

TI-83 GRAPHING CALCULATOR GUIDEBOOK

E

TI-GRAPH LINK, Calculator-Based Laboratory, CBL, CBL 2, Calculator-Based Ranger, CBR, Constant Memory, Automatic Power Down, APD, and EOS are trademarks of Texas Instruments Incorporated.

IBM is a registered trademark of International Business Machines Corporation. Macintosh is a registered trademark of Apple Computer, Inc. Windows is a registered trademark of Microsoft Corporation.

© 1996, 2000, 2001 Texas Instruments Incorporated.

Important	Texas Instruments makes no warranty, either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis.		
	In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this equipment. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.		
US FCC Information Concerning Radio Frequency Interference	This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference with radio communications. However, there is no guarantee that interference will not occur in a particular installation.		
	If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, you can try to correct the interference by one or more of the following measures:		
	• Reorient or relocate the receiving antenna.		
	• Increase the separation between the equipment and receiver.		
	• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.		
	Consult the dealer or an experienced radio/television technician for help.		
	Caution: Any changes or modifications to this equipment not expressly approved by Texas Instruments may void your authority to operate the equipment.		

This manual describes how to use the TI-83 Graphing Calculator. Getting Started is an overview of TI-83 features. Chapter 1 describes how the TI-83 operates. Other chapters describe various interactive features. Chapter 17 shows how to combine these features to solve problems.

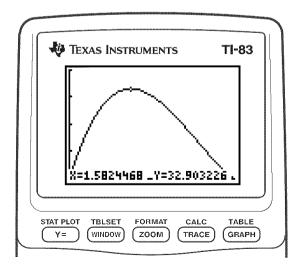
Getting Started:	TI-83 Keyboard	2
Do This First!	TI-83 Menus	4
	First Steps	5
	Entering a Calculation: The Quadratic Formula	6
	Converting to a Fraction: The Quadratic Formula	7
	Displaying Complex Results: The Quadratic Formula	8
	Defining a Function: Box with Lid	9
	Defining a Table of Values: Box with Lid	10
	Zooming In on the Table: Box with Lid	11
	Setting the Viewing Window: Box with Lid	12
	Displaying and Tracing the Graph: Box with Lid	13
	Zooming In on the Graph: Box with Lid	15
	Finding the Calculated Maximum: Box with Lid	16
	Other TI-83 Features	17
Chapter 1	Turning On and Turning Off the TI 92	1-2
Chapter 1:	Turning On and Turning Off the TI-83	1-2
Operating the TI-83	Setting the Display Contrast	1-3 1-4
11-03	The Display	
	Entering Expressions and Instructions	1-6
	TI-83 Edit Keys	1-8
	Setting Modes	1-9
	Using TI-83 Variable Names	1-13
	Storing Variable Values	1-14
	Recalling Variable Values	1-15
	ENTRY (Last Entry) Storage Area	1-16
	Ans (Last Answer) Storage Area	1-18
	TI-83 Menus	1-19
	VARS and VARS Y-VARS Menus	1-21
	Equation Operating System (EOS [™])	1-22
	Error Conditions	1-24

Chapter 2: Math, Angle, and Test Operations	Getting Started: Coin Flip Keyboard Math Operations MATH Operations Using the Equation Solver MATH NUM (Number) Operations Entering and Using Complex Numbers MATH CPX (Complex) Operations MATH PRB (Probability) Operations ANGLE Operations TEST (Relational) Operations TEST LOGIC (Boolean) Operations	2-2 2-3 2-5 2-8 2-13 2-16 2-18 2-20 2-23 2-25 2-26
Chapter 3: Function Graphing	Getting Started: Graphing a Circle Defining Graphs Setting the Graph Modes Defining Functions Selecting and Deselecting Functions Setting Graph Styles for Functions Setting the Viewing Window Variables Setting the Graph Format Displaying Graphs Exploring Graphs with the Free-Moving Cursor Exploring Graphs with TRACE Exploring Graphs with the ZOOM Instructions Using ZOOM MEMORY Using the CALC (Calculate) Operations	
Chapter 4: Parametric Graphing	Getting Started: Path of a Ball Defining and Displaying Parametric Graphs Exploring Parametric Graphs	4-2 4-4 4-7
Chapter 5: Polar Graphing	Getting Started: Polar Rose Defining and Displaying Polar Graphs Exploring Polar Graphs	5-2 5-3 5-6

Chapter 6: Sequence Graphing	Getting Started: Forest and Trees Defining and Displaying Sequence Graphs Selecting Axes Combinations Exploring Sequence Graphs Graphing Web Plots Using Web Plots to Illustrate Convergence Graphing Phase Plots Comparing TI-83 and TI-82 Sequence Variables Keystroke Differences Between TI-83 and TI-82	$\begin{array}{c} 6-2 \\ 6-3 \\ 6-8 \\ 6-9 \\ 6-11 \\ 6-12 \\ 6-13 \\ 6-15 \\ 6-16 \end{array}$
Chapter 7: Tables	Getting Started: Roots of a Function Setting Up the Table Defining the Dependent Variables Displaying the Table	7-2 7-3 7-4 7-5
Chapter 8: DRAW Operations	Getting Started: Drawing a Tangent Line Using the DRAW Menu Clearing Drawings Drawing Line Segments Drawing Horizontal and Vertical Lines Drawing Tangent Lines Drawing Functions and Inverses Shading Areas on a Graph Drawing Circles Placing Text on a Graph Using Pen to Draw on a Graph Drawing Points on a Graph Drawing Pixels Storing Graph Pictures (Pic) Recalling Graph Databases (GDB)	8-2 8-3 8-4 8-5 8-6 8-8 8-90 8-11 8-12 8-13 8-14 8-16 8-17 8-18 8-19 8-20
Chapter 9: Split Screen	Getting Started: Exploring the Unit Circle Using Split Screen Horiz (Horizontal) Split Screen G-T (Graph-Table) Split Screen TI-83 Pixels in Horiz and G-T Modes	9-2 9-3 9-4 9-5 9-6

Chapter 10: Matrices	Getting Started: Systems of Linear Equations10-2Defining a Matrix10-3Viewing and Editing Matrix Elements10-4Using Matrices with Expressions10-7Displaying and Copying Matrices10-8Using Math Functions with Matrices10-9Using the MATRX MATH Operations10-12
Chapter 11: Lists	Getting Started: Generating a Sequence11-2Naming Lists11-3Storing and Displaying Lists11-4Entering List Names11-6Attaching Formulas to List Names11-7Using Lists in Expressions11-9LIST OPS Menu11-10LIST MATH Menu11-17
Chapter 12: Statistics	Getting Started: Pendulum Lengths and Periods12-2Setting up Statistical Analyses12-10Using the Stat List Editor12-11Attaching Formulas to List Names12-14Detaching Formulas from List Names12-16Switching Stat List Editor Contexts12-17Stat List Editor Contexts12-18STAT EDIT Menu12-20Regression Model Features12-22Statistical Variables12-29Statistical Variables12-20Statistical Plotting12-31Statistical Plotting in a Program12-37
Chapter 13: Inferential Statistics and Distributions	Getting Started: Mean Height of a Population13-2Inferential Stat Editors13-6STAT TESTS Menu13-9Inferential Statistics Input Descriptions13-26Test and Interval Output Variables13-28Distribution Functions13-29Distribution Shading13-35

Chapter 14: Financial Functions	Getting Started: Financing a Car14-2Getting Started: Computing Compound Interest.14-3Using the TVM Solver14-4Using the Financial Functions14-5Calculating Time Value of Money (TVM)14-6Calculating Cash Flows14-8Calculating Amortization14-9Calculating Interest Conversion14-12Finding Days between Dates/Defining Payment Method14-13Using the TVM Variables14-14
Chapter 15: CATALOG, Strings, Hyperbolic Functions	Browsing the TI-83 CATALOG15-2Entering and Using Strings15-3Storing Strings to String Variables15-4String Functions and Instructions in the CATALOG15-6Hyperbolic Functions in the CATALOG15-10
Chapter 16: Programming	Getting Started: Volume of a Cylinder16-2Creating and Deleting Programs16-4Entering Command Lines and Executing Programs16-5Editing Programs16-6Copying and Renaming Programs16-7PRGM CTL (Control) Instructions16-8PRGM I/O (Input/Output) Instructions16-16Calling Other Programs as Subroutines16-22
Chapter 17: Applications	Comparing Test Results Using Box Plots17-2Graphing Piecewise Functions17-4Graphing Inequalities17-5Solving a System of Nonlinear Equations17-6Using a Program to Create the Sierpinski Triangle17-7Graphing Cobweb Attractors17-8Using a Program to Guess the Coefficients17-9Graphing the Unit Circle and Trigonometric Curves17-10Finding the Area between Curves17-11Using Parametric Equations: Ferris Wheel Problem17-12Demonstrating the Fundamental Theorem of Calculus17-14Computing Areas of Regular N-Sided Polygons17-16Computing and Graphing Mortgage Payments17-18

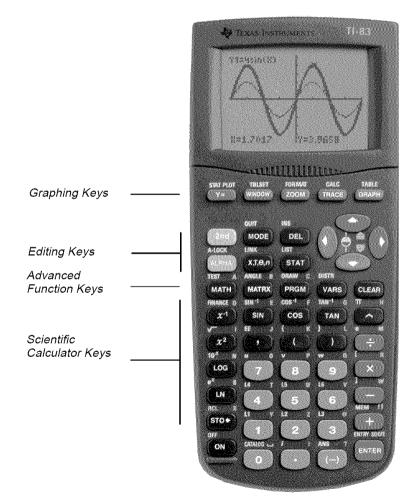

Chapter 18: Memory Management	Checking Available Memory Deleting Items from Memory Clearing Entries and List Elements Resetting the TI-83	18-2 18-3 18-4 18-5
Chapter 19: Communication Link	Getting Started: Sending Variables TI-83 LINK Selecting Items to Send Receiving Items Transmitting Items Transmitting Lists to a TI-82 Transmitting from a TI-82 to a TI-83 Backing Up Memory	19-2 19-3 19-4 19-5 19-6 19-8 19-9 19-10
Appendix A: Tables and Reference Information	Table of Functions and Instructions Menu Map Variables Statistical Formulas Financial Formulas	A-39 A-49 A-50
Appendix B: General Information	Battery Information In Case of Difficulty Error Conditions Accuracy Information Support and Service Information Warranty Information	

Index

Getting Started: Do This First!

Contents

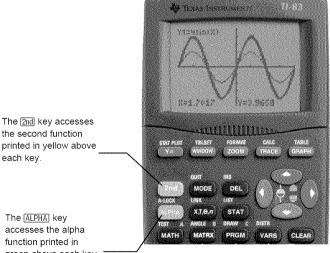
TI-83 Keyboard	2
TI-83 Menus	4
First Steps	5
Entering a Calculation: The Quadratic Formula	6
Converting to a Fraction: The Quadratic Formula	7
Displaying Complex Results: The Quadratic Formula	8
Defining a Function: Box with Lid	9
Defining a Table of Values: Box with Lid	10
Zooming In on the Table: Box with Lid	11
Setting the Viewing Window: Box with Lid	12
Displaying and Tracing the Graph: Box with Lid	- 13
Zooming In on the Graph: Box with Lid	15
Finding the Calculated Maximum: Box with Lid	16
Other TI-83 Features	17


Generally, the keyboard is divided into these zones: graphing keys, editing keys, advanced function keys, and scientific calculator keys.

Keyboard Zones Graphing keys access the interactive graphing features.

Editing keys allow you to edit expressions and values.

Advanced function keys display menus that access the advanced functions.


Scientific calculator keys access the capabilities of a standard scientific calculator.

Using the Color-Coded Keyboard	The keys on the TI-83 are color-coded to help you easily locate the key you need. The gray keys are the number keys. The blue keys along the right side of the keyboard are the common math functions. The blue keys across the top set up and display graphs.
	The primary function of each key is printed in white on the key. For example, when you press \underline{MATH} , the MATH menu is displayed.
Using the 2nd and ALPHA Keys	The secondary function of each key is printed in yellow above the key. When you press the yellow 2nd key, the character, abbreviation, or word printed in yellow above

the other keys becomes active for the next keystroke. For example, when you press [2nd] and then [MATH], the TEST menu is displayed. This guidebook describes this keystroke combination as [2nd] [TEST].

The alpha function of each key is printed in green above the key. When you press the green [ALPHA] key, the alpha character printed in green above the other keys becomes active for the next keystroke. For example, when you press [ALPHA] and then [MATH], the letter **A** is entered. This guidebook describes this keystroke combination as ALPHA [A].

green above each key.

Displaying a Menu

While using your TI-83, you often will need to access items from its menus.

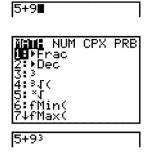
When you press a key that displays a menu, that menu temporarily replaces the screen where you are working. For example, when you press <u>MATH</u>, the MATH menu is displayed as a full screen.

After you select an item from a menu, the screen where you are working usually is displayed again.

Moving from One Menu to Another

Some keys access more than one menu. When you press such a key, the names of all accessible menus are displayed on the top line. When you highlight a menu name, the items in that menu are displayed. Press and to highlight each menu name.

Selecting an Item from a Menu


The number or letter next to the current menu item is highlighted. If the menu continues beyond the screen, a down arrow (\downarrow) replaces the colon (:) in the last displayed item. If you scroll beyond the last displayed item, an up arrow (\uparrow) replaces the colon in the first item displayed. You can select an item in either of two ways.

- Press v or to move the cursor to the number or letter of the item; press ENTER.
- Press the key or key combination for the number or letter next to the item.

Leaving a Menu without Making a Selection

You can leave a menu without making a selection in any of three ways.

- Press <u>CLEAR</u> to return to the screen where you were.
- Press 2nd [QUIT] to return to the home screen.
- Press a key for another menu or screen.

Before starting the sample problems in this chapter, follow the steps on this page to reset the TI-83 to its factory settings and clear all memory. This ensures that the keystrokes in this chapter will produce the illustrated results.

To reset the TI-83, follow these steps.

1. Press ON to turn on the calculator.

2. Press and release 2nd, and then press [MEM] (above +).

When you press 2nd, you access the operation printed in yellow above the next key that you press. [MEM] is the 2nd operation of the 🛨 key.

The MEMORY menu is displayed.

3. Press 5 to select 5:Reset.

The RESET menu is displayed.

4. Press 1 to select 1:All Memory.

The RESET MEMORY menu is displayed.

5. Press 2 to select 2:Reset.

All memory is cleared, and the calculator is reset to the factory default settings.

When you reset the TI-83, the display contrast is reset.

- If the screen is very light or blank, press and release [2nd], and then press and hold
 to darken the screen.
- If the screen is very dark, press and release 2nd, and then press and hold vert to lighten the screen.

XEXEN NEXUXY I**N**o 2:Reset

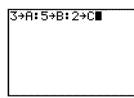
Resettin9 memory erases all data and pro9rams.

Mem cleared

Entering a Calculation: The Quadratic Formula

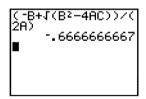
Use the quadratic formula to solve the quadratic equations $3X^2 + 5X + 2 = 0$ and $2X^2 - X + 3 = 0$. Begin with the equation $3X^2 + 5X + 2 = 0$.

- 1. Press **3** [STO•] [ALPHA] [A] (above [MATH) to store the coefficient of the X² term.
- 2. Press <u>ALPHA</u> [:] (above .). The colon allows you to enter more than one instruction on a line.
- 3. Press **5** STO• ALPHA [B] (above MATRX) to store the coefficient of the X term. Press ALPHA [:] to enter a new instruction on the same line. Press **2** STO• ALPHA [C] (above PRGM) to store the constant.
- 4. Press ENTER to store the values to the variables A, B, and C.

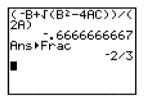

The last value you stored is shown on the right side of the display. The cursor moves to the next line, ready for your next entry.

Press ((·) ALPHA) [B] + 2nd [√] ALPHA [B]
 x² - 4 ALPHA [A] ALPHA [C]) ; ÷ (2
 ALPHA [A]) to enter the expression for one of the solutions for the quadratic formula,

$$\frac{-b+\sqrt{b^2-4ac}}{2a}$$


6. Press ENTER to find one solution for the equation $3X^2 + 5X + 2 = 0$.

The answer is shown on the right side of the display. The cursor moves to the next line, ready for you to enter the next expression.


You can show the solution as a fraction.

1. Press MATH to display the MATH menu.

2. Press 1 to select 1⇒Frac from the MATH menu.

When you press **1**, **Ans>Frac** is displayed on the home screen. **Ans** is a variable that contains the last calculated answer.

3. Press ENTER to convert the result to a fraction.

To save keystrokes, you can recall the last expression you entered, and then edit it for a new calculation.

4. Press [2nd] [ENTRY] (above [ENTER]) to recall the fraction conversion entry, and then press [2nd] [ENTRY] again to recall the quadratic-formula expression, $\frac{-b+\sqrt{b^2-4ac}}{2a}$

quadratic-formula expression to become: $-h \sqrt{h^2 - 4gc}$

6. Press ENTER to find the other solution for the quadratic equation $3X^2 + 5X + 2 = 0$.

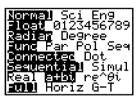
(-B+J(B²- 2A) 666 Ans⊧Frac (-B+J(B²- 2A)∎	66666667
2A) 666 Ans⊧Frac (-B-√(B²- 2A)	66666667 -2/3 -4AC>)/(

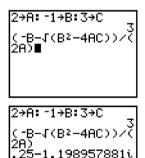
Now solve the equation $2X^2 - X + 3 = 0$. When you set **a+bi** complex number mode, the TI-83 displays complex results.

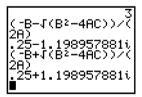
- Press MODE
- 2. Press [nd] [QUIT] (above MODE) to return to the home screen, and then press [CLEAR] to clear it.
- 3. Press 2 STO• ALPHA [A] ALPHA [:] [-] 1 STO• ALPHA [B] ALPHA [:] 3 STO• ALPHA [C] ENTER.

The coefficient of the X^2 term, the coefficient of the X term, and the constant for the new equation are stored to A, B, and C, respectively.

4. Press [2nd] [ENTRY] to recall the store instruction, and then press [2nd] [ENTRY] again to recall the quadratic-formula expression,


$$\frac{-b-\sqrt{b^2-4ac}}{2a}$$


- 5. Press ENTER to find one solution for the equation $2X^2 X + 3 = 0$.
- 6. Press <u>2nd</u> [ENTRY] repeatedly until this quadratic-formula expression is displayed:


$$\frac{-b+\sqrt{b^2-4ac}}{2a}$$

7. Press ENTER to find the other solution for the quadratic equation: $2X^2 - X + 3 = 0$.

Note: An alternative for solving equations for real numbers is to use the built-in Equation Solver (Chapter 2).

Defining a Function: Box with Lid

Take a 20 cm. \times 25 cm. sheet of paper and cut X \times X squares from two corners. Cut X \times 12.5 cm. rectangles from the other two corners as shown in the diagram below. Fold the paper into a box with a lid. What value of X would give your box the maximum volume V? Use the table and graphs to determine the solution.

Begin by defining a function that describes the volume of the box.

From the diagram: 2X + A = 202X + 2B = 25V = A B X

Substituting: V = (20 - 2X) (25/2 - X) X

- 1. Press y= to display the Y= editor, which is where you define functions for tables and graphing.
- Press (20 2 (X,T,Θ,ŋ)) (25 ÷ 2 (X,T,Θ,ŋ)) (X,T,Θ,ŋ) [ENTER to define the volume function as Y1 in terms of X.

 $\overline{X,\overline{I},\Theta,n}$ lets you enter **X** quickly, without having to press [ALPHA]. The highlighted = sign indicates that **Y**₁ is selected.

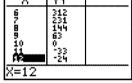
20	× [The second state when your water water	anno ann ann ann ann	
↓ L	×	B	×		В
	←		25		>
	1 = 1 2 = 3 3 = 4 5 = 6	P1ot2 	Plot:	3	
1.1	18()X 2= 3= 4=	P1ot2 20-:			/2

The table feature of the TI-83 displays numeric information about a function. You can use a table of values from the function defined on page 9 to estimate an answer to the problem.

- 1. Press 2nd [TBLSET] (above WINDOW) to display the TABLE SETUP menu.
- 2. Press ENTER to accept TblStart=0.
- Press 1 ENTER to define the table increment ΔTbl=1. Leave Indpnt: Auto and Depend: Auto so that the table will be generated automatically.
- 4. Press 2nd [TABLE] (above GRAPH) to display the table.

Notice that the maximum value for Y1 (box's volume) occurs when X is about 4, between 3 and 5.

5. Press and hold 🔽 to scroll the table until a negative result for Y1 is displayed.


Notice that the maximum length of **X** for this problem occurs where the sign of **Y**1 (box's volume) changes from positive to negative, between **10** and **11**.

6. Press 2nd [TBLSET].

Notice that **TblStart** has changed to **6** to reflect the first line of the table as it was last displayed. (In step 5, the first value of **X** displayed in the table is **6**.)

Zooming In on the Table: Box with Lid

You can adjust the way a table is displayed to get more information about a defined function. With smaller values for ΔTbl , you can zoom in on the table.

 Press 3 ENTER to set TbiStart. Press . 1 ENTER to set ∆Tbi.

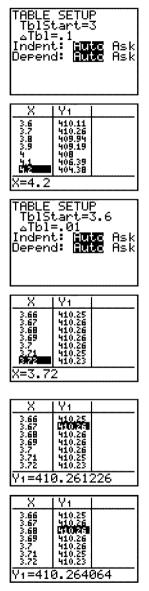
This adjusts the table setup to get a more accurate estimate of X for maximum volume Y1.

- 2. Press 2nd [TABLE].
- 3. Press \checkmark and \blacktriangle to scroll the table.

Notice that the maximum value for Y1 is 410.26, which occurs at X=3.7. Therefore, the maximum occurs where 3.6 < X < 3.8.

- Press 2nd [TBLSET]. Press 3 . 6 ENTER to set TblStart. Press . 01 ENTER to set ΔTbl.
- 5. Press 2nd [TABLE], and then press 🗸 and 🔺 to scroll the table.

Four equivalent maximum values are shown, 410.60 at X=3.67, 3.68, 3.69, and 3.70.

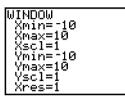

6. Press → and ▲ to move the cursor to **3.67**. Press → to move the cursor into the **Y1** column.

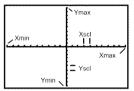
The value of Y_1 at X=3.67 is displayed on the bottom line in full precision as 410.261226.

7. Press $\overline{}$ to display the other maximums.

The value of Y1 at X=3.68 in full precision is 410.264064, at X=3.69 is 410.262318, and at X=3.7 is 410.256.

The maximum volume of the box would occur at **3.68** if you could measure and cut the paper at .01-cm. increments.




You also can use the graphing features of the TI-83 to find the maximum value of a previously defined function. When the graph is activated, the viewing window defines the displayed portion of the coordinate plane. The values of the window variables determine the size of the viewing window.

1. Press <u>WINDOW</u> to display the window editor, where you can view and edit the values of the window variables.

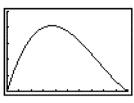
The standard window variables define the viewing window as shown. Xmin, Xmax, Ymin, and Ymax define the boundaries of the display. Xscl and Yscl define the distance between tick marks on the X and Y axes. Xres controls resolution.

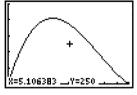
- 2. Press 0 ENTER to define Xmin.
- 3. Press **20 ÷ 2** to define **Xmax** using an expression.
- 4. Press ENTER. The expression is evaluated, and **10** is stored in **Xmax**. Press ENTER to accept **Xsci** as **1**.
- 5. Press **0** ENTER **500** ENTER **100** ENTER **1** ENTER to define the remaining window variables.

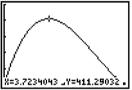
Displaying and Tracing the Graph: Box with Lid

Now that you have defined the function to be graphed and the window in which to graph it, you can display and explore the graph. You can trace along a function using the TRACE feature.

1. Press <u>GRAPH</u> to graph the selected function in the viewing window.


The graph of Y1=(20-2X)(25/2-X)X is displayed.


2. Press to activate the free-moving graph cursor.


The X and Y coordinate values for the position of the graph cursor are displayed on the bottom line.

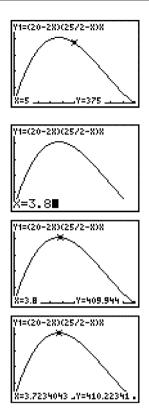
3. Press ◀, ▷, ▲, and ▼ to move the freemoving cursor to the apparent maximum of the function.

As you move the cursor, the **X** and **Y** coordinate values are updated continually.

4. Press <u>TRACE</u>. The trace cursor is displayed on the **Y1** function.

The function that you are tracing is displayed in the top-left corner.

5. Press (and) to trace along Y1, one X dot at a time, evaluating Y1 at each X.


You also can enter your estimate for the maximum value of **X**.

- 6. Press **3** . **8**. When you press a number key while in TRACE, the **X=** prompt is displayed in the bottom-left corner.
- 7. Press ENTER.

The trace cursor jumps to the point on the Y1 function evaluated at X=3.8.

8. Press (and) until you are on the maximum Y value.

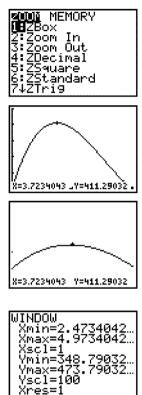
This is the maximum of Y1(X) for the X pixel values. The actual, precise maximum may lie between pixel values.

Zooming In on the Graph: Box with Lid

To help identify maximums, minimums, roots, and intersections of functions, you can magnify the viewing window at a specific location using the ZOOM instructions.

1. Press ZOOM to display the ZOOM menu.

This menu is a typical TI-83 menu. To select an item, you can either press the number or letter next to the item, or you can press \bigcirc until the item number or letter is highlighted, and then press $\boxed{\text{ENTER}}$.


2. Press 2 to select 2:Zoom In.

The graph is displayed again. The cursor has changed to indicate that you are using a ZOOM instruction.

3. With the cursor near the maximum value of the function (as in step 8 on page 14), press ENTER.

The new viewing window is displayed. Both Xmax-Xmin and Ymax-Ymin have been adjusted by factors of 4, the default values for the zoom factors.

4. Press <u>WINDOW</u> to display the new window settings.

Finding the Calculated Maximum: Box with Lid

You can use a CALCULATE menu operation to calculate a local maximum of a function.

1. Press 2nd [CALC] (above TRACE) to display the CALCULATE menu. Press 4 to select 4:maximum.

The graph is displayed again with a **Left Bound?** prompt.

2. Press (to trace along the curve to a point to the left of the maximum, and then press [ENTER].

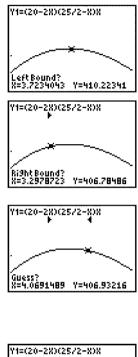
A > at the top of the screen indicates the selected bound.

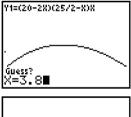
A **Right Bound?** prompt is displayed.

3. Press \blacktriangleright to trace along the curve to a point to the right of the maximum, and then press ENTER.

A \triangleleft at the top of the screen indicates the selected bound.

A Guess? prompt is displayed.


4. Press (to trace to a point near the maximum, and then press ENTER.

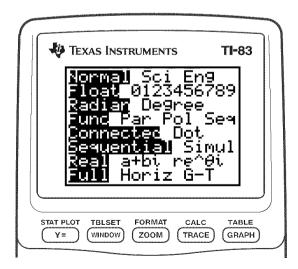

Or, press $\mathbf{3} \cdot \mathbf{8}$, and then press ENTER to enter a guess for the maximum.

When you press a number key in TRACE, the **X=** prompt is displayed in the bottom-left corner.

Notice how the values for the calculated maximum compare with the maximums found with the free-moving cursor, the trace cursor, and the table.

Note: In steps 2 and 3 above, you can enter values directly for Left Bound and Right Bound, in the same way as described in step 4.

Getting Started has introduced you to basic TI-83 operation. This guidebook describes in detail the features you used in Getting Started. It also covers the other features and capabilities of the TI-83.


Graphing	You can store, graph, and analyze up to 10 functions (Chapter 3), up to six parametric functions (Chapter 4), up to six polar functions (Chapter 5), and up to three sequences (Chapter 6). You can use DRAW operations to annotate graphs (Chapter 8).				
Sequences	You can generate sequences and graph them over time. Or, you can graph them as web plots or as phase plots (Chapter 6).				
Tables	You can create function evaluation tables to analyze many functions simultaneously (Chapter 7).				
Split Screen	You can split the screen horizontally to display both a graph and a related editor (such as the Y= editor), the table, the stat list editor, or the home screen. Also, you can split the screen vertically to display a graph and its table simultaneously (Chapter 9).				
Matrices	You can enter and save up to 10 matrices and perform standard matrix operations on them (Chapter 10).				
Lists	You can enter and save as many lists as memory allows for use in statistical analyses. You can attach formulas to lists for automatic computation. You can use lists to evaluate expressions at multiple values simultaneously and to graph a family of curves (Chapter 11).				
Statistics	You can perform one- and two-variable, list-based statistical analyses, including logistic and sine regression analysis. You can plot the data as a histogram, xyLine, scatter plot, modified or regular box-and-whisker plot, or normal probability plot. You can define and store up to three stat plot definitions (Chapter 12).				

Inferential Statistics	You can perform 16 hypothesis tests and confidence intervals and 15 distribution functions. You can display hypothesis test results graphically or numerically (Chapter 13).
Financial Functions	You can use time-value-of-money (TVM) functions to analyze financial instruments such as annuities, loans, mortgages, leases, and savings. You can analyze the value of money over equal time periods using cash flow functions. You can amortize loans with the amortization functions (Chapter 14).
CATALOG	The CATALOG is a convenient, alphabetical list of all functions and instructions on the TI-83. You can paste any function or instruction from the CATALOG to the current cursor location (Chapter 15).
Programming	You can enter and store programs that include extensive control and input/output instructions (Chapter 16).
Communication Link	The TI-83 has a port to connect and communicate with another TI-83, a TI-82, the Calculator-Based Laboratory TM (CBL 2^{TM} , CBL TM) System, a Calculator-Based Ranger TM (CBR TM), or a personal computer. The unit-to-unit link cable is included with the TI-83 (Chapter 19).

Operating the TI-83

Contents

Turning On and Turning Off the TI-83	1-2
Setting the Display Contrast	1-3
The Display	1-4
Entering Expressions and Instructions	1-6
TI-83 Edit Keys	1-8
Setting Modes	1-9
Using TI-83 Variable Names	1-13
Storing Variable Values	1-14
Recalling Variable Values	1-15
ENTRY (Last Entry) Storage Area	1-16
Ans (Last Answer) Storage Area	1-18
TI-83 Menus	1 - 19
VARS and VARS Y-VARS Menus	1-21
Equation Operating System (EOS [™])	1-22
Error Conditions	1-24

Turning On and Turning Off the TI-83

Turning On the Calculator	 To turn on the TI-83, press ON. If you previously had turned off the calculator by pressing 2nd [OFF], the TI-83 displays the home screen as it was when you last used it and clears any error. If Automatic Power DownTM (APDTM) had previously turned off the calculator, the TI-83 will return exactly as you left it, including the display, cursor, and any error. To prolong the life of the batteries, APD turns off the TI-83 automatically after about five minutes without any activity.
Turning Off the Calculator	 To turn off the TI-83 manually, press 2nd [OFF]. All settings and memory contents are retained by Constant Memory[™]. Any error condition is cleared.
Batteries	The TI-83 uses four AAA alkaline batteries and has a user- replaceable backup lithium battery (CR1616 or CR1620). To replace batteries without losing any information stored in memory, follow the steps in Appendix B.

Adjusting the Display Contrast	angle and lighting conditi setting, a number from 0 top-right corner indicates	y contrast to suit your viewing ons. As you change the contrast (lightest) to 9 (darkest) in the the current level. You may not be contrast is too light or too dark.
	Note: The TI-83 has 40 contr represents four settings.	rast settings, so each number 0 through 9
	The TI-83 retains the cor turned off.	ntrast setting in memory when it is
	To adjust the contrast, fo	bllow these steps.
	1. Press and release the	2nd key.
		•], which are below and above the ow, half-shaded circle).
	 Ightens the scr A darkens the scr 	
		st setting to 0 , the display may become the screen, press and release [2nd], and he display reappears.
When to Replace Batteries	When the batteries are lo displayed when you turn	ow, a low-battery message is on the calculator.
	Your batteries are low.	
	Recommend chan9e of batteries.	
	To replace the batteries memory, follow the steps	without losing any information in s in Appendix B.
	or two weeks after the lo displayed. After this peri	will continue to operate for one ow-battery message is first od, the TI-83 will turn off it will not operate. Batteries must is retained.
		blowing the first low-battery message iks if you use the calculator infrequently.

Types of Displays	The TI-83 displays both text and graphs. Chapter 3 describes graphs. Chapter 9 describes how the TI-83 can display a horizontally or vertically split screen to show graphs and text simultaneously.
Home Screen	The home screen is the primary screen of the TI-83. On this screen, enter instructions to execute and expressions to evaluate. The answers are displayed on the same screen.
Displaying Entries and Answers	When text is displayed, the TI-83 screen can display a maximum of eight lines with a maximum of 16 characters per line. If all lines of the display are full, text scrolls off the top of the display. If an expression on the home screen, the Y= editor (Chapter 3), or the program editor (Chapter 16) is longer than one line, it wraps to the beginning of the next line. In numeric editors such as the window screen (Chapter 3), a long expression scrolls to the right and left.
	When an entry is executed on the home screen, the answer is displayed on the right side of the next line.
	log(2) .3010299957 — Entry Answer
	The mode settings control the way the TI-83 interprets expressions and displays answers (page 1-9).
	If an answer, such as a list or matrix, is too long to display entirely on one line, an ellipsis $()$ is displayed to the right or left. Press \blacktriangleright and \blacksquare to scroll the answer.
	L1 {25.12 874.2 36 — Entry Answer
Returning to the Home Screen	To return to the home screen from any other screen, press [2nd] $[Q\cup T]$.
Busy Indicator	When the TI-83 is calculating or graphing, a vertical moving line is displayed as a busy indicator in the top-right corner of the screen. When you pause a graph or a program, the busy indicator becomes a vertical moving dotted line.

Display Cursors In most cases, the appearance of the cursor indicates what will happen when you press the next key or select the next menu item to be pasted as a character.

Cursor	Appearance	Effect of Next Keystroke
Entry	Solid rectangle	cursor; any existing character is overwritten
Insert	Underline —	A character is inserted in front of the cursor location
Second	Reverse arrow	A 2nd character (yellow on the keyboard) is entered or a 2nd operation is executed
Alpha	Reverse A D	An alpha character (green on the keyboard) is entered or SOLVE is executed
Full	Checkerboard rectangle	No entry; the maximum characters are entered at a prompt or memory is full

If you press <u>ALPHA</u> during an insertion, the cursor becomes an underlined A (**A**) If you press <u>2nd</u> during an insertion, the underline cursor becomes an underlined \uparrow (\uparrow).

Graphs and editors sometimes display additional cursors, which are described in other chapters.

What Is an
Expression?An expression is a group of numbers, variables, functions
and their arguments, or a combination of these elements.
An expression evaluates to a single answer. On the TI-83,
you enter an expression in the same order as you would
write it on paper. For example, πR^2 is an expression.
You can use an expression on the home screen to calculate
an answer. In most places where a value is required, you
can use an expression to enter a value.(1/3)2
.111111111WINDOW
Xmin=-10

Entering an To create an expression, you enter numbers, variables, and functions from the keyboard and menus. An expression is completed when you press [ENTER], regardless of the cursor location. The entire expression is evaluated according to Equation Operating System (EOS[™]) rules (page 1-22), and the answer is displayed.

Most TI-83 functions and operations are symbols comprising several characters. You must enter the symbol from the keyboard or a menu; do not spell it out. For example, to calculate the log of 45, you must press LOG **45**. Do not enter the letters L, **0**, and **G**. If you enter L**OG**, the TI-83 interprets the entry as implied multiplication of the variables L, **0**, and **G**.

Xmax=2π

Calculate $3.76 \div (-7.9 + \sqrt{5}) + 2 \log 45$.

3 . 76 ÷ ((→ 7 . 9 + 2nd (√ 5)) + 2 LOG 45) ENTER

3.76/(-7.9+√(5)) +2109(45) 2.642575252

Multiple EntriesTo enter two or more expressions or instructions on a line,
separate them with colons (ALPHA) [:]). All instructions are
stored together in last entry (ENTRY; page 1-16).

Entering a Number in	To enter a number in scientific notation, follow these steps.
Scientific Notation	1. Enter the part of the number that precedes the exponent. This value can be an expression.
	2. Press [2nd] [EE]. E is pasted to the cursor location.
	3. If the exponent is negative, press (-), and then enter the exponent, which can be one or two digits.
	(19/2)E ⁻² .095
	When you enter a number in scientific notation, the TI-83 does not automatically display answers in scientific or engineering notation. The mode settings (page 1-9) and the size of the number determine the display format.
Functions	A function returns a value. For example, \div , -, +, $\sqrt{(}$, and $\log($ are the functions in the example on page 1-6. In general, the first letter of each function is lowercase on the TI-83. Most functions take at least one argument, as indicated by an open parenthesis (()) following the name. For example, sin(requires one argument, sin(<i>value</i>) .
Instructions	An instruction initiates an action. For example, CirDraw is an instruction that clears any drawn elements from a graph. Instructions cannot be used in expressions. In general, the first letter of each instruction name is uppercase. Some instructions take more than one argument, as indicated by an open parenthesis (() at the end of the name. For example, Circle (requires three arguments, Circle (<i>X</i> , <i>Y</i> , <i>radius</i>).
Interrupting a Calculation	To interrupt a calculation or graph in progress, which would be indicated by the busy indicator, press ON.
	When you interrupt a calculation, the menu is displayed.
	• To return to the home screen, select 1:Quit .
	• To go to the location of the interruption, select 2:Goto .
	When you interrupt a graph, a partial graph is displayed.
	• To return to the home screen, press CLEAR or any nongraphing key.
	• To restart graphing, press a graphing key or select a graphing instruction.

TI-83 Edit Keys

Keystrokes	Result
▶ or €	Moves the cursor within an expression; these keys repeat.
▲ or ▼	Moves the cursor from line to line within an expression that occupies more than one line; these keys repeat.
	On the top line of an expression on the home screen, $rightarrow$ moves the cursor to the beginning of the expression.
	On the bottom line of an expression on the home screen, \bigtriangledown moves the cursor to the end of the expression.
2nd 📢	Moves the cursor to the beginning of an expression.
2nd 🕨	Moves the cursor to the end of an expression.
ENTER	Evaluates an expression or executes an instruction.
CLEAR	On a line with text on the home screen, clears the current line.
	On a blank line on the home screen, clears everything on the home screen.
	In an editor, clears the expression or value where the cursor is located; it does not store a zero.
DEL	Deletes a character at the cursor; this key repeats.
[2nd] [INS]	Changes the cursor to; inserts characters in front of the underline cursor; to end insertion, press $2nd$ [INS] or press $(, , ,)$, $(, ,)$, or $(,)$.
[2nd]	Changes the cursor to 1 ; the next keystroke performs a 2nd operation (an operation in yellow above a key and to the left); to cancel 2nd, press 2nd again.
(ALPHA)	Changes the cursor to G ; the next keystroke pastes an alpha character (a character in green above a key and to the right) or executes SOLVE (Chapters 10 and 11); to cancel <u>ALPHA</u> , press <u>ALPHA</u> or press (, (), (), or ().
2nd [A-LOCK]	Changes the cursor to 1 ; sets alpha-lock; subsequent keystrokes (on an alpha key) paste alpha characters; to cancel alpha-lock, press (ALPHA); name prompts set alpha-lock automatically.
[X,Τ,Θ, <i>n</i>]	Pastes an X in Func mode, a T in Par mode, a θ in Pol mode, or an n in Seq mode with one keystroke.

Checking Mode Settings	interprets numbers a by the Constant Mem off. All numbers, incl	l how the TI-83 displays and nd graphs. Mode settings are retained lory feature when the TI-83 is turned uding elements of matrices and lists, ing to the current mode settings.	
	To display the mode settings, press <u>MODE</u> . The current settings are highlighted. Defaults are highlighted below. The following pages describe the mode settings in detail.		
	Normal Sci Eng Float 0123456789 Radian Degree	Numeric notation Number of decimal places Unit of angle measure	
	Func Par Pol Seq Connected Dot Sequential Simul Real a+b <i>i</i> re^0 <i>i</i> Full Horiz G-T	Type of graphing Whether to connect graph points Whether to plot simultaneously Real, rectangular cplx, or polar cplx Full screen, two split-screen modes	
Changing Mode Settings	1. Press ▼ or ▲ to n	ings, follow these steps. nove the cursor to the line of the	
	setting that you want to change.2. Press or to move the cursor to the setting you want.		
	3. Press ENTER).		
Setting a Mode from a Program	of the mode as an ins From a blank comma	rom a program by entering the name truction; for example, Func or Float . Ind line, select the mode setting from instruction is pasted to the cursor	
	PROGRAM:TEST ∶Func∎		

		OGRAM: TEST	
:	F	unc	

Notation modes only affect the way an answer is displayed on the home screen. Numeric answers can be displayed with up to 10 digits and a two-digit exponent. You can enter a number in any format.
Normal notation mode is the usual way we express numbers, with digits to the left and right of the decimal, as in 12345.67 .
Sci (scientific) notation mode expresses numbers in two parts. The significant digits display with one digit to the left of the decimal. The appropriate power of 10 displays to the right of E, as in 1.234567E4 .
Eng (engineering) notation mode is similar to scientific notation. However, the number can have one, two, or three digits before the decimal; and the power-of-10 exponent is a multiple of three, as in 12.34567E3 .
Note : If you select Normal notation, but the answer cannot display in 10 digits (or the absolute value is less than .001), the TI-83 expresses the answer in scientific notation.
Float (floating) decimal mode displays up to 10 digits, plus the sign and decimal.
0123456789 (fixed) decimal mode specifies the number of digits (0 through 9) to display to the right of the decimal. Place the cursor on the desired number of decimal digits, and then press <u>ENTER</u> .
The decimal setting applies to Normal , Sc i, and Eng notation modes.
The decimal setting applies to these numbers:
 An answer displayed on the home screen Coordinates on a graph (Chapters 3, 4, 5, and 6) The Tangent(DRAW instruction equation of the line, x, and dy/dx values (Chapter 8) Results of CALCULATE operations (Chapters 3, 4, 5, and 6) The regression equation stored after the execution of a regression model (Chapter 12)

Radian, Degree	Angle modes control how the TI-83 interprets angle values in trigonometric functions and polar/rectangular conversions.
	Radian mode interprets angle values as radians. Answers display in radians.
	Degree mode interprets angle values as degrees. Answers display in degrees.
Func, Par, Pol, Seq	Graphing modes define the graphing parameters. Chapters 3, 4, 5, and 6 describe these modes in detail.
	Func (function) graphing mode plots functions, where Y is a function of X (Chapter 3).
	Par (parametric) graphing mode plots relations, where X and Y are functions of T (Chapter 4).
	Pol (polar) graphing mode plots functions, where r is a function of θ (Chapter 5).
	$\textbf{Seq} \ (sequence) \ graphing \ mode \ plots \ sequences \ (Chapter \ 6).$
Connected, Dot	Connected plotting mode draws a line connecting each point calculated for the selected functions.
	Dot plotting mode plots only the calculated points of the selected functions.

Sequential, Simul	Sequential graphing-order mode evaluates and plots one function completely before the next function is evaluated and plotted.	
	Simul (simultaneous) graphing-order mode evaluates and plots all selected functions for a single value of X and then evaluates and plots them for the next value of X .	
	Note: Regardless of which graphing mode is selected, the TI-83 will sequentially graph all stat plots before it graphs any functions.	
Real, a+bi, re^θi	Rea l mode does not display complex results unless complex numbers are entered as input.	
	Two complex modes display complex results.	
	• a+b <i>i</i> (rectangular complex mode) displays complex numbers in the form a+b <i>i</i> .	
	 re^θi (polar complex mode) displays complex numbers in the form re^θi. 	
Full, Horiz, G-T	Full screen mode uses the entire screen to display a graph or edit screen.	
	Each split-screen mode displays two screens simultaneously.	
	• Horiz (horizontal) mode displays the current graph on the top half of the screen; it displays the home screen or an editor on the bottom half (Chapter 9).	

• **G-T** (graph-table) mode displays the current graph on the left half of the screen; it displays the table screen on the right half (Chapter 9).

Variables and Defined Items

On the TI-83 you can enter and use several types of data, including real and complex numbers, matrices, lists, functions, stat plots, graph databases, graph pictures, and strings.

The TI-83 uses assigned names for variables and other items saved in memory. For lists, you also can create your own five-character names.

Variable Type	Names
Real numbers	Α, Β, , Ζ, θ
Complex numbers	Α, Β, , Ζ, θ
Matrices	[A], [B], [C], , [J]
Lists	L1, L2, L3, L4, L5, L6, and user- defined names
Functions	Y1, Y2, , Y9, Y0
Parametric equations	X1T and Y1T, , X6T and Y6T
Polar functions	r1, r2, r3, r4, r5, r6
Sequence functions	u, v, w
Stat plots	Plot1, Plot2, Plot3
Graph databases	GDB1, GDB2, , GDB9, GDB0
Graph pictures	Pic1, Pic2, , Pic9, Pic0
Strings	Str1, Str2,, Str9, Str0
System variables	Xmin, Xmax, and others

Notes about Variables

- You can create as many list names as memory will allow (Chapter 11).
- Programs have user-defined names and share memory with variables (Chapter 16).
- From the home screen or from a program, you can store to matrices (Chapter 10), lists (Chapter 11), strings (Chapter 15), system variables such as **Xmax** (Chapter 1), **TblStart** (Chapter 7), and all Y= functions (Chapters 3, 4, 5, and 6).
- From an editor, you can store to matrices, lists, and Y= functions (Chapter 3).
- From the home screen, a program, or an editor, you can store a value to a matrix element or a list element.
- You can use DRAW STO menu items to store and recall graph databases and pictures (Chapter 8).

Q

Storing Values in a Variable	Values are stored to and recalled from memory using variable names. When an expression containing the name of a variable is evaluated, the value of the variable at that time is used.
	To store a value to a variable from the home screen or a program using the STOP key, begin on a blank line and follow these steps.
	1. Enter the value you want to store. The value can be an expression.
	2. Press 570 . \Rightarrow is copied to the cursor location.
	3. Press (ALPHA) and then the letter of the variable to which you want to store the value.
	4. Press <u>ENTER</u> . If you entered an expression, it is evaluated. The value is stored to the variable.
	5+8^3→Q 517
Displaying a Variable Value	To display the value of a variable, enter the name on a blank line on the home screen, and then press ENTER.

Using Recall
(RCL)To recall and copy variable contents to the current cursor
location, follow these steps. To leave RCL, press CLEAR.

- 1. Press [2nd [RCL]. Rcl and the edit cursor are displayed on the bottom line of the screen.
- 2. Enter the name of the variable in any of five ways.
 - Press ALPHA and then the letter of the variable.
 - Press [2nd] [LIST], and then select the name of the list, or press [2nd] [Ln].
 - Press MATRX, and then select the name of the matrix.
 - Press <u>VARS</u> to display the VARS menu or <u>VARS</u> > to display the VARS Y-VARS menu; then select the type and then the name of the variable or function.
 - Press <u>PRGM</u> (, and then select the name of the program (in the program editor only).

The variable name you selected is displayed on the bottom line and the cursor disappears.

100-	F		
Rc1	Q		

3. Press ENTER. The variable contents are inserted where the cursor was located before you began these steps.

100+517

Note: You can edit the characters pasted to the expression without affecting the value in memory.

Using ENTRY When you press ENTER on the home screen to evaluate an expression or execute an instruction, the expression or instruction is placed in a storage area called ENTRY (last entry). When you turn off the TI-83, ENTRY is retained in memory.

To recall ENTRY, press 2nd [ENTRY]. The last entry is pasted to the current cursor location, where you can edit and execute it. On the home screen or in an editor, the current line is cleared and the last entry is pasted to the line.

Because the TI-83 updates ENTRY only when you press <u>ENTER</u>, you can recall the previous entry even if you have begun to enter the next expression.

(ENTER)	5+7	12
2nd [ENTRY]	5+7	

Accessing a
Previous EntryThe TI-83 retains as many previous entries as possible in
ENTRY, up to a capacity of 128 bytes. To scroll those
entries, press [2nd] [ENTRY] repeatedly. If a single entry is
more than 128 bytes, it is retained for ENTRY, but it cannot
be placed in the ENTRY storage area.

1 STON ALPHA A	1→A	
ENTER) 2 (STO) (ALPHA) B	2 → B	1
ENTER [2nd] [ENTRY]	2→B∎	2

If you press 2nd [ENTRY] after displaying the oldest stored entry, the newest stored entry is displayed again, then the next-newest entry, and so on.

	1→A	4
	2 → B	-
2nd [ENTRY]	1 → A∎	4

Reexecuting the After you have pasted the last entry to the home screen and edited it (if you chose to edit it), you can execute the entry. To execute the last entry, press [ENTER].

To reexecute the displayed entry, press ENTER again. Each reexecution displays an answer on the right side of the next line; the entry itself is not redisplayed.

O STO► (ALPHA) N ENTER	0 > N	
ALPHA N + 1 STON ALPHA N	N+1→N:N2	0
ALPHA] [:] ALPHA] N [x ²] ENTER ENTER]		49
ENTER	I	31

Multiple EntryTo store to ENTRY two or more expressions orValues on a Lineinstructions, separate each expression or instruction with
a colon, then press [ENTER]. All expressions and instructions
separated by colons are stored in ENTRY.

When you press 2nd [ENTRY], all the expressions and instructions separated by colons are pasted to the current cursor location. You can edit any of the entries, and then execute all of them when you press ENTER.

For the equation $A=\pi r^2$, use trial and error to find the radius of a circle that covers 200 square centimeters. Use 8 as your first guess.

8 (STO) (ALPHA) R (ALPHA)	8→R:πR²
[:] (2nd) (π) (ALPHA) R (x^2) (ENTER)	201.0619298
(2nd) (ENTRY)	8→R:πR²∎
2nd)	8÷R: πR ² 201.0619298 7.95÷R: πR ² 198.5565097 ate as you want

Clearing ENTRY Clear Entries (Chapter 18) clears all data that the TI-83 is holding in the ENTRY storage area.

Using Ans in an Expression When an expression is evaluated successfully from the home screen or from a program, the TI-83 stores the answer to a storage area called Ans (last answer). Ans may be a real or complex number, a list, a matrix, or a string. When you turn off the TI-83, the value in Ans is retained in memory.

You can use the variable **Ans** to represent the last answer in most places. Press <u>[2nd]</u> [ANS] to copy the variable name **Ans** to the cursor location. When the expression is evaluated, the TI-83 uses the value of **Ans** in the calculation.

Calculate the area of a garden plot 1.7 meters by 4.2 meters. Then calculate the yield per square meter if the plot produces a total of 147 tomatoes.

Continuing an
ExpressionYou can use Ans as the first entry in the next expression
without entering the value again or pressing [2nd] [ANS]. On
a blank line on the home screen, enter the function. The
TI-83 pastes the variable name Ans to the screen, then the
function.

5 ÷ 2 5⁄2 ENTER × 9 . 9 Ans: ENTER	2.5 *9.9 24.75	
---	----------------------	--

Storing Answers To store an answer, store **Ans** to a variable before you evaluate another expression.

Calculate the area of a circle of radius 5 meters. Next, calculate the volume of a cylinder of radius 5 meters and height 3.3 meters, and then store the result in the variable V.

2nd $[\pi]$ 5 x^2	π5 ²
	78.53981634 Ans*3.3
ENTER STON ALPHA	259.1813939 Ans≁V
ENTER	259.1813939

Using a TI-83 Menu	You can access most TI-83 operations using menus. When you press a key or key combination to display a menu, one or more menu names appear on the top line of the screen.			
	• The menu name on the left side of the top line is highlighted. Up to seven items in that menu are displayed, beginning with item 1 , which also is highlighted.			
	• A number or letter identifies each menu item's place in the menu. The order is 1 through 9 , then 0 , then A , B , C , and so on. The LIST NAMES, PRGM EXEC, and PRGM EDIT menus only label items 1 through 9 and 0 .			
	• When the menu continues beyond the displayed items, a down arrow (↓) replaces the colon next to the last displayed item.			
	• When a menu item ends in an ellipsis, the item displays a secondary menu or editor when you select it.			
	To display any other menu listed on the top line, press → or • until that menu name is highlighted. The cursor location within the initial menu is irrelevant. The menu is displayed with the cursor on the first item.			
	Note: The Menu Map in Appendix A shows each menu, each operation under each menu, and the key or key combination you press to display each menu.			
Scrolling a Menu	To scroll down the menu items, press \bigcirc . To scroll up the menu items, press \blacktriangle .			
	To page down six menu items at a time, press $\boxed{\text{ALPHA}}$. To page up six menu items at a time, press $\boxed{\text{ALPHA}}$. The green arrows on the calculator, between \neg and \land , are the page-down and page-up symbols.			
	To wrap to the last menu item directly from the first menu item, press \blacktriangle . To wrap to the first menu item directly from the last menu item, press \bigtriangledown .			

Selecting an Item from a Menu	You can select an item from a menu in either of two ways.				
	 Press the number or letter of the item you want to select. The cursor can be anywhere on the menu, and the item you select need not be displayed on the screen. Press , or , to move the cursor to the item you want, 				
	and then press ENTER.				
	After you select an item from a menu, the TI-83 typically displays the previous screen.				
	Note: On the LIST NAMES, PRGM EXEC, and PRGM EDIT menus, only items 1 through 9 and 0 are labeled in such a way that you can select them by pressing the appropriate number key. To move the cursor to the first item beginning with any alpha character or θ , press the key combination for that alpha character or θ . If no items begin with that character, then the cursor moves beyond it to the next item.				
	Calculate $\sqrt[3]{27}$.				
	MATH ENTER 3√(27) 27) ENTER 3				
Leaving a Menu without Making a	You can leave a menu without making a selection in any of four ways.				
Selection	Press [2nd] [QUIT] to return to the home screen.				
	• Press CLEAR to return to the previous screen.				
	 Press a key or key combination for a different menu, such as [MATH] or [2nd] [LIST]. 				
	• Press a key or key combination for a different screen, such as Y= or 2nd [TABLE].				

VARS Menu You can enter the names of functions and system variables in an expression or store to them directly.

To display the VARS menu, press VARS. All VARS menu items display secondary menus, which show the names of the system variables. 1:Window, 2:Zoom, and 5:Statistics each access more than one secondary menu.

VARS Y-VARS	
1:Window	X/Y, T/0, and U/V/W variables
2:Zoom	ZX/ZY, ZT/Z0, and ZU variables
3:GDB	Graph database variables
4:Picture	Picture variables
5:Statistics	XY, Σ , EQ, TEST, and PTS variables
6:Table	TABLE variables
7:String	String variables

Selecting a
Variable from the
VARS Menu or
VARS Y-VARS
Menu

To display the VARS Y-VARS menu, press VARS \blacktriangleright . **1:Function, 2:Parametric**, and **3:Polar** display secondary menus of the Y= function variables.

VARS Y-VARS	
1:Function	$\mathbf{Y}n$ functions
2:Parametric	Xnт, Yn т functions
3:Polar	rn functions
<u>4:On/Off</u>	Lets you select/deselect functions

Note: The sequence variables (u, v, w) are located on the keyboard as the second functions of [7], (3), and (9).

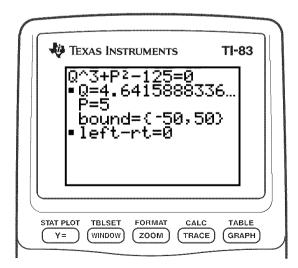
To select a variable from the VARS or VARS Y-VARS menu, follow these steps.

- 1. Display the VARS or VARS Y-VARS menu.
 - Press VARS to display the VARS menu.
 - Press VARS I to display the VARS Y-VARS menu.
- 2. Select the type of variable, such as **2:Zoom** from the VARS menu or **3:Polar** from the VARS Y-VARS menu. A secondary menu is displayed.
- 3. If you selected **1:Window**, **2:Zoom**, or **5:Statistics** from the VARS menu, you can press → or ◀ to display other secondary menus.
- 4. Select a variable name from the menu. It is pasted to the cursor location.

The Equation Operating System (EOS[™]) defines the order Order of Evaluation in which functions in expressions are entered and evaluated on the TI-83. EOS lets you enter numbers and functions in a simple, straightforward sequence. EOS evaluates the functions in an expression in this order: Single-argument functions that precede the 1 argument, such as $\sqrt{(, \sin(, \operatorname{or} \log($ $\mathbf{2}$ Functions that are entered after the argument. such as $2, 1, !, \circ, r$, and conversions Powers and roots, such as **2^5** or **5^x√32** 3 4 Permutations (**nPr**) and combinations (**nCr**) 5 Multiplication, implied multiplication, and division 6 Addition and subtraction 7 Relational functions, such as > or \leq 8 Logic operator and 9 Logic operators or and xor

Within a priority level, EOS evaluates functions from left to right.

Calculations within parentheses are evaluated first. Multiargument functions, such as $nDeriv(A^2,A,6)$, are evaluated as they are encountered.


Implied Multiplication	The TI-83 recognizes implied multiplication, so you need not press \boxtimes to express multiplication in all cases. For example, the TI-83 interprets 2π , 4sin(46) , 5(1+2) , and (2*5)7 as implied multiplication. Note: TI-83 implied multiplication rules differ from those of the TI-82. For example, the TI-83 evaluates 1/2X as (1/2)*X , while the TI-82 evaluates 1/2X as 1/(2*X) (Chapter 2).
Parentheses	All calculations inside a pair of parentheses are completed first. For example, in the expression $4(1+2)$, EOS first evaluates the portion inside the parentheses, $1+2$, and then multiplies the answer, 3, by 4. $4*1+2 \qquad 6 \\ 4(1+2) \qquad 12$
	You can omit the close parenthesis ()) at the end of an expression. All open parenthetical elements are closed automatically at the end of an expression. This is also true for open parenthetical elements that precede the store or display-conversion instructions. Note: An open parenthesis following a list name, matrix name, or Y= function name does not indicate implied multiplication. It specifies elements in the list (Chapter 11) or matrix (Chapter 10) and specifies a value for which to solve the Y= function.
Negation	To enter a negative number, use the negation key. Press and then enter the number. On the TI-83, negation is in the third level in the EOS hierarchy. Functions in the first level, such as squaring, are evaluated before negation. For example, $-X^2$, evaluates to a negative number (or 0). Use parentheses to square a negative number. $\begin{bmatrix} -2^2 & -4 \\ (-2)^2 & -4 \\ 4 & -R^2 & -4 \\ (-R)^2 & 4 \end{bmatrix} \begin{bmatrix} 2 \div R & 2 \\ -R^2 & -4 \\ (-R)^2 & 4 \end{bmatrix}$
	Note: Use the $_$ key for subtraction and the \boxdot key for negation. If you press $_$ to enter a negative number, as in $9 \ge _ 7$, or if you press \boxdot to indicate subtraction, as in $9 \boxdot 7$, an error occurs. If you press (ALPHA) $A \boxdot$ (ALPHA) B , it is interpreted as implied multiplication (A+B)

Diagnosing an Error	 The TI-83 detects errors while performing these tasks. Evaluating an expression Executing an instruction Plotting a graph Storing a value 				
	When the TI-83 detects an error, it returns an error message as a menu title, such as ERR:SYNTAX or ERR:DOMAIN. Appendix B describes each error type and possible reasons for the error.				
	ERR:SYNTAX MeQuit 2:Goto				
	• If you select 1:Quit (or press 2nd [QUIT] or CLEAR), then the home screen is displayed.				
	• If you select 2:Goto , then the previous screen is displayed with the cursor at or near the error location.				
	Note : If a syntax error occurs in the contents of a Y= function during program execution, then the Goto option returns to the Y= editor, not to the program.				
Correcting an	To correct an error, follow these steps.				
Error	1. Note the error type (ERR : <i>error type</i>).				
	2. Select 2:Goto , if it is available. The previous screen is displayed with the cursor at or near the error location.				
	3. Determine the error. If you cannot recognize the error, refer to Appendix B.				
	4. Correct the expression.				

2 Math, Angle, and Test Operations

Contents

Getting Started: Coin Flip	2-2
Keyboard Math Operations	2-3
MATH Operations	2-5
Using the Equation Solver	2-8
MATH NUM (Number) Operations	2-13
Entering and Using Complex Numbers	2-16
MATH CPX (Complex) Operations	2-18
MATH PRB (Probability) Operations	2-20
ANGLE Operations	2-23
TEST (Relational) Operations	2-24
TEST LOGIC (Boolean) Operations	2-26

Getting Started is a fast-paced introduction. Read the chapter for details.

Suppose you want to model flipping a fair coin 10 times. You want to track how many of those 10 coin flips result in heads. You want to perform this simulation 40 times. With a fair coin, the probability of a coin flip resulting in heads is 0.5 and the probability of a coin flip resulting in tails is 0.5.

- Begin on the home screen. Press MATH

 display the MATH PRB menu. Press 7 to select 7:randBin((random Binomial).
 randBin(is pasted to the home screen. Press 10 to enter the number of coin flips. Press
 , Press . 5 to enter the probability of heads. Press ... Press 40 to enter the number of simulations. Press ...
- 2. Press ENTER to evaluate the expression. A list of 40 elements is displayed. The list contains the count of heads resulting from each set of 10 coin flips. The list has 40 elements because this simulation was performed 40 times. In this example, the coin came up heads five times in the first set of 10 coin flips, five times in the second set of 10 coin flips, and so on.
- 3. Press STOP 2nd [L1] ENTER to store the data to the list name L1. You then can use the data for another activity, such as plotting a histogram (Chapter 12).
- 4. Press) or (to view the additional counts in the list. Ellipses (...) indicate that the list continues beyond the screen.

Note: Since **randBin(** generates random numbers, your list elements may differ from those in the example.

randBin(10,.5,40

çar	ndE	3ir	h()	10:		5,4	10
ζ5	5	7	4	6	6	3	

Bir	n()	10,		5,4	10
5,7	4	6	6	3	
5-7	4	6	6	3	
Bir	n()	10,	i Bira A	5,4	10
į 7	4	6	6	3	
53	6	5	7	5	
	i 7 Li 7	574 1474 174	5746 11746 17746	57466 L1 7466	E1 74663 Bin(10,.5,4

Keyboard Math Operations

Using Lists with Math Operations	Math operations that are valid for lists return a list calculated element by element. If you use two lists in the same expression, they must be the same length. $(1,2)+(3,4)+5$ (9 11)				
+ (Addition), - (Subtraction), * (Multiplication), ∕ (Division)	(multiplication, \boxtimes),	tion, ⊕), - (subtraction, and / (division, ⊕) with expressions, lists, and m latrices. valueA - valueB valueA / valueB	h real and		
Trigonometric Functions	You can use the trigonometric (trig) functions (sine, <u>SIN</u> ; cosine, <u>COS</u> ; and tangent, <u>TAN</u>) with real numbers, expressions, and lists. The current angle mode setting affects interpretation. For example, sin(30) in Radian mode returns9880316241; in Degree mode it returns .5.				
	sin(<i>value</i>)	cos(value)	tan(value)		
	You can use the inverse trig functions (arcsine, 2nd [SIN ⁻¹]; arccosine, 2nd [COS ⁻¹]; and arctangent, 2nd [TAN ⁻¹]) with real numbers, expressions, and lists. The current angle mode setting affects interpretation.				
	sin ⁻¹ (value)	cos ⁻¹ (value)	tan ⁻¹ (value)		
	Note: The trig functions	do not operate on complex	numbers.		
^ (Power), ² (Square), √((Square Root)	You can use \land (power, \land), ² (square, x^2), and \checkmark ((square root, 2nd $[\checkmark]$) with real and complex numbers, expressions, lists, and matrices. You cannot use \checkmark (with matrices.				
	$value^{power}$	value ²	$\sqrt{(value)}$		
⁻¹ (Inverse)	numbers, expression	rse, [x-1]) with real ar ns, lists, and matrices. T se is equivalent to the re	he		
	I	• 4			

log(, 10^(, In(You can use log((logarithm, LOG)), 10^((power of 10, 2nd $[10^{x}]$), and in((natural log, LN) with real or complex numbers, expressions, and lists.		
	log(value)	10^(<i>power</i>)	In(value)
e^((Exponential)		[e ^x]) returns the consta e^(with real or comple	
	e^(power) e^(5) 148.413159	91	
e (Constant)	Press 2nd [e] to copy calculations, the TI-83	s stored as a constant o e to the cursor location 3 uses 2.718281828459	n. In
	2.71828182	28	
- (Negation)		ns the negative of <i>value</i> numbers, expressions,	
	-value		
	evaluated. For examp because squaring is e) determine when nega le, - A² returns a negati valuated before negatic e a negated number, as	ve number, on. Use
	2→A:(-A²,(-A)², 2²,(-2)²) (-4 4 -4 4	42	
		egation symbol (⁻) is shorte /hich is displayed when you	
π (Pi)		d as a constant in the T 3 uses 3.1415926535898	

π 3.141592654

MATH NUM CPX	PRB
1:≯Frac	Displays the answer as a fraction.
2:≯Dec	Displays the answer as a decimal.
3: ³	Calculates the cube.
4: ³ √(Calculates the cube root.
5: [×] √	Calculates the x^{th} root.
6:fMin(Finds the minimum of a function.
7:fMax(Finds the maximum of a function.
8:nDeriv(Computes the numerical derivative.
9:fnInt(Computes the function integral.
0:Solver	Displays the equation solver.

▶Frac,
▶Dec

▶ Frac (display as a fraction) displays an answer as its rational equivalent. You can use ▶ Frac with real or complex numbers, expressions, lists, and matrices. If the answer cannot be simplified or the resulting denominator is more than three digits, the decimal equivalent is returned. You can only use ▶ Frac following *value*.

value ightarrow Frac

▶Dec (display as a decimal) displays an answer in decimal form. You can use ▶Dec with real or complex numbers, expressions, lists, and matrices. You can only use ▶Dec following *value*.

 $value\,{\bf \textbf{>}Dec}$

³(Cube), ³√((Cube Root)

 3 (cube) returns the cube of *value*. You can use 3 with real or complex numbers, expressions, lists, and square matrices.

 $value^3$

 $\sqrt[3]{}$ (cube root) returns the cube root of *value*. You can use $\sqrt[3]{}$ (with real or complex numbers, expressions, and lists.

 $\sqrt[3]{(value)}$

× $\sqrt{\text{(Root)}}$ × $\sqrt{x^{th} \text{ root}}$ returns the *xth root* of *value*. You can use × \sqrt{with} real or complex numbers, expressions, and lists.

 $x^{th}root^{\mathbf{x}}\sqrt{value}$

fMin(,fMin((function minimum) and fMax((function maximum)fMax(return the value at which the local minimum or local
maximum value of expression with respect to variable
occurs, between lower and upper values for variable. fMin(
and fMax(are not valid in expression. The accuracy is
controlled by tolerance (if not specified, the default is
1E-5).

fMin(expression,variable,lower,upper[,tolerance]) fMax(expression,variable,lower,upper[,tolerance])

Note: In this guidebook, optional arguments and the commas that accompany them are enclosed in brackets ([]).

fMin(sin(A),A,-π ,π) -1.570797171 fMax(sin(A),A,-π ,π) 1.570797171 nDeriv(nDeriv((numerical derivative) returns an approximate
derivative of *expression* with respect to *variable*, given the
value at which to calculate the derivative and ε (if not
specified, the default is 1E-3). nDeriv(is valid only for real
numbers.

nDeriv(expression, variable, value[, ε])

nDeriv(uses the symmetric difference quotient method, which approximates the numerical derivative value as the slope of the secant line through these points.

$$f'(x) = \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}$$

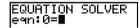
As $\boldsymbol{\epsilon}$ becomes smaller, the approximation usually becomes more accurate.

You can use **nDeriv(** once in *expression*. Because of the method used to calculate **nDeriv(**, the TI-83 can return a false derivative value at a nondifferentiable point.

fnint(fnint((function integral) returns the numerical integral
(Gauss-Kronrod method) of *expression* with respect to
variable, given *lower* limit, *upper* limit, and a *tolerance* (if
not specified, the default is 1E-5). fnint(is valid only for real
numbers.

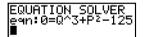
fnInt(expression,variable,lower,upper[,tolerance])

Tip: To speed the drawing of integration graphs (when **fnInt(** is used in a Y= equation), increase the value of the **Xres** window variable before you press <u>GRAPH</u>.

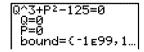

SolverSolver displays the equation solver, in which you can solve
for any variable in an equation. The equation is assumed to
be equal to zero. Solver is valid only for real numbers.

When you select Solver, one of two screens is displayed.

- The equation editor (see step 1 picture below) is displayed when the equation variable eqn is empty.
- The interactive solver editor (see step 3 picture on page 2-9) is displayed when an equation is stored in **eqn**.


Entering an Expression in the Equation Solver To enter an expression in the equation solver, assuming that the variable **eqn** is empty, follow these steps.

1. Select **0:Solver** from the MATH menu to display the equation editor.



- 2. Enter the expression in any of three ways.
 - Enter the expression directly into the equation solver.
 - Paste a Y= variable name from the VARS Y-VARS menu to the equation solver.
 - Press 2nd [RCL], paste a Y= variable name from the VARS Y-VARS menu, and press ENTER. The expression is pasted to the equation solver.

The expression is stored to the variable **eqn** as you enter it.

3. Press ENTER or . The interactive solver editor is displayed.

- The equation stored in **eqn** is set equal to zero and displayed on the top line.
- Variables in the equation are listed in the order in which they appear in the equation. Any values stored to the listed variables also are displayed.
- The default lower and upper bounds appear in the last line of the editor (**bound={-1£99,1£99}**).
- A ↓ is displayed in the first column of the bottom line if the editor continues beyond the screen.

Tip: To use the solver to solve an equation such as **K=.5MV**², enter eqn:0=K-.5MV² in the equation editor.

Entering and Editing Variable Values

When you enter or edit a value for a variable in the interactive solver editor, the new value is stored in memory to that variable.

You can enter an expression for a variable value. It is evaluated when you move to the next variable. Expressions must resolve to real numbers at each step during the iteration.

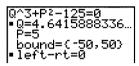
You can store equations to any VARS Y-VARS variables, such as Y_1 or r_6 , and then reference the variables in the equation. The interactive solver editor displays all variables of all Y= functions referenced in the equation.

EQUATION SOLVER ean:0=Y9+7

Solving for a Variable in the Equation Solver

To solve for a variable using the equation solver after an equation has been stored to **eqn**, follow these steps.

1. Select **0:Solver** from the MATH menu to display the interactive solver editor, if not already displayed.


2. Enter or edit the value of each known variable. All variables, except the unknown variable, must contain a value. To move the cursor to the next variable, press ENTER or \bigtriangledown .

P2-125=0	
-	
■ nd={-1_599,1	I
■ nd=(-1£99,1	L

3. Enter an initial guess for the variable for which you are solving. This is optional, but it may help find the solution more quickly. Also, for equations with multiple roots, the TI-83 will attempt to display the solution that is closest to your guess.

The default guess is calculated as $\frac{(upper+lower)}{2}$.

- 4. Edit **bound=**{*lower,upper*}. *lower* and *upper* are the bounds between which the TI-83 searches for a solution. This is optional, but it may help find the solution more quickly. The default is **bound=**{-1£99,1£99}.
- 5. Move the cursor to the variable for which you want to solve and press <u>ALPHA</u> [SOLVE] (above the <u>ENTER</u> key).

• The solution is displayed next to the variable for which you solved. A solid square in the first column marks the variable for which you solved and indicates that the equation is balanced. An ellipsis shows that the value continues beyond the screen.

Note: When a number continues beyond the screen, be sure to press
→ to scroll to the end of the number to see whether it ends with a negative or positive exponent. A very small number may appear to be a large number until you scroll right to see the exponent.

- The values of the variables are updated in memory.
- **left-rt=***diff* is displayed in the last line of the editor. *diff* is the difference between the left and right sides of the equation. A solid square in the first column next to **left-rt=** indicates that the equation has been evaluated at the new value of the variable for which you solved.

Editing an Equation Stored to eqn	To edit or replace an equation stored to eqn when the interactive equation solver is displayed, press • until the equation editor is displayed. Then edit the equation.
Equations with Multiple Roots	Some equations have more than one solution. You can enter a new initial guess (page 2-10) or new bounds (page 2-11) to look for additional solutions.
Further Solutions	After you solve for a variable, you can continue to explore solutions from the interactive solver editor. Edit the values of one or more variables. When you edit any variable value, the solid squares next to the previous solution and left-rt= <i>diff</i> disappear. Move the cursor to the variable for which you now want to solve and press [ALPHA] [SOLVE].
Controlling the Solution for Solver or solve(The TI-83 solves equations through an iterative process. To control that process, enter bounds that are relatively close to the solution and enter an initial guess within those bounds. This will help to find a solution more quickly. Also, it will define which solution you want for equations with multiple solutions.
Using solve(on the Home Screen or from a Program	The function solve(is available only from CATALOG or from within a program. It returns a solution (root) of <i>expression</i> for <i>variable</i> , given an initial <i>guess</i> , and <i>lower</i> and <i>upper</i> bounds within which the solution is sought. The default for <i>lower</i> is -1E99. The default for <i>upper</i> is 1E99. solve(is valid only for real numbers.
	$\verb+solve(expression, variable, guess[, \{lower, upper\}])$
	<i>expression</i> is assumed equal to zero. The value of <i>variable</i> will not be updated in memory. <i>guess</i> may be a value or a list of two values. Values must be stored for every variable in <i>expression</i> , except <i>variable</i> , before <i>expression</i> is evaluated. <i>lower</i> and <i>upper</i> must be entered in list format.
	5→P solve(Q^3+P≥-125 ,Q,4,(-50,50)) 4.641588834

2-12 Math, Angle, and Test Operations

MATH NUM (Number) Operations

MATH NUM Menu	To display the MATH N	IUM menu, press MATH 🕨.
	MATH NUM CPX PRB	
	1:abs(Absolute value
	2:round(Round
	3:iPart(Integer part
	4:fPart(Fractional part
	5:int(Greatest integer
	6:min(Minimum value
	7:max(Maximum value
	8:1cm(Least common multiple
	9:gcd(Greatest common divisor

abs(

abs((absolute value) returns the absolute value of real or complex (modulus) numbers, expressions, lists, and matrices.

abs(value)

abs(-256) 256 abs((1.25,-5.67)) (1.25 5.67)

Note: abs(is also available on the MATH CPX menu.

round(

round(returns a number, expression, list, or matrix rounded to *#decimals* (\leq 9). If *#decimals* is omitted, *value* is rounded to the digits that are displayed, up to 10 digits.

round(value[,#decimals])

round(π,4) 12 3.1416 C-12 45

iPart(, fPart(**iPart(** (integer part) returns the integer part or parts of real or complex numbers, expressions, lists, and matrices.

iPart(value)

fPart((fractional part) returns the fractional part or parts of real or complex numbers, expressions, lists, and matrices.

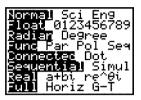
fPart(value)

iPart(-23.45) -23 fPart(-23.45) -.45

int(

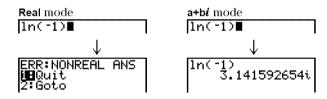
int((greatest integer) returns the largest integer \leq real or complex numbers, expressions, lists, and matrices.

int(value)


Note: For a given *value*, the result of **int(** is the same as the result of **iPart(** for nonnegative numbers and negative integers, but one integer less than the result of **iPart(** for negative noninteger numbers.

main (mint (minimum volue)	notume the smaller of using 4 and
min(, max(min((minimum value) returns the smaller of <i>valueA</i> and <i>valueB</i> or the smallest element in <i>list</i> . If <i>listA</i> and <i>listB</i> are compared, min(returns a list of the smaller of each pair of elements. If <i>list</i> and <i>value</i> are compared, min(compares each element in <i>list</i> with <i>value</i> .	
	valueB or the largest e compared, max(return) returns the larger of <i>valueA</i> and element in <i>list</i> . If <i>listA</i> and <i>listB</i> are as a list of the larger of each pair of <i>ulue</i> are compared, max(compares ith <i>value</i> .
	min(valueA,valueB)	max(valueA,valueB)
	min(<i>list</i>) min(<i>listA,listB</i>)	max(<i>list</i>) max(<i>listA</i> , <i>listB</i>)
	min(list,value)	max(list,value)
	min(3,2+2)	3
	min((3,4,5),4) (3 4 4 max((4,5,6))	5
	max({4,5,6})	6
	Note: min(and max(also	o are available on the LIST MATH menu.
lcm(, gcd(<i>valueB</i> , both of which <i>listA</i> and <i>listB</i> are spe of each pair of elemen	common multiple of <i>valueA</i> and must be nonnegative integers. When ccified, Icm(returns a list of the Icm ts. If <i>list</i> and <i>value</i> are specified, ach element in <i>list</i> and <i>value</i> .
	<i>valueB</i> , both of which <i>listA</i> and <i>listB</i> are spe of each pair of elemen	est common divisor of <i>valueA</i> and must be nonnegative integers. When ccified, gcd(returns a list of the gcd ts. If <i>list</i> and <i>value</i> are specified, ach element in <i>list</i> and <i>value</i> .
	lcm(valueA,valueB) lcm(listA,listB) lcm(list,value)	gcd(valueA,valueB) gcd(listA,listB) gcd(list,value)
	1cm(2,5) 9cd((48,66),(64 122)) (16 2	0 ,)

Complex-Number Modes


The TI-83 displays complex numbers in rectangular form and polar form. To select a complex-number mode, press MODE, and then select either of the two modes.

- **a+bi** (rectangular-complex mode)
- re^0i (polar-complex mode)

On the TI-83, complex numbers can be stored to variables. Also, complex numbers are valid list elements.

In **Real** mode, complex-number results return an error, unless you entered a complex number as input. For example, in **Real** mode **In(-1)** returns an error; in **a+bi** mode **In(-1)** returns an answer.

Entering Complex Numbers	Complex numbers are stored in rectangular form, but you can enter a complex number in rectangular form or polar form, regardless of the mode setting. The components of complex numbers can be real numbers or expressions that evaluate to real numbers; expressions are evaluated when the command is executed.
Note about Radian versus Degree Mode	Radian mode is recommended for complex number calculations. Internally, the TI-83 converts all entered trig values to radians, but it does not convert values for exponential, logarithmic, or hyperbolic functions.
	In degree mode, complex identities such as $e^{\wedge}(i\theta) = \cos(\theta) + i\sin(\theta)$ are not generally true because the values for \cos and \sin are converted to radians, while those for $e^{\wedge}()$ are not. For example, $e^{\wedge}(i45) = \cos(45) + i\sin(45)$ is treated internally as $e^{\wedge}(i45) = \cos(\pi/4) + i\sin(\pi/4)$. Complex identities are always true in radian mode.

2-16 Math, Angle, and Test Operations

Interpreting Complex Results Complex numbers in results, including list elements, are displayed in either rectangular or polar form, as specified by the mode setting or by a display conversion instruction (page 2-19). In the example below, **re^** θ *i* and **Radian** modes are set.

(2+i)-(1e^(π/4i)) 1.325654296e^(.…

Rectangular-Complex Mode Rectangular-complex mode recognizes and displays a complex number in the form a+bi, where a is the real component, b is the imaginary component, and i is a constant equal to $\sqrt{-1}$.

ln(-1) 3.141592654i

To enter a complex number in rectangular form, enter the value of *a* (*real component*), press \oplus or \Box , enter the value of *b* (*imaginary component*), and press $\boxed{2nd}$ [*i*] (constant).

real component(+ or -)imaginary componenti

4+2i 4+2i

Polar-ComplexPolar-complex mode recognizes and displays a complexModenumber in the form $re^{h}\theta i$, where r is the magnitude, e is the
base of the natural log, θ is the angle, and i is a constant equal
to $\sqrt{-1}$.

ln(-1) 3.141592654e^(1…

To enter a complex number in polar form, enter the value of r (magnitude), press [2nd] [e^x] (exponential function), enter the value of θ (angle), press [2nd] [i] (constant), and then press].

magnitudee^(anglei)

10e^(π/3i) 10e^(1.04719755…

MATH CPX (Complex) Operations

MATH CPX Menu	To display the MATH CPX menu, press $MATH \triangleright$.		
	MATH NUM CPX PRB		
		Returns the complex conjugate.	
	V	Returns the real part.	
		Returns the imaginary part.	
		Returns the polar angle.	
		Returns the magnitude (modulus).	
		Displays the result in rectangular form.	
	7:∍Polar I	Displays the result in polar form.	
conj(turns the complex conjugate of a list of complex numbers.	
	conj(a+bi) returns a- conj(re^(0i)) returns	<i>−bi</i> in a+b i mode. s re^(−∂i) in re^ θi mode.	
	conj(3+4i) 3-	-4i conj(3e^(4i)) 3e^(2.283185307	
real(real((real part) retu or list of complex n	rns the real part of a complex number umbers.	
	real(a+bi) returns a. real(re^(θi)) returns		
	real(3+4i)	real(3e^(4i)) 3 -1.960930863	
imag(rt) returns the imaginary (nonreal) part er or list of complex numbers.	
	i mag(a+bi) returns b i mag(re^(θi)) returns		
	ima9(3+4i)	4 imag(3e^(4i)) -2.270407486	

angle(of complex numbers, ca the imaginary part and a	alculated a is the r cond qu (b/a).	f a complex number or list d as tan ⁻¹ (b/a), where b is real part. The calculation is adrant or $-\pi$ in the third $\pi < \theta < \pi$.
	an9le(3+4i) .927295218		an9le(3e^(4i)) -2.283185307
abs(abs((absolute value) ret $\sqrt{(real2+imag2)}$, of a c numbers.	turns th complex	e magnitude (modulus), number or list of complex
	abs(a + bi) returns $\sqrt{(a2+abs(re^{(\theta i)})}$ returns r (m		le).
	abs(3+4i) 5		abs(3e^(4i)) 3
∢Rect	▶ Rect (display as rectang rectangular form. It is va expression. It is not vali	alid only	
	<i>complex result</i> ► Rect ret	turns a_{\pm}	bi.
	√(-2))Rect 1.414213562i]	
} Polar		he end	s a complex result in polar of an expression. It is not
	<i>complex result</i> ▶Polar re	eturns <i>r</i> e	e^(θ i).
	√(-2)⊧Polar	1	

1.414213562e^(1...

MATH PRB (Probability) Operations

MATH PRB Menu To display the MATH PRB menu, press MATH **[]**.

MATH NUM CPX	PRB
1: rand	Random-number generator
2:nPr	Number of permutations
3:nCr	Number of combinations
4: !	Factorial
5: randInt(Random-integer generator
6: randNorm(Random # from Normal distribution
7:randBin(Random # from Binomial distribution

rand

rand (random number) generates and returns one or more random numbers > 0 and < 1. To generate a list of randomnumbers, specify an integer > 1 for *numtrials* (number of trials). The default for *numtrials* is 1.

rand[(numtrials)]

Tip: To generate random numbers beyond the range of 0 to 1, you can include **rand** in an expression. For example, **rand*5** generates a random number > 0 and < 5.

With each **rand** execution, the TI-83 generates the same random-number sequence for a given seed value. The TI-83 factory-set seed value for **rand** is **0**. To generate a different random-number sequence, store any nonzero seed value to **rand**. To restore the factory-set seed value, store **0** to **rand** or reset the defaults (Chapter 18).

Note: The seed value also affects randInt(, randNorm(, and randBin(instructions (page 2-22).

rand .1272157551 .2646513087
1→rand 1
rand(3) {.7455607728 .8…

nPr,nPr (number of permutations) returns the number ofnCrpermutations of *items* taken *number* at a time. *items* and*number* must be nonnegative integers. Both *items* and*number* can be lists.

items nPr number

nCr (number of combinations) returns the number of combinations of *items* taken *number* at a time. *items* and *number* must be nonnegative integers. Both *items* and *number* can be lists.

items nCr number

5	nPr	2	20
5	nCr	2	
C2	2,3>	nPr	(2,2) (2,6)

! (Factorial)! (factorial) returns the factorial of either an integer or a
multiple of .5. For a list, it returns factorials for each
integer or multiple of .5. value must be \geq .5 and \leq 69.

value!

6!		720
{5,4,6)! (120		
(120	24	720)

Note: The factorial is computed recursively using the relationship (n+1)! = n*n!, until n is reduced to either 0 or -1/2. At that point, the definition 0!=1 or the definition $(-1/2)!=\sqrt{\pi}$ is used to complete the calculation. Hence:

n!=n*(n-1)*(n-2)* ... *2*1, if n is an integer ≥0 n!= n*(n-1)*(n-2)* ... *1/2* $\sqrt{\pi}$, if n+1/2 is an integer ≥0 n! is an error, if neither n nor n+1/2 is an integer ≥0.

(The variable n equals *value* in the syntax description above.)

randint(randint((random integer) generates and displays a random
integer within a range specified by *lower* and *upper* integer
bounds. To generate a list of random numbers, specify an
integer >1 for *numtrials* (number of trials); if not
specified, the default is 1.

randint(lower,upper[,numtrials])

randInt(1,6)+ran dInt(1,6) randInt(1,6,3) (2 1 5)

randNorm(randNorm((random Normal) generates and displays a
random real number from a specified Normal distribution.
Each generated value could be any real number, but most
will be within the interval $[\mu-3(\sigma), \mu+3(\sigma)]$. To generate a
list of random numbers, specify an integer > 1 for
numtrials (number of trials); if not specified, the default
is 1.

randNorm(μ,σ [,*numtrials*])

randNorm(0,1) .0772076175 randNorm(35,2,10 0)
0) (34.02701938 37

randBin(

randBin((random Binomial) generates and displays a random integer from a specified Binomial distribution. *numtrials* (number of trials) must be ≥ 1 . *prob* (probability of success) must be ≥ 0 and ≤ 1 . To generate a list of random numbers, specify an integer > 1 for *numsimulations* (number of simulations); if not specified, the default is 1.

randBin(numtrials,prob[,numsimulations])

randBin(5,.2) 3 randBin(7,.4,10) (3 3 2 5 1 2 2 …)

Note: The seed value stored to rand also affects randInt(, randNorm(, and randBin(instructions (page 2-20).

ANGLE Menu

To display the ANGLE menu, press and [ANGLE]. The ANGLE menu displays angle indicators and instructions. The **Radian/Degree** mode setting affects the TI-83's interpretation of ANGLE menu entries.

ANGLE	
1:°	Degree notation
2: '	DMS minute notation
3: ^r	Radian notation
4: ►DMS	Displays as degree/minute/second
5: R▶Pr(Returns r, given X and Y
6: R⊳P⊖(Returns θ , given X and Y
7: P►Rx (Returns x, given R and θ
8: P⊳Ry(Returns y, given R and θ

DMS Entry Notation

DMS (degrees/minutes/seconds) entry notation comprises the degree symbol (°), the minute symbol ('), and the second symbol ("). *degrees* must be a real number; *minutes* and *seconds* must be real numbers ≥ 0 .

 $degrees^{\circ}minutes$ 'seconds"

For example, enter for 30 degrees, 1 minute, 23 seconds. If the angle mode is not set to **Degree**, you must use $^{\circ}$ so that the TI-83 can interpret the argument as degrees, minutes, and seconds.

Degree mode sin(30°1'23") .5003484441

Radian mode

sin(30°1'23")
9842129995
sin(30 <u>°1'23"°)</u>
.5003484441

° (Degree) ° (degree) designates an angle or list of angles as degrees, regardless of the current angle mode setting. In Radian mode, you can use ° to convert degrees to radians.

$value^{\circ}$

{value1,value2,value3,value4,...,value n}°

° also designates *degrees* (D) in DMS format.

- ' (minutes) designates minutes (M) in DMS format.
- " (seconds) designates *seconds* (S) in DMS format.

Note: " is not on the ANGLE menu. To enter ", press ALPHA ["].

r (Radians) ^r (radians) designates an angle or list of angles as radians, regardless of the current angle mode setting. In Degree mode, you can use ^r to convert radians to degrees.

valuer

Degree mode

►DMS ►DMS (degree/minute/second) displays answer in DMS format (page 2-23). The mode setting must be Degree for answer to be interpreted as degrees, minutes, and seconds. ▶DMS is valid only at the end of a line.

answer>DMS

R≽Pr(. **R**▶**Pr(** converts rectangular coordinates to polar

R▶**P**θ(, P▶Rx(,

P►Rv(

coordinates and returns r. R▶Pθ(converts rectangular coordinates to polar coordinates and returns θ . x and y can be lists.

 $\mathsf{R} \triangleright \mathsf{Pr}(x,y), \mathsf{R} \triangleright \mathsf{P} \theta(x,y)$

Note: Radian mode is set.

P▶**R**x(converts polar coordinates to rectangular coordinates and returns x. P>Ry(converts polar coordinates to rectangular coordinates and returns \mathbf{y} . r and θ can be lists.

 $P \models Rx(r,\theta), P \models Ry(r,\theta)$

Note: Radian mode is set.

This operator	Returns 1 (true) if	
TEST LOGIC		
1:=	Equal	
2:≠	Not equal to	
3:>	Greater than	
4:≥	Greater than or equal to	
5: <	Less than	
6:≤	Less than or equal to	

TEST Menu To display the TEST menu, press 2nd [TEST].

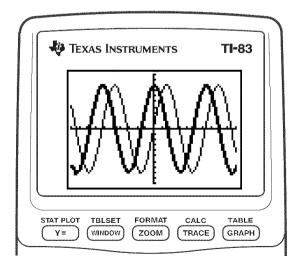
=, ≠, Relational operators compare valueA and valueB and
 >, ≥, return 1 if the test is true or 0 if the test is false. valueA and
 < valueB can be real numbers, expressions, or lists. For = and ≠ only, valueA and valueB also can be matrices or complex numbers. If valueA and valueB are matrices, both must have the same dimensions.

Relational operators are often used in programs to control program flow and in graphing to control the graph of a function over specific values.

valueA=valueB valueA>valueB valueA<valueB valueA≠valueB valueA≥valueB valueA≤valueB

Using Tests Relational operators are evaluated after mathematical functions according to EOS rules (Chapter 1).

- The expression **2+2=2+3** returns **0**. The TI-83 performs the addition first because of EOS rules, and then it compares 4 to 5.
- The expression **2+(2=2)+3** returns **6**. The TI-83 performs the relational test first because it is in parentheses, and then it adds 2, 1, and 3.


TEST LOGIC Menu	To display the TEST LOGIC menu, press [2nd] [TEST] .					
Menu	This oper	ator	Returns a 1	(true) if		
	TEST LOG 1: and 2: or 3: xor 4: not(Both values At least one Only one va The value is	e value is 1 due is zer	nonzero (o (false).	
Boolean Operators	program f function c	low and in over speci	are often us n graphing t fic values. V æro (true).	o control	the graph	of the
and, or, xor	and , or , and xor (exclusive or) return a value of 1 if an expression is true or 0 if an expression is false, accordin to the table below. <i>valueA</i> and <i>valueB</i> can be real numbers, expressions, or lists.					
	valueA and valueB valueA or valueB valueA xor valueB					
	valueA	valueB		and	or	xor
	≠0	≠0	returns	1	1	0
	≠0	0	returns	0	1	1
	0	≠0	returns	0	1	1
	0	0	returns	0	0	0
not(Using Boolean Operations	not(<i>value</i>) Boolean la following PROGRAM : 2+A: 3=	ogic is oft program, 1: BOOLE →B 2 and B 1→C		h relation:	al tests. Ir	n the

2-26 Math, Angle, and Test Operations

3 Function Graphing

Contents

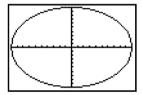
Getting Started: Graphing a Circle	3-2
Defining Graphs	3-3
Setting the Graph Modes	3-4
Defining Functions	3-5
Selecting and Deselecting Functions	3-7
Setting Graph Styles for Functions	3-9
Setting the Viewing Window Variables	3-11
Setting the Graph Format	3-13
Displaying Graphs	3-15
Exploring Graphs with the Free-Moving Cursor	3-17
Exploring Graphs with TRACE	3-18
Exploring Graphs with the ZOOM Instructions	3-20
Using ZOOM MEMORY	3-23
Using the CALC (Calculate) Operations	3-25

Getting Started is a fast-paced introduction. Read the chapter for details.

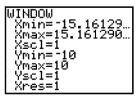
Graph a circle of radius 10, centered on the origin in the standard viewing window. To graph this circle, you must enter separate formulas for the upper and lower portions of the circle. Then use **ZSquare** (zoom square) to adjust the display and make the functions appear as a circle.

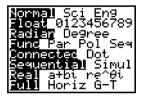
1. In **Func** mode, press Y= to display the Y= editor. Press $2nd [\sqrt{]} 100 - (X,T,\Theta,n) x^2 (Y)$ ENTER to enter the expression $Y=\sqrt{(100-X^2)}$, which defines the top half of the circle.

The expression $Y=-\sqrt{(100-X^2)}$ defines the bottom half of the circle. On the TI-83, you can define one function in terms of another. To define **Y2=-Y1**, press P to enter the negation sign. Press \fbox{VARS} \blacktriangleright to display the VARS Y-VARS menu. Then press \fbox{ENTER} to select **1:Function**. The FUNCTION secondary menu is displayed. Press **1** to select **1:Y1**.


2. Press ZOOM 6 to select 6:ZStandard. This is a quick way to reset the window variables to the standard values. It also graphs the functions; you do not need to press GRAPH.

Notice that the functions appear as an ellipse in the standard viewing window.


- To adjust the display so that each pixel represents an equal width and height, press ZOOM 5 to select 5:ZSquare. The functions are replotted and now appear as a circle on the display.
- 4. To see the **ZSquare** window variables, press <u>WINDOW</u> and notice the new values for **Xmin**, **Xmax**, **Ymin**, and **Ymax**.



TI-83—Graphing Mode Similarities	Chapter 3 specifically describes function graphing, but the steps shown here are similar for each TI-83 graphing mode. Chapters 4, 5, and 6 describe aspects that are unique to parametric graphing, polar graphing, and sequence graphing.
Defining a Graph	To define a graph in any graphing mode, follow these steps. Some steps are not always necessary.
	1. Press <u>MODE</u> and set the appropriate graph mode (page 3-4).
	2. Press Y= and enter, edit, or select one or more functions in the Y= editor (page 3-5 and 3-7).
	3. Deselect stat plots, if necessary (page 3-7).
	4. Set the graph style for each function (page 3-9).
	5. Press <u>WINDOW</u> and define the viewing window variables (page 3-11).
	6. Press [2nd] [FORMAT] and select the graph format settings (page 3-13).
Displaying and Exploring a Graph	After you have defined a graph, press GRAPH to display it. Explore the behavior of the function or functions using the TI-83 tools described in this chapter.
Saving a Graph for Later Use	You can store the elements that define the current graph to any of 10 graph database variables (GDB1 through GDB9 , and GDB0 ; Chapter 8). To recreate the current graph later, simply recall the graph database to which you stored the original graph.
	These types of information are stored in a GDB .
	 Y= functions Graph style settings Window settings Format settings
	You can store a picture of the current graph display to any of 10 graph picture variables (Pic1 through Pic9 , and Pic0 ; Chapter 8). Then you can superimpose one or more stored pictures onto the current graph.

Checking and Changing the Graphing Mode To display the mode screen, press <u>MODE</u>. The default settings are highlighted below. To graph functions, you must select **Func** mode before you enter values for the window variables and before you enter the functions.

The TI-83 has four graphing modes.

- Func (function graphing)
- **Par** (parametric graphing; Chapter 4)
- **Pol** (polar graphing; Chapter 5)
- **Seq** (sequence graphing; Chapter 6)

Other mode settings affect graphing results. Chapter 1 describes each mode setting.

- Float or 0123456789 (fixed) decimal mode affects displayed graph coordinates.
- Radian or Degree angle mode affects interpretation of some functions.
- **Connected** or **Dot** plotting mode affects plotting of selected functions.
- **Sequential** or **Simul** graphing-order mode affects function plotting when more than one function is selected.

Setting ModesTo set the graphing mode and other modes from afrom a Programprogram, begin on a blank line in the program editor and
follow these steps.

- 1. Press MODE to display the mode settings.
- 2. Press ,), (), and () to place the cursor on the mode that you want to select.
- 3. Press ENTER to paste the mode name to the cursor location.

The mode is changed when the program is executed.

Displaying Functions in the Y= Editor To display the Y= editor, press $\boxed{Y=}$. You can store up to 10 functions to the function variables Y1 through Y9, and Y0. You can graph one or more defined functions at once. In this example, functions Y1 and Y2 are defined and selected.

Ploti Plot2 Plot3 \Y18√(100-X2) \Y28-Y1	
\Y3= \Y4=	
\Ys= \Y6= \Y7=	

Defining or Editing a Function To define or edit a function, follow these steps.

- 1. Press Y= to display the Y= editor.
- 2. Press to move the cursor to the function you want to define or edit. To erase a function, press CLEAR.
- 3. Enter or edit the expression to define the function.
 - You may use functions and variables (including matrices and lists) in the expression. When the expression evaluates to a nonreal number, the value is not plotted; no error is returned.
 - The independent variable in the function is X. Func mode defines (X,T,Θ,n) as X. To enter X, press (X,T,Θ,n) or press (ALPHA) [X].
 - When you enter the first character, the = is highlighted, indicating that the function is selected.

As you enter the expression, it is stored to the variable Yn as a user-defined function in the Y= editor.

4. Press ENTER or 🔽 to move the cursor to the next function.

Defining a Function from the Home Screen or a Program To define a function from the home screen or a program, begin on a blank line and follow these steps.

- 1. Press <u>ALPHA</u> ["], enter the expression, and then press <u>ALPHA</u> ["] again.
- 2. Press STO▶.
- 3. Press VARS > 1 to select 1:Function from the VARS Y-VARS menu.
- 4. Select the function name, which pastes the name to the cursor location on the home screen or program editor.
- 5. Press ENTER to complete the instruction.

"expression" > Yn

"X2"+Y1

Ploti Plot2 Plot3 \Y18X2

When the instruction is executed, the TI-83 stores the expression to the designated variable Yn, selects the function, and displays the message **Done**.

Evaluating Y= Functions in Expressions You can calculate the value of a Y= function Yn at a specified *value* of X. A list of *values* returns a list.

Yn(value) Yn({value1,value2,value3, . . .,value n})

Plot1 Plot2 Plot3 \Y1**0.**2X³-2X+6 \Y2= \Y3= Y1(0) Y1((0,1,2,3,4)) (6 4.2 3.6 5.4 ...

Selecting and Deselecting Functions

Selecting and Deselecting a Function	You can select and deselect (turn on and turn off) a function in the Y= editor. A function is selected when the = sign is highlighted. The TI-83 graphs only the selected functions. You can select any or all functions Y_1 through Y_9 , and Y_0 .	
	To select or deselect a function in the Y= editor, follow these steps.	
	1. Press $Y=$ to display the Y= editor.	
	2. Move the cursor to the function you want to select or deselect.	
	3. Press \bigcirc to place the cursor on the function's = sign.	
	4. Press ENTER to change the selection status.	
	When you enter or edit a function, it is selected automatically. When you clear a function, it is deselected.	
Turning On or Turning Off a Stat Plot in the Y= Editor	To view and change the on/off status of a stat plot in the Y= editor, use Plot1 Plot2 Plot3 (the top line of the Y= editor). When a plot is on, its name is highlighted on this line.	
	To change the on/off status of a stat plot from the Y= editor, press ▲ and ▶ to place the cursor on Plot1 , Plot2 , or Plot3 , and then press ENTER.	
	1011 Plot2 Plot3	

Plot1 is turned on. Plot2 and Plot3 are turned off. Selecting and Deselecting Functions from the Home Screen or a Program To select or deselect a function from the home screen or a program, begin on a blank line and follow these steps.


- 1. Press VARS I to display the VARS Y-VARS menu.
- 2. Select 4:On/Off to display the ON/OFF secondary menu.
- Select 1:FnOn to turn on one or more functions or 2:FnOff to turn off one or more functions. The instruction you select is copied to the cursor location.
- 4. Enter the number (1 through 9, or 0; not the variable Yn) of each function you want to turn on or turn off.
 - If you enter two or more numbers, separate them with commas.
 - To turn on or turn off all functions, do not enter a number after FnOn or FnOff.

FnOn[*function*#,*function*#,...,*function* n] **FnOf**[*function*#,*function*#,...,*function* n]

5. Press ENTER. When the instruction is executed, the status of each function in the current mode is set and **Done** is displayed.

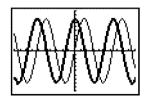
For example, in **Func** mode, **FnOff :FnOn 1,3** turns off all functions in the Y= editor, and then turns on Y1 and Y3.

FnOff	:FnOn	1,3 Done

Graph Style Icons in the Y= Editor

This table describes the graph styles available for function graphing. Use the styles to visually differentiate functions to be graphed together. For example, you can set **Y1** as a solid line, **Y2** as a dotted line, and **Y3** as a thick line.

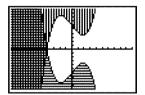
lcon	Style	Description
ν	Line	A solid line connects plotted points; this is the default in Connected mode
٦	Thick	A thick solid line connects plotted points
ال ا.	Above	Shading covers the area a*bove the graph
h .	Below	Shading covers the area below the graph
ŵ	Path	A circular cursor traces the leading edge of the graph and draws a path
Q	Animate	A circular cursor traces the leading edge of the graph without drawing a path
••••	Dot	A small dot represents each plotted point; this is the default in Dot mode


Note: Some graph styles are not available in all graphing modes. Chapters 4, 5, and 6 list the styles for **Par**, **Pol**, and **Seq** modes.

Setting the Graph To set the graph style for a function, follow these steps. **Style**

1. Press Y= to display the Y= editor.

- 2. Press \checkmark and \blacktriangle to move the cursor to the function.
- 3. Press (to move the cursor left, past the = sign, to the graph style icon in the first column. The insert cursor is displayed. (Steps 2 and 3 are interchangeable.)
- 4. Press ENTER repeatedly to rotate through the graph styles. The seven styles rotate in the same order in which they are listed in the table above.
- 5. Press \blacktriangleright , \frown , or \neg when you have selected a style.



Shading Above	When you select 🎙 or 🛦 for two or more functions, the
and Below	TI-83 rotates through four shading patterns.

- Vertical lines shade the first function with a 🖲 or 🛓 graph style.
- Horizontal lines shade the second.
- Negatively sloping diagonal lines shade the third.
- Positively sloping diagonal lines shade the fourth.
- The rotation returns to vertical lines for the fifth *¬* or *⊾* function, repeating the order described above.

When shaded areas intersect, the patterns overlap.

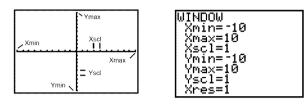
Note: When ♥ or L is selected for a Y= function that graphs a family of curves, such as Y1={1,2,3}X, the four shading patterns rotate for each member of the family of curves.

Setting a Graph Style from a Program


To set the graph style from a program, select **H:GraphStyle(**from the PRGM CTL menu. To display this menu, press <u>PRGM</u> while in the program editor. *function#* is the number of the Y= function name in the current graphing mode. *graphstyle#* is an integer from **1** to **7** that corresponds to the graph style, as shown below.

1 = \ (line)	2 = 1 (thick)	3 = 1 (above)
4 = L (below)	5 = ∜ (path)	6 = Ü
(animate)	7 = '. (dot)	

GraphStyle(function#,graphstyle#)


For example, when this program is executed in **Func** mode, **GraphStyle(1,3)** sets **Y1** to **₹** (above).

The TI-83 Viewing Window

The viewing window is the portion of the coordinate plane defined by Xmin, Xmax, Ymin, and Ymax. Xscl (X scale) defines the distance between tick marks on the x-axis. Yscl (Y scale) defines the distance between tick marks on the y-axis. To turn off tick marks, set Xscl=0 and Yscl=0.

Displaying the
WindowTo display the current window variable values, pressWindow
VariablesWiNDOW.VariablesThe window editor above and to the right shows
the default values in Func graphing mode and Radian angle
mode. The window variables differ from one graphing
mode to another.

Xres sets pixel resolution (1 through 8) for function graphs only. The default is 1.

- At **Xres=1**, functions are evaluated and graphed at each pixel on the x-axis.
- At **Xres=8**, functions are evaluated and graphed at every eighth pixel along the x-axis.

Tip: Small **Xres** values improve graph resolution but may cause the TI-83 to draw graphs more slowly.

Changing a Window Variable Value To change a window variable value from the window editor, follow these steps.

- 1. Press or to move the cursor to the window variable you want to change.
- 2. Edit the value, which can be an expression.
 - Enter a new value, which clears the original value.
 - Move the cursor to a specific digit, and then edit it.
- 3. Press ENTER, , , or . If you entered an expression, the TI-83 evaluates it. The new value is stored.

Note: Xmin<Xmax and Ymin<Ymax must be true in order to graph.

Storing to a Window Variable from the Home Screen or a Program To store a value, which can be an expression, to a window variable, begin on a blank line and follow these steps.

- 1. Enter the value you want to store.
- 2. Press STO▶.
- 3. Press VARS to display the VARS menu.
- 4. Select 1:Window to display the Func window variables (X/Y secondary menu).
 - Press to display the **Par** and **Pol** window variables (T/θ secondary menu).
 - Press to display the **Seq** window variables (U/V/W secondary menu).
- 5. Select the window variable to which you want to store a value. The name of the variable is pasted to the current cursor location.
- 6. Press ENTER to complete the instruction.

When the instruction is executed, the TI-83 stores the value to the window variable and displays the value.

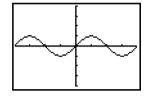
14→Xmax 14

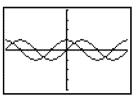
 $\Delta X \text{ and } \Delta Y$ The variables ΔX and ΔY (items 8 and 9 on the VARS (1:Window) X/Y secondary menu) define the distance from the center of one pixel to the center of any adjacent pixel on a graph (graphing accuracy). ΔX and ΔY are calculated from Xmin, Xmax, Ymin, and Ymax when you display a graph.

$$\Delta \mathbf{X} = \frac{(\mathbf{X}\max - \mathbf{X}\min)}{\mathbf{94}} \qquad \Delta \mathbf{Y} = \frac{(\mathbf{Y}\max - \mathbf{Y}\min)}{\mathbf{62}}$$

You can store values to ΔX and ΔY . If you do, Xmax and Ymax are calculated from ΔX , Xmin, ΔY , and Ymin.

Displaying the Format Settings	To display the format settings, press [2nd] [FORMAT]. The default settings are highlighted below.	
	RectGC PolarGC CoordOn CoordOff GridOff GridOn AxesOn AxesOff LabelOff LabelOn ExprOn ExprOff	Sets cursor coordinates. Sets coordinates display on or off. Sets grid off or on. Sets axes on or off. Sets axes label off or on. Sets expression display on or off.
	Format settings apply	e a graph's appearance on the display. to all graphing modes. Seq graphing al mode setting (Chapter 6).
Changing a Format Setting	1. Press ,), , an to the setting you w	etting, follow these steps. d 🖪 as necessary to move the cursor want to select. ect the highlighted setting.
RectGC, PolarGC	 arGC RectGC (rectangular graphing coordinates) displays the cursor location as rectangular coordinates X and Y. PolarGC (polar graphing coordinates) displays the cursor location as polar coordinates R and θ. The RectGC/PolarGC setting determines which variables are updated when you plot the graph, move the freemoving cursor, or trace. 	
	• RectGC updates X X and Y are display	and Y ; if CoordOn format is selected, red.
	• PolarGC updates X selected, R and θ a	, Y , R , and θ ; if CoordOn format is re displayed.

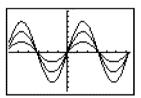

CoordOn, CoordOff	CoordOn (coordinates on) displays the cursor coordinates at the bottom of the graph. If ExprOff format is selected, the function number is displayed in the top-right corner. CoordOff (coordinates off) does not display the function number or coordinates.
GridOff, GridOn	Grid points cover the viewing window in rows that correspond to the tick marks (page 3-11) on each axis.
	GridOff does not display grid points.
	GridOn displays grid points.
AxesOn, AxesOff	AxesOn displays the axes.
	AxesOff does not display the axes.
	This overrides the LabelOff/LabelOn format setting.
LabelOff, LabelOn	LabelOff and LabelOn determine whether to display labels for the axes (X and Y), if AxesOn format is also selected.
ExprOn, ExprOff	ExprOn and ExprOff determine whether to display the Y= expression when the trace cursor is active. This format setting also applies to stat plots.
	When ExprOn is selected, the expression is displayed in the top-left corner of the graph screen.
	When ExprOff and CoordOn both are selected, the number in the top-right corner specifies which function is being traced.


Displaying Graphs

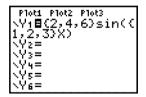
Displaying a New Graph	To display the graph of the selected function or functions, press GRAPH. TRACE, ZOOM instructions, and CALC operations display the graph automatically. As the TI-83 plots the graph, the busy indicator is on. As the graph is plotted, X and Y are updated.	
Pausing or Stopping a Graph	 While plotting a graph, you can pause or stop graphing. Press ENTER to pause; then press ENTER to resume. Press ON to stop; then press GRAPH to redraw. 	
Smart Graph	Smart Graph is a TI-83 feature that redisplays the last graph immediately when you press <u>GRAPH</u> , but only if all graphing factors that would cause replotting have remained the same since the graph was last displayed. If you performed any of these actions since the graph was last displayed, the TI-83 will replot the graph based on new values when you press <u>GRAPH</u> .	
	 Changed a mode setting that affects graphs Changed a function in the current picture Selected or deselected a function or stat plot Changed the value of a variable in a selected function Changed a window variable or graph format setting Cleared drawings by selecting ClrDraw Changed a stat plot definition 	

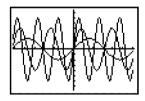
Overlaying Functions on a Graph

On the TI-83, you can graph one or more new functions without replotting existing functions. For example, store **sin(X)** to **Y1** in the Y= editor and press <u>GRAPH</u>. Then store **cos(X)** to **Y2** and press <u>GRAPH</u> again. The function **Y2** is graphed on top of **Y1**, the original function.



Graphing a Family of Curves

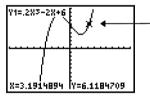

If you enter a list (Chapter 11) as an element in an expression, the TI-83 plots the function for each value in the list, thereby graphing a family of curves. In **Simul** graphing-order mode, it graphs all functions sequentially for the first element in each list, and then for the second, and so on.


{2,4,6}sin(X) graphs three functions: 2 sin(X), 4 sin(X), and 6 sin(X).

Plot1 Plot2 Plot3 \Y18(2,4,6)sin(X) \Y2= \Y3= \Y4= \Y5= \Y6=

{2,4,6}sin({1,2,3}X) graphs 2 sin(X), 4 sin(2X), and 6 sin(3X).

Note: When using more than one list, the lists must have the same dimensions.

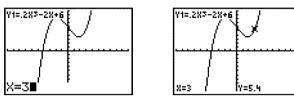

Exploring Graphs with the Free-Moving Cursor

Free-Moving Cursor	When a graph is displayed, press $(,)$, $(,)$, $(,)$, or $(,)$ to move the cursor around the graph. When you first display the graph, no cursor is visible. When you press $(,)$, $(,)$, $(,)$, or $(,)$, the cursor moves from the center of the viewing window.
	As you move the cursor around the graph, the coordinate values of the cursor location are displayed at the bottom of the screen if CoordOn format is selected. The Float/Fix decimal mode setting determines the number of decimal digits displayed for the coordinate values.
	To display the graph with no cursor and no coordinate values, press \boxed{CLEAR} or \boxed{ENTER} . When you press $\boxed{\bullet}$, $\boxed{\bullet}$, $\boxed{\bullet}$, or $\boxed{\bullet}$, the cursor moves from the same position.
Graphing Accuracy	The free-moving cursor moves from pixel to pixel on the screen. When you move the cursor to a pixel that appears to be on the function, the cursor may be near, but not actually on, the function. The coordinate value displayed at the bottom of the screen actually may not be a point on the function. To move the cursor along a function, use TRACE (page 3-18).
	The coordinate values displayed as you move the cursor approximate actual math coordinates, *accurate to within the width and height of the pixel. As Xmin, Xmax, Ymin, and Ymax get closer together (as in a ZoomIn) graphing accuracy increases, and the coordinate values more closely approximate the math coordinates.
	Free-moving cursor "on" the curve

Beginning a Trace	Use TRACE to move the cursor from one plotted point to the next along a function. To begin a trace, press \boxed{TRACE} . If the graph is not displayed already, press \boxed{TRACE} to display it. The trace cursor is on the first selected function in the Y= editor, at the middle X value on the screen. The cursor coordinates are displayed at the bottom of the screen if CoordOn format is selected. The Y= expression is displayed in the top-left corner of the screen, if ExprOn format is selected.	
Moving the Trace	To move the TRACE cursor	do this:
Cursor	to the previous or next plotted point,	press \blacksquare or \blacktriangleright .
	five plotted points on a function (Xres affects this),	press 2nd 🖣 or 2nd F.
	\dots to any valid X value on a function,	enter a value, and then press ENTER].

 \dots from one function to another, press \frown or \bigtriangledown .

When the trace cursor moves along a function, the Y value is calculated from the X value; that is, Y=Yn(X). If the function is undefined at an X value, the Y value is blank.


Trace cursor on the curve

If you move the trace cursor beyond the top or bottom of the screen, the coordinate values at the bottom of the screen continue to change appropriately.

Moving the Trace	To move the trace cursor from function to function, press
Cursor from	\checkmark and \blacktriangle . The cursor follows the order of the selected
Function to	functions in the Y= editor. The trace cursor moves to each
Function	function at the same X value. If ExprOn format is selected,
	the expression is updated.

Moving the Trace Cursor to Any Valid X Value

To move the trace cursor to any valid **X** value on the current function, enter the value. When you enter the first digit, an **X=** prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the **X=** prompt. The value must be valid for the current viewing window. When you have completed the entry, press ENTER to move the cursor.

Note: This feature does not apply to stat plots.

Panning to the Left or Right	If you trace a function beyond the left or right side of the screen, the viewing window automatically pans to the left or right. Xmin and Xmax are updated to correspond to the new viewing window.
Quick Zoom	While tracing, you can press ENTER to adjust the viewing window so that the cursor location becomes the center of the new viewing window, even if the cursor is above or below the display. This allows panning up and down. After Quick Zoom, the cursor remains in TRACE.
Leaving and Returning to TRACE	When you leave and return to TRACE, the trace cursor is displayed in the same location it was in when you left TRACE, unless Smart Graph has replotted the graph (page 3-15).
Using TRACE in a Program	On a blank line in the program editor, press TRACE . The instruction Trace is pasted to the cursor location. When the instruction is encountered during program execution, the graph is displayed with the trace cursor on the first selected function. As you trace, the cursor coordinate values are updated. When you finish tracing the functions, press ENTER to resume program execution.

Exploring Graphs with the ZOOM Instructions

ZOOM Menu	To display the ZOOM menu, press ZOOM. You can adjust the viewing window of the graph quickly in several ways. All ZOOM instructions are accessible from programs.		
	ZOOMMEMORY1: ZBoxDraws a box to define the viewing window.2: Zoom InMagnifies the graph around the cursor.3: Zoom OutViews more of a graph around the cursor.4: ZDecimalSets ∆ and ∆Y to 0.1.5: ZSquareSets equal-size pixels on the X and Y axes.6: ZStandardSets the standard window variables.7: ZTrigSets the built-in trig window variables.8: ZIntegerSets the values on the X and Y axes.9: ZoomStatSets the values for current stat lists.0: ZoomFitFits YMin and YMax between XMin and XMax.		
Zoom Cursor	When you select 1:ZBox , 2:Zoom In , or 3:Zoom Out , the cursor on the graph becomes the zoom cursor (+), a smaller version of the free-moving cursor (+).		
ZBox	To define a new viewing window using ZBox , follow these steps.		
	1. Select 1:ZBox from the ZOOM menu. The zoom cursor is displayed at the center of the screen.		
	2. Move the zoom cursor to any spot you want to define as a corner of the box, and then press ENTER. When you move the cursor away from the first defined corner, a small, square dot indicates the spot.		
	3. Press (, ,), or . As you move the cursor, the sides of the box lengthen or shorten proportionately on the screen.		
	Note: To cancel ZBox before you press [ENTER], press [CLEAR].		
	4. When you have defined the box, press ENTER to replot the graph.		
	X=3.1914894 (Y=1.9354839 X=1.8085106 Y=4.516129		

To use **ZBox** to define another box within the new graph, repeat steps 2 through 4. To cancel **ZBox**, press <u>CLEAR</u>.

Zoom In,	Zoom In magnifies the	nart of the granh that surrounds the	
Zoom Out	Zoom In magnifies the part of the graph that surrounds the cursor location. Zoom Out displays a greater portion of the graph, centered on the cursor location. The XFact and YFact settings determine the extent of the zoom.		
	To zoom in on a graph, follow these steps.		
	1. Check XFact and Y	Fact (page 3-24); change as needed.	
	2. Select 2:Zoom In from the ZOOM menu. The zoom cursor is displayed.		
	3. Move the zoom cur center of the new v	rsor to the point that is to be the riewing window.	
	XFact and YFact; up	I-83 adjusts the viewing window by odates the window variables; and d functions, centered on the cursor	
	e	ph again in either of two ways.	
	 To zoom in at the same point, press ENTER. To zoom in at a new point, move the cursor to th point that you want as the center of the new view window, and then press ENTER. To zoom out on a graph, select 3:Zoom Out and repeat steps 3 through 5. 		
	To cancel Zoom in or Z	Zoom Out, press <u>CLEAR</u>].	
ZDecimal	ZDecimal replots the functions immediately. It updates the window variables to preset values, as shown below. These values set ΔX and ΔY equal to 0.1 and set the X and Y value of each pixel to one decimal place.		
	Xmin=-4.7 Xmax=4.7 Xscl=1	Ymin=-3.1 Ymax=3.1 Yscl=1	
ZSquare	viewing window based window variables. It a $\Delta X = \Delta Y$, which makes t Xscl and Yscl remain u	nctions immediately. It redefines the d on the current values of the idjusts in only one direction so that the graph of a circle look like a circle. unchanged. The midpoint of the e intersection of the axes) becomes ew graph.	

ZStandard	ZStandard replots the functions immediately. It updates the window variables to the standard values shown below.		
	Xmin=-10 Xmax=10 Xscl=1	Ymin=-10 Ymax=10 Yscl=1	Xres=1
ZTrig	ZTrig replots the functions immediately. It updates the window variables to preset values that are appropriate for plotting trig functions. Those preset values in Radian mode are shown below.		
	Xmin=-(47/24)π Xmax=(47/24)π Xscl=π/2	Ymin=-4 Ymax=4 Yscl=1	
ZInteger	Zinteger redefines the viewing window to the dimensions shown below. To use Zinteger , move the cursor to the point that you want to be the center of the new window, and then press [ENTER]; Zinteger replots the functions.		
	ΔX=1 ΔY=1	Xscl=10 Yscl=10	
ZoomStat	ZoomStat redefines the viewing window so that all statistical data points are displayed. For regular and modified box plots, only Xmin and Xmax are adjusted.		
ZoomFit	ZoomFit replots the functions immediately. ZoomFit recalculates YMin and YMax to include the minimum and maximum Y values of the selected functions between the current XMin and XMax . XMin and XMax are not changed.		

Using ZOOM MEMORY

ZOOM MEMORY Menu	To display the ZOOM MEMORY menu, press $\fbox{200M}$).		
	ZOOM MEMORY 1:ZPrevious 2:ZoomSto 3:ZoomRc1 4:SetFactors	Uses the previous viewing window. Stores the user-defined window. Recalls the user-defined window. Changes Zoom In and Zoom Out factors.	
ZPrevious	ZPrevious replots the graph using the window variables of the graph that was displayed before you executed the last ZOOM instruction.		
ZoomSto	ZoomSto immediately stores the current viewing window. The graph is displayed, and the values of the current window variables are stored in the user-defined ZOOM variables ZXmin , ZXmax , ZXscI , ZYmin , ZYmax , ZYscI , and ZXres .		
	These variables apply to all graphing modes. For example, changing the value of ZXmin in Func mode also changes it in Par mode.		
ZoomRcl	viewing window. determined by th instruction. The v	he selected functions in a user-defined The user-defined viewing window is e values stored with the ZoomSto vindow variables are updated with the es, and the graph is plotted.	

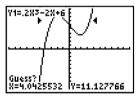
The zoom factors, XFact and YFact , are positive numbers (not necessarily integers) greater than or equal to 1. They define the magnification or reduction factor used to Zoom In or Zoom Out around a point.
To display the ZOOM FACTORS screen, where you can review the current values for XFact and YFact , select 4:SetFactors from the ZOOM MEMORY menu. The values shown are the defaults.
ZOOM FACTORS XFact=4 YFact=4
 You can change XFact and YFact in either of two ways. Enter a new value. The original value is cleared automatically when you enter the first digit. Place the cursor on the digit you want to change, and then enter a value or press DEL to delete it.
From the home screen or a program, you can store directly to any of the user-defined ZOOM variables. -5+ZXmin:5+ZXmax 5

From a program, you can select the ${\tt ZoomSto}$ and ${\tt ZoomRcI}$ instructions from the ZOOM MEMORY menu.

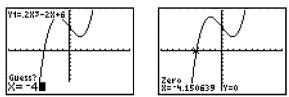
Using the CALC (Calculate) Operations

CALCULATE Menu	To display the CALCULATE menu, press [2nd] [CALC]. Use the items on this menu to analyze the current graph functions.		
	CALCULATE 1: value 2: zero 3: minimum 4: maximum 5: intersect 6: dy/dx 7:∫f(x)dx	Finds a zero (x- Finds a minimu Finds a maximu Finds an interse Finds a numerio	nction Y value for a given X. -intercept) of a function. um of a function. um of a function. ection of two functions. c derivative of a function. c integral of a function.
value	value evaluates one or more currently selected functions for a specified value of X .		rrently selected functions
			K , press <u>CLEAR</u> to clear the value. EAR to cancel the value
	To evaluate a s	elected function	at \mathbf{X} , follow these steps.
		 ith X= in the bott	CULATE menu. The graph is tom-left corner.
		value, which cai iin and Xmax.	n be an expression, for ${f X}$
	3. Press ENTER	ļ.	
	X=3 0	/	Y1=.2X3-2X+6 X=3 Y=5.4

The cursor is on the first selected function in the Y= editor at the X value you entered, and the coordinates are displayed, even if **CoordOff** format is selected.


To move the cursor from function to function at the entered X value, press \frown or \checkmark . To restore the free-moving cursor, press \frown or \triangleright .

zero finds a zero (x-intercept or root) of a function using
solve(. Functions can have more than one x-intercept
value; zero finds the zero closest to your guess.


The time **zero** spends to find the correct zero value depends on the accuracy of the values you specify for the left and right bounds and the accuracy of your guess.

To find a zero of a function, follow these steps.

- 1. Select **2:zero** from the CALCULATE menu. The current graph is displayed with Left Bound? in the bottom-left corner.
- 2. Press or to move the cursor onto the function for which you want to find a zero.
- 3. Press (or) (or enter a value) to select the x-value for the left bound of the interval, and then press ENTER. A) indicator on the graph screen shows the left bound.
 Right Bound? is displayed in the bottom-left corner.
 Press (or) (or enter a value) to select the x-value for the right bound, and then press ENTER. A (indicator on the graph screen shows the right bound. Guess? is then displayed in the bottom-left corner.

4. Press (or) (or enter a value) to select a point near the zero of the function, between the bounds, and then press ENTER.

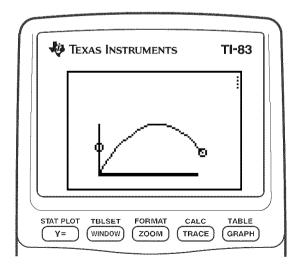
The cursor is on the solution and the coordinates are displayed, even if **CoordOff** format is selected. To move to the same x-value for other selected functions, press in or . To restore the free-moving cursor, press in or .

zero

minimum, maximum	minimum and maximum find a minimum or maximum of a function within a specified interval to a tolerance of 1E-5.
	To find a minimum or maximum, follow these steps.
	1. Select 3:minimum or 4:maximum from the CALCULATE menu. The current graph is displayed.
	2. Select the function and set left bound, right bound, and guess as described for zero (steps 2 through 4; page 3-26).
	The cursor is on the solution, and the coordinates are displayed, even if you have selected CoordOff format; Minimum or Maximum is displayed in the bottom-left corner.
	To move to the same x-value for other selected functions, press \blacktriangle or \bigtriangledown . To restore the free-moving cursor, press \checkmark or \triangleright .
intersect	intersect finds the coordinates of a point at which two or more functions intersect using solve(. The intersection must appear on the display to use intersect .
	To find an intersection, follow these steps.
	1. Select 5 :intersect from the CALCULATE menu. The current graph is displayed with First curve? in the bottom-left corner.
	First curve? X=0 / Y=.5
	2. Press or , if necessary, to move the cursor to the first function, and then press ENTER. Second curve? is displayed in the bottom-left corner.

- 3. Press 🔽 or 🛋, if necessary, to move the cursor to the second function, and then press ENTER.
- 4. Press or to move the cursor to the point that is your guess as to location of the intersection, and then press ENTER.

The cursor is on the solution and the coordinates are displayed, even if **CoordOff** format is selected. **Intersection** is displayed in the bottom-left corner. To restore the free-moving cursor, press (, ,), (,), or (,).


dy/dx	dy/dx (numerical derivative) finds the numerical derivative (slope) of a function at a point, with ϵ =1E-3.
	To find a function's slope at a point, follow these steps.
	 Select 6:dy/dx from the CALCULATE menu. The current graph is displayed.
	2. Press • or • to select the function for which you want to find the numerical derivative.
	3. Press (or) (or enter a value) to select the X value at which to calculate the derivative, and then press ENTER.
	The cursor is on the solution and the numerical derivative is displayed.
	To move to the same x-value for other selected functions, press \blacktriangle or \bigtriangledown . To restore the free-moving cursor, press \checkmark or \blacktriangleright .
∫f(x)dx	$f(x)dx$ (numerical integral) finds the numerical integral of a function in a specified interval. It uses the fnint(function, with a tolerance of ϵ =1E-3.
	To find the numerical derivative of a function, follow these steps.
	 Select 7: jf(x)dx from the CALCULATE menu. The current graph is displayed with Lower Limit? in the bottom-left corner.
	2. Press or to move the cursor to the function for which you want to calculate the integral.
	3. Set lower and upper limits as you would set left and right bounds for zero (step 3; page 3-26). The integral value is displayed, and the integrated area is shaded.
	Y1=X3-3X+1 Lower Limit? X=-1.8
	···· · · · · · · · · · · · · · · · · ·

Note: The shaded area is a drawing. Use **CIrDraw** (Chapter 8) or any action that invokes Smart Graph to clear the shaded area.

Contents

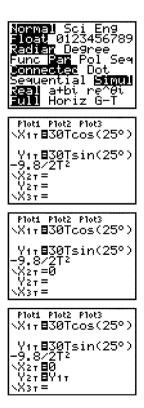
Getting Started: Path of a Ball	4-2
Defining and Displaying Parametric Graphs	4-4
Exploring Parametric Graphs	4-7

Getting Started is a fast-paced introduction. Read the chapter for details.

Graph the parametric equation that describes the path of a ball hit at an initial speed of 30 meters per second, at an initial angle of 25 degrees with the horizontal from ground level. How far does the ball travel? When does it hit the ground? How high does it go? Ignore all forces except gravity.

For initial velocity v_0 and angle θ , the position of the ball as a function of time has horizontal and vertical components.

Horizontal:	$X1(t)=tv_0\cos(\theta)_{-1}$
Vertical:	$Y1(t) = tv_0 \sin(\theta) - \frac{1}{2}gt^2$


The vertical and horizontal vectors of the ball's motion also will be graphed.

Vertical vector:	X2(t)=0	Y2(t)=Y1(t)
Horizontal vector:	X3(t)=X1(t)	Y3(t)=0
Gravity constant:	$g=9.8 \text{ m/sec}^2$	

- 1. Press MODE. Press V V ENTER to select **Par** mode. Press V V ENTER to select **Simul** for simultaneous graphing of all three parametric equations in this example.
- Press Y=. Press 30 (X,T,Θ,n) COS 25 (2nd) [ANGLE] 1 (to select °)) ENTER to define X1T in terms of T.
- 3. Press **30** (X,T,Θ,*n*) (SIN **25** 2nd [ANGLE] **1** () − **9.8** ÷ **2** (X,T,Θ,*n*) (*x*²) (ENTER to define **Y1T**.

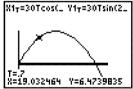
The vertical component vector is defined by **X2T** and **Y2T**.

- 4. Press $\mathbf{0}$ ENTER to define $\mathbf{X2T}.$
- 5. Press <u>VARS</u> to display the VARS Y-VARS menu. Press **2** to display the PARAMETRIC secondary menu. Press **2** <u>ENTER</u> to define <u>Y2T</u>.

The horizontal component vector is defined by X3T and Y3T.

- 6. Press VARS > 2, and then press 1 ENTER to define X3T. Press 0 ENTER to define Y3T.
- 7. Press () ENTER to change the graph style to * for X3T and Y3T. Press (ENTER ENTER to change the graph style to * for X2T and Y2T. Press (ENTER ENTER to change the graph style to * for X1T and Y1T. (These keystrokes assume that all graph styles were set to `originally.)
- 8. Press <u>WINDOW</u>. Enter these values for the window variables.

Tmin=0	Xmin=-10	Ymin=-5
Tmax=5	Xmax=100	Ymax=15
Tstep=.1	Xscl=50	Yscl=10


- 9. Press 2nd [FORMAT] V V ENTER to set **AxesOff**, which turns off the axes.
- 10. Press <u>GRAPH</u>). The plotting action simultaneously shows the ball in flight and the vertical and horizontal component vectors of the motion.

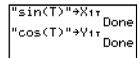
Tip: To simulate the ball flying through the air, set graph style to \emptyset (animate) for **X1T** and **Y1T**.

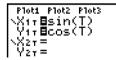
11. Press TRACE to obtain numerical results and answer the questions at the beginning of this section.

Tracing begins at **Tmin** on the first parametric equation (X1T and Y1T). As you press → to trace the curve, the cursor follows the path of the ball over time. The values for X (distance), Y (height), and T (time) are displayed at the bottom of the screen.

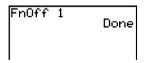
Defining and Displaying Parametric Graphs

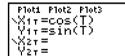
TI-83 Graphing Mode Similarities	The steps for defining a parametric graph are similar to the steps for defining a function graph. Chapter 4 assumes that you are familiar with Chapter 3: Function Graphing. Chapter 4 details aspects of parametric graphing that differ from function graphing.	
Setting Parametric Graphing Mode	To display the mode screen, press <u>MODE</u> . To graph parametric equations, you must select Par graphing mode before you enter window variables and before you enter the components of parametric equations.	
Displaying the Parametric Y= Editor	After selecting Par graphing mode, press $\forall =$ to display the parametric Y= editor. Plot1 Plot2 Plot3 $\forall 1\tau = \blacksquare$ $\forall 2\tau = \blacksquare$ $\forall 2\tau = \blacksquare$ $\forall 3\tau = \blacksquare$ $\forall 3\tau = \blacksquare$ $\forall 4\tau =$ In this editor, you can display and enter both the X and Y components of up to six equations, X 1T and Y 1T through X 6T and Y6T . Each is defined in terms of the independent variable T . A common application of parametric graphs is graphing equations over time.	
Selecting a Graph Style	The icons to the left of X1T through X6T represent the graph style of each parametric equation (Chapter 3). The default in Par mode is (line), which connects plotted points. Line, * (thick), * (path), * (animate), and . (dot) styles are	


available for parametric graphing.


Defining and Editing Parametric Equations	 Chapter 3 for definiting independent variability graphing mode, you either of two ways. Press X.T.O.N. Press ALPHA [T]. Two components, Y 	parametric equation, follow the steps in ing a function or editing a function. The le in a parametric equation is T . In Par a can enter the parametric variable T in C and Y , define a single parametric define both of them.
Selecting and Deselecting Parametric Equations	In the Y= editor, a p = signs of both the 2 You may select any through X6T and Y6T	hly the selected parametric equations. barametric equation is selected when the X and Y components are highlighted. or all of the equations X1T and Y1T r. ction status, move the cursor onto the =
	sign of either the X	or Y component and press [ENTER]. The and Y components is changed.
Setting Window Variables	To display the window variable values, press <u>WINDOW</u> . These variables define the viewing window. The values below are defaults for Par graphing in Radian angle mode.	
	Tmin=0	Smallest T value to evaluate
	Tmax=6.2831853	Largest T value to evaluate (2π)
	Tstep=.1308996	T value increment $(\pi/24)$
	Xmin=10	Smallest X value to be displayed
	Xmax=10	Largest X value to be displayed
	Xscl=1	Spacing between the X tick marks
	Ymin=-10	Smallest Y value to be displayed
	Ymax=10	Largest Y value to be displayed
	Yscl=1	Spacing between the Y tick marks

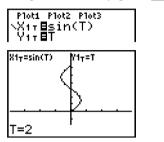
Note: To ensure that sufficient points are plotted, you may want to change the ${\bf T}$ window variables.

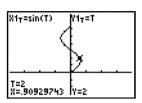

Setting the Graph Format	To display the current graph format settings, press 2nd [FORMAT]. Chapter 3 describes the format settings in detail. The other graphing modes share these format settings; Seq graphing mode has an additional axes format setting.
Displaying a Graph	When you press GRAPH, the TI-83 plots the selected parametric equations. It evaluates the X and Y components for each value of T (from Tmin to Tmax in intervals of Tstep), and then plots each point defined by X and Y. The window variables define the viewing window.
	As the graph is plotted, \mathbf{X} , \mathbf{Y} , and \mathbf{T} are updated.
	Smart Graph applies to parametric graphs (Chapter 3).
Window Variables and Y-VARS Menus	 You can perform these actions from the home screen or a program. Access functions by using the name of the X or Y component of the equation as a variable. X11*.5 94.70916375


• Store parametric equations.

• Select or deselect parametric equations.

• Store values directly to window variables.


360→Tmax 360


(Chapter 3).

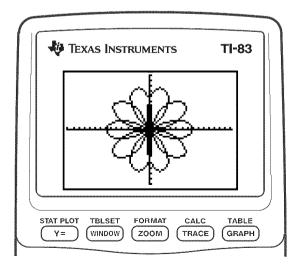
Free-Moving The free-moving cursor in **Par** graphing works the same as Cursor in Func graphing. In **RectGC** format, moving the cursor updates the values of X and Y; if CoordOn format is selected, X and Y are displayed. In PolarGC format, X, Y, R, and θ are updated; if CoordOn format is selected, **R** and θ are displayed. TRACE To activate TRACE, press [TRACE]. When TRACE is active, you can move the trace cursor along the graph of the equation one **Tstep** at a time. When you begin a trace, the trace cursor is on the first selected function at Tmin. If **ExprOn** is selected, then the function is displayed. In **RectGC** format, TRACE updates and displays the values of X, Y, and T if CoordOn format is on. In PolarGC format, X, Y, R, θ and T are updated; if CoordOn format is selected, **R**, θ , and **T** are displayed. The **X** and **Y** (or **R** and θ) values are calculated from **T**. To move five plotted points at a time on a function, press 2nd or 2nd). If you move the cursor beyond the top or bottom of the screen, the coordinate values at the bottom of the screen continue to change appropriately. Quick Zoom is available in Par graphing; panning is not

Moving the Trace Cursor to Any Valid T Value

To move the trace cursor to any valid **T** value on the current function, enter the number. When you enter the first digit, a **T=** prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the **T=** prompt. The value must be valid for the current viewing window. When you have completed the entry, press **ENTER** to move the cursor.

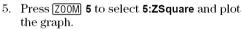
ZOOMZOOM operations in Par graphing work the same as in Func
graphing. Only the X (Xmin, Xmax, and Xscl) and Y (Ymin,
Ymax, and Yscl) window variables are affected.

The **T** window variables (**Tmin**, **Tmax**, and **Tstep**) are only affected when you select **ZStandard**. The VARS ZOOM secondary menu ZT/Z θ items **1:ZTmin**, **2:ZTmax**, and **3:ZTstep** are the zoom memory variables for **Par** graphing.

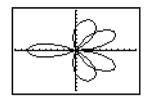

CALC CALC operations in Par graphing work the same as in Func graphing. The CALCULATE menu items available in Par graphing are 1:value, 2:dy/dx, 3:dy/dt, and 4:dx/dt.

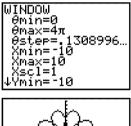
4-8 Parametric Graphing

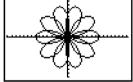
Contents

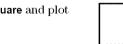

Getting Started: Polar Rose	5-2
Defining and Displaying Polar Graphs	5-3
Exploring Polar Graphs	5-6

Getting Started is a fast-paced introduction. Read the chapter for details.

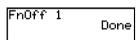

The polar equation $R=Asin(B\theta)$ graphs a rose. Graph the rose for A=8 and B=2.5, and then explore the appearance of the rose for other values of A and B.


- 1. Press MODE to display the mode screen. Press V V V M ENTER to select Pol graphing mode. Select the defaults (the options on the left) for the other mode settings.
- Press Y= to display the polar Y= editor. Press 8 SIN 2.5 X,T, ⊕,n) ENTER to define r1.
- 3. Press ZOOM 6 to select 6:ZStandard and graph the equation in the standard viewing window. The graph shows only five petals of the rose, and the rose does not appear to be symmetrical. This is because the standard window sets θ max= 2π and defines the window, rather than the pixels, as square.
- Press WINDOW to display the window variables. Press ▼ 4 [2nd] [π] to increase the value of θmax to 4π.




6. Repeat steps 2 through 5 with new values for the variables A and B in the polar equation r1=Asin($B\theta$). Observe how the new values affect the graph.

Defining and Displaying Polar Graphs


TI-83 Graphing Mode Similarities	The steps for defining a polar graph are similar to the steps for defining a function graph. Chapter 5 assumes that you are familiar with Chapter 3: Function Graphing. Chapter 5 details aspects of polar graphing that differ from function graphing.
Setting Polar Graphing Mode	To display the mode screen, press [MODE]. To graph polar equations, you must select Pol graphing mode before you enter values for the window variables and before you enter polar equations.
Displaying the Polar Y= Editor	After selecting Pol graphing mode, press $Y=$ to display the polar Y= editor. Plot1 Plot2 Plot3 vr 1 = vr 2 = vr 3 = vr 4 = vr 5 = vr 6 = In this editor, you can enter and display up to six polar equations, r1 through r6. Each is defined in terms of the independent variable θ (page 5-4).
Selecting Graph Styles	The icons to the left of r1 through r6 represent the graph style of each polar equation (Chapter 3). The default in Pol graphing mode is $(line)$, which connects plotted points. Line, $\frac{1}{2}$ (thick), $\frac{1}{2}$ (path), $\frac{1}{2}$ (animate), and $\frac{1}{2}$ (dot) styles are available for polar graphing.

Defining and Editing Polar Equations	Chapter 3 for defini independent variab	polar equation, follow the steps in ing a function or editing a function. The le in a polar equation is θ . In Pol 1 can enter the polar variable θ in either
Selecting and Deselecting Polar Equations	The TI-83 graphs only the selected polar equations. In the Y= editor, a polar equation is selected when the = sign is highlighted. You may select any or all of the equations.	
	To change the select = sign, and then pre-	ction status, move the cursor onto the ess [ENTER].
Setting Window Variables	To display the window variable values, press <u>WINDOW</u> . These variables define the viewing window. The values below are defaults for Pol graphing in Radian angle mode.	
	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Smallest θ value to evaluate
	0max=6.2831853	Largest θ value to evaluate (2π)
	θstep=.1308996 Xmin=-10	Increment between θ values ($\pi/24$) Smallest X value to be displayed
	Xmax=10	Largest X value to be displayed
	Xscl=1	Spacing between the X tick marks
	Ymin=10	Smallest Y value to be displayed
	Ymax=10	Largest Y value to be displayed
	Yscl=1	Spacing between the Y tick marks
	Yscl=1	

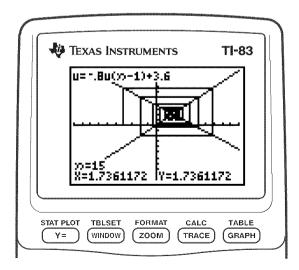
Note: To ensure that sufficient points are plotted, you may want to change the θ window variables.

Setting the Graph Format	To display the current graph format settings, press 2nd [FORMAT]. Chapter 3 describes the format settings in detail. The other graphing modes share these format settings.
Displaying a Graph	When you press GRAPH, the TI-83 plots the selected polar equations. It evaluates R for each value of θ (from θ min to θ max in intervals of θ step) and then plots each point. The window variables define the viewing window.
	As the graph is plotted, $\boldsymbol{X},\boldsymbol{Y},\boldsymbol{R},$ and $\boldsymbol{\theta}$ are updated.
	Smart Graph applies to polar graphs (Chapter 3).
Window Variables and Y-VARS Menus	 You can perform these actions from the home screen or a program. Access functions by using the name of the equation as a variable.
	⁽¹¹¹⁾ 8
	• Store polar equations.
	"50"→r1 Plots Plots Plots Done \r1850 \r2=

• Select or deselect polar equations.

Ploti Plotz Plotz Nr1=50 ∖riz=

• Store values directly to window variables.

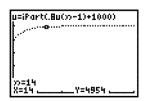

Ø→⊖min	0
	· · · · · · · · · · · · · · · · · · ·

Free-Moving Cursor	The free-moving cursor in Pol graphing works the same as in Func graphing. In RectGC format, moving the cursor updates the values of X and Y ; if CoordOn format is selected, X and Y are displayed. In PolarGC format, X , Y , R , and θ are updated; if CoordOn format is selected, R and θ are displayed.
TRACE	To activate TRACE, press TRACE. When TRACE is active, you can move the trace cursor along the graph of the equation one θ step at a time. When you begin a trace, the trace cursor is on the first selected function at θ min . If ExprOn format is selected, then the equation is displayed.
	In RectGC format, TRACE updates the values of X , Y , and θ ; if CoordOn format is selected, X , Y , and θ are displayed. In PolarGC format, TRACE updates X , Y , R , and θ ; if CoordOn format is selected, R and θ are displayed.
	To move five plotted points at a time on a function, press $2nd$ or $2nd$ $rightarrow$. If you move the trace cursor beyond the top or bottom of the screen, the coordinate values at the bottom of the screen continue to change appropriately.
	Quick Zoom is available in Po I graphing mode; panning is not (Chapter 3).
Moving the Trace Cursor to Any Valid θ Value	To move the trace cursor to any valid θ value on the current function, enter the number. When you enter the first digit, a θ = prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the θ = prompt. The value must be valid for the current viewing window. When you complete the entry, press ENTER to move the cursor.
ZOOM	ZOOM operations in Pol graphing work the same as in Func graphing. Only the X (Xmin , Xmax , and Xscl) and Y (Ymin , Ymax , and Yscl) window variables are affected.
	The θ window variables (θ min, θ max, and θ step) are not affected, except when you select ZStandard . The VARS ZOOM secondary menu ZT/Z θ items 4:Zθmin , 5:Zθmax , and 6:Zθstep are zoom memory variables for Pol graphing.
CALC	CALC operations in Pol graphing work the same as in Func graphing. The CALCULATE menu items available in Pol graphing are 1:value , 2:dy/dx , and 3:dr/d θ.

6 Sequence Graphing

Contents

Getting Started: Forest and Trees	6-2
Defining and Displaying Sequence Graphs	6-3
Selecting Axes Combinations	6-8
Exploring Sequence Graphs	6-9
Graphing Web Plots	6-11
Using Web Plots to Illustrate Convergence	6-12
Graphing Phase Plots	6-13
Comparing TI-83 and TI-82 Sequence Variables	6-15
Keystroke Differences Between TI-83 and TI-82	6-16


Getting Started is a fast-paced introduction. Read the chapter for details.

A small forest of 4,000 trees is under a new forestry plan. Each year 20 percent of the trees will be harvested and 1,000 new trees will be planted. Will the forest eventually disappear? Will the forest size stabilize? If so, in how many years and with how many trees?

- 1. Press MODE. Press • • • • ENTER to select **Seq** graphing mode.
- 2. Press [2nd] [FORMAT] and select **Time** axes format and **ExprOn** format if necessary.
- 3. Press Y=. If the graph-style icon is not . (dot), press (, press ENTER until . is displayed, and then press ▶ .
- 4. Press MATH → 3 to select iPart((integer part) because only whole trees are harvested. After each annual harvest, 80 percent (.80) of the trees remain. Press → 8 2nd [u] (X.T.O.n. 1) to define the number of trees after each harvest. Press + 1000) to define the new trees. Press → 4000 to define the number of trees at the beginning of the program.
- Press <u>WINDOW</u> 0 to set *n*Min=0. Press **▼** 50 to set *n*Max=50. *n*Min and *n*Max evaluate forest size over 50 years. Set the other window variables.

PlotStart=1	Xmin=0	Ymin=0
PlotStep=1	Xmax=50	Ymax=6000
	Xscl=10	Yscl=1000

6. Press TRACE. Tracing begins at *n*Min (the start of the forestry plan). Press → to trace the sequence year by year. The sequence is displayed at the top of the screen. The values for *n* (number of years), X (X=*n*, because *n* is plotted on the x-axis), and Y (tree count) are displayed at the bottom. When will the forest stabilize? With how many trees?

nMin=1 >u(n)∎iPart(.8u(n-1)+1000) u(nMin)∎4000 ບ(ກ)= ບ(ກMin)= .ω(n)=

Defining and Displaying Sequence Graphs

TI-83 Graphing Mode Similarities	The steps for defining a sequence graph are similar to the steps for defining a function graph. Chapter 6 assumes that you are familiar with Chapter 3: Function Graphing. Chapter 6 details aspects of sequence graphing that differ from function graphing.
Setting Sequence Graphing Mode	To display the mode screen, press <u>MODE</u> . To graph sequence functions, you must select Seq graphing mode before you enter window variables and before you enter sequence functions.
	Sequence graphs automatically plot in Simu l mode, regardless of the current plotting-order mode setting.
TI-83 Sequence Functions u, v, and w	The TI-83 has three sequence functions that you can enter from the keyboard: u, v , and w . They are above the 7, 8, and 9 keys.
	You can define sequence functions in terms of:
	• The independent variable \boldsymbol{n}
	• The previous term in the sequence function, such as u (<i>n</i> -1)
	• The term that precedes the previous term in the sequence function, such as $u(n-2)$
	 The previous term or the term that precedes the previous term in another sequence function, such as u(n-1) or u(n-2) referenced in the sequence v(n).
	Note: Statements in this chapter about $u(n)$ are also true for $v(n)$ and $w(n)$; statements about $u(n-1)$ are also true for $v(n-1)$ and $w(n-1)$; statements about $u(n-2)$ are also true for $v(n-2)$ and $w(n-2)$.

Displaying the Sequence Y= Editor	After selecting Seq mode, press $Y=$ to display the sequence Y= editor. Plot1 Plot2 Plot3 mMin=1 .u(n)=1 .u(
	its relevance to $u(nMin)$, $v(nMin)$, and $w(nMin)$, which are the initial values for the sequence equations $u(n)$, $v(n)$, and $w(n)$, respectively.	
	<i>n</i> Min in the Y= editor is the same as <i>n</i> Min in the window editor. If you enter a new value for <i>n</i> Min in one editor, the new value for <i>n</i> Min is updated in both editors.	
	Note: Use u(<i>n</i> Min), v(<i>n</i> Min), or w(<i>n</i> Min) only with a recursive sequence, which requires an initial value.	
Selecting Graph Styles	The icons to the left of $u(n)$, $v(n)$, and $w(n)$ represent the graph style of each sequence (Chapter 3). The default in Seq mode is \cdot . (dot), which shows discrete values. Dot, \cdot (line), and \mathbf{F} (thick) styles are available for sequence graphing. Graph styles are ignored in Web format.	
Selecting and Deselecting Sequence Functions	The TI-83 graphs only the selected sequence functions. In the Y= editor, a sequence function is selected when the = signs of both $u(n)$ = and $u(nMin)$ = are highlighted. To change the selection status of a sequence function, move the cursor onto the = sign of the function name, and then press [ENTER]. The status is changed for both the sequence function $u(n)$ and its initial value $u(nMin)$.	

Defining and Editing a Sequence Function	 To define or edit a sequence function, follow the steps in Chapter 3 for defining a function. The independent variable in a sequence is <i>n</i>. In Seq graphing mode, you can enter the sequence variable in either of two ways. Press X.T.Ø.n. Press 2nd [CATALOG] [N]. You can enter the function name from the keyboard. To enter the function name u, press 2nd [u] (above 7). To enter the function name v, press 2nd [v] (above 8). To enter the function name w, press 2nd [w] (above 9). Generally, sequences are either nonrecursive or recursive. Sequences are evaluated only at consecutive integer values. <i>n</i> is always a series of consecutive integers, starting at zero or any positive integer.
Nonrecursive Sequences	In a nonrecursive sequence, the <i>n</i> th term is a function of the independent variable <i>n</i> . Each term is independent of all other terms. For example, in the nonrecursive sequence below, you can calculate u(5) directly, without first calculating u(1) or any previous term. $\begin{array}{c} Plot1 \ Plot2 \ Plot3 \\ mmin=1 \\ \ddots u(m) \equiv 2 \ast m \\ u(mmin) \equiv \\ \cdots u(m) = \\ u(mmin) = \\ \cdots u(mmin) = \\ \end{array}$

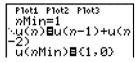
The sequence equation above returns the sequence $2, 4, 6, 8, 10, \ldots$ for $n = 1, 2, 3, 4, 5, \ldots$

Note: You may leave blank the initial value u(nMin) when calculating nonrecursive sequences.

Recursive Sequences

In a recursive sequence, the *n*th term in the sequence is defined in relation to the previous term or the term that precedes the previous term, represented by u(n-1) and u(n-2). A recursive sequence may also be defined in relation to *n*, as in u(n)=u(n-1)+n.

For example, in the sequence below you cannot calculate u(5) without first calculating u(1), u(2), u(3), and u(4).


Using an initial value u(nMin) = 1, the sequence above returns 1, 2, 4, 8, 16, . . .

Tip: On the TI-83, you must type each character of the terms. For example, to enter u(n-1), press 2nd [u] ($[X,T,\Theta,n] = 1$).

Recursive sequences require an initial value or values, since they reference undefined terms.

• If each term in the sequence is defined in relation to the previous term, as in u(*n*-1), you must specify an initial value for the first term.

• If each term in the sequence is defined in relation to the term that precedes the previous term, as in **u**(*n*-2), you must specify initial values for the first two terms. Enter the initial values as a list enclosed in braces ({ }) with commas separating the values.

The value of the first term is 0 and the value of the second term is 1 for the sequence u(n).

Setting Window Variables

To display the window variables, press <u>WINDOW</u>. These variables define the viewing window. The values below are defaults for **Seq** graphing in both **Radian** and **Degree** angle modes.

<i>n</i> Min=1	Smallest <i>n</i> value to evaluate
<i>n</i> Max = 10	Largest <i>n</i> value to evaluate
PlotStart=1	First term number to be plotted
PlotStep=1	Incremental <i>n</i> value (for graphing only)
Xmin=-10	Smallest X value to be displayed
Xmax=10	Largest X value to be displayed
Xscl=1	Spacing between the X tick marks
Ymin=10	Smallest Y value to be displayed
Ymax=10	Largest Y value to be displayed
Yscl=1	Spacing between the Y tick marks
Xscl=1 Ymin=-10 Ymax=10	Spacing between the X tick marks Smallest Y value to be displayed Largest Y value to be displayed

*n*Min must be an integer ≥ 0 . *n*Max, PlotStart, and PlotStep must be integers ≥ 1 .

*n*Min is the smallest *n* value to evaluate. *n*Min also is displayed in the sequence Y= editor. *n*Max is the largest *n* value to evaluate. Sequences are evaluated at u(*n*Min), u(*n*Min+1), u(*n*Min+2), ..., u(*n*Max).

PlotStart is the first term to be plotted. **PlotStart=1** begins plotting on the first term in the sequence. If you want plotting to begin with the fifth term in a sequence, for example, set **PlotStart=5**. The first four terms are evaluated but are not plotted on the graph.

PlotStep is the incremental *n* value for graphing only. **PlotStep** does not affect sequence evaluation; it only designates which points are plotted on the graph. If you specify **PlotStep=2**, the sequence is evaluated at each consecutive integer, but it is plotted on the graph only at every other integer. Setting the GraphTo display the current graph format settings, press [2nd]Format[FORMAT]. Chapter 3 describes the format settings in detail.
The other graphing modes share these format settings. The
axes setting on the top line of the screen is available only
in Seq mode.

Time Web uv vw uw	Type of sequence plot (axes)
RectGC PolarGC	Rectangular or polar output
CoordOn CoordOff	Cursor coordinate display on/off
GridOff GridOn	Grid display off or on
AxesOn AxesOff	Axes display on or off
LabelOff LabelOn	Axes label display off or on
ExprOn ExprOff	Expression display on or off

Setting AxesFor sequence graphing, you can select from five axesFormatformats. The table below shows the values that are plotted
on the x-axis and y-axis for each axes setting.

Axes Setting	x-axis	y-axis
Time	n	u(<i>n</i>), v(<i>n</i>), w(<i>n</i>)
Web	u(<i>n</i> -1), v(<i>n</i> -1), w(<i>n</i> -1)	u(<i>n</i>), v(<i>n</i>), w(<i>n</i>)
uv	u(<i>n</i>)	v(<i>n</i>)
vw	∨(<i>n</i>)	w(<i>n</i>)
uw	u(<i>n</i>)	w(<i>n</i>)

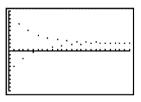
See pages 6-11 and 6-12 for more information on **Web** plots. See page 6-13 for more information on phase plots (**uv**, **vw**, and **uw** axes settings).

Displaying aTo plot the selected sequence functions, press GRAPH. As aSequence Graphgraph is plotted, the TI-83 updates X, Y, and n.Smart Graph applies to sequence graphs (Chapter 3).

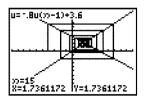
n=5∎

Free-Moving Cursor	The free-moving cursor in Seq graphing works the same as in Func graphing. In RectGC format, moving the cursor updates the values of X and Y ; if CoordOn format is selected, X and Y are displayed. In PolarGC format, X , Y , R , and θ are updated; if CoordOn format is selected, R and θ are displayed.
TRACE	The axes format setting affects TRACE.
	When Time , uv , vw , or uw axes format is selected, TRACE moves the cursor along the sequence one PlotStep increment at a time. To move five plotted points at once, press 2nd \blacktriangleright or 2nd \triangleleft .
	• When you begin a trace, the trace cursor is on the first selected sequence at the term number specified by PlotStart , even if it is outside the viewing window.
	• Quick Zoom applies to all directions. To center the viewing window on the current cursor location after you have moved the trace cursor, press ENTER. The trace cursor returns to <i>n</i> Min.
	In Web format, the trail of the cursor helps identify points with attracting and repelling behavior in the sequence. When you begin a trace, the cursor is on the x-axis at the initial value of the first selected function.
	Tip: To move the cursor to a specified <i>n</i> during a trace, enter a value for <i>n</i> , and press [ENTER]. For example, to quickly return the cursor to the beginning of the sequence, paste <i>n</i> Min to the <i>n</i> = prompt and press [ENTER].
Moving the Trace Cursor to Any Valid <i>n</i> Value	To move the trace cursor to any valid n value on the current function, enter the number. When you enter the first digit, an $n =$ prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the $n =$ prompt. The value must be valid for the current viewing window. When you have completed the entry, press ENTER to move the cursor.
	u=u(m-1)+u(m-2)

Y=3


>>=5 X=5 €

ZOOM	ZOOM operations in Seq graphing work the same as in Func graphing. Only the X (Xmin , Xmax , and Xsc !) and Y (Ymin , Ymax , and Ysc !) window variables are affected. PlotStart , PlotStep , <i>n</i> Min , and <i>n</i> Max are only affected when you select ZStandard . The VARS Zoom secondary menu ZU items 1 through 7 are the ZOOM MEMORY variables for Seq graphing.
CALC	 The only CALC operation available in Seq graphing is value. When Time axes format is selected, value displays Y (the u(n) value) for a specified n value. When Web axes format is selected, value draws the web and displays Y (the u(n) value) for a specified n value. When uv, vw, or uw axes format is selected, value
Evaluating u, v, and w	 displays X and Y according to the axes format setting. For example, for uv axes format, X represents u(n) and Y represents v(n). To enter the sequence names u, v, or w, press [2nd] [u], [v], or [w]. You can evaluate these names in any of three ways. Calculate the <i>n</i>th value in a sequence. Calculate a list of values in a sequence. Generate a sequence with u(nstart,nstop[,nstep]). nstep is returned a department.
	is optional; default is 1. $n^2 \rightarrow u^2 u(3) = 9$ $u(\{1,3,5,7,9\}) = \{1 \ 9 \ 25 \ 49 \ 81\}$ $u(1,9,2) = \{1 \ 9 \ 25 \ 49 \ 81\}$


Graphing Web Plots

Graphing a Web Plot	To select Web axes format, press $2nd$ [FORMAT] \triangleright [ENTER]. A web plot graphs u (<i>n</i>) versus u (<i>n</i> -1), which you can use to study long-term behavior (convergence, divergence, or oscillation) of a recursive sequence. You can see how the sequence may change behavior as its initial value changes.
Valid Functions for Web Plots	When Web axes format is selected, a sequence will not graph properly or will generate an error.
	• It must be recursive with only one recursion level (u(<i>n</i> -1) but not u(<i>n</i> -2)).
	• It cannot reference <i>n</i> directly.
	• It cannot reference any defined sequence except itself.
Displaying the Graph Screen	In Web format, press GRAPH to display the graph screen. The TI-83:
	• Draws a y=x reference line in AxesOn format.
	 Plots the selected sequences with u(n-1) as the independent variable.
	Note: A potential convergence point occurs whenever a sequence intersects the y=x reference line. However, the sequence may or may not actually converge at that point, depending on the sequence's initial value.
Drawing the Web	To activate the trace cursor, press TRACE . The screen displays the sequence and the current <i>n</i> , X , and Y values (X represents $u(n-1)$ and Y represents $u(n)$). Press \triangleright repeatedly to draw the web step by step, starting at <i>n</i> Min. In Web format, the trace cursor follows this course.
	1. It starts on the x-axis at the initial value u(<i>n</i> Min) (when PlotStart=1).
	2. It moves vertically (up or down) to the sequence.
	3. It moves horizontally to the y=x reference line.
	4. It repeats this vertical and horizontal movement as you continue to press).

- Example:
 1. Press ∑= in Seq mode to display the sequence Y= editor. Make sure the graph style is set to ⁵. (dot), and then define *n*Min, u(*n*) and u(*n*Min) as shown below.
 Plot1 Plot2 Plot3 *n*Min=1 ⁵.u(*n*) ■ -.8u(*n*-1)+ 3.6 u(*n*Min) ■ (-4) ·.u(*n*) = ·.u(*n*) =
 2. Press [2nd] [FORMAT] [ENTER] to set Time axes format.
 - 3. Press WINDOW and set the variables as shown below. nMin=1 Xmin=0 Ymin=-10 nMax=25 Xmax=25 Ymax=10 PlotStart=1 Xscl=1 Yscl=1 PlotStep=1
 - 4. Press **GRAPH** to graph the sequence.

- 5. Press 2nd [FORMAT] and select the Web axes setting.
- 6. Press WINDOW and change the variables below. Xmin=-10 Xmax=10
- 7. Press GRAPH to graph the sequence.
- 8. Press TRACE, and then press ▶ to draw the web. The displayed cursor coordinates *n*, X (u(*n*-1)), and Y (u(*n*)) change accordingly. When you press ▶, a new *n* value is displayed, and the trace cursor is on the sequence. When you press ▶ again, the *n* value remains the same, and the cursor moves to the y=x reference line. This pattern repeats as you trace the web.

Graphing with uv, vw, and uw

The phase-plot axes settings uv, vw, and uw show relationships between two sequences. To select a phase-plot axes setting, press [2nd] [FORMAT], press) until the cursor is on uv, vw, or uw, and then press [ENTER].

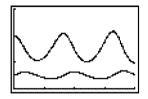
Axes Setting	x-axis	y-axis
uv	u(<i>n</i>)	v(<i>n</i>)
vw	∨(<i>n</i>)	w(<i>n</i>)
uw	u(<i>n</i>)	w(<i>n</i>)

Example: Predator-Prey Model

Use the predator-prey model to determine the regional populations of a predator and its prey that would maintain population equilibrium for the two species.

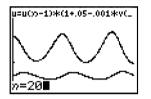
This example uses the model to determine the equilibrium populations of wolves and rabbits, with initial populations of 200 rabbits (**u**(*n***Min**)) and 50 wolves (**v**(*n***Min**)).

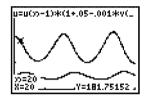
These are the variables (given values are in parentheses):


 \mathbf{R} = number of rabbits Μ = rabbit population growth rate without wolves (.05)Κ = rabbit population death rate with wolves (.001)W = number of wolves G = wolf population growth rate with rabbits (.0002)D = wolf population death rate without rabbits (.03)n = time (in months) $R_{n} = R_{n-1}(1 + M - KW_{n-1})$ $W_{n} = W_{n-1}(1 + GR_{n-1} - D)$ 1. Press Y= in Seq mode to display the sequence Y= editor. Define the sequences and initial values for R_p and W_p as shown below. Enter the sequence R_n as u(n) and enter the sequence W_n as v(n). Ploti Plot2 Plot3 nMin=1 u(n) = u(n-1)*(1+95-001*u(n-1))

.05−.001*v(n−1))
u(nMin)⊟(200) ∿u(n)⊟u(n−1)*(1+ .0002*u(n−1)03
) ∨(nMin)∎(50) ∿w(n)= w(nMin)=

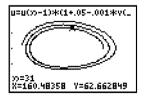
- 2. Press 2nd [FORMAT] ENTER to select Time axes format.
- 3. Press WINDOW and set the variables as shown below.


<i>n</i> Min=0	Xmin=0	Ymin=0
<i>n</i> Max=400	Xmax=400	Ymax=300
PlotStart=1	Xscl=100	Yscl=100
PlotStep=1		


4. Press GRAPH to graph the sequence.

5. Press **TRACE** (to individually trace the number of rabbits (**u**(*n*)) and wolves (**v**(*n*)) over time (*n*).

Tip: Press a number, and then press ENTER to jump to a specific *n* value (month) while in TRACE.



- 6. Press 2nd [FORMAT] > > ENTER to select uv axes format.
- 7. Press <u>WINDOW</u> and change these variables as shown below.

Xmin=84	
Xmax=237	
Xscl=50	

Ymin=25 Ymax=75 Yscl=10

8. Press TRACE. Trace both the number of rabbits (X) and the number of wolves (Y) through 400 generations.

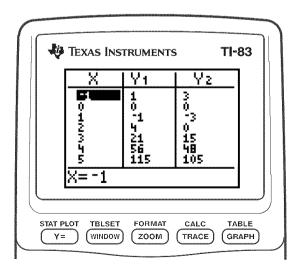
Note: When you press $\boxed{\text{TRACE}}$, the equation for **u** is displayed in the top-left corner. Press \frown or \checkmark to see the equation for **v**.

Comparing TI-83 and TI-82 Sequence Variables

Sequences and Window Variables

Refer to the table if you are familiar with the TI-82. It shows TI-83 sequences and sequence window variables, as well as their TI-82 counterparts.

TI-83	TI-82
In the Y= editor:	
u(<i>n</i>)	Un
u(<i>n</i> Min)	U <i>n</i> Start (window variable)
∨(<i>n</i>)	Vn
v(<i>n</i> Min)	VnStart (window variable)
w(<i>n</i>)	not available
w(<i>n</i> Min)	not available
In the window editor	r:
<i>n</i> Min	<i>n</i> Start
<i>n</i> Max	<i>n</i> Max
PlotStart	<i>n</i> Min
PlotStep	not available


Sequence Keystroke Changes Refer to the table if you are familiar with the TI-82. It compares TI-83 sequence-name syntax and variable syntax with TI-82 sequence-name syntax and variable syntax.

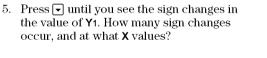
TI-83 / TI-82	On TI-83, press:	On TI-82, press:
n/n	$[X,T,\Theta,n]$	2nd [<i>n</i>]
u(<i>n</i>) / U <i>n</i>	2nd [u] ([X,T,Θ,η] }	2nd [Y-VARS] 4 1
v(<i>n</i>) / Vn	2nd [∨] ([X,T,⊖,n])	2nd [Y-VARS] 4 2
w(<i>n</i>)	2nd [w] ([X,T,⊖,n])	not available
u(<i>n</i> -1) / U <i>n</i> -1	2nd [u] (X,T,Θ,n − 1)	$[2nd] [\cup_{n-1}]$
v(<i>n</i> -1) / V <i>n</i> -1	2nd [v] (X,T,⊖,n - 1)	2nd $[V_{n-1}]$
w(<i>n</i> -1)	2nd [w] (X,T,⊖,n - 1)	not available

Contents

Getting Started: Roots of a Function	
Setting Up the Table	
Defining the Dependent Variables	
Displaying the Table	

Getting Started is a fast-paced introduction. Read the chapter for details.

Evaluate the function $Y = X^3 - 2X$ at each integer between -10 and 10. How many sign changes occur, and at what **X** values?


- 1. Press MODE • ENTER to set Func graphing mode.
- Press Y=. Press X.T.Θ.n (MATH 3 to select ³. Then press - 2 X.T.Θ.n to enter the function Y1=X³-2X.
- Press 2nd [TBLSET] to display the TABLE SETUP screen. Press (→ 10 ENTER to set TblStart=-10. Press 1 ENTER to set △Tbl=1.

Press ENTER to select Indpnt: Auto (automatically generated independent values). Press 🗣 ENTER to select Depend: Auto (automatically generated dependent values).

Plot1 Plot2 Plot3 \Y18X3-2X \Y2= \Y3= \Y4= \Y5= \Y6= \Y7=

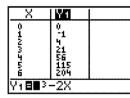
X	Y1	
żóniów a	-980 -7116 -7299 -3204 -2045 -115 -56	
X=-10		

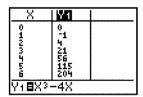
X	11	
3	-21	
-2	1	
	0 -1	
à	4 21	
$\overline{X=3}$	1	

TABLE SETUP To display the TABLE SETUP screen, press [2nd] [TBLSET]. Screen TABLE SETUP Thl§tart=0 ∠Tbl=i Indent: **Auto** Ask **Auto** Ask Depend: TblStart, **ATbl TblStart** (table start) defines the initial value for the independent variable. **TbiStart** applies only when the independent variable is generated automatically (when Indpnt: Auto is selected). Δ **Tbl** (table step) defines the increment for the independent variable. Note: In Seq mode, both TblStart and **\DeltaTbl** must be integers. Indpnt: Auto, Table Characteristics Selections Indpnt: Ask. Indpnt: Auto Values are displayed automatically in both Depend: Auto. the independent-variable column and in all Depend: Auto Depend: Ask dependent-variable columns. Indpnt: Ask The table is empty; when you enter a value Depend: Auto for the independent variable, all corresponding dependent-variable values are calculated and displayed automatically. Indpnt: Auto Values are displayed automatically for the Depend: Ask independent variable; to generate a value for a dependent variable, move the cursor to that cell and press [ENTER]. The table is empty; enter values for the Indpnt: Ask Depend: Ask independent variable; to generate a value for a dependent variable, move the cursor to that cell and press [ENTER]. Setting Up the To store a value to TbiStart, Δ Tbl, or TbiInput from the Table from the home screen or a program, select the variable name from Home Screen or the VARS TABLE secondary menu. **Tblinput** is a list of a Program independent-variable values in the current table.

When you press [2nd] [TBLSET] in the program editor, you can select IndpntAuto, IndpntAsk, DependAuto, and DependAsk.

Defining the Dependent Variables


Defining Dependent Variables from the Y= Editor In the Y= editor, enter the functions that define the dependent variables. Only functions that are selected in the Y= editor are displayed in the table. The current graphing mode is used. In **Par** mode, you must define both components of each parametric equation (Chapter 4).

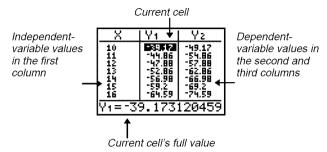

To edit a selected $\mathsf{Y}\texttt{=}$ function from the table editor, follow these steps.

- 1. Press 2nd [TABLE] to display the table, then press > or
 to move the cursor to a dependent-variable column.
- 2. Press in until the cursor is on the function name at the top of the column. The function is displayed on the bottom line.

X	¥1	
0		
12756	4 21	
1 i	4 21 56 115 204	
Ğ	204	
Y1BX3	-2X	

3. Press ENTER. The cursor moves to the bottom line. Edit the function.

4. Press ENTER or . The new values are calculated. The table and the Y= function are updated automatically.


X	Y1	
0	5 10 10	
100556	10	
12	15 48 105 192	
Ĝ	192	
Y1=0		

Note: You also can use this feature to view the function that defines a dependent variable without having to leave the table.

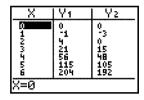
Editing Dependent Variables from the Table Editor

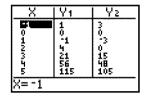
To display the table, press [2nd] [TABLE].

Note: The table abbreviates the values, if necessary.

Independent and Dependent Variables

The current graphing mode determines which independent and dependent variables are displayed in the table (Chapter 1). In the table above, for example, the independent variable **X** and the dependent variables **Y1** and **Y2** are displayed because **Func** graphing mode is set.


Graphing Mode	Independent Variable	Dependent Variable
Func (function)	X	Y1 through Y9, and Y0
Par (parametric)	Т	X1T/Y1T through X6T/Y6T
Pol (polar)	θ	r1 through r6
Seq (sequence)	n	u(<i>n</i>), v(<i>n</i>), and w(<i>n</i>)


Clearing the Table from the Home Screen or a Program From the home screen, select the **CirTable** instruction from the CATALOG. To clear the table, press **ENTER**.

From a program, select **9:CIrTable** from the PRGM I/O menu or from the CATALOG. The table is cleared upon execution. If **IndpntAsk** is selected, all independent and dependent variable values on the table are cleared. If **DependAsk** is selected, all dependent variable values on the table are cleared.

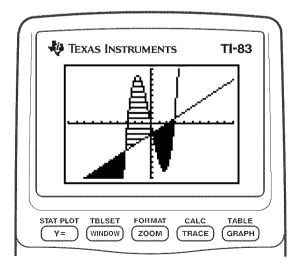
Scrolling Independent-Variable Values

If **indpnt:** Auto is selected, you can press A and I in the independent-variable column to display more values. As you scroll the column, the corresponding dependent-variable values also are displayed. All dependent-variable values may not be displayed if **Depend:** Ask is selected.

Note: You can scroll back from the value entered for **TbIStart**. As you scroll, **TbIStart** is updated automatically to the value shown on the top line of the table. In the example above, **TbIStart=0** and Δ **TbI=1** generates and displays values of **X=0**, ..., **6**; but you can press **•** to scroll back and display the table for **X=-1**, ..., **5**.

Displaying Other Dependent Variables

If you have defined more than two dependent variables, the first two selected Y= functions are displayed initially. Press or to display dependent variables defined by other selected Y= functions. The independent variable always remains in the left column, except during a trace with **Par** graphing mode and **G-T** split-screen mode set.

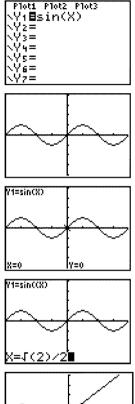

X	Y2	Y3
-4	-4 -6	-18
1-2	-6	-18 -10 -4
	0 6	0 2
2	Ĩ4	2
Y3=128	8	

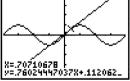
Tip: To simultaneously display on the table two dependent variables that are not defined as consecutive Y= functions, go to the Y= editor and deselect the Y= functions between the two you want to display. For example, to simultaneously display Y4 and Y7 on the table, go to the Y= editor and deselect Y5 and Y6.

8 Draw Instructions

Contents

Getting Started: Drawing a Tangent Line	8-2
Using the DRAW Menu	8-3
Clearing Drawings	8-4
Drawing Line Segments	8-5
Drawing Horizontal and Vertical Lines	8-6
Drawing Tangent Lines	8-8
Drawing Functions and Inverses	8-9
Shading Areas on a Graph	8-10
Drawing Circles	8-11
Placing Text on a Graph	8-12
Using Pen to Draw on a Graph	8-13
Drawing Points on a Graph	8-14
Drawing Pixels	8-16
Storing Graph Pictures (Pics)	8-17
Recalling Graph Pictures (Pics)	8-18
Storing Graph Databases (GDBs)	8-19
Recalling Graph Databases (GDBs)	8-20


Getting Started: Drawing a Tangent Line


Getting Started is a fast-paced introduction. Read the chapter for details.

Suppose you want to find the equation of the tangent line at $X = \sqrt{2/2}$ for the function $Y = \sin X$.

Before you begin, select **Radian** and **Func** mode from the mode screen, if necessary.

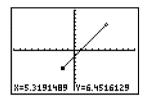
- 1. Press Y= to display the Y= editor. Press SIN (X,T.⊕,n) [) to store sin(X) in Y1.
- 2. Press ZOOM 7 to select 7:ZTrig, which graphs the equation in the Zoom Trig window.
- 3. Press 2nd [DRAW] **5** to select **5:Tangent(**. The tangent instruction is initiated.

- 4. Press 2nd $[\sqrt{]} 2$) $\div 2$.
- Press ENTER. The tangent line is drawn; the X value and the tangent-line equation are displayed on the graph.

DRAW Menu

To display the DRAW menu, press 2nd [DRAW]. The TI-83's interpretation of these instructions depends on whether you accessed the menu from the home screen or the program editor or directly from a graph.

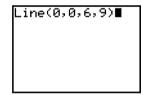
DRAW POINTS S	ТО
1:ClrDraw	Clears all drawn elements.
2:Line(Draws a line segment between 2 points.
3:Horizontal	Draws a horizontal line.
4:Vertical	Draws a vertical line.
5:Tangent(Draws a line segment tangent to a function.
6:DrawF	Draws a function.
7:Shade(Shades an area between two functions.
8:DrawInv	Draws the inverse of a function.
9:Circle(Draws a circle.
0:Text(Draws text on a graph screen.
A: Pen	Activates the free-form drawing tool.

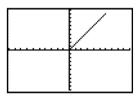

Before Drawing on a Graph	The DRAW instructions draw on top of graphs. Therefore, before you use the DRAW instructions, consider whether you want to perform one or more of the following actions.
	 Change the mode settings on the mode screen. Change the format settings on the format screen. Enter or edit functions in the Y= editor. Select or deselect functions in the Y= editor. Change the window variable values. Turn stat plots on or off. Clear existing drawings with CirDraw (page 8-4).
	Note: If you draw on a graph and then perform any of the actions listed above, the graph is replotted without the drawings when you display the graph again.
Drawing on a Graph	You can use any DRAW menu instructions except Drawinv to draw on Func , Par , Pol , and Seq graphs. Drawinv is valid only in Func graphing. The coordinates for all DRAW instructions are the display's x-coordinate and y-coordinate values.
	You can use most DRAW menu and DRAW POINTS menu instructions to draw directly on a graph, using the cursor to identify the coordinates. You also can execute these instructions from the home screen or from within a program. If a graph is not displayed when you select a DRAW menu instruction, the home screen is displayed.

Clearing Drawings

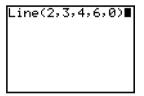
Clearing Drawings When a Graph Is Displayed	All points, lines, and shading drawn on a graph with DRAW instructions are temporary. To clear drawings from the currently displayed graph, select 1:CIrDraw from the DRAW menu. The current graph is replotted and displayed with no drawn elements.
Clearing Drawings from the Home Screen or a Program	To clear drawings on a graph from the home screen or a program, begin on a blank line on the home screen or in the program editor. Select 1:CirDraw from the DRAW menu. The instruction is copied to the cursor location. Press ENTER . When CirDraw is executed, it clears all drawings from the current graph and displays the message Done . When you display the graph again, all drawn points, lines, circles, and shaded areas will be gone.
	C1rDraw Done
	Note: Before you clear drawings, you can store them with StorePic (page 8-17).

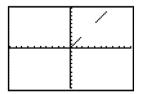
Drawing a Line Segment Directly on a Graph To draw a line segment when a graph is displayed, follow these steps.

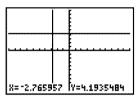

- 1. Select 2:Line(from the DRAW menu.
- 2. Place the cursor on the point where you want the line segment to begin, and then press ENTER.
- 3. Move the cursor to the point where you want the line segment to end. The line is displayed as you move the cursor. Press ENTER.



To continue drawing line segments, repeat steps 2 and 3. To cancel Line(, press CLEAR).


Drawing a Line Segment from the Home Screen or a Program **Line(** also draws a line segment between the coordinates (X1,Y1) and (X2,Y2). The values may be entered as expressions.


Line(X1,Y1,X2,Y2)


To erase a line segment, enter Line(X1,Y1,X2,Y2,0)

Drawing a Line Directly on a Graph To draw a horizontal or vertical line when a graph is displayed, follow these steps.

- 1. Select **3:Horizontal** or **4:Vertical** from the DRAW menu. A line is displayed that moves as you move the cursor.
- 2. Place the cursor on the y-coordinate (for horizontal lines) or x-coordinate (for vertical lines) through which you want the drawn line to pass.
- 3. Press ENTER to draw the line on the graph.

To continue drawing lines, repeat steps 2 and 3.

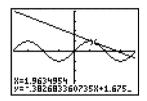
To cancel Horizontal or Vertical, press CLEAR.

Drawing a Line from the Home Screen or a Program **Horizontal** (horizontal line) draws a horizontal line at Y=y. *y* can be an expression but not a list.

Horizontal y

Vertical (vertical line) draws a vertical line at X=x. x can be an expression but not a list.

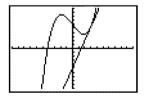
 ${\rm Vertical}\ x$


To instruct the TI-83 to draw more than one horizontal or vertical line, separate each instruction with a colon (:).

E	
E	

Drawing a Tangent Line Directly on a Graph To draw a tangent line when a graph is displayed, follow these steps.

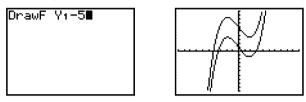
- 1. Select **5:Tangent(** from the DRAW menu.
- 2. Press and to move the cursor to the function for which you want to draw the tangent line. The current graph's Y= function is displayed in the top-left corner, if **ExprOn** is selected.
- 3. Press) and (or enter a number to select the point on the function at which you want to draw the tangent line.
- 4. Press ENTER. In Func mode, the X value at which the tangent line was drawn is displayed on the bottom of the screen, along with the equation of the tangent line. In all other modes, the dy/dx value is displayed.



Tip: Change the fixed decimal setting on the mode screen if you want to see fewer digits displayed for X and the equation for Y.

Drawing a Tangent Line from the Home Screen or a Program **Tangent(** (tangent line) draws a line tangent to *expression* in terms of X, such as Y1 or X^2 , at point X=*value*. X can be an expression. *expression* is interpreted as being in Func mode.

Tangent(expression,value)



Drawing a Function

DrawF (draw function) draws *expression* as a function in terms of **X** on the current graph. When you select **6:DrawF** from the DRAW menu, the TI-83 returns to the home screen or the program editor. **DrawF** is not interactive.

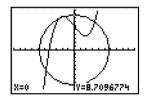
DrawF expression

Note: You cannot use a list in expression to draw a family of curves.

Drawing an Inverse of a Function

Drawinv (draw inverse) draws the inverse of *expression* by plotting **X** values on the y-axis and **Y** values on the x-axis. When you select **8:Drawinv** from the DRAW menu, the TI-83 returns to the home screen or the program editor. **Drawinv** is not interactive. **Drawinv** works in **Func** mode only.

DrawInv expression

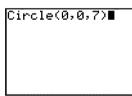

Note: You cannot use a list in expression to draw a family of curves.

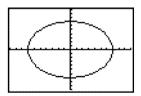
Shading a Graph		a graph, select 7:Shade(from the ruction is pasted to the home screen tor.
	the current graph and	<i>unc</i> and <i>upperfunc</i> in terms of X on I shades the area that is specifically below <i>upperfunc</i> . Only the areas <i>operfunc</i> are shaded.
	boundaries for the sh	cluded, specify left and right ading. <i>Xleft</i> and <i>Xright</i> must be i n and Xmax , which are the defaults.
	pattern specifies one	of four shading patterns.
	pattern=1 pattern=2 pattern=3 pattern=4	vertical (default) horizontal negative—slope 45° positive—slope 45°
	patres specifies one o	of eight shading resolutions.
	patres=1 patres=2 patres=3 patres=4 patres=5 patres=6 patres=7 patres=8	shades every pixel (default) shades every second pixel shades every third pixel shades every fourth pixel shades every fifth pixel shades every sixth pixel shades every seventh pixel shades every eighth pixel
		erfunc[,Xleft,Xright,pattern,patres])
	Shade(X3-8X,X-: :Shade(X-2,X3-: , -3,2,2,3)	

Drawing a Circle Directly on a Graph

To draw a circle directly on a displayed graph using the cursor, follow these steps.

- 1. Select 9:Circle(from the DRAW menu.
- 2. Place the cursor at the center of the circle you want to draw. Press <u>ENTER</u>.
- 3. Move the cursor to a point on the circumference. Press **ENTER** to draw the circle on the graph.


Note: This circle is displayed as circular, regardless of the window variable values, because you drew it directly on the display. When you use the **Circle(** instruction from the home screen or a program, the current window variables may distort the shape.


To continue drawing circles, repeat steps 2 and 3. To cancel **Circle(**, press <u>CLEAR</u>].

Circle(draws a circle with center (X,Y) and *radius*. These values can be expressions.

Drawing a Circle from the Home Screen or a Program

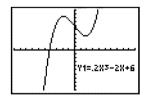
Circle(X,Y,radius)

Tip: When you use **Circle(** on the home screen or from a program, the current window values may distort the drawn circle. Use **ZSquare** (Chapter 3) before drawing the circle to adjust the window variables and make the circle circular.

Placing TextTo place text on a graph when the graph is displayed,Directly on afollow these steps.Graph1. Select 0:Text(from the DRAW menu.

- 2. Place the cursor where you want the text to begin.
- 3. Enter the characters. Press ALPHA or 2nd [A-LOCK] to enter letters and θ . You may enter TI-83 functions, variables, and instructions. The font is proportional, so the exact number of characters you can place on the graph varies. As you type, the characters are placed on top of the graph.

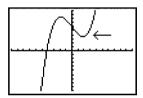
To cancel Text(, press CLEAR).


Placing Text on a Graph from the Home Screen or a Program **Text(** places on the current graph the characters comprising *value*, which can include TI-83 functions and instructions. The top-left corner of the first character is at pixel (*row,column*), where *row* is an integer between 0 and 57 and *column* is an integer between 0 and 94. Both *row* and *column* can be expressions.

`K (0,0)	(0,94) ^A
·····	· · · · · · · · · · · · · · · · · · ·
(57,0) .¥	(57,94) بلا

Text(row,column,value,value . . .)

value can be text enclosed in quotation marks ("), or it can be an expression. The TI-83 will evaluate an expression and display the result with up to 10 characters.

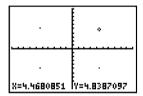

Split Screen On a **Horiz** split screen, the maximum value for *row* is 25. On a **G-T** split screen, the maximum value for *row* is 45, and the maximum value for *column* is 46.

Using Pen toPen draws directly on a graph only. You cannot executeDraw on a GraphPen from the home screen or a program.

To draw on a displayed graph, follow these steps.

- 1. Select A:Pen from the DRAW menu.
- 2. Place the cursor on the point where you want to begin drawing. Press ENTER to turn on the pen.
- 3. Move the cursor. As you move the cursor, you draw on the graph, shading one pixel at a time.
- 4. Press ENTER to turn off the pen.

For example, **Pen** was used to create the arrow pointing to the local minimum of the selected function.


To continue drawing on the graph, move the cursor to a new position where you want to begin drawing again, and then repeat steps 2, 3, and 4. To cancel **Pen**, press <u>CLEAR</u>.

DRAW POINTSTo display the DRAW POINTS menu, press [2nd] [DRAW] .MenuThe TI-83's interpretation of these instructions depends on
whether you accessed this menu from the home screen or
the program editor or directly from a graph.

DRAW POINTS	STO
1: Pt-On(Turns on a point.
2: Pt-Off(Turns off a point.
3: Pt-Change(Toggles a point on or off.
4: Px1-On(Turns on a pixel.
5:Px1-Off(Turns off a pixel.
6: Px1-Change(Toggles a pixel on or off.
7:pxl-Test(Returns 1 if pixel on, 0 if pixel off.

Drawing Points Directly on a Graph with Pt-On(

- To draw a point on a graph, follow these steps.
- 1. Select 1:Pt-On(from the DRAW POINTS menu.
- 2. Move the cursor to the position where you want to draw the point.
- 3. Press ENTER to draw the point.

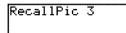
To continue drawing points, repeat steps 2 and 3. To cancel **Pt-On(**, press **CLEAR**.

Erasing Points with Pt-Off(To erase (turn off) a drawn point on a graph, follow these steps.
	1. Select 2:Pt-Off((point off) from the DRAW POINTS menu.
	2. Move the cursor to the point you want to erase.
	3. Press ENTER to erase the point.
	To continue erasing points, repeat steps 2 and 3. To cancel Pt-Off(, press <u>CLEAR</u>).
Changing Points with Pt-Change(To change (toggle on or off) a point on a graph, follow these steps.
	1. Select 3:Pt-Change((point change) from the DRAW POINTS menu.
	2. Move the cursor to the point you want to change.
	3. Press ENTER to change the point's on/off status.
	To continue changing points, repeat steps 2 and 3. To cancel Pt-Change(, press <u>CLEAR</u>).
Drawing Points from the Home Screen or a Program	Pt-On((point on) turns on the point at (X = <i>x</i> , Y = <i>y</i>). Pt-Off(turns the point off. Pt-Change(toggles the point on or off. <i>mark</i> is optional; it determines the point's appearance; specify 1 , 2 , or 3 , where:
	$1 = \boldsymbol{\cdot} (\text{dot}; \text{default}) \qquad 2 = \Box (\text{box}) \qquad 3 = \boldsymbol{+} (\text{cross})$
	Pt-On(x,y[,mark]) Pt-Off(x,y[,mark]) Pt-Change(x,y)
	Pt-On(2,5,2):Pt- On(5,5,3):Pt-On(8,5,1)

Note: If you specified *mark* to turn on a point with **Pt-On(**, you must specify *mark* when you turn off the point with **Pt-Off(**. **Pt-Change(** does not have the *mark* option.

TI-83 PixelsA pixel is a square dot on the TI-83 display. The **PxI-** (pixel)
instructions let you turn on, turn off, or reverse a pixel
(dot) on the graph using the cursor. When you select a
pixel instruction from the DRAW POINTS menu, the TI-83
returns to the home screen or the program editor. The
pixel instructions are not interactive.

[`] K (0,0)	(0,94)
<u> </u>	
e ^(62,0)	(62,94) بر


Turning On and **PxI-On(** (pixel on) turns on the pixel at (*row,column*), Off Pixels with where *row* is an integer between 0 and 62 and *column* is an PxI-On(and integer between 0 and 94. PxI-Off(PxI-Off(turns the pixel off. PxI-Change(toggles the pixel on and off PxI-On(row,column) PxI-Off(row,column) PxI-Change(row,column) Using pxl-Test(**pxI-Test(** (pixel test) returns 1 if the pixel at (*row,column*) is turned on or 0 if the pixel is turned off on the current graph. row must be an integer between 0 and 62. column must be an integer between 0 and 94. pxI-Test(row.column) Split Screen On a Horiz split screen, the maximum value for row is 30 for PxI-On(, PxI-Off(, PxI-Change(, and pxI-Test(. On a **G-T** split screen, the maximum value for *row* is 50 and the maximum value for *column* is 46 for PxI-On(, PxI-Off(, PxI-Change(, and pxI-Test(.

DRAW STO Menu	When you select an in the TI-83 returns to th	STO menu, press [2nd] [DRAW] []. struction from the DRAW STO menu, le home screen or the program editor. a database instructions are not	
	DRAW POINTS STO 1:StorePic 2:RecallPic 3:StoreGDB 4:RecallGDB	Stores the current picture. Recalls a saved picture. Stores the current graph database. Recalls a saved graph database.	
Storing a Graph Picture	image of the current g Pic1 through Pic9 , or F) graph pictures, each of which is an graph display, in picture variables Pic0. Later, you can superimpose the displayed graph from the home	
	A picture includes drawn elements, plotted functions, axes and tick marks. The picture does not include axes labels, lower and upper bound indicators, prompts, or cursor coordinates. Any parts of the display hidden by these items are stored with the picture.		
	To store a graph pictu	re, follow these steps.	
	1. Select 1:StorePic fr pasted to the curre	rom the DRAW STO menu. StorePic is nt cursor location.	
	variable to which y	(from 1 to 9 , or 0) of the picture rou want to store the picture. For ter 3 , the TI-83 will store the picture	
	StorePic 3		
		lect a variable from the PICTURE § 4). The variable is pasted next to	
	3. Press ENTER to disp picture.	olay the current graph and store the	

Recalling a Graph Picture

To recall a graph picture, follow these steps.

- 1. Select **2:RecallPic** from the DRAW STO menu. **RecallPic** is pasted to the current cursor location.
- 2. Enter the number (from 1 to 9, or 0) of the picture variable from which you want to recall a picture. For example, if you enter 3, the TI-83 will recall the picture stored to **Pic3**.

Note: You also can select a variable from the PICTURE secondary menu (<u>VARS</u> 4). The variable is pasted next to **RecallPic**.

3. Press ENTER to display the current graph with the picture superimposed on it.

Note: Pictures are drawings. You cannot trace a curve that is part of a picture.

Deleting a GraphTo delete graph pictures from memory, use thePictureMEMORY DELETE FROM menu (Chapter 18).

What Is a Graph
Database?A graph database (GDB) contains the set of elements that
defines a particular graph. You can recreate the graph from
these elements. You can store up to 10 GDBs in variables
GDB1 through GDB9, or GDB0 and recall them to recreate
graphs.

A GDB stores five elements of a graph.

- Graphing mode
- Window variables
- Format settings
- All functions in the Y= editor and the selection status of each
- Graph style for each Y= function

GDBs do not contain drawn items or stat plot definitions.

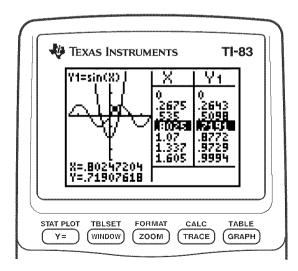
Storing a Graph Database To store a graph database, follow these steps.

- 1. Select **3:StoreGDB** from the DRAW STO menu. **StoreGDB** is pasted to the current cursor location.
- 2. Enter the number (from **1** to **9**, or **0**) of the GDB variable to which you want to store the graph database. For example, if you enter **7**, the TI-83 will store the GDB to **GDB7**.

StoreGDB 7

Note: You also can select a variable from the GDB secondary menu (<u>VARS</u> 3). The variable is pasted next to **StoreGDB**.

3. Press ENTER to store the current database to the specified GDB variable.


Recalling a **CAUTION:** When you recall a GDB, it replaces all existing Graph Database Y= functions. Consider storing the current Y= functions to another database before recalling a stored GDB. To recall a graph database, follow these steps. 1. Select **4:RecallGDB** from the DRAW STO menu. **RecallGDB** is pasted to the current cursor location. 2. Enter the number (from 1 to 9, or 0) of the GDB variable from which you want to recall a GDB. For example, if you enter 7, the TI-83 will recall the GDB stored to GDB7. RecallGDB 7 Note: You also can select a variable from the GDB secondary menu (VARS) 3). The variable is pasted next to RecallGDB. 3. Press [ENTER] to replace the current GDB with the recalled GDB. The new graph is not plotted. The TI-83 changes the graphing mode automatically, if necessary.

Deleting a GraphTo delete a GDB from memory, use the MEMORY DELETEDatabaseFROM menu (Chapter 18).

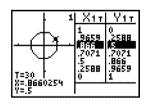
Contents

Getting Started: Exploring the Unit Circle	9-2
Using Split Screen	9-3
Horiz (Horizontal) Split Screen	9-4
G-T (Graph-Table) Split Screen	9-5
TI-83 Pixels in Horiz and G-T Mode	9-6

Getting Started: Exploring the Unit Circle

Getting Started is a fast-paced introduction. Read the chapter for details.

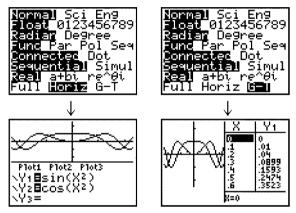
Use **G-T** (graph-table) split-screen mode to explore the unit circle and its relationship to the numeric values for the commonly used trigonometric angles of 0° , 30° , 45° , 60° , 90° , and so on.


1. Press MODE to display the mode screen. Press V V ENTER to select Degree mode. Press V ENTER to select Par (parametric) graphing mode.

Press • • • • • • ENTER to select G-T (graph-table) split-screen mode.

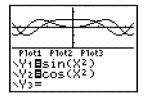
- 2. Press 2nd [FORMAT] to display the format screen. Press • • • ENTER to select ExprOff.
- 3. Press Y= to display the Y= editor for Par graphing mode. Press COS (X.T.O,n)) ENTER to store cos(T) to X1T. Press SIN (X.T.O,n)) ENTER to store sin(T) to Y1T.
- 4. Press <u>WINDOW</u> to display the window editor. Enter these values for the window variables.

Tmin=0	Xmin=-2.3	Ymin=-2.5
Tmax=360	Xmax=2.3	Ymax=2.5
Tstep=15	Xscl=1	Yscl=1


Press TRACE. On the left, the unit circle is graphed parametrically in Degree mode and the trace cursor is activated. When T=0 (from the graph trace coordinates), you can see from the table on the right that the value of X1T (cos(T)) is 1 and Y1T (sin(T)) is 0. Press → to move the cursor to the next 15° angle increment. As you trace around the circle in steps of 15°, an approximation of the standard value for each angle is highlighted in the table.

Setting a Split-Screen Mode To set a split-screen mode, press <u>MODE</u>, and then move the cursor to the bottom line of the mode screen.

- Select **Horiz** (horizontal) to display the graph screen and another screen split horizontally.
- Select **G-T** (graph-table) to display the graph screen and table screen split vertically.


The split screen is activated when you press any key that applies to either half of the split screen.

Some screens are never displayed as split screens. For example, if you press [MODE] in Horiz or G-T mode, the mode screen is displayed as a full screen. If you then press a key that displays either half of a split screen, such as [TRACE], the split screen returns.

When you press a key or key combination in either **Horiz** or **G-T** mode, the cursor is placed in the half of the display for which that key applies. For example, if you press **TRACE**, the cursor is placed in the half in which the graph is displayed. If you press **2nd [TABLE]**, the cursor is placed in the half in which the table is displayed.

The TI-83 will remain in split-screen mode until you change back to **Full** screen mode.

Horiz Mode In Horiz (horizontal) split-screen mode, a horizontal line splits the screen into top and bottom halves.

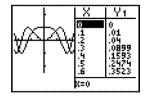
The top half displays the graph.

The bottom half displays any of these editors.

- Home screen (four lines)
- Y= editor (four lines)
- Stat list editor (two rows)
- Window editor (three settings)
- Table editor (two rows)

Moving from Half to Half in Horiz Mode To use the top half of the split screen:

- Press GRAPH or TRACE.
- Select a ZOOM or CALC operation.


To use the bottom half of the split screen:

- Press any key or key combination that displays the home screen.
- Press Y= (Y= editor).
- Press STAT ENTER (stat list editor).
- Press WINDOW (window editor).
- Press 2nd [TABLE] (table editor).

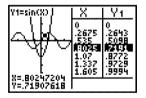
Full Screens in
Horiz ModeAll other screens are displayed as full screens in Horiz
split-screen mode.

To return to the **Horiz** split screen from a full screen when in **Horiz** mode, press any key or key combination that displays the graph, home screen, Y= editor, stat list editor, window editor, or table editor.

G-T Mode In **G-T** (graph-table) split-screen mode, a vertical line splits the screen into left and right halves.

The left half displays the graph.

The right half displays the table.


To use the left half of the split screen:

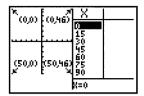
Moving from Half to Half in G-T Mode

- Press GRAPH or TRACE.
- Select a ZOOM or CALC operation.

To use the right half of the split screen, press $\ensuremath{\texttt{2nd}}$ [TABLE].

Using TRACE in
G-T ModeAs you move the trace cursor along a graph in the split
screen's left half in G-T mode, the table on the right half
automatically scrolls to match the current cursor values.

Note: When you trace in **Par** graphing mode, both components of an equation (**X***n***T** and **Y***n***T**) are displayed in the two columns of the table. As you trace, the current value of the independent variable **T** is displayed on the graph.

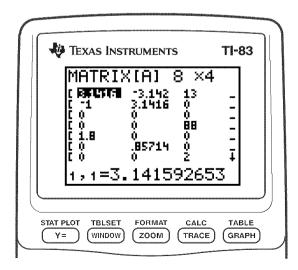

Full Screens in
G-T ModeAll screens other than the graph and the table are
displayed as full screens in G-T split-screen mode.

To return to the **G-T** split screen from a full screen when in **G-T** mode, press any key or key combination that displays the graph or the table.

TI-83 Pixels in Horiz and G-T Modes

TI-83 Pixels in Horiz and G-T Modes

¥(30,0) (30,94),¥	ی ^(30,0) (30,94)	°R (0,0)	(0,94)
		د ^(30,0)	(30,94)
		<u> </u>	<u> </u>

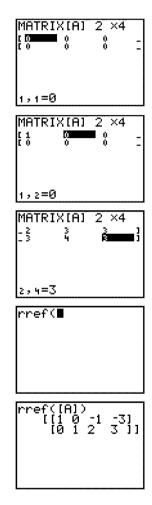

Note: Each set of numbers in parentheses above represents the row and column of a corner pixel, which is turned on.

 For PxI-On(, PxI-Off(, PxI-Change(, and pxI-Test(: In Horiz mode, row must be ≤30; column must be ≤94. In G-T mode, row must be ≤50; column must be ≤46. PxI-On(row,column)
 For the Text(instruction: In Horiz mode, row must be ≤25; column must be ≤94. In G-T mode, row must be ≤45; column must be ≤46. Text(row,column,"text")
 For the Output(instruction: In Horiz mode, row must be ≤4; column must be ≤16. In G-T mode, row must be ≤8; column must be ≤16. Output(row,column,"text")
 To set Horiz or G-T from a program, follow these steps. Press MODE while the cursor is on a blank line in the program editor. Select Horiz or G-T. The instruction is pasted to the cursor location. The mode is set when the instruction is encountered during program execution. It remains in effect after execution. Note: You also can paste Horiz or G-T to the home screen or program editor from the CATALOG (Chapter 15).

10 Matrices

Contents

Getting Started: Systems of Linear Equations	10-2
Defining a Matrix	10-2
Viewing and Editing Matrix Elements	
Using Matrices with Expressions	10-7
Displaying and Copying Matrices	10-8
Using Math Functions with Matrices	10-9
Using the MATRX MATH Operations	10-12



Getting Started is a fast-paced introduction. Read the chapter for details.

Find the solution of X + 2Y + 3Z = 3 and 2X + 3Y + 4Z = 3. On the TI-83, you can solve a system of linear equations by entering the coefficients as elements in a matrix, and then using **rref**(to obtain the reduced row-echelon form.

- 1. Press (MATRX). Press () () to display the MATRX EDIT menu. Press 1 to select 1: [A].
- 2. Press **2** ENTER **4** ENTER to define a 2×4 matrix. The rectangular cursor indicates the current element. Ellipses (...) indicate additional columns beyond the screen.
- 3. Press 1 ENTER to enter the first element. The rectangular cursor moves to the second column of the first row.
- 4. Press 2 ENTER 3 ENTER 3 ENTER to complete the first row for X + 2Y + 3Z = 3.
- 5. Press 2 ENTER 3 ENTER 4 ENTER 3 ENTER to enter the second row for 2X + 3Y + 4Z = 3.
- Press 2nd [QUIT] to return to the home screen. If necessary, press CLEAR to clear the home screen. Press MATRX > to display the MATRX MATH menu. Press > to wrap to the end of the menu. Select B:rref(to copy rref(to the home screen.
- 7. Press <u>MATRX</u> 1 to select 1: [A] from the MATRX NAMES menu. Press) <u>ENTER</u>. The reduced row-echelon form of the matrix is displayed and stored in **Ans**.

1X - 1Z = -3	\mathbf{SO}	X = -3 + Z
1Y + 2Z = 3	\mathbf{SO}	Y = 3 - 2Z

What Is a Matrix?	A matrix is a two-dimensional array. You can display, define, or edit a matrix in the matrix editor. The TI-83 has 10 matrix variables, [A] through [J] . You can define a matrix directly in an expression. A matrix, depending on available memory, may have up to 99 rows or columns. You can store only real numbers in TI-83 matrices.
Selecting a Matrix	Before you can define or display a matrix in the editor, you first must select the matrix name. To do so, follow these steps.
	 Press MATRX (to display the MATRX EDIT menu. The dimensions of any previously defined matrices are displayed.
	NAMES MATH LIOU UB [A] 2×4

NAMES	MATH 2×4	EDI
2:[B] 3:[C]		
4: [D] 5: [F]		
6:[F] 7↓[G]		

2. Select the matrix you want to define. The MATRX EDIT screen is displayed.

MATRIX[B]	1	$\times 1$	
C O			1

Accepting or Changing Matrix Dimensions The dimensions of the matrix ($row \times column$) are displayed on the top line. The dimensions of a new matrix are **1** ×**1**. You must accept or change the dimensions each time you edit a matrix. When you select a matrix to define, the cursor highlights the row dimension.

- To accept the row dimension, press ENTER.
- To change the row dimension, enter the number of rows (up to **99**), and then press ENTER.

The cursor moves to the column dimension, which you must accept or change the same way you accepted or changed the row dimension. When you press **ENTER**, the rectangular cursor moves to the first matrix element.

Displaying MatrixAfter you have set the dimensions of the matrix, you can
view the matrix and enter values for the matrix elements.
In a new matrix, all values are zero.

Select the matrix from the MATRX EDIT menu and enter or accept the dimensions. The center portion of the matrix editor displays up to seven rows and three columns of a matrix, showing the values of the elements in abbreviated form if necessary. The full value of the current element, which is indicated by the rectangular cursor, is displayed on the bottom line.

MATRI>	(A) (3 ×4	
	-3.142	13 0	-
[[_1	3.1416	<u> 0</u>	-
	U Å	Ű8	-
lt i.e	ŏ	0	-
Ē 0.	.85714	Ó 2	_
E 0	0	2	Ŧ
1,1=3.	1415	92653	

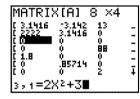
This is an 8×4 matrix. Ellipses in the left or right column indicate additional columns. \uparrow or \downarrow in the right column indicate additional rows.

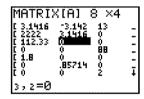
Deleting a Matrix To delete matrices from memory, use the MEMORY DELETE FROM secondary menu (Chapter 18).

Viewing a Matrix The matrix editor has two contexts, viewing and editing. In viewing context, you can use the cursor keys to move quickly from one matrix element to the next. The full value of the highlighted element is displayed on the bottom line.

Select the matrix from the MATRX EDIT menu, and then enter or accept the dimensions.

MATRIX	(A) :	3 ×4	
	-3.142 3.1416	13 0	
	0	0 88	-
[1.8 [0	0 ,85714	0 0 2	-
€0 1 - 4 = ₹	。 1415 [,]		+
1,1-3,	.1410	72633	


Viewing-Context Key Function Kevs Moves the rectangular cursor within the current row. ▼ or ▲ Moves the rectangular cursor within the current column; on the top row, A moves the cursor to the column dimension; on the column dimension,
moves the cursor to the row dimension. Switches to editing context; activates the ENTER edit cursor on the bottom line. CLEAR Switches to editing context; clears the value on the bottom line. Switches to editing context; clears the Any entry character value on the bottom line: copies the character to the bottom line. [2nd] [INS] Nothing DEL Nothing


Editing a Matrix	In editing context, an edit cursor is active on the bottom
Element	line. To edit a matrix element value, follow these steps.

- 1. Select the matrix from the MATRX EDIT menu, and then enter or accept the dimensions.
- 2. Press (,),), and) to move the cursor to the matrix element you want to change.
- 3. Switch to editing context by pressing ENTER, CLEAR, or an entry key.
- 4. Change the value of the matrix element using the editing-context keys described below. You may enter an expression, which is evaluated when you leave editing context.

Note: You can press <u>CLEAR</u> <u>ENTER</u> to restore the value at the rectangular cursor if you make a mistake.

5. Press $\overline{\text{ENTER}}$, \blacktriangle , or \checkmark to move to another element.

Key	Function
€ or ▶	Moves the edit cursor within the value.
▼ or ▲	Stores the value displayed on the bottom line to the matrix element; switches to viewing context and moves the rectangular cursor within the column.
(ENTER)	Stores the value displayed on the bottom line to the matrix element; switches to viewing context and moves the rectangular cursor to the next row element.
(CLEAR)	Clears the value on the bottom line.
Any entry character	Copies the character to the location of the edit cursor on the bottom line.
2nd [INS]	Activates the insert cursor.
DEL	Deletes the character under the edit cursor on the bottom line.

Editing-Context Keys

Using a Matrix in
an ExpressionTo use a matrix in an expression, you can do any of the
following.

- Copy the name from the MATRX NAMES menu.
- Recall the contents of the matrix into the expression with [2nd] [RCL] (Chapter 1).
- Enter the matrix directly (see below).

Entering a MatrixYou can enter, edit, and store a matrix in the matrix editor.in an ExpressionYou also can enter a matrix directly in an expression.

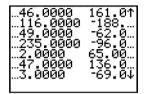
To enter a matrix in an expression, follow these steps.

- 1. Press 2nd [[] to indicate the beginning of the matrix.
- 2. Press 2nd [[] to indicate the beginning of a row.
- 3. Enter a value, which can be an expression, for each element in the row. Separate the values with commas.
- 4. Press 2nd []] to indicate the end of a row.
- 5. Repeat steps 2 through 4 to enter all of the rows.
- 6. Press 2nd []] to indicate the end of the matrix.

Note: The closing **]]** are not necessary at the end of an expression or preceding \Rightarrow .

The resulting matrix is displayed in the form:

 $[[element_{1,1},...,element_{1,n}],...,[element_{m,1},...,element_{m,n}]]$


Any expressions are evaluated when the entry is executed.

Note: The commas that you must enter to separate elements are not displayed on output.

Displaying a Matrix

To display the contents of a matrix on the home screen, select the matrix from the MATRX NAMES menu, and then press ENTER.

Ellipses in the left or right column indicate additional columns. \uparrow or \downarrow in the right column indicate additional rows. Press \triangleright , \checkmark , \checkmark , and \triangleleft to scroll the matrix.

Copying One Matrix to Another

To copy a matrix, follow these steps.

- 1. Press $\ensuremath{\mathsf{MATRX}}$ to display the MATRX NAMES menu.
- 2. Select the name of the matrix you want to copy.
- 3. Press STO▶.
- 4. Press <u>MATRX</u> again and select the name of the new matrix to which you want to copy the existing matrix.
- 5. Press ENTER to copy the matrix to the new matrix name.

Accessing a Matrix Element On the home screen or from within a program, you can store a value to, or recall a value from, a matrix element. The element must be within the currently defined matrix dimensions. Select *matrix* from the MATRX NAMES menu.

[matrix](row,column)

Using Math Functions with Matrices	You can use many of the math functions on the TI-83 keyboard, the MATH menu, the MATH NUM menu, and the MATH TEST menu with matrices. However, the dimensions must be appropriate. Each of the functions below creates a new matrix; the original matrix remains the same.		
+ (Add), – (Subtract), * (Multiply)	To add (+) or subtract (-) matrices, the dimensions mus be the same. The answer is a matrix in which the element are the sum or difference of the individual corresponding elements.		
	matrixA+matrixB matrixA-matrixB		
	To multiply (\boxtimes) two matrices together, the column dimension of <i>matrixA</i> must match the row dimension of <i>matrixB</i> .		
	matrix A*matrix B		
	IA1 I [2 2] IA1+[B] [3 41] [2 7] [B] [0 5] [4 3]] [18 16] [16 27]]		
	Multiplying a <i>matrix</i> by a <i>value</i> or a <i>value</i> by a <i>matrix</i> returns a matrix in which each element of <i>matrix</i> is multiplied by <i>value</i> .		

matrix*value value*matrix

- (Negation) Negating a matrix ([-)) returns a matrix in which the sign of every element is changed (reversed).

-matrix

[A]	[[2 -2] [3 4]]
-[A]	$\begin{bmatrix} -2 & 2 \\ -3 & -4 \end{bmatrix}$

abs(abs((absolute value, MATH NUM menu) returns a matrix containing the absolute value of each element of *matrix*.

abs(matrix)

round(round((MATH NUM menu) returns a matrix. It rounds every element in *matrix* to *#decimals* (\leq 9). If *#decimals* is omitted, the elements are rounded to 10 digits.

round(matrix[,#decimals])

MATRIX(A) 2	×2	round([8],2)
E 1.259 2.333 E 3.662 Chira]	

⁻¹ (Inverse) Use the ⁻¹ function (x^{-1}) to invert a matrix (^-1 is not valid). *matrix* must be square. The determinant cannot equal zero.

matrix⁻¹

MATRIX(A)	2 ×2	[A]-1	
[1 2 [3 4]		5]]

PowersTo raise a matrix to a power, matrix must be square. You
can use $2(x^2)$, 3 (MATH menu), or $power(\bar{A})$ for integer
power between 0 and 255.

matrix² matrix³ matrix**^**power

MATRIX[A] 2 ×2 [1] 2

[A] 3	1177	54 1	
161/5	181	ĭīsi:	I
	069 2337	1558] 3406]]	1

Relational
OperationsTo compare two matrices using the relational operations =
and \neq (TEST menu), they must have the same dimensions. =
and \neq compare matrixA and matrixB on an element-by-
element basis. The other relational operations are not valid
with matrices.

matrixA=matrixB returns **1** if every comparison is true; it returns **0** if any comparison is false.

 $matrixA \neq matrixB$ returns **1** if at least one comparison is false; it returns **0** if no comparison is false.

(A) (B)	$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$	[A]=[B] [A]≠[B]	0
	$\begin{bmatrix} [3 & 2 & 1] \\ [1 & 2 & 3] \end{bmatrix}$		ľ

iPart(, fPart(, int(iPart((integer part), fPart((fractional part), and int((greatest integer) are on the MATH NUM menu.

iPart(returns a matrix containing the integer part of each element of *matrix*.

fPart(returns a matrix containing the fractional part of each element of *matrix*.

int(returns a matrix containing the greatest integer of each element of *matrix*.

iPart(*matrix*) fPart(*matrix*) int(*matrix*)

[D] [[1.25 3.333] [100.5 47.15]] [100.5 47.15]] [100 47]] fPart([D]) [100 47]] fPart([D]) [100 47]] [100 47]] fPart([D]) [100 47]]

Using the MATRX MATH Operations

MATRX MATH	To display the MATRX MATH menu, press $[MATRX]$).				
Menu	NAMES MATH EDIT				
	1: det (Calculates the determinant.				
	2: T				
	2: dim(Transposes the matrix. Returns the matrix dimensions.			
	4: Fill(Fills all elements with a constant.			
	5:identity(Returns the identity matrix.			
	6: randM(Returns a random matrix.			
	7:augment(Appends two matrices.			
	8:Matr∍list(Stores a matrix to a list.			
	9:List∍matr(Stores a list to a matrix.			
	0:cumSum(Returns the cumulative sums of a matrix.			
	A:ref(Returns the row-echelon form of a matrix.			
	B:rref(Returns the reduced row-echelon form.			
	C:rowSwap(Swaps two rows of a matrix.			
	D: row+(Adds two rows; stores in the second row.			
	E:*row(Multiplies the row by a number.			
	F: *row+(Multiplies the row, adds to the second row.			
	of a square <i>matr</i> det(<i>matrix</i>)	rix.			
[⊤] (Transpose)	^T (transpose) returns a matrix in which each element column) is swapped with the corresponding element (column, row) of <i>matrix</i> .				
	$matrix^{T}$				
		2 3] 2 1]] [A] [†] [[1 3] 2 2] [3 1]] [2 2] [3 1]]			
Accessing Matrix Dimensions with	<pre>dim((dimension) returns a list containing the dimensions ({rows columns}) of matrix.</pre>				
dim(dim(<i>matrix</i>)				
	Note: dim(matrix)→Ln:Ln(1) returns the number of rows. dim(matrix)→Ln:Ln(2) returns the number of columns.				
	dim([[2,7,1	<pre>1[-8, dim([[2,7,1][-8, 3,11]])+L1:L1(1)</pre>			

$$\begin{array}{c|c} \dim([[2,7,1][-8, \\ 3,1]]) \\ (2 3) \\ \end{array} \begin{array}{c} \dim([[2,7,1][-8, \\ 3,11]]) + L_1 : L_1(1) \\ \end{array} \\ 2 \end{array}$$

Creating a MatrixUse dim(with STOP to create a new matrixname of
dimensions rows × columns with 0 as each element.

{rows,columns}→dim(matrixname)

Redimensioning aUse dim(with STO*) to redimension an existing
matrix mame to dimensions rows × columns. The elements
in the old matrixname that are within the new dimensions
are not changed. Additional created elements are zeros.
Matrix elements that are outside the new dimensions are
deleted.

{rows,columns}→dim(matrixname)

Fill(Fill(stores *value* to every element in *matrixname*.

Fill(value,matrixname)

Fill(5,	[E]) Done		
[E]	[[5 5]] [5 5]]		

identity(identity returns the identity matrix of *dimension* rows × *dimension* columns.

identity(dimension)

randM(randM((create random matrix) returns a $rows \times columns$ random matrix of integers $\geq \neg 9$ and ≤ 9 . The seed value stored to the rand function controls the values (Chapter 2).

randM(rows,columns)

augment(augment(appends *matrixA* to *matrixB* as new columns. *matrixA* and *matrixB* both must have the same number of rows.

augment(matrixA,matrixB)

[[1,2 :[[5,]:au9	1[3; 6][7 men	,4; 7,8	11- 311 (A)	+[A] →[B ,[B
1)	[[1 [3	2 4	57	6] 8]]

Matrlist(Matrlist((matrix stored to list) fills each *listname* with
elements from each column in *matrix*. Matrlist(ignores
extra *listname* arguments. Likewise, Matrlist(ignores
extra *matrix* columns.

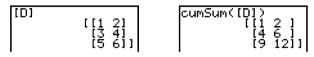
Matrist(matrix,listnameA,...,listname n)

[A] [4 5 6]] Matr⊧list([A],L1 ,L2,L3)	1	L1 L2	(1 (2	4) 5)
Done		- ۲ -	(3	63

Matplist(also fills a *listname* with elements from a specified *column#* in *matrix*. To fill a list with a specific column from *matrix*, you must enter *column#* after *matrix*.

Matrist(matrix,column#,listname)

$$\begin{array}{c} [A] & [1 & 2 & 3] \\ & [4 & 5 & 6]] \\ Matr + list([A], 3, \\ L_1) & Done \end{array} \rightarrow \begin{array}{c} L_1 & (3 & 6) \\ \hline \end{array}$$

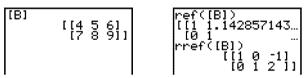

List>matr(List>stored to matrix) fills matrixname column by column with the elements from each *list*. If dimensions of all *lists* are not equal, List>matr(fills each extra matrixname row with 0. Complex lists are not valid.

List>matr(*listA*,...,*list n*,*matrixname*)

$$\begin{array}{cccc} (1,2,3) + LX & & & List + matr(LX, LY, LY, LB, [C]) & & & Done \\ (4,5,6) + LY & & (4 5 6) & \rightarrow & [C] & & & [1 4 7] \\ (7,8,9) + LB & & (7 8 9) & & & [2 5 8] \\ (7 8 9) & & & [3 6 9]] \end{array}$$

cumSum(cumSum(returns cumulative sums of the elements in *matrix*, starting with the first element. Each element is the cumulative sum of the column from top to bottom.

cumSum(matrix)

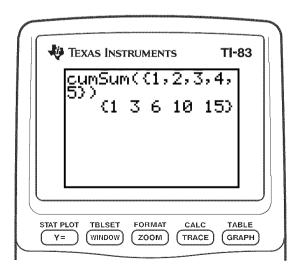

Row Operations MATRX MATH menu items **A** through **F** are row operations. You can use a row operation in an expression. Row operations do not change *matrix* in memory. You can enter all row numbers and values as expressions. You can select the matrix from the MATRX NAMES menu.

ref(, rref(ref((row-echelon form) returns the row-echelon form of a
real matrix. The number of columns must be greater than
or equal to the number of rows.

ref(*matrix*)

rref((reduced row-echelon form) returns the reduced rowechelon form of a real *matrix*. The number of columns must be greater than or equal to the number of rows.

rref(*matrix*)

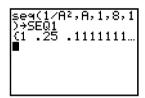


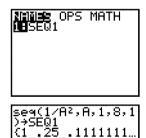
rowSwap(rowSwap(returns a matrix. It swaps *rowA* and *rowB* of matrix. rowSwap(matrix,rowA,rowB) IF1 rowSwap([F],2,4) 64 1 8 91 71 01 511 [2 [5 [2 5855 [2] 0 CI CA CA 6 8 1 4 row+(row+((row addition) returns a matrix. It adds rowA and rowB of matrix and stores the results in rowB. row+(matrix,rowA,rowB) •ow+([D],1,2) [[2 5 7] [10 14 11]] 5,71[8,9,4]] [[2, +[n] 59 *row(***row(** (row multiplication) returns a matrix. It multiplies row of matrix by value and stores the results in row. *row(value,matrix,row) *row+(***row+(** (row multiplication and addition) returns a matrix. It multiplies rowA of matrix by value, adds it to rowB, and stores the results in rowB. *row+(value,matrix,rowA,rowB) [[1,2,3][4,5,6]] →[E] *row+(3,[E],1,2) [[1 2 3] [7 11 15]] $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$

11 Lists

Contents

Getting Started: Generating a Sequence Naming Lists Storing and Displaying Lists Entering List Names Attaching Formulas to List Names Using Lists in Expressions LIST OPS Menu	$11-3 \\ 11-4 \\ 11-6 \\ 11-7 \\ 11-9 \\ 11-10$
LIST MATH Menu	
LIST OPS Menu	11-10




Getting Started is a fast-paced introduction. Read the chapter for details.

Calculate the first eight terms of the sequence $1/A^2$. Store the results to a usercreated list. Then display the results in fraction form. Begin this example on a blank line on the home screen.

- 1. Press 2nd [LIST] ▶ to display the LIST OPS menu.
- 2. Press **5** to select **5:seq(**, which pastes **seq(** to the current cursor location.
- 3. Press 1 ÷ ALPHA [A] <u>x</u>² , ALPHA [A] , 1 , 8 , 1) to enter the sequence.
- Press STOP, and then press 2nd ALPHA to turn on alpha-lock. Press [S] [E] [Q], and then press ALPHA to turn off alpha-lock. Press 1 to complete the list name.
- 5. Press ENTER to generate the list and store it in SEQ1. The list is displayed on the home screen. An ellipsis (...) indicates that the list continues beyond the viewing window. Press → repeatedly (or press and hold →) to scroll the list and view all the list elements.
- Press 2nd [LIST] to display the LIST NAMES menu. Press ENTER to paste LSEQ1 to the current cursor location. (If SEQ1 is not item 1 on your LIST NAMES menu, move the cursor to SEQ1 before you press ENTER.)
- 7. Press <u>MATH</u> to display the MATH menu. Press **1** to select **1:>Frac**, which pastes **>Frac** to the current cursor location.
- 8. Press ENTER to show the sequence in fraction form. Press repeatedly (or press and hold) to scroll the list and view all the list elements.

1/16..

SEQi⊧Frac

Using TI-83 List Names L1 through L6	The TI-83 has six list names in memory: L1, L2, L3, L4, L5, and L6. The list names L1 through L6 are on the keyboard above the numeric keys [] through \widehat{B} . To paste one of these names to a valid screen, press [2nd], and then press the appropriate key. L1 through L6 are stored in stat list editor columns 1 through 6 when you reset memory.
Creating a List Name on the Home Screen	 To create a list name on the home screen, follow these steps. Press 2nd [{], enter one or more list elements, and then press 2nd [}]. Separate list elements with commas. List elements can be real numbers, complex numbers, or expressions.
	(1,2,3,4) 2. Press (\$T0•).
	3. Press $\boxed{\text{ALPHA}}$ [<i>letter from A to Z or θ</i>] to enter the first letter of the name.

4. Enter zero to four letters, θ , or numbers to complete the name.

<1,2,3,4) + TEST

5. Press <u>ENTER</u>. The list is displayed on the next line. The list name and its elements are stored in memory. The list name becomes an item on the LIST NAMES menu.

Note: If you want to view a user-created list in the stat list editor, you must store it in the stat list editor (Chapter 12).

You also can create a list name in these four places.

- At the Name= prompt in the stat list editor
- At an Xlist:, Ylist:, or Data List: prompt in the stat plot editor
- At a List:, List1:, List2:, Freq:, Freq1;, Freq2;, XList:, or YList: prompt in the inferential stat editors
- On the home screen using **SetUpEditor**

You can create as many list names as your TI-83 memory has space to store.

Storing and Displaying Lists

Storing Elements to a List	 You can store list elements in either of two ways. Use braces and STOP on the home screen.
	(4+2i,5-3i)→L¢ (4+2i 5-3i)
	• Use the stat list editor (Chapter 12).
	The maximum dimension of a list is 999 elements.
	Tip: When you store a complex number to a list, the entire list is converted to a list of complex numbers. To convert the list to a list of real numbers, display the home screen, and then enter real (<i>listname</i>)→ <i>listname</i> .
Displaying a List on the Home Screen	To display the elements of a list on the home screen, enter the name of the list (preceded by L if necessary; see page 11-16), and then press ENTER. An ellipsis indicates that the list continues beyond the viewing window. Press repeatedly (or press and hold) to scroll the list and view all the list elements. L1 (2 5 10) LDATA (2.154 50.47 9)


Accessing a List Element	You can store a value to or recall a value from a specific list <i>element</i> . You can store to any element within the current list dimension or one element beyond.
	listname(element)
	$\begin{array}{c} (1,2,3) \neq L_{3} \\ (1 \ 2 \ 3) \\ 4 \neq L_{3}(4) : L_{3} \\ (1 \ 2 \ 3 \ 4) \\ L_{3}(2) \\ 2 \end{array}$
Deleting a List from Memory	To delete lists from memory, including L1 through L6, use the MEMORY DELETE FROM secondary menu (Chapter 18). Resetting memory restores L1 through L6. Removing a list from the stat list editor does not delete it from memory.
Using Lists in Graphing	You can use lists to graph a family of curves (Chapter 3).

LTEST (1 2 3 LTEST + TEST 2 (1 2 3	4) 4)
---	----------

Copying One List To copy a list, store it to another list.

Using the LIST NAMES Menu

To display the LIST NAMES menu, press [2nd] [LIST]. Each item is a user-created list name. LIST NAMES menu items are sorted automatically in alphanumerical order. Only the first 10 items are labeled, using **1** through **9**, then **0**. To jump to the first list name that begins with a particular alpha character or θ , press [ALPHA] [*letter from A to Z or* θ].

Tip: From the top of a menu, press to move to the bottom. From the bottom, press to move to the top.

Note: The LIST NAMES menu omits list names L1 through L6. Enter L1 through L6 directly from the keyboard (page 11-3).

When you select a list name from the LIST NAMES menu, the list name is pasted to the current cursor location.

• The list name symbol L precedes a list name when the name is pasted where non-list name data also is valid, such as the home screen.

• The L symbol does not precede a list name when the name is pasted where a list name is the only valid input, such as the stat list editor's **Name=** prompt or the stat plot editor's **XList:** and **YList:** prompts.

Entering a User-Created List Name Directly To enter an existing list name directly, follow these steps.

- 1. Press 2nd [LIST] > to display the LIST OPS menu.
- 2. Select **B**:L, which pastes L to the current cursor location. L is not always necessary (page 11-16).

NAMES 🔟 📴 MATH
6tcumSum<
7:AList(8:Select(
19: aŭ9ment(
0:List⊧matr(
A:Matr+list(

Note: You also can paste L to the current cursor location from the CATALOG (Chapter 15).

3. Enter the characters that comprise the list name.

LT123∎

Attaching a Formula to a List Name	You can attach a formula to a list name so that each list element is a result of the formula. When executed, the attached formula must resolve to a list.
	When anything in the attached formula changes, the list to which the formula is attached is updated automatically.
	• When you edit an element of a list that is referenced in the formula, the corresponding element in the list to which the formula is attached is updated.
	• When you edit the formula itself, all elements in the list to which the formula is attached are updated.
	For example, the first screen below shows that elements

For example, the first screen below shows that elements are stored to L₃, and the formula L₃+10 is attached to the list name LADD10. The quotation marks designate the formula to be attached to LADD10. Each element of LADD10 is the sum of an element in L₃ and 10.

The next screen shows another list, L4. The elements of L4 are the sum of the same formula that is attached to L3. However, quotation marks are not entered, so the formula is not attached to L4.

On the next line, $-6 {\rightarrow} L3(1):L3$ changes the first element in L3 to -6, and then redisplays L3.

The last screen shows that editing L3 updated LADD10, but did not change L4. This is because the formula L3+10 is attached to LADD10, but it is not attached to L4.

LADD10	{4	12	13) 13)
L۹	(11	12	13)


Note: To view a formula that is attached to a list name, use the stat list editor (Chapter 12).

Attaching a Formula to a List on the Home Screen or in a Program To attach a formula to a list name from a blank line on the home screen or from a program, follow these steps.

1. Press <u>ALPHA</u> ["], enter the formula (which must resolve to a list), and press <u>ALPHA</u> ["] again.

Note: When you include more than one list name in a formula, each list must have the same dimension.

- 2. Press STO.
- 3. Enter the name of the list to which you want to attach the formula.
 - Press (2nd), and then enter a TI-83 list name L1 through L6.
 - Press 2nd [LIST] and select a user-created list name from the LIST NAMES menu.
 - Enter a user-created list name directly using L (page 11-16).
- 4. Press ENTER.

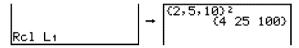
Note: The stat list editor displays a formula-lock symbol next to each list name that has an attached formula. Chapter 12 describes how to use the stat list editor to attach formulas to lists, edit attached formulas, and detach formulas from lists.

You can detach (clear) an attached formula from a list in any of three ways.

- Enter ""→*listname* on the home screen.
- Edit any element of a list to which a formula is attached.
- Use the stat list editor (Chapter 12).

Note: You also can use **CIrList** or **CIrAllList** to detach a formula from a list (Chapter 18).

Detaching a Formula from a List


Using a List in an You Expression Whe

You can use lists in an expression in any of three ways. When you press <u>ENTER</u>, any expression is evaluated for each list element, and a list is displayed.

• Use L1-L6 or any user-created list name in an expression.

• Enter the list elements directly (step 1 on page 11-3).

• Use [2nd] [RCL] to recall the contents of the list into an expression at the cursor location (Chapter 1).

Note: You must paste user-created list names to the Rcl prompt by selecting them from the LIST NAMES menu. You cannot enter them directly using L.

Using Lists with Math Functions

You can use a list to input several values for some math functions. Other chapters and Appendix A specify whether a list is valid. The function is evaluated for each list element, and a list is displayed.

• When you use a list with a function, the function must be valid for every element in the list. In graphing, an invalid element, such as -1 in √({1,0,-1}), is ignored.

This returns an error.

Plot1Plot2Plot3This graphs $X*\sqrt{1}$ and $X*\sqrt{0}$, $Y1 \blacksquare X \downarrow ({1,0,-1})$ but skips $X*\sqrt{-1}$.

• When you use two lists with a two-argument function, the dimension of each list must be the same. The function is evaluated for corresponding elements.

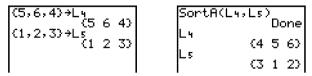
• When you use a list and a value with a two-argument function, the value is used with each element in the list.

LIST OPS Menu	To display the LIST OPS menu, press 2nd [LIST] ▶.

NAMES OPS MATH	
1:SortA(Sorts lists in ascending order.
2:SortD(Sorts lists in descending order.
3:dim(Sets the list dimension.
4:Fill(Fills all elements with a constant.
5:seq(Creates a sequence.
6:cumSum(Returns a list of cumulative sums.
7:AList(Returns difference of successive elements.
8:Select(Selects specific data points.
9:augment(Concatenates two lists.
O:List∍matr(Stores a list to a matrix.
A:Matr∍list(Stores a matrix to a list.
В: L	Designates the list-name data type.

SortA(, SortD(SortA((sort ascending) sorts list elements from low to high values. SortD((sort descending) sorts list elements from high to low values. Complex lists are sorted based on magnitude (modulus).

With one list, **SortA(** and **SortD(** sort the elements of *listname* and update the list in memory.



SortD(listname)

(5,6,4)→L3 (5 6 4) SortA(L3) L3 (4 5 6) SortD(L3) L3 (6 5 4)

With two or more lists, **SortA(** and **SortD(** sort *keylistname*, and then sort each *dependlist* by placing its elements in the same order as the corresponding elements in *keylistname*. All lists must have the same dimension.

SortA(keylistname,dependlist1[,dependlist2,...,dependlist n]) SortD(keylistname,dependlist1[,dependlist2,...,dependlist n])

Note: In the example, **5** is the first element in **L4**, and **1** is the first element in **L5**. After **SortA(L4,L5)**, **5** becomes the second element of **L4**, and likewise, **1** becomes the second element of **L5**.

Note: SortA(and SortD(are the same as SortA(and SortD(on the STAT EDIT menu (Chapter 12).

Using dim(to Find List Dimensions	<pre>dim((dimension) returns the length (number of elements) of list. dim(list) dim((1,3,5,7))</pre>
Using dim(to Create a List	You can use dim(with \underline{STOP} to create a new <i>listname</i> with dimension <i>length</i> from 1 to 999. The elements are zeros. <i>length</i> \rightarrow dim(<i>listname</i>) $\overline{3 \rightarrow dim(L_2)}$ L_2 $\overline{3}$ C O O O
Using dim(to Redimension a List	 You can use dim with STO to redimension an existing <i>listname</i> to dimension <i>length</i> from 1 to 999. The elements in the old <i>listname</i> that are within the new dimension are not changed. Extra list elements are filled by 0. Elements in the old list that are outside the new dimension are deleted.

length→dim(*listname*)

$$\begin{array}{c}
(4,8,6) \neq L_{1} \\
(4 & 8 & 6) \\
4 \neq \dim(L_{1}) \\
L_{1} \\
(4 & 8 & 6 & 0)
\end{array}$$

$$\begin{array}{c}
3 \neq \dim(L_{1}) \\
L_{1} \\
(4 & 8 & 6 & 0)
\end{array}$$

Fill(

Fill(replaces each element in *listname* with *value*.

Fill(value,listname)

Note: dim(and **Fill(** are the same as **dim(** and **Fill(** on the MATRX MATH menu (Chapter 10).

seq(seq((sequence) returns a list in which each element is the
result of the evaluation of *expression* with regard to
variable for the values ranging from *begin* to *end* at steps
of *increment. variable* need not be defined in memory.
increment can be negative; the default value for *increment*
is 1. seq(is not valid within *expression*.

seq(expression,variable,begin,end[,increment])

seq(A²,A,1,11,3) (1 16 49 100)

cumSum(cumSum((cumulative sum) returns the cumulative sums of the elements in *list*, starting with the first element. *list* elements can be real or complex numbers.

cumSum(list)

cumSum((1,2,3,4, 5)) (1 3 6 10 15)

 \(\Delta List()\)
 \(\Delta List()\) returns a list containing the differences between consecutive elements in *list.* \(\Delta List\) subtracts the first element in *list* from the second element, subtracts the second element from the third, and so on. The list of differences is always one element shorter than the original *list. list* elements can be a real or complex numbers.

 $\Delta \text{List}(list)$

(20,30,45,70)→∟D IST	1
20 30 45 70) دList(بوإدار)	
(10 15 25)	

Select(Select(selects one or more specific data points from a
scatter plot or xyLine plot (only), and then stores the
selected data points to two new lists, *xlistname* and
ylistname. For example, you can use Select(to select and
then analyze a portion of plotted CBL 2/CBL or CBR data.

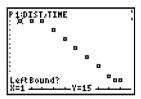
Select(xlistname,ylistname)

Note: Before you use **Select(**, you must have selected (turned on) a scatter plot or xyLine plot. Also, the plot must be displayed in the current viewing window (page 11-13).

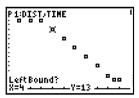
Before Using Select(

Before using Select(, follow these steps.

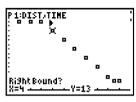
- 1. Create two list names and enter the data.
- 2. Turn on a stat plot, select i: (scatter plot) or i (xyLine), and enter the two list names for Xlist: and Ylist: (Chapter 12).
- 3. Use **ZoomStat** to plot the data (Chapter 3).

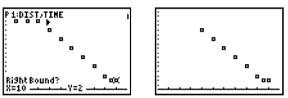


Using Select(to Select Data Points from a Plot To select data points from a scatter plot or xyLine plot, follow these steps.


- 1. Press 2nd [LIST] → 8 to select 8:Select(from the LIST OPS menu. Select(is pasted to the home screen.
- 2. Enter *xlistname*, press , enter *ylistname*, and then press) to designate list names into which you want the selected data to be stored.

Select(L1,L2)

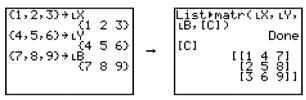

3. Press ENTER. The graph screen is displayed with Left Bound? in the bottom-left corner.


- 4. Press or (if more than one stat plot is selected) to move the cursor onto the stat plot from which you want to select data points.
- 5. Press (and) to move the cursor to the stat plot data point that you want as the left bound.

6. Press ENTER. A ▶ indicator on the graph screen shows the left bound. **Right Bound?** is displayed in the bottom-left corner.

7. Press () to move the cursor to the stat plot point that you want for the right bound, and then press ENTER.

The x-values and y-values of the selected points are stored in *xlistname* and *ylistname*. A new stat plot of *xlistname* and *ylistname* replaces the stat plot from which you selected data points. The list names are updated in the stat plot editor.


Note: The two new lists (*xlistname* and *ylistname*) will include the points you select as left bound and right bound. Also, *left-bound x-value* \leq *right-bound x-value* must be true.

augment(augment(concatenates the elements of *listA* and *listB*. The list elements can be real or complex numbers.

augment(*listA*,*listB*)

Listmatr(Lists stored to matrix) fills *matrixname* column by column with the elements from each list. If the dimensions of all lists are not equal, then Listmatr(fills each extra *matrixname* row with **0**. Complex lists are not valid.

List>matr(*list1*,*list2*, ...,*list n*,*matrixname*)

Matr⊁list(

Matrist((matrix stored to lists) fills each *listname* with elements from each column in *matrix*. If the number of *listname* arguments exceeds the number of columns in *matrix*, then Matrist(ignores extra *listname* arguments. Likewise, if the number of columns in *matrix* exceeds the number of *listname* arguments, then Matrist(ignores extra *matrix* columns.

Matrist(matrix,listname1,listname2, ...,listname n)

$$\begin{array}{c|c} [A] & & & & & & \\ & & [1 & 2 & 3] \\ & & [4 & 5 & 6]] \\ Matr + 1 ist ([A], L1 \\ , L2, L3) & & & \\ & & & & \\ \end{array} \right) \rightarrow \begin{array}{c} L1 & & & (1 & 4) \\ L2 & & & (2 & 5) \\ L3 & & & & \\ & & & & \\ \end{array}$$

Matplist(also fills a *listname* with elements from a specified *column#* in *matrix*. To fill a list with a specific column from *matrix*, you must enter a *column#* after *matrix*.

Matr>list(matrix,column#,listname)

L preceding one to five characters identifies those characters as a user-created *listname*. *listname* may comprise letters, θ , and numbers, but it must begin with a letter from A to Z or θ .

∟listname

Generally, ι must precede a user-created list name when you enter a user-created list name where other input is valid, for example, on the home screen. Without the ι , the TI-83 may misinterpret a user-created list name as implied multiplication of two or more characters.

L need not precede a user-created list name where a list name is the only valid input, for example, at the **Name=** prompt in the stat list editor or the **Xlist**: and **Ylist**: prompts in the stat plot editor. If you enter L where it is not necessary, the TI-83 will ignore the entry.

LIST MATH Menu

LIST MATH Menu To display the LIST MATH menu, press 2nd [LIST] .

NAMES OPS MAT	H
1:min(Returns minimum element of a list.
2:max(Returns maximum element of a list.
3:mean(Returns mean of a list.
4:median(Returns median of a list.
5:sum(Returns sum of elements in a list.
6:prod(Returns product of elements in list.
7:stdDev(Returns standard deviation of a list.
8:variance(Returns the variance of a list.

min(, max(min((minimum) and max((maximum) return the smallest or
largest element of *listA*. If two lists are compared, it returns
a list of the smaller or larger of each pair of elements in *listA*
and *listB*. For a complex list, the element with smallest or
largest magnitude (modulus) is returned.

min(listA[,listB])
max(listA[,listB])

min((1,2,3),(3,2 ,1)) (1 2 1) max((1,2,3),(3,2 ,1)) (3 2 3)

Note: min(and max(are the same as min(and max(on the MATH NUM menu.

mean(, median(mean(returns the mean value of list. median(returns the
median value of list. The default value for freqlist is 1.
Each freqlist element counts the number of consecutive
occurrences of the corresponding element in list. Complex
lists are not valid.

mean(list[,freqlist])
median(list[,freqlist])

sum(, prod(sum((summation) returns the sum of the elements in *list.*
start and *end* are optional; they specify a range of
elements. *list* elements can be real or complex numbers.

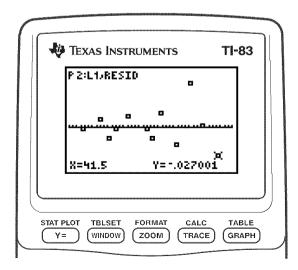
prod(returns the product of all elements of *list. start* and *end* elements are optional; they specify a range of list elements. *list* elements can be real or complex numbers.

sum(list[,start,end]) prod(list[,start,end])

Sums and Products of Numeric Sequences You can combine sum(or prod(with seq(to obtain:

$$\begin{array}{ll} upper & upper \\ \sum expression(x) & \prod expression(x) \\ x=lower & x=lower \end{array}$$

To evaluate $\Sigma \ 2^{(N-1)}$ from N=1 to 4:


stdDev(, variance(**stdDev(** returns the standard deviation of the elements in *list*. The default value for *freqlist* is 1. Each *freqlist* element counts the number of consecutive occurrences of the corresponding element in *list*. Complex lists are not valid.

variance(returns the variance of the elements in *list*. The default value for *freqlist* is 1. Each *freqlist* element counts the number of consecutive occurrences of the corresponding element in *list*. Complex lists are not valid.

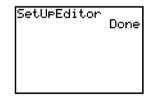
stdDev(list[,freqlist]) variance(list[,freqlist])

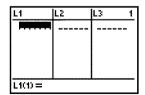
12 Statistics

Contents	Getting Started: Pendulum Lengths and Periods 12-2
	Setting Up Statistical Analyses 12-10
	Using the Stat List Editor
	Attaching Formulas to List Names 12-14
	Detaching Formulas from List Names
	Switching Stat List Editor Contexts 12-17
	Stat List Editor Contexts
	STAT EDIT Menu
	Regression Model Features 12-22
	STAT CALC Menu
	Statistical Variables 12-29
	Statistical Analysis in a Program 12-30
	Statistical Plotting 12-31
	Statistical Plotting in a Program

Getting Started is a fast-paced introduction. Read the chapter for details.

A group of students is attempting to determine the mathematical relationship between the length of a pendulum and its period (one complete swing of a pendulum). The group makes a simple pendulum from string and washers and then suspends it from the ceiling. They record the pendulum's period for each of 12 string lengths.*


Length (cm)	Time (sec)
6.5	0.51
11.0	0.68
13.2	0.73
15.0	0.79
18.0	0.88
23.1	0.99
24.4	1.01
26.6	1.08
30.5	1.13
34.3	1.26
37.6	1.28
41.5	1.32


- 1. Press MODE ▼ ▼ ▼ ENTER to set Func graphing mode.
- Press <u>STAT</u> 5 to select 5:SetUpEditor. SetUpEditor is pasted to the home screen.

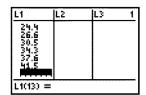
Press [ENTER]. This removes lists from stat list editor columns 1 through 20, and then stores lists L1 through L6 in columns 1 through 6.

Note: Removing lists from the stat list editor does not delete them from memory.

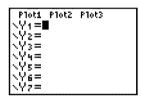
3. Press STAT 1 to select 1:Edit from the STAT EDIT menu. The stat list editor is displayed. If elements are stored in L1 and L2, press A to move the cursor onto L1, and then press CLEAR ENTER A CLEAR ENTER A CLEAR ENTER to clear both lists. Press A to move the rectangular cursor back to the first row in L1.

*This example is quoted and adapted from *Contemporary Precalculus Through Applications*, by the North Carolina School of Science and Mathematics, by permission of Janson Publications, Inc., Dedham, MA. 1-800-322-MATH. © 1992. All rights reserved.

12-2 Statistics

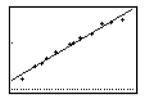

- Press 6 5 ENTER to store the first pendulum string length (6.5 cm) in L1. The rectangular cursor moves to the next row. Repeat this step to enter each of the 12 string length values in the table on page 12-2.
- 5. Press to move the rectangular cursor to the first row in L2.


Press 51 ENTER to store the first time measurement (.51 sec) in L2. The rectangular cursor moves to the next row. Repeat this step to enter each of the 12 time values in the table on page 12-2.


6. Press Y= to display the Y= editor.

If necessary, press [CLEAR] to clear the function Y1. As necessary, press ▲, [ENTER], and ▶ to turn off Plot1, Plot2, and Plot3 from the top line of the Y= editor (Chapter 3). As necessary, press , , , and [ENTER] to deselect functions.

- 7. Press [2nd] [STAT PLOT] 1 to select 1:Plot1 from the STAT PLOTS menu. The stat plot editor is displayed for plot 1.
- 9. Press ZOOM **9** to select **9:ZoomStat** from the ZOOM menu. The window variables are adjusted automatically, and plot 1 is displayed. This is a scatter plot of the time-versus-length data.



Since the scatter plot of time-versus-length data appears to be approximately linear, fit a line to the data.

- 10. Press <u>STAT</u> > 4 to select 4:LinReg(ax+b) (linear regression model) from the STAT CALC menu. LinReg(ax+b) is pasted to the home screen.
- 11. Press 2nd [L1] , 2nd [L2] . Press VARS
 1 to display the VARS Y-VARS
 FUNCTION secondary menu, and then press 1 to select 1:Y1. L1, L2, and Y1 are pasted to the home screen as arguments to LinReg(ax+b).
- 12. Press ENTER to execute LinReg(ax+b). The linear regression for the data in L1 and L2 is calculated. Values for a and b are displayed on the home screen. The linear regression equation is stored in Y1. Residuals are calculated and stored automatically in the list name RESID, which becomes an item on the LIST NAMES menu.
- 13. Press <u>GRAPH</u>. The regression line and the scatter plot are displayed.

The regression line appears to fit the central portion of the scatter plot well. However, a residual plot may provide more information about this fit.

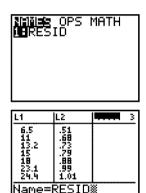
14. Press **STAT 1** to select **1:Edit**. The stat list editor is displayed.

Press \blacktriangleright and \frown to move the cursor onto L3.

Press 2nd [INS]. An unnamed column is displayed in column 3; L3, L4, L5, and L6 shift right one column. The Name= prompt is displayed in the entry line, and alpha-lock is on.

15. Press 2nd [LIST] to display the LIST NAMES menu.

If necessary, press 🔽 to move the cursor onto the list name **RESID**.


- 16. Press ENTER to select **RESID** and paste it to the stat list editor's **Name=** prompt.
- 17. Press ENTER. **RESID** is stored in column **3** of the stat list editor.

Press $\overline{}$ repeatedly to examine the residuals.

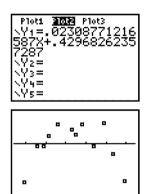
Notice that the first three residuals are negative. They correspond to the shortest pendulum string lengths in L1. The next five residuals are positive, and three of the last four are negative. The latter correspond to the longer string lengths in L1. Plotting the residuals will show this pattern more clearly.

clearly.		

L1	L2	3
6.5 113.2 118.1 198.1 198.1 22 2 2 2 2 2	,51 ,68 ,799 ,889 ,999 1,01	
Name=I	3	

LI	L2	(त्रवडरत) 3
6.5 11 13.2 15 18 23.1 24.4	.51 .69 .79 .99 1.01	0698 0036 0044 .014 .03474 .02699 .01698

- 18. Press [2nd] [STAT PLOT] 2 to select 2:Plot2 from the STAT PLOTS menu. The stat plot editor is displayed for plot 2.
- 19. Press ENTER to select **On**, which turns on plot 2.


Press \checkmark [ENTER to select \bowtie (scatter plot). Press \checkmark [2nd [L1] to specify Xlist:L1 for plot 2. Press \checkmark [R] [E] [S] [I] [D] (alpha-lock is on) to specify Ylist:RESID for plot 2. Press \checkmark [ENTER to select \Box as the mark for each data point on the scatter plot.

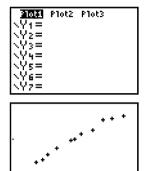
20. Press Y= to display the Y= editor.

Press (to move the cursor onto the = sign, and then press ENTER to deselect Y1. Press (ENTER to turn off plot 1.

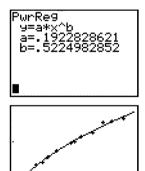
21. Press ZOOM **9** to select **9:ZoomStat** from the ZOOM menu. The window variables are adjusted automatically, and plot 2 is displayed. This is a scatter plot of the residuals.

Notice the pattern of the residuals: a group of negative residuals, then a group of positive residuals, and then another group of negative residuals.

The residual pattern indicates a curvature associated with this data set for which the linear model did not account. The residual plot emphasizes a downward curvature, so a model that curves down with the data would be more accurate. Perhaps a function such as square root would fit. Try a power regression to fit a function of the form $y = a * x^b$.


22. Press $\forall =$ to display the Y= editor.

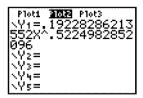
Press CLEAR to clear the linear regression equation from Y1. Press FILER to turn on plot 1. Press FILER to turn off plot 2.

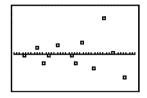

- 23. Press ZOOM **9** to select **9:ZoomStat** from the ZOOM menu. The window variables are adjusted automatically, and the original scatter plot of time-versuslength data (plot 1) is displayed.
- 24. Press <u>STAT</u> → <u>ALPHA</u> [A] to select A:PwrReg from the STAT CALC menu. PwrReg is pasted to the home screen.

Press [2nd [L1] , [2nd [L2] , Press [VARS] 1 to display the VARS Y-VARS FUNCTION secondary menu, and then press 1 to select 1:Y1. L1, L2, and Y1 are pasted to the home screen as arguments to PwrReg.

- Press ENTER to calculate the power regression. Values for a and b are displayed on the home screen. The power regression equation is stored in Y1. Residuals are calculated and stored automatically in the list name RESID.
- 26. Press GRAPH. The regression line and the scatter plot are displayed.

The new function $y=.192x^{.522}$ appears to fit the data well. To get more information, examine a residual plot.

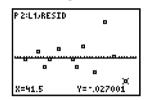

27. Press Y= to display the Y= editor.


Press \blacksquare ENTER to deselect Y1.

Press IENTER to turn off plot 1. Press I ENTER to turn on plot 2.

Note: Step 19 defined plot 2 to plot residuals (RESID) versus string length (L1).

28. Press ZOOM **9** to select **9:ZoomStat** from the ZOOM menu. The window variables are adjusted automatically, and plot 2 is displayed. This is a scatter plot of the residuals.


The new residual plot shows that the residuals are random in sign, with the residuals increasing in magnitude as the string length increases.

To see the magnitudes of the residuals, continue with these steps.

29. Press TRACE.

Press \blacktriangleright and \triangleleft to trace the data. Observe the values for **Y** at each point.

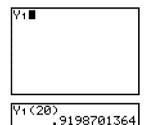
With this model, the largest positive residual is about 0.041 and the smallest negative residual is about -0.027. All other residuals are less than 0.02 in magnitude.

Now that you have a good model for the relationship between length and period, you can use the model to predict the period for a given string length. To predict the periods for a pendulum with string lengths of 20 cm and 50 cm, continue with these steps.

- 30. Press VARS > 1 to display the VARS Y-VARS FUNCTION secondary menu, and then press 1 to select 1:Y1. Y1 is pasted to the home screen.
- 31. Press (20) to enter a string length of 20 cm.

Press ENTER to calculate the predicted time of about 0.92 seconds.

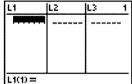
Based on the residual analysis, we would expect the prediction of about 0.92 seconds to be within about 0.02 seconds of the actual value.


32. Press 2nd [ENTRY] to recall the Last Entry.

Press • • • • 5 to change the string length to 50 cm.

33. Press ENTER to calculate the predicted time of about 1.48 seconds.

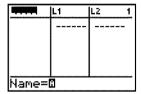
Since a string length of 50 cm exceeds the lengths in the data set, and since residuals appear to be increasing as string length increases, we would expect more error with this estimate.


Note: You also can make predictions using the table with the TABLE SETUP settings Indpnt:Ask and Depend:Auto (Chapter 7).

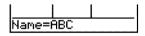
 $Y_{1}(20)$ 9198701364 Y1(50 484736865

Using Lists to Store Data	Data for statistical analyses is stored in lists, which you can create and edit using the stat list editor. The TI-83 has six list variables in memory, L1 through L6, to which you can store data for statistical calculations. Also, you can store data to list names that you create (Chapter 11).
Setting Up a Statistical	To set up a statistical analysis, follow these steps. Read the chapter for details.
Analysis	1. Enter the statistical data into one or more lists.
	2. Plot the data.
	3. Calculate the statistical variables or fit a model to the data.
	4. Graph the regression equation for the plotted data.
	5. Graph the residuals list for the given regression model.
Displaying the Stat List Editor	The stat list editor is a table where you can store, edit, and view up to 20 lists that are in memory. Also, you can create list names from the stat list editor. To display the stat list editor, press [STAT], and then select
	1:Edit from the STAT EDIT menu.

The top line displays list names. L1 through L6 are stored in columns 1 through 6 after a memory reset. The number of the current column is displayed in the top-right corner.


The bottom line is the entry line. All data entry occurs on this line. The characteristics of this line change according to the current context (page 12-17).

The center area displays up to seven elements of up to three lists; it abbreviates values when necessary. The entry line displays the full value of the current element. Entering a List Name in the Stat List Editor To enter a list name in the stat list editor, follow these steps.


- 1. Display the **Name=** prompt in the entry line in either of two ways.
 - Move the cursor onto the list name in the column where you want to insert a list, and then press [2nd] [INS]. An unnamed column is displayed and the remaining lists shift right one column.
 - Press until the cursor is on the top line, and then press until you reach the unnamed column.

Note: If list names are stored to all 20 columns, you must remove a list name to make room for an unnamed column.

The Name= prompt is displayed and alpha-lock is on.

- 2. Enter a valid list name in any of four ways.
 - Select a name from the LIST NAMES menu (Chapter 11).
 - Enter L1, L2, L3, L4, L5, or L6 from the keyboard.
 - Enter an existing user-created list name directly from the keyboard.
 - Enter a new user-created list name (page 12-12).

3. Press ENTER or \checkmark to store the list name and its elements, if any, in the current column of the stat list editor.

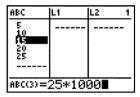
753	L1	L2 1
ABC =		

To begin entering, scrolling, or editing list elements, press $\boxed{\bullet}$. The rectangular cursor is displayed.

Note: If the list name you entered in step 2 already was stored in another stat list editor column, then the list and its elements, if any, move to the current column from the previous column. Remaining list names shift accordingly.

Creating a Name in the Stat List Editor	To create a name in the stat list editor, follow these steps.
	1. Follow step 1 on page 12-11 to display the Name= prompt.
	2. Press [<i>letter from A to Z or</i> θ] to enter the first letter of the name. The first character cannot be a number.
	3. Enter zero to four letters, θ , or numbers to complete the new user-created list name. List names can be one to five characters long.
	4. Press ENTER or to store the list name in the current column of the stat list editor. The list name becomes an item on the LIST NAMES menu (Chapter 11).
Removing a List from the Stat List Editor	To remove a list from the stat list editor, move the cursor onto the list name and then press <u>DEL</u> . The list is not deleted from memory; it is only removed from the stat list editor.
	Note: To delete a list name from memory, use the MEMORY DELETE:List selection screen (Chapter 18).
Removing All Lists and Restoring L1	You can remove all user-created lists from the stat list editor and restore list names L1 through L6 to columns 1 through 6 in either of two ways.
through L6	Use SetUpEditor with no arguments (page 12-21).Reset all memory (Chapter 18).
Clearing All Elements from a List	 You can clear all elements from a list in any of five ways. Use ClrList to clear specified lists (page 12-20). In the stat list editor, press → to move the cursor onto a list name, and then press CLEAR ENTER. In the stat list editor, move the cursor onto each element, and then press DEL one by one. On the home screen or in the program editor, enter 0>dim(listname) to set the dimension of listname to 0 (Chapter 11). Use ClrAllLists to clear all lists in memory (Chapter 18).

Editing a List Element


To edit a list element, follow these steps.

- 1. Move the rectangular cursor onto the element you want to edit.
- 2. Press ENTER to move the cursor to the entry line.

Note: If you want to replace the current value, you can enter a new value without first pressing [<u>ENTER</u>]. When you enter the first character, the current value is cleared automatically.

- 3. Edit the element in the entry line.
 - Press one or more keys to enter the new value. When you enter the first character, the current value is cleared automatically.
 - Press > to move the cursor to the character before which you want to insert, press 2nd [INS], and then enter one or more characters.
 - Press > to move the cursor to a character you want to delete, and then press DEL to delete the character.

To cancel any editing and restore the original element at the rectangular cursor, press <u>CLEAR</u> <u>ENTER</u>.

Note: You can enter expressions and variables for elements.

4. Press ENTER, A, or v to update the list. If you entered an expression, it is evaluated. If you entered only a variable, the stored value is displayed as a list element.

ABC	L1	L2	1
5 10 25000 R0 25			
ABC(4)=;	20		

When you edit a list element in the stat list editor, the list is updated in memory immediately.

Attaching a		
Formula to a List		
Name in Stat List		
Editor		

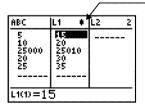
You can attach a formula to a list name in the stat list editor, and then display and edit the calculated list elements. When executed, the attached formula must resolve to a list. Chapter 11 describes in detail the concept of attaching formulas to list names.

To attach a formula to a list name that is stored in the stat list editor, follow these steps.

- 1. Press STAT ENTER to display the stat list editor.
- 2. Press \blacksquare to move the cursor to the top line.
- 3. Press (or), if necessary, to move the cursor onto the list name to which you want to attach the formula.

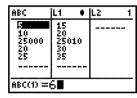
Note: If a formula in quotation marks is displayed on the entry line, then a formula is already attached to the list name. To edit the formula, press [ENTER], and then edit the formula.

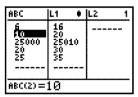
4. Press ALPHA ["], enter the formula, and press ALPHA ["].


Note: If you do not use quotation marks, the TI-83 calculates and displays the same initial list of answers, but does not attach the formula for future calculations.

ABC	T 1	L2 2
5 10 25000 20 25		
L1 ="LABC+10"∎		

Note: Any user-created list name referenced in a formula must be preceded by an ${\bf L}$ symbol (Chapter 11).


5. Press ENTER. The TI-83 calculates each list element and stores it to the list name to which the formula is attached. A lock symbol is displayed in the stat list editor, next to the list name to which the formula is attached.


lock symbol

12-14 Statistics

Using the Stat List Editor When Formula-Generated Lists Are Displayed When you edit an element of a list referenced in an attached formula, the TI-83 updates the corresponding element in the list to which the formula is attached (Chapter 11).

When a list with a formula attached is displayed in the stat list editor and you edit or enter elements of another displayed list, then the TI-83 takes slightly longer to accept each edit or entry than when no lists with formulas attached are in view.

Tip: To speed editing time, scroll horizontally until no lists with formulas are displayed, or rearrange the stat list editor so that no lists with formulas are displayed.

Handling Errors On Resulting from refe Attached How Formulas the

On the home screen, you can attach to a list a formula that references another list with dimension 0 (Chapter 11). However, you cannot display the formula-generated list in the stat list editor or on the home screen until you enter at least one element to the list that the formula references.

All elements of a list referenced by an attached formula must be valid for the attached formula. For example, if **Real** number mode is set and the attached formula is log(L1), then each element of L1 must be greater than 0, since the logarithm of a negative number returns a complex result.

Tip: If an error menu is returned when you attempt to display a formula-generated list in the stat list editor, you can select **2:Goto**, write down the formula that is attached to the list, and then press <u>(CLEAR) ENTER</u> to detach (clear) the formula. You then can use the stat list editor to find the source of the error. After making the appropriate changes, you can reattach the formula to a list.

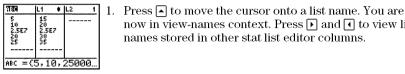
If you do not want to clear the formula, you can select **1:Quit**, display the referenced list on the home screen, and find and edit the source of the error. To edit an element of a list on the home screen, store the new value to *listname(element#)* (Chapter 11).

Detaching a You can detach (clear) a formula from a list name in any of Formula from a four ways. List Name In the stat list editor, move the cursor onto the name of • the list to which a formula is attached. Press ENTER [CLEAR] [ENTER]. All list elements remain, but the formula is detached and the lock symbol disappears. In the stat list editor, move the cursor onto an element • of the list to which a formula is attached. Press ENTER. edit the element, and then press [ENTER]. The element changes, the formula is detached, and the lock symbol disappears. All other list elements remain. Use CirList (page 12-20). All elements of one or more specified lists are cleared, each formula is detached, and each lock symbol disappears. All list names remain. Use CIrAllLists (Chapter 18). All elements of all lists in memory are cleared, all formulas are detached from all list names, and all lock symbols disappear. All list names remain. As described above, one way to detach a formula from a Editing an Element of a list name is to edit an element of the list to which the formula is attached. The TI-83 protects against Formula-Generated List inadvertently detaching the formula from the list name by editing an element of the formula-generated list. Because of the protection feature, you must press [ENTER] before you can edit an element of a formula-generated list. The protection feature does not allow you to delete an element of a list to which a formula is attached. To delete an element of a list to which a formula is attached, you must first detach the formula in any of the ways described above.

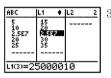
Switching Stat List Editor Contexts

Stat List Editor Contexts

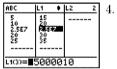
The stat list editor has four contexts.

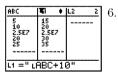

- View-elements context
- Edit-elements context
- View-names context
- Enter-name context
- The stat list editor is first displayed in view-elements context. To switch through the four contexts, select 1:Edit from the STAT EDIT menu and follow these steps.

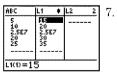
now in view-names context. Press > and < to view list


names stored in other stat list editor columns.

.

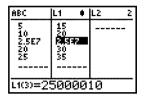

•




- Press ENTER]. You are now in edit-elements context. You may edit any element in a list. All elements of the current list are displayed in braces ({}) in the entry line. Press \blacktriangleright and $\overleftarrow{\bullet}$ to view more list elements.
- Press [ENTER] again. You are now in view-elements 3. context. Press \blacktriangleright , \checkmark , \checkmark , and \land to view other list elements. The current element's full value is displayed in the entry line.

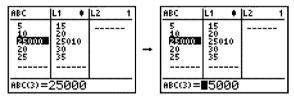
Press ENTER again. You are now in edit-elements context. You may edit the current element in the entry line.

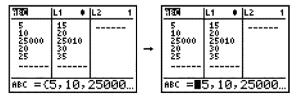
ABC 5 10 2.5E7 20 25		L1 • 2 15 20 2.5E7 30 35	5.	Press 🛋 until the cursor is on a list name, then press 2nd [INS]. You are now in enter-name context.
Name=	۵	-		



- [2nd] [INS]. You are now in enter-name context.
 - Press [CLEAR]. You are now in view-names context.
 - Press . You are now back in view-elements context.

View-Elements Context


In view-elements context, the entry line displays the list name, the current element's place in that list, and the full value of the current element, up to 12 characters at a time. An ellipsis (...) indicates that the element continues beyond 12 characters.


To page down the list six elements, press <u>ALPHA</u> . To page up six elements, press <u>ALPHA</u> . To delete a list element, press <u>DEL</u>. Remaining elements shift up one row. To insert a new element, press <u>2nd</u> [INS]. **0** is the default value for a new element.

Edit-ElementsIn edit-elements context, the data displayed in the entryContextline depends on the previous context.

• When you switch to edit-elements context from viewelements context, the full value of the current element is displayed. You can edit the value of this element, and then press v and it to edit other list elements.

• When you switch to edit-elements context from viewnames context, the full values of all elements in the list are displayed. An ellipsis indicates that list elements continue beyond the screen. You can press ▶ and ◀ to edit any element in the list.

Note: In edit-elements context, you can attach a formula to a list name only if you switched to it from view-names context.

View-NamesIn view-names context, the entry line displays the list nameContextand the list elements.

7139	L1 🕴	L2 1		
5 10 25000 20 25	15 20 25010 30 35			
HBC = (5,10,25000				

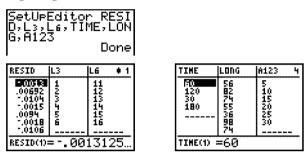
To remove a list from the stat list editor, press [DEL]. Remaining lists shift to the left one column. The list is not deleted from memory.

To insert a name in the current column, press [2nd] [INS]. Remaining columns shift to the right one column.

Enter-Name Context In enter-name context, the **Name=** prompt is displayed in the entry line, and alpha-lock is on.

At the Name= prompt, you can create a new list name, paste a list name from L1 to L6 from the keyboard, or paste an existing list name from the LIST NAMES menu (Chapter 11). The $\$ symbol is not required at the Name= prompt.

	ABC	L1 # 1		
	5 10 25000 20 25 	15 20 25010 30 35 		
Name=0				

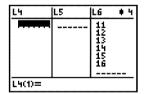

To leave enter-name context without entering a list name, press <u>CLEAR</u>. The stat list editor switches to view-names context.

STAT EDIT Menu To display the STAT EDIT menu, press [STAT]. EDIT CALC TESTS Displays the stat list editor. 1: Edit... 2: SortA(Sorts a list in ascending order. 3: SortD(Sorts a list in descending order. Deletes all elements of a list. 4:Clrlist Stores lists in the stat list editor. 5: SetUpEditor Note: Chapter 13: Inferential Statistics describes the STAT TESTS menu items SortA(. SortD(**SortA(** (sort ascending) sorts list elements from low to high values. **SortD(** (sort descending) sorts list elements from high to low values. Complex lists are sorted based on magnitude (modulus). SortA(and SortD(each can sort in either of two ways. • With one *listname*. SortA(and SortD(sort the elements in *listname* and update the list in memory. With two or more lists, SortA(and SortD(sort keylistname, and then sort each dependlist by placing its elements in the same order as the corresponding elements in *keylistname*. This lets you sort two-variable data on **X** and keep the data pairs together. All lists must have the same dimension. The sorted lists are updated in memory. SortA(listname) SortD(listname) SortA(keylistname,dependlist1[,dependlist2,...,dependlist n]) SortD(keylistname,dependlist1[,dependlist2,...,dependlist n]) {5,4,3}→L _3 (3 4 5)4 (3 2 1) ∿tA(L₃, Note: SortA(and SortD(are the same as SortA(and SortD(on the LIST OPS menu CIrList CirList clears (deletes) from memory the elements of one or more *listnames*. CIrList also detaches any formula attached to a *listname*. ClrList listname1,listname2,...,listname n Note: To clear from memory all elements of all list names, use CIrAIILists (Chapter 18).

SetUpEditorWith SetUpEditor you can set up the stat list editor to
display one or more *listnames* in the order that you
specify. You can specify zero to 20 *listnames*.

SetUpEditor [*listname1*,*listname2*,...,*listname n*]

SetUpEditor with one to 20 *listnames* removes all list names from the stat list editor and then stores *listnames* in the stat list editor columns in the specified order, beginning in column **1**.



If you enter a *listname* that is not stored in memory already, then *listname* is created and stored in memory; it becomes an item on the LIST NAMES menu.

Restoring L1 through L6 to the Stat List Editor

SetUpEditor with no *listnames* removes all list names from the stat list editor and restores list names L1 through L6 in the stat list editor columns 1 through 6.

Regression Model Features	STAT CALC menu items 3 through C are regression models (page 12-24). The automatic residual list and automatic regression equation features apply to all regression models. Diagnostics display mode applies to some regression models.		
Automatic Residual List	When you execute a regression model, the automatic residual list feature computes and stores the residuals to the list name RESID . RESID becomes an item on the LIST NAMES menu (Chapter 11). NAMES OPS MATH COPS MATH		
Automatic Regression Equation	Each regression model has an optional argument, <i>regequ</i> , for which you can specify a Y= variable such as Y1. Upon execution, the regression equation is stored automatically to the specified Y= variable and the Y= function is selected. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		

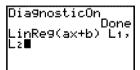
Note: For the regression equation, you can use the fixed-decimal mode setting to control the number of digits stored after the decimal point (Chapter 1). However, limiting the number of digits to a small number could affect the accuracy of the fit.

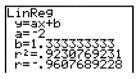
Diagnostics Display Mode	When you execute some regression models, the TI-83 computes and stores diagnostics values for r (correlation coefficient) and r^2 (coefficient of determination) or for R^2 (coefficient of determination).

 ${\bf r}$ and ${\bf r}^2$ are computed and stored for these regression models.

LinReg(ax+b)	LnReg	PwrReg
LinReg(a+bx)	ExpReg	

 \mathbf{R}^2 is computed and stored for these regression models.


QuadReg	CubicReg	QuartReg


The **r** and **r**² that are computed for LnReg, ExpReg, and PwrReg are based on the linearly transformed data. For example, for ExpReg (y=ab^x), **r** and **r**² are computed on ln y=ln a+x(ln b).

By default, these values are not displayed with the results of a regression model when you execute it. However, you can set the diagnostics display mode by executing the **DiagnosticOn** or **DiagnosticOff** instruction. Each instruction is in the CATALOG (Chapter 15).

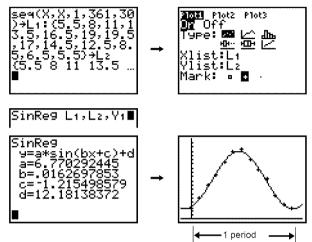
Note: To set **DiagnosticOn** or **DiagnosticOff** from the home screen, press [2nd] [CATALOG], and then select the instruction for the mode you want. The instruction is pasted to the home screen. Press [ENTER] to set the mode.

When **DiagnosticOn** is set, diagnostics are displayed with the results when you execute a regression model.

When **DiagnosticOff** is set, diagnostics are not displayed with the results when you execute a regression model.

Dia9nosticOff Donel LinRe9(ax+b) Li, L 2

STAT CALC Menu


STAT CALC	To display the STAT CALC menu, press [STAT] ▶.				
Menu	EDIT CALC TESTS				
	1:1-Var Stats	Calculates 1-variable statistics.			
	2:2-Var Stats	Calculates 2-variable statistics.			
	3: Med-Med	Calculates a median-median line.			
	4:LinReg(ax+b)	Fits a linear model to data.			
	5: QuadReg	Fits a quadratic model to data.			
	6: CubicReg	Fits a cubic model to data.			
	7:QuartReg	Fits a quartic model to data.			
	8: LinReg(a+bx)	Fits a linear model to data.			
	9: LnReg	Fits a logarithmic model to data.			
	0: ExpReg	Fits an exponential model to data.			
	A: PwrReg	Fits a power model to data.			
	B: Logistic	Fits a logistic model to data.			
	C: SinReg	Fits a sinusoidal model to data.			
	C: STIIKey	This a sinusoidal model to data.			
Frequency of Occurrence for	and L2. If you do not s occurrence of each lis	nenu items, you can specify a list of			
Data Points	Each element in <i>freqlist</i> indicates how many times the corresponding data point or data pair occurs in the data set you are analyzing.				
	For example, if L1={15,12,9,14} and LFREQ={1,4,1,3}, then the TI-83 interprets the instruction 1-Var Stats L1, LFREQ to mean that 15 occurs once, 12 occurs four times, 9 occurs once, and 14 occurs three times.				
	Each element in <i>freqlist</i> must be ≥ 0 , and at least one element must be > 0 .				
	Noninteger <i>freqlist</i> elements are valid. This is useful when entering frequencies expressed as percentages or parts that add up to 1. However, if <i>freqlist</i> contains noninteger frequencies, Sx and Sy are undefined; values are not displayed for Sx and Sy in the statistical results.				

1-Var Stats	 1-Var Stats (one-variable statistics) analyzes data with one measured variable. Each element in <i>freqlist</i> is the frequency of occurrence for each corresponding data point in <i>Xlistname. freqlist</i> elements must be real numbers > 0. 1-Var Stats [<i>Xlistname,freqlist</i>] 1-Var Stats L1,L
2-Var Stats	 2-Var Stats (two-variable statistics) analyzes paired data. <i>Xlistname</i> is the independent variable. <i>Ylistname</i> is the dependent variable. Each element in <i>freqlist</i> is the frequency of occurrence for each data pair (<i>Xlistname</i>,<i>Ylistname</i>). 2-Var Stats [<i>Xlistname</i>,<i>Ylistname</i>,<i>freqlist</i>]
Med-Med (ax+b)	Med-Med (median-median) fits the model equation y=ax+b to the data using the median-median line (resistant line) technique, calculating the summary points x1, y1, x2, y2, x3, and y3. Med-Med displays values for a (slope) and b (y-intercept). Med-Med [Xlistname,Ylistname,freqlist,regequ] Med-Med L3,L4,Y2 Med-Med L3,L4,Y2 Med-Med State
LinReg (ax+b)	LinReg(ax+b) (linear regression) fits the model equation $y=ax+b$ to the data using a least-squares fit. It displays values for a (slope) and b (y-intercept); when DiagnosticOn is set, it also displays values for r^2 and r. LinReg(ax+b) [Xlistname,Ylistname,freqlist,regequ]
QuadReg (ax ² +bx+c)	QuadReg (quadratic regression) fits the second-degree polynomial y=ax ² +bx+c to the data. It displays values for a , b , and c ; when DiagnosticOn is set, it also displays a value for R ² . For three data points, the equation is a polynomial fit; for four or more, it is a polynomial regression. At least three data points are required. QuadReg [Xlistname,Ylistname,freqlist,regequ]

CubicReg (ax³+bx²+cx+d)	CubicReg (cubic regression) fits the third-degree polynomial $y=ax^3+bx^2+cx+d$ to the data. It displays values for a , b , c , and d ; when DiagnosticOn is set, it also displays a value for R ² . For four points, the equation is a polynomial fit; for five or more, it is a polynomial regression. At least four points are required. CubicReg [<i>Xlistname,Ylistname,freqlist,regequ</i>]
	ouncivey [Australine,1 instrume,1 requise,1 eyequ]
QuartReg (ax ⁴ +bx ³ +cx ² + dx+e)	QuartReg (quartic regression) fits the fourth-degree polynomial $y=ax^4+bx^3+cx^2+dx+e$ to the data. It displays values for a , b , c , d , and e ; when DiagnosticOn is set, it also displays a value for R ² . For five points, the equation is a polynomial fit; for six or more, it is a polynomial regression. At least five points are required.
	QuartReg [Xlistname,Ylistname,freqlist,regequ]
LinReg (a+bx)	LinReg(a+bx) (linear regression) fits the model equation $y=a+bx$ to the data using a least-squares fit. It displays values for a (y-intercept) and b (slope); when DiagnosticOn is set, it also displays values for r^2 and r .
	LinReg(a+bx) [Xlistname,Ylistname,freqlist,regequ]
LnReg (a+b ln(x))	LnReg (logarithmic regression) fits the model equation $y=a+b \ln(x)$ to the data using a least-squares fit and transformed values $\ln(x)$ and y. It displays values for a and b ; when DiagnosticOn is set, it also displays values for r^2 and r .
	$\verb"LnReg" [X listname, Y listname, freqlist, regequ]$
ExpReg (ab ^x)	ExpReg (exponential regression) fits the model equation $y=ab^{x}$ to the data using a least-squares fit and transformed values x and ln(y). It displays values for a and b ; when DiagnosticOn is set, it also displays values for r^{2} and r .
	ExpReg [Xlistname,Ylistname,freqlist,regequ]

PwrReg (ax ^b)	PwrReg (power regression) fits the model equation $y=ax^b$ to the data using a least-squares fit and transformed values ln(x) and $ln(y)$. It displays values for a and b ; when DiagnosticOn is set, it also displays values for r^2 and r . PwrReg [<i>Xlistname,Ylistname,freqlist,regequ</i>]
Logistic c/(1+a*e⁻ ^{bx})	Logistic fits the model equation $y=c/(1+a*e^{-bx})$ to the data using an iterative least-squares fit. It displays values for a , b , and c .
	$\label{eq:logistic} \verb"Logistic" [Xlistname,Ylistname,freqlist,regequ"]$
SinReg a sin(bx+c)+d	SinReg (sinusoidal regression) fits the model equation $y=a \sin(bx+c)+d$ to the data using an iterative least-squares fit. It displays values for a , b , c , and d . At least four data points are required. At least two data points per cycle are required in order to avoid aliased frequency estimates.
	${\tt SinReg}\ [iterations, X listname, Y listname, period, regequ]$
	<i>iterations</i> is the maximum number of times the algorithm will iterate to find a solution. The value for <i>iterations</i> can be an integer ≥ 1 and ≤ 16 ; if not specified, the default is 3. The algorithm may find a solution before <i>iterations</i> is reached. Typically, larger values for <i>iterations</i> result in longer execution times and better accuracy for SinReg , and vice versa.
	A <i>period</i> guess is optional. If you do not specify <i>period</i> , the difference between time values in <i>Xlistname</i> must be equal and the time values must be ordered in ascending sequential order. If you specify <i>period</i> , the algorithm may find a solution more quickly, or it may find a solution when it would not have found one if you had omitted a value for <i>period</i> . If you specify <i>period</i> , the differences between time values in <i>Xlistname</i> can be unequal.
	Note: The output of SinReg is always in radians, regardless of the Radian/Degree mode setting.
	A SinReg example is shown on the next page.

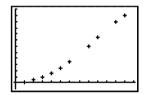
SinReg Example: Daylight Hours in Alaska for One Year Compute the regression model for the number of hours of daylight in Alaska during one year.

With noisy data, you will achieve better convergence results when you specify an accurate estimate for *period*. You can obtain a *period* guess in either of two ways.

- Plot the data and trace to determine the x-distance between the beginning and end of one complete period, or cycle. The illustration above and to the right graphically depicts a complete period, or cycle.
- Plot the data and trace to determine the x-distance between the beginning and end of N complete periods, or cycles. Then divide the total distance by N.

After your first attempt to use **SinReg** and the default value for *iterations* to fit the data, you may find the fit to be approximately correct, but not optimal. For an optimal fit, execute **SinReg 16**,*Xlistname*,*Ylistname*,2 π / *b* where *b* is the value obtained from the previous **SinReg** execution. The statistical variables are calculated and stored as indicated below. To access these variables for use in expressions, press [VARS], and select **5:Statistics**. Then select the VARS menu shown in the column below under VARS menu. If you edit a list or change the type of analysis, all statistical variables are cleared.

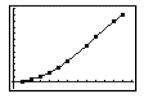
Variables	1-Var Stats	2-Var Stats	Other	VARS menu
mean of x values	x	x		XY
sum of x values	Σχ	Σx		Σ
sum of x ² values	Σ x ²	Σ x ²	*****	Σ
sample standard deviation of x	Sx	Sx		XY
population standard deviation of \mathbf{x}	σ X	σ X	***************************************	XY
number of data points	n	n		XY
mean of y values		Σ		XY
sum of y values		Σy		Σ
sum of y² values		Σ y ²		Σ
sample standard deviation of y		Sy		XY
population standard deviation of y		σγ		XY
sum of x * y		Σxy	1995-9	Σ
minimum of x values	minX	minX	***************************************	XY
maximum of x values	maxX	maxX		XY
minimum of y values		minY	~~~~~	XY
maximum of y values		maxY		XY
1st quartile	Q 1			PTS
median	Med			PTS
3rd quartile	Q 3		<i>8/////</i>	PTS
regression/fit coefficients			a, b	EQ
polynomial, Logistic , and SinReg coefficients			a, b, c, d, e	EQ
correlation coefficient			r	EQ
coefficient of determination			r ² , R ²	EQ
regression equation			RegEQ	EQ
summary points (Med-Med only)			x1, y1, x2, y2, x3, y3	PTS


Q1 and Q3

The first quartile (Q1) is the median of points between minX and Med (median). The third quartile (Q3) is the median of points between Med and maxX.

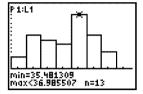
Entering Stat Data	You can enter statistical data, calculate statistical results, and fit models to data from a program. You can enter statistical data into lists directly within the program (Chapter 11).
Statistical Calculations	To perform a statistical calculation from a program, follow these steps.
	1. On a blank line in the program editor, select the type of calculation from the STAT CALC menu.
	2. Enter the names of the lists to use in the calculation. Separate the list names with a comma.
	3. Enter a comma and then the name of a Y= variable, if you want to store the regression equation to a Y= variable.
	PROGRAM:STATS :(1,2,3)→L1 :(-1,-2,-5)→L2 :LinRe9(ax+b) L1 ,L2,Y2

Steps for Plotting Statistical Data in Lists	You can plot statistical data that is stored in lists. The six types of plots available are scatter plot, xyLine, histogram, modified box plot, regular box plot, and normal probability plot. You can define up to three plots.		
	To plot statistical data in lists, follow these steps.		
	1. Store the stat data in one or more lists.		
	2. Select or deselect Y= functions as appropriate.		
	3. Define the stat plot.		
	4. Turn on the plots you want to display.		
	5. Define the viewing window.		
	6. Display and explore the graph.		
<u>l∞∵</u> (Scatter)	 Scatter plots plot the data points from Xlist and Ylist as coordinate pairs, showing each point as a box (□), cross (+), or dot (•). Xlist and Ylist must be the same length. You can use the same list for Xlist and Ylist. 		



~_		
(xyL	ine)

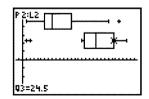
xyLine is a scatter plot in which the data points are plotted and connected in order of appearance in Xlist and Ylist. You may want to use **SortA(** or **SortD(** to sort the lists before you plot them (page 12-20).



ிம் (Histogram)

Histogram plots one-variable data. The XscI window variable value determines the width of each bar, beginning at Xmin. ZoomStat adjusts Xmin, Xmax, Ymin, and Ymax to include all values, and also adjusts XscI. The inequality (Xmax - Xmin) / XscI ≤ 47 must be true. A value that occurs

on the edge of a bar is counted in the bar to the right.

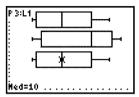

<u>.-⊡---</u> (ModBoxplot)

ModBoxplot (modified box plot) plots one-variable data, like the regular box plot, except points that are 1.5 * Interquartile Range beyond the quartiles. (The Interquartile Range is defined as the difference between the third quartile **Q3** and the first quartile **Q1**.) These points are plotted individually beyond the whisker, using the **Mark** (\Box or + or •) you select. You can trace these points, which are called outliers.

The prompt for outlier points is **x=**, except when the outlier is the maximum point (**maxX**) or the minimum point (**minX**). When outliers exist, the end of each whisker will display **x=**. When no outliers exist, **minX** and **maxX** are the prompts for the end of each whisker. **Q1**, **Med** (median), and **Q3** define the box (page 12-29).

Box plots are plotted with respect to Xmin and Xmax, but ignore Ymin and Ymax. When two box plots are plotted, the first one plots at the top of the screen and the second plots in the middle. When three are plotted, the first one plots at the top, the second in the middle, and the third at the bottom.

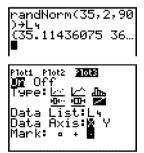
5 66200 5 1 2 Plot1On	
<u> 1111</u>	+
2:Plot20n	
1 L2 1	+
3:Plot3Off	
나는 너 나는	
4↓PlotsOff	

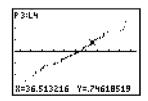


<u>-⊡-</u> (Boxplot)

Boxplot (regular box plot) plots one-variable data. The whiskers on the plot extend from the minimum data point in the set (minX) to the first quartile (Q1) and from the third quartile (Q3) to the maximum point (maxX). The box is defined by Q1, Med (median), and Q3 (page 12-29).

Box plots are plotted with respect to **Xmin** and **Xmax**, but ignore **Ymin** and **Ymax**. When two box plots are plotted, the first one plots at the top of the screen and the second plots in the middle. When three are plotted, the first one plots at the top, the second in the middle, and the third at the bottom.




(NormProbPlot)

NormProbPlot (normal probability plot) plots each observation **X** in **Data List** versus the corresponding quantile **z** of the standard normal distribution. If the plotted points lie close to a straight line, then the plot indicates that the data are normal.

Enter a valid list name in the **Data List** field. Select **X** or **Y** for the **Data Axis** setting.

- If you select **X**, the TI-83 plots the data on the x-axis and the z-values on the y-axis.
- If you select **Y**, the TI-83 plots the data on the y-axis and the z-values on the x-axis.

Defining the Plots

To define a plot, follow these steps.

1. Press [2nd] [STAT PLOT]. The STAT PLOTS menu is displayed with the current plot definitions.

2. Select the plot you want to use. The stat plot editor is displayed for the plot you selected.

- 3. Press ENTER to select **On** if you want to plot the statistical data immediately. The definition is stored whether you select **On** or **Off**.
- 4. Select the type of plot. Each type prompts for the options checked in this table.

Plot Type	XList	YList	Mark	Freq	Data List	Data Axis
🗠 Scatter	3	J	ত			
🗠 xyLine	1	I	1			
பிங Histogram	Ø			Ø		
<u>⊕</u> ModBoxplot	I		1	I		
Boxplot	Q			Ø		
✓ NormProbPlot			3		Q	Q

- 5. Enter list names or select options for the plot type.
 - Xlist (list name containing independent data)
 - Ylist (list name containing dependent data)
 - Mark (□ or + or •)
 - Freq (frequency list for Xlist elements; default is 1)
 - Data List (list name for NormProbPlot)
 - Data Axis (axis on which to plot Data List)

Displaying Other Stat Plot Editors

Each stat plot has a unique stat plot editor. The name of the current stat plot (**Plot1**, **Plot2**, or **Plot3**) is highlighted in the top line of the stat plot editor. To display the stat plot editor for a different plot, press \frown , \bigcirc , and \checkmark to move the cursor onto the name in the top line, and then press <u>ENTER</u>. The stat plot editor for the selected plot is displayed, and the selected name remains highlighted.

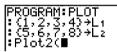
Turning On and Turning Off Stat Plots

PiotsOn and **PiotsOff** allow you to turn on or turn off stat plots from the home screen or a program. With no plot number, **PiotsOn** turns on all plots and **PiotsOff** turns off all plots. With one or more plot numbers (1, 2, and 3), **PiotsOn** turns on specified plots, and **PiotsOff** turns off specified plots.

PlotsOff [1,2,3] PlotsOn [1,2,3]

Note: You also can turn on and turn off stat plots in the top line of the Y= editor (Chapter 3).

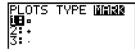
Defining the Viewing Window	Stat plots are displayed on the current graph. To define the viewing window, press <u>WINDOW</u> and enter values for the window variables. ZoomStat redefines the viewing window to display all statistical data points.
Tracing a Stat Plot	When you trace a scatter plot or xyLine, tracing begins at the first element in the lists.
	When you trace a histogram, the cursor moves from the top center of one column to the top center of the next, starting at the first column.
	When you trace a box plot, tracing begins at Med (the median). Press (1) to trace to Q1 and minX . Press () to trace to Q3 and maxX .
	When you press A or T to move to another plot or to another Y= function, tracing moves to the current or beginning point on that plot (not the nearest pixel).
	The ExprOn/ExprOff format setting applies to stat plots (Chapter 3). When ExprOn is selected, the plot number and plotted data lists are displayed in the top-left corner.


Defining a Stat Plot in a Program To display a stat plot from a program, define the plot, and then display the graph.

To define a stat plot from a program, begin on a blank line in the program editor and enter data into one or more lists; then, follow these steps.

1. Press 2nd [STAT PLOT] to display the STAT PLOTS menu.

2. Select the plot to define, which pastes Plot1(, Plot2(, or Plot3(to the cursor location.


3. Press [2nd] [STAT PLOT] > to display the STAT TYPE menu.

PLOTS WWBB MARK	
18 Scatter	
<u>2</u> X9Line	
3:Histo9ram 4:ModBoxplot	
5:Boxplot	
6 NormProbPlot	

4. Select the type of plot, which pastes the name of the plot type to the cursor location.

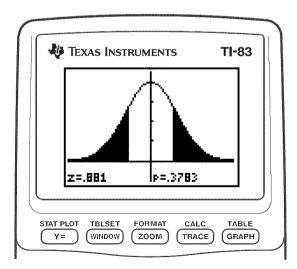
PROGRAM:PLOT :(1,2,3,4)→L1 :(5,6,7,8)→L2 :Plot2(Scatter∎	
: (1,2,3,4)+L1	
:(5,6,7,8)→L2	
:Plot2(Scatter∎	

- 5. Press , Enter the list names, separated by commas.
- 6. Press . [2nd] [STAT PLOT] to display the STAT PLOT MARK menu. (This step is not necessary if you selected **3:Histogram** or **5:Boxplot** in step 4.)

Select the type of mark $(\Box \text{ or } + \text{ or } \cdot)$ for each data point. The selected mark symbol is pasted to the cursor location.

7. Press) ENTER to complete the command line.

IPROGRAM: PLOT
:{(1,2,3,4)→L1
: (5,6,7,8)→E2
Plot2(Scatter,L
1,L2,0)


Displaying a StatTo display a plot from a program, use the DispGraphPlot from ainstruction (Chapter 16) or any of the ZOOM instructionsProgram(Chapter 3).

PROGRAM: PLOT :(1,2,3,4)→L1 :(5,6,7,8)→L2 :Plot2(Scatter,L 1,L2,0) ZoomStat : 🔳

13 Inferential Statistics and Distributions

Contents	Getting Started: Mean Height of a Population	13-2
	Inferential Stat Editors	13-6
	STAT TESTS Menu	13-9
	Inferential Statistics Input Descriptions	13-26
	Test and Interval Output Variables	13-28
	Distribution Functions	13-29
	Distribution Shading	13-35

Getting Started is a fast-paced introduction. Read the chapter for details.

Suppose you want to estimate the mean height of a population of women given the random sample below. Because heights among a biological population tend to be normally distributed, a t distribution confidence interval can be used when estimating the mean. The 10 height values below are the first 10 of 90 values, randomly generated from a normally distributed population with an assumed mean of 165.1 cm. and a standard deviation of 6.35 cm. (randNorm(165.1,6.35,90) with a seed of 789).

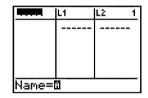
Height (in cm.) of Each of 10 Women

 $169.43 \quad 168.33 \quad 159.55 \quad 169.97 \quad 159.79 \quad 181.42 \quad 171.17 \quad 162.04 \quad 167.15 \quad 159.53$

1. Press <u>STAT</u> <u>ENTER</u> to display the stat list editor.

Press To move the cursor onto L1, and then press 2nd [INS]. The Name= prompt is displayed on the bottom line. The G cursor indicates that alpha-lock is on. The existing list name columns shift to the right.

Note: Your stat editor may not look like the one pictured here, depending on the lists you have already stored.


2. Enter [H] [G] [H] [T] at the **Name=** prompt, and then press <u>ENTER</u>. The list to which you will store the women's height data is created.

Press v to move the cursor onto the first row of the list. HGHT(1)= is displayed on the bottom line.

3. Press **169** . **43** to enter the first height value. As you enter it, it is displayed on the bottom line.

Press <u>ENTER</u>. The value is displayed in the first row, and the rectangular cursor moves to the next row.

Enter the other nine height values the same way.

HGHT	L1	L2	1
	■		
HGHT(1)			

HGHT	L1	L2	3
159,79 181,42 171,17 162,04 167,15 159,53			
HGHT(11):	=		

- 4. Press <u>STAT</u> to display the STAT TESTS menu, and then press until **8:Tinterval** is highlighted.
- 5. Press ENTER to select 8:Tinterval. The inferential stat editor for Tinterval is displayed. If Data is not selected for Inpt:, press

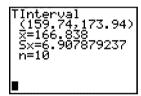
 ENTER to select Data.

Press \bigtriangledown and [H] [G] [H] [T] at the List: prompt (alpha-lock is on).

Press **v v . 99** to enter a 99 percent confidence level at the **C-Level**: prompt.

6. Press → to move the cursor onto **Calculate**, and then press ENTER. The confidence interval is calculated, and the **Tinterval** results are displayed on the home screen.

Interpret the results. The first line, **(159.74,173.94)**, shows that the

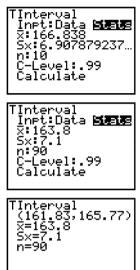

The first line, (**159.74,173.94**), shows that the 99 percent confidence interval for the population mean is between about 159.74 cm. and 173.94 cm. This is about a 14.2 cm. spread.

The .99 confidence level indicates that in a very large number of samples, we expect 99 percent of the intervals calculated to contain the population mean. The actual mean of the population sampled is 165.1 cm. (introduction; page 13-2), which is in the calculated interval.

The second line gives the mean height of the sample \bar{x} used to compute this interval. The third line gives the sample standard deviation Sx. The bottom line gives the sample size n.

To obtain a more precise bound on the population mean μ of women's heights, increase the sample size to 90. Use a sample mean $\bar{\mathbf{x}}$ of 163.8 and sample standard deviation \mathbf{Sx} of 7.1 calculated from the larger random sample (introduction; page 13-2). This time, use the **Stats** (summary statistics) input option.

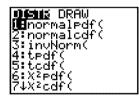
7. Press **STAT (8** to display the inferential stat editor for **Tinterval**.


Press ENTER to select **Inpt:Stats**. The editor changes so that you can enter summary statistics as input.

8. Press \checkmark **163** \bigcirc **8** ENTER to store 163.8 to \overline{x} .

Press $7 \cdot 1$ ENTER to store 7.1 to Sx.

Press 90 ENTER to store 90 to n.


9. Press → to move the cursor onto Calculate, and then press ENTER to calculate the new 99 percent confidence interval. The results are displayed on the home screen.

If the height distribution among a population of women is normally distributed with a mean μ of 165.1 cm. and a standard deviation σ of 6.35 cm., what height is exceeded by only 5 percent of the women (the 95th percentile)?

10. Press CLEAR to clear the home screen.

Press 2nd [DISTR] to display the DISTR (distributions) menu.

11. Press **3** to paste **invNorm(** to the home screen.

Press • 95 , 165 • 1 , 6 • 35) ENTER.

.95 is the area, 165.1 is $\mu,$ and 6.35 is $\sigma.$

The result is displayed on the home screen; it shows that five percent of the women are taller than 175.5 cm.

Xres=1

Now graph and shade the top 5 percent of the population.

12. Press <u>WINDOW</u> and set the window variables to these values.

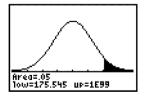
Xmin=145	
Xmax=185	
Xscl=5	

Ymin=-.02 Ymax=.08 Yscl=0


- 13. Press 2nd [DISTR] > to display the DISTR DRAW menu.
- 14. Press ENTER to paste ShadeNorm(to the home screen.

Press 2nd [ANS], 1 2nd [EE] 99, 165.1 , 6. 35).


Ans (175.5448205 from step 11) is the lower bound. 1E99 is the upper bound. The normal curve is defined by a mean μ of 165.1 and a standard deviation σ of 6.35.


15. Press ENTER to plot and shade the normal curve.

Area is the area above the 95th percentile. **Iow** is the lower bound. **up** is the upper bound.

WINDOW

Displaying the Inferential Stat Editors When you select a hypothesis test or confidence interval instruction from the home screen, the appropriate inferential statistics editor is displayed. The editors vary according to each test or interval's input requirements. Below is the inferential stat editor for **T-Test**.

Note: When you select the **ANOVA(** instruction, it is pasted to the home screen. **ANOVA(** does not have an editor screen.

Using an Inferential Stat Editor To use an inferential stat editor, follow these steps.

- 1. Select a hypothesis test or confidence interval from the STAT TESTS menu. The appropriate editor is displayed.
- 2. Select **Data** or **Stats** input, if the selection is available. The appropriate editor is displayed.
- 3. Enter real numbers, list names, or expressions for each argument in the editor.
- Select the alternative hypothesis (≠, <, or >) against which to test, if the selection is available.
- 5. Select **No** or **Yes** for the **Pooled** option, if the selection is available.
- 6. Select **Calculate** or **Draw** (when **Draw** is available) to execute the instruction.
 - When you select **Calculate**, the results are displayed on the home screen.
 - When you select **Draw**, the results are displayed in a graph.

This chapter describes the selections in the above steps for each hypothesis test and confidence interval instruction.

Select Data or Stats input	Z-Test Inpt: UETE Stats Full 105 G: 3
Enter values for arguments	List:DATA Freq:1 μ:Fun <μο >μο Calculate Draw or Draw output
Selecting Data or Stats	Most inferential stat editors prompt you to select one of two types of input. (1-PropZInt and 2-PropZTest, 1-PropZInt and 2-PropZInt, χ^2 -Test, and LinRegTTest do not.)
	 Select Data to enter the data lists as input. Select Stats to enter summary statistics, such as x̄, Sx, and n, as input.
	To select Data or Stats , move the cursor to either Data or Stats , and then press <u>ENTER</u> .
Entering the Values for Arguments	Inferential stat editors require a value for every argument. If you do not know what a particular argument symbol represents, see the tables on pages 13-26 and 13-27.
	When you enter values in any inferential stat editor, the TI-83 stores them in memory so that you can run many tests or intervals without having to reenter every value.
Selecting an Alternative Hypothesis (≠ < >)	Most of the inferential stat editors for the hypothesis tests prompt you to select one of three alternative hypotheses.
	• The first is a \neq alternative hypothesis, such as $\mu \neq \mu 0$ for the Z-Test .
	• The second is a < alternative hypothesis, such as $\mu 1{<}\mu 2$ for the 2-SampTTest.
	 The third is a > alternative hypothesis, such as p1>p2 for the 2-PropZTest.
	To select an alternative hypothesis, move the cursor to the

To select an alternative hypothesis, move the cursor appropriate alternative, and then press [ENTER].

Selecting the Pooled Option	Pooled (2-SampTTest and 2-SampTint only) specifies whether the variances are to be pooled for the calculation.
	• Select No if you do not want the variances pooled. Population variances can be unequal.
	• Select Yes if you want the variances pooled. Population variances are assumed to be equal.
	To select the Pooled option, move the cursor to Yes , and then press [ENTER].
Selecting Calculate or Draw for a Hypothesis Test	After you have entered all arguments in an inferential stat editor for a hypothesis test, you must select whether you want to see the calculated results on the home screen (Calculate) or on the graph screen (Draw).
	• Calculate calculates the test results and displays the outputs on the home screen.
	• Draw draws a graph of the test results and displays the test statistic and p-value with the graph. The window variables are adjusted automatically to fit the graph.
	To select Calculate or Draw , move the cursor to either Calculate or Draw , and then press <u>ENTER</u> . The instruction is immediately executed.
Selecting Calculate for a Confidence Interval	After you have entered all arguments in an inferential stat editor for a confidence interval, select Calculate to display the results. The Draw option is not available.
	When you press [ENTER], Calculate calculates the confidence interval results and displays the outputs on the home screen.
Bypassing the Inferential Stat Editors	To paste a hypothesis test or confidence interval instruction to the home screen without displaying the corresponding inferential stat editor, select the instruction you want from the CATALOG menu. Appendix A describes the input syntax for each hypothesis test and confidence interval instruction.
	2-SampZTest(
	Note: You can paste a hypothesis test or confidence interval instruction to a command line in a program. From within the program

Note: You can paste a hypothesis test or confidence interval instruction to a command line in a program. From within the program editor, select the instruction from either the CATALOG (Chapter 15) or the STAT TESTS menu.

STAT TESTS Menu

To display the STAT TESTS menu, press <u>STAT</u> (. When you select an inferential statistics instruction, the appropriate inferential stat editor is displayed.

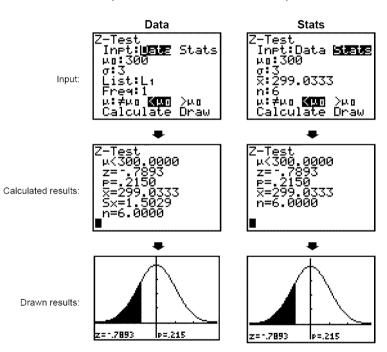
Most STAT TESTS instructions store some output variables to memory. Most of these output variables are in the TEST secondary menu (VARS menu; **5:Statistics**). For a list of these variables, see page 13-28.

EDIT CALC TESTS	
1:Z-Test	Test for 1 μ , known σ
2:T-Test	Test for 1 μ , unknown σ
3:2-SampZTest	Test comparing 2 μ 's, known σ 's
4:2-SampTTest	Test comparing 2 μ's, unknown σ's
5:1-PropZTest	Test for 1 proportion
6:2-PropZTest	Test comparing 2 proportions
7:ZInterval	Confidence interval for 1 μ , known σ
8:TInterval	Confidence interval for 1 μ , unknown σ
9:2-SampZInt	Conf. int. for diff. of 2 μ 's, known σ 's
0:2-SampTInt	Conf. int. for diff. of 2μ 's, unknown σ 's
A:1-PropZInt	Confidence int. for 1 proportion
B:2-PropZInt	Confidence int. for diff. of 2 props
C:χ2-Test	Chi-square test for 2-way tables
	Test comparing 2 o's
E:LinRegTTest	t test for regression slope and ρ
F: ANOVA	One-way analysis of variance
	· · · · · · · · · · · · · · · · · · ·

Note: When a new test or interval is computed, all previous output variables are invalidated.

Inferential Stat Editors for the STAT TESTS Instructions In this chapter, the description of each STAT TESTS instruction shows the unique inferential stat editor for that instruction with example arguments.

- Descriptions of instructions that offer the **Data/Stats** input choice show both types of input screens.
- Descriptions of instructions that do not offer the Data/Stats input choice show only one input screen.

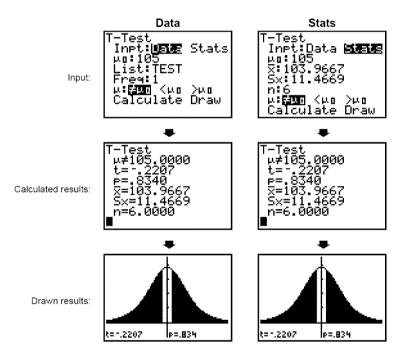

The description then shows the unique output screen for that instruction with the example results.

- Descriptions of instructions that offer the **Calculate/Draw** output choice show both types of screens: calculated and graphic results.
- Descriptions of instructions that offer only the **Calculate** output choice show the calculated results on the home screen.

Z-Test Z-Test (one-sample *z* test; item 1) performs a hypothesis test for a single unknown population mean μ when the population standard deviation σ is known. It tests the null hypothesis H₀: $\mu = \mu_0$ against one of the alternatives below.

- H_a: μ≠μ₀ (μ:≠μ0)
- $H_a: \mu < \mu_0 \ (\mu:<\mu 0)$
- H_a: μ>μ₀ (μ:>μ0)

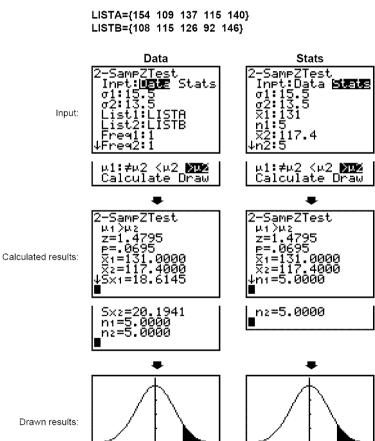
In the example:


L1={299.4 297.7 301 298.9 300.2 297}

Note: All examples on pages13-10 through 13-25 assume a fixeddecimal mode setting of **4** (Chapter 1). If you set the decimal mode to **Float** or a different fixed-decimal setting, your output may differ from the output in the examples. **T-Test T-Test** (one-sample *t* test; item **2**) performs a hypothesis test for a single unknown population mean μ when the population standard deviation σ is unknown. It tests the null hypothesis H₀: $\mu = \mu_0$ against one of the alternatives below.

- H_a: μ≠μ₀ (μ:≠μ0)
- H_a: μ<μ₀ (μ:<μ0)
- H_a: μ>μ₀ (μ:>μ0)

In the example:

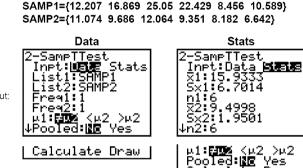

TEST={91.9 97.8 111.4 122.3 105.4 95}

2-SampZTest 2-SampZTest (two-sample *z* test; item **3**) tests the equality of the means of two populations (μ_1 and μ_2) based on independent samples when both population standard deviations (σ_1 and σ_2) are known. The null hypothesis H_0 : $\mu_1=\mu_2$ is tested against one of the alternatives below.

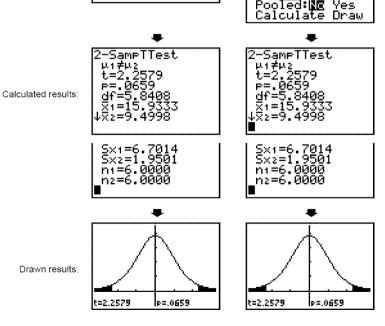
- H_a: μ₁≠μ₂ (μ1:≠μ2)
- $H_a: \mu_1 < \mu_2 (\mu 1:< \mu 2)$
- $H_a: \mu_1 > \mu_2 (\mu 1:> \mu 2)$

In the example:

z=1.4795


P=.0695

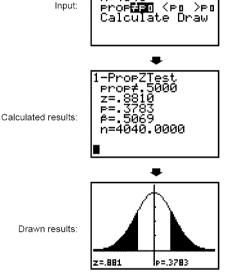
z=1.4795


p=.0695

- H_a: μ₁≠μ₂ (μ1:≠μ2)
- H_a: μ₁<μ₂ (μ1:<μ2)
- H_a: μ₁>μ₂ (μ1:>μ2)

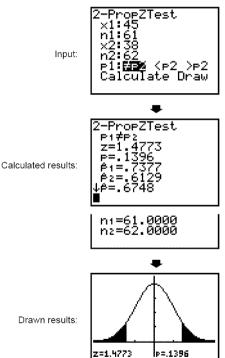
In the example:

Input:

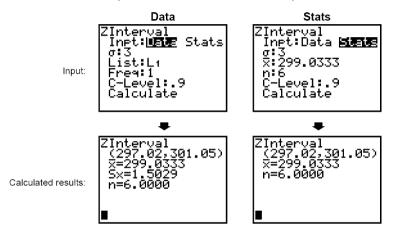


1-PropZTest 1-PropZTest (one-proportion *z* test; item 5) computes a test for an unknown proportion of successes (prop). It takes as input the count of successes in the sample x and the count of observations in the sample *n*. **1-PropZTest** tests the null hypothesis H_0 : prop=p₀ against one of the alternatives below.

- $H_a: prop \neq p_0 (prop: \neq p0)$
- $H_a: prop < p_0 (prop: < p0)$
- $H_a: prop > p_0 (prop:>p0)$


1-ProgZTest P0:.5 × 2048 n: 4040

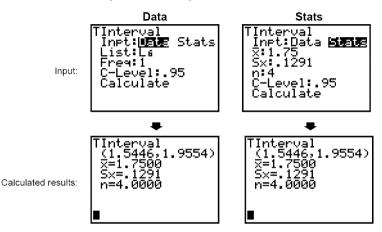
2-PropZTest 2-PropZTest (two-proportion *z* test; item **6**) computes a test to compare the proportion of successes $(p_1 \text{ and } p_2)$ from two populations. It takes as input the count of successes in each sample $(x_1 \text{ and } x_2)$ and the count of observations in each sample $(n_1 \text{ and } n_2)$. **2-PropZTest** tests the null hypothesis H_0 : $p_1=p_2$ (using the pooled sample proportion \hat{p}) against one of the alternatives below.


- H_a: p₁≠p₂ (**p1:**≠**p2**)
- H_a: p₁<p₂ (**p1:<p2**)
- $H_a: p_1 > p_2 (p1:>p2)$

ZInterval

Zinterval (one-sample *z* confidence interval; item 7) computes a confidence interval for an unknown population mean μ when the population standard deviation σ is known. The computed confidence interval depends on the user-specified confidence level.

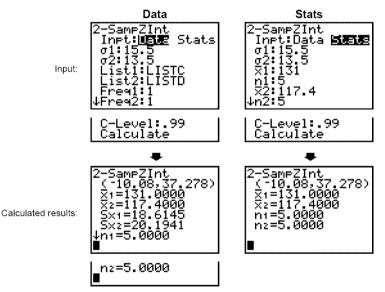
In the example:


L1={299.4 297.7 301 298.9 300.2 297}

TInterval

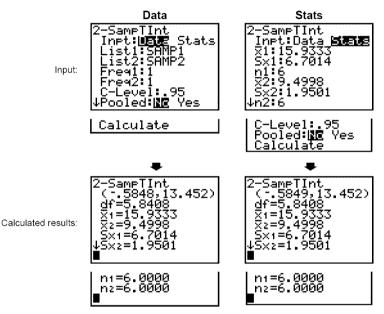
Tinterval (one-sample *t* confidence interval; item **8**) computes a confidence interval for an unknown population mean μ when the population standard deviation σ is unknown. The computed confidence interval depends on the user-specified confidence level.

In the example:


L6={1.6 1.7 1.8 1.9}

2-SampZint 2-SampZint (two-sample *z* confidence interval; item **9**) computes a confidence interval for the difference between two population means $(\mu_1 - \mu_2)$ when both population standard deviations $(\sigma_1 \text{ and } \sigma_2)$ are known. The computed confidence interval depends on the user-specified confidence level.

In the example:


LISTC={154 109 137 115 140} LISTD={108 115 126 92 146}

2-SampTint 2-SampTint (two-sample *t* confidence interval; item **0**) computes a confidence interval for the difference between two population means $(\mu_1 - \mu_2)$ when both population standard deviations $(\sigma_1 \text{ and } \sigma_2)$ are unknown. The computed confidence interval depends on the userspecified confidence level.

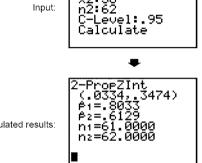
In the example:

SAMP1={12.207	16.869	25.05	22.42	9 8.456	10.589}
SAMP2={11.074	9.686	12.064	9.351	8.182 6	.642}

Inferential Statistics and Distributions 13-19

1-PropZInt (one-proportion *z* confidence interval; item A) computes a confidence interval for an unknown proportion of successes. It takes as input the count of successes in the sample *x* and the count of observations in the sample *n*. The computed confidence interval depends on the user-specified confidence level.

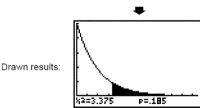
Input:


1-PropZInt x:2048 n:4040 C-Level:.99

Calculate

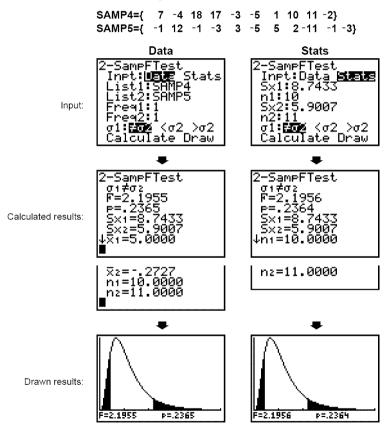
Calculated results:

2-PropZInt


2-PropZInt (two-proportion *z* confidence interval; item **B**) computes a confidence interval for the difference between the proportion of successes in two populations (p_1-p_2) . It takes as input the count of successes in each sample $(x_1 \text{ and } x_2)$ and the count of observations in each sample $(n_1 \text{ and } n_2)$. The computed confidence interval depends on the user-specified confidence level.

2-PropZInt ×1:49 n1:61

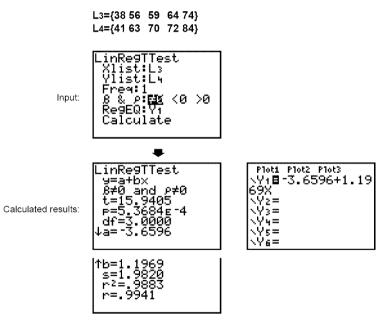
Calculated results:


γ²-Test χ^2 -Test (chi-square test; item C) computes a chi-square test for association on the two-way table of counts in the specified Observed matrix. The null hypothesis H₀ for a two-way table is: no association exists between row variables and column variables. The alternative hypothesis is: the variables are related. Before computing a χ^2 -Test, enter the observed counts in a matrix. Enter that matrix variable name at the Observed: prompt in the γ^2 -Test editor; default=[A]. At the **Expected**: prompt, enter the matrix variable name to which you want the computed expected counts to be stored; default=[B]. 3 X2 Note: Press MATRX > 1 to MATRIX[A] select 1:[A] from the MATRX 5.0000 8.0000 11.000 16.000 13.000 EDIT menu. Matrix editor: X2-Test Observed:[A] Expected:[B] Calculate Draw Input: Note: Press MATRX [B] ENTER to display matrix [B]. 2-Test X2=3.3750 P=.1850 [8.0000 [8.0000 [8.0000 .000 16 16.000. df=2.0000 16.000. Calculated results:

2-SampFTest 2-SampFTest (two-sample F-test; item D) computes an F-test to compare two normal population standard deviations (σ_1 and σ_2). The population means and standard deviations are all unknown. **2-SampFTest**, which uses the ratio of sample variances $Sx1^2/Sx2^2$, tests the null hypothesis H_{0} : $\sigma_1=\sigma_2$ against one of the alternatives below.

- H_a: σ₁≠σ₂ (σ1:≠σ2)
- H_a: σ₁<σ₂ (σ1:<σ2)
- $H_a: \sigma_1 > \sigma_2 (\sigma_1 > \sigma_2)$

In the example:



LinRegTTestLinRegTTest (linear regression t test; item E) computes a
linear regression on the given data and a t test on the value
of slope β and the correlation coefficient ρ for the equation
 $y=\alpha+\beta x$. It tests the null hypothesis H_0 : $\beta=0$ (equivalently,
 $\rho=0$) against one of the alternatives below.

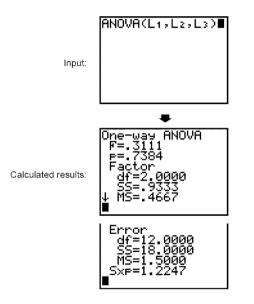
- $H_a: \beta \neq 0 \text{ and } \rho \neq 0 \ (\beta \& \rho: \neq 0)$
- $H_a: \beta < 0 \text{ and } \rho < 0 \ (\beta \& \rho:<0)$
- H_a: β>0 and ρ>0 (β & ρ:>0)

The regression equation is automatically stored to **RegEQ** (VARS Statistics EQ secondary menu). If you enter a Y= variable name at the **RegEQ**: prompt, the calculated regression equation is automatically stored to the specified Y= equation. In the example below, the regression equation is stored to Y1, which is then selected (turned on).

In the example:

When LinRegTTest is executed, the list of residuals is created and stored to the list name **RESID** automatically. **RESID** is placed on the LIST NAMES menu.

Note: For the regression equation, you can use the fix-decimal mode setting to control the number of digits stored after the decimal point (Chapter 1). However, limiting the number of digits to a small number could affect the accuracy of the fit.


13-24 Inferential Statistics and Distributions

ANOVA(ANOVA((one-way analysis of variance; item **F**) computes a one-way analysis of variance for comparing the means of two to 20 populations. The ANOVA procedure for comparing these means involves analysis of the variation in the sample data. The null hypothesis H_0 : $\mu_1 = \mu_2 = ... = \mu_k$ is tested against the alternative H_a : not all $\mu_1 ... \mu_k$ are equal.

ANOVA(list1,list2[,...,list20])

In the example:

L1={7 4 6 6 5} L2={6 5 5 8 7} L3={4 7 6 7 6}

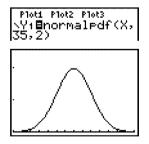
The tables in this section describe the inferential statistics inputs discussed in this chapter. You enter values for these inputs in the inferential stat editors. The tables present the inputs in the same order that they appear in this chapter.

Input	Description
μ ₀	Hypothesized value of the population mean that you are testing.
σ	The known population standard deviation; must be a real number > 0 .
List	The name of the list containing the data you are testing.
Freq	The name of the list containing the frequency values for the data in List. Default=1. All elements must be integers ≥ 0 .
Calculate/Draw	Determines the type of output to generate for tests and intervals. Calculate displays the output on the home screen. In tests, Draw draws a graph of the results.
x , Sx , n	Summary statistics (mean, standard deviation, and sample size) for the one-sample tests and intervals.
σ1	The known population standard deviation from the first population for the two-sample tests and intervals. Must be a real number > 0 .
σ 2	The known population standard deviation from the second population for the two-sample tests and intervals. Must be a real number > 0 .
List1, List2	The names of the lists containing the data you are testing for the two-sample tests and intervals. Defaults are L1 and L2, respectively.
Freq1, Freq2	The names of the lists containing the frequencies for the data in List1 and List2 for the two-sample tests and intervals. Defaults=1. All elements must be integers ≥ 0 .
x 1, Sx1, <i>n</i> 1, x 2, Sx2, <i>n</i> 2	Summary statistics (mean, standard deviation, and sample size) for sample one and sample two in the two-sample tests and intervals.
Pooled	Specifies whether variances are to be pooled for 2-SampTTest and 2-SampTInt . No instructs the TI-83 not to pool the variances. Yes instructs the TI-83 to pool the variances.

Input	Description
P ₀	The expected sample proportion for 1-PropZTest. Must be a real number, such that $0 < p_o < 1$.
x	The count of successes in the sample for the 1-PropZTest and 1-PropZInt . Must be an integer ≥ 0 .
n	The count of observations in the sample for the 1-PropZTest and 1-PropZInt . Must be an integer > 0 .
x1	The count of successes from sample one for the 2-PropZTest and 2-PropZInt . Must be an integer ≥ 0 .
x2	The count of successes from sample two for the 2-PropZTest and 2-PropZInt . Must be an integer ≥ 0 .
n1	The count of observations in sample one for the 2-PropZTest and 2-PropZInt . Must be an integer > 0.
n2	The count of observations in sample two for the 2-PropZTest and 2-PropZInt . Must be an integer > 0.
C-Level	The confidence level for the interval instructions. Must be ≥ 0 and <100. If it is ≥ 1 , it is assumed to be given as a percent and is divided by 100. Default=0.95.
Observed (Matrix)	The matrix name that represents the columns and rows for the observed values of a two-way table of counts for the χ^2 -Test. Observed must contain all integers ≥ 0 . Matrix dimensions must be at least 2×2 .
Expected (Matrix)	The matrix name that specifies where the expected values should be stored. Expected is created upon successful completion of the χ^2 -Test.
Xlist, Ylist	The names of the lists containing the data for LinRegTTest. Defaults are L1 and L2, respectively. The dimensions of Xlist and Ylist must be the same.
RegEQ	The prompt for the name of the Y= variable where the calculated regression equation is to be stored. If a Y= variable is specified, that equation is automatically selected (turned on). The default is to store the regression equation to the RegEQ variable only.

The inferential statistics variables are calculated as indicated below. To access these variables for use in expressions, press (VARS), **5** (**5**:Statistics), and then select the VARS menu listed in the last column below.

Variables	Tests	Intervals	LinRegTTest, ANOVA	VARS Menu
p-value	р		р	TEST
test statistics	$z, t, \chi^2,$	F	t, F	TEST
degrees of freedom	df	df	df	TEST
sample mean of x values for sample 1 and sample 2	⊼1 , ⊼2	⊼1 , ⊼2		TEST
sample standard deviation of x for sample 1 and sample 2	Sx1, Sx2	Sx1, Sx2		TEST
number of data points for sample 1 and sample 2	n1, n2	n1, n2		TEST
pooled standard deviation	SxP	SxP	SxP	TEST
estimated sample proportion	<i>p</i>	p		TEST
estimated sample proportion for population 1	ρ̂1	₽̂1		TEST
estimated sample proportion for population 2	<i>p</i>2	<i>p</i>2		TEST
confidence interval pair		lower, upper		TEST
mean of x values	x	x	***********	XY
sample standard deviation of x	Sx	Sx		XY
number of data points	n	n		XY
standard error about the line			S	TEST
regression/fit coefficients			a, b	EQ
correlation coefficient			r	EQ
coefficient of determination			r ²	EQ
regression equation			RegEQ	EQ


DISTR menu	To display the DISTR menu, press 2nd [DISTR].		
	DISTR DRAW		
	1:normalpdf(Normal probability density	
	2:normalcdf(Normal distribution probability	
	3:invNorm(Inverse cumulative normal distribution	
	4:tpdf(Student-t probability density	
	5:tcdf(Student-t distribution probability	
	6:χ ² pdf(Chi-square probability density	
	7:χ ² cdf	Chi-square distribution probability	
	8: F pdf(F probability density	
	9: F cdf(F distribution probability	
	0:binompdf(Binomial probability	
	A:binomcdf(Binomial cumulative density	
	B:poissonpdf(Poisson probability	
	C:poissoncdf(Poisson cumulative density	
	D:geometpdf(Geometric probability	
	E:geometcdf(Geometric cumulative density	

Note: -1E99 and 1E99 specify infinity. If you want to view the area left of *upperbound*, for example, specify *lowerbound*=1E99.

normalpdf(norwalpdf(computes the probability density function (pdf) for the normal distribution at a specified *x* value. The defaults are mean μ =0 and standard deviation σ =1. To plot the normal distribution, paste **normalpdf(** to the Y= editor. The probability density function (pdf) is:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \sigma > 0$$

normalpdf($x[,\mu,\sigma]$)

Note: For this example, Xmin = 28 Xmax = 42 Ymin = 0 Ymax = .25

Tip: For plotting the normal distribution, you can set window variables **Xmin** and **Xmax** so that the mean μ falls between them, and then select **0:ZoomFit** from the ZOOM menu.

normalcdf(normalcdf(computes the normal distribution probability between <i>lowerbound</i> and <i>upperbound</i> for the specified mean μ and standard deviation σ . The defaults are $\mu=0$ and $\sigma=1$. normalcdf(<i>lowerbound</i> , <i>upperbound</i> [, μ , σ]) normalcdf(-1E99, 36, 35, 2) .6914624678
invNorm(invNorm(computes the inverse cumulative normal distribution function for a given <i>area</i> under the normal distribution curve specified by mean μ and standard deviation σ . It calculates the <i>x</i> value associated with an <i>area</i> to the left of the <i>x</i> value. $0 \le area \le 1$ must be true. The defaults are $\mu=0$ and $\sigma=1$.
	invNorm($area[,\mu,\sigma]$)
	invNorm(.6914624 678,35,2) 36.00000004
tpdf(tpdf(computes the probability density function (pdf) for the Student- <i>t</i> distribution at a specified <i>x</i> value. <i>df</i> (degrees of freedom) must be >0. To plot the Student- <i>t</i> distribution, paste tpdf(to the Y= editor. The probability density function (pdf) is:
	$f(x) = \frac{\Gamma[(df+1)/2]}{\Gamma(df/2)} \frac{(1+x^2/df)^{-(df+1)/2}}{\sqrt{\pi df}}$
	tpdf(<i>x</i> , <i>df</i>)
	Plot1 Plot2 Plot3 Note: For this example, \Y1 Btpdf(X, 2) Xmin = -4.5
	Xmax = 4.5 Ymin = 0 Ymax = .4

tcdf(tcdf(computes the Student-t distribution probability
between *lowerbound* and *upperbound* for the specified *df*
(degrees of freedom), which must be > 0.

tcdf(lowerbound,upperbound,df)

tcdf(-2,3,18) .9657465644

χ²pdf(

 χ^2 pdf(computes the probability density function (pdf) for the χ^2 (chi-square) distribution at a specified *x* value. *df* (degrees of freedom) must be an integer > 0. To plot the χ^2 distribution, paste χ^2 pdf(to the Y= editor. The probability density function (pdf) is:

$$f(x) = \frac{1}{\Gamma(df/2)} (1/2)^{df/2} x^{df/2 - 1} e^{-x/2}, x \ge 0$$

 χ^2 pdf(*x*,*df*)

Note: For this example, Xmin = 0 Xmax = 30 Ymin = -.02 Ymax = .132

 χ^2 cdf(computes the χ^2 (chi-square) distribution probability between *lowerbound* and *upperbound* for the specified *df* (degrees of freedom), which must be an integer > 0.

 χ^2 cdf(lowerbound,upperbound,df)

Fpdf(

Fpdf(computes the probability density function (pdf) for the F distribution at a specified *x* value. *numerator df* (degrees of freedom) and *denominator df* must be integers > 0. To plot the F distribution, paste **Fpdf(** to the Y= editor. The probability density function (pdf) is:

$$f(x) = \frac{\Gamma[(n+d)/2]}{\Gamma(n/2)\Gamma(d/2)} \left(\frac{n}{d}\right)^{n/2} x^{n/2-1} (1+nx/d)^{-(n+d)/2}, x \ge 0$$

where

n = numerator degrees of freedom d = denominator degrees of freedom

Fpdf(x,numerator df,denominator df)

Note: For this example, Xmin = 0 Xmax = 5 Ymin = 0 Ymax = 1

Fcdf(

Fcdf(computes the F distribution probability between *lowerbound* and *upperbound* for the specified *numerator* df (degrees of freedom) and *denominator* df. *numerator* df and *denominator* df must be integers >0.

binompdf(binompdf(computes a probability at *x* for the discrete binomial distribution with the specified *numtrials* and probability of success (p) on each trial. *x* can be an integer or a list of integers. $0 \le p \le 1$ must be true. *numtrials* must be an integer > 0. If you do not specify *x*, a list of probabilities from 0 to *numtrials* is returned. The probability density function (pdf) is:

$$f(x) = \binom{n}{x} p^{x} (1-p)^{n-x}, x = 0, 1, ..., n$$

where

n = numtrials

binompdf(numtrials,p[,x])

bingmedf(5,.6	ວາ ເວ
,4,5)) (.3456 .2592	.0

binomcdf(binomcdf(computes a cumulative probability at x for the
discrete binomial distribution with the specified *numtrials*
and probability of success (p) on each trial. x can be a real
number or a list of real numbers. $0 \le p \le 1$ must be true.
numtrials must be an integer > 0. If you do not specify x, a
list of cumulative probabilities is returned.

binomcdf(numtrials,p[,x])

poissonpdf(poissonpdf(computes a probability at x for the discrete Poisson distribution with the specified mean μ , which must be a real number > 0. x can be an integer or a list of integers. The probability density function (pdf) is:

 $f(x) = e^{-\mu} \mu^{x} / x!, x = 0, 1, 2, \dots$

poissonpdf(μ ,x)

PoissonPdf(6,10) .0413030934 **poissoncdf(poissoncdf(** computes a cumulative probability at x for the discrete Poisson distribution with the specified mean μ , which must be a real number > 0. x can be a real number or a list of real numbers.

poissoncdf(μ, x)

Poissoncdf(.126, {0,1,2,3}) {.8816148468 .9…

geometpdf(geometpdf(computes a probability at x, the number of the
trial on which the first success occurs, for the discrete
geometric distribution with the specified probability of
success $p. \ 0 \le p \le 1$ must be true. x can be an integer or a list
of integers. The probability density function (pdf) is:

 $f(x) = p(1-p)^{x-1}, x = 1, 2, \dots$

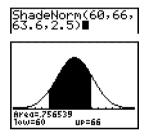
geometpdf(p,x)

geometcdf(geometcdf(computes a cumulative probability at x, the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success p. $0 \le p \le 1$ must be true. x can be a real number or a list of real numbers.

geometcdf(p,x)

DISTR DRAW To display the DISTR DRAW menu, press [2nd] [DISTR] [. Menu DISTR DRAW instructions draw various types of density functions, shade the area specified by *lowerbound* and *upperbound*, and display the computed area value.

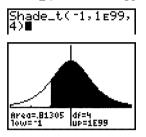
To clear the drawings, select **1:CIrDraw** from the DRAW menu (Chapter 8).


Note: Before you execute a DISTR DRAW instruction, you must set the window variables so that the desired distribution fits the screen.

DISTR DRAW		
1:ShadeNorm(Shades normal distribution.	
2:Shade_t(Shades Student-t distribution.	
3:Shadeχ ² (Shades χ^2 distribution.	
4:ShadeF(Shades F distribution.	

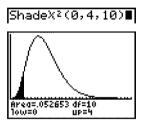
Note: -1E99 and 1E99 specify infinity. If you want to view the area left of *upperbound*, for example, specify *lowerbound* = 1E99.

ShadeNorm(ShadeNorm(draws the normal density function specified by mean μ and standard deviation σ and shades the area between *lowerbound* and *upperbound*. The defaults are $\mu=0$ and $\sigma=1$.


ShadeNorm(lowerbound,upperbound[,µ,σ])

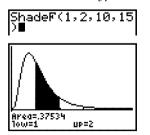
Note: For this example, Xmin = 55 Xmax = 72 Ymin = -.05 Ymax = .2

Shade_t(Shade_t(draws the density function for the Student-t
distribution specified by df (degrees of freedom) and
shades the area between lowerbound and upperbound.


Shade_t(lowerbound,upperbound,df)

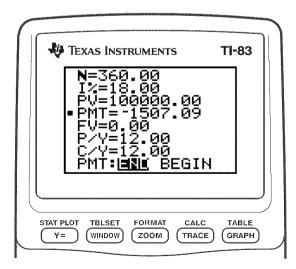
Note: For this example, Xmin = -3 Xmax = 3 Ymin = -.15 Ymax = .5

Shade χ^2 (**Shade** χ^2 (draws the density function for the χ^2 (chi-square) distribution specified by *df* (degrees of freedom) and shades the area between *lowerbound* and *upperbound*.


Shadeχ²(lowerbound,upperbound,df)

Note: For this example, Xmin = 0 Xmax = 35 Ymin = -.025 Ymax = .1

ShadeF(


ShadeF(draws the density function for the **F** distribution specified by *numerator df* (degrees of freedom) and *denominator df* and shades the area between *lowerbound* and *upperbound*.

Note: For this example, Xmin = 0 Xmax = 5 Ymin = -.25 Ymax = .9

14 Financial Functions

Contents	Getting Started: Financing a Car	14-2
	Getting Started: Computing Compound Interest	14-3
	Using the TVM Solver	14-4
	Using the Financial Functions	14-5
	Calculating Time Value of Money (TVM)	14-6
	Calculating Cash Flows	14-8
	Calculating Amortization	14-9
	Calculating Interest Conversion	14-12
	Finding Days between Dates/Defining Payment Method	14 - 13
	Using the TVM Variables	14-14


Getting Started is a fast-paced introduction. Read the chapter for details.

You have found a car you would like to buy. The car costs 9,000. You can afford payments of 250 per month for four years. What annual percentage rate (APR) will make it possible for you to afford the car?

- 1. Press MODE V V ENTER to set the fixed-decimal mode setting to 2. The TI-83 will display all numbers with two decimal places.
- 3. Press ENTER to select 1:TVM Solver. The TVM Solver is displayed.

Press **48** ENTER to store 48 months to **N**. Press **9000** ENTER to store 9,000 to **PV**. Press **9250** ENTER to store -250 to **PMT**. (Negation indicates cash outflow.) Press **0** ENTER to store 0 to **FV**. Press **12** ENTER to store 12 payments per year to **P**/**Y** and 12 compounding periods per year to **C**/**Y**. Setting **P**/**Y** to 12 will compute an annual percentage rate (compounded monthly) for I%. Press **9** ENTER to select **PMT:END**, which indicates that payments are due at the end of each period.

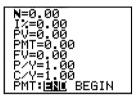
4. Press A A A TO move the cursor to the I% prompt. Press <u>ALPHA</u> [SOLVE] to solve for I%. What APR should you look for?

Getting Started: Computing Compound Interest

At what annual interest rate, compounded monthly, will 1,250 accumulate to 2,000 in 7 years?

Note: Because there are no payments when you solve compound interest problems, **PMT** must be set to **0** and **P/Y** must be set to **1**.

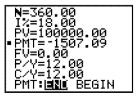
- 1. Press 2nd [FINANCE] to display the FINANCE CALC menu.
- 2. Press ENTER to select 1:TVM Solver. Press 7 to enter the number of periods in years. Press • • 1250 to enter the present value as a cash outflow (investment). Press 0 to specify no payments. Press 2000 to enter the future value as a cash inflow (return). Press 1 to enter payment periods per year. Press 12 to set compounding periods per year to 12.
- 3. Press A A A to place the cursor on the I% prompt.
- 4. Press ALPHA [SOLVE] to solve for I%, the annual interest rate.


Using the TVMThe TVM Solver displays the time-value-of-money (TVM)Solvervariables. Given four variable values, the TVM Solver solves
for the fifth variable.

The FINANCE VARS menu section (page 14-14) describes the five TVM variables (N, I%, PV, PMT, and FV) and P/Y and C/Y.

PMT: END BEGIN in the TVM Solver corresponds to the FINANCE CALC menu items **Pmt_End** (payment at the end of each period) and **Pmt_Bgn** (payment at the beginning of each period).

To solve for an unknown TVM variable, follow these steps.


1. Press 2nd [FINANCE] ENTER to display the TVM Solver. The screen below shows the default values with the fixed-decimal mode set to two decimal places.

2. Enter the known values for four TVM variables.

Note: Enter cash inflows as positive numbers and cash outflows as negative numbers.

- 3. Enter a value for P/Y, which automatically enters the same value for C/Y; if $P/Y \neq C/Y$, enter a unique value for C/Y.
- 4. Select END or BEGIN to specify the payment method.
- 5. Place the cursor on the TVM variable for which you want to solve.
- 6. Press <u>ALPHA</u> [SOLVE]. The answer is computed, displayed in the TVM Solver, and stored to the appropriate TVM variable. An indicator square in the left column designates the solution variable.

Entering Cash Inflows and Cash Outflows	When using the TI-83 financial functions, you must enter cash inflows (cash received) as positive numbers and cash outflows (cash paid) as negative numbers. The TI-83 follows this convention when computing and displaying answers.	
FINANCE CALC Menu	To display the f	FINANCE CALC menu, press 2nd [FINANCE].
Merra	CALC VARS	
	1:TVM Solver	Displays the TVM Solver.
	2:tvm_Pmt	Computes the amount of each payment.
	3:tvm_1%	Computes the interest rate per year.
	4:tvm_PV	Computes the present value.
	5:tvm_N	Computes the number of payment periods.
	6:tvm_FV	Computes the future value.
	7:npv(Computes the net present value.
	8:irr(Computes the internal rate of return.
	9:bal(Computes the amortization sched. balance.
	0:ΣPrn(Computes the amort. sched. principal sum.
	A:ΣInt(Computes the amort. sched. interest sum.
	B:≱Nom(Computes the nominal interest rate.
	C:∍Eff(Computes the effective interest rate.
	D:dbd(Calculates the days between two dates.
	E:Pmt_End	Selects ordinary annuity (end of period).
	F:Pmt_Bgn	Selects annuity due (beginning of period).
	Use these funct	tions to set up and perform financial

Use these functions to set up and perform financial calculations on the home screen.

TVM Solver TVM Solver displays the TVM Solver (page 14-4).

Calculating Time Value of Money (TVM)

Calculating Time Value of Money		y (TVM) functions (menu items 2 ancial instruments such as ges, leases, and savings.
	must be real numbers. T	s zero to six arguments, which he values that you specify as ctions are not stored to the TVM
		VM variable, use the TVM Solver (page VM variable on the FINANCE VARS
		arguments, the TI-83 substitutes a ariable value for each unspecified
		nts with a TVM function, you must rguments in parentheses.
tvm_Pmt	tvm_Pmt computes the a	mount of each payment.
	tvm_Pmt[(<i>N</i> , <i>I%</i> , <i>PV</i> , <i>FV</i> , <i>P</i> /)	Y,C/Y)]
	N=360 I%=8.5 PV=100000 PMT=0 FV=0 P/Y=12 C/Y=12 PMT: ⊒N BEGIN	tvm_Pmt -768.91 tvm_Pmt(360,9.5) -840.85

Note: In the example above, the values are stored to the TVM variables in the TVM Solver. Then the payment (**tvm_Pmt**) is computed on the home screen using the values in the TVM Solver. Next, the interest rate is changed to 9.5 to illustrate the effect on the payment amount.

tvm_I% tvm_I% computes the annual interest rate.

tvm_I%[(*N*,*PV*,*PMT*,*FV*,*P/Y*,*C/Y*)]

tum_1%(48, -250,0,12)	10000,
	9.24
Ans→I%	9.24

tvm_PV tvm_PV computes the present value.

tvm_PV[(*N*,*I*%,*PMT*,*FV*,*P*/*Y*,*C*/*Y*)]

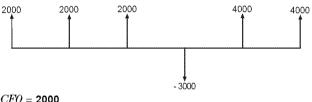
360 →N: 1 0→PMT:0	1→I%:-100 H→FV:12→P/
	12.00
tvm_PV	105006.35

tvm_N tvm_N computes the number of payment periods.

tvm_N[(*I*%,*PV*,*PMT*,*FV*,*P*/*Y*,*C*/*Y*)]

6→1%:900 0→PMT:0→	0+PV: -35 FV: 3+P/Y
غيبهم لعا	3.00
tvm_N	36.47

<u>-</u> <u>F</u>	tvm_FV	tvm_FV computes the future value.
-------------------	--------	--------------------------------------


tvm_FV[(*N*,*I*%,*PV*,*PMT*,*P*/*Y*,*C*/*Y*)]

6→N:8→I%	:-5500→P
V:0→PMT:	1→P/Y
tvm_FV	i.00 8727.81

Calculating a
Cash FlowUse the cash flow functions (menu items 7 and 8) to
analyze the value of money over equal time periods. You
can enter unequal cash flows, which can be cash inflows or
outflows. The syntax descriptions for npv(and irr(use
these arguments.

- *interest rate* is the rate by which to discount the cash flows (the cost of money) over one period.
- *CF0* is the initial cash flow at time 0; it must be a real number.
- *CFList* is a list of cash flow amounts after the initial cash flow *CFO*.
- *CFFreq* is a list in which each element specifies the frequency of occurrence for a grouped (consecutive) cash flow amount, which is the corresponding element of *CFList*. The default is 1; if you enter values, they must be positive integers < 10,000.

For example, express this uneven cash flow in lists.

CFO = 2000 CFList = {2000,-3000,4000} CFFreq = {2,1,2}

npv(, **irr(npv(** (net present value) is the sum of the present values for the cash inflows and outflows. A positive result for **npv** indicates a profitable investment.

npv(interest rate,CF0,CFList[,CFFreq])

irr((internal rate of return) is the interest rate at which the net present value of the cash flows is equal to zero.

irr(CF0,CFList[,CFFreq]) 1000 0 5000 3000 -2000 -2500 (1000, -2500, 0, 50) 00, 30000 → L1 (1000, 00 -2500, ...) n PU(6, -2000, L1) 00, 2000, -2500, ... 1000, -2500, 0, 50 00, 100, -2500, 0, 50 00, -2000, -

14-8 Financial Functions

Calculating an	Use the amortization functions (menu items 9 , 0 , and A) to
Amortization	calculate balance, sum of principal, and sum of interest for
Schedule	an amortization schedule.

bal(

bal(computes the balance for an amortization schedule using stored values for I%, **PV**, and **PMT**. *npmt* is the number of the payment at which you want to calculate a balance. It must be a positive integer < 10,000. *roundvalue* specifies the internal precision the calculator uses to calculate the balance; if you do not specify *roundvalue*, then the TI-83 uses the current **Float/Fix** decimal-mode setting.

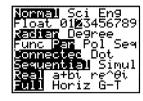
bal(npmt[,roundvalue])

100000+PV:8.5+I% bal(12) :-768.91+PMT:12+ 99244.07 P/Y 12.00

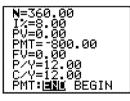
 Σ Prn(, Σ Int(Σ Prn(computes the sum of the principal during a specified period for an amortization schedule using stored values for I%, PV, and PMT. *pmt1* is the starting payment. *pmt2* is the ending payment in the range. *pmt1* and *pmt2* must be positive integers < 10,000. *roundvalue* specifies the internal precision the calculator uses to calculate the principal; if you do not specify *roundvalue*, the TI-83 uses the current Float/Fix decimal-mode setting.

Note: You must enter values for I%, $\textbf{PV}, \, \textbf{PMT}, \, \text{and before computing the principal.}$

Σ**Prn**(*pmt1*,*pmt2*[,*roundvalue*])

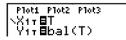

ΣInt(computes the sum of the interest during a specified period for an amortization schedule using stored values for 1%, **PV**, and **PMT**. *pmt1* is the starting payment. *pmt2* is the ending payment in the range. *pmt1* and *pmt2* must be positive integers < 10,000. *roundvalue* specifies the internal precision the calculator uses to calculate the interest; if you do not specify *roundvalue*, the TI-83 uses the current **Float/Fix** decimal-mode setting.

\Sint(pmt1,pmt2[,roundvalue])

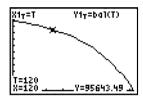

360→N:100000→P\ 8.5→I%:-768.91+ MT:12→P/Y	/: >P
12.0	30

ΣPrn(1,12) -755.93 ΣInt(1,12) -8470.99 Amortization Example: Calculating an Outstanding Loan Balance You want to buy a home with a 30-year mortgage at 8 percent APR. Monthly payments are 800. Calculate the outstanding loan balance after each payment and display the results in a graph and in the table.

1. Press MODE. Press • • • • • ENTER to set the fixed-decimal mode setting to 2. Press • • • ENTER to select **Par** graphing mode.


- $2. \ \mbox{Press 2nd}$ [FINANCE] \mbox{ENTER} to display the TVM Solver.

4. Press A A A to place the cursor on the **PV** prompt. Press ALPHA [SOLVE] to solve for the present value.


 Press Y= to display the parametric Y= editor. Turn off all stat plots. Press X,T,Θ,n to define X1T as T. Press ▼ 2nd [FINANCE] 9 X,T,Θ,n) to define Y1T as bal(T).

6. Press <u>WINDOW</u> to display the window variables. Enter the values below.

Tmin=0	Xmin=0	Ymin=0
Tmax=360	Xmax=360	Ymax=125000
Tstep=12	Xscl=50	Yscl=10000

7. Press TRACE to draw the graph and activate the trace cursor. Press → and ▲ to explore the graph of the outstanding balance over time. Press a number and then press ENTER to view the balance at a specific time **T**.

- 8. Press 2nd [TBLSET] and enter the values below. TblStart=0 Δ Tbl=12
- 9. Press [2nd] [TABLE] to display the table of outstanding balances (Y1T).

T	Xtr	Υ1τ
0000 12.00 24.00 36.00 48.00 60.00 72.00	0.00 12.00 24.00 36.00 48.00 60.00 72.00	109027 108116 107130 106061 104905 103652 102295
T=0		

10. Press MODE V V V V V A BENTER to select G-T split-screen mode, in which the graph and table are displayed simultaneously.

Press $\underline{\textsf{TRACE}}$ to display $\pmb{X1T}$ (time) and $\pmb{Y1T}$ (balance) in the table.

<u>X1</u> T=T Y1T=6a	Xit	Y1T
\sim	60.00 72.00	1.0E5
	84.00	1.0E5
E \	108.0	97510 86263
T=132	nišži či	08944
Ÿ=93621.91		

Calculating an Interest Conversion	Use the interest conversion functions (menu items B and C) to convert interest rates from an annual effective rate to a nominal rate ($NOm($) or from a nominal rate to an annual effective rate ($Eff($).
) Nom(Nom(computes the nominal interest rate. <i>effective rate</i> and <i>compounding periods</i> must be real numbers. <i>compounding periods</i> must be >0 .
	Nom(effective rate, compounding periods)
	▶Nom(15.87,4) 15.00
▶Eff(▶Eff(computes the effective interest rate. <i>nominal rate</i> and <i>compounding periods</i> must be real numbers. <i>compounding periods</i> must be >0.
	▶Eff(nominal rate,compounding periods)
	▶Eff(8,12) 8.30

Finding Days between Dates/Defining Payment Method

dbd(Use the date function dbd((menu item D) to calculate the number of days between two dates using the actual-day- count method. <i>date1</i> and <i>date2</i> can be numbers or lists of numbers within the range of the dates on the standard calendar.
	Calcifual.

Note: Dates must be between the years 1950 through 2049.

dbd(date1,date2)

You can enter *date1* and *date2* in either of two formats.

- MM.DDYY (United States)
- DDMM.YY (Europe)

The decimal placement differentiates the date formats.

dbd(1 192)	2.31	90,	12.3
1927		73	1.00

Defining the Payment Method	Pmt_End and Pmt_Bgn (menu items E and F) specify a transaction as an ordinary annuity or an annuity due. When you execute either command, the TVM Solver is updated.
Pmt_End	Pmt_End (payment end) specifies an ordinary annuity, where payments occur at the end of each payment period. Most loans are in this category. Pmt_End is the default.
	Pmt_End
	On the TVM Solver's PMT:END BEGIN line, select END to set PMT to ordinary annuity.
Pmt Ban	Pmt Ran (navment beginning) specifies an annuity due

 Pmt_Bgn
 Pmt_Bgn (payment beginning) specifies an annuity due, where payments occur at the beginning of each payment period. Most leases are in this category.

Pmt_Bgn

On the TVM Solver's $\ensuremath{\mathsf{PMT}}$: END BEGIN line, select $\ensuremath{\mathsf{BEGIN}}$ to set $\ensuremath{\mathsf{PMT}}$ to annuity due.

FINANCE VARS Menu	To display the FINANCE VARS menu, press [2nd] [FINANCE] J. You can use TVM variables in TVM functions and store values to them on the home screen.		
	CALC VARS		
	1: N	Total number of payment periods	
	2:I% 3:PV	Annual interest rate Present value	
	3: PV 4: PMT	Payment amount	
	5: FV	Future value	
	6: P/Y	Number of payment periods per year	
	7:C/Y	Number of compounding periods/year	
N, I%, PV, PMT, FV	N , I%, PV , PMT , and FV are the five TVM variables. They represent the elements of common financial transactions, as described in the table above. I% is an annual interest rate that is converted to a per-period rate based on the values of P / Y and C / Y .		
P/Y and C/Y	P/Y is the number of payment periods per year in a financial transaction.		
	$\ensuremath{\textbf{C/Y}}$ is the number of compounding periods per year in the same transaction.		
	automatica	store a value to P/Y , the value for C/Y ally changes to the same value. To store a unique Y , you must store the value to C/Y after you have due to P/Y .	

15 CATALOG, Strings, Hyperbolic Functions

Contents

Browsing the TI-83 CATALOG Entering and Using Strings	15-3 15-4
String Functions and Instructions in the CATALOG	15-6
Hyperbolic Functions in the CATALOG	15-10

1	Texas Instruments	TI-83	
	CATALOG ▶abs(and an9le(ANOVA(Ans au9ment(AxesOff		***************************************
STAT	PLOT TBLSET FORMAT CALC WINDOW ZOOM TRACE	TABLE GRAPH))

What Is the
CATALOG?The CATALOG is an alphabetical list of all functions and
instructions on the TI-83. You also can access each
CATALOG item from a menu or the keyboard, except:

- The six string functions (page 15-6)
- The six hyperbolic functions (page 15-10)
- The **solve(** instruction without the equation solver editor (Chapter 2)
- The inferential stat functions without the inferential stat editors (Chapter 13)

Note: The only CATALOG programming commands you can execute from the home screen are **GetCalc(**, **Get(**, and **Send(**.

Selecting an Item from the CATALOG

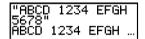
- To select a CATALOG item, follow these steps.
- 1. Press 2nd [CATALOG] to display the CATALOG.

CATALOG	6
▶abs(
and	
an9le(
Į ĀNOVĀ (
Ans	
au9ment(
AxesOff	

The > in the first column is the selection cursor.

- 2. Press or to scroll the CATALOG until the selection cursor points to the item you want.
 - To jump to the first item beginning with a particular letter, press that letter; alpha-lock is on.
 - Items that begin with a number are in alphabetical order according to the first letter after the number. For example, **2-PropZTest(** is among the items that begin with the letter **P**.
 - Functions that appear as symbols, such as +, ⁻¹, <, and √(, follow the last item that begins with Z. To jump to the first symbol, !, press [θ].
- 3. Press ENTER to paste the item to the current screen.

abs(


Tip: From the top of the CATALOG menu, press ▲ to move to the bottom. From the bottom, press to move to the top.

A string is a sequence of characters that you enclose within What Is a String? quotation marks. On the TI-83, a string has two primary applications. • It defines text to be displayed in a program. It accepts input from the keyboard in a program. Characters are the units that you combine to form a string. Count each number, letter, and space as one character. Count each instruction or function name, such as **sin**(or cos(, as one character; the TI-83 interprets each instruction or function name as one character. Entering a String To enter a string on a blank line on the home screen or in a program, follow these steps. 1. Press [ALPHA] ["] to indicate the beginning of the string. 2. Enter the characters that comprise the string. • Use any combination of numbers, letters, function names, or instruction names to create the string. To enter a blank space, press [ALPHA] [...]. • To enter several alpha characters in a row, press 2nd

- To enter several alpha characters in a row, press [2nd] [A-LOCK] to activate alpha-lock.
- 3. Press ALPHA ["] to indicate the end of the string.

"string"

4. Press ENTER. On the home screen, the string is displayed on the next line without quotations. An ellipsis (...) indicates that the string continues beyond the screen. To scroll the entire string, press ▶ and ◄.

Note: Quotation marks do not count as string characters.

String Variables The TI-83 has 10 variables to which you can store strings. You can use string variables with string functions and instructions.

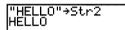
To display the VARS STRING menu, follow these steps.

1. Press <u>VARS</u> to display the VARS menu. Move the cursor to **7:String**.

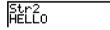
2. Press ENTER to display the STRING secondary menu.

STRING	
UBStr1	
₽:str2	
pistry	
6 Str5	
K: Str6	
7↓Šťr7	

Storing a String to a String Variable


To store a string to a string variable, follow these steps.

- 1. Press ALPHA ["], enter the string, and press ALPHA ["].
- 2. Press STO▶.
- 3. Press VARS 7 to display the VARS STRING menu.
- 4. Select the string variable (from **Str1** to **Str9**, or **Str0**) to which you want to store the string.



The string variable is pasted to the current cursor location, next to the store symbol (\Rightarrow) .

5. Press ENTER to store the string to the string variable. On the home screen, the stored string is displayed on the next line without quotation marks.

Displaying the Contents of a String Variable To display the contents of a string variable on the home screen, select the string variable from the VARS STRING menu, and then press [ENTER]. The string is displayed.

String Functions and Instructions in the CATALOG

Displaying String Functions and Instructions in the CATALOG String functions and instructions are available only from the CATALOG. The table below lists the string functions and instructions in the order in which they appear among the other CATALOG menu items. The ellipses in the table indicate the presence of additional CATALOG items.

CATA	4L0G
------	------

 Equ⊳String(Converts an equation to a string.
expr(Converts a string to an expression.
inString(Returns a character's place number.
length(Returns a string's character length.
 String∍Equ(sub(Converts a string to an equation. Returns a string subset as a string.

+ (Concatenation) To concatenate two or more strings, follow these steps.

- 1. Enter *string1*, which can be a string or string name.
- 2. Press **+**.
- 3. Enter *string2*, which can be a string or string name. If necessary, press *∃* and enter *string3*, and so on.

string1+string2+string3...

4. Press ENTER to display the strings as a single string.

"HIJK 1+"LMN HIJK L	"→Str1	**	Str
1+"LM	IOP"		
HIJK L	.MNOP		

Selecting a String To select a string function or instruction and paste it to the current screen, follow the steps on page 15-2. the CATALOG

Equistring(
 Equistring(converts to a string an equation that is stored to any VARS Y-VARS variable. Yn contains the equation.
 Strn (from Str1 to Str9, or Str0) is the string variable to which you want the equation to be stored as a string.

Equ>String(Yn,Strn)

"3X"→Yı Done Equ⊧String(Yı,St r1) Done Str1 3X

expr(expr(converts the character string contained in *string* to an expression and executes it. *string* can be a string or a string variable.

expr(string)

expr("1+2+X2") 7

inString(

inString(returns the character position in *string* of the first character of *substring*. *string* can be a string or a string variable. *start* is an optional character position at which to start the search; the default is 1.

inString(string,substring[,start])

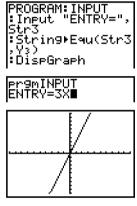
Note: If *string* does not contain *substring*, or *start* is greater than the length of *string*, **inString**(returns **0**.

length(length(returns the number of characters in *string. string* can be a string or string variable.

Note: An instruction or function name, such as sin(or cos(, counts as one character.

length(string)

String>Equ(String>Equ(converts string into an equation and stores the
equation to Yn. string can be a string or string variable.
String>Equ(is the inverse of Equ>String(.


String>Equ(string,Yn)

sub(sub(returns a string that is a subset of an existing string.string can be a string or a string variable. begin is the
position number of the first character of the subset. length
is the number of characters in the subset.

sub(string,begin,length)

Entering a Function to Graph during Program Execution In a program, you can enter a function to graph during program execution using these commands.

Note: When you execute this program, enter a function to store to **Y3** at the **ENTRY=** prompt.

Hyperbolic Functions in the CATALOG

Hyperbolic Functions

The hyperbolic functions are available only from the CATALOG. The table below lists the hyperbolic functions in the order in which they appear among the other CATALOG menu items. The ellipses in the table indicate the presence of additional CATALOG items.

CATALOG	
cosh(Hyperbolic cosine
cosh ⁻¹ (Hyperbolic arccosine
sinh(Hyperbolic sine
sinh ⁻¹ (Hyperbolic arcsine
tanh(Hyperbolic tangent
tanh ⁻¹ (Hyperbolic arctangent

sinh(, cosh(,sinh(, cosh(, and tanh(are the hyperbolic functions. Each is
valid for real numbers, expressions, and lists.

sinh(value) cosh(value) tanh(value)

sinh(.5)	DETOFE
.5210: cosh((.25,.	953055 .5,1>>
(1.0314131	1.12

sinh⁻¹(, cosh⁻¹(, tanh⁻¹() sinh⁻¹(is the hyperbolic arcsine function. cosh⁻¹(is the hyperbolic arccosine function. tanh⁻¹(is the hyperbolic arctangent function. Each is valid for real numbers, expressions, and lists.

> sinh⁻¹(value) cosh⁻¹(value) sinh⁻¹(value)

sinh ¹ ({0,1})
(0.88 <u>1</u> 373587)
tanh ¹ (<u>5)</u>
5493061443

16 Programming

Contents

Catting Started, Volume of a Calindar	16.9
Getting Started: Volume of a Cylinder	
Creating and Deleting Programs	16-4
Entering Command Lines and Executing Programs	16-5
Editing Programs	16-6
Copying and Renaming Programs	16-7
PRGM CTL (Control) Instructions	16-8
PRGM I/O (Input/Output) Instructions	16 - 16
Calling Other Programs as Subroutines	16-22

-	Texas Instruments	TI-83
	PROGRAM:CYLIN Prompt R,H :πR2H→V :Disp "VOLUME ",V :∎	IDER IS
STAT I	PLOT TBLSET FORMAT CAL WINDOW ZOOM (TRAC	

Getting Started is a fast-paced introduction. Read the chapter for details.

A program is a set of commands that the TI-83 executes sequentially, as if you had entered them from the keyboard. Create a program that prompts for the radius R and the height H of a cylinder and then computes its volume.

EXEC EDIT **NIN** M**E**Create New 1. Press PRGM I to display the PRGM NEW menu. PROGRAM: CYLINDER 2. Press [ENTER] to select 1:Create New. The . **Name=** prompt is displayed, and alpha-lock is on. Press [C] [Y] [L] [I] [N] [D] [E] [R], and then press **ENTER** to name the program CYLINDER. You are now in the program editor. The colon (:) in the first column of the second line indicates the beginning of a command line. PROGRAM:CYLINDER :Prompt R,H 3. Press [PRGM] > 2 to select 2:Prompt from the PRGM I/O menu. Prompt is copied to : 🔳 the command line. Press [ALPHA] [R] [ALPHA] [H] to enter the variable names for radius and height. Press [ENTER]. PROGRAM:CYLINDER ∶Prompt R,H ∶πR²H→V 4. Press [2nd] $[\pi]$ [ALPHA] [R] $[x^2]$ [ALPHA] [H] [STO \blacktriangleright [ALPHA] $[\vee]$ [ENTER] to enter the expression $\pi \mathbf{R}^{2}\mathbf{H}$ and store it to the variable V.

- 5. Press PRGM > 3 to select 3:Disp from the PRGM I/O menu. Disp is pasted to the command line. Press [2nd [A-LOCK] ["] [V] [O] [L] [U] [M] [E][L] [I] [S] ["] [ALPHA], [ALPHA [V] ENTER to set up the program to display the text VOLUME IS on one line and the calculated value of V on the next.
- 6. Press [2nd] [QUIT] to display the home screen.
- 7. Press <u>PRGM</u> to display the PRGM EXEC menu. The items on this menu are the names of stored programs.
- 8. Press ENTER to paste prgmCYLINDER to the current cursor location. (If CYLINDER is not item 1 on your PRGM EXEC menu, move the cursor to CYLINDER before you press ENTER.)
- Press ENTER to execute the program. Enter 1.5 for the radius, and then press ENTER. Enter 3 for the height, and then press ENTER. The text VOLUME IS, the value of V, and Done are displayed.

Repeat steps 7 through 9 and enter different values for **R** and **H**.

Programming 16-3

EDIT NEW

Pr9mCYLINDER R=?1.5 H=?3 VOLUME IS 21.20575041 Done

pr9mCYLINDER

What Is a Program?	A program is a set of one or more command lines. Each line contains one or more instructions. When you execute a program, the TI-83 performs each instruction on each command line in the same order in which you entered them. The number and size of programs that the TI-83 can store is limited only by available memory.	
Creating a New Program	To create a new program, follow these steps.	
Frogram	1. Press $PRGM$ (to display the PRGM NEW menu.	
	EXEC EDIT <u>Nam</u> M B Create New	
	2. Press ENTER to select 1:Create New . The Name= prompt is displayed, and alpha-lock is on.	
	3. Press a letter from A to Z or θ to enter the first character of the new program name.	
	Note: A program name can be one to eight characters long. The first character must be a letter from A to Z or θ . The second through eighth characters can be letters, numbers, or θ .	
	4. Enter zero to seven letters, numbers, or θ to complete the new program name.	
	5. Press ENTER). The program editor is displayed.	
	6. Enter one or more program commands (page 16-5).	
	7. Press 2nd [QUIT] to leave the program editor and return to the home screen.	
Managing Memory and Deleting a Program	To check whether adequate memory is available for a program you want to enter, press [2nd] [MEM], and then select 1:Check RAM from the MEMORY menu (Chapter 18).	
rivyrain	To increase available memory, press 2nd [MEM], and then select 2:Delete from the MEMORY menu (Chapter 18).	
	To delete a specific program, press 2nd [MEM], select 2:Delete from the MEMORY menu, and then select 7:Prgm from the DELETE FROM secondary menu (Chapter 18).	

Entering Command Lines and Executing Programs

Entering a Program Command Line	You can enter on a command line any instruction or expression that you could execute from the home screen. In the program editor, each new command line begins with a colon. To enter more than one instruction or expression on a single command line, separate each with a colon.
	Note: A command line can be longer than the screen is wide; long command lines wrap to the next screen line.
	While in the program editor, you can display and select from menus. You can return to the program editor from a menu in either of two ways.
	Select a menu item, which pastes the item to the current command line.Press <u>CLEAR</u>.
	When you complete a command line, press [ENTER]. The cursor moves to the next command line.
	Programs can access variables, lists, matrices, and strings saved in memory. If a program stores a new value to a variable, list, matrix, or string, the program changes the value in memory during execution.
	You can call another program as a subroutine (page 16-15 and page 16-22).
Executing a Program	To execute a program, begin on a blank line on the home screen and follow these steps.
	1. Press PRGM to display the PRGM EXEC menu.
	2. Select a program name from the PRGM EXEC menu (page 16-7). prgm <i>name</i> is pasted to the home screen (for example, prgmCYLINDER).
	3. Press ENTER to execute the program. While the program is executing, the busy indicator is on.
	Last Answer (Ans) is updated during program execution. Last Entry is not updated as each command is executed (Chapter 1).
	The TI-83 checks for errors during program execution. It does not check for errors as you enter a program.
Breaking a Program	To stop program execution, press ON. The ERR:BREAK menu is displayed.
	To return to the home screen, select 1:Quit.To go where the interruption occurred, select 2:Goto.

Editing a	To edit a stored program, follow these steps.	
Program	1. Press PRGM ▶ to display the PRGM EDIT menu.	
	2. Select a program name from the PRGM EDIT menu (page 16-7). Up to the first seven lines of the program are displayed.	
	Note: The program editor does not display a \downarrow to indicate that a program continues beyond the screen.	
	3. Edit the program command lines.	
	• Move the cursor to the appropriate location, and then delete, overwrite, or insert.	
	• Press <u>CLEAR</u> to clear all program commands on the command line (the leading colon remains), and then enter a new program command.	
	Tip: To move the cursor to the beginning of a command line, press [2nd] (.); to move to the end, press [2nd] (.). To scroll the cursor down seven command lines, press [ALPHA] (.). To scroll the cursor up seven command lines, press [ALPHA] (.).	
Inserting and Deleting Command Lines	To insert a new command line anywhere in the program, place the cursor where you want the new line, press [2nd [INS], and then press [ENTER]. A colon indicates a new line.	
	To delete a command line, place the cursor on the line, press <u>CLEAR</u> to clear all instructions and expressions on the line, and then press <u>DEL</u> to delete the command line, including the colon.	

Copying and Renaming a Program	To copy all command lines from one program into a new program, follow steps 1 through 5 for Creating a New Program (page 16-4), and then follow these steps.	
	1. Press 2nd [RCL]. Rcl is displayed on the bottom line of the program editor in the new program (Chapter 1).	
	2. Press $PRGM$ (to display the PRGM EXEC menu.	
	3. Select a name from the menu. prgm <i>name</i> is pasted to the bottom line of the program editor.	
	4. Press [ENTER]. All command lines from the selected program are copied into the new program.	
	Copying programs has at least two convenient applications.	
	• You can create a template for groups of instructions that you use frequently.	
	• You can rename a program by copying its contents into a new program.	
	Note: You also can copy all the command lines from one existing program to another existing program using RCL.	
Scrolling the PRGM EXEC and PRGM EDIT	The TI-83 sorts PRGM EXEC and PRGM EDIT menu items automatically into alphanumerical order. Each menu only labels the first 10 items using 1 through 9 , then 0 .	
Menus	To jump to the first program name that begins with a particular alpha character or θ , press ALPHA [<i>letter from A to Z or \theta</i>].	
	Tip: From the top of either the PRGM EXEC or PRGM EDIT menu, press ▲ to move to the bottom. From the bottom, press ➡ to move to the top. To scroll the cursor down the menu seven items, press ▲LPHA ▲. To scroll the cursor up the menu seven items, press ▲LPHA ▲.	

PRGM CTL MenuTo display the PRGM CTL (program control) menu, press**PRGM** from the program editor only.

CTL I/O EXEC	
1: If	Creates a conditional test.
2: Then	Executes commands when if is true.
3:Else	Executes commands when if is false.
4:For(Creates an incrementing loop.
5:While	Creates a conditional loop.
6: Repeat	Creates a conditional loop.
7:End	Signifies the end of a block.
8: Pause	Pauses program execution.
9:Lb1	Defines a label.
O:Goto	Goes to a label.
A: IS>(Increments and skips if greater than.
B:DS<(Decrements and skips if less than.
C:Menu(Defines menu items and branches.
D:prgm	Executes a program as a subroutine.
E: Return	Returns from a subroutine.
F:Stop	Stops execution.
G: DelVar	Deletes a variable from within program.
H:GraphStyle(Designates the graph style to be drawn.

These menu items direct the flow of an executing program. They make it easy to repeat or skip a group of commands during program execution. When you select an item from the menu, the name is pasted to the cursor location on a command line in the program.

To return to the program editor without selecting an item, press <u>CLEAR</u>.

Controlling
Program FlowProgram control instructions tell the TI-83 which
command to execute next in a program. If, While, and
Repeat check a defined condition to determine which
command to execute next. Conditions frequently use
relational or Boolean tests (Chapter 2), as in:

If A<7:A+1→A

 \mathbf{or}

If N=1 and M=1:Goto Z

Use If for testing and branching. If *condition* is false (zero), then the *command* immediately following if is skipped. If *condition* is true (nonzero), then the next *command* is executed. If instructions can be nested.

:If condition :command (if true) :command

Program	
PROGRAM: COUNT	
:0 , 98	
LP1 Z	
¦A+1→A Dise "A IS",A	
Disp "A IS",A TF A≻2	
Goto Z	
:Stop :Goto Z	

	ıtput	
Pr	-9mCOUNT IS	
	10	1
Р	IS	2
		Donē

lf-Then

Then following an lf executes a group of *commands* if condition is true (nonzero). End identifies the end of the group of commands.

:If condition :Then :command (if true) :command (if true) :End :command

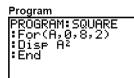
Output pr9mTEST 17 Done

lf

If-Then-Else Else following If-Then executes a group of commands if *condition* is false (zero). **End** identifies the end of the group of commands.

:If condition :Then :command (if true) :command (if true) :Else :command (if false) :command (if false) :End :command

PRŎGRAM:TESTELSE Input_"X=",X


Output pr9mTESTELSE X=5 (5 5) Done X= -5 (-5 25) Done

For(

For(loops and increments. It increments *variable* from begin to end by increment, increment is optional (default is 1) and can be negative (end<begin). end is a maximum or minimum value not to be exceeded. End identifies the end of the loop. For(loops can be nested.

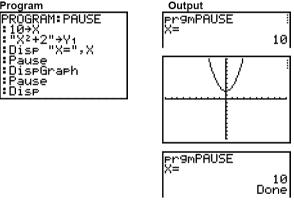
:For(variable, begin, end[, increment]) :command (while end not exceeded) :command (while end not exceeded) :End

:command

Output	
Pr9mSQUARE	
	0
	16
	3õ
	_ 64
	Done

Disp (X,Y)

Program


Then X2 yy Else Xyy

End

:Input :If X(0

While	While performs a group of <i>commands</i> while <i>condition</i> is true. <i>condition</i> is frequently a relational test (Chapter 2). <i>condition</i> is tested when While is encountered. If <i>condition</i> is true (nonzero), the program executes a group of <i>commands</i> . End signifies the end of the group. When <i>condition</i> is false (zero), the program executes each <i>command</i> following End. While instructions can be nested.	
	:While condition :command (while condition is true) :command (while condition is true) :End :command	
	Program PROGRAM:LOOP :0→I :0→J :While I<6 :J+1→J :I+1→I :End :Disp "J=",J	Output Pr9mLOOP J= 6 Done
Repeat	Repeat repeats a group of <i>comm</i> true (nonzero). It is similar to V when End is encountered; there <i>commands</i> is always executed instructions can be nested.	While, but <i>condition</i> is tested efore, the group of
	:Repeat condition :command (until condition is true) :command (until condition is true) :End :command	
	Program PROGRAM:RLOOP :0→I :0→J :Repeat I≥6 :J+1→J :I+1→I :End :Disp "J=",J	Output Pr9mRLOOP J= 6 Done

End **End** identifies the end of a group of *commands*. You must include an End instruction at the end of each For(, While, or **Repeat** loop. Also, you must paste an **End** instruction at the end of each If-Then group and each If-Then-Eise group. Pause Pause suspends execution of the program so that you can see answers or graphs. During the pause, the pause indicator is on in the top-right corner. Press ENTER to resume execution **Pause** without a *value* temporarily pauses the program. If the **DispGraph** or **Disp** instruction has been executed, the appropriate screen is displayed. • **Pause** with *value* displays *value* on the current home screen. value can be scrolled. Pause [value] Program Output

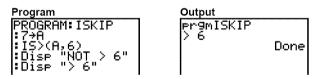
Lbl, Goto Lbl (label) and Goto (go to) are used together for branching.

Lbi specifies the *label* for a command. *label* can be one or two characters (**A** through **Z**, **0** through **99**, or θ).

Lbl label

Goto causes the program to branch to *label* when **Goto** is encountered.

Goto label


IS>(

Program	
PROGRAM: CUBE	
:Lbl 99_	
Input A	
If A≥100 Stop	
Disp A3	
:Pause	
: Goto 99	

Output	
pr9mCUBE	
:2	8
?3	27
?105	
	Done

IS>((increment and skip) adds 1 to variable. If the answer is > value (which can be an expression), the next command is skipped; if the answer is ≤ value, the next command is executed. variable cannot be a system variable.

:IS>(variable,value) :command (if answer ≤ value) :command (if answer > value)

Note: IS>(is not a looping instruction.

DS<(DS<((decrement and skip) subtracts 1 from *variable*. If the answer is < *value* (which can be an expression), the next *command* is skipped; if the answer is \geq *value*, the next *command* is executed. *variable* cannot be a system variable. :DS<(variable.value) :*command* (if answer \geq *value*) *:command* (if answer < *value*) Output Program PROGRAM:DSKIP ergmDSKIP NOT 1→Ĥ 6 . DS((A,6) Done Disp 6" Disp "NOT >Note: DS<(is not a looping instruction. Menu(sets up branching within a program. If Menu(is Menu(encountered during program execution, the menu screen is displayed with the specified menu items, the pause indicator is on, and execution pauses until you select a menu item

The menu *title* is enclosed in quotation marks ("). Up to seven pairs of menu items follow. Each pair comprises a *text* item (also enclosed in quotation marks) to be displayed as a menu selection, and a *label* item to which to branch if you select the corresponding menu selection.

Menu("title","text1",label1,"text2",label2,...)

Program PROGRAM: TOSSDICE :Menu("TOSS DICE ", "FAIR DICE", A, "WEIGHTED DICE", B) Output

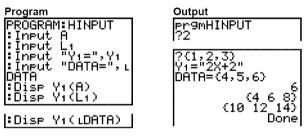
The program above pauses until you select **1** or **2**. If you select **2**, for example, the menu disappears and the program continues execution at Lbl B.

prgm	Use prgm to execute other programs as subroutines (page 16-22). When you select prgm , it is pasted to the cursor location. Enter characters to spell a program <i>name</i> . Using prgm is equivalent to selecting existing programs from the PRGM EXEC menu; however, it allows you to enter the name of a program that you have not yet created.		
	prgmname		
	Note: You cannot directly enter the subroutine name when using RCL. You must paste the name from the PRGM EXEC menu (page 16-7).		
Return	Return quits the subroutine and returns execution to the calling program (page 16-22), even if encountered within nested loops. Any loops are ended. An implied Return exists at the end of any program that is called as a subroutine. Within the main program, Return stops execution and returns to the home screen.		
Stop	Stop stops execution of a program and returns to the home screen. Stop is optional at the end of a program.		
DelVar	DelVar deletes from memory the contents of <i>variable</i> .		
	DelVar variable		
	PROGRAM:DELMATR :DelVar [A]∎		
GraphStyle(GraphStyle(designates the style of the graph to be drawn. <i>function#</i> is the number of the Y= function name in the current graphing mode. <i>graphstyle</i> is a number from 1 to 7 that corresponds to the graph style, as shown below.		
	1 = 1 (line) $5 = 4 (path)$ $2 = 4 (thick)$ $6 = 4 (animate)$ $3 = 4 (shade above)$ $7 = 1 (dot)$ $4 = 4 (shade below)$		
	GraphStyle(function#,graphstyle)		
	For example, GraphStyle(1,5) in Func mode sets the graph style for Y1 to ! (path; 5).		
	Not all graph styles are available in all graphing modes. For a detailed description of each graph style, see the Graph Styles table in Chapter 3.		

PRGM I/O Menu	To display the PRGM I/O (program input/output) menu, press [PRGM] ▶ from within the program editor only.		
	CTL I/O EXEC		
	1: Input	Enters a value or uses the cursor.	
	2: Prompt	Prompts for entry of variable values.	
	3:Disp	Displays text, value, or the home screen.	
	4:DispGraph	Displays the current graph.	
	5:DispTable	Displays the current table.	
	6:Output(Displays text at a specified position.	
	7:getKey	Checks the keyboard for a keystroke.	
	8:ClrHome	Clears the display.	
	9:ClrTable	Clears the current table.	
	O:GetCalc(Gets a variable from another TI-83.	
	A:Get(Gets a variable from CBL 2/CBL or CBR.	
	B: Send(Sends a variable to CBL 2/CBL or CBR.	
	program during	ns control input to and output from a execution. They allow you to enter values wers during program execution.	
	To return to the press CLEAR.	program editor without selecting an item,	
Displaying a Graph with Input	Input without a variable displays the current graph. You can move the free-moving cursor, which updates X and Y (and R and θ for PolarGC format). The pause indicator is on. Press [ENTER] to resume program execution.		
	Input		
	Program	Output	

Frogram
PROGRAM: GINPUT
:FnOff
:ZDecimal
:Input,
Disp X,Y

Output Pr9mGINPUT∎			
	+		
	· · · · ·		
X=2.6	Y=1.5		
pr9mGI	NPUT 2.6		
	2.6 1.5 Done		


Storing a Variable Value with Input

Input with *variable* displays a ? (question mark) prompt during execution. *variable* may be a real number, complex number, list, matrix, string, or Y= function. During program execution, enter a value, which can be an expression, and then press <u>ENTER</u>. The value is evaluated and stored to *variable*, and the program resumes execution.

Input [variable]

You can display *text* or the contents of **Str***n* (a string variable) of up to 16 characters as a prompt. During program execution, enter a value after the prompt and then press **ENTER**. The value is stored to *variable*, and the program resumes execution.

Input ["text",variable] Input [Strn,variable]

Note: When a program prompts for input of lists and **Y***n* functions during execution, you must include the braces (**{}**) around the list elements and quotation marks (**"**) around the expressions.

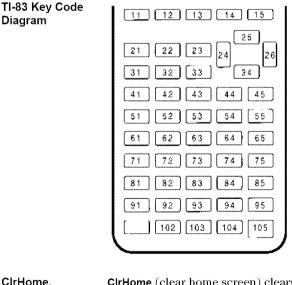
Prompt	During program execution, Prompt displays each <i>variable</i> , one at a time, followed by = ?. At each prompt, enter a value or expression for each <i>variable</i> , and then press [ENTER]. The values are stored, and the program resumes execution. Prompt <i>variableA</i> [, <i>variableB</i> ,, <i>variable n</i>]		
	Program Output		
	PROGRAM:WINDOW Prompt Xmin Prompt Xmin Prompt Xmax Prompt Xmax Prompt Ymin Prompt Ymax Prompt Ymax Prompt Ymax Prompt Ymax Prompt Ymax Done		
	Note: Y= functions are not valid with Prompt .		
Displaying the Home Screen	Disp (display) without a value displays the home screen. To view the home screen during program execution, follow the Disp instruction with a Pause instruction.		
	Disp		
Displaying Values and Messages	 Disp with one or more <i>values</i> displays the value of each. Disp [<i>valueA</i>,<i>valueB</i>,<i>valueC</i>,,<i>value n</i>] If <i>value</i> is a variable, the current value is displayed. If <i>value</i> is an expression, it is evaluated and the result is displayed on the right side of the next line. 		
	• If <i>value</i> is text within quotation marks, it is displayed on the left side of the current display line. → is not valid as text.		
	Program Output PROGRAM:A Disp "THE ANSWE THE ANSWER IS R IS ",π/2 1.570796327 Done		
	If Pause is encountered after Disp , the program halts temporarily so you can examine the screen. To resume execution, press ENTER .		
	Note: If a matrix or list is too large to display in its entirety, ellipses ()		

Note: If a matrix or list is too large to display in its entirety, ellipses (...) are displayed in the last column, but the matrix or list cannot be scrolled. To scroll, use **Pause** *value* (page 16-12).

DispGraph	DispGraph (display graph) display Pause is encountered after Disp temporarily so you can examine resume execution.	Graph, the program halts	
DispTable	DispTable (display table) display program halts temporarily so yo Press ENTER to resume execution	u can examine the screen.	
Output(Output(displays <i>text</i> or <i>value</i> on the current home screen beginning at <i>row</i> (1 through 8) and <i>column</i> (1 through 16), overwriting any existing characters. Tip: You may want to precede Output(with CirHome (page 16-20).		
	Expressions are evaluated and values are displayed according to the current mode settings. Matrices are displayed in entry format and wrap to the next line. \Rightarrow is not valid as text.		
Output(row,column,"text") Output(row,column,value)			
		Output	
	PROGRAM:OUTPUT :3+5→8 :ClrHome :Output(5,4,"ANS WER:" :Output(5,12,B)	ANSWER: 8	

For **Output(** on a **Horiz** split screen, the maximum value for *row* is 4.

getKey


getKey returns a number corresponding to the last key pressed, according to the key code diagram below. If no key has been pressed, **getKey** returns 0. Use **getKey** inside loops to transfer control, for example, when creating video games.

Output Pr9mGETKEY 41 42 43 105 Done

Note: MATH, MATRX, PRGM, and ENTER were pressed during program execution.

Note: You can press ON at any time during execution to break the program (page 16-5).

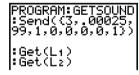
CirHome,CirHome (clear home screen) clears the home screenCirTableduring program execution.

CirTable (clear table) clears the values in the table during program execution.

GetCalc(GetCalc(gets the contents of *variable* on another TI-83 and stores it to *variable* on the receiving TI-83. *variable* can be a real or complex number, list element, list name, matrix element, matrix name, string, Y= variable, graph database, or picture.

GetCalc(variable)

Note: GetCalc(does not work between TI-82s and TI-83s.


Get(, Send(Get(gets data from the Calculator-Based Laboratory™
(CBL 2™, CBL™) System or Calculator-Based Ranger™
(CBR™) and stores it to variable on the receiving TI-83.
variable can be a real number, list element, list name,
matrix element, matrix name, string, Y= variable, graph
database, or picture.

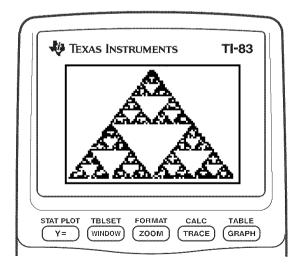
Get(variable)

Note: If you transfer a program that references the **Get(** command to the TI-83 from a TI-82, the TI-83 will interpret it as the **Get(** described above. Use **GetCalc(** to get data from another TI-83.

Send(sends the contents of *variable* to the CBL 2/CBL or CBR. You cannot use it to send to another TI-83. *variable* can be a real number, list element, list name, matrix element, matrix name, string, Y= variable, graph database, or picture. *variable* can be a list of elements.

Send(variable)

Note: This program gets sound data and time in seconds from CBL 2/CBL.


Note: You can access Get(, Send(, and GetCalc(from the CATALOG to execute them from the home screen (Chapter 15).

Calling a Program from Another Program	 On the TI-83, any stored program can be called from another program as a subroutine. Enter the name of the program to use as a subroutine on a line by itself. You can enter a program name on a command line in either of two ways. Press FRGM (to display the PRGM EXEC menu and select the name of the program (page 16-7). prgmname is pasted to the current cursor location on a command line. Select prgm from the PRGM CTL menu, and then enter the program name (page 16-15). 		
	prgmname		
	When prgm <i>name</i> is encountered during execution, the next command that the program executes is the first command in the second program. It returns to the subsequent command in the first program when it encounters either Return or the implied Return at the end of the second program.		
	Program Output PROGRAM:VOLCYL Input "D=",D Input "H=",H Pr9mVOLCYL Pr9mVOLCYL D=4 H=5 62.83185307 62.83185307 Done Done		
	Subroutine ↓ † PROGRAM: AREACIR : D/2→R : π+R²→A : Return		
Notes about	Variables are global.		
Calling Programs	<i>label</i> used with Goto and LbI is local to the program where it is located. <i>label</i> in one program is not recognized by another program. You cannot use Goto to branch to a <i>label</i> in another program.		
	Return exits a subroutine and returns to the calling program, even if it is encountered within nested loops.		

17 Applications

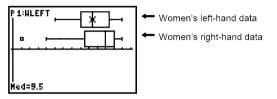
Contents

Comparing Test Results Using Box Plots	17-2
Graphing Piecewise Functions	17-4
Graphing Inequalities	17-5
Solving a System of Nonlinear Equations	17-6
Using a Program to Create the Sierpinski Triangle	17-7
Graphing Cobweb Attractors	17-8
Using a Program to Guess the Coefficients	17-9
Graphing the Unit Circle and Trigonometric Curves	17-10
Finding the Area between Curves	17-11
Using Parametric Equations: Ferris Wheel Problem	17-12
Demonstrating the Fundamental Theorem of Calculus	17-14
Computing Areas of Regular N-Sided Polygons	17-16
Computing and Graphing Mortgage Payments	17-18

Problem

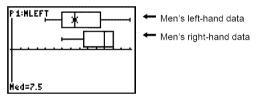
An experiment found a significant difference between boys and girls pertaining to their ability to identify objects held in their left hands, which are controlled by the right side of their brains, versus their right hands, which are controlled by the left side of their brains. The TI Graphics team conducted a similar test for adult men and women.

The test involved 30 small objects, which participants were not allowed to see. First, they held 15 of the objects one by one in their left hands and guessed what they were. Then they held the other 15 objects one by one in their right hands and guessed what they were. Use box plots to compare visually the correct-guess data from this table.


Women Left	Women Right	Men Left	Men Right
8	4	7	12
9	1	8	6
12	8	7	12
11	12	5	12
10	11	7	7
8	11	8	11
12	13	11	12
7	12	4	8
9	11	10	12
11	12	14	11
		13	9
		5	9

Correct Guesses

Procedure


- 1. Press <u>STAT</u> 5 to select 5:SetUpEditor. Enter list names WLEFT, WRGHT, MLEFT, and MRGHT, separated by commas. Press <u>ENTER</u>. The stat list editor now contains only these four lists.
- 2. Press **STAT** 1 to select 1:Edit.
- 3. Enter into WLEFT the number of correct guesses each woman made using her left hand (Women Left). Press > to move to WRGHT and enter the number of correct guesses each woman made using her right hand (Women Right).
- 4. Likewise, enter each man's correct guesses in MLEFT (Men Left) and MRGHT (Men Right).
- Press 2nd [STAT PLOT]. Select 1:Plot1. Turn on plot 1; define it as a modified box plot <u>----</u> that uses WLEFT. Move the cursor to the top line and select Plot2. Turn on plot 2; define it as a modified box plot that uses WRGHT.

- 6. Press Y=. Turn off all functions.
- 7. Press WINDOW. Set Xsci=1 and Ysci=0. Press Z00M 9 to select 9:Z00mStat. This adjusts the viewing window and displays the box plots for the women's results.
- 8. Press TRACE.

Use (and) to examine minX, Q1, Med, Q3, and maxX for each plot. Notice the outlier to the women's righthand data. What is the median for the left hand? For the right hand? With which hand were the women more accurate guessers, according to the box plots?

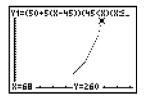
9. Examine the men's results. Redefine plot 1 to use MLEFT, redefine plot 2 to use MRGHT. Press TRACE.

Press (and) to examine minX, Q1, Med, Q3, and maxX for each plot. What difference do you see between the plots?

- 10. Compare the left-hand results. Redefine plot 1 to use **WLEFT**, redefine plot 2 to use **MLEFT**, and then press **TRACE** to examine **minX**, **Q1**, **Med**, **Q3**, and **maxX** for each plot. Who were the better left-hand guessers, men or women?
- 11. Compare the right-hand results. Define plot 1 to use **WRGHT**, define plot 2 to use **MRGHT**, and then press **TRACE** to examine **minX**, **Q1**, **Med**, **Q3**, and **maxX** for each plot. Who were the better right-hand guessers?

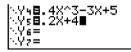
In the original experiment boys did not guess as well with right hands, while girls guessed equally well with either hand. This is not what our box plots show for adults. Do you think that this is because adults have learned to adapt or because our sample was not large enough? ProblemThe fine for speeding on a road with a speed limit of 45
kilometers per hour (kph) is 50; plus 5 for each kph from
46 to 55 kph; plus 10 for each kph from 56 to 65 kph; plus
20 for each kph from 66 kph and above. Graph the
piecewise function that describes the cost of the ticket.

The fine (Y) as a function of kilometers per hour (X) is:


$\mathbf{Y} = 0$	$0 < X \leq 45$
Y = 50 + 5 (X - 45)	$45 < X \le 55$
Y = 50 + 5 * 10 + 10 (X - 55)	$55 < X \le 65$
Y = 50 + 5 * 10 + 10 * 10 + 20 (X - 65)	65 < X

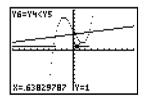
Procedure 1. Press MODE. Select Func and the default settings.

2. Press Y=. Turn off all functions and stat plots. Enter the Y= function to describe the fine. Use the TEST menu operations to define the piecewise function. Set the graph style for Y1 to . (dot).

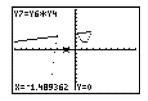

- 3. Press (WINDOW) and set Xmin=-2, Xscl=10, Ymin=-5, and Yscl=10. Ignore Xmax and Ymax; they are set by ΔX and ΔY in step 4.
- 4. Press [2nd] [QUIT] to return to the home screen. Store 1 to ΔX , and then store 5 to ΔY . ΔX and ΔY are on the VARS Window X/Y secondary menu. ΔX and ΔY specify the horizontal and vertical distance between the centers of adjacent pixels. Integer values for ΔX and ΔY produce nice values for tracing.
- 5. Press TRACE to plot the function. At what speed does the ticket exceed 250?

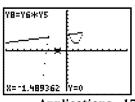
ProblemGraph the inequality $0.4X^3 - 3X + 5 < 0.2X + 4$. Use the
TEST menu operations to explore the values of X where the
inequality is true and where it is false.

Procedure


- 1. Press MODE. Select **Dot**, **Simul**, and the default settings. Setting **Dot** mode changes all graph style icons to \cdot . (dot) in the Y= editor.
- 2. Press Y=. Turn off all functions and stat plots. Enter the left side of the inequality as Y4 and the right side as Y5.

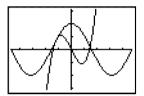
3. Enter the statement of the inequality as Y6. This function evaluates to 1 if true or 0 if false.


- 4. Press $\boxed{\text{ZOOM}}$ 6 to graph the inequality in the standard window.
- 5. Press **TRACE** • to move to **Y6**. Then press and to trace the inequality, observing the value of **Y**.



6. Press Y=. Turn off Y4, Y5, and Y6. Enter equations to graph only the inequality.

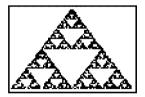
7. Press TRACE. Notice that the values of Y7 and Y8 are zero where the inequality is false.


Problem

Using a graph, solve the equation $X^3 - 2X = 2\cos(X)$. Stated another way, solve the system of two equations and two unknowns: $Y = X^3-2X$ and $Y = 2\cos(X)$. Use ZOOM factors to control the decimal places displayed on the graph.

Procedure 1. Press <u>MODE</u>. Select the default mode settings. Press <u>Y</u>=. Turn off all functions and stat plots. Enter the functions.

> \Y9⊟X3-2X \Y0⊟2cos(X)∎


2. Press **ZOOM 4** to select **4:ZDecimal**. The display shows that two solutions may exist (points where the two functions appear to intersect).

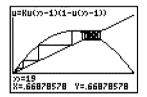
- 3. Press ZOOM ► 4 to select 4:SetFactors from the ZOOM MEMORY menu. Set XFact=10 and YFact=10.
- 4. Press ZOOM 2 to select 2:Zoom In. Use ◀, ►, ▲, and ▼ to move the free-moving cursor onto the apparent intersection of the functions on the right side of the display. As you move the cursor, notice that the X and Y values have one decimal place.
- 5. Press ENTER to zoom in. Move the cursor over the intersection. As you move the cursor, notice that now the X and Y values have two decimal places.
- 6. Press ENTER to zoom in again. Move the free-moving cursor onto a point exactly on the intersection. Notice the number of decimal places.
- 7. Press 2nd [CALC] 5 to select 5:intersect. Press ENTER to select the first curve and ENTER to select the second curve. To guess, move the trace cursor near the intersection. Press ENTER. What are the coordinates of the intersection point?
- 8. Press ZOOM 4 to select 4:ZDecimal to redisplay the original graph.
- 9. Press ZOOM. Select **2:Zoom In** and repeat steps 4 through 8 to explore the apparent function intersection on the left side of the display.

Setting up the Program	This program creates a drawing of a famous fractal, the Sierpinski Triangle, and stores the drawing to a picture. To begin, press PRGM 1 . Name the program SIERPINS , and then press ENTER . The program editor is displayed.	
Program	PROGRAM:SIERPINS :FnOff :C1rDraw :PlotsOff :AxesOff :O→Xmin:1→Xmax :O→Ymin:1→Ymax :rand→X:rand→Y :For(K,1,3000) :rand→N	 Set viewing window. Beginning of For group.
	:If N≤1/3 :Then :.5X→X :.5Y→Y :End	– lf/Then group
	:If 1/3 <n 3<br="" and="" n≤2="">:Then :.5(.5+X)→X :.5(1+Y)→Y :End :If 2/3≤N</n>	If/Then group.
	:Then :.5(1+X)→X :.5Y→Y :End :Pt-On(X,Y) :End :StorePic 6	 If/Then group. Draw point. End of For group. Store picture.

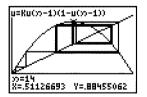
After you execute the program above, you can recall and display the picture with the instruction **RecallPic 6**.

 Problem
 Using Web format, you can identify points with attracting and repelling behavior in sequence graphing.

Procedure 1. Press MODE. Select Seq and the default mode settings. Press 2nd [FORMAT]. Select Web format and the default format settings.


2. Press $\boxed{Y=}$. Clear all functions and turn off all stat plots. Enter the sequence that corresponds to the expression Y = K X(1-X).

u(*n*)=Ku(*n*-1)(1-u(*n*-1)) u(*n*Min)=.01


- 3. Press [2nd] [QUIT] to return to the home screen, and then store **2.9** to K.
- 4. Press WINDOW. Set the window variables.

<i>n</i> Min=0	Xmin=0	Ymin=26
<i>n</i> Max=10	Xmax=1	Ymax=1.1
PlotStart=1	Xscl=1	Ysci=1
PlotStep=1		

5. Press TRACE to display the graph, and then press > to trace the cobweb. This is a cobweb with one attractor.

- 6. Change **K** to **3.44** and trace the graph to show a cobweb with two attractors.
- 7. Change **K** to **3.54** and trace the graph to show a cobweb with four attractors.

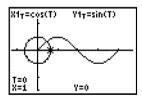
Setting Up the Program	This program graphs the function A sin(BX) with random integer coefficients between 1 and 10. Try to guess the coefficients and graph your guess as C sin(DX). The program continues until your guess is correct.	
Program	PROGRAM: GUESS :PlotsOff :Func :FnOff :Radian :ClrHome :"Asin(BX)" \rightarrow Y1 :"Csin(DX)" \rightarrow Y2 :GraphStyle(1,1) :GraphStyle(2,5) :FnOff 2 :randInt(1,10) \rightarrow A :randInt(1,10) \rightarrow A :randInt(1,10) \rightarrow B : $0 \rightarrow$ C: $0 \rightarrow$ D : $-2\pi \rightarrow$ Xmin : $2\pi \rightarrow$ Xmax : $\pi/2 \rightarrow$ Xscl : $-10 \rightarrow$ Ymin : $10 \rightarrow$ Ymax : $1 \rightarrow$ Yscl :DispGraph :Pause :FnOn 2 :Lbl Z :Prompt C,D :DispGraph :Pause :If C=A :Text(1,1,"C IS 0K") :If D=B :Text(1,50,"D IS 0K") :If D \neq B :Text(1,50,"D IS WRONG") :DispGraph :Pause :If C=A and D=B :Stop :Goto Z	 Define equations. Set line and path graph styles. Initialize coefficients. Set viewing window. Display graph. Prompt for guess. Display results. Display graph. Display graph. Quit if guesses are correct.

Graphing the Unit Circle and Trigonometric Curves

Problem Using parametric graphing mode, graph the unit circle and the sine curve to show the relationship between them.

Any function that can be plotted in **Func** mode can be plotted in **Par** mode by defining the **X** component as **T** and the **Y** component as **F**(**T**).

Procedure 1. Press MODE. Select **Par**, **Simul**, and the default settings.


- 2. Press WINDOW. Set the viewing window. Tmin=0 Xmin=-2 Ymin=-3 Tmax= 2π Xmax=7.4 Ymax=3 Tstep=.1 Xscl= $\pi/2$ Yscl=1
- 3. Press Y=. Turn off all functions and stat plots. Enter the expressions to define the unit circle centered on (0,0).

Ploti	Plot2	Plot3
VX17	loos	(\mathbf{I})
Y17	sin	(T)
NX2⊤		/ T N
Y2TB	sin	(17

4. Enter the expressions to define the sine curve.

	Plot2	
NX176	cos((T)
Y17	sin¢	(T)
NX27 E		
Y27E	lsin((T)

5. Press TRACE. As the graph is plotting, you may press [ENTER] to pause and [ENTER] again to resume graphing as you watch the sine function "unwrap" from the unit circle.

Note: You can generalize the unwrapping. Replace **sin(T)** in **Y2T** with any other trig function to unwrap that function.

Problem	Find the area of the region bounded by $f(x) = \frac{300x}{x^2 + 625}$ $g(x) = \frac{3\cos(.1x)}{x}$ $x = 75$
Procedure	 Press MODE. Select the default mode settings. Press WINDOW. Set the viewing window. Xmin=0 Ymin=-5 Xmax=100 Ymax=10 Xscl=10 Yscl=1 Xres=1
	 3. Press Y=. Turn off all functions and stat plots. Enter the upper and lower functions. Y1=300X/(X²+625) Y2=3cos(.1X)
	4. Press [2nd] [CALC] 5 to select 5:Intersect . The graph is displayed. Select a first curve, second curve, and guess for the intersection toward the left side of the display. The solution is displayed, and the value of X at the intersection, which is the lower limit of the integral, is stored in Ans and X .
	 Press [2nd] [QUIT] to go to the home screen. Press [2nd] [DRAW] 7 and use Shade(to see the area graphically.
	Shade(Y2,Y1,Ans,75)

6. Press [2nd] [QUIT] to return to the home screen. Enter the expression to evaluate the integral for the shaded region.

fnInt(Y1-Y2,X,Ans,75)

The area is **325.839962**.

Using Parametric Equations: Ferris Wheel Problem

ProblemUsing two pairs of parametric equations, determine when
two objects in motion are closest to each other in the same
plane.

A ferris wheel has a diameter (d) of 20 meters and is rotating counterclockwise at a rate (s) of one revolution every 12 seconds. The parametric equations below describe the location of a ferris wheel passenger at time T, where α is the angle of rotation, (0,0) is the bottom center of the ferris wheel, and (10,10) is the passenger's location at the rightmost point, when T=0.

 $\begin{array}{ll} X(T) = r\,\cos\alpha & \quad \mbox{where}\;\alpha = 2\pi Ts \; \mbox{and}\; r = d/2 \\ Y(T) = r + r\,\sin\alpha & \quad \end{array}$

A person standing on the ground throws a ball to the ferris wheel passenger. The thrower's arm is at the same height as the bottom of the ferris wheel, but 25 meters (b) to the right of the ferris wheel's lowest point (25,0). The person throws the ball with velocity (v_0) of 22 meters per second at an angle (θ) of 66° from the horizontal. The parametric equations below describe the location of the ball at time T.

 $\begin{array}{ll} X(T) = b - Tv_0 \cos\theta \\ Y(T) = Tv_0 \sin\theta - (g/2) \ T^2 & \mbox{where} \quad g = \\ 9.8 \ \mbox{m/sec}^2 \end{array}$

- Procedure
 1. Press MODE. Select Par, Simul, and the default settings.

 Simul (simultaneous) mode simulates the two objects in motion over time.
 - 2. Press [WINDOW]. Set the viewing window.

Tmin=0	Xmin=-13	Ymin=0
Tmax=12	Xmax=34	Ymax=31
Tstep=.1	Xscl=10	Yscl=10

3. Press Y=. Turn off all functions and stat plots. Enter the expressions to define the path of the ferris wheel and the path of the ball. Set the graph style for X2T to # (path).

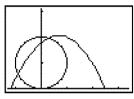
```
Plot1 Plot2 Plot3

\X1τ 810cos(πT/6)

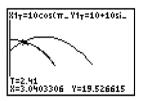
Y1τ 810+10sin(πT

/6)

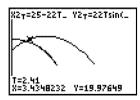
#X2τ 825-22Tcos(6


6°)

Y2τ 822Tsin(66°)


-(9.8/2)T<sup>2</sup>
```

Tip: Try setting the graph styles to **\cancel{4} X1T** and $\cancel{4}$ **X2T**, which simulates a chair on the ferris wheel and the ball flying through the air when you press (GRAPH).


4. Press <u>GRAPH</u> to graph the equations. Watch closely as they are plotted. Notice that the ball and the ferris wheel passenger appear to be closest where the paths cross in the top-right quadrant of the ferris wheel.

- 5. Press WINDOW. Change the viewing window to concentrate on this portion of the graph. Tmin=1 Xmin=0 Ymin=10 Tmax=3 Xmax=23.5 Ymax=25.5 Tstep=.03 Xscl=10 Yscl=10
- 6. Press TRACE. After the graph is plotted, press > to move near the point on the ferris wheel where the paths cross. Notice the values of X, Y, and T.

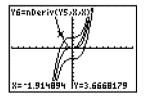
7. Press to move to the path of the ball. Notice the values of X and Y (T is unchanged). Notice where the cursor is located. This is the position of the ball when the ferris wheel passenger passes the intersection. Did the ball or the passenger reach the intersection first?

You can use $\boxed{\text{TRACE}}$ to, in effect, take snapshots in time and explore the relative behavior of two objects in motion.

Demonstrating the Fundamental Theorem of Calculus

Problem 1 Using the functions fnInt(and nDeriv(from the MATH menu to graph functions defined by integrals and derivatives demonstrates graphically that: $F(x)=\int_{-\pi}^{-x}\ 1/t\ dt=ln(x), x>0\quad and\ that$ $D_{x}\left[\int_{1}^{x} 1/t \, dt\right] = 1/x$ Procedure 1 1. Press MODE. Select the default settings. 2. Press WINDOW. Set the viewing window. Xmin=.01 Ymin=-1.5 Xres=3 Xmax=10 Ymax=2.5 Xscl=1 Yscl=1 3. Press $\mathbb{Y}=$. Turn off all functions and stat plots. Enter the numerical integral of 1/T from 1 to X and the function $\ln(X)$. Set the graph style for Y1 to \langle (line) and Y2 to (path). Plot1 Plot2 Plot3 \Yı∎fnInt(1/T,T, 1,X) •Y2∎ln(X) 4. Press [TRACE]. Press [4], [], [], and [] to compare the values of Y1 and Y2. 5. Press [Y=]. Turn off Y1 and Y2, and then enter the numerical derivative of the integral of 1/X and the function 1/X. Set the graph style for Y3 to $\$ (line) and Y4 to ¾ (thick). Plot1 Plot2 Plot3 $Y_1 = fnInt(1/T,T)$ 1,X) ⊕Y2≘ln(X) ∖Ý3**⊟**nDeriv(Y1,X, ŇÝ₄∎1∕X 6. Press [TRACE]. Again, use the cursor keys to compare the values of the two graphed functions, Y3 and Y4. Y3=nDeriv(Y1/8/8) Y4=1/X X=3.1982979 Y=.31266632 X=3.1982979 Y=.31266631

Problem 2 Explore the functions defined by

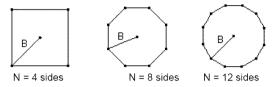

$$y = \int_{-2}^{x} t^2 dt$$
, $\int_{0}^{x} t^2 dt$, and $\int_{2}^{x} t^2 dt$

Procedure 21. Press [Y]. Turn off all functions and stat plots. Use a list
to define these three functions simultaneously. Store
the function in Y5.

Plot1 Plot2 Plot3 1,X) VY2=1n(X) V3=nDeriv(Y1,X, X) V4=1/X V50fnInt(T2,T,(-2,0,2),X)

- 2. Press ZOOM 6 to select 6:ZStandard.
- 3. Press TRACE. Notice that the functions appear identical, only shifted vertically by a constant.
- 4. Press Y=. Enter the numerical derivative of Y5 in Y6.

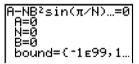
5. Press TRACE. Notice that although the three graphs defined by **Y5** are different, they share the same derivative.



Computing Areas of Regular N-Sided Polygons

Problem

Use the equation solver to store a formula for the area of a regular N-sided polygon, and then solve for each variable, given the other variables. Explore the fact that the limiting case is the area of a circle, πr^2 .


Consider the formula $A = NB^2 \sin(\pi/N) \cos(\pi/N)$ for the area of a regular polygon with N sides of equal length and B distance from the center to a vertex.

Procedure 1. Press MATH 0 to select 0:Solver from the MATH menu. Either the equation editor or the interactive solver editor is displayed. If the interactive solver editor is

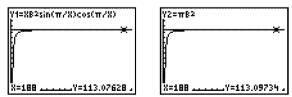
 Enter the formula as 0=A-NB²sin(π / N)cos(π / N), and then press [ENTER]. The interactive solver editor is displayed.

displayed, press \frown to display the equation editor.

- 3. Enter N=4 and B=6 to find the area (A) of a square with a distance (B) from center to vertex of 6 centimeters.
- Press ▲ to move the cursor onto A, and then press <u>ALPHA</u> [SOLVE]. The solution for A is displayed on the interactive solver editor.

- Now solve for B for a given area with various number of sides. Enter A=200 and N=6. To find the distance B, move the cursor onto B, and then press [ALPHA] [SOLVE].
- 6. Enter N=8. To find the distance **B**, move the cursor onto **B**, and then press [ALPHA] [SOLVE]. Find **B** for N=9, and then for N=10.

Find the area given **B=6**, and **N=10**, **100**, **150**, **1000**, and **10000**. Compare your results with $\pi 6^2$ (the area of a circle with radius 6), which is approximately 113.097.

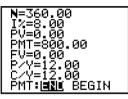

7. Enter **B=6**. To find the area **A**, move the cursor onto **A**, and then press [ALPHA] [SOLVE]. Find **A** for **N=10**, then **N=100**, then **N=100**, and finally **N=10000**. Notice that as **N** gets large, the area **A** approaches πB^2 .

Now graph the equation to see visually how the area changes as the number of sides gets large.

- 8. Press MODE. Select the default mode settings.
- 9. Press WINDOW. Set the viewing window. Xmin=0 Ymin=0 Xres=1 Xmax=200 Ymax=150 Xscl=10 Yscl=10
- 10. Press $\boxed{Y=}$. Turn off all functions and stat plots. Enter the equation for the area. Use **X** in place of **N**. Set the graph styles as shown.

Ploti Plot2 Plot3
\Y1 B XB²sin(π/X)c
os(π/Χ)
0Y2 Ξ πB ²
<u> </u>
\Ŷ4=
<u> \Y</u> s=
\Y6=

11. Press **TRACE**. After the graph is plotted, press **100 ENTER** to trace to **X=100**. Press **150 ENTER**. Press **188 ENTER**. Notice that as **X** increases, the value of **Y** converges to $\pi 6^2$, which is approximately 113.097. **Y2=\pi B^2** (the area of the circle) is a horizontal asymptote to **Y1**. The area of an N-sided regular polygon, with r as the distance from the center to a vertex, approaches the area of a circle with radius r (πr^2) as N gets large.

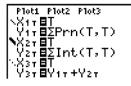

Computing and Graphing Mortgage Payments

Problem

You are a loan officer at a mortgage company, and you recently closed on a 30-year home mortgage at 8 percent interest with monthly payments of 800. The new home owners want to know how much will be applied to the interest and how much will be applied to the principal when they make the 240th payment 20 years from now.

Procedure

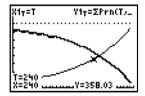
- 1. Press <u>MODE</u> and set the fixed-decimal mode to **2** decimal places. Set the other mode settings to the defaults.
- 2. Press [2nd [FINANCE] 1 to display the TVM Solver. Enter these values.


Note: Enter a positive number (800) to show **PMT** as a cash inflow. Payment values will be displayed as positive numbers on the graph. Enter **0** for **FV**, since the future value of a loan is 0 once it is paid in full. Enter **PMT: END**, since payment is due at the end of a period.

3. Move the cursor onto the **PV=** prompt, and then press <u>ALPHA</u> [SOLVE]. The present value, or mortgage amount, of the house is displayed at the **PV=** prompt.

Now compare the graph of the amount of interest with the graph of the amount of principal for each payment.

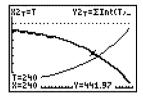
- 4. Press MODE. Set Par and Simul.
- 5. Press [Y=]. Turn off all functions and stat plots. Enter these equations and set the graph styles as shown.


Note: Σ Prn(and Σ Int(are located on the FINANCE CALC menu.

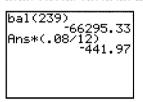
6. Press WINDOW. Set these window variables.

Tmin=1	Xmin=0	Ymin=0
Tmax=360	Xmax=360	Ymax=1000
Tstep=12	Xscl=10	Yscl=100

Tip: To increase the graph speed, change Tstep to 24.


7. Press TRACE. After the graph is drawn, press **240** ENTER to move the trace cursor to **T=240**, which is equivalent to 20 years of payments.

The graph shows that for the 240th payment (**X=240**), 358.03 of the 800 payment is applied to principal (**Y=358.03**).


Note: The sum of the payments (Y3T=Y1T+Y2T) is always 800.

8. Press 👽 to move the cursor onto the function for interest defined by X2T and Y2T. Enter 240.

The graph shows that for the 240th payment (**X=240**), 441.97 of the 800 payment is interest (**Y=441.97**).

9. Press [2nd] [QUIT] [2nd] [FINANCE] 9 to paste 9:bal(to the home screen. Check the figures from the graph.

At which monthly payment will the principal allocation surpass the interest allocation?

18 Memory Management

Contents	Checking Available Memory	18-2
	Deleting Items from Memory	18-3
	Clearing Entries and List Elements	18-4
	Resetting the TI-83	18-5

NENORA 1 E Check RAM 2:Delete 3:Clear Entries 4:ClrAllLists 5:Reset	Т 🐝 Т	èxas Instruments	TI-83
	MELANY U	Check RAM… Delete… Clear Entr ClrAllList	

MEMORY Menu	To display the MEMORY menu, press [2nd] [MEM].	
	MEMORY	
	1:Check RAM	Reports memory availability/usage.
	2:Delete	Displays DELETE FROM menu.
	3:Clear Entries	Clears ENTRY (last-entry storage).
	4:ClrAllLists	Clears all lists in memory.
	5:Reset	Displays RESET menu (all/defaults).

Displaying the Check RAM Screen

Check RAM displays the Check RAM screen. The top line reports the total amount of available memory. The remaining lines report the amount of memory each variable type is using. You can check this screen to see whether you need to delete variables from memory to make room for new data, such as programs.

To check RAM usage, follow these steps.

1. Press 2nd [MEM] to display the MEMORY menu.

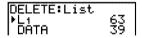
2. Select **1:Check RAM** to display the Check RAM screen. The TI-83 expresses memory quantities in bytes.

MEM FREE Real Complex List Matrix Y-Vars Pr9m ↓Pic	27285 15 0 0 248 14 0
GDB Strin9	Ø

Note: The \downarrow in the left column of the bottom row indicates that you can scroll or page down to view more variable types.

Note: Real, List, Y-Vars, and Prgm variable types never reset to zero, even after memory is cleared.

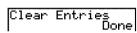
To leave the Check RAM screen, press either 2nd [QUIT] or [CLEAR]. Both options display the home screen.


Deleting an Item To increase available memory by deleting the contents of any variable (real or complex number, list, matrix, Y= variable, program, picture, graph database, or string), follow these steps.

- 1. Press 2nd [MEM] to display the MEMORY menu.
- 2. Select **2:Delete** to display the DELETE FROM secondary menu.

3. Select the type of data you want to delete, or select **1:All** for a list of all variables of all types. A screen is displayed listing each variable of the type you selected and the number of bytes each variable is using.

For example, if you select **4:List**, the DELETE:List screen is displayed.

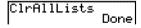


4. Press A and to move the selection cursor (•) next to the item you want to delete, and then press ENTER. The variable is deleted from memory. You can delete individual variables one by one from this screen.

To leave any DELETE: screen without deleting anything, press 2nd [QUIT], which displays the home screen.

Note: You cannot delete some system variables, such as the lastanswer variable **Ans** and the statistical variable **RegEQ**. Clear Entries Clear Entries clears the contents of the ENTRY (last entry) storage area (Chapter 1). To clear the ENTRY storage area, follow these steps.

- 1. Press [2nd [MEM] to display the MEMORY menu.
- 2. Select **3:Clear Entries** to paste the instruction to the home screen.
- 3. Press ENTER to clear the ENTRY storage area.


To cancel Clear Entries, press CLEAR.

Note: If you select **3:Clear Entries** from within a program, the **Clear Entries** instruction is pasted to the program editor, and the **Entry** (last entry) is cleared when the program is executed.

CIrAllLists CIrAllLists sets to 0 the dimension of each list in memory.

To clear all elements from all lists, follow these steps.

- 1. Press 2nd [MEM] to display the MEMORY menu.
- 2. Select **4:CirAllLists** to paste the instruction to the home screen.
- 3. Press ENTER to set to **0** the dimension of each list in memory.

To cancel CIrAllLists, press CLEAR.

CIrAIILists does not delete list names from memory, from the LIST NAMES menu, or from the stat list editor.

Note: If you select **4:CIrAIILists** from within a program, the **CIrAIILists** instruction is pasted to the program editor. The lists are cleared when the program is executed.

RESET Secondary Menu	The RESET secondary menu gives you the option of resetting all memory (including default settings) or resetting the default settings while preserving other data stored in memory, such as programs and Y= functions.
Resetting All Memory	Resetting all memory on the TI-83 restores memory to the factory settings. It deletes all nonsystem variables and all programs. It resets all system variables to the default settings.
	Tip: Before you reset all memory, consider restoring sufficient available memory by deleting only selected data (page 18-3).
	To reset all memory on the TI-83, follow these steps.
	1. Press [2nd] [MEM] to display the MEMORY menu.
	2. Select 5:Reset to display the RESET secondary menu.
	32534 NEAll Memory 2:Defaults
	3. Select 1:All Memory to display the RESET MEMORY tertiary menu.
	Resetting memory erases all data
	and programs.
	4. Read the message below the RESET MEMORY menu.
	• To cancel memory reset and return to the home screen, select 1:No .
	 To erase from memory all data and programs, select 2:Reset. All factory defaults are restored. Mem cleared is displayed on the home screen.
	Mem cleared
	Note: When you clear memory, the contrast sometimes changes. If the screen is faded or blank, adjust the contrast (Chapter 1).

Resetting Defaults	When you reset defaults on the TI-83, all defaults are restored to the factory settings. Stored data and programs are not changed.
	These are some examples of TI-83 defaults that are restored by resetting the defaults.
	 Mode settings such as Normal (notation); Func (graphing); Real (numbers); and Full (screen) Y= functions off
	 Window variable values such as Xmin=-10; Xmax=10; Xscl=1; Yscl=1; and Xres=1
	• Stat plots off
	• Format settings such as CoordOn (graphing coordinates on); AxesOn ; and ExprOn (expression on)
	• rand seed value to 0
	To reset all TI-83 factory defaults, follow these steps.
	1. Press [2nd] [MEM] to display the MEMORY menu.
	2. Select 5:Reset to display the RESET secondary menu.
	3. Select 2:Defaults to display the RESET DEFAULTS tertiary menu.
	2331001310002 18 No 2:Reset
	4. Consider the consequences of resetting defaults.
	• To cancel reset and return to the home screen, select 1:No .
	• To restore factory default settings, select 2:Reset . Default settings are restored. Defaults set is displayed on the home screen.
	Defaults set

19 Communication Link

TI-83 LINK	
11-00 LINN	10.4
Selecting Items to Send	19-4
Receiving Items	19-5
Transmitting Items	19-6
Transmitting Lists to a TI-82	19-8
Transmitting from a TI-82 to a TI-83	19-9
Backing Up Memory 1	19-10

338 RECEIVE 13 AI1+ 2:A11 3:Pr9m 4:List 5:Lists to TI82 6:GDB 7↓Pic	TEXAS INSTRUMENTS TI-83
	18AI1+ 2:A11 3:Pr9m 4:List 5:Lists to TI82 6:GDB

Getting Started is a fast-paced introduction. Read the chapter for details.

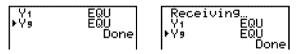
Create and store a variable and a matrix, and then transfer them to another TI-83.

- On the home screen of the sending unit, press 5 ... 5 STO→ ALPHA Q. Press ENTER to store 5.5 to Q.
- Press 2nd [] 2nd [] 1 . 2 2nd [] 2nd [[] 3 . 4 2nd [] 2nd [] STOP [MATRX 1. Press ENTER to store the matrix to [A].
- 3. Connect the calculators with the link cable. Push both ends in firmly.
- 4. On the receiving unit, press 2nd [LINK] → to display the RECEIVE menu. Press 1 to select 1:Receive. The message Waiting... is displayed and the busy indicator is on.
- 5. On the sending unit, press 2nd [LINK] to display the SEND menu.
- 6. Press **2** to select **2:All**-. The All- SELECT screen is displayed.
- 7. Press **▼** until the selection cursor (**▶**) is next to **[A] MATRX**. Press **ENTER**.
- 8. Press v until the selection cursor is next to **Q REAL**. Press ENTER. A square dot next to [A] and **Q** indicates that each is selected to send.
- 9. On the sending unit, press ▶ to display the TRANSMIT menu.
- On the sending unit, press 1 to select
 1:Transmit and begin transmission. The receiving unit displays the message
 Receiving.... When the items are transmitted, both units display the name and type of each transmitted variable.

TI-83 LINK

TI-83 Link Capabilities	The TI-83 has a port to connect and communicate with another TI-83, a TI-82, the Calculator-Based Laboratory TM (CBL 2 TM , CBL TM) System, the Calculator-Based Ranger TM (CBR TM), or a personal computer. The unit-to-unit link cable is included with the TI-83. This chapter describes how to communicate with another calculator.
Linking Two TI-83s	You can transfer all variables and programs to another TI-83 or backup the entire memory of a TI-83. The software that enables this communication is built into the TI-83. To transmit from one TI-83 to another, follow the steps on pages 19-6 and 19-7.
Linking a TI-82 and a TI-83	You can transfer from a TI-82 to a TI-83 all variables and programs. Also, you can transfer from a TI-83 to a TI-82 lists L1 through L6.
	The software that enables this communication is built into the TI-83. To transmit data from a TI-82 to a TI-83, follow the steps on pages 19-6 and 19-7.
	• You cannot perform a memory backup from a TI-82 to a TI-83.
	• The only data type you can transmit from a TI-83 to a TI-82 is list data stored in L1 through L6. Use the LINK SEND menu item 5:Lists to TI82 (page 19-8).
Connecting Two	1. Insert either end of the cable into the port very firmly .
Calculators with the Cable	2. Insert the other end of the cable into the other calculator's port.
Linking to a CBR or the CBL 2/CBL System	CBR and the CBL 2/CBL System are optional accessories that connect to a TI-83 with the unit-to-unit link cable. With a CBR or a CBL 2/CBL and a TI-83, you can collect and analyze real-world data.
Linking to a PC or Macintosh	TI-GRAPH LINK [™] is an optional accessory that links a TI-83 to enable communication with a personal computer.

LINK SEND Menu	To display the LINK SE	ND menu, press 2nd [LINK].
	SEND RECEIVE 1: All+ 2: All 3: Prgm 4: List 5: Lists to TI82 6: GDB 7: Pic 8: Matrix 9: Real 0: Complex A: Y-Vars B: String	Displays all items selected. Displays all items deselected. Displays all programs names. Displays all programs names. Displays all list names. Displays list names L1 through L6. Displays all graph databases. Displays all picture data types. Displays all matrix data types. Displays all real variables. Displays all complex variables. Displays all Y= variables.
	C:Back Up	Selects all for backup to TI-83.
	When you select an ite corresponding SELEC	em on the LINK SEND menu, the T screen is displayed.
	Note: Each SELECT scre initially with no data select	en, except All+ SELECT, is displayed ed.
Selecting Items to Send	To select items to send steps.	d on the sending unit, follow these
	1. Press 2nd [LINK] to	display the LINK SEND menu.
		m that describes the data type to nding SELECT screen is displayed.
	3. Press • and • to r item you want to se	nove the selection cursor (\bullet) to an elect or deselect.
	4. Press ENTER to sele names are marked	ct or deselect the item. Selected with a •.
	Ø∃#:001 TRANSM ▼Y1 EQL ▼Y9 EQL X1τ EQL Y1τ EQL Window WIN Rc1WindowZST Control	
	5. Repeat steps 3 and 4	4 to select or deselect additional items.


Menu SEND RECEIVE 1: Receive Sets unit to receive data transmission. Receiving Unit When you select 1:Receive from the LINK RECEIVE menu of the receiving unit, the message Waiting and the busy indicator are displayed. The receiving unit is ready to receive transmitted items. To exit the receive mode without receiving items, press ON, and then select 1:Quit from the Error in Xmit menu. To transmit, follow the steps on page 19-6. When transmission is complete, the unit exits the receive mode. You can select 1:Receive again to receive more items. The receiving unit then displays a list of items received. Press 2nd [QUIT] to exit the receive mode. DuplicateName Menu During transmission, if a variable name is duplicated, the DuplicateName menu is displayed on the receiving unit. DuplicateName Menu Ourput the Prompts to rename receiving variable.	
DuplicateName MenuDuring transmission, if a variable name is duplicated, the DuplicateName 1: RenameDurng transmission, if a variable name receiving unit.	_
When transmission is complete, the unit exits the receive mode. You can select 1:Receive again to receive more items. The receiving unit then displays a list of items received. Press [2nd] [QUIT] to exit the receive mode. DuplicateName Menu During transmission, if a variable name is duplicated, the DuplicateName menu is displayed on the receiving unit. DuplicateName 1: Rename Prompts to rename receiving variable.	n
mode. You can select 1:Receive again to receive more items. The receiving unit then displays a list of items received. Press [2nd] [QUIT] to exit the receive mode. DuplicateName Menu During transmission, if a variable name is duplicated, the DuplicateName menu is displayed on the receiving unit. DuplicateName 1: Rename Prompts to rename receiving variable.	
Menu DuplicateName menu is displayed on the receiving unit. DuplicateName I: Rename 1: Rename Prompts to rename receiving variable.	
1: Rename Prompts to rename receiving variable.	
2: OverwriteOverwrites data in receiving variable.3: OmitSkips transmission of sending variable.4: QuitStops transmission at duplicate variable.	_
When you select 1:Rename , the Name= prompt is displayed and alpha-lock is on. Enter a new variable name, and then press <u>ENTER</u> . Transmission resumes.	
When you select 2:Overwrite , the sending unit's data overwrites the existing data stored on the receiving unit. Transmission resumes.	
When you select 3:Omit , the sending unit does not send th data in the duplicated variable name. Transmission resumes with the next item.	e
When you select 4:Quit , transmission stops, and the receiving unit exits receive mode.	
InsufficientDuring transmission, if the receiving unit does not haveMemory insufficient memory to receive an item, the Memory Full menReceiving Unitis displayed on the receiving unit.	u
 To skip this item for the current transmission, select 1:Omit. Transmission resumes with the next item. To cancel the transmission and exit receive mode, select 2:Quit. 	

Transmitting
ItemsTo transmit selected items after you have selected items to
send on the sending unit (page 19-4) and set the receiving
unit to receive (page 19-5), follow these steps.

1. Press) on the sending unit to display the TRANSMIT menu.

- 2. Confirm that **Waiting...** is displayed on the receiving unit, which indicates it is set to receive (page 19-5).
- 3. Press ENTER to select **1:Transmit**. The name and type of each item are displayed line by line on the sending unit as the item is queued for transmission, and then on the receiving unit as each item is accepted.

After all selected items have been transmitted, the message **Done** is displayed on both calculators. Press \blacktriangle and \bigtriangledown to scroll through the names.

Stopping aTo stop a link transmission, press ON. The Error in Xmit
menu is displayed on both units. To leave the error menu,
select 1:Quit.

- Error Conditions A transmission error occurs after one or two seconds if:
 - A cable is not attached to the sending unit.
 - A cable is not attached to the receiving unit.
 - Note: If the cable is attached, push it in firmly and try again.
 - The receiving unit is not set to receive transmission.
 - You attempt a backup between a TI-82 and a TI-83.
 - You attempt a data transfer from a TI-83 to a TI-82 with data other than lists L1 through L6 or without using menu item 5:Lists to TI82.

Although a transmission error does not occur, these two conditions may prevent successful transmission.

- You try to use **Get(** with a calculator instead of a CBL 2/CBL or CBR.
- You try to use GetCalc(with a TI-82 instead of a TI-83.

Transmitting After sending or receiving data, you can repeat the same Items to an transmission to additional TI-83 units—from either the Additional TI-83 sending unit or the receiving unit—without having to reselect data to send. The current items remain selected. Note: You cannot repeat transmission if you selected All+ or All-. To transmit to an additional TI-83, follow these steps. 1. Set the TI-83 to receive (page 19-5). 2. Do not select or deselect any new items to send. If you select or deselect an item, all selections or deselections from the previous transmission are cleared. 3. Disconnect the link cable from one TI-83 and connect it to the additional TI-83. 4. Set the additional TI-83 to receive (page 19-5). 5. Press [2nd] [LINK] on the sending TI-83 to display the LINK SEND menu. 6. Select the menu item that you used for the last transmission. The data from your last transmission is still selected. 7. Press \blacktriangleright to display the LINK TRANSMIT menu. 8. Confirm that the receiving unit is set to receive (page 19-5).

9. Press ENTER to select 1:Transmit and begin transmitting.

Transmitting The only data type you can transmit from a TI-83 to a TI-82 Lists to a TI-82 is list data stored in L1 through L6. To transmit to a TI-82 the list data that is stored to TI-83 lists L1, L2, L3, L4, L5, or L6, follow these steps. 1. Set the TI-82 to receive (page 19-5). 2. Press [2nd] [LINK] 5 on the sending TI-83 to select 5:Lists to TI82. The SELECT screen is displayed. 3. Select each list to transmit. 4. Press F to display the LINK TRANSMIT menu. 5. Confirm that the receiving unit is set to receive (page 19-5). 6. Press ENTER to select 1:Transmit and begin transmitting. Note: If dimension > 99 for a TI-83 list that is selected to send, the receiving TI-82 will truncate the list at the ninety-ninth element during transmission.

Resolved
Differences
between the TI-82
and TI-83

Generally, you can transmit items to a TI-83 from a TI-82, but differences between the two products may affect some transmitted data. This table shows differences for which the software built into the TI-83 automatically adjusts when a TI-83 receives TI-82 data.

TI-82	TI-83
<i>n</i> Min	PlotStart
<i>n</i> Start	<i>n</i> Min
Un	u
Vn	v
U <i>n</i> Start	u(<i>n</i> Min)
V <i>n</i> Start	v(<i>n</i> Min)
TblMin	TblStart

For example, if you transmit from a TI-82 to a TI-83 a program that contains *n*Start on a command line and then display the program on the receiving TI-83, you will see that *n*Min has automatically replaced *n*Start on the command line.

Unresolved	The software built into the TI-83 cannot resolve some
Differences	differences between the TI-82 and TI-83, which are
between the TI-82	described below. You must edit the data on the TI-83 after
and TI-83	you transmit to account for these differences, or the TI-83
	will misinterpret the data.

The TI-83 reinterprets TI-82 prefix functions to include open parentheses, which may add extraneous parentheses to transmitted expressions.

For example, if you transmit $\sin X+5$ from a TI-82 to a TI-83, the TI-83 reinterprets it as $\sin(X+5)$. Without a closing parenthesis after X, the TI-83 interprets this as $\sin(X+5)$, not the sum of 5 and $\sin(X)$.

If a TI-82 instruction that the TI-83 cannot translate is transmitted, the ERR:INVALID menu is displayed when the TI-83 attempts to execute the instruction. For example, on the TI-82, the character group Un-1 is pasted to the cursor location when you press 2ng [Un-1]. The TI-83 cannot directly translate Un-1 to the TI-83 syntax u(n-1), so the ERR:INVALID menu is displayed.

Note: TI-83 implied multiplication rules differ from those of the TI-82. For example, the TI-83 evaluates 1/2X as (1/2)*X, while the TI-82 evaluates 1/2X as 1/(2*X) (Chapter 2).

Memory Backup To copy the exact contents of memory in the sending TI-83 to the memory of the receiving TI-83, put the other unit in receive mode. Then, on the receiving unit, select C:Back Up from the LINK SEND menu.

• **Warning: C:Back Up** overwrites the memory in the receiving unit; all information in the memory of the receiving unit is lost.

Note: If you do not want to do a backup, select **2:Quit** to return to the LINK SEND menu.

• Select 1:Transmit to begin transmission.

Receiving Unit As a safety check to prevent accidental loss of memory, the message **WARNING - Backup** is displayed when the receiving unit receives notice of a backup.

- To continue with the backup process, select **1:Continue**. The backup transmission begins.
- To prevent the backup, select 2:Quit.

Note: If a transmission error is returned during a backup, the receiving unit is reset.

Memory BackupWhen the backup is complete, both the sending calculatorCompleteand receiving calculator display a confirmation screen.

MEMORY BACKUP Done

A Tables and Reference Information

Contents

Table of Functions and Instructions	A-2
TI-83 Menu Map	A-39
Variables	A-49
Statistics Formulas	A-50
Financial Formulas	A-54

Functions return a value, list, or matrix. You can use functions in an expression. Instructions initiate an action. Some functions and instructions have arguments. Optional arguments and accompanying commas are enclosed in brackets ([]). For details about an item, including argument descriptions and restrictions, turn to the page listed on the right side of the table.

From the CATALOG, you can paste any function or instruction to the home screen or to a command line in the program editor. However, some functions and instructions are not valid on the home screen. The items in this table appear in the same order as they appear in the CATALOG.

† indicates keystrokes that are valid in the program editor only. Some keystrokes display menus that are available only in the program editor. Others paste mode, format, or table-set instructions only when you are in the program editor.

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Scre	en/Item
abs(value)	Returns the absolute value of a real number, expression, list, or matrix.	MATH NUM	2-13
	or maurix.	1:abs(10-10
abs(complex value)	Returns the magnitude of a complex number or list.	MATH CPX	
		5:abs(2-19
valueA and $valueB$	Returns 1 if both <i>valueA</i> and <i>valueB</i> are $\neq 0$. <i>valueA</i> and	2nd [TEST] LOGIC	
	<i>valueB</i> can be real numbers, expressions, or lists.	1:and	2-26
angle(value)	Returns the polar angle of a complex number or list of	MATH CPX	
	complex numbers.	4:angle(2-19
ANOVA(list1,list2 [,list3,,list20])	Performs a one-way analysis of variance for comparing the	(STAT) TESTS	
	means of two to 20	F:ANOVA(
	populations.	,	13 - 25
Ans	Returns the last answer.	2nd [ANS]	1-18

Function or Instruction/	Description	Key or Keys/		
Arguments	Result	Menu or Screen/Item		
augment(matrixA,matrixB	matrixB appended to matrixA	MATRX) MATH		
	as new columns.	7:augment(10-14	
augment(<i>listA</i> , <i>listB</i>)	Returns a list, which is <i>listB</i> concatenated to the end of <i>listA</i> .	2nd [LIST] OPS 9:augment(11-15	
AxesOff	Turns off the graph axes.	† 2nd [FORMAT] AxesOff	3-14	
AxesOn	Turns on the graph axes.	1 2nd [FORMAT]		
		AxesOn	3-14	
a+bi	Sets the mode to rectangular	† MODE		
	complex number mode $(a+bi)$.	a+bi	1-12	
bal(npmt[,roundvalue])	Computes the balance at <i>npmt</i>	[2nd] [FINANCE]		
	for an amortization schedule	CALĊ		
	using stored values for PV , I%,	9:bal(
	and PMT and rounds the	•		
	computation to <i>roundvalue</i> .		14 - 9	
binomcdf ($numtrials, p[,x]$)	Computes a cumulative	[2nd] [DISTR]		
	probability at x for the discrete	DISTR		
	binomial distribution with the	A:binomcdf(
	specified <i>numtrials</i> and			
	probability p of success on			
	each trial.		13-33	
<pre>binompdf(numtrials,p[,x])</pre>	Computes a probability at x for	2nd [DISTR]		
	the discrete binomial	DISTR		
	distribution with the specified	0:binompdf(
	<i>numtrials</i> and probability p of		10.00	
	success on each trial.		13-33	
χ ² cdf(lowerbound,	Computes the χ^2 distribution	2nd [DISTR]		
upperbound,df)	probability between	DISTR		
	lowerbound and upperbound	7:χ ² cdf(
	for the specified degrees of		19.91	
	freedom <i>df</i> .		13-31	

Eurotice or Instruction (Kay an Kaya I		
Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Screen/Item		
$\frac{\chi^2 pdf(x,df)}{\chi^2 pdf(x,df)}$				
χ-pdf(<i>x</i> , <i>aj</i>)	Computes the probability density function (pdf) for the	[2nd] [DISTR] DISTR		
	χ^2 distribution at a specified x	6:χ ² pdf(
	value for the specified degrees	•• % [•••(
	of freedom <i>df</i> .		13-31	
χ^2 -Test(observedmatrix,	Performs a chi-square test.	† STAT		
expected matrix	drawflag=1 draws results;	TESTS		
[,drawflag])	<i>drawflag=</i> 0 calculates results.	C:χ²-Test(13-22	
Circle(X,Y,radius)	Draws a circle with center	2nd [DRAW]		
	(X,Y) and <i>radius</i> .	DRAW	0.11	
		9:Circle(8-11	
Clear Entries	Clears the contents of the Last	2nd] [MEM] MEMORY		
	Entry storage area.	3:Clear Entries	18-4	
CIrAllLists	Catata ta Atha dina anai an afa U		10 4	
CITAILLISTS	Sets to 0 the dimension of all lists in memory.	2nd [MEM] MEMORY		
	nsts in memory.	4:CirAllLists	18-4	
CirDraw	Clears all drawn elements from	[2nd] [DRAW]	10 1	
onbraw	a graph or drawing.	DRAW		
	- <u>8</u> F8-	1:CIrDraw	8-4	
CirHome	Clears the home screen.	† [PRGM]		
		1/0		
		8:CIrHome	16 - 20	
CIrList listname1	Sets to 0 the dimension of one	(STAT)		
[,listname2,,	or more <i>listnames</i> .	EDIT		
listname n]		4:ClrList	12-20	
CIrTable	Clears all values from the	† (PRGM)		
	table.	1/0	10.00	
		9:ClrTable	16-20	
conj(value)	Returns the complex conjugate	MATH		
	of a complex number or list of	CPX	2-18	
	complex numbers.	1:conj(2-18	
Connected	Sets connected plotting mode;	† MODE Connected		
	resets all Y = editor graph-style settings to \land .	Connected	1-11	
	Sciences to +.		1 11	

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Screer	n/Item
CoordOff	Turns off cursor coordinate value display.	† 2nd [FORMAT] CoordOff	3-14
CoordOn	Turns on cursor coordinate value display.	† 2nd [FORMAT] CoordOn	3-14
cos(value)	Returns cosine of a real number, expression, or list.	COS	2-3
cos ⁻¹ (value)	Returns arccosine of a real number, expression, or list.	2nd [COS ⁻¹]	2-3
cosh(value)	Returns hyperbolic cosine of a real number, expression, or list.	2nd [CATALOG] cosh(15-10
cosh ⁻¹ (value)	Returns hyperbolic arccosine of a real number, expression, or list.	2nd [CATALOG] cosh ⁻¹ (15-10
CubicReg [Xlistname, Ylistname,freqlist, regequ]	Fits a cubic regression model to <i>Xlistname</i> and <i>Ylistname</i> with frequency <i>freqlist</i> , and stores the regression equation to <i>regequ</i> .	STAT CALC 6:CubicReg	12-26
cumSum(list)	Returns a list of the cumulative sums of the elements in <i>list</i> , starting with the first element.	2nd [LIST] OPS 6:cumSum(11-12
cumSum(<i>matrix</i>)	Returns a matrix of the cumulative sums of <i>matrix</i> elements. Each element in the returned matrix is a cumulative sum of a <i>matrix</i> column from top to bottom.	MATRX MATH 0:cumSum(10-15
dbd(date1,date2)	Calculates the number of days between <i>date1</i> and <i>date2</i> using the actual-day-count method.	2nd [FINANCE] CALC D:dbd(14-13
value >Dec	Displays a real or complex number, expression, list, or matrix in decimal format.	MATH MATH 2:>Dec	2-5

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Scree	n/Item
Degree	Sets degree angle mode.	† MODE Degree	1-11
DelVar variable	Deletes from memory the contents of <i>variable</i> .	† <u>PRGM</u> CTL G:DelVar	16-15
DependAsk	Sets table to ask for dependent-variable values.	† 2nd [TBLSET] Depend: Ask	7-3
DependAuto	Sets table to generate dependent-variable values automatically.	† 2nd [TBLSET] Depend: Auto	7 -3
det(matrix)	Returns determinant of <i>matrix</i> .	MATRX MATH 1:det(10-12
DiagnosticOff	Sets diagnostics-off mode; r , r ² , and R ² are not displayed as regression model results.	2nd [CATALOG] DiagnosticOff	12-23
DiagnosticOn	Sets diagnostics-on mode; r , r ² , and R ² are displayed as regression model results.	2nd [CATALOG] DiagnosticOn	12-23
dim(listname)	Returns the dimension of <i>listname</i> .	2nd [LIST] OPS 3:dim(11-11
dim(matrixname)	Returns the dimension of <i>matrixname</i> as a list.	MATRX MATH 3:dim(10-12
length >dim(listname)	Assigns a new dimension (<i>length</i>) to a new or existing <i>listname</i> .	2nd [LIST] OPS 3:dim(11-11
{rows,columns} > dim(matrixname)	Assigns new dimensions to a new or existing <i>matrixname</i> .	MATRX MATH 3:dim(10-13
Disp	Displays the home screen.	† <u>PRGM</u> I/O 3:Disp	16-18
Disp [valueA,valueB, valueC,,value n]	Displays each value.	† <u>PRGM</u> I/O 3:Disp	16-18

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Scree	n/Item
DispGraph	Displays the graph.	† PRGM	
		I/O 4:DispGraph	16-10
DispTable	Displays the table.	† [PRGM]	10 15
Dispitable	Displays the table.	I/O	
		5:DispTable	16-19
value) DMS	Displays value in DMS format.	2nd [ANGLE]	
		ANGLE	
		4:>DMS	2-24
Dot	Sets dot plotting mode; resets	† MODE	
	all Y= editor graph-style settings to	Dot	1-11
DrawF expression	Draws <i>expression</i> (in terms of	[2nd] [DRAW]	
Diami capicasion	X) on the graph.	DRAW	
	<i>,</i> , , , , , , , , , , , , , , , , , ,	6:DrawF	8-9
Drawlnv expression	Draws the inverse of	2nd [DRAW]	
	<i>expression</i> by plotting X values	DRAW	
	on the y-axis and Y values on the x-axis.	8:Drawlnv	8-9
:DS<(variable,value)	Decrements <i>variable</i> by 1;	† [PRGM]	00
:commandA	skips commandA if variable <	CTL	
:commands	value.	B:DS<(16-14
e^(power)	Returns e raised to <i>power</i> .	$[2nd] [e^x]$	
u ,	*		2-4
e^(list)	Returns a list of \mathbf{e} raised to a	2nd $[e^x]$	
	<i>list</i> of powers.		2-4
Exponent:	Returns <i>value</i> times 10 to the	2nd [EE]	
valueEexponent	exponent.		1-7
Exponent:	Returns <i>list</i> elements times 10	2nd [EE]	1.77
listEexponent	to the <i>exponent</i> .	<u>()</u>	1-7
Exponent: matrixEexponent	Returns <i>matrix</i> elements times 10 to the <i>exponent</i> .	2nd [EE]	1-7
>Eff(nominal rate,	Computes the effective interest	[2nd] [FINANCE]	1 1
compounding periods)	rate.		
compounding periods		C:≽Eff(14-12
Else		•	
See If:Then:Else			

Function or Instruction/	D	Key or Keys/	/11
Arguments	Result	Menu or Screer	n/Item
End	Identifies end of For(, If-Then-Else, Repeat , or While loop.	† PRGM CTL 7:End	16-12
Eng	Sets engineering display mode.	† MODE Eng	1-10
Equ⊳String(Y= var,Strn)	Converts the contents of a Y= var to a string and stores it in Str n.	2nd] [CATALOG] Equ≽String(15-7
expr(string)	Converts <i>string</i> to an expression and executes it.	2nd [CATALOG] expr(15-7
ExpReg [Xlistname, Ylistname,freqlist,regequ]	Fits an exponential regression model to <i>Xlistname</i> and <i>Ylistname</i> with frequency <i>freqlist</i> , and stores the regression equation to <i>regequ</i> .	STAT CALC 0:ExpReg	12-26
ExprOff	Turns off the expression display during TRACE.	† 2nd [FORMAT] ExprOff	3-14
ExprOn	Turns on the expression display during TRACE.	† 2nd [FORMAT] ExprOn] 3-14
Fcdf(lowerbound, upperbound, numerator df, denominator df)	Computes the F distribution probability between <i>lowerbound</i> and <i>upperbound</i> for the specified <i>numerator df</i> (degrees of freedom) and <i>denominator df</i> .	[2nd] [DISTR] DISTR 9:Fcdf(13-32
Fill(value,matrixname)	Stores value to each element in matrixname.	MATRX) MATH 4:Fill(10-13
Fill(value,listname)	Stores <i>value</i> to each element in <i>listname</i> .		11-11
Fix #	Sets fixed-decimal mode for # of decimal places.	† <u>MODE</u> 0123456789 (select one)	1-10
Float	Sets floating decimal mode.	† MODE Float	1-10

A-8 Tables and Reference Information

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Scree	n/Item
fMax(expression,variable, lower,upper[,tolerance])	Returns the value of <i>variable</i> where the local maximum of <i>expression</i> occurs, between <i>lower</i> and <i>upper</i> , with specified <i>tolerance</i> .	MATH MATH 7:fMax(2-6
fMin(expression,variable, lower,upper[,tolerance])	Returns the value of <i>variable</i> where the local minimum of <i>expression</i> occurs, between <i>lower</i> and <i>upper</i> , with specified <i>tolerance</i> .	MATH MATH 6:fMin(2-6
fnInt(expression,variable, lower,upper[,tolerance])	Returns the function integral of <i>expression</i> with respect to <i>variable</i> , between <i>lower</i> and <i>upper</i> , with specified <i>tolerance</i> .	MATH MATH 9:fnInt(2-7
FnOff [function#, function#,,function n]	Deselects all Y= functions or specified Y= functions.	VARS Y-VARS On/Off 2:FnOff	3-8
FnOn [function#, function#,,function n]	Selects all Y= functions or specified Y= functions.	VARS Y-VARS On/Off 1:FnOn	3-8
:For(variable,begin,end [,increment]) :commands :End :commands	Executes <i>commands</i> through End , incrementing <i>variable</i> from <i>begin</i> by <i>increment</i> until <i>variable>end</i> .	† <u>PRGM</u> CTL 4:For(16-10
fPart(value)	Returns the fractional part or parts of a real or complex number, expression, list, or matrix.	MATH) NUM 4:fPart(2-14 10-11
Fpdf(x,numerator df, denominator df)	Computes the F distribution probability between <i>lowerbound</i> and <i>upperbound</i> for the specified <i>numerator</i> df (degrees of freedom) and <i>denominator</i> df.	[2nd] [DISTR] DISTR 8:Fpdf(13-32

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Scree	n/Item
value >Frac	Displays a real or complex number, expression, list, or matrix as a fraction simplified to its simplest terms.	MATH MATH 1:∍Frac	2-5
Full	Sets full screen mode.	† MODE Full	1-12
Func	Sets function graphing mode.	† MODE Func	1-11
gcd(valueA,valueB)	Returns the greatest common divisor of <i>valueA</i> and <i>valueB</i> , which can be real numbers or lists.	MATH NUM 9:gcd(2-15
geometcdf(<i>p</i> , <i>x</i>)	Computes a cumulative probability at x, the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success	[2nd] [DISTR] DISTR E:geometcdf(
	p.		13-34
geometpdf(p,x)	Computes a probability at x , the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success p .	[2nd] [DISTR] DISTR D:geometpdf(13-34
Get(variable)	Gets data from the CBL 2/CBL System or CBR and stores it in <i>variable</i> .	† <u>PRGM</u> I/O A:Get(16-21
GetCalc(variable)	Gets contents of <i>variable</i> on another TI-83 and stores it to <i>variable</i> on the receiving TI-83.	† <u>PRGM</u> I/O 0:GetCalc(16-21
getKey	Returns the key code for the current keystroke, or 0 , if no key is pressed.	† PRGM I/O 7:getKey	16-20
Goto label	Transfers control to <i>label</i> .	† PRGM CTL 0:Goto	16-13

A-10 Tables and Reference Information

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Scree	en/Item
GraphStyle(function#, graphstyle#)	Sets a <i>graphstyle</i> for <i>function</i> #.	† <u>PRGM</u> CTL H:GraphSty l	l e(16-15
GridOff	Turns off grid format.	† 2nd [FORMA GridOff	т] 3-14
GridOn	Turns on grid format.	† 2nd [FORMA GridOn	т] 3-14
G-T	Sets graph-table vertical split-screen mode.	† MODE G-T	1-12
Horiz	Sets horizontal split-screen mode.	† MODE Horiz	1-12
Horizontal y	Draws a horizontal line at y .	2nd [DRAW] DRAW 3:Horizontal	8-6
identity(dimension)	Returns the identity matrix of dimension rows × dimension columns.	MATRX MATH 5:identity(10-13
:If condition :commandA :commands	If condition = 0 (false), skips commandA.	† PRGM CTL 1:lf	16-9
:If condition :Then :commands :End	Executes <i>commands</i> from Then to End if <i>condition</i> = 1 (true).	† <u>PRGM</u> CTL 2:Then	
:commands :If condition :Then :commands :Else :commands	Executes <i>commands</i> from Then to Else if <i>condition</i> = 1 (true); from Else to End if <i>condition</i> = 0 (false).	† (PRGM) CTL 3:Else	16-9
:End :commands			16-10
imag(value)	Returns the imaginary (nonreal) part of a complex number or list of complex numbers.	MATH CPX 3:imag(2-18

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Scree	n/Item
IndpntAsk	Sets table to ask for independent-variable values.	† 2nd [TBLSET] Indpnt: Ask	7-3
IndpntAuto	Sets table to generate independent-variable values automatically.	† [2nd] [TBLSET] Indpnt: Auto	7-3
Input	Displays graph.	† <u>PRGM</u> I/O 1:Input	16-16
Input [variable] Input ["text",variable]	Prompts for value to store to <i>variable</i> .	† PRGM I/O 1:Input	16-17
Input [Strn,variable]	Displays Str <i>n</i> and stores entered value to <i>variable</i> .	† PRGM I/O 1:Input	16-17
inString(string,substring [,start])	Returns the character position in <i>string</i> of the first character of <i>substring</i> beginning at <i>start</i> .	[2nd] [CATALOG] inString(15-7
int(value)	Returns the largest integer ≤ a real or complex number, expression, list, or matrix.	MATH NUM 5:int(2-14 10-11
Σ int (pmt1,pmt2 [,roundvalue])	Computes the sum, rounded to <i>roundvalue</i> , of the interest amount between <i>pmt1</i> and <i>pmt2</i> for an amortization schedule.	2nd [FINANCE] CALC A:Σint(14-9
invNorm(area[,μ,σ])	Computes the inverse cumulative normal distribution function for a given <i>area</i> under the normal distribution curve specified by μ and σ .	2nd) [DISTR] DISTR 3:invNorm(13-30
iPart(value)	Returns the integer part of a real or complex number, expression, list, or matrix.	MATH NUM 3:iPart(2-14 10-11

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Screer	n/Item
irr(CF0,CFList[,CFFreq])	Returns the interest rate at which the net present value of the cash flows is equal to zero.	2nd [FINANCE] CALC 8:irr(14-8
:IS>(variable,value) :commandA :commands	Increments <i>variable</i> by 1; skips <i>commandA</i> if <i>variable>value</i> .	† PRGM CTL A:IS>(16-13
Llistname	Identifies the next one to five characters as a user-created list name.	2nd [LIST] OPS B: 1	11-16
LabelOff	Turns off axes labels.	† 2nd [FORMAT] LabelOff	3-14
LabelOn	Turns on axes labels.	† 2nd [FORMAT] LabelOn	3-14
Lbl label	Creates a <i>label</i> of one or two characters.	† PRGM CTL 9:LbI	16-13
lcm(valueA,valueB)	Returns the least common multiple of <i>valueA</i> and <i>valueB</i> , which can be real numbers or lists.	MATH NUM 8:Icm(2-15
length(string)	Returns the number of characters in <i>string</i> .	2nd [CATALOG] length(15-8
Line(<i>X1,Y1,X2,Y2</i>)	Draws a line from $(X1,Y1)$ to $(X2,Y2)$.	2nd [DRAW] DRAW 2:Line(8-5
Line(<i>X1,Y1,X2,Y2</i> ,0)	Erases a line from (<i>X1,Y1</i>) to (<i>X2,Y2</i>).	2nd [DRAW] DRAW 2:Line(8-5

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Screen/Item
LinReg(a+bx) [Xlistname, Ylistname,freqlist, regequ]	Fits a linear regression model to <i>Xlistname</i> and <i>Ylistname</i> with frequency <i>freqlist</i> , and stores the regression equation to <i>regequ</i> .	STAT) CALC 8:LinReg(a+bx) 12-26
LinReg(ax+b) [Xlistname, Ylistname,freqlist, regequ]	Fits a linear regression model to <i>Xlistname</i> and <i>Ylistname</i> with frequency <i>freqlist</i> , and stores the regression equation to <i>regequ</i> .	STAT CALC 4:LinReg(ax+b) 12-25
LinRegTTest [Xlistname, Ylistname,freqlist, alternative,regequ]	Performs a linear regression and a <i>t</i> -test. <i>alternative=</i> -1 is $<; alternative=$ 0 is $\neq;$ <i>alternative=</i> 1 is >.	† <u>STAT</u> TESTS E:LinRegTTest 13-24
Δ List($list$)	Returns a list containing the differences between consecutive elements in <i>list</i> .	2nd [LIST] OPS 7:∆List(11-12
List → matr(listname1,, listname n,matrixname)	Fills <i>matrixname</i> column by column with the elements from each specified <i>listname</i> .	[2nd] [LIST] OPS 0:List⊁matr(10-14 11-15
In(value)	Returns the natural logarithm of a real or complex number, expression, or list.	LN 2-4
LnReg [Xlistname, Ylistname,freqlist, regequ]	Fits a logarithmic regression model to <i>Xlistname</i> and <i>Ylistname</i> with frequency <i>freqlist</i> , and stores the regression equation to <i>regequ</i> .	[STAT] CALC 9:LnReg 12-26
log(value)	Returns logarithm of a real or complex number, expression, or list.	LOG 2-4

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Scree	n/Item
Logistic [Xlistname, Ylistname,freqlist, regequ]	Fits a logistic regression model to <i>Xlistname</i> and <i>Ylistname</i> with frequency <i>freqlist</i> , and stores the regression equation to <i>regequ</i> .	STAT CALC B:Logistic	12-27
Matr → list(matrix, listnameA,,listname n)	Fills each <i>listname</i> with elements from each column in <i>matrix</i> .	2nd [LIST] OPS A:Matr⊁list(10-14 11-16
Matr → list(matrix, column#,listname)	Fills a <i>listname</i> with elements from a specified <i>column</i> # in <i>matrix</i> .	2nd [LIST] OPS A:Matr⊁list(10-14 11-16
max(valueA,valueB)	Returns the larger of <i>valueA</i> and <i>valueB</i> .	MATH NUM 7:max(2-15
max(list)	Returns largest real or complex element in <i>list</i> .	2nd [LIST] MATH 2:max(11-16
max(listA,listB)	Returns a real or complex list of the larger of each pair of elements in <i>listA</i> and <i>listB</i> .	[2nd] [LIST] MATH 2:max(11-16
max(value,list)	Returns a real or complex list of the larger of <i>value</i> or each <i>list</i> element.	[2nd] [LIST] MATH 2:max(11-16
<pre>mean(list[,freqlist])</pre>	Returns the mean of <i>list</i> with frequency <i>freqlist</i> .	2nd [LIST] MATH 3:mean(11-16
median(list[,freqlist])	Returns the median of <i>list</i> with frequency <i>freqlist</i> .	2nd [LIST] MATH 4:median(11-16
Med-Med [Xlistname, Ylistname,freqlist, regequ]	Fits a median-median model to <i>Xlistname</i> and <i>Ylistname</i> with frequency <i>freqlist</i> , and stores the regression equation to <i>regequ</i> .	STAT CALC 3:Med-Med	12-25
Menu("title","text1",label1 [,,"text?",label7])	Generates a menu of up to seven items during program execution.	† <u>PRGM</u> CTL C:Menu(16-14

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Scree	n/Item
min(valueA,valueB)	Returns smaller of <i>valueA</i> and <i>valueB</i> .	MATH NUM 6:min(2-15
min(list)	Returns smallest real or complex element in <i>list</i> .	2nd [LIST] MATH 1:min(11-16
min(<i>listA</i> , <i>listB</i>)	Returns real or complex list of the smaller of each pair of elements in <i>listA</i> and <i>listB</i> .	2nd [LIST] MATH 1:min(11-16
min(value,list)	Returns a real or complex list of the smaller of <i>value</i> or each <i>list</i> element.	2nd [LIST] MATH 1:min(11-16
valueA nCr valueB	Returns the number of combinations of <i>valueA</i> taken <i>valueB</i> at a time.	MATH PRB 3:nCr	2-21
value nCr list	Returns a list of the combinations of <i>value</i> taken each element in <i>list</i> at a time.	MATH PRB 3:nCr	2-21
list nCr value	Returns a list of the combinations of each element in <i>list</i> taken <i>value</i> at a time.	MATH PRB 3:nCr	2-21
listA nCr listB	Returns a list of the combinations of each element in <i>listA</i> taken each element in <i>listB</i> at a time.	MATH PRB 3:nCr	2-21
nDeriv(<i>expression,variable,</i> $value[,\epsilon]$)	Returns approximate numerical derivative of <i>expression</i> with respect to <i>variable</i> at <i>value</i> , with specified ε .	MATH MATH 8:nDeriv(2-7
Nom(effective rate, compounding periods)	Computes the nominal interest rate.	2nd [FINANCE] CALC B:>Nom(14-12
Normal	Sets normal display mode.	† (MODE) Normal	1-10

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Scree	n/Item
normalcdf(lowerbound, upperbound[,μ,σ])	Computes the normal distribution probability between <i>lowerbound</i> and <i>upperbound</i> for the specified μ and σ .	2nd [DISTR] DISTR 2:normalcdf(13-27
normalpdf(<i>x</i> [,μ,σ])	Computes the probability density function for the normal distribution at a specified x value for the specified μ and σ .	2nd [DISTR] DISTR 1:normalpdf(13-29
not(value)	Returns 0 if <i>value</i> is \neq 0. <i>value</i> can be a real number, expression, or list.	2nd [TEST] LOGIC 4:not(2-26
valueA nPr valueB	Returns the number of permutations of <i>valueA</i> taken <i>valueB</i> at a time.	MATH PRB 2:nPr	2-21
value nPr list	Returns a list of the permutations of <i>value</i> taken each element in <i>list</i> at a time.	MATH PRB 2:nPr	2-21
list nPr value	Returns a list of the permutations of each element in <i>list</i> taken <i>value</i> at a time.	MATH PRB 2:nPr	2-21
listA nPr listB	Returns a list of the permutations of each element in <i>listA</i> taken each element in <i>listB</i> at a time.	MATH PRB 2:nPr	2-21
npv(interest rate,CF0, CFList[,CFFreq])	Computes the sum of the present values for cash inflows and outflows.	2nd [FINANCE] CALC 7:npv(14-8
valueA or valueB	Returns 1 if valueA or valueB is $\neq 0$. valueA and valueB can be real numbers, expressions, or lists.	2nd [TEST] LOGIC 2:or	2-26

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Scree	n/Item
Output(row,column,"text")	Displays <i>text</i> beginning at specified <i>row</i> and <i>column</i> .	† <u>PRGM</u> I/O 6:Output(16-19
Output(row,column,value)	Displays <i>value</i> beginning at specified <i>row</i> and <i>column</i> .	† <u>PRGM</u> I/O 6:Output(16-19
Param	Sets parametric graphing mode.	† Mode) Par	1-11
Pause	Suspends program execution until you press [ENTER].	† <u>PRGM</u> CTL 8:Pause	16-12
Pause [value]	Displays <i>value</i> ; suspends program execution until you press [ENTER].	† PRGM CTL 8:Pause	16-12
Plot#(type,Xlistname, Ylistname,mark)	Defines Plot# (1, 2, or 3) of <i>type</i> Scatter or xyLine for <i>Xlistname</i> and <i>Ylistname</i> using <i>mark</i> .	† 2nd [STAT PL PLOTS 1:Plot1(2:Plot2(3:Plot3(от] 12-37
Plot#(type,Xlistname, freqlist)	Defines Plot# (1, 2, or 3) of <i>type</i> Histogram or Boxplot for <i>Xlistname</i> with frequency <i>freqlist.</i>	† 2nd [STAT PL PLOTS 1:Plot1(2:Plot2(3:Plot3(от] 12-37
Plot#(type,Xlistname, freqlist,mark)	Defines Plot# (1, 2, or 3) of <i>type</i> ModBoxplot for <i>Xlistname</i> with frequency <i>freqlist</i> using <i>mark</i> .	† 2nd [STAT PL PLOTS 1:Plot1(2:Plot2(3:Plot3(от] 12-37
Plot#(type,datalistname, data axis,mark)	Defines Plot# (1, 2, or 3) of type NormProbPlot for datalistname on data axis using mark. data axis can be X or Y .	† 2nd [STAT PL PLOTS 1:Plot1(2:Plot2(3:Plot3(от] 12-37
PlotsOff [1,2,3]	Deselects all stat plots or one or more specified stat plots (1, 2, or 3).	2nd [STAT PLO STAT PLOTS 4:PlotsOff	г] 12-35
PlotsOn [1,2,3]	Selects all stat plots or one or more specified stat plots (1 , 2 , or 3).	2nd [STAT PLO STAT PLOTS 5:PlotsOn	т] 12-35

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Scree	n/Item
Pmt_Bgn	Specifies an annuity due, where payments occur at the beginning of each payment period.	2nd [FINANCE] CALC F:Pmt_Bgn	14-13
Pmt_End	Specifies an ordinary annuity, where payments occur at the end of each payment period.	2nd [FINANCE] CALC E:Pmt_End	14-13
poissoncdf(μ,x)	Computes a cumulative probability at <i>x</i> for the discrete Poisson distribution with specified mean µ.	2nd [DISTR] DISTR C:poissoncdf(13-34
poissonpdf(µ,x)	Computes a probability at x for the discrete Poisson distribution with the specified mean μ .	2nd [DISTR] DISTR B:poissonpdf(13-33
Polar	Sets polar graphing mode.	† MODE Pol	1-11
<i>complex value</i> ▶Polar	Displays <i>complex value</i> in polar format.	MATH CPX 7:}Polar	2-19
PolarGC	Sets polar graphing coordinates format.	† 2nd [FORMAT PolarGC] 3-13
prgmname	Executes the program <i>name</i> .	† PRGM CTRL D:prgm	16-15
Σ Prn(pmt1,pmt2 [,roundvalue])	Computes the sum, rounded to <i>roundvalue</i> , of the principal amount between <i>pmt1</i> and <i>pmt2</i> for an amortization schedule.	2nd [FINANCE] CALC 0:ΣPrn(14-9
<pre>prod(list[,start,end])</pre>	Returns product of <i>list</i> elements between <i>start</i> and <i>end</i> .	[2nd] [LIST] MATH 6:prod(11-18
Prompt variableA [,variableB,,variable n]	Prompts for value for <i>variableA</i> , then <i>variableB</i> , and so on.	† PRGM I/O 2:Prompt	16-18

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Screer	n/Item
1-PropZint(x,n [,confidence level])	Computes a one-proportion <i>z</i> confidence interval.	† <u>STAT</u> TESTS A:1-PropZInt(13-20
2-PropZint (x1,n1,x2,n2 [,confidence level])	Computes a two-proportion <i>z</i> confidence interval.	† <u>STAT</u> TESTS B:2-PropZInt(13-21
1-PropZTest(p0,x,n [,alternative,drawflag])	Computes a one-proportion z test. alternative=-1 is <; alternative=0 is \neq ; alternative=1 is >. drawflag=1 draws results; drawflag=0 calculates results.	† <u>STAT</u> TESTS 5:1-PropZTes	t(13-14
2-PropZTest(<i>x</i> 1, <i>n</i> 1, <i>x</i> 2, <i>n</i> 2 [,alternative,drawflag])	Computes a two-proportion z test. <i>alternative=</i> 1 is <; <i>alternative=</i> 0 is \neq ; <i>alternative=</i> 1 is >. <i>drawflag=</i> 1 draws results; <i>drawflag=</i> 0 calculates results.	† (STAT) TESTS 6:2-PropZTes	t(13-15
Pt-Change(<i>x</i> , <i>y</i>)	Reverses a point at (x,y) .	2nd [DRAW] POINTS 3:Pt-Change(8-15
Pt-Off(x,y[,mark])	Erases a point at (x,y) using <i>mark</i> .	2nd [DRAW] POINTS 2:Pt-Off(8-15
Pt-On(<i>x</i> , <i>y</i> [, <i>mark</i>])	Draws a point at (x,y) using <i>mark</i> .	2nd [DRAW] POINTS 1: Pt-On(8-14
PwrReg [Xlistname, Ylistname,freqlist, regequ]	Fits a power regression model to <i>Xlistname</i> and <i>Ylistname</i> with frequency <i>freqlist</i> , and stores the regression equation to <i>regequ</i> .	STAT CALC A:PwrReg	12-27

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Scree	n/Item
Pxl-Change(row,column)	Reverses pixel at $(row, column); 0 \le row \le 62$ and $0 \le column \le 94$.	2nd [DRAW] POINTS 6:PxI-Change(8-16
PxI-Off(row,column)	Erases pixel at $(row, column)$; $0 \le row \le 62$ and $0 \le column \le 94$.	2nd [DRAW] POINTS 5:PxI-Off(8-16
PxI-On(row,column)	Draws pixel at $(row, column)$; $0 \le row \le 62$ and $0 \le column \le 94$.	2nd [DRAW] POINTS 4:PxI-On(8-16
pxI-Test(row,column)	Returns 1 if pixel (<i>row</i> , column) is on, 0 if it is off; $0 \le row \le 62$ and $0 \le column \le 94$.	2nd [DRAW] POINTS 7:pxI-Test(8-16
₽ ▶ R x(<i>r</i> ,θ)	Returns \mathbf{X} , given polar coordinates r and θ or a list of polar coordinates.	2nd [ANGLE] ANGLE 7:P}Rx(2-24
P ▶Ry(r,θ)	Returns \mathbf{Y} , given polar coordinates r and θ or a list of polar coordinates.	2nd [ANGLE] ANGLE 8: P}Ry(2-24
QuadReg [Xlistname, Ylistname,freqlist, regequ]	Fits a quadratic regression model to <i>Xlistname</i> and <i>Ylistname</i> with frequency <i>freqlist</i> , and stores the regression equation to <i>regequ</i> .	STAT CALC 5:QuadReg	12-25
QuartReg [Xlistname, Ylistname,freqlist, regequ]	Fits a quartic regression model to <i>Xlistname</i> and <i>Ylistname</i> with frequency <i>freqlist</i> , and stores the regression equation to <i>regequ</i> .	STAT CALC 7:QuartReg	12-26
Radian	Sets radian angle mode.	† MODE Radian	1-11
rand[(numtrials)]	Returns a random number between 0 and 1 for a specified number of trials <i>numtrials</i> .	MATH PRB 1:rand	2-20
randBin(numtrials,prob [,numsimulations])	Generates and displays a random real number from a specified Binomial distribution.	MATH PRB 7:randBin(2-22

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Scree	n/Item
randInt(lower,upper [,numtrials])	Generates and displays a random integer within a range specified by <i>lower</i> and <i>upper</i> integer bounds for a specified number of trials <i>numtrials</i> .	MATH PRB 5:randInt(2-22
randM(rows,columns)	Returns a random matrix of rows $(1-99) \times columns$ $(1-99)$.	MATRX) MATH 6:randM(10-13
randNorm(μ,σ[,numtrials])	Generates and displays a random real number from a specified Normal distribution specified by μ and σ for a specified number of trials <i>numtrials</i> .	MATH PRB 6:randNorm(2-22
re^0i	Sets the mode to polar complex number mode (re^ 0 <i>i</i>).	† [MODE] r e^ θ i	1-12
Real	Sets mode to display complex results only when you enter complex numbers.	† MODE Real	1-12
real(value)	Returns the real part of a complex number or list of complex numbers.	MATH CPX 2:real(2-18
RecallGDB n	Restores all settings stored in the graph database variable GDB <i>n</i> .	2nd [DRAW] STO 4:RecallGDB	8-20
RecallPic n	Displays the graph and adds the picture stored in Pic <i>n</i> .	2nd [DRAW] STO 2:RecallPic	8-18
complex value ∢Rect	Displays <i>complex value</i> or list in rectangular format.	MATH CPX 6:>Rect	2-19
RectGC	Sets rectangular graphing coordinates format.	† 2nd [FORMAT RectGC] 3 - 13
ref(matrix)	Returns the row-echelon form of a <i>matrix</i> .	MATRX MATH A:ref(10-15

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Scree	en/Item
:Repeat condition :commands :End :commands	Executes <i>commands</i> until <i>condition</i> is true.	† (<u>PRGM)</u> CTL 6:Repeat	16-11
Return	Returns to the calling program.	† [PRGM] CTL E:Return	16-15
round(value[,#decimals])	Returns a number, expression, list, or matrix rounded to #decimals (≤ 9).	MATH NUM 2:round(2-13
<pre>*row(value,matrix,row)</pre>	Returns a matrix with <i>row</i> of <i>matrix</i> multiplied by <i>value</i> and stored in <i>row</i> .	MATRX) MATH E:*row(10-16
row+(matrix,rowA,rowB)	Returns a matrix with <i>rowA</i> of <i>matrix</i> added to <i>rowB</i> and stored in <i>rowB</i> .	MATRX) MATH D:row+(10-16
<pre>*row+(value,matrix, rowA,rowB)</pre>	Returns a matrix with <i>rowA</i> of <i>matrix</i> multiplied by <i>value</i> , added to <i>rowB</i> , and stored in <i>rowB</i> .	(MATRX) MATH F:*row+(10-16
rowSwap(matrix,rowA, rowB)	Returns a matrix with <i>rowA</i> of <i>matrix</i> swapped with <i>rowB</i> .	MATRX) MATH C:rowSwap(10-16
rref(matrix)	Returns the reduced row- echelon form of a <i>matrix</i> .	MATRX) MATH B:rref(10-15
R▶Pr(<i>x,y</i>)	Returns \mathbf{R} , given rectangular coordinates x and y or a list of rectangular coordinates.	2nd [ANGLE] ANGLE 5:R→Pr(2-24
₽▶ ₽θ(<i>x,y</i>)	Returns θ , given rectangular coordinates x and y or a list of rectangular coordinates.	2nd] [ANGLE] ANGLE 6:R▶P θ (2-24

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Screen/Item
2-SampFTest [listname1, listname2,freqlist1, freqlist2,alternative, drawflag] (Data list input)	Performs a two-sample F test. alternative=-1 is <; $alternative=0$ is \neq ; alternative=1 is >. $drawflag=1draws results; drawflag=0calculates results.$	† <u>STAT</u> TESTS D:2-SampFTest 13-23
2-SampFTest Sx1,n1, Sx2,n2[,alternative, drawflag] (Summary stats input)	Performs a two-sample F test. alternative=-1 is <; $alternative=0$ is \neq ; alternative=1 is >. $drawflag=1draws results; drawflag=0calculates results.$	† <u>STAT</u> TESTS D:2-SampFTest 13-23
2-SampTint [listname1, listname2, freqlist1,freqlist2, confidence level,pooled] (Data list input)	Computes a two-sample <i>t</i> confidence interval. <i>pooled</i> = 1 pools variances; <i>pooled</i> = 0 does not pool variances.	† <u>STAT</u> TESTS 0:2-SampTint 13-19
2-SampTint $\bar{x}1,Sx1,n1,$ $\bar{x}2,Sx2,n2$ [,confidence level,pooled] (Summary stats input)	Computes a two-sample <i>t</i> confidence interval. <i>pooled</i> = 1 pools variances; <i>pooled</i> = 0 does not pool variances.	† <u>STAT</u>) TESTS 0:2-SampTInt 13-19
2-SampTTest [listname1, listname2,freqlist1, freqlist2,alternative, pooled,drawflag] (Data list input)	Computes a two-sample t test. alternative=-1 is <; $alternative=0$ is \neq ; alternative=1 is >. pooled=1 pools variances; pooled=0 does not pool variances. drawflag=1 draws results; drawflag=0 calculates results.	† <u>STAT</u> TESTS 4:2-SampTTest 13-13

		Kan an Kanal
Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Screen/Item
2-SampTTest $\bar{x}1,Sx1,n1,$ $\bar{x}2,Sx2,n2[,alternative, pooled,drawflag] (Summary stats input)$	Computes a two-sample t test. alternative=-1 is <; alternative=0 is \neq ; alternative=1 is >. pooled=1 pools variances; pooled=0 does not pool variances. drawflag=1 draws results; drawflag=0 calculates results.	† <u>STAT</u> TESTS 4:2-SampTTest
2-SampZInt (σ1,σ ₂ [,listname1,listname2, freqlist1,freqlist2, confidence level]) (Data list input)	Computes a two-sample <i>z</i> confidence interval.	† <u>STAT</u> TESTS 9:2-SampZint(13-18
2-SampZint ($\sigma 1, \sigma_2, \overline{x}1, n1, \overline{x}2, n2$ [,confidence level]) (Summary stats input)	Computes a two-sample <i>z</i> confidence interval.	† <u>STAT</u> TESTS 9:2-SampZint(13-18
2-SampZTest (σ 1, σ ₂ [, <i>listname</i> 1, <i>listname</i> 2, <i>freqlist</i> 1, <i>freqlist</i> 2, <i>alternative</i> , <i>drawflag</i>]) (Data list input)	Computes a two-sample z test. <i>alternative=</i> -1 is <; <i>alternative=</i> 0 is \neq ; <i>alternative=</i> 1 is >. <i>drawflag=</i> 1 draws results; <i>drawflag=</i> 0 calculates results.	† <u>STAT</u> TESTS 3:2-SampZTest(13-12
2-SampZTest ($\sigma 1, \sigma_2, \overline{x}1, n1, \overline{x}2, n2$ [, <i>alternative</i> , <i>drawflag</i>]) (Summary stats input)	Computes a two-sample <i>z</i> test. <i>alternative=</i> -1 is <; <i>alternative=</i> 0 is ≠; <i>alternative=</i> 1 is >. <i>drawflag=</i> 1 draws results; <i>drawflag=</i> 0 calculates results.	† <u>STAT</u> TESTS 3:2-SampZTest(13-12
Sci	Sets scientific notation display mode.	† MODE Sci 1-10
Select(Xlistname, Ylistname)	Selects one or more specific data points from a scatter plot or xyLine plot (only), and then stores the selected data points to two new lists, <i>Xlistname</i> and <i>Ylistname</i> .	[2nd [LIST] OPS 8:Select(11-12

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Scree	n/ltem
Send(variable)	Sends contents of <i>variable</i> to the CBL 2/CBL System or CBR.	† <u>PRGM</u> I/O B:Send(16-21
<pre>seq(expression,variable, begin,end[,increment])</pre>	Returns list created by evaluating <i>expression</i> with regard to <i>variable</i> , from <i>begin</i> to <i>end</i> by <i>increment</i> .	2nd [LIST] OPS 5:seq(11-11
Seq	Sets sequence graphing mode.	† MODE Seq	1-11
Sequential	Sets mode to graph functions sequentially.	† MODE Sequential	1-12
SetUpEditor	Removes all list names from the stat list editor, and then restores list names L1 through L6 to columns 1 through 6.	STAT EDIT 5:SetUpEditor	12-21
SetUpEditor listname1 [,listname2,, listname20]	Removes all list names from the stat list editor, then sets it up to display one or more <i>listnames</i> in the specified order, starting with column 1 .	STAT EDIT 5:SetUpEditor	12-21
Shade(lowerfunc, upperfunc[,Xleft,Xright, pattern,patres])	Draws lowerfunc and upperfunc in terms of X on the current graph and uses pattern and patres to shade the area bounded by lowerfunc, upperfunc, Xleft, and Xright.	2nd [DRAW] DRAW 7:Shade(8-10
Shade χ ² (lowerbound, upperbound,df)	Draws the density function for the χ^2 distribution specified by degrees of freedom <i>df</i> and shades the area between <i>lowerbound</i> and <i>upperbound</i> .	[2nd] [DISTR] DRAW 3:Shade χ ² (13-36

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Scree	n/Item
ShadeF(lowerbound, upperbound, numerator df, denominator df)	Draws the density function for the F distribution specified by <i>numerator df</i> and <i>denominator df</i> and shades the area between <i>lowerbound</i> and <i>upperbound</i> .	[2nd] [DISTR] DRAW 4:ShadeF(13-36
ShadeNorm(lowerbound, upperbound[, μ , σ])	Draws the normal density function specified by μ and σ and shades the area between <i>lowerbound</i> and <i>upperbound</i> .	2nd [DISTR] DRAW 1:ShadeNorm(13-35
Shade_t(lowerbound, upperbound,df)	Draws the density function for the Student-t distribution specified by degrees of freedom df, and shades the area between <i>lowerbound</i> and <i>upperbound</i> .	[2nd] [DISTR] DRAW 2:Shade_t(13-36
Simul	Sets mode to graph functions simultaneously.	† MODE Simul	1-12
sin(value)	Returns the sine of a real number, expression, or list.	SIN	2-3
sin ⁻¹ (value)	Returns the arcsine of a real number, expression, or list.	2nd [SIN ⁻¹]	2-3
sinh(value)	Returns the hyperbolic sine of a real number, expression, or list.	2nd [CATALOG] sinh(15-10
sinh ⁻¹ (value)	Returns the hyperbolic arcsine of a real number, expression, or list.	2nd [CATALOG] sinh ⁻¹ (15-10

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Scree	en/Item
SinReg [iterations, Xlistname,Ylistname, period,regequ]	Attempts <i>iterations</i> times to fit a sinusoidal regression model to <i>Xlistname</i> and <i>Ylistname</i> using a <i>period</i> guess, and stores the regression equation to <i>regequ</i> .	STAT CALC C:SinReg	12-27
<pre>solve(expression,variable, guess,{lower,upper})</pre>	Solves <i>expression</i> for <i>variable</i> , given an initial <i>guess</i> and <i>lower</i> and <i>upper</i> bounds within which the solution is sought.	† MATH MATH 0:solve(2-12
SortA(listname)	Sorts elements of <i>listname</i> in ascending order.	2nd [LIST] OPS 1:SortA(11-10 12-20
SortA(keylistname, dependlist1[,dependlist2, ,dependlist n])	Sorts elements of <i>keylistname</i> in ascending order, then sorts each <i>dependlist</i> as a dependent list.	[2nd] [LIST] OPS 1:SortA(11-10 12-20
SortD(listname)	Sorts elements of <i>listname</i> in descending order.	2nd [LIST] OPS 2:SortD(11-10 12-20
SortD(keylistname, dependlist1[,dependlist2,, dependlist n])	Sorts elements of <i>keylistname</i> in descending order, then sorts each <i>dependlist</i> as a dependent list.	[2nd] [LIST] OPS 2:SortD(11-10 12-20
stdDev(list[,freqlist])	Returns the standard deviation of the elements in <i>list</i> with frequency <i>freqlist</i> .	2nd [LIST] MATH 7:stdDev(11-18
Stop	Ends program execution; returns to home screen.	† PRGM CTL F:Stop	16-15
Store: value→variable	Stores value in variable.	ST0.	1-14
StoreGDB <i>n</i>	Stores current graph in database GDB <i>n</i> .	2nd [DRAW] STO 3:StoreGDB	8-19

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Screer	n/Item
StorePic n	Stores current picture in picture Pic <i>n</i> .	2nd [DRAW] STO 1:StorePic	8-17
String⊧Equ(string,Y= var)	Converts <i>string</i> into an equation and stores it in Y= <i>var</i> .	[2nd] [CATALOG] String▶Equ(15-8
<pre>sub(string,begin,length)</pre>	Returns a string that is a subset of another <i>string</i> , from <i>begin</i> to <i>length</i> .	2nd [CATALOG] sub(15-9
<pre>sum(list[,start,end])</pre>	Returns the sum of elements of <i>list</i> from <i>start</i> to <i>end</i> .	2nd [LIST] MATH 5:sum(11-18
tan(value)	Returns the tangent of a real number, expression, or list.	TAN	2-3
tan ⁻¹ (value)	Returns the arctangent of a real number, expression, or list.	2nd [TAN ⁻¹]	2-3
Tangent(expression,value)	Draws a line tangent to <i>expression</i> at X = <i>value</i> .	2nd [DRAW] DRAW 5:Tangent(8-8
tanh(value)	Returns hyperbolic tangent of a real number, expression, or list.	[2nd] [CATALOG] tanh(15-10
tanh ⁻¹ (value)	Returns the hyperbolic arctangent of a real number, expression, or list.	2nd [CATALOG] tanh ⁻¹ (15-10
tcdf(lowerbound, upperbound,df)	Computes the Student- <i>t</i> distribution probability between <i>lowerbound</i> and <i>upperbound</i> for the specified degrees of freedom <i>df</i> .	2nd [DISTR] DISTR 5:tcdf(13-31
Text(row,column,text1, text2,,text n)	Writes <i>text</i> on graph beginning at pixel (<i>row,column</i>), where $0 \le row \le 57$ and $0 \le column \le 94$.	[2nd] [DRAW] DRAW 0:Text(8-12

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Scree	n/Item
Time	Sets sequence graphs to plot with respect to time.	† 2nd [FORMAT Time	
TInterval [listname, freqlist,confidence level] (Data list input)	Computes a <i>t</i> confidence interval.	† <u>STAT</u> TESTS 8:TInterval	13-17
Tinterval \bar{x} , Sx , n [, $confidence\ level$] (Summary stats input)	Computes a <i>t</i> confidence interval.	† <u>STAT</u> TESTS 8:TInterval	13-17
tpdf(<i>x</i> , <i>df</i>)	Computes the probability density function (pdf) for the Student- t distribution at a specified x value with specified degrees of freedom df .	2nd [DISTR] DISTR 4:tpdf(13-30
Trace	Displays the graph and enters TRACE mode.	TRACE	3-18
T-Test μ0[,listname, freqlist,alternative, drawflag] (Data list input)	Performs a t test with frequency freqlist. alternative=-1 is <; alternative=0 is ≠; alternative=1 is >. drawflag=1 draws results; drawflag=0 calculates results.	† <u>STAT</u> TESTS 2:T-Test	13-11
T-Test μ <i>0</i> , $\bar{\mathbf{x}}$, <i>Sx</i> , <i>n</i> [, <i>alternative</i> , <i>drawflag</i>] (Summary stats input)	Performs a <i>t</i> test with frequency <i>freqlist</i> . <i>alternative=</i> -1 is < ; <i>alternative=</i> 0 is \neq ; <i>alternative=</i> 1 is >. <i>drawflag=</i> 1 draws results; <i>drawflag=</i> 0 calculates results.	† <u>STAT</u> TESTS 2:T-Test	13-11

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Screer	n/Item
tvm_FV[(<i>N</i> , <i>I</i> %, <i>PV</i> , <i>PMT</i> , <i>P/Y</i> , <i>C/Y</i>)]	Computes the future value.	2nd [FINANCE] CALC	
		6:tvm_FV	14-7
tvm_I%[(<i>N</i> ,PV,PMT,FV, P/Y,C/Y)]	Computes the annual interest rate.	2nd [FINANCE] CALC	
		3:tvm_I%	14-7
tvm_N[(<i>I%,PV,PMT,FV,</i> <i>P/Y,C/Y</i>)]	Computes the number of payment periods.	2nd [FINANCE] CALC	
		5:tvm_N	14-7
tvm_Pmt[(<i>N</i> , <i>I</i> %, <i>PV</i> , <i>FV</i> , <i>P</i> / <i>Y</i> , <i>C</i> / <i>Y</i>)]	Computes the amount of each payment.	2nd [FINANCE] CALC	
		2:tvm_Pmt	14-6
tvm_PV[(<i>N</i> , <i>I</i> %, <i>PMT</i> , <i>FV</i> , <i>P</i> / <i>Y</i> , <i>C</i> / <i>Y</i>)]	Computes the present value.	2nd [FINANCE] CALC	
		4:tvm_PV	14-7
uvAxes	Sets sequence graphs to plot	† 2nd [FORMAT]	
	u (<i>n</i>) on the x-axis and v (<i>n</i>) on	uv	
	the y-axis.		6-8
uwAxes	Sets sequence graphs to plot	† 2nd [FORMAT]	
	u(<i>n</i>) on the x-axis and w(<i>n</i>) on the y-axis.	uw	6-8
1-Var Stats [Xlistname,	Performs one-variable analysis	STAT	
freqlist]	on the data in <i>Xlistname</i> with	CALC	
	frequency <i>freqlist</i> .	1:1-Var Stats	12 - 25
2-Var Stats [Xlistname,	Performs two-variable analysis	STAT	
Ylistname,freqlist]	on the data in <i>Xlistname</i> and	CALC	
	<i>Ylistname</i> with frequency <i>freqlist</i> .	2:2-Var Stats	12-25
variance(list[,freqlist])	Returns the variance of the	2nd [LIST]	
	elements in <i>list</i> with frequency	MATH	11 10
	freqlist.	8:variance(11-18
Vertical <i>x</i>	Draws a vertical line	2nd [DRAW] DRAW	
	at x.	4:Vertical	8-6
vwAxes	Sets sequence graphs to plot	† [2nd] [FORMAT]	
* *******	v(n) on the x-axis and $w(n)$ on		
	the y-axis.		6-8
Web	Sets sequence graphs to trace	† 2nd [FORMAT]	
	as webs.	Web	6-8

Function or Instruction/		Key or Keys/	
Arguments	Result	Menu or Scree	n/item
:While condition	Executes <i>commands</i> while	† (PRGM)	
:commands	condition is true.	CTL	10 11
:End		5:While	16-11
:command			
valueA xor valueB	Returns 1 if only valueA or	2nd [TEST]	
	<pre>valueB = 0. valueA and valueB can be real numbers,</pre>	LOGIC 3:xor	
	expressions, or lists.	3.801	2-26
ZBox	1 ,	+ [700M]	2 20
ZBOX	Displays a graph, lets you draw a box that defines a new	† <u>ZOOM</u> ZOOM	
	viewing window, and updates	1:ZBox	
	the window.	I.LBOX	3-20
ZDecimal	Adjusts the viewing window so	† [Z00M]	
L Beoman	that $\Delta X=0.1$ and $\Delta Y=0.1$, and	ZOOM	
	displays the graph screen with	4:ZDecimal	
	the origin centered on the		
	screen.		3-21
ZInteger	Redefines the viewing window	† [ZOOM]	
	using these dimensions:	ZOOM	
	∆X=1 Xscl=10	8:ZInteger	
	∆Y=1 Yscl=10		3-22
Zinterval σ [, <i>listname</i> ,	Computes a <i>z</i> confidence	† (STAT)	
freqlist,confidence level]	interval.	TESTS	10.10
(Data list input)		7:ZInterval	13-16
Zinterval σ, \overline{x}, n	Computes a <i>z</i> confidence	† STAT	
[,confidence level]	interval.	TESTS	10.10
(Summary stats input)		7:ZInterval	13-16
Zoom In	Magnifies the part of the graph	† [<u>ZOOM</u>]	
	that surrounds the cursor	ZOOM	0.01
	location.	2:Zoom In	3-21
Zoom Out	Displays a greater portion of	† <u>ZOOM</u>	
	the graph, centered on the	ZOOM	9.61
	cursor location.	3:Zoom Out	3-21

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Screen/Ite	
ZoomFit	Recalculates Ymin and Ymax to include the minimum and maximum Y values, between Xmin and Xmax , of the selected functions and replots the functions.	† [<u>Z00M]</u> ZOOM 0:ZoomFit	3-22
ZoomRcl	Graphs the selected functions in a user-defined viewing window.	† [<u>200M]</u> MEMORY 3:ZoomRcl	3-23
ZoomStat	Redefines the viewing window so that all statistical data points are displayed.	† [<u>Z00M]</u> ZOOM 9:ZoomStat	3-22
ZoomSto	Immediately stores the current viewing window.	† [<u>Z00M]</u> MEMORY 2:ZoomSto	3-23
ZPrevious	Replots the graph using the window variables of the graph that was displayed before you executed the last ZOOM instruction.	† [<u>Z00M]</u> MEMORY 1:ZPrevious	3-23
ZSquare	Adjusts the X or Y window settings so that each pixel represents an equal width and height in the coordinate system, and updates the viewing window.	† [<u>200M]</u> 200M 5: ZSquare	3-21
ZStandard	Replots the functions immediately, updating the window variables to the default values.	† <u>Z00M</u> ZOOM 6:ZStandard	3-22

Eurotice or instruction (Kay an Kaya I	
Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Scree	n/Item
Z-Test (μ0,σ[, <i>listname</i> , freqlist,alternative, drawflag]) (Data list input)	Performs a z test with frequency freqlist. alternative=-1 is <; alternative=0 is \neq ; alternative=1 is >. drawflag=1 draws results; drawflag=0 calculates results.	† <u>STAT</u> TESTS 1:Z-Test(13-10
Z-Test ($\mu 0, \sigma, \overline{x}, n$ [, <i>alternative</i> , <i>drawflag</i>]) (Summary stats input)	Performs a z test. alternative=-1 is <; alternative=0 is \neq ; alternative=1 is >. drawflag=1 draws results; drawflag=0 calculates results.	† (STAT) TESTS 1:Z-Test(13-10
ZTrig	Replots the functions immediately, updating the window variables to preset values for plotting trig functions.	† (<u>Z00M)</u> ZOOM 7:ZTrig	3-22
Factorial: value!	Returns factorial of <i>value</i> .	MATH PRB 4:!	2-21
Factorial: <i>list</i> !	Returns factorial of <i>list</i> elements.	MATH PRB 4:!	2-21
Degrees notation: <i>value</i> °	Interprets <i>value</i> as degrees; designates degrees in DMS format.	2nd [ANGLE] ANGLE 1:°	2-23
Radian: <i>angle</i> r	Interprets <i>angle</i> as radians.	2nd [ANGLE] ANGLE 3: r	2-24
Transpose: <i>matrix</i> ^T	Returns a matrix in which each element (row, column) is swapped with the corresponding element (column, row) of <i>matrix</i> .	MATRX) MATH 2: ^T	10-12

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Scree	en/Item
$x^{th}root^{\mathbf{x}}\sqrt{value}$	Returns <i>xthroot</i> of <i>value</i> .	MATH MATH 5:×√	2-6
$\overline{x^{th}root^{X}\sqrt{list}}$	Returns <i>x</i> th <i>root</i> of <i>list</i> elements.	MATH MATH 5:×√	2-6
list [×] √value	Returns <i>list</i> roots of <i>value</i> .	MATH MATH 5:×√	2-6
$listA^{x}\sqrt{listB}$	Returns <i>listA</i> roots of <i>listB</i> .	MATH MATH 5:×√	2-6
Cube: value ³	Returns the cube of a real or complex number, expression, list, or square matrix.	MATH MATH 3: ³	2-6 10-10
Cube root: ³ √(<i>value</i>)	Returns the cube root of a real or complex number, expression, or list.	MATH MATH 4: ³ √(2-6
Equal: valueA=valueB	Returns 1 if $valueA = valueB$. Returns 0 if $valueA \neq valueB$. valueA and $valueB$ can be real or complex numbers, expressions, lists, or matrices.	2nd [TEST] TEST 1:=	2-25 10-11
Not equal: <i>valueA≠valueB</i>	Returns 1 if valueA ≠ valueB. Returns 0 if valueA = valueB. valueA and valueB can be real or complex numbers, expressions, lists, or matrices.	[2nd] [TEST] TEST 2:≠	2-25 10-11
Less than: valueA <valueb< td=""><td>Returns 1 if valueA < valueB. Returns 0 if valueA ≥ valueB. valueA and valueB can be real or complex numbers, expressions, or lists.</td><td>[2nd] [TEST] TEST 5:<</td><td>2-25</td></valueb<>	Returns 1 if valueA < valueB. Returns 0 if valueA ≥ valueB. valueA and valueB can be real or complex numbers, expressions, or lists.	[2nd] [TEST] TEST 5:<	2-25

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Scree	n/Itom
Greater than: valueA>valueB	Returns 1 if valueA > valueB. Returns 0 if valueA \leq valueB. valueA and valueB can be real or complex numbers, expressions, or lists.	2nd [TEST] TEST 3:>	2-25
Less than or equal: valueA≤valueB	Returns 1 if $valueA \le valueB$. Returns 0 if $valueA > valueB$. valueA and $valueB$ can be real or complex numbers, expressions, or lists.	[2nd] [TEST] TEST 6: ≤	2-25
Greater than or equal: valueA≥valueB	Returns 1 if $valueA \ge valueB$. Returns 0 if $valueA < valueB$. valueA and $valueB$ can be real or complex numbers, expressions, or lists.	[2nd] [TEST] TEST 4: ≥	2-25
Inverse: value ⁻¹	Returns 1 divided by a real or complex number or expression.	<u>x -1</u>	2-3
Inverse: <i>list</i> ⁻¹	Returns 1 divided by <i>list</i> elements.	<u>x-1</u>	2-3
Inverse: matrix ⁻¹	Returns <i>matrix</i> inverted.	χ ⁻¹	10-10
Square: value ²	Returns <i>value</i> multiplied by itself. <i>value</i> can be a real or complex number or expression.	<u>x²</u>	2-3
Square: <i>list²</i>	Returns <i>list</i> elements squared.	x ²	2-3
Square: matrix ²	Returns <i>matrix</i> multiplied by itself.	<u>x²</u>	10-10
Powers: value^power	Returns <i>value</i> raised to <i>power</i> . <i>value</i> can be a real or complex number or expression.	^	2-3
Powers: <i>list^power</i>	Returns <i>list</i> elements raised to <i>power</i> .	^	2-3
Powers: value^list	Returns <i>value</i> raised to <i>list</i> elements.	^	2-3

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Scree	en/Item
Powers: matrix^power	Returns <i>matrix</i> elements raised to <i>power</i> .		10-10
Negation: - <i>value</i>	Returns the negative of a real or complex number, expression, list, or matrix.	(-)	2-4 10-9
Power of ten: 10 [^] (value)	Returns 10 raised to the <i>value</i> power. <i>value</i> can be a real or complex number or expression.	2nd [10 ^X]	2-4
Power of ten: 10^(<i>list</i>)	Returns a list of 10 raised to the <i>list</i> power.	[2nd] [10 ²⁷]	2-4
Square root: √(<i>value</i>)	Returns square root of a real or complex number, expression, or list.	[2nd] [√]	2-3
Multiplication: valueA*valueB	Returns valueA times valueB.	×	2-3
Multiplication: value*list	Returns <i>value</i> times each <i>list</i> element.	×	2-3
Multiplication: list*value	Returns each <i>list</i> element times <i>value</i> .	×	2-3
Multiplication: listA*listB	Returns <i>listA</i> elements times <i>listB</i> elements.	×	2-3
Multiplication: value*matrix	Returns value times <i>matrix</i> elements.	×	10-9
Multiplication: matrixA*matrixB	Returns <i>matrixA</i> times <i>matrixB</i> .	×	10-9
Division: <i>valueA/valueB</i>	Returns <i>valueA</i> divided by <i>valueB</i> .	÷	2-3
Division: <i>list/value</i>	Returns <i>list</i> elements divided by value.	÷	2-3
Division: value/list	Returns value divided by <i>list</i> elements.	÷	2-3
Division: <i>listA/listB</i>	Returns <i>listA</i> elements divided by <i>listB</i> elements.	÷	2-3

Function or Instruction/ Arguments	Result	Key or Keys/ Menu or Scree	n/Item
Addition: <i>valueA+valueB</i>	Returns valueA plus valueB.	+	2-3
Addition: <i>list+value</i>	Returns list in which <i>value</i> is added to each <i>list</i> element.	+	2-3
Addition: <i>listA+listB</i>	Returns <i>listA</i> elements plus <i>listB</i> elements.	+	2-3
Addition: matrixA+matrixB	Returns <i>matrixA</i> elements plus <i>matrixB</i> elements.	+	10-9
Concatenation: <i>string1+string2</i>	Concatenates two or more strings.	+	15-6
Subtraction: valueA-valueB	Subtracts <i>valueB</i> from <i>valueA</i> .	-	2-3
Subtraction: value-list	Subtracts <i>list</i> elements from <i>value</i> .	-	2-3
Subtraction: list-value	Subtracts <i>value</i> from <i>list</i> elements.	-	2-3
Subtraction: listA-listB	Subtracts <i>listB</i> elements from <i>listA</i> elements.	-	2-3
Subtraction: matrixA-matrixB	Subtracts <i>matrixB</i> elements from <i>matrixA</i> elements.	-	10-9
Minutes notation: degrees [°] minutes' seconds"	Interprets <i>minutes</i> angle measurement as minutes.	2nd [ANGLE] ANGLE 2:'	2-23
Seconds notation: degrees [°] minutes' seconds"	Interprets <i>seconds</i> angle measurement as seconds.	(ALPHA) ["]	2-23

Y=			
(Func mode) Plot1 Plot2 Plot3 \Y1= \Y2= \Y3= \Y4= \Y9= \Y0=	T (Par mode) Plot1 Plot2 Plot3 \X1T= Y1T= \X2T= Y2T= \X6T= Y6T=	 (Pol mode) Plot1 Plot2 Plot3 \r1= \r2= \r3= \r4= \r5= \r6=	(Seq mode) Plot1 Plot2 Plot3 <i>n</i> Min=1 :.u(<i>n</i>)= u(<i>n</i> Min)= :.v(<i>n</i>)= v(<i>n</i> Min)= :.w(<i>n</i>)= w(<i>n</i> Min)=
2nd [STAT PLOT]	2nd [STAT	PLOT]	
STAT PLOTS 1: Plot10ff ⊮ L1 L2 □ 2: Plot20ff ⊮ L1 L2 □ 3: Plot30ff ⊮ L1 L2 □ 4: Plots0ff 5: Plots0n	(PRGM edi PLOTS 1:Plot1(2:Plot2(3:Plot3(4:PlotsOf 5:PlotsOn	r	MARK 1:□ 2:+ n 3:• ot
(WINDOW)			
(Func mode) WINDOW Xmin=-10 Xmax=10 Xscl=1 Ymin=-10 Ymax=10 Yscl=1 Xres=1	(Par mode) WINDOW Tmin=0 Tmax=π★2 Tstep=π/24 Xmin=-10 Xmax=10 Xscl=1 Ymin=-10 Ymax=10 Yscl=1	I (Pol mode) WINDOW Θmin=0 Θmax=π*2 Θstep=π/24 Xmin=-10 Xmax=10 Xscl=1 Ymin=-10 Ymax=10 Yscl=1	(Seq mode) WINDOW nMin=1 nMax=10 PlotStart=1 PlotStep=1 Xmin=-10 Xmax=10 Xscl=1 Ymin=-10 Ymax=10 Yscl=1
2nd [TBLSET]	2nd) (TBLSE	ET]	
TABLE SETUP TblStart=0 ∆Tbl=1 Indpnt:Auto As Depend:Auto As	(PRGM edi TABLE SET Indpnt:A k Depend:A	UP Nuto Ask	

The TI-83 Menu Map begins at the top-left corner of the keyboard and follows the keyboard layout from left to right. Default values and settings are shown.

ZOOM			
ZOOM 1:ZBox 2:Zoom In 3:Zoom Out 4:ZDecimal 5:ZSquare 6:ZStandard 7:ZTrig 8:ZInteger 9:ZoomStat 0:ZoomFit	HEMORY 1:ZPrevious 2:ZoomSto 3:ZoomRc1 4:SetFactors…	MEMORY (Set Factors. ZOOM FACTORS XFact=4 YFact=4)
[2nd] [FORMAT] (Func/Par/Pol RectGC PolarGC CoordOn CoordO GridOff GridOn AxesOn AxesOff LabelOff Label ExprOn ExprOff	Time We ff RectGC CoordOn GridOff On AxesOn	b uv vw uw PolarGC CoordOff GridOn AxesOff f LabelOn	
[2nd] [CALC] F (Func mode) CALCULATE 1:value 2:zero 3:minimum 4:maximum	(Par mode) CALCULATE 1:value 2:dy/dx 3:dy/dt 4:dx/dt	(Pol mode) CALCULATE 1:value 2:dy/dx 3:dr/d0	(Seq mode) CALCULATE 1:value

(MODE)

4:maximum 5:intersect 6:dy/dx 7:ff(x)dx

Normal Sci Eng Float 0123456789 Radian Degree Func Par Pol Seq Connected Dot Sequential Simul Real a+bt re^0t Full Horiz G-T

SEND RECEIVE	2nd [LINK]		
1: All+ 1: Receive 2: All 3: Prgm 4: List 5: Lists to TI82 6: GDB 7: Pic 8: Matrix 9: Real 0: Complex A: Y - Vars B: String C: Back Up	SEND 1:All+ 2:All 3:Prgm 4:List 5:Lists to TI 6:GDB 7:Pic 8:Matrix 9:Real 0:Complex A:Y-Vars B:String	1	 ECEIVE :Receive

STAT

EDIT	CALC	TESTS
1:Edit	1:1-Var Stats	1:Z-Test
2:SortA(2:2–Var Stats	2:T-Test
3:SortD(3:Med-Med	3:2-SampZTest…
4:ClrList	4:LinReg(ax+b)	4:2-SampTTest…
5:SetUpEditor	5:QuadReg	5:1-PropZTest…
	6:CubicReg	6:2-PropZTest…
	7:QuartReg	7:ZInterval…
	8:LinReg(a+bx)	8:TInterval…
	9:LnReg	9:2-SampZInt…
	0:ExpReg	0:2-SampTInt…
	A:PwrReg	A:1-PropZInt…
	B:Logistic	B:2-PropZInt…
	C:SinReg	C:χ ² -Test…
		D:2-SampFTest…
		E:LinRegTTest…
		F:ANOVA(

2nd [LIST]

	I	
NAMES	OPS	MATH
1:listname	1:SortA(1:min(
2:listname	2:SortD(2:max(
3:listname	3:dim(3:mean(
	4:Fill(4:median(
	5:seq(5:sum(
	6:cumSum(6:prod(
	7:∆List(7:stdDev(
	8:Select(8:variance(
	9:augment(
	0:List∌matr(
	A:Matr∍list(
	B:L	

MATH

MATH	NUM	СРХ	PRB
1:∍Frac	1:abs(1:conj(1:rand
2:∍Dec	2:round(2:real(2:nPr
3: ³	3:iPart(3:imag(3:nCr
4: ³ √(4:fPart(4:angle(4:!
5:×√	5:int(5:abs(5:randInt(
6:fMin(6:min(6:∍Rect	6:randNorm(
7:fMax(7:max(7:∍Polar	7:randBin(
8:nDeriv(8:1cm(
9:fnInt(9:gcd(
0:Solver…			

2nd [TEST]

TEST	LOGIC
1:=	1:and
2:≠	2:or
3:>	3:xor
4:≥	4:not(
5:<	
6:≤	

MATRX NAMES 1:[A] 2:[B] 3:[C] 4:[D] 5:[E] 6:[F] 7:[G] 8:[H] 9:[I] 0:[J]	MATH 1:det(2:T 3:dim(4:Fill(5:identity(6:randM(7:augment(8:Matr⊳list(9:List⊳matr(0:cumSum(A:ref(B:rref(B:rref(C:rowSwap(D:row+(E:*row(F:*row+(EDIT 1:[A] 2:[B] 3:[C] 4:[D] 5:[E] 6:[F] 7:[G] 8:[H] 9:[I] 0:[J]	2nd [ANGLE] ANGLE 1:° 2:' 3:r 4:▶DMS 5:R▶Pr(6:R▶Pθ(7:P▶Rx(8:P▶Ry(
PRGM EXEC 1:name 2:name 	EDIT 1:name 2:name	NEW 1:Create New	
PRGM (PRGM editor) CTL 1:If 2:Then 3:Else 4:For(5:While 6:Repeat 7:End 8:Pause 9:Lb1 0:Goto A:IS>(B:DS<(C:Menu(D:prgm E:Return F:Stop G:DelVar H:GraphStyle((PRGM editor: I/O 1:Input 2:Prompt 3:Disp 4:DispGraph 5:DispTable 6:Output(7:getKey 8:ClrHome 9:ClrTable 0:GetCalc(A:Get(B:Send() (PRGM editor) EXEC 1:name 2:name 	

2nd [DRAW]

DRAW	POINTS	STO
1:ClrDraw	1:Pt-On(1:StorePic
2:Line(2:Pt-Off(2:RecallPic
3:Horizontal	3:Pt-Change(3:StoreGDB
4:Vertical	4:Px1-0n(4:RecallGDB
5:Tangent(5:Px1-Off(
6:DrawF	6:Px1-Change(
7:Shade(7:pxl-Test(
8:DrawInv		
9:Circle(
0:Text(
A:Pen		
VARS		
VARS	Y-VARS	
1:Window	1:Function…	
2:Zoom	2:Parametri	c
3 : GDB	3:Polar…	
4:Picture…	4:0n/0ff	
5:Statistics		
6:Table		
7:String		
VARS		
(Window)	(Window)	(Window)

(Window…)	(Window…)	(Window…)
Х/Ү	T/0	U/V/W
1:Xmin	1:Tmin	1:u(<i>n</i> Min)
2:Xmax	2:Tmax	2:v(<i>n</i> Min)
3:Xscl	3:Tstep	3:w(<i>n</i> Min)
4:Ymin	4:⊕min	4: <i>n</i> Min
5:Ymax	5:⊕max	5: <i>n</i> Max
6:Yscl	6:⊕step	6:PlotStart
7:Xres		7:PlotStep
8: ₄ X		
9: 4Y		
0:XFact		
A:YFact		

VARS

	Г	
(Zoom)	(Zoom)	(Zoom)
ZX/ZY	ZT/Z0	ZU
1:ZXmin	1:ZTmin	1:Zu(<i>n</i> Min)
2:ZXmax	2:ZTmax	2:Zv(<i>n</i> Min)
3:ZXscl	3:ZTstep	3:Zw(<i>n</i> Min)
4:ZYmin	4:Z⊖min	4:Z <i>n</i> Min
5:ZYmax	5:Z⊖max	5:Z <i>n</i> Max
6:ZYscl	6:Z⊕step	6:ZPlotStart
7:ZXres		7:ZPlotStep

VARS

(Picture…)
PICTURE
1:Pic1
2:Pic2
9:Pic9
O:PicO

VARS

		I		<u> </u>
(Statistics…)	(Statistics…)	(Statistics…)	(Statistics…)	(Statistics…)
ХҮ	Σ	EQ	TEST	PTS
1:n	1:Σx	1:RegEQ	1:p	$1: \times 1$
2: x	2:Σx ²	2:a	2:z	2:y1
3:Sx	3:Σy	3:b	3:t	3:x2
4:σx	4 : Σy ²	4:c	$4:\chi^2$	4:y2
5:⊽	5:Σxy	5:d	5:F	5:x3
6:Sy		6:e	6:df	6:y3
7:σy		7:r	7: p	7:Q1
8:minX		8:r ²	8: <i>p</i> 1	8:Med
9:maxX		9:R ²	9: p2	9:Q3
0:minY			0:s	
A:maxY			A: x1	
			B:x2	
			C:Sx1	
			D:Sx2	
			E:Sxp	
			F:n1	
			G:n2	
			H:lower	
			I:upper	

VARS

	1
(Table…)	(String…)
TABLE	STRING
1:TblStart	1:Str1
2:4Tb1	2:Str2
3:TblInput	3:Str3
	4:Str4
	9:Str9
	0:Str0

Y-VARS

(Function…)	(Parametric…)	(Polar…)	(On/Off…)
FUNCTION	PARAMETRIC	POLAR	ON/OFF
1:Y1	1:X1T	1:r1	1:Fn0n
2:Y2	2:Y1T	2:r2	2:FnOff
3:Y3	3:X2T	3:r3	
4:Y4	4:Y2T	4:r4	
		5:r5	
9:Y9	A:X6T	6:r6	
0:Y0	B:Y6T		

2nd [DISTR]	
DISTR 1:normalpdf(2:normalcdf(3:invNorm(4:tpdf(5:tcdf($6:\chi^2$ pdf($7:\chi^2$ cdf(8:Fpdf(9:Fcdf(0:binompdf(A:binomcdf(B:poissonpdf(C:poissoncdf(D:geometpdf(E:geometcdf(DRAW 1:ShadeNorm(2:Shade_t(3:Shade χ^2 (4:ShadeF(
2nd [FINANCE]	
CALC 1:TVM Solver 2:tvm_Pmt 3:tvm_I% 4:tvm_PV 5:tvm_N 6:tvm_FV 7:npv(8:irr(9:bal(0:∑Prn(A:∑Int(B:>Nom(C:>Eff(D:dbd(E:Pmt_End F:Pmt_Bgn	VARS 1:N 2:I% 3:PV 4:PMT 5:FV 6:P/Y 7:C/Y

2nd [MEM] MEMORY 1:Check RAM 2:Delete 3:Clear Entries 4:ClrAllLists 5:Reset	MEMORY (Check RAM) MEM FREE 27225 Real 15 Complex 0 List 0 Matrix 0 Y-Vars 240 Prgm 14 Pic 0 GDB 0 String 0	(Delete) DELETE FROM 1:All 2:Real 3:Complex 4:List 5:Matrix 6:Y - Vars 7:Prgm 8:Pic 9:GDB 0:String	(Reset…) RESET 1:All Memory… 2:Defaults…
MEMORY (Reset) (All Memory) RESET MEMORY 1:No 2:Reset Resetting memory erases all data an programs.	(Defaults) RESET DEFAULTS 1:No 2:Reset	[2nd] [CATALOG] CATALOG cosh(cosh ⁻¹ (Equ▶String(expr(inString(length(sinh(sinh ⁻¹ (tanh(tanh ⁻¹ (

User Variables The TI-83 uses the variables listed below in various ways. Some variables are restricted to specific data types. The variables **A** through **Z** and θ are defined as real or complex numbers. You may store to them. The TI-83 can update X, Y, R, θ , and T during graphing, so you may want to avoid using these variables to store nongraphing data. The variables (list names) L1 through L6 are restricted to lists; you cannot store another type of data to them. The variables (matrix names) [A] through [J] are restricted to matrices; you cannot store another type of data to them. The variables Pic1 through Pic9 and Pic0 are restricted to pictures; you cannot store another type of data to them. The variables **GDB1** through **GDB9** and **GDB0** are restricted to graph databases; you cannot store another type of data to them. The variables Str1 through Str9 and Str0 are restricted to strings; you cannot store another type of data to them. You can store any string of characters, functions, instructions, or variables to the functions Yn. (1 through 9. and 0), XnT/YnT (1 through 6), rn (1 through 6), u(n), v(n), and w(n) directly or through the Y= editor. The validity of the string is determined when the function is evaluated. System Variables The variables below must be real numbers. You may store to them. Since the TI-83 can update some of them, as the result of a ZOOM, for example, you may want to avoid using these variables to store nongraphing data. Xmin, Xmax, Xscl, Δ X, XFact, Tstep, PlotStart, *n*Min, and other window variables. • ZXmin, ZXmax, ZXscl, ZTstep, ZPlotStart, Zu(nMin), and other ZOOM variables. The variables below are reserved for use by the TI-83. You cannot store to them. n, \overline{x} , Sx, σx , minX, maxX, Σy , Σy^2 , Σxy , a, b, c, RegEQ, x1, x2, y1, z, t, F, χ^2 , \hat{p} , \bar{x} 1, Sx1, n1, lower, upper, r^2 , R^2 and other statistical variables.

This section contains statistics formulas for the Logistic and SinReg regressions, ANOVA, 2-SampFTest, and 2-SampTTest.

Logistic The logistic regression algorithm applies nonlinear recursive least-squares techniques to optimize the following cost function:

$$J = \sum_{i=1}^{N} \left(\frac{c}{1 + ae^{-bx_i}} - y_i \right)^2$$

which is the sum of the squares of the residual errors,

where: x = the independent variable list y = the dependent variable list N = the dimension of the lists

This technique attempts to estimate the constants a, b, and c recursively to make J as small as possible.

SinReg The sine regression algorithm applies nonlinear recursive least-squares techniques to optimize the following cost function:

$$J = \sum_{i=1}^{N} \left[a \sin(bx_i + c) + d - y_i \right]^2$$

which is the sum of the squares of the residual errors,

where: x = the independent variable list y = the dependent variable list N = the dimension of the lists

This technique attempts to recursively estimate the constants a, b, c, and d to make J as small as possible.

ANOVA(

The ANOVA F statistic is:

$$\mathsf{F} = \frac{Factor \ MS}{Error \ MS}$$

The mean squares (MS) that make up F are:

$$Factor MS = \frac{Factor SS}{Factor df}$$
$$Error MS = \frac{Error SS}{Error df}$$

The sum of squares $(S\!S)$ that make up the mean squares are:

$$Factor SS = \sum_{i=1}^{I} n_i (\overline{x}_i - \overline{x})^2$$
$$Error SS = \sum_{i=1}^{I} (n_i - 1)Sx_i^2$$

The degrees of freedom df that make up the mean squares are:

Factor df = I - 1 = numerator df for F

$$Error df = \sum_{i=1}^{I} (n_i - 1) = \text{denominator } df \text{ for } \mathbf{F}$$

where:	I = number of populations
	\overline{x}_i = the mean of each list
	Sxi = the standard deviation of each list
	ni = the length of each list
	\overline{x} = the mean of all lists

2-SampFTest

Below is the definition for the 2-SampFTest.

Sx1, Sx2 = Sample standard deviations having n_1 -1 and n_2 -1 degrees of freedom df, respectively.

$$\mathbf{F} = \mathbf{F}\text{-statistic} = \left(\frac{Sx1}{Sx2}\right)^2$$

 $\label{eq:df} \begin{array}{rl} df(x,\,n_1\text{-}1,\,n_2\text{-}1) &= \mathsf{F}pdf(\) \mbox{ with degrees of} \\ & \mbox{freedom} \ df,\,n_1\text{-}1,\,\mbox{and} \ n_2\text{-}1 \end{array}$

p = reported p value

2-SampFTest for the alternative hypothesis $\sigma_1 > \sigma_2$.

$$p = \int_F^{\infty} f(x, n_1 - 1, n_2 - 1) dx$$

2-SampFTest for the alternative hypothesis $\sigma_1 < \sigma_2$.

$$p = \int_{0}^{F} f(x, n_1 - 1, n_2 - 1) dx$$

2-SampFTest for the alternative hypothesis $\sigma_1 \neq \sigma_2$. Limits must satisfy the following:

$$\frac{p}{2} = \int_{0}^{L_{bnd}} f(x, n_1 - 1, n_2 - 1) dx = \int_{U_{bnd}}^{\infty} f(x, n_1 - 1, n_2 - 1) dx$$

where: [*Lbnd*, *Ubnd*] = lower and upper limits

The F-statistic is used as the bound producing the smallest integral. The remaining bound is selected to achieve the preceding integral's equality relationship. **2-SampTTest** The following is the definition for the **2-SampTTest**. The two-sample *t* statistic with degrees of freedom *df* is:

$$t = \frac{\overline{x}_1 - \overline{x}_2}{S}$$

where the computation of S and df are dependent on whether the variances are pooled. If the variances are not pooled:

$$S = \sqrt{\frac{Sx_1^2}{n_1} + \frac{Sx_2^2}{n_2}}$$
$$df = \frac{\left(\frac{Sx_1^2}{n_1} + \frac{Sx_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1}\left(\frac{Sx_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{Sx_2^2}{n_2}\right)^2}$$

otherwise:

$$Sx_p = \frac{(n_1 - 1)Sx_1^2 + (n_2 - 1)Sx_2^2}{df}$$
$$S = \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}Sx_p$$

$$df = n_1 + n_2 - 2$$

and Sxp is the pooled variance.

This section contains financial formulas for computing time value of money, amortization, cash flow, interest-rate conversions, and days between dates.

Time Value of
Money $i = [e^{(y \times ln(x+1))}] - 1$
where: $PMT \neq 0$
 $y = C/Y \div P/Y$
 $x = (.01 \times I\%) \div C/Y$
C/Y = compounding periods per year
<math>P/Y = payment periods per year
I% = interest rate per year
 $i = (-FV \div PV)^{(1+N)} - 1$
where:PMT = 0

The iteration used to compute *i*:

$$0 = PV + PMT \times G_i \left[\frac{1 - (1 + i)^{-N}}{i}\right] + FV \times (1 + i)^{-N}$$

$$I\% = 100 \times C/Y \times \left[e^{(y \times \ln(x+1))} - 1\right]$$

where: x = i

 $y = P/Y \div C/Y$

 $G_i = 1 + i \times k$

where:	k = 0 for end-of-period payments
	k = 1 for beginning-of-period payments

$$N = \frac{ln\left(\frac{PMT \times G_i - FV \times i}{PMT \times G_i + PV \times i}\right)}{ln(1+i)}$$

where: $i \neq 0$
 $N = -(PV + FV) \div PMT$
where: $i = 0$

$$PMT = \frac{-i}{G_i} \times \left[PV + \frac{PV + FV}{(1+i)^N - 1} \right]$$

where: $i \neq 0$
$$PMT = -(PV + FV) \div N$$

where: i = 0

$$\begin{split} PV = \left[\frac{PMT \times G_i}{i} - FV\right] \times \frac{1}{(1+i)^N} - \frac{PMT \times G_i}{i} \\ \text{where:} \qquad i \neq 0 \\ PV = -(FV + PMT \times N) \end{split}$$

where: i = 0

$$FV = \frac{PMT \times G_i}{i} - (1+i)^N \times \left(PV + \frac{PMT \times G_i}{i}\right)$$

where: $i \neq 0$
 $FV = -(PV + PMT \times N)$
where: $i = 0$

Amortization

If computing *bal()*, *pmt*2 = *npmt*

Let bal(0) = RND(PV)

Iterate from m = 1 to pmt2

$$\begin{cases} I_m = RND[RND12(-i \times bal(m-1))] \\ bal(m) = bal(m-1) - I_m + RND(PMT) \end{cases}$$

then:

bal() = bal(pmt2) $\Sigma Prn() = bal(pmt2) - bal(pmt1)$ $\Sigma Int() = (pmt2 - pmt1 + 1) \times RND(PMT) - \Sigma Prn()$ where: RND = round the display to the number of decimal places selected

RND12 = round to 12 decimal places

Balance, principal, and interest are dependent on the values of **PMT**, **PV**, I%, and *pmt*1 and *pmt*2.

Cash Flow

$$npv() = CF_0 + \sum_{j=1}^{N} CF_j(1+i)^{-S_{j-1}} \frac{(1-(1+i)^{-n_j})}{i}$$

where: $S_j = \begin{cases} \sum_{i=1}^{j} n_i & j \ge 1\\ 0 & j = 0 \end{cases}$

Net present value is dependent on the values of the initial cash flow (CF_0) , subsequent cash flows (CFj), frequency of each cash flow (nj), and the specified interest rate (i).

 $irr() = 100 \times i$, where *i* satisfies npv() = 0

Internal rate of return is dependent on the values of the initial cash flow (CF_0) and subsequent cash flows (CF_j) .

	$i = I\% \div 100$
Interest Rate	$\blacktriangleright Eff(\) = 100 \times (e^{CP \times \ln(x+1)} - 1)$
Conversions	where: $x = .01 \times NOM \div CP$
	Nom () = $100 \times CP \times \left[e^{1 + CP \times bn(x+1)} - 1\right]$
	where: $x = .01 \times EFF$
	$EFF = effective \ rate$
	$CP = compounding \ periods$
	NOM = nominal rate

Days between Dates	With the dbd(function, you can enter or compute a date within the range Jan. 1, 1950, through Dec. 31, 2049.
	Actual/actual day-count method (assumes actual number of days per month and actual number of days per year):
	dbd((days between dates) = Number of Days II - Number of Days I
	Number of Days I = $(YI-YB) \times 365$ + (number of days <i>MB</i> to <i>M</i> 1) + <i>DT</i> 1 + $\frac{(Y1-YB)}{4}$
	Number of Days II = $(Y2-YB) \times 365$ + (number of days <i>MB</i> to <i>M</i> 2) + <i>DT</i> 2 + $\frac{(Y2-YB)}{4}$
	where: M1 = month of first date DT1 = day of first date Y1 = year of first date M2 = month of second date DT2 = day of second date Y2 = year of second date MB = base month (January) DB = base day (1) YB = base year (first year after leap year)

B General Information

Contents	Battery Information	B- 2
	In Case of Difficulty	B-4
	Error Conditions	B- 5
	Accuracy Information	B-10
	Support and Service Information	B-12
	Warranty Information	B-13

When to Replace the Batteries	The TI-83 uses five batteries: four AAA alkaline batteries and one lithium battery. The lithium battery provides auxiliary power to retain memory while you replace the AAA batteries.
	When the battery voltage level drops below a usable level, the TI-83 displays this message when you turn on the unit.
	Your batteries are low.
	Recommend change of batteries.
	After this message is first displayed, you can expect the batteries to function for about one or two weeks, depending on usage. (This one-week to two-week period is based on tests with alkaline batteries; the performance of other kinds of batteries may vary.)
	The low-battery message continues to be displayed each time you turn on the unit until you replace the batteries. If you do not replace the batteries within about two weeks, the calculator may turn off by itself or fail to turn on until you install new batteries.
	Replace the lithium battery every three or four years.
Effects of Replacing the Batteries	Do not remove both types of batteries (AAA and lithium auxiliary) at the same time. Do not allow the batteries to lose power completely. If you follow these guidelines and the steps for replacing batteries on page B-3, you can replace either type of battery without losing any information in memory.
Battery	Take these precautions when replacing batteries.
Precautions	• Do not mix new and used batteries. Do not mix brands (or types within brands) of batteries.
	• Do not mix rechargeable and nonrechargeable batteries.
	 Install batteries according to polarity (+ and -) diagrams.
	• Do not place nonrechargeable batteries in a battery recharger.
	• Properly dispose of used batteries immediately. Do not leave them within the reach of children.
	• Do not incinerate batteries.

Replacing the	To replace the batteries, follow these steps.
Batteries	1 Turn off the calculator. Replace the slide cover over

- 1. Turn off the calculator. Replace the slide cover over the keyboard to avoid inadvertently turning on the calculator. Turn the back of the calculator toward you.
- 2. Hold the calculator upright. Place your thumb on the oval indentation on the battery cover. Push down and toward you to slide the cover about ¼ inch (6 mm). Lift off the cover to expose the battery compartment.

Note: To avoid loss of information stored in memory, you must turn off the calculator. Do not remove the AAA batteries and the lithium battery simultaneously.

- 3. Replace all four AAA alkaline batteries at the same time. Or, replace the lithium battery.
 - To replace the AAA alkaline batteries, remove all four discharged AAA batteries and install new ones according to the polarity (+ and -) diagrams in the battery compartment.
 - To remove the lithium battery, place your index finger on the battery. Insert the tip of a ball-point pen (or similar instrument) under the battery at the small opening provided in the battery compartment. Carefully pry the battery upward, holding it with your thumb and finger. (There is a spring that pushes against the underside of the battery.)
 - Install the new battery, + side up, by inserting the battery and gently snapping it in with your finger. Use a CR1616 or CR1620 (or equivalent) lithium battery.
- 4. Replace the battery compartment cover. Turn the calculator on and adjust the display contrast, if necessary (step 1; page B-4).

Handling a Difficulty

To handle a difficulty, follow these steps.

1. If you cannot see anything on the screen, the contrast may need to be adjusted.

To darken the screen, press and release [2nd], and then press and hold **•** until the display is sufficiently dark.

To lighten the screen, press and release 2nd, and then press and hold $\overline{}$ until the display is sufficiently light.

- 2. If an error menu is displayed, follow the steps in Chapter 1. Refer to pages B-5 through B-9 for details about specific errors, if necessary.
- If a checkerboard cursor (■) is displayed, then either you have entered the maximum number of characters in a prompt, or memory is full. If memory is full, press [2nd] [MEM] 2 to select 2:Delete, and then delete some items from memory (Chapter 18).
- 4. If the busy indicator (dotted line) is displayed, a graph or program has been paused; the TI-83 is waiting for input. Press ENTER to continue or press ON to break.
- 5. If the calculator does not seem to work at all, be sure the batteries are fresh and that they are installed properly. Refer to battery information on pages B-2 and B-3.

When the TI-83 detects an error, it displays **ERR**:*message* and an error menu. Chapter 1 describes the general steps for correcting errors. This table contains each error type, possible causes, and suggestions for correction.

Error Type	Possible Causes and Suggested Remedies
ARCHIVED VAR	A function or instruction is archived and therefore cannot be executed or edited. Use the unarchive command to unarchive the variable before using it.
ARGUMENT	A function or instruction does not have the correct number of arguments. See Appendix A and the appropriate chapter.
BAD GUESS	 In a CALC operation, you specified a Guess that is not between Left Bound and Right Bound.
	• For the solve(function or the equation solver, you specified a <i>guess</i> that is not between <i>lower</i> and <i>upper</i> .
	• Your guess and several points around it are undefined.
	Examine a graph of the function. If the equation has a solution, change the bounds and/or the initial guess.
BOUND	 In a CALC operation or with Select(, you defined Left Bound > Right Bound.
	 In fMin(, fMax(, solve(, or the equation solver, you entered <i>lower</i> ≥ <i>upper</i>.
BREAK	You pressed the ON key to break execution of a program, to halt a DRAW instruction, or to stop evaluation of an expression.
DATA TYPE	You entered a value or variable that is the wrong data type.
	• For a function (including implied multiplication) or an instruction, you entered an argument that is an invalid data type, such as a complex number where a real number is required. See Appendix A and the appropriate chapter.
	• In an editor, you entered a type that is not allowed, such as a matrix entered as an element in the stat list editor. See the appropriate chapter.
	• You attempted to store to an incorrect data type, such as a matrix, to a list.
DIM MISMATCH	You attempted to perform an operation that references more than one list or matrix, but the dimensions do not match.
DIVIDE BY 0	• You attempted to divide by zero. This error is not returned during graphing. The TI-83 allows for undefined values on a graph.
	• You attempted a linear regression with a vertical line.

Error Type	Possible Causes and Suggested Remedies
DOMAIN	• You specified an argument to a function or instruction outside the valid range. This error is not returned during graphing. The TI-83 allows for undefined values on a graph. See Appendix A and the appropriate chapter.
	 You attempted a logarithmic or power regression with a -X or an exponential or power regression with a -Y.
	 You attempted to compute ΣPrn(or Σlnt(with pmt2 < pmt1.
Duplicate Name	A variable you attempted to transmit cannot be transmitted because a variable with that name already exists in the receiving unit.
Error in Xmit	• The TI-83 was unable to transmit an item. Check to see that the cable is firmly connected to both units and that the receiving unit is in receive mode.
	• You pressed ON to break during transmission.
	 You attempted to perform a backup from a TI-82 to a TI-83.
	• You attempted to transfer data (other than L1 through L6) from a TI-83 to a TI-82.
	 You attempted to transfer L1 through L6 from a TI-83 to a TI-82 without using 5:Lists to TI82 on the LINK SEND menu.
ILLEGAL NEST	You attempted to use an invalid function in an argument to a function, such as seq(within <i>expression</i> for seq(.
INCREMENT	• The increment in seq(is 0 or has the wrong sign. This error is not returned during graphing. The TI-83 allows for undefined values on a graph.
	• The increment in a For(loop is 0.
INVALID	 You attempted to reference a variable or use a function where it is not valid. For example, Yn cannot reference Y, Xmin, ΔX, or TblStart.
	 You attempted to reference a variable or function that was transferred from the TI-82 and is not valid for the TI-83. For example, you may have transferred Un-1 to the TI-83 from the TI-82 and then tried to reference it.
	• In Seq mode, you attempted to graph a phase plot without defining both equations of the phase plot.

Error Type	Possible Causes and Suggested Remedies	
INVALID (cont.)	• In Seq mode, you attempted to graph a recursive sequence without having input the correct number of initial conditions.	
	 In Seq mode, you attempted to reference terms other than (n-1) or (n-2). 	
	 You attempted to designate a graph style that is invalid within the current graph mode. 	
	• You attempted to use Select(without having selected (turned on) at least one xyLine or scatter plot.	
INVALID DIM	 You specified dimensions for an argument that are not appropriate for the operation. 	
	 You specified a list dimension as something other than an integer between 1 and 999. 	
	 You specified a matrix dimension as something other than an integer between 1 and 99. 	
	• You attempted to invert a matrix that is not square.	
ITERATIONS	• The solve(function or the equation solver has exceeded the maximum number of permitted iterations. Examine a graph of the function. If the equation has a solution, change the bounds, or the initial guess, or both.	
	• irr(has exceeded the maximum number of permitted iterations.	
	• When computing I%, the maximum number of iterations was exceeded.	
LABEL	The label in the Goto instruction is not defined with a Lbl instruction in the program.	
MEMORY	Memory is insufficient to perform the instruction or function. You must delete items from memory (Chapter 18) before executing the instruction or function.	
	Recursive problems return this error; for example, graphing the equation Y1=Y1.	
	Branching out of an lf/Then , For(, While , or Repeat loop with a Goto also can return this error because the End statement that terminates the loop is never reached.	

Error Type	Possible Causes and Suggested Remedies	
MemoryFull	• You are unable to transmit an item because the receiving unit's available memory is insufficient. You may skip the item or exit receive mode.	
	• During a memory backup, the receiving unit's available memory is insufficient to receive all items in the sending unit's memory. A message indicates the number of bytes the sending unit must delete to do the memory backup. Delete items and try again.	
MODE	You attempted to store to a window variable in another graphing mode or to perform an instruction while in the wrong mode; for example, Drawinv in a graphing mode other than Func .	
NO SIGN CHNG	• The solve(function or the equation solver did not detect a sign change.	
	• You attempted to compute I% when FV, (N*PMT), and PV are all ≥ 0 , or when FV, (N*PMT), and PV are all ≤ 0 .	
	• You attempted to compute irr(when neither <i>CFList</i> nor <i>CFO</i> is > 0 , or when neither <i>CFList</i> nor <i>CFO</i> is < 0 .	
NONREAL ANS	In Real mode, the result of a calculation yielded a complex result. This error is not returned during graphing. The TI-83 allows for undefined values on a graph.	
OVERFLOW	You attempted to enter, or you have calculated, a number that is beyond the range of the calculator. This error is not returned during graphing. The TI-83 allows for undefined values on a graph.	
RESERVED	You attempted to use a system variable inappropriately. See Appendix A.	
SINGULAR MAT	• A singular matrix (determinant = 0) is not valid as the argument for ⁻¹ .	
	• The SinReg instruction or a polynomial regression generated a singular matrix (determinant = 0) because it could not find a solution, or a solution does not exist.	
	This error is not returned during graphing. The TI-83 allows for undefined values on a graph.	

Error Type	Possible Causes and Suggested Remedies	
SINGULARITY	<i>expression</i> in the solve(function or the equation solver contains a singularity (a point at which the function is not defined). Examine a graph of the function. If the equation has a solution, change the bounds or the initial guess or both.	
STAT	You attempted a stat calculation with lists that are not appropriate.	
	Statistical analyses must have at least two data points.	
	• Med-Med must have at least three points in each partition.	
	• When you use a frequency list, its elements must be ≥ 0 .	
	• $(Xmax - Xmin) / Xscl must be \le 47$ for a histogram.	
STAT PLOT	You attempted to display a graph when a stat plot that uses an undefined list is turned on.	
SYNTAX	The command contains a syntax error. Look for misplaced functions, arguments, parentheses, or commas. See Appendix A and the appropriate chapter.	
TOL NOT MET	You requested a tolerance to which the algorithm cannot return an accurate result.	
UNDEFINED	You referenced a variable that is not currently defined. For example, you referenced a stat variable when there is no current calculation because a list has been edited, or you referenced a variable when the variable is not valid for the current calculation, such as a after Med-Med .	
WINDOW RANGE	A problem exists with the window variables.	
	 You defined Xmax ≤ Xmin or Ymax ≤ Ymin. 	
	• You defined $\theta \max \le \theta \min$ and $\theta \text{step} > 0$ (or vice versa).	
	 You attempted to define Tstep=0. 	
	• You defined Tmax ≤ Tmin and Tstep > 0 (or vice versa).	
	 Window variables are too small or too large to graph correctly. You may have attempted to zoom in or zoom out to a point that exceeds the TI-83's numerical range. 	
ZOOM	• A point or a line, instead of a box, is defined in ZBox .	
	• A ZOOM operation returned a math error.	

ComputationalTo maximize accuracy, the TI-83 carries more digitsAccuracyinternally than it displays. Values are stored in memory
using up to 14 digits with a two-digit exponent.

- You can store a value in the window variables using up to 10 digits (12 for Xscl, Yscl, Tstep, and θ step).
- Displayed values are rounded as specified by the mode setting with a maximum of 10 digits and a two-digit exponent.
- **RegEQ** displays up to 14 digits in **Float** mode. Using a fixed-decimal setting other than **Float** causes **RegEQ** results to be rounded and stored with the specified number of decimal places.

Graphing Accuracy

Xmin is the center of the leftmost pixel, **Xmax** is the center of the next-to-the-rightmost pixel. (The rightmost pixel is reserved for the busy indicator.) ΔX is the distance between the centers of two adjacent pixels.

- In Full screen mode, ΔX is calculated as (Xmax - Xmin) / 94. In G-T split-screen mode, ΔX is calculated as (Xmax - Xmin) / 46.
- If you enter a value for ΔX from the home screen or a program in Full screen mode, Xmax is calculated as Xmin + $\Delta X * 94$. In G-T split-screen mode, Xmax is calculated as Xmin + $\Delta X * 46$.

Ymin is the center of the next-to-the-bottom pixel; Ymax is the center of the top pixel. Δ Y is the distance between the centers of two adjacent pixels.

- In Full screen mode, ΔY is calculated as (Ymax - Ymin) / 62. In Horiz split-screen mode, ΔY is calculated as (Ymax - Ymin) / 30. In G-T split-screen mode, ΔY is calculated as (Ymax - Ymin) / 50.
- If you enter a value for ΔY from the home screen or a program in Full screen mode, Ymax is calculated as Ymin + $\Delta Y * 62$. In Horiz split-screen mode, Ymax is calculated as Ymin + $\Delta Y * 30$. In G-T split-screen mode, Ymax is calculated as Ymin + $\Delta Y * 50$.

Cursor coordinates are displayed as eight-character numbers (which may include a negative sign, decimal point, and exponent) when **Float** mode is selected. **X** and **Y** are updated with a maximum accuracy of eight digits.

minimum and maximum on the CALCULATE menu are calculated with a tolerance of 1E-5; jf(x)dx is calculated at 1E-3. Therefore, the result displayed may not be accurate to all eight displayed digits. For most functions, at least five accurate digits exist. For fMin(, fMax(, and fnInt(on the MATH menu and solve(in the CATALOG, the tolerance can be specified.

Function Limits	Function	Range of Input Values
	$\sin x$, $\cos x$, $\tan x$	$0 \le x < 10^{12}$ (radian or degree)
	$\sin^{-1}x, \cos^{-1}x$	$-1 \le x \le 1$
	$\ln x$, $\log x$	$10^{-100} < x < 10^{100}$
	e ^x	$-10^{100} < x \le 230.25850929940$
	10 ^{<i>x</i>}	$-10^{100} < x < 100$
	sinh x , cosh x	$ x \le 230.25850929940$
	tanh x	$ x < 10^{100}$
	$\sinh^{-1} x$	$ x < 5 \times 10^{99}$
	$\cosh^{-1}x$	$1 \le x < 5 \times 10^{99}$
	tanh ⁻¹ x	-1 < x < 1
	\sqrt{x} (real mode)	$0 \le x < 10^{100}$
	\sqrt{x} (complex mode)	$ x < 10^{100}$
	x!	$\overline{5} \le x \le 69$, where x is a multiple of .5
Function Results	Function	Range of Result
	sin ⁻¹ x, tan ⁻¹ x	-90° to 90° or $-\pi/2$ to $\pi/2$ (radians)
	cos ⁻¹ x	0° to 180° or 0 to π (radians)

Product Support

Customers in the U.S., Canada, Puerto Rico, and the Virgin Islands

For general questions, contact Texas Instruments Customer Support:

phone: **1-800-TI-CARES (1-800-842-2737)** e-mail: **ti-cares@ti.com**

For technical questions, call the Programming Assistance Group of Customer Support:

phone: 1-972-917-8324

Customers outside the U.S., Canada, Puerto Rico, and the Virgin Islands

Contact TI by e-mail or visit the TI calculator home page on the World Wide Web.

e-mail:	ti-cares@ti.com
Internet:	education.ti.com

Product Service

Customers in the U.S. and Canada Only

Always contact Texas Instruments Customer Support before returning a product for service.

Customers outside the U.S. and Canada

Refer to the leaflet enclosed with this product or contact your local Texas Instruments retailer/distributor.

Other TI Products and Services

Visit the TI calculator home page on the World Wide Web.

education.ti.com

Refer to the leaflet enclosed with this product or contact your local Texas Instruments retailer/distributor.

Customers in the U.S. and Canada Only

One-Year Limited Warranty for Electronic Product

This Texas Instruments ("TI") electronic product warranty extends only to the original purchaser and user of the product.

Warranty Duration. This TI electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.

Warranty Coverage. This TI electronic product is warranted against defective materials and construction. THIS WARRANTY IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT OR UNREASONABLE USE, NEGLECT, IMPROPER SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR CONSTRUCTION.

Warranty Disclaimers. ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE ONE-YEAR PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE PRODUCT OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER.

Some states/provinces do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.

Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from state to state or province to province.

Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a reconditioned model of an equivalent quality (at TI's option) when the product is returned, postage prepaid, to Texas Instruments Service Facility. The warranty of the repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than the postage requirement, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value prior to mailing.

Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. **All software is provided "AS IS."**

Copyright. The software and any documentation supplied with this product are protected by copyright.

Australia & New Zealand Customers only

One-Year Limited Warranty for Commercial Electronic Product

This Texas Instruments electronic product warranty extends only to the original purchaser and user of the product.

Warranty Duration. This Texas Instruments electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.

Warranty Coverage. This Texas Instruments electronic product is warranted against defective materials and construction. This warranty is void if the product has been damaged by accident or unreasonable use, neglect, improper service, or other causes not arising out of defects in materials or construction.

Warranty Disclaimers. Any implied warranties arising out of this sale, including but not limited to the implied warranties of merchantability and fitness for a particular purpose, are limited in duration to the above one-year period. Texas Instruments shall not be liable for loss of use of the product or other incidental or consequential costs, expenses, or damages incurred by the consumer or any other user.

Some jurisdictions do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.

Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from jurisdiction to jurisdiction.

Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a new or reconditioned model of an equivalent quality (at TT's option) when the product is returned to the original point of purchase. The repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than your cost to return the product, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value if you mail it.

Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided "AS IS."

Copyright. The software and any documentation supplied with this product are protected by copyright.

All Customers Outside the U.S. and Canada

For information about the length and terms of the warranty, refer to your package and/or to the warranty statement enclosed with this product, or contact your local Texas Instruments retailer/distributor.

Index

(addition), 2-3, A-38 γ^2 cdf((chi-square cdf), 13-31, A-3 γ^2 pdf((chi-square pdf), 13-31, A-4 χ²-Test (chi-square test), 13-22, A-4 (colon), 6, 16-5 (concatenation), 15-6, A-38 ÷ 3 (cube), 2-6, A-35 $\sqrt[3]{(\text{cube root)}, 2-6, A-35)}$ 0 (degrees notation), 2-3, A-34 1 (division), 2-3, A-37 = (equal-to relational test), 2-25, A - 35! (factorial), 2-21, A-34 Ő. (graph style, animate), 3-9 ٠. (graph style, dot), 3-9 (graph style, line), 3-9 N > (greater than), 2-25, A-35 ≥ (greater than or equal to), 2-25, A-35-1 (inverse), 2-3, 8-9, 10-10, A-36 < (less than), 2-25, A-35 (less than or equal to), 2-25, A-36 \leq {} (list indicator), 11-4 [] (matrix indicator), 10-7 (minutes notation), 2-23, A-38 * (multiplication), 2-3, A-37 -(negation), 1-23, 2-4, A-37 ¥ (not equal to), 2-25, A-35 () (parentheses), 1-23 (pi), 2-4 π (pixel mark), 8-15, 12-34 (pixel mark), 8-15, 12-34 ÷ (pixel mark), 8-15, 12-34 (plot type, box), *12-33* 山山 (plot type, histogram), 12-32 \oplus (plot type, modified box), 12-32 \checkmark (plot type, normal probability), 12-33٨ (power), 2-3, A-36, A-37 10^((power of ten), 2-4, A-37 X√ (root), 2-6, A-35 .. (seconds notation), 2-23, A-38 2 (square), 2-3, A-36 √((square root), 2-3, A-37 ≻ Store, 1-14, A-28 (string indicator), 15-3 (subtraction), 2-3, A-38

- A -

a+b*i* (rectangular complex mode), 1-12, 2-16, A-3 above graph style(\mathbb{T}), 3-9 abs((absolute value), 2-13, 2-19, 10-10, A-2 accuracy information computational and graphing, B-10 graphing, 3-17 function limits and results, B-11 addition (+), 2-3, A-38 alpha cursor, 1-5 alpha key, 3 alpha-lock, 1-8 alternative hypothesis, 13-7 amortization bal((amortization balance), 14-9, A-3calculating schedules, 14-9 formula, A-56 Σ Int((sum of interest), 14-9, A-12 **ΣPrn(** (sum of principal), *14-9*, *A-19* and (Boolean operator), 2-26, A-2 angle(, 2-19, A-2 ANGLE menu, 2-23 angle modes, 1-11 animate graph style (\emptyset), 3-9 ANOVA((one-way variance analysis), 13-25, A-2 formula, A-51 Ans (last answer), 1-18, A-2 APD[™] (Automatic Power Down[™]), 1-2 applications. See examples, applications arccosine (**cos**⁻¹(), 2-3 arcsine (sin⁻¹(), 2-3 arctangent (tan⁻¹(), 2-3 augment(, 10-14, 11-15, A-3 Automatic Power Down[™] (APD[™]), 1-2 automatic regression equation, 12-22 automatic residual list (RESID), 12-22 axes format, sequence graphing, 6-8 axes, displaying (AxesOn, AxesOff), 3-14, A-3 AxesOff, 3-14, A-3 AxesOn, 3-14, A-3

- B -

backing up calculator memory, 19-4, 19-10 **bal(** (amortization balance), 14-9, A-3 batteries, 1-2, B-2 below graph style (h), 3-9 **binomcdf(**, 13-33, A-3 **binompdf(**, 13-33, A-3 Boolean logic, 2-26 box pixel mark (\Box), 8-15, 12-34 **Boxplot** plot type (<u> $\Box \Box$ </u>), 12-33 busy indicator, 1-4

- C -

CALCULATE menu, 3-25 Calculate output option, 13-6, 13-8 cash flow calculating, 14-8 formula, A-57 irr((internal rate of return), 14-8, A-13npv((net present value), 14-8, A-17 CATALOG, 15-2 CBL 2/CBL System, 16-21, 19-3, A-10 CBR, 16-21, 19-3, A-10 Check RAM (memory screen), 18-2 chi-square cdf (χ^2 cdf(), 13-31, A-3 chi-square pdf (χ^2 pdf(), 13-31, A-4 chi-square test (χ²-Test), 13-22, A-4 Circle((draw circle), 8-11, A-4 Clear Entries, 18-4, A-4 clearing entries (Clear Entries), 18-4, A-4 all lists (CIrAllLists), 18-4, A-4 drawing (ClrDraw), 8-4, A-4 home screen (CIrHome), 16-20, A-4 list (ClrList), 12-20, A-4 table (CirTable), 16-20, A-4 CIrAllLists (clear all lists), 18-4, A-4 CIrDraw (clear drawing), 8-4, A-4 CirHome (clear home screen), 16-20, A-4ClrList (clear list), 12-20, A-4 CirTable (clear table), 16-20, A-4 coefficients of determination (r^2, R^2) , 12-23colon separator (:), 6, 16-5combinations (nCr), 2-21, A-16

- C (continued) -

complex modes (a+bi, re^0i), 1-12, 2-16, A-3, A-22 numbers, 1-12, 2-16, 2-18, A-22 compounding-periods-per-year variable (C/Y), 14-4, 14-14 concatenation (+), 15-6, A-38 confidence intervals, 13-8, 13-16 -13-21 conj((conjugate), 2-18, A-4 Connected (plotting mode), 1-11, A-4 contrast (display), 1-3 convergence, sequence graphing, 6-12 conversions ▶Dec (to decimal), 2-5, A-5 DMS (to degrees/minutes/ seconds), 2-24, A-7 **Eff** (to effective interest rate), 14-12, A-7 Equ>String((equation-to-string) conversion), 15-7, A-8 ▶ Frac (to fraction conversion), 2-5, A-10 Listhmatr((list-to-matrix conversion), 10-14, 11-15, A-14 Matrist((matrix-to-list conversion), 10-14, 11-16, A-15 **Nom** (to nominal interest rate conversion), 14-12, A-16 ▶Polar (to polar conversion), 2-19, A-19P>Rx(, P>Ry((polar-to-rectangular conversion), 2-24, A-21 **Rect** (to rectangular conversion), 2-19, A-22 **R**>**Pr(**, **R**>**P**θ((rectangular-to-polar) conversion), 2-24, A-23 String>Equ((string-to-equation conversion), 15-8, A-29 CoordOff, 3-14, A-5 CoordOn, 3-14, A-5 correlation coefficient (r), 12-23, 12-25 to 12-27 cos((cosine), 2-3, A-5 cos⁻¹((arccosine), 2-3, A-5 cosh((hyperbolic cosine), 15-10, A-5

- D (continued) -

cosh⁻¹((hyperbolic arccosine), 15-10, A-5cosine (cos(), 2-3, A-5 cross pixel mark (+), 8-15, 12-34 cube (3), 2-6, A-35 cube root $({}^{3}\sqrt{1}), 2-6, A-35$ CubicReg (cubic regression), 12-26, A-5cubic regression (CubicReg), 12-26, A-5cumulative sum (cumSum(), 10-15, 11-12, A-5 cumSum((cumulative sum), 10-15, 11-12, A-5 cursors, 1-5, 1-8 C/Y (compounding-periods-per-year variable), 14-4, 14-14

- D -

Data input option, 13-6, 13-7 days between dates (dbd(), 14-13, A-5, A-58**dbd(** (days between dates), 14-13, A-5, A-58▶Dec (to decimal conversion), 2-5, A-5 decimal mode (float or fixed), 1-10 decrement and skip (DS<(), 16-14, A-7 definite integral, 2-7, 3-28, 4-8, 5-6 Degree angle mode, 1-11, 2-23, A-6 degrees notation (°), 2-3, A-34 DELETE FROM menu, 18-3 delete variable contents (DelVar), 16-15, A-6 **DelVar** (delete variable contents), 16-15, A-6 DependAsk, 7-3, 7-5, A-6 DependAuto, 7-3, 7-5, A-6 derivative. See numerical derivative det((determinant), 10-12, A-6 determinant (det(), 10-12, A-6 DiagnosticOff, 12-23, A-6 DiagnosticOn, 12-23, A-6 diagnostics display $mode(r, r^2, R^2)$, 12-23

differentiation, 2-8, 3-28, 4-8, 5-6

- D (continued) -

dimensioning a list or matrix, 10-12, 10-13, 11-11, A-6 dim((dimension), 10-12, 11-11, A-6 →dim((assign dimension), 10-13, 11-11, A-6 Disp (display), 16-18, A-6 DispGraph (display graph), 16-19, A-7 display contrast, 1-3 display cursors, 1-5 DispTable (display table), 16-19, A-7 DISTR (distributions menu), 13-29 **DISTR DRAW** (distributions drawing menu), 13-35 distribution functions binomcdf(, 13-33, A-3 binompdf(, 13-33, A-3 χ^2 cdf(, 13-31, A-3 χ^2 pdf(, 13-31, A-4 Fcdf(, 13-32, A-8 Fpdf(, 13-32, A-9 geometcdf(, 13-34, A-10 geometpdf(, 13-34, A-11 invNorm(, 13-30, A-12 normalcdf(, 13-30, A-17 normalpdf(, 13-29, A-17 poissoncdf(, 13-34, A-99 poissonpdf(, 13-33, A-19 tcdf(, 13-31, A-29 tpdf(, 13-30, A-29 distribution shading instructions Shadeχ²(, 13-36, A-26 ShadeF(, 13-36, A-27 ShadeNorm(, 13-35, A-27 Shade_t(, 13-36, A-27 division (/), 2-3, A-37 DMS (degrees/minutes/seconds entry notation), 2-23, A-38 ▶DMS (to degrees/minutes/seconds), 2-24, A-7 dot graph style (\cdot .), 3-9 dot pixel mark (•), 8-15, 12-34 Dot (plotting mode), 1-11, A-7 DrawF (draw a function), 8-9, A-7

- D (continued) -

drawing on a graph circles (Circle(), 8-11 functions and inverses (DrawF, Drawlnv), 8-9lines (Horizontal, Line(, Vertical), 8-6, 8-7 line segments (Line(), 8-5 pixels (Pxl-Change, Pxl-Off, Pxl-On, pxI-Test), 8-16 points (Pt-Change, Pt-Off, Pt-On), 8-14 tangents (Tangent), 8-8 text (Text), 8-12 using **Pen**, 8-13 Drawlnv (draw inverse), 8-9, A-7 DRAW menu, 8-3 DRAW instructions, 8-3 - 8-16 Draw output option, 13-6 - 13-8 DRAW POINTS menu, 8-14 DRAW STO (draw store menu), 8-17 $dr/d\theta$ operation on a graph, 5-6 DS<((decrement and skip), 16-14, A-7 DuplicateName menu, 19-5 dx/dt operation on a graph, 3-28, 4-8 dy/dx operation on a graph, 3-28, 4-8, 5-6

- E -

e (constant), 2-4 e^((exponential), 2-4, A-7 E (exponent), 1-7, 1-10, A-7 edit keys table, 1-8 **Eff(** (to effective interest rate), 14-12, A-7Else, 16-10 End, 16-12, A-8 Eng (engineering notation mode), 1-10, A-8entry cursor, 1-5 ENTRY (last entry key), 1-16 EOS[™] (Equation Operating System), 1 - 22eqn (equation variable), 2-8, 2-12 equal-to relational test (=), 2-25, A-35 Equation Operating System (EOS[™]), 1 - 22Equation Solver, 2-8 equations with multiple roots, 2-12

- E (continued) -

Equ>String((equation-to-string conversion), 15-7, A-8 errors diagnosing and correcting, 1-24 messages, B-5 examples-applications area between curves, 17-11 areas of regular n-sided polygons, 17-16 box plots, 17-2 cobweb attractors, 17-8 fundamental theorem of calculus, 17-14 guess the coefficients, 17-9 inequalities, 17-5 mortgage payments 17-18 parametric equations: ferris wheel problem, 17-12 piecewise functions, 17-4 Sierpinski triangle, 17-7 solving a system of nonlinear equations, 17-6 unit circle and trig curves, 17-10 examples-Getting Started box with lid 9 to 16 defining a, 9 defining a table of values, 10 finding calculated maximum, 16 setting the viewing window, 12 tracing the graph, 13 zooming in on the graph, 15 zooming in on the table, 11 coin flip, 2-2 compound interest, 14-3 drawing a tangent line, 8-2financing a car, 14-2 forest and trees, 6-2 generating a sequence, 11-2graphing a circle, 3-2mean height of a population, 13-2 path of a ball, 4-2 pendulum lengths and periods, 12-2 polar rose, 5-2

Index-4

- E (continued) -

examples—Getting Started (continued) quadratic formula converting to a fraction, 7displaying complex results, 8 entering a calculation, 6roots of a, 7-2 sending variables, 19-2 solving a system of linear equations, 10-2unit circle, 9-2 volume of a cylinder, 16-2 examples-miscellaneous convergence, 6-12 daylight hours in Alaska, 12-28 calculating outstanding loan balances, 14-10 predator-prey model, 6-13 exponential regression (ExpReg), 12-26, A-8 **expr(** (string-to-expression conversion), 15-7, A-8 **ExpReg** (exponential regression), 12-26, A-8 expression, 1-6 converting from string (expr(), 15-7, A-8turning on and off (ExprOn, ExprOff), 3-14, A-8 ExprOff (expression off), 3-14, A-8 ExprOn (expression on), 3-14, A-8

- F -

jf(x)dx operation on a graph, 3-28
factorial (!), 2-21, A-34
family of curves, 3-16
Fcdf(, 13-32, A-8
Fill(, 10-13, A-8
FINANCE CALC menu, 14-5
FINANCE VARS menu, 14-14
financial functions

amortization schedules, 14-9
cash flows, 14-8
days between dates, 14-13
interest rate conversions, 14-12
payment method, 14-13
time value of money (TVM), 14-6

- F (continued) -

Fix (fixed-decimal mode), 1-10, A-8 fixed-decimal mode (Fix), 1-10, A-8 Float (floating-decimal mode), 1-10, A-8floating-decimal mode (Float), 1-10, A-8fMax((function maximum), 2-6, A-9 fMin((function minimum), 2-6, A-9 fnint((function integral), 2-7, A-9 FnOff (function off), 3-8, A-9 FnOn (function on), 3-8, A-9 For(, 16-10, A-9 format settings, 3-13, 6-8 formulas amortization, A-56 ANOVA, A-51 $\cosh flow, A-57$ days between dates, A-58 factorial, 2-21 interest rate conversions, A-57logistic regression, A-50 sine regression, A-50time value of money, A-54 two-sample F-Test, A-52 two-sample t test, A-53 fPart((fractional part), 2-14, 10-11, A-9 Fpdf(, 13-32, A-9 ▶ Frac (to fraction), 2-5, A-10 free-moving cursor, 3-17 frequency, 12-24 Full (full-screen mode), 1-12, A-10 full-screen mode (Full), 1-12, A-10 Func (function graphing mode), 1-11, A-10 function, definition of, 1-7function graphing, 3-1 to 3-28 accuracy, 3-17 CALC (calculate menu), 3-25 defining and displaying, 3-3 defining in the Y = editor, 3-5 defining on the home screen, in a program, 3-6 deselecting, 3-7 displaying, 3-3, 3-11, 3-15 evaluating, 3-6 family of curves, 3-16 format settings, 3-13

- F (continued) -

Function graphing (continued) free-moving cursor, 3-17 graph styles, 3-9 maximum of (fMax(), 2-6, A-9 minimum of (fMin(), 2-6, A-9)modes, 1-11, 3-4, A-10 moving the cursor to a value, 3-19 overlaying functions on a graph. 3-16panning, 3-19 pausing or stopping a graph, 3-15 Quick Zoom, 3-19 selecting, 3-7, 3-8, A-9 shading. 3-10 Smart Graph, 3-15 tracing, 3-18 window variables, 3-11, 3-12 Y = editor, 3-5viewing window, 3-11 ΔX and ΔY window variables, 3-12 ZOOM menu, 3-20 ZOOM MEMORY menu. 3-23 function integral (fnint(), 2-7, A-9 functions and instructions table, A-2 to A-2future value, 14-5, 14-7, 14-14 present value, 14-5, 14-7, 14-14 FV (future-value variable), 14-4, 14-14

-G -

gcd((greatest common divisor), 2-15, A-10 GDB (graph database), 8-19 geometcdf(, 13-34, A-10 geometpdf(, 13-34, A-10 Get((get data from CBL 2/CBL or CBR), 16-21, A-10 GetCalc((get data from TI-83), 16-21, A-10 getKey, 16-20, A-10 Getting Started, 1 to 18. See also examples, Getting Started Goto, 16-13, A-10

- G (continued) -

graph database (GDB), 8-19 graphing modes, 1-11 graphing-order modes, 1-12 GraphStyle(, 16-15, A-11 graph styles, 3-9 graph-table split-screen mode (G-T), 1-12, 9-5, A-11 greater than (>), 2-25, A-35 greater than or equal to (\geq) , 2-25, A-35 greatest common divisor (gcd(), 2-15, A-10 greatest integer (int(), 2-14, 10-11, A-12 GridOff, 3-14, A-11 GridOn, 3-14, A-11 **G-T** (graph-table split-screen mode), 1-12, 9-5, A-11

- H -

Histogram plot type (In.), 12-32home screen, 1-4Horiz (horizontal split-screen mode), 1-12, 9-4, A-11hyperbolic functions, 15-10Horizontal (draw line), 8-6-8-7, A-11hypothesis tests, 13-10-13-15

- | -

i (complex number constant), 2-17 I% (annual interest rate variable), 14-4, 14-14 identity(, 10-13, A-11 **If** instructions If, 16-9, A-11 If-Then, 16-9, A-11 If-Then-Else, 16-10, A-11 imag((imaginary part), 2-18, A-11 imaginary part (imag(), 2-18, A-11 implied multiplication, 1-23 increment and skip (IS>(), 16-13, A-13 IndpntAsk, 7-3, A-12 IndpntAuto, 7-3, A-12 independent variable, 7-3, A-12 inferential stat editors, 13-6

- I (continued) -

inferential statistics. See also stat tests: confidence intervals alternative hypotheses, 13-7 bypassing editors, 13-8 calculating test results (Calculate), 13-8 confidence interval calculations, 13-8, 13-16 - 13-21 data input or stats input, 13-7 entering argument values, 13-7 graphing test results (Draw), 13-8 input descriptions table, 13-26 pooled option, 13-8 STAT TESTS menu. 13-9 test and interval output variables, 13-28Input, 16-16, 16-17, A-12 insert cursor, 1-5 inString((in string), 15-7, A-12 instruction, definition of, 1-7 int((greatest integer), 2-14, 10-11, A-12**Σint(** (sum of interest), *14-9*, *A-12* integer part (iPart(), 2-14, 10-11, A-12 integral. See numerical integral interest rate conversions calculating, 14-12 Eff((compute effective interest rate), 14-12, A-7 formula, A-57 >Nom((compute nominal interest rate), 14-12, A-16 internal rate of return (irr(), 14-8, A-13 intersect operation on a graph, 3-27 inverse (⁻¹), 2-3, 8-9, 10-10, A-36 inverse cumulative normal distribution (invNorm(), 13-30, A-12 inverse trig functions, 2-3 invNorm((inverse cumulative normal distribution), 13-30, A-12 iPart((integer part), 2-14, 10-11, A-12 irr((internal rate of return), 14-8, A-13 **IS>(** (increment and skip), 16-13, A-13

- K -

keyboard layout, 2, 3 math operations, 2-3 key-code diagram, 16-20

- L -

L (user-created list name symbol), 11-16, A-13 LabelOff, 3-14, A-13 LabelOn, 3-14, A-13 labels graph, 3-14, A-13 program, 16-13, A-13 Last Entry, 1-16 Lbl (label), 16-13, A-13 Icm((least common multiple), 2-15, A-13least common multiple (lcm(), 2-15, A-13 length(of string, 15-8, A-13 less than (<), 2-25, A-35 less than or equal to (\leq) , 2-25, A-36 line graph style (\mathbb{N}), 3-9 Line((draw line), 8-5, A-13 line segments, drawing, 8-5 lines, drawing, 8-6, 8-7 linking receiving items, 19-5 to a CBL 2/CBL System or CBR, 19-3 to a PC or Macintosh. 19-3 to a TI-82, 19-3, 19-8 transmitting items, 19-6 two TI-83 units, 19-3 LINK RECEIVE menu, 19-5 LINK SEND menu, 19-4 LinReg(a+bx) (linear regression), 12-26, A-14 LinReg(ax+b) (linear regression), 12-25, A-14 LinRegTTest (linear regression *t* test), 13-24, A-14 ∆List(, 11-12, A-14 LIST MATH menu, 11-17 List>matr((lists-to-matrix conversion), 10-14, 11-15, A-14 LIST NAMES menu, 11-6 LIST OPS menu, 11-10

- L (continued) -

lists. 11-1 to 11-18 accessing an element, 11-5 attaching formulas, 11-7, 12-14 clearing all elements, 12-12, 12-20 copying, 11-5 creating, 11-3, 12-12 deleting from memory, 11-5, 18-3 detaching formulas, 11-8, 12-16 dimension, 11-4, 11-11 entering list names, 11-6, 12-11 indicator ({ }), 11-4 naming lists, 11-3 storing and displaying, 11-4 transmitting to and from TI-82, 19-4 using in expressions, 11-9 using to graph a family of curves, 3-16, 11-5 using to select data points from a plot, 11-13 using with math functions, 11-9 using with math operations, 2-3In(, 2-4, A-14 LnReg (logarithmic regression), 12-26, A - 14log(, 2-4, A-14 logic (Boolean) operators, 2-26 Logistic (regression), 12-27, A-15 logistic regression formula, A-50

- M -

MATH CPX (complex menu), 2-18 MATH menu, 2-5 MATH NUM (number menu), 2-13 math operations, keyboard, 2-3 MATH PRB (probability menu), 2-20 Matrist((matrix-to-list conversion), 10-14, 11-16, A-15 matrices, 10-1 to 10-16 accessing elements, 10-8 copying, 10-8 defined. 10-3 deleting from memory, 10-4 dimensions, 10-3, 10-12, 10-13 displaying a matrix, 10-8 displaying matrix elements, 10-4 editing matrix elements, 10-6

- M (continued) -

matrices, (continued) indicator ([]), 10-7 inverse (⁻¹), *10-10* math functions, 10-9 to 10-11 matrix math functions (det(, ^T, dim(, Fill(, identity(, randM(, augment(, Mathlist(, Listhmatr(, cumSum(), 10-12 to 10-16 referencing in expressions, 10-7 relational operations, 10-11 row operations(ref(, rref(, rowSwap(, row+(, *row(, *row+(), 10-15 selecting, 10-3 viewing, 10-5 MATRX EDIT menu, 10-3 MATRX MATH menu, 10-12 MATRX NAMES menu, 10-7 max((maximum), 2-15, 11-17, A-15 maximum of a function (fMax(), 2-6, A-9maximum operation on a graph, 3-27 mean(, 11-17, A-15 median(, 11-17, A-15 Med-Med (median-median), 12-25, A-15 memory backing up, 19-10 checking available, 18-2 clearing all list elements from, 18-4 clearing entries from, 18-4 deleting items from, 18-3 insufficient during transmission, 19-5resetting defaults, 18-6 resetting memory, 18-5 MEMORY menu, 18-2 Menu((define menu), 16-14, A-15 menus, 4, 1-19 defining (Menu(), 16-14, A-15 map, A-39 scrolling, 1-19 min((minimum), 2-15, 11-17, A-16 minimum operation on a graph, 3-27 minimum of a function (fMin(), 2-6, A-9 minutes notation ('), 2-23, A-38

- M (continued) -

modified box plot type (:::), 12-32 mode settings, 1-9 a+bi (complex rectangular), 1-12, 2-16, A-3 re^0i (complex polar), 1-12, 2-16, A-22 **Connected** (plotting), 1-11, A-4 Degree (angle), 1-11, 2-24, A-6 Dot (plotting), 1-11, A-7 Eng (notation), 1-10, A-8 Fix (decimal), 1-10, A-8 Float (decimal), 1-10, A-8 Full (screen), 1-12, A-10 Func (graphing), 1-11, A-10 G-T (screen), 1-12, A-11 Horiz (screen), 1-12, A-11 Normal (notation), 1-10, A-16 Par/Param (graphing), 1-11, A-18 Pol/Polar (graphing), 1-11, A-19 Radian (angle), 1-11, 2-24, A-21 Real, 1-12, A-22 Sci (notation), 1-10, A-25 Seq (graphing), 1-11, A-26 Sequential (graphing order), 1-12, A-26Simul (graphing order), 1-12, A-27 modified box plot type (-----), 12-32 multiple entries on a line, 1-6multiplication (*), 2-3, A-37

- N -

multiplicative inverse. 2-3

N (number of payment periods variable), 14-4, 14-14 nCr (number of combinations), 2-21, A-16 nDeriv((numerical derivative), 2-7, A-16 negation (-), 1-23, 2-4, A-37 Nom((to nominal interest rate), 14-12, A-16 nonrecursive sequences, 6-5 normal distribution probability (normalcdf(), 13-30, A-17 Normal notation mode, 1-10, A-16 normal probability plot type (\smile), 12-33

- N (continued) -

normalcdf((normal distribution probability), 13-30, A-17 normalpdf((probability density function), 13-29, A-17 NormProbPlot plot type (\checkmark), 12-33 not((Boolean operator), 2-26, A-17 not equal to (\neq), 2-25, A-35 nPr (permutations), 2-21, A-17 npv((net present value), 14-8, A-17 numerical derivative, 2-7, 3-28, 4-8, 5-6 numerical integral, 2-7, 3-28

- 0 -

one-proportion *z* confidence interval (1-PropZInt), 13-20, A-20 one-proportion *z* test (1-PropZTest), 13-14, A-20 one-sample *t* confidence interval (TInterval), 13-17, A-30 one-variable statistics (1-Var Stats), 12-25, A-31 or (Boolean) operator, 2-26, A-17 order of evaluating equations, 1-22 Output(, 9-6, 16-19, A-18

- P -

panning, 3-19 **Par/Param** (parametric graphing mode), 1-9, 1-11, A-18 parametric equations, 4-5 parametric graphing CALC (calculate operations on a graph), 4-8 defining and editing, 4-4 free-moving cursor, 4-7 graph format, 4-6 graph styles, 4-4 moving the cursor to a value, 4-8selecting and deselecting, 4-5 setting parametric mode, 4-4 tracing, 4-7 window variables, 4-5 Y = editor, 4-4zoom operations, 4-8 parentheses, 1-23 path (*) graph style, 3-9

- P (continued) -

Pause. 16-12. A-18 pausing a graph, 3-15 Pen, 8-13 permutations (nPr), 2-21, A-17 phase plots, 6-13 Pi $(\pi), 2-4$ Pic (pictures), 8-17, 8-18 pictures (Pic), 8-17, 8-18 pixel, 8-16 pixels in Horiz/G-T modes, 8-16, 9-6 Plot1(, 12-34, A-18 Plot2(, 12-34, A-18 Plot3(, 12-34, A-18 PlotsOff, 12-35, A-18 PlotsOn, 12-35, A-18 plotting modes, 1-11 plotting stat data, 12-31 PMT (payment amount variable), 14-4, 14-14 Pmt Bgn (payment beginning variable), 14-13, A-19 Pmt_End (payment end variable), 14-13, A-19 poissoncdf(, 13-34, A-19 poissonpdf(, 13-33, A-19 **Pol/Polar** (polar graphing mode), 1-9, 1-11, A-19 polar equations, 5-4 polar form, complex numbers, 2-17 **Polar** (to polar), 2-19, A-19 polar graphing CALC (calculate operations on a graph), 5-6 defining and displaying, 5-3equations, 5-4 free-moving cursor, 5-6 graph format, 5-5 graph styles, 5-3 moving the cursor to a value, 5-6selecting and deselecting, 5-4 mode (**Pol/Polar**), 1-9, 1-11, 5-3, A-19tracing, 5-6 window variables, 5-4 Y = editor, 5-3ZOOM operations, 5-6**PolarGC** (polar graphing coordinates), 3-13, A-19

- P (continued) -

pooled option, 13-6, 13-8 power (^), 2-3, A-36, A-37 power of ten (10^(), 2-4, A-37 present value, 14-5, 14-7, 14-14 previous entry (Last Entry), 1-16 PRGM CTL (program control menu), 16-8PRGM EDIT menu, 16-7 PRGM EXEC menu, 16-7 PRGM I/O (Input/Output menu), 16-16 prgm (program name), 16-15, A-19 PRGM NEW menu, 16-4 **ΣPrn(** (sum of principal), *14-9*, *A-19* probability, 2-20 probability density function (normalpdf(), 13-29, A-17 prod((product), 11-18, A-19 programming copying and renaming, 16-7 creating new, 16-4 defined, 16-4 deleting, 16-4 deleting command lines, 16-6 editing, 16-6 entering command lines, 16-5 executing, 16-5 instructions, 16-9 - 16-21 inserting command lines, 16-6 name (prgm), 16-15, A-19 renaming, 16-7 stopping, 16-5 subroutines, 16-22 Prompt, 16-18, A-19 1-PropZInt (one-proportion z confidence interval), 13-20, A-20 **1-PropZTest** (one-proportion *z* test), 13-14, A-20 2-PropZint (two-proportion z confidence interval), 13-21, A-202-PropZTest (two-proportion z test), 13-15, A-20 P>Rx(, P>Ry((polar-to-rectangular conversions), 2-24, A-21 Pt-Change(, 8-15, A-20 Pt-Off(, 8-15, A-20 Pt-On(, 8-14, A-20

- P (continued) -

PV (present value variable), 14-4, 14-14
p-value, 13-28
PwrReg (power regression), 12-27, A-20
Pxl-Change(, 8-16, A-21
Pxl-Off(, 8-16, A-21
Pxl-On(, 8-16, A-21
pxl-Test(, 8-16, A-21
P/Y (number-of-payment-periods-peryear variable), 14-4, 14-14

- Q -

QuadReg (quadratic regression), 12-25, A-21 QuartReg (quartic regression), 12-26 Quick Zoom, 3-19, A-21

- R -

r (radian notation), 2-24, A-34 r (correlation coefficient), 12-23 r², R² (coefficients of determination), 12-23Radian angle mode, 1-11, 2-24, A-21 radian notation (r), 2-24, A-34 rand (random number), 2-20, A-21 randBin((random binomial), 2-22, A-21randint((random integer), 2-22, A-22 randM((random matrix), 10-13, A-22 randNorm((random Normal), 2-22, A-22random seed, 2-20, 2-22 **RCL** (recall), 1-15, 11-9 re^θi (polar complex mode), 1-12, 2-16, A-22 Real mode, 1-12, A-22 real((real part), 2-18, A-22 RecallGDB, 8-20, A-22 RecallPic, 8-18, A-22 ▶Rect (to rectangular), 2-19, A-22 rectangular form, complex numbers, 2-17 **RectGC** (rectangular graphing coordinates), 3-13, A-22 recursive sequences, 6-6 ref((row-echelon form), 10-15, A-22

- R (continued) -

RegEQ (regression equation variable), 12-22, 12-29 regression model automatic regression equation, 12-22automatic residual list feature, 12-22diagnostics display mode, 12-23 models, 12-25 relational operations, 2-25, 10-11 Repeat, 16-11, A-23 RESET menu, 18-5 resetting defaults, 18-6 memory, 5, 18-5 residual list (RESID), 12-22 Return, 16-15, A-23 root $(^{x}\sqrt{}), 2-6, A-35$ root of a function, 3-26 round(, 2-13, 10-10, A-23 row+(, 10-16, A-23 *row(, 10-16, A-23 *row+(, 10-16, A-23 rowSwap(, 10-16, A-23 R>Pr(, R>P0((rectangular-to-polar conversions), 2-24, A-23 rref((reduced-row-echelon form), 10-15, A-23

- S -

2-SampFTest (two-sample F-Test), 13-23, A-24 **2-SampTint** (two-sample *t* confidence interval), 13-19, A-24 **2-SampTTest** (two-sample *t* test), 13-13, A-24, A-25 2-SampZint (two-sample z confidence interval), 13-18, A-25 2-SampZTest (two-sample z test), 13-12, A-25 **Scatter** plot type (, *12-31* Sci (scientific notation mode), 1-10, A-25scientific notation, 1-7,1-10 screen modes, 1-12 second cursor (2nd), 1-5 second key (2nd), 3

- S (continued) -

seconds DMS notation ("), 2-23 Select(, 11-12, A-25 selecting data points from a plot, 11-13 functions from the home screen or a program, 3-8 functions in the Y= editor, 3-7items from menus, 4 stat plots from the Y= editor, 3-7Send((send to CBL 2/CBL or CBR), 16-21, A-26 sending. See transmitting Seq (sequence graphing mode), 1-11, A-26seq((sequence), 11-12, A-26 sequence graphing axes format, 6-8 CALC (calculate menu), 6-10 defining and displaying, 6-3evaluating, 6-10 free-moving cursor, 6-9 graph format, 6-8 graph styles, 6-4 moving the cursor to a value, 6-9nonrecursive sequences, 6-5 phase plots, 6-13 recursive sequences, 6-6 setting sequence mode, 6-3selecting and deselecting, 6-4TI-83 versus TI-82 table, 6-15 tracing, 6-9 web plots, 6-11 window variables, 6-7Y = editor, 6-4ZOOM (zoom menu), 6-10 Sequential (graphing order mode), 1-12, A-26 service information, B-12 setting display contrast, 1-3 graph styles, 3-9 graph styles from a program, 3-10 modes, 1-9 modes from a program, 1-9 split-screen modes, 9-3 split-screen modes from a program, 9-6tables from a program, 7-3

- S (continued) -

SetUpEditor, 12-21, A-26 shade above (*) graph style, 3-9 shade below (L) graph style, 3-10 Shade(, 8-9, A-26 Shadey²(, 13-36, A-26 ShadeF(, 13-36, A-27 ShadeNorm(, 13-35, A-27 Shade_t(, 13-36, A-27 shading graph areas, 3-10, 8-10 Simul (simultaneous graphing order mode), 1-12, A-27 sin((sine), 2-3, A-27 sin⁻¹((arcsine), 2-3, A-27 sine (sin(), 2-3, A-27 sine regression formula, A-50 sinh((hyperbolic sine), 15-10, A-27 sinh⁻¹((hyperbolic arcsine), 15-10, A-27 SinReg (sinusoidal regression), 12-27, A-28 Smart Graph, 3-15 solve(, 2-12, A-28 Solver, 2-8 solving for variables in the equation solver, 2-10, 2-11 SortA((sort ascending), 11-10, 12-20, A-28 SortD((sort descending), 11-10, 12-20, A-28 split-screen modes G-T (graph-table) mode, 9-5 Horiz (horizontal) mode, 9-4 setting, 9-3, 9-6 split-screen values, 8-12, 8-16, 9-6 square (2), 2-3, A-36 square root $(\sqrt{1}), 2-3, A-37$ STAT CALC menu, 12-24 STAT EDIT menu, 12-20 stat list editor attaching formulas to list names, 12-14clearing elements from lists, 12-12 creating list names, 12-12 detaching formulas from list names, 12-16 displaying, 12-10 edit-elements context, 12-18

Index-12

- S (continued) -

stat list editor (continued) editing elements of formulagenerated lists, 12-16 editing list elements, 12-13 enter-names context, 12-19 entering list names, 12-11 formula-generated list names, 12-15 removing lists, 12-12 restoring list names L1-L6, 12-12, 12-21 switching contexts, 12-17 view-elements context, 12-18 view-names context, 12-19 STAT PLOTS menu. 12-34 stat tests and confidence intervals ANOVA((one-way analysis of variance), 13-25 χ^2 -Test (chi-square test), 13-22 LinRegTTest (linear regression t test), 13-24 1-PropZInt (one-proportion z confidence interval), 13-20 1-PropZTest (one-proportion z test), 13-142-PropZInt (two-proportion z confidence interval), 13-21 2-PropZTest (two-proportion z test), 13-152-SampFTest (two-sample F-Test), 13-232-SampTint (two-sample t confidence interval), 13-19 2-SampTTest (two-sample t test), 13-132-SampZint (two-sample z confidence interval), 13-18 2-SampZTest (two-sample z test), 13-12**Tinterval** (one-sample *t* confidence interval), 13-17 **T-Test** (one-sample *t* test), *13-11* Zinterval (one-sample z confidence interval), 13-16 **Z-Test** (one-sample *z* test), *13-10* Stats input option, 13-6, 13-7 STAT TESTS menu, 13-9 statistical distribution functions. See distribution functions

- S (continued) -

statistical plotting, 12-31 Boxplot (regular box plot), 12-33 defining, 12-34 from a program, 12-37 Histogram, 12-32 ModBoxplot (modified box plot), 12-32NormProbPlot (normal probability plot), 12-33 Scatter, 12-31 tracing, 12-36 turning on/off stat plots, 3-7, 12-35 viewing window, 12-36 xyLine, 12-31 statistical variables table, 12-29 stdDev((standard deviation), 11-18, A-28 Stop, 16-15, A-28 Store (*>*), *1-14*, *A-28* StoreGDB, 8-19, A-28 StorePic, 8-17, A-29 storing graph databases (GDBs), 8-19 graph pictures, 8-17 variable values, 1-14 String>Equ((string-to-equation conversions), 15-8, A-29 strings, 15-3 to 15-9 concatenation (+), 15-6, A-38converting, 15-7, 15-8 defined, 15-3 displaying contents, 15-5 entering, 15-3 functions in CATALOG, 15-6 indicator ("), 15-3 length (length(), 15-8, A-13 storing, 15-5 variables, 15-4 student-t distribution probability (tcdf(), 13-31, A-29 probability density function (tpdf(), 13-30, A-30 sub((substring), 15-9, A-29 subroutines, 16-15, 16-22 subtraction (-), 2-3, A-38 sum((summation), 11-18, A-29 system variables, A-49

- T -

TABLE SETUP screen, 7-3 tables, 7-1 to 7-6 description, 7-5 variables, 7-3 to 7-5 tan((tangent), 2-3, A-29 tan⁻¹((arctangent), 2-3, A-29 tangent (tan(), 2-3, A-29 Tangent((draw line), 8-8, A-29 tangent lines, drawing, 8-8 tanh((hyperbolic tangent), 15-10, A-29 tanh⁻¹((hyperbolic arctangent), 15-10, A-29 Δ **Tbl** (table step variable), 7-3 TblStart (table start variable), 7-3 tcdf((student-t distribution probability), 13-31, A-29 technical support, B-12 TEST (relational menu), 2-25 TEST LOGIC (Boolean menu), 2-26 Text(instruction, 8-12, 9-6, A-29 placing on a graph, 8-12 Then, 16-9, A-11 thick (\mathbb{N}) graph style, 3-9 **TI-82** link differences, 19-9 transmitting to/from, 19-4, 19-8, 19-9**TI-83** features, 17, 18 keyboard, 2, 3key code diagram, 16-20 Link. See linking menu map, A-39 TI-GRAPH LINK, 19-3 Time axes format, 6-8, A-30 time value of money (TVM)calculating, 14-6 C/Y variable (number of compounding periods per year), 14 - 14formulas, A-54 **FV** variable (future value), 14-14 I% variable (annual interest rate), 14-14

- T (continued) -

time value of money (continued) N variable (number of payment periods), 14-14 PMT variable (payment amount), 14-14 PV variable (present value), 14-14 **P/Y** variable (number of payment periods per year), 14-14 tvm FV (future value), 14-7, A-31 tvm_l% (interest rate), 14-7, A-31 tvm N (# payment periods), 14-7, A-31 tvm_Pmt (payment amount), 14-6, A-31 tvm_PV (present value), 14-7, A-31 TVM Solver, 14-4 variables, 14-14 **Tinterval** (one-sample *t* confidence interval), 13-17, A-30 **tpdf(** (student-*t* distribution probability density function), 13-30, A-30 TRACE cursor, 3-18 entering numbers during, 3-19, 4-8, 5-6, 6-9expression display, 3-14, 3-18 Trace instruction in a program, 3-19, A-30transmitting error conditions, 19-6 from a TI-82 to a TI-83, 19-9 items to another unit, 19-6 lists to a TI-82, 19-4, 19-8 stopping, 19-6 to an additional TI-83, 19-7 ^T(transpose matrix), 10-12, A-34 transpose matrix (^T), 10-12, A-34 trigonometric functions, 2-3 T-Test (one-sample t test), 13-11, A-30

- T (continued) -

turning on and off axes, 3-14 calculator, 1-2 coordinates, 3-14 expressions, 3-14 functions, 3-7 grid, 3-14 labels, 3-14 pixels, 8-16 points, 8-14 stat plots, 3-7, 12-35 tvm FV (future value), 14-7, A-31 tvm 1% (interest rate), 14-7, A-31 tvm N (# payment periods), 14-7, A-31 tvm_Pmt (payment amount), 14-6, A-31 tvm PV (present value), 14-7, A-31 two-proportion z confidence interval (2-PropZInt), 13-21, A-20 two-proportion *z* test (2-PropZTest), 13-15, A-20 two-sample F-Test formula, A-52 two-sample t test formula, A-53 two-variable statistics (2-Var Stats), 12-25, A-31

- U -

u sequence function, 6-3 user variables, A-49 uv/uvAxes (axes format), 6-8, A-31 uw/uwAxes (axes format), 6-8, A-31

- V -

v sequence function, 6-3
1-Var Stats (one-variable statistics), 12-25, A-31
2-Var Stats (two-variable statistics), 12-25, A-31
value operation on a graph, 3-25

- V (continued) -

variables complex, 1-13 displaying and storing values, 1-14 equation solver, 2-10 graph databases, 1-13 graph pictures, 1-13 independent/dependent, 7-5 list, 1-13, 11-3 matrix, 1-13, 10-3 real, 1-13 recalling values, 1-15 solver editor, 2-9 statistical, 12-29 string, 15-4, 15-5 test and interval output, 13-28 types, 1-13 user and system, 1-13, A-49 VARS and Y-VARS menus, 1-21 variance((variance of a list), 11-18, A-31 variance of a list (variance(), 11-18, A-31 VARS menu GDB, 1-21 Picture, 1-21 Statistics, 1-21 String, 1-21 Table. 1-21 Window, 1-21 Zoom. 1-21 Vertical (draw line), 8-6, A-31 viewing window, 3-11 vw/uvAxes (axes format), 6-8

- W -

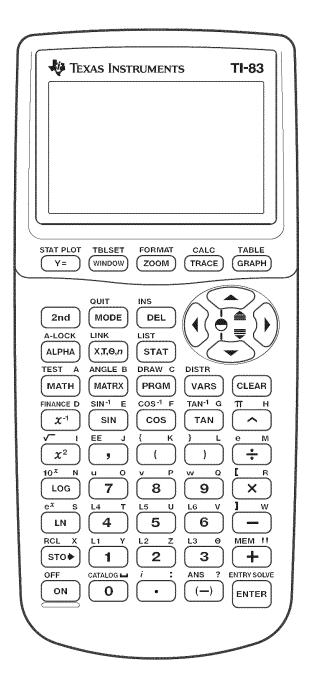
w sequence function, 6-3
warranty information, *B-13*Web (axes format), 6-8, *A-31*web plots, sequence graphing, 6-11
While, 16-11, *A-32*window variables

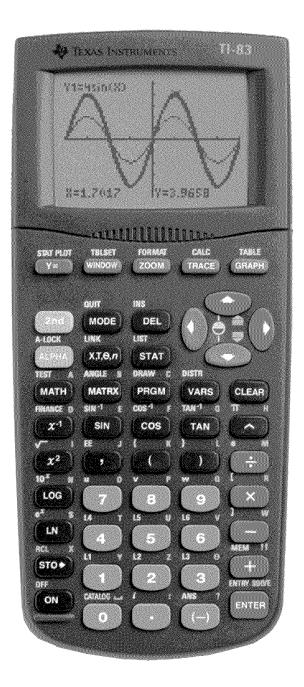
function graphing, 3-11
parametric graphing, 4-5
polar graphing, 5-4
sequence graphing, 6-7

- X -

XFact zoom factor, 3-24 x-intercept of a root, 3-26 **xor** (Boolean) exclusive or operator, 2-26, A-32 xth root ($^{N}\sqrt{}$), 2-6 **xyLine** ($\stackrel{L}{\sim}$) plot type, 12-31 Δ X window variable, 3-12

- Y -


YFact zoom factor, *3-24* Y= editor function graphing, *3-5* parametric graphing, *4-4* polar graphing, *5-3* sequence graphing, *6-4* Y-VARS menu Function, *1-21* Parametric, *1-21* Polar, *1-21* On/Off, *1-21* ∆Y window variable, *3-12*


- Z -

ZBox, 3-20, A-32 **ZDecimal**, *3-21*, *A-32* **zero** operation on a graph, 3-26 ZInteger, 3-22, A-32 Zinterval (one-sample z confidence interval), 13-16, A-32 zoom. 3-20 to 3-24 cursor. 3-20 factors, 3-24 function graphing, 3-20 parametric graphing, 4-8 polar graphing, 5-6 sequence graphing, 6-10 ZoomFit (zoom to fit function), 3-22, A-33 Zoom in (zoom in), 3-21, A-32 ZOOM menu, 3-20 ZOOM MEMORY menu. 3-23 **Zoom Out** (zoom out), 3-21, A-32 ZoomRcl (recall stored window), 3-23, A-33 ZoomStat (statistics zoom), 3-22, A-33

- Z (continued) -

ZoomSto (store zoom window), 3-23, A-33
ZPrevious (use previous window), 3-23, A-33
ZSquare (set square pixels), 3-21, A-33
ZStandard (use standard window), 3-22, A-33
Z-Test (one-sample z test), 13-10, A-34
ZTrig (trigonometric window), 3-22, A-34

