VHF/FM AIRBORNE TRANSCEIVER MODEL TFM-30

Installation and Operating Instructions

Til Document No. 98RE244 Rev. N/C Issue 1

JANUARY 1999

Technisonic Industries Limited

CAUTION

This unit contains static sensitive devices. Wear a grounded wrist strap and/or conductive gloves when handling printed circuit boards.

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communcations. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Warning:

Changes or modifications not expressly approved by Technisonic Industries could void the user's authority to operate the equipment.

WARRANTY INFORMATION

The Model TFM-30, VHF/FM Transceiver is under warranty for one year from date of purchase. Failed units caused by defective parts, or workmanship should be returned to:

Technisonic Industries Limited 250 Watline Avenue Mississauga, Ontario L4Z 1P4 Technisonic Industries Limited 3840 E. Robinson Road, Suite 214 Amherst, New York 14228

Tei: (905) 890-2113 Fax: (905) 890-5338

Tel: (716) 691-0669

TABLE OF CONTENTS

Paragraph	Title	
SECTION	<u>.</u> Pag	je
OLOTION	1 GENERAL DESCRIPTION	
1.1	Introduce:	
1.2	Introduction	
1.3	Description	1
1.4	Purpose of Equipment	1
1.5	Model Variation	1
7.0	Technical Summary	1
		?
SECTION 2	OPERATING INSTRUCTIONS	
2.1	Onessie - E	
2.2	Operating Features	
2.3	Operating Instructions	
2.4	Programming Instructions	
2.5	Scanning Function	
2.6	Scanning Function	
	Direct Frequency Entry Mode	
2.7	Heceive Frequency Simpley Function 2-5	
2.8	Keyboard Lockout Function 2-6	
2.9	Variable Frequency Mode Supplier 2-6	
2.10	LED Display Variable Dimming Manual 2-6	
2.11	90 Second Transmitter Time Out Fam. 2-6	
2.12	Quick Guard Programming Eggs. 2-6	
2.13	Programming CTCSS Topics 2-6	
2.14	Programming CTCSS Tones	
	PC Memory/Programming Download Capability	
SECTION 3	INSTALLATION INSTRUCTIONS	
3.1		
3.1 3.2	General	
3.3	Equipment Packing Log	
	Transceiver Installation 3-1	
3.4	Transceiver Installation	
3.5	Antenna Installation	
3.6	Installation - Pin Locations and Con-	
3.7	Wiring Instructions - 15 Pip D Commodifies	
3.7.1	Main Power + 28VDC	
3.7.2	Main Ground	
3.7.3	PIT (Ground Keying)	
3.7.4	Front Panel Back Lighting	
3.7.5	Audio Outputs (600 and 4 Ohms)	
3.7.6	Audio Output Ground	
3.7.7	Audio Output Ground	
3.7.8	Mic Signal Input	
3.7.9	Memory Up/Memory Down	
3.8	Data Input	
3.9	Wiring Instructions - 9 Pin D Connector	
3.10	Internal Programming and Guard Enable/Disable Jumper	
3.11	Transmitter Microphone Level Adjustment 3-9	
3.12	Transmitter Microphone Level Adjustment	
3.13	Transmitter Sidetone Level Adjustment	
	Main and Guard Squelch Adjustment	
3.15	Transmitter Deviation Adjustment	
	Guard Receiver Audio Limit Feature	

LIST OF TABLES

Table No.	Title	Page
3-1	15-Pin D Connections	3-3
3-2	9-Pin D Connections	3-3
3-3	ATU Band Select Truth Table	

LIST OF ILLUSTRATIONS

Figure No.	Title	Page
2-1	Operator's Switches and Controls - TFM-30	2-2
2-2	TFM-30 Transceiver PC Up/Download Cable - Wiring Diagram	
3-1	Outline Drawing for TFM-30 Transceiver	3-2
3-2	Wiring Connections for TFM-30 Transceiver	
3-3	Internal Enable/Disable Jumper and TX High/Low Power Adjust Location	
3-4	Microphone and Sidetone Level, Main and Guard Squelch Adjustment	
3-5	Deviation Adjustment Potentiometer Location	

SECTION 1

GENERAL DESCRIPTION

1.1 INTRODUCTION

This publication provides operating and installation information on the TFM-30 (with version L1 software), Transceiver manufactured by Technisonic Industries Limited. Version L1 software is factory installed in TFM-30's. The unit offers an extended frequency range with selectable channel spacing and is intended for use only by government agencies or contractors thereto, who have obtained licensing for operation in the 30-50 MHz band.

1.2 DESCRIPTION

The TFM-30 Transceiver is a frequency agile, fully synthesized airborne transceiver capable of operating in the 30.000 MHz to 50.000 MHz frequency range in 2.5 KHz increments with either 25 Khz, 20 Khz or 12.5 KHz channel spacing. The Transceiver can operate without restriction on any split frequency pair in the band and also incorporates a two channel synthesized guard receiver.

The TFM-30 Transceiver provides 120 operator accessible memory positions, each of which is capable of storing a transmit frequency, receive frequency, transmit frequency CTCSS tone or DPL code, receive frequency CTCSS tone or DPL code, an alphanumeric identifier for each channel and wideband (25, 20 KHz) or narrowband (12.5 Khz) channel spacing assignment. Operating frequency and other related data are presented on a 48 character, two line LED matrix display. Data entry and function control are performed via a 12 button keypad. Preset channels may also be scrolled and scanned through keypad function activation. Data may also be entered via an MS-DOS based computer with the provided software and optional PC Up/download cable, P/N 943165-2.

1.3 PURPOSE OF EQUIPMENT

The TFM-30 VHF/FM Transceiver is designed to provide secondary airborne communications to facilitate operations which are typically performed in a low altitude environment. The transmitter section of this unit has a minimum of 8 watts and does not exceed 10 watts output power which may be reduced by a front panel switch to 1 watt in order to reduce interference to land based systems.

1.4 MODEL VARIATION

There are four variations of the Model TFM-30 Transceiver. All units offer identical features and performance except for the following differences:

TFM-30, P/N 961082-1

GREEN display and 28 Volt back lighting.

TFM-30, P/N 961082-1 (5V)

GREEN display and 5 Volt back lighting.

TFM-30, P/N 961082-2

RED display and 28 Volt back ligting.

TFM-30, P/N 961082-2 (5V)

RED display and 5 Volt back lighting.

Both P/N's 961082-1 and 961082-2 are always provided with 28 Volt back lighting unless a specific request is made for 5 Volt AC operation.

1.5 TECHNICAL CHARACTERISTICS

Specification

GENERAL	<u>enaracteristic</u>			
Model Designation:	TFM-30			
Frequency Range:	30.000 to 50.000 MHz			
Tuning Increments:	2.5 KHz			
Operating Mode:	F3E simplex or semi-duplex			
Channel Spacing:	25, 20 or 12.5 KHz			
Physical Dimensions (including heatsink):	Approx. 8.0" X 3.0" X 5.75"			
Weight:	Approx. 3.1 Lbs (1.4 Kg)			
Mounting:	Panel Mount via Dzus fastners			
Operating Temperature Range:	-40°C to +60°C			
Power Requirement: Voltage: Current:	28.0 Vdc, ± 15% Receive - 0.7 A Max. 1 Watt Transmit - 1.5 A Max. 8-10 Watt Transmit - 2.5 A Max.			
Frequency Selection:	120 memories programmed with: a) Tx Frequency/Rx Frequency b) Tx/Rx CTCSS tone or DPL code c) 9 character alpha numeric title			
Guard Receiver:	2 channels programmed with: a) Tx Frequency/Rx Frequency b) Tx CTCSS tone or DPL code c) 9 character alpha numeric title			
CTCSS squelch/encoder:	All CTCSS tones available			
DPL digital squelch/encoder:	All standard DPL codes			
DTMF encoder:	All standard DTMF tones			
Audio Output:	0.5 Watts into 600 ohms			
Speaker Output:	2.5 Watts min. into 4 ohms			
Back Lighting:	28 Volts (standard) or 5 Volts (specify)			
Display Colour: DPL is a trademark of Motorola Corporation	Green (standard) or Red (specify)			

Characteristic

1.5 **TECHNICAL CHARACTERISTICS (continued)**

MAIN RECEIVER

Sensitivity at 12 dB SINAD 0.4 µV nominal

-70 dB Adjacent Channel Selectivity

-90 dB Spurious Attenuation

-70 dB Third Order Intermodulation

-80 dB Image Attenuation

± 6 KHz FM Acceptance

Hum and Noise Better than 50 dB

less than 5% Audio Distortion

less than -70 dBm Antenna Conducted Emission

GUARD RECEIVER

All specifications identical to main receiver

TRANSMITTER

1 watt or 10 watts RF Power Output

50 ohms Output Impedance

±5 KHz(25,20 KHz mode) Maximum Deviation ± 2.5 KHz(12.5KHz mode) (In narrowband mode)

Spurious Attenuation -80 dB below carrier level

Frequency Stability \pm 5 ppm

Microphone Circuit Carbon or equivalent

0.5W (max) into 600Ω Sidetone Output

-60 dB below carrier level Harmonic Attenuation

-40 dB FM Hum And Noise

50 mV at 2.5 KHz into Audio Input

> 200 Ω input circuit for ±3.5KHz deviation, adjst.

Less than 5% Audio Distortion

Specifications are nominal and may be subject to change without notice.

SECTION 2

OPERATING INSTRUCTIONS

2.1 OPERATING FEATURES

The equipment has several important operating features which provide maximum flexibility, performance and versatility. These features include:

- 1. 120 memory positions which can each be programmed with a transmit and receive frequency with 25, 20 or 12.5 KHz channel spacing, Tx/Rx CTCSS tones or DPL codes and a 9-character alphanumeric title.
- 2 guard channels which can each be programmed with a Rx frequency with 25, 20 or 12.5 KHz channel spacing, CTCSS Tx tone or DPL code and a 9-character alphanumeric title.
- 3. Scanning of preprogrammed memories with selective memory scanning, in 5 scan lists.
- 4. Priority scan of memory channel 1, if desired.
- 5. Direct frequency entry mode.
- 6. Receive frequency simplex function.
- 7. Switchable RF output power between 1 watt and 8-10 watts.
- 8. Lockout of keyboard to prevent inadvertent entries.
- Variable frequency mode to manually scan up and down in 2.5 kHz steps.
- 10. LED display variable dimming mode.
- 11. Selectable 90 second Tx time out feature.
- 12. Quick download of any of the 120 memory positions to the guard memories.
- 13. PC Memory Upload or download capability.
- 14. Guard jumper (J15) to en/disable Guard programming.
- 15. Compatibility with industry standard Antenna Tuner Unit.
- 16. Configuration Menu to en/disable various functions as follows:
- Configuration Menu Pressing ENTER, RCL and FUNC together with all 3 switches up while turning the radio on will put it into configuration mode.

The programming features affected are:

- a) DPL Can be turned on or off with th MUP and MDN {4 and 7} keys. This only removes the DPL entry step from the programming sequence and does not stop memories that already have DPL codes from working. This also applies to the rest of the on/off configurable items.
- b) Scan Can be disabled. Selecting FUNC and SCAN will do nothing if Scan is off. The scan list indicator (+) will still display if was previously programmed.
- c) Rx CTCSS Can be turned on or off from the programming sequence. This affects only the CTCSS tones for receive.
- d) **FUNC 7** Can be turned on or off. When off, the main memory channel can not be dumped into one of the guard channels using function 7.
- e) LAST MEM If set to on, the last memory channel on the display will be what comes up when the radio is turned on. If set to off, the last memory that changes were made to will be what comes up when the unit is switched on.
- 2. Guard Jumper Programming of the guard channels can be totally disabled by removing J15. This way, the radio has to be disassembled in order to re-program either of the guard frequencies. This may be required on US Forest Service contracts.

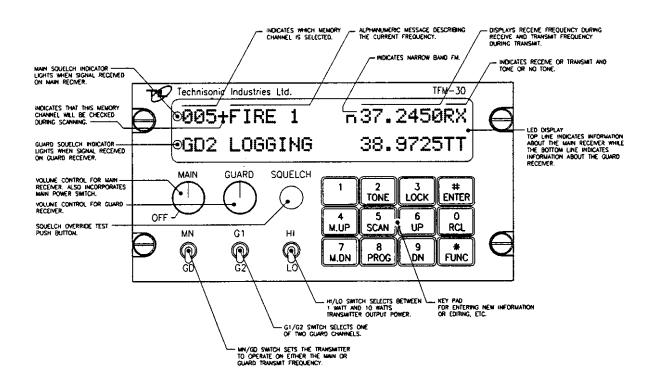


FIGURE 2-1 Operator's Switches and Controls - TFM-30

2.2 OPERATING INSTRUCTIONS (See Figure 2-1)

- Switch power on by turning the main volume clockwise. Depending how the radio is configured, either the last programmed or last displayed frequency will appear on the screen. The transceiver is now in normal operating mode.
- Adjust the audio level by adjusting the main and guard volume knobs.
- Pressing the squelch defeat button will open both receivers to confirm they work.
- 4. Read the display. The top line will indicate which memory is selected followed by a "+" if the memory position is included in a scan list, an alphanumeric message, and the frequency of the main receiver. A small "n" before the frequency indicates 12.5 Khz narrowband channel spacing is in effect on this memory position. In the receive mode, the frequency is followed by an "RT" if a RX CTCSS tone or RX DPL code is programmed, or an "RX" if no Receive tone/code is programmed. Similarily, in the transmit mode either a "TT" or "TX" is shown after the frequency. The bottom line indicates similar information about the guard receiver.
- Only TX CTCSS tones or TX DPL codes may be programmed for the guard receiver.
 At the beginning of each line, an LED indicates open squelch.
- 6. Set the MN/GD switch to main or guard transmit frequency.
- Set the G1/G2 switch to the desired guard channel.
- 8. Set the HI/LO switch to the desired RF output power.
- 9. Select the desired memory by using the M.UP and M.DN buttons, or the RCL button and a three digit number followed by ENTER.
- 10. To transmit DTMF tones, use the keyboard keys while holding the PTT button on the microphone. The keyboard returns to its normal function when the PTT is released.

The display always shows the status of both receivers and the transmitter. The light at the left of the top and bottom line indicates which receiver is receiving. The display also indicates the memory channel in use and the guard channel in use. A "TX" (no TX tone/codes programmed) or "TT"(either TX tone or code programmed) on the right side of the display indicates whether the guard or main channel is active when transmitting. The transmit frequency is also shown. In the receive mode the display shows "RX" beside the receive frequency if no RX tone or DPL code is programmed and "RT" if a CTCSS tone or DPL code is programmed.

When the transceiver is in either of the operating frequency or CTCSS tone/DPL code programming modes and you must respond to a call, click the microphone PTT once (the radio will not transmit during this click). This will cause the transceiver to revert back to the normal operating mode and communications with the caller can proceed in the usual fashion.

The TFM-30 was designed for compatibility with an industry standard Antenna Tuner Unit through the 9 pin connector on the rear panel of the radio. The ATU is enabled during transmit.

2.3 PROGRAMMING INSTRUCTIONS

To program one of the 120 memory channels in the TFM-30:

- 1. Press the **FUNC** key. The display will show the function prompt.
- 2. Press the **PROG** key. The display will show the current receive frequency with a flashing cursor on the second digit (The first digit is always a one <1>).
- 3. Type in the desired receive frequency. If you type in a frequency which is not a 2.5 kHz step, the nearest valid frequency will be automatically selected.
- 4. The cursor will return to the second digit. You can now retype the frequency if you made an error or press **ENTER** to continue.
- 5. The transmit frequency will be displayed with the cursor on the second digit. Follow the same method as in step 3 and 4.
- The channel spacing increment of either 25, 20 or 12.5 KHz is now displayed. Use the M.UP and M.DN keys to select the desired channel spacing for the memory position, then press ENTER.
- 7. The alpha-numeric title is now displayed. Use the M.UP and M.DN keys to scroll through the alphabet, numbers and symbols. When the desired character is displayed, press ENTER to advance to the next character. Press "1" to backspace.
- 8. Keep repeating step six until the last space is set. The display will show SCAN or LOCKOUT to enable this memory position as part of a scan list or lock it out of the scan list. Use the 1,2,3,4,5 and M.DN keys to toggle between these functions (for details see paragraph 2.5). Once the desired condition has been selected, press ENTER. The TFM-30's display will show a "+" beside the memory channel number if scan is enabled.
- 9. The display will now show the current memory number. Type in the 3-digit number of the memory you want to save to (if different from displayed one) and press **ENTER**.
- 10. You now have the option to program the guard frequencies by pressing **FUNC** or press **ENTER** to return to normal operating mode.
- 11. If you pressed **FUNC** to program the guards, guard"1" transmit frequency will be displayed with the flashing cursor on the second digit. Enter the frequencies for guard"1" receive/transmit and guard"2" receive/transmit as in step 3 and 4.
- 12. The alphanumeric labels for guard"1" and guard"2" are entered the same as in step 7 and 8. When the last character is entered, the radio returns to normal operating mode. If the guard is be be programmed for 12.5 KHz narrowband operation, use the QUICK GUARD PROGRAMMING FEATURE described in paragraph 2.12. A memory position must be programmed to the 12.5 KHz mode then the contents can be quickly downloaded to GD1 or GD2 memory positions.

Programming of memory is disabled when the internal entry disable jumper is set. Alternatively any transceiver can be programmed by an IBM PC or compatible computer. See section 2.14 PC Memory/Programming Download Capability.

2.4 PRIORITY SCANNING, SELECTIVE MEMORY CHANNEL SCANNING AND SCAN LISTS

Instead of breaking up the 120 channels into blocks for scanning, the TFM-30 software has 5 scan lists. Any of the 120 channels can be assigned to any one of more of these 5 scan lists. This means the channels do not have to be repeated for them to be in more than one block and that you are not limited to the number of channels that you can scan at once, since all 120 channels can be put into any scan list.

The priority memory channel is always memory position number 1. The priority memory channel is scanned every other step (ie. 121314151...) to ensure that no incoming messages are missed. The priority channel can be locked out, which will result in the normal scanning of the other memory positions.

Selective memory scanning allows the user to select which of the 120 memory channels are to be scanned or locked out when the scan function is invoked. To use this feature, follow the PROGRAMMING INSTRUCTIONS found in paragraph 2.3. Once the screen displays SCAN or LOCKOUT, use the 1,2,3,4,5 or M.DN keys to toggle to the desired condition and press ENTER. Entering the any or all of the numbers 1,2,3,4 or 5 will include that memory channel in any of the five scan lists. In normal operating mode the display will later show a "+" beside the memory channel number if it has been included in any of the 5 scan lists.

2.5 SCANNING FUNCTION (5 second talkback delay)

1. To start scanning of the memory channels, press **FUNC** then **SCAN** and then the number (1,2,3,4,5) of the desired scan list.

The radio will scan through all the preset memory positions in the selected scan list (see above paragraph for priority and selective scan features) and will lock on to the first active channel in the scan sequence. It will remain on the channel until it becomes inactive. Scanning will resume again after five seconds of inactivity. To exit the scan mode, press the **SCAN** key. This will cause the radio to revert back to the normal operating mode.

Therefore if while scanning, you hear a call for you:

- Respond to the call within 5 seconds. When scanning is interrupted by an incoming signal, the channel will remain open for five seconds before resuming scanning.
- 2. During communications the five second timer is reset from the last Rx or Tx signal experienced.

The radio resumes scanning once the Rx or Tx activity has ceased for more than five seconds. The **SCAN** key must be pressed to exit the scan mode.

2.6 DIRECT FREQUENCY ENTRY MODE

This mode is designed to facilitate quick frequency selection during emergency and other operational conditions requiring direct operating frequency selection. This operating mode is disabled along with the programming mode when the internal disable jumper is set.

1. When the transceiver is in the normal operating mode, press **FUNC** and the desired operating frequency ie/ 39.275.

Please note in the above operation, after **FUNC** and "1" are entered, the LED display will show memory channel "000" and then the remaining digits in the desired frequency are shown as they are entered. No alphanumeric message can be entered in this mode. Operation on the new frequency occurs in both transmit and receive (simplex only) modes. If RX or TX CTCSS tones/DPL codes are required they must be programmed in.

2.7 RECEIVE FREQUENCY SIMPLEX FUNCTION

The receive frequency simplex function allows you to quickly change the transmit frequency, when operating on a split pair (repeater/semi-duplex mode), to the receive frequency to allow direct communications. ie/ If you are transmitting on 42.000 MHz and receiving 42.555 MHz, press FUNC then UP to transmit on 42.555 MHz. To return to the split pair condition, you must recall the memory channel again. This is quickly done by pressing M.UP for one step up, then back down one step with the M.DN key.

2.8 KEYBOARD LOCKOUT FUNCTION

The keyboard can be locked out so that accidental pressing of keys does not change frequency, etc., unknowingly to the operator. To lock the keyboard, press FUNC then LOCK. This will disable all keyboard functions (except keyboard unlock) in the receive mode. The DTMF function during transmit will not be affected. To unlock the keyboard, press and hold the LOCK key for two seconds until the display indicates "UNLOCK".

2.9 VARIABLE FREQUENCY MODE FUNCTION

To enter variable frequency mode, press RCL, 0,0,0, then ENTER. The memory channel that you were just in will still be valid but now you can manually adjust the frequency with the M.UP, M.DN, UP and DN keys. The UP and DN keys will make the frequency count up or down in steps of 2.5 kHz. The M.UP and M.DN keys will make the frequency count up or down in steps of 1 MHz. You can not change the label. The frequency in this mode can not be stored in memory. To exit this mode, recall one of the 120 memory channels (ie. RCL, 0,0,1). Variable frequency mode is disabled when the internal entry disable jumper is set.

2.10 LED DISPLAY VARIABLE DIMMING MODE

- 1. With the transceiver in normal operating mode press the **UP** or **DN** keys to increase or decrease the intensity of the LED display.
- 2. Once maximum intensity of the display is acheived, the **UP** key no longer functions. Conversely once minimum intensity is reached, the **DN** key ceases to function.

2.11 90 SECOND TRANSMITTER TIME OUT FEATURE

A selectable 90 second transmitter time out feature is provided to prevent accidental continuous transmission in the event of a faulty PTT switch. With this feature enabled the transceiver will stop transmitting after the PTT is engaged continuously for 90 seconds. The timer is reset by releasing then re-engaging the PTT switch.

Press the **FUNC** then the **M.UP** key. Use the **M.UP** and **M.DN** keys to select 90 SEC, which enables the feature, or NONE which disables it.

2.12 QUICK GUARD PROGRAMMING FEATURE

A quick download of any of the 120 memory positions to either of the guard memory positions can be accomplished. Select the memory position whose contents you desire to download to a guard memory. Select either GD1 or GD2 memory channel as desired. Press FUNC then 7. The guard memory channel will now contain all the same information as the selected memory position. This feature is disabled when guard jumper (J15, pins 1&2) on the MCU board is removed.

2.13 PROGRAMMING CTCSS TONES/DPL CODES

CTCSS tones (PL tones) or Digital DPL codes can be assigned to each memory channel. The guard receiver squelch will operate only on carrier detection, but guard 1 and 2 transmit tones or codes can be programmed. To program a tone/code to a memory channel:

- Use the M.UP and M.DN keys to select the memory channel that you want to assign a CTCSS tone or DPL code.
- 2. Press the **FUNC** key then the **TONE** key. The display will show "RX **TONE**:" and the current tone number, as well as the tone frequency in Hz.
- 3. Use the M.UP and M.DN keys to select the tone number you require. The following is a list of the available CTCSS tones:

Number	<u>Tone</u>	Number	<u>Tone</u>	<u>Number</u>	<u>Tone</u>
01	67.0	26	162.2	51	177.3*
02	71.9	27	167.9	52	183.5*
03	74.4	28	173.8	53	189.9*
04	77.0	29	179.9	54	196.6*
05	79.7	30	186.2	55	199.5*
06	82.5	31	192.8	56	206.5*
07	85.4	32	203.5	57	210.7*
08	88.5	33	33.0*	58	218.1*
09	91.5	34	35.4*	59	225.7*
10	94.8	35	36.6*	60	229.1*
11	97.4	36	37.9*	61	233.6*
12	100.0	37	39.6*	62	241.8*
13	103.5	38	44.4*	63	250.3*
14	107.2	39	47.5*	64	No Tone
15	110.9	40	49.2*	(carrier	squelch only)
16	114.8	41	51.2*	(The tones mar	ked with * are
17	118.8	42	53.0*	nonstandard t	ones).
18	123.0	43	54.9*		
19	127.3	44	56.8*		
20	131.8	45	58.8*		
21	136.5	46	63.0*		
22	141.3	47	69.4*		
23	146.2	48	159.8*		
24	151.4	49	165.5*		
25	156.7	50	171.3*		

- 4. Press ENTER. "TX TONE" appears on the display. Repeat step 3.
- 5. Press ENTER. "G1 TONE" appears on the display. Repeat step 3.

2.13 PROGRAMMING CTCSS TONES/DPL CODES - continued

- Press ENTER. "G2 TONE" appears on the display. Repeat step 3 and press ENTER.
- 7. The display will now show "RX DPL:" and the current 3-digit DPL code. If no DPL code is required "000" should be entered. Please note that if a DPL code is to be programmed a CTCSS tone should not be enabled.
- 8. Use the keypad to enter the required octal 3-digit DPL (Digital Coded Squelch or DCS) code. A list of all usable and unique octal 3-digit DPL/DCS codes follows:

017*	051	116	156	243	266*	346	431	466	612	721
023	053*	122*	162	244	271	351	432	503	624	731
025	054	125	165	245	274*	356*	445	506	627	732
026	065	131	172	246*	306	364	446*	516	631	734
031	071	132	174	251	311	365	452*	523*	632	743
032	072	134	205	252*	315	371	454*	526*	654	754
036*	073	143	212*	255*	325*	411	455*	532	662	
043	074	145*	223	261	331	412	462*	546	664	
047	114	152	225*	263	332*	413	464	565	703	
050*	115	155	226	265	343	423	465	606	712	

^{*} indicates GE Digital Coded Squelch (DCS) Code

- 9. Press ENTER. "TX DPL" appears on the display. Repeat step 8.
- 10. Press ENTER. "G1 DPL" appears on the display. Repeat step 8.
- 11. Press ENTER. "G2 DPL" appears on the display. Repeat step 8 and press ENTER.

2.14 PC MEMORY PROGRAMMING UP/DOWNLOAD CAPABILITY

The TFM-30 transceiver can be programmed by an MS-DOS based personal computer. This is an alternative to programming data manually by the keypad. The programmed information can also be removed from the TFM-30 and stored in a PC. A 3.5" disk containing the required PC up/download software is provided with each TFM-30 transceiver.

Requirements:

- 1. PC compatible computer with any monitor, 3.5" floppy drive and a printer port (LPT1).
- 2. Bench power supply of 12 to 30 volts DC. The TFM-30 requires 28 volts to operate fully (transmit) but can be programmed at voltages as low as 12 volts.
- 3. PC download cable, P/N 943165-2 which can be supplied or made from the wiring diagram at the back of this section. (P/N 943165-1 will only provide download capability, upload will not be possible).

2.14 PC MEMORY/PROGRAMMING DOWNLOAD CAPABILITY - continued

Installation:

- 1. Insert the floppy disk into drive A and type: A:INSTALL <enter>
- 2. All the files will be copied to your hard drive into a directory called \TIL.

Connections:

- 1. With the PC turned off, plug the 25 pin male 'D' connector into its printer port.
- 2. Plug the 15 pin 'D' connector into the back of the TFM-30 transceiver.
- Connect the power wires to the power supply.

Running the program:

- 1. Turn on the power supply and the TFM-30 unit first and then turn on the PC.
- Change to the \TIL directory and type: PCDL30 and <enter>. The main menu will be displayed.

Listing memory channels:

The first channel listed (in blue on colour monitors) is the memory channel that will appear on the display of the TFM-30 unit when it is turned on. The next two channels listed are guard 1 and guard 2. (in red on colour monitors) Only TX CTCSS tones or TX DPL codes are listed for the guards since the TFM-30 unit has a CTCSS tone/DPL code decoder for the main receiver only. The rest of the memory channels displayed (in yellow) are the 120 memories listed in sequence. Either LOCK or SCAN LIST numbers "1,2,3,4,5" are displayed for each memory channel which indicates whether that memory channel will be included in any of the 5 scan lists or locked out. After the scan information, an "N" or blank space will follow to indicate narrowband or wideband mode respectively. After reviewing the multi-page list, you have the option to return to the first page, for further review or to return to the main menu.

Printing Memory Channels:

To print out a listing of the memory channel database, the pc download cable must be removed from the printer port (LPT1) and a printer plugged in. Select 'P' from the main menu. You will be prompted for a title that will appear on the listing. This could be for example the serial number of the radio. Press <enter> and the printing will start. The main menu will appear when printing is complete.

Edit menu:

You can select which memory channel to program, main or guard. When entering memory channel information, if you just press return, the previous information will be retained. For example, you only want to change the receive frequency. Type in the new receive frequency and press return for all of the other prompts. You also will not be able to type in frequencies or information that does not make sense. If the information entered is not what was prompted for, you will be re-prompted for the correct information. For example, if you type in 999.9999 for the transmit frequency you will be prompted again because the frequency range of the TFM-

Edit menu: (continued)

30 product is 30 to 50 MHz. Keep in mind that the label for the memory channel can only have characters that exist on the TFM-30 unit. These include only capital letters, numbers 0 to 9 and a few other characters. Any other character will show up as a blank on the unit's display.

You will then be prompted to enter a receive CTCSS tone, a transmit CTCSS tone, a receive DPL code and a transmit DPL code. Although both CTCSS tones and DPL codes can be programmed simultaneously, this should not be done. Care should also be taken to program the correct DPL code since non-unique (inverted) code numbers will be accepted.

Downloading to the Transceiver:

Select 'D' from the main menu. Follow on screen instructions. The memory channels will be downloaded sequentially to the TFM-30 unit. You will be able to see them on the radio's display as they go by. The download process will take less than one minute. (The data transfer is fast but the nonvolatile memory in the radio needs time to program.) The PC will return to the main menu when the process is complete. The radio will also return to the normal operating mode when done.

Selecting 'O' from the main menu will enable you to download a single memory to the radio. You will be prompted for the originating memory number (in the database), then the destination memory number (in the radio). This makes it possible to place data into radios that have different channel listings and not load a memory on top of one that was still desired. Follow on screen instructions to complete download.

Uploading From the TFM-30:

Uploading from the radio is started by selecting 'U' in the main menu. Follow on screen instructions. The upload should take about 10 seconds depending on the speed of the PC. The previous data base will be replaced by the contents of the radio. If the previous database is still needed, the file 'DATA30' should be copied to another file name in DOS before the upload is attempted.

Files:

The file containing the memory channel list is named 'DATA30' in the \TIL directory. The program will not run if it can not find the 'DATA30' file. To have multiple databases, you can copy the data file to a new name and edit the 'DATA30' file again. To retrieve a database, copy it back to 'DATA30'.

TFM-30 Upload/Download Programming Cable P/N 943165-2 - Wiring Diagram

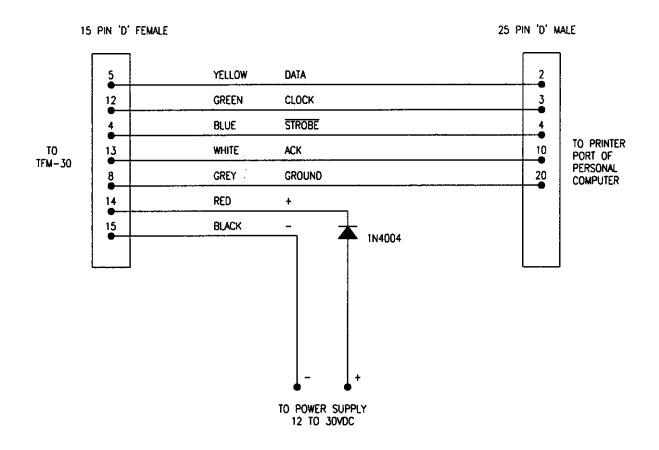


FIGURE 2-2 TFM-30 Transceiver PC Up/Download Cable - wiring diagram

SECTION 3

INSTALLATION INSTRUCTIONS

3.1 GENERAL

This section contains information and instructions for the correct installation of the TFM-30, VHF/FM Transceiver.

Make certain that the correct frequencies are preprogrammed in accordance with the equipment user's valid FCC operator's license, prior to installation.

3.2 EQUIPMENT PACKING LOG

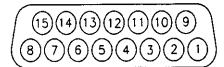
Unpack the equipment and check for any damage that may have occured during transit. Save the original shipping container for returns due to damage or warranty claims. Check that each item on the packing slip has been shipped in the container. Verify that the equipment display and backlighting configuration are the same as those ordered.

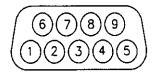
3.3 TRANSCEIVER INSTALLATION

The TFM-30 series Transceivers are designed to be Dzus mounted and should be installed in conjunction with a IN-30 installation kit. See Figure 3-1 for an outline drawing of the unit with dimensions to facilitate the installation.

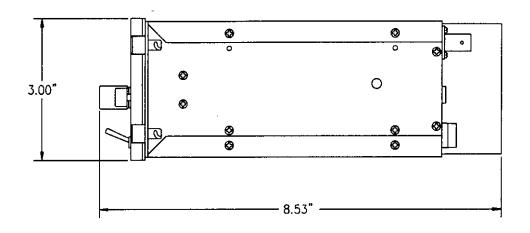
3.4 INSTALLATION KIT - CONTENTS

The IN-30 installation kit consists of:


- 1. One 15 pin (female) and one 9 pin (male) Cannon D mating connector complete with crimp pins and hoods.
- One BNC antenna mating RF connector (male) and hood.


3.5 ANTENNA INSTALLATION

Antenna, P/N ATM-30 may be obtained from Technisonic Industries Limited or a suitable equilvalent may be utilized with the TFM-30 series transceivers. The antenna should be mounted on the bottom of the aircraft whenever possible. Consult with instructions provided with the antenna. Connect RF cable from antenna to the back of the TFM-30 unit by utilizing the BNC mating connector provided in the installation kit.


3.6 INSTALLATION - PIN LOCATIONS AND CONNECTIONS

The pin numbers and locations for the 15 and 9 pin Cannon D connectors located on the rear of the TFM-30 transceiver is shown below. Pin connections are provided in TABLES 3-1 and 3-2.

Transceiver mounted view of 15 and 9 pin connectors

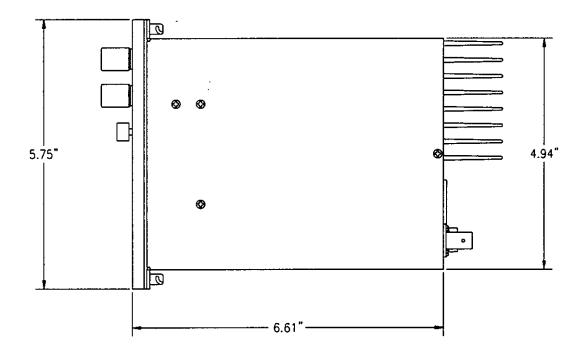


FIGURE 3-1 Outline Drawing for Model TFM-30 Transceiver

TFM-30 Transceiver 15-Pin D Connections				
<u> Pin #</u>	<u>Description</u>			
. 1	600 Ohm Output			
2	Data Output			
3	Panel Lighting (28VDC or 5VAC)			
4	Memory UP/PC Download Input			
15	Memory Down/PC Download Input			
6	Mic Signal Input			
7	Main Power +28VDC			
8	Main Ground			
9	4 ohm Speaker Output			
10	4 ohm/600 ohm Output Ground			
11	Data Input			
12	PC Download Input			
13	PTT (Ground Keying)			
14	Main Power +28VDC			
15	Main Ground			

TABLE 3-1

TFM-30 Transceiver 9-Pin D Connections					
Pin #	Description				
1	10 Mhz. Band Select				
2	8 Mhz. Band Select				
3	4 Mhz. Band Select				
4	40 Mhz. Band Select				
5	Tune Enable				
6	20 Mhz. Band Select				
7	Ground				
8	Spare				
9	+28V Source				

TABLE 3-2

3.7 WIRING INSTRUCTIONS - 15 PIN D CONNECTOR

Figure 3-2 shows all required connections and recommended wire sizes for the TFM-30 Transceiver.

3.7.1 Main Power + 28VDC

The main power ± 28 VDC ($\pm 15\%$) is connected to pins 7 and 14 of the 15 pin D connector on the transceiver. Both pins should be connected.

3.7.2 Main Ground

Ground connections for the transceiver are made on pins 8 and 15. Both pins should be connected.

3.7.3 PTT (Ground Keying)

The PTT line is connected to pin 13 and should be floating when the transceiver is in receive mode, and grounded during transmit mode.

3.7.4 Front Panel Back Lighting

Front panel back lighting connection should be made on pin 3 of the transceiver. The opposite end of this lead should be connected to the panel lighting system of the aircraft. Before connecting, verify the required panel lighting voltage (28 VDC or 5VAC) on the transceiver configuration control label.

3.7.5 Audio Outputs (600 ohms and 4 0hms)

The audio output from pin 9 can be used to drive a 4 ohm speaker up to 2.5 watts. Audio output from pin 1 is 600 ohms, 0.5 watts maximum.

3.7.6 Audio Output Ground

Pin 10 is the ground for both the 4 ohm and 600 ohm audio output signals on pins 9 and 1.

3.7.7 Mic Signal Input

The microphone input signal is to be provided on pin 6, utilizing shielded wire with the shield grounded to pin 10.

3.7.8 Memory Up/Memory Down

Remote scrolling through the 120 memory positions can be achieved by providing a ground to pins 4 (up) and 5 (down) through a momentary contact cyclic switch.

3.7.9 Data Input

Data communications equipment requiring direct access to the modulator and discriminator can be connected via pins 2 and 11. Data cannot be transmitted in CANADA unless equipment is approved for use with the TFM-30 by the communications regulatory authority.

3.8 WIRING INSTRUCTIONS - 9 Pin D CONNECTOR

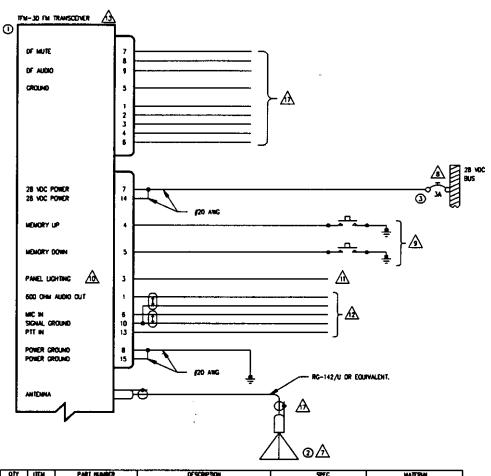
The 9 pin D connector provides the necessary connections to facilitate the use of an external Antenna Tuner Unit (ATU). Table 3-2 lists the signals and connections available from the TFM-30. Refer to the Antenna Tuner instructions for specific wiring.

3.8.1 Power Source

Pin 9 supplies +28 volts and pin 7 provides a power and signal ground to the ATU.

3.8.2 Tune Enable

Pin 5 activates the ATU during transmit. Active High (+28V).


3.8.3 Band Select Outputs

The 30 to 50 Mhz. band is broken up into 6 segments for ATU pre-tuning. The band select outputs, pins 1,2,3,4&6, provide active low BCD signals corresponding to the band segment in use. Refer to Table 3-3.

Band Select Output Truth Table						
Band Segment (MHz)	Pin 3 (4 MHz)	Pin 2 (8 MHz)	Pin 1 (10MHz)	Pin 6 (20 MHz)	Pin 4 (40 MHz)	
30 - 33.9975	1	1	0	0	1	
34 - 37.9975	0	1	0	0	1	
38 - 39.9975	1	0	0	0	1	
40 - 43.9975	1	1	1	1	0	
44 - 47.9975	0	1	1	1	0	
48 - 50	1	0	1	1	0	

^{*} Note * Band Select Outputs are active Low. High (1) = +12v Low (0) = 0v

Table 3-3

UIT	HEM	PART RUMBER	OCZORY TON	5PE G	MATERIAL
	-	TFW-30	WIF /FM COMMUNICATIONS TRANSCEIVER.	TECHNISONIC INDUSTRIES LIMITED	,
		A7-30	ANTONIA	TECHNISONIC INDUSTRIES LIMITED	
1	3	7274-11-3	CIRCUIT BREAKER, 3 AMPS	KLINON	

NOTES:

- 1) ALL WIRE IAW MIL-W-22759 UNLESS OTHERWISE SPECIFIED.
- 2) ALL CABLE IAW MIL-C-27500 UNLESS OTHERWISE SPECIFIED.
- 3) COAXIAL CABLE IAW MIL-C-17 UNLESS OTHERWISE SPECIFIED. DO NOT USE COAX WITH PVC INSULATION.
- 4) FABRICATION & INSTALLATION OF WRING HARNESS IAW AC 43.13-1A CHAPTER 11, SECTION 3, PARA 445 TO 462 AND SECTION 7.
 5) GROUNDING AND BONDING IAW AC 43.13-1A CHAPTER 11, SECTION 3, PARA 452.
- 6) ALL SINGLE WIRE TO BE \$22 AWG MINIMUM AND ALL SHIELDED WIRE TO BE \$24 AWG MINIMUM, UNLESS OTHERWISE SPECIFIED.

/↑ Installation of antenna law ac 43.13–1.4 Chapter 2, Section 3, Chapters 5 & 6, and ac 43.13–2.4 Chapter 3. IF POSSIBLE, THE ANTENNA SHOULD BE LOCATED A MINIMUM OF 12 FT. FROM ARCRAFT NAVIGATION RECEIVER ANTENNAS AND A MINIMUM OF 4 FEET FROM AIRCRAFT COMMUNICATIONS AND ELT ANTENNAS. BE CAREFUL NOT TO CHOOSE SEPARATIONS THAT CLOSELY APROXIMATE 1/4 OR 1/2 OR WHOLE NUMBER MULTIPLES OF THE NAVIGATION OR COMMUNICATIONS SYSTEM WAVELENGTH.

8 AN EQUIVALENT CIRCUIT BREAKER OR FUSE MAY BE USED.

9 THE MEMORY UP/DOWN PUSH BUTTONS ARE OPTIONAL.

 $\frac{\sqrt{10}}{10}$ The TFM-30 is available with 28V or 5V panel lighting. Check the configuration control label for the correct voltage.

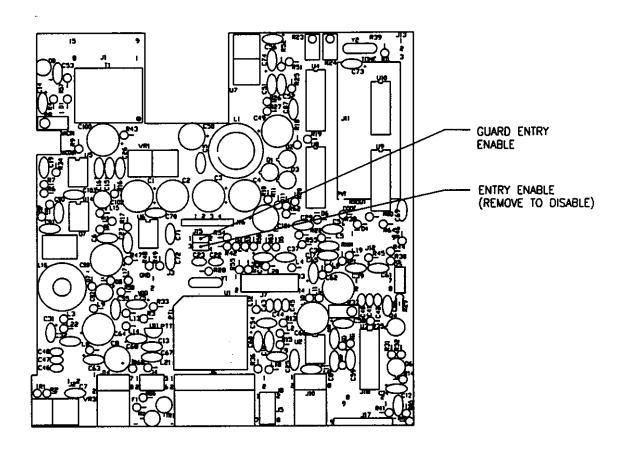
11 CONNECT TO THE APPROPRIATE AIRCRAFT DIMMING BUS.

CONNECT TO THE ARCRAFT AUDIO SYSTEM OR STAND-ALONE HEADSET JACKS.

13 MSTALLATION OF TRANSCEIVER IAW AC 43.13—1A CHAPTER 2, SECTION 3 AND AC 43.13—2A, CHAPTER 2, PR 3 1/2 DZUS RAIL O'R EQUIVALENT MAY BE USED.

- 14) TEST THE SYSTEM IN ACCORDANCE WITH THE POST-INSTALLATION TEST PROCEDURE IN THE INSTALLATION AND OPERATING INSTRUCTIONS MANUAL
- 15) REFER TO THE ARCRAFT STRUCTURAL REPAIR MANUAL AND THE MAINTENANCE MANUAL FOR INSTRUCTIONS AND INFORMATION PERTINENT TO THIS INSTALLATION.
- 16) THE USE OF RED DISPLAYS SHOULD BE MINIMIZED OR AVOIDED SO AS NOT TO DETRACT FROM THE ATTENTION GETTING CHARACTERISTICS NEEDED IN WARRING AND CAUTION ANNUNCIATORS, RED SHOULD BE USED TO ANNUNCIATE EMERGENCY CONDITIONS REQUIRING IMMEDIATE RESPONSE BY THE FLIGHT CREW, UNITS WITH RED DISPLAYS SHOULD NOT BE LOCATED IN CLOSE PROXIMITY TO WARNING AND CAUTION AMMUNCIATORS. THE INSTALLATION OF UNITS WITH RED DISPLAYS MUST BE EVALUATED ON A CASE BY CASE BASIS TO ENSURE THAT THE EFFECTIVENESS OF THE WARNING AND CAUTION ANNUNCIATORS IS NOT ADVERSELY AFFECTED.

17 TO EXTERNAL ANTENNA TUNER WHEN USED. REFER TO TUNER INSTALLATION INSTRUCTIONS.


FIGURE 3-2 Wiring Connections for TFM-30 Transceiver

3.9 INTERNAL PROGRAMMING AND GUARD ENABLE/DISABLE JUMPER

The programming and direct frequency entry modes can be disabled by removing the internal enable/disable jumper strap from pins 2 and 3 of J15. Removal of this jumper will prevent operation on any frequencies other than those programmed in the 120 memory positions and two guard receiver memory positions. Removal of the guard receiver programming enable /disable jumper strap from pins 1 and 2 of J15 will totally disable the operator's ability to re-program the 2 guard receiver channels.

The transceiver is always shipped with the two jumpers in the entry enable positions. To place either of the jumpers in the disable position:

- 1. Remove and retain the seven (7) No. 4-40 screws securing the bottom cover of the transceiver to its chassis.
- 2. Remove and retain the four (4) No. 4-40 screws securing the guard receiver PCB module in the chassis tray. Remove the guard receiver module from the chassis tray.
- 3. Remove and retain the five (5) screws securing the chassis tray to the main chassis. Remove the chassis tray.
- 4. You should now have access to the Microprocessor Control Unit (MCU) PCB Module (See Figure 3-3). Remove the enable/disable jumper from pins 3 and 4 or pins 1 and 2 of J15, as desired.
- 5. Reverse steps 1 through 3 and secure all screws to re-assemble the transceiver.

Microprocessor Control Unit (MCU) PCB Module

Notes: R23 is High Power Adjustment

R24 is Low Power Adjustment

J15 Jumper between pins 3 and 4 for Entry Enable

Remove for Entry Disable

FIGURE 3-3 Internal Enable/Disable Jumper and Transmit High/Low Power Adjust Locations

3.10 TRANSMITTER POWER ADJUSTMENTS

The transmitter power is adjusted to a maximum of 10 watts in high power mode and 1 watt in low power mode over the transceiver operating bandwith at the factory. If transmitter RF power re-adjustment is required, perform as follows:

- Remove bottom cover as described in the previous paragraph (3.8). Access to the two adjustment potentiometers on the Microprocessor Control Unit (MCU) PCB Module is provided by two access holes located at the back of the chassis tray.
- Connect an RF through-line wattmeter to the antenna connector. Set the operating frequency to 40.000 MHz and key the transmitter.
- 3. In low power mode, set the low power adjustment potentiometer R24 to produce 1.0 watt of RF output power (See Figure 3-3).
- 4. In high power mode, set high power adjustment potentiometer R23 to produce 9.5 watts of RF output power.
- Verify that the RF output power is between 9 and 10 watts on 30.000 MHz, 40.000 MHz and 50.000 Mhz.
- 6. Replace bottom cover as described in the previous paragraph (3.8).

3.11 TRANSMITTER MICROPHONE LEVEL ADJUSTMENT

- Set the transceiver operating frequency to 40.000 MHz and connect an appropriate test receiver to the RF output connector. Ensure that the output of the transceiver is terminated into a proper dummy load.
- 2. Key the transmitter and input a -10 dBm (0.25 VRMS), 1 KHz audio signal into the microphone input.
- Adjust the microphone level potentiometer (R8 on MCU module) through the access hole located on the right side of the chassis (see Figure 3-4) to produce a 2.4 KHz deviation.
- 4. Verify that the deviation is at least 2.2 KHz on the following frequencies: 30.000 MHz, 40.000 MHz and 50.000 MHz.

3.12 TRANSMITTER SIDETONE LEVEL ADJUSTMENT

- Set the transceiver operating frequency to 40.000 MHz and connect an appropriate test receiver to the RF output connector. Ensure that the output of the transceiver is terminated into a proper dummy load.
- 2. Key the transmitter and input a -10 dBm (0.25 VRMS), 1 KHz audio signal into the microphone input.
- Adjust the sidetone level potentiometer (R37 on MCU module) through the access hole located on the left side of the chassis (see Figure 3-4) to produce a 0 dBm (0.774 VRMS) 600 ohm audio output.

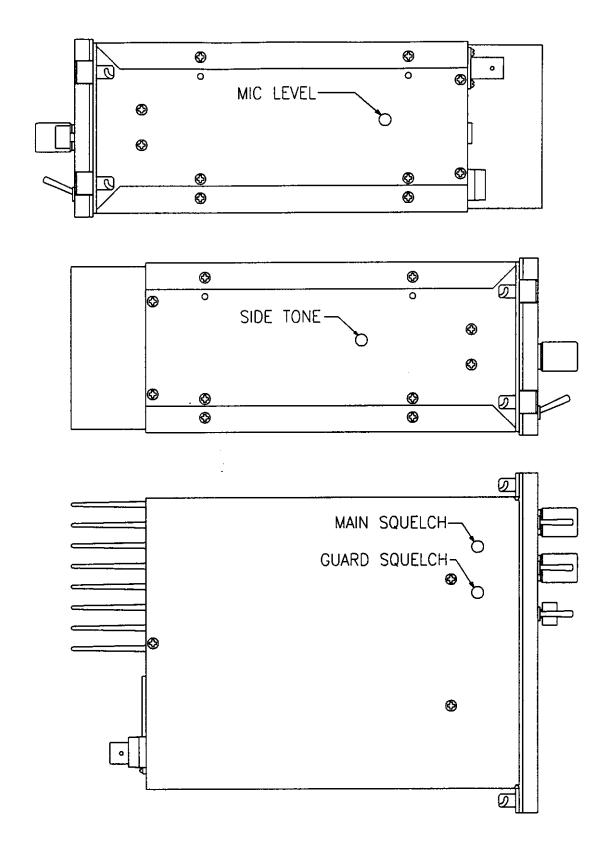
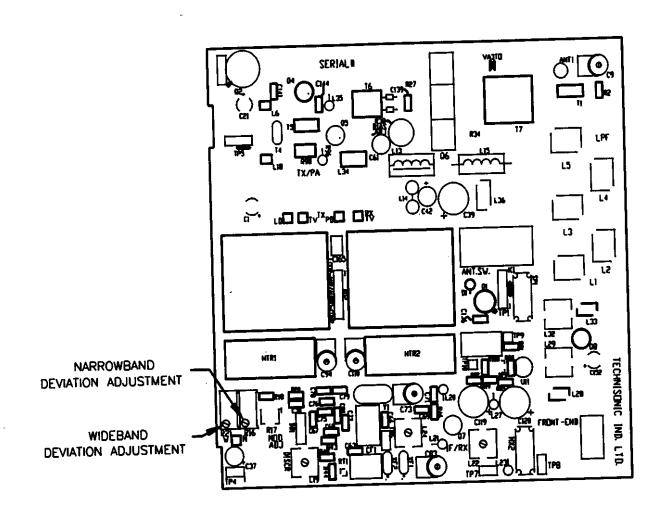


FIGURE 3-4 Microphone and Sidetone Level, Main and Guard Squelch Adjustment Access Holes

3.13 MAIN AND GUARD SQUELCH ADJUSTMENT

The squelch on both the main and guard receivers is factory set to open at approximately 1.0 microvolts. This adjustment can be made or altered to suit local conditions as follows:

- 1. Set the main receiver of the transceiver to 39.500 Mhz. Connect a signal generator to the the antenna input of the transceiver.
- Set the signal generator to produce a ±3 KHz deviation with a 1 KHz tone on 39.500 MHz. Increase the signal generator RF level from 0.1 uV until the squelch indicator LED is on. Verify the receiver SINAD ratio is between 12 and 14 dB.
- 3. If not, re-adjust main receiver squelch potentiometer, R3 through the access hole located on the bottom of the transceiver chassis (see Figure 3-4).
- 4. Repeat the above procedure to adjust the guard receiver squelch setting using guard receiver squelch adjustment potentiometer, R4 (see Figure 3-4).


3.14 TRANSMITTER DEVIATION ADJUSTMENT

- 1. Remove and retain the eight (8) No. 4-40 screws securing the top cover of the transceiver to its chassis. You should now have access to the Main Rx/Tx Module.
- Set the transceiver operating frequency to 40.000 MHz and connect an appropriate test receiver to the RF output connector. Ensure that the output of the transceiver is terminated into a proper dummy load.
- 3. Key the transmitter and input a +13 dBm (3.46 VRMS), 2.5 KHz audio signal into the microphone input.
- 4. Adjust the wideband deviation limit potentimeter, R21 on the main Rx/Tx module (see Figure 3-5) to produce a ±4.25 KHz deviation. Adjust the narrowband deviation limit potentimeter, R16 on the main Rx/Tx module to produce a ±2.1 KHz deviation.
- 5. Verify that the deviation does not exceed ± 5 KHz for wideband and ± 2.5 KHz for narrowband on the following frequencies: 30.000 MHz, 40.000 MHz and 50.000 MHz. Re-adjust R21 or R16 as required, if the deviation exceeds ± 5 KHz or ± 2.5 KHz, respectively.
- Place top cover on transceiver chassis and secure all eight (8) screws.

3.15 GUARD RECEIVER AUDIO LIMIT FEATURE

Upon special request, 1 mW of guard receiver audio bleed with the guard volume control in the fully CCW (OFF) position, can be provided. This feature can be disconnected as follows:

- 1. Remove and retain the seven (7) No. 4-40 screws securing the bottom cover of the transceiver to its chassis.
- 2. Find the jumper located at the bottom of the front panel is connected between the CCW position of the guard audio potentiometer (R2) and ground. Remove this jumper.
- 3. Replace the bottom cover of the transceiver and secure with the seven (7) screws removed in step 1.

Main Receiver/Transmitter PCB Module

Notes: R21 is for 5.0 KHz (wideband) Deviation Adjustment R16 is for 2.5 KHz (narrowband) Deviaton Adjustment

FIGURE 3-5 Deviation Adjustment Potentiometer Location