CC2500EMK Quick Start Guide # Opening the box and using the modules with SmartRF04EB #### 1. Kit Contents 2 x CC2500 Evaluation Modules 2 x Antennas (Pulse W1010, 2 dBi) * Documentation The RF boards in this kit are FCC and IC certified and they are tested to comply with ETSI/R&TTE over temperatures from 0 to +35°C. FCC/IC Regulatory Compliance FCC Part 15 Class A Compliant IC ICES-003 Class A Compliant (*) Picture may deviate! ### 2. How to use the modules The CC2500EM boards can be plugged into several development boards from Texas Instruments. Most notably, you can use the SmartRF04EB, which is included in the CC2500DK. This board lets you run a packet error rate (PER) test, control the device from SmartRF $^{\text{TM}}$ Studio and it can be used as a development platform. The board can also be plugged into the SmartRF TrxEB (included in e.g. CC1120DK and CC1200DK) and the MSP430 Experimenter's Boards. For prototyping with other microcontrollers, plug the EM into the "SoC Battery Board" (www.ti.com/tool/soc-bb). This guide will show how to use the modules together with SmartRF04EB. ## 3. Plug EM into SmartRF04EB Insert a CC2500EM (EM) with an antenna into the SmartRF04EB (EB). Connect the antenna firmly to the SMA connector on the EM. **Caution!** The kit contains ESD sensitive components. Handle with care to prevent permanent damage. ### 4a. Power: Battery There are three different ways of applying power to the EB: The first method involves using an alkaline non-rechargeable battery, either a 9V or a 4xAA battery pack connected to the battery connector on the bottom side of the board **Warning!** To minimize risk of personal injury or property damage, ONLY use alkaline non-rechargeable batteries. Never use rechargeable batteries to power the board. # 4b. Power: DC/External The second method applies DC power using the DC input jack (right in picture, centre is +, sleeve is ground), or by connecting a 4-10V voltage source between the 4-10V and 0V terminals of the power connector (left in picture). It is also possible to connect a 3.3V voltage source between the 3.3V and 0V terminals. The on-board voltage regulators will be bypassed in this case. External Power Supply¹ Requirements: Nom Voltage: 6 VDC Max Current: 800 mA Efficiency Level V # 4c. Power: USB The EB can also be powered from the USB bus. Make sure that the SmartRF™ Studio software is installed before connecting the EB to the PC; otherwise you may experience problems in installing it later due to driver issues. Note that if multiple power sources are connected, the source with the highest voltage will power the EB. This means that you should disconnect any attached battery when using a lab supply or USB power; otherwise the battery will be drained. ### 5. Set Power Switch If a 3.3V source is used as described in 4b above, the switch should be set to the leftmost position. For all other cases, the switch should be set to the rightmost position. This switch can be used to turn off the EB by switching it to the opposite position of that used to turn it on Do not leave the board powered when unattended. ### 6. Packet Error Rate Test When power is applied to the board, the PER test program will start. You should see the text shown above on the LCD display on both evaluation boards. Press the button marked S1 (lower right corner) to continue. # 7. Set Frequency Band Select the desired frequency band of operation by using the joystick. The frequency should match the evaluation module and antenna you are using Note that the value shown in the display is also the selected value. There is no need to press a button to select or activate the selection. ¹ When using an external power supply, make sure it meets the listed requirements in addition to complying with applicable regional product regulatory and safety certification requirements such as UL, CSA, VDE, CCC, and PSE ### 8. Set Network ID Push the joystick down to display the screen shown above. This lets you set the ID of the node in case you need to run several PER tests simultaneously and you have multiple development kits. Leave this set to 1 for now. # 9. Packet Length Push the joystick down to display the screen shown above. This lets you set the length of the packets to be transmitted. The packet length will affect the measured packet error rate. Push the joystick left or right to select the packet length you want to use. ### 10. Number of Packets Push the joystick down to display the screen shown above. This lets you set the number of packets to be transmitted. Set this to the desired value using the joystick. ### 11. Select RF Settings Push the joystick down to display the screen shown above. This lets you select preset RF configurations, including modulation and data rate Preset 0: 2-FSK, 2.4 kBaud Preset 1: 2-FSK, 10 kBaud Preset 2: MSK, 250 kBaud Preset 3: MSK, 500 kBaud ### 12. Select Mode Push the joystick down to display the screen shown above. Use the joystick to select master mode. The EB you have configured now will be the master in the PER test. # 13. Configure 2nd EB Perform steps 3 through 11 on the second EB. Push the joystick down until you get the display shown above. Leave this EB in slave mode. ### 14. Start PER Push the joystick down on both EBs, and the screen shown above is displayed. Push the joystick right on the slave EB first, and then push the joystick right on the master EB. The PER test will start when the two nodes have successfully connected. ## 15. Run PER Test The uppermost line of the LCD will show the PER for packets transmitted from the slave to the master, while the second line will show the PER for packets transmitted from the master to the slave. The PER test will end when the number of packets you selected in step 10 is reached or if 100 consecutive packets are lost. ## 16. References Please visit www.ti.com and http://www.ti.com/tool/cc2500emk Download the CC2500DK User Manual, the SmartRF $^{\text{TM}}$ Studio software, examples, as well as datasheets, reference designs and application notes. You will also find a lot of information on the TI E2E forum at http://e2e.ti.com We hope that you will enjoy working with the CC2500 device. # **SmartRF™ Studio** ### 1. Download and Install Before connecting the EB to your PC, download SmartRF $^{\text{TM}}$ Studio from www.ti.com/smartrfstudio. Install the program and follow the instructions in the wizard. Connect the EB with a CC2500EM to the PC using the USB cable and install the USB driver as described in the manual. # 2. Launch SmartRF Studio Launch SmartRF Studio and double click on the highlighted CC2500 device icon to get complete control of the device from the PC. # 3. Configure the Radio You can now configure the radio, run tests, export register settings and run link tests with another CC2500 on a SmartRF04EB connected to the PC. Web sites: www.ti.com/lprf E2E Forum: www.ti.com/lprf-forum Make sure to subscribe to the Low-Power RF Newsletter to receive information about updates to documentation, new product releases, and more. Sign up on the TI web pages. #### **EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS** Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions: The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. #### REGULATORY COMPLIANCE INFORMATION As noted in the EVM User's Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules. For EVMs **not** subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. #### General Statement for EVMs including a radio User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user's sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization. #### For EVMs annotated as FCC - FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant #### Caution This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. #### FCC Interference Statement for Class A EVM devices This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. #### FCC Interference Statement for Class B EVM devices This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: - · Reorient or relocate the receiving antenna. - Increase the separation between the equipment and receiver. - · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. - Consult the dealer or an experienced radio/TV technician for help. #### For EVMs annotated as IC - INDUSTRY CANADA Compliant This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. #### Concerning EVMs including radio transmitters This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. #### Concerning EVMs including detachable antennas Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l'autorité de l'utilisateur pour actionner l'équipement. #### Concernant les EVMs avec appareils radio Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. #### Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur. #### [Important Notice for Users of EVMs for RF Products in Japan] #### This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product: - Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan, - 2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or - 3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan. Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan #### http://www.tij.co.jp 【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 本開発キットは技術基準適合証明を受けておりません。 本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。 - 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。 - 2. 実験局の免許を取得後ご使用いただく。 - 3. 技術基準適合証明を取得後ご使用いただく。 なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp # EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product. Your Sole Responsibility and Risk. You acknowledge, represent and agree that: - 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes. - 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. - 3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected. - 4. You will take care of proper disposal and recycling of the EVM's electronic components and packing materials. Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs. **Agreement to Defend, Indemnify and Hold Harmless.** You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected. Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated