

1(31)

Revision

Α

USERS MANUAL
Document number

1/198 17-5/FCP 101 3317 Uen

ate

2005-02-17

Remarks

This document is managed in metaDoc.



SEM/BMDES RODNEY WILLIAMS
Contents responsible if other than preparer

Approved by SEM/BMDES (RODNEY WILLIAMS)

Prepared by

# **EDGE Daughter Card User Manual**

The information contained in this document is the proprietary information of **Sony Ericsson Mobile Communications International.** The contents are confidential and any disclosure to persons other than the officers, employees, agents or subcontractors of the owner or licensee of this document, without the prior written consent of **Sony Ericsson Mobile Communications International**, is strictly prohibited. Further, no portion of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, without the prior written consent of **Sony Ericsson Mobile Communications International**, the copyright holder.

**Sony Ericsson Mobile Communications International** publishes this document without making any warranty as to the content contained herein. Further **Sony Ericsson Mobile Communications International** reserves the right to make modifications, additions and deletions to this document due to typographical errors, inaccurate information, or improvements to programs and/or equipment at any time and without notice. Such changes will, nevertheless be incorporated into new editions of this document. All rights reserved.

© Sony Ericsson Mobile Communications International, 2005

1/198 17-5/FCP 101 3317 Uen

Α



# Contents

| Part 1:    | Overview                                      | 3  |
|------------|-----------------------------------------------|----|
| 1          | Introduction                                  | 4  |
| 1.1        | Target Users                                  | 5  |
| 1.2        | Prerequisites                                 | 5  |
| 1.3        | Notation                                      | 5  |
| 2          | EDGE Wireless Modem                           |    |
| 2.1        | EDGE Wireless Modem in a Communication System | 6  |
| 2.2        | Functional Block Diagram                      |    |
| 2.3        | Features                                      |    |
| 2.3.1      | Mobile Station Characteristics                | 9  |
| 2.3.2      | Environmental Conditions                      | 12 |
| 2.4        | SIM Card                                      | 12 |
| 2.5        | Other Features                                | 12 |
| 2.6        | Precautions                                   | 12 |
| Part 2 : 1 | Daughter Card Description                     | 13 |
| 3          | Mechanical Description                        |    |
| 3.1        | Physical Detail                               |    |
| 4          | System Interface                              |    |
| 4.1        | Overview                                      | 16 |
| 4.1.1      | System Connector                              | 16 |
| 4.2        | Electrical Interface Detail Format            | 18 |
| 5          | Electrical Interface                          | 19 |
| 5.1        | Power Interfaces                              | 19 |
| 5.1.1      | VIN                                           | 19 |
| 5.1.2      | 3V3                                           | 21 |
| 5.1.3      | VREF                                          | 21 |
| 5.1.4      | GND                                           | 22 |
| 5.2        | Status Interfaces                             | 23 |
| 5.2.1      | UVP                                           | 23 |
| 5.2.2      | OVP                                           | 24 |
| 5.2.3      | RI                                            | 24 |
| 5.2.4      | LED.                                          | 25 |
| 5.2.5      | VREF                                          | 25 |
| 5.3        | Data Communication and Control Interfaces     | 26 |
| 5.3.1      | USB Interface                                 |    |
| 5.3.2      | P EN                                          | 26 |
| 5.4        | ANTENNA CONNECTOR                             | 27 |
| 6          | Rudimentary Circuit Functions                 | 28 |
| 6.1        | Power On Sequence                             |    |
| 6.2        | Power Off Sequence                            |    |
| 6.3        | USB communications timing                     |    |
|            |                                               |    |

Α



Part 1 : Overview

Α



1/198 17-5/FCP 101 3317 Uen

#### Introduction 1

The EDGE Daughter Card product is a custom product, developed for the host equipment customer.

The EDGE Daughter Card is a total solution designed as an add-in option for integrators of the host equipment. The Daughter Card comprises of several component parts:

- EDGE wireless modem, which is the wireless enabling circuitry integrated on to the Daughter Card PCB together with its mechanical RF shielding
- RF connector, which provides physical connectivity between the Daughter Card and the antenna which is integrated in to the notebook mechanical housing
- Voltage regulation circuitry, which converts raw unregulated power from the host battery to the core regulated voltage to the EDGE wireless components
- System connector, which provided the data, control, power and status interface between the host and the wireless modem
- SIM connector, a combined connector and retention device for the users Subscriber Identity Module (SIM) card

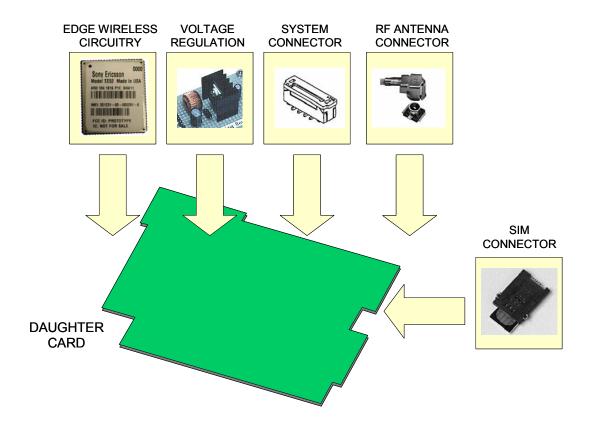



Figure 1-1 EDGE Daughter Card Component Parts

Α



1/198 17-5/FCP 101 3317 Uen

#### 1.1 **Target Users**

The EDGE Daughter Card solution is specifically for the host equipment.

#### 1.2 **Prerequisites**

Integration of the EDGE Daughter Card will be performed at facilities under the host equipment customer's management. All necessary integration instruction, driver software and user documentation will be provided. No special pre-requisite knowledge is necessary.

#### 1.3 **Notation**

This document describes a custom solution for the host equipment. The Daughter Card product is defined through a cooperative partnership between the host equipment customer and Sony Ericsson Mobile Communications (SEMC).

EDGE (Enhanced Data rate for GSM Evolution) is the wireless-enabling technology.

The EDGE Daughter Card is a PCB assembly with the components described on the previous page integrated on to the board. The complete assembly is reffered in this document as the the host equipment DC (DC=Daughter Card ).

Α

1/198 17-5/FCP 101 3317 Uen

#### 2 **EDGE Wireless Modem**

#### 2.1 **EDGE Wireless Modem in a Communication System**

Figure 2-1 illustrates the main blocks of a wireless communication system using the EDGE Daughter Card embedded in the host equipment device. It also shows the communication principles of the system. The definitions in the figure, as used elsewhere in this manual, are in accordance with the recommendations of GSM 07.07.

- The MS (mobile station) represents the EDGE Daughter Card modem plus SIM card.
- The modem excluding SIM card, is known as the ME (mobile equipment).
- The TE (terminal equipment) is a micro-controller and is a part of the application.

# Wireless Communications System

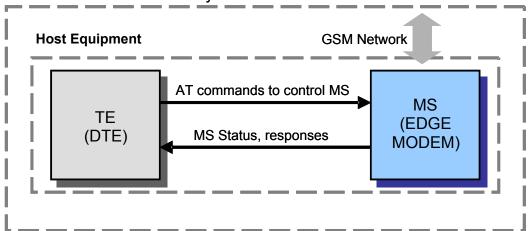



Figure 2-1 Main Blocks in a Wireless System

In accordance with the recommendations of ITU-T (International Telecommunication Union - Telecommunications Standardisation Sector) V.24, the TE communicates with the MS over a serial interface. In this case this is the Universal Serial Bus (USB).

The functions of the EDGE modem follow the recommendations provided by ETSI (European Telecommunications Standards Institute) and ITU-T.

ETSI specifies a set of AT commands for controlling the GSM/E-GSM element of the modem; these commands are supplemented by Sony Ericsson specific commands.

Figure 2-2 illustrates the interface between the Daughter Card and the the host equipment application. Each interface signal is described in Section 3.

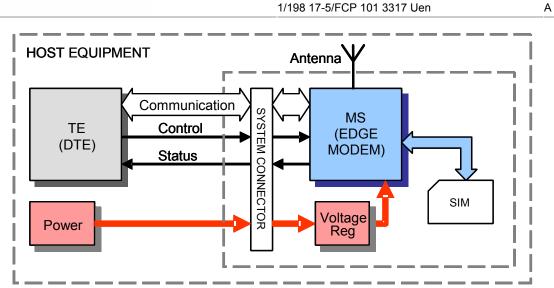



Figure 2-2Figure 2-2 Interface between Daughter Card and Application

Note that ITU-T standards define TE and TA as DTE (Data Terminal Equipment) and DCE (Data Circuit Terminating Equipment) respectively.



# 2.2 Functional Block Diagram

A function representation of the EDGE duaghter card is included in the figure below.

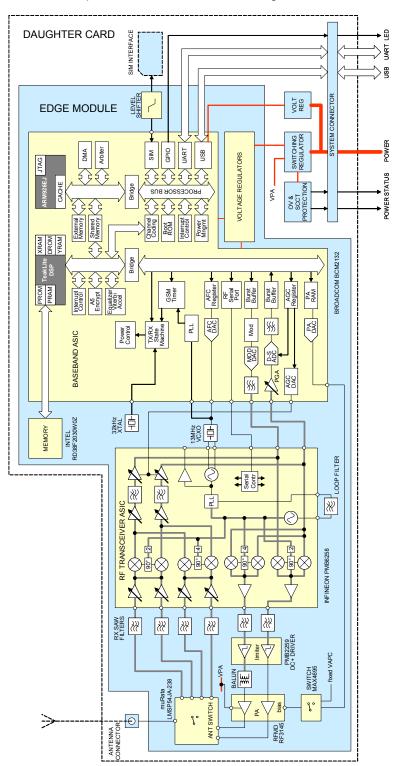



Figure 2-3 EDGE Daughter Card Functional Block Diagram



9(31)

`

Revision

Α



1/198 17-5/FCP 101 3317 Uen

# 2.3 Features

The EDGE modem performs a set of telecom services (TS) according to GSM standard phase 2+, ETSI and ITU-T. The functions of the modem are implemented by issuing AT commands over a serial interface.

# 2.3.1 Mobile Station Characteristics

The EDGE modem can be configured for single, dual, triple and quad band GSM functionality. The quad band characteristics of the EDGE modem are shown in the following table.

Confidential USERS MANUAL Document number

1/198 17-5/FCP 101 3317 Uen

Revision A

| EDGE MODEM                                      |                                | GSM8<br>50                                      | E-GSM900                                | GSM1800                        | GSM1900                        |  |  |  |
|-------------------------------------------------|--------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------|--------------------------------|--|--|--|
| Frequency range (MHz)                           |                                | TX:<br>824-<br>849<br>RX:<br>869-<br>894        | TX: 880-915<br>RX: 925-960              | TX: 1710-1785<br>RX: 1805-1880 | TX: 1850-1910<br>RX: 1930-1990 |  |  |  |
| Channel spacing                                 |                                |                                                 |                                         | 200kHz                         |                                |  |  |  |
| Number of channels                              |                                | 123 x 8<br>(TDMA<br>)                           | 173 x 8 (TDMA)                          | 373 x 8 (TDMA)                 | 298 x 8 (TDMA)                 |  |  |  |
| Duplex spacing                                  |                                |                                                 | 45MHz                                   | 95MHz                          | 80MHz                          |  |  |  |
| Modulation                                      | GSM/G<br>PRS<br>EDGE           |                                                 | GMSK                                    |                                |                                |  |  |  |
| Tx phase                                        | Nom.                           |                                                 | 8-PSK<br>TBD                            |                                |                                |  |  |  |
| accuracy<br>(burst)                             | Max.                           | <5° rms phase error ; <20° max peak phase error |                                         |                                |                                |  |  |  |
|                                                 | 100KH<br>z                     |                                                 | <+0.5dB                                 |                                |                                |  |  |  |
| Tx Spectrum<br>Due to                           | Tx Spectrum 200KH              |                                                 | <-30dB                                  |                                |                                |  |  |  |
| Modulation                                      | 250KH<br>z                     |                                                 | <-33dB                                  |                                |                                |  |  |  |
| 400KH<br>z                                      |                                | <-60dB                                          |                                         |                                |                                |  |  |  |
| 100KH<br>z                                      |                                |                                                 | <-23dBm                                 |                                |                                |  |  |  |
| Tx Spectrum<br>Due to                           | 200KH<br>z                     |                                                 | <-26dBm<br><-32dBm                      |                                |                                |  |  |  |
| Switching<br>Transients                         | 250KH<br>z                     |                                                 |                                         |                                |                                |  |  |  |
|                                                 | 400KH<br>z                     | <-36dBm                                         |                                         |                                |                                |  |  |  |
| Receiver sensit<br>(ANT pin)                    | ivity                          | <-<br>102dB<br>m                                | <-102dBm                                | <-102dBm                       | <-102dBm                       |  |  |  |
| Transm GS itter M output power ED (ANT GE conn) | Class<br>Nom.<br>Class<br>Nom. |                                                 | Class 4<br>+33dBm<br>Class E2<br>+27dBm | +30<br>Cla                     | ass 1<br>OdBm<br>ss E2<br>6dBm |  |  |  |
| Receiver<br>sensitivity<br>(ANT<br>connector)   | Nom.                           | <-<br>104d<br>Bm                                |                                         |                                |                                |  |  |  |
|                                                 | Max.                           | <-<br>102d<br>Bm                                |                                         |                                |                                |  |  |  |



# Confidential USERS MANUAL Document number

1/198 17-5/FCP 101 3317 Uen

Revision A

| Rx<br>Intermodulati<br>on                        | f <sub>1</sub> |  | -49dBm   |  |
|--------------------------------------------------|----------------|--|----------|--|
| $F_0 = 2f_1 - f_2;$<br>$ f_2 - f_1  =$<br>800KHz | f <sub>2</sub> |  | -49dBm   |  |
| GPRS operation                                   |                |  | Class 10 |  |

Note that the number of frequency bands available will be dependent upon the factory configuration. The available bands will be determined by customer requirements.



## 2.3.2 Environmental Conditions

The DC will support the following environmental conditions

| Temperature Range (Full GSM Specification) <sup>1</sup> | -10°C to +55°C |
|---------------------------------------------------------|----------------|
| Temperature Range (Operational) <sup>2</sup>            | -20°C to +65°C |
| Storage Temperature Range                               | -20°C to +75°C |

Table 2.3-1 Environmental Conditions

#### Notes

- 1. Full compliance to Type Approval and Regulatory Approval requirements between these temperature ranges
- 2. Design Verification Testing (DVT) and Operational compliance between these temperature ranges.

# 2.4 SIM Card

An external SIM card with 3V or 1.8V technology, can be connected to the modem via the SIM interface pins.

# 2.5 Other Features

The EDGE modem supports a number of additional features including

- 07.10 multiplexing (normal mode)
- SIM application tool kit

# 2.6 Precautions

The EDGE modem device is ESD protected up to 4K V contact and 8K V air discharge. It is recommended that integrators follow electronic device handling precautions when working with any electronic device system to ensure no damage occurs to the host or the radio device.

The EDGE modem is integrated on to the daughter card. When the card is mounted in the host it is the responsibility of the integrator to ensure that static discharge protection beyond the voltages specified above are designed in to the host product. If exposed, the antenna is a vulnerable contact point for ESD.



# Part 2 : Daughter Card Description

Α



# 3 Mechanical Description

# 3.1 Physical Detail

Dimensional details given here are for reference only. For mechanical design data, please refer to the mechanical outline drawing 151 88 - KRD 104 1025/2.

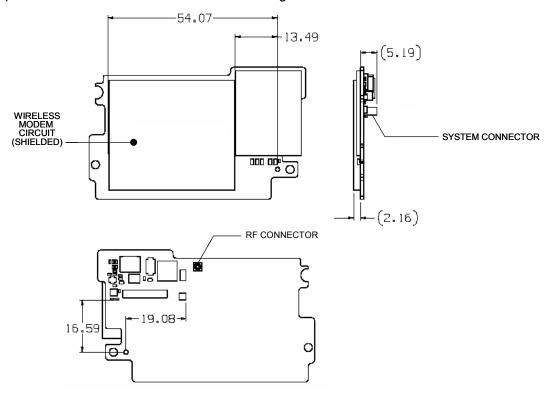



Figure 3-1 Layout Detail (reference only)

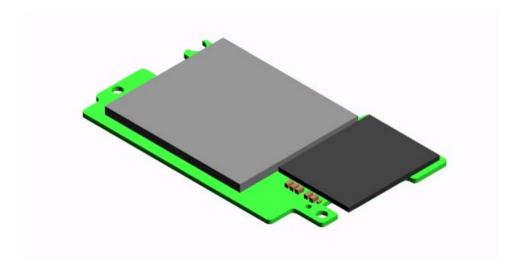



Figure 3-2 EDGE Daughter Card Primary Side View

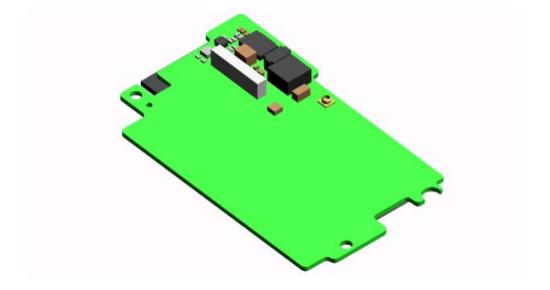



Figure 3-3 EDGE Daughter Card Underneath View

Α

1/198 17-5/FCP 101 3317 Uen

#### **System Interface** 4

#### 4.1 Overview

#### 4.1.1 **System Connector**

All of the systems interface signals flow through a single connector; power, ground, data, cotrol, status and GPIO.

Electrical connections to the modem are made through a 24 pin low insertion force (LIF) vertical SMT mount FFC or FPC cable receptor. The connector is a single sided contact type, for example the AVX Elco part 04-6244-024-011-800.

| Connector type                  | NON-ZIF (LIF) ST SMT       |
|---------------------------------|----------------------------|
| Contact                         | Single                     |
| Profile Height (mm)             | 4.10                       |
| Number of Contacts              | 24                         |
| Current Rating                  | 0.4A Max.                  |
| Voltage Rating                  | 50V Max.                   |
| Dielectric withstanding voltage | 200Vrms                    |
| Contact Material                | Phosphor bronze Tin-Plated |
| Insulator material              | Heat resistant plastic     |
| Operating temperature           | 40°C~+85°C                 |
| FFC/FPC thickness               | 0.3±0.05                   |

Table 4.1-1 Connector Characteristics

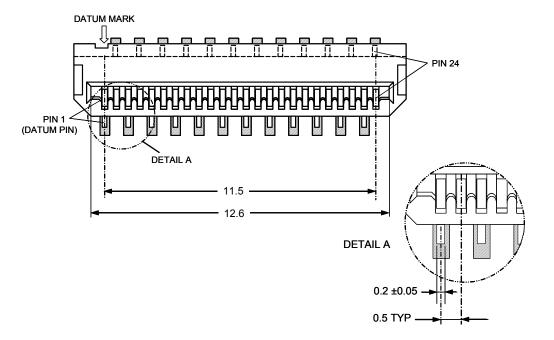



Figure 4-1 Connector Detail

Α



| Pin | Name   | Function                                                           |
|-----|--------|--------------------------------------------------------------------|
| 1   | USB_DN | USB differential (-) line                                          |
| 2   | USB_DP | USB differential (+) line                                          |
| 3   | VREF   | Modem logic voltage reference output from daughter card            |
| 4   | OVP    | Over voltage protection output from daughter card                  |
| 5   | SPARE  |                                                                    |
| 6   | SPARE  |                                                                    |
| 7   | SPARE  |                                                                    |
| 8   | GND    | Ground                                                             |
| 9   | GND    | Ground                                                             |
| 10  | GND    | Ground                                                             |
| 11  | GND    | Ground                                                             |
| 12  | GND    | Ground                                                             |
| 13  | GND    | Ground                                                             |
| 14  | VIN    | Voltage input from host application                                |
| 15  | VIN    | Voltage input from host application                                |
| 16  | VIN    | Voltage input from host application                                |
| 17  | VIN    | Voltage input from host application                                |
| 18  | VIN    | Voltage input from host application                                |
| 19  | VIN    | Voltage input from host application                                |
| 20  | RI     | Ring Indicator output from daughter card                           |
| 21  | 3V3    | Application reference voltage input to daughter card               |
| 22  | LED    | Pulsing LED output from daughter card                              |
| 23  | UVP    | Under voltage & short circuit protection output from daughter card |
| 24  | P_EN   | Power ON enable input to daughter card                             |

Α



# 4.2 Electrical Interface Detail Format

Details of each electrical interface is contained in paragraph 5 (beginning page 19). The description of each interface follows a common format. An example is shown below:

## Interface Name

This is the name of the interface; usually this is the actual name found in the pin list; sometimes this is a collective name for a number of signals, such as the example shown here for a UART.

## Function:

This identifies the basic function of the interface; some interfaces are grouped according to their functional sub-class.

# Description:

The description contains a basic overview of the interface and its functional relationship with the host.

## Pin Numbers:

All pin numbers associated with the interface are listed; these will not necessarily be in numerical order but may be arranged to coincide with signal name list.

# Signal Names:

All sigal names associated with the interface exactly as shown in the pin list; the signal names also contain information on signal flow direction.

# If not used:

This gives specific details, for each signal, of how to terminate the physical connection if it is not required by the host; failure to observe this convention may result in unstable operation of the EDGE modem. (This may not be necessary in the host application since all signals have a defined function).

1/198 17-5/FCP 101 3317 Uen

Α



# 5 Electrical Interface

This section describes each signal line of the electrical interface between the EDGE modem and the host equipment application. A summary of the function of each signal is provided, together with any additional relevant information.

Signals are described from the perspective of the EDGE modem and Daughter Card circuitry. Consequently signals described as input are inputs to the modem, driven by the host [host⇒modem]. Likewise, signals described as output are driven by the modem in to the host [modem⇒host]. Bi-directional signal flow (I/O) is indicated by a double-headed arrow [modem⇔host]. In some instances the [daughter card] will be identified if the modem circuitry is not directly involved, or where additional interface circuitry resides between the host and the modem.

Signals which are pulled internally are identified in parentheses beside the signal name as either (PU)=Pulled Up or (PD)=Pulled Down. Signals with no designation are not pulled either way.

## 5.1 Power Interfaces

This section describes the power, ground, and other signals that control or indicate power states.

- VIN
- 3V3
- VREF
- GND

# 5.1.1 VIN

Function: Daughter card power supply

Description: Primary voltage supply to switching regulator (5.5 to 20.0V).

Pin Numbers: 14, 15, 16, 17, 18, 19

Signal Names: VIN [host⇒daughter card]

If not used: Required

# Details:

Power provided by the host will range from 5.5V minimum to a maximum 20.0V, dependent upon the battery discharge state. The Daughter Card has on board regulation which regulates the supply range to a steady 3.6V by means of a switching regulator rated at 3A max.

1/198 17-5/FCP 101 3317 Uen

Revision

Α

# Typical Electrical Characteristics:

| Parameter                                | Condition | Low                 | Mid  | High | Unit    |      |
|------------------------------------------|-----------|---------------------|------|------|---------|------|
| Voltage                                  |           | 5.5                 | 7.4  | 20.0 | ٧       |      |
| Transmit mode Power Consumption          | Peak*     | GSM850<br>2-slot TX | 1880 | 1500 | 950 est | mA   |
| (worst case)                             | average   | GSM850<br>2-slot TX | 450  | 340  | 145 est | 1117 |
| Idle mode Power Consumption (worst case) | average   | DRX 2               | 9.9  | 7.6  | 3.8 est | mA   |

<sup>\*</sup>Peak current consumption is an instantaneous value which occurs during a TDMA transmitter burst.

Table 5.1-1: VIN Electrical Characteristics

Α



Document number
1/198 17-5/FCP 101 3317 Uen

5.1.2 3V3

Function: Daughter card reference voltage

Description: Host reference to protection circuit & USB (3.3V)

Pin Numbers: 21

Signal Names: 3V3 [host⇒daughter card]

If not used: Required

Details:

The host supplies a 3.3V regulated supply to the Daughter Card for two primary functions:

· reference supply for the undervoltage / short circuit protection circuitry

• input for the USB interface

## **Electrical Characteristics:**

| Parameter | Condition | Min | Nom  | Max | Unit |
|-----------|-----------|-----|------|-----|------|
| Voltage   |           |     | 3.30 |     | V    |
| Ripple    |           |     |      | 100 | mV   |

# 5.1.3 VREF

Function: Voltage Reference

Description: Core digital voltage reference from modem.

Pin Number: 3

Signal Name: VREF [modem⇒host]

If not used: Required

# Details:

VREF is supplied as a reference voltage from the modem. This reference is the modem's core digital supply voltage at a nominal 2.80V.

The interface is capable of sourcing 200uA and is intended primarily for situations where host interface circuitry is required to be level shifted to maintain wireless modem signal level compatibility. If more current is required by the host, a current amplifier must be implemented.



This signal can also be used to indicate whether the wireless modem is powered on or not. A high level (2.7V to 2.9V) indicates that the modem is powered on. A low level (<0.5V) indicates that the modem is powered off.

1/198 17-5/FCP 101 3317 Uen

All digital logic, except the SIM interface, is characteristic CMOS logic operating at VREF.

# **Electrical Characteristics:**

| Parameter                            | Condition | Min  | Тур  | Max  | Unit |
|--------------------------------------|-----------|------|------|------|------|
| VREF output voltage                  | inactive  |      | 0.3  | 0.5  | V    |
| VIVEI Output Voltage                 | active    | 2.70 | 2.80 | 2.90 | V    |
| VREF output current I <sub>OUT</sub> |           |      |      | 200  | uA   |

Table 5.1-2: VREF Electrical Characteristics

# 5.1.4 GND

Function: Ground

Description: Modem common rail

Pin Numbers: 8, 9, 10, 11, 12, 13

Signal Name: GND

If not used: Required

Details:

Return path for all currents.

Α



Document number 1/198 17-5/FCP 101 3317 Uen

# 5.2 Status Interfaces

Status interfaces indicate or control status features of the modem.

- UVP
- OVP
- RI
- LED
- VREF

# 5.2.1 UVP

Function: Under voltage protection

Description: Status indicator to host of potential malfunction in Daughter Card

circuitry

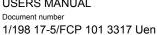
Pin Number: 23

Signal Name: UVP (PD) [daughter card⇒host]

If not used: Required

## Details:

The Daughter Card has FET circuitry which uses 3V3 as a reference, driving an output to the host indicating the voltage condition of the of VBAT (the modem supply voltage). A resistive divider connected to VBATT presents a very low  $V_{be}$  to the UVP transistor. This presents a steady state low voltage output under normal VBAT conditions with external pulldown circuitry. In the event of a short circuit or high current fault condition on the Daughter Card, the voltage drop from the switching regulator will bias the UVP transistor on and present a high output to the host equipment monitoring circuit.


The UVP signal should be pulled low by the application circuit for correct function.

# **Electrical Characteristics:**

| Parameter          | Condition | Min | Тур | Max | Unit |
|--------------------|-----------|-----|-----|-----|------|
| UVP output voltage | Normal    |     |     | 0.5 | V    |
| ovi output voltage | Fault     |     | 3.3 |     | V    |

Table 5.2-1: UVP Electrical Characteristics

Α





# 5.2.2 OVP

Function: Over voltage protection

Description: Status indicator to host of potential malfunction in Daughter Card

circuitry

Pin Number: 4

Signal Name: OVP (PU) [daughter card⇒host]

If not used: Required

# Details:

The OVP signal is simply an output from the main onboard regulator. In it's operational state under normal functional conditions this will output 3.6V nominal

| Parameter          | Condition | Min | Тур | Max | Unit |
|--------------------|-----------|-----|-----|-----|------|
| UVP output voltage | Normal    |     | 3.6 |     | V    |
| Ovi output voltage | Fault     | 3.7 |     |     | V    |

Table 5.2-2: OVP Electrical Characteristics

## 5.2.3 RI

Function: Ring Indicator

Description: Alert signal from the modem to indicate an incoming SMS, or

unmasked unsolicited response

Pin Number: 20

Signal Name: RI [modem⇒host]

If not used: Leave open

# Details:

Ring Indicator is essentially a wake-up call from the modem to the host application to signal one of two events:

- an in-coming message (SMS).
- an unmasked unsolicited response/result code.

For the EDGE modem the Ring Indicator is implemented as a GPIO interface within the EDGE baseband device.



25(31)





A falling edge indicates an alert or message. The signal remains low for a period of time before going high. An SMS-page or unsolicited response/result code generates one pulse (the length is configurable using an AT command)[TBC].

The ring indicator is implemented on the daughter card as an open collector transistor output to allow the host the convenience of driving the host equipment circuitry.

# 5.2.4 LED

Function: LED

Description: LED-signal indicating a status change

Pin Number: 22

Signal Name: LED [modem⇒host]

If not used: Leave open

# Details:

The LED is implemented on the Daughter Card as an open collector transistor output which provides a driver level interface to an LED acting as a status indicator for the user. The LED output can be made to blink at a rate pre-determined by modem software.

# 5.2.5 VREF

The function of VREF is already described in 5.1.3. This interface can be used as a status indicator to the host that the modem is still powered. VREF is present whilst the modem is powered and is removed upon the completion of the modem power down. This feature can be useful in the event of a communications lock-up between the host and the daughter card.

Α



# 5.3 Data Communication and Control Interfaces

The serial data and control interfaces consist of the following:

USB

P\_EN

# 5.3.1 USB Interface

Function: USB data communication port

Description: USB transmit and receive port for data communication between

modem and host.

Pin Numbers: 1, 2

Signal Names: USB\_DP (2) [modem⇔host]

USB\_DN (1) [modem⇔host]

If not used: Required

Details:

Power to the USB interface is provided by the 3V3 input from the host.

# 5.3.2 P\_EN

Function: Power Enable

Description: Modem power enable control from host

Pin Numbers: 24

Signal Names: P EN [host⇒daughter card]

If not used: Required

# Details:

The power enable signal is provided from the host application and is routed to the switching regulator shutdown input and also to the REG\_EN (regulator enable) pin on the modem. Assertion of this pin will initiate power up. The P\_EN pin is active high and has to be maintained continually in order to keep the modem powered.



**USERS MANUAL** Document number

1/198 17-5/FCP 101 3317 Uen

27(31)

Revision

Α



#### **ANTENNA CONNECTOR** 5.4

Function: Antenna connector

Description: 50 ohm wireless antenna connection.

Pin Numbers: N/A

Signal Names: **ANTENNA** 

If not used: Required

# Details:

The antenna interface to the modem is routed to a low profile coaxial connector on the daughter card. The antenna connector has a nominal impedance of 50 ohms and a maximum frequency rating of 2.5GHz.

# **IMPORTANT NOTE:**

# **FCC Radiation Exposure Statement:**

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance of 20cm between the radiator and your body.

This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Α



# 6 Rudimentary Circuit Functions

This section contains some rudimentary circuit functions for the sequencing of powering the modem up and down.

# 6.1 Power On Sequence

This sequence illustrates the power on procedure.

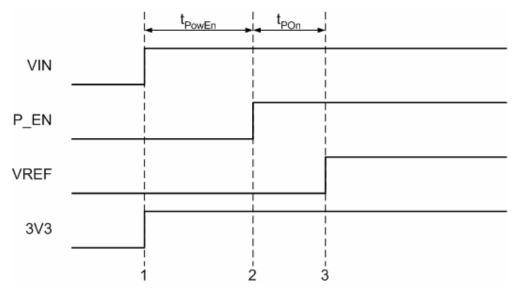



Figure 6-1 Power On Sequence

# Sequence Detail:

- VIN and 3V3 are supplied to the modem by the host. These two voltages can be supplied simultaneously when the Daughter Card is required to be powered on. Both voltages must be present before the power on sequence is initiated for the Daughter Card to function correctly.
- 2 Once VIN and 3V3 voltages are applied the host can enable power up by asserting power enable signal P\_EN. The power up process will begin.
- 3 VREF may be used as an indicator that the modems regulators are powered.  $t_{\text{POn}}$  is typically less than 70 ms

Α



# 6.2 Power Off Sequence

This sequence illustrates the power off procedure.

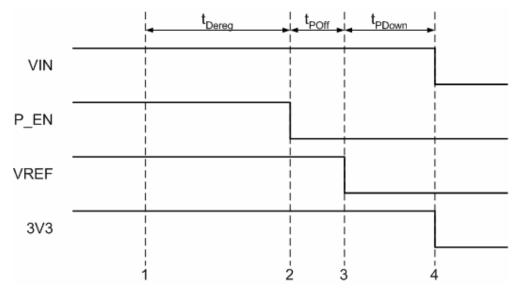
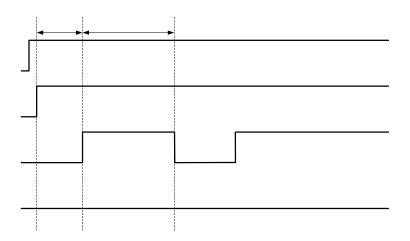



Figure 6-2 Power Off Sequence

# Sequence Detail:

- 1 The "AT+CFUN=4" instruction is sent from the host application to the modem in order to initiate a deregistration sequence.
- 2 The modem responds to the request with an 'OK' to indicate that deregistration is completed. Deregistration from the network can take from 3-30 seconds. After de-registration has been acknowledged the host application may remove P\_EN.
- 3 The switching regulator output capacitor will gradually discharge until the modem regulators threshold is exceeded. and power down will be complete. VREF may be used as indicator of complete shut down.
- 4 When the modem has successful shutdown, and VREF has fallen bellow 0.5V then the host may safely remove VIN and 3V3 at any time. However the supplies can remain active without increasing current consumption (typically <25uA).


# 6.3 USB communications timing

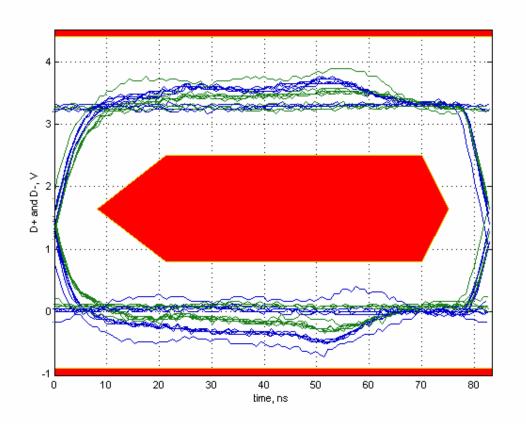
This sequence illustrates USB initialization.

1/198 17-5/FCP 101 3317 Uen








- 1. The startup sequence begins with the completion of the power up ramping of the VREF signal as described in Power On Sequence.
- 2. The D+ signal is brought high with the power up of the USB block in the baseband circuitry. This produces the J state indicating to the USB host that a device is attaching.
- 3. A host initiated SE0 begins the USB protocol transactions. A power up EN summary of USB transactions is shown for example.

| #Transactns                                                                                                                                                                                                                                                 |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 0 0 SETUP 4 0 4 0 0 32 32 32 0 0 1N 4 0 0 4 0 0 36 36 36 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                              |    |
| O                                                                                                                                                                                                                                                           |    |
| O                                                                                                                                                                                                                                                           |    |
| 3                                                                                                                                                                                                                                                           |    |
| 3 0 OUT 6 0 6 0 0 0 0 0  4 0 SETUP 3 0 3 0 0 24 24 4 0 IN 3 0 3 0 0 27 27 4 0 OUT 2 0 2 0 0 0 0 0  4 2 IN 7164 0 3 7161 0 63 63 4 2 OUT 2 0 2 0 0 39 39  Control Transfers by Device: Addr Endp Packet# Dir Type Recipient Request Value Index Length S B D | _  |
| 3 0 OUT 6 0 6 0 0 0 0 0  4 0 SETUP 3 0 3 0 0 24 24 4 0 IN 3 0 3 0 0 27 27 4 0 OUT 2 0 2 0 0 0 0 0  4 2 IN 7164 0 3 7161 0 63 63 4 2 OUT 2 0 2 0 0 39 39  Control Transfers by Device: Addr Endp Packet# Dir Type Recipient Request Value Index Length S B D |    |
| 3  0  0UT  6  0  6  0  0  0  0  0  0                                                                                                                                                                                                                        |    |
| 4                                                                                                                                                                                                                                                           |    |
| 4 0 IN 3 0 3 0 0 27 27 4 0 0UT 2 0 2 0 0 0 0 0 0 0 4 2 IN 7164 0 3 7161 0 63 63 4 2 0UT 2 0 2 0 0 0 39 39  Control Transfers by Device: Addr Endp Packet# Dir Type Recipient Request Value Index Length S B D                                               |    |
| 4 0 OUT 2 0 2 0 0 0 0 0  4 2 IN 7164 0 3 7161 0 63 63 4 2 OUT 2 0 2 0 0 39 39  Control Transfers by Device: Addr Endp Packet# Dir Type Recipient Request Value Index Length S B D                                                                           |    |
| 4 0 OUT 2 0 2 0 0 0 0 0  4 2 IN 7164 0 3 7161 0 63 63 4 2 OUT 2 0 2 0 0 39 39  Control Transfers by Device: Addr Endp Packet# Dir Type Recipient Request Value Index Length S B D                                                                           |    |
| 4 2 OUT 2 0 2 0 0 39 39  Control Transfers by Device: Addr Endp Packet# Dir Type Recipient Request Value Index Length S D                                                                                                                                   |    |
| 4 2 OUT 2 0 2 0 0 39 39  Control Transfers by Device: Addr Endp Packet# Dir Type Recipient Request Value Index Length S D                                                                                                                                   |    |
| Control Transfers by Device: Addr Endp Packet# Dir Type Recipient Request Value Index Length                                                                                                                                                                |    |
| Addr Endp Packet# Dir Type Recipient Request Value Index Length                                                                                                                                                                                             |    |
| Addr Endp Packet# Dir Type Recipient Request Value Index Length                                                                                                                                                                                             |    |
| Addr Endp Packet# Dir Type Recipient Request Value Index Length                                                                                                                                                                                             |    |
|                                                                                                                                                                                                                                                             | _  |
| 0 0 336 D->H Standard Device GET_DESCRIPTOR 256 0 64                                                                                                                                                                                                        | _  |
| 0 0 426 H->D Standard Device SET_ADDRESS 3 0 0                                                                                                                                                                                                              |    |
| 0 0 874 D->H Standard Device GET_DESCRIPTOR 256 0 64                                                                                                                                                                                                        |    |
| 0 0 904 H->D Standard Device SET_ADDRESS 4 0 0                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                                             |    |
| 3 0 472 D->H Standard Device GET_DESCRIPTOR 256 0 18                                                                                                                                                                                                        |    |
| 3 0 481 D->H Standard Device GET_DESCRIPTOR 512 0 9 3 0 490 D->H Standard Device GET DESCRIPTOR 512 0 255                                                                                                                                                   |    |
|                                                                                                                                                                                                                                                             |    |
| 3                                                                                                                                                                                                                                                           |    |
|                                                                                                                                                                                                                                                             |    |
| 3 0 697 H->D Standard Device SET CONFIGURATION 1 0                                                                                                                                                                                                          | •  |
| 3 0 688 D->H Standard Device GET_DESCRIPTOR 512 0 $0.000000000000000000000000000000000$                                                                                                                                                                     | J- |
| 4 0 950 D->H Standard Device GET DESCRIPTOR 256 0 18                                                                                                                                                                                                        |    |
| 4 0 959 D->H Standard Device GET DESCRIPTOR 512 0 9                                                                                                                                                                                                         |    |
| 4 0 968 H->D Standard Device SET CONFIGURATION 1 0 0                                                                                                                                                                                                        |    |

Α



Eye Diagram for Full Speed USB signaling.

