPlustime = 0.
- If there is a MB+ ring card, then each scan will be extended 0.3 Msec even if there is no message.
- Modbus Messages will add from 1 to 2 msec per scan, depending on the length of the message.

Note:

- The formula above presumes that all MSTR blocks and all configured connections are set to go as fast as possible. In this case the M1E will attempt to exchange data with each device once per scan.
- If several devices are configured to communicate on a timed basis that is substantially larger than the scan time calculated, then the communications to those devices will be spread out over several scans. See Example, below.

Example

You have 50 ENT modules connected to a single M1E with a configured time of 50 Msec each, a total of 4k user logic and no MB+ card. The scan time for all modules configured as fast as possible would be 12.5 Msec + 0.52 Msec + 0.40 Msec = 13.42 Msec. However, since the M1E will only communicate to 1/4 of the modules (12.5 Msec/50 Msec = 1/4) on any given scan, the corrected average scan time would be $1/4 \times (12.5) + 0.52 + 0.40 \cong 4.1$ Msec.

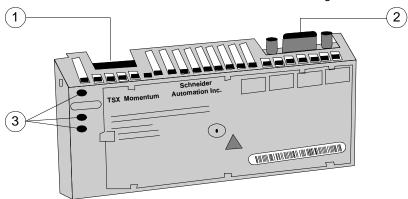
171 CCC 980 20

Overview

This section describes the 171 CCC 980 20 Processor Adapter, including key features, an illustration and specifications.

Key Features

The key features of this Processor Adapter are:


- Ethernet port
- Modbus Port 2 / RS485 only
- 544K bytes of internal memory
- 50 MHz clock speed

Note: The Ethernet port connector looks like a Modbus port connector. Do not attempt to use an Ethernet adapter as a Modbus unit. Do not attempt to place a Modbus connector in an Ethernet connector.

Illustration

The connectors and LED indicators are shown in the following illustration.

Label	Description
1	Ethernet port connector
2	Modbus Port 2 connector
3	LED indicators

Continued on next page

LED Indicators

This Processor Adapter has three LED indicators, RUN, LAN ACT(IVE), and LAN ST(ATUS). Their functions are described in the table below:

LED	Indicator Pattern	Status	
Start up	Both	Single flash. Indicates good health.	
RUN	Green	On continuously when the CPU has received power and is solving logic.	
		Flashes an error pattern if the CPU is in kernel mode. (See Run LED Flash Patterns and Error Codes on page 417)	
	Off	CPU is not powered up or is not solving logic.	
		May be on continuously or blinking. Indicates activity on Ethernet port.	
	Off	No activity on Ethernet port.	
LAN ST	Green	On continuously during normal operation.	
		Fast blink indicates normal Ethernet initialization at power-up.	
		3 flashes indicates no 10BASE-T link pulse detected. Check cable and hub.	
		4 flashes indicates duplicate IP address detected.	
		5 flashes indicates no IP address available.	
	Off	No valid MAC address.	

Specifications

The following table contains specifications for the 171 CCC 980 20 Momentum M1 Processor Adapter:

Memory	
Internal Memory	544K bytes
User Memory	18K words
Flash RAM	512K bytes
Clock Speed	50 MHz

Continued on next page

Specifications, Continued

Pogiatora	26048	
Registers	1	
Discretes	8192 0x references 8192 1x references	
I/O Servicing		
Local I/O	Services all the points on any host Momentum I/O base	
Watchdog timeout	335 ms	
Logic solve time	See formula, following	
Mechanical		
Weight	42.5 g (1.5 oz.)	
Dimensions (HxDxW)	25.9x61.02x125mm (1.01 x 2.37 x 4.86 in)	
Material (Enclosures/ bezels)	Lexan	
Operating Conditions		
Temperature	0 60 degrees C	
Humidity	5 95% (noncondensing)	
Chemical interactions	Enclosures and bezels are made of Lexan, a polycarbonate that can be damaged by strong alkaline solutions	
Altitude, full operation	2000m (6500ft)	
Vibration	10 57Hz @ 0.075mm displacement amplitude 57150Hz @ 1g Ref. IEC 68-2-6 FC	
Shock	+/-15g peak, 11ms, half sine wave Ref. IEC 68-2-27 EA	
RFI Susceptibility/ immunity	Meets CE mark requirements for open equipment. Open equipment should be installed in an industry- standard enclosure, with access restricted to qualified service personnel.	

Continued on next page

Specifications, Continued

Storage Conditions		
Temperature	-40 +85 degrees C	
Humidity	5 95% (noncondensing)	
Safety Parameters		
Degree of protection	Unintentional access (UL 508 Type 1, NEMA250 Type 1, IP20 conforming to IEC529)	
Di-electric strength	Ethernet is isolated from logic common 500 VDC	
Ground continuity	30 A test on the exposed metal connector	
Agency Approvals	UL 508, CSA, CUL, CE	
	FM class1, div2	

Scantime Formula for 984LL Exec

The following formula applies to the M1E Processor Adapter with the 984LL exec.

Scan time = (0.25 msec/ethernet device + 0.002 msec/word) + 0.13 msec/K of logic + 0.40 msec + MBPlustime

Note:

- Modbus Plus communications will slow the M1E. If there is no MB+ ring card then MBPlustime = 0.
- If there is a MB+ ring card, then each scan will be extended 0.3 Msec even if there is no message.
- Modbus Messages will add from 1 to 2 msec per scan, depending on the length of the message.

Note:

- The formula above presumes that all MSTR blocks and all configured connections are set to go as fast as possible. In this case the M1E will attempt to exchange data with each device once per scan.
- If several devices are configured to communicate on a timed basis that is substantially larger than the scan time calculated, then the communications to those devices will be spread out over several scans. See Example, below.

Example

You have 50 ENT modules connected to a single M1E with a configured time of 50 Msec each, a total of 4k user logic and no MB+ card. The scan time for all modules configured as fast as possible would be 12.5 Msec + 0.52 Msec + 0.40 Msec = 13.42 Msec. However, since the M1E will only communicate to 1/4 of the modules (12.5 Msec/50 Msec = 1/4) on any given scan, the corrected average scan time would be $1/4 \times (12.5) + 0.52 + 0.40 \cong 4.1$ Msec.

171 CCC 980 30

Overview

This section describes the 171 CCC 980 30 Processor Adapter, including key features, an illustration and specifications.

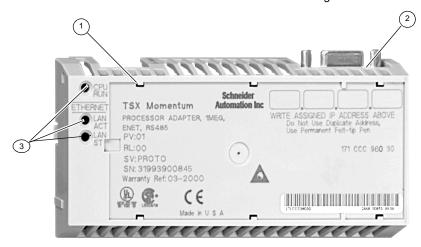
Note: The 171 CCC 980 30 units are shipped with the latest IEC exec installed.

Note: The 984LL exec used in the 171 CCC 980 30 will not operate in a 171 CCC 980 20

Key Features

The key features of this Processor Adapter are:

- Ethernet port
- Modbus Port 2 / RS485 only
- 544K bytes of internal memory
- 50 MHz clock speed



Note: The Ethernet port connector looks like a Modbus port connector. Do not attempt to use an Ethernet adapter as a Modbus unit. Do not attempt to place a Modbus connector in an Ethernet connector.

Continued on next page

Illustration

The connectors and LED indicators are shown in the following illustration:

Label	Description
1	Ethernet port connector
2	Modbus Port 2 connector
3	LED indicators

Continued on next page

LED Indicators

This Processor Adapter has three LED indicators, RUN, LAN ACT(IVE), and LAN ST(ATUS). Their functions are described in the table below:

LED	Indicator Pattern	Status	
Start up	Both	Single flash. Indicates good health.	
RUN	Green	On continuously when the CPU has received power and is solving logic.	
		Flashes an error pattern if the CPU is in kernel mode. (See Run LED Flash Patterns and Error Codes on page 417)	
	Off	CPU is not powered up or is not solving logic.	
LAN ACT	Green	May be on continuously or blinking. Indicates activity on Ethernet port.	
	Off	No activity on Ethernet port.	
LAN ST	Green	On continuously during normal operation.	
		Fast blink indicates normal Ethernet initialization at power-up.	
		3 flashes indicates no 10BASE-T link pulse detected. Check cable and hub.	
		4 flashes indicates duplicate IP address detected.	
		5 flashes indicates no IP address available.	
	Off	No valid MAC address.	

Specifications

The following table contains specifications for the 171 CCC 980 30 Momentum M1 Processor Adapter:

Memory			
Internal Memory	544K bytes		
User Memory	18K words	984LL Exec	
	200k words	IEC Exec	
Flash RAM	1 Megabyte		
Clock Speed	50 MHz		

Continued on next page

Specifications, Continued

984LL Input and Outpu	it References
Registers	26048
Discretes	8192 0x references 8192 1x references
IEC Input and Output F	References
Registers	11200
Discretes	4096 0x references 4096 1x references
I/O Servicing	
Local I/O	Services all the points on any host Momentum I/O base
Watchdog timeout	335 ms
Logic solve time	See formula, following
Mechanical	
Weight	42.5 g (1.5 oz.)
Dimensions (HxDxW)	25.9x61.02x125mm (1.01 x 2.37 x 4.86 in)
Material (Enclosures/ bezels)	Lexan
Operating Conditions	
Temperature	0 60 degrees C
Humidity	5 95% (noncondensing)
Chemical interactions	Enclosures and bezels are made of Lexan, a polycarbonate that can be damaged by strong alkaline solutions
Altitude, full operation	2000m (6500ft)
Vibration	10 57Hz @ 0.075mm displacement amplitude 57150Hz @ 1g Ref. IEC 68-2-6 FC
Shock	+/-15g peak, 11ms, half sine wave Ref. IEC 68-2-27 EA
RFI Susceptibility/ immunity	Meets CE mark requirements for open equipment. Open equipment should be installed in an industry- standard enclosure, with access restricted to qualified service personnel.

Continued on next page

Specifications,Continued

Storage Conditions		
Temperature	-40 +85 degrees C	
Humidity	5 95% (noncondensing)	
Safety Parameters		
Degree of protection	Unintentional access (UL 508 Type 1, NEMA250 Type 1, IP20 conforming to IEC529)	
Di-electric strength	Ethernet is isolated from logic common 500 VDC	
Ground continuity	30 A test on the exposed metal connector	
Agency Approvals	UL 508, CSA, CUL, CE	
	FM class1, div2	

Scantime Formula for 984LL Exec

The following formula applies to the M1E Processor Adapter with the 984LL exec.

Scan time = (0.25 msec/ethernet device + 0.002 msec/word) + 0.13 msec/K of logic + 0.40 msec + MBPlustime

Note:

- Modbus Plus communications will slow the M1E. If there is no MB+ ring card then MBPlustime = 0.
- If there is a MB+ ring card, then each scan will be extended 0.3 Msec even if there is no message.
- Modbus Messages will add from 1 to 2 msec per scan, depending on the length of the message.

Note:

- The formula above presumes that all MSTR blocks and all configured connections are set to go as fast as possible. In this case the M1E will attempt to exchange data with each device once per scan.
- If several devices are configured to communicate on a timed basis that is substantially larger than the scan time calculated, then the communications to those devices will be spread out over several scans. See Example, below.

Example

You have 50 ENT modules connected to a single M1E with a configured time of 50 Msec each, a total of 4k user logic and no MB+ card. The scan time for all modules configured as fast as possible would be 12.5 Msec + 0.52 Msec + 0.40 Msec = 13.42 Msec. However, since the M1E will only communicate to 1/4 of the modules (12.5 Msec/50 Msec = 1/4) on any given scan, the corrected average scan time would be $1/4 \times (12.5) + 0.52 + 0.40 \cong 4.1$ Msec.

Overview of Momentum Option Adapters

2

At a Glance

Purpose

An Option Adapter can be inserted between the Processor Adapter and the I/O base to provide:

- A battery backup for the CPU
- A time-of-day clock
- Extra communication ports

This chapter describes the three types of Momentum Option Adapters.

In This Chapter

This chapter contains the following sections:

For This Topic	See Section	On Page
Introducing the Momentum Option Adapters	1	66
Serial Option Adapter	2	67
Modbus Plus Option Adapter	3	73
Redundant Modbus Plus Option Adapter	4	79

Section 2.1 Introducing the Momentum Option Adapters

Basic Features of Option Adapters

Introduction

This section describes the basic features of all Option Adapters:

- Batteries
- A time-of-day (TOD) clock
- Communication port(s)

Batteries

The batteries back up the CPU's user program and state RAM.

Time-of-Day Clock

The time-of-day clock allows you to use the date and time as an element in your user program.

Communication Ports

The three Momentum Option Adapters are distinguished by the communications ports they offer, as shown in the table below:

Option Adapter	Communication Port(s)
172 JNN 210 32	Software-selectable RS232/RS485 serial port
172 PNN 210 22	One Modbus Plus port
172 PNN 260 22	Two Modbus Plus ports for a redundant (back-up) cable run

Section 2.2 Serial Option Adapter

Overview

Purpose

This section describes the 172 JNN 210 32 Serial Option Adapter, including the front panel components and specifications.

In This Section

This section includes the following topics:

For This Topic	See Page
Front Panel Components	68
Specifications	71

Front Panel Components

Overview

The front panel includes:

- An LED indicator
- Battery compartment
- Modbus Port 2 connector

Illustration

The illustration below shows the location of LED indicator, the battery compartment, and the Modbus Port 2 connector.

Label	Description	
1	LED indicator	
2	Battery compartment door	
3	Modbus Port 2 connector	

Continued on next page

Front Panel Components, Continued

LED Indicator

This Option Adapter has one LED indicator, the Com Act indicator. Its functions are described in the table below.

LED	Status	Function
COM ACT	Green	May be on steadily or blinking. Indicates activity on the RS232/RS485 serial port.
	Off	No activity on the RS232/RS485 serial port.

Modbus Port 2

Modbus Port 2 is a general-purpose asynchronous serial port with user-selectable RS232/RS485 slave functionality. The choice between RS232 and RS485 is made in the software.

Note: When this Option Adapter is assembled with a 171 CCS 780 00 Processor Adapter or a 171 CCC 780 10 Processor Adapter (with built-in Modbus Port 2), the Modbus Port 2 on the Option Adapter is electrically disabled. The TOD clock and the battery backup on the Option Adapter remain functional.

Auto-Logout Feature On **Modbus Port 2**

If the RS232 port is chosen, auto-logout is supported. If a programming panel is logged into the CPU via the serial port and its cable gets disconnected, the Processor Adapter automatically logs out the port. This auto-logout feature is designed to prevent a lock-up situation that could prevent other host stations from logging in on other ports.

Auto-logout is not available for any RS485 port, including the RS485 option on the Serial Option Adapter. The user must log out of the processor using the programming software.

Continued on next page

Front Panel Components, Continued

Pinouts for Modbus Port 2

The 172 JNN 210 32 Serial Option Adapter uses the following pinouts:

Pin	For RS232	For RS485
1	DTR	RXD -
2	DSR	RXD +
3	TXD	TXD +
4	RXD	
5	signal common	signal common
6	RTS	TXD -
7	CTS	
8	cable shield	cable shield

Specifications

Specifications

This section provides the specifications for the 172 JNN 210 32 Momentum Serial Option Adapter:

Mechanical					
Weight	85.05 g (3 oz.)				
Dimensions (HxDxW)	58.3 (on battery side) x 60.6 x 143.1mm				
	(2.27 x 2.36 x 5.57 in)				
Material (Enclosures/bezels)	Lexan				
Time-of-Day Clock					
Accuracy	+/- 13 s/day				
Batteries					
Туре	AAA alkaline, two required two included with Option Adapter (in separate package)				
Service life	< 30 days from the time a battery-low indication is received to actual battery failure @ 40degrees C maximum ambient temperature with the system continuously powered down.				
Shelf life	In excess of 5 yr. @ room temperature				
Operating Conditions	Operating Conditions				
Temperature	0 60 degrees C				
Humidity	5 95% (noncondensing)				
Chemical interactions	Enclosures and bezels are made of Lexan, a polycarbonate that can be damaged by strong alkaline solutions				
Altitude, full operation	2000m (6500ft)				
Vibration	10 57Hz @ 0.075mm displacement amplitude 57150Hz @ 1g Ref. IEC 68-2-6 FC				
Shock	+/-15g peak, 11ms, half sine wave Ref. IEC 68-2-27 EA				

Continued on next page

Specifications, Continued

Specifications, Continued

RFI Susceptibility/ immunity	Meets CE mark requirements for open equipment. Open equipment should be installed in an industry-standard enclosure, with access restricted to qualified service personnel.
Storage Conditions	
Temperature	-40+85 degrees C
Humidity	5 95% (noncondensing)
Safety Parameters	
Degree of protection	Unintentional access (UL 508 Type 1, NEMA250 Type 1, IP20 conforming to IEC529)
Di-electric strength	RS232/485 is non-isolated from logic common
Agency Approvals	UL 508, CSA, CUL, CE
	FM class1, div2 pending

Section 2.3 Modbus Plus Option Adapter

Overview

Purpose

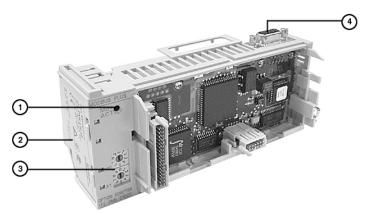
This section describes the 172 PNN 210 22 Modbus Plus Option Adapter, including the front panel components and specifications.

In This Section

This section contains the following topics:

For This Topic	See Page	
Front Panel Components	74	
Specifications	77	

Front Panel Components


Overview

The front panel includes:

- An LED indicator
- Battery compartment
- Address switches
- 9-pin D-shell connector for Modbus Plus communications

Illustration

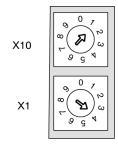
The illustration below shows the LED indicator, address switches, Modbus Plus connector, and battery compartment.

Label	Description
1	LED indicator
2	Battery compartment door
3	Address switches for Modbus Plus
4	9-pin D-shell connector for Modbus Plus communications (port A)

Continued on next page

LED Indicator

This Option Adapter has one LED indicator, the MB+ ACT indicator. This indicator flashes the following patterns, based on the status of the Modbus Plus node:


Pattern	Meaning	
6 flashes/s	This is the normal operating state for the node. It is receiving and passing the network token. All nodes on a healthy network flash this pattern.	
1 flash/s	The node is offline just after power-up or after exiting the 6 flashes/s mode. In this state, the node monitors the network and builds a table of active nodes. After being in this state for 5s, the node attempts to go to its normal operating state, indicated by 6 flashes/s.	
2 flashes, then OFF for 2s	The node detects the token being passed among the other nodes, but never receives the token. Check the network for an open circuit or defective termination.	
3 flashes, then OFF for 1.7s	The node is not detecting any tokens being passed among the other nodes. It periodically claims the token but cannot find another node to which to pass it. Check the network for an open circuit or defective termination.	
4 flashes, then OFF for 1.4s	The node has detected a valid message from a node using a network address identical to its own address. The node remains in this state for as long as it continues to detect the duplicate address. If the duplicate address is not detected for 5s, the node changes to its 1 flash/s mode.	
ON	Indicates an invalid node address.	
OFF	Possible fault with Modbus Plus Option Adapter.	

Continued on next page

Modbus Plus Address Switches

The two rotary switches on the Option Adapter are used to set a Modbus Plus node address for the CPU module. The switches are shown in the following illustration. Their usage is described in detail in *Modbus Plus Addresses* on page 198.

The switches in this illustration are set to address 14.

Specifications

Specifications

This section provides the specifications for the 172 PNN 210 22 Momentum Serial Option Adapter:

Mechanical		
Weight	85.05 g (3 oz.)	
Dimensions (HxDxW)	58.3 (on battery side) x 60.6 x 143.1mm	
	(2.27 x 2.36 x 5.57 in)	
Material (Enclosures/bezels)	Lexan	
Time-of-Day Clock		
Accuracy	+/- 13 s/day	
Batteries		
Туре	AAA alkaline, two required. Two included with Option Adapter (in separate package).	
Service life	< 30 days from the time a battery-low indication is received to actual battery failure @ 40degrees C maximum ambient temperature with the system continuously powered down.	
Shelf life	In excess of 5 yr. @ room temperature	
Operating Conditions		
Temperature	0 60 degrees C	
Humidity	5 95% (noncondensing)	
Chemical interactions	Enclosures and bezels are made of Lexan, a polycarbonate that can be damaged by strong alkaline solutions	
Altitude, full operation	2000m (6500ft)	
Vibration	10 57Hz @ 0.075mm displacement amplitude 57150Hz @ 1g Ref. IEC 68-2-6 FC	
Shock	+/-15g peak, 11ms, half sine wave Ref. IEC 68-2-27 EA	

Continued on next page

Specifications, Continued

Specifications, Continued

RFI Susceptibility/ immunity	Meets CE mark requirements for open equipment. Open equipment should be installed in an industry-standard enclosure, with access restricted to qualified service personnel.	
Storage Conditions		
Temperature	-40+85 degrees C	
Humidity	5 95% (noncondensing)	
Safety Parameters		
Degree of protection	Unintentional access (UL 508 Type 1, NEMA250 Type 1, IP20 conforming to IEC529)	
Di-electric strength	500 V	
Ground continuity	30 A test on the exposed metal connector	
Agency Approvals	UL 508, CSA, CUL, CE	
	FM class1, div2 pending	

Section 2.4 Redundant Modbus Plus Option Adapter

Overview

Purpose

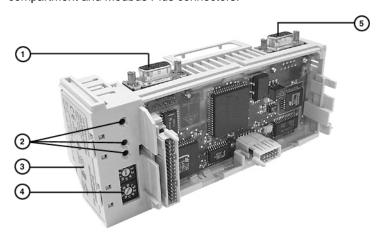
This section describes the 172 PNN 260 22 Redundant Modbus Plus Option Adapter, including the front panel components and specifications.

In This Section

This section contains the following topics:

For This Topic	See Page	
Front Panel Components	80	
Specifications	84	

Front Panel Components


Overview

The front panel includes:

- Two 9-pin D-shell connectors for Modbus Plus communications
- Three LED indicators
- Battery compartment
- Address switches

Illustration

The illustration below shows the LED indicators, address switches, battery compartment and Modbus Plus connectors.

Label	Description
1	9-pin D-shell connector for Modbus Plus port B
2	Array of three LED indicators
3	Battery compartment door
4	Address switches for Modbus Plus
5	9-pin D-shell connector for Modbus Plus port A

Continued on next page

LED Indicators

This Option Adapter has three LED indicators. Their functions are described in the table below.

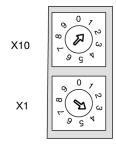
LED	Status	Function	
MB+ ACT	Green	Indicates activity on one or both of the Modbus Plus ports (see the flash pattern table below)	
	Off	No activity on either Modbus Plus port	
ERR A	Red	Indicates a communications failure on Modbus Plus port A*	
	Off	No problems detected on Modbus Plus port A	
ERR B	Red	Indicates a communications failure on Modbus Plus port B*	
	Off	No problems detected on Modbus Plus port B	

^{*} If you are not using redundant cabling on the Modbus Plus link (i.e., if only one of the ports is being used) the Error LED for the unused port will be on constantly when Modbus Plus communication occurs on the network.

Continued on next page

MB+ ACT Flash Patterns

This table provides the patterns that the MB+ ACT indicator will flash to indicate the status of the Modbus Plus node.


Pattern	Meaning
6 flashes/s	This is the normal operating state for the node. It is receiving and passing the network token. All nodes on a healthy network flash this pattern.
1 flash/s	The node is offline just after power-up or after exiting the 6 flashes/s mode. In this state, the node monitors the network and builds a table of active nodes. After being in this state for 5s, the node attempts to go to its normal operating state, indicated by 6 flashes/s.
2 flashes, then OFF for 2s	The node detects the token being passed among the other nodes, but never receives the token. Check the network for an open circuit or defective termination.
3 flashes, then OFF for 1.7s	The node is not detecting any tokens being passed among the other nodes. It periodically claims the token but cannot find another node to which to pass it. Check the network for an open circuit or defective termination.
4 flashes, then OFF for 1.4s	The node has detected a valid message from a node using a network address identical to its own address. The node remains in this state for as long as it continues to detect the duplicate address. If the duplicate address is not detected for 5s, the node changes to its 1flash/s mode.
ON	Indicates an invalid node address.
OFF	Possible fault with Modbus Plus Option Adapter.

Continued on next page

Modbus Plus Address Switches

The two rotary switches on the Option Adapter are used to set a Modbus Plus node address for the CPU module. The switches are shown in the following illustration. Their usage is described in detail in *Modbus Plus Addresses* on page 198.

The switches in this illustration are set to address 14.

Modbus Plus Ports A and B

This Option Adapter has two Modbus Plus ports. Redundant cabling on the Modbus Plus network offers increased protection against cable faults or excessive noise bursts on either one of the two cable paths. When one of the channels experiences communication problems, error-free messaging can continue to be processed on the alternate path.

Specifications

Specifications

This section provides the specifications for the 172 PNN 260 22 Momentum Serial Option Adapter:

Mechanical		
Weight	85.05 g (3 oz.)	
Dimensions (HxDxW)	58.3 (on battery side) x 60.6 x 143.1mm	
	(2.27 x 2.36 x 5.57 in)	
Material (Enclosures/bezels)	Lexan	
Time-of-Day Clock		
Accuracy	+/- 13 s/day	
Batteries		
Туре	AAA alkaline, two required. Two included with Option Adapter (in separate package).	
Service life	< 30 days from the time a battery-low indication is received to actual battery failure @ 40degrees C maximum ambient temperature with the system continuously powered down.	
Shelf life	In excess of 5 yr. @ room temperature	
Operating Conditions		
Temperature	0 60 degrees C	
Humidity	5 95% (noncondensing)	
Chemical interactions	Enclosures and bezels are made of Lexan, a polycarbonate that can be damaged by strong alkaline solutions	
Altitude, full operation	2000m (6500ft)	
Vibration	10 57Hz @ 0.075mm displacement amplitude 57150Hz @ 1g Ref. IEC 68-2-6 FC	
Shock	+/-15g peak, 11ms, half sine wave Ref. IEC 68-2-27 EA	

Continued on next page

Specifications, Continued

Specifications, Continued

RFI Susceptibility/ immunity	Meets CE mark requirements for open equipment. Open equipment should be installed in an industry-standard enclosure, with access restricted to qualified service personnel.	
Storage Conditions		
Temperature	-40+85 degrees C	
Humidity	5 95% (noncondensing)	
Safety Parameters		
Degree of protection	Unintentional access (UL 508 Type 1, NEMA250 Type 1, IP20 conforming to IEC529)	
Di-electric strength	500 V	
Ground continuity	30 A test on the exposed metal connectors	
Agency Approvals	UL 508, CSA, CUL, CE	
	FM class1, div2 pending	

Assembling Momentum Components

3

At a Glance

Purpose

This chapter describes how to assemble and disassemble a Momentum M1 CPU, using the following components:

- Processor Adapter
- I/O Base
- Option Adapter
- Label

It also describes how to install batteries in the Option Adapter.

In This Chapter

This chapter contains the following sections:

For Information On	See Section	On Page
Assembling a CPU	1	88
Assembling a CPU with an Option Adapter	2	94
Installing Batteries in an Option Adapter	3	105
Labeling the CPU	4	107

Section 3.1 Assembling a CPU

Overview

Purpose

This section describes how to assemble a Processor Adapter with an I/O base and how to disassemble them.

In This Section

This section contains the following topics:

For This Topic	See Page
Assembling a Processor Adapter and I/O Base	89
Disassembling a Processor Adapter from an I/O Base	92

Assembling a Processor Adapter and I/O Base

Overview

A Processor Adapter can be snapped directly onto a Momentum I/O base, making connections at three points:

- The plastic snap extensions on the two sides of the M1 unit fit into the two slots on the sides of the I/O base
- The 12-pin connectors on the two units mate together

The components can be snapped together by hand – no assembly tools are required.

This section contains safety precautions for handling components and a procedure for assembling a Processor Adapter and an I/O base.

CAUTION

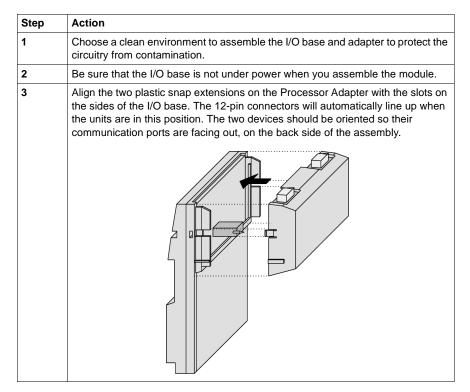
ADAPTER MAY BE DAMAGED BY STATIC ELECTRICITY

Use proper ESD procedures when handling the adapter, and do not touch the internal elements. The adapter's electrical elements are sensitive to static electricity.

Failure to observe this precaution can result in equipment damage.

CAUTION

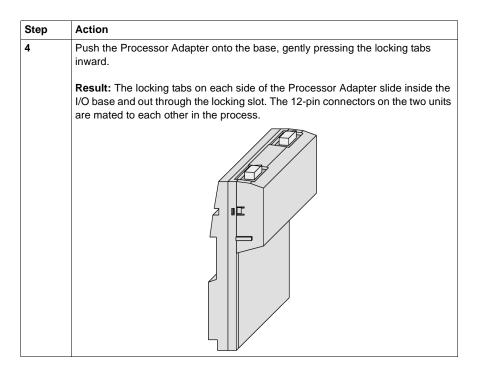
ELECTRICAL CIRCUITRY MAY BE EXPOSED


Electrical circuitry on the I/O base may be exposed when a Momentum adapter is not mounted. Be sure that the I/O base is not under power when it does not have an adapter mounted on it. To be sure that power is not present, do not insert the wiring connectors to the I/O base until after the adapter has been mounted.

Failure to observe this precaution can result in injury or equipment damage and will void the product warranty.

Continued on next page

Assembling a Processor Adapter and I/O Base, Continued


Procedure: Assembling a Processor Adapter and an I/O Base Follow the steps in the table below to assemble a Processor Adapter and an I/O base.

Continued on next page

Assembling a Processor Adapter and I/O Base, Continued

Procedure:
Assembling a
Processor
Adapter and an
I/O Base,
Continued

Next Step

Once the Processor Adapter has been assembled, it can be mounted on a DIN rail or surface mounted inside a panel enclosure. A Momentum M1 CPU assembly is classified as open equipment. Open equipment should be installed in an industry-standard enclosure, and direct access must be restricted to qualified service personnel.

For a detailed description of installation procedures and grounding considerations, refer to the *Momentum I/O Bases User Manual* (870 USE 002 00).

Disassembling a Processor Adapter from an I/O Base

Overview

This section contains safety precautions and a procedure for disassembling a Processor Adapter from an I/O base.

CAUTION

ELECTRICAL CIRCUITRY MAY BE EXPOSED

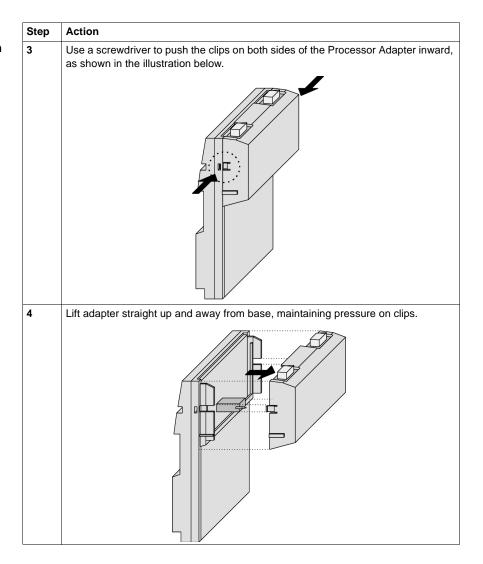
Before removing an adapter from the base, disconnect the wiring connectors. Be sure that the I/O base is not under power when it does not have a Momentum adapter mounted on it.

Failure to observe this precaution can result in injury or equipment damage and will void the product warranty.

Tools Required

A flat-head screw driver.

Procedure:
Disassembling
an Adapter from
an I/O Base


Follow the steps in the table below to remove a Processor Adapter from an I/O base.

Step	Action
1	Choose a clean environment to disassemble the unit, in order to protect the circuitry from contamination.
2	Be sure that the I/O base is not under power, by removing the terminal connectors from the I/O base.

Continued on next page

Disassembling a Processor Adapter from an I/O Base, Continued

Procedure:
Disassembling
an Adapter from
an I/O Base,
Continued

Section 3.2 Assembling a CPU with an Option Adapter

Overview

Purpose

An Option Adapter can only be used in conjunction with a Processor Adapter. It cannot be used alone with an I/O base.

This section describes how to add an Option Adapter when assembling a Momentum module and how to remove an Option Adapter from the assembled module.

In This Section

This section contains the following topics:

For This Topic	See Page
Assembling a Processor Adapter and an Option Adapter	95
Mounting the Assembled Adapters on the I/O Base	98
Disassembling a Module with an Option Adapter	101

Assembling a Processor Adapter and an Option Adapter

Overview

If a Momentum Option Adapter is used, it is mounted between a Momentum M1 Processor Adapter and a Momentum I/O base in a three-tiered stack.

This section contains guidelines, safety precautions and a procedure for assembling a Processor Adapter and an Option Adapter.

The next section describes how to mount the assembled adapters on an I/O base.

Guidelines

We recommend that you snap the Option Adapter and the M1 Processor Adapter together before mounting them on the I/O base.

Connection Points Between Adapters

The Option Adapter and M1Processor connect at these four points:

- The plastic snap extensions on the two sides of the M1 fit into the two slots on the sides of the Option Adapter
- The 12-pin connectors on the center of the back walls of the two units mate together
- The 34-pin processor extension connectors that run along the left sidewalls of the components mate together

No Tools Required

The components can be snapped together by hand; no assembly tools are required. A flat-head screw driver is required to disassemble the unit.

Continued on next page

Assembling a Processor Adapter and an Option Adapter, Continued

Procedure: Assembling an Option Adapter and Processor Follow the steps in the table below to assemble an option adapter and an M1 processor.

Step	Action
1	Choose a clean environment to assemble the Option Adapter and processor to protect the circuitry from contamination.
2	Align the two plastic snap extensions on the sides of the M1 Processor Adapter with the slots on the sides of the Option Adapter.
	The 12-pin connectors and processor extension connectors will automatically line up when the units are in this position. The two devices should be oriented so that their communication ports are facing out on the back side of the assembly.
^	CAUTION
	PIN ALIGNMENT
<u>_</u>	Proper assembly requires that the 34 pins on the processor extension connector be aligned correctly with the mating socket on the M1 processor adapter. Do not connect one side and try to rotate the M1 onto the option adapter.
	Failure to observe this precaution can result in equipment damage.
3	Push the Processor Adapter onto the Option Adapter, gently pressing the locking tabs inward.
	Result: The locking tabs on each side of the Processor Adapter slide inside the Option Adapter and out through the locking slot. The 12-pin and 34-pin connectors on the two units are mated to each other in the process.

Continued on next page

Assembling a Processor Adapter and an Option Adapter, Continued

Next Step

Follow the directions in the next section to mount the assembled adapters on the $\mbox{I/O}$ base.

Mounting the Assembled Adapters on the I/O Base

Overview

This section gives guidelines, safety precautions and a procedure for mounting the assembled Processor and Option Adapter on an I/O base.

Guidelines

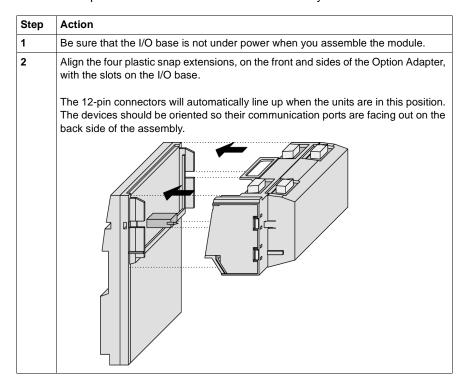
The assembled adapters connect with the I/O base at these seven points:

- Two plastic snaps on the front of the Option Adapter fit into two slots on the front of the I/O base
- The plastic snap extensions on the two sides of the Option Adapter fit into the two slots on the sides of the I/O base
- The 12-pin connectors on the center of the back walls of the two units mate together
- The plastic stirrup on the back of the Option Adapter clips onto the bottom of the I/O base

CAUTION

ELECTRICAL CIRCUITRY MAY BE EXPOSED

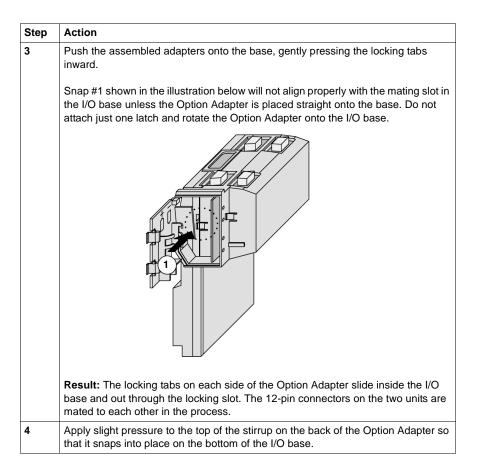
Electrical circuitry on the I/O base may be exposed when an adapter is not mounted. Be sure that the I/O base is not under power whenever it does not have a Momentum adapter mounted on it.


To be sure that power is not present, do not insert the wiring connectors to the I/O base until after the adapter has been mounted. When more than one connector is on the I/O base, remove all connectors to prevent the unit from receiving power from an unexpected source.

Failure to observe this precaution can result in injury or equipment damage and will void the product warranty.

Continued on next page

Mounting the Assembled Adapters on the I/O Base, Continued


Procedure: Mounting the Assembled Adapters on an I/O Base Follow the steps in the table below to mount the assembly on an I/O base.

Continued on next page

Mounting the Assembled Adapters on the I/O Base, Continued

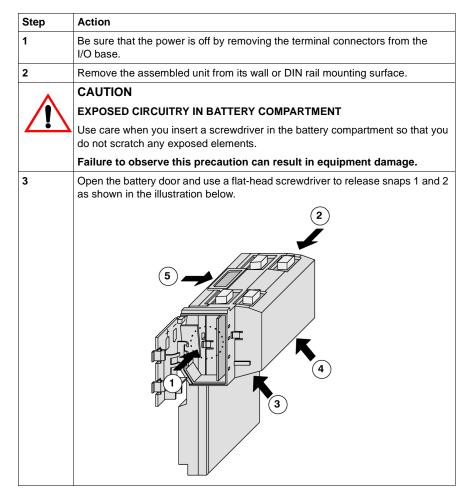
Procedure: Mounting the Assembled Adapters on an I/O Base, Continued

Disassembling a Module with an Option Adapter

Overview

The three-tiered assembly is designed to fit together tightly, so it can withstand shock and vibration in an operating environment. This section contains two procedures:

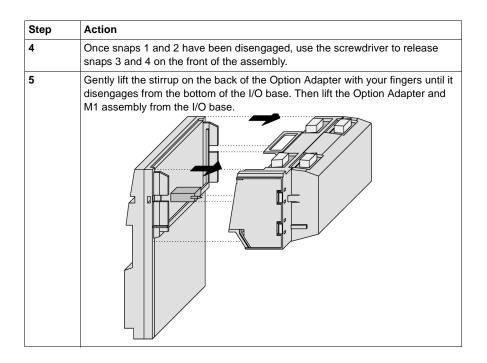
- Removing the assembled adapters from the I/O base
- Removing the Option Adapter from the Processor


Tools Required

Flat-head screwdriver.

Continued on next page

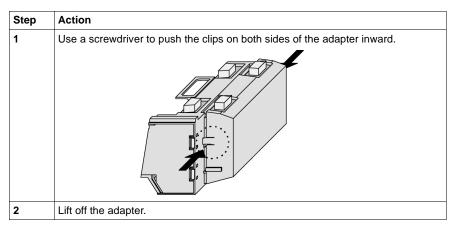
Disassembling a Module with an Option Adapter, Continued


Procedure: Removing the Adapter Assembly from the I/O Base Follow the steps in the table below to remove the assembled Option Adapter and M1 Processor Adapter from the I/O base.

Continued on next page

Disassembling a Module with an Option Adapter, Continued

Procedure: Removing the Adapter Assembly from the I/O Base, Continued



Continued on next page

Disassembling a Module with an Option Adapter, Continued

Procedure:
Disassembling
an Option
Adapter and M1
Processor

Follow the steps in the table below to remove the Option Adapter from the M1 processor.

Section 3.3 Installing Batteries in an Option Adapter

Installation Guidelines

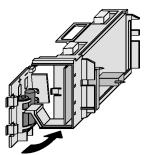
Why Install Batteries?

If you are using a Momentum Option Adapter in your CPU assembly, you have a battery-backup capability. The batteries will maintain user logic, state RAM values and the time-of-day clock in the event that the CPU loses power.

What Kind of Batteries?

Two AAA alkaline batteries can be installed in the compartment on the side of the Option Adapter. A set of batteries is supplied with the module (not installed).

CAUTION


ELECTRONIC CIRCUITRY EXPOSED

When the battery door is open, electronic circuitry is exposed. Follow proper ESD measures while handling the equipment during battery maintenance.

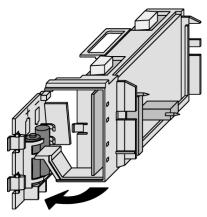
Failure to observe this precaution can result in injury or equipment damage.

Installing Batteries

When installing the batteries, observe correct polarity, as indicated on the compartment door.

Continued on next page

Installation Guidelines, Continued


Leave Power On When Changing Batteries

Once your CPU has been commissioned and is running, maintain power to the module whenever you change the batteries.

Unless you save to flash, if you change the batteries while the power is OFF, you will have to reload your user logic program from the original files.

Removing and Replacing Batteries

Battery maintenance should be performed only by qualified personnel according to the following illustration.

Monitor the Battery

Because a Momentum CPU assembly is designed to be installed in a cabinet where it cannot be seen at all times, no LED was created to monitor battery health.

We recommend that you reserve a battery coil in your programming panel software configuration and use it to monitor the health of your battery and report the need for replacement prior to battery failure (refer to *Reserving and Monitoring a Battery Coil* on page 224 for Modsoft or *Reserving and Monitoring a Battery Coil* on page 328 for Concept).

Section 3.4 Labeling the CPU

Guidelines for Labeling the CPU

Overview

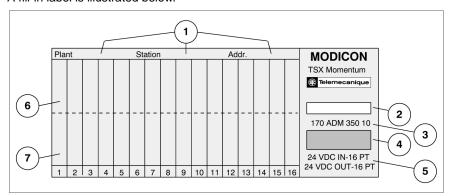
A fill-in label is shipped with each I/O base. This label should be placed on the M1 Processor Adapter that you mount on that base.

This section describes the label and provides an illustrated example.

Fill-In Label

A completed label provides information about the assembled module and its I/O field devices that can be used by service and maintenance personnel.

The model number of the I/O base is marked on the fill-in label directly above the color code. The cutout area above the I/O model number allows the model number of the adapter to show through.


Note: An Option Adapter may also be used in the assembled module. You will find its model number printed in the upper left corner of Option Adapter housing.

Continued on next page

Guidelines for Labeling the CPU, Continued

Example of a Fill-In Label

A fill-in label is illustrated below.

No.	Description
1	Fields for plant name, station name and network address
2	Cutout–the model number of the adapter shows through
3	Model Number of the I/O base
4	Color code of the I/O base
5	Short description of the I/O base
6	Field for the symbol name of inputs
7	Field for the symbol name of outputs

Communication Ports

At a Glance

Purpose

This part describes the communication ports available with TSX Momentum Processor Adapters and Option Adapters.

In This Part

This part contains the following chapters:

For Information On	See Chapter	On Page
Using the Modbus Ports	4	111
Using the Ethernet Port	5	141
Using the I/OBus Port	6	171
Using the Modbus Plus Ports	7	181

Using the Modbus Ports

4

At a Glance

Purpose

This chapter describes Modbus Port 1 and Modbus Port 2, including communication parameters, cabling guidelines for Modbus RS485 networks, cable accessories and pinouts.

In This Chapter

This chapter contains the following sections:

For This Topic	See Section	On Page
Modbus Port 1	1	112
Modbus Port 2	2	119

Section 4.1 Modbus Port 1

Overview

Purpose

Modbus Port 1 is standard on all Momentum M1 Processor Adapters, except the 171 CCC 960 20 and 171 CCC 980 20, 171 CCC 960 30 and 171 CCC 980 30 ethernet adapters. This section describes the port and recommended cable accessories, and provides pinouts.

In This Section

This section contains the following topics:

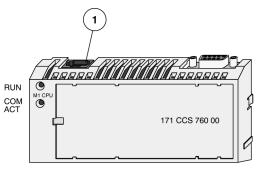
For This Topic	See Page
Modbus Port 1	113
Cable Accessories for Modbus Port 1	116
Pinouts for Modbus Port 1	117

Modbus Port 1

Introduction

Modbus Port 1 is an RS232 asynchronous serial port that permits a host computer to communicate to the CPU for:

- Programming
- Data transfer
- Upload/download
- Other host operations


This section describes the port.

Connector Type

The Modbus Port 1 connector is a female RJ45 phone jack.

Illustration

The following illustration shows the position of Modbus Port 1 on a Processor Adapter:

Label	Description
1	Modbus Port 1

Continued on next page

Modbus Port 1, Continued

Port Parameters

Modbus Port 1 supports the following communication parameters.

Baud	50	1800
	75	2000
	110	2400
	134	3600
	150	4800
	300	7200
	600	9600
	1200	19,200
Parity	EVEN	
	ODD	
	NONE	
Mode/Data Bits	7-bit ASCII	
	8-bit RTU	
Stop Bit	1	
Modbus Address	In the range 1 247	

Continued on next page

Modbus Port 1, Continued

Default Parameters

The factory-set default communication parameters for Modbus Port 1 are:

- 9600 baud
- EVEN parity
- 8-bit RTU mode
- 1 stop bit
- Modbus address

A Processor Adapter cannot support more than one stop bit. If you change this default setting in the configuration software, the Processor Adapter will ignore the change.

All other port parameters can be successfully modified in the configuration software.

Auto-Logout Feature

If a programming panel is logged into the CPU via the RS232 serial port and its cable gets disconnected, the CPU automatically logs out the port. This auto-logout feature is designed to prevent a lock-up situation that could prevent other host stations from logging in on other ports.

Cable Accessories for Modbus Port 1

Overview

This section describes the cable and D-shell adapters needed to connect Modbus Port 1 to a programming station. It also provides pinouts for the adapters.

Cables

The cable connecting a programming station to the CPU (via Modbus Port 1) can be up to 9.5m long. Three premade cable assemblies are available from Schneider Electric:

Length	Part Number
1 m (3 ft.)	110 XCA 282 01
3 m (10 ft.)	110 XCA 282 02
6 m (20 ft.)	110 XCA 282 03

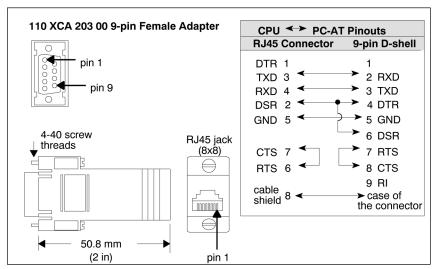
All three assemblies are standard eight-position, foil-shielded, flat telephone cables with male RJ45 connectors on each end. One RJ45 connector plugs into Modbus Port 1 on the CPU, and the other plugs into a female D-shell adapter that fits onto the programming station.

D-Shell Adapters

Two D-shell adapters are available from Schneider Automation for CPU-to-computer connections:

- A 110 XCA 203 00 9-pin adapter for 9 pin serial ports
- A 110 XCA 204 00 25-pin adapter for 25 pin serial ports

These adapters have an RJ45 jack on one end that allows them to clip directly onto a cable assembly.

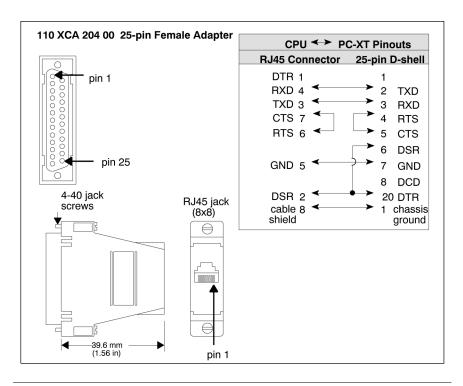

Pinouts for Modbus Port 1

Overview

This section provides pinouts for the D-shell adapters for Modbus Port 1.

110 XCA 203 00 Pinout

The pinout for this adapter is shown in the illustration below:



Continued on next page

Pinouts for Modbus Port 1, Continued

110 XCA 204 00 Pinout

The pinout for this adapter is shown in the illustration below:

Section 4.2 Modbus Port 2

Overview

Purpose

Five Momentum components offer this port:

- 171 CCS 780 00 Processor Adapter
- 171 CCC 780 10 Processor Adapter
- 171 CCC 980 20 Processor Adapter
- 171 CCC 980 30 Processor Adapter
- 172 JNN 210 32 Serial Option Adapter

This section describes the port and provides guidelines for Modbus RS485 networks.

In This Section

This section contains the following topics:

Topics	Page
Modbus Port 2	120
Four-Wire Cabling Schemes for Modbus RS485 Networks	123
Two-Wire Cabling Schemes for Modbus RS485 Networks	126
Cable for Modbus RS485 Networks	129
Connectors for Modbus RS485 Networks	132
Terminating Devices for Modbus RS485 Networks	134
Pinouts for Modbus RS485 Networks	135

Modbus Port 2

Two Types of Port

Modbus Port 2 is available in two types:

Component	Type of Port	Type of Connector
171 CCS 780 00 171 CCC 780 10 171 CCC 980 20 171 CCC 980 30 Processor Adapters	Built-in, dedicated RS485 port	9-pin D-shell connector
172 JNN 210 32 Serial Option Adapter	User may configure port as RS232 or RS485*	RJ45 phone jack connector

*If the Option Adapter is combined with the 171 CCS 780 00, or 171 CCC 780 10, 171 CCC 980 20 or 171 CCC 980 30 Processor Adapter, the Modbus port on the Option Adapter will be disabled.

Features of an RS485 Port

Modbus Port 2 can be configured as an RS485 port. RS485 supports two-wire or four-wire cabling. A multimaster/slave system must use two-wire cabling. A single master/slave system may use two- or four-wire cabling.

The RS485 protocol handles messaging over long distances with higher level of noise immunity than RS232 without the need for modems.

Limit of Two Modbus Ports

The Momentum M1 Processor Adapters can support a maximum of two Modbus ports.

If a 172JNN 210 32 Serial Option Adapter is used in conjunction with a 171 CCS 780 00 or 171 CCC 780 10 Processor Adapter, the RS485 port on the Processor Adapter becomes Modbus Port 2. The port on the Option Adapter becomes electrically neutral and does not support any communication activities. (The TOD clock and battery backup system on the Option Adapter continue to work.)

Continued on next page

Modbus Port 2, Continued

Port Parameters

Modbus Port 2 offers the following communication parameters:

Baud	50	1800
	75	2000
	110	2400
	134	3600
	150	4800
	300	7200
	600	9600
	1200	19,200
Parity	EVEN	
	ODD	
	NONE	
Mode/Data Bits	8-bit RTU	
	7-bit ASCII	
Stop Bit	1	
Modbus Address	In the range 1 247	
Comm Protocol	RS232	
	RS485	

Continued on next page

Modbus Port 2, Continued

Default Parameters

The factory-set default communication parameters for Modbus Port 2 are:

- 9600 baud
- EVEN parity
- 8-bit RTU mode
- 1 stop bit
- Modbus network address 1
- RS232 protocol

Note: Processor Adapters support only one stop bit. If you change this default setting in the configuration software, the Processor Adapter will ignore the change.

Note: The default protocol must be changed from RS232 to RS485 for the 171 CCS 780 00,171 CCC 780 10 Processor Adapters or the port will not function. The 171 CCC 980 20 and 171 CCC 980 30 change automatically.

Auto-Logout Feature Only with RS232

If the Serial Option Adapter is used and the RS232 port is chosen, auto-logout is supported. If a programming panel is logged into the CPU via the serial port and its cable gets disconnected, the Processor Adapter automatically logs out the port. This auto-logout feature is designed to prevent a lock-up situation that could prevent other host stations from logging in on other ports.

Auto-logout is not available for any RS485 port, including the RS485 option on the Serial Option Adapter. The user must log out of the processor using the programming software.

Four-Wire Cabling Schemes for Modbus RS485 Networks

Introduction

Four-wire cabling schemes may be used for single master/slave communications. Only one master is allowed. The master may be located anywhere in the network.

Length

The maximum length of cable from one end of network to other is 2000 ft. (609 m).

Number of Devices

The maximum number of devices in a network is 64 if all are Momentum devices. Otherwise, the maximum is 32.

Termination

You must terminate both ends of the cable run with special terminating resistors.

Description	Part Number
Modbus Plus or Modbus RS485 Terminating RJ45 Resistor Plugs (pack of 2). Color code - red	170 XTS 021 00

Master Cable

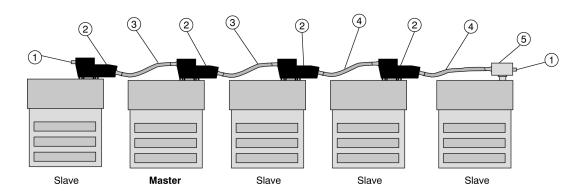
The master of this master/slave cabling scheme must be connected on at least one side to a master cable, a special cable that crosses the transmit and receive lines.

The other side may be connected to a master cable, or, if the master is at one end of the cable run, a terminating resistor.

Description	Part Number
Modbus RS485 (RJ45/RJ45) Master Communication Cable	170 MCI 041 10
Modbus Plus or Modbus RS485 Terminating RJ45 Resistor Plugs (pack of 2). Color code - blue	170 XTS 021 00

Continued on next page

Four-Wire Cabling Schemes for Modbus RS485 Networks, Continued


Slave Cabling

The slaves use a pin-for-pin cable, such as the Modbus Plus / Modbus RS485 Short Interconnect Cable or any Cat. 5 4-Twisted Pair Ethernet cable AWG#24.

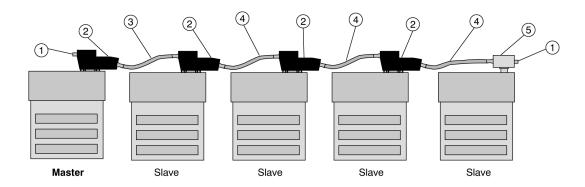
Description	Part Number
Modbus Plus / Modbus RS485 Short Interconnect Cable.	170 MCI 020 10
Color code - black	

Single Master/ Slave Option 1

The following illustration shows components used in a four-wire single master/slave cabling scheme. In this view, a master cable (#3) is used on both sides of the master. Each Momentum module must include a Processor Adapter or Option Adapter with a Modbus RS485 port.

Note: Each cable has different colored boots. The color of the boots signifies the cable's function.

Label	Description	Part Number
1	Terminating resistor plug	170 XTS 021 00
2	Modbus RS485 connector "T" (DB9 base)	170 XTS 040 00
3	Modbus RS485 Master Communication Cable	170 MCI 041 10
4	Modbus Plus / Modbus RS485 Short Interconnect Cable	170 MCI 020 10
5	Modbus RS485 connector "T" (RJ45 base)	170 XTS 041 00


Continued on next page

Four-Wire Cabling Schemes for Modbus RS485 Networks, Continued

Single Master/ Slave Option 2

The following illustration shows components used in a four-wire single master/slave cabling scheme. In this view, the master is at one end of the network and is connected by a single master cable (#3). Terminating resistors (#1) are used at both ends of the network.

Each Momentum module must include a Processor Adapter or Option Adapter with a Modbus RS485 port.

Label	Description	Part Number
1	Terminating resistor plug	170 XTS 021 00
2	Modbus RS485 connector "T" (DB9 base)	170 XTS 040 00
3	Modbus RS485 Master Communication Cable	170 MCI 041 10
4	Modbus Plus / Modbus RS485 Short Interconnect Cable	170 MCI 020 10
5	Modbus RS485 connector "T" (RJ45 base)	170 XTS 041 00

Two-Wire Cabling Schemes for Modbus RS485 Networks

Introduction

Two-wire cabling schemes may be used for single master/slave or multimaster/slave communications. Masters may be located anywhere in the network.

CAUTION

POTENTIAL FOR MULTIMASTER CONFLICTS

Configure a multimaster network carefully to avoid masters issuing simultaneous or conflicting commands to the same slave module.

Failure to observe this precaution can result in injury or equipment damage.

Length

The maximum length of cable from one end of network to other is 2000 ft. (609 m).

Number of Devices

The maximum number of devices in a network is 64 if all are Momentum devices. Otherwise, the maximum is 32.

Termination

One end of the cable run must be terminated with a terminating resistor (color code is red).

The other end of the cable must be terminated with a terminating shunt, which connects the transmit pair to the receiver pair (color code is blue).

Description	Part Number
Modbus Plus or Modbus RS485 Terminating RJ45 Resistor Plugs (pack of 2)	170 XTS 021 00
Modbus RS485 Terminating RJ45 Shunt Plugs	170 XTS 042 00

Continued on next page

Two-Wire Cabling Schemes for Modbus RS485 Networks, Continued

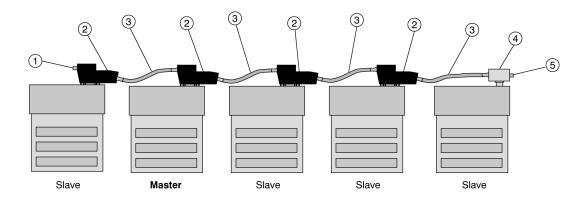

Cable

All devices are connected with the same pin-for-pin cable, such as the Modbus Plus or Modbus RS485 Short Interconnect Cable or any Cat. 5 4-Twisted Pair Ethernet cable AWG#24. A master/slave system using 2-wire cabling does not require the special master communication cable.

Description	Part Number
Modbus Plus or Modbus RS485 Short Interconnect Cable. Color code - black	170 MCI 020 10

Multimaster/ Slave Cabling

The following illustration shows components used in a multimaster/slave network. Each Momentum module must include a Processor Adapter or Option Adapter with a Modbus RS485 port.


Label	Description	Part Number
1	Terminating resistor plug. Color code - red	170 XTS 021 00
2	Modbus RS485 connector "T" (DB9 base)	170 XTS 040 00
3	Modbus Plus / Modbus RS485 Short Interconnect Cable. Color code - black	170 MCI 020 10
4	Modbus RS485 connector "T" (RJ45 base)	170 XTS 041 00
5	Terminating shunt plug. Color code - blue	170 XTS 042 00

Continued on next page

Two-Wire Cabling Schemes for Modbus RS485 Networks, Continued

Single Master/ Slave Cabling

The following illustration shows components used for single master/slave communications in a two-wire cabling scheme. Each Momentum module must include a Processor Adapter or Option Adapter with a Modbus RS485 port.

Label	Description	Part Number
1	Terminating resistor plug. Color code - red	170 XTS 021 00
2	Modbus RS485 connector "T" (DB9 base)	170 XTS 040 00
3	Modbus Plus / Modbus RS485 Short Interconnect Cable. Color code - black	170 MCI 020 10
4	Modbus RS485 connector "T" (RJ45 base)	170 XTS 041 00
5	Terminating shunt plug. Color code - blue	170 XTS 042 00

Cable for Modbus RS485 Networks

Overview

This section describes the cables which should be used in constructing an RS485 network for Momentum components.

Master Communication Cable

This cable is required for master/slave communications in a four-wire cabling scheme. This cable is 10" long and has a *blue boot*.

Description	Part Number	Illustration
Modbus RS485 (RJ45/RJ45) Master Communication Cable	170 MCI 041 10	

Continued on next page

Cable for Modbus RS485 Networks, Continued

Interconnect Cables

Cable for connecting two Modbus RS485 devices, such as Momentum modules, is available from Schneider Automation in four lengths. These cables have a *black boot*.

Description	Part Number	Illustration
Modbus Plus or Modbus RS485 Short Interconnect Cable (10") Can be used for Ethernet	170 MCI 020 10	
Modbus Plus or Modbus RS485 3 ft. Interconnect Cable Can be used for Ethernet	170 MCI 020 36	
Modbus Plus or Modbus RS485 10 ft. Interconnect Cable	170 MCI 021 80	
Modbus Plus or Modbus RS485 30 ft. Interconnect Cable	170 MCI 020 80	

Continued on next page

Cable for Modbus RS485 Networks, Continued

Other Premade Cable

Interconnect and Ethernet cable in various lengths and boot colors may be obtained from other vendors, including Amp:

Description	Amp Part Number
2 ft.	621 894-2
5 ft.	621 894-4
7 ft.	621 894-5
10 ft.	621 894-6
14 ft.	621 894-7

Custom Cable

For custom cabling, use Cat. 5 4-Twisted Pair Ethernet Cable AWG#26. It may be shielded or unshielded. Shielded cable is recommended for long runs and for noisy environments. You may use stranded or unstranded cable. Keep in mind that stranded cable is more flexible.

Custom Cable Vendors

Vendors include:

Vendor	Part # for Shielded Cable	Part # for Unshielded Cable
Belden	1633A	1583A non plenum 1585A plenum
Berk/Tek	530131	540022
Alcatel Cable Net		Hipernet Cat. 5 - UTP (LSZH-rated cable)

Crimping Tool

Schneider Automation provides a crimping tool (490 NAB 000 10) and an RJ45 die set (170 XTS 023 00) to attach the 170 XTS 022 00 connector to the cable.

Connectors for Modbus RS485 Networks

Overview

This section describes the connectors which should be used in constructing an RS485 network for Momentum components.

RJ45 Connector "T"

This connector is used with the RS485 port on the 172 JNN 210 32 Option Adapter.

Description	Part Number	Illustration
Modbus RS485 Connector "T" (RJ45 base)	170 XTS 041 00	STATE OF THE PARTY

DB9 Connector "T"

This connector is used with the RS485 port on the Processor Adapters.

Description	Part Number	Illustration
Modbus RS485 Connector "T" (DB9 base)	170 XTS 040 00	BCHNEIDER AUTOMATION INC.

Continued on next page

Connectors for Modbus RS485 Networks, Continued

Connectors for Custom Cabling

This RJ45 connector should be used when constructing custom cable for an RS485 network.

Description	Part Number	Illustration
RJ45 Connector (pack of 25)	170 XTS 022 00	

Terminating Devices for Modbus RS485 Networks

Overview

This section describes terminating devices which should be used in constructing Modbus RS485 networks for Momentum devices.

Terminating Resistor Plugs

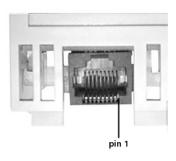
Terminating resistor plugs are used with the RS485 connector (RJ45 base) at the last device on either end of a four-wire cable network or at one end of a two-wire cable network.

Description	Part Number	Illustration
Modbus Plus or Modbus RS485 Terminating RJ45 Resistor Plugs (pack of 2). Color code - red	170 XTS 021 00	

Shunt Plugs

Shunt plugs are used with the RS485 connector (RJ45 base) at one end of a two-wire cable network. The plug is used at the last device on the network.

Description	Part Number	Illustration
Modbus RS485 Terminating RJ45 Shunt Plugs. Color code - blue	170 XTS 042 00	

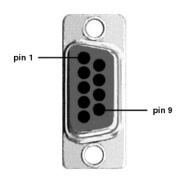

Pinouts for Modbus RS485 Networks

Overview

This section contains pinouts for wiring an RS485 network for Momentum components.

RJ45 Pinout

The illustration below shows the pinouts for wiring an RJ45 connector for RS485:

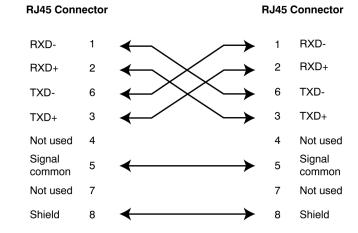


Pin	Function
1	RXD -
2	RXD+
3	TXD +
4	Reserved
5	Signal common
6	TXD -
7	Reserved
8	Shield

Continued on next page

9-Pin D-Shell Pinout

The illustration below shows the pinouts for wiring a male 9-pin D-shell connector for RS485. The metal shell is connected to chassis ground.

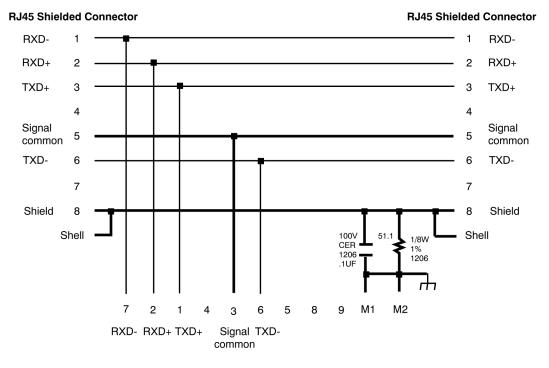


Pin	Function
1	TXD +
2	RXD+
3	Signal common
4	Reserved
5	Reserved
6	TXD -
7	RXD -
8	Reserved
9	Reserved

Continued on next page

Master Communication Cable

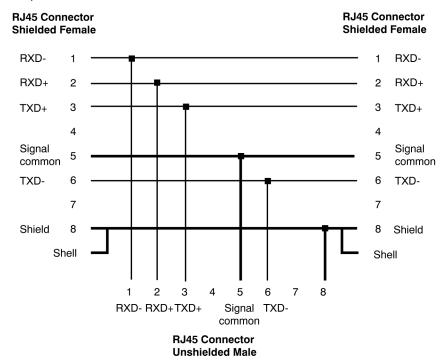
The illustration below shows the pinout for the 170 MCI 041 10 Modbus RS485 (RJ45/RJ45) Master Communication Cable:


Interconnect Cables

The illustration below shows the pinout for the 170 MCI 02x xx Modbus Plus or Modbus RS485 Interconnect Cables (10 in, 3 ft., 10 ft. and 30 ft.:

RJ45 Connector		RJ45	RJ45 Connector	
RXD-	1	←	. 1	RXD-
RXD+	2	\longleftrightarrow	. 2	RXD+
TXD+	3	\longleftrightarrow	. 3	TXD+
TXD-	6	\longleftrightarrow	6	TXD-
Not used	4		4	Not used
Signal common	5	←	- 5	Signal common
Not used	7		7	Not used
Shield	8	\leftarrow	- 8	Shield

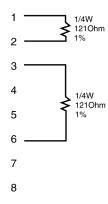
Continued on next page


Modbus RS485 Connector "T" (DB9 Base) The illustration below shows the pinout for the Modbus RS485 Connector "T" (DB9 base):

DB9 Connector

Continued on next page

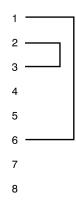
Modbus RS485 Connector "T" (RJ45 Base) The illustration below shows the pinout for the Modbus RS485 Connector "T" (RJ45 base):



Continued on next page

Terminating Resistor Plugs

The illustration below shows the pinout for the Modbus Plus or Modbus RS485 Terminating RJ45 Resistor Plugs:


RJ45 Connector

Terminating Shunt Plugs

The illustration below shows the pinout for the Modbus RS485 Terminating RJ45 Shunt Plugs:

RJ45 Connector

Using the Ethernet Port

5

At a Glance

In This Chapter

This chapter contains the following sections:

For This Topic	See Section	On Page
Ethernet Port	1	142
Establishing a Connection with an Ethernet Module	2	158
Accessing Embedded Web Pages	3	162
171 CCC 960 30 AND 171 CCC 980 30 Web Pages	4	164

Section 5.1 Ethernet Port

Purpose

Ethernet ports are available with:

- 171 CCC 960 20 Processor Adapters
- 171 CCC 960 30 Processor Adapters
- 171 CCC 980 20 Processor Adapters
- 171 CCC 980 30 Processor Adapters

In This Section

This Section contains the following topics:

For This Topic	See Page
Ethernet Port	143
Network Design Considerations	144
Security	146
Cabling Schemes	147
Pinouts	148
Assigning Ethernet Address Parameters	149
Using BOOTP Lite to Assign Address Parameters	152
Reading Ethernet Network Statistics	153

Ethernet Port

Introduction

The Ethernet port allows a Processor Adapter to connect to an Ethernet network for:

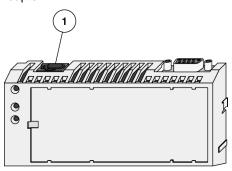
- high-speed I/O servicing
- high-speed data transfer
- programming
- worldwide connectivity via the Internet
- interfaces with a wide array of standard Modbus over TCP/IP Ethernet-aware devices

CAUTION

Communication Errors May Result

After taking an Ethernet Processor out of service, it is recommended that you clear the program and IP address to prevent future conflicts.

Before installing a replacement Ethernet Processor on your network, verify that it contains the correct IP address and program for your application.


Failure to observe this precaution can result in injury or equipment damage.

Connector Type

The Ethernet connector is a female RJ45 style phone jack.

Illustration

The following illustration shows the position of the Ethernet port on a Processor Adapter:

Network Design Considerations

Introduction

In a distributed control environment. Ethernet can be used as:

- an I/O network
- a supervisory network
- a network that combines I/O and supervisory functions

This section discusses how to design your network to make communication between related devices as effective and deterministic as possible.

Note: Preserve your ARP cache information.

When installed on a new network, the M1 Ethernet Processor will obtain the MAC and IP addresses of other devices on the network. This process may require several minutes.

When the module is successfully communicating with these devices, if a ring adapter with battery back up is not present, it is recommended that you stop the processor and save the user program to flash. This will save the processor's ARP cache and enable it to "remember" this information if power is lost or removed. If you do not save to flash the processor must repeat acquiring the ARP cache information from the network.

This procedure should also be followed whenever:

- A new or substitute device is installed on the network;
- The IP address of a network device has been changed.

CAUTION

CONTROL NETWORKS MUST BE ISOLATED FROM MIS DATA NETWORKS

To maintain a deterministic Ethernet network, you must isolate Momentum Processor Adapters and related devices from MIS data networks. Traffic from MIS data networks can interrupt communication between control devices, causing your control application to behave unpredictably.

Additionally, the high message rates that may be generated between M1 Processors and I/O Adapters may bog down an MIS network, causing loss of productivity.

Failure to observe this precaution can result in injury or equipment damage.

Continued on next page

Network Design Considerations, Continued

I/O Networks

In an Ethernet I/O network architecture, an M1 Processor Adapter is used to control Momentum I/O points equipped with an Ethernet Communication Adapter or other Modbus over TCP/IP Ethernet-aware devices. Communication between these devices should be isolated not only from MIS data traffic, but also from unrelated communication between other control devices.

You may isolate communication by creating a separate network or by using switches.

Supervisory Networks

In a supervisory architecture, several intelligent processing devices share system data with each other. Many kinds of devices may be part of the network. You should be aware of each device's requirement for access to the network and of the impact each device will have on the timing of your network communication.

Combined Supervisory and I/O Handling

If your system requires both supervisory and I/O handling architectures, one solution is to use the I/OBus capabilities of the 171 CCC 960 20 Processor Adapter for the I/O network and the Ethernet capabilities for the supervisory network.

If you intend to use Ethernet to handle both functions, use switches to isolate the network traffic and supply additional buffering of network packets.

Concurrent Communication

A maximum of 96 devices may be communicating with the Processor Adapter via the Ethernet at any one time. This 96-device limit consists of:

- up to 2 programming panels (one must be in monitor mode)
- up to 14 general purpose Modbus server paths
- up to 16 MSTR elements which support Modbus read, write or read/write commands
- up to 64 cyclic configured data slave paths

Continued on next page

Security

Overview

To restrict access to your Ethernet controller and I/O network, you may want to consider a firewall. A firewall is a gateway that controls access to your network.

Types of Firewalls

There are two types of firewalls:

- Network-level firewalls
- Application-level firewalls

Network-Level Firewalls

Network-level firewalls are frequently installed between the Internet and a single point of entry to an internal, protected network.

Application-Level Firewalls

An application-level firewall acts on behalf of an application. It intercepts all traffic destined for that application and decides whether to forward that traffic to the application. Application-level firewalls reside on individual host computers.

Cabling Schemes

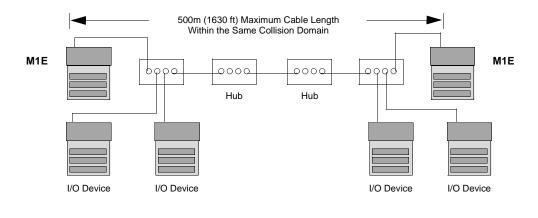
Introduction

In a standard Ethernet cabling scheme, each device connects via a cable to a port on a central Ethernet hub.

Length

The maximum length of cable between devices depends on the type of hub used, as shown in the following table:

Type of Hub	Max. Cable from Device to Hub	Max. Hubs Between Any Two Nodes	Max. Cable Between Most Distant Nodes on Network
Traditional (Non-switching)	100 m	4	500 m
Switches	100 m	Unlimited	Unlimited

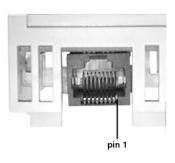


Note: 10/100 hubs/switches can be used. This will allow 100 Base T networks to use the M1E.

Cabling with Traditional Hubs

The following illustration shows the maximum number of hubs and the maximum cable length between devices when using traditional (non-switching) hubs:

Cabling with Traditional Hubs


Pinouts

Overview

This section contains pinouts for wiring an Ethernet network for Momentum components.

RJ45 Pinout

The illustration below shows the pinouts for wiring an RJ45 connector for Ethernet:

Pin	Function
1	TXD +
2	TXD -
3	RXD+
4	
5	
6	RXD -
7	
8	

Note: These are industry standard pinouts. Prefabricated patch cables can be used.

Assigning Ethernet Address Parameters

Overview

As shipped from the factory, the M1 Ethernet Processor does not contain an IP address. This is also true if you have not programmed the unit with an Ethernet configuration extension. In this condition, when the module starts up, it will attempt to obtain an IP address from the network's BOOTP server.

You can use Concept to assign an IP address, default gateway and sub network mask. See *Setting Ethernet Address Parameters* on page 348.

You can also assign IP address parameters using the BOOTP Lite software utility. See *Using BOOTP Lite to Assign Address Parameters* on page 152.

CAUTION

DUPLICATE ADDRESS HAZARD

Be sure that your Processor Adapter will receive a unique IP address. Having two or more devices with the same IP address can cause unpredictable operation of your network.

Failure to observe this precaution can result in injury or equipment damage.

Using a BOOTP Server

A BOOTP server is a program that manages the IP addresses assigned to devices on the network. Your system administrator can confirm whether a BOOTP server exists on your network and can help you use the server to maintain the adapter's IP address.

How an unconfigured ("as shipped") module obtains an IP address

On startup, an unconfigured processor will attempt to obtain an IP address by issuing BOOTP requests. When a response from a BOOTP server is obtained, that IP address will be used. If a response is not heard, then the Bootp requests will continue for as long as the unit remains powered or until a response is heard.

Specifying Address Parameters

Consult your system administrator to obtain a valid IP address and appropriate gateway and subnet mask, if required. Then follow the instructions in *Setting Ethernet Address Parameters* on page 348.

Continued on next page

Assigning Ethernet Address Parameters, Continued

When the Processor Adapter is Powered-up with a Configuration for "Use Bootp Server"

If the processor adapter is powered up without battery backup, and its IP address was previously saved to flash, the adapter will issue three Bootp requests five seconds apart.

- If a Bootp response is received from the server, the IP address will be assigned but will not be saved to flash. Use the programming software to save the IP address to flash. If a power cycle occurs on the processor adapter, the IP address that is currently saved in flash will be used.
- If a Bootp response is not received from the server, the processor adapter will
 use the IP address that is stored in flash. Three ARP broadcasts are made, five
 seconds apart, to check for duplicate IP addresses. Then, three gratuitous
 ARP broadcasts are made two seconds apart with the station's MAC address
 and IP address.

Continued on next page

Assigning Ethernet Address Parameters, Continued

When the Processor Adapter is Power-up with a Configuration for "Specify IP Address"

If the processor adapter is powered-up without battery backup and its IP address was previously saved to flash; the adapter will listen for any Bootp messages but will not will not issue any Bootp requests. Instead it will use the IP address that is specified in the configuration. Then, three ARP broadcasts are made, five seconds apart, to check for duplicate a IP address. Then, three gratuitous ARP broadcasts are made, two seconds apart, with the station's MAC address and IP address.

To Retain the IP Address

After setting the module's IP address, you must save it to flash memory if you want this setting to be retained when power is removed from the module. This is necessary even if the module is attached to a ring adapter that provides battery back up. See *Saving to Flash with Concept* on page 399.

Using BOOTP Lite to Assign Address Parameters

CAUTION

INCORRECT MAC ADDRESS HAZARD

Be sure to verify the MAC address of the target device before invoking BOOTP Lite. If you do not enter the correct parameters of the target controller, it will run in its old configuration. An incorrect MAC address may also result in an unwanted change to another device and cause unexpected results.

Failure to observe this precaution can result in injury or equipment damage.

Specifying Addresses/ Stopping the Processor Instead of a BOOTP server, Schneider Electric's BOOTP Lite utility software can be used to provide the IP address, subnet mask and default gateway to the processor.

A response from BOOTP Lite will cause the processor to enter Stopped mode on completion of power up, if the processor has been set to "Specify IP Address" mode via Concept. This is useful when inappropriate outbound network traffic might result if the processor immediately transitioned into Run mode after power up.

Refer to the BOOTP Lite user documentation for instructions.

Note: BOOTP Lite and the user document are available for download at www.modicon.com.

Reading Ethernet Network Statistics

Overview

Ethernet Network statistics are stored in the processor adapter and can be viewed by the user.

Procedure

The M1 ethernet Processor Adapter's Ethernet Network Statistics can be viewed using the Network Options Ethernet Tester. This software utility is available with the *Quantum 140 NOE 771 00 10/100 Megabit Ethernet Module User Guide* 840 USE 116 00.

Table of Statistics

Network statistics occupy word 4 through word 35 in the Modbus Status Table, as follows:

Table 1: TCP/IP Ethernet Statistics Table

Word	Data
00 02	MAC Address
03	Board Status
04, 05	Rx Interrupt
06, 07	Tx Interrupt
08, 09	NA
10, 11	Total Collisions
12, 13	Rx Missed Packet Errors
14, 15	NA
16, 17	Chip Restart Count
	Lo word – Collison Peak Detector
18, 19	Framing Errors (Giant Frame Error)
20, 21	Overflow Errors
22, 23	CRC Errors
24, 25	Receive Buffer Errors (Out of Server Paths)
26, 27	Transmit Buffer Errors
28, 29	Silo Underflow (TCP retries)
30, 31	Late Collision
32, 33	Lost Carrier
34, 35	16 Collision Tx Failure
36, 37	IP Address

Description Operational Statistics Words 4, 5 Number of frames received by this station. Only broadcast frames pertinent to this Receive station and individual address match frames are received and counted. Interrupts Words 6, 7 Number of frames transmitted from this station. Includes all transmitted broadcast Transmit frames for ARP and BOOTP. Interrupts **Ethernet Network Functioning Errors** Words 8, 9 Not used. Words 10, 11 This field contains the total number of transmit collisions. **Total Collisions** Words 12, 13 Rx Receive frame was missed because no buffer space was available to store the **Missed Packet** frame. Indicates firmware unable to keep up with link. The only time this should increment is during the save user logic to flash command, when all **Errors** interrupts are disabled for 10 seconds. Words 14, 15 Not used. Continued on next page

Description, Continued

Words 16, 17 High Word: Not used, always 0

Low Word: Peak Collision Detector

This field contains the number of consecutive collisions that occurred before the frame was successfully transmitted out onto the Ethernet. Most transmitted frames have zero collisions. Some have one collision on the first transmit attempt and succeed on the second attempt. Some have more than one collision followed by success. The largest number of consecutive collisions, since clear statistics command, is stored and displayed in this field.

Receiver Errors

Words 18, 19 Framing Errors

Counts the number of received frames addressed to this node that are greater than 320 bytes in length. Any such large frame has no relevance to the M1 Ethernet adapter and therefore is skipped.

This error should not occur.

Overflow Errors

Increments whenever a received frame cannot be copied into the frame buffer, because the frame buffer is full. This situation should never occur under legal Ethernet traffic.

Words 20, 21 CRC Errors

Increments when the received packet is received under any of the following error conditions:

- CRC error
- Extra data error
- Runt error

This counter can be made to increment by continuously disconnecting and reconnecting the M1 Ethernet cable during cyclic communication.

Continued on next page

Description, Continued

Words 24, 25 Receive Buffer Errors

Increments whenever a client attempts to connect to the M1 Ethernet, and fails, because there is no available server path. The M1 Ethernet supports 14 simultaneous data paths and 2 program paths before this counter can increment. This error indicates poor application architecture.

Transmission Errors

Words 26, 27 Transmit Buffer Errors

Increments when the M1 is unable to transmit an Ethernet response frame because all frame buffers are in use. For example, the M1 has 16 PING reply buffers. If all 16 PING buffers contain PING replies, ready to be transmitted, but this station's transmission is delayed because of collisions and backoff, and one more PING request is received, then the new PING request is discarded and the counter is incremented. This error can occur for PING, ARP, and connection attempt to server path. Although this error is theoretically possible, it is not usually encountered.

Words 28, 29 Silo Underflow

This field counts M1 TCP/IP retries. All M1 clients and server use the TCP/IP protocol which implements sequence numbers and timeouts. Whenever TCP/IP data is pushed from the M1, a subsequent acknowledgement of receipt of M1 data must be received within the timeout period, or else the M1 issues a retry. Retries may be the result of any of the following conditions:

- The original M1 data frame was garbled, corrupted, and lost
- The target TCP/IP stack is operating more slowly than the M1 retry rate

For Modbus 502 servers, the M1 initiates retries after (1, 1, 2, 2, 4, 8) seconds.

For Modbus 502 clients, the M1 retry rate is the larger of:

- 1/4 the health timeout for Ethernet I/O Scanner data (see Accessing the Ethernet / I/O Scanner Screen on page 345, OR:
- 4 times the previous measured TCP/IP round trip time for i/o Scanner MSTR block.

Continued on next page

Description, Continued

Words 30, 31 Late Collision

Increments when the transmit frame process is aborted because of late collision detected after the first 64 bytes of the frame was transmitted collision free. This error could possibly occur if the Ethernet cable is intermittently connected and disconnected.

Words 32, 33 Lost Carrier

Increments whenever the Ethernet cable, connected to the M1, is disconnected from the hub. Also increments whenever the Ethernet cable, connected to the hub, is disconnected from the M1.

Words 34, 35 16 Collision Transmit Failure

Transmit frame process was aborted after 16 consecutive collisions. The frame was not successfully transmitted out onto Ethernet link. This error should never occur.

Section 5.2 Establishing a Connection with an Ethernet Module

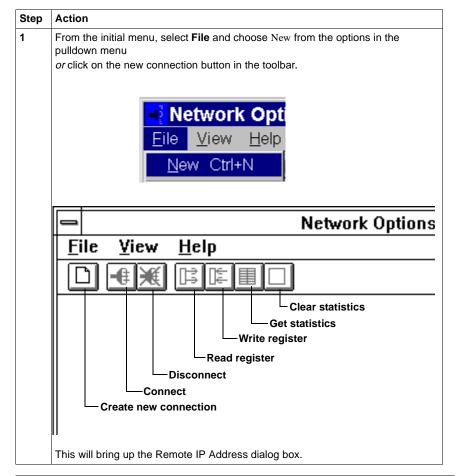
Overview

Introduction

This Section presents an overview of the procedure for connecting to an ethernet module that is used as a web server. For a complete description of the Quantum 140 NOE 771 x0 module, refer to *Quantum NOE 771 x0 Ethernet Modules User Guide* 840 USE 116 00 Version 1.0.

Note: To establish a connection with an Ethernet module using the Network Options Ethernet Tester, you must know the module's IP network address or host name.

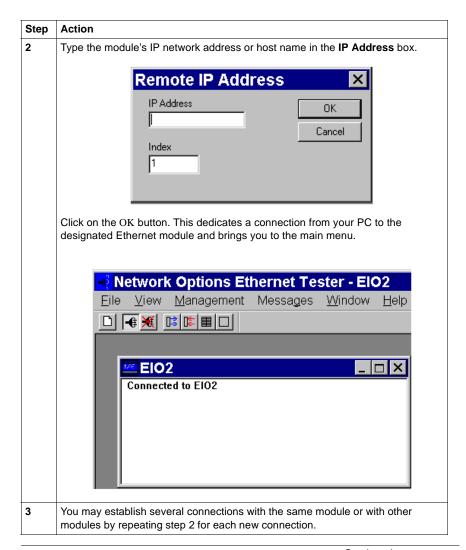
What's in this Section


This Section contains the following topic:

Topic	Page
Establishing a Connection with an Ethernet Module	159

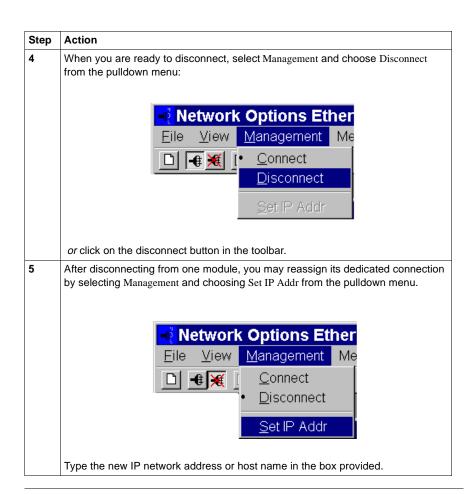
Establishing a Connection with an Ethernet Module

Procedure


Perform the following steps to establish a connection with an Ethernet module using the Network Options Ethernet Tester:

Continued on next page

Establishing a Connection with an Ethernet Module, continued


Procedure, continued

Continued on next page

Establishing a Connection with an Ethernet Module, continued

Procedure, continued

Section 5.3 Accessing Embedded Web Pages

Overview

Introduction

This Section presents a brief overview of accessing the embedded web pages contained in the Momentum M1E 171 CCC 960 30 and 171 CCC 980 30 IEC modules. The Momentum M1E 171 CCC 960 30 and 171 CCC 980 30 IEC modules' Web pages enable you to access diagnostic information, view configuration information, and change the online configurations for the module.

What's in this Section

This Section contains the following topics:

Topic	Page
Accessing the Web Utility Home Page	163
Momentum M1E Indicator	170

Accessing the Web Utility Home Page

Introduction

Each Momentum M1E 171 CCC 960 30 and 171 CCC 980 30 IEC PLC contains a World Wide Web embedded server that allows you to access diagnostics and online configurations for the controller. Pages on the embedded web site display:

- the Ethernet statistics for the node
- the controller's register values

The web pages can be viewed across the World Wide Web using version 4.0 or greater of either Netscape Navigator or Internet Explorer, both of which support JDK 1.1.4 or higher.

For information on the additional functionality provided by the FactoryCast system in the Momentum M1E 171 CCC 960 30 and 171 CCC 980 30 IEC modules, see the *FactoryCast User's Guide For Quantum and Premium*, 890 USE 152 00.

How to Access It

Before you can access the module's home page, you must learn its full IP address or URL from your system administrator. Type the address or URL in the Address or Location box in the browser window. Once you do this the Schneider Automation Web Utility home page will appear (see next section).

Section 5.4 171 CCC 960 30 AND 171 CCC 980 30 Web Pages

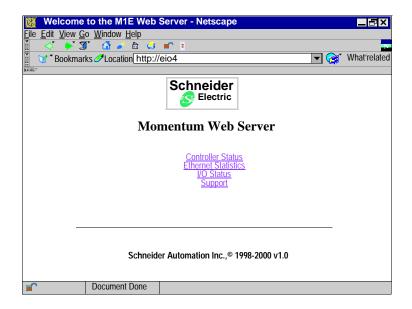
Overview

Introduction

This Section shows the embedded Web pages contained in the Momentum M1E 171 CCC 960 30 AND 171 CCC 980 30 IEC modules and a brief description of each page.

What's in this Section

This Section contains the following topic:

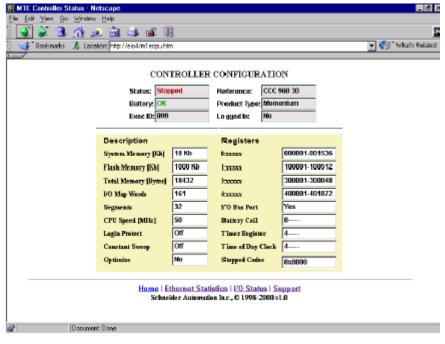

Торіс	Page
Momentum M1E Web Pages	166

Momentum M1E Web Pages

Momentum M1E Welcome Page

The Momentum M1E Welcome Page provides links to the Controller Configuration, Ethernet Statistics, I/O Status and Support Pages.

Link	Results
Controller Status	Displays the CPU Configuration page.
Ethernet Statistics	Displays the Ethernet Module Statistics with the Reset Counters page.
I/O Status	Displays the I/O Status and Configuration page.
Support	Displays contact information for technical assistance, sales, and feedback.

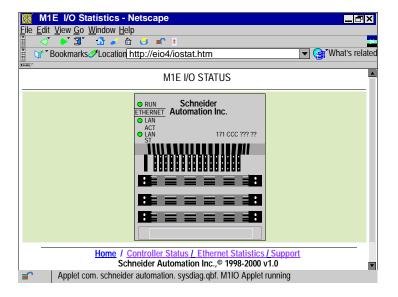


Continued on next page

CPU Configuration Page

The CPU Configuration Page enables you to monitor your controller configuration and its status. It has the following links:

Link	Results
Home	Returns you to the Home Page.
Ethernet Statistics	Displays the Ethernet Module Statistics with the Reset Counters page.
I/O Status	Displays the I/O Status and Configuration page.
Support	Displays contact information for technical assistance, sales, and feedback.

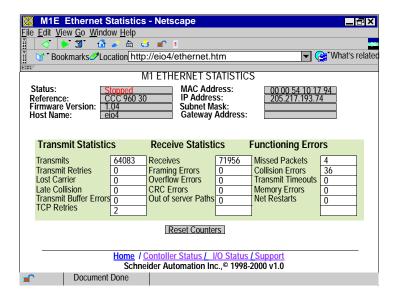

Continued on next page

M1E I/O Status Page

The I/O Status page enables you to check your I/O Status. It contains the following links and LED indicators.

The following table describes the links contained within the I/O Status page:

Link	Results
Home	Returns you to the Home Page.
Controller Status	Displays the CPU Configuration page.
Ethernet Statistics	Displays the Ethernet Module Statistics with the Reset Counters page.
Support	Displays contact information for technical assistance, sales, and feedback.

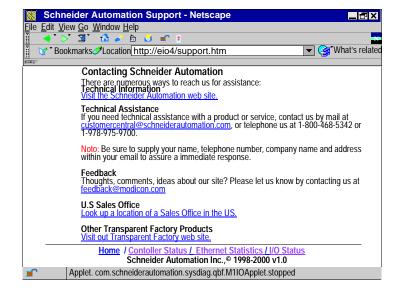


Continued on next page

Ethernet Statistics

The Ethernet Statistics page enables you to monitor ethernet information, such as MAC Address, receive/transmit statistics and check functioning errors. It contains the following links::

Link	Results
Home	Returns you to the Home Page.
Controller Status	Displays the CPU Configuration page.
I/O Status	Displays the I/O Status and Configuration page.
Support	Displays contact information for technical assistance, sales, and feedback.



Continued on next page

Support Page

The Support page contains assistance information and the following links:

Link	Results
Home	Returns you to the Home Page.
Controller Status	Displays the CPU Configuration page.
Ethernet Statistics	Displays the Ethernet Module Statistics with the Reset Counters page.
I/O Status	Displays the I/O Status and Configuration page.

Momentum M1E Indicators

Processor Adapter LED Indicators

The Momentum M1E 171 CCC 960 30 AND 171 CCC 980 30 Processor Adapter IEC modules have three LED indicators. The LED indicators are described in the table below:

LED	Function
RUN	Indicates the run state of the M1E Processor Adapter IEC module.
LAN ACT	Always appear to be "on" continuously.
LAN ST	Always appear to be "on" continuously.

I/O Status LED Indicators

There are three rows of 16 I/O Status LED indicators. :

Note: Each I/O base has a custom LED display that provides information about the I/O Status.

For information about the I/O Status for your I/O base, refer to LED Illustration and Description for your I/O base in 870 Use 002 00 V. 2 *Momentum I/O Base User Guide.*

Using the I/OBus Port

6

At a Glance

Purpose

Three Momentum components offer I/OBus master capabilities:

- 171 CCS 760 00 Processor Adapter
- 171 CCC 760 10 Processor Adapter
- 171 CCC 960 20 and 171 CCC 960 30 Processor Adapters

This section describes the I/OBus port, explains how I/OBus works, provides guidelines for creating I/OBus networks with Momentum components, and describes recommended cable accessories.

In This Chapter

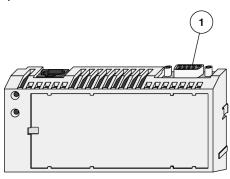
This chapter contains the following topics:

For This Topic	See Page	
I/O Bus Port	172	
How I/OBus Works	173	
Network Status Indication in the M1 Ethernet Module	174	
Guidelines for I/OBus Networks	175	
Cable Accessories	177	
Pinouts	179	

I/O Bus Port

Introduction

The I/OBus port allows a Momentum CPU to assume bus master capabilities over as many as 255 slave devices over an Interbus cable.


Note: Processors that support IEC are limited to a maximum number of 1408 used I/O points, regardless of the number of modules.

Connector Type

The I/OBus port has a female 9-pin D-shell connector.

Illustration

The following illustration shows the position of the I/OBus port on a Processor Adapter:

Label	Description	
1	I/OBus port	

172 870 USE 101 10 V.2

How I/OBus Works

Introduction

This section describes how signals are passed and how data is transferred in an I/OBus network.

How Signals Are Passed

I/OBus operates as a logical ring, with signals being passed by the master over a remote bus cable to each slave device in series. The slaves return signals to the master over the same cable.

How Data is Transferred

The I/OBus functions as a logical shift register. The application's entire data stream, originating at the master, is transferred serially from slave to slave down the remote bus. Each slave regenerates the entire stream before passing it on. As a slave handles the stream data, it extracts the portion that is assigned to it and adds any output data to the stream.

Transmission Speed

Data is transmitted at 500 kbits/s.

Amount of data

The number of 16 bit words in the data stream is dependent on the processor model:

Model	Max Input Words	Max Output Words
171 CCS 760 00	128	128
171 CCC 760 10	256	256
171 CCC 960 20	256	256
171 CCC 960 30	256	256

Note: Processors that support IEC are limited to a maximum number of 1408 used I/O points, regardless of the number of modules.

Network Status Indication in the M1 Ethernet Module

Overview

The M1 Ethernet Module can provide I/OBus network status via the Module Status function in the programming panel or by a STAT element in user logic. The fourth word of the status element contains information regarding the integrity of the network.

Operation

The I/OBus status word contains a valid value only when the processor is running. A zero value indicates that normal I/OBus communication is occurring.

A non-zero value indicates a problem.

Failure Indication

If there is a communications error, bit values in the I/OBus status word contain information on the failure mode, as follows:

BITS 0 - 14

These bits contain a value from 1 to 255, signifying the network position of the module that cannot be reached. For example, a value of 8 indicates a communications failure in accessing the 8th module on the network.

BIT 15

This bit contains a value of 0 or 1.

A value of zero indicates a general communication failure, for example, no power to the module or a break in its input cable.

A value of 1 indicates that communication is possible, but the I/OBus ID received from the module does not match the module type contained in the traffic cop for that position.

174 870 USE 101 10 V.2

Guidelines for I/OBus Networks

Overview

This section gives guidelines for creating an I/OBus network using a Momentum CPU as bus master.

Length

The maximum distance between the Momentum CPU master and the farthest slave is 13 km (8 mi).

Distance Between Nodes

The maximum distance between nodes is 400 m (1300 ft.).

Number of Devices

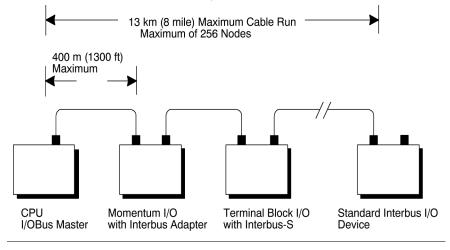
A network may consist of as many as 256 nodes, including one Momentum CPU bus master and up to 255 slave I/O devices.

Note: Processors that support IEC are limited to a maximum number of 1408 used I/O points, regardless of the number of modules.

Acceptable Slave Devices

An I/OBus slave device can be:

- A Momentum I/O base with a 170 INT 110 00 Interbus Communication Adapter mounted on it
- A Modicon Terminal Block I/O module enabled for Interbus communications
- A standard Interbus module designed by a third party manufacturer


Unacceptable Slave Devices

The I/OBus network does not support Interbus-compatible devices that require the Interbus PCP protocol.

Continued on next page

Guidelines for I/OBus Networks, Continued

Network Scheme The slave devices are distributed along a trunk, as shown in the illustration below.

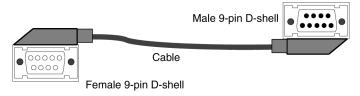
176 870 USE 101 10 V.2

Cable Accessories

Overview

Modicon provides several cabling solutions for I/OBus:

- Low profile cables in two lengths
- A 1m cable with high profile rear shell
- A connector kit for building custom-length Interbus cables


This section describes those solutions.

Low Profile Cables

For side-by-side mounting of the CPU with Interbus I/O modules on a DIN rail or wall, Modicon provides two specially molded low profile cables.

Part Number	Length
170 MCI 007 00	11.4 cm (4.5 in)
170 MCI 100 01	100 cm (39 in)

These cables have a male 9-in D-shell connector on one end and a female 9-pin D-shell on the other. The male connector plugs into the female I/OBus port on the Processor Adapter, and the female connector plugs into the male connector on the left side of a 170 INT 110 00 Interbus Communications Adapter on an I/O base. Additional cables can then be used to connect a series of I/O modules via their Interbus communication ports.

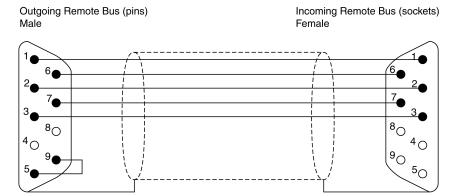
Continued on next page

Cable Accessories, Continued

Interbus Cable Connector Kit

I/OBus communicates over Interbus full duplex cable. For custom cable lengths, Modicon offers an Interbus cable connector kit (part number 170 XTS 009 00). The kit includes two connectors, one male and one female, that can be soldered to an Interbus full duplex cable of the appropriate length.

The recommended cable is Belden 3120A or equivalent. Belden 8103 is an acceptable alternative.


Note: The connectors in the 170 XTS 009 00 Kit are high profile.

178 870 USE 101 10 V.2

Pinouts

Interbus Cable

The following illustration shows how to wire the connectors of the remote bus cable:

Pin	Wire Color	Outgoing Connection	Pin	Wire Color	Ingoing Connection		
1	Yellow	DO Data Out	1	Yellow	DO Data Out		
2	Gray	DI Data In	2	Gray	DI Data In		
3	Brown	Common	3	Brown	Common*		
4		GND Reference conductor, fiber-optic adapter	4		GND* Reference conductor, fiber-optic adapter		
5		Vcc Power-supply for fiber- optic adapter	5		Vcc* Power-supply for fiber- optic adapter		
6	Green	DO_N Data Out Negated	6	Green	DO_N Data Out Negated		
7	Pink	DI_N Data In Negated	7	Pink	DI_N Data In Negated		
8		Vcc Additional power supply for fiber-optic adapter	8		Vcc* Additional power supply for fiber-optic adapter		
9		Plug identification	9		Not used		
* Phy	* Physically isolated						

180 870 USE 101 10 V.2

Using the Modbus Plus Ports

At a Glance

Purpose

Modbus Plus ports are available with:

- 172 PNN 210 22 Option Adapter (Single Port)
- 172 PNN 260 22 Option Adapter (Redundant Ports)

This section gives an overview of Modbus Plus networks for Momentum components.

Note: The Modbus Plus Network Planning and Installation Manual (890 USE 100 00) provides details for the complete design and installation of a Modbus Plus cable system.

In This Chapter

This chapter contains the following topics:

For This Topic	See Page
Modbus Plus Features for Momentum	182
Two Types of Modbus Plus Networks	183
Standard Cabling Schemes	185
Cluster Mode Cabling Schemes	187
Cable Accessories for Modbus Plus Networks	191
Pinouts and Wiring Illustrations for Modbus Plus Networks	194
Modbus Plus Addresses	198
Peer Cop	200

Modbus Plus Features for Momentum

Introduction

When a Modbus Plus network is constructed entirely of Momentum components, it may take advantage of two new features:

- cluster mode, which allows small groups of devices to be linked by short lengths of cable;
- supporting up to 64 nodes on a *single* section of cable.

Cluster Mode

A cluster may consist of up to eight Momentum devices. A network may contain up to eight clusters.

The cable between devices in a cluster may be 10 in to 3 ft. The cable between clusters or between a cluster and the trunk must be at least 10 ft.

The maximum length of the network continues to be 1500 ft. The maximum number of devices in a network continues to be 64.

Note: Only Momentum devices are allowed in a cluster.

64 Nodes

When a Modbus Plus network consists entirely of Momentum devices, then a single section of cable may support 64 nodes instead of the standard 32 nodes.

Example: If a single SA85 is added to a network of Momentum modules, the network is no longer Momentum only, but a mixture of devices. Each cable section must be limited to 32 nodes. Cable sections must be connected by a repeater.

Two Types of Modbus Plus Networks

I/O Networks and Supervisory Networks

In a distributed control environment, Modbus Plus can be used in either of two ways:

- As an I/O network
- As a supervisory network

CAUTION

CRITICAL I/O MUST BE SERVICED IN AN I/O NETWORK

Design your Modbus Plus architecture to meet the needs of your network. Modbus Plus can offer deterministic I/O servicing or non-deterministic supervisory servicing of programming, user interface, and third party ModConnect devices. Do not use a supervisory network to service critical I/O.

Failure to observe this precaution can result in injury or equipment damage.

I/O Networks

In a deterministic I/O network architecture, one CPU services up to 63 Momentum I/O modules, Terminal I/O modules or other Modbus Plus devices.

Note: When a programming panel or other human-machine interface (HMI)

device is used as part of a deterministic Modbus Plus I/O network, it should be connected via the RS232 port on the CPU, not as a Modbus Plus node.

Supervisory Networks

In a supervisory architecture, several intelligent processing devices share system data with each other. Many kinds of devices may be part of the network. You should be aware of each device's requirement for access to the network and of the impact each device will have on the timing of your network communication, especially when servicing non-critical (and non-deterministic) I/O.

Continued on next page

Two Types of Modbus Plus Networks, Continued

What if I Need Both Types?

If your system requires both supervisory and I/O handling architectures, one solution is to use a Processor Adapter with I/OBus capabilities as the I/O network and either a 172 PNN 210 22 or 172 PNN 260 22 Option Adapter with Modbus Plus for the supervisory network.

Standard Cabling Schemes

Introduction

In a standard Modbus Plus cabling scheme, each peer device connects via a drop cable to a tap along a trunk cable.

Length

The maximum length of cable from one end of the network to the other is 1500 ft. (450 m) if no repeaters are used.

You can use up to three Modicon RR85 Repeaters to extend the cable to up to 6000 ft. (1800 m). Each repeater allows you to extend the cable 1500 ft. (450 m).

Description	Part Number
Modicon RR85 Repeater	NW-RR85-000

Distance Between Nodes

Nodes must be separated by at least 10 ft. of cable. This requirement is more than satisfied by standard drop cables:

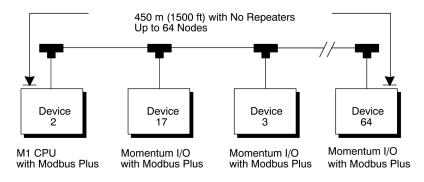
Description	Part Number
Modbus Plus Drop Cable, 2.4 m / 8 ft.	990 NAD 211 10
Modbus Plus Drop Cable 6 m / 20 ft.	990 NAD 211 30

Number of Devices

The maximum number of devices in a network is 64:

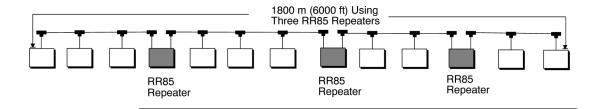
- If you use only Momentum products, you may use up to 64 devices on one cable section without a repeater.
- If you use a mixture of devices, you may use up to 32 devices on one cable section. You must use a repeater to connect to another cable section. You may use up to three repeaters and four cable sections in all.

Termination


You must terminate both ends of the network. If your network consists of two or more sections separated by a repeater, each section must be terminated at both ends.

Continued on next page

Standard Cabling Schemes, Continued


Momentum Network

This illustration depicts a Modbus Plus network constructed with a Momentum CPU and Momentum I/O. One cable segment supports all 64 nodes. No repeater is used.

Mixture of Devices

This illustration depicts a mixture of Momentum and other Modbus Plus devices. Three repeaters are used to connect four cable sections.

Cluster Mode Cabling Schemes

Introduction

In cluster mode, Momentum I/O devices may be placed in small groups, connected by much shorter lengths of cable than in standard Modbus Plus cabling schemes.

You may use clusters and standard single nodes in the same network.

Length of Network

The maximum length of cable from one end of the network to the other is 1500 ft. (450 m) if no repeaters are used.

You can use up to three Modicon RR85 Repeaters to extend the cable to up to 6000 ft. (1800 m). Each repeater allows you to extend the cable 1500 ft. (450 m).

Description	Part Number
Modicon RR85 Repeater	NW-RR85-000

Number of Devices in Network

The maximum number of devices in a network is 64:

- If you use only Momentum products, you may use up to 64 devices on one cable segment without a repeater.
- If you use a mixture of devices, you may use up to 32 devices on one cable section. You must use a repeater to connect to another cable section. You may use up to three repeaters and four cable sections in all.

Clusters in a Network

The maximum number of clusters in a network is 8. The maximum number of devices in a cluster is 8. Only Momentum devices may be used in the cluster.

Continued on next page

Cluster Mode Cabling Schemes, Continued

Termination

You must terminate both ends of the network with special terminating resistors.

Description	Part Number
Modbus Plus or Modbus RS485 Terminating RJ45 Resistor Plugs (pack of 2)	170 XTS 021 00

Cable Between Nodes in a Cluster

The minimum length of cable between nodes in a cluster is 10 in (.25 m).

Description	Part Number
Modbus Plus / Modbus RS485 Short Interconnect Cable	170 MCI 020 10
Modbus Plus or Modbus RS485 3 ft. Interconnect Cable	170 MCI 020 36

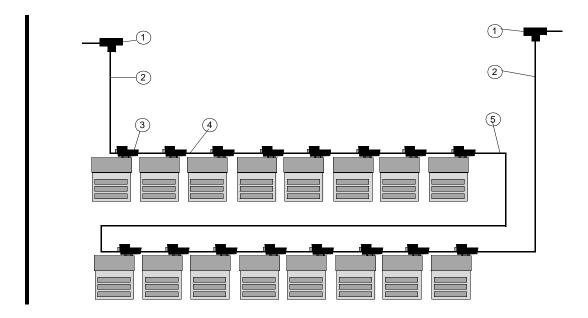
Cable Between Clusters

The minimum length of cable between clusters is 10 ft. (3 m).

Description	Part Number
Modbus Plus or Modbus RS485 10 ft. Interconnect Cable	170 MCI 021 80
Modbus Plus or Modbus RS485 30 ft. Interconnect Cable	170 MCI 020 80

Drop Cables

Drop cables connecting a cluster to the trunk cable must be at least 10 ft. (3 m) long. A 10 ft. drop cable is available. A 30 ft. drop cable may be fabricated by removing one RJ45 connector from a 30 ft. interconnect cable. Connect the open end of the cable to a Modbus Plus tap, using the wiring illustrations on page 194.


Description	Part Number
Modbus Plus 10 ft. Drop Cable	170 MCI 021 20
Modbus Plus or Modbus RS485 30 ft. Interconnect Cable	170 MCI 020 80

Continued on next page

Cluster Mode Cabling Schemes, Continued

Cluster Scheme #1

In this example, two clusters of Momentum I/O modules are connected in sequence. The trunk cable continues from the clusters in both directions.


Label	Description	Part Number
1	Modbus Plus Tap	990 NAD 230 00
2	Modbus Plus 10 ft. Drop Cable	170 MCI 021 20
3	Modbus Plus Connector "T" (DB9 base)	170 XTS 020 00
4	Modbus Plus / Modbus RS485 Short Interconnect Cable OR Modbus Plus / Modbus RS485 3 ft. Interconnect Cable	170 MCI 020 10 170 MCI 020 36
5	Modbus Plus / Modbus RS485 30 ft. Interconnect Cable	170 MCI 020 80

Continued on next page

Cluster Mode Cabling Schemes, Continued

Cluster Scheme #2

In this example, two clusters are connected in sequence. The network ends with the second cluster.

Label	Description	Part Number
1	Modbus Plus Tap	990 NAD 230 00
2	Modbus Plus 10 ft. Drop Cable	170 MCI 021 20
3	Modbus Plus Connector "T" (DB9 base)	170 XTS 020 00
4	Modbus Plus / Modbus RS485 Short Interconnect Cable OR	170 MCI 020 10
	Modbus Plus / Modbus RS485 3 ft. Interconnect Cable	170 MCI 020 36
5	Modbus Plus / Modbus RS485 30 ft. Interconnect Cable	170 MCI 020 80
6	Terminating resistor plug	170 XTS 021 00

Cable Accessories for Modbus Plus Networks

Overview

This section describes the cables, connector and terminating device which should be used in constructing a Modbus Plus network for Momentum components.

Cable Within Clusters

Cable for connecting two Modbus Plus devices within a cluster is available from Schneider Automation in two lengths. These cables have a black boot.

Description	Part Number	Illustration
Modbus Plus or Modbus RS485 Short Interconnect Cable (10")	170 MCI 020 10	
Modbus Plus or Modbus RS485 3 ft. Interconnect Cable	170 MCI 020 36	

Continued on next page

Cable Accessories for Modbus Plus Networks, Continued

Cable Between Clusters

Cable for connecting two Modbus Plus clusters, or for fabricating drop cables to and from clusters, is available from Schneider Automation in two lengths. These cables have a black boot.

Description	Part Number	Illustration
Modbus Plus 10 ft. Drop Cable	170 MCI 021 20	
Modbus Plus or Modbus RS485 10 ft. Interconnect Cable	170 MCI 021 80	
Modbus Plus or Modbus RS485 30 ft. Interconnect Cable	170 MCI 020 80	

Continued on next page

Cable Accessories for Modbus Plus Networks, Continued

DB9 Connector "T"

This connector is used in cluster mode with a Modbus Plus Communication Adapter or with the 172 PNN 210 22 or 172 PNN 260 22 Modbus Plus Option Adapters.

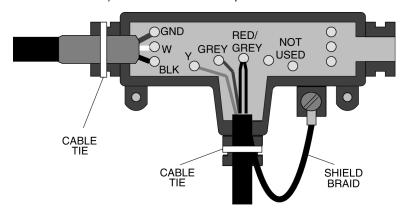
Note: Only one connector "T" may be used with each adapter, making it impossible to use redundant cabling in cluster mode.

Description	Part Number	Illustration
Modbus Plus Connector "T" (DB9 base)	170 XTS 020 00	SCHNEIDER AUTOMATION INC.

Terminating Resistor Plugs

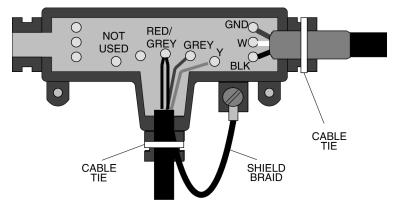
Terminating resistor plugs are used with the connector "T" at the last device in a cluster when it is also the last device in the Modbus Plus network. The plug is red.

Description	Part Number	Illustration
Modbus Plus or Modbus RS485 Terminating RJ45 Resistor Plugs (pack of 2)	170 XTS 021 00	


Pinouts and Wiring Illustrations for Modbus Plus Networks

Overview

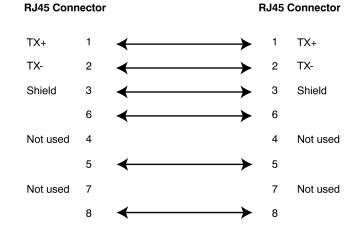
This section contains pinouts and wiring illustrations for constructing an Modbus Plus network for Momentum components.


Drop Cable from Tap to Cluster

The following illustration shows wiring an interconnect cable (with one RJ45 connector removed) from a Modbus Plus tap to a cluster:

Drop Cable from Cluster to Tap

The following illustration shows wiring an interconnect cable (with one RJ45 connector removed) from a cluster to a Modbus Plus tap:



Continued on next page

Pinouts and Wiring Illustrations for Modbus Plus Networks, Continued

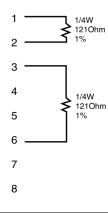
Interconnect Cables

The following illustration shows the pinout for the 170 MCI 02x xx Modbus Plus or Modbus RS485 Interconnect Cables (10 in, 3 ft., 10 ft. and 30 ft.:

Continued on next page

Pinouts and Wiring Illustrations for Modbus Plus Networks, Continued

Modbus Plus Connector "T" (DB9 Base) The following illustration shows the pinout for the Modbus Plus Connector "T" (DB9 base):


Continued on next page

Pinouts and Wiring Illustrations for Modbus Plus Networks, Continued

Terminating Resistor Plugs

The following illustration shows the pinout for the Modbus Plus or Modbus RS485 Terminating RJ45 Resistor Plugs:

RJ45 Connector

Modbus Plus Addresses

Introduction

Modbus Plus devices function as peers on a logical ring. Each device accesses the network by acquiring a token frame that is passed in a rotating address sequence.

Each device on a Modbus Plus network needs a unique address in the range 1...64. The device address determines the logical order in which the network token will be passed from device to device.

CAUTION

COMMUNICATION ERRORS MAY RESULT

Do not install a Modbus Plus Option Adapter before you have set its Modbus Plus address for your application. See your network administrator to get the Modbus Plus node address for this module.

Failure to observe this precaution can result in injury or equipment damage.

Address Sequence

The assignment of addresses does not have to map to the physical layout of the network—e.g., device 17 is placed physically before device 3. This is important to understand because the network's token rotation is defined by device addresses-e.g., device 2 will pass the token to device 3, device 3 to device 4, etc.

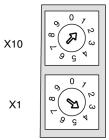
Illegal Addresses

If you set the node address to 00 or to a value greater than 64:

- The COM LED will go ON steadily to indicate an illegal address assignment.
- The Run LED will flash 4 times.
- The Processor Adapter will not run until you set a valid, unused address on the Option Adapter and cycle power.

Continued on next page

Modbus Plus Addresses, Continued


Setting Modbus Plus Addresses

Two rotary switches on the Momentum Option Adapter are used to set the network address. The top switch (X10) sets the upper digit (tens) of the address. The lower switch (X1) sets the lower digit (ones) of the address.

Node Address	X10 Setting	X1 Setting
1 9	0	1 9
10 19	1	0 9
20 29	2	0 9
30 39	3	0 9
40 49	4	0 9
50 59	5	0 9
60 64	6	0 4

Example of an Address

The illustration below shows a sample setting for address 14:

Peer Cop

What Is Peer Cop?

A Momentum M1 Processor Adapter has the ability to define point-to-point transactions between itself and other devices on the Modbus Plus network. The tool for defining these transactions is a panel software configuration utility known as Peer Cop.

Configuring Network Devices with Peer Cop

Each device on the network can be configured to send and receive Peer Cop data.

- In a Modbus Plus I/O networking architecture, the CPU on the network can be used to configure the entire Peer Cop database.
- In a Modbus Plus supervisory architecture, each CPU on the network needs to be configured to handle the Peer Cop data that it will send or receive.

Four Types of Data Transactions

Peer Cop allows you to define four types of data transactions:

Peer Cop Data Transaction	Function	Maximum Data Length/Token Frame	
Global Output	Data to be broadcast globally to all devices on the network	32 words	
Specific Output	Data to be transmitted to	32 words/device	
	individual devices	500 words to all specific devices	
Global Input	Data messages received by all devices on the network	32 words	
Specific Input	Data received by a specific	32 words/device	
device from a specific device		500 words from all specific devices	

Sources and Destinations

Peer Cop uses defined data references (like PLC discretes or registers) as sources and destinations. For example, a block of registers can constitute the data source for the transmitting device, and that same or another block of registers can be the data destination for the receiving device.

Continued on next page

Peer Cop, Continued

How Peer Cop Data Is Sent and Received

The reception of Peer Cop source data and the delivery of Peer Cop destination data are handled by the token rotation. The token is always passed to the next logical device in the network's address sequence.

Because all the Modbus Plus devices monitor the network, any one device can extract the data addressed specifically to it. Likewise, all devices can extract global data. Peer Cop then enables the Modbus Plus device currently holding the token to direct specific data to individual devices and broadcast global data to all devices on the network as part of its token frame.

Effect of Using Peer Cop

The net effect of using Peer Cop for data transactions is that each sending device can specify unique references as data sources and each receiving device can specify the same or different references as data destinations. When devices receive global data, each device can index to specific locations in the incoming data and extract specific lengths of data from those points. Data transactions therefore happen quickly as part of the token rotation and can be directly mapped between data references in the sending and receiving devices.

Modsoft

At a Glance

Purpose

This part describes how to configure an M1 CPU, how to I/O map an I/OBus network, how to configure a Modbus Plus network with Peer Cop and how to save to Flash using Modsoft 2.6.

In This Part

This part contains the following chapters:

For Information On	See Chapter	See Page
Configuring an M1 CPU with Modsoft	8	205
I/O Mapping an I/OBus Network with Modsoft	9	247
Configuring a Modbus Plus Network in Modsoft with Peer Cop	10	257
Saving to Flash in Modsoft	11	303

Configuring an M1 CPU with Modsoft

8

At a Glance

Introduction

This chapter explains how to configure a CPU using Modsoft 2.6. The procedures and examples described here can be applied with Modsoft Lite 2.6 as well.

Note: Modsoft 2.6 does not support the 171 CCC 960 20, 171 CCC 960 30, the 171 CCC 980 20 or 171 CCC 980 30 Processor Adapters. These Processor Adapters must be configured with Concept.

In This Chapter

The chapter contains the following topics.

For This Topic	See Section	On Page
Configuring the Processor Adapter	1	206
Configuring Option Adapter Features	2	223
Modifying Communication Port Parameters	3	232
I/O Mapping the Local I/O Points	4	242

Section 8.1 Configuring the Processor Adapter

Overview

Purpose

This section describes how to configure a Momentum M1 Processor Adapter using Modsoft 2.6.

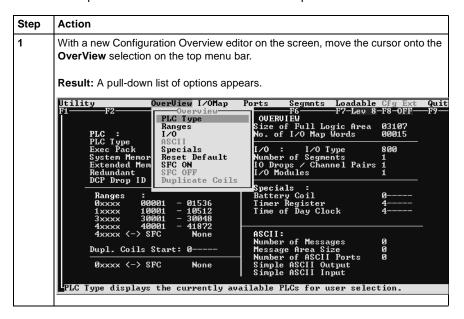
In This Section

This section contains the following topics:

For This Topic	See Page
Selecting an M1 Processor Adapter	207
Specifying an M1 Processor Type	210
Default Configuration Parameters	212
Changing the Range of Discrete and Register References	215
Changing the Size of Your Application Logic Space	217
Changing the Number of Segments	218
Changing the Size of the I/O Map	220
Establishing Configuration Extension Memory	222

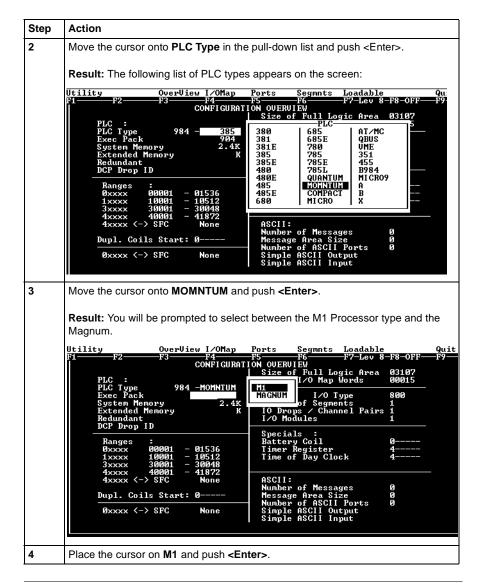
Selecting an M1 Processor Adapter

Introduction


This section describes how to select an M1 Processor Adapter with Modsoft 2.6, starting from the Configuration Overview editor.

Note: For a full description of how to use Modsoft 2.6, refer to *Modicon Modsoft Programmer Software (V.2.6) User Guide* (890 USE 115 00).

Procedure


Follow the steps below to select an M1 Processor Adapter.

Continued on next page

Selecting an M1 Processor Adapter, Continued

Procedure, Continued

Continued on next page

Selecting an M1 Processor Adapter, Continued

Next Step

You are now ready to specify the type of M1 Momentum Processor Adapter for configuration.

Specifying an M1 Processor Type

Introduction

Once you have selected an M1 Processor Adapter in Modsoft 2.6, you must choose between three types of M1 processors.

- A 2.4K machine
- A 12.0K machine
- An 18.0K machine

These numbers refer to the amount of user memory in the CPU.

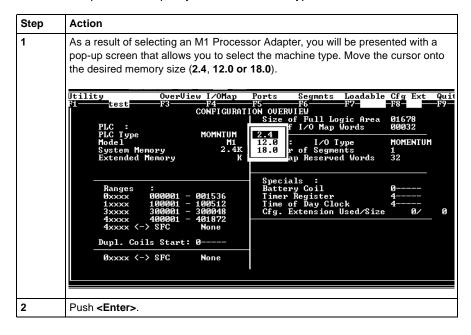
Which Type Should I Choose?

Use the table below to determine which processor type to choose:

Processor Adapter	Туре
171 CCS 700 00	2.4
171 CCS 700 10	2.4
171 CCS 760 00	12.0
171 CCC 760 10	18.0
171 CCS 780 00	2.4
171 CCC 780 10	18.0

If You Choose the Wrong Type

If you choose the wrong machine type for the CPU you are configuring, you can run into the following kinds of problems:


- If you specify too much memory, Modsoft allows you to create a configuration and logic program that could be too big for the CPU you are using. When you try to transfer your program to the CPU, your transfer will fail.
- If you specify too little memory, Modsoft restricts the size of your configuration and logic program, and may not allow you to I/O Map an I/OBus network (as described in I/O Mapping an I/OBus Network with Modsoft on page 247).

Continued on next page

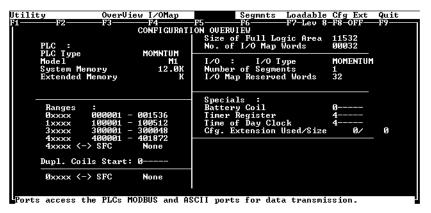
Specifying an M1 Processor Type, Continued

Procedure

Follow the steps below to specify an M1 Processor Type.

Default Configuration Parameters

Overview

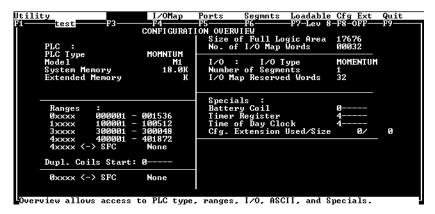

This section describes the default configuration parameters.

Defaults for a 2.4K Adapter

This sample Configuration Overview screen shows the default configuration parameters.

Defaults for a 12.0K Adapter

This sample Configuration Overview screen shows the default configuration parameters:



Continued on next page

Default Configuration Parameters, Continued

Defaults for an 18.0 Adapter

This sample Configuration Overview screen shows the default configuration parameters:

Continued on next page

Default Configuration Parameters, Continued

Default Values

Here are the default parameters:

Parameter	2.4K Adapter	12.0K Adapter	18.0K Adapter
Coils in state RAM	1536 (0 <i>x</i>)	1536 (0 <i>x</i>)	1536 (0 <i>x</i>)
Discrete inputs in state RAM	512 (1 <i>x</i>)	512 (1 <i>x</i>)	512 (1 <i>x</i>)
Input registers in state RAM	48 (3 <i>x</i>)	48 (3 <i>x</i>)	48 (3 <i>x</i>)
Output registers in state RAM	1872 (4 <i>x</i>)	1872 (4 <i>x</i>)	1872 (4 <i>x</i>)
Bytes of user memory space available for application logic	1678	13100	17676
Words of user memory space for the I/O Map	32	512	32
I/O logic segments	One, which will allow you to I/O Map the I/O points on the local base unit	One, which will allow you to I/O Map the I/O points on the local base unit	One, which will allow you to I/O Map the I/O points on the local base unit
Memory allocated for configuration extension	None	None	None

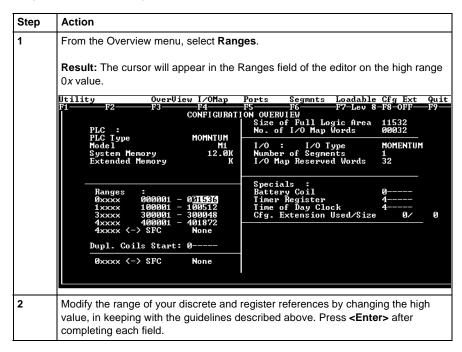
Changing the Range of Discrete and Register References

Introduction

This section provides guidelines and a procedure for changing the range of discrete (0x and 1x) and register (3x and 4x) references.

Guidelines

When you change the range of discrete and register references, follow these guidelines:


- Adjust the range of discretes in increments of 16. Sixteen discretes consume one word.
- Adjust the range of registers in increments of 1. Each register consumes one word.
- The total number of register and discrete references cannot exceed 3k words.
- A minimum configuration of 16 0x discretes, 16 1x discretes, one 3x register, and one 4x register is required.

Continued on next page

Changing the Range of Discrete and Register References, Continued

Procedure

From the Configuration Overview screen, follow the steps below to change the range of discrete and register references:

Changing the Size of Your Application Logic Space

Introduction

The number shown in the Size of Full Logic Area field in the Configuration Overview screen indicates the total amount of memory available for your application logic. You cannot directly enter this field to modify the value. You can, however, change the amount of memory available by manipulating the size of other fields in the Configuration Overview screen.

Example 1

If you reduce the size of the I/O Map area, the number in the Full Logic Area field automatically increases. Say you are using a 12.0K machine and you change the size of the I/O Map from the default value of 512 to 256–a decrease of 256 words. The default Size of Full Logic Area will automatically increase from 1198 to 1454.

Example 2

Similarly, if you allocate some number of words to configuration extension memory (to support Peer Cop), you will reduce the Size of Full Logic Area by the number of words allocated the configuration extension memory.

Changing the Number of Segments

Introduction

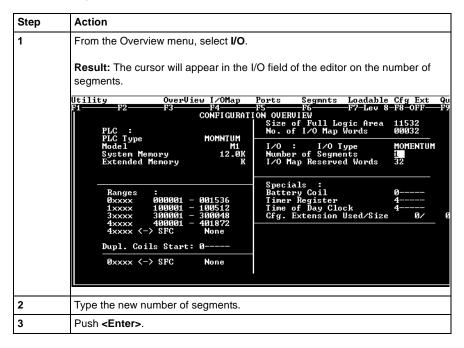
The number of segments specified in the Configuration Overview screen determines the number of I/O Map drops that you will be able to set up for your CPU.

The number of segments you will need depends on whether your Processor Adapter will support an I/OBus network.

For I/OBus Networks

You must change the number of segments to 2 if you want to create an I/O Map to support an I/OBus network.

For All Other Cases


The default number of segments (1) is correct. You only need one drop because the only points to be I/O Mapped are those on the local base.

Continued on next page

Changing the Number of Segments, Continued

Procedure

From the Configuration Overview screen, follow the steps below to change the number of segments:

Changing the Size of the I/O Map

Introduction

The default size of the I/O Map and your options vary, depending on whether or not your Processor Adapter supports an I/OBus network.

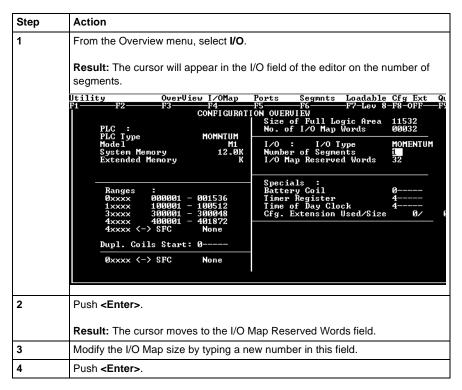
Processors For I/O Bus Networks

With I/OBus, an I/O Map table is used to define the number, location, and type of I/O devices on the network bus.

Default	512 words
Minimum	17 words

All Other Processors

Other Processor Adapters only use the I/O Map for local I/O. The default of 32 words is sufficient for any Momentum I/O base. Depending on the requirements of your I/O base, you may be able to reduce the number of words to the minimum, 17, in order to increase the size of the full logic area.


Default	32 words
Minimum	17 words

Continued on next page

Changing the Size of the I/O Map, Continued

Procedure

From the Configuration Overview screen, follow the steps below to change the size of the $\mbox{I/O}$ Map:

Establishing Configuration Extension Memory

Introduction

By default, no memory space is allocated for configuration extension memory. If you want to use the Peer Cop capability to handle Modbus Plus communications, you need to define some configuration extension memory to enable Peer Cop.

Extension memory is specified as a number of 16-bit words. That number is entered in the <code>ExtSize</code> entry of the Configuration editor. Once an adequate number of words has been specified here, **Peer Cop** will be enabled in the <code>CfgExt</code> pull-down list.

How Much Memory?

The minimum Peer Cop ExtSize memory requirement is 20 words; the maximum is 1366 words.

Follow these guidelines for estimating the amount of extension memory you will need for your Peer Cop database:

For	Add	Up to a maximum of
Overhead	9 words	
Global output	5 words	
Global input	number of words= number of devices x (1 + 2 x number of device subentries)	1088 words
Specific output	2 words for every device entry in Peer Cop	128 words
Specific input	2 words for every device entry in Peer Cop	128 words

Procedure

From the Configuration Overview screen, follow the steps below to establish configuration extension memory:

Step	Action			
1	From the Cfg Ext menu, select Cfg. Extension Size.			
	Result: The cursor will appear in the Cfg. Extension Used/Size entry.			
2	Type the desired size.			
3	Push <enter></enter> .			

Section 8.2 Configuring Option Adapter Features

Overview

Purpose

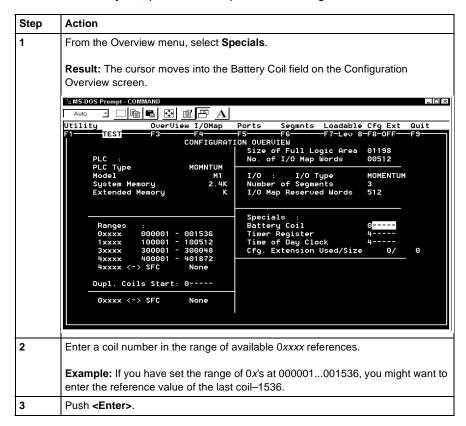
This section describes how to implement the battery backup and time-of-day (TOD) clock features of the Momentum Option Adapters.

In This Section

This section contains the following topics:

For This Topic	See Page
Reserving and Monitoring a Battery Coil	224
Setting up the Time-of-Day Clock	226
Setting the Time	228
Reading the Time-of-Day Clock	231

Reserving and Monitoring a Battery Coil


Introduction

Since the Option Adapter does not have an LED to indicate when the battery is low, we recommend that you reserve a 0x reference to monitor the health of the battery.

This section describes how to reserve and monitor a battery coil, using the Configuration Overview editor in Modsoft 2.6.

Reserving a Battery Coil

To reserve a battery coil, perform the steps in the following table.

Continued on next page

Reserving and Monitoring a Battery Coil, Continued

Monitoring the Battery Coil

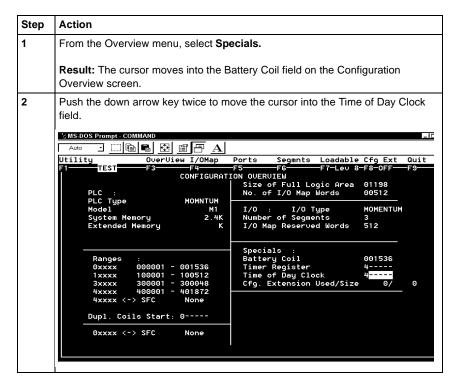
Monitor the battery coil in ladder logic or tie it to a lamp or alarm that will indicate when the battery is low.

Interpreting the Battery Coil

The battery coil will always read either 0 or 1.

- A coil state of 0 indicates that the battery is healthy.
- A coil state of 1 indicates that the battery should be changed.

Setting up the Time-of-Day Clock


Overview

Each Option Adapter has a time-of-day clock. To use this feature, you must reserve a block of eight 4x registers.

This section describes how to reserve those registers, using Modsoft 2.6.

Reserving Registers for the TOD Clock

To reserve registers for the time-of-day clock, perform the steps in the following table.

Continued on next page

Setting up the Time-of-Day Clock, Continued

Reserving Registers for the TOD Clock, Continued

Step	Action					
3	Enter a number (the first in a series of eight) in the range of available 4xxxx references.					
	Example: If you want registers 400 enter 100.	01004001	07 reserved	d for the TOD clock,		
4	Push <enter></enter> .					
	Result: The reference value you specified and the seven that follow it are now reserved for TOD clock data.					
	Specials :					
	Battery Coil 001536					
Timer Register 4						
	Time of Day Clock 400100 - 400107 Cfg. Extension Used/Size 0/ 0					

Next Step

Setting the time.

Setting the Time

Overview

Once you have reserved a block of registers for the time-of-day clock, you have to set the correct time. Modsoft offers two ways to do this:

- using the Set Hardware Clock dialogue
- setting the register bits individually

Note: The time-of-day clock complies with guidelines for the year 2000.

Option 1

You must be online or in combined mode to access the Set Hardware Clock dialogue.

Step	Action				
1	From the PlcOps menu, select Set Hardware Clock .				
	Result: The Set Hardware Clock dialogue appears.				
2	You may set the time directly or copy the current time setting from your programming panel.				
	To set the time directly, proceed to step 3.				
	To copy the setting from your programming panel, proceed to step 4.				
3	The time setting for your programming panel is displayed on the left. The controller time setting is displayed on the right. The time is expressed as hh:mm:ss. The date is expressed as mm-dd-yy.				
	To modify the settings, type a new value in the date or time field for the controller.				
	To confirm the default settings or your modified settings, press < Enter>.				
4	To copy the current time setting from your programming panel, type \mathbf{Y} in response to the question: Write PANEL clock data to PLC? (Y/N). Then press <enter></enter> .				

Continued on next page

Setting the Time, Continued

Option 2

Go online and set the register values individually, using the following guidelines and procedure for setting the status bits and setting the time bits. The CPU must be running while you are setting the bits.

Setting the Status Bits

The control register (4x) uses its four most significant bits to report status:

Con	Control Register														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 = error												
		1 = <i>F</i>	1 = All clock values have been set												
	1 = Clock values are being read														
1 = 0	1 = Clock values are being set														

Setting the Time Bits

The following table shows how the registers handle time-of-day clock data, where register 4x is the first register in the block reserved for the clock:

Register	Data Content
4 <i>x</i>	The control register
4x + 1	Day of the week (Sunday = 1, Monday = 2, etc.)
4x + 2	Month of the year (Jan = 1, Feb = 2, etc.)
4x + 3	Day of the month (131)
4x + 4	Year (0099)
4x + 5	Hour in military time (023)
4x + 6	Minute (059)
4x + 7	Second (059)

Continued on next page

Setting the Time, Continued

Procedure

Follow the steps in the table below to set the register values for the time-of-day clock:

Step	Action				
1	Set the correct date and time in registers $4x + 1$ through $4x + 7$.				
	Example: To set the clock for Thursday, April 9, 1998 at 4:17:00, set the following values in the registers: • 4x+1 5				
	• 4x + 2 4				
	• 4x+3 9				
	• 4 <i>x</i> + 4 98				
	• 4x + 5 4				
	• 4 <i>x</i> + 6 17				
	• 4 <i>x</i> + 7 00				
2	Load the value 8000H in register 4 <i>x</i> to write the data to the clock.				

Reading the Time-of-Day Clock

Overview

This section tells how to read the time-of-day clock and uses an example to describe how to interpret the time-of-day clock registers.

Reading the Clock

Set the value **4000H** in register 4x to read data from the clock.

Example

If you reserved registers 400100...400107 as your TOD clock registers, set the time bits, and then read the clock at 9:25:30 on Thursday, July 16, 1998, the registers would display the following values:

Register	Reading	Indication
400100	01100000000000000	All clock values have been set; clock values are being read
400101	5 (decimal)	Thursday
400102	7 (decimal)	July
400103	16 (decimal)	16
400104	98 (decimal)	1998
400105	9 (decimal)	9 a.m.
40010 6	25 (decimal)	25 minutes
40010 7	30 (decimal)	30 seconds

Section 8.3 Modifying Communication Port Parameters

Overview

Purpose

The communication parameters on the Modbus ports are set at the factory. This section describes how to access the Port editor and how to edit the default parameters.

In This Section

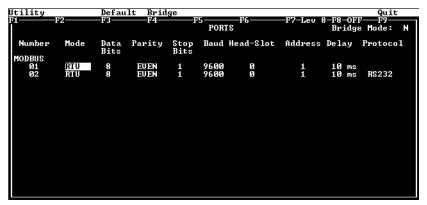
This section contains the following topics.

For This Topic	See Page
Accessing the Port Editor Screen	233
Parameters Which Should Not Be Changed	234
Changing the Mode and Data Bits	235
Changing Parity	237
Changing the Baud Rate	238
Changing the Modbus Address	239
Changing the Delay	240
Changing the Protocol on Modbus Port 2	241

Accessing the Port Editor Screen

Introduction

Modbus port parameters can be modified using the Port editor in Modsoft 2.6. This screen is accessed from the Configuration Overview editor.


How To Get There

To access the Port editor from the Configuration Overview editor, move the cursor onto the Ports selection on the top menu bar, then push <Enter>.

Port Editor Showing Default Values

If you have not previously modified any port parameters, the following screen will appear. The screen shows the default parameters for two Modbus ports, 01 and 02.

If you have previously modified any communication port parameters, the new values will appear in the screen.

Two Sets of Parameters

This screen will always show two sets of port parameters, even if your particular CPU configuration supports only Modbus Port 1. In that case, ignore any parameter values shown for Port 2.

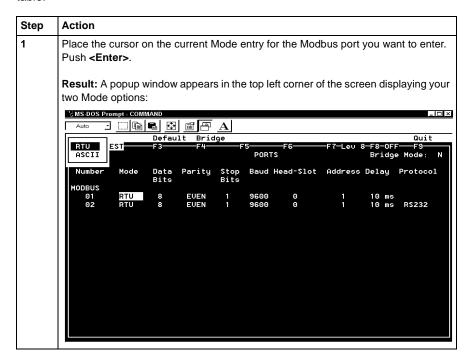
Parameters Which Should Not Be Changed

Overview	Two parameters on the Port editor screen should not be changed. These are the stop bit and head-slot parameters.
Stop Bit	Each port operates only with 1 stop bit. While Modsoft will allow you to select 2 stop bits, this setting is invalid.
Head-Slot	The Head-Slot parameter is set to 0 and should be left at this value for the Momentum M1 CPUs.

Changing the Mode and Data Bits

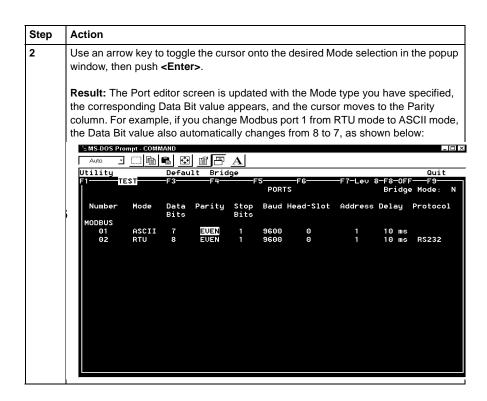
Introduction

From the Port editor screen, each port can be configured to operate in one of two possible modes – RTU or ASCII.


- If the mode is RTU, the number of data bits is always 8.
- If the mode is ASCII, the number of data bits is always 7.

Note: The factory-set default is 8-bit RTU.

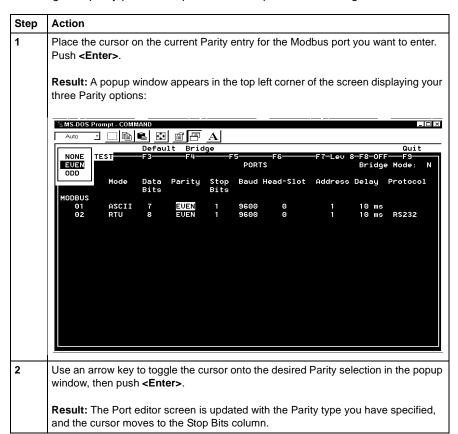
Procedure


To change the mode and data bit parameters, perform the steps in the following table.

Continued on next page

Changing the Mode and Data Bits, Continued

Procedure, Continued


Changing Parity

Introduction

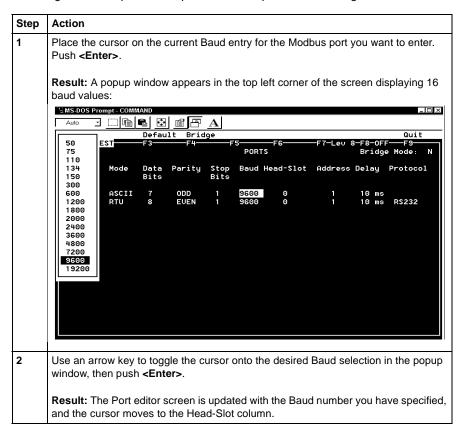
From the Port editor screen, a port can be configured for even, odd, or no parity checking. The factory-set default is EVEN parity.

Procedure

To change the parity parameter, perform the steps in the following table.

Changing the Baud Rate

Overview


Each port can be configured for a baud in the range 50...19,200. Sixteen valid bauds are user-selectable. The factory-set default is 9600 baud.

Note: If you use a baud rate lower than 4800, you should adjust the default delay parameter. See *Changing the Delay* on page 240.

Procedure

To change the baud parameter, perform the steps in the following table.

Changing the Modbus Address

Overview

Each port can be assigned a Modbus network address in the range 1...247. That address must be unique with respect to all other device addresses on the same Modbus networks.

Since Modbus Port 1 and Modbus Port 2 are always on different Modbus networks, they can both be assigned the same address value without conflict. The factory-set default for both ports is address 1.

Procedure

From the Port editor screen, perform the steps in the following table to change the Modbus Address:

Step	Action	
1	Place the cursor on the current Address entry for the Modbus port.	
2	Type a number in the range 1247. Push <enter></enter> .	
	Result: The Port editor screen is updated with the Address number you have typed, and the cursor moves to the Delay column.	

Changing the Delay

Overview

The default value for the delay parameter is 10 ms. This value is appropriate for most Momentum applications.

However, if you use baud rates lower than 4800, you should adjust the delay timing.

Delay Timing

If you use baud rates lower than 4800, adjust the delay timing as indicated in the following table:

Baud Rate	Delay (in Msec)
2400	20
1200	30
600	50
300	100

Valid Delay Values

The delay must always be a value between 10 and 200 ms, expressed in 10 ms increments.

Procedure

From the Port editor screen, perform the steps in the following table to change the Delay parameter:

Step	Action
1	Place the cursor on the current Delay entry for the Modbus port.
2	Type a new value in the range 10 200 ms, using 10 ms increments. Push <enter></enter> .
	Result: The Port editor screen is updated with the Delay you have specified

Changing the Protocol on Modbus Port 2

Overview

If your Momentum M1 CPU is using the Modbus Port 2 provided by the 172 JNN 210 32 Option Adapter, you can specify whether it will use the RS232 or RS485 protocol. The factory-set default for Modbus Port 2 is RS232.

If you are using the Modbus Port 2 provided on the 171 CCS 780 00 or 171 CCC 780 10 Processor Adapter, the port is hardwired as a dedicated RS485 protocol. However, you must change the default setting on the Port editor screen from RS232 to RS485, or the port will not function.

Procedure

From the Port editor screen, perform the steps in the following table to change the Protocol on Modbus Port 2.

Step	Action
1	Place the cursor on the current Protocol entry for Modbus port 2. Push <enter></enter> .
	Result: A popup window appears in the top left corner of the screen displaying the two protocol options:
	Default Bridge Quit
	RS232 RS485 F3 F4 F5 F6 F7-Lev 8-F8-OFF F9 PORTS Bridge Mode: N
	Number Mode Data Parity Stop Baud Head-Slot Address Delay Protocol Bits Bits MODBUS
	01 ASCII 7 ODD 1 4800 0 247 10 ms 02 RTU 8 EUEN 1 9600 0 1 10 ms RS232
2	
	Use an arrow key to toggle the cursor onto the desired protocol selection in the popup window, then push <enter></enter> .
	Result: The Port editor screen is updated with the protocol you have specified.

Section 8.4 I/O Mapping the Local I/O Points

Accessing and Editing the I/O Map

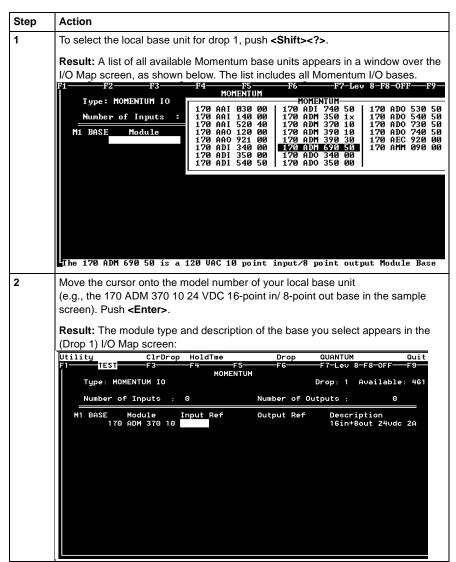
Introduction

Every M1 Processor Adapter is assembled on an I/O base. The I/O points on the base are the local I/O for that processor.

As part of the configuration process, you need to create an I/O Map for the local I/O. The I/O Map assigns the appropriate range and type of (0x, 1x, 3x, or 4x) reference values from the CPU's state RAM to the input and/or output points on the local base unit.

Accessing an I/O Map Screen

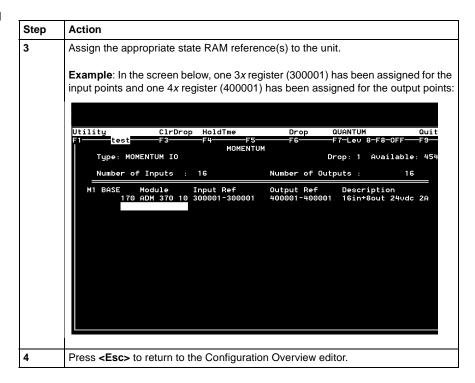
To access an I/O Map screen from the Configuration Overview screen, move the cursor onto the **I/O Map** command on the top menu and push <Enter>.


Result: An I/O Map screen appears with the cursor placed in the Module field. The label in the top left corner of the screen identifies it as Type: MOMENTUM I/O.

Continued on next page

Accessing and Editing the I/O Map, Continued

Editing the Local I/O Map


To edit the Local I/O Map, perform the steps in the following table.

Continued on next page

Accessing and Editing the I/O Map, Continued

Editing the Local I/O Map

Continued on next page

Accessing and Editing the I/O Map, Continued

Local I/O Only

This screen is always used to I/O Map the local I/O base only. No other I/O base units can be I/O Mapped on this screen.

If you attempt to select a second Momentum I/O base in this screen, the following error message appears:

I/O Bus: A Special Case

If you are I/O Mapping a Processor Adapter which supports I/OBus communication stations, you will need to go to a separate I/O Map screen for Drop 2. That process is described in I/O Mapping an I/OBus Network with Modsoft on page 247.

I/O Mapping an I/OBus Network with Modsoft

At a Glance

Purpose

This chapter describes how to I/O Map an I/OBus network using Modsoft 2.6.

Note: Modsoft 2.6 does not support the 171 CCC 960 20 Processor Adapter. This Processor Adapter must be configured with Concept.

Topics

This chapter contains the following topics:

For This Topic	See Page
Supporting an I/O Map for an I/OBus Network	248
Accessing an I/O Map Screen for an I/OBus Network	250
Editing the I/OBus I/O Map	252

Supporting an I/O Map for an I/OBus Network

Introduction

The 171 CCS 760 00 and 171 CCC 760 10 Processor Adapters have an I/OBus communication port that enables them to control and communicate with network slave I/O.

If you are using I/OBus to control network I/O, you need to write an I/O Map in your configuration. This section describes the configuration parameters required to support an I/O Map for I/OBus.

I/O Map Reserved Words

By default, 512 words are reserved for I/O Mapping. This may or may not be the appropriate memory allocation to support your I/OBus network. A rule of thumb for roughly estimating the number of words required for I/O Mapping is:

- 16 words for overhead
- 10 words/module on the network (including both the local and the network I/O)

The idea behind adjusting the memory size is to allow you to completely I/O Map your network while preserving as much user memory as possible for your application program.

Required Settings

Be sure that the following parameters are set on the Configuration Overview screen:

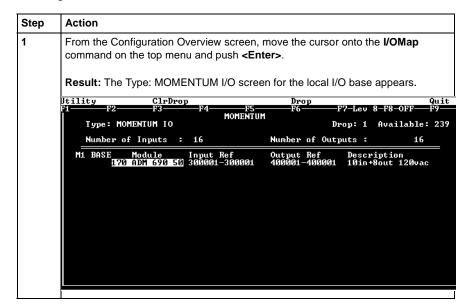
Parameter	Setting		
Processor type	 12.0 for a 171 CCS 760 00 Processor Adapter 18.0 for a 171 CCC 760 10 		
	Processor Adapter		
Number of segments	2		
I/O Map reserved words	Enough to support your I/O map		

Continued on next page

Supporting an I/O Map for an I/OBus Network, Continued

Next Step

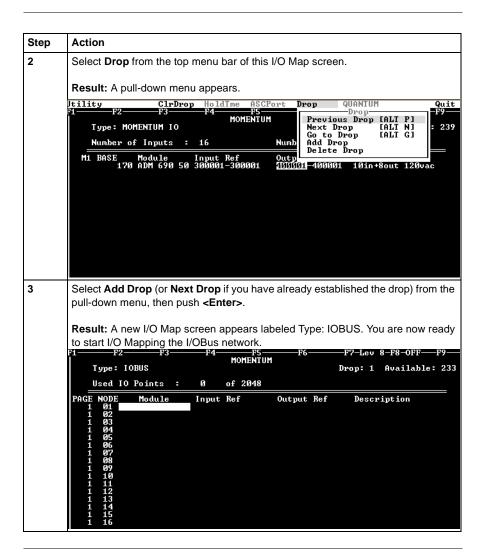
Once you are sure that your Configuration Overview parameters are set properly, you can access a second I/O Map screen for the I/OBus network.


Accessing an I/O Map Screen for an I/OBus Network

Overview

This section describes how to access an I/O Map screen for an I/OBus network.

Procedure


To access the I/O Map screen for your I/OBus network, perform the steps in the following table.

Continued on next page

Accessing an I/O Map Screen for an I/OBus Network, Continued

Procedure,Continued

Next Step

Editing the I/OBus I/O Map.

Editing the I/OBus I/O Map

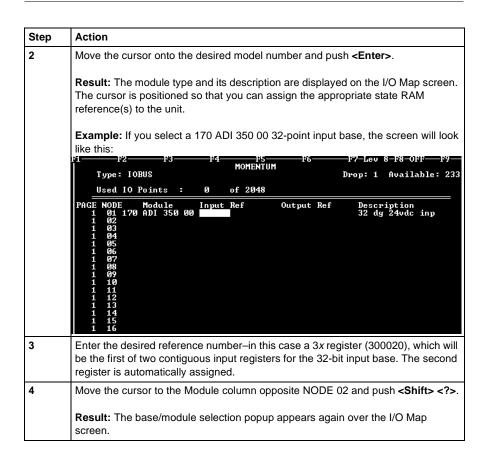
Overview

The maximum number of modules which can be I/O Mapped on the I/OBus network depends on your Processor Adapter:

Processor Adapter	Max. Modules	Max. I/O Bits
171 CCS 760 00	128	2048
171 CCC 760 10	256	4096
171 CCC 960 20	128	2049
171 CCC 960 30	256	4096

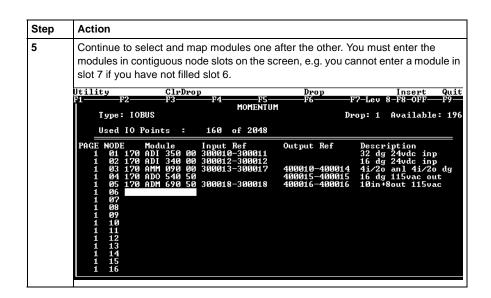
You may use up to 16 IOBUS screens to map your I/OBus network. Each page allows you to enter up to 16 I/O base and/or InterBus I/O modules.

The first column on the screen tells you which page you are on.


Procedure

To enter I/O bases or Interbus I/O modules in the I/OBus I/O Map, perform the steps in the following table.

Action				
Place the cursor in the Module column in row 1 (for NODE 01) and push the <f8> key OR <shift> <? >.</shift></f8>				
Result: A list of I/O names appears, as shown below. This list includes model numbers for the available Momentum I/O bases and Terminal Block I/O modules. It also includes a series of InterBus Module Identifier codes (see list at the end of this section).				
F1 F2 F3 F4 F5 F6 F7-Lev 8-F8-OFF F9 Typ HOMENTUM				
170 AA1 630 60 170 ADO 530 50 170 BDO 356 60 18S 6332 10BUS 170 AA1 140 60 170 ADO 540 50 170 BDO 946 50 18S 63332 10BUS 170 AA1 520 40 170 ADO 730 50 170 BNO 671 60 18S 63332 10BUS 170 AA1 520 40 170 ADO 730 50 730 BNO 671 60 18S 63332 10BUS 18S 6332 10BUS 18S 6333 10BUS 1				


Continued on next page

Procedure,Continued

Continued on next page

Procedure, Continued

Continued on next page

Generic InterBus Module Identifier Codes

InterBus device manufacturers embed an identifier code in their network slave modules in conformance with InterBus standards. The code identifies a device by its I/O type but not its specific model or name.

I/OBus recognizes the InterBus identifier codes provided below and allows you to I/O Map devices that use these codes. However, you cannot use the module zoom screens to define the parameters for these InterBus modules.

Identifier Code	I/O Type
0101_IOBUS	One-word discrete output
0102_IOBUS	One-word discrete input
0103_IOBUS	One-word discrete bidirectional
0201_IOBUS	Two-word discrete output
0202_IOBUS	Two-word discrete input
0203_IOBUS	Two-word discrete bidirectional
0231_IOBUS	Two-word analog output
0232_IOBUS	Two-word analog input
0233_IOBUS	Two-word analog bidirectional
0301_IOBUS	Three-word discrete output
0302_IOBUS	Three-word discrete input
0303_IOBUS	Three-word discrete bidirectional
0331_IOBUS	Three-word analog output
0332_IOBUS	Three-word analog input
0333_IOBUS	Three-word analog bidirectional
0401_IOBUS	Four-word discrete output
0402_IOBUS	Four-word discrete input
0403_IOBUS	Four-word discrete bidirectional
0431_IOBUS	Four-word analog output
0432_IOBUS	Four-word analog input
0433_IOBUS	Four-word analog bidirectional

Continued on next page

Generic InterBus Module Identifier Codes, Continued

Identifier Code	I/O Type
0501_IOBUS	Five-word discrete output
0502_IOBUS	Five-word discrete input
0503_IOBUS	Five-word discrete bidirectional
0531_IOBUS	Five-word analog output
0532_IOBUS	Five-word analog input
0533_IOBUS	Five-word analog bidirectional
0633_IOBUS	Eight-word analog bidirectional
1233_IOBUS	Sixteen-word analog bidirectional

Moving Between Pages

To move from one I/O Map page to the another, use the <PageUp> and <PageDown> keys.

- <PageDown> opens the next page-e.g., to move from page 1 to page 2
- <PageUp> opens the previous page-e.g., to move from page 2 to page 1

Configuring a Modbus Plus Network in Modsoft with Peer Cop

At a Glance

Purpose

Communication transactions over Modbus Plus are defined in Modsoft 2.6 by a configuration tool called Peer Cop. This section uses examples to explain how to use Peer Cop to configure the two types of network architecture:

- An I/O network, where the Peer Cop of the CPU defines all the communication transactions over the full network.
- A supervisory network with two or more CPUs communicating with each other and with additional devices on the network.

In This Chapter

This chapter contains the following sections:

For This Topic	See Section	On Page
Getting Started	1	258
Using Modbus Plus to Handle I/O	2	263
Passing Supervisory Data over Modbus Plus	3	281

Section 10.1 Getting Started

Overview

Purpose

This section explains how to access the Peer Cop Configuration Extension screen and describes the default screen.

In This Section

This section contains the following topics:

For This Topic	See Page
Accessing the Peer Cop Configuration Extension Screen	259
The Default Peer Cop Screen	261

Accessing the Peer Cop Configuration Extension Screen

Introduction

Before you can access the Peer Cop Configuration Extension screen, you must have specified enough extension memory to support your Peer Cop database.

This section describes how to access the screen and, if necessary, adjust the amount of configuration extension memory.

Accessing the Screen

Starting from the Configuration Overview screen, select Peer Cop from the Cfg Ext menu.

Note: If Peer Cop is disabled in the pull-down list, you will need to specify enough extension memory to support your Peer Cop database before you can continue.

Adjusting Extension Memory

Extension memory is specified as a number of 16-bit words. That number is entered in the ExtSize field of the Configuration Overview screen. Once an adequate number of words has been specified there, Peer Cop will be enabled in the Cfg Ext menu.

Extension Memory Size

The minimum Peer Cop memory requirement is 20 words. The maximum is 1366 words.

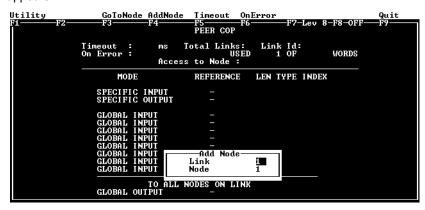
Continued on next page

Accessing the Peer Cop Configuration Extension Screen, Continued

Estimating How Much Memory to Reserve

Follow these guidelines for estimating the amount of extension memory you will need for your Peer Cop database:

For	Add	Up to a maximum of
Overhead	9 words	
Global output	5 words	
Global input	number of words= number of devices x (1 + 2 x number of device subentries)	1088 words
Specific output	2 words for every device entry in Peer Cop	128 words
Specific input	2 words for every device entry in Peer Cop	128 words


The Default Peer Cop Screen

Overview

This section describes the Peer Cop screen as it appears the first time you access it.

Illustration

The first time you click on Peer Cop in the Cfg Ext menu, the following screen appears:

Description

The Peer Cop screen is divided into two regions by a horizontal rule.

At the top of the screen is a group of Peer Cop summary entries

- Timeout
- ON Error
- Total Links
- Access to Node

The lower half of the screen displays the Peer Cop reference information, i.e., the register or discrete references that the CPU uses to handle specific and global inputs/outputs with other nodes on the network.

The Add Node popup menu appears near the bottom of the screen.

Continued on next page

The Default Peer Cop Screen, Continued

Next Step

No values are set anywhere in the default Peer Cop screen. The following two examples show how to set up Peer Cop to configure different types of Modbus Plus networks.

Section 10.2 Using Modbus Plus to Handle I/O

Overview

Purpose

This section uses an example to explain how to configure a Modbus Plus network for I/O servicing. In this example, a CPU will control four Momentum I/O modules.

In This Section

This section contains the following topics:

For This Topic	See Page
Devices on the Network	264
Defining the Link and Accessing a Node	265
Confirming the Peer Cop Summary Information	268
Specifying References for Input Data	272
Accessing the Remaining Devices	276
Completing the I/O Device Configuration in Peer Cop	278

Devices on the Network

Introduction

This section describes the five devices which comprise the sample network and the strategy used to assign addresses.

The Network Devices

The following table lists the Modbus Plus address and components of each Momentum module on the network:

Modbus Plus Address	I/O Base Type	Adapter Type
1	(type not specified)	M1 Processor Adapter (type not specified)
		172 PNN 210 22 Modbus Plus Option Adapter
2	170 ADI 340 00 16-point input	170 PNT 110 20 Modbus Plus Communication Adapter
3	170 ADO 340 00 16-point output	170 PNT 110 20 Modbus Plus Communication Adapter
4	170 ADI 350 00 32-point input	170 PNT 110 20 Modbus Plus Communication Adapter
5	170 ADO 350 00 32-point output	170 PNT 110 20 Modbus Plus Communication Adapter

Address Strategy

In this type of architecture, assign the lowest network address (1) to the CPU. When the network initializes, the CPU will be the first device to get the token, and the token rotation table will be built with respect to the controlling device on the network.

Defining the Link and Accessing a Node

Overview

When you reach the default Peer Cop screen, a popup menu asks you to define a link and access a node.

What Is a Link?

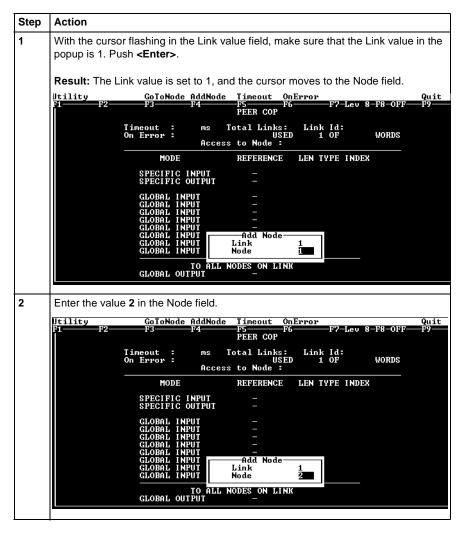
The link is the Modbus Plus network on which the CPU resides.

The only valid link value for a Momentum M1 CPU is 1. An M1 can function only on one Modbus Plus network—multiple Modbus Plus links are not supported.

What Is a Node?

The *node* is the Modbus Plus address of one of the I/O devices on the network.

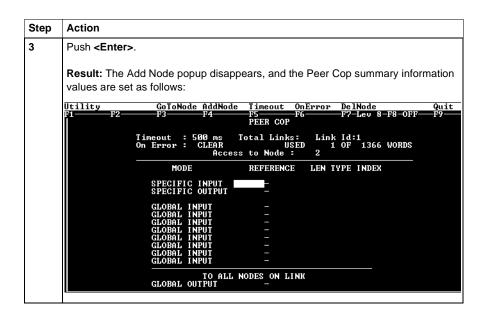
A valid node value in our example is any number in the range 2...5. For our example, we will first access the 170 ADI 340 00 16-point input module at Modbus Plus address 2.


Note: Address 1, the network address of the CPU itself, is not a valid node to access since the CPU does not need to access itself over the network.

Continued on next page

Defining the Link and Accessing a Node, Continued

Procedure


Follow the steps in the table below to define the link and access a node, using the popup menu.

Continued on next page

Defining the Link and Accessing a Node, Continued

Procedure, Continued

Next Step

Confirming the Peer Cop summary information.

Confirming the Peer Cop Summary Information

Overview

Once you have defined the link and accessed a node, the Peer Cop summary information values assume default settings. This section describes those settings and how to confirm or change them.

Timeout

The default Timeout is 500 ms.

Timeout is the maximum interval that Modbus Plus on a Peer-Copped device will remain healthy without communication activity. If this interval is exceeded, the device will clear its network health bit and will no longer try to communicate via Modbus Plus.

The timeout interval must be in the range 20 ... 2000ms, and it must be specified as an increment of 20ms.

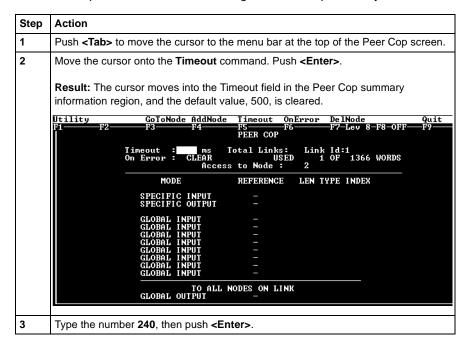
For our example, we will change the timeout value to 240ms.

On Error

The default On Error setting is CLEAR.

The *On Error* setting specifies how the Peer-Copped device will treat the last values received before a timeout, once Modbus Plus communications have been restored.

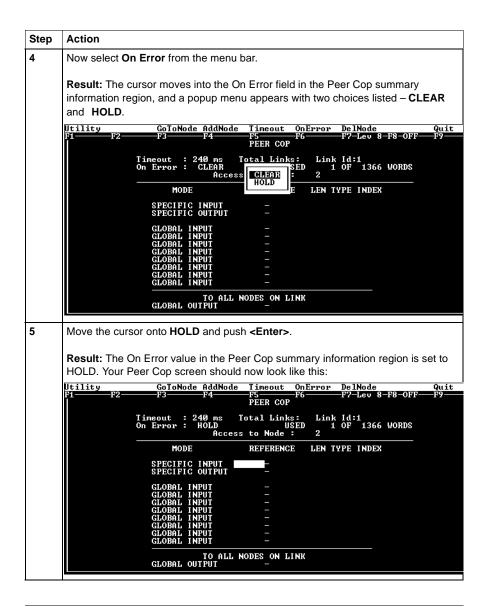
One of two settings may be used—CLEAR or HOLD. CLEAR sets all the previously received values to 0, and HOLD retains the previous values.


For our example, we will change the setting to HOLD.

Continued on next page

Confirming the Peer Cop Summary Information, Continued

Procedure


Follow the steps in the table below to change the Peer Cop summary information.

Continued on next page

Confirming the Peer Cop Summary Information, Continued

Procedure, Continued

Continued on next page

Confirming the Peer Cop Summary Information, Continued			
Next Step	Specifying references for input data.		

Specifying References for Input Data

Introduction

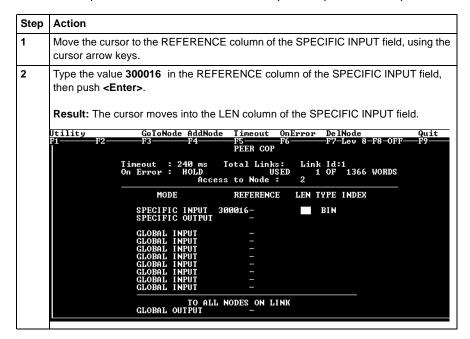
The Peer Cop screen is now set to access the device at Modbus Plus address 2, which for this example is a 170 ADI 340 00 16-point input module.

This section explains how to specify the reference for input data from this module.

Device Requirements

When you use Peer Cop to handle a Modbus Plus I/O architecture, you need to be aware of the type of I/O you are configuring at each network address. Peer Cop does not know that the device at address 2 is a discrete 16-point input module.

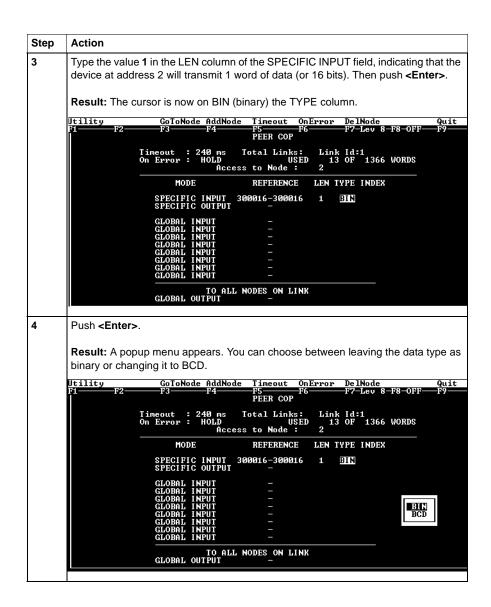
You need to know that a specific input reference with a length of one word (16 bits) is required to handle this module.


We will assign a 3x register (300016) as a specific input to the CPU. When the 170 ADI 340 00 sends input data to the CPU, it will be sent to this register.

Continued on next page

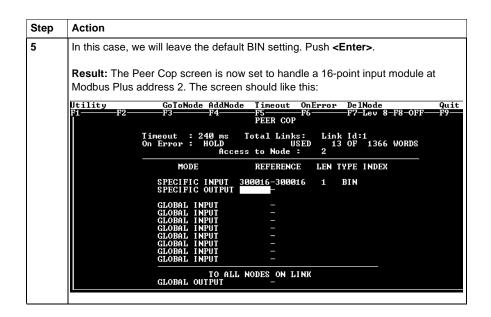
Specifying References for Input Data, Continued

Procedure


Follow the steps in the table below to define the specific input in Peer Cop.

Continued on next page

Specifying References for Input Data, Continued


Procedure, Continued

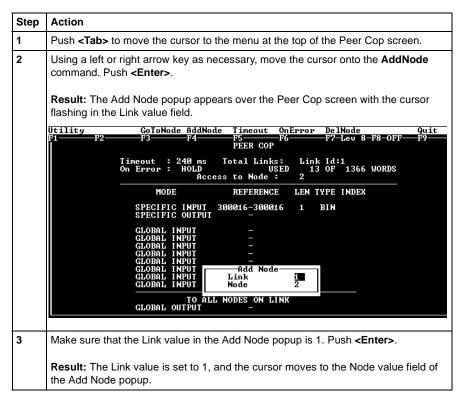
Continued on next page

Specifying References for Input Data, Continued

Procedure, Continued

Next Step

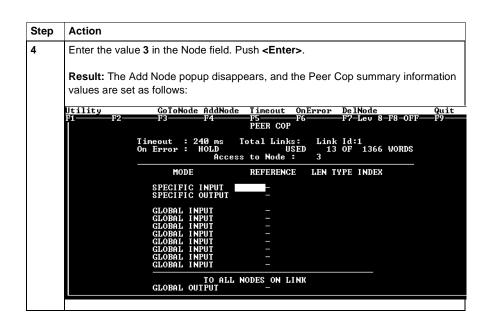
Accessing the remaining devices.


Accessing the Remaining Devices

Introduction

The I/O modules at Modbus Plus addresses 3 ... 5 can be configured individually in a manner similar to that used for the 170 ADI 340 00 module at address 2.

Procedure


Follow the steps in the table below to access a new device address (in this case, address 3), using the AddNode command.

Continued on next page

Accessing the Remaining Devices, Continued

Procedure, Continued

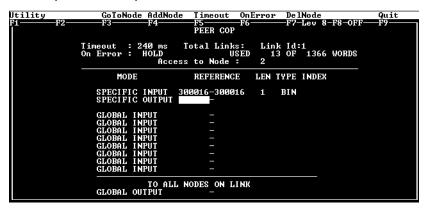
Next Step

You are now ready to configure Peer Cop for the device at Modbus Plus address 3, which for this example is a 170 ADO 340 00 16-point output module.

Completing the I/O Device Configuration in Peer Cop

Introduction

Using the procedures described previously, you can complete the I/O configuration in Peer Cop. This section shows completed Peer Cop screens for this example.


Register Assignments

For this example, we have made the following register assignments:

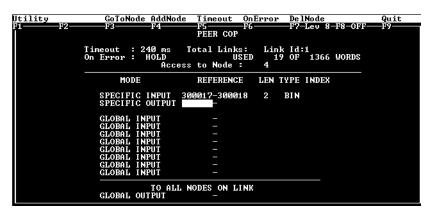
MB+ Address	Device Type	Register Assignment
2	16-point discrete input	300016
3	16-point discrete output	400016
4	32-point discrete input	300017 and 300018
5	32-point discrete output	400017 and 400018

Completed Screen: Node 2

The completed Peer Cop screen for node 2 should look like this:

Continued on next page

Completing the I/O Device Configuration in Peer Cop, Continued

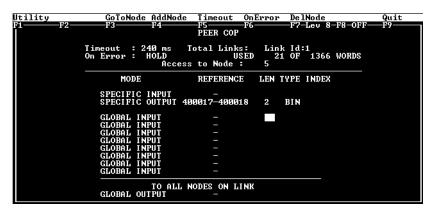

Completed Screen: Node 3

The completed Peer Cop screen for node 3 should look like this:

```
| Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Color | Colo
```

Completed Screen: Node 4

The completed Peer Cop screen for node 4 should look like this:


Note: The lengths (LEN) for the 32-bit I/O devices at addresses 4 and 5 need to be specified as 2 words (32 bits).

Continued on next page

Completing the I/O Device Configuration in Peer Cop, Continued

Completed Screen: Node 5

The completed Peer Cop screen for node 5 should look like this:

Note: The lengths (LEN) for the 32-bit I/O devices at addresses 4 and 5 need to be specified as 2 words (32 bits).

Section 10.3 Passing Supervisory Data over Modbus Plus

Overview

Purpose

This Peer Cop example deals with a network where three CPUs communicate over Modbus Plus. Each device needs its own Peer Cop configuration.

In This Section

This section contains the following topics:

For This Topic	See Page
Devices on the Network	282
Configuring a Node to Exchange Data	283
Confirming the Peer Cop Summary Information	286
Specifying References for Input and Output Data	287
Defining the References for the Next Node	292
Defining References for the Supervisory Computer	297
Completing the Configuration	302

Devices on the Network

Introduction

This section describes the three CPUs which exchange data over the sample Modbus Plus network and the strategy used to assign node addresses.

Devices

The three CPUs and their functions are described in the following table:

MB+ Address	CPU	Function
1	Pentium supervisory computer with an AT984 host-based PLC card	Receives specific input data and sends global outputs
2	171 CCS 760 00 Momentum M1 Processor Adapter with 172 PNN 210 22 Modbus Plus Option Adapter	Controls I/OBus network and exchanges data with AT984 supervisor
3	171 CCS 760 00 Momentum M1 Processor Adapter with 172 PNN 210 22 Modbus Plus Option Adapter	Controls I/OBus network and exchanges data with AT984 supervisor

Address Strategy

In this type of architecture, assign the lowest network address (1) to the supervisory computer. When the network initializes, the supervisor will be the first device to get the token, and the token rotation table will be built with respect to the supervising device.

Configuring a Node to Exchange Data

Getting Started

To Peer Cop this sample configuration, each CPU must be separately programmed to communicate with the others over Modbus Plus. Begin by connecting your programming panel to the 171 CCS 760 00 Momentum M1 device at Modbus Plus address 2. Access the Peer Cop with your Modsoft 2.6 software.

When you reach the default Peer Cop screen, you need to initialize the summary information region. To do this, define a link value and a node value in the Add Node popup.

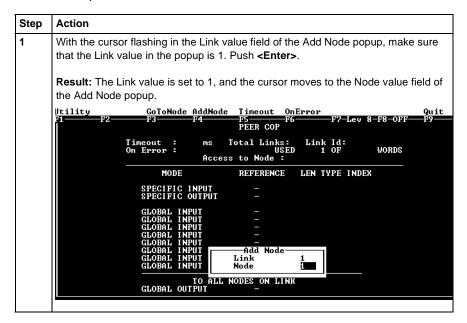
What Is a Link?

The link is the Modbus Plus network on which the CPU resides.

The only valid link value for a Momentum M1 CPU is 1. An M1 can function only on one Modbus Plus network—multiple Modbus Plus links are not supported.

What Is a Node?

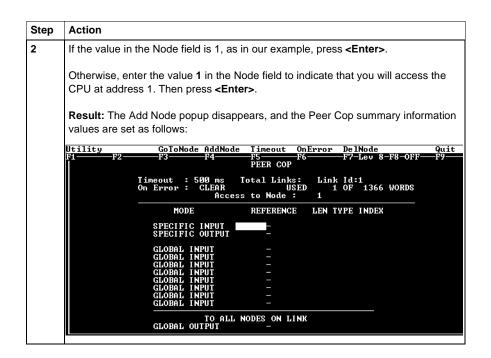
The *node* is the Modbus Plus address of one of the I/O devices on the network.


For our example, we will first access the AT984 supervisory PLC at Modbus Plus address 1.

Continued on next page

Configuring a Node to Exchange Data, Continued

Procedure


Follow the steps in the table below to define the link and access a node.

Continued on next page

Configuring a Node to Exchange Data, Continued

Procedure, Continued

Next Step

Confirming the Peer Cop summary information.

Confirming the Peer Cop Summary Information

Overview

Once you have defined the link and accessed a node, the Peer Cop summary information values assume default settings. This section describes those settings.

Timeout

The default Timeout is 500 ms.

Timeout is the maximum interval that Modbus Plus on a Peer-Copped device will remain healthy without communication activity. If this interval is exceeded, the device will clear its network health bit and will no longer try to communicate via Modbus Plus.

The timeout interval must be in the range 20 ... 2000 ms, and it must be specified as an increment of 20 ms.

For our example, we will use the default setting.

On Error

The default On Error setting is CLEAR.

The *On Error* setting specifies how the Peer-Copped device will treat the last values received before a timeout, once Modbus Plus communications have been restored.

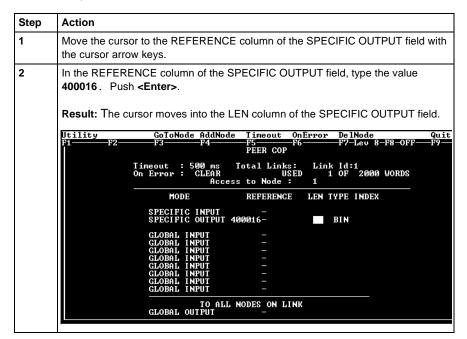
One of two settings may be used—CLEAR or HOLD. CLEAR sets all the previously received values to 0, and ${\tt HOLD}$ retains the previous values.

For our example, we will use the default setting.

Next Step

Specifying references for input and output data.

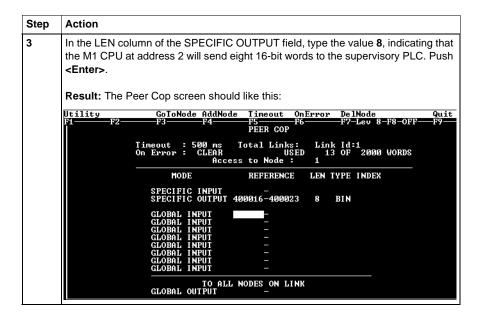
Specifying References for Input and Output Data


Overview

We will now set up the 171 CCS 760 00 Momentum M1 CPU at Modbus Plus address 2. This device will:

- send eight 4x registers of specific output to the supervisory computer at Modbus Plus address 1.
- receive five 4x registers of global input from the supervisory computer. These
 registers are the first five registers in a 10-register block broadcast by the
 supervisor.

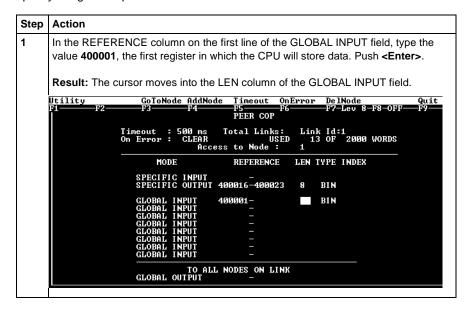
Defining the Specific Output


The following table describes how to define the specific output in Peer Cop.

Continued on next page

Specifying References for Input and Output Data, Continued

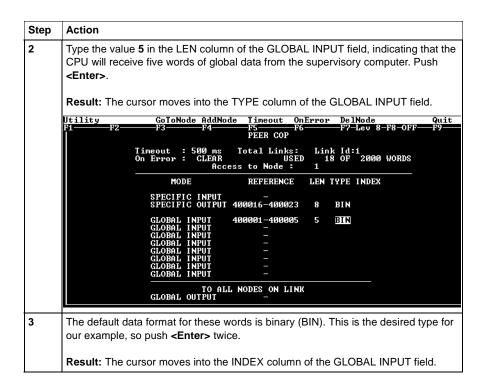
Defining the Specific Output, Continued



Continued on next page

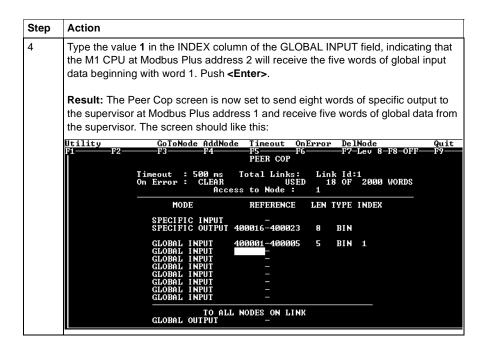
Specifying References for Input and Output Data, Continued

Defining the Global Inputs


Now the M1 needs to be Peer Copped to receive five words of global data from the supervisory PLC at Modbus Plus address 1. Follow the steps in the table below to specify the global input references.

Continued on next page

Specifying References for Input and Output Data, Continued


Defining the Global Inputs, Continued

Continued on next page

Specifying References for Input and Output Data, Continued

Defining the Global Inputs, Continued

Next Step

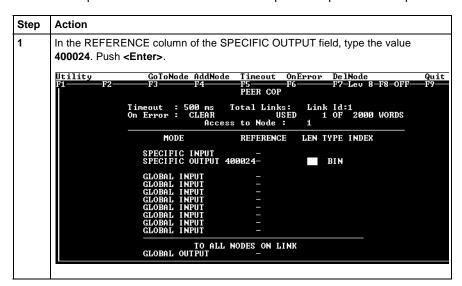
Defining the references for the next node.

Defining the References for the Next Node

Overview

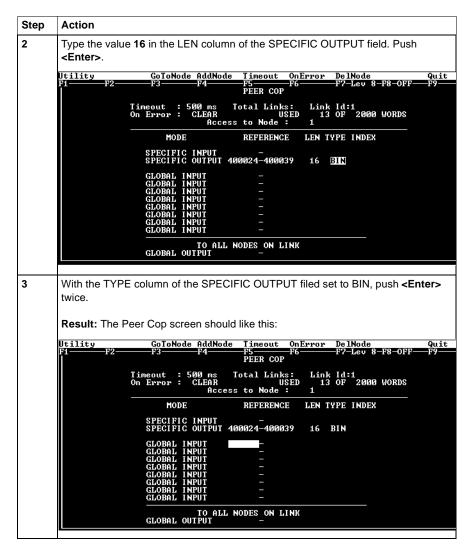
We now want to attach the Modsoft 2.6 programming panel to the 171 CCS 760 00 Momentum M1 CPU at Modbus Plus address 3 and create a similar Peer Cop for this device to communicate with the supervisory PLC at Modbus Plus address 1.

In this case, we want the M1:


- to send 16 words of specific output to the supervisor.
- to receive the last seven words of global input from the supervisor. (Remember that the supervisor will be transmitting a total of 10 contiguous words of global data over the network.)

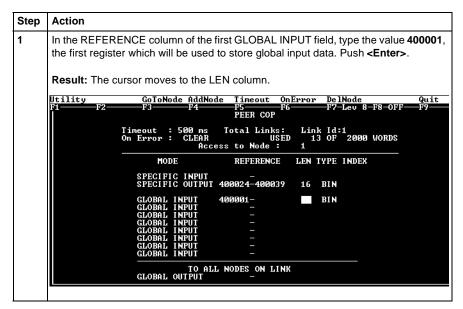
Link and Node Settings

Make sure that the Link setting is 1 and the Node setting is 1, indicating that this CPU will be exchanging data with the supervisory computer at address 1.

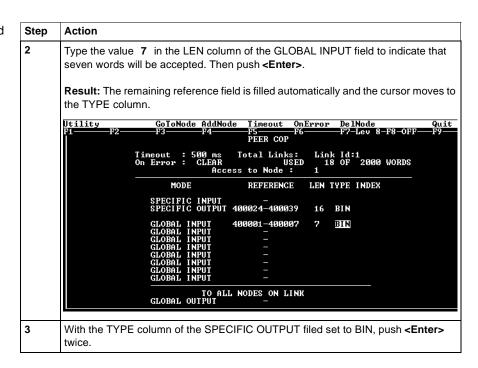

Defining Specific Outputs

Follow the steps in the table below to define the specific output in Peer Cop.

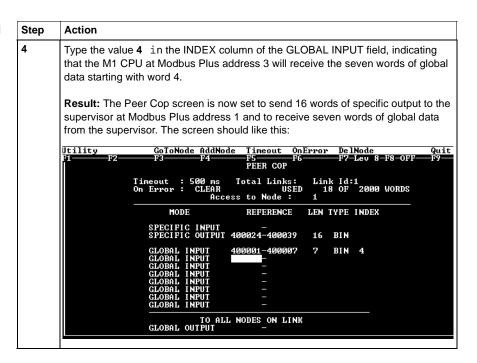
Continued on next page


Defining Specific Outputs, Continued

Continued on next page


Defining Global Inputs

Follow the steps in the table below to define the global input data from the supervisory PLC at Modbus Plus address 1.


Continued on next page

Defining Global Inputs, Continued

Continued on next page

Defining Global Inputs, Continued

Next Step

Defining references for the supervisory computer.

Defining References for the Supervisory Computer

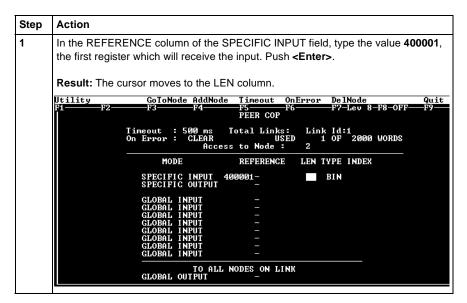
Overview

At this point, we will attach the Modsoft 2.6 programming panel to the AT984 supervisory PLC at Modbus Plus address 1 and set up two Peer Cop screens to handle the M1 CPUs at addresses 2 and 3.

We know that the M1 at Modbus Plus address 2 is sending eight words of specific output to the supervisor and that the M1 at Modbus Plus address 3 is sending 16 words of specific output to the supervisor. The supervisor will receive this data as specific inputs.

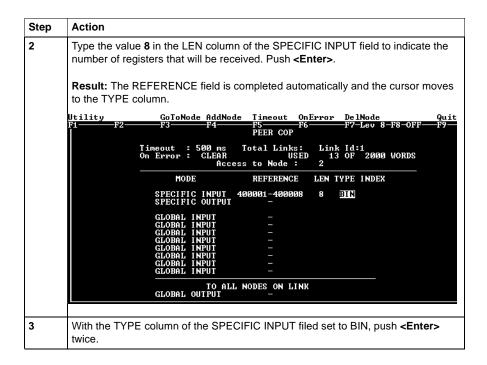
We also know that the supervisor is sending 10 words of global data, parts of which will be received by both of the M1 CPUs.

Accessing Node 2

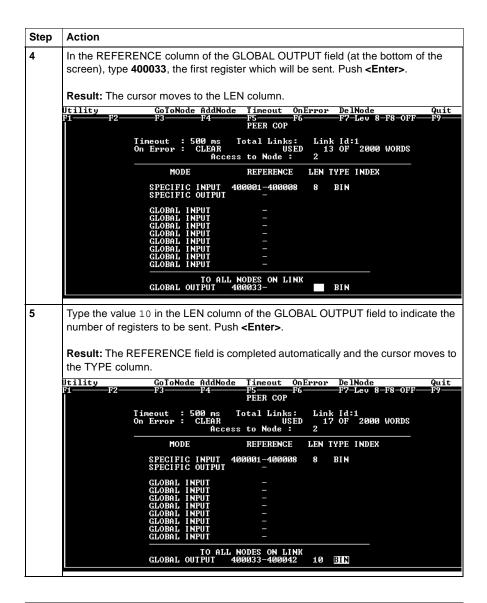

Make sure the Link setting is 1 and the Node setting is 2, indicating that the supervisory computer will exchange data with the CPU at address 2.

Continued on next page

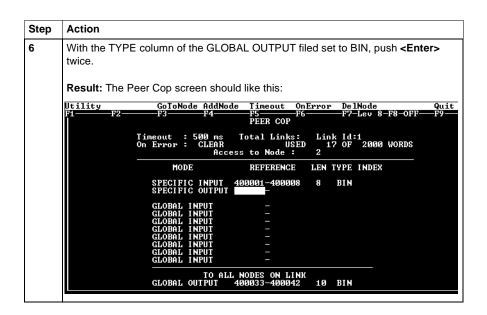
Specifying References for Node 2


We know that this M1 CPU sends eight words of specific output to the supervisor and receive five words of global data from the supervisor.

Follow the steps in the table below to define the registers that the supervisor will transmit to and receive from the M1 CPU at Modbus Plus address 2.


Continued on next page

Specifying References for Node 2, Continued


Continued on next page

Specifying References for Node 2, Continued

Continued on next page

Specifying References for Node 2, Continued

Next Step

Complete the configuration by creating a Peer Cop screen from the supervisor that accesses node 3 and defines the references for that node.

Completing the Configuration

Overview

To complete the configuration of the supervisory computer at Modbus Plus address 1, create a Peer Cop screen that accesses the CPU at address 3 and defines the references for that CPU.

Accessing Node 3

Using the AddNode command, create a new Peer Cop screen with a Link setting of 1 and a Node setting of 3.

Specifying References for Node 3

We know that this M1 CPU sends 16 words of specific output to the supervisor and receive seven words of global data from the supervisor. Follow the steps in the table below to define the registers that the supervisor will transmit to and receive from the M1 CPU at Modbus Plus address 3.

Step	Action		
1	In the REFERENCE column of the SPECIFIC INPUT field, type the value 400020 , the first register which will receive the input. Push <enter></enter> .		
2	Type the value 16 in the LEN column of the SPECIFIC INPUT field, indicating the number of registers that will be received. Push <enter></enter> .		
3	The GLOBAL OUTPUT fields should already be complete, since you filled them out for node 2. The completed Peer Cop screen should look like this:		
	GLOBAL OUTPUT 400033-400042 10 BIN		

Saving to Flash in Modsoft

11

At a Glance

Purpose

You save data to Flash so that in the event of an unexpected loss of power, the application logic and state RAM values will be preserved.

This section describes how to save the application logic and state RAM values to Flash using Modsoft 2.6.

In This Chapter

This chapter contains the following topics:

For This Topic	See Page
Preparing to Save to Flash	304
Saving to Flash	305

Preparing to Save to Flash

Before You Save to Flash

Before you can save to Flash in Modsoft, you need to specify how the controller will react when power is re-established. This section describes three options. The next section describes how to specify an option.

Three Parameters

Modsoft will ask you three questions:

Q1 Continue power down Run state? Y/N

Q2 Start PLC after download? Y/N

Q3 Continue? Y/N

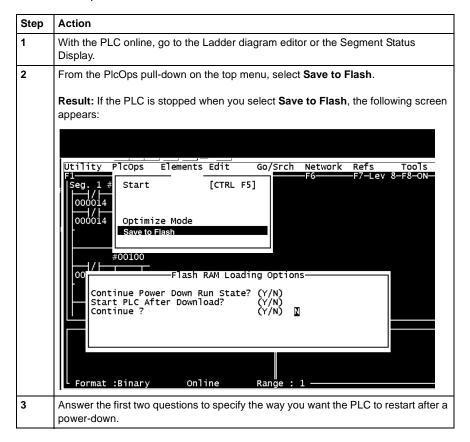
Q1 and Q2 define the state of the controller after power is re-established. Q3 simply initiates a save-to-Flash operation in the controller. Q3 cannot be invoked unless Q1 and Q2 have been answered Y(es) or N(o).

Three Possible States

The following table shows you the three states that you may specify for the controller:

If the Answer Is	Then the Controller
Q1 = Y	Comes back in the state it was in (Running or Stopped) before
Q2 = N	power was lost
Q1 = N	Comes back Running when power is restored
Q2 = Y	
Q1 = N	Comes back Stopped when power is restored
Q2 = N	

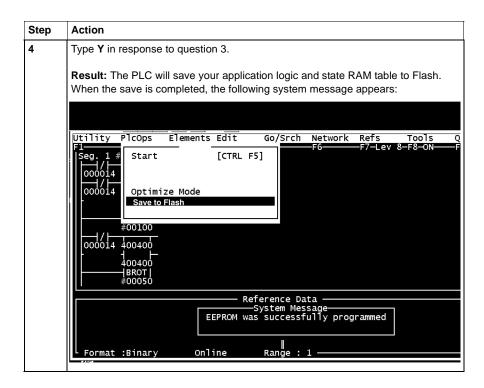
Saving to Flash


Conditions for Saving to Flash

In order to save the application program and state RAM values to Flash:

- The Modsoft panel must be Online
- The PLC must be stopped (not solving logic)

Save-to-Flash Procedure


Follow the steps below to save to Flash.

Continued on next page

Saving to Flash, Continued

Save-to-Flash Procedure, Continued

Concept

At a Glance

Purpose

This part describes how to configure an M1 CPU, how to I/O map an I/OBus network, how to configure a Modbus Plus network with Peer Cop and how to save to Flash using Concept 2.1.

In This Part

This part contains the following chapters:

For Information On	See Chapter	On Page
Configuring an M1 CPU with Concept	12	309
I/O Mapping an I/OBus Network with Concept	13	361
Configuring a Modbus Plus Network in Concept with Peer Cop	14	369
Saving to Flash with Concept	15	399

Configuring an M1 CPU with Concept

12

At a Glance

Purpose

This chapter explains how to configure a CPU using Concept 2.2.

In This Chapter

This chapter contains the following sections:

For This Topic	See Section	On Page
Configuring the Processor Adapter	1	310
Configuring Option Adapter Features	2	327
Modifying Modbus Port Parameters	3	336
Configuring Ethernet Address Parameters and I/O Scanning	4	344
I/O Mapping the Local I/O Points	5	357

Section 12.1 Configuring the Processor Adapter

Overview

Purpose

This section describes how to configure a Momentum M1 Processor Adapter using Concept 2.2.

In This Section

This section contains the following topics:

For This Topic	See Page
Selecting an M1 Processor Adapter	311
Default Configuration Parameters	315
Changing the Range of Discrete and Register References	318
Changing the Size of the Full Logic Area	320
Understanding the Number of Segments	321
Changing the Size of the I/O Map	322
Establishing Configuration Extension Memory for Peer Cop	324

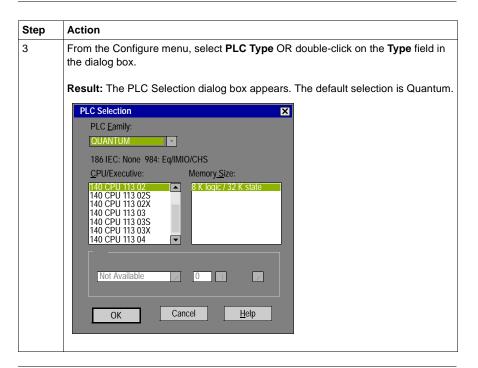
Selecting an M1 Processor Adapter

Introduction

This section describes how to select an M1 Processor Adapter for a new project using Concept 2.2.

Note: For a full description of Concept, refer to the set of manuals shipped with the software.

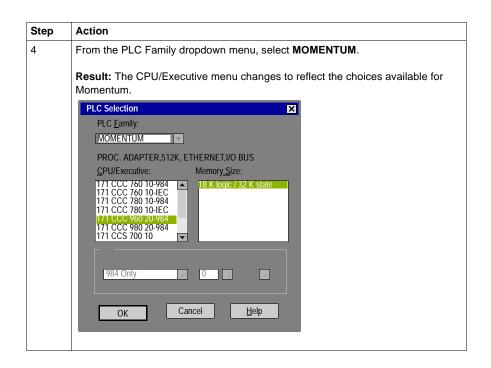
Procedure


Follow the steps below to select an M1 Processor Adapter for a new project.

Step	Action		
1	From the File menu, select New Project .		
	Result: A new project is opened and the file name [untitled] appears over the menu bar.		
2	From the Project menu, select Configurator .		
	Result: The PLC Configuration screen appears.		
	PLC Configuration		
	Type: — Available Logic Area: — Exec Id: — Extended Memory: — Memory Size: — Extended Memory: —		
	Ranges Loadables Coils: — Number installed: — Discrete Inputs: — Input Registers: — Holding Registers: —		
	Specials Segment Scheduler Battery Coil: — Segments: — Timer Register: — Time of Day: —		
	Config Extensions Data Profection: Peer Cop: Hof Standby: Ethernet: Profibus DP: Horicon ASCII Number of Messages: Mesage Area Size: Mesa		

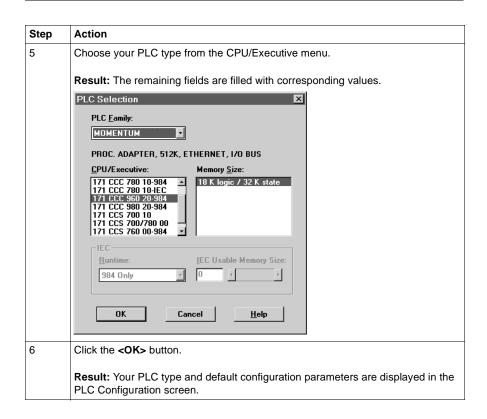
Continued on next page

Selecting an M1 Processor Adapter, Continued


Procedure,Continued

Continued on next page

Selecting an M1 Processor Adapter, Continued


Procedure,Continued

Continued on next page

Selecting an M1 Processor Adapter, Continued

Procedure, Continued

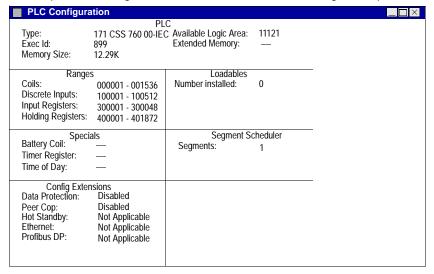
Default Configuration Parameters

Overview

This section describes the default configuration parameters.

Defaults for a 2.4K Machine

This sample PLC Configuration screen shows the default configuration parameters.



Continued on next page

Default Configuration Parameters, Continued

Defaults for a 12.2K Machine

This sample PLC Configuration screen shows the default configuration parameters.

Continued on next page

Default Configuration Parameters, Continued

Defaults for an 18.4K Machine

This sample PLC Configuration screen shows the default configuration parameters.

■ PLC Configura	tion				\square \times
Type: Exec Id: Memory Size:	PL 171 CCC 960 20-98 898 18.43K	C 4 Available Logic Area: Extended Memory:	17649 —		
Range Coils: Discrete Inputs: Input Registers: Holding Registers:	000001 - 001536 100001 - 100512 300001 - 300048	Loadables Number installed:	0	=	
Speci Battery Coil: Timer Register: Time of Day:	ials 	Segment Segment Segments:	cheduler 1	-	
Config External Data Protection: Peer Cop: Hot Standby: Ethernet: Profibus DP:	nsions Disabled Disabled Not Applicable Not Applicable Not Applicable			-	

Default Values

Here are the default parameters:

Parameter	2.4K Machine	12.2K Machine	18.4K Machine
Coils in state RAM	1536 (0 <i>x</i>)	1536 (0 <i>x</i>)	1536 (0 <i>x</i>)
Discrete inputs in state RAM	512 (1 <i>x</i>)	512 (1 <i>x</i>)	512 (1 <i>x</i>)
Input registers in state RAM	48 (3 <i>x</i>)	48 (3 <i>x</i>)	48 (3 <i>x</i>)
Output registers in state RAM	1872 (4 <i>x</i>)	1872 (4 <i>x</i>)	1872 (4 <i>x</i>)
Full logic area (in bytes)	1678	11532	17649
Words of user memory space for the I/O Map	144	144	144
Memory allocated for configuration extension	None	None	None

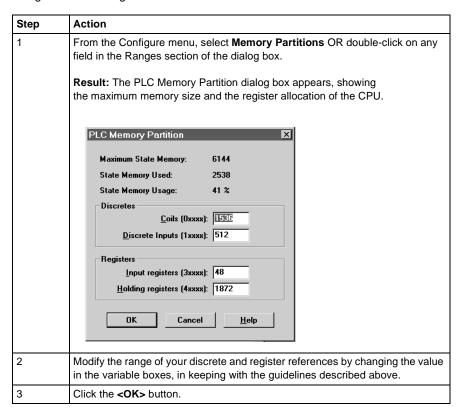
Changing the Range of Discrete and Register References

Introduction

This section provides guidelines and a procedure for changing the range of discrete (0x) and (0x) and (0x) and (0x) and (0x) are register (0x) and (0x) are register (0x) and (0x) are register (0x) and (0x) are register (0x) and (0x) are register (0x) and (0x) are register (0x) and (0x) are register (0x) and (0x) are register (0x) and (0x) and (0x) are register (0x) and (0x) and (0x) are register (0x) and (0x

Guidelines

When you change the range of discrete and register references, follow these guidelines:


- Adjust the range of discretes in increments of 16. Sixteen discretes consume one word.
- Adjust the range of registers in increments of 1. Each register consumes one word.
- The total number of register and discrete references cannot exceed the maximum of state memory displayed at the top of the dialog.
- A minimum configuration of 16 0x discretes, 16 1x discretes, one 3x register, and one 4x register is required.

Continued on next page

Changing the Range of Discrete and Register References, Continued

Procedure

Follow the steps below to change the range of discrete and register references, using the PLC Configuration screen:

Changing the Size of the Full Logic Area

Introduction

The number shown in the Available Logic Area field in the PLC Configuration screen indicates the total amount of memory available for your application logic. You cannot directly enter this field to modify the value. You can, however, change the amount of memory available by manipulating the size of other fields in the PLC Configuration screen.

Example 1

For example, if you reduce the expansion size of the I/O Map, the number in the Available Logic Area field automatically increases. Say you are using a 12.2K machine and you change the size of the I/O Map from 512 to 256, a decrease of 256 words. The Available Logic Area will automatically increase from 1198 to 1454.

Example 2

Similarly, if you allocate some number of words to the Peer Cop expansion size, you will reduce the Available Logic Area by the number of words allocated for Peer Cop.

Understanding the Number of Segments

Only the First Segment is Solved

The number of segments specified in the Configuration Overview screen determines the number of I/O Map drops that you will be able to set up for your CPU. When you are using Concept 2.2, the default number of segments is 1 in most CPUs.

This number is adequate for all processor adapters and does not need to be changed. However, you should only use the second segment for I/OBus I/O mapping or other subroutines.

Changing the Size of the I/O Map

Introduction

The default size of the I/O Map is 144 words. You may want to adjust this number to provide more support for an I/OBus network or to increase the size of the full logic area.

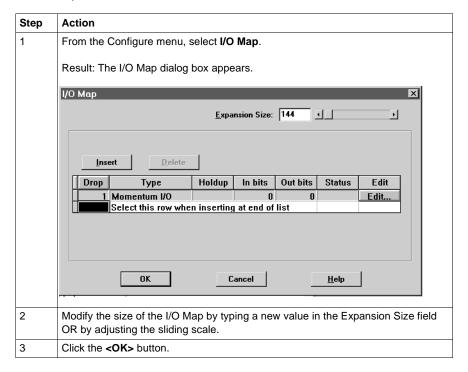
Processors for I/OBus Networks

With I/OBus, an I/O Map table is used to define the number, location and type of I/O devices on the network bus.

Default	144 words
Minimum	4 words
Maximum	6143 words, or not to exceed the PLC's memory size.

All Other Processors

Other Processor Adapters only use the I/O Map for local I/O. The default of 144 words is more than sufficient for any Momentum I/O base. Depending on the requirements of your I/O base, you may be able to reduce the number of words to the minimum, 4, in order to increase the Available Logic Area.


Default	144 words
Minimum	4 words

Continued on next page

Changing the Size of the I/O Map, Continued

Procedure

From the PLC Configuration screen, follow the steps below to change the size of the I/O Map:

Establishing Configuration Extension Memory for Peer Cop

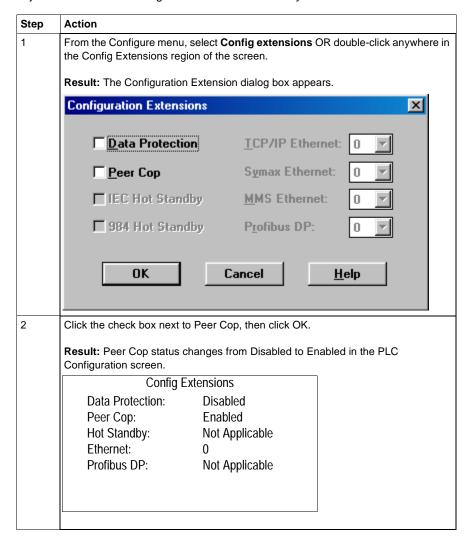
Introduction

By default, the Peer Cop capability is disabled. If you want to use Peer Cop to handle Modbus Plus communications, you need to enable this capability and adjust the amount of configuration extension memory.

How Much Memory?

The minimum Peer Cop memory requirement is 20 words; the maximum is 1366 words.

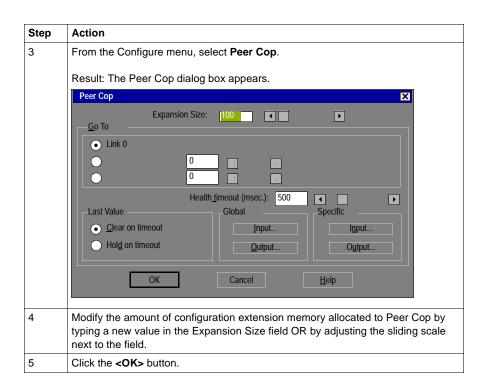
Follow these guidelines for estimating the amount of extension memory you will need for your Peer Cop database:


For	Add	Up to a maximum of
Overhead	9 words	
Global output	5 words	
Global input	number of words= number of devices x (1 + 2 x number of device subentries)	1088 words
Specific output	2 words for every device entry in Peer Cop	128 words
Specific input	2 words for every device entry in Peer Cop	128 words

Continued on next page

Establishing Configuration Extension Memory for Peer Cop, Continued

Procedure


From the PLC Configuration screen, follow the steps below to enable Peer Cop and adjust the amount of Configuration Extension memory:

Continued on next page

Establishing Configuration Extension Memory for Peer Cop, Continued

Procedure,Continued

Section 12.2 Configuring Option Adapter Features

Overview

Purpose

This section describes how to implement the battery backup and time-of-day (TOD) clock features of the Momentum Option Adapters using Concept 2.2.

In This Section

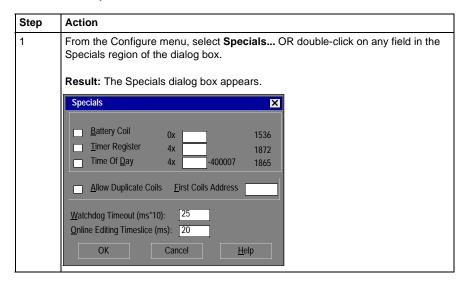
This section contains the following topics:

For This Topic	See Page
Reserving and Monitoring a Battery Coil	328
Setting up the Time-of-Day Clock	331
Setting the Time	334
Reading the Time-of-Day Clock	335

Reserving and Monitoring a Battery Coil

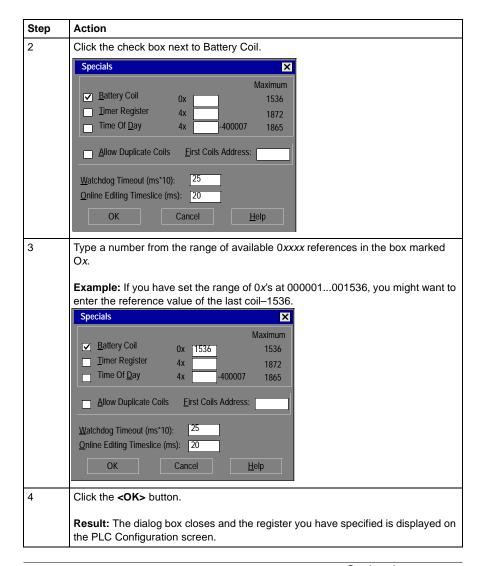
Introduction

Since the Option Adapter does not have an LED to indicate when the battery is low, we recommend that you reserve a 0x reference to monitor the health of the battery.


This section describes how to reserve and monitor a battery coil, using the Specials dialog box in Concept 2.1.

Note: The 171 CCC 960 30 and 171 CCC 980 30 require Concept 2.2 with service release 2.

Reserving a Battery Coil


From the PLC Configuration screen, perform the steps in the following table to reserve a battery coil.

Continued on next page

Reserving and Monitoring a Battery Coil, Continued

Reserving a Battery Coil, Continued

Continued on next page

Reserving and Monitoring a Battery Coil, Continued

Monitoring the Battery Coil

Monitor the battery coil in ladder logic or tie it to a lamp or alarm that will indicate when the battery is low.

Interpreting the Battery Coil

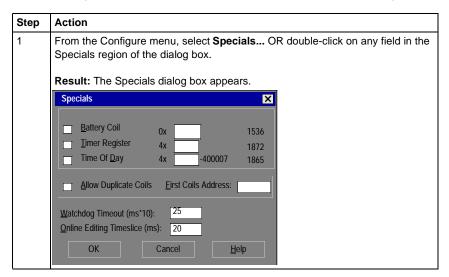
The battery coil will always read either 0 or 1.

- A coil state of 0 indicates that the battery is healthy.
- A coil state of 1 indicates that the battery should be changed.

Setting up the Time-of-Day Clock

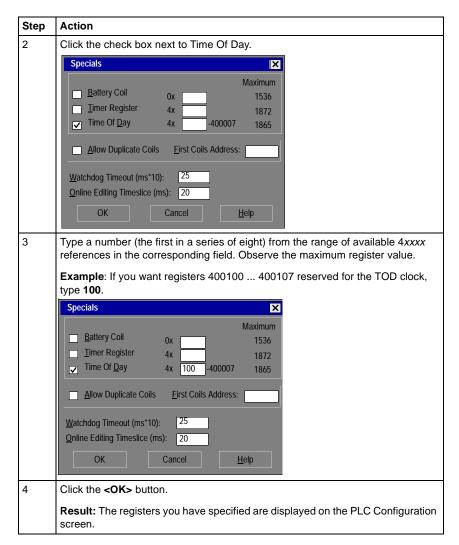
Overview

Each Option Adapter has a time-of-day clock. To use this feature, you must reserve a block of eight 4x registers.


This section describes how to reserve those registers, using Concept 2.1.

Note: The 171 CCC 960 30 and 171 CCC 980 30 require Concept 2.2 with service release 2.

Reserving Registers for the TOD Clock


To reserve registers for the TOD clock, perform the steps in the following table.

Continued on next page

Setting up the Time-of-Day Clock, Continued

Reserving Registers for the TOD Clock, Continued

Continued on next page

Setting up the Time-of-Day Clock, Continued

Next Step

Setting the time.

Note: You can use Concept's Setting the Time feature or use the following procedure to set the time.

Setting the Time

Overview

Once you have reserved a block of registers for the time-of-day clock, you have to set the correct time. With Concept, you must go online and set the register bits individually, using the following guidelines for setting the status bits and setting the time bits. The CPU must be running.

Note: The time-of-day clock complies with guidelines for the year 2000.

Setting the Status Bits

The control register (4x) uses its four most significant bits to report status:

Con	Control Register									
1	2	3	4 5 6 7 8 9 10 11 12 13 14 15 16							
			1 = error							
		1 = /	= All clock values have been set							
	1 = Clock values are being read									
1 = 0	1 = Clock values are being set									

Note: The time-of-day clock sets itself to zero when it resets while it is running.

Setting the Time Bits

The following table shows how the registers handle time-of-day clock data, where register 4*x* is the first register in the block reserved for the clock:

Register	Data Content
4 <i>x</i>	The control register
4 <i>x</i> + 1	Day of the week (Sunday = 1, Monday = 2, etc.)
4x + 2	Month of the year (Jan = 1, Feb = 2, etc.)
4x + 3	Day of the month (131)
4x + 4	Year (0099)
4x + 5	Hour in military time (023)
4x + 6	Minute (059)
4x + 7	Second (059)

Reading the Time-of-Day Clock

Overview

This section uses an example to describe how to interpret the time-of-day clock registers.

Example

If you reserved registers 400100...400107 as your TOD clock registers, set the time bits, and then read the clock at 9:25:30 on Thursday, July 16, 1998, the registers would display the following values:

Register	Reading	Indication
400100	01100000000000000	All clock values have been set; clock values are being read
400101	5 (decimal)	Thursday
400102	7 (decimal)	July
400103	16 (decimal)	16
400104	98 (decimal)	1998
400105	9 (decimal)	9 a.m.
40010 6	25 (decimal)	25 minutes
40010 7	30 (decimal)	30 seconds

Section 12.3 Modifying Modbus Port Parameters

Overview

Purpose

The communication parameters on the Modbus ports are set at the factory. This section describes how to access the Modbus Port Settings dialog box and edit the default parameters.

In This Section

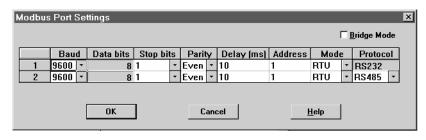
This section contains the following topics:

For This Topic	See Page
Accessing the Modbus Port Settings Dialog Box	337
Changing the Baud Rate	338
Changing Mode and Data Bits	339
Stop Bit Should Not Be Changed	340
Changing Parity	340
Changing the Delay	341
Changing the Modbus Address	342
Changing the Protocol on Modbus Port 2	343

Accessing the Modbus Port Settings Dialog Box

Introduction

Modbus port parameters can be modified using the Modbus Port Settings dialog box in Concept 2.2.

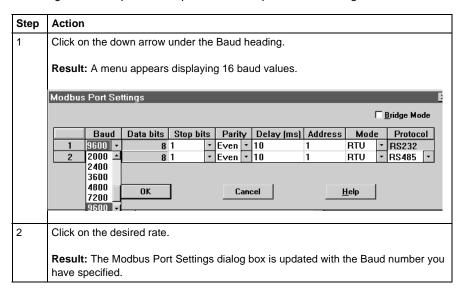

How to Get There

From the Configure menu, select Modbus port settings... .

Modbus Port Default Settings

If you have not previously modified any port parameters, the following dialog box will appear. The dialog box shows the default parameters for two Modbus ports, 1 and 2, if your system configuration supports two ports.

If you have previously modified any communication port parameters, the new values will appear in the dialog box.


Changing the Baud Rate

Overview

Each port can be configured for a baud in the range 50 ... 19,200. Sixteen valid baud rates are user-selectable. The factory-set default is 9600 baud.

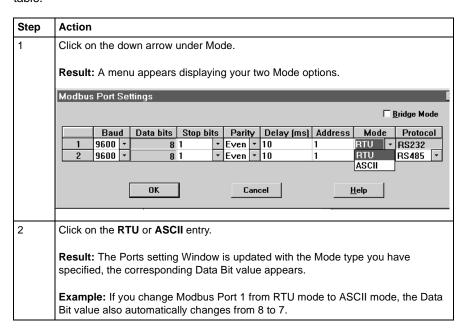
Procedure

To change the baud parameter, perform the steps in the following table.

Changing Mode and Data Bits

Introduction

From the Modbus Port Settings dialog box, each port can be configured to operate in one of two possible modes – RTU or ASCII.

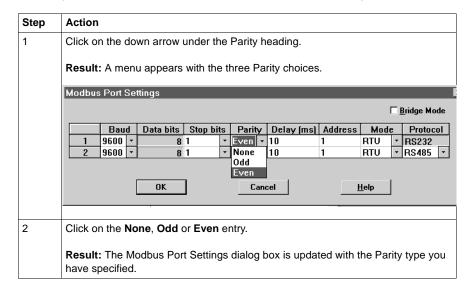

- If the mode is RTU, the number of data bits is always 8.
- If the mode is ASCII, the number of data bits is always 7.

Note: The factory-set default is 8-bit RTU.

Procedure

To change the mode and data bit parameters, perform the steps in the following table.

Stop Bit Should Not Be Changed


Changing Parity

Introduction

From the Modbus Port Setting screen, a port can be configured for even, odd, or no parity checking. The factory-set default is EVEN parity.

Procedure

To change the parity parameter, perform the steps in the following table:

Changing the Delay

Overview

The Delay parameter is set to 10 ms and should be left at this value for most applications. Do not change this parameter unless your application demands it.

If you must change this parameter, you may select a value from 10 \dots 1000 ms, in 10 ms increments.

Delay Timing

If you use baud rates lower than 4800, adjust the delay timing as indicated in the following table:

Baud Rate	Delay (in Msec)
2400	20
1200	30
600	50
300	100

Procedure

Follow the steps in the table below to change the delay:

Step	Action
1	Click on the Delay parameter for the port.
2	Type a new value in the range 10 1000 ms, using increments of 10 ms.

Changing the Modbus Address

Overview

Each port can be assigned a Modbus network address in the range 1 ... 247. That address must be unique with respect to all other device addresses on the same Modbus networks.

Since Modbus port 1 and Modbus port 2 are always on different Modbus networks, they can both be assigned the same address value without conflict. The factory-set default for both ports is address 1.

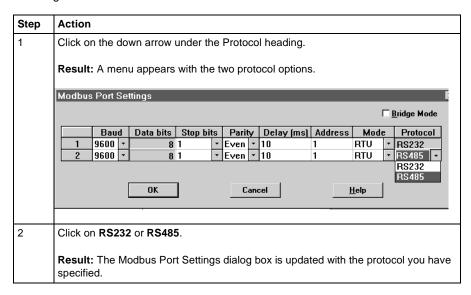
Procedure

From the Modbus Port Settings dialog box, perform the steps in the following table to change the Modbus Address:

Step	Address
1	Click on the Address field for the appropriate Modbus port.
2	Type a new value in the range 1 247.

Set the Stop Bit at 1.

Bridge mode is not supported.


Changing the Protocol on Modbus Port 2

Overview

If your Momentum M1 CPU is using the Modbus Port 2 provided by the 172 JNN 210 32 Option Adapter, you can specify whether it will use the RS232 or RS485 protocol. The factory-set default for Modbus Port 2 is RS485.

Procedure

From the Modbus Port Settings dialog box, perform the steps in the following table to change the Protocol on Modbus Port 2.

Section 12.4 Configuring Ethernet Address Parameters and I/O Scanning

Overview

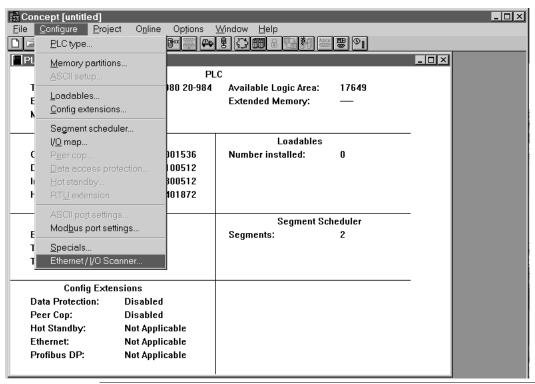
Purpose

This section describes how to configure the Ethernet port using Concept 2.2, including IP address, other address parameters and I/O scanning.

In This Section

This section contains the following topics:

For This Topic	See Page
Accessing the Ethernet / I/O Scanner Screen	345
Ethernet Configuration Options	347
Setting Ethernet Address Parameters	348
Configuring I/O	350
Completing the I/O Configuration	354

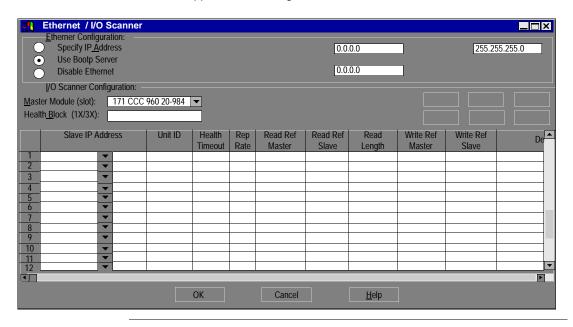

Accessing the Ethernet / I/O Scanner Screen

Introduction

Ethernet address and I/O scanning parameters can be modified using the Ethernet / I/O Scanner dialog box in Concept 2.2.

How to Get There

From the Configure menu, select **Ethernet / I/O Scanner...** . This menu option will only be available if you have selected an M1 Processor Adapter with an Ethernet port.


Continued on next page

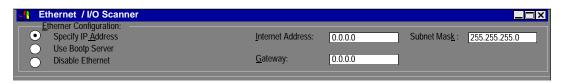
Accessing the Ethernet / I/O Scanner Screen, Continued

Ethernet Port Default Settings

If you have not previously modified any port parameters, the following dialog box will appear. The dialog box shows the default parameters for the Ethernet port.

If you have previously modified any communication port parameters, the new values will appear in the dialog box.

Ethernet Configuration Options


Overview

The Ethernet / I/O Scanner screen offers three options for configuring the Ethernet port on an M1 Processor Adapter:

- Specify IP Address
- Use Bootp Server
- Disable Ethernet

Specify IP Address

This option allows you to type the IP address, gateway and subnet mask in the text boxes in the upper right-hand corner of the screen.

Use Bootp Server

This is the default. Click this radio button if you want the address parameters to be assigned by a Bootp server. If you select this option, the address parameter text boxes in the upper right-hand corner of the screen will be grayed out. They will not display the actual address parameters.

Disable Ethernet

Click this radio button if you want to disable the Ethernet port. Disabling the port will reduce the scan time for the Processor Adapter.

Note: DISABLING ETHERNET RESULTS IN LOSS OF COMMUNICATIONS. If you choose the Disable Ethernet option, you will no longer be able to communicate with the adapter via the Ethernet port. Programming must then be done via an RS485/232 port or via a Modbus Plus port.

Setting Ethernet Address Parameters

Overview

If you choose to specify the IP address, you should complete all three text boxes in the upper right-hand corner of the dialog box:

- IP Address
- Gateway
- Subnet Mask

CAUTION

POTENTIAL FOR DUPLICATE ADDRESSES

Obtain a valid IP address from your system administrator to avoid duplication

Failure to observe this precaution can result in injury or equipment damage.

IP Address

Type a valid IP address in the Internet Address text box, as shown:

Gateway

Consult your system administrator to determine the appropriate gateway. Type it in the Gateway text box, as shown:

Continued on next page

Setting Ethernet Address Parameters, Continued

Subnet Mask

Consult your system administrator to obtain the appropriate subnet mask. Type it in the Subnet Mask text box, as shown:

Configuring I/O

Overview

Once the Ethernet port address parameters have been set, you may assign parameters for I/O scanning.

Health Block

Specify the starting register of the register block which will contain the health bits for each of the IO Scanner transactions that you intend to configure.

If you designate a 3x register, the health bits for 64 transactions (maximum) will be stored in 4 contiguous registers starting at the address you specify.

If you designate a 1x register, the health bits will be stored in 64 contiguous discrete registers.


A health bit is set only if the associated transaction has completed successfully within the last health timeout period for that transaction (see below). When the PLC is started, all configured transactions have their respective health bit preset to 1. If the transaction subsequently fails, then the health bit is cleared after the programmed health timeout period has expired.

Continued on next page

Configuring I/O, Continued

IP Address

Type the IP address of the slave module in the IP address column. This address will be stored in a pull-down menu, so that you can use it in another row by clicking on the down arrow and selecting it, as shown:

Unit ID

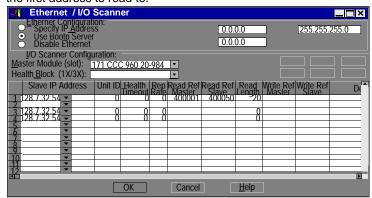
If the slave module is an I/O device attached to the specified slave module, use the Unit ID column to indicate the device number.

Health Timeout

Use this column to specify the length of time in ms to try the transaction before timing out. Valid values are 0 ... 65,000 ms (1 min). To avoid timing out, specify 0.

If you specify a time, after the specified time without a valid transaction, the health bit will be reset to zero.

Rep Rate

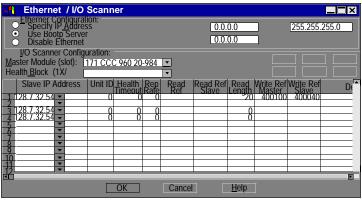

Use this column to specify how often in ms to repeat the transaction. Valid values are $0 \dots 65{,}000$ ms (1 min). To repeat the transaction continually, specify 0.

Continued on next page

Configuring I/O, Continued

Read

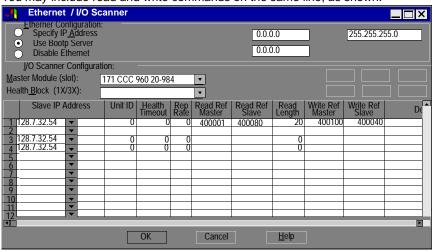
Use the read function to read data from the slave to the master. The Read Ref Slave column specifies the first address to be read. The Read Count column specifies the number of registers to read. The Read Ref Master column specifies the first address to read to.



Note: For Ethernet modules, the Read Ref Slave and Write Ref Slave always start with register 400001.

Write

Use the write function to write data from the master to the slave. The Write Ref Master column specifies the first address to write. The Write Count column specifies the number of registers to write. The Write Ref Slave column specifies the first address to write to:



Continued on next page

Configuring I/O, Continued

Read and Write

You may include read and write commands on the same line, as shown:

Description

You can type a brief description (up to 32 characters) of the transaction in the Description column.

Completing the I/O Configuration

Introduction

This section describes how to complete your Ethernet I/O configuration using the Copy, Cut, Paste, Delete, Sort and Fill Down buttons.

Copy and Paste

To save time when typing similar read and write commands, you may copy and paste entire rows within your configuration. Follow the steps in the table below:

Step	Action
1	Select the row you want to copy by clicking on the row number at the far left.
2	Click the Copy button above the I/O configuration list.
3	Select the row where you would like to paste the data (by clicking on the row number at the far left).
4	Click the Paste button above the I/O configuration list.

Continued on next page

Completing the I/O Configuration, Continued

Cut and Paste

To move a row within the configuration list, follow the directions for copying, only

use the Cut button instead of the Copy button.

Delete To delete a row from the configuration list, select the row by clicking on the row

number at the far left. Then click the **Delete** button.

Sort To sort the I/O configuration list, select a column by clicking on the column heading

(i.e. Read Ref Master). Then click the **Sort** button.

Continued on next page

Completing the I/O Configuration, Continued

Fill Down

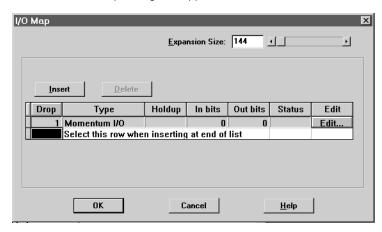
To copy part of any row to the next row or to a series of adjoining rows, use the Fill Down button, following the steps in the table below:

Step	Action
1	Use your mouse to select the data you would like to copy and the cells you would like to copy it to.
	Note: You must select one contiguous block of cells, with the data to be copied in the first row. You cannot select two separate blocks.
2	Click the Fill Down button.
	Result: The data from the first row is copied to the selected cells below.

Section 12.5 I/O Mapping the Local I/O Points

Accessing and Editing the I/O Map

Introduction

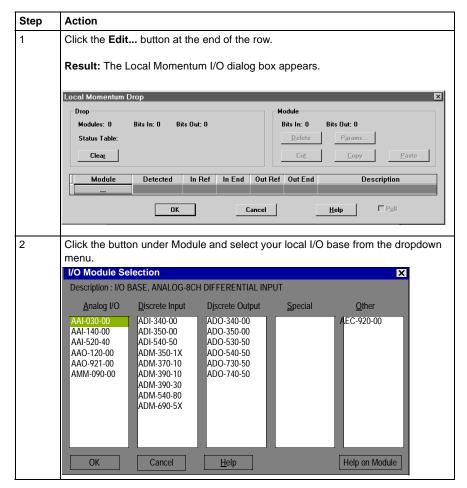

Every M1 Processor Adapter is assembled on an I/O base. The I/O points on the base are the local I/O for that processor.

As part of the configuration process, you need to create an I/O Map for the local I/O. The I/O Map assigns the appropriate range and type of reference values (0x, 1x, 3x, or 4x) from the CPU's state RAM to the input and/or output points on the local base unit.

Accessing an I/O Map Screen

To access an I/O Map screen from the PLC Configuration screen, select **I/O map...** from the **Configure** menu.

Result: The I/O Map dialog box appears.



Continued on next page

Accessing and Editing the I/O Map, Continued

Editing the Local I/O Map

From the I/O Map dialog box, perform the steps in the following table to edit the local I/O Map:

Continued on next page

Accessing and Editing the I/O Map, Continued

Editing the Local I/O Map, Continued

Step	Action
3	Double-click on your selection or click the <ok></ok> button.
	Result: The I/O base you selected is displayed in the Local Momentum Drop dialog box.
4	Complete any required fields for Input and Output References.
5	Click the <ok></ok> button.

Local I/O Only

This screen is always used to I/O Map the local I/O base only. No other I/O base units can be I/O Mapped on this first screen.

I/O Bus: A Special Case

If you are I/O Mapping a Processor Adapter which supports I/OBus communication stations, you will need to go to a separate I/O Map screen for Drop 2. That process is described in I/O Mapping an I/OBus Network with Concept on page 361.

I/O Mapping an I/OBus Network with Concept

At a Glance

Purpose

This chapter describes how to I/O Map an I/OBus network using Concept 2.2.

Topics

This chapter contains the following topics:

For This Topic	See Page
Supporting an I/O Map for an I/OBus Network	362
Accessing an I/O Map Screen for an I/OBus Network	363
Editing the I/OBus I/O Map	365

Supporting an I/O Map for an I/OBus Network

Introduction

Three Processor Adapters have an I/OBus communication port that enables them to control and communicate with other network slave I/O:

- 171 CCS 760 00
- 171 CCC 760 10
- 171 CCC 960 20
- 171 CCC 960 30

If you are using I/OBus to control network I/O, you need to write an I/O Map in your configuration. This section describes the configuration parameters required to support an I/O Map for I/OBus.

I/O Map Reserved Words

Be sure that you have reserved enough words for I/O mapping to support your I/O Bus network. The default setting is 144 words. To estimate the number of words you require, allow:

- 16 words for overhead
- 10 words/module on the network (including both the local and the network I/O)

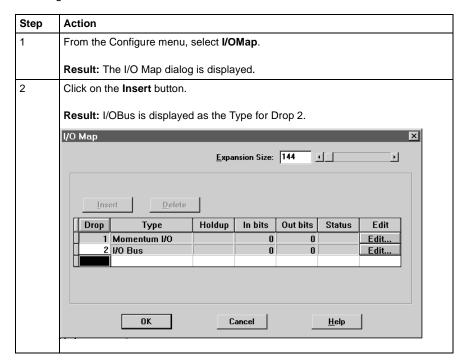
Allot sufficient memory to completely I/O Map your network, while preserving as much user memory as possible for your application program.

Number of Segments

Be sure that the number of segments is set to 2. If you have changed this setting to 1, you will not be able to support an I/OBus network.

Next Step

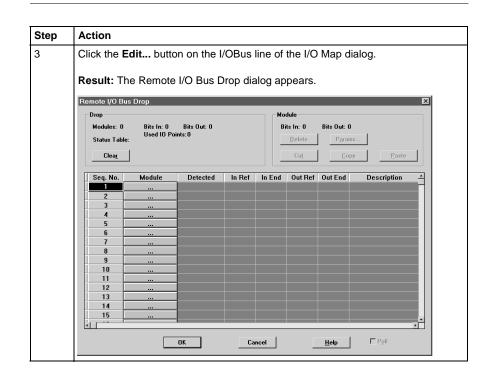
Once you are sure that your Configuration Overview parameters are set properly, you can access an I/O Map screen for an I/OBus network.


Accessing an I/O Map Screen for an I/OBus Network

Overview

This section describes how to access an I/O Map screen for an I/OBus network using Concept 2.2.

Procedure


To access the I/O Map screen for your I/OBus network, perform the steps in the following table.

Continued on next page

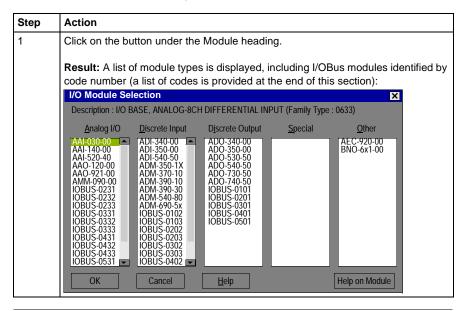
Accessing an I/O Map Screen for an I/OBus Network, Continued

Procedure, Continued

Next Step

Editing the I/OBus I/O map.

Editing the I/OBus I/O Map


Overview

The maximum number of modules which can be I/O Mapped on the I/OBus network depends on your Processor Adapter and its executive:

Processor Adapter	Executive	Max. Modules	Max. I/O Bits
171 CCS 760 00	984	128	2048
	IEC	44	1408
171 CCC 760 10	984	128	2048
	IEC	44	1408
171 CCC 960 20	984	256	4096
	IEC	128	1408
171 CCC 960 30	984	256	4096
	IEC	128	1408

Procedure

To enter I/O bases or Interbus I/O modules using the Remote I/OBus Drop dialog, perform the steps in the following table.

Continued on next page

Editing the I/OBus I/O Map, Continued

Procedure, Continued

Step	Action
2	Click on the desired model number and then click the <ok></ok> button.
	Result: The module type and its description are displayed on the Remote I/O Bus Drop screen. The proper field is enabled so that you can assign state RAM reference(s) to the unit.
3	Enter the desired reference number. Where there is more than one register the balance is automatically assigned.
4	Continue to select and map modules one after the other. You must enter the modules in contiguous node slots on the screen, e.g. you cannot enter a module in slot 7 if you have not filled slot 6.

Generic InterBus Module Identifier Codes

InterBus device manufacturers embed an identifier code in their network slave modules in conformance with InterBus standards. The code identifies a device by its I/O type but not its specific model or name.

I/OBus recognizes the InterBus identifier codes provided below and allows you to I/O Map devices that use these codes. However, you cannot use the module zoom screens to define the parameters for these InterBus modules.

Identifier Code	I/O Type
IOBUS-0101	One-word discrete output
IOBUS-0102	One-word discrete input
IOBUS-0103	One-word bidirectional
IOBUS-0201	Two-word discrete output
IOBUS-0202	Two-word input
IOBUS-0203	Two-word bidirectional
IOBUS-0231	Two-word analog output
IOBUS-0232	Two-word analog input
IOBUS-0233	Two-word analog bidirectional

Continued on next page

Editing the I/OBus I/O Map, Continued

Generic InterBus Module Identifier Codes, Continued

Identifier Code	I/O Type
IOBUS-0301	Three-word discrete output
IOBUS-0302	Three- word input
IOBUS-0303	Three-word bidirectional
IOBUS-0331	Three-word analog output
IOBUS-0332	Three-word analog input
IOBUS-0333	Three-word analog bidirectional
IOBUS-0401	Four-word discrete output
IOBUS-0402	Four-word input
IOBUS-0403	Four-word bidirectional
IOBUS-0431	Four-word analog output
IOBUS-0432	Four-word analog input
IOBUS-0433	Four-word analog bidirectional
IOBUS-0501	Five-word discrete output
IOBUS-0502	Five-word input
IOBUS-0503	Five-word bidirectional
IOBUS-0531	Five-word analog output
IOBUS-0532	Five-word analog input
IOBUS-0533	Five-word analog bidirectional
IOBUS-0633	Eight-word analog bidirectional
IOBUS-1233	16-word analog bidirectional

Configuring a Modbus Plus Network in Concept with Peer Cop

At a Glance

Purpose

Communication transactions over Modbus Plus are defined in Concept 2.1 by a configuration tool called Peer Cop. This section uses examples to explain how to use Peer Cop to configure the two types of network architecture:

- An I/O network, where the Peer Cop of the CPU defines all the communication transactions over the full network.
- A supervisory network with two or more CPUs communicating with each other and with additional devices on the network.

Note: The 171 CCC 960 30 and 171 CCC 980 30 require Concept 2.2 with service release 2.

In This Chapter

This chapter contains the following sections:

For This Topic	See Section	On Page
Getting Started	1	370
Using Modbus Plus to Handle I/O	2	376
Passing Supervisory Data over Modbus Plus	3	387

Section 14.1 Getting Started

Overview

Purpose

This section explains how to access the Peer Cop Configuration Extension screen and describes the default screen.

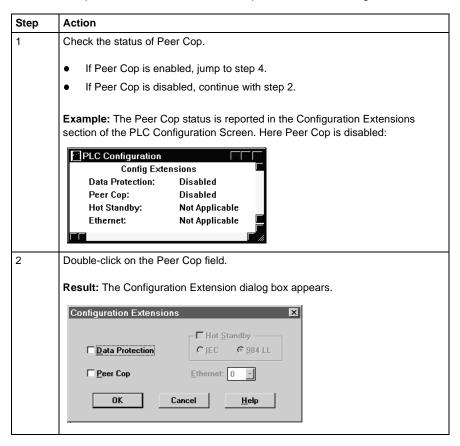
In This Section

This section contains the following topics:

For This Topic	See Page
Accessing the Peer Cop Dialog Box	371
Adjusting the Amount of Extension Memory	373
Other Default Settings in the Peer Cop Dialog Box	374

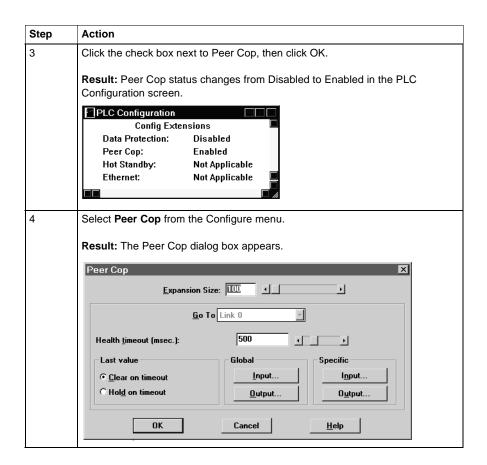
Accessing the Peer Cop Dialog Box

Introduction


This section describes how to access the Peer Cop dialog box in Concept 2.1.

Note: The 171 CCC 960 30 and 171 CCC 980 30 require Concept 2.2 with service release 2.

Accessing the Screen


Follow the steps below to access the Peer Cop from the PLC Configuration Screen.

Continued on next page

Accessing the Peer Cop Dialog Box, Continued

Accessing the Screen, Continued

Adjusting the Amount of Extension Memory

Introduction

The default amount of memory allotted for Configuration Extension is 100 words. This amount may be adjusted within the Peer Cop dialog box.

Extension Memory Size

The minimum Peer Cop memory requirement is 20 words; the maximum is 4041 words.

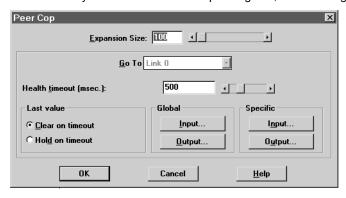
Estimating How Much Memory to Reserve

Follow these guidelines for estimating the amount of extension memory you will need for your Peer Cop database:

For	Add	Up to a maximum of
Overhead	9 words	
Global output	5 words	
Global input	number of words= number of devices x (1 + 2 x number of device subentries)	1088 words
Specific output	2 words for every device entry in Peer Cop	128 words
Specific input	2 words for every device entry in Peer Cop	128 words

Changing the Amount of Memory

Type the desired size in the Expansion Size text box or use your mouse to adjust the button on the horizontal slider.


Other Default Settings in the Peer Cop Dialog Box

Overview

This section describes the default settings for Health Timeout and Last Value.

Diagram

The first time you access the Peer Cop dialog box, the following screen appears:

Health Timeout

The default Timeout is 500 ms.

Timeout is the maximum interval that Modbus Plus on a Peer-Copped device will remain healthy without communication activity. If this interval is exceeded, the device will clear its network health bit and will no longer try to communicate via Modbus Plus.

The timeout interval must be in the range 20...2000 ms, and it must be specified as an increment of 20 ms.

Continued on next page

Other Default Settings in the Peer Cop Dialog Box, Continued

Last Value

The default Last Value setting is Clear on timeout. This setting specifies how a peer-copped device will treat the last values received before a timeout, once Modbus Plus communications have been restored.

Option	Effect
Clear on timeout	Sets all values received before timeout to 0.
Hold on timeout	Retains the values received before timeout.

Section 14.2 Using Modbus Plus to Handle I/O

Overview

Purpose

This section uses an example to explain how to configure a Modbus Plus network for I/O servicing. In this example, a CPU will control four Momentum I/O modules.

In This Section

This section contains the following topics:

For This Topic	See Page
Devices on the Network	377
Changing the Peer Cop Summary Information	378
Specifying References for Input Data	380
Specifying References for Output Data	384

Devices on the Network

Introduction

This section describes the five devices which comprise the sample network and the strategy used to assign addresses.

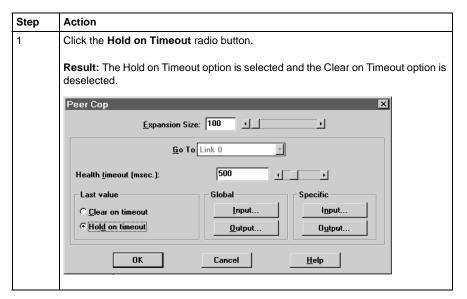
The Network Devices

The following table lists the Modbus Plus address and components of each Momentum module on the network:

Modbus Plus Address	I/O Base Type	Adapter Type
1	(type not specified)	M1 Processor Adapter (type not specified)
		172 PNN 210 22 Modbus Plus Option Adapter
2	170 ADI 340 00 16-point input	170 PNT 110 20 Modbus Plus Communication Adapter
3	170 ADO 340 00 16-point output	170 PNT 110 20 Modbus Plus Communication Adapter
4	170 ADI 350 00 32-point input	170 PNT 110 20 Modbus Plus Communication Adapter
5	170 ADO 350 00 32-point output	170 PNT 110 20 Modbus Plus Communication Adapter

Address Strategy

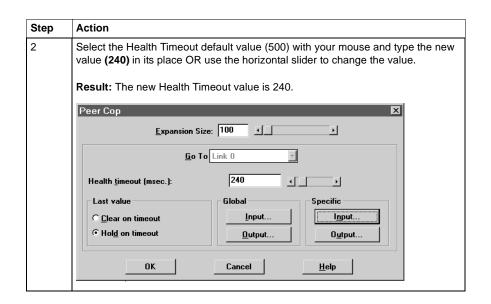
In this type of architecture, assign the lowest network address (1) to the CPU. When the network initializes, the CPU will be the first device to get the token, and the token rotation table will be built with respect to the controlling device on the network.


Changing the Peer Cop Summary Information

Overview

For our example, we will change the default Health Timeout setting to 240 ms and the default Last Value setting to ${\tt Hold}$ on ${\tt timeout}$.

Procedure


Follow the steps in the table below to change the default values, using the Peer Cop dialog box.

Continued on next page

Changing the Peer Cop Summary Information, Continued

Procedure, Continued

Next Step

Specifying references for input data.

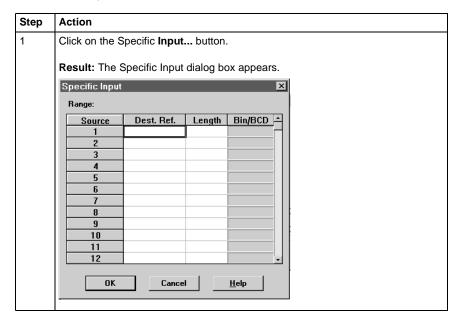
Specifying References for Input Data

Introduction

This section describes how to specify the references for input data. In this example, you will start by accessing the device at Modbus Plus address 2, which is a 170 ADI 340 00 16-point input module.

Device Requirements

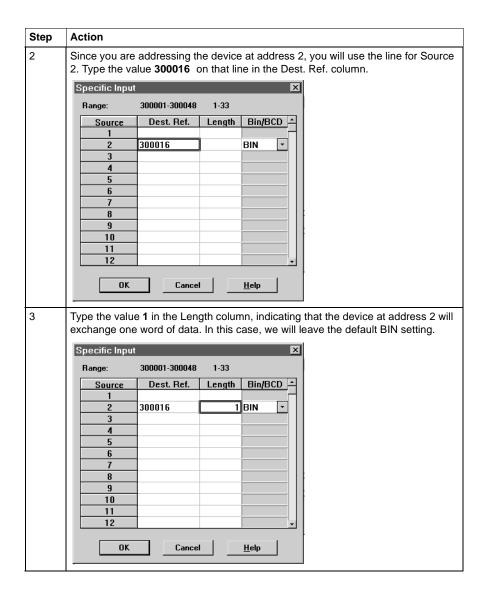
When you use Peer Cop to handle a Modbus Plus I/O architecture, you need to be aware of the type of I/O you are configuring at each network address. Peer Cop does not know that the device at address 2 is a discrete 16-point input module. You need to know that a specific input reference with a length of one word (16 bits) is required to handle this module.


We will assign a 3x register (300016) as a specific input to the CPU. When the 170 ADI 340 00 sends input data to the CPU, it will be sent to this register.

Continued on next page

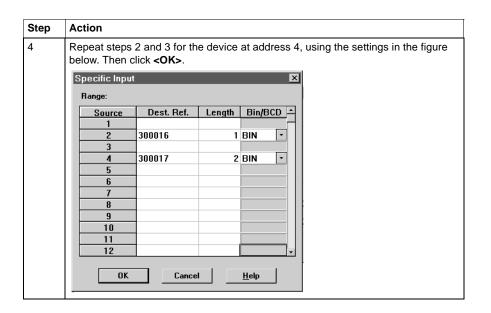
Specifying References for Input Data, Continued

Procedure


Follow the steps in the table below to define the specific input, starting from the Peer Cop dialog box.

Continued on next page

Specifying References for Input Data, Continued


Procedure, Continued

Continued on next page

Specifying References for Input Data, Continued

Procedure, Continued

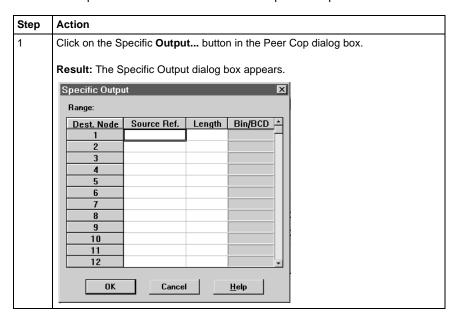
Next Step

Specifying output references.

Specifying References for Output Data

Introduction

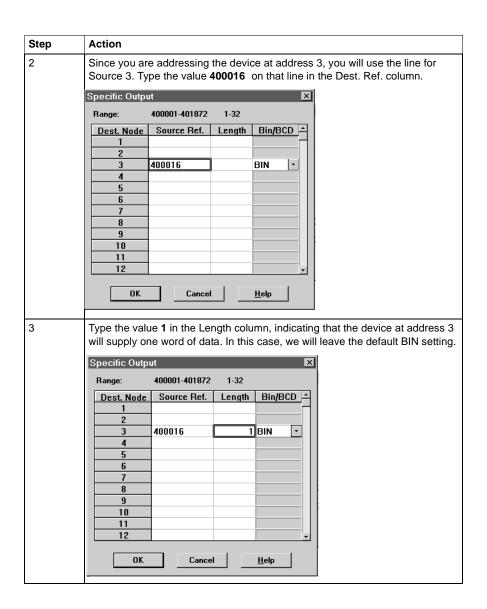
This section describes how to specify the references for output data. In this example, you will start by accessing the device at Modbus Plus address 3, which is a 170 ADO 340 00 16-point output module.


Device Requirements

When you use Peer Cop to handle a Modbus Plus I/O architecture, you need to know which type of I/O you are configuring at each network address and how many input or output references each device requires. In this example, we will create a specific output reference with a length of one word (16 bits).

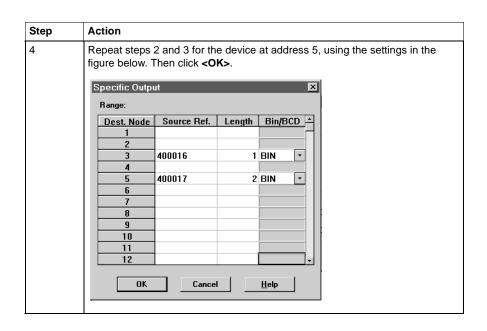
We also will assign a 4*x* register (400016) as a specific input to the CPU. When the the 170 ADO 340 00 sends input data to the CPU, it will be sent to this register.

Procedure


Follow the steps in the table below to define the specific output.

Continued on next page

Specifying References for Output Data, Continued


Procedure, Continued

Continued on next page

Specifying References for Output Data, Continued

Procedure, Continued

Section 14.3 Passing Supervisory Data over Modbus Plus

Overview

Purpose

This Peer Cop example deals with a network where three CPUs communicate over Modbus Plus. Each device will need to have its own Peer Cop configuration.

In This Section

This section contains the following topics:

For This Topic	See Page
Devices on the Network	388
Specifying References for Input and Output Data	389
Defining the References for the Next Node	393
Defining References for the Supervisory PLC	396

Devices on the Network

Introduction

This section describes the three CPUs which exchange data over the sample Modbus Plus network and the strategy used to assign node addresses.

Devices

The three CPUs and their functions are described in the following table:

MB+ Address	СРИ	Function
1	Pentium supervisory computer with an ATRIUM 180-CCO-111-01 host-based PLC card	Receives specific input data and sends global outputs
2	171 CCS 760 00 Momentum M1 Processor Adapter with 172 PNN 210 22 Modbus Plus Option Adapter	Controls I/OBus network and exchanges data with ATRIUM supervisor
3	171 CCS 760 00 Momentum M1 Processor Adapter with 172 PNN 210 22 Modbus Plus Option Adapter	Controls I/OBus network and exchanges data with ATRIUM supervisor

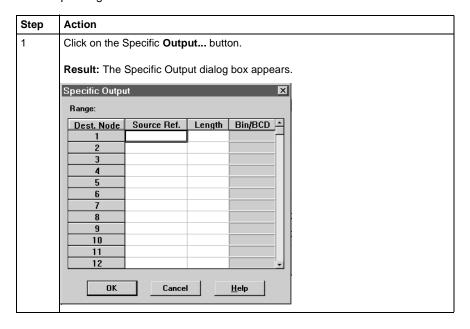
Address Strategy

In this type of architecture, assign the lowest network address (1) to the supervisory computer. When the network initializes, the supervisor will be the first device to get the token, and the token rotation table will be built with respect to the supervising device.

Specifying References for Input and Output Data

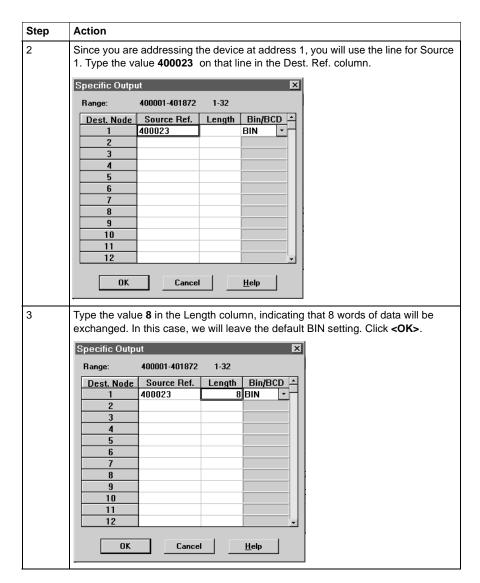
Overview

We will now set up the 171 CCS 760 00 Momentum M1 CPU at Modbus Plus address 2 to:


- send eight 4x registers of specific output to the supervisory computer at Modbus Plus address 1.
- receive five 4x registers of global input data from the ATRIUM supervisor.
 These registers are the first five registers in a 10-register block of global outputs broadcast by the supervisory controller.

Note: For this example, we will use the default values for Health Timeout (500 ms) and Last Value (Clear on timeout).

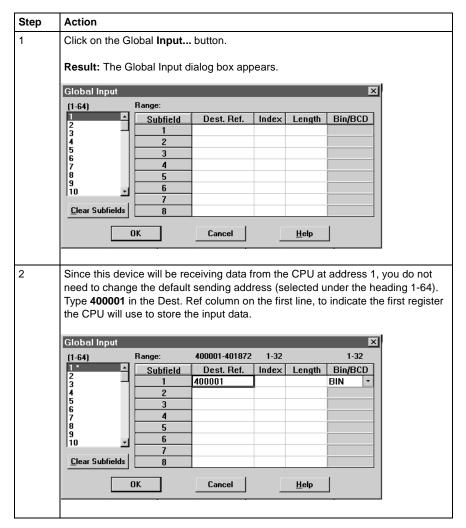
Defining the Specific Output


The following table describes how to define the specific output, starting from the Peer Cop dialog box.

Continued on next page

Specifying References for Input and Output Data, Continued

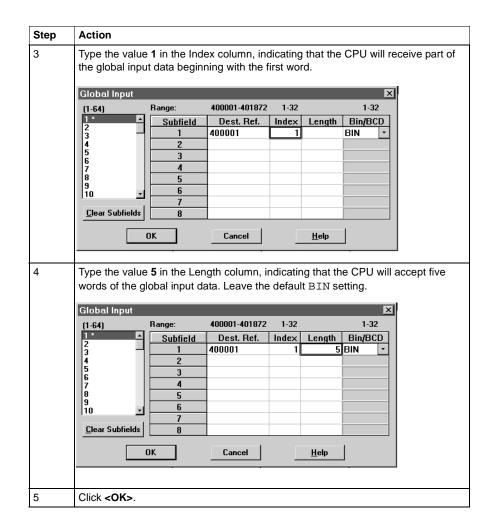
Defining the Specific Output, Continued



Continued on next page

Specifying References for Input and Output Data, Continued

Defining the Global Inputs


Now the M1 needs to be Peer Copped to receive five words of global data from the supervisory PLC at Modbus Plus address 1. Follow the steps in the table specify the input reference.

Continued on next page

Specifying References for Input and Output Data, Continued

Defining the Global Inputs, Continued

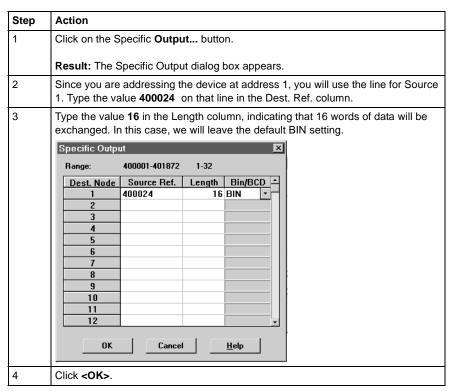
Next Step

Defining the references for the next node.

Defining the References for the Next Node

Overview

We now want to attach the Concept 2.2 programming panel to the 171 CCS 760 00 Momentum M1 CPU at Modbus Plus address 3 and create a similar Peer Cop for this device to communicate with the supervisory PLC at Modbus Plus address 1. In this case, we want the M1:


- to send 16 words of specific output to the supervisor.
- to receive the last seven words of global input from the supervisor. (Remember that the supervisor will be transmitting a total of 10 contiguous words of global data over the network.)

Continued on next page

Defining the References for the Next Node, Continued

Defining Specific Outputs

Follow the steps in the table below to define the specific output in Peer Cop.

Continued on next page

Defining the References for the Next Node, Continued

Defining Global Inputs

Follow the steps in the table below to define the global input data from the supervisory PLC at Modbus Plus address 1.

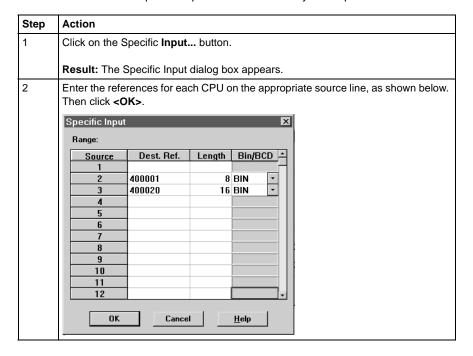
Step	Action		
1	Click on the Global Input button.		
	Result: The Global Input dialog box appears.		
2	Since this device will be receiving data from the CPU at address 1, you do not need to change the default sending address (selected under the heading 1-64). Type 400001 in the Dest. Ref column on the first line, to indicate the first register the CPU will use to store the input data.		
3	Type the value 4 in the Index column, indicating that the CPU will receive part of the global input data beginning with the fourth word.		
4	Type the value 7 in the Length column, indicating that the CPU will accept seven words of the global input data. Leave the default BIN setting. Global Input [1-64] Range:		
	Subfield Dest. Ref. Index Length Bin/BCD		
5	Click <ok>.</ok>		

Next Step

Defining references for the supervisory PLC.

Defining References for the Supervisory PLC

Overview

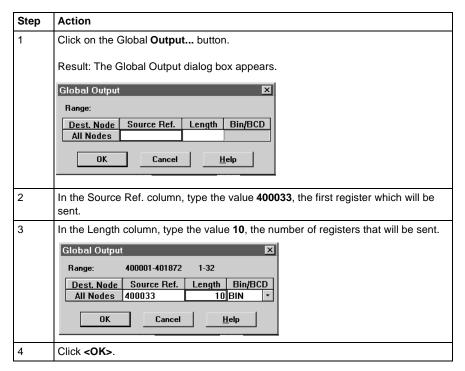

At this point, we will attach the Concept 2.1 programming panel to the ATRIUM 180-CCO-111-01 supervisory PLC at Modbus Plus address 1 and set up Peer Cop screens to handle the M1 CPUs at addresses 2 and 3.

We know that the M1 at Modbus Plus address 2 is sending eight words of specific output to the supervisor and that the M1 at Modbus Plus address 3 is sending 16 words of specific output to the supervisor. The supervisor will receive this data as specific inputs.

We also know that the supervisor is sending 10 words of global data, parts of which will be received by both of the M1 CPUs.

Defining the Specific Inputs

First we will define the specific inputs to be received by the supervisor.



Continued on next page

Defining References for the Supervisory PLC, Continued

Defining the Global Outputs

This supervisory CPU sends out 10 words of global output, parts of which are received by each of the M1 CPUs.

Saving to Flash with Concept

Saving to Flash

Overview

You save to Flash so that, in the event of an unexpected loss of power, the

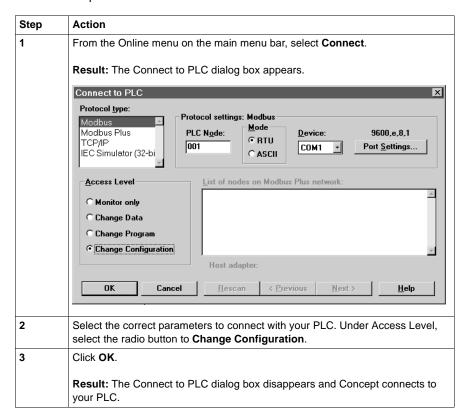
application logic and state RAM values will be preserved.

This section describes how to save the application logic and state RAM values to Flash using Concept 2.1.

Note: You can save to Flash if you are using the 984LL executive for all models,

except 171 CCC 960 30 and the 171 CCC 980 30. You can only save to Flash on the 171 CCC 960 30 and the 171 CCC 980 30 if you are using

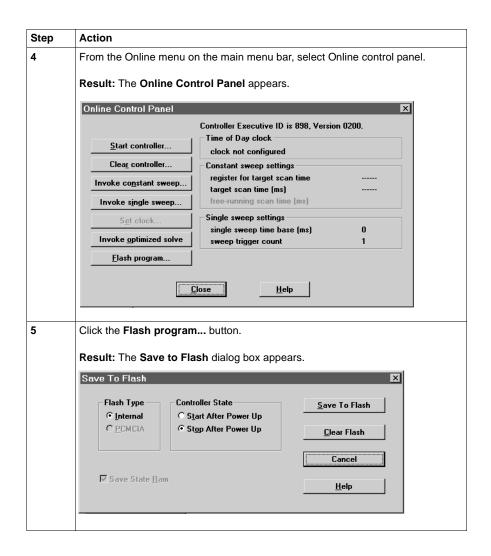
the Concept IEC executive.


Note: The 171 CCC 960 30 and 171 CCC 980 30 require Concept 2.2 with

service release 2.

Saving to Flash, Continued

Procedure


Follow the steps in the table below to save to Flash:

Continued on next page

Saving to Flash, Continued

Procedure, Continued

Continued on next page

Saving to Flash, Continued

Procedure, Continued

Step	Action	
6	Select the appropriate parameters in the dialog box and click the Save to Flash button.	
	Result: A dialog box will appear asking if you really want to save to Flash.	
	Note: When you press the Yes (for Save to Flash) button, the previous applications will be overwritten.	
7	Click the Yes button.	
	Result: Concept completes the save to Flash and a message appears on the screen confirming the completed save.	

Appendices

At a Glance

Purpose

This part provides supplemental information on Ladder Logic elements and instructions and LED flash patterns and error codes.

In This Part

This part contains the following chapters:

For Information On	See Appendix	See Page
Ladder Logic Elements and Instructions	A	405
Run LED Flash Patterns and Error Codes	В	417

Ladder Logic Elements and Instructions

At a Glance

Overview

The executive firmware for the Momentum M1 Processor Adapters supports the ladder logic programming language for control applications. The following core set of ladder logic elements (contacts, coils, vertical and horizontal shorts) and instructions are built into the CPU's firmware package. For a detailed description of all instructions, see the *Ladder Logic Block Library User Guide* (840 USE 101 00).

In This Appendix

This appendix contains the following topics:

For This Topic	See Page
Standard Ladder Logic Elements	406
DX Loadable Support	410
A Special STAT Instruction	411

Standard Ladder Logic Elements

Introduction

This section provides a glossary of standard ladder logic symbols and instructions.

Ladder Logic Symbols

The table below provides the meaning of standard ladder logic symbols.

Symbol	Meaning	Nodes Consumed
4 -	Normally open (N.O.) contact	1
1/-	Normally closed (N.C.) contact	1
11-	Positive transitional (P.T.) contact	1
- ↓ -	Negative transitional (N.T.) contact	1
-()-	Normal coil	1
-(L)(M)-	Memory-retentive or latched coil; the two symbols mean the same thing, and the user may select the preferred version for online display.	1
_	Horizontal short	1
	Vertical short	0

Continued on next page

Standard Ladder Logic Elements, Continued

Standard Ladder Logic Instructions

The table below provides standard ladder logic instructions and their meaning.

Symbol	Meaning	Nodes Consumed
Counter and Timer Instructions		
UCTR	Counts up from 0 to a preset value	2
DCTR	Counts down from a preset value to 0	2
T1.0	Timer that increments in seconds	2
T0.1	Timer that increments in tenths of a second	2
T.01	Timer that increments in hundredths of a second	2
T1MS	A timer that increments in milliseconds	3
Integer Math	Instructions	
ADD	Adds top node value to middle node value	3
SUB	Subtracts middle node value from top node value	3
MUL	Multiplies top node value by middle node value	3
DIV	Divides top node value by middle node value	3
DX Move Instructions		
R∀T	Moves register values to a table	3
T∀R	Moves specified table values to a register	3
T∀T	Moves a specified set of values from one table to another table	3
BLKM	Moves a specified block of data	3
FIN	Specifies first-entry in a FIFO queue	3
FOUT	Specifies first-entry out of a FIFO queue	3
SRCH	Performs a table search	3
STAT	CROSS REF	1

Continued on next page

Standard Ladder Logic Elements, Continued

Standard Ladder Logic Instructions, Continued

Symbol	Meaning	Nodes Consumed	
DX Matrix Ins	DX Matrix Instructions		
AND	Logically ANDs two matrices	3	
OR	Does logical inclusive OR of two matrices	3	
XOR	Does logical exclusive OR of two matrices	3	
COMP	Performs logical complement of values in a matrix	3	
CMPR	Logically compares values in two matrices	3	
MBIT	Logical bit modify	3	
SENS	Logical bit sense	3	
BROT	Logical bit rotate	3	
AD16	Signed/unsigned 16-bit addition	3	
SU16	Signed/unsigned 16-bit subtraction	3	
TEST	Compares the magnitudes of the values in the top and middle nodes	3	
MU16	Signed/unsigned 16-bit multiplication	3	
DV16	Signed/unsigned 16-bit division	3	
ITOF	Signed/unsigned integer-to-floating point conversion	3	
FTOI	Floating point-to-signed/unsigned integer conversion	3	
EMTH	Performs 38 math operations, including floating point math operations and extra integer math operations such as square root	3	
Ladder Logic Subroutine Instructions			
JSR	Jumps from scheduled logic scan to a ladder logic subroutine	2	
LAB	Labels the entry point of a ladder logic subroutine	1	
RET	Returns from the subroutine to scheduled logic	1	

Continued on next page

Standard Ladder Logic Elements, Continued

Standard Ladder Logic Instructions, Continued

Symbol	Meaning	Nodes Consumed
Other Specia	al Purpose Instructions	
CKSM	Calculates any of four types of checksum operations (CRC-16, LRC, straight CKSM, and binary add)	3
MSTR	Specifies a function from a menu of networking operations	3
PID2	Performs proportional-integral-derivative calculations for closed-loop control	3
TBLK	Moves a block of data from a table to another specified block area	3
BLKT	Moves a block of registers to specified locations in a table	3
XMIT	Allows CPU to act as a Modbus master	3

DX Loadable Support

Introduction

The M1 CPUs can use DX loadable instructions, which support optional software products that can be purchased for special applications. DX loadables provide the user with special ladder logic functions.

Loaded on Page 0

The code for DX loadables gets loaded into the Page 0 area. Thus, for every word of DX loadable that is loaded, one word of Page 0 becomes unavailable for other use (such as application logic).

Limited Functionality

DX loadables are limited in the functionality they can provide because they do not provide storage for variables and are limited in their size.

M1 Support

M1 supports only loadables targeted for 80x86 microprocessors running in 16-bit real mode that have not made any hard-coded hardware assumptions (e.g., the address and format of the TOD clock). Obviously, there must be enough available memory to fit the loadable.

Saved to Flash

Since DX loadables are stored in Page 0 memory, they are saved whenever a save-to-Flash operation is initiated.

A Special STAT Instruction

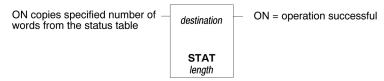
Overview

A special version of the STAT instruction has been developed to support Momentum M1 CPUs. The STAT instruction accesses a specified number of words in a status table in the CPU's system memory. Here vital diagnostic information regarding the health of the CPU and the I/OBus I/O under its control is posted.

From the STAT instruction, you can copy some or all of the status words into a block of registers or a block of contiguous discrete references.

This section describes the STAT instruction.

Avoid Discretes


We recommend that you do not use discretes in the STAT destination node because of the excessive number required to contain status information.

Specify Length

The copy to the STAT block always begins with the first word in the table up to the last word of interest to you. For example, if the status table is 20 words long and you are interested only in the statistics provided in word 11, you need to copy only words 1...11 by specifying a *length* of 11 in the STAT instruction.

Diagram of STAT Block

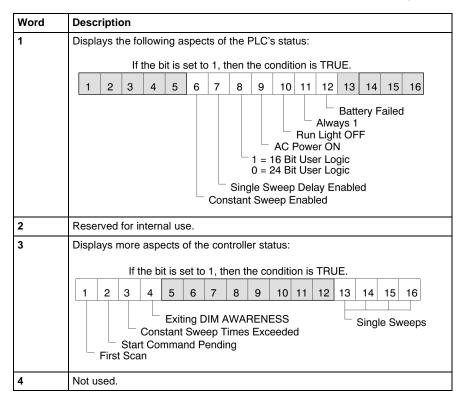
The STAT block includes a top node (for destination) and a bottom node (for length). The STAT block is represented in the following illustration.

Continued on next page

Top Node Content

The reference number entered in the top node is the first position in the destination block—i.e., the block where the current words of interest from the status table will be copied. The reference may be:

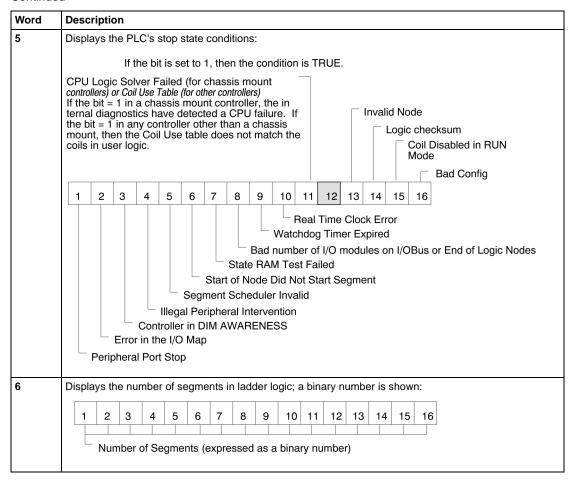
- The first 0x reference in a block of contiguous discrete outputs
- The first 4x reference in a block of contiguous holding registers


Bottom Node Content

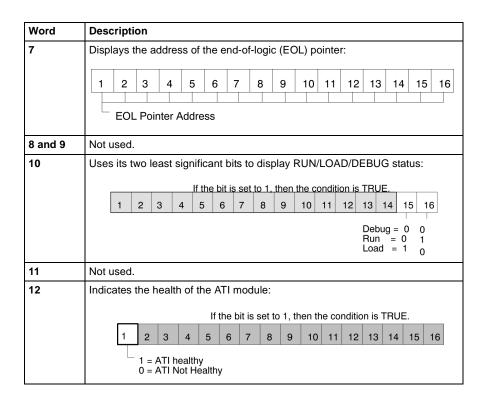
The integer value entered in the bottom node specifies the number of registers or 16-bit words in the destination block where the current status information will be written.

The length—i.e., number of words—in the status table will vary depending on whether or not I/OBus I/O is being supported:

- Without I/OBus, the STAT instruction is 12 words long.
- With I/OBus, the instruction is 20 words long.


Words 1...12 The first 12 words describe the CPU status and are detailed in the following table:

Continued on next page


Words 1...12,

Continued

Continued on next page

Words 1...12, Continued

Continued on next page

Words 13...20

Words 13...20 are available only for the 171 CCS 760 00 and 171 CCS 760 10 Momentum M1 Processor Adapters to indicate the status of I/OBus modules controlled over the I/O Bus network.

This Word	Indicates the Status of These I/O Modules
13	116
14	1732
15	3348
16	4964
17	6580
18	8196
19	97112
20	113128

Run LED Flash Patterns and Error Codes

Run L7ED Flash Pattern and Error Codes

The following table lists the flash pattern of the Run LED on the Momentum Processor Adapters. It also lists the associated codes (in hex format).

Number of Blinks	Code (hex)	Error
Continuous	0000	Requested Kernel mode
2	080B	ram error during sizing
	080C	run output active failed
	082E	MB command handler stack error
	0835	Main loop broken
	0836	Power down / Power holdup
	0837	Power down reset absent
3	072B	master config write bad

Continued on next page

Run LED Flash Pattern and Error Codes, Continued

Number of Blinks	Code (hex)	Error
4	0607	modbus cmd-buffer overflow
	0608	modbus cmd-length is zero
	0609	modbus abort command error
	0614	mbp bus interface error
	0615	bad mbp response opcode
	0616	timeout waiting for mbp
	0617	mbp out of synchronization
	0618	mbp invalid path
	0619	page 0 not paragraph aligned
	061E	bad external uart hardware
	061F	bad external uart interrupt
	0620	bad receive comm state
	0621	bad transmit comm state
	0622	bad comm state trn_asc
	0623	bad comm state trn_rtu
	0624	bad comm state rcv_rtu
	0625	bad comm state rcv_asc
	0626	bad modbus state tmr0_evt
	0627	bad modbus state trn-int
	0628	bad modbus state rcv-int
	0631	bad interrupt
	0637	Bad I/OBus transmit state
	0638	Bad I/OBus receive state
5	0503	ram address test error
	052D	P.O.S.T BAD MPU ERROR
6	0402	ram data test error

Continued on next page

Run LED Flash Pattern and Error Codes, Continued

Number of Blinks	Code (hex)	Error
7	0300	EXEC not loaded
	0301	EXEC Checksum
8	8001	Kernal prom checksum error
	8003	unexpected exec return
	8005	Flash program / erase error
	8007	Watchdog timeout event

Index

Numerics	1/1 CCS /80 00 Processor Adapter
171 CCC 760 10 Processor Adapter diagram, 38 key features, 38 LEDs, 39 specifications, 39	changing protocol to RS485, 241 diagram, 41 key features, 41 LEDs, 42 need to change protocol to RS485, 122 specifications, 42 172 JNN 210 32 Serial Option Adapter diagram, 68 LED indicator, 69 limitations when used with certain processor adapters, 120 specifications, 71 172 PNN 210 22 Modbus Plus Option Adapter diagram, 74 LED indicator, 75 Modbus Plus address switches, 76 specifications, 77 172 PNN 260 22 Redundant Modbus Plus Option Adapter diagram, 80 LED indicators, 81
171 CCC 780 10 Processor Adapter changing protocol to RS485, 241 diagram, 44 key features, 44 LEDs, 45 need to change protocol to RS485, 122 specifications, 45	
171 CCS 700 00 Processor Adapter diagram, 29 key features, 29 LEDs, 30 specifications, 30	
171 CCS 700 10 Processor Adapter diagram, 32 key features, 32 LEDs, 33 specifications, 33	
171 CCS 760 00 Processor Adapter diagram, 35 key features, 35 LEDs, 36	Modbus Plus address switches, 83 ports, 83 specifications, 84
specifications, 36	Α

870 USE 101 10 V.2 421

Assembly

Processor Adapter and I/O base, 89 Processor Adapter and Option Adapter,

95	cabling schemes, 187
Processor Adapter, Option Adapter and	network types, 183
I/O base, 98	new features for Momentum, 182
	Peer Cop, 200
	standard cabling schemes, 185
C	Modbus Plus network architecture
communication ports	address strategy, 264, 282, 377, 388
configuring with Concept, 336	two types, 257, 369
configuring with Modsoft, 232	Modbus Plus port, 181
delay parameter, 240, 341	cable accessories, 191
stop bit, 234, 340	pinouts and wiring diagrams, 194
CPU Configuration Page, 166	Modbus Port 1, 22, 113
links, 166	auto-logout feature, 115
	cable accessories, 116
	connector type, 113
E	diagram, 113
Ethernet tester	parameters, 114
Requirements, 158	Modbus Port 2, 23, 69, 120
rrequirements, 100	auto-logout, 69
	autologout feature with RS232, 122
	changing protocol from RS232 to
I/OBus network	RS485, 241, 343
	parameters, 121
accessing an I/O map screen, 250	pinouts, 70
editing an I/O map, 252, 365	Modbus RS485, 120
supporting an I/O map, 248, 249, 362	cable, 129
I/OBus port, 23, 172	connectors, 132
InterBus module identifier codes, 255, 366	four-wire cabling schemes, 123
	pinouts, 135
1	terminating devices, 134
	two-wire cabling schemes, 126
Ladder logic, 405	Momentum M1E Web Pages, 165
local I/O	Momentum M1E Welcome Page, 165
I/O mapping with Concept, 357	links, 165
I/O mapping with Modsoft, 242	IIIR3, 103
M	N
	Network design considerations, 144
M1E I/O Status Page, 165, 167	NOE 771 x0
links, 167	Embedded web server, 162
Modbus Plus	Litibedded web server, 102
addresses, 198	
cluster mode, 182	0
	•
	Option Adapter
	batteries
	installation, 105

purpose, 66	Concept, 315
reserving and monitoring a battery	default configuration parameters in
coil in Concept, 328	Modsoft, 212
reserving and monitoring a battery	Flash RAM, 24
coil in Modsoft, 224	front panel diagram, 21
communication ports, 66	internal memory, 24
configuring in Concept, 327	power supply, 27
configuring in Modsoft, 223	power cappiy, 21
purpose, 65	
time-of-day clock, 66	R
reading in Concept, 335	Run LED Flash Patterns and Error Codes,
reading in Modsoft, 231	417
setting the time in Modsoft, 228	417
setting time in Concept, 334	
setting up in Concept, 331	S
setting up in Modsoft, 226	-
	saving to Flash
	Concept
P	procedure, 400
Peer Cop, 200	Modsoft
Concept	options, 304
accessing Peer Cop dialog box, 371	procedure, 305
health timeout, 374	purpose, 303, 399
Last Value setting, 375	Stop bit, 122
specifying references for input data,	Supervisory network, 145
380	Support Page, 169
specifying references for output	links, 170
data, 384	
Modsoft	W
accessing a node, 265	
accessing a node, 200 accessing configuration extension	Web server
screen, 259	Accessing the home page, 163
•	Embedded web pages, 162
adjusting amount of extension	Features, 163
memory, 259	Internet Explorer, 163
defining a link, 265	Netscape Navigator, 163
On Error setting, 268 specifying references for input data,	
272	
	
timeout, 268	
Processor Adapter	
configuring with Concept, 310	
configuring with Modsoft, 207	
default configuration parameters in	

e sold in neider; in rica by 870 USE 101 10 V.2 $\,$ $\,$ $\,$ $\!$ 2000 Schneider Electric, Inc. All rights reserved

Modicon, Square D and Telemecanique are PLC brand names from Schneider. These products are sold in the US by Square D: in Canada, Latin America, Europe, Africa, Asia/Pacific and Middle East by Schneider; in Germany by AEG Schneider Electric; in China and Persian Gulf by Schneider Electric; in South Africa by ASA Systems Automation; in Austria by Online.

Schneider Electric, Inc. One High Street North Andover, MA 01845 Tel: (1) 508-794-0800 Fax: (1) 508-975-9400 Schneider Electric GmbH Steinheimer Strasse 117 D-63500 Seligenstadt Tel: (49) 6182 81-2584 Fax: (49) 6182 81-2860 Schneider Electric S.A. 245, Route des Lucioles-BP147 F-06903 Sophia-Antipolis Cedex Tel: (33) 92 96 20 00 Fax: (33) 93 65 37 15

31002674