BT111: Bluetooth® Smart Ready HCI Module **DATA SHEET** Monday, 28 January 2013 Version 1.2 # Copyright © 2000-2013 Bluegiga Technologies All rights reserved. Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual. Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications detailed here at any time without notice and does not make any commitment to update the information contained here. Bluegiga's products are not authorized for use as critical components in life support devices or systems. The WRAP is a registered trademark of Bluegiga Technologies The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies. All other trademarks listed herein are owned by their respective owners. ## **VERSION HISTORY** | Version | Comment | | | | |---------|----------------------|--|--|--| | 1.0 | First public release | | | | | 1.1 | Minor changes | | | | | 1.2 | FCC and CE update | | | | ## **TABLE OF CONTENTS** | 1 | BT1 | 11 Product numbering | 7 | |----|-------|---------------------------------------|----| | 2 | Bloc | ck Diagram | 8 | | 3 | Pino | out and Terminal Descriptions | 9 | | 4 | Exte | ernal Dimensions and Land Pattern | 11 | | 5 | Layo | out Guide Lines | 12 | | 5 | 5.1 | BT111-A Layout Guide | 12 | | 6 | Elec | ctrical Characteristics | 14 | | 6 | 6.1 | Absolute Maximum Ratings | 14 | | 6 | 6.2 | Input/Output Terminal Characteristics | 14 | | | 6.2. | 1 USB Linear Regulator | 14 | | | 6.2.2 | 2 High-voltage Linear Regulator | 15 | | | 6.2.3 | 3 Digital | 15 | | 6 | 6.3 | Current Consumption | 16 | | 7 | RF (| Characteristics | 19 | | 7 | 7.1 | Transmitter Characteristics | 19 | | 7 | 7.2 | Receiver Characteristics | 20 | | 7 | 7.3 | Radiated Spurious Emissions | 21 | | 7 | 7.4 | Antenna Characteristics | 21 | | 8 | Cloc | ck Generation | 22 | | 9 | Blue | etooth Stack Microcontroller | 23 | | 10 | Pr | rogrammable I/O Ports | 23 | | 11 | W | /i-Fi Coexistence Interface | 23 | | 12 | M | lemory Management | 24 | | 1 | 12.1 | Memory Management Unit | 24 | | 1 | 2.2 | System RAM | 24 | | 1 | 2.3 | Internal ROM Memory (5Mb) | 24 | | 1 | 2.4 | Internal EEPROM | 24 | | 13 | Se | erial Interfaces | 25 | | 1 | 3.1 | USB Interface | 25 | | 1 | 3.2 | Programming and Debug Interface | 25 | | 14 | Αι | udio Interfaces | 26 | | 1 | 14.1 | PCM Interface | 26 | | | 14.1 | 1.1 PCM Interface Master/Slave | 26 | | | 14.1 | 1.2 Long Frame Sync | 27 | | | 14.1 | 1.3 Short Frame Sync | 27 | | 1 | 14.2 | Multi-slot Operation | 28 | | | 14 2 | 2.1 GCI Interface | 28 | | 14 | 4.2.2 | Slots and Sample Formats | 29 | |------|--------|---|------------| | 14 | 4.2.3 | Additional Features | 30 | | 14 | 1.2.4 | PCM Timing Information | 31 | | 14 | 4.2.5 | PCM_CLK and PCM_SYNC Generation | 34 | | 14 | 4.2.6 | PCM Configuration | 35 | | 14.3 | B Di | gital Audio Interface (I ² S) | 35 | | 15 | Powe | er Control and Regulation | 40 | | 15.1 | Vo | oltage Regulator Enable | 40 | | 15.2 | 2 US | SB Linear Regulator | 40 | | 15.3 | B Hi | gh Voltage Linear Regulator | 40 | | 15.4 | l Lo | w Voltage Linear Regulators | 41 | | 15.5 | 5 Pc | owering Sequence | 41 | | 15.6 | Re | eset | 41 | | 16 | Exan | nple Schematic | 42 | | 17 | Softw | vare | 43 | | 17.1 | Or | n-chip Software | 44 | | 17 | 7.1.1 | Bluetooth HCI Stack | 44 | | 17 | 7.1.2 | Latest Feature of the HCI Stack | 44 | | 18 | Solde | ering Recommendations | 45 | | 19 | Certif | fications | 46 | | 19.1 | BI | uetooth | 46 | | 19.2 | 2 FC | CC/IC (USA/Canada) | 46 | | 19 | 9.2.1 | FCC et IC | 47 | | 19.3 | GE CE | E (Europe) | 48 | | 19.4 | k K | CC (South-Korea) | 49 | | 19.5 | 5 Ja | pan | 49 | | 20 | Moist | ture Sensitivity Level (MSL) classification | 50 | | 21 | Pack | aging and Reel Information | 51 | | 22 | Cont | act Information | 5 2 | ### BT111: Bluetooth Smart Ready HCI Module #### **DESCRIPTION** BT111 low cost and ultrais a small Bluetooth Smart Ready HCI module that is designed for applications where both Bluetooth classic and Bluetooth low energy connectivity is needed. BT111 integrates a Bluetooth 4.0 dual mode radio, HCI software stack, USB interface and an antenna. BT111 is compatible with Windows and Linux operating systems and Microsoft and BlueZ Bluetooth stacks and offers OEMs and risk free way to integrate Bluetooth 4.0 connectivity into their applications. #### **APPLICATIONS** - Health and fitness gateways - Point of sale - M2M connectivity - Automotive aftermarket - Personal navigation devices - Consumer electronics - Industrial and home automation gateways #### **KEY FEATURES** - Bluetooth v.4.0, dual mode compliant - Support Bluetooth classic - Supports Bluetooth low energy master mode - Radio capabilities - Transmit power: +8dBm - Receiver sensitivity: -89dBm - Line-of-sight range: 100+ meters - Integrated antenna - Interfaces - HCI over USB host interface - 802.11 co-existence interface - Software programmable GPIO - PCM or I2S audio interfaces - Supply voltage: 1.7V to 3.6V or 3.1V to 3.6V - Temperature range: -30C to +85C - Ultra compact size: 13.05mm x 9.30mm - Bluetooth, CE, FCC, IC and South-Korea qualified #### PHYSICAL OUTLOOK # 1 BT111 Product numbering ## Available products and product codes | Product code | Description | |--------------|--| | BT111-A-HCI | BT111 Bluetooth 4.0 HCl module with integrated antenna | # 2 Block Diagram Figure 1: Block diagram of BT111 #### **CSR8510** BT111 is based on CSR8510 dual mode chip. The chip includes all the functions required for a complete *Bluetooth* radio with on chip LDO regulators. The chip provides SPI, PCM and USB interfaces. Up to 4 general purpose I/Os are available for general usage, such as Wi-Fi coexistence or general indicators. #### Antenna Antenna is a ceramic monopole chip antenna. See the antenna characteristics in chapter 7. #### **Band Pass Filter** The band pass filter filters the out of band emissions from the transmitter to meet the specific regulations for type approvals of various countries. #### 32k EEPROM The embedded 32k EEPROM can be used to store customizable parameters, such as maximum TX power, PCM configuration, USB product ID, USB vendor ID and USB product description. #### 26MHz Crystal The embedded 26MHz crystal is used for generating the internal digital clocks. # 3 Pinout and Terminal Descriptions Figure 2: BT111 | Power Supply | Pin No. | Pad Type | Description | | |-----------------|---------|--------------------------------------|---|--| | VREG_EN_RST# | 20 | Input with strong internal pull-down | Take high to enable internal regulators. Also acts as active low reset. Maximum voltage is VDD_PADS Note: USB regulator is always enabled and not controlled by this pin | | | VREG_IN_HV | 10 | Analogue regulator input / output | Input to internal high-voltage regulator to 1.8V regulator, 3.3V output from USB regulator. | | | VREG_OUT_HV | 18 | Analogue regulator output | Output from internal high-voltage to 1.8V regulator. Input to second stage internal regulators. | | | VREG_IN_USB | 17 | Analogue regulator input | Input to USB regulator. Connect to external USB bus supply, e.g. USB_VBUS | | | VDD_HOST 16 VDD | | VDD | USB system positive supply | | | VDD_PADS | 19 | VDD | Positive supply for digital I/O pads | | **Table 1: Supply Terminal Descriptions** | PIO Port | Pin No. | Pad Type | Supply Domain | Description | | |----------|---------|--|---------------|--------------------------------|--| | PIO0 | 11 | Bidirectional, tristate, with weak internal pulldown | VDD_PADS | | | | PIO1 | 1.5 | | | Drogrammable input/output line | | | PIO2 | 6 | | | Programmable input/output line | | | PIO5 | 5 | down | | | | Table 2: I/O Terminal Descriptions | PCM Interface | Pin No. | Pad Type | Supply
Domain | Description | | |--------------------------------|-------------------------------|--|---|---|--| | PCM_OUT/
SPI_MISO/
PIO22 | 12 | Output, tristate, with weak internal pull-down | | PCM syncronous data output
SPI data output
Programmable input/output line | | | PCM_IN/
SPI_MOSI/
PIO21 | MOSI/ 8 weak internal pull- | | PCM syncronous data input
SPI data input
Programmable input/output line | | | | PCM_SYNC/
SPI_CS#/
PIO23 | 4 | Bidirectional, tristate, with weak internal | VDD_PADS | PCM syncronous dara sync
SPI chip select, active low
Programmable input/output line | | | PCM_CLK/
SPI_CLK/
PIO24 | 7 with weak internal pulldown | | | PCM syncronous data clock SPI clock Programmable input/output line | | | SPI_PCM#_SEL | 14 | Input with weak internal pull-down | | High switches SPI/PCM lines to SPI, low switches SPI/PCM lines to PCM/PIO use | | **Table 3: PCM Interface** | USB Interface | Pin No. | Pad Type | Supply
Domain | Description | | |---------------|---------|------------------------|------------------|---|--| | USB+ | 3 | Bidirectional VDD HOST | | USB data plus with selectable internal 1.5kΩ pull-up resistor | | | USB- | 2 | Bidirectional | 1031 | USB data minus | | Table 4: USB Interface # 4 External Dimensions and Land Pattern Figure 3: Footprint (top view) Figure 4: External dimensions # 5 Layout Guide Lines Use good layout practices to avoid excessive noise coupling to supply voltage traces or sensitive analog signal traces. If using overlapping ground planes use stitching vias separated by max 3 mm to
avoid emission from the edges of the PCB. Connect all the GND pins directly to a solid GND plane and make sure that there is a low impedance path for the return current following the signal and supply traces all the way from start to the end. A good practice is to dedicate one of the inner layers to a solid GND plane and one of the inner layers to supply voltage planes and traces and route all the signals on top and bottom layers of the PCB. This arrangement will make sure that any return current follows the forward current as close as possible and any loops are minimized. Figure 5: Typical 4-layer PCB construction Figure 6: Use of stitching vias to avoid emissions from the edges of the PCB # 5.1 BT111-A Layout Guide For optimal performance of the antenna place the module at the corner of the PCB of the mother board as shown in the figure 7. Optionally the module can be placed on the long edge of the mother board. In this case the metal clearance area must be extended minimum 10mm from the edge of the module, as shown in figure 7. The layout of the mother board has an impact on the antenna characteristic and radiation pattern, see the antenna characteristics chapter. Do not place any metal (traces, components, battery etc.) within the clearance area of the antenna. Connect all the GND pins directly to a solid GND plane. Place the GND vias as close to the GND pins as possible. Use good layout practices to avoid any excessive noise coupling to signal lines or supply voltage lines. Avoid placing plastic or any other dielectric material closer than 5 mm from the antenna. Any dielectric closer than 5 mm from the antenna will detune the antenna to lower frequencies. The antenna is optimized for mother board thickness of 1.0 mm. If the mother board is thicker than this, the resonant frequency will be tuned downwards. If the mother board thickness is thinner than 1.0 mm, the resonant frequency will be tuned upwards. S11 is a measure of how big portion of the transmitted power is reflected back from the antenna. An adequate performance can be expected if S11 is less than - 7 dB. If using PCB thickness more than 1.6 mm, or if there is dielectric material around the antenna which is likely to detune the resonant frequency, the antenna can be tuned in the mother board layout by removing FR4 below the antenna. Figure 7: Recommended layouts for BT111-A Figure 8: Impedance matching of the antenna of BT111 with two different mother board PCB thickness ## 6 Electrical Characteristics ## 6.1 Absolute Maximum Ratings | Rating | Min | Max | Unit | |-------------------------|------------|-------------|------| | Storage temperature | -40 | +85 | °C | | VREG_IN_USB | -0.2 | 5.85 | V | | VREG_IN_HV | -0.2 | 4.9 | V | | VDD_HOST | -0.2 | 3.7 | V | | VDD_PADS | -0.2 | 3.7 | V | | Other terminal voltages | VSS - 0.4V | VDD + 0.4 V | V | **Table 5: Absolute maximum ratings** | Rating | Min | Max | Unit | |------------------------|-------------------|-------------------|------| | Operating temperature | -30 | +85 | °C | | VREG_IN_USB | 4.25 | 5.75 | V | | VREG_IN_HV | 2.3 | 4.8 | V | | VDD_HOST | 3.1 | 3.6 | V | | VDD_PADS ^{(*} | 1.7 ^{(*} | 3.6 ^{(*} | V | ^{*)} NOTE: The internal EEPROM is powered from VDD_PADS. To write the EEPROM, minimum supply voltage is 2.7V and maximum is 3.3V. For reading the EEPROM the minimum supply voltage is 1.7V and the maximum is 3.6V. **Table 6: Recommended operating conditions** ## 6.2 Input/Output Terminal Characteristics ## 6.2.1 USB Linear Regulator | Rating | Min | Тур | Max | Unit | |----------------|------|-----|------|------| | Input voltage | 4.25 | 5.0 | 5.75 | V | | Output voltage | 3.2 | 3.3 | 3.4 | V | | Output current | - | - | 150 | mA | Table 7: USB linear regulator # 6.2.2 High-voltage Linear Regulator | Normal Operation | Min | Тур | Max | Unit | | |--|------|------|------|--------|--| | Input voltage | 2.3 | 3.3 | 4.8 | V | | | Output voltage | 1.75 | 1.85 | 1.95 | V | | | Temperature coefficient | -200 | - | 200 | ppm/°C | | | Output noise (frequency range 100Hz to 100kHz) | - | - | 0.4 | mV rms | | | Settling time (settling ti within 10% of final value) | - | - | 5 | μs | | | Output current | - | - | 100 | mA | | | Quiescent current (excluding load, I _{load} <1mA) | 30 | 40 | 60 | μΑ | | | Low-power Mode | | | | | | | Quiescent current (excluding load, I _{load} <100μA) | 14 | 18 | 23 | μΑ | | Table 8: High-voltage Linear Regulator # 6.2.3 Digital | Normal Operation | Min | Тур | Max | Unit | | | | | |--|------------|------|-----------|------|--|--|--|--| | Input Voltage | | | | | | | | | | V _{IL} input logic level low | -0.4 | - | 0.4 | V | | | | | | V _{IH} input logic level high | 0.7 x VDD | - | VDD + 0.4 | V | | | | | | Output Voltage | | | | | | | | | | V_{OL} output logic level low, I_{OL} = 4.0mA | - | - | 0.4 | V | | | | | | V _{OH} output logic level high, I _{OL} = 4.0mA | 0.75 x VDD | - | - | V | | | | | | Input and Tristate Currents | | | | | | | | | | Strong pull-up | -150 | -40 | -10 | μΑ | | | | | | Striong pull-down | 10 | 40 | 150 | μΑ | | | | | | Weak pull-up | -5 | -1.0 | -0.33 | μΑ | | | | | | Weak pull-down | 0.33 | 1.0 | 5.0 | μΑ | | | | | | C _I input capacitance | 1.0 | - | 5.0 | pF | | | | | Table 9: Digital I/O characteristics ## 6.3 Current Consumption | Normal Operation | Peak
(8 dBm) | AVG | Unit | |-----------------------|-----------------|-----|------| | Idle | | 5 | mA | | USB Suspend | | 200 | μΑ | | Inguiry | 73 | 51 | mA | | File Transfer | 73 | 58 | mA | | LE Connected (Master) | 74 | (* | mA | | LE Scan (Master) | 48 | (* | mA | ^{*)} LE AVG current consumption depends on the chosen TX interval and scanning window Table 10: Current consumption of BT111 with 8 dBm TX power Figure 9: Current consumption profile while creating a SPP connection Figure 10: LE scanning with 50 ms window Figure 11: LE connected with 70 ms interval Figure 12: BDR Peak current vs TX power Figure 13: LE peak current vs. TX power ## 7 RF Characteristics ## 7.1 Transmitter Characteristics | RF Characetristics, temperature unles | Min | Тур | Max | Bluetooth
Specification | Unit | | |---------------------------------------|-----------------------------------|-----|-----|----------------------------|---------|-----| | maximum RF | Transmit Power | | 8 | 10 | 20 | dBm | | RF power variation of | over temperature range | | 1.5 | | - | dB | | RF power variation o | ver supply voltage range | | | 0.2 | - | dB | | RF power variation over BT band (* | | | 2 | | - | dB | | RF power control range | | -21 | | 8 | - | dBm | | 20dB band width t | or modulated carrier | | | | 1000 | kHz | | | $F = F_0 \pm 2MHz$ | | | | -20 | | | ACP (1 | $F = F_0 \pm 3MHz$ | | | | -40 | | | | $F = F_0 > 3MHz$ | | | | -40 | | | Drift rate | | | 10 | | +/-25 | kHz | | ΔF_{1avg} | | | 165 | | 140<175 | kHz | | ΔF1 _{max} | | | 168 | | 140<175 | kHz | | | ₃ / ΔF _{1avg} | | 0.9 | | >=0.8 | | ^{*)} Channel 0 @2402Mhz has generally 1.0 dB lower TX power than all the other channels. All the channels between 2403 MHz and 2480 MHz are within 0.5 dB. **Table 11: Transmitter Characteristics, BDR** Figure 14: Power control steps of BT111 ## 7.2 Receiver Characteristics | RF characteristis, VDD = 3.3V, room temperature | Packet type | Min | Тур | Max | Bluetooth
Spefication | Unit | |---|-------------|-----|-----|-----|--------------------------|------| | | DH1 | | -89 | | -70 | dBm | | | DH3 | | -89 | | | dBm | | Sensitivity for 0.1% BER | DH5 | | -89 | | | dBm | | | 2-DH5 | | -92 | | | dBm | | | 3-DH5 | | -85 | | | dBm | | Sensitivity variation over BT band (* | All | | 2 | | | dB | | Sensitivity variation over temperature range | All | | TBD | | | dB | ^{*)} Channel 0 @2402Mhz is generally 1.5dB less sensitive than all the other channels. All the channels between 2403 MHz and 2480 MHz are within 0.5 dB. Table 12: BDR and EDR receiver sensitivity # 7.3 Radiated Spurious Emissions | Standard | Band / Frequency | Min
(AVG /
PEAK) | Typ
(AVG /
PEAK) | Max
(AVG /
PEAK) | Limit by the Standard
(AVG / PEAK) | Unit | |--------------------------------|---------------------------------------|------------------------|------------------------|------------------------|---------------------------------------|--------| | | 2nd harmonic | | 51 / 58 | | 54 / 74 | dBuV/m | | | 3rd harmonic | | < 50 | | 54 / 74 | dBuV/m | | | Band edge
2390MHz | | | | 54 / 74 | dBuV/m | | FCC part 15
transmitter | Band edge
2483.5MHz | | | | 54 / 74 | dBuV/m | | spurious
emissions | Band edge
2400MHz
(conducted) | | | | -20 | dBc | | | Band edge
2483.5MHz
(conducted) | | | | -20 | dBc | | ETSI EN 300 328
transmitter | Band edge
2400MHz | | -42 | | -30 | dBm | | spurious | 2nd harmonic | | -36 | | -30 | dBm | | emissions | 3rd harmonic | | <-40 | | -30 | dBm | | ETSI EN 300 328 | (2400 - 2479) MHz | | <-70 | | -47 | dBm | | receiver spurious | (1600 - 1653) MHz | | <-70 | | -47 | dBm | **Table 13: Radiated Spurious Emissions** # 7.4 Antenna Characteristics The antenna is a standard monopole chip antenna. The radiation pattern is strongly dependent on the layout of the mother board. Usually the gain is highest to the directions where there is most GND and weakest to the opposite direction. Typically the total radiated efficiency is around 25% - 35%. The maximum gain is 0.5 dBi. ## 8 Clock Generation BT111 is using an internal 26 MHz crystal oscillator. All internal digital clocks are generated using a phase locked loop, which is locked to the 26 MHz crystal oscillator. 26 MHz clock is calibrated in production and the calibrated settings are stored to the internal EEPROM of BT111. The 32.768 kHz sleep clock is generated internally to the module. BT111 does not need any external clock sources. ## 9 Bluetooth Stack
Microcontroller BT111 uses a 16-bit RISC MCU for low power consumption and efficient use of memory. The MCU, interrupt controller and event timer run the *Bluetooth* software stack and control the *Bluetooth* radio and host interfaces. # 10 Programmable I/O Ports See the Device Terminal Functions section for the list of supplies to the PIOs. PIO lines are configured through software to have either weak or strong pull-ups or pull-downs. All PIO lines are configured as inputs with weak pull-downs at reset and have additional individual bus keeper configuration. The default configuration for all the IO pins is input with weak pull-up. ## 11 Wi-Fi Coexistence Interface Dedicated hardware is provided to implement a variety of Wi-Fi coexistence schemes. There is support for: - Channel skipping AFH - Priority signaling - Channel signaling - · Host passing of channel instructions The BT111 supports the Wi-Fi coexistence schemes: - Unity-3 - Unity-3e - Unity+ Contact support (support@bluegiga.com) for more information # 12 Memory Management ## 12.1 Memory Management Unit The MMU provides a number of dynamically allocated ring buffers that hold the data that is in transit between the host and the air. The dynamic allocation of memory ensures efficient use of the available RAM and is performed by a hardware MMU to minimize the overheads on the processor during data/voice transfers. ## 12.2 System RAM 56KB of integrated RAM supports the RISC MCU and is shared between the ring buffers for holding voice/data for each active connection and the general-purpose memory required by the *Bluetooth* stack. ## 12.3 Internal ROM Memory (5Mb) 5Mb of internal ROM memory is available on BT111. This memory is provided for system firmware, storing BT111 settings and program code. #### 12.4 Internal EEPROM 32Kb internal EEPROM is available on BT111 to store device specific configuration information (PS Keys) such as *Bluetooth* address, USB descriptors, PCM configuration and maximum TX power. The internal EEPROM is powered from VDD_PADS. The minimum supply voltage writing the EEPROM is 2.7V and the minimum supply voltage for reading the EEPROM is 1.7V. ## 13 Serial Interfaces #### 13.1 USB Interface BT111 has a full-speed (12Mbps) USB interface for communicating with other compatible digital devices. The USB interface on BT111 acts as a USB peripheral, responding to requests from a master host controller. BT111 supports the Universal Serial Bus Specification, Revision v2.0 (USB v2.0 Specification) and USB Battery Charging Specification, available from http://www.usb.org. For more information on how to integrate the USB interface on BT111 see the WTxxx USB Design Guide. As well as describing USB basics and architecture, the application note describes: - Power distribution for high and low bus-powered configurations - Power distribution for self-powered configuration, which includes USB VBUS monitoring - USB enumeration - Electrical design guidelines for the power supply and data lines, as well as PCB tracks and the effects of ferrite beads - USB suspend modes and *Bluetooth* low-power modes: - Global suspend - Selective suspend, includes remote wake - Wake on Bluetooth, includes permitted devices and set-up prior to selective suspend - Suspend mode current draw - PIO status in suspend mode - Resume, detach and wake PIOs - Battery charging from USB, which describes dead battery provision, charge currents, charging in suspend Modes and USB VBUS voltage consideration - USB termination when interface is not in use - Internal modules, certification and non-specification compliant operation See chapter 17 for the default USB vendor and product ID settings. # 13.2 Programming and Debug Interface This SPI programming and debug interface can configure the PS Keys stored in the internal EEPROM and can also debug BT111. Bluegiga provides the development and production tools to communicate over this interface from a PC. BT111 uses a 16-bit data and 16-bit address programming and debug interface. Transactions occur when the internal processor is running or is stopped. Data is written or read one word at a time, or the auto-increment feature is available for the block access. Configuring the parameters of the BT111 and running test scripts is also possible via the USB interface with certain limitations; please see Section 14 for more information. ## 14 Audio Interfaces BT111 has digital audio interface that is configurable as either a PCM or I²S port. #### 14.1 PCM Interface The audio PCM interface on the BT111 supports: - Continuous transmission and reception of PCM encoded audio data over Bluetooth. - Processor overhead reduction through hardware support for continual transmission and reception of PCM data. - A bidirectional digital audio interface that routes directly into the baseband layer of the firmware. It does not pass through the HCI protocol layer. - Hardware on BT111 for sending data to and from a SCO connection. - Up to 3 SCO connections on the PCM interface at any one time. - PCM interface master, generating PCM SYNC and PCM CLK. - PCM interface slave, accepting externally generated PCM SYNC and PCM CLK. - · Various clock formats including: - Long Frame Sync - o Short Frame Sync - GCI timing environments - 13-bit or 16-bit linear, 8-bit μ-law or A-law companded sample formats. - Receives and transmits on any selection of 3 of the first 4 slots following PCM_SYNC. The PCM configuration options are enabled by setting PSKEY_PCM_CONFIG32. #### 14.1.1 PCM Interface Master/Slave When configured as the master of the PCM interface, BT111 generates PCM_CLK and PCM_SYNC. Figure 15: BT111 as PCM master Figure 16: BT111 as PCM slave ## 14.1.2 Long Frame Sync Long Frame Sync is the name given to a clocking format that controls the transfer of PCM data words or samples. In Long Frame Sync, the rising edge of PCM_SYNC indicates the start of the PCM word. When BT111 is configured as PCM master, generating PCM_SYNC and PCM_CLK, then PCM_SYNC is 8 bits long. When BT111 is configured as PCM Slave, PCM_SYNC is from 1 cycle PCM_CLK to half the PCM_SYNC rate. Figure 17: Long Frame Sync (Shown with 8-bit Companded Sample) BT111 samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT on the rising edge. PCM_OUT is configurable as high impedance on the falling edge of PCM_CLK in the LSB position or on the rising edge. ## 14.1.3 Short Frame Sync In Short Frame Sync, the falling edge of PCM_SYNC indicates the start of the PCM word. PCM_SYNC is always 1 clock cycle long. Figure 18: Short Frame Sync (shown with 16-bit sample) As with Long Frame Sync, BT111 samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT on the rising edge. PCM_OUT is configurable as high impedance on the falling edge of PCM_CLK in the LSB position or on the rising edge. ## 14.2 Multi-slot Operation More than 1 SCO connection over the PCM interface is supported using multiple slots. Up to 3 SCO connections are carried over any of the first 4 slots. Figure 19: Multi-slot Operation with 2 Slots and 8-bit Companded Samples #### 14.2.1 GCI Interface BT111 is compatible with the GCI, a standard synchronous 2B+D ISDN timing interface. The 2 64kbps B channels are accessed when this mode is configured. Figure 20: GCI Interface The start of frame is indicated by the rising edge of PCM_SYNC and runs at 8kHz. ## 14.2.2 Slots and Sample Formats BT111 receives and transmits on any selection of the first 4 slots following each sync pulse. Slot durations are either 8 or 16 clock cycles: - 8 clock cycles for 8-bit sample formats. - 16 clock cycles for 8-bit, 13-bit or 16-bit sample formats. #### BT111 supports: - 13-bit linear, 16-bit linear and 8-bit μ-law or A-law sample formats. - A sample rate of 8ksps. - Little or big endian bit order. - For 16-bit slots, the 3 or 8 unused bits in each slot are filled with sign extension, padded with zeros or a programmable 3-bit audio attenuation compatible with some codecs. A 16-bit slot with 8-bit companded sample and sign extension selected. A 16-bit slot with 8-bit companded sample and zeros padding selected. A 16-bit slot with 13-bit linear sample and sign extension selected. A 16-bit slot with 13-bit linear sample and audio gain selected. Figure 21: 16-bit Slot Length and Sample Formats #### 14.2.3 Additional Features BT111 has a mute facility that forces PCM_OUT to be 0. In master mode, BT111is compatible with some codecs which control power down by forcing PCM_SYNC to 0 while keeping PCM_CLK running. # 14.2.4 PCM Timing Information | Symbol | Parameter | | Min | Тур | Max | Unit | |-----------------------------|------------------|--|-----|------------|-----|----------| | | | 4MHz DDS generation. Ffrequency selection is | - | 128
256 | _ | | | | PCM CLK | programmable. | | 512 | | <u> </u> | | f _{mclk} Frequency | _ | 48MHz DDS generation.
Frequency selection is
programmable. | 2.9 | - | - | kHz | | - | PCM_SYNC frequen | cy for SCO connection | - | 8 | - | kHz | | f _{mclkh} (a) | PCM_CLK high | 4MHz DDS generation | 980 | 1 | - | ns | | f _{mclkl} (a) | PCM_CLK low | 4MHz DDS generation | 730 | - | - | ns | | - | PCM_CLK jitter | 48MHz DDS generation | - | - | 21 | ns pk-pk | **Table 14: PCM Master Timing** (a) Assumes normal system clock operation. Figures vary during low-power modes, when system speeds are reduced. | Symbol | Parameter | Min | Тур | Max | Unit | | |-------------------------------------|---|--|-----|-------|-------|--| | | Delay time from | 4MHz DDS generation. | - | - | 20 | | | t _{dmclksynch} | PCM_CLK high to PCM sync high | 48MHz DDS generation | - | - | 40.83 | | | t _{dmclkpout} | Delay time from PCM | Delay time from PCM_CLK high to PCM_OUT | | - | 20 | | | t | Delay time from
PCM_CLK low to | 4MHz DDS generation | 1 | - | 20 | | | PCM sync low (long frame sync only) | 48MHz DDS generation | - | - | 40.83 | ns | | | t _{dmclklpoutz} | Delay time from PCM high impedance | _CLK low to PCM_OUT | - | - | 20 | | | t _{dmclkhpoutz} | Delay time from PCM high impedance | Delay time from PCM_CLK high to PCM_OUT high impedance | | - | 20 | | | t _{supinclkl} | Set-up time for PCM_IN valid to PCM_CLK low | | 20 | - | - | | | t _{hpinclkl} | Hold time for PCM_C | LK low to PCM_IN invalid | 0 | - | - | | **Table 15: PCM Master Mode Timing Parameters** Figure 22: PCM Master Timing Long Frame Sync Figure 23: PCM Master Timing Short Frame Sync | Symbol | Parameter | Min | Тур | Max | Unit | |--------------------|---|-----|-----|------|------| | f _{sclk} | PCM clock frequency (Slave mode: Input) | 64 | - | 2048 | kHz | | f _{sclk} | PCM clock frequency (GCI mode) | 128 | - | 4096 | kHz | | f _{scikl} | PCM_CLK low time | 200 | - | - | ns | | f _{sclkh} | PCM_CLK high time | 200 | - | - | ns | **Table 16: PCM Slave Timing** | Symbol | Parameter | Min | Тур | Max | Unit | |--------------------------|---|-----|-----|-----|------| | f _{hsclksynch} | Hold time from PCM_CLK low to PCM_SYNC high | 2 | - | - | | | f _{susclksynch} | Set-up time for PCM_SYNC high to PCM_CLK low | 20 | - | - | | | f _{dpout} | Delay time from PCM_SYNC or PCM_CLK, whichever is later, to valid PCM_OUT data (long frame sync only) | - | - | 15 | | | f _{dsclkhpout} | Delay time from PCM_SYNC or PCM_CLK, whichever is later, to valid PCM_OUT data | - | - | 15 | ns | | f _{dpoutz} | Delay time from PCM_SYNC or PCM_CLK low, whichever is later, to PCM_OUT data line high impedance | - | - | 20 | | | f _{supinsclkl} | Set-up time for PCM_IN valid to PCM_CLK low | 20 | - | - | | | f _{hpinsclkl} | Hold time from PCM_CLK low to PCM_IN valid | 2 | - | - | | **Table 17: PCM Slave Mode Timing Parameters** Figure 24: PCM Slave Timing Long Frame Sync Figure 25: PCM Slave Timing Short Frame Sync ## 14.2.5 PCM_CLK and PCM_SYNC Generation BT111 has 2 methods of generating PCM_CLK and PCM_SYNC in master mode: - Generating these signals by DDS from BT111 internal 4MHz clock. Using this mode limits PCM_CLK to 128, 256 or 512kHz and PCM_SYNC to 8kHz. - Generating these signals by DDS from an internal 48MHz clock, enables a greater range of frequencies to be generated with low jitter but consumes more power. To select this second method set bit 48M_PCM_CLK_GEN_EN in PSKEY_PCM_CONFIG32. When in this mode and with long frame sync, the length of PCM_SYNC is either 8 or 16 cycles of PCM_CLK, determined by LONG_LENGTH_SYNC_EN in PSKEY_PCM_CONFIG32. Following equation describes PCM CLK frequency when generated from the internal 48MHz clock: $$f = \frac{CNT_RATE}{CNT_LIMIT} \times 24MHz$$ Equation 1: PCM_CLK Frequency Generated Using the Internal 48MHz Clock Set the frequency of PCM_SYNC relative to PCM_CLK using following equation: $$f = \frac{PCM_CLK}{SYNC_LIMIT \times 8}$$ Equation 2: PCM_SYNC Frequency Relative to PCM_CLK CNT_RATE, CNT_LIMIT and SYNC_LIMIT are set using PSKEY_PCM_LOW_JITTER_CONFIG. As an example, to generate PCM_CLK at 512kHz with PCM_SYNC at 8kHz, set PSKEY_PCM_LOW_JITTER_CONFIG to 0x08080177. ## 14.2.6 PCM Configuration Configure the PCM by using PSKEY_PCM_CONFIG32 and PSKEY_PCM_LOW_JITTER_CONFIG, see your PS Key file. The default for PSKEY_PCM_CONFIG32 is 0x00800000, i.e. first slot following sync is active, 13-bit linear voice format, long frame sync and interface master generating 256kHz PCM_CLK from 4MHz internal clock with no tri-state of PCM_OUT. # 14.3 Digital Audio Interface (I²S) The digital audio interface supports the industry standard formats for I²S, left-justified or right-justified. The interface shares the same pins as the PCM interface, which means each audio bus is mutually exclusive in its usage. Table 17 lists these alternative functions. | PCM Interface | I ² S Interface | |---------------|----------------------------| | PCM_OUT | SD_OUT | | PCM_IN | SD_IN | | PCM_SYNC | WS | | PCM_CLK | SCK | Table 18: Alternative Function of the Digital Audio Bus Interface on the PCM Interface Configure the digital audio interface using PSKEY_DIGITAL_AUDIO_CONFIG. Table 18 describes the values for the PS Key (PSKEY_DIGITAL_AUDIO_CONFIG) that is used to set-up the digital audio interface. For example, to configure an I²S interface with 16-bit SD data set PSKEY_DIGITAL_CONFIG to 0x0406. | Bit | Mask | Name | Description | |--------|--------|---------------------------|---| | D[0] | 0x0001 | CONFIG_JUSTIFY_FORMAT | 0 for left justified, 1 for right justified | | D[1] | 0x0002 | CONFIG_LEFT_JUSTIFY_DELAY | For left justified formats: 0 is MSB of SD data occurs in the first SCLK period following WS transition. 1 is MSB of SD data occurs in the second SCLK period. | | D[2] | 0x0004 | CONFIG_CHANNEL_POLARITY | For 0, SD data is left channel when WS is high. For 1 SD data is right channel. | | D[3] | 0x0008 | CONFIG_AUDIO_ATTEN_EN | For 0, 17 bit SD data is rounded down to 16 bits. For 1, the audio attenuation defined in CONFIG_AUDIO_ATTEN is applied over 24 bits with saturated rounding. Requires CONFIG_16_BIT_CROP_EN to be 0. | | D[7:4] | 0x00F0 | CONFIG_AUDIO_ATTEN | Attenuation in 6 dB steps. | | D[9:8] | 0x0300 | CONFIG_JUSTIFY_RESOLUTION | Resolution of data on SD_IN, 00=16 bit, 01=20 bit, 10=24 bit, 11=Reserved. This is required for right justified format and with left justified LSB first. | | D[10] | 0x0400 | CONFIG_16_BIT_CROP_EN | For 0, 17 bit SD_IN data is rounded down to 16 bits. For 1 only the most significant 16 bits of data are received. | Table 19: PSKEY_DIGITAL_AUDIO_CONFIG Figure 26: Digital Audio Interface Modes The internal representation of audio samples within BT111 is 16-bit and data on SD_OUT is limited to 16-bit per channel. | Symbol | Parameter | Min | Тур | Max | Unit | |-----------------|---------------|-----|-----|-----|------| | - | SCK Frequency | - | - | 6.2 | MHz | | - | WS Frequency | - | - | 96 | kHz | | t _{ch} | SCK high time | 80 | - | - | ns | | t _{cl} | SCK low time | 80 | 1 | - | ns | **Table 20: Digital Audio Interface Slave Timing** | Symbol | Parameter | Min | Тур | Max | Unit | |------------------|---------------------------|-----|-----|-----|------| | 4 | WS valid SCK high set-up | | | | | | t _{ssu} | time | 20 | - | - | ns | | t _{sh} | SCK high to WS invalid | | | | | | | hold time | 2.5 | - | - | ns | | 1 | SCK low to SD_OUT valid | | | | | | t _{opd} | delay time | - | - | 20 | ns | | t _{isu} | SD_IN valid to SCK high | | | | | | | set-up time | 20 | - | - | ns | | 1 | SCK high to SD_IN invalid | | | | | | t _{ih} | hold time | 2.5 | - | - | ns | Table 21: I²C Slave Mode Timing Figure 27: Digital Audio Interface Slave Timing | Symbol | Parameter | Min | Тур | Max | Unit | |--------|---------------|-----|-----|-----|------| | - | SCK Frequency | 1 | - | 6.2 | MHz | | - | WS Frequency | - | - | 96 | kHz | **Table 22: Digital Audio Interface Master Timing** | Symbol | Parameter | Min | Тур | Max | Unit | |------------------|---------------------------|-------|-----|-------|------| | t _{spd} | SCK low to WS valid | | | | | | | delay time | - | - | 39.27 | ns | | t _{opd} | SCK low to SD_OUT valid | | | | | | | delay time | - | - | 18.44 | ns | | t _{isu} | SD_IN valid to SCK high | | | | | | | set-up time | 18.44 | - | - | ns | | t _{ih} | SCK high to SD_IN invalid | | | | | | | hold time | 0 | - | - | ns | Table 23: I²S Master Mode Timing Parameters, WS and SCK as Outputs Figure 28: Digital Audio Interface Master Timing ## 15 Power Control and Regulation Figure 29: Internal regulators and powering of BT111 ## 15.1 Voltage Regulator Enable All the regulators are enabled, except the USB linear regulator, by taking the VREG_EN_RST# pin above 1V. Also the BT111 firmware automatically controls the regulators. #### **Important Note:** VREG_EN_RST# should not be taken high before the supply on VREG_IN_HV is present. The VREG_EN_RST# pin is connected internally to the reset function and is powered from VDD_PADS, so do not apply voltages above VDD_PADS to the VREG_EN_RST# pin. The VREG_EN_RST# pin is pulled down internally. ## 15.2 USB Linear Regulator The integrated USB LDO linear regulator is available as a 3.30V supply rail and is intended to supply the USB interface and the high-voltage linear regulator. The input voltage range is between 4.25V and 5.75V. The maximum current from this regulator is 150mA. This regulator is enabled by default. If the USB linear regulator is not required leave its input (VREG_IN_USB) unconnected. ## 15.3 High Voltage Linear Regulator The integrated high-voltage linear regulator is available to power the main 1.8V supply rail. The input voltage range is between 2.3V and 4.8V. The maximum current from this regulator is 100mA. Take VREG EN RST# high to enable this regulator. #### **Important Note:** VREG_EN_RST# should not be taken high before the supply on VREG_IN_HV is present. If this regulator is not required then leave VREG_IN_HV unconnected or tied to VREG_OUT_HV. ## 15.4 Low Voltage Linear Regulators BT111 has three integrated low voltage linear regulators providing the internal supply voltages for RF and digital circuits of BT111. The input voltage range is between 1.70V and 1.95V. ## 15.5 Powering Sequence All the power supplies should be powered at the same time. The order of powering the supplies relative to the I/O supply, VDD_PADS to VDD_HOST, is not important. If the I/O supply is powered before VDD_DIG, all digital I/Os are weak pull-downs irrespective of the reset state. #### 15.6 Reset The reset function is
internally tied to the VREG_EN_RST# pin. BT111 is reset from several sources: - VREG_EN_RST# pin - Power-on reset - · Via a software-configured watchdog timer The VREG_EN_RST# pin is an active low reset. Assert the reset signal for a period >5ms to ensure a full reset. #### **Important Note:** Bluegiga does not recommend assertions of the reset of <5ms on the VREG_EN_RST# pin, as any glitches on this line can affect I/O integrity without triggering a reset. A warm reset function is also available under software control. After a warm reset the RAM data remains available. | Pin Name/Group | I/O Type | No Core Supply Reset | Full Chip Reset | |---------------------------------|---------------------------------|--|---| | VREG_EN_RST# | Digital input | Strong pull-down | N/A | | SPI_CLK/PCM_CLK /
PIO[24] | Digital bidirectional tristated | Weak pull-down | Weak pull-down | | SPI_CS# / PCM_SYNC /
PIO[23] | Digital bidirectional tristated | Weak pull-up (SPI)
Weak pull-down (PCM) | Weak pull-up (SPI) Weak pull-down (PCM / PIO) | | SPI_MISO / PCM_OUT /
PIO[22] | Digital output tristated | Weak pull-down | Weak pull-down | | SPI_MOSI / PCM_OUT /
PIO[21] | Digital input | Weak pull-down | Weak pull-down | | PIO[5:0] | Digital bidirectional tristated | Weak pull-down | Weak pull-down | **Table 24: Digital Pin States on Reset** # 16 Example Schematic Figure 30: Example schematic for BT111 ### 17 Software BT111 is supplied with an on-chip *Bluetooth* v4.0 specification qualified HCI Controller stack firmware. It also has an EEPROM chip, which allows modifications of many configuration parameters (PS-keys) of the *Bluetooth* chip. When the BT111 development kit is plugged into your PC, it will show up as a generic *Bluetooth* Controller, and the *Bluetooth* Host stack installed on your PC will take control of it. To access BT111's configuration parameters, which are stored on its EEPROM chip, you need the included SPI connector and *PSTool* software from the *CSR BlueSuite* tool collection. *BlueSuite* is available on the Bluegiga Techforum at http://techforum.bluegiga.com. *PSTool* contains a full list of the parameters that are possible to modify, along with their descriptions. Some common parameter keys are: - (0x0108) PSKEY DEVICE NAME Bluetooth name of the device - (0x02be) PSKEY_USB_VENDOR_ID USB Vendor ID, if you have your own VID and wish to use it (Default is 0a12 which is CSR's VID) - (0x02bf) PSKEY_USB_PRODUCT_ID USB Product ID (Default is 0) Please see the quick start guide for more information and examples. ## 17.1 On-chip Software #### 17.1.1 Bluetooth HCI Stack Figure 26 shows an example implementation. An internal processor runs the *Bluetooth* stack up to the HCI. The host processor must provide all the upper layers of *Bluetooth* protocol including the application. Figure 31: Example FW Architecture #### 17.1.2 Latest Feature of the HCI Stack BT111 is based on *Bluetooth* v4.0 qualified chip CSR8510 by CSR. This introduces the following features: - Generic Alternate MAC/PHY (AMP) - Generic Test Methodology for AMP - 802.11 Protocol Adaptation Layer - Enhanced Power Control - · Enhanced USB and SDIO HCI Transports - · HCI read Encryption Key Size command - Unicast Connectionless Data For Bluetooth v3.0 + HS operation a separate 802.11 IC is used in conjunction with BT111 ## 18 Soldering Recommendations BT111 is compatible with a industrial standard reflow profile for Pb-free solders. The reflow profile used is dependent on the thermal mass of the entire populated PCB, heat transfer efficiency of the oven and particular type of solder paste used. Consult the datasheet of particular solder paste for profile configurations. Bluegiga Technologies will give following recommendations for soldering the module to ensure the reliable solder joint and operation of the module after soldering. Since the profile used is process and layout dependent, the optimal profile should be studied case by case. Thus the following recommendation should be taken into account as a starting point. - Refer to technical documentations of particular solder paste for profile configurations - Avoid using more than one flow. - Reliability of the solder joint and self-alignment of the component are dependent on the solder volume. Minimum of 150μm stencil thickness is recommended. - Aperture size of the stencil should be 1:1 with the pad size. - A low residue, "no clean" solder paste should be used due to low mounted height of the component. ## 19 Certifications ### 19.1 Bluetooth BT111 is based on *Bluetooth* v4.0 qualified chip CSR8510 by CSR. BT111 can be used as a controller subsystem with the *Bluetooth* QD ID B017701. To make a complete *Bluetooth* end product, Controller Subsystem is used together with a qualified Host Subsystem. ## 19.2 FCC/IC (USA/Canada) This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: - (1) this device may not cause harmful interference, and - (2) this device must accept any interference received, including interference that may cause undesired operation. Any changes or modifications not expressly approved by Bluegiga Technologies could void the user's authority to operate the equipment. #### **FCC RF Radiation Exposure Statement:** This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter meets both portable and mobile limits as demonstrated in the RF Exposure Analysis and should not be used closer than 5 mm from a human body in portable configuration. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC multi-transmitter product procedures. #### IC Statements: This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. #### **OEM Responsibilities to comply with FCC and Industry Canada Regulations** The BT111 module has been certified for integration into products only by OEM integrators under the following condition: - The antenna(s) must be installed such that a minimum separation distance of 5 mm is maintained between the radiator (antenna) and all persons at all times. - The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC multi-transmitter product procedures. As long as the two condition above is met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.). **IMPORTANT NOTE:** In the event that these conditions can not be met (for certain configurations or colocation with another transmitter), then the FCC and Industry Canada authorizations are no longer considered valid and the FCC ID and IC Certification Number can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC and Industry Canada authorization. #### **End Product Labeling** The BT111 module is labeled with its own FCC ID and IC Certification Number. If the FCC ID and IC Certification Number are not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final end product must be labeled in a visible area with the following: "Contains Transmitter Module FCC ID: QOQBT111" "Contains Transmitter Module IC: 5123A-BGTBT111" or "Contains FCC ID: QOQBT112" "Contains IC: 5123A-BGTBT111" The OEM of the BT111 module must only use the approved antenna(s) listed in table 8, which have been certified with this module. The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product. #### 19.2.1 FCC et IC #### Déclaration d'IC: Ce dispositif est conforme aux normes RSS exemptes de licence d'Industrie Canada. Son fonctionnement est assujetti aux deux conditions suivantes : (1) ce dispositif ne doit pas provoquer de perturbation et (2) ce dispositif doit accepter toute perturbation, y compris les perturbations qui peuvent entraîner un fonctionnement non désiré du dispositif. # Responsabilités des OEM quant à la conformité avec les réglementations de FCC et d'Industrie Canada Les modules BT111 ont été certifiés pour entrer dans la fabrication de produits exclusivement réalisés par des intégrateurs dans les conditions suivantes : • L'antenne (ou les antennes) doit être installée de façon à maintenir à tout instant une distance minimum de 5 mm entre la source de radiation (l'antenne) et toute personne physique. • Le module transmetteur ne doit pas être installé ou utilisé en concomitance avec une autre antenne ou un autre transmetteur. Tant que ces deux conditions sont réunies, il n'est pas nécessaire de procéder à des tests supplémentaires sur le transmetteur. Cependant, l'intégrateur est responsable des tests effectués sur le produit final afin de se mettre en conformité avec d'éventuelles exigences complémentaires lorsque le module est installé (exemple : émissions provenant d'appareils numériques, exigences vis-à-vis de périphériques informatiques, etc.) **REMARQUE IMPORTANTE**: En
cas d'inobservance de ces conditions (en ce qui concerne certaines configurations ou l'emplacement du dispositif à proximité d'un autre émetteur), les autorisations de FCC et d'Industrie Canada ne seront plus considérées valables et l'identification de FCC et le numéro de certification d'IC ne pourront pas être utilisés sur le produit final. Dans ces cas, l'intégrateur OEM sera chargé d'évaluer à nouveau le produit final (y compris l'émetteur) et d'obtenir une autorisation indépendante de FCC et d'Industrie Canada. #### Étiquetage du produit final Le module BT111 est étiqueté avec sa propre identification FCC et son propre numéro de certification IC. Si l'identification FCC et le numéro de certification IC ne sont pas visibles lorsque le module est installé à l'intérieur d'un autre dispositif, la partie externe du dispositif dans lequel le module est installé devra également présenter une étiquette faisant référence au module inclus. Dans ce cas, le produit final devra être étiqueté sur une zone visible avec les informations suivantes : « Contient module émetteur identification FCC : QOQBT111 » « Contient module émetteur IC : 5123A-BGTBT111 » ou « Contient identification FCC : QOQBT111 » « Contient IC: 5123A-BGTBT111 » L'OEM du module BT111 ne doit utiliser que la ou les antennes approuvées énumérées dans le tableau 8, qui ont été certifiées avec ce module. Dans le guide d'utilisation du produit final, l'intégrateur OEM doit s'abstenir de fournir des informations à l'utilisateur final portant sur les procédures à suivre pour installer ou retirer ce module RF ou pour changer les paramètres RF. ## 19.3 CE (Europe) BLE112 is in conformity with the essential requirements and other relevant requirements of the R&TTE Directive (1999/5/EC). The product is conformity with the following standards and/or normative documents. - EMC (immunity only) EN 301 489-17 V2.1.1 - Radiated emissions EN 300 328 V1.7.1 - Safety EN60950-1:2006+A11:2009+A1:2010+A12:2011 19.4 KCC (South-Korea) TBA 19.5 Japan TBA # 20 Moisture Sensitivity Level (MSL) classification Moisture sensitivity level (MSL) of this product is 3. Please follow the handling guidelines of the standard IPC/JEDEC J-STD-020 and J-STD-033. TBA ### 22 Contact Information Sales: sales@bluegiga.com Technical support: support@bluegiga.com http://techforum.bluegiga.com Orders: orders@bluegiga.com www.bluegiga.com www.bluegiga.hk **Head Office / Finland:** Phone: +358-9-4355 060 Fax: +358-9-4355 0660 Sinikalliontie 5A 02630 ESPOO FINLAND Postal address / Finland: P.O. BOX 120 02631 ESPOO FINLAND Sales Office / USA: Phone: +1 770 291 2181 Fax: +1 770 291 2183 Bluegiga Technologies, Inc. 3235 Satellite Boulevard, Building 400, Suite 300 Duluth, GA, 30096, USA Sales Office / Hong-Kong: Phone: +852 3182 7321 Fax: +852 3972 5777 Bluegiga Technologies, Inc. 19/F Silver Fortune Plaza, 1 Wellington Street, Central Hong Kong