

Outdoor Gas Heating Units and Duct Furnaces

Packaged Rooftop Unit for Heating, Cooling, Ventilating and Make-Up Air Applications

The Trane rooftop line is a packaged air heating and cooling system, suitable for heating, cooling, ventilating and make- up air applications. Unit sizes range from 800 to 14,000 cfm (0.4-6.6 cu. m/s) with ¹/₂-15 hp motor capabilities. These rooftops are available with inputs from 100,000 Btu/h to 1,200,000 Btu/h (29.3 to 351.4 kW).

Duct furnaces are AGA and CGA certified for safety and performance with a range of 100,000 Btu/h input to 400,000 Btu/h (29.3 to 117.1 kW) input per duct furnace. Packaged units are also ETL and CSA certified for electrical safety in compliance with UL-1995 Standard for HVAC equipment. The rooftop units can be ordered as individual duct furnaces only, heating with evaporative cooling or packaged heating and cooling systems.

The mechanical configuration is determined by selecting one of the nine standard arrangements. Rooftop arrangements are divided into two classifications — standard and high cfm blower types.

The standard blower unit consists of a blower cabinet that houses the dampers, filters and blower in one cabinet. An optional evaporative cooling unit is available on units up to 800 MBh (234.3 kW). Trane recommends the use of 409 stainless steel whenever an evaporative cooling unit is installed upstream of a duct furnace section(s).

The high cfm blower unit utilizes a separate damper/filter cabinet with a "V" bank filter arrangement, a blower cabinet and up to three duct furnaces (1200 MBh) (351.4 kW). An optional cooling coil cabinet is offered on units up to 800 MBh. Trane recommends the use of 409 stainless steel whenever a cooling coil is used upstream of a furnace section(s). Both standard and high cfm blower arrangements may also include a downturn supply air plenum, outside air and/or return air, intake hood and a roof curb.

All units are completely packaged, railmounted, wired, piped, waterproofed and test fired to assure a smooth installation and easy start-up.

Features and Benefits

Furnace types are divided into two classifications - standard temperature rise and high temperature rise with natural and power vented models. All furnaces have optional left or right hand access. Standard temperature rise units have a lower pressure drop across the heat exchanger allowing higher airflow capabilities and an 80 percent efficiency rating with a temperature rise of 20 to 60 F (11 to 33 C). High temperature rise units are configured for higher temperature rise, and have a higher pressure drop across the furnace section of the unit and a 79 percent efficiency rating with a temperature rise of 60 to 90 F (33 to 50 C). The high temperature rise type furnace is not available in California and only available in a single furnace package. The maximum discharge air temperature for all duct furnaces is 150 F (66 C).

In addition to a versatile offering of mechanical features, this new rooftop unit also offers a wide variety of factory installed control options. Control components are located in the main electrical cabinet. The main electrical cabinet is located out of the air stream as part of the blower transition, between the blower cabinet and the first furnace for both standard and high cfm units. The standard electrical control scheme consists of a solid-state fan time delay, two pre-wired relay sockets which are mounted on the unit's main connection board, a solidstate gas ignition system and room or duct thermostats. The units are also equipped with a blower door safety interlock, a 24 VAC circuit breaker, a high temperature limit switch in each furnace section and a reverse airflow switch located in the blower cabinet as standard equipment.

Gas control options range from single stage to six stages of fire, mechanical or electronic modulation and direct digital control (DDC) interface. Air control options offer a similar range of control features from manual dampers to modulating dampers that may include mixed air, dry bulb, pressure sensing, enthalpy control, DDC interface or ASHRAE cycle control arrangements.

The venting is an integral part of the furnace and must not be altered in the field. The rooftop furnaces are equipped with a vent cap which is designed for gravity venting. Air for combustion enters at the base of the vent through a protective grill, and the design of the vent cap is such that the products of combustion are discharged at the upper section of the cap. This cap is shipped in a separate carton. It should be fastened in position and not be altered in any way.

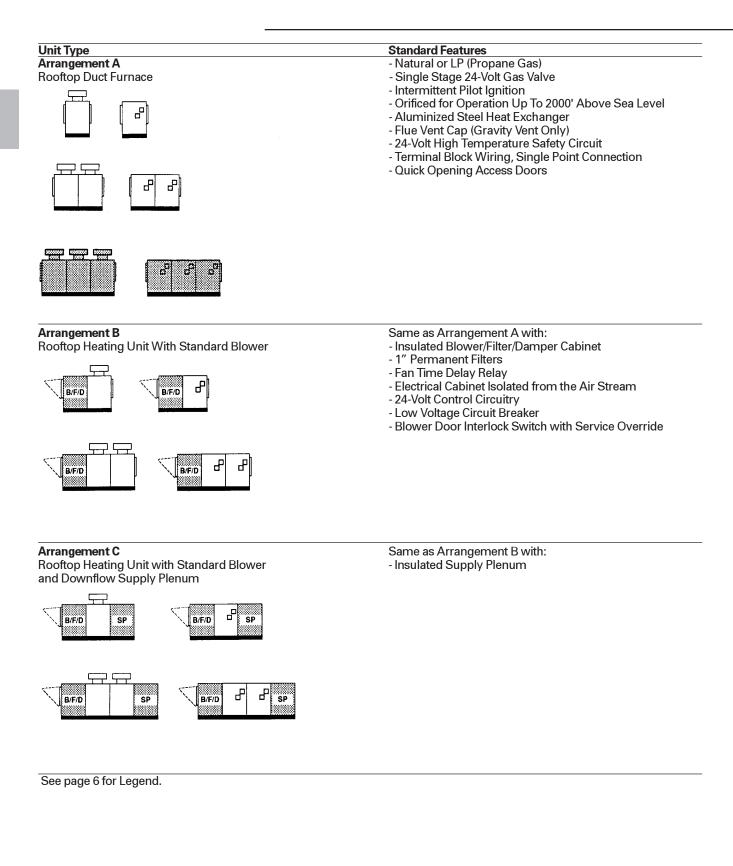
Gravity Venting

Power Venting

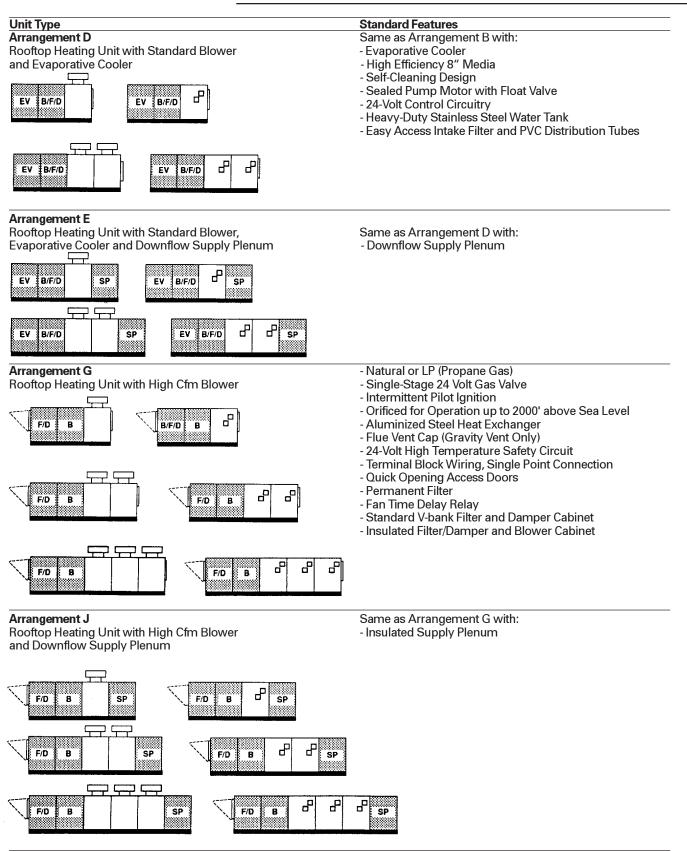
Contents

The proximity of the combustion air inlet to products of combustion discharge is designed to provide trouble-free operation under all types of wind conditions.	 Standard high temperature limit furnace) Standard blower door safety interswitch Standard reverse airflow safety
The power vented unit has a system with the inlet and discharge grill located in the upper section of a split-side panel. This balanced flue design also performs well under virtually all wind conditions.	 Standard 24-volt circuit breaker Standard printed circuit main connection board Wiring harnesses with stamped numbers Solid-state automatic pilot igniti control
Features and Benefits • AGA and CGA Certified Duct Furnaces • ETL and CSA UL-1995 Certified Packaged Units • FM (Factory Mutual) Compliant • Heating Capacities from 100 MBh to 1200 MBh (29.3 kW to 351.4 kW) • Gravity and Power Vented Furnaces • 80% Efficient Standard Temperature Rise Furnace - 20 to 60 F (11 to 33 C) per Furnace • 79% Efficient High Temperature Rise Furnace - 60 to 90 F (33 to 50 C) - single furnace only	control • Solid-state fan time delay • Over 40 standard gas and air co packages

- CFM ranges from 800 to 14,000 CFM (0.4 to 6.6 Cu.m/s)
- Motor sizes up to 15 horsepower
- ODP motors with high efficiency, totally enclosed and two-speed options • Left hand or right hand service access
- Draw-thru coil cabinet with stainless steel drain pan
- Evaporative cooling with standard 8 or optional 12" media (203 or 305 mm)
 Uninsulated or insulated roof curb

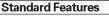

- Standard 18-gauge cabinets
 Standard 20-gauge aluminized steel heat exchanger. Optional stainless steel.
- Standard one-inch washable filters
- Standard single stage combination gas valve

- imit (each
- interlock
- ety switch
- oed wire
- nition
- control


Features and Benefits	2
Unit Configurations	4
Model Number Description	7
General Data	9
Application Considerations	11
Selection Procedure	20
Performance Adjustment Factors	26
Performance Data	26
Electrical Data	42
Controls	43
Dimensional Data	46
Weights	100
Options	102
Features Summary	105
Mechanical Specifications	106

Unit Configurations

Unit Configurations

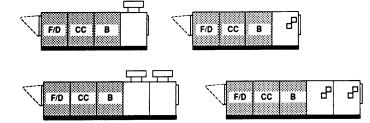

See page 6 for Legend.

Unit Configurations

Unit Type

Arrangement K

Rooftop Heating Unit with High Cfm Blower and Coil Cabinet


Same as Arrangement G with:

- Coil Section
- Mounting for 4 to 6 Row Coils

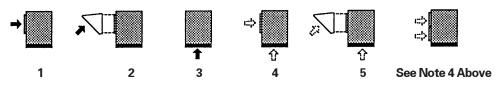
Same as Arrangement K with:

- Insulated Supply Plenum

- Stainless Steel Drain Pan with 3/4" Tapped Outlets

Arrangement L

Rooftop Heating Unit with High Cfm Blower, Coil Cabinet and Downflow Supply Plenum


-SP CC SP F/D CC В F/D В ⊋⊏ ₽ ₽ CC B SP F/D SP F/D CC B

Motors, Air Inlet Configuration/Air Control and Damper Arrangement Must Be Selected for Each Unit

Notes:

- 1. Gravity vent or power vent models available on all unit sizes.
- 2. Optional air inlet hood shown in dotted lines.
- 3. Legend is as follows:
 - B/F/D Standard Blower/Filter/Damper
 - SP Supply Plenum
 - EV Evaporative Cooler
 - F/D Filter/Damper
 - B High cfm Blower
 - CC Coil Cabinet
- 4. Horizontal outside air over return air. Specify air inlet configuration 4 or 5 and then select miscellaneous option "D" for horizontal return.

Air Inlet Configurations (Digit 18 of the Model Number)

Model Number Description

<u>G R A A 40 G D C C 0 N 2 B Q 1 0 2 A 0 ±</u>

1 2 3 4 5,6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Digit 9 — Gas Control Option (Intermittent Pilot Ignition)

- A = Single-Stage
- B = Two-Stage
- C = Hydraulic Modulating (60-100)
- D = Hydraulic Modulating (75-200)
- E = Hydraulic Modulating With Bypass and limit (60-100)
- F = Hydraulic Modulating With Bypass (75-200)
- G = Electronic Modulating With Room T-Stat
- $\label{eq:H} \begin{array}{l} \mathsf{H} = \mathsf{E}\mathsf{lectronic} \ \mathsf{Modulating} \ \mathsf{With} \ \mathsf{Duct} \ \mathsf{T}\text{-}\mathsf{Stat} \\ \mathsf{J} = \mathsf{E}\mathsf{lectronic} \ \mathsf{Modulating} \ \mathsf{With} \ \mathsf{Duct} \ \mathsf{T}\text{-}\mathsf{Stat} \end{array}$
- and Override Room Thermostat K = Electronic Modulating W/External
- 4-20 mA Input (Furnace 1) L = Electronic Modulating W/External
- 4-20 mA Input (All furnaces) M = Electronic Modulating W/External
- 0-10 VDC Input (Furnace 1) N = Electronic Modulating W/External
- 0-10 VDC Input (All furnaces) P = Two-Stage Discharge Air Control w/OA
- Reset.
- R = Three-Stage Discharge Air Control w/OA Reset.
- T = Four-Stage Discharge Air Control w/OA reset.
- U = S-350 2 Stage Modular Electronic Control System
- W= S-350 3 Stage Modular Electronic Control System
- X = S-350 4 Stage Modular Electronic Control System
- Y = S-350 6 Stage Modular Electronic Control System
- S = Special Gas Control

Digit 10, 11 — Design Sequence

DO = Design Sequence

Digit 12 — Fuel Type

- N = Natural Gas
- P = LP (Propane) Gas
- L = Natural Gas with 100% Lockout
- S = Special Fuel type

Digit 13 — Heat Exchanger Material

- 1 = Aluminized Steel
- 2 = #409 Stainless Steel (First Furnace Only)
- 3 = #409 Stainless Steel (All Furnace
 - Sections)
- 4 = #321 Stainless Steel (First Furnace Only)
- 5 = #321 Stainless Steel (All Furnace
- Sections) 6 = #409 Stainless Steel Package (First Furnace Only)
- 7 = #409 Stainless Steel Package (All Furnace Sections)
- 8 = #321 Stainless Steel Package (First Furnace Only)
- 9 = #321 Stainless Steel Package (All Furnace Sections)
- S = Special Heat Exchanger Package

Digit 14 — Rooftop Arrangements

- A = Duct Furnace
- B = Blower (Standard) C = Blower (Standard) Plenum
- Diower (Standard) Fierium
- D = Blower (Standard) Evaporative Cooler E = Blower (Standard) Evaporative Cooler/
- Plenum G = Blower (High CFM) /Plenum
- J = Blower (High CFM) / Plenum
- K = Blower (High CFM) /Coil Cabinet
- L = Blower (High CFM) /Coil Cabinet/
- Plenum
- S = Special Rooftop Arrangement

Digit 15 — Rooftop Heating Unit Motor Selection

- 0 = None (Rooftop duct furnace)
- $A = \frac{1}{2} HP w/contactor$
- $B = \frac{3}{4} HP w/contactor$
- C = 1 HP w/contactor
- $D = 1 \frac{1}{2} HP w/contactor$
- E = 2 HP w/contactor
- F = 3 HP w/contactor
- G = 5 HP w/contactor
- $H = \frac{1}{2} HP w/magnetic starter$
- $J = \frac{3}{4}$ HP w/magnetic starter
- K = 1 HP w/magnetic starter
- L = 1 1/2 HP w/magnetic starter
- N = 2 HP w/magnetic starter
- P = 3 HP w/magnetic starter
- Q = 5 HP w/magnetic starter
- $R = 7 \frac{1}{2} HP w/magnetic starter$
- T = 10 HP w/magnetic starter
- U = 15 HP w/magnetic starter
- S = Special Motor

Digit 16 — Motor Speed

- 0 = No Selection
- 1 = Single Speed ODP 1800 RPM
- 2 = Single Speed TEFC 1800 RPM
- 3 = Single Speed High Efficiency ODP 1800 RPM
- 4 = Single Speed High Efficiency TEFC 1800 RPM
- 5 = 2S1W ODP 1800/900 RPM
- 6 = 2S2W ODP 1800/1200 RPM
- S = Special Motor Speed & Starter

Digit 17 — Coil Options

- 0 = No cooling coil selection
- A = DX coil, 4 Row, Single Circuit
- B = DX coil, 4 Row, Dual Circuit
- C = DX coil, 6 Row, Single Circuit
- D = DX coil, 6 Row, Dual Circuit
- E = Chilled Water Coil, 4 Row,
- G = Chilled Water Coil, 6 Row,
- S = Special coil

Digit 1 — Gas Heating Equipment G = Gas

A = Standard Temp Rise (20-60 F) LH

B = Standard Temp Rise (20-60 F) RH

C = High Temp Rise (60-90 F) LH

D = High Temp Rise (60-90 F) RH

RH = Right Hand

Digit 4 — Development Sequence

Digit 2 — Unit Type

- F = Rooftop Duct Furnace
- R = Rooftop Heating Unit

S = Special Furnace Type Note: LH = Left Hand

A = First Generation

10 = 100 MBh Input

15 = 150 MBh Input

20 = 200 MBh Input

25 = 250 MBh Input

30 = 300 MBh Input

35 = 350 MBh Input

40 = 400 MBh Input

50 = 500 MBh Input

60 = 600 MBh Input

70 = 700 MBh Input

80 = 800 MBh Input

12 = 1200 MBh Input

Digit 7 — Venting Type G = Gravity Venting

Digit 8 — Main Power Supply

S = Special Main Power Supply

Double Furnace

Triple Furnace

SS = Special unit

P = Power Venting

S = Special Venting

A = 115/60/1

B = 208/60/1C = 230/60/1

D = 208/60/3E = 230/60/3

F = 460/60/3

G = 575/60/3

Single Furnace

Digit 5,6 — Input Capacity

S = Special Unit Type
Digit 3 — Furnace Type

Model Number Description

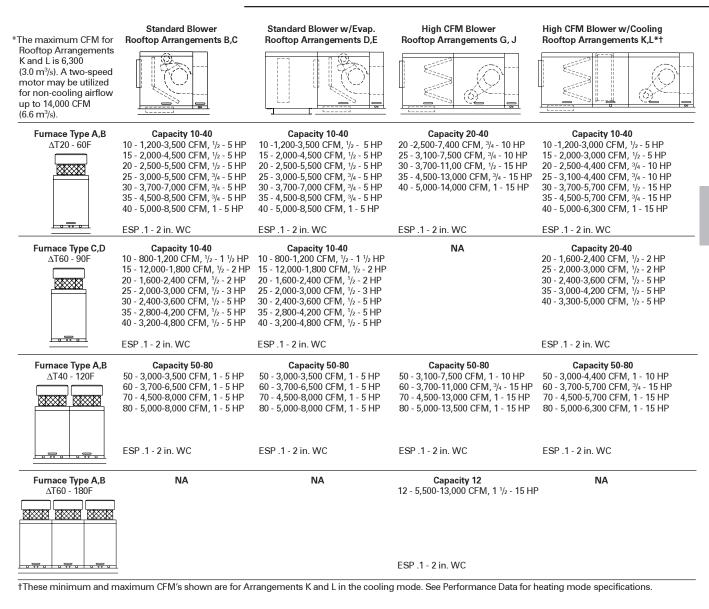
Digit 18 — Air Inlet Configuration

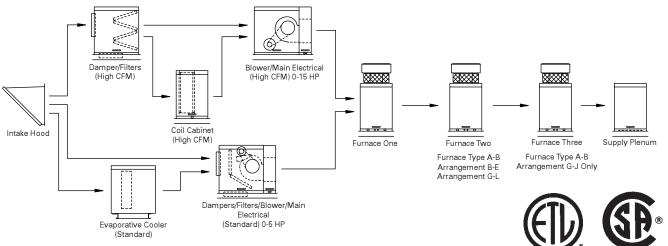
- 0 = None (Rooftop Duct Furnace)
- 1 = Outside Air (OA) (Horizontal Inlet)
- 2 = Outside Air W/Air Hood (Horizontal Inlet
- 3 = Bottom Return Air (RA)
- 4 = Outside And Return Air (OA/RA)
- 5 = Outside and Return Air W/Air Hood
- S = Special Air inlet configuration

Digit 19 — Air Control and Damper Arrangement

- 0 = None (Rooftop Duct Furnace)
- A = Outside Air 2 pos. Motor/SR
- B = Return Air 2 pos. Motor/SR
- C = OA/RA 2 pos SR
- E = OA/RA Mod Mtr W/Mixed Air Control/ Min Pot/SR
- H = OA/RA Mod Mtr W/Mixed Air Control/ SR
- K = OA/RA Mod Mtr W/Min Pot/SR
- M = OA/RA Mod Mtr W/Dry Bulb/Mixed Air Control/Min Pot/SR
- N = OA/RA Mod Mtr W/ Enthalpy Controlled Economizer/SR
- P = OA/RA Mod Mtr W/ Space Pressure Controller
- R = OA/RA Mod Mtr W/ S-350 P Proportional Mixed Air Control/SR
- U = OA/RA Mtr. W/External 0-10 VDC and 4-20 mA Analog Input/SR (External Input)
- W= ASHRAE Cycle I (OA/RA 2 pos. w/ warm-up stat/SR
- X = ASHRAE Cycle II (OA/RA Mod W/Warm-up Stat/Mixed Air/min pot/SR
- Y = ASHRAE Cycle III (OA/RA Mod. W/Warm-up Stat/Mixed Air/SR
- Z = Manual Dampers
- S = Special Air Control and Damper Arrangement

Digit 20


- 0 = Non-California Shipment
- 1 = California Shipment


Digit 21 — Miscellaneous Options

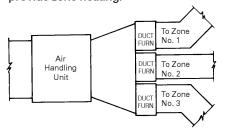
- A = Orifices For Elevation Above 2000 Feet (Specify Elevation)
- B = 12'' Evaporative Media
- C = Moisture Eliminators
- D = Horizontal Return
- E = Continuous Fan Relav
- F = Freezestat
- G = Fan Time Delay Control
- (Duct Furnace Only)
- H = Return Air Firestat
- J = Supply Air Firestat
- K = Manual Blower Switch
- L = 409 Stainless Steel Furnace Drip Pan
- N = Foil Face Insulation
- P = Low Leak Dampers
- Q = Clogged Filter Switch
- R = High/Low Gas Pressure Limit Switches
- T = Status Indicator Lamps (Elec Cabinet)
- V = Manual Reset High Limit Switch
- W= Interlock Relay -24/115V Coil
- SPDT 10A X = Interlock Relay —24/115-230V Coil
- DPDT 10A
- Y = Ambient Lockout

General Data

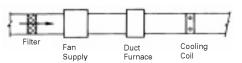
General Data

Table G-1 — Filter Data

Rooftop		Unit	Size	
Arrangement	10,15	20,25,50	30,35,60,70	40,80,12
B-E	(4)16 x 20	(4)20 x 20	(4)16 x 20	(6)20 x 20
			(2)20 x 20	
G-L	(8)16 x 20	(8)20 x 20	(8)16 x 20	(12)20 x 20
			$(4)20 \times 20$	


Table G-2 — Metric Conversion Table

Unless otherwise specified, the following	conversions may be used for calculating SI unit measurements:
1 cubic foot= 0.028 m ³	1 inch water column = 0.029 kPa
1 foot = 0.0305 m	1 gallon = 3.785 L
1 inch = 25.4 mm	1,000 Btu/Cu. Ft. = 37.5 MJ/m3
1 psig = 6.894 kPa	1 liter/second = CFM x 0.472
1 pound = 0.453 kg	1 meter/second = FPM ÷ 196.8
1,000 Btu per hour = 0.293 kW	


General

Outdoor duct furnaces are designed for use in ducted applications with a separate air handling device such as a horizontal blower assembly. By utilizing a separate air source, greater application flexibility in airflow delivery can be obtained. Multiple duct furnaces can be used with an air handling unit to provide zone heating.

Note: When installing duct furnaces in parallel or in series, minimum clearance requirements must be considered. This clearance is required for serviceability. Duct furnaces are approved for blow-thru applications only. Right-hand burner drawers are available for parallel applications. Contact your local Trane representative for more information.

When used in conjunction with filters, cooling coils and an air handler, the duct furnace can become part of a builtup heating and cooling system.

Outdoor heating units are designed for make-up air or space heating applications. These weatherproofed units are intended for roof or slab mounting, saving indoor space and offering easy access for service and maintenance. The units are typically used in ducted applications.

Outdoor units cannot be mounted indoors due to the flue configuration.

Gas Heating Value

The majority of gas heating units are installed in applications where natural gas is readily available. In areas where natural gas is not available, Trane units may be ordered directly from the factory for use on LP (propane) gas.

Gas heat content varies by fuel type and location. The standard gross heating value for natural gas is 1,000 Btuh per cubic foot; for propane it is 2,500 Btuh per cubic foot. Significant variations from these standard values should be taken into account in equipment selections. To account for variations in the gross heating value of the fuel, adjust the total heat input required and select the unit on the basis of the adjusted load using the following formula:

Adjusted load = Calculated load x <u>Standard gross heat value (Btuh/cu ft)</u> Actual gross heat value (Btuh/cu ft)

Low Temperature Rise

Trane recommends against the set-up of a unit which will result in a temperature rise of less than 20 F. With such low temperature rises, the flue gases passing through the heat exchanger are cooled to condensate before reaching the flue outlet. This condensate is corrosive and will result in shortened heat exchanger life.

Air Density

Catalog performance data is based on elevations up to 2,000 feet (610 m) above sea level. Above 2,000 feet (610 m), the unit's heating capacity must be derated four percent for each 1,000 feet above sea level and special orifice selections are required. Table PAF-1 contains correction factors that can be applied to the unit's cataloged heating capacity, fan rpm, and fan bhp to obtain actual values for elevations above 2,000 feet.

Corrosive Atmospheres

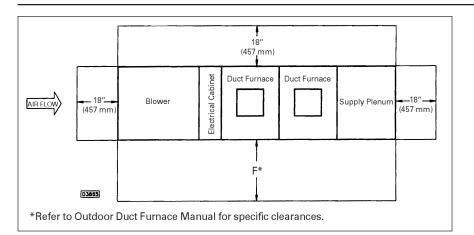
Corrosion of heat exchangers and draft diverters have two basic variables moisture (condensation) and sulphur. These two ingredients form to make sulfuric acid in the combustion process. Condensation occurs commonly in make-up air systems, using large amounts of fresh air, when air temperatures entering the heat exchanger drop to 40 F or below. This reaction can also occur in recirculating systems where some quantity of outside air is introduced upstream of the exchanger. The sulphur will always be present as an integral component of the gas. The resulting concentration of the acid is governed by the amount of sulphur in the gas. This concentration varies from gas to gas and geographically within the same type of gas.

Beyond sulfuric acid corrosion, there is the area of chlorinated or halogenated hydrocarbon vapor corrosion. This type of corrosion occurs when substances are mixed with combustion air that will cause the formation of hydrochloric or hydrofluoric acid when burned. These basic substances are found in degreasers, dry cleaning solvents, glues, cements, paint removers and aerosol propellants. Specific chemicals included in this group are trichloroethylene, perchloroethylene, carbon tetrachloride, methylene chloride, methyl chloroform and refrigerants 11, 12, 21, 22 and 114.

If sufficient PPM content of these corrosives is present, none of the common heat exchanger materials will hold up. The dilemma becomes whether to place the gas heating equipment outside of the area to be conditioned or use equipment in the space which does not burn a fuel such as gas (i.e., electric or hydronic).

Units should not be installed in areas with corrosive or inflammable atmospheres. Locations containing solvents or chlorinated hydrocarbons will produce corrosive acids when coming in contact with burner flames. This reaction will greatly reduce the life of the heat exchanger and may void the warranty. For added protection against heat exchanger corrosion, optional 409 and 321 stainless steel construction is available.

On units using outside air, with entering air temperature below 40 F, condensation of flue gas in the heat exchanger is possible. In these cases, stainless steel heat exchangers are recommended. An optional 409 or 321 stainless steel heat exchanger is recommended whenever there is an evaporative cooler or cooling coil upstream of the furnace section(s).


Careful review of the job application with respect to use, probable contaminants within a conditioned space and the amount of fresh air to be brought in will help to make the proper selection of heat exchanger material. This review will help to eliminate problems before they begin.

Outdoor gas heating products are used in either make-up air or space heating applications (constant volume or variable air volume). These two basic applications are discussed in detail below.

Make-Up Air Applications

Make-up air systems provide outside air for ventilation requirements and replace air removed by an exhaust air system. Typical applications include kitchens, restaurants, manufacturing areas, sports centers, garages and terminals.

Local codes and ordinances frequently specify ventilation requirements for public places and industrial installations. Generally accepted industry practices are given in the ASHRAE Handbook of Fundamentals. Published industrial ventilation codes are usually based on summer ventilation conditions of a work environment and should be reviewed for winter operation. Exhaust requirements should also be examined to establish the year-round make-up air requirement within limitations of codes and regulations. Whenever fresh air will be used and is present at temperatures below 40 F, 409 stainless steel heat exchangers are recommended.

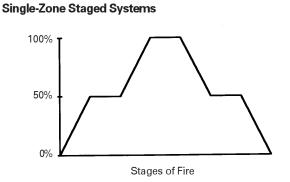
Space Heating Applications — Constant Volume

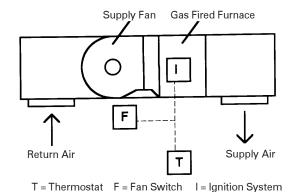
Make-up air units can be used to offset a portion of the building heat losses in addition to supplying make-up air. This is accomplished by heating the makeup air beyond the required space temperature. The additional heat supplied above room temperature can satisfy a portion of the space heating requirement. The additional capacity (Btuh) available for heating can be calculated with the following equation:

Space Heating Capacity =

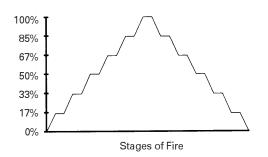
```
1.085 x SCFM Make-up Air x (Max \Delta T - (T_{\rm room} - T_{\rm O.A.}))
```

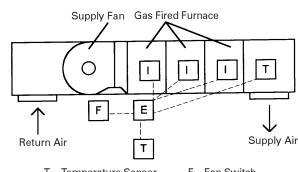
Outdoor units using 100 percent return air or a combination of return and outside air are more efficient in providing space heat than make-up air units using 100 percent outside air at a colder temperature.

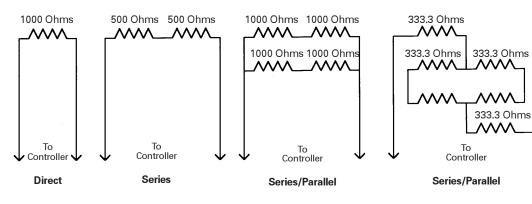

Space Heating Applications — Variable Air Volume


Dual duct VAV systems have one duct to distribute cold air to those spaces that need cooling and another to distribute warm air to those spaces that need heating. When separate fans are used to handle the two duct systems, the ductwork can be arranged to allow simultaneous use of airside economizers and plenum heat of lights. The cooling unit uses return air or cold outside air in order to save compressor energy. The heating unit uses only plenum heated return air. This return air contains the rejected heat from the lights in the building and when recovered through the heating unit, can lower gas heating costs.

In this mode, the dual duct VAV is not unlike water source heat pumps or three deck multizone air handlers, but also has the added savings of variable air volume.

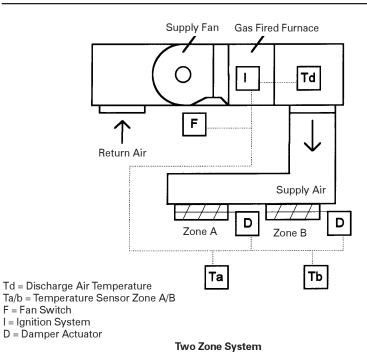

Result — dual duct VAV is an efficient system capable of using economizers and heat recovery devices. Occupant comfort is enhanced because heating and cooling are always available to the perimeter zones.

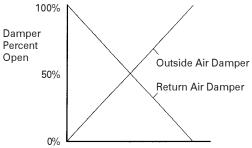

General System Types


Single-zone staged systems can use multistage thermostats or ductstats for control of heating and cooling as well as multi-stage electronic controls. Systems need to be sized with respect to the heated space. Typical staged single-zone heating is achieved with a two-stage thermostat, delivering 50 percent of the units rated input at low fire and 100 percent at high fire. The thermostat is set to the desired space temperature with a differential setting for high and low fire. A fan time delay relay provides fan control with a post warm-up delay period preventing discomfort in the space.

T = Temperature Sensor I = Ignition System F = Fan Switch E = Electronic Control

Electronic controls generally provide more stages of control with a higher degree of precision in temperature sensing and actuation of stages. A sixstage system equipped with an electronic control system can deliver 16 percent of a units input at stage 1 (low fire), 33 percent at stage 2, 50 percent at stage 3, 66 percent at stage 4, 84 percent at stage 5 and 100 percent at stage 6 (high fire).

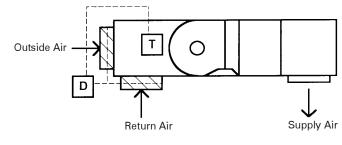



Large areas may incur hot and cold spots due to thermostat location, this can be overcome with electronic controls by incorporating within the

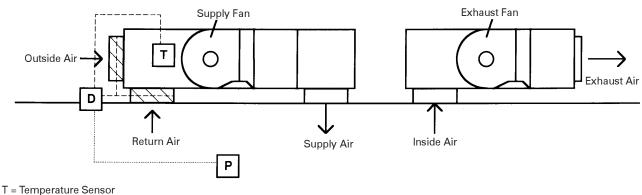
space a scheme of temperature averaging, by locating a number of series or series/paralleled temperature sensors such as thermisters, rtds or prtd type sensors, an average temperature within the space can be transmitted to the control system.

Multizone Staged Systems

Multizone staged systems act on the same basic principals as a single-zone staged system where as each stage is engaged with respect to demand. With multizone systems a thermostat or zone sensor is used for each zone. The system must be sized to maintain comfort levels for all zones. Zone dampers are used for efficient operation of multizone systems. Upon a call for heat from either zone the system will fire at low fire, upon a call from both zones the system will go to high fire. The zone dampers shall open and close upon a call for heat from their respective zone sensors. Typically a discharge air thermostat or sensor is used to maintain supply air temperature in multizone systems.



Outside and Return Air Damper Control


Outside and return air damper control may be included in a staged single or multizone system. Interlocked outside and return air dampers with proportional actuator control, either electronic or electromechanical can maintain a minimum outside air setting and a mixed air setting. Damper control may also include enthalpy or pressure control.

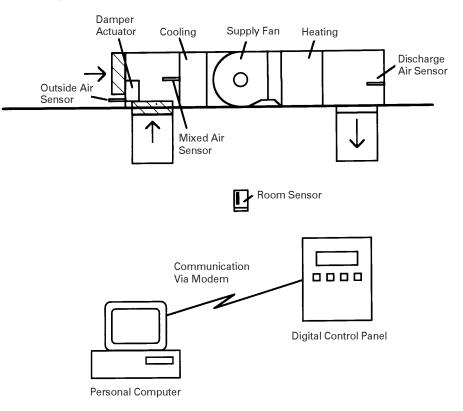
T = Temperature Sensor D = Damper Actuator

Outside and Return Air Damper Arrangement

Make-Up Air Systems

D = Damper Actuator

P = Pressure Sensor


Rooftop Make-Up Air Unit with a Rooftop Exhaust Unit

Outside air is introduced in order to replace or make up for exhausted air due to commercial or industrial processes that require exhausted air within a space. The make up air is heated to a comfortable level relieving any additional load on the space heating system. Make-up air systems may also be configured to supplement space heating by increasing the discharge air temperature beyond the required temperature for the space. This additional heat above space temperature can offset a portion of the buildings heat losses. The additional heating capacity (Btuh) can be calculated as:

Space Heating Capacity = 1.085 x SCFM Make-Up Air x $(Max \Delta T - (T_{ROOM} - T_{OA})).$

Typical applications for make up air may include restaurants, kitchens, public arenas, airport and bus terminals, parking and maintenance garages, manufacturing and process areas. Make-up air and exhaust units may be matched in size and electrically interlocked with 100 percent outside air introduced when the exhaust fan is engaged. The make-up air system may also incorporate outside and return air and modulate the mixture based upon building pressure typically maintaining a slightly positive pressure within the space in order to reduce infiltration. The mixed air arrangement is generally the more efficient method due to the tempering of the outside air, however some applications may require 100 percent outside air due to poor return air quality. The use of 409 or 321 stainless steel heat exchangers is recommended whenever outside air is used.

Direct Digital Control (DDC) Systems

Basic DDC Control System with Heating/Cooling Rooftop Unit

The basic direct digital control (DDC) system uses a microprocessor based controller and software to perform system and building control functions. The controller receives input from sensors mounted within the system. Based upon input data, the controller outputs a programmed response to the system's actuators (gas valves, fan motors and damper motors). Inputs may consist of temperature, pressure or flow and can be analog or digital signals. Output can also be analog or digital; analog output signals are generally 4-20 mA or 0-10 VDC and digital outputs a relay actuation.

The control may be located in the unit or in the building. A personal computer (PC) and software may be provided for remote communication. Temperature setpoints, night setback, time limited cycling, safety interlock input and system override functions may be setup at the controller or by PC interface via modem or direct connection. The controller may store in memory a number of previous cycles of operation with date, time, sensed temperatures, rate of fire and durationof-cycle information available for down loading to a PC for report generation and printout. With digital control, energy use can be easily optimized for economical operation while maintaining comfort levels with a higher degree of accuracy.

Unit Placement

Refer to the applicable Trane Installation, Operation and Maintenance literature for specific installation instructions. Installations must conform with local building codes or, in the absence of local codes, with the National Fuel Gas Code ANSI Z223.1.

Outdoor units are designed and certified for outdoor use only. They may be located on the roof or at any convenient location outside the building to be heated. When locating units on the roof, make certain that it is capable of carrying the additional load of this equipment.

Units are mounted on skids and are suitable for curb or slab mounting. It is recommended that the unit's skids be mounted either on solid planking or steel channels, but not on a soft tar roof where the skids could sink and reduce the clearance between the bottom of the unit and the roof.

Venting

The venting is an integral part of the furnace and must not be altered in the field. The rooftop furnaces are equipped with a vent cap which is designed for gravity venting. Air for combustion enters at the base of the vent through a protective grill, and the design of the vent cap is such that the products of combustion are discharged at the upper section of the cap. This cap is shipped in a separate carton. It should be fastened in position and not be altered in any way.

The proximity of the combustion air inlet to products of combustion discharge is designed to provide trouble-free operation under all types of wind conditions.

The power vented unit has a system with the inlet and discharge grill located in the upper section of a splitside panel. This balanced flue design also performs well under virtually all wind conditions.

FM and IRI Requirements

IRI, which stands for Industrial Risk Insurers, and FM, which stands for Factory Mutual, are both basically insurance companies which insure commercial/industrial firms against a variety of losses. Both publish requirements which must be met by certain equipment operating in the facilities they are preparing to insure.

Listed below is our interpretation of the requirements of both insurers pertaining to heating units only to the extent of features/controls required by IRI and/or FM. There are a number of additional requirements which pertain to electrical service, details of installation, etc., and we urge you to obtain copies of the publications pertaining to these details if you are involved in a job where IRI or FM adherence has been indicated. The requirements detailed herein are our interpretations of the latest publications in our possession and we must disclaim any responsibility for errors due to our interpretation and/or lack of any updated revision of these standards. Our intent is to provide you with an understanding of the application of these standards and how we believe our indirect-fired gas heating equipment applies.

IRI Requirements

1

All input sizes require 100 percent shutoff. This requires that any natural gas unit, equipped with intermittent pilot ignition, must employ a "lockout" type ignition system which will shut off pilot gas if the pilot fails to light at any time. This system is required by AGA on LP gas units as standard equipment. However, for natural gas units, you will need to specify fuel type "L" Natural Gas with 100 percent lockout. **2**

All units require AGA certification or UL "listed" controls. Our units are AGA certified and meet this requirement. **3**

Models with inputs of 150,000 to 400,000 Btuh (43.9-117.1 kW) require "mechanical exhaust" and a "safety interlock." For our units this means a power vented unit.

FM Requirements

All units must be AGA certified or UL listed. Our units are AGA certified. **2**

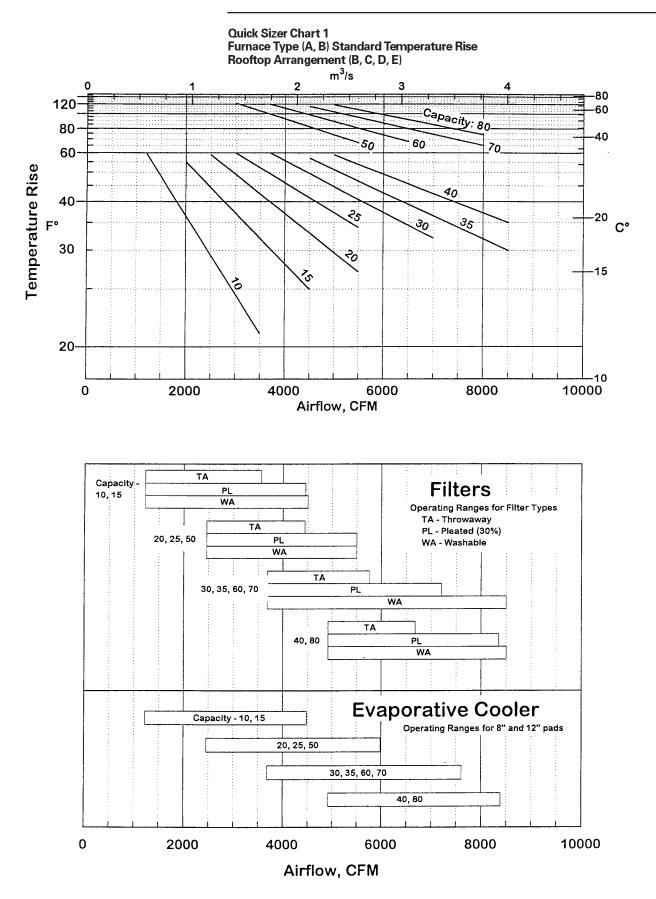
The high limit control must be in a circuit, the voltage of which does not exceed 120 VAC. All of our high limits would meet this requirement.

The specific requirement for an "IRI or FM gas train," while it applies to direct and indirect-fired gas heating equipment as well as oil-fired, comes into play only with units having an input in excess of 400,000 Btuh (117.1 kW). This may be one of the reasons why the majority of gas heating equipment manufacturers (indirectfired) limit their largest individual furnace to 400,000 Btuh (117.1 kW).

Minimum/Maximum Gas Inlet Pressures

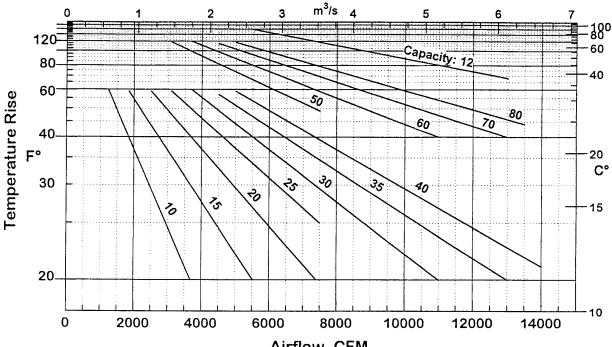
Gas valves are suitable to a maximum inlet pressure of 0.5 psi (14 inches water column) on natural gas. If the main gas supply pressure is greater than 14 inches WC (3.5 kPa), a step down pressure regulator must be field installed ahead of the gas valve. Minimum inlet pressure for natural gas units is 6 $\frac{1}{2}$ inches W.C (1.6 kPa).

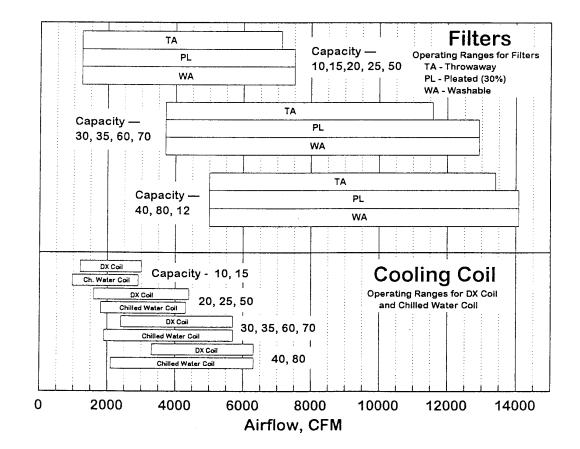
For LP (propane) gas, the minimum inlet pressure is $11 \frac{1}{2}$ inches WC (2.9 kPa) and the maximum inlet pressure is 14.0 inches WC (3.5 kPa).

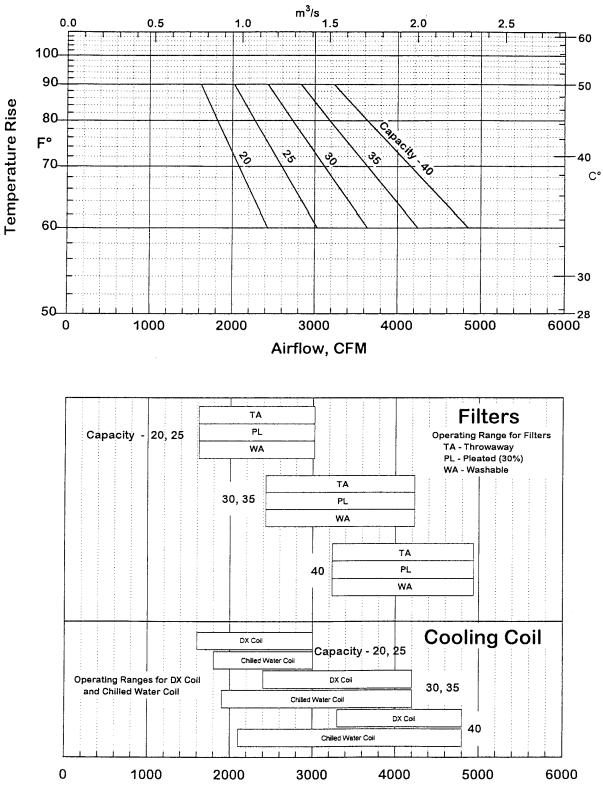

High Pressure Regulators — Natural Gas Only


The Trane gas heating products contained in this catalog are designed to operate at a pressure of 3.5-inch WC (0.9 kPa) (water column) when firing on natural gas. This is the "manifold" pressure or that which is present at the burner orifices. All five and six-function valves provide a built-in pressure regulator which is capable of reducing "supply" pressures from a maximum of 14-inch WC (3.5 kPa) (1/2 psi) down to 3.5-inch WC (0.9 kPa) on the leaving side of the valve. The valve typically "drops" about 1 1/2-inch so the minimum supply pressure is 5-inch WC.

Whenever supply pressures exceed 14-inch WC (3.5 kPa), a high pressure regulator should be selected. We supply an Equimeter regulator which is fitted with pressure springs and capacity orificing to meet the requirements of each specific job. In order to select the proper spring/orifice combination, we need to know what the supply pressure is on that particular job and the input size of the unit being ordered. More than one unit can be run from one regulator; however, we recommend that each unit have its own regulator. We require that the "job" supply pressure be included on all jobs requiring high pressure regulators along with the unit size. The table that follows displays the regulator's range as it pertains to inlet pressure and MBh. NA requires the customer to contact a local utility or an industrial supply house.


These devices are **not available** from Trane for LP gas. LP accessories must be secured from the gas supplier or industrial supply house.




Quick Sizer Chart 3 Furnace Type (A, B) Low Temperature Rise Rooftop Arrangement (G, J, K, L)

Airflow, CFM

Quick Sizer Chart 4 Furnace Type (C, D) High Temperature Rise Rooftop Arrangement (G, J, K, L)

Airflow, CFM

Step 1

To properly select a unit, two of the three following items must be known: temperature rise (TR) required, cubic feet per minute of air delivery (cfm) required and output (Btu/h out) required. From any two of these items the third item can be determined, as well as the input (Btu/h In) required by using the following:

TR = BTU/H Out ÷ (1.085 x CFM)

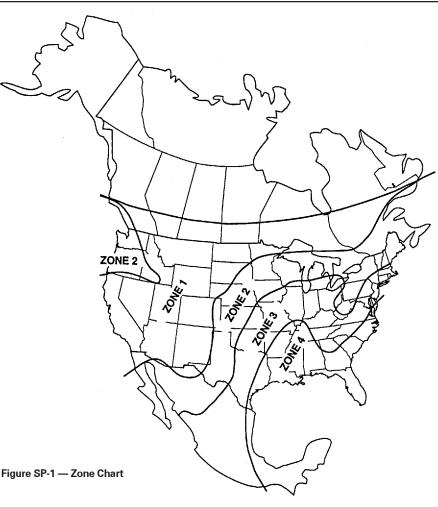
 $CFM = BTU/H \div (1.085 \times TR)$

BTU/H Out = (CFM x 1.085) x TR BTU/H In = BTU/H Out ÷ Efficiency .80 or .79

(The value 1.085 represents a constant.)

With any two of the three required values, match these requirements to a unit with the nearest input (Btu/h), temperature rise (TR) and airflow (cfm) capabilities keeping in mind that:

BTU/H Out = BTU/H In x Efficiency


Refer to the "Packaged Rooftop Arrangement Reference," page 9, to match a capacity range (Btu/h), air delivery (cfm) and temperature rise (TR) with a rooftop arrangement.

The top portion of Quick Sizer Charts 1, 2, 3 and 4 allows the use of temperature rise and cfm to determine capacity, or temperature rise and capacity to determine cfm, or capacity and cfm to determine temperature rise. Follow the top chart down to the corresponding filter and cooling range for the selection.

Step 2

Once capacity, temperature rise and cfm have been determined, go to the accessory pressure losses table for the arrangement and calculate pressure losses for unit accessories. Add the losses for filters, plenums, dampers, rainhood with screen or moisture eliminators, evaporative cooler or cooling coil and losses due to ductwork to determine the total esp.

Step 3A — 2000 ft. Altitude and Below Refer to the performance table for the selection and determine rpm and bhp for the total external static pressure (esp). Go to the table row that most closely matches unit capacity, temperature rise and cfm, follow the row out to the column that equals the total esp for rpm and bhp values.

Step 3B — Above 2000 ft. Altitude

To correct for altitude, go to Table PAF-1, Correction Factors for Altitude. From this table, determine the correction factor from temperature and altitude for the system. Correct the esp from ductwork to actual esp for altitude, then add sp from accessories as shown below. Refer to the performance table for the selected unit. Go to the row that most closely matches unit capacity, temperature rise and cfm, and follow the row out to the column that equals the corrected actual esp for rpm and bhp values. The bhp value can now be corrected to actual bhp for altitude as shown below.

Actual ESP = Duct ESP x Factor + Access. SP

Actual BHP = Cat. BHP ÷ Factor

Corrected BTUH Input = Catalog BTUH Input ÷ Factor

Corrected BTUH Output = Corrected BTUH Input x Efficiency

Performance

Evaporative cooling is most commonly used in areas where the relative humidity is low and the dry bulb temperatures are high. However, cooling through evaporation can be used in most areas.

Evaporative cooling is best utilized whenever the wet bulb depression (difference between dry and wet bulb temperature) is a minimum of 15 F.

The efficiency of the evaporative cooler is determined by a variety of factors: geographical location, application, air change requirements, sufficient water supply, airflow and maintenance. In most instances, efficiency is expected to be between 77 percent and 88 percent. Heat gains in the distribution system will affect the final output temperature.

Note: For SI metric conversion, see Table G-2 on page 10.

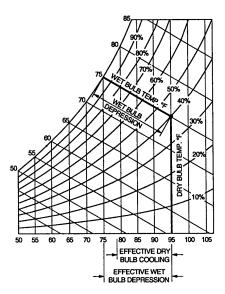


Figure SP-2 — Psychrometrics Chart

Use the psychrometric chart (shown in Figure SP-2) or actual humidity temperature readings to estimate the leaving dry bulb temperature at the outlet of the evaporative cooler.

Example:

Entering Dry Bulb: 95 F Entering Wet Bulb: 75 F Wet Bulb Depression (95 F - 75 F) = 20 F

- Effective Wet Bulb Depression
- (20 F x .85) = 17 F
- Leaving Dry Bulb Temperature
- (95 F 17 F) = 78 F
- Leaving Wet Bulb = Entering Wet Bulb = 75 F

Selection Method

The easiest method for selecting an evaporative cooler is to first determine the required number of air changes per minute.

Using Figure SP-1, choose the geographical zone in which the unit is to be installed. **2**

Determine the internal load within the structure:

Normal Load: structures with normal people loads, and without high internal heat gains.

High Load: Structures with high equipment loads (i.e. factories, laundromats, beauty salons, restaurant kitchens, etc.), and structures with high occupancy (night clubs, arenas, etc.). 3

Determine whether the structure has normal or high heat gains. **Normal Gain:** Structures that have insulated roofs or are in shaded areas. Structures that have two or more stories or facing directions with no sun. **High Gain:** Structures that have uninsulated roofs, unshaded areas, or rooms that are exposed to sun. **4**

Using Table SP-1, determine the required air changes per minute based on zone selection and the type of heat load.

5

Finally, determine the air quantity for the space chosen, by calculating the volume (L \times W \times H). Multiply this volume by the air changes per minute.

Example:

Structure Dimensions: $25 L \times 24 W \times 10 H = 6000 Ft^3$ Exterior Load Type: Normal Interior Load Type: Normal Location: Dallas, Texas — Zone 3 Air Changes Per Minute: ³/₄ Evaporative Cooler Requirements: $6000 Ft^3 \times ^{3}/_{4}$ Air Change/Minute = 4500 CFM Required See the evaporative cooler performance chart for unit size that would best apply.

Table SP-1 — Air Changes Per Minute

		Zo	ne	
Type Heat Load	1	2	3	4
High Load/High Gain	3/4	1	1 1/з	2
High Load/Normal Gain	1/2	3/4	1	1 ¹ / ₃
Normal Load/High Gain	1/2	3/4	1	1 1/3
Normal Load/Normal Gain	1/2	1/2	3/4	1

Cooling Coils

Cooling coils are used in air handling systems to cool and dehumidify an air stream for comfort purposes. To reduce the cooling load in buildings, most applications recirculate a large percentage of the air. Usually recirculated air is 75 to 80 percent of the airflow with the remainder being outside fresh air. Some codes require 100 percent outside air, particularly for hospitals and schools. Also many engineers specify higher percentages of outside air to meet the requirements of ASHRAE Standard 62-1989 "Ventilation for Acceptable Indoor Air Quality."

1

In order to select the least expensive coil to meet the specific performance criteria, the following information is required:

- Unit size
- Airflow in SCFM or ACFM and altitude (see "Fan Selection at Altitude")
- Entering air dry bulb and wet bulb temperatures based on ratio of outside to return air.
- Cooling load MBh (1000's Btu/h) or leaving air wet bulb.

2

For chilled water coils, the following additional information is required.

- Fluid type: water, ethylene glycol, propylene glycol and percent of mixture.
- Entering fluid temperature F
- Leaving fluid temperature F or rate of flow GPM.

Chilled water catalog tables are based on:

45 F entering water temperature Entering air temperature of 80 F DB/67 F WB. Data is certified in accordance with ARI Standard 410. For other than these conditions, please consult the factory

3

For DX (refrigerant) coils the following additional information is required: - Refrigerant type

- Suction temperature F
- Liquid temperature F
- Type of circuiting desired
- Hot gas bypass required?
- DX catalog tables are based on: 45 F suction temperature Entering air temperature of 80 F DB/ 67 F WB
- R-22 refrigerant

100 F liquid temperature Data is certified in accordance with ARI Standard 410. For other than these conditions, please consult the factory.

4

When specifying a coil, one of the most important pieces of information is the airflow in SCFM. As stated in the "Fan Selection at Altitude" section, SCFM means Standard CFM or air at a density of 0.075 lb./cu. ft. A fan must be selected using ACFM or ACTUAL CFM. A cooling coil or heating coil must be selected using SCFM. Up to an altitude of approximately 1,500 feet above sea level, very little error would be introduced in the selection of a cooling coil. For altitudes above 1,500 feet above sea level, the coil must be selected using SCFM. The relationship between ACFM and SCFM is shown by the following equation:

SCFM = ACFM x (Actual Density $\div 0.075$)

The term "0.075 ÷ Actual Density" is referred to as the density correction factor, herein called the "Factor." This factor can be found in Table PAF-1. The previous equation can then be rewritten as:

SCFM = (ACFM ÷ Factor)

Example: A cooling coil must be selected at 5,000 ft. altitude. The unit delivers 10,000 ACFM. What is the SCFM? At 5,000 ft. altitude, the factor from Table PAF-1 is 1.20, therefore:

SCFM = 10,000 ACFM ÷ 1.20 = 8.333 SCFM

5

The entering air temperatures, both wet bulb and dry bulb, must also be considered when selecting a coil. A majority of units usually use recirculated air with a percentage of outside air. The cooling coil must be selected using the mixed air temperature entering the coil.

The following example shows how to calculate the mixed air temperature:

25 percent outside air at 95 F DB/ 75 F WB

75 percent recirculated air at 78 F DB/ 67 F WB

The mixed dry bulb is simply the proportional value between the outside and recirculated dry bulb temperatures.

.25 x 95 + .75 x 78 = 82.3 F

The mixed wet bulb temperatures must be calculated using either the humidity ratio from a psychrometric chart or from Table SP-2, The enthalpy of saturated air at various wet bulb temperatures.

Using Table SP-2, the enthalpy of the outside air at 75 F WB is 38.62 Btu/lb. and the recirculated air at 67 F WB is 31.63 Btu/lb., the mixed enthalpy is:

.25 x 38.62 + .75 x 31.63 = 33.38 Btu/lb.

Using this value in Table SP-2, the interpolated wet bulb temperature is 69.1 F.

So the final mixed temperatures are:

82.3 F DB/69.1 F WB

Table SP-2 — Enthalpy of Saturated Air at Various Wet Bulb

	Temperatures											
			DTU									
Wet	BTU	Wet	BTU									
Bulb	per	Bulb	Per									
Temp.	Pound	Temp.	Pound									
50	20.38	65	30.05									
50.5	20.64	65.5	30.44									
51	20.90	66	30.83									
51.5	21.17	66.5	31.23									
52	21.45	67	31.63									
52.5	21.73	67.5	32.03									
53	22.01	68	32.44									
53.5	22.29	68.5	32.86									
54	22.59	69	33.27									
54.5	22.88	69.5	33.70									
55	23.18	70	34.12									
55.5	23.48	70.5	34.55									
56	23.79	71	34.99									
56.5	24.10	71.5	35.42									
57	24.42	72	35.87									
57.5	24.74	72.5	36.31									
58	25.06	73	36.77									
58.5	25.39	73.5	37.22									
59	25.73	74	37.68									
59.5	26.06	74.5	38.15									
60	26.40	75	38.61									
60.5	26.75	75.5	39.09									
61	27.10	76	39.56									
61.5	27.45	76.5	40.04									
62	27.81	77	40.53									
62.5	28.17	77.5	41.02									
63	28.54	78	41.51									
63.5	28.91	78.5	42.01									
64	29.29	79	42.51									
64.5	29.67	79.5	43.02									

Performance Adjustment Factors

Table PAF-1 — Correction Factors for Altitude

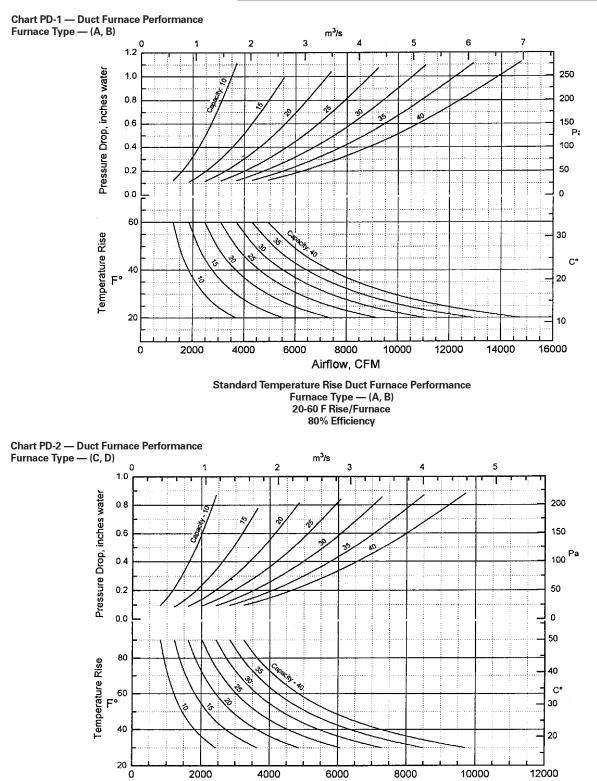
		Altitude (Feet)												
	0'	500'	1000′	1500'	2000'	2500'	3000′	3500'	4000'	4500'	5000'	5500'	6000'	
Temp.					Bar	ometric	Pressu	re (In. ⊦	lg)					
F	39.92	29.38	28.86	28.33	27.82	27.31	26.82	26.32	25.84	25.36	24.9	24.43	29.98	
-40	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.92	0.93	0.95	0.97	0.99	
0	0.87	0.88	0.90	0.92	0.93	0.95	0.97	0.99	1.00	1.02	1.04	1.06	1.08	
40	0.94	0.96	0.98	1.00	1.01	1.03	1.05	1.07	1.09	1.11	1.13	1.16	1.18	
70	1.00	1.02	1.04	1.06	1.08	1.10	1.12	1.14	1.16	1.18	1.20	1.22	1.25	
80	1.02	1.04	1.06	1.08	1.10	1.12	1.14	1.16	1.18	1.20	1.22	1.25	1.27	
100	1.06	1.08	1.10	1.12	1.14	1.16	1.18	1.20	1.22	1.25	1.27	1.29	1.32	
120	1.90	1.11	1.13	1.16	1.18	1.20	1.22	1.24	1.27	1.29	1.31	1.34	1.37	

 1. Actual ESP = Duct ESP x Factor ÷ Accs. SP

 2. Actual BHP = Cat. BHP ÷ Factor

 3. Correct BTUH Input = Catalog BTUH Input ÷ Factor

 4. Corrected BTUH Output = Corrected BTUH Input x Efficiency



Performance Data

Table PD-1 — Rooftop Gas Duct Furnace Performance Data — Arrangement A

	Input	Output			o. Rise				re Drop		
Capacity 10-12	Rating	Rating		De	g. F	CF	M	in. of	Water	Nat. Gas	L.P. Ga
Furnace Type A,B/C,D	BTU/Hr	BTU/Hr	Eff.	(De	g. C)	(cu. m/s)	(cu. m/s)	(kPa)	(kPa)	Inlet	Inlet
Rooftop Arrangement "A"	(kW)	(kW)	% _	Min.	Max.	Min.	Max.	Min.	Max.	in.	in.
10 A/B	100,000	80,000	80	20	60	1,235	3,704	0.15	1.10	1/2	1/2
	(29.3)	(23.4)		(11)	(33)	(0.583)	(1.748)	(0.04)	(0.27)		
15 A/B	150,000	120,000	80	20	60	1,852	5,556	0.15	1.00	1/2	1/2
	(43.9)	(35.1)		(11)	(33)	(0.874)	(2.622)	(0.04)	(0.25)		
20 A/B	200,000	160,000	80	20	60	2,469	7,407	0.15	1.05	1/2	1/2
	(58.6)	(46.9)		(11)	(33)	(1.165)	(3.496)	(0.04)	(0.26)		
25 A/B	250,000	200,000	80	20	60	3,086	9,259	0.15	1.08	3/4	1/2 OR
	(73.2)	(58.6)		(11)	(33)	(1.457)	(4.370)	(0.04)	(0.27)		
30 A/B	300,000	240,000	80	20	60	3,704	11,111	0.15	1.10	3/4	1/2 OR
	(87.8)	(70.3)		(11)	(33)	(1.748)	(5.244)	(0.04)	(0.27)		
35 A/B	350,000	280,000	80	20	60	4,321	12,963	0.15	1.11	3/4	1/2 OR
	(102.5)	(82.0)		(11)	(33)	(2.040)	(6.119)	(0.04)	(0.28)		
40 A/B	400,000	320,000	80	20	60	4,938	14,815	0.15	1.12	3/4	1/2 OR
	(117.1)	(93.7)		(11)	(33)	(2.331)	(6.993)	(0.04)	(0.28)	,	
50 A/B	500,000	400.000	80	40	120	3,086	9,269	0.30	2.16	3/4	1/2 OF
00,42	(146.4)	(117.1)		(22)	(67)	(1.457)	(4.375)	(0.07)	(0.54)		72 01
60 A/B	600,000	480,000	80	40	120	3,704	11,111	0.30	2.20	3/4	1/2 OF
	(175.7)	(140.6)		(22)	(67)	(1.748)	(5.244)	(0.07)	(0.55)	,.	,
70 A/B	700,000	560,000	80	40	120	4,321	12,963	0.30	2.22	3/4	1/2 OF
10148	(205.0)	(164.0)	00	(22)	(67)	(2.040)	(6.119)	(0.07)	(0.55)	/4	72 01
80 A/B	800,000	640,000	80	40	120	4,938	14,815	0.30	2.24	3/4	1/2 OF
00748	(234.3)	(187.4)	00	(22)	(67)	(2.331)	(6.993)	(0.07)	(0.56)	/4	/2 01
12 A/B	1,200,000	960,000	80	60	180	4,938	14,815	0.45	3.36	3/4	1/2 OF
12740	(351.4)	(281.1)	00	(33)	(100)	(2.331)	(6.993)	(0.11)	(0.84)	/4	/2 01
10 C/D	100,000	79,000	79	30	90	823	2,469	0.10	0.88	1/2	1/2
10 C/D	(29.3)	(23.1)	15	(17)	(50)	(0.388)	(1.165)	(0.02)	(0.22)	/2	/2
15 C/D	150,000	118,500	79	30	90	1,219	3,657	0.10	0.78	1/2	1/2
15 C/D	(43.9)	(34.7)	15	(17)	(50)	(0.575)	(1.726)	(0.02)	(0.19)	/2	/2
20 C/D	(43.9) 200,000	(34.7) 158,000	79	30	(50)	1,626	4,876	0.10	0.81	1/2	1/2
20 C/D	(58.6)	(46.3)	79	(17)	(50)	(0.767)	(2.301)	(0.02)	(0.20)	/2	/2
25 C/D			79	30	(50)	2,032			0.85	³ /4	1/ 00
25 C/D	250,000 (73.2)	197,500 (57.8)	79	(17)		(0.959)	6,096 (2.877)	0.10 (0.02)	(0.21)	-/4	1/2 OF
			70		(50)					37	1/ 05
30 C/D	300,000	237,000	79	30	90	2,438	7,315	0.10	0.86	3/4	1/2 OF
	(87.8)	(69.4)	70	(17)	(50)	(1.151)	(3.453)	(0.02)	(0.21)	31	1/ 05
35 C/D	350,000	276,500	79	30	90	2,845	8,534	0.10	0.87	3/4	¹/₂ OF
	(102.5)	(81.0)		(17)	(50)	(1.343)	(4.028)	(0.02)	(0.22)	24	1
40 C/D	400,000	316,000	79	30	90	3,251	9,753	0.10	0.88	3/4	¹/₂ OR
	(117.1)	(92.5)		(17)	(50)	(1.534)	(4.603)	(0.02)	(0.22)		

Ratings shown are for elevations up to 2000 feet (610 m) above sea level. Above 2000 feet (610 m), input must be derated four percent for each 1000 feet (305 m) above sea level.

Table PD-2 — Rooftop Gas Heating Units Performance Data — Furnace Type (A,B) Standard Temperature Rise —

Capacity									Т	DTAL	EXTE	RNAL	STAT	IC PRE	ESSUF	RE (IN	CHES	OF W	ATER))				
Furnace	TR			Output		2		.4		.6		.8		1		.2		.4		.6		.8		2
Туре	(F)	CFM	BTU/H	BTU/H	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	61	1,200	100,000	80,000		0.16		0.23		0.31	940		1040		1135		1220		1300				1440	
	49	1,500			655	0.26	765								1150									
10-A,B	37	2,000				0.55					1055				1205									
	29	2,500													1305									
	25	3,000							1240						1420									
	21	3,500	450.000	100.000											1550									
	55		150,000	120,000	685			0.54		0.63					1120						1345		1415	
	44	2,500					890								1190									
15-A,B	37	3,000					1005								1270									
	32 28	3,500 4,000							1190 1310						1360 1465									
	25	4,500							1435						1405	3.31	1010	4. IZ	1505	4.3	1015	4.40	1000	4.03
	59	,	200,000	160.000				0.55		0.66		0.78		0.89	965	1.02	1035	1 1/	1105	1 28	1170	1 / 1	1220	1 56
	49	3,000	200,000	100,000		0.71		0.83		0.96					1000									
20-A,B	37	4,000				1.58		1.72							1090									
20742	29	5,000							1060				1160		1205									
	27	5,500					1095				1180				1270									
	61	,	250,000	200,000	615		695	0.8		0.93			920				1050	1.49	1110	1.63	1170	1.78	1225	1.93
	53	3,500			690	1.05	760	1.17	830	1.31	900	1.46	965	1.62	1025	1.78	1085	1.94	1140	2.11	1195	2.27	1250	2.44
25-A,B	46	4,000			770	1.53	830	1.66	895	1.81	955	1.97	1015	2.14	1070	2.32	1125	2.51	1180	2.69	1235	2.87	1285	3.06
	41	4,500			855	2.13	905	2.29	960	2.44	1015	2.61	1070	2.79	1125	2.98	1175	3.19	1225	3.39	1275	3.6	1320	3.8
	37	5,000			940	2.88			1030						1180				1275	4.22	1320	4.45	1365	4.68
	34	5,500			1025										1240									
	60	,	300,000	240,000	655		760	0.91	860	1.11	945		1030		1110				1270					
	55	4,000				0.89		1.09							1125									
30-A,B	44	5,000				1.59		1.85							1195						1385	3.75	1445	4.0
	37	6,000			945										1280		1340	4.39	1400	4.74				
	34	6,500									1200	4.20	1260	4.58	1320	4.86								
	32	7,000	250.000	200.000	1075 535		640	4.35	1200	4.71	015	1 0 0	000	1	070	1 70	1040	2.02	1110	2 20	1175	2 55	1005	2.00
	57 52	4,500	350,000	280,000		0.7 0.91		1.13	730	1.11		1.32			970 980									
35-A,B	43	6,000				1.48		1.72		1.99					1015				1140					3.10
55 A,D	37	7,000				2.25		2.51		2.81					1060								1200	-
	32	8,000				3.27		3.56							1115		1120	1.00	1170		1200	1.7 1		
	30	8,500				3.88		4.18			1035													
	59	,	400,000	320,000		0.89	655	1.1	745		825	1.56	900	1.8	970	2.04	1040	2.3	1105	2.56	1170	2.84	1230	3.12
	45	6,500	,	,		1.78		2.03	825	2.3		2.6	960			3.2			1145				1255	
40-A,B	42	7,000			715	2.19	785	2.44	855	2.73	920	3.04	985	3.36	1045	3.68	1105	4	1160	4.33	1215	4.66	1270	4.99
	37	8,000			800	3.18	860	3.46	920	3.76	980	4.09	1040	4.45	1095	4.81								
	35	8,500			840	3.77	895	4.07	955	4.38	1015	4.72												
	123		500,000	400,000		0.73	730	0.85		0.99	880				1015				1135					
	105	3,500				1.12		1.25		1.39					1060								1280	
50-A,B	92	4,000				1.63		1.77							1110									
	82	4,500				2.27									1170									
	74	5,000													1235	4.03	1280	4.25	1325	4.47	1370	4.7	1415	4.93
	67	5,500		100.000					1165						4445	4.07	4005	0.40	4005		4075	0.05	4 4 5 0	
	120	,	600,000	480,000	700	0.82	805	0.99	900	1.2			1065		1145									
CO A D	111	4,000			740	1		1.18							1165									
60-A,B	88 74	5,000 6,000				1.79									1250 1345				13/0	3.69	1430	3.99	1490	4.Z
	74 68	6,000 6,500							1220						1349	4.43	1400	4./0						
			700,000	560.000											1005	10	1075	2 1 5	11/0	2 /1	1205	2 60	1265	2.04
	103	4,500	100,000	300,000		1.04		1.01							1005									
70-A,B	86	5,000 6,000				1.68		1.27							1020									
1017,0	74	7,000					885								1130						124J	0.00	1000	-7.Z
	65	8,000			910				1030				1070	0.01	1100	1.15	1100	1.40	12-10	1.75				
	118		800,000	640 000		0.98		1.21		1.44			935	1 9 1	1005	2 16	1070	2 4 2	1135	2 69	1200	2 97	1260	3.2
80-A,B	98	6,000	500,000	340,000		1.59		1.84							1005									
00 A,D	84	7,000					850								11045								1200	r. f.
	74	8,000				3.51			990															
		,																						

Notes:

1. Refer to Accessory Pressure Loss table.

2. Values are based on the "Basic Packaged Unit" which includes pressure drop of the duct furnace(s) and "system effect" of the blower module.

3. Brake horsepower (BHP) includes drive losses.

4. Unit leaving air temperature is limited to 150 F (66 C) and is equal to: Entering Air Temperature + Duct Furnace(s) Temperature Rise.
5. "Total External Pressure" is the sum of the unit's "Internal" accessory pressure loss(es) plus the external static pressure.
6. Ratings shown are for elevations between 0 and 2000 ft. (610 m). For unit installation in the U.S.A. above 2000 ft. (610 m), the unit input must be derated 4%

for each 1000 ft. (305 m) above sea level; refer to local codes, or in absence of local codes, refer to the National Fuel Gas Code, ANSI Standard Z223.1-1992 (N.F.P.A. No. 54), or the latest edition.

For installation in Canada, any references to deration at altitudes in excess of 2000 ft. (610 m) are to be ignored. At altitudes of 2000 to 4500 ft. (610 to 1372 m), the unit must be derated to 90% of the normal rating, and be so marked in accordance with the C.G.A. certification.

Table PD-3 — Rooftop Gas Heating Units Performance Data — Furnace Type C,D — High Temperature Rise —

		Rooftop Arrangement B,C,D,E																						
Capacity									T	DTAL	EXTE	RNAL	STATI	IC PRE	SSUF	RE (IN	CHES	OF W	ATER)					
Furnace	TR		Input	Output	0	.2		.4		.6		.8		1		.2		.4		.6		.8		2
Туре	(F)	CFM	BTU/H	BTU/H	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	91	800	100,000	79,000	550	.09	710	.15	840	.22	950		1045		1135		1210		1285		1355	.69		.78
	81	900			575	.11	730	.18	855	.25	965		1065		1150				1305		1375		1440	.86
10-C,D	73	1,000			605	.14	745	.21	870	.29	980	.37	1080	.46	1165	.55	1245		1320	.74	1390	.83	1455	.93
	66	1,100			635	.17	770	.25	890	.33	995		1095		1180		1260		1335		1410		1475	1.01
	61	1,200			670	.21	795	.29	910	.38	1015		1110		1195		1280		1355		1425		1490	1.10
	91	1,200	150,000	118,500	580	.16	705	.23	830	.31	940		1045		1135		1220		1300		1375		1445	1.02
15-C,D	78	1,400			630	.23	745	.31	855	.39	960		1055		1150		1235		1315				1460	
	68	1,600			685	.31	795	.40	890	.50	985		1075		1160		1245		1325		1400		1470	
	61	1,800			740	.42	845	.52	935		1020		1100		1180				1340		1410		1480	1.50
	91	1,600	200,000	158,000	500	.19	615	.26	720	.35	815	.44	900	.54	980		1055		1130		1200		1270	1.13
	81	1,800			530	.24	640	.33	735	.42	830	.51		.62	990		1060		1130				1265	
20-C,D	73	2,000			560	.31	665	.41	755	.50	845	.60	925				1075		1140				1265	
	66	2,200			595	.40	695	.50	780	.60	860	.71	940		1015		1085						1270	
	61	2,400			635	.49	725	.60	805	.71	885	.83	955		1030		1095		1160				1285	1.62
	91	2,000	250,000	197,500	540	.30	645	.39	740	.48	825	.58	910	.69	985		1060		1125		1190		1250	1.31
	81	2,250			580	.39	680	.50	765	.60	850	.71	925		1000		1070		1140				1260	1.47
25-C,D	73	2,500			625	.51	715	.63	795	.74	875	.86	945		1015				1150				1270	
	66	2,750			665	.66	750	.78	830	.90	905	1.03	970				1100		1160				1280	1.87
	61	3,000	000.000	007.000	710	.83	790	.96	865	1.10	935		1000		1065								1295	2.12
	91	2,400	300,000	237,000	585	.33	710	.47	835	.63	945		1045		1140		1225		1305		1375		1445	2.05
30-C.D	81 73	2,700			625 665	.43 .54	740 775	.58 .72	850 875	.75 .90	960 975		1055 1070		1150								1460 1470	
30-C,D	66	3,000 3,300			705	.54	815	.72	875 905	.90	975		1070										1470	
	61	3,600			705	.86	850	.07 1.05	905 940	1.26	1000		1110		11/5		1255						1475	
	91	2,800	350,000	276 500	485	.30	610	.44	720	.60	815	.77	905	.96	990		1070		1145		1215		1280	2.12
	82	2,800	350,000	276,500	485 510	.30	625	.44	720	.60	825	.77	905 910	.96	990 990		1070		1145		1215		1280	
35-C,D	oz 75	3,400			535	.37	645	.62	730	.09	840	.07	910		1000				1140		1210		1275	
35-C,D	69	3,400			560	.40	665	.73	760	.75	850	1.11	935			1.55			1140				1275	
	64	4,000			590	.50	690	.73	780	1.05	865	1.26	945		1020								12/5	
	61	4,200			605	.76	705	.95	790	1.15	875	1.36	950		1025								1285	
	91	3,200	400,000	316,000	500	.38	620	.53	725	.70	820	.88	905	1.08	985		1055		1130				1203	2.28
	81	3,200	400,000	510,000	535	.50	645	.66	740	.70	830	1.04	915	1.00					1135				12/0	
40-C,D	73	4,000			570	.64	670	.82	760	1.01	845	1.04	930		1005		1005		1145				1265	
40 O,D	66	4,400			605	.80	700	1.01	785	1.21	865	1.43	945		1005				1155				1275	
	61	4,400			640	1.00	730	1.22		1.44		1.43	960										1285	
		1,000			540	1.00	, 50	1.22	010	1.44	000	1.07	000	1.01	1000	2.10	1100	2.72	1100	2.00	1200	2.07	1200	0.20

Notes:

1. Refer to Accessory Pressure Loss table.

2. Values are based on the "Basic Packaged Unit" which includes pressure drop of the duct furnace(s) and "system effect" of the blower module.

3. Brake horsepower (BHP) includes drive losses.

4. Unit leaving air temperature is limited to 150 F (66 C) and is equal to: Entering Air Temperature + Duct Furnace(s) Temperature Rise.

5. "Total External Pressure" is the sum of the unit's "Internal" accessory pressure loss(es) plus the external static pressure. 6. Ratings shown are for elevations between 0 and 2000 ft. (610 m). For unit installation in the U.S.A. above 2000 ft. (610 m), the unit input must be derated 4% for each 1000 ft. (305 m) above sea level; refer to local codes, or in absence of local codes, refer to the National Fuel Gas Code, ANSI Standard Z223.1-1992 (N.F.P.A. No. 54), or the latest edition.

For installation in Canada, any references to deration at altitudes in excess of 2000 ft. (610 m) are to be ignored. At altitudes of 2000 to 4500 ft. (610 to 1372 m), the unit must be derated to 90% of the normal rating, and be so marked in accordance with the C.G.A. certification.

Table PD-4 — Rooftop Gas Heating Units Accessory Pressure Loss Data — Rooftop Arrangements B,C,D,E

							re Loss (Inc	hes of W					
		Rainh				ilters			Supply	Evapo		Return or Outside	
		N	/ith	Throwaway		hable	Plea		Air	Me		Air	
apacity	CFM	Screen	Mstr.Elim.	2″	1″	2″	1″	2″	Plenum	8″	12″	Damper	
	800	<.01	.01	.03	<.01	<.01	.03	.01	.02	.01	.02	.01	
	900	.01	.01	.03	<.01	<.01	.03	.02	.02	.02	.02	.02	
	1,100	.02	.02	.04	<.01	<.01	.04	.02	.03	.02	.04	.03	
10	1,200	.02	.02	.05	<.01	<.01	.05	.03	.04	.03	.04	.03	
	1,500	.03	.04	.06	.01	.02	.07	.04	.06	.04	.07	.05	
	2,000	.05	.07	.09	.02	.03	.12	.07	.10	.08	.12	.09	
	2,500	.08	.11	.12	.03	.04	.17	.10	.15	.12	.18	.13	
	3,000	.11	.15	.16	.04	.06	.23	.14	.22	.17	.26	.19	
	3,500	.16	.21	.19	.06	.08	.30	.18	.29	.24	.35	.25	
	1,200	.02	.02	.05	<.01	<.01	.05	.03	.03	.03	.04	.03	
	1,400	.03	.03	.06	<.01	.01	.06	.03	.03	.04	.06	.04	
	1,600	.03	.04	.07	.01	.02	.08	.04	.04	.05	.07	.06	
	1,800	.04	.05	.08	.02	.02	.10	.05	.06	.06	.09	.07	
15	2,000	.05	.07	.09	.02	.03	.12	.07	.07	.08	.12	.09	
	2,500	.08	.11	.12	.03	.04	.17	.10	.11	.12	.18	.13	
	3,000	.11	.15	.16	.04	.06	.23	.14	.15	.17	.26	.19	
	3,500	.16	.21	.19	.06	.08	.30	.18	.21	.24	.35	.25	
	4,000	.20	.27		.07	.11	.38	.23	.27	N/A	N/A	.33	
	4,500	.26	.34		.09	.14			.34	N/A	N/A	.42	
	1,600	.02	.02	.05	<.01	.01	.06	.03	.02	.02	.03	.03	
	1,800	.02	.03	.06	<.01	.01	.07	.04	.03	.02	.03	.03	
	2,000	.02	.03	.07	.01	.02	.08	.04	.03	.03	.04	.04	
	2,200	.03	.04	.08	.01	.02	.09	.05	.04	.03	.05	.05	
20	2,400	.03	.05	.09	.02	.02	.11	.06	.05	.04	.06	.05	
	2,500	.04	.05	.09	.02	.03	.12	.07	.05	.04	.07	.06	
	3,000	.05	.07	.12	.03	.04	.16	.09	.07	.06	.10	.08	
	4,000	.09	.13	.17	.05	.07	.26	.16	.13	.11	.17	.15	
	5,000	.15	.20		.07	.11	.38	.23	.21	.18	.27	.23	
	5,500	.18	.25		.09	.13	.44	.28	.25	.22	.32	.28	
	2,000	.02	.03	.07	.01	.02	.08	.04	.02	.03	.04	.04	
	2,250	.03	.04	.08	.02	.02	.10	.05	.03	.04	.05	.05	
	2,500	.04	.05	.09	.02	.03	.12	.07	.04	.04	.07	.06	
	2,750	.04	.06	.10	.02	.03	.14	.08	.04	.05	.08	.07	
25	3,000	.05	.07	.12	.03	.04	.16	.09	.05	.06	.10	.08	
	4,000	.09	.13	.17	.05	.07	.26	.16	.09	.11	.17	.15	
	4,500	.12	.16		.06	.09	.31	.19	.12	.15	.22	.19	
	5,000	.15	.20		.07	.11	.38	.23	.14	.18	.27	.23	
	5,500	.18	.25		.09	.13	.44	.28	.17	.22	.32	.28	
	2,400	.02	.03	.06	.01	.01	.07	.04	.02	.03	.04	.03	
	2,700	.02	.03	.07	.01	.02	.09	.05	.03	.03	.05	.04	
	3,000	.03	.04	.08	.02	.02	.10	.06	.03	.04	.06	.05	
	3,300	.04	.05	.09	.02	.03	.12	.07	.04	.05	.07	.06	
30	3,600	.04	.06	.10	.02	.03	.14	.08	.05	.06	.09	.07	
	4,000	.05	.08	.12	.03	.04	.17	.10	.06	.07	.11	.08	
	5,000	.00	.12	.16	.04	.06	.24	.14	.09	.11	.17	.13	
	6,000	.12	.17		.06	.09	.33	.20	.13	.16	.24	.19	
	6,500	.14	.20		.00	.11	.38	.23	.16	.19	.29	.22	
	7,000	.17	.23		.09	.13	.43	.23	.18	.22	.33	.25	

Table PD-4 (Continued) — Rooftop Gas Heating Units Accessory Pressure Loss Data — Rooftop Arrangements B,C,D,E

							re Loss (Ind	hes of W	ater)			
		Rainh			Fi	Iters			Supply	Evapo		Return or Outside
			/ith	Throwaway	Wasl		Pleat		Air	Me		Air
apacity	CFM	Screen	Mstr.Elim.	2″	1″	2″	1″	2″	Plenum	8″	12″	Damper
	2,800	.03	.04	.07	.01	.02	.09	.05	.02	.04	.05	.04
	3,100	.03	.05	.08	.02	.02	.11	.06	.03	.04	.07	.05
	3,400	.04	.06	.10	.02	.03	.13	.07	.04	.05	.08	.06
	3,700	.05	.07	.11	.02	.03	.15	.08	.04	.06	.09	.07
35	4,000	.05	.08	.12	.03	.04	.17	.10	.05	.07	.11	.08
	5,000	.09	.12	.16	.04	.06	.24	.14	.08	.11	.17	.13
	6,000	.12	.17		.06	.09	.33	.20	.11	.16	.24	.19
	7,000	.17	.23		.09	.13	.43	.27	.15	.22	.33	.25
	8,000	.22	.31		.11	.16			.19	.29	.44	.33
	9,000	.28	.39						.24	N/A	N/A	.42
	3,200	.03	.04	.07	.01	.02	.09	.05	.02	.04	.06	.04
	3,600	.04	.05	.09	.02	.02	.11	.06	.03	.05	.07	.05
	4,000	.04	.06	.10	.02	.03	.13	.07	.04	.06	.09	.07
	4,400	.05	.07	.11	.03	.04	.15	.09	.05	.07	.11	.08
40	4,800	.06	.09	.13	.03	.04	.18	.10	.05	.09	.13	.10
	5,000	.07	.10	.13	.03	.05	.19	.11	.06	.09	.14	.10
	6,000	.10	.14	.17	.05	.07	.26	.16	.08	.14	.20	.15
	7,000	.13	.19		.07	.09	.33	.21	.11	.18	.27	.20
	8,000	.17	.24		.09	.12	.42	.26	.15	.24	.36	.26
	8,500	.20	.28		.10	.14			.17	.27	.41	.30
	3,000	.05	.07	.12	.03	.04	.16	.09	.05	.06	.10	.08
	3,500	.07	.10	.14	.04	.05	.21	.12	.07	.09	.13	.11
50	4,000	.09	.13	.17	.05	.07	.26	.16	.09	.11	.17	.15
	4,500	.12	.16		.06	.09	.31	.19	.12	.15	.22	.19
	5,000	.15	.20		.07	.11	.38	.23	.14	.18	.27	.23
	5,500	.18	.25		.09	.13	.44	.28	.17	.22	.32	.28
	3,700	.05	.07	.11	.02	.03	.15	.08	.05	.06	.09	.07
	4,000	.05	.08	.12	.03	.04	.17	.10	.06	.07	.11	.08
60	5,000	.09	.12	.16	.04	.06	.24	.14	.09	.11	.17	.13
	6,000	.12	.17		.06	.09	.33	.20	.13	.16	.24	.19
	6,500	.14	.20		.07	.11	.38	.23	.16	.19	.29	.22
	4,500	.07	.10	.14	.04	.05	.20	.12	.06	.09	.14	.11
	5,000	.09	.12	.16	.04	.06	.24	.14	.08	.11	.17	.13
70	6,000	.12	.17		.06	.09	.33	.20	.11	.16	.24	.19
	7,000	.17	.23		.09	.13	.43	.27	.15	.22	.33	.25
	8,000	.22	.31		.11	.16			.19	.29	.44	.33
	5,000	.07	.10	.13	.03	.05	.19	.11	.06	.09	.14	.10
80	6,000	.10	.14	.17	.05	.07	.26	.16	.08	.14	.20	.15
-	7,000	.13	.19		.07	.09	.33	.21	.11	.18	.27	.20
	8,000	.17	.24		.09	.12	.42	.26	.15	.24	.36	.26

		Roofto	op Gas He	ating U	nits Pe	erfori	mance	e Dat												oftop	Arra	ngem	nent G	ì,J
Capacity			la se at	0		2	0	4							ESSUF					<u> </u>	1	0		<u> </u>
Furnace		OF M	Input	Output	0.			.4		0.6).8 DUD	-			.2		.4	1.			.8		2
Туре	(F)	CFM	BTU/H	BTU/H	RPM							BHP			RPM							BHP		BHP
	59 40	2,500	200,000	160,000		.36	495 540	.46	565	.55	635	.67 .92	700	.80	760	.93	820	1.07	875	1.21	925	1.35	975	1.50
	49 37	3,000 4,000			490 630	.59 1.30	540 660	.68 1.41	600 700	.80 1.54	660 740	.92 1.68	720 785	1.05 1.84	775 830	1.19 2.00		1.35 2.16	885 920	1.51 2.32	930 965	1.67 2.49		1.84 2.68
20 A P	29	4,000 5,000			770	2.46		2.59		2.73	850		880	3.05		3.24	950	3.43			1025			4.02
20-A,B	29 25	6,000				4.18		4.34	960	4.50	980		1000		1025		1050		1080			5.67		4.02 5.90
	23	6,500			990		1010		1030				1000		1025					6.59		6.82		7.06
	21	7,000			1060				1100						1155									8.41
	20	7,400			1120		1140		1155			8.31			1205							9.38		9.62
	59	3,100	250.000	200,000		.62	540	.72	595	.83	655	.95	715	1.08	770	1.22	820	1.37	875	1.54	925	1.71	970	1.87
	46	4,000	200,000	200,000	620	1.26		1.37	685		725	1.63	770	1.79		1.95		2.10		2.26	950	2.43		2.61
25-A,B	37	5,000			755	2.39		2.52		2.66	835		865	2.96		3.13	930	3.32		3.52			1045	3.92
20,142	31	6,000				4.05		4.21		4.37	965				1010		1030			5.27		5.49		5.72
	26	7,000			1040							6.92							1170			7.92		8.15
	25	7,500			1110		1130	7.99				8.39			1200			9.00		9.21		9.43	1270	9.66
	60	3,700	300.000	240,000	415	.47	505	.65	590	.86	665	1.08	740	1.33	815	1.60	885	1.89	950		1010	2.51		2.82
	55	4,000	,	,	430	.56	520	.76	600	.97	675	1.20	745	1.45	815	1.72	880	2.02	945	2.33			1065	2.99
30-A,B	37	6,000			560	1.51	630	1.79	690	2.08	750	2.38	805	2.69	860	3.01	910	3.34	960	3.68	1010	4.03	1055	4.40
	28	8,000			710	3.29	760	3.64	810	4.01	860	4.40	905	4.79	950	5.19	995	6.00	1035	5.99	1075	6.41	1115	6.83
	22	10,000			860	6.18	900	6.59	945	7.03	985	7.48	1025	7.95	1065	8.44	1100	8.93	1140	9.42	1175	9.92	1210	10.42
	20	11,000			940	8.12	975	8.57	1015	9.04	1050	9.52	1085	10.03	1125	10.55	1160	11.08	1195	11.61	1230	12.16	1260	12.70
	57	4,500	350,000	280,000	405	.58	490	.76	565	.96	640	1.19	705	1.43	765	1.68	825	1.93	880	2.19	930	2.46	975	2.74
	43	6,000			500	1.22	555	1.43	615	1.66	675	1.90	735	2.16	790	2.46	845	2.78	895	3.10	945	3.43	990	3.75
35-A,B	32	8,000			645	2.70	675	2.93	715	3.20	760	3.51	805	3.83	850	4.14	895	4.45	940	4.79	985	5.15	1025	5.55
	26	10,000			790	5.10	815	5.37	840	5.67	870	5.99	905	6.35	940	6.74	980	7.14	1015	7.53	1050	7.92	1085	8.31
	22	12,000			935	8.66	960	8.98	980	9.31	1000	9.66	1025	10.04	1050	10.44	1080	10.87	1110	11.32	1140	11.79	1170	12.27
	20	13,000			1010	10.95	1030 '	11.29	1050	11.64	1070	12.01	1090	12.39	1115	12.80	1140	13.24	1165	13.71	1190	14.19	1215	14.69
	59	5,000	400,000	320,000	430	.73	500	.92	570	1.12	640	1.35	705	1.61	765	1.88	820	2.15	875	2.43	925	2.71	975	3.00
	49	6,000			495	1.18	545	1.38	605		665	1.85		2.11	780	2.40		2.72		3.04	935	3.36	985	3.69
40-A,B	37	8,000			630	2.62		2.85			745			3.72		4.03		4.34		4.67	970		1010	5.41
	29	10,000				4.96		5.23		5.51		5.82		6.16		6.54		6.93				7.72		8.11
	25	12,000			920	8.42		8.74		9.07					1030	10.14	1060	10.55	1085	10.98	1115	11.44	1145	11.92
	21	14,000					1085						1140											
	119	3,100	500,000	400,000		.66	565	.76	625	.89	680	1.01	740	1.14		1.29		1.45	895	1.61	945	1.78		1.95
FO A D	92	4,000			640	1.34		1.45	715		755	1.74	805	1.90	850	2.06	895	2.21		2.38	980	2.56		2.76
50-A,B	74	5,000				2.54		2.67		2.82	870			3.16		3.35			1010				1085	4.13
	61	6,000			935	4.30		4.46				4.80			1045				1105					6.10
	53	7,000			1080		1100		1120		1135				1175				1215		1240	8.4Z	1265	8.68
	49	7,500	600.000	400.000	1155		1175 545	.74							1240			2.02		9.76	1005	2.65	1000	2.07
	120	3,700	600,000	480,000		.55	545 560	.74	625	.95	700	1.19	775	1.45	845	1.73	915		975 075		1035		1090	2.97
CO A D	111	4,000 6,000			480 640	.66 1.83		2.12	640	1.09 2.42	710 810	1.33 2.73	780	1.59 3.05		1.87 3.38		2.18	975	2.50		2.83		3.16 4.83
60-A,B	74 55	8,000			810	4.00	700 855	4.38		4.78	950	5.17	865 990						1115					4.63 7.68
	44	10,000			985																		1310	
	40	11,000					1110																	14.69
-	115	4,500	700.000	560,000	445	.67	525	.85	600	1.07	670	1.31	735	1.55	795	1.80	850	2.06	905	2.32	955	2.60	1000	2.88
	86	6,000	700,000	500,000	545	1.39		1.63		1.86	725			2.42		2.73		3.05		3.38		3.71		4.04
70-A,B	65	8,000			695	3.06		3.35		3.66		3.98		4.29		4.61			1005					6.16
7074,8	52	10,000			850	5.75		6.09		6.46		6.85			1025									9.23
	43	12,000																					1270	
	40	13,000					1110																	
	118	5,000	800.000	640,000													850	2.28	900	2.56	950	2.85	995	3.14
	98	6,000		,																			1015	
80-A,B	74	8,000					710																	5.88
,	59	10,000					850																	8.81
	49	12,000																					1225	13.12
	44	13,500					1110																	
	161		1,200,000	960,000			595								835	2.46	885	2.76	935	3.06	985	3.37	1030	3.68
	147	6,000		, -	565	1.46	625	1.70	685	1.93	740	2.20	800	2.50	850	2.82	905	3.15	950	3.47	1000	3.80	1045	4.13
	126	7,000					690																	5.16
12-A,B	111	8,000					760																	6.37
	88	10,000																					1195	9.57
		12,000													1180	12.42	1210	12.90	1240	13.36	1270	13.83	1300	14.29
	68	13,000			1115	12.81	1140 '	13.25	1165	13.72	1190	14.20	1220	14.71										

1. Refer to Accessory Pressure Loss table.

2. Values are based on the "Basic Packaged Unit" which includes pressure drop of the duct furnace(s) and "system effect" of the blower module.

3. Brake horsepower (BHP) includes drive losses.

4. Unit leaving air temperature is limited to 150 F (66 C) and is equal to: Entering Air Temperature + Duct Furnace(s) Temperature Rise.

5. "Total External Pressure" is the sum of the unit's "Internal" accessory pressure loss(es) plus the external static pressure.

6. Ratings shown are for elevations between 0 and 2000 ft. (610 m). For unit installation in the U.S.A. above 2000 ft. (610 m), the unit input must be derated 4% for each 1000 ft. (305 m) above sea level; refer to local codes, or in absence of local codes, refer to the National Fuel Gas Code, ANSI Standard Z223.1-1992 (N.F.P.A. No. 54), or the latest edition.

For installation in Canada, any references to deration at altitudes in excess of 2000 ft. (610 m) are to be ignored. At altitudes of 2000 to 4500 ft. (610 to 1372 m), the unit must be derated to 90% of the normal rating, and be so marked in accordance with the C.G.A. certification.

Capacity	/								T	DTAL	EXTER	RNAL	STATI	C PRE	SSUR	RE (IN)	CHES	OF W	ATER)					
Furnace	TR		Input	Output	0.	2	0.	4	0	.6	0	.8	,		1	.2	1	.4	1	.6	1	.8	2	2
Туре	(F)	CFM	BTU/H	BTU/H	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BH
	61	1,200	100,000	80,000	575	.16	705	.23	825	.31	940	.40	1040	.50	1135	.60	1220	.70	1300	.80	1375	.91	1440	1.0
	49	1,500			655	.26	765	.35	870	.44	965	.54	1060	.64	1150	.75	1235	.87	1315	.99	1390	1.12	1460	1.2
10-A,B	37	2,000			795	.55	890	.65	975	.77	1055	.88	1130	1.00	1205	1.12	1280	1.25	1355	1.39	1425	1.54	1490	1.6
	29	2,500			950	1.01	1030	1.12	1105	1.25	1175	1.39	1240	1.54	1305	1.68	1365	1.83	1425	1.98	1485	2.13	1545	2.2
	25	3,000			1110	1.68	1175	1.82	1240	1.95	1305	2.10	1365	2.27	1420	2.44	1475	2.62	1530	2.79	1580	2.97	1635	3.1
	55	2,000	150,000	120,000	685	.44	785	.54	880	.63	965	.75	1045	.87	1120	.98	1195	1.11	1270	1.24	1345	1.37	1415	1.5
15-A,B	44	2,500			805	.78	890	.91	970	1.04	1045	1.15	1120	1.28	1190	1.43	1255	1.57	1320	1.72	1380	1.86	1440	2.0
	37	3,000			935	1.28	1005	1.44	1075	1.60	1140	1.75	1205	1.88	1270	2.02	1335	2.18	1390	2.35	1450	2.53	1500	2.7
	59	2,500	200,000	160,000	425	.36	495	.46	565	.55	635	.67	700	.80	760	.93	820	1.07	875	1.21	925	1.35	975	1.5
20-A,B	49	3,000			490	.59	540	.68	600	.80	660	.92	720	1.05	775	1.19	830	1.35	885	1.51	930	1.67	980	1.8
	37	4,000			630	1.30	660	1.41	700	1.54	740	1.68	785	1.84	830	2.00	875	2.16	920	2.32	965	2.49	1005	2.68
25-A,B	59	3,100	250,000	200,000	495	.62	540	.72	595	.83	655	.95	715	1.08	770	1.22	820	1.37	875	1.54	925	1.71	970	1.8
	46	4,000			620	1.26	650	1.37	685	1.49	725	1.63	770	1.79	815	1.95	860	2.10	905	2.26	950	2.43	990	2.6
	60	3,700	300,000	240,000	415	.47	505	.65	590	.86	665	1.08	740	1.33	815	1.60	885	1.89	950	2.19	1010	2.51	1065	2.82
30-A,B	55	4,000			430	.56	520	.76	600	.97	675	1.20	745	1.45	815	1.72	880	2.02	945	2.33	1005	2.65	1065	2.9
	37	6,000			560	1.51	630	1.79	690	2.08	750	2.38	805	2.69	860	3.01	910	3.34	960	3.68	1010	4.03	1055	4.40
35-A,B	57	4,500	350,000	280,000	405	.58	490	.76	565	.96	640	1.19	705	1.43	765	1.68	825	1.93	880	2.19	930	2.46	975	2.7
	43	6,000			500	1.22	555	1.43	615	1.66	675	1.90	735	2.16	790	2.46	845	2.78	895	3.10	945	3.43	990	3.75
40-A,B	59	5,000	400,000	320,000	430	.73	500	.92	570	1.12	640	1.35	705	1.61	765	1.88	820	2.15	875	2.43	925	2.71	975	3.0
	49	6,000			495	1.18	545	1.38	605	1.62	665	1.85	725	2.11	780	2.40	835	2.72	885	3.04	935	3.36	985	3.69
50-A,B	119	3,100	500,000	400,000	515	.66	565	.76	625	.89	680	1.01	740	1.14	790	1.29	845	1.45	895	1.61	945	1.78	990	1.9
	92	4,000			640	1.34	675	1.45	715	1.59	755	1.74	805	1.90	850	2.06	895	2.21	935	2.38	980	2.56	1020	2.76
	120	3,700	600,000	480,000	455	.55	545	.74	625	.95	700	1.19	775	1.45	845	1.73	915	2.02	975	2.33	1035	2.65	1090	2.97
60-A,B	111	4,000			480	.66	560	.86	640	1.09	710	1.33	780	1.59	850	1.87	915	2.18	975	2.50	1035	2.83	1090	3.1
,	74	6,000			640	1.83	700	2.12	755	2.42	810	2.73	865	3.05	915	3.38	965	3.72	1015	4.08	1065	4.45	1110	4.83
70-A,B	115	4,500	700,000	560,000	445	.67	525	.85	600	1.07	670	1.31	735	1.55	795	1.80	850	2.06	905	2.32	955	2.60	1000	2.8
-/=	86	6,000	,	,	545	1.39	610	1.63	670	1.86	725	2.12	780	2.42	835	2.73	890	3.05	940	3.38	985	3.71	1030	4.04
80-A.B	118	5,000	800.000	640,000	460	.82	535	1.01	605	1.22	670	1.47	735	1.74	790	2.01	850	2.28	900	2.56	950	2.85		3.1
5	98	6.000	_ 0 0,0 00	,	525	1.31	585	1.54	645	1.77	705	2.02	760	2.30	815	2.61	870	2.93	920	3.25	965	3.58		3.9

Table PD-7 — Rooftop Gas Heating Units Performance Data - Furnace Type C,D - High Temperature Rise - Rooftop Arrangement K,L

Capacity	/								T	OTAL	EXTE	RNAL	STATI	C PRE	SSUF	RE (IN)	CHES	OF W	ATER)					
Furnace	TR		Input	Output	0.	2	0	.4	0	.6	0	.8		1	1	.2	1	.4	1	.6	1	.8	2	2
Туре	(F)	CFM	BTU/H	BTU/H	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
-	91	1,600	200,000	158,000	380	.16	480	.24	565	.33	645	.42	710	.52	770	.63	830	.74	880	.86	930	.98	980	1.10
	81	1,800			400	.20	495	.29	580	.39	650	.49	720	.59	780	.70	835	.82	890	.94	940	1.07	985	1.20
20-C,D	73	2,000			425	.26	510	.35	590	.45	665	.56	730	.67	790	.79	845	.91	900	1.04	950	1.17	995	1.31
	66	2,200			450	.33	530	.42	605	.53	675	.64	740	.76	800	.89	855	1.02	905	1.15	955	1.28	1000	1.43
	61	2,400			475	.40	550	.50	620	.61	690	.74	750	.87	810	1.00	865	1.13	915	1.27	965	1.41	1010	1.56
	91	2,000	250,000	197,500	405	.24	495	.33	575	.43	650	.54	715	.65	780	.76	835	.89	890	1.01	940	1.14	985	1.28
	81	2,250			435	.32	515	.41	590	.52	660	.64	725	.76	785	.88	845	1.01	895	1.14	945	1.28	995	1.42
25-C,D	73	2,500			465	.42	540	.52	610	.62	675	.75	740	.88	795	1.02	855	1.15	905	1.29	955	1.44	1000	1.58
	66	2,750			500	.53	565	.64	630	.75	695	.87	755	1.02	810	1.16	865	1.31	915	1.46	965	1.62	1010	1.77
	61	3,000			535	.67	595	.79	655	.90	710	1.03	770	1.17	825	1.33	875	1.49	925	1.65	975	1.81	1020	1.98
-	91	2,400	300,000	237,000	390	.25	510	.40	615	.60	700	.80	775	1.01	845	1.23	905	1.45	960	1.68	1010	1.92	1055	2.16
	84	2,600			405	.29	515	.45	615	.65	705	.86	780	1.09	850	1.31	910	1.55	965	1.79	1020	2.04	1065	2.29
	78	2,800			420	.33	520	.50	620	.70	710	.92	785	1.16	855	1.40	920	1.65	975	1.91	1025	2.16	1075	2.43
30-C,D	73	3,000			435	.38	530	.56	625	.76	710	.99	790	1.24	860	1.49	925	1.76	980	2.02	1035	2.29	1085	2.57
	68	3,200			450	.44	540	.62	630	.83	715	1.06	790	1.32	865	1.59	930	1.86	985		1040	2.42	1090	2.71
	64	3,400			465	.51	555	.69	640	.91	720	1.14	795	1.40	865	1.68	930	1.97	990		1045	2.56	1100	2.86
	61	3,600			480	.58	565	.77	645	.99	725	1.23	800	1.49	870	1.78	935	2.08	995		1050	2.69	1105	3.00
	85	3,000	350,000	276,500	385	.29	485	.46	575	.62	650	.81	715	1.00	775	1.21	835	1.44	885	1.67	935	1.90	980	2.15
	80	3,200			395	.34	495	.50	580	.68	655	.87	720	1.07	780	1.29	840	1.51	890	1.75	940	2.00	985	2.25
35-C,D	75	3,400			410	.38	505	.56	585	.74	660	.94	725	1.14	785	1.36	840	1.60	895	1.84	945	2.09	990	2.35
	67	3,800			430	.49	520	.68	600	.88	670	1.09	735	1.31	795	1.54	855	1.78	905	2.03		2.29	1000	2.57
	64	4,000			445	.55	530	.74	610	.96	680	1.17	745	1.40	805	1.63	860	1.88	910	2.14	960		1005	2.68
	61	4,200			460	.62	540	.81	615	1.04	685	1.26	750	1.50	810	1.74	865	1.99	915	2.25		2.52	1010	2.81
	88	3,300	400,000	316,000	390	.34	485	.51	575	.69	650	.88	715	1.08	775	1.30	835	1.52	885	1.76	935	2.01	985	2.27
	83	3,500			400	.38	495	.56	580	.75	655	.94	720	1.15	780	1.37	835	1.60	890	1.85	940	2.10	985	2.37
40-C,D	73	4,000			430	.52	515	.70	595	.92	665	1.13	730	1.36	790	1.59	850	1.83	900	2.09	950	2.35	995	2.63
	65	4,500			460	.70	540	.88	615	1.11	680	1.35	745	1.60	805	1.85	860	2.10	910	2.37	960	2.65	1005	2.93
	58	5,000			495	.91	565	1.11	635	1.34	700	1.60	760	1.87	820	2.14	875	2.41	925	2.70	975	2.99	1020	3.29

Notes: 1. Refer to Accessory Pressure Loss table.

Values are based on the "Basic Packaged Unit" which includes pressure drop of the duct furnace(s) and "system effect" of the blower module.
 Brake horsepower (BHP) includes drive losses.

 4. Unit leaving air temperature is limited to 150 F (66 C) and is equal to: Entering Air Temperature + Duct Furnace(s) Temperature Rise.
 5. "Total External Pressure" is the sum of the unit's "Internal" accessory pressure loss(es) plus the external static pressure.
 6. Ratings shown are for elevations between 0 and 2000 ft. (610 m). For unit installation in the U.S.A. above 2000 ft. (610 m), the unit input must be derated 4% for each 1000 ft. (305 m) above sea level; refer to local codes, or in absence of local codes, refer to the National Fuel Gas Code, ANSI Standard Z223.1-1992 (N.F.P.A. No. 54), or the latest edition.

For installation in Canada, any references to deration at altitudes in excess of 2000 ft. (610 m) are to be ignored. At altitudes of 2000 to 4500 ft. (610 to 1372 m), the unit must be derated to 90% of the normal rating, and be so marked in accordance with the C.G.A. certification.

Table PD-8 — Rooftop Gas Heating Units Accessory Pressure Loss Data — Rooftop Arrangement G,J,K,L

	_				Pressure					
			hood ith	Throwoway	\\/oo	Filters hable	Plea	tod	Supply Air	Return or Outside Air
Capacity	CFM	Screen	Mstr.Elim.	Throwaway 2″	vvas 1″	1 able 2"	1"	11ed 2"	Plenum	Damper
capacity	800	<.01	.01	.01	<.01	<.01	<.01	<.01	.02	.01
	900	.01	.02	.01	<.01	<.01	<.01	<.01	.02	.02
	1,100	.02	.02	.02	<.01	<.01	.01	<.01	.03	.03
10*	1,200	.02	.03	.02	<.01	<.01	.02	<.01	.04	.03
	1,500	.03	.04	.02	<.01	<.01	.02	.01	.06	.05
	2,000	.06	.07	.04	<.01	<.01	.04	.02	.10	.09
	2,500	.09	.12	.05	<.01	.01	.05	.03	.15	.13
	3,000	.13	.17	.06	.01	.02	.07	.04	.22	.19
	3,500	.18	.23	.08	.01	.02	.09	.05	.29	.25
	1,200	.02	.03	.02	<.01	<.01	.02	<.01	.03	.03
	1,400	.03	.04	.02	<.01	<.01	.02	<.01	.03	.04
	1,600	.04 .05	.05	.03	<.01	<.01	.03	.01	.04	.06 .07
15*	1,800 2,000	.05	.06 .07	.03 .04	<.01 <.01	<.01 <.01	.03 .04	.02 .02	.06 .07	.07
15	2,500	.00	.12	.04	<.01	.01	.04	.02	.07	.13
	3,000	.13	.12	.06	.01	.01	.05	.03	.15	.13
	3,500	.18	.23	.08	.01	.02	.09	.05	.21	.25
	4,000	.23	.30	.09	.02	.03	.12	.07	.27	.33
	4,500	.29	.38	.11	.02	.03	.14	.08	.34	.42
	1,600	.02	.02	.03	<.01	<.01	.03	.01	.02	.03
	1,800	.02	.03	.03	<.01	<.01	.03	.02	.03	.03
	2,000	.02	.03	.04	<.01	<.01	.04	.02	.03	.04
	2,200	.03	.04	.04	<.01	<.01	.04	.02	.04	.05
	2,400	.03	.05	.05	<.01	<.01	.05	.03	.05	.05
	2,500	.04	.05	.05	<.01	.01	.05	.03	.05	.06
20	3,000	.05	.07	.06	.01	.02	.07	.04	.07	.08
	4,000	.09	.13	.09	.02	.03	.12	.07	.13	.15
	5,000	.15	.20	.12	.03	.04	.17	.10	.21	.23
	6,000	.21	.29	.16	.04	.06	.23	.14	.30	.33
	6,500	.25	.34	.17	.05	.07	.26	.16	.35	.39
	7,000	.29 .32	.40	.19	.06 .09	.08 .33	.30	.18 .45	.40	.45
	7,400 2,000	.02	.45	.06	.09	.33	.20	.45	.50	.04
	2,000 2,250	.02 .03	.03	.04 .04	<.01 <.01	<.01 <.01	.04 .04	.02 .02	.02 .03	.04 .05
	2,500	.03	.04	.04	<.01 <.01	.01	.04	.02	.03	.06
	2,500 2,750	.04	.06	.05	<.01	.01	.05	.03	.04	.07
25	3,000	.04	.07	.06	.01	.02	.07	.03	.04	.07
25	4,000	.09	.13	.09	.02	.02	.12	.07	.09	.15
	5,000	.15	.20	.12	.02	.04	.17	.10	.14	.23
	6,000	.21	.29	.16	.04	.06	.23	.14	.21	.33
	7,000	.29	.40	.19	.06	.08	.30	.18	.28	.45
	7,500	.33	.46		.07	.09	.34	.21	.32	.52
	2,400	.02	.03	.02	<.01	<.01	.02	.01	.02	.03
	2,600	.02	.03	.03	<.01	<.01	.03	.01	.03	.04
	2,800	.03	.04	.03	<.01	<.01	.03	.01	.03	.04
	3,000	.03	.04	.03	<.01	<.01	.03	.02	.03	.05
	3,200	.03	.05	.03	<.01	<.01	.04	.02	.04	.05
30	3,400	.04	.06	.04	<.01	<.01	.04	.02	.04	.06
	3,600	.04	.06	.04	<.01	<.01	.04	.02	.05	.07
	4,000	.05	.08	.05	<.01	.01	.05	.03	.06	.08
	6,000	.12	.17	.08	.02	.02	.10 .17	.06	.13	.19
	8,000 10,000	.22 .34	.31 .48	.12 .16	.03	.04 .06	.17	.10	.24	.33 .52
	11,000				.04	.08	.24 .28	.14	.37	.63
	3,000	.41 .03	.58	.18 .03	.05	.08	.28	.17	.45	.05
	3,000	.03	.04	.03	<.01 <.01	<.01 <.01	.03	.02	.03	.05
	3,400	.03	.06	.03	<.01	<.01	.04	.02	.03	.06
	3,600	.04	.06	.04	<.01	<.01	.04	.02	.04	.07
	3,800	.05	.07	.04	<.01	<.01	.05	.02	.04	.08
35	4,000	.05	.07	.04	<.01	.01	.05	.03	.04	.08
	4,500	.07	.10	.05	<.01	.01	.06	.03	.06	.11
	6,000	.12	.17	.08	.02	.02	.10	.06	.11	.19
	8,000	.22	.31	.12	.03	.04	.17	.10	.19	.33
	10,000	.34	.48	.16	.04	.06	.24	.14	.30	.52
	12,000	.49	.69		.06	.09	.33	.20	.43	.75
	13,000	.58	.81		.07	.11	.38	.23	.51	.88

*Available in arrangements K and L only. Refer to Table for Cooling Coil and Chilled Water Coil Pressure Losses (Arrangement K, L). Include the coil pressure loss with the above data.

Table PD-8 (Continued) — Rooftop Gas Heating Units Accessory Pressure Loss Data — Rooftop Arrangement G,J,K,L

			Pressure Loss (Inches of Water)												
		Rain	nood			Filters			Supply	Return or Outside					
		W	ith	Throwaway		hable	Plea	ted	Air	Air					
Capacity	CFM	Screen	Mstr.Elim.	2″	1″	2″	1″	2″	Plenum	Damper					
	3,300	.03	.04	.03	<.01	<.01	.03	.02	.03	.05					
	3,500	.03	.05	.03	<.01	<.01	.03	.02	.03	.05					
	4,000	.04	.06	.04	<.01	<.01	.04	.02	.04	.07					
	4,500	.05	.08	.05	<.01	<.01	.05	.03	.05	.08					
40	5,000	.07	.10	.05	<.01	.01	.06	.03	.06	.10					
	6,000	.10	.14	.07	.01	.02	.08	.04	.08	.15					
	8,000	.17	.24	.10	.02	.03	.13	.07	.15	.26					
	10,000	.27	.38	.13	.03	.05	.19	.11	.23	.41					
	12,000	.39	.55	.17	.05	.07	.26	.16	.34	.59					
	14,000	.53	.75	.07	.09	.33	.21	.46	.80						
	3,100	.06	.08	.06	.01	.02	.08	.04	.06	.09					
	4,000	.09	.13	.09	.02	.03	.12	.07	.09	.15					
50	5,000	.15	.20	.12	.03	.04	.17	.10	.14	.23					
	6,000	.21	.29	.16	.04	.06	.23	.14	.21	.33					
	7,000	.29	.40	.19	.06	.08	.30	.18	.28	.45					
	7,500	.33	.46		.07	.09	.34	.21	.32	.52					
	3,700	.05	.07	.04	<.01	<.01	.05	.02	.05	.07					
	4,000	.05	.08	.05	<.01	.01	.05	.03	.06	.08					
60	6,000	.12	.17	.08	.02	.02	.10	.06	.13	.19					
	8,000	.22	.31	.12	.03	.04	.17	.10	.24	.33					
	10,000	.34	.48	.16	.04	.06	.24	.14	.37	.52					
	11,000	.41	.58	.18	.05	.08	.28	.17	.45	.63					
	4,500	.07	.10	.05	<.01	.01	.06	.03	.06	.11					
	6,000	.12	.17	.08	.02	.02	.10	.06	.11	.19					
70	8,000	.22	.31	.12	.03	.04	.17	.10	.19	.33					
	10,000	.34	.48	.16	.04	.06	.24	.14	.30	.52					
	12,000	.49	.69		.06	.09	.33	.20	.43	.75					
	13,000	.58	.81		.07	.11	.38	.23	.51	.88					
	5,000	.07	.10	.05	<.01	.01	.06	.03	.06	.10					
	6,000	.10	.14	.07	.01	.02	.08	.04	.08	.15					
80	8,000	.17	.24	.10	.02	.03	.13	.07	.15	.26					
	10,000	.27	.38	.13	.03	.05	.19	.11	.23	.41					
	12,000	.39	.55	.17	.05	.07	.26	.16	.34	.59					
	13,500	.49	.70		.06	.09	.31	.19	.43	.75					
	7,400	.15	.21	.09	.02	.03	.11	.06	.13	.22					
	8,000	.17	.24	.10	.02	.03	.13	.07	.15	.26					
12	10,000	.27	.38	.13	.03	.05	.19	.11	.23	.41					
	12,000	.39	.55	.17	.05	.07	.26	.16	.34	.59					
	13,000	.46	.65	.19	.06	.08	.30	.18	.40	.69					

Note: Refer to Table for Cooling Coil and Chilled Water Coil Pressure Losses. (Rooftop Arrangements K,L). Include the coil pressure loss with the above data.

Table PD-9 - DX Cooling Coil Performance Data (Ref. R-22) - Rooftop Arrangements K, L

		r Face	-	Capacity based on 95 F EDB, 74 F EWB, 45 F Sat. Suction, 100 F Liquid Number of Rows										
	Air		Fin	4 6										
Unit	Flow	Velocity	Spacing	Capacity	L.A.T.	A.P.D.	WT.	Capacity	L.A.T.	A.P.D.	WT.			
Capacity	(SCFM)	(FPM)	(FPF)	(MBH)	(DB/WB)	In. W.C.	(LBS)	(MBH)	(DB/WB)	In. W.C.	(LBS)			
10,15	1200	240	*96	()	(==,=,		62	(,	(==/=/		84			
			*120				65				89			
			144	77.0	55/55	0.16	70 62	87.1	52 / 52	0.23	95			
	1500	301	96	75.5	62/60	0.20	62				84			
			*120	83.8	59 / 58	0.22	65	97.8	55 / 55	0.32	89			
			144	90.3	57 / 56	0.23	70	103.8	53 / 53	0.35	95			
	2000	401	96	89.5	64/62	0.33	62	110.2	59 / 58	0.49	84			
			120	100.3	61/60	0.35	65	121.6	57 / 56	0.52	89			
	2500	501	144 96	109.0	59 / 58	0.37	70 62	130.6	55/55	0.55	95 84			
	2500	501	120	100.8 113.7	66 / 63 63 / 61	0.46 0.49	62 65	127.7 142.5	61 / 60 58 / 58	0.68 0.73	89			
			120	124.5	61/60	0.49	70	154.5	56 / 56	0.73	09 95			
	3000	601	96	110.2	68/64	0.52	62	142.9	62/61	0.78	84			
	3000	001	120	124.9	65/63	0.64	65	161.1	59 / 59	0.94	89			
			144	139.2	62/61	0.66	70	176.0	57 / 57	1.01	95			
20,25,50	1600	217	*96	91.1	59 / 58	0.11	84	170.0	0.707		115			
_0,20,00			*120	99.5	56 / 56	0.12	89				122			
			144	106.4	54 / 54	0.13	95	120.8	51/51	0.20	130			
	2000	271	96	105.3	61/59	0.17	84	129.3	55 / 55	0.25	115			
			120	117.2	58/57	0.18	89	138.7	53 / 53	0.27	122			
			144	126.6	56 / 55	0.20	95	145.3	52 / 52	0.29	130			
	3000	407	96	136.1	64/61	0.33	84	171.4	58 / 57	0.50	115			
			120	154.4	61/59	0.36	89	186.6	56 / 56	0.54	122			
			144	169.8	58/58	0.38	95	198.1	54 / 54	0.57	130			
	4000	542	96	160.0	66 / 63	0.51	84	204.4	61/60	0.77	115			
			120	184.1	63/61	0.55	89	224.8	58 / 58	0.82	122			
			144	205.2	61/59	0.59	95	243.3	56 / 56	0.87	130			
	4400	596	96	168.6	67/64	0.58	84	215.7	62 / 60	0.87	115			
			120	194.5	64/62	0.63	89	238.1	59 / 59	0.94	122			
00.05.00	0.100	0.10	144	217.7	61/60	0.67	95	261.2	57 / 57	1.00	130			
30,35,60, 70	2400	246	96 120	134.9 148.7	59 / 58 57 / 56	0.14	105	159.5 169.1	55/54	0.21	145			
70			120	148.7	57 / 56 55 / 54	0.15 0.17	112 119	176.9	53 / 53 51 / 51	0.23 0.24	155 166			
	3000	307	96	156.2	61/59	0.17	105	186.3	56 / 56	0.24	145			
	3000	307	120	173.6	58/57	0.21	112	201.5	54 / 54	0.32	145			
			144	187.2	56 / 56	0.23	112	213.6	52 / 52	0.34	166			
	4000	410	96	185.7	64/61	0.34	105	228.1	58/58	0.51	145			
	1000	110	120	208.6	61/59	0.36	112	251.1	56 / 55	0.54	155			
			144	227.3	58/58	0.39	119	269.5	54 / 54	0.58	166			
	5000	512	96	209.8	66/62	0.47	105	264.7	60 / 59	0.71	145			
			120	237.6	63/61	0.51	112	294.9	57 / 57	0.76	155			
			144	260.7	60 / 59	0.55	119	319.7	55 / 55	0.81	166			
	5700	584	96	224.3	67 / 63	0.57	105	287.5	61/60	0.85	145			
			120	255.0	64/62	0.61	112	322.7	58 / 58	0.91	155			
			144	281.8	61/60	0.65	119	352.0	56 / 56	0.97	166			
40,80	3300	304	96	173.1	61/59	0.21	115	207.5	56 / 55	0.31	158			
			120	191.6	58/57	0.22	122	224.7	54 / 54	0.33	170			
	1000	000	144	205.9	56/56	0.24	130	237.6	52 / 52	0.36	182			
	4000	369	96	194.3	63/60	0.29	115	238.6	57 / 57	0.43	158			
			120	216.5	60 / 58	0.31	122	260.6	55 / 55 52 / 52	0.46	170			
	5000	461	144	234.1	58/57	0.33	130	277.7	53 / 53 F0 / F9	0.49	182			
	5000	461	96 120	219.9 246.8	65/62 62/60	0.40 0.43	115 122	277.9 306.9	59 / 58 56 / 56	0.60 0.65	158 170			
			120	246.8 271.9	62/60 59/58	0.43	122	306.9	56 / 56 54 / 54	0.65	170			
	6000	553	96	271.9	59/58 66/63	0.46	130	330.3	54 / 54 60 / 59	0.89	158			
	0000	000	120	241.3	63/61	0.53	122	312.4 348.2	58 / 59 58 / 57	0.79	158			
			144	307.7	61/59	0.60	130	340.2	56 / 55	0.85	182			
	6300	581	96	247.1	67/63	0.56	115	321.9	61/60	0.84	158			
	0000		120	281.7	64/62	0.60	122	359.7	58 / 57	0.91	170			
			144	317.7	61/60	0.64	130	391.3	56 / 56	0.97	182			

Conversions:

Notes:

2119 SCFM = 1 m/s 196.8 FPM = 1 m/s 3.412 MBH = 1 kW

Data certified in accordance with ARI Standard 410.
 Capacity based on 95 F EDB, 74 F EWB, 45 F Sat. Suction, 100 F Liquid.
 Weight listed is the total weight of the dry coil.

4.) Coils denoted by an asterisk (*) require special pricing; consult product marketing for special coil requirements and pricing.

(F-32) 5/9 = C 1 In. W.C. = 248.8 Pa 1 LB. = 0.453 kg

Table PD-10 — DX Cooling Coil Performance Data (Ref. R-22) — Rooftop Arrangements K, L

			-		Capacity ba	sed on 80 F		WB, 45 F Sat. Su	ction, 100 F I	_iquid	
	• ·	F					Number	of Rows			
Unit	Air Flow	Face	Fin	Canacity	4		WT.	Capacity	6		WT.
Capacity	(SCFM)	Velocity (FPM)	Spacing (FPF)	Capacity (MBH)	L.A.T. (DB/WB)	A.P.D. In. W.C.	(LBS)	(MBH)	L.A.T. (DB/WB)	A.P.D. In. W.C.	(LBS)
10,15	1200	240	*96	(INIDII)		III. W.C.	62			III. W.C.	84
10,15	1200	240	*120				65				89
			*144				70				95
	1500	301	*96				70 62				84
			*120				65				89
			*144	58.6	55 / 54	0.23	70				95
	2000	401	96	57.4	60 / 58	0.33	62	68.7	57 / 56	0.48	84
			120	64.9	58 / 57	0.35	65	80.4	54 / 54	0.52	89
			144	71.3	56 / 56	0.37	70	84.8	53 / 53	0.55	95
	2500	501	96	64.9	61/59	0.46	62	79.5	58/57	0.67	84
			120	74.1	59 / 58	0.49	65	89.9	56 / 56	0.71	89
			144	82.0	57 / 57	0.52	70	97.4	55/54	0.76	95
	3000	601	96	71.3	62/60	0.59	62	89.8	59/58	0.87	84
			120	82.0	60 / 59	0.63	65	101.2	57 / 56	0.93	89
			144	91.3	58/57	0.67	70	111.1	55/55	1.00	95
20,25,50	1600	217	*96				84				115
			*120				89				122
			*144				95	79.8	50 / 50	0.19	130
	2000	271	*96				84				115
			*120				89				122
			144	82.2	54 / 54	0.20	95	97.7	51/51	0.29	130
	3000	407	96	88.2	59 / 58	0.33	84	112.0	56 / 55	0.50	115
			120	97.7	58 / 57	0.36	89	123.1	54 / 54	0.53	122
			144	107.5	56 / 56	0.38	95	131.8	53 / 53	0.57	130
	4000	542	96	101.3	61 / 59	0.51	84	134.3	57 / 56	0.77	115
			120	116.3	59 / 58	0.54	89	149.4	55 / 55	0.82	122
			144	130.5	57 / 57	0.58	95	161.7	54 / 54	0.87	130
	4400	596	96	105.6	62 / 60	0.58	84	142.1	58 / 57	0.87	115
			120	123.1	60 / 58	0.62	89	158.7	56 / 55	0.94	122
			144	138.6	58/57	0.66	95	172.3	55 / 54	1.00	130
30,35,60,	2400	246	*96				105				145
70			*120				112				155
			144	103.8	53 / 53	0.16	119	119.4	50 / 50	0.25	166
	3000	307	*96	100.9	58 / 56	0.21	105				145
			*120	112.9	56 / 55	0.23	112				155
			144	122.5	54 / 54	0.24	119	141.9	51/51	0.36	166
	4000	410	96	120.4	59 / 58	0.34	105	151.4	55 / 55	0.51	145
			120	136.3	57 / 56	0.36	112	164.4	54 / 54	0.54	155
	5000	540	144	149.7	56 / 55	0.39	119	174.3	53 / 53	0.58	166
	5000	512	96	136.6	60 / 59	0.47	105	172.9	57 / 56	0.71	145
			120	155.9	58 / 57	0.51	112	188.8	55/55	0.76	155
	5700	F04	144	172.9	57 / 56	0.54	119	204.6	54 / 54	0.80	166
	5700	584	96 120	146.4	61 / 59	0.57	105	185.7 205 5	58 / 57 56 / 55	0.85	145
			120 144	168.0 187.2	59 / 58 57 / 57	0.61 0.65	112 119	205.5 225.4	56 / 55 54 / 54	0.90 0.96	155 166
40,80	3300	304	*96		57/57			220.4	04/04	0.90	158
40,00	3300	304	*120	113.2 126.2	57 / 56 55 / 55	0.21 0.22	115 122				158
			144	136.5	55 / 55 54 / 54	0.22	130	155.2	51/51	0.36	182
	4000	369	96	127.4	58/57	0.24	115	156.7	55/54	0.30	158
	4000	303	120	143.1	56 / 56	0.29	122	168.7	53 / 54 53 / 53	0.43	170
			144	155.9	55 / 54	0.31	130	179.8	52 / 52	0.40	182
	5000	461	96	144.9	60 / 58	0.33	115	179.0	56 / 56	0.48	158
	5000	-01	120	164.1	58/57	0.40	122	197.6	55 / 54	0.64	170
			144	180.2	56 / 55	0.43	130	213.9	53 / 53	0.68	182
	6000	553	96	159.7	61 / 59	0.40	115	199.4	57 / 56	0.08	158
	0000	000	120	182.0	59 / 58	0.57	122	224.5	55 / 55	0.84	170
			144	201.1	57 / 56	0.61	130	245.1	54 / 54	0.90	182
	6300	581	96	163.8	61 / 59	0.56	115	205.6	58/57	0.84	158
	0300	301	120	186.9	59 / 58	0.61	122	232.1	56 / 55	0.84	170
				100.0	55/50	0.01	166	202.1	30/33	0.00	170

Conversions:

2119 SCFM = 1 m/s 196.8 FPM = 1 m/s 3.412 MBH = 1 kW

Notes:

1.) Data certified in accordance with ARI Standard 410.

Capacity based on 80 F EDB, 67 F EWB, 45 F Sat. Suction, 100 F Liquid.
 Weight listed is the total weight of the dry coil.

4.) Coils denoted by an asterisk (*) require special pricing; consult product marketing for special coil requirements and pricing.

(F-32) 5/9 = C 1 In. W.C. = 248.8 Pa 1 LB. = 0.453 kg

Table PD-11 — Standard Conditions and Specifications — Refrigerant DX Coil CONDITIONS 0 Ft. Elevation Entering Air Temperature DB: 80 F 95 Entering Air Temperature WB: Suction Temperature: 67 F 74 45 F 45 Liquid Temperature: 100 F 100 Fouling Factor: SPECIFICATIONS 0 HR x FT² x F/BTU FD — Staggered Tube Pattern ¹/₂" O.D. x 0.016" TWT Copper Coil Type: Tube Size: Row Sizes: 4,6 Fin Type: DE Optional DH Fin Size: 0.0055" Aluminum Fin Spacing: Standard - 96, 120, 144 Fins/Ft. Optional — 72 thru 180 Fins/Ft. Circuiting: Standard — Single Optional — Dual: a) Intertwined b) Face-Split Turbulators: No

DIVIENSIONAL DATA LISTING			
Unit Size	Finned Width	Fixed Finned Length	
10, 15	30.00	23.00	
20, 25, 50	30.00	34.00	
30, 35, 60, 70	30.00	45.00	
40, 80	30.00	50.00	

Note:

1. Above specification is for standard coil with standard fin spacing. Specify fin spacing and dual circuiting.2. Special coils — contact Product Marketing.

3. Every order requires a coil selection.

Table PD-12 — Chilled Water Coil Performance Data — Rooftop Arrangements K, L

	onniou m		onnanoo bata	ta — кооптор Arrangements к, L Capacity based on 95 F EDB, 74 F EWB, 45 EWT, 70 GPM							
			-		oupu	Sity Bubbu t	Number		, , , o di m		
	Air	Face	Fin		4				6		
Unit Capacity	Flow (SCFM)	Velocity (FPM)	Spacing (FPF)	Capacity (MBH)	L.A.T. (DB/WB)	A.P.D. In. W.C.	WT. (LBS)	Capacity (MBH)	L.A.T. (DB/WB)	A.P.D. In. W.C.	WT. (LBS)
10,15	960	200	96	63.4	56 / 54	0.08	62	74.1	50 / 50	0.12	84
			120	68.4	53 / 52	0.09	65	77.7	49 / 49	0.14	89
	1000	004	144	72.1	51/51	0.11	70	80.0	48/47	0.16	95
	1600	334	96 120	89.0 97.3	60 / 58 58 / 56	0.18 0.22	62 65	109.1 116.4	54 / 53 52 / 52	0.28 0.32	84 89
			120	97.3 103.8	56 / 56 55 / 55	0.22	70	121.8	52 / 52 51 / 50	0.32	89 95
	2900	605	96	120.6	66 / 63	0.24	62	156.0	60 / 59	0.37	84
	2000	000	120	134.4	64/61	0.52	65	170.7	58/57	0.78	89
			144	145.0	61/60	0.60	70	181.6	56 / 56	0.90	95
20,25,50	1800	254	96	109.8	58/56	0.12	84	131.2	52 / 52	0.18	115
			120	119.0	55/54	0.14	89	138.6	50 / 50	0.21	122
			144	126.3	53 / 53	0.16	95	143.9	49 / 49	0.24	130
	3000	424	96	148.1	63 / 60	0.27	84	185.5	57 / 56	0.40	115
			120	163.0	60 / 58	0.31	89	199.9	55 / 54	0.46	122
	1000	607	144	174.9	58/57	0.35	95	210.8	53 / 53	0.52	130
	4300	607	96 120	175.1 195.3	67 / 63 64 / 61	0.47 0.52	84 89	226.1 247.5	61 / 59 58 / 57	0.70 0.78	115 122
			120	210.8	62/60	0.52	89 95	263.2	56 / 57 56 / 56	0.78	122
30,35,60,	1900	203	96	123.5	56 / 55	0.08	105	144.6	51/50	0.30	145
70	1500	200	120	133.2	54 / 53	0.00	112	151.8	49 / 49	0.12	155
			144	140.5	52/51	0.11	119	156.7	48/48	0.17	166
	3200	341	96	172.1	61/59	0.19	105	211.2	55 / 54	0.29	145
			120	188.1	58/57	0.22	112	225.7	53 / 53	0.34	155
			144	200.8	56 / 55	0.25	119	236.7	51 / 51	0.38	166
	4500	480	96	205.0	65/61	0.33	105	258.8	59 / 57	0.49	145
			120 144	226.7	62/60	0.37	112	281.0 297.4	56 / 56	0.55	155 166
	5700	608	96	243.8 227.8	60 / 58 67 / 63	0.42 0.46	119 105	297.4	55 / 54 61 / 59	0.63 0.69	166
	5700	000	120	253.7	64/62	0.40	105	320.4	59 / 58	0.09	145
			144	273.7	62/61	0.52	112	340.8	57 / 57	0.89	166
40,80	2100	202	96	136.2	56 / 55	0.08	115	159.5	51/51	0.12	158
,			120	146.9	54 / 53	0.09	122	167.5	49/49	0.14	170
			144	155.0	52/51	0.11	130	172.9	48/48	0.16	182
	3500	336	96	188.4	61 / 59	0.19	115	230.8	55 / 54	0.28	158
			120	205.7	58/57	0.22	122	246.5	53 / 53	0.33	170
	4000	470	144	219.6	56 / 55	0.25	130	258.6	51/51	0.37	182
	4900	470	96	223.8	64/61	0.32	115	281.9	59 / 57	0.47	158
			120 144	247.4 265.9	62/60	0.36	122 130	305.8 323.6	56 / 56 55 / 54	0.54	170 182
	6300	605	96	265.9	60 / 58 67 / 63	0.41 0.46	130	323.6	55 / 54 61 / 60	0.61 0.68	182
	0300	000	120	250.4	64/62	0.46	122	321.3	59 / 58	0.68	158
			144	300.7	62/61	0.51	130	373.6	57 / 57	0.89	182

Conversions: 2119 SCFM = 1 m/s 196.8 FPM = 1 m/s 3.412 MBH = 1 kW (F-32) 5/9 = C 1 ln. W.C. = 248.8 Pa 1 LB. = 0.453 kg

Notes:

Data certified in accordance with ARI Standard 410.
 Capacity based on 95 F EDB, 74 F EWB, 45 F EWT, 70 GPM.
 Weight listed is the total weight of the dry coil.
 Contact product marketing for special coil requirements.

Table PD-13 — Chilled Water Coil Performance Data — Rooftop Arrangements K, L

			-	Capacity based on 80 F EDB, 67 F EWB, 45 EWT, 70 GPM Number of Rows							
	Air	Face	- Fin		4	1	Number	of Rows	6		
Unit	Flow	Velocity	Spacing	Capacity	L.A.T.	A.P.D.	WT.	Capacity	L.A.T.	A.P.D.	WT.
Capacity	(SCFM)	(FPM)	(FPF)	(MBH)	(DB/WB)	In. W.C.	(LBS)	(MBH)	(DB/WB)	In. W.C.	(LBS)
10,15	960	200	96	44.6	53 / 52	0.08	62	52.0	49/49	0.12	84
10,10	000	200	120	48.1	51/50	0.09	65	54.5	48/47	0.14	89
			144	50.6	49/49	0.11	70	56.1	47 / 47	0.16	95
	1600	334	96	62.8	56 / 54	0.18	62	76.9	52 / 51	0.28	84
			120	68.7	54 / 53	0.22	65	82.0	50 / 50	0.32	89
			144	73.3	52/52	0.24	70	85.7	49 / 49	0.37	95
	2900	605	96	85.6	60 / 58	0.47	62	110.5	56 / 55	0.70	84
			120	95.3	58 / 57	0.53	65	120.7	54 / 53	0.79	89
			144	102.7	57 / 56	0.60	70	128.2	53 / 52	0.90	95
20,25,50	1800	254	96	77.4	54 / 53	0.12	84	92.3	50 / 50	0.18	115
			120	83.9	52 / 52	0.14	89	97.5	49/49	0.21	122
	3000	424	144 96	89.0 104.9	51 / 50 58 / 56	0.16 0.27	95 84	101.2 131.0	48 / 48 53 / 53	0.24 0.40	130 115
	3000	424	120	104.9	56 / 56 56 / 55	0.27	84 89	141.2	53 / 53 52 / 51	0.40	122
			144	123.7	54 / 54	0.31	95	148.6	52/51	0.47	130
	4300	607	96	123.7	60 / 58	0.35	84	140.0	56/55	0.55	115
	4500	007	120	138.4	58 / 57	0.53	89	174.9	54 / 54	0.79	122
			144	149.2	57 / 56	0.60	95	185.9	53 / 53	0.90	130
30,35,60,	1900	203	96	86.9	53 / 52	0.08	105	101.6	49 / 49	0.12	145
70 70			120	93.7	51/50	0.09	112	106.6	48 / 48	0.14	155
			144	98.8	50 / 49	0.11	119	110.0	47 / 47	0.17	166
	3200	341	96	121.7	56 / 55	0.19	105	149.1	52/52	0.29	145
			120	133.0	54 / 53	0.22	112	159.3	51 / 50	0.34	155
			144	141.9	53 / 52	0.25	119	166.8	49 / 49	0.38	166
	4500	480	96	145.5	59 / 57	0.33	105	183.3	55/54	0.49	145
			120	160.6	57 / 56	0.37	112	198.5	53 / 53	0.56	155
	5700	c00	144	172.5	55 / 55	0.42	119 105	209.9	52 / 52	0.63	166
	5700	608	96 120	161.7 179.8	61 / 58 59 / 57	0.47 0.53	105	207.3 226.6	56 / 55 55 / 54	0.70 0.79	145 155
			120	193.8	59 / 57 57 / 56	0.53	112	240.7	53 / 54 53 / 53	0.79	166
40,80	2100	202	96	95.9	53 / 52	0.08	115	112.1	49/49	0.30	158
40,00	2100	202	120	103.4	51/51	0.00	122	117.7	48/48	0.12	170
			144	109.0	50 / 49	0.11	130	121.5	47 / 47	0.16	182
	3500	336	96	133.3	56 / 55	0.19	115	162.9	52 / 52	0.28	158
			120	145.5	54 / 53	0.22	122	174.0	51/50	0.33	170
			144	155.2	53 / 52	0.25	130	182.2	49 / 49	0.37	182
	4900	470	96	158.9	59 / 57	0.32	115	199.6	55/54	0.47	158
			120	175.2	57 / 56	0.36	122	216.1	53 / 53	0.54	170
			144	188.1	55 / 55	0.41	130	228.4	52 / 52	0.61	182
	6300	605	96	177.7	61 / 58	0.47	115	227.4	56 / 55	0.69	158
			120	197.5	59 / 57	0.52	122	248.5	55/54	0.78	170
			144	212.8	57 / 56	0.59	130	263.9	54 / 53	0.89	182

Conversions:

2119 SCFM = 1 m/s 196.8 FPM = 1 m/s 3.412 MBH = 1 kW (F-32) 5/9 = C1 ln. W.C. = 248.8 Pa 1 LB. = 0.453 kg

Notes: 1.) Data certified in accordance with ARI Standard 410. 2.) Capacity based on 80 F EDB, 67 F EWB, 45 F EWT. 70 GPM. 3.) Weight listed is the total weight of the dry coil. 4.) Contact product marketing for special coil requirements.

Table PD-14 — Standard Conditions and Specifications — Chilled Water Coil

CONDITIONS		
Elevation	0 Ft.	
Entering Air Temperature DB:	80 F	95
Entering Air Temperature WB:	67 F	78
Entering Water Temperature:	45 F	45
Water Flow Rate:	70 GPM	70 GPM
Tube Velocity:	4 Ft./Sec.	
Fouling Factor:	0 HR x FT ² x F/B	TU
SPECIFICATIONS		
Coil Type:	W — Full Row S	
Tube Size:	⁵ / ₈ " O.D. x 0.024	" TWT Copper
Row Sizes:	4,6	
Fin Type:	Prima Flo	
Fin Size:	0.0075" Aluminu	
Fin Spacing:	Standard — 96,	
	Optional — 80 th	nru 168 Fins/Ft.
Circuiting:	Single Circuit	
Drainable:	Yes	
Turbulators:	No	
DIMENSIONAL DATA LISTING		
Unit Size	Finned Width	Fixed Finned Length
10, 15	30.00	23.00
20, 25, 50	30.00	34.00
30, 35, 60, 70	30.00	45.00
40, 80	30.00	50.00

Note:

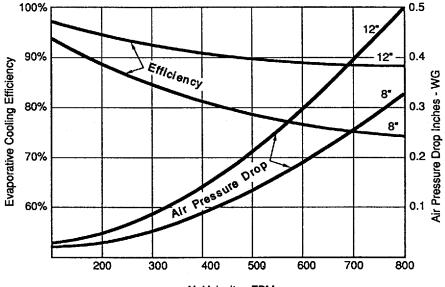
1. Above specification is for standard coil with standard fin spacing.

2. Special coils - contact Product Marketing.

3. Every order requires a coil selection.

Table PD-15 — Evaporative Cooling Performance Data and Pressure Drop — Rooftop Arrangements D,E

-					8" Satu	uration	12″ Sa	aturation	Pressu	re Drop		(1)	(1)
	CF	M	Effic	iency	Effici	ency	8" or 12"	Deep Media	in. of	Water	"A" Unit	Shipping	Operating
	(cu. m/s)	(cu. m/s)	Ra	nge	Rar	nge [–]	Face Area	Size	(KPa)	(KPa)	Width	Wt.	Wt.
Unit Size	Min.	Max.	Min.	Max.	Min.	Max.	Ft. ² (m ²)	ln. (mm)	Min.	Max.	ln. (mm)	lb. (kg)	lb. (kg)
10, 15	800	4,500	78	88	89	92	7.01	31 x 32 ⁹ /16	0.03	0.23	32 ³ /4	137	301
	(0.378)	(2.124)					(0.65)	(787) (827)	(0.01)	(0.06)	(832)	(62)	(136)
20, 25, 50	1,600	5,500	77	88	88	92	9.38	31 x 43 ⁹ /16	0.03	0.20	43 ³ /4	166	386
	(0.755)	(2.596)					(0.87)	(787) (1106)	(0.01)	(0.05)	(1111)	(75)	(175)
30, 35, 60, 70	2,400	8,500	77	86	88	92	11.75	31 x 54 ⁹ /16	0.05	0.30	54 ³ /4	192	468
	(1.133)	(4.012)					(1.09)	(787) (1386)	(0.01)	(0.07)	(1391)	(87)	(212)
40, 80	3,200	8,500	77	86	87	92	12.92	31 x 60	0.07	0.28	60 ¹ / ₄	206	509
	(1.510)	(4.012)					(1.20)	(787) (1524)	(0.02)	(0.07)	(1530)	(93)	(231)


Note:

1. These weights are for evaporative cooler only.

CELdek® Evaporative Media

The Trane Evaporative Cooler uses high efficiency CELdek® media. CELdek[®] is made from a special cellulose paper, impregnated with insoluble anti-rot salts and rigidifying saturants. The cross fluted design of the pads induces high-turbulent mixing of air and water for optimum heat and moisture transfer. The Trane evaporative coolers are standard with eight-inch deep media which produce high efficiency and high face velocities, along with a two-inch distribution pad to disperses the water evenly over the pads. We offer an optional 12-inch deep media (see chart at right for efficiencies).

Air Velocity - FPM

Electrical Data

Rooftop Gas Heating Units — Motor Electrical Data

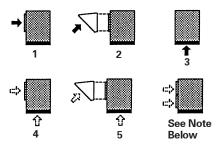
11560/1 ODP 7.2 10.9 13.4 18.0 26.0 33.0 NA <	Valtara	1/2 HP	³ / ₄ HP	1 HP	1 1/2 HP	2 HP	3 HP	5 HP	7 1/2 HP	10 HP	15 HP
208601 ODP 4.3 6.0 6.7 9.3 11.5 16.5 NA NA NA NA 208001 ODP 4.3 5.5 6.7 9.0 13.0 16.5 NA NA NA NA 208001 ODP 2.8 2.6 3.2 4.8 6.2 8.4 12.2 24.0 28.0 44.9 208003 ODP 1.4 1.3 1.6 2.4 3.1 4.2 6.1 10.8 15.6 11560/1 TE 9.0 11.1 1.4 1.5 1.9 2.5 3.6 5.3 8.6 10.6 15.6 11560/1 TE 3.9 4.5 6.8 8.0 12.3 17.0 NA NA NA NA 20960/3 TE 2.2 2.8 3.6 4.9 6.4 9.2 13.0 20.4 26.4 22.0 12.2 19.2 15.76/0/3 12.2 19.2 12.5 16.4 NA NA NA NA <	Voltage										
23060/1 ODP 4.3 5.5 6.7 9.0 13.0 16.5 NA NA NA NA 2306/03 ODP 2.8 2.6 3.2 4.8 6.2 8.4 12.2 24.0 28.0 44.9 230/60/3 ODP 1.4 1.3 1.6 2.4 3.1 4.2 2.1 2.6 3.6 40.6 57/60/3 ODP 1.1 1.4 1.5 1.9 2.5 3.6 5.3 8.6 10.6 15.6 115/60/1 TE 9.0 11.4 1.36 1.7.6 24.6 34.0 NA NA NA NA 2006/01 TE 4.5 5.7 6.8 8.8 12.3 17.0 NA NA NA NA 2006/01 TE 2.1 2.8 3.4 4.8 6.4 9.4 14.0 21.8 2.8 2.4 2006/01 TE 0.9 1.3 1.7 1.9 2.6 3.6 5.1 7.6 9.6											
208603 ODP 2.8 2.6 3.2 4.8 6.2 8.4 12.2 24.0 28.0 44.9 230/60/3 ODP 2.8 2.6 3.2 4.8 6.2 8.4 12.2 21.6 26.6 40.6 460603 ODP 1.4 1.3 1.6 2.4 3.1 4.2 6.1 10.8 13.3 20.3 57560/3 ODP 1.1 1.4 1.5 1.7.6 24.6 34.0 NA NA NA NA 20860/1 TE 3.9 4.5 6.8 8.0 12.3 17.0 NA NA NA NA 20860/3 TE 2.1 2.8 3.4 4.8 6.4 9.4 14.0 21.8 28.7 42.6 23060/0 TE 1.1 1.4 1.8 2.4 3.2 4.6 6.5 10.2 13.2 19.2 57560/3 TE 0.9 1.3 1.7 1.9 2.6 3.6 5.1 7.6 9.6											
23060/3 ODP 2.8 2.6 3.2 4.8 6.2 8.4 1.2.2 2.1.6 2.6.6 40.6 460/60/3 ODP 1.4 1.3 1.6 2.4 3.1 4.2 6.1 10.8 13.3 20.3 57/60/3 ODP 1.1 1.4 1.5 1.9 2.5 3.6 5.3 8.6 10.6 15.6 115/60/1TE 3.9 4.5 6.8 8.0 12.3 17.0 NA NA NA NA 20060/0TE 2.1 2.8 3.6 4.9 6.4 9.2 13.0 20.4 26.4 28.7 42.6 20060/0TE 1.1 1.4 1.8 2.4 3.2 4.6 6.5 10.2 13.2 19.2 575/60/3TE 0.9 1.3 1.7 1.9 2.6 3.6 5.1 7.6 9.6 14.4 115/60/1HCODP 5.2 6.4 9.2 12.5 16.4 NA NA NA </td <td></td>											
46060/3 ODP 1.4 1.3 1.6 2.4 3.1 4.2 6.1 10.8 13.3 20.3 575/60/3 ODP 1.1 1.4 1.5 1.9 2.5 3.6 5.3 8.6 10.6 15.6 115/60/1 TE 3.9 4.5 6.8 8.0 12.3 17.0 NA NA NA NA 203060/1 TE 4.5 5.7 6.8 8.8 12.3 17.0 NA NA NA NA 203060/1 TE 2.1 2.8 3.4 4.8 6.4 9.4 14.0 21.8 28.7 42.6 203060/3 TE 1.1 1.4 1.8 2.4 3.6 6.5 10.2 13.2 19.2 575/60/3 TE 0.9 1.3 1.7 1.9 2.6 3.6 5.1 7.6 9.6 14.4 15/60/1 HEODP 5.2 6.4 9.2 12.5 16.4 NA NA NA NA 203060/1 HEODP 2.6 5.2 3.6 5.0 6.7 9.2 14.7											
57560/3 ODP 11 1.4 1.5 1.9 2.5 3.6 5.3 8.6 10.6 15.6 115/60/1 TE 9.0 11.4 13.6 17.6 24.6 34.0 NA NA NA NA 209/60/1 TE 3.9 4.5 5.7 6.8 8.8 12.3 17.0 NA NA NA NA 209/60/3 TE 2.1 2.8 3.4 4.8 6.4 9.4 14.0 21.8 28.7 42.6 230/60/3 TE 1.1 1.4 1.8 2.4 3.2 4.6 6.5 10.2 13.2 19.2 575/60/3 TE 0.9 1.3 1.7 1.9 2.6 3.6 5.1 7.6 9.6 14.4 115/60/1 HEODP 5.2 6.4 9.2 12.5 16.4 NA											
11560/1 TE 9.0 11.4 13.6 17.6 24.6 34.0 NA NA NA NA 20860/1 TE 3.9 4.5 6.8 8.0 12.3 17.0 NA NA NA NA NA 20960/1 TE 4.5 5.7 6.8 8.8 12.3 17.0 NA NA NA NA NA 20960/3 TE 2.1 2.8 3.4 4.8 6.4 9.2 13.0 20.4 26.4 28.4 23060/3 TE 1.1 1.4 1.8 2.4 3.2 4.6 6.5 10.2 13.2 19.2 57560/3 TE 0.9 1.3 1.7 1.9 2.6 3.6 5.1 7.6 9.6 14.4 10560/1 HEODP 5.2 6.4 9.2 12.5 16.4 NA NA <td></td>											
20860/1 TE 3.9 4.5 6.8 8.0 12.3 17.0 NA NA NA NA 20960/1 TE 4.5 5.7 6.8 8.8 12.3 17.0 NA NA NA NA 20960/3 TE 2.1 2.8 3.4 4.8 6.4 9.2 13.0 20.4 26.4 28.4 20960/3 TE 1.1 1.4 1.8 2.4 3.2 4.6 6.5 10.2 13.2 19.2 575/60/3 TE 0.9 1.3 1.7 1.9 2.6 3.6 5.1 7.6 9.6 14.4 115/60/1 HEODP 5.2 6.4 9.2 12.5 16.4 NA NA NA NA NA 208/60/1 HEODP 2.8 4.2 NA NA NA NA NA NA NA NA NA 208/60/1 HEODP 1.8 2.5 3.6 5.0 6.7 9.2 14.7 22.1											
230(60)1 TE 4.5 5.7 6.8 8.8 12.3 17.0 NA NA NA NA NA 208(60)3 TE 2.1 2.8 3.4 4.8 6.4 9.4 14.0 21.8 28.7 42.6 209(60)3 TE 1.1 1.1 1.4 1.8 2.4 3.2 4.6 6.5 10.2 13.2 19.2 175(60)1 HEODP 5.2 6.4 9.2 12.5 16.4 NA NA NA NA NA 209(60)1 HEODP 2.8 4.2 NA											
208/60/3 TE 2.1 2.8 3.4 4.8 6.4 9.4 14.0 21.8 28.7 42.6 230/60/3 TE 1.1 1.4 1.8 2.4 3.2 4.6 6.5 10.2 13.2 19.2 575/60/3 TE 0.9 1.3 1.7 1.9 2.6 3.6 5.1 7.6 9.6 14.4 115/60/1 HEODP 5.2 6.4 9.2 12.5 16.4 NA											
230/60/3 TE 2.2 2.8 3.6 4.9 6.4 9.2 13.0 20.4 26.4 28.4 460/60/3 TE 1.1 1.4 1.8 2.4 3.2 4.6 6.5 10.2 13.2 19.2 575/60/3 TE 0.9 1.3 1.7 1.9 2.6 3.6 5.1 7.6 9.6 14.4 115/60/1 HEODP 2.8 4.2 NA SA SA											
460/60/3 TE 1.1 1.4 1.8 2.4 3.2 4.6 6.5 10.2 13.2 19.2 575/60/3 TE 0.9 1.3 1.7 1.9 2.6 3.6 5.1 7.6 9.6 14.4 208/60/1 HEODP 5.2 6.4 9.2 12.5 16.4 NA											
575/60/3 TE 0.9 1.3 1.7 1.9 2.6 3.6 5.1 7.6 9.6 14.4 115/60/1 HEODP 5.2 6.4 9.2 12.5 16.4 NA NA <td></td>											
115/60/1 HEODP 5.2 6.4 9.2 12.5 16.4 NA NA NA NA NA 208/60/1 HEODP 2.8 4.2 NA											
208/60/1 HEODP 2.8 4.2 NA	575/60/3 TE						3.6				
230/60/1 HEODP 2.6 5.2 4.6 6.3 8.2 NA NA NA NA NA 208/60/3 HEODP 1.8 2.5 3.6 5.0 6.7 9.2 14.7 22.1 29.0 40.0 230/60/3 HEODP 1.6 2.3 2.8 3.8 5.4 8.0 12.8 19.2 25.2 36.0 460/60/3 HEODP 0.8 1.2 1.4 1.9 2.7 4.0 6.4 9.6 25.2 18.0 575/60/3 HEODP NA NA NA 115 1.8 2.3 3.2 5.2 7.7 10.1 14.5 208/60/1 HETE NA 208/60/1 HETE NA 208/60/3 HETE NA NA NA 3.2 4.6 6.2 8.8 14.7	115/60/1 HEODP	5.2	6.4	9.2	12.5	16.4	NA	NA	NA	NA	NA
208/60/3 HEODP 1.8 2.5 3.6 5.0 6.7 9.2 14.7 22.1 29.0 40.0 230/60/3 HEODP 1.6 2.3 2.8 3.8 5.4 8.0 12.8 19.2 25.2 36.0 460/60/3 HEODP 0.8 1.2 1.4 1.9 2.7 4.0 6.4 9.6 25.2 18.0 75/60/3 HEODP NA NA 1.1 1.8 2.3 3.2 5.2 7.7 10.1 14.5 115/60/1 HETE 5.5 7.6 9.2 14.0 19.2 NA NA NA NA 208/60/1 HETE NA NA NA NA NA NA NA NA 208/60/3 HETE NA NA 3.2 4.6 6.2 8.8 14.7 21.4 29.0 41.2 208/60/3 HETE NA NA 1.1 1.8 2.4 3.2 4.8 7.5 10.2 14.9 2	208/60/1 HEODP	2.8	4.2	NA	NA	NA	NA	NA	NA	NA	NA
230/60/3 HEODP 1.6 2.3 2.8 3.8 5.4 8.0 12.8 19.2 25.2 36.0 460/60/3 HEODP NA NA 1.1 1.9 2.7 4.0 6.4 9.6 25.2 18.0 575/60/3 HEODP NA NA NA 1.1 1.8 2.3 3.2 5.2 7.7 10.1 14.5 115/60/1 HETE 5.5 7.6 9.2 14.0 19.2 NA NA NA NA NA 208/60/1 HETE NA NA NA NA NA NA NA NA NA 208/60/3 HETE A.6 6.3 3.0 4.2 5.8 8.0 12.0 18.8 25.2 37.0 230/60/3 HETE A.6 6.3 3.0 4.2 5.8 8.0 12.0 18.8 25.2 37.0 230/60/3 ETE NA NA 1.1 1.8 2.4 3.2 4.8 7.5 10.2<	230/60/1 HEODP	2.6	5.2	4.6	6.3	8.2	NA	NA	NA	NA	NA
460/60/3 HEODP 0.8 1.2 1.4 1.9 2.7 4.0 6.4 9.6 25.2 18.0 575/60/3 HEODP NA NA 1.1 1.8 2.3 3.2 5.2 7.7 10.1 14.5 115/60/1 HETE 5.5 7.6 9.2 14.0 19.2 NA NA NA NA NA NA NA 208/60/1 HETE NA 208/60/1 HETE NA NA NA NA NA NA NA NA NA 208/60/3 HETE A.6 6.3 3.0 4.2 5.8 8.0 12.0 18.8 25.2 37.0 460/60/3 HETE A.6 6.3 3.0 4.2 5.8 8.0 12.0 18.8 25.2 37.0 208/60/3 2S1W NA NA 1.1 1.8 2.4 3.2 4.8 7.5 <	208/60/3 HEODP	1.8	2.5	3.6	5.0	6.7	9.2	14.7	22.1	29.0	40.0
575/60/3 HEODP NA NA 1.1 1.8 2.3 3.2 5.2 7.7 10.1 14.5 115/60/1 HETE 5.5 7.6 9.2 14.0 19.2 NA NA NA NA NA 208/60/1 HETE NA 208/60/1 HETE 2.8 3.8 4.6 7.0 9.6 NA NA NA NA NA 208/60/3 HETE NA NA 3.2 4.6 6.2 8.8 14.7 21.4 29.0 41.2 208/60/3 HETE 4.6 6.3 3.0 4.2 5.8 8.0 12.0 18.8 25.2 37.0 460/60/3 HETE 2.3 3.2 1.5 2.1 2.9 4.0 6.0 9.4 12.6 18.5 575/60/3 HETE NA NA 1.1 1.8 2.4 3.2 4.8	230/60/3 HEODP	1.6	2.3	2.8	3.8	5.4	8.0	12.8	19.2	25.2	36.0
115/60/1 HETE 5.5 7.6 9.2 14.0 19.2 NA NA <td>460/60/3 HEODP</td> <td>0.8</td> <td>1.2</td> <td>1.4</td> <td>1.9</td> <td>2.7</td> <td>4.0</td> <td>6.4</td> <td>9.6</td> <td>25.2</td> <td>18.0</td>	460/60/3 HEODP	0.8	1.2	1.4	1.9	2.7	4.0	6.4	9.6	25.2	18.0
200/60/1 HETE NA	575/60/3 HEODP	NA	NA	1.1	1.8	2.3	3.2	5.2	7.7	10.1	14.5
200/60/1 HETE NA	115/60/1 HETE	5.5	7.6	9.2	14.0	19.2	NA	NA	NA	NA	NA
230/60/1 HETE 2.8 3.8 4.6 7.0 9.6 NA											
208/60/3 HETE NA NA 3.2 4.6 6.2 8.8 14.7 21.4 29.0 41.2 230/60/3 HETE 4.6 6.3 3.0 4.2 5.8 8.0 12.0 18.8 25.2 37.0 460/60/3 HETE 2.3 3.2 1.5 2.1 2.9 4.0 6.0 9.4 12.6 18.5 575/60/3 HETE NA NA 1.1 1.8 2.4 3.2 4.8 7.5 10.2 14.9 208/60/3 2S1W NA NA 3.0/1.0 4.4/1.8 6.2/3.0 9.0/3.4 15.0/6.0 21.0/7.5 29.0/9.6 NA 230/60/3 2S1W NA NA 3.0/1.0 4.4/1.8 5.9/2.9 8.0/3.3 14.0/6.2 19.5/7.5 25.0/9.3 NA 460/60/3 2S1W NA NA NA NA NA NA NA NA NA 75/60/3 2S1W NA NA NA NA NA NA NA <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
230/60/3 HETE 4.6 6.3 3.0 4.2 5.8 8.0 12.0 18.8 25.2 37.0 460/60/3 HETE 2.3 3.2 1.5 2.1 2.9 4.0 6.0 9.4 12.6 18.5 575/60/3 HETE NA NA 1.1 1.8 2.4 3.2 4.8 7.5 10.2 14.9 208/60/3 2S1W NA NA 3.0/1.0 4.4/1.8 6.2/3.0 9.0/3.4 15.0/6.0 21.0/7.5 29.0/9.6 NA 230/60/3 2S1W NA NA 3.0/1.0 4.4/1.8 5.9/2.9 8.0/3.3 14.0/6.2 19.5/7.5 25.0/9.3 NA 460/60/3 2S1W NA NA 1.5/0.5 2.2/1.9 3.1/1.3 3.8/1.6 6.8/2.8 10.0/4.0 12.0/4.3 18.0/6.0 575/60/3 2S1W NA NA NA NA NA NA NA NA 115/60/1 2S2W 9.2/6.0 9.2/4.6 11.9/6.9 NA NA NA											
460/60/3 HETE 2.3 3.2 1.5 2.1 2.9 4.0 6.0 9.4 12.6 18.5 575/60/3 HETE NA NA 1.1 1.8 2.4 3.2 4.8 7.5 10.2 14.9 208/60/3 2S1W NA NA 3.0/1.0 4.4/1.8 6.2/3.0 9.0/3.4 15.0/6.0 21.0/7.5 29.0/9.6 NA 230/60/3 2S1W NA NA 3.0/1.0 4.4/1.8 5.9/2.9 8.0/3.3 14.0/6.2 19.5/7.5 25.0/9.3 NA 460/60/3 2S1W NA NA 3.0/1.0 4.4/1.8 5.9/2.9 8.0/3.3 14.0/6.2 19.5/7.5 25.0/9.3 NA 460/60/3 2S1W NA NA NA NA NA NA 12.0/4.3 18.0/6.0 575/60/3 2S1W NA NA NA NA NA NA NA NA NA 115/60/1 2S2W 9.2/6.0 9.2/4.6 11.9/6.9 NA NA NA NA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
575/60/3 HETE NA NA 1.1 1.8 2.4 3.2 4.8 7.5 10.2 14.9 208/60/3 251W NA NA 3.0/1.0 4.4/1.8 6.2/3.0 9.0/3.4 15.0/6.0 21.0/7.5 29.0/9.6 NA 230/60/3 251W NA NA 3.0/1.0 4.4/1.8 5.9/2.9 8.0/3.3 14.0/6.2 19.5/7.5 25.0/9.3 NA 460/60/3 251W NA NA 1.5/0.5 2.2/1.9 3.1/1.3 3.8/1.6 6.8/2.8 10.0/4.0 12.0/4.3 18.0/6.0 575/60/3 251W NA NA NA NA NA NA NA 115/60/1 252W 9.2/6.0 9.2/4.6 11.9/6.9 NA NA NA NA NA 115/60/1 252W 9.2/6.0 9.2/4.6 11.9/6.9 NA NA NA NA NA NA NA 208/60/1 252W NA 5.0/2.5 6.3/3.0 NA NA NA NA NA NA											
208/60/3 2S1W NA NA 3.0/1.0 4.4/1.8 6.2/3.0 9.0/3.4 15.0/6.0 21.0/7.5 29.0/9.6 NA 230/60/3 2S1W NA NA 3.0/1.0 4.4/1.8 5.9/2.9 8.0/3.3 14.0/6.2 19.5/7.5 25.0/9.3 NA 460/60/3 2S1W NA NA 1.5/0.5 2.2/1.9 3.1/1.3 3.8/1.6 6.8/2.8 10.0/4.0 12.0/4.3 18.0/6.0 575/60/3 2S1W NA NA NA NA NA NA 115/60/1 2S2W 9.2/6.0 9.2/4.6 11.9/6.9 NA NA NA NA NA NA 208/60/1 2S2W 9.2/6.0 9.2/4.6 11.9/6.9 NA											
230/60/3 251/W NA NA 3.0/1.0 4.4/1.8 5.9/2.9 8.0/3.3 14.0/6.2 19.5/7.5 25.0/9.3 NA 460/60/3 2S1W NA NA 1.5/0.5 2.2/1.9 3.1/1.3 3.8/1.6 6.8/2.8 10.0/4.0 12.0/4.3 18.0/6.0 575/60/3 2S1W NA NA NA NA NA NA NA 115/60/1 2S2W 9.2/6.0 9.2/4.6 11.9/6.9 NA NA NA NA NA 208/60/1 2S2W NA 5.0/2.5 6.3/3.0 NA NA NA NA NA 230/60/1 2S2W 4.6/3.0 4.6/2.3 6.0/3.6 NA NA NA NA NA NA 208/60/1 2S2W 2.4/1.6 3.0/1.9 3.4/2.0 5.0/2.6 6.5/3.5 9.3/4.9 NA NA NA 208/60/3 2S2W 2.1/1.4 2.7/1.7 3.2/2.0 4.8/2.9 6.3/3.5 8.5/4.6<											
460/60/3 2S1W NA NA 1.5/0.5 2.2/1.9 3.1/1.3 3.8/1.6 6.8/2.8 10.0/4.0 12.0/4.3 18.0/6.0 575/60/3 2S1W NA SA SA SA <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
575/60/3 2S1W NA											
115/60/1 228W 9.2/6.0 9.2/4.6 11.9/6.9 NA NA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
208/60/1 2S2W NA 5.0/2.5 6.3/3.0 NA NA <td></td>											
230/60/1 252W 4.6/3.0 4.6/2.3 6.0/3.6 NA											
208/60/3 2.2/1.6 3.0/1.9 3.4/2.0 5.0/2.6 6.5/3.5 9.3/4.9 NA 20.0/11.0 27.0/14.0 NA 230/60/3 2S2W 2.1/1.4 2.7/1.7 3.2/2.0 4.8/2.9 6.3/3.5 8.5/4.6 NA 19.0/10.0 25.0/12.5 NA											
230/60/3 2S2W 2.1/1.4 2.7/1.7 3.2/2.0 4.8/2.9 6.3/3.5 8.5/4.6 NA 19.0/10.0 25.0/12.5 NA											
	460/60/3 2S2W	1.1/0.7	1.3/0.9	3.2/2.0 1.5/1.0	2.3/1.3	3.0/1.7	4.6/2.7	NA	9.7/5.5	12.2/7.0	NA
400/0/3 252VV 1.1/0.7 1.3/0.9 1.3/1.0 2.3/1.3 3.0/1.7 4.0/2.7 NA 9.1/5.5 12.2/7.0 NA 575/60/3 2S2W NA											
5/5/60/3 252VV NA		INA	INA	NA	NA	INA	NA	NA	INA	NA	INA

Notes:

Notes: 1. ODP = Open Drip-proof 2. TE = Totally enclosed 3. HEODP = High Efficiency Open Drip-proof 4. HETE = High Efficiency Totally Enclosed 5. 2S1W = Two Speed One Winding 6. 2S2W = Two Speed Two Winding 7. NA = Not Available

FLA based on NEC Ratings

Controls


Pilot Control

Intermittent pilot ignition is standard on all outdoor units. Intermittent pilot ignition contains a solid-state ignition control system that ignites the pilot by spark for each cycle of operation. When the pilot flame is proven, the main burner valve opens to allow gas flow to the burners. Both the pilot and burners are extinguished during the off cycle. Energy savings will be realized using this system as the pilot is extinguished in the off cycle.

Air Inlet Configuration

The air inlet configuration defines the entering air opening for the rooftop gas heating units. This selection does not include dampers and must match the required opening for the air control and damper arrangement. A horizontal return air feature is offered on air inlet configurations 3 and 4.

Air Inlet Configuration

Note: Horizontal outside air over return air. Specify air inlet configuration 4 or 5 and then select miscellaneous option "D" for horizontal return.

Damper Options

Dampers shall be of the opposed blade type, constructed of galvanized steel with neoprene nylon bushings, blades to be mechanically interlocked.

Optional low leak dampers shall be of the opposed blade type, construction of galvanized steel with neoprene nylon bushings and vinyl blade edge seals, blades to be mechanically interlocked.

Outside Air or Return Air

Two-Position Motor/Spring Return Units with outside air or return air only shall be provided with damper, twoposition spring return damper motor and controls. The motor shall power the damper full open when the unit is on and full closed when the unit is off. Outside Air/Return Air Two-Position Spring Return Two-position spring return motor with interlocked outside and return air dampers shall be provided. The motor shall power either the outside air damper full open and the return air damper full closed or the outside air damper full closed and the return air damper full open in response to an outside air temperature sensor. When the unit is off, the motor will drive the outside air damper full closed and the return air damper full open.

Outside Air/Return Air Modulating Motor W/Mixed Air Control/Minimum Position Potentiometer/Spring Return Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller located in the mixed air stream. Units shall also be provided with a minimum position potentiometer for minimum outside air damper position.

The spring return feature drives the outside air damper full closed and the return air damper full open when the unit is off.

Outside Air/Return Air Modulating Motor W/Mixed Air Temperature Control/Spring Return

Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller located in the mixed air stream.

The spring return feature drives the outside air damper full closed and the return air damper full open when the unit is off.

Outside Air/Return Air Modulating Motor W/Minimum Position Potentiometer/Spring Return

Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall position the outside and return air dampers in response to a manually set potentiometer. The spring return feature drives the outside air damper full closed and the return air damper full open when the unit is off.

Outside Air/Return Air Modulating Motor W/Drv Bulb/ Mixed Air **Temperature Control and Minimum Position Potentiometer/Spring Return** Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller and dry bulb thermostat located in the mixed air stream. Units shall also be provided with a minimum position potentiometer for minimum outside air damper position. The spring return feature drives the outside air damper full open and the return air damper full closed when the unit is off.

Outside Air/Return Air Modulating Motor W/Enthalpy Controlled Economizer/Spring Return

Modulating motor with spring return and interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to an enthalpy controlled economizer. When the unit is off, the motor will drive the outside air damper full closed and the return air damper full open.

Controls

Outside Air/Return Air Modulating Motor W/Space Pressure Controller Modulating motor with spring return and interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a pressure sensor located in the building. Non-spring return.

Outside Air/Return Air Modulating Motor W/S-350P Proportional Mixed Air Control/Spring Return

Modulating motor with spring return and interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a solid-state mixed air sensor and S-350 proportional controller. When the unit is off the motor will drive the outside air damper full closed and the return air damper full open.

Outside Air/Return Air Modulating Motor W/External 4-20 mA or

0-10 VDC Analog Input/Spring Return Modulating motor interlocked with outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a 4-10 mA or 0-10 VDC signal supplied by an external DDC controller. The spring return feature drives the outside air damper full closed and the return air damper full open when the unit is shut down.

ASHRAE Cycle I - Outside/Return Air Two Position W/Warm-Up Stat/Spring Return

Two position spring return motor with interlocked outside and return air dampers shall be provided. The motor shall power the outside air damper full open after a warm up period determined by a minimum supply air temperature sensor when the unit is on, and full closed when the unit is off.

ASHRAE Cycle II - Outside Air/Return Air Modulating Motor W/Warm-Up Stat/Mixed Air Temperature **Controller/Minimum Position Potentiometer/Spring Return** Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller located in the mixed air stream after a warm up period determined by a minimum supply air temperature sensor. Units shall also be provided with a minimum position potentiometer for minimum outside air damper position. When the unit is off. the motor will drive the outside air damper full closed and the return air

ASHRAE CYCLE III - Outside Air/ Return Air Modulating Motor W/ Warm-Up Thermostat/Mixed Air **Temperature Controller/Spring Return** Modulating motor with spring return and interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller located in the mixed air stream after a warm up period determined by a minimum supply air temperature sensor. Units shall also be provided with a minimum position potentiometer for minimum outside air damper position. When the unit is off, the motor will drive the outside air damper full closed and the return air damper full open.

Manual Dampers

damper full open.

Units with outside air and return air shall be provided with manually set outside and return air dampers.

Controls

Gas Controls

1 Stage 2 Stage Modulation

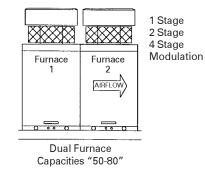
Single Furnace Capacities "10-40"

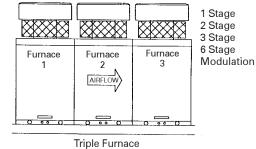
Single-Stage Control

Outdoor gas heating units are provided with an automatic single-stage gas valve as standard. This valve is an on/ off type control, typically activated by a low voltage single-stage thermostat (thermostat not included).

Two-Stage Gas Valve

Provides two stages of heat. Ignition is at low fire (one half of the unit's full rated input). Requires the use of an optional two-stage thermostat.


Hydraulic Modulating Gas Valve


Provides modulated heat output. Ignition is at low fire (one half of the unit's full rated input), and a discharge air temperature sensing bulb located in the air stream shall modulate the gas input from 40 percent to 100 percent rated input. Provided with an automatic electric valve in series with the hydraulic valve which cycles the unit in response to an optional low voltage single-stage thermostat.

Hydraulic Modulating Gas Valve with Bypass

Provides modulated heat output. Ignition is at low fire (one half of the unit's full rated input), and a discharge temperature sensing bulb located in the air stream shall modulate the gas input from 40 percent to 100 percent rated input. Provided with an automatic electric valve in series with the hydraulic valve which cycles the unit. An additional electric valve in parallel bypasses the hydraulic modulating valve, overriding the discharge temperature sensing bulb, allowing full fire. Requires the use of an optional thermostat to control the electric valve.

Gas Control Reference

Capacities "12"

Electronic Modulating — Room or Duct Stat Control

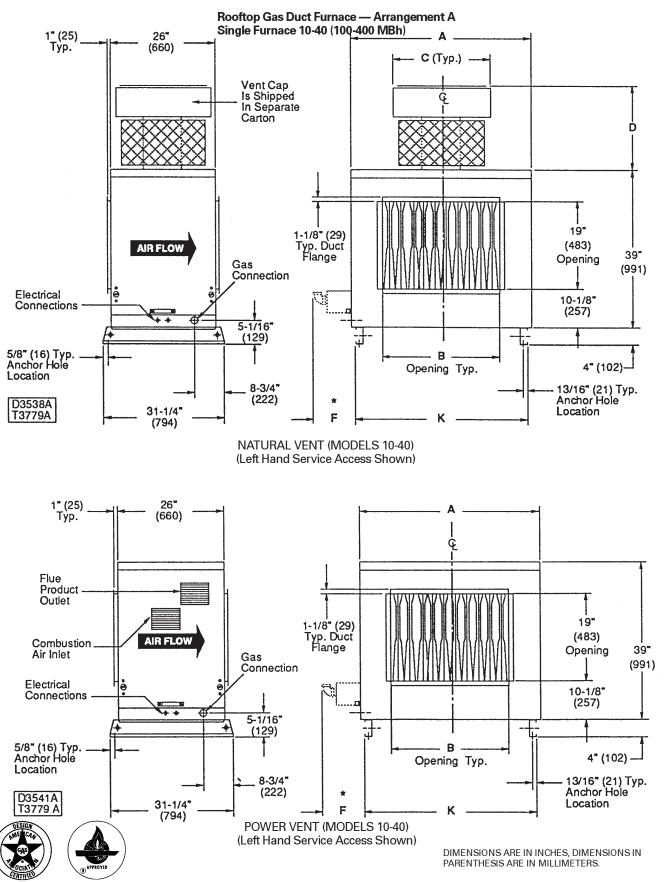
Provides modulated heat output. An automatic valve in series with the modulating valve shall be provided to cycle the unit. Ignition is at full fire (100 percent input), and modulates the gas input from 100 percent to 40 percent rated input.

Available for use with a room thermostat or duct thermostat with remote setpoint adjustment. Duct thermostat available with optional override room thermostat which causes the unit to go to full fire when the room temperature falls below the override room thermostat's setpoint.

Electronic Modulating — 4-20 mA/ 0-10 VDC Input

Provides modulated heat output. Ignition is at full fire (100 percent input), and modulates the gas input from 100 percent to 40 percent rated input. The modulating gas valve shall operate in response to a 4-20 mA or a 0-10 VDC input from an external DDC control. When "furnace one only" is specified on double and triple furnaces, additional furnace sections will have single-stage on-off control.

Discharge Air Control with Outside Air Reset


Unit provided with factory-mounted discharge air controller, discharge air sensor, outdoor air reset, summer/ winter thermostat and velocity pressure switch. The outdoor air reset range is from 10 F to 60 F. Full reset occurs at 10 F outside air temperature. There is a straight line relationship between outside air temperature and reset. Therefore, at 60 F outside air temperature, no reset will occur. The amount of reset is adjustable from 20 F to 50 F.

Discharge air controller provides twominute delay between successive on and off stages. A summer/winter thermostat locks out heating when outside air temperature is above 55 F. The velocity pressure switch is provided for protection against high temperatures at low airflows. Available in two-stage (half of the unit's full rated input-single furnace units only), threestage (33 percent of the unit's full rated input) and four-stage (25 percent of the unit's full rated input). Three and fourstage available on double and triple furnace units only.

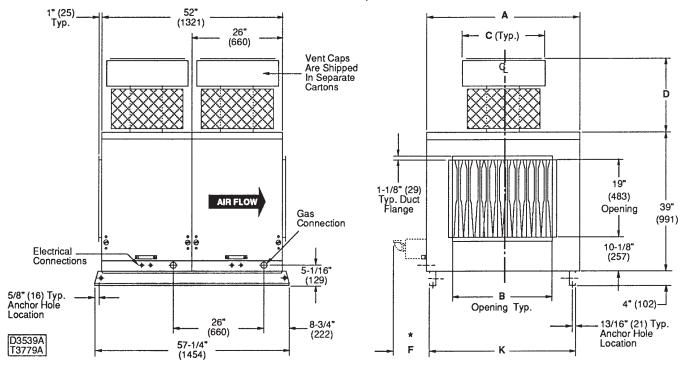
S-350 Modular Electronic Control System

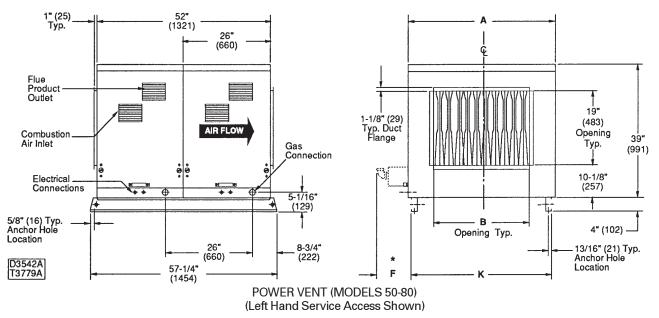
Basic system utilizes a controller module with discharge air sensor, setpoint and one-stage output, a stage module with differential setpoint and one-stage output and a display module with LCD display for temperature readout. The system stages the unit's rate of fire based upon sensed discharge air temperature, setpoint setting and differential setting between stages. Provided as a two-stage (all furnaces), three and four-stage (double and triple furnaces only) and six-stage (triple furnace only).

Unit Dimensional Data — Rooftop Gas Duct Furnace — Arrangement A

	loronar Bata	noontop dao ba	loc i annaoo	/ arangomone /	•				
				[)			Ga	s Inlet
Capacity	А	В	С	AGA	CGA		К	NAT	LP
10	32 ⁷ /8	15 ⁹ /16	12	11	20 11/16	19 ³ /8	30 ³ /16	1/2	1/2
	(835)	(395)	(305)	(279)	(525)	(492)	(767)		
15	32 ⁷ /8	18 ⁵ /16	21 ¹ / ₂	16	25 ³ /16	23 ¹ / ₂	30 ³ /16	1/2	1/2
	(835)	(465)	(546)	(406)	(640)	(597)	(767)		
20	43 ⁷ /8	23 ¹³ /16	23 ¹ / ₂	16	25 ³ /16	26 ¹ / ₄	41 ³ /16	1/2	1/2
	(1114)	(605)	(597)	(406)	(640)	(667)	(1046)		
25	43 7/8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	41 ³ /16	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1046)		
30	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	37 1/4	52 ³ /16	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1326)		
35	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 ¹¹ /16	45 ¹ / ₂	52 ³ /16	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1326)		
40	60 ³ /8	45 ¹³ /16	26	17 1/2	26 ¹¹ / ₁₆	51	57 ¹¹ /16	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1465)	4	

NOTE: DIMENSIONS ARE IN INCHES (DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS). *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S).

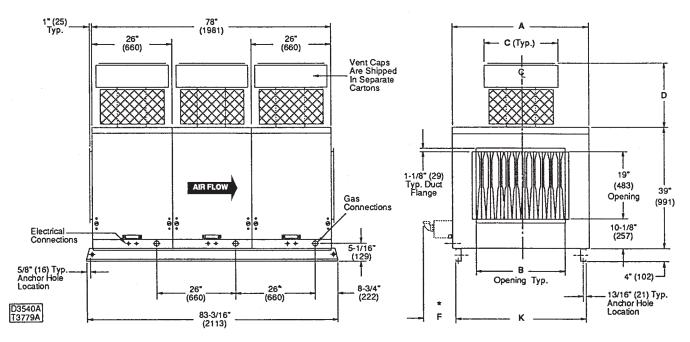

Gravity Vent Model


Power Vent Model

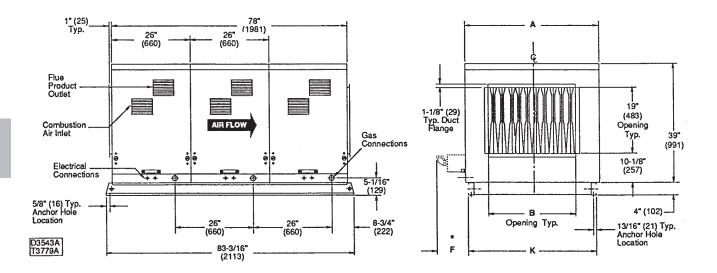
Standard (40-120°) Temperature Rise Furnace

NATURAL VENT (MODELS 50-80) (Left Hand Service Access Shown)

Unit Dimensional Data — Rooftop Gas Duct Furnace — Arrangement A

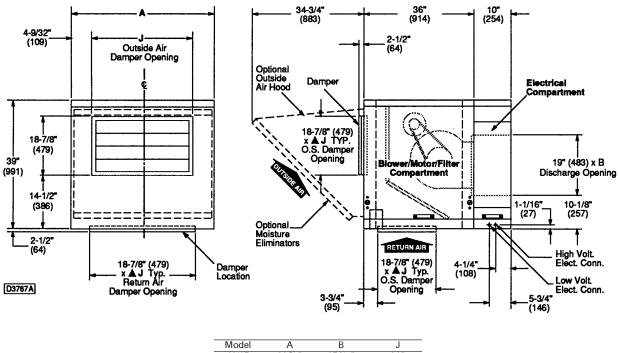

				D				Gas Inlet		
Capacity	А	В	С	AGA	CGA	*F	К	NAT	LP	
50	43 ⁷ /8	29 ⁵ / ₁₆	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	41 ³ /16	3/4	1/2 OR 3/4	
	(1114)	(745)	(597)	(406)	(640)	(876)	(1046)			
60	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	37 ¹ / ₄	52 ³ /16	3/4	1/2 OR 3/4	
	(1394)	(884)	(660)	(445)	(678)	(946)	(1326)			
70	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 11/16	45 ¹ / ₂	52 ³ /16	3/4	1/2 OR 3/4	
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1326)			
80	60 ³ /8	45 ¹³ /16	26	17 1/2	26 11/16	51	57 ¹¹ / ₁₆	3/4	1/2 OR 3/4	
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1465)			

NOTE:


DIMENSIONS ARE IN INCHES (DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS). *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S).

Rooftop Gas Duct Furnace — Arrangement A Triple Furnace 12 (1200 MBh)

Standard (40-120°) Temperature Rise Furnace


NATURAL VENT (MODEL 12) (Left Hand Service Access Shown)

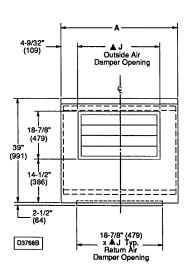
POWER VENT (MODEL 12) (Left Hand Service Access Shown)

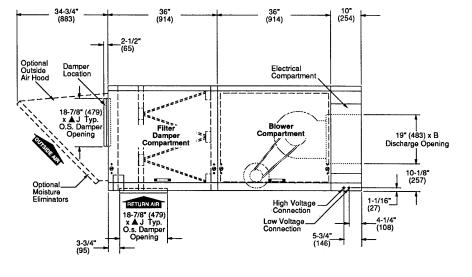
Unit Dimensional Data — Rooftop Gas Duct Furnace — Arrangement A									
			Ga	s Inlet					
Capacity	Α	В	С	AGA	CGA	- *F	К	NAT	LP
12	60 ³ / ₈	45 ¹³ / ₁₆	26	17 ¹ /,	26 ¹¹ / ₁₆	51	57 ¹¹ / ₁₆	3/4	¹ / ₂ OR ³ / ₄
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1465)		

NOTE: DIMENSIONS ARE IN INCHES (DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS). *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S).

Standard Blower Module for Arrangements B, C, D, E Unit Sizes 10-80 (100-800 MBh)

woder	A	D	J
10/15	32 ⁷ /8″	15 ⁹ /16"	24″
	(835)	(395)	(610)
20/25/50	43 ⁷ /8″	23 ¹³ /16"	35″
	(1114)	(605)	(889)
30/35	54 ⁷ /8"	34 ¹³ /16"	46″
60/70	(1394)	(884)	(1168)
40/80	60 ³ /4"	45 ¹³ /16"	51 ½″
	(1534)	(1164)	(1308)

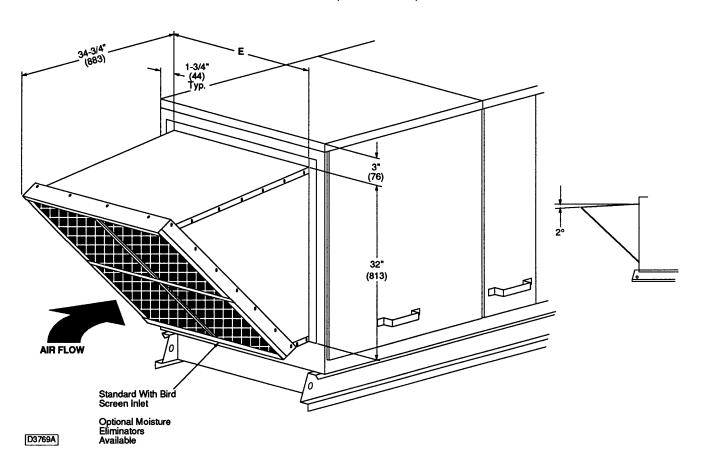

STANDARD BLOWER MODULE Unit Sizes 10-80 (Left Hand Service Access Shown)


Note: The dimensions shown do not include base skid rail.

Detail Drawing

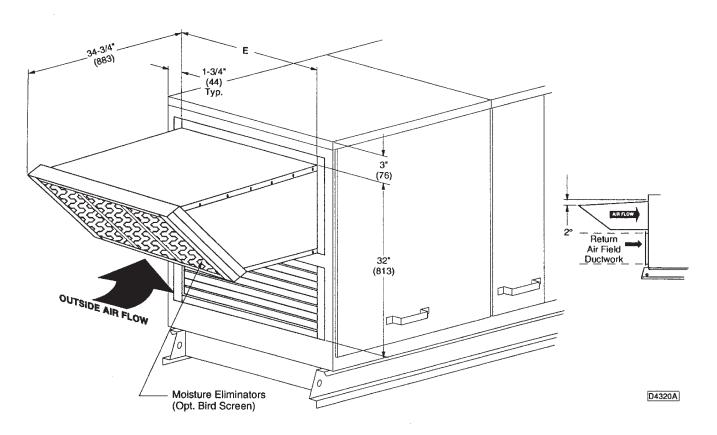
High CFM Blower Module for Arrangements G, J Unit Sizes 10-12 (100-1200 MBh)

100 and 150 MBh Units Not Available on Arrangements G and J

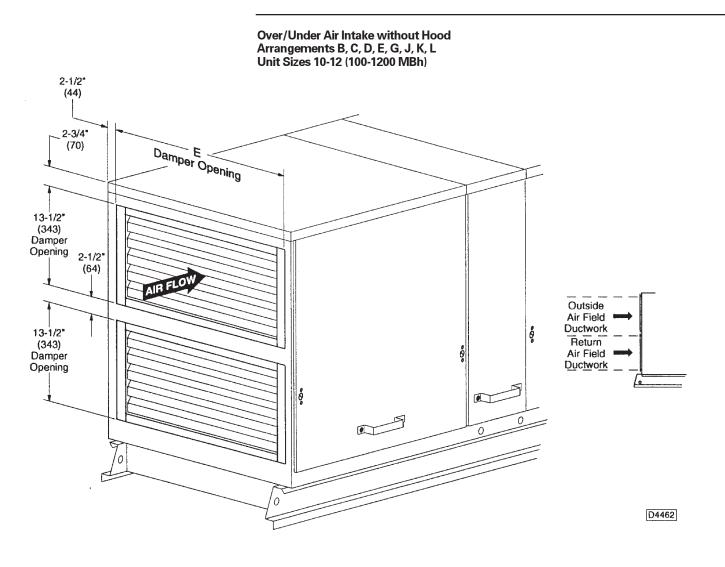


Model	A	В	ΔJ
10/15*	32 ⁷ /8″	15 ⁹ /16"	24″
	(835)	(395)	(610)
20/25/50	43 ⁷ /8"	23 ¹³ /16"	35″
	(1114)	(605)	(889)
30/35	54 ⁷ /8"	34 ¹³ /16"	46″
60/70	(1394)	(884)	(1168)
40/80/12	60 ³ /8″	45 ¹³ /16"	51 ¹ /2"
	(1534)	(1164)	(1308)

HIGH CFM BLOWER MODULE *For Cooling Arrangements Only (Left Hand Service Access Shown)

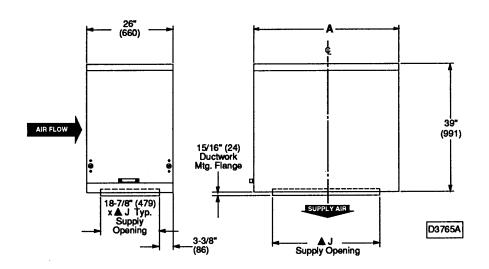

Note: The dimensions shown do not include base skid rail.

Air Intake Hood Arrangements B, C, D, E, G, J, K, L Unit Sizes 10-12 (100-1200 MBh)

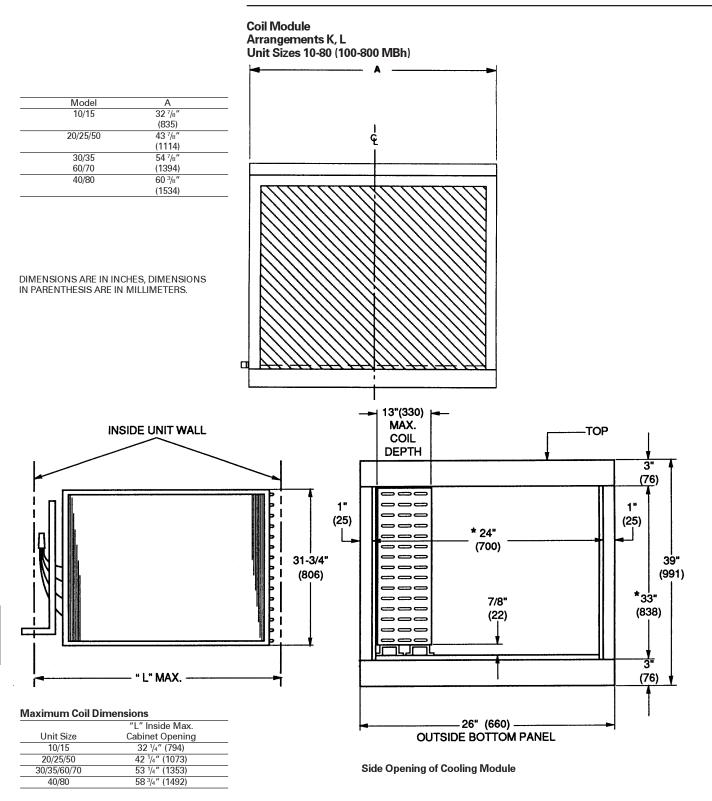


Model	E Dimension	
10/15	29 ³ /8″	
	(746)	
20/25/50	40 ³ /8″	
	(1025)	
30/35	51 ³ /8″	
60/70	(1305)	
40/80/12	56 ⁷ /8″	
	(1445)	

Over/Under Air Intake with Hood Arrangements B, C, D, E, G, J, K, L Unit Sizes 10-12 (100-1200 MBh)



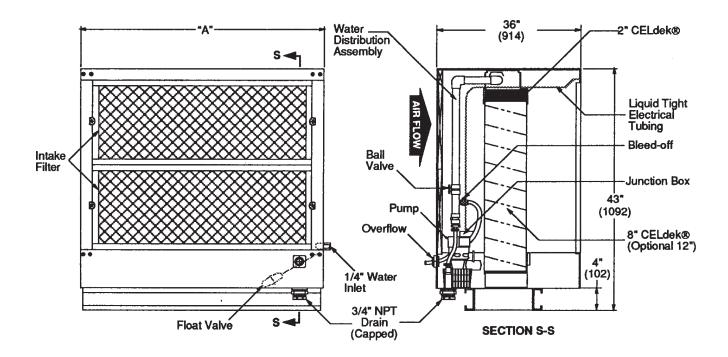
Model	E Dimension	
10/15	29 ³ /8"	
	(746)	
20/25/50	40 ³ /8"	
	(1025)	
30/35	51 ³ /8″	
60/70	(1305)	
40/80/12	56 ⁷ /8"	
	(1445)	


Model	E Dimension	
10/15	27 ³ /4″	
	(705)	
20/25/50	38 ³ /4″	
	(984)	
30/35	49 ³ /4″	
60/70	(1264)	
40/80/12	55 ¹ /4"	
	(1403)	

Supply Plenum Module Arrangements C, E, J, L Unit Sizes 10-12 (100-1200 MBh)

Note: The dimensions shown do not include base skid rail.

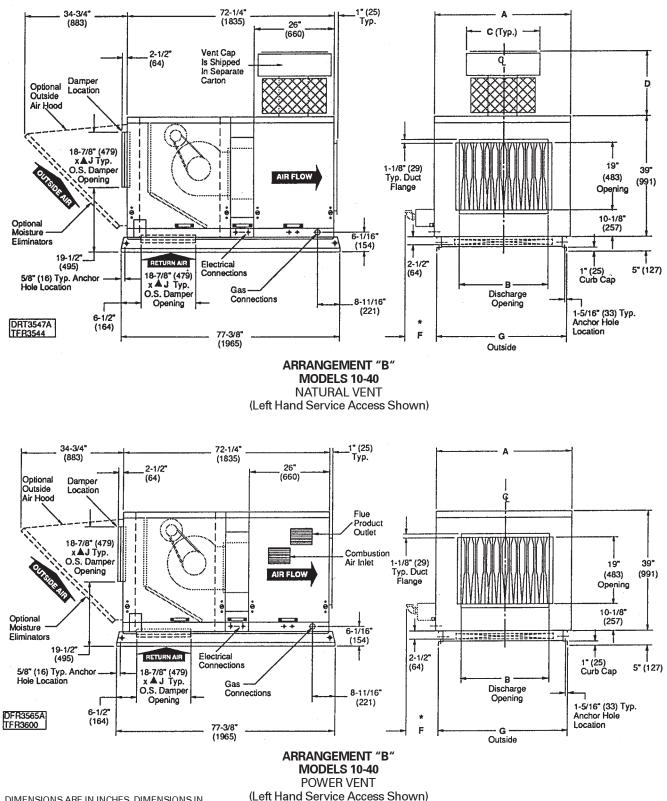
Model	А	J	
10/15	32 ⁷ /8″	24″	
	(835)	(610)	
20/25/50	43 7/8"	35″	
	(1114)	(889)	
30/35	54 ⁷ /8"	46″	
60/70	(1394)	(1168)	
40/80/12	60 ³ /8″	51″	
	(1534)	(1295)	


• The coil section drain pan connection is 3/4 inch NPT pipe thread. It is a female fitting that just protrudes outside of the unit base rail. It is located on the service side of the unit.

• The drain pan is constructed of stainless steel, including the fitting. It is sloped towards

the center of the pan and level across the width of the unit.

• P-trap required external to the unit provided by others.

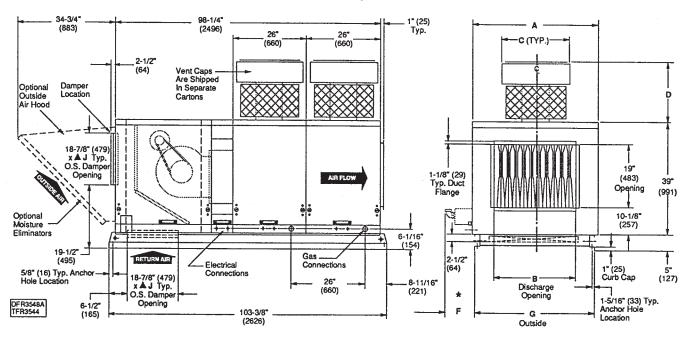

Evaporative Cooler Module Arrangements D, E Unit Sizes 10-80 (100-800 MBh)

EVAPORATIVE COOLER MODULE Models 10/80

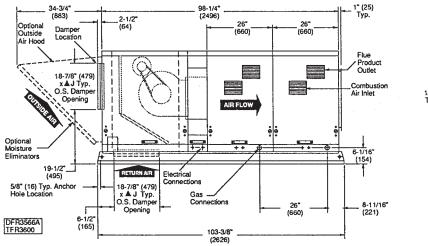
Model	A	
10/15	32 ⁷ /8″	
	(835)	
20/25/50	43 ⁷ /8"	
	(1114)	
30/35	54 ⁷ /8"	
60/70	(1394)	
40/80	60 ³ /8″	
	(1534)	

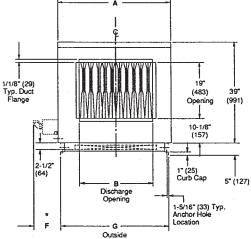
Rooftop Heating Unit with Standard Blower — Arrangement B Models GRAA, GRBA, GRCA, GRDA 10, 15, 20, 25, 30, 35, 40 (100-400 MBh) Single Furnace Standard (20-60 F) and High (60-90 F) Temperature Rise Furnace

Unit Dimensional Data — Arrangement B 10-40 (100-400 MBh)


				A.G.A.	C.G.A.				GAS	INLET
CAPACITY	A	В	С	D	D	*F	G	J —	NAT	LP
10	32 ⁷ /8	15 ⁹ /16	12	11	20 ¹¹ /16	19 ³ /8	31 ¹ /16	24	1/2	1/2
	(835)	(395)	(305)	(279)	(525)	(492)	(789)	(610)		
15	32 ⁷ /8	18 ⁵ /16	21 ¹ / ₂	16	25 ³ /16	23 ¹ / ₂	31 ¹ /16	24	1/2	1/2
	(835)	(465)	(546)	(406)	(640)	(597)	(789)	(610)		
20	43 ⁷ /8	23 ¹³ /16	$23 \frac{13}{16} 23 \frac{1}{2} 16 25 \frac{3}{16} 26 \frac{1}{4} 42 \frac{1}{16} 35$	35	1/2	1/2				
	(1114)	(605)	(597)	(406)	(640)	(667)	(1068)	(889)		
25	43 ⁷ /8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ / ₁₆	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406) (640) (876) (1068) (889)						
30	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	37 ¹ / ₄	53 ¹ /16	46	3/4	1/2 OR 3/
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
35	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 ¹¹ /16	45 ¹ / ₂	53 ¹ /16	46	3/4 1	1/2 OR 3/
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
40	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		

NOTE: DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS.


Power Vented Model


Rooftop Heating Unit with Standard Blower — Arrangement B Models GRAA, GRBA — 50, 60, 70, 80 (500-800 MBh) Double Furnace Standard (40-120 F) Temperature Rise Furnace

ARRANGEMENT "B" MODELS 50-80 NATURAL VENT

(Left Hand Service Access Shown)

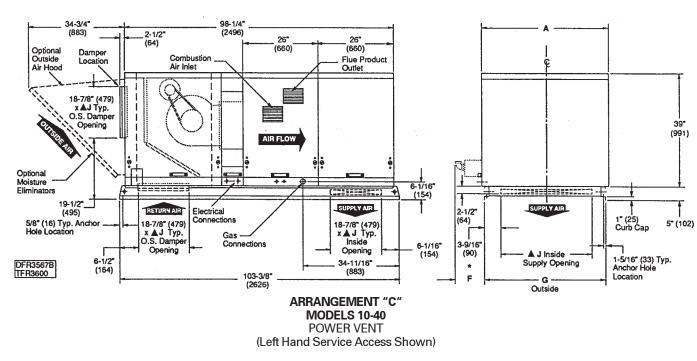
ARRANGEMENT "B" MODELS 50-80 POWER VENT (Left Hand Service Access Shown)

Unit Dimensional Data — Arrangement B — 50-80 (500-800 MBh)

				A.G.A.	C.G.A.				GAS	SINLET
CAPACITY	Α	В	С	D	D	*F	G	J _	NAT	LP
50	43 ⁷ /8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ /16	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
60	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	37 ¹ / ₄	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
70	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 ¹¹ /16	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
80	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		

NOTE: DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS.

Gravity Vent Model


Rooftop Heating Unit with Standard Blower and Downflow Supply Plenum — Arrangement C

Models GRAA, GRBA, GRCA, GRDA — 10, 15, 20, 25, 30, 35, 40 (100-400 MBh) Single Furnace

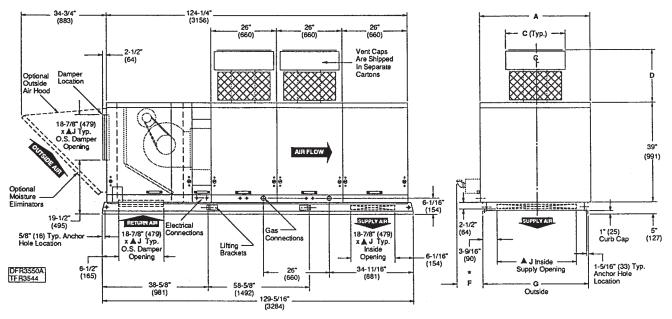
Standard (20-60 F) and high (60-90 F) Temperature Rise Furnace

ARRANGEMENT "C" MODELS 10-40 NATURAL VENT (Left Hand Service Access Shown)

Unit Dimensional Data — Arrangement C — 10-40 (100-400 MBh)

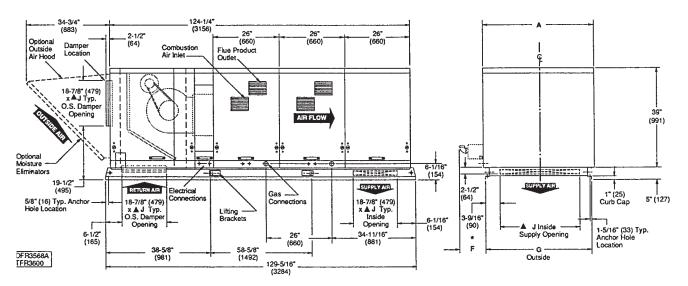
				A.G.A.	C.G.A.				GAS	INLET
CAPACITY	A	В	С	D	D	*F	G	J	NAT	LP
10	32 ⁷ /8	15 ⁹ /16	12	11	20 11/16	19 ³ /8	31 ¹ /16	24	1/2	1/2
	(835)	(395)	(305)	(279)	(525)	(492)	(789)	(610)		
15	32 ⁷ /8	18 ⁵ /16	21 ¹ / ₂	16	25 ³ /16	23 ¹ / ₂	31 ¹ /16	24	1/2	1/2
	(835)	(465)	(546)	(406)	(640)	(597)	(789)	(610)		
20	43 ⁷ /8	23 ¹³ /16	23 ¹ / ₂	16	25 ³ /16	26 ¹ / ₄	42 ¹ / ₁₆	35	1/2	1/2
	(1114)	(605)	(597)	(406)	(640)	(667)	(1068)	(889)		
25	43 ⁷ /8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ / ₁₆	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068) (889)			
30	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 ¹¹ / ₁₆	37 ¹ / ₄	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
35	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 ¹¹ / ₁₆	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
40	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ / ₁₆	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		

NOTE: DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS. "J" DIMENSION IS AN INSIDE DIMENSION FOR SUPPLY AIR (WITHOUT DAMPER).



Power Vent Model

Rooftop Heating Unit with Standard Blower and Downflow Supply Plenum — Arrangement C


Models GRAA, GRBA — 50, 60, 70, 80 (500-800 MBh) Double Furnace

Standard (40-120 F) Temperature Rise Furnace

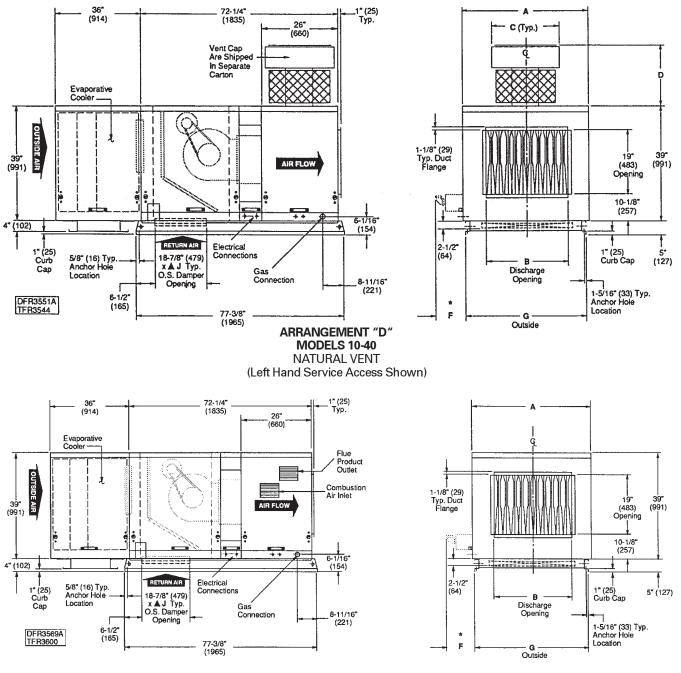
ARRANGEMENT "C" MODELS 50-80 NATURAL VENT

(Left Hand Service Access Shown)

ARRANGEMENT "C" MODELS 50-80 POWER VENT (Left Hand Service Access Shown)

Unit Dimensional Data — Arrangement C — 50-80 (500-800 MBh)

				A.G.A.	C.G.A.				GAS	INLET
CAPACITY	Α	В	С	D	D	*F	G	J _	NAT	LP
50	43 ⁷ /8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ / ₁₆	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
60	54 ⁷ /8	34 ¹³ /16	26	17 1/2	26 ¹¹ /16	37 1/4	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
70	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 ¹¹ /16	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
80	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		


NOTE:

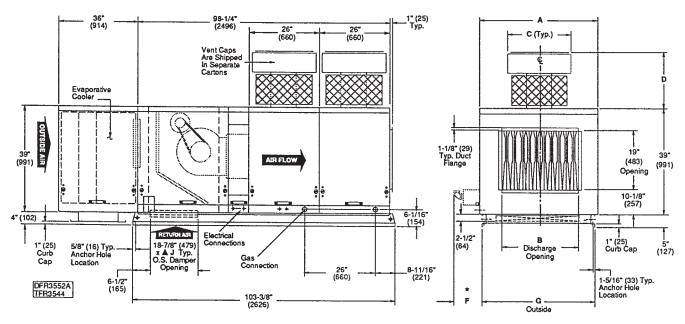
MOTE. DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS. "J" DIMENSION IS AN INSIDE DIMENSION FOR SUPPLY AIR (WITHOUT DAMPER).

Rooftop Heating Unit with Standard Blower and Evaporative Cooler — Arrangement D

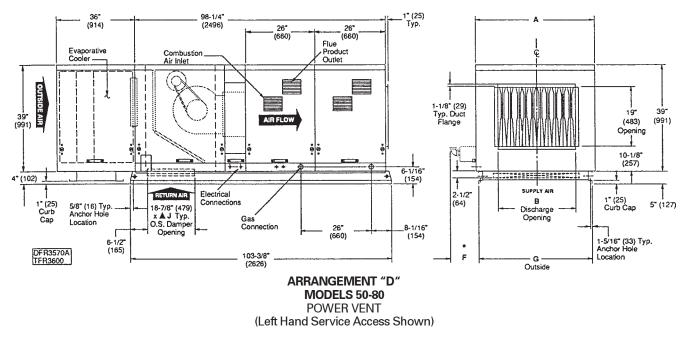
Models GRAA, GRBA, GRCA, GRDA — 10, 15, 20, 25, 30, 35, 40 (100-400 MBh) Single Furnace

Standard (20-60 F) and High (60-90 F) Temperature Rise Furnace

ARRANGEMENT "D" MODELS 10-40 POWER VENT (Left Hand Service Access Shown)


Unit Dimensional Data — Arrangement D — 10-40 (100-400 MBh)

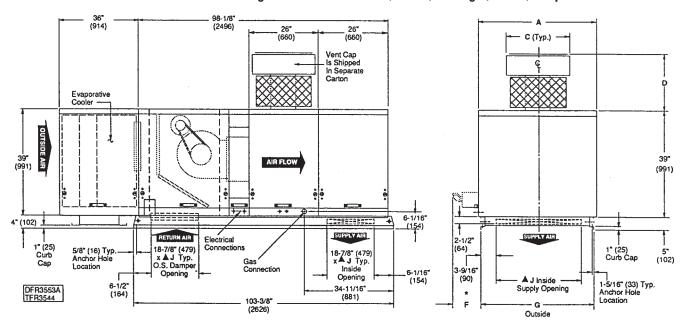
				A.G.A.	C.G.A.				GAS	INLET
CAPACITY	Α	В	С	D	D	*F	G	J _	NAT	LP
10	32 ⁷ /8	15 ⁹ /16	12	11	20 11/16	19 ³ /8	31 ¹ /16	24	1/2	1/2
	(835)	(395)	(305)	(279)	(525)	(492)	(789)	(610)		
15	32 ⁷ /8	18 5/16	21 1/2	16	25 ³ /16	23 ¹ / ₂	31 ¹ /16	24	1/2	1/2
	(835)	(465)	(546)	(406)	(640)	(597)	(789)	(610)		
20	43 ⁷ /8	23 ¹³ /16	23 ¹ / ₂	16	25 ³ /16	26 ¹ / ₄	42 ¹ /16	35	1/2	1/2
	(1114)	(605)	(597)	(406)	(640)	(667)	(1068)	(889)		
25	43 ⁷ /8	29 ⁵ /16	23 ¹ /2	16	25 ³ /16	34 ¹ / ₂	42 ¹ /16	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
30	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	37 ¹ / ₄	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
35	54 ⁷ /8	40 5/16	26	17 1/2	26 ¹¹ /16	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
40	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		


NOTE: DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS.

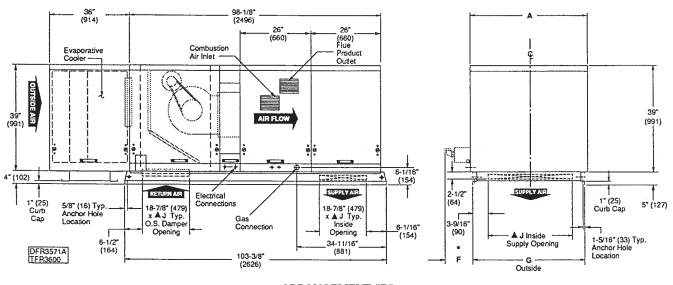
Rooftop Heating Unit with Standard Blower and Evaporative Cooler — Arrangement D Models GRAA, GRBA — 50, 60, 70, 80 (500-800 MBh) Double Furnace

Standard (40-120 F) Temperature Rise Furnace

ARRANGEMENT "D" MODELS 50-80 NATURAL VENT (Left Hand Service Access Shown)


Unit Dimensional Data — Arrangement D — 50-80 (500-800 MBh)

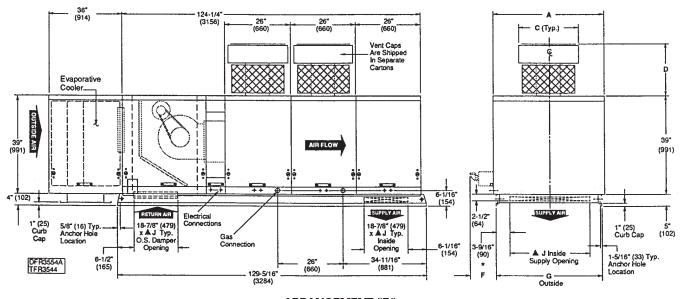
				A.G.A.	C.G.A.				GAS	SINLET
CAPACITY	Α	В	С	D	D	*F	G	J _	NAT	LP
50	43 7/8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ / ₁₆	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
60	54 ⁷ /8	34 ¹³ /16	26	17 1/2	26 11/16	37 1/4	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
70	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 ¹¹ /16	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
80	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		


NOTE:

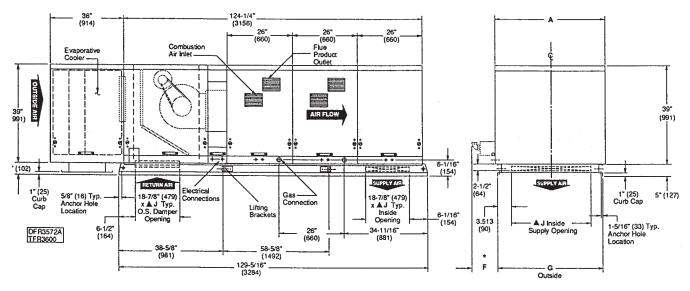
DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS.

Rooftop Heating Unit with Standard Blower, Evaporative Cooler and Downflow Supply Plenum — Arrangement E Models GRAA, GRBA, GRCA, GRDA — 10, 15, 20, 25, 30, 35, 40 (100-400 MBh) Single Furnace — Standard (20-60 F) and High (60-90 F) Temperature Rise Furnace

ARRANGEMENT "E" MODELS 10-40 NATURAL VENT (Left Hand Service Access Shown)


ARRANGEMENT "E" MODELS 10-40 POWER VENT (Left Hand Service Access Shown)

Unit Dimensional Data — Arrangement E — 10-40 (100-400 MBh)


				A.G.A.	C.G.A.				GAS	INLET
CAPACITY	Α	В	С	D	D	*F	G	J	NAT	LP
10	32 ⁷ /8	15 ⁹ /16	12	11	20 11/16	19 ³ /8	31 ¹ /16	24	1/2	1/2
	(835)	(395)	(305)	(279)	(525)	(492)	(789)	(610)		
15	32 ⁷ /8	18 ⁵ /16	21 ¹ / ₂	16	25 ³ /16	23 ¹ / ₂	31 ¹ /16	24	1/2	1/2
	(835)	(465)	(546)	(406)	(640)	(597)	(789)	(610)		
20	43 ⁷ /8	23 ¹³ /16	23 ¹ / ₂	16	25 ³ /16	26 ¹ / ₄	42 ¹ / ₁₆	35	1/2	1/2
	(1114)	(605)	(597)	(406)	(640)	(667)	(1068)	(889)		
25	43 ⁷ /8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ / ₁₆	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
30	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	37 ¹ / ₄	53 ¹ /16	46	3/4	1/2 OR 3/-
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
35	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 ¹¹ /16	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/-
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
40	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		

NOTE: DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS. "J" DIMENSION IS AN INSIDE DIMENSION FOR SUPPLY AIR (WITHOUT DAMPER).

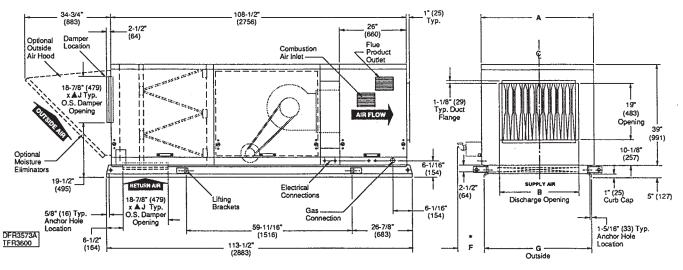
Rooftop Heating Unit with Standard Blower, Evaporative Cooler and Downflow Supply Plenum — Arrangement E Models GRAA, GRBA — 50, 60, 70, 80 (500-800 MBh) Double Furnace — Standard (40-120 F) Temperature Rise Furnace

ARRANGEMENT "E" MODELS 50-80 NATURAL VENT (Left Hand Service Access Shown)

ARRANGEMENT "E" MODELS 50-80 POWER VENT (Left Hand Service Access Shown)


Unit Dimensional Data — Arrangement E — 50-80 (500-800 MBh)

	onu butu	Anungement	00 00 (000 000 mbm,						
				A.G.A.	C.G.A.				GAS	SINLET
CAPACITY	А	В	С	D	D	*F	G	J	NAT	LP
50	43 ⁷ /8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ /16	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
60	54 ⁷ /8	34 ¹³ /16	26	17 1/2	26 11/16	37 1/4	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
70	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 ¹¹ / ₁₆	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
80	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ / ₁₆	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		

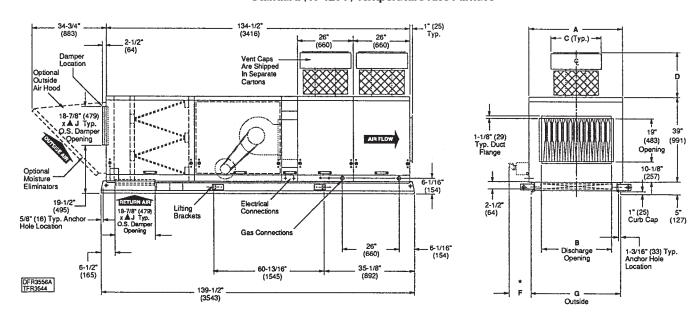

NOTE:

MOLE. DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS. "J" DIMENSION IS AN INSIDE DIMENSION FOR SUPPLY AIR (WITHOUT DAMPER).

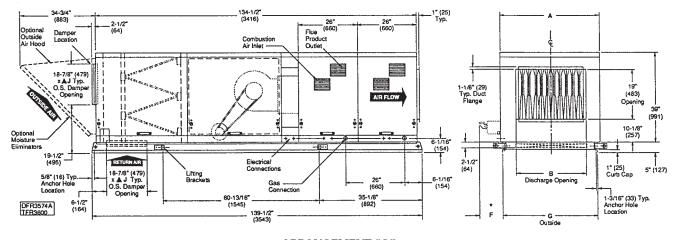
Rooftop Heating Unit with High Cfm Blower — Arrangement G Models GRAA, GRBA — 20, 25, 30, 35, 40 (200-400 MBh) Single Furnace Standard (20-60 F) Temperature Rise Furnace

MODELS 20-40 NATURAL VENT (Left Hand Service Access Shown)

ARRANGEMENT "G" MODELS 20-40 POWER VENT (Left Hand Service Access Shown)


Unit Dimensional Data — Arrangement G — 20-40 (200-400 MBh)

OTHEr DITTERIO	onui Dutu	Anungement u	20 40	200 400 111011						
				A.G.A.	C.G.A.				GAS	INLET
CAPACITY	A	В	С	D	D	*F	G	J	NAT	LP
20	43 7/8	23 ¹³ /16	23 ¹ / ₂	16	25 ³ /16	26 ¹ / ₄	42 ¹ /16	35	1/2	1/2
	(1114)	(605)	(597)	(406)	(640)	(667)	(1068)	(889)		
25	43 7/8	29 ⁵ / ₁₆	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 1/16	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
30	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 ¹¹ / ₁₆	37 ¹ / ₄	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
35	54 ⁷ /8	40 ⁵ /16	26	17 ¹ /2	26 ¹¹ / ₁₆	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
40	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		


NOTE:

DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS.

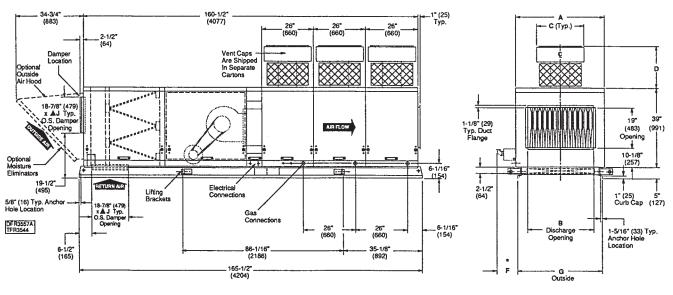
Rooftop Heating Unit with High Cfm Blower — Arrangement G Models GRAA, GRBA — 50, 60, 70, 80 (500-800 MBh) Double Furnace Standard (40-120 F) Temperature Rise Furnace

ARRANGEMENT "G" MODELS 50-80 NATURAL VENT (Left Hand Service Access Shown)

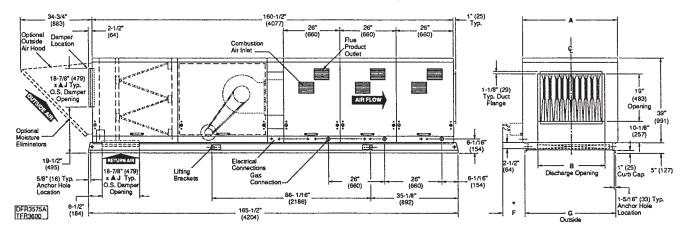
ARRANGEMENT "G" MODELS 50-80 POWER VENT (Left Hand Service Access Shown)

Unit Dimensional Data — Arrangement G — 50-80 (500-800 MBh)

				A.G.A.	C.G.A.				GAS	SINLET
CAPACITY	Α	В	С	D	D	*F	G	J _	NAT	LP
50	43 ⁷ /8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ / ₁₆	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
60	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	37 ¹ / ₄	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
70	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 ¹¹ /16	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
80	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ / ₂	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		


NOTE:

MOTE: DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS.



Power Vent Model

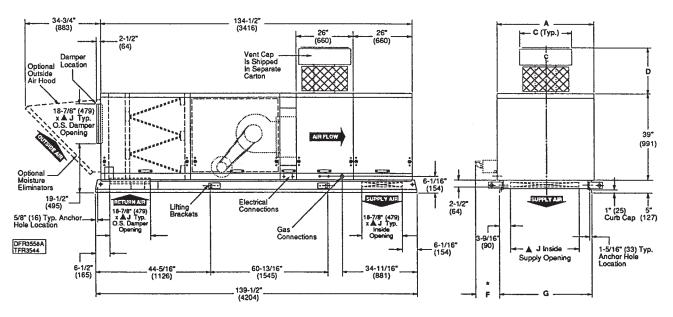
Rooftop Heating Unit with High Cfm Blower — Arrangement G Models GRAA, GRBA — 12 (1200 MBh) Triple Furnace Standard (60-180 F) Temperature Rise Furnace

ARRANGEMENT "G" MODEL 12 NATURAL VENT (Left Hand Service Access Shown)

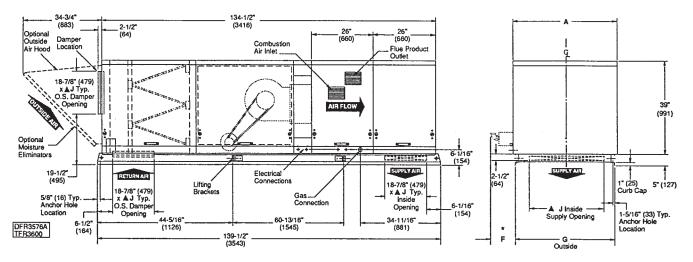
ARRANGEMENT "G" MODEL 12 POWER VENT (Left Hand Service Access Shown)

Unit Dimensional Data — Arrangement G — 12 (1200 MBh)

				A.G.A.	C.G.A.				GAS	INLET
CAPACITY	Α	В	С	D	D	*F	G	J _	NAT	LP
12	60 ³ /8	45 ¹³ /16	26	17 1/2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		


NOTE:

DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR RETURN AIR DAMPERS.


Rooftop Heating Unit with High Cfm Blower and Downflow Supply Plenum — Arrangement J

Models GRAA, GRBA — 20, 25, 30, 35, 40 (200-400 MBh) Single Furnace

Standard (20-60 F) Temperature Rise Furnace

ARRANGEMENT "J" MODEL 20-40 NATURAL VENT (Left Hand Service Access Shown)

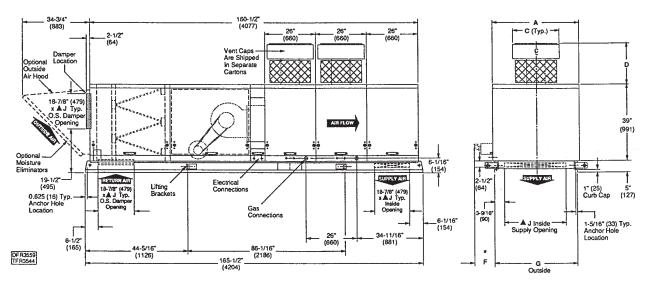
ARRANGEMENT "J" MODEL 20-40 POWER VENT (Left Hand Service Access Shown)

Unit Dimensional Data — Arrangement J — 20-40 (200-400 MBh)

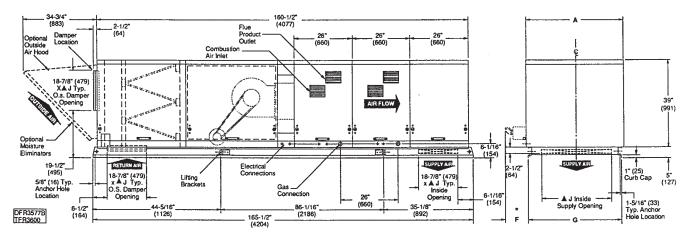
Offic Diffiensi	Ullai Data —	- Ananyement	3 - 20 - 40 (2	200-400 1000						
				A.G.A.	C.G.A.				GAS	INLET
CAPACITY	A	В	С	D	D	*F	G	J	NAT	LP
20	43 ⁷ /8	23 ¹³ /16	23 ¹ / ₂	16	25 ³ /16	26 ¹ / ₄	42 ¹ / ₁₆	35	1/2	1/2
	(1114)	(605)	(597)	(406)	(640)	(667)	(1068)	(889)		
25	43 ⁷ /8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ / ₁₆	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
30	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 ¹¹ / ₁₆	37 ¹ / ₄	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
35	54 ⁷ /8	40 ⁵ /16	26	17 ¹ /2	26 ¹¹ / ₁₆	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
40	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ / ₁₆	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		

NOTE:

DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS. "J" DIMENSION IS AN INSIDE DIMENSION FOR SUPPLY AIR (WITHOUT DAMPER).



Gravity Vent Model


Rooftop Heating Unit with High Cfm Blower and Downflow Supply Plenum — Arrangement ${\bf J}$

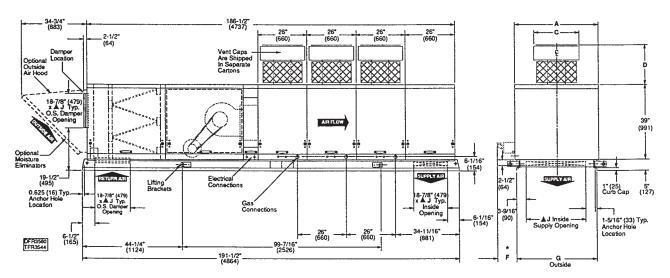
Models GRAA, GRBA — 50, 60, 70, 80 (500-800 MBh) Double Furnace

Standard (40-120 F) Temperature Rise Furnace

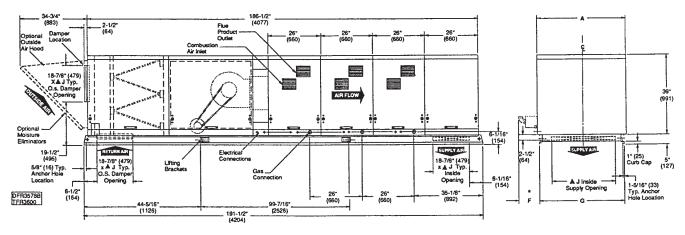
ARRANGEMENT "J" MODELS 50-80 NATURAL VENT (Left Hand Service Access Shown)

ARRANGEMENT "J" MODELS 50-80 POWER VENT (Left Hand Service Access Shown)

Unit Dimensional Data — Arrangement J — 50-80 (500-800 MBh)


				A.G.A.	C.G.A.				GAS	SINLET
CAPACITY	Α	В	С	D	D	*F	G	J _	NAT	LP
50	43 7/8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ / ₁₆	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
60	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	37 ¹ / ₄	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
70	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 ¹¹ /16	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
80	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		

NOTE:


MOTE: DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS. "J" DIMENSION IS AN INSIDE DIMENSION FOR SUPPLY AIR (WITHOUT DAMPER).

Rooftop Heating Unit with High Cfm Blower and Downflow Supply Plenum — Arrangement J Models GRAA, GRBA — 12 (1200 MBh)

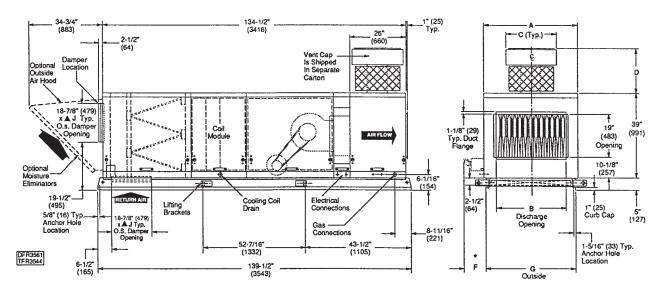
Triple Furnace Standard (60-180 F) Temperature Rise Furnace

ARRANGEMENT "J" MODEL 12 NATURAL VENT (Left Hand Service Access Shown)

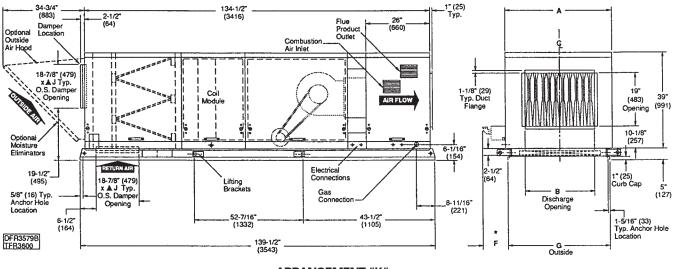
ARRANGEMENT "J" MODEL 12 POWER VENT (Left Hand Service Access Shown)

Unit Dimensional Data — Arrangement J — 12 (1200 MBh)

				A.G.A.	C.G.A.				GAS	INLET
CAPACITY	A	В	С	D	D	*F	G	J	NAT	LP
12	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		


NOTE:

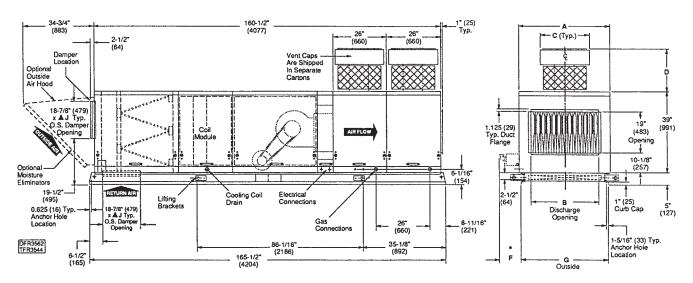
MOTE. DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS. "J" DIMENSION IS AN INSIDE DIMENSION FOR SUPPLY AIR (WITHOUT DAMPER).



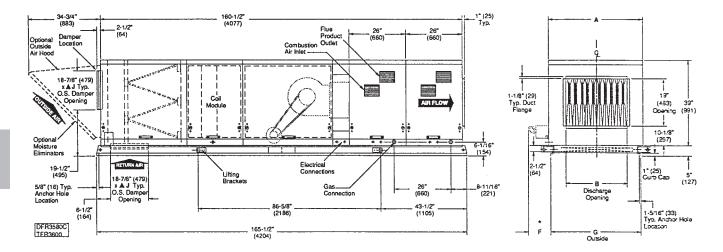
Gravity Vent Model

Rooftop Heating Unit with High Cfm Blower and Coil Cabinet — Arrangement K Models GRAA, GRBA, GRCA, GRDA — Single Furnace 10, 15, 20, 25, 30, 35, 40 (100-400 MBh) — Std. (20-60 F) Temperature Rise Furnace 20, 25, 30, 35, 40 (200-400 MBh) — High (60-90 F) Temperature Rise Furnace

ARRANGEMENT "K" MODELS 10-40 NATURAL VENT (Left Hand Service Access Shown)


ARRANGEMENT "K" MODELS 10-40 POWER VENT (Left Hand Service Access Shown)

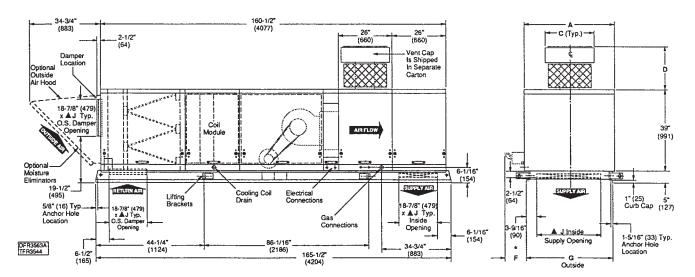
Unit Dimensional Data — Arrangement K — 10-40


OTHE DIFFERING	onui Dutu	Anungement K	10 40							
-		-		A.G.A.	C.G.A.				GAS	INLET
CAPACITY	А	В	С	D	D	*F	G	J _	NAT	LP
10	32 ⁷ /8	15 ⁹ /16	12	11	20 ¹¹ /16	19 ³ /8	31 ¹ /16	24	1/2	1/2
	(835)	(395)	(305)	(279)	(525)	(492)	(789)	(610)		
15	32 ⁷ /8	18 ⁵ /16	21 ¹ / ₂	16	25 ³ /16	23 ¹ / ₂	31 ¹ /16	24	1/2	1/2
	(835)	(465)	(546)	(406)	(640)	(597)	(789)	(610)		
20	43 ⁷ /8	23 ¹³ /16	23 ¹ / ₂	16	25 ³ /16	26 ¹ / ₄	42 ¹ / ₁₆	35	1/2	1/2
	(1114)	(605)	(597)	(406)	(640)	(667)	(1068)	(889)		
25	43 7/8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ / ₁₆	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
30	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	37 ¹ / ₄	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
35	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 ¹¹ /16	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
40	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		

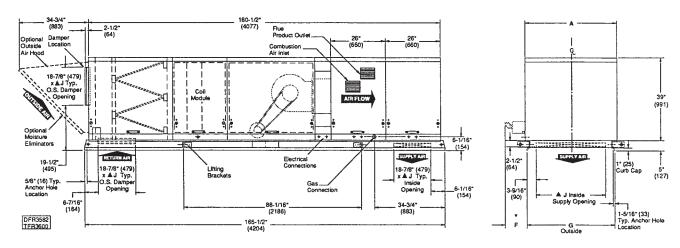
NOTE: DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. **F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS.

Rooftop Heating Unit with High Cfm Blower and Coil Cabinet — Arrangement K Models GRAA, GRBA — 50, 60, 70, 80 (500-800 MBh) Double Furnace Standard (40-120 F) Temperature Rise Furnace

ARRANGEMENT "K" MODELS 50-80 NATURAL VENT (Left Hand Service Access Shown)


ARRANGEMENT "K" MODELS 50-80 POWER VENT (Left Hand Service Access Shown)

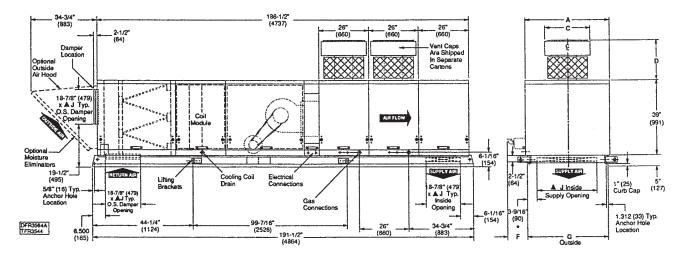
Unit Dimensional Data — Arrangement K — 50-80 (500-800 MBh)


				A.G.A.	C.G.A.				GAS	SINLET
CAPACITY	Α	В	С	D	D	*F	G	J _	NAT	LP
50	43 ⁷ /8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ / ₁₆	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
60	54 ⁷ /8	34 ¹³ /16	26	17 1/2	26 ¹¹ / ₁₆	37 1/4	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
70	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 ¹¹ /16	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
80	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		

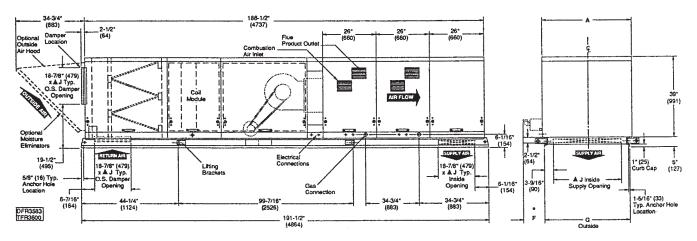
NOTE: DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS.

Rooftop Heating Unit with High Cfm Blower, Coil Cabinet and Downflow Supply Plenum — Arrangement L Models GRAA, GRBA, GRCA, GRDA — Single Furnace 10, 15, 20, 25, 30, 35, 40 (100-400 MBh) — Std. (20-60 F) Temperature Rise Furnace 20, 25, 30, 35, 40 (200-400 MBh) — High (60-90 F) Temperature Rise Furnace

ARRANGEMENT "L" MODELS 10-40 NATURAL VENT (Left Hand Service Access Shown)


ARRANGEMENT "L" MODELS 10-40 POWER VENT (Left Hand Service Access Shown)

Unit Dimensional Data — Arrangement L — 10-40 (100-400 MBh)


				A.G.A.	C.G.A.				GAS	SINLET
CAPACITY	Α	В	С	D	D	*F	G	J _	NAT	LP
10	32 ⁷ /8	15 ⁹ /16	12	11	20 11/16	19 ³ /8	31 ¹ /16	24	1/2	1/2
	(835)	(395)	(305)	(279)	(525)	(492)	(789)	(610)		
15	32 7/8	18 5/16	21 1/2	16	25 ³ /16	23 1/2	31 ¹ /16	24	1/2	1/2
	(835)	(465)	(546)	(406)	(640)	(597)	(789)	(610)		
20	43 ⁷ /8	23 ¹³ /16	23 ¹ / ₂	16	25 ³ /16	26 ¹ / ₄	42 ¹ /16	35	1/2	1/2
	(1114)	(605)	(597)	(406)	(640)	(667)	(1068)	(889)		
25	43 ⁷ /8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ /16	35	3/4	1/2 OR 3/
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
30	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	37 ¹ / ₄	53 ¹ /16	46	3/4	1/2 OR 3/
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
35	54 ⁷ /8	40 5/16	26	17 1/2	26 ¹¹ /16	45 1/2	53 ¹ / ₁₆	46	3/4	1/2 OR 3/
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
40	60 ³ /8	45 ¹³ /16	26	17 ¹ /2	26 ¹¹ /16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		

MOTE: DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS. "J" DIMENSION IS AN INSIDE DIMENSION FOR SUPPLY AIR (WITHOUT DAMPER).

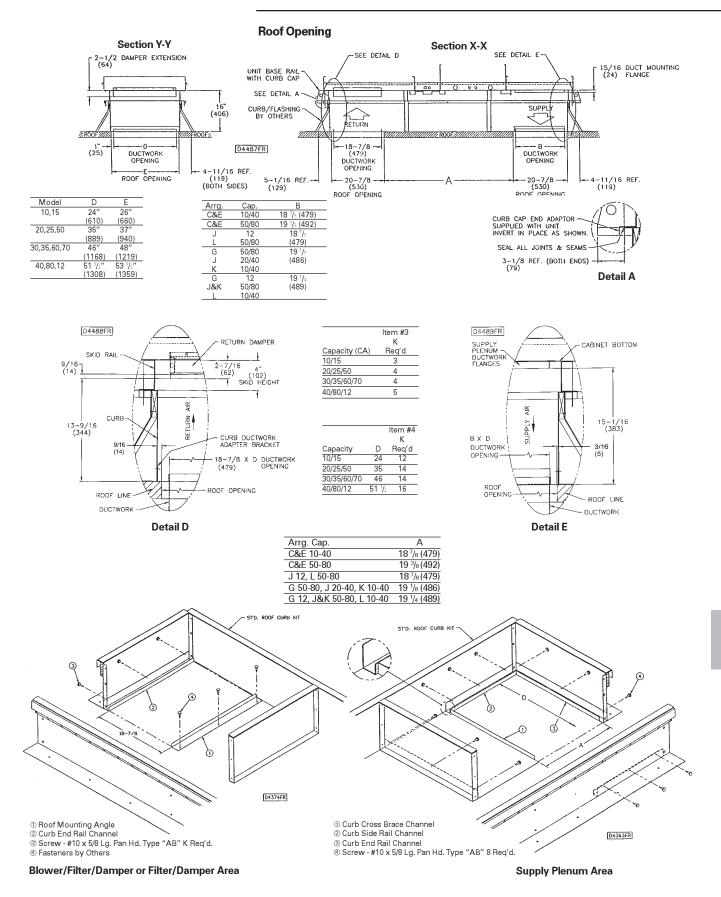
Rooftop Heating Unit with High Cfm Blower, Coil Cabinet and Downflow Supply Plenum — Arrangement L Models GRAA, GRBA — 50, 60, 70, 80 (500-800 MBh) Double Furnace — Standard (40-120 F) Temperature Rise Furnace

ARRANGEMENT "L" MODELS 50-80 NATURAL VENT (Left Hand Service Access Shown)

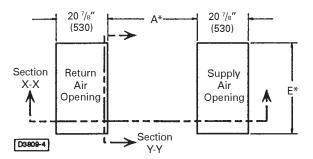
ARRANGEMENT "L" MODELS 50-80 POWER VENT (Left Hand Service Access Shown)

Unit Dimensional Data — Arrangement L — 50-80 (500-800 MBh)

	onul Dutu	Anungement	00 00 (000 000 mibili,						
				A.G.A.	C.G.A.				GAS	INLET
CAPACITY	А	В	С	D	D	*F	G	J	NAT	LP
50	43 ⁷ /8	29 ⁵ /16	23 ¹ / ₂	16	25 ³ /16	34 ¹ / ₂	42 ¹ /16	35	3/4	1/2 OR 3/4
	(1114)	(745)	(597)	(406)	(640)	(876)	(1068)	(889)		
60	54 ⁷ /8	34 ¹³ /16	26	17 ¹ /2	26 11/16	37 ¹ / ₄	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(884)	(660)	(445)	(678)	(946)	(1348)	(1168)		
70	54 ⁷ /8	40 5/16	26	17 ¹ /2	26 11/16	45 ¹ / ₂	53 ¹ /16	46	3/4	1/2 OR 3/4
	(1394)	(1024)	(660)	(445)	(678)	(1156)	(1348)	(1168)		
80	60 ³ /8	45 ¹³ /16	26	17 ¹ / ₂	26 11/16	51	58 ⁹ /16	51 ¹ /2	3/4	1/2 OR 3/4
	(1534)	(1164)	(660)	(445)	(678)	(1295)	(1487)	(1308)		

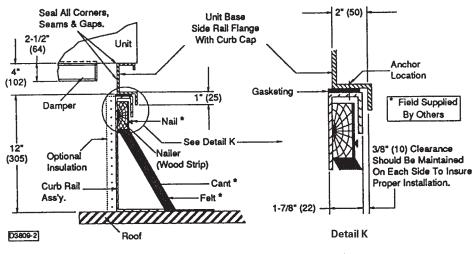

NOTE:

MOTEL DIMENSIONS ARE IN INCHES, DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. *"F" DIMENSION IS THE RECOMMENDED CLEARANCE TO SERVICE THE BURNER DRAWER(S). "J" DIMENSION IS AN OUTSIDE DIMENSION FOR OUTSIDE OR RETURN AIR DAMPERS. "J" DIMENSION IS AN INSIDE DIMENSION FOR SUPPLY AIR (WITHOUT DAMPER).

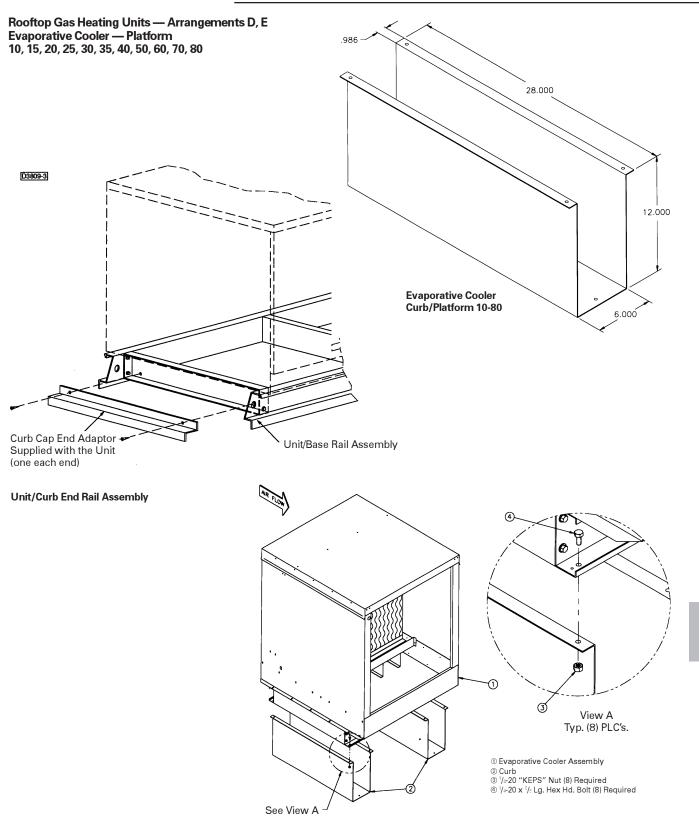

Rooftop Gas Heating Unit — Arrangements B-L Roof Curb

10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 12

Curb Specifications


Capacity	Dimension E*
10/15	26" (660)
20/25/50	37" (940)
30/35/60/70	48" (1219)
40/80/12	53 ¹ /2" (1359

*All dimensions shown have been calculated to include a one (1) inch clearance around return and supply ducts.


See preceding page for Sections X-X and Y-Y.

**	FURNACE	· · · · · ·		UNIT SPECI (REFERI	S			
ROOFTOP	E E	CAPACITY	BL	OWER	COIL	SUPPLY	DIMENSION	
ARRANGEMENT	ŭ	[CA]	STD.	HIGH CFM		PLENUM	-A.	
C, E		10 - 40	\checkmark			1	50%" (1292)	
J	SINGLE	20 - 40		\checkmark		1	87¼s" (2211)	
L	~~	10 - 40		\checkmark	\checkmark	V	113″ (2871)	
C, E		50 - 80	\checkmark			√	76%" (1952)	
J	DUAL	50 - 80		\checkmark		\checkmark	113″ (2871)	
L		50 - 80		\checkmark	\checkmark	\checkmark	139″ (3531)	
J	тя	12		\checkmark		\checkmark	139″ (3531)	

**ROOFTOP ARRANGEMENTS (RA) B, D, G & K ARE WITHOUT A SUPPLY PLENUM; USE THE SAME RETURN AIR DIMENSIONS FOR THESE UNITS ROOFTOP OPENINGS. REFER TO UNIT SUBMITTALS FOR MORE DETAILS.

Section Curb Side Rail

Evaporative Cooler Curb/Platform Mounting Assembly

Table W-1 — Gravity Vented Unit and Option Weight Data (Pounds)

	Α		В		(С 🗌		D		=	(3		J		<	l	_	Outside
Arrangement	Net	Ship	Air Hood																
10	199	218	537	638	651	776	674	805	788	943	NA	NA	NA	NA	775	930	880	1059	43
15	226	245	566	667	679	804	702	833	815	970	NA	NA	NA	NA	801	956	905	1084	43
20	281	302	689	798	819	953	855	995	984	1149	848	988	968	1133	950	1115	1070	1260	51
25	306	327	716	825	844	978	882	1022	1010	1175	898	1038	1023	1188	1000	1165	1125	1315	51
30	362	384	843	959	988	1131	1035	1184	1181	1356	1066	1215	1209	1384	1176	1351	1319	1520	59
35	387	409	889	1005	1033	1176	1081	1230	1225	1400	1110	1259	1252	1427	1220	1395	1362	1563	59
40	423	455	950	1070	1101	1248	1156	1309	1307	1487	1183	1336	1333	1513	1302	1482	1452	1658	63
50	614	711	1035	1169	1155	1314	1201	1366	1321	1511	1209	1374	1329	1519	1311	1501	1439	1654	51
60	727	831	1219	1362	1356	1525	1411	1586	1548	1749	1434	1609	1571	1772	1544	1745	1689	1916	59
70	777	881	1289	1432	1425	1594	1482	1657	1618	1819	1503	1678	1638	1839	1613	1814	1756	1983	59
80	850	958	1386	1533	1530	1704	1592	1772	1736	1942	1612	1792	1755	1961	1730	1936	1874	2107	63
12	1264	1399	NA	2040	2246	2192	2425	NA	NA	NA	NA	63							

Note: 1. Weights do not include motors or coils.

Table W-2 — Power Vented Unit and Option Weight Data (Pounds)

	Α		В		(2	[)	E	-	(3		J	ŀ	<	L	_	Outside
Arrangement	Net	Ship	Air Hood																
10	197	216	536	637	650	775	672	803	786	941	NA	NA	NA	NA	774	929	879	1058	43
15	221	240	561	662	673	798	697	828	810	965	NA	NA	NA	NA	799	954	903	1082	43
20	268	289	676	785	806	940	842	982	972	1137	832	972	956	1121	938	1103	1063	1253	51
25	293	314	703	812	831	965	869	1009	997	1162	881	1021	1010	1175	984	1149	1112	1302	51
30	340	362	821	937	966	1109	1014	1163	1159	1334	1037	1186	1188	1363	1146	1321	1298	1499	59
35	365	387	867	983	1011	1154	1060	1209	1203	1378	1089	1238	1230	1405	1199	1374	1340	1541	59
40	401	433	928	1048	1079	1226	1134	1287	1286	1466	1161	1314	1311	1491	1280	1460	1430	1636	63
50	589	686	1010	1144	1130	1289	1175	1340	1296	1486	1184	1349	1304	1494	1286	1476	1414	1629	51
60	684	788	1175	1318	1312	1481	1368	1543	1505	1706	1390	1565	1527	1728	1500	1701	1645	1872	59
70	784	838	1246	1389	1382	1551	1438	1613	1574	1775	1459	1634	1595	1796	1569	1770	1713	1940	59
80	806	914	1343	1490	1487	1661	1549	1729	1693	1899	1568	1748	1712	1918	1687	1893	1838	2071	63
12	1198	1333	NA	1975	2181	2127	2360	NA	NA	NA	NA	63							

Note:

1. Weights do not include motors or coils.

Table W-3 — Roof Curb Weights

Arrangement	10	15	20	25	30	35	40	50	60	70	80	12
В	115	115	133	133	151	151	161	168	186	186	196	
С	150	150	168	168	186	186	196	197	217	217	227	
D	115	115	133	133	151	151	161	168	186	186	196	
E	150	150	168	168	186	186	196	197	217	217	227	
G			179	179	197	197	207	210	228	228	238	381
J			210	210	228	228	238	338	366	366	381	418
K	192	192	210	210	228	228	238	338	366	366	381	
L	310	310	338	338	366	366	381	375	403	403	418	

Weights

Voltage	1/2 HP	³ /4 HP	1 HP	1 1/2 HP	2 HP	3 HP	5 HP	7 1/2 HP	10 HP	15 HP
115/60/1 ODP	20	25	25	40	42	80	NA	NA	NA	NA
208/60/1 ODP	21	27	25	40	66	80	NA	NA	NA	NA
230/60/1 ODP	21	25	25	40	42	80	NA	NA	NA	NA
208/60/3 ODP	20	24	31	29	35	47	49	99	118	152
230/60/3 ODP	20	24	31	29	35	47	49	99	118	150
460/60/3 ODP	20	24	31	29	35	47	49	99	118	150
575/60/3 ODP	20	20	27	31	37	56	73	105	116	150
115/60/1 TE	26	30	34	41	65	74	NA	NA	NA	NA
208/60/1 TE	27	36	39	48	65	74	NA	NA	NA	NA
230/60/1 TE	26	30	34	41	65	74	NA	NA	NA	NA
208/60/3 TE	18	23	28	32	36	55	65	90	123	295
230/60/3 TE	18	23	28	32	36	55	65	90	123	295
460/60/3 TE	18	23	28	32	36	55	65	90	123	295
575/60/3 TE	21	21	26	36	40	90	92	161	199	284
115/60/1 HEODP	32	33	38	58	72	NA	NA	NA	NA	NA
208/60/1 HEODP	32	30	NA	NA	NA	NA	NA	NA	NA	NA
230/60/1 HEODP	32	33	38	58	72	NA	NA	NA	NA	NA
208/60/3 HEODP	22	25	40	44	44	83	89	139	141	213
230/60/3 HEODP	24	26	40	43	44	80	91	137	138	238
460/60/3 HEODP	24	26	40	43	44	80	91	137	138	238
575/60/3 HEODP	NA	NA	41	44	45	90	100	170	141	215
115/60/1 HETE	28	37	38	41	53	NA	NA	NA	NA	NA
208/60/1 HETE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
230/60/1 HETE	28	37	38	41	53	NA	NA	NA	NA	NA
208/60/3 HETE	NA	NA	39	34	48	71	78	107	124	225
230/60/3 HETE	32	52	39	34	48	94	110	158	166	294
460/60/3 HETE	32	52	39	34	48	94	110	158	166	294
575/60/3 HETE	NA	NA	44	69	88	76	80	132	140	260
208/60/3 2S1W	NA	NA	34	38	48	66	81	125	143	NA
230/60/3 2S1W	NA	NA	34	38	48	66	81	125	143	NA
460/60/3 2S1W	NA	NA	34	38	41	58	94	125	136	218
575/60/3 2S1W	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
115/60/1 2S2W	23	30	37	NA	NA	NA	NA	NA	NA	NA
208/60/1 2S2W	NA	29	36	NA	NA	NA	NA	NA	NA	NA
230/60/1 2S2W	23	29	36	NA	NA	NA	NA	NA	NA	NA
208/60/3 2S2W	27	32	44	47	67	84	NA	221	192	NA
230/60/3 2S2W	26	32	44	47	67	84	NA	221	192	NA
460/60/3 2S2W	26	33	40	44	55	67	NA	214	230	NA
575/60/3 2S2W	ŇĂ	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes: 1. ODP = Open Drip-proof 2. TE = Totally enclosed 3. HEODP = High Efficiency Open Drip-proof 4. HETE = High Efficiency Totally Enclosed 5. 2S1W = Two Speed One Winding 6. 2S2W = Two Speed Two Winding 7. NA = Not Available

FLA based on NEC Ratings

Table W-5 — Evaporative Cooler Weight

Table vv-5 —	Table VV-5 — Evaporative Cooler Weight											
	Shipping Wt.	Operating Wt.										
Unit Size	lb	lb										
10, 15	137	301										
20, 25, 50	166	386										
30, 35, 60, 70	192	468										
40, 80	206	509										

Metric Conversion — 1 lb. = 0.453 kg

Options

Thermostats

Single-Stage Room Thermostat

(Order No. 134-0207-01)

- Low Voltage (24V)
 40 F to 90 F Range
- Fan Auto-On Switch
- System Heat-Off-Cool Switch

Two-Stage Room Thermostat (Order No. 134-0207-04)

- Low Voltage (24V)
- 40 F to 90 F Range
- Fan Auto-On Switch
- System Off-Heat-Auto-Cool Switch
- 5 ⁵/8" W x 3 ¹/2" H x 2 ¹/8" D

Single-Stage Room Thermostat with Summer/Winter Switch (Order No. 134-0207-02)

- Low Voltage (24V)
- 55 to 95 F Range • Fan Auto-On Switch
- 3 1/2" W x 4 1/5" H x 1 3/8" D

T7300 Programmable Room Thermostat

(Order No. 134-0207-05)

- Provides seven-day programmability for two stages of heating and two stages of cooling
- Heat-Off-Cool-Auto system switching four time periods per day for occupied and unoccupied modes with three-hour override of unoccupied mode.
- Automatic heat-cool changeover and battery backup.
- 8" W x 4" H x 1 5/8" D

Universal Guard

- (Order No. 134-0207-07)
- Clear Plastic
- Ring Base
- Tumbler Lock and Two Keys
- Cover: 6 ⁷/₈" W x 5 ⁵/₈" H x 3" D Base: 6 ⁹/₁₆" W x 5 ¹/₂" H x ³/₈" D

Single-Stage Duct Thermostat

- (Order No. 134-0207-03)
- Low Voltage (24V)
- 55 to 175 F Range
- 5' Capillary
- 2" W x 5 5/8" H x 2 7/16" D

Two-Stage Duct Thermostat (Order No. 134-0207-06)

- Low Voltage (24V)
- 55 to 175 F Range
- 5' Capillary
- 2" W x 5 ⁵/₈" H x 2 ⁷/₁₆" D

Options

Thermostats

Remote Control Station

(Order No. 134-0201-01)

- Wall mounted
- Six LED status lamps
- System on/off, fan auto/on, heat auto/ off, cool auto/off, auxiliary on/off switching and modulating damper potentiometer mounting.
- Plug-in terminal block wiring and wall mounting bracket.
- 6 1/4" W x 3 3/4" H x 1 1/2" D

TRANE SERVICE

Seven-Day Timeclock

- (Order No. 134-0201-02)
- Single pole double throw (SPDT) relay output at setpoint time
- Maximum of six setpoints per day
- 7 ³/₄" H x 5" W x 3 ⁷/₁₆" D

24-Hour Timeclock

- (Order No. 134-0201-03)
- Single pole double throw (SPDT) relay output at setpoint time.
- Maximum 12 setpoints per day.
- 7 ³/₄" H x 5" W x 3 ⁷/₁₆" D

Controls

Electronic Modulating Room Thermostat

- (Included with Gas Control) • Low voltage (24 V)
- Low voltage
 CO OF F range
- 60-85 F range
- Natural gas onlyRoom thermostat:
- $4^{1}/2''$ H x 2 $^{1}/2''$ W x 1 $^{1}/2''$ D

Electronic Modulating Duct Thermostat

- (Included with Gas Control)
- Low voltage (24 V)
- 55-90 F range
- Sensor: 10-inch probe
- Remote temperature selector: 4 1/4" W x 4 1/4" H x 1 7/8" D
- Duct thermostat: $4 \frac{1}{4}$ W x $4 \frac{1}{4}$ H x $1 \frac{5}{8}$ D • Natural gas only

Remote Temperature Selector

Electronic Modulating Duct Thermostat with Room Override

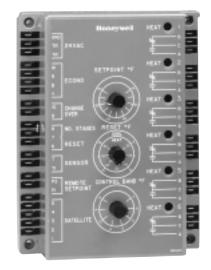
- Line voltage (115 V) roomstat
- 50-90 F range
- $2^{7}/8''$ W x $4^{9}/16''$ H x $1^{1}/4''$ D
- Low voltage (24 V) Ductstat
- 55-90 F range
- Sensor: 10-inch probe
- Remote temperature selector:
- 4 ¹/₄" W x 4 ¹/₄" H x 1 ⁵/₈" D
- Duct thermostat:
- 4 ¹/4" W x 4 ¹/4" H x 1 ⁵/8" D
- Natural gas only

Room Override

Remote Temperature Selector

Options

Controls


Electronic Modulating 4-20 mA or 0-10 VDC Input

- A200 signal conditioner
 Control replaces amplifier in duct or room control package

Discharge Air Control with Outside Air Reset

• Available in two, three and four-stage control. Shown below is the discharge air controller.

Roof Curbs

Roof Curbs

Roof curbs are available for all Trane single, double and triple furnace outdoor units. All curbs are shipped knocked down for field assembly.

Curbs are normally available on a short lead time basis so they may be on the jobsite well in advance of the units. Curbs are 12 inches high, factoring in the four-inch unit base rail, overall height to the bottom of the rooftop unit is actually 16 inches. Roof curbs can be supplied with one-inch fiberglass insulation.

Features Summary

Trane rooftop gas heating units have the following design features:

- All units have AGA and CGA certified duct furnaces.
- ETL and CSA UL-1995 certified packaged units.
- All units fabricated from aluminized steel. The heat exchanger uses 20gauge tubes and 18-gauge header sections.
- Units are complete, wired, tested and rail-mounted packages with blower drives preset.
- Units are available with left hand or right hand gas control configuration. This flexibility helps to meet special application requirements.
- Draw-thru coil cabinet arrangements with stainless steel drain pan.
- Evaporative cooling arrangement with standard 8 or optional 12-inch media (203 or 305 mm).

Arrangement A

GENERAL

Units shall be completely factory assembled, piped, wired and test fired. All duct furnaces shall be AGA and CGA certified and conform with the latest ANSI Standards for safe and efficient performance. Units shall be mounted on metal rails with lifting and anchor holes and shall be suitable for slab mounting. Units shall be available for operation on either natural or LP (propane) gas. The firing rate of each furnace will not exceed 400 MBh and shall contain its own heat exchanger, flue collector, venting, burners, safety and ignition controls. All furnaces shall be in compliance with FM (Factory Mutual) requirements.

ELECTRICAL

Standard control relays shall be socket mounted with terminal block connections. All control wiring shall terminate at terminal strips (single point connection) and include an identifying marker corresponding to the wiring diagram. Control wiring shall be harnessed with terminal block connections.

Casing

Casings shall be die-formed, 18-gauge galvanized steel and finished in air-dry enamel. Service and access panels shall be provided through easily removable side access panels with captive fasteners.

Heat Exchanger

Standard heat exchanger construction shall consist of 20-gauge aluminized steel tubes and 18-gauge aluminized steel headers. Standard drip pan construction shall be corrosion resistant aluminized steel.

Flue Collector

Standard flue collector construction shall be corrosion resistant aluminized steel.

Venting System

Mechanical

Specifications

Natural vent units shall be provided with a vent cap designed for gravity venting. Outside air for combustion enters at the base of the vent cap through a protective grille, and products of combustion are discharged through the upper section of the flue vent cap.

Power vent units shall be provided with a vent fan. Outside air for combustion and products of combustion shall have individual air inlet and discharge grilles located in the upper section of the furnace service panel. An air proving switch shall be installed and disengage gas flow if for any reason the drafter has failed to operate. (Power venting and 100 percent shutoff ignition systems are required for compliance with IRI (Industrial Risk Insurers).

Burners

Burners shall be die-formed, corrosion resistant aluminized steel, with stamped porting and stainless steel port protectors. Port protectors prevent foreign matter from obstructing the burner ports. Burners are individually removable for ease of inspection and servicing. The entire burner assembly is easily removed with its slide-out drawer design. The pilot shall be accessible through an access plate without removing the burner drawer assembly.

Electrical Cabinet

Electrical cabinet shall be isolated from the air stream with a non-removable access panel interior to the outer service panel. There is provision in this cabinet for component mounting, wire routing and high voltage isolation. Control wiring shall be harnessed with terminal block connections.

Controls

Standard units shall be provided with 24-volt combination single-stage automatic gas valves, including main operating valve and pilot safety shutoff, pressure regulator, manual main and pilot shutoff valve, and adjustable pilot valve. Gas valves shall be suitable for NEC Class 2 use for a maximum inlet gas pressure of 0.5 psi (14" WC) on natural gas. All rooftop units shall be provided with a low voltage circuit breaker rated for 150 percent of the units normal 24-volt operating load.

Each duct furnace shall be provided with a 24 V high temperature limit switch and a (redundant) combination gas valve.

All units provided with a solid state ignition control system which ignites the intermittent pilot by spark during each cycle of operation. When pilot flame is proven, main burner valve opens to allow gas flow to the burners. Pilot and burners are extinguished during the off cycle.

Rooftop Duct Furnace

Mechanical Specifications

FACTORY INSTALLED OPTIONS

Control Options (Per Furnace) Two-Stage Gas Valve Provides two stages of heat. Ignition is at low fire (one half of the unit's full rated input). Requires the use of an optional two-stage thermostat.

□ Hydraulic Modulating Gas Valve Provides modulated heat output. Ignition is at low fire (one half of the unit's full rated input), and a discharge air temperature sensing bulb located in the air stream shall modulate the gas input from 40 percent to 100 percent rated input. Provided with an automatic electric valve in series with the hydraulic valve which cycles the unit in response to an optional low voltage single-stage thermostat.

□ Hydraulic Modulating Gas Valve with Bypass

Provides modulated heat output. Ignition is at low fire (one half of the unit's full rated input), and a discharge temperature sensing bulb located in the air stream shall modulate the gas input from 40 percent to 100 percent rated input. Provided with an automatic electric valve in series with the hydraulic valve which cycles the unit. An additional electric valve in parallel bypasses the hydraulic modulating valve, overriding the discharge temperature sensing bulb, allowing full fire. Requires the use of an optional thermostat to control the electric valve.

Electronic Modulating — Room or Duct Stat Control

Provides modulated heat output. An automatic valve in series with the modulating valve shall be provided to cycle the unit. Ignition is at full fire (100 percent input), and modulates the gas input from 100 percent to 40 percent rated input. Available for use with a room thermostat or duct thermostat with remote setpoint adjustment. Duct thermostat available with optional override room thermostat which causes the unit to go to full fire when the room temperature falls below the override room thermostat's setpoint. □ Electronic Modulating — 4-20 mA/0-10 VDC Input Provides modulated heat output. Ignition is at full fire (100 percent input), and modulates the gas input from 100 percent to 40 percent rated input. The modulating gas valve shall operate in response to a 4-20 mA or a 0-10 VDC input from an external DDC control. When "furnace one only" is specified on double and triple furnaces, additional furnace sections will have single-stage on-off control.

 \Box Discharge Air Control with Outside Air Reset

Unit provided with factory-mounted discharge air controller, discharge air sensor, outdoor air reset, summer/ winter thermostat and velocity pressure switch. The outdoor air reset range is from 10 F to 60 F. Full reset occurs at 10 F outside air temperature. There is a straight line relationship between outside air temperature and reset. Therefore, at 60 F outside air temperature, no reset will occur. The amount of reset is adjustable from 20 F to 50 F. Discharge air controller provides two minute delay between successive on and off stages. A summer/winter thermostat locks out heating when outside air temperature is above 55 F. The velocity pressure switch is provided for protection against high temperatures at low airflows.

Available in two-stage (half of the unit's full rated input), three-stage (33 percent of the unit's full rated input) and fourstage (25 percent of the unit's full rated input). Three and four-stage available on double and triple furnace units only.

S-350 Modular Electronic Control System

Basic system utilizes a controller module with discharge air sensor, setpoint and one stage output, a stage module with differential setpoint and one stage output and a display module with LCD display for temperature readout. The system stages the units rate of fire based upon sensed discharge air temperature, setpoint setting and differential setting between stages.

Provided as a two-stage (all furnaces), three and four-stage (double and triple furnaces only) and six-stage (triple furnace only).

Heat Exchanger Options

Type 409 Stainless Steel (one or all furnaces)

Heat exchanger tubes and headers shall be 20-gauge type 409 stainless steel. Burners and flue collector shall be aluminized steel. 409 stainless steel is recommended when outside air is used for make-up air in areas where outside temperatures are 40 F or below.

Type 409 Stainless Steel Package (one or all furnaces)

Heat exchanger tubes and headers shall be 20-gauge type 409 stainless steel. Burners and flue collector shall be 409 stainless steel. 409 stainless steel is recommended where outside air is used for make-up air in areas where outside temperatures are 40 F or below.

 \Box Type 321 Stainless Steel (one or all furnaces)

Heat exchanger tubes and headers shall be 20-gauge type 321 stainless steel. Burners and flue collector shall be aluminized steel.

□ Type 321 Stainless Steel Package (one or all furnaces) Heat exchanger tubes and headers shall be 20-gauge type 321 stainless steel. Burners and flue collector shall be 409 stainless steel.

Additional Factory Installed Options

The fan time delay relay minimizes cold blasts of air on start-up. It also allows the fan to operate after burner shutdown (120 second delay off), removing the residual heat from the heat exchanger.

Manual Blower Switch
 Manual blower switch shall be factory
 installed in the electrical cabinet.

Mechanical Specifications

Firestat

If temperature reaches the setpoint, the unit will close all gas valves, return the dampers to their normal position and shut down the blower. Manual reset.

Return Air Mounted (setpoint typically 130 F)

□ Supply Air Mounted (setpoint typically 150 F)

□ Orifices for Elevations over 2000 feet

□ 409 Stainless Steel Furnace Drip Pan Replaces the standard aluminized steel furnace drip pan.

□ Airflow Proving Switch

☐ High/Low Gas Pressure Limit Switches

A high pressure and a low pressure interlock switch and shutoff valve shall be provided for each furnace section. High/low gas pressure limits disengage heating upon detecting either high line pressure or low manifold pressure.

Status Indicator Lamps (Electrical Cabinet)

Status indicator lamps shall include power on, blower on and one lamp per stage of heat mounted in the electrical cabinet.

Field Installed Accessories

□ High Gas Line Pressure Regulator Reduces main gas line pressure to a minimum of 7 inches WC. Pressure at the jobsite must be specified. The regulator is selected to accommodate that specific pressure.

□ Remote Control Station Wall mounted. Provides six LED status lamps with System On/Off, Fan Auto/ On, Heat Auto/Off, Cool Auto/Off, Auxiliary On/Off switching and Modulating damper potentiometer mounting. Designed for easy installation with plug-in terminal block wiring and wall mounting bracket. (Auxiliary On/Off may be used with the Evaporative Cooler fill and drain kit.)

□ Seven-Day Timeclock Provides single-pole double-throw (SPDT) relay output at setpoint time with maximum six setpoints per day.

□ 24-Hour Timeclock Provides single-pole double-throw (SPDT) relay output at setting time with maximum 12 setpoints per day. Disconnect Switch

□ 115V Convenience Outlet GFI (Ground Fault Convenience Outlet) is manual reset with weatherproof enclosure. (Requires separate 115V power source.)

□ Manual Reset High Limit Switch The rooftop unit shall be provided with a manual reset high limit switch wired in series to the lead furnace high limit. If the setpoint is reached, the gas valve will close and the blower will continue to run until the sensed temperature is below the setpoint.

THERMOSTATS

Low voltage room thermostat, single stage with fan auto-on-switch and system heat off- cool switch.

Low voltage room thermostat, single stage with fan auto-on switch.

□ Low voltage room thermostat, two stage with fan auto-on switch and system off-heat-auto-cool switch.

Low voltage programmable room thermostat, two stage with LCD display, fan auto-on switch and system off-heat-auto-cool switch.

Universal tamperproof guard for all room thermostats.

Low voltage duct thermostat, single stage.

Low voltage duct thermostat, two-stage.

Room thermostat, electronic modulating control.

Duct thermostat, electronic modulating control.

Duct thermostat, electronic modulating control with override room thermostat.

Rooftop Heating Unit

Arrangement B, C, D, E

GENERAL

Units shall be completely factory assembled, piped, wired and test fired. All units shall contain duct furnaces that are AGA and CGA certified and conform with the latest ANSI Standards for safe and efficient performance. Units shall be mounted on metal rails with lifting and anchor holes and shall be suitable for slab or curb mounting. Units shall be available for operation on either natural or LP (propane) gas.

The firing rate of each furnace will not exceed 400 MBh and shall contain its own heat exchanger, flue collector, venting, burners, safety and ignition controls. All units shall be ETL or UL certified for electrical safety in compliance with UL 1995 safety standard for heating, ventilating and cooling equipment. All units shall be in compliance with FM (Factory Mutual) requirements.

ELECTRICAL

Standard control relays shall be socket mounted with terminal block connections. All control wiring shall terminate at terminal strips (single point connection) and include an identifying marker corresponding to the wiring diagram. Motor and control wiring shall be harnessed with terminal block connections.

Casing

Casings shall be die-formed, 18-gauge galvanized steel and finished in air-dry enamel. Service and access panels shall be provided through easily removable side access panels with captive fasteners. Fan sections and supply plenums (when provided) shall be insulated with fire resistant, odorless, matte-faced one-inch glass fiber material. Outside air hoods, when provided, ship with a wire mesh inlet screen.

Heat Exchanger

Standard heat exchanger construction shall consist of 20-gauge aluminized steel tubes and 18-gauge aluminized steel headers. Standard drip pan construction shall be corrosion resistant aluminized steel.

Flue Collector

Standard flue collector construction shall be corrosion resistant aluminized steel.

Venting System

Natural vent units shall be provided with a vent cap designed for gravity venting. Outside air for combustion enters at the base of the vent cap through a protective grille, and products of combustion are discharged through the upper section of the flue vent cap.

Power vent units shall be provided with a vent fan. Outside air for combustion and products of combustion shall have individual air inlet and discharge grilles located in the upper section of the furnace service panel. An air proving switch shall be installed and disengage gas flow if for any reason the draftor has failed to operate. Power venting and 100 percent shutoff ignition systems are required for compliance with IRI (Industrial Risk Insurers).

Burners

Burners shall be die-formed, corrosion resistant aluminized steel, with stamped porting and stainless steel port protectors. Port protectors prevent foreign matter from obstructing the burner ports. Burners are individually removable for ease of inspection and servicing. The entire burner assembly is easily removed with its slide-out drawer design. The pilot shall be accessible through an access plate without removing the burner drawer assembly.

Evaporative Cooler (Standard on Arrangement D and E only)

An evaporative cooler with 8-inch media shall be provided. The evaporative cooler shall be of a self cleaning design with a stainless steel water tank, regulated water flow and overflow protection. The cooler shall have a cabinet assembly of heavygauge aluminized steel with weatherproof finish, a UL recognized thermally protected sealed recirculating pump motor, two inch distribution pad, and corrosion resistant PVC water distribution tubes.

Fans

Centrifugal fan shall be belt driven, forward curved with double inlet, statically and dynamically balanced. The blower wheel shall be fixed on a keyed shaft, supported with rubber grommet on bearing only, and ball bearing secured. An access interlock switch shall be installed in the blower compartment and will disengage the blower upon removing the service panel. An override shall be incorporated into the interlock switch for serviceability.

Filters

Filter rack shall be constructed of galvanized steel with access through the side service panel. Standard filters are one-inch permanent washable type.

Electrical Cabinet

Electrical cabinet shall be isolated from the air stream with a non-removable access panel interior to the outer service panel. There is provision in this cabinet for component mounting, wire routing and high voltage isolation. Motor and control wiring shall be harnessed with terminal block connections.

Controls

Standard units shall be provided with 24-volt combination single-stage automatic gas valves, including main operating valve and pilot safety shutoff, pressure regulator, manual main and pilot shutoff valve, and adjustable pilot valve. Gas valves shall be suitable for NEC Class 2 use for a maximum inlet gas pressure of 0.5 psi (14" WC) on natural gas. All rooftop units shall be provided with a low voltage circuit breaker rated for 150 percent of the units normal 24-volt operating load.

Each duct furnace shall be provided with a 24-volt high temperature limit switch, a (redundant) combination gas valve and a fan time delay relay. The fan time delay relay minimizes cold blasts of air on start-up. It also allows the fan to operate after burner shutdown, removing residual heat from the heat exchanger. All rooftop furnace units shall contain a reverse airflow interlock switch. The normally closed switch, when activated, shall cause gas valves to close and continue blower operation. All units provided with a solid-state ignition control system which ignites the intermittent pilot by spark during each cycle of operation. When pilot flame is proven, main burner valve opens to allow das flow to the burners. Pilot and burners are extinguished during the off cycle.

FACTORY INSTALLED OPTIONS

Control Options (Per Furnace)

Two-Stage Gas Valve Provides two stages of heat. Ignition is at low fire (one half of the unit's full rated input). Requires the use of an optional two-stage thermostat. Hydraulic Modulating Gas Valve Provides modulated heat output. Ignition is at low fire (one half of the unit's full rated input), and a discharge air temperature sensing bulb located in the air stream shall modulate the gas input from 40 percent to 100 percent rated input. Provided with an automatic electric valve in series with the hydraulic valve which cycles the unit in response to an optional low voltage single-stage thermostat.

□ Hydraulic Modulating Gas Valve with Bypass

Provides modulated heat output. Ignition is at low fire (one-half of the unit's full rated input), and a discharge temperature sensing bulb located in the air stream shall modulate the gas input from 40 percent to 100 percent rated input. Provided with an automatic electric valve in series with the hydraulic valve which cycles the unit. An additional electric valve in parallel bypasses the hydraulic modulating valve, overriding the discharge temperature sensing bulb, allowing full fire. Requires the use of an optional thermostat to control the electric valve.

Electronic Modulating — Room or Duct Stat Control

Provides modulated heat output. An automatic valve in series with the modulating valve shall be provided to cycle the unit. Ignition is at full fire (100 percent input), and modulates the gas input from 100 percent to 40 percent rated input. Available for use with a room thermostat or duct thermostat with remote setpoint adjustment. Duct thermostat available with optional override room thermostat which causes the unit to go to full fire when the room temperature falls below the override room thermostat's setpoint. Electronic Modulating — 4-20 mA / 0-10 VDC Input

Provides modulated heat output. Ignition is at full fire (100 percent input), and modulates the gas input from 100 percent to 40 percent rated input. The modulating gas valve shall operate in response to a 4-20 mA or a 0-10 VDC input from an external DDC control. When "furnace one only" is specified on double and triple furnaces, additional furnace sections will have single-stage on-off control.

Discharge Air Control with Outside Air Reset

Unit provided with factory-mounted discharge air controller, discharge air sensor, outdoor air reset, summer/ winter thermostat and velocity pressure switch. The outdoor air reset range is from 10 F to 60 F. Full reset occurs at 10 F outside air temperature. There is a straight line relationship between outside air temperature and reset. Therefore, at 60 F outside air temperature, no reset will occur. The amount of reset is adjustable from 20 F to 50 F. Discharge air controller provides two minute delay between successive on and off stages. A summer/winter thermostat locks out heating when outside air temperature is above 55 F. The velocity pressure switch is provided for protection against high temperatures at low airflows.

Available in two-stage (half of the unit's full rated input), three-stage (33 percent of the unit's full rated input) and fourstage (25 percent of the unit's full rated input). Three and four-stage available on double and triple furnace units only.

S-350 Modular Electronic Control System

Basic system utilizes a controller module with discharge air sensor, setpoint and one stage output, a stage module with differential setpoint and one-stage output and a display module with LCD display for temperature readout. The system stages the units rate of fire based upon sensed discharge air temperature, setpoint setting and differential setting between stages.

Provided as a two-stage (all furnaces), three and four-stage (double and triple furnaces only) and six-stage (triple furnace only).

Heat Exchanger Options

□ Type 409 Stainless Steel (one or all furnaces) Heat exchanger tubes and headers shall be 20-gauge type 409 stainless steel. Burners and flue collector shall be aluminized steel. 409 stainless steel is recommended when outside air is used for make-up air in areas where outside temperatures are 40 F or below.

Type 409 Stainless Steel Package (one or all furnaces)

Heat exchanger tubes and headers shall be 20-gauge type 409 stainless steel. Burners and flue collector shall be 409 stainless steel. 409 stainless steel is recommended where outside air is used for make-up air in areas where outside temperatures are 40 F or below.

Type 321 Stainless Steel (one or all furnaces)

Heat exchanger tubes and headers shall be 20-gauge type 321 stainless steel. Burners and flue collector shall be aluminized steel.

□ Type 321 Stainless Steel Package (one or all furnaces) Heat exchanger tubes and headers shall be 20-gauge type 321 stainless steel. Burners and flue collector shall be 409 stainless steel.

Motors — General

All motors shall be ball bearing type with resilient base mount. Windings are Class "B", 1800 rpm with service factors of 1/2 - 3/4 hp = 1.25 and 1 - 5 hp = 1.15.

□ Single-Speed Open Drip-proof 60 HZ/1800 RPM Single-Phase (with contactor) — Optional 115V, 208V and 230V motors available in ½ - 2 hp models.

Three-Phase (with contactor) — Optional 208V, 230V and 460V motors available in $\frac{1}{2}$ - 5 hp models.

Single-Phase (with magnetic starter) — Optional 115V,208V and 230V motors available in $\frac{1}{2}$ - 3 hp models.

Three-Phase (with magnetic starter) — Optional 208V,230V,460V and 575V motors available in $\frac{1}{2}$ - 5 hp models.

□ Single-Speed TEFC 60 HZ/1800 RPM Single-Phase (with contactor) — Optional 115V, 208V and 230V motors available in ½ - 1 ½ hp models.

Single-Phase (with magnetic starter) — Optional 115V, 208V and 230V motors available in $\frac{1}{2}$ - 3 hp models.

Three-Phase (with magnetic starter) — Optional 208V,230V,460V and 575V motors available in $\frac{1}{2}$ - 5 hp models.

□ Single Speed High Efficiency ODP 60 HZ/1800 RPM

Single-Phase (with contactor) — Optional 115V and 230V motors available in $\frac{1}{2}$ - 1 hp models. Optional 208V motors available in $\frac{1}{2}$ - $\frac{3}{4}$ hp models.

Single-Phase (with magnetic starter) — Optional 115V and 230V motors available in $\frac{1}{2}$ - 2 hp models. Optional 208V motors available in $\frac{1}{2}$ - $\frac{3}{4}$ hp models.

Three-Phase (with magnetic starter) — Optional 208V,230V and 460V motors available in $\frac{1}{2}$ - 5 hp models. Optional 575V motors available in 1 - 5 hp models.

□ Single-Speed High Efficiency TEFC 60 HZ/1800RPM Single-Phase (with contactor) — Optional 11EV and 220V meters

Optional 115V and 230V motors available in $\frac{1}{2}$ - 1 $\frac{1}{2}$ hp models.

Single-Phase (with magnetic starter) — Optional 115V and 230V motors available in $\frac{1}{2}$ - 2 hp models.

Three-Phase (with magnetic starter) — Optional 230V and 460V motors available in $\frac{1}{2}$ - 5 hp models. Optional 208V and 575V available in 1 - 5 hp models.

☐ Two-Speed/One Winding Motors (THREE PHASE ONLY) 60 HZ/1800/900 RPM Three Phase (with magnetic starter) — Optional 208V, 230V and 460V motors available in 1 - 5 hp models.

□ Two-Speed/Two Winding Motors 60 HZ/1800/1200 RPM Single-Phase (with magnetic starter) — Optional 115V and 230V motors available in ½ - 1 hp models. Optional 208V motors available in ¾ - 1 hp models. Three-Phase (with magnetic starter) — Optional 208V and 230V motors available in $\frac{1}{2}$ - 5 hp models. Optional 460V motors available in $\frac{1}{2}$ - 3 hp models.

□ Manual Blower Switch Manual blower switch shall be factory installed in the electrical cabinet.

Damper Options

Dampers shall be of the opposed blade type, constructed of galvanized steel with neoprene nylon bushings, blades to be mechanically interlocked.

Optional low leak dampers shall be of the opposed blade type, construction of galvanized steel with neoprene nylon bushings and vinyl blade edge seals, blades to be mechanically interlocked.

□ Outside Air or Return Air/ Two-Position Motor/ Spring Return Units with outside air or return air only shall be provided with damper, two position spring return damper motor and controls. The motor shall power the damper full open when the unit is on and full closed when the unit is off.

OA/RA Two-Position Spring Return Two position spring return motor with interlocked outside and return air dampers shall be provided. The motor shall power either the outside air damper full open and the return air damper full closed or the outside air damper full closed and the return air damper full open in response to an outside air temperature sensor (includes an outside air thermostat that makes on a rise in temperature and drives the damper open). When the unit is off, the motor will drive the outside air damper full closed and the return air damper full open.

□ OA/RA Modulating Motor W/Mixed Air Control/Min. Pot/Spring Return Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller located in the mixed air stream. Units shall also be provided with a minimum position potentiometer for minimum outside air damper position.

The spring return feature drives the outside air damper full closed and the return air damper full open when the unit is off.

□ OA/RA Modulating Motor W/Mixed Air Control/Spring Return Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller located in the mixed air stream.

The spring return feature drives the outside air damper full closed and the return air damper full open when the unit is off.

OA/RA Modulating Motor W/Min Pot/Spring Return

Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall position the outside and return air dampers in response to a manually set potentiometer.

The spring return feature drives the outside air damper full closed and the return air damper full open when the unit is off.

OA/RA Modulating Motor W/Dry Bulb/Mixed Air Control/Min Pot/Spring Return

Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller and dry bulb thermostat located in the mixed air stream. Units shall also be provided with a minimum position potentiometer for minimum outside air damper position.

The spring return feature drives the outside air damper full open and the return air damper full closed when the unit is off.

□ OA/RA Modulating Motor W/ Enthalpy Controlled Economizer/SR Modulating motor with spring return and interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to an enthalpy controlled economizer. When the unit is off the motor will drive the outside air damper full closed and the return air damper full open.

□ OA/RA Modulating Motor with Space Pressure Controller Modulating motor with spring return and interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a pressure sensor located in the building. Non-spring return.

□ OA/RA Modulating Motor W/S-350P Proportional Mixed Air Control/SR Modulating motor with spring return and interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a solid-state mixed air sensor and S-350 Proportional controller. When the unit is off the motor will drive the outside air damper full closed and the return air damper full open.

□ OA/RA Mtr. W/External 4-20 mA or 0-10VDC Analog Input/Spring Return Modulating motor interlocked with outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a 4-10 mA or 0-10VDC signal supplied by an external DDC controller.

The spring return feature drives the outside air damper full closed and the return air damper full open when the unit is shut down.

ASHRAE Cycle I - OA/RA 2 pos w/ warm-up stat/SR

Two position spring return motor with interlocked outside and return air dampers shall be provided. The motor shall power the outside air damper full open after a warm up period determined by a minimum supply air temperature sensor when the unit is on, and full closed when the unit is off. ASHRAE Cycle II - OA/RA Mod W/ Warm-up Stat/Mixed Air/Min Pot/ Spring Return

Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller located in the mixed air stream after a warm up period determined by a minimum supply air temperature sensor. Units shall also be provided with a minimum position potentiometer for minimum outside air damper position. When the unit is off, the motor will drive the outside air damper full closed and the return air damper full open.

ASHRAE Cycle III - OA/RA Mod. W/ Warm-up Stat/Mixed Air/SR Modulating motor with spring return and interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller located in the mixed air stream after a warm up period determined by a minimum supply air temperature sensor. Units shall also be provided with a minimum position potentiometer for minimum outside air damper position. When the unit is off, the motor will drive the outside air damper full closed and the return air damper full open.

□ Manual Dampers Units with outside air and return air shall be provided with manually set outside and return air dampers.

Additional Factory Installation Options Firestat

If temperature reaches the setpoint, the unit will close all gas valves, return the dampers to their normal position and shut down the blower. Manual reset.

□ Return Air Mounted (setpoint typically 130 F) Standard on Arrangement B-E. Utilized on these arrangements as a reverse airflow switch.

Supply Air Mounted (setpoint typically 150 F)

Freezestat

Rooftop unit shall be provided with a freezestat (0-100 F) with the sensing bulb located in the discharge air stream. Wired as an interlock to prevent cold air discharge.

□ Orifices for Elevations over 2000 feet

□ 12" Evaporative Media 12" media shall be provided for the evaporative cooler.

□ 409 Stainless Steel Furnace Drip Pan Replaces the standard aluminized steel furnace drip pan.

□ Foil Face Insulation

Fan section and supply plenum (when provided) shall be insulated with oneinch foil face insulation. Conforms with ASHRAE Standard 62-1989.

Clogged Filter Switch

A clogged filter pressure switch with adjustable operating range and normally open switch shall be installed to sense increased suction pressure by the blower due to filter obstruction. Provision for remote indication shall be provided by terminal block connection points. Includes a status lamp mounted in the electrical cabinet.

Moisture Eliminators
 Provided in place of an inlet screen on
 the outside air hood. Includes a
 pressure switch.

Horizontal Return

Unit shall be supplied with the return air opening at or under the outside air opening location depending on the Air Inlet Configuration.

□ Continuous Fan Relay — 24V Coil DPDT 10A

Relay provided with 24 volt coil and double pole double throw 10 amp contacts. Plugs into the main connection PC board in the electrical cabinet. Included as standard on Arrangement D and E . May also be utilized as an exhaust fan interlock.

□ Interlock Relay — 24/115V Coil SPDT 10A

Relay has a selectable coil voltage of 24 or 115 volts and single pole double throw 10 amp contacts with LED on indicator lamp. Relay is utilized as an auxiliary relay.

□ Interlock Relay — 24/115-230V Coil DPDT 10A

Relay has a selectable coil voltage of 24, 115 or 230 volts and double pole double throw 10 amp contacts. Utilized as an auxiliary relay for general purpose duty.

High/Low Gas Pressure Limit Switches

A high pressure and a low pressure interlock switch and shutoff valve shall be provided for each furnace section. High/low gas pressure limits disengage heating upon detecting either high line pressure or low manifold pressure.

□ Status Indicator Lamps (Electrical Cabinet)

Status indicator lamps shall include power on, blower on and one lamp per stage of heat mounted in the electrical cabinet.

Ambient Lockout

□ Airflow Proving Switch

Field Installed Accessories

□ High Gas Line Pressure Regulator Reduces main gas line pressure to a minimum of 7-inches WC. Pressure at the jobsite must be specified. The regulator is selected to accommodate that specific pressure.

□ Manual Reset High Limit Switch The rooftop unit shall be provided with a manual reset high limit switch wired in series to the lead furnace high limit. If the setpoint is reached, the gas valve will close and the blower will continue to run until the sensed temperature is below the setpoint.

□ Remote Control Station Wall mounted. Provides six LED status lamps with System On/Off, Fan Auto/ On, Heat Auto/Off, Cool Auto/Off, Auxiliary On/Off switching and Modulating damper potentiometer mounting. Designed for easy installation with plug-in terminal block wiring and wall mounting bracket. (Auxiliary On/Off may be used with the Evaporative Cooler fill and drain kit.)

□ Seven-Day Timeclock Provides single pole double throw (SPDT) relay output at setpoint time with maximum six setpoints per day.

□ 24-Hour Timeclock Provides single pole double throw (SPDT) relay output at setting time with maximum 12 setpoints per day.

Disconnect Switch

□ 115 V Convenience Outlet GFI (Ground Fault Convenience Outlet) is manual reset with weatherproof enclosure (requires separate 115V power source)

□ Roof Mounting Curb Roof curb shall be shipped unassembled with hardware package and gasket attached. Curb and rail shall total 16-inches high and supplied with a cross-member which allows the isolation of the return and supply air streams (when supplied). Roof curbs can be supplied with one-inch fiberglass insulation. Evaporative Cooler Platform Provides mounting support for evaporative cooler only.

□ Fill and Drain Kit Includes three-way valve and relay for automatic fill and drain for the evaporative coolers. Optional freezestat provides automatic shutoff and drain upon meeting outside air setpoint.

□ Optional Filters (One-inch permanent standard) Two-inch Permanent Two-inch Throwaway One-inch 30 percent Pleated Media Two-inch 30 percent Pleated Media

THERMOSTATS

□ Low voltage room thermostat, single stage with fan auto-on-switch and system heat-off cool switch

 \Box Low voltage room thermostat, single stage with fan auto-on switch

Low voltage room thermostat, twostage with fan auto-on switch and system off-heat-auto-cool switch

Low voltage programmable room thermostat, two-stage with LCD display, fan auto-on switch and system off-heat-auto-cool switch.

 \Box Universal tamper proof guard for all room thermostats

Low voltage duct thermostat, singlestage

 \Box Low voltage duct thermostat, two-stage

Room thermostat, electronic modulating control

Duct thermostat, electronic modulating control

Duct thermostat, electronic
 modulating control with override room
 thermostat

Rooftop Heating Unit

Arrangement G, J, K, L

GENERAL

Units shall be completely factory assembled, piped, wired and test fired. All units shall contain duct furnaces that are AGA and CGA certified and conform with the latest ANSI Standards for safe and efficient performance. Units shall be mounted on metal rails with lifting and anchor holes and shall be suitable for slab or curb mounting. Units shall be available for operation on either natural or LP (propane) gas.

The firing rate of each furnace will not exceed 400 MBh and shall contain its own heat exchanger, flue collector, venting, burners, safety and ignition controls. All units shall be ETL or UL certified for electrical safety in compliance with UL 1995 safety standard for heating, ventilating and cooling equipment. All units shall be in compliance with FM (Factory Mutual) requirements.

ELECTRICAL

Standard control relays shall be socket mounted with terminal block connections. All control wiring shall terminate at terminal strips (single point connection) and include an identifying marker corresponding to the wiring diagram. Motor and control wiring shall be harnessed with terminal block connections.

Casing

Casings shall be die-formed, 18-gauge galvanized steel and finished in air-dry enamel. Service and access panels shall be provided through easily removable side access panels with captive fasteners. Fan sections and supply plenums (when provided) shall be insulated with fire resistant, odorless, matte-faced one-inch glass fiber material. Outside air hoods, when provided, ship with a wire mesh inlet screen.

Heat Exchanger

Standard heat exchanger construction shall consist of 20-gauge aluminized steel tubes and 18-gauge aluminized steel headers. Standard drip pan construction shall be corrosion resistant aluminized steel.

Flue Collector

Standard flue collector construction shall be corrosion resistant aluminized steel.

Venting System

Natural vent units shall be provided with a vent cap designed for gravity venting. Outside air for combustion enters at the base of the vent cap through a protective grille, and products of combustion are discharged through the upper section of the flue vent cap.

Power vent units shall be provided with a vent fan. Outside air for combustion and products of combustion shall have individual air inlet and discharge grilles located in the upper section of the furnace service panel. An air proving switch shall be installed and disengage gas flow if for any reason the draftor has failed to operate. Power venting and 100 percent shutoff ignition systems are required for compliance with IRI (Industrial Risk Insurers).

Burners

Burners shall be die-formed, corrosion resistant aluminized steel, with stamped porting and stainless steel port protectors. Port protectors prevent foreign matter from obstructing the burner ports. Burners are individually removable for ease of inspection and servicing. The entire burner assembly is easily removed with its slide-out drawer design. The pilot shall be accessible through an access plate without removing the burner drawer assembly.

Coil Section (Standard on Arrangement K and L only)

A coil section, constructed of galvanized steel, shall be provided with the unit. This section shall be insulated with fire resistant, odorless, mattefaced one-inch glass fiber material.

Fans

Centrifugal fan shall be belt driven, forward curved with double inlet, statically and dynamically balanced. The blower wheel shall be fixed on a keyed shaft, supported with rubber grommet on bearing only and ball bearing secured. 7 $\frac{1}{2}$ through 15 hp motors do not have the rubber grommets and are equipped with a pillow block bearing assembly on the drive side. An access interlock switch shall be installed in the blower compartment and will disengage the blower upon removing the service panel. An override shall be incorporated into the access interlock switch for serviceability.

Filters

Filter rack shall be of v-bank design for minimal pressure drop and be constructed of galvanized steel with access through the side service panel. Standard filters are one-inch permanent washable type.

Electrical Cabinet

Electrical cabinet shall be isolated from the air stream with a non-removable access panel interior to the outer service panel. There is provision in this cabinet for component mounting, wire routing and high voltage isolation. Motor and control wiring shall be harnessed with terminal block connections.

Controls

Standard units shall be provided with 24-volt combination single-stage automatic gas valves, including main operating valve and pilot safety shutoff, pressure regulator, manual main and pilot shutoff valve, and adjustable pilot valve. Gas valves shall be suitable for NEC Class 2 use for a maximum inlet gas pressure of 0.5 psi (14" WC) on natural gas. All rooftop units shall be provided with a low voltage circuit breaker rated for 150 percent of the units normal 24-volt operating load.

Each duct furnace shall be provided with a 24-volt high temperature limit switch, a (redundant) combination gas valve and a fan time delay relay. The fan time delay relay minimizes cold blasts of air on start-up. It also allows the fan to operate after burner shutdown, removing residual heat from the heat exchanger. All rooftop furnace units shall contain a reverse airflow interlock switch. The normally closed switch, when activated, shall cause gas valves to close and continue blower operation. All units provided with a solid state ignition control system which ignites the intermittent pilot by spark during each cycle of operation. When pilot flame is proven, main burner valve opens to allow das flow to the burners. Pilot and burners are extinguished during the off cycle.

FACTORY INSTALLED OPTIONS

Control Options (Per Furnace)

□ Two-Stage Gas Valve Provides two stages of heat. Ignition is at low fire (one half of the unit's full rated input). Requires the use of an optional two-stage thermostat.

□ Hydraulic Modulating Gas Valve Provides modulated heat output. Ignition is at low fire (one-half of the unit's full rated input), and a discharge air temperature sensing bulb located in the air stream shall modulate the gas input from 40 percent to 100 percent rated input. Provided with an automatic electric valve in series with the hydraulic valve which cycles the unit in response to an optional low voltage single-stage thermostat.

Hydraulic Modulating Gas Valve with Bypass

Provides modulated heat output. Ignition is at low fire (one-half of the unit's full rated input), and a discharge temperature sensing bulb located in the air stream shall modulate the gas input from 40 percent to 100 percent rated input. Provided with an automatic electric valve in series with the hydraulic valve which cycles the unit. An additional electric valve in parallel bypasses the hydraulic modulating valve, overriding the discharge temperature sensing bulb, allowing full fire. Requires the use of an optional thermostat to control the electric valve.

Electronic Modulating — Room or Duct Stat Control

Provides modulated heat output. An automatic valve in series with the modulating valve shall be provided to cycle the unit. Ignition is at full fire (100 percent input), and modulates the gas input from 100 percent to 40 percent rated input. Available for use with a room thermostat or duct thermostat with remote setpoint adjustment. Duct thermostat available with optional override room thermostat which causes the unit to go to full fire when the room temperature falls below the override room thermostat's setpoint. Electronic Modulating — 4-20 mA/ 0-10 VDC Input

Provides modulated heat output. Ignition is at full fire (100 percent input), and modulates the gas input from 100 percent to 40 percent rated input.

The modulating gas valve shall operate in response to a 4-20 mA or a 0-10 VDC input from an external DDC control.

When "furnace one only" is specified on double and triple furnaces, additional furnace sections will have single-stage on-off control.

□ VAV Control

Unit provided with factory-mounted discharge air controller, discharge air sensor, outdoor air reset, summer/ winter thermostat and velocity pressure switch. The outdoor air reset range is from 10 F to 60 F. Full reset occurs at 10 F outside air temperature. There is a straight line relationship between outside air temperature and reset. Therefore, at 60 F outside air temperature, no reset will occur. The amount of reset is adjustable from 20 F to 50 F. Discharge air controller provides two-minute delay between successive on and off stages. A summer/winter thermostat locks out heating when outside air temperature is above 55 F. The velocity pressure switch is provided for protection against high temperatures at low airflows.

Available in two-stage (half of the unit's full rated input), three-stage (33 percent of the unit's full rated input) and fourstage (25 percent of the unit's full rated input). Three and four-stage available on double and triple furnace units only.

□ S-350 Modular Electronic Control System

Basic system utilizes a controller module with discharge air sensor, setpoint and one-stage output, a stage module with differential setpoint and one-stage output and a display module with LCD display for temperature readout. The system stages the units rate of fire based upon sensed discharge air temperature, setpoint setting and differential setting between stages.

Provided as a two-stage (all furnaces), three and four-stage (double and triple furnaces only) and six-stage (triple furnace only).

Heat Exchanger Options

Type 409 Stainless Steel (one or all furnaces)

Heat exchanger tubes and headers shall be 20-gauge type 409 stainless steel. Burners and flue collector shall be aluminized steel. 409 stainless steel is recommended when outside air is used for make-up air in areas where outside temperatures are 40 F or below.

□ Type 409 Stainless Steel Package (one or all furnaces) Heat exchanger tubes and headers shall be 20-gauge type 409 stainless steel. Burners and flue collector shall be 409 stainless steel. 409 stainless steel is recommended where outside air is used for make-up air in areas where outside temperatures are 40 F or

below.
Type 321 Stainless Steel (one or all furnaces)

Heat exchanger tubes and headers shall be 20-gauge type 321 stainless steel. Burners and flue collector shall be aluminized steel.

□ Type 321 Stainless Steel Package (one or all furnaces) Heat exchanger tubes and headers shall be 20-gauge type 321 stainless steel. Burners and flue collector shall be 409 stainless steel.

Motors — General

All motors shall be ball bearing type with resilient base mount and NEMA frame sizes from 48 to 256T. Windings are Class "B", 1800 rpm with service factors of 1/2 - 3/4 hp = 1.25 and 1 - 15 hp = 1.15.

□ Single-Speed Open Drip-proof 60 HZ/1800 RPM Single-Phase (with contactor) — Optional 115V, 208V and 230V motors available in ½ - 2 hp models.

Three-Phase (with contactor) — Optional 208V, 230V and 460V motors available in ½ - 5 hp models.

Single-Phase (with magnetic starter) — Optional 115V, 208V and 230V motors available in $\frac{1}{2}$ - 3 hp models.

Three-Phase (with magnetic starter) – Optional 208V, 230V, 460V and 575V motors available in ¹/₂-15 hp models.

□ Single-Speed TEFC 60HZ/1800 RPM Single-Phase (with contactor) — Optional 115V, 208V and 230V motors available in ½ - 1 ½ hp models.

Single-Phase (with magnetic starter) — Optional 115V, 208V and 230V motors available in $\frac{1}{2}$ - 3 hp models.

Three-Phase (with magnetic starter) — Optional 208V, 230V, 460V and 575V motors available in $\frac{1}{2}$ - 15 hp models.

□ Single-Speed High Efficiency ODP 60 HZ/1800 RPM

Single-Phase (with contactor) — Optional 115V and 230V motors available in 1/2 - 1 hp models. Optional 208V motors available in 1/2 - 3/4 hp models.

Single-Phase (with magnetic starter) — Optional 115V and 230V motors available in ½ - 2 hp models. Optional 208V motors available in ½ - ¾ hp models.

Three-Phase (with magnetic starter) — Optional 208V,230V and 460V motors available in $\frac{1}{2}$ - 15 hp models. Optional 575V motors available in 1 - 15 hp models.

□ Single-Speed High Efficiency TEFC 60 HZ/1800RPM Single-Phase (with contactor) — Optional 115V and 230V motors available in ½ - 1 ½ hp models. Single-Phase (with magnetic starter) — Optional 115V and 230V motors available in $\frac{1}{2}$ - 2 hp models.

Three-Phase (with magnetic starter) — Optional 230V and 460V motors available in $\frac{1}{2}$ - 15 hp models. Optional 208V and 575V available in 1 - 15 hp models.

□ Two-Speed/One Winding Motors (Three-Phase Only) 60 HZ/1800/900 RPM Three-Phase (with magnetic starter) — Optional 208V, 230V and 460V motors available in 1 - 15 hp models.

□ Two-Speed/Two Winding Motors 60 HZ/1800/1200 RPM Single-Phase (with magnetic starter) — Optional 115V and 230V motors available in ½ - 1 hp models. Optional 208V motors available in ⅔ - 1 hp models.

Three-Phase (with magnetic starter) — Optional 208V and 230V motors available in $\frac{1}{2}$ - 15 hp models. Optional 460V motors available in $\frac{1}{2}$ - 3 hp and 7 $\frac{1}{2}$ - 10 hp models. Optional 575V motors available in 7 $\frac{1}{2}$ - 10 hp models.

□ Manual Blower Switch Manual blower switch shall be factory installed in the electrical cabinet.

DX or Chilled Water Cooling Coils A direct expansion (DX) or chilled water coil certified by ARI shall be provided with the unit.

Damper Options

Dampers shall be of the opposed blade type, constructed of galvanized steel with neoprene nylon bushings, blades to be mechanically interlocked. Optional low leak dampers shall be of the opposed blade type, construction of galvanized steel with neoprene nylon bushings and vinyl blade edge seals, blades to be mechanically interlocked.

□ Outside Air or Return Air/Two-Position Motor/SR — Units with outside air or return air only shall be provided with damper, two-position spring return damper motor and controls. The motor shall power the damper full open when the unit is on and full closed when the unit is off. OA/RA Two-Position SR Two position spring return motor with interlocked outside and return air dampers shall be provided. The motor shall power either the outside air damper full open and the return air damper full closed or the outside air damper full closed and the return air damper full open in response to an outside air temperature sensor (Includes an outside air thermostat that makes on a rise in temperature and drives the damper open). When the unit is off, the motor will drive the outside air damper full closed and the return air damper full open.

□ OA/RA Mod Mtr. W/Mixed Air Control/Min. Pot/Spring Return Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller located in the mixed air stream. Units shall also be provided with a minimum position potentiometer for minimum outside air damper position.

The spring return feature drives the outside air damper full closed and the return air damper full open when the unit is off.

□ OA/RA Mod Mtr. W/Mixed Air Control/Spring Return Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller located in the mixed air stream.

The spring return feature drives the outside air damper full closed and the return air damper full open when the unit is off.

OA/RA Mod Mtr W/Min Pot/Spring Return

Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall position the outside and return air dampers in response to a manually set potentiometer.

The spring return feature drives the outside air damper full closed and the return air damper full open when the unit is off.

□ OA/RA Mod Mtr W/Dry Bulb/Mixed Air Control/Min Pot/Spring Return Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller and dry bulb thermostat located in the mixed air stream. Units shall also be provided with a minimum position potentiometer for minimum outside air damper position.

The spring return feature drives the outside air damper full open and the return air damper full closed when the unit is off.

□ OA/RA Mod Mtr W/Enthalpy Controlled Economizer/SR Modulating motor with spring return and interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to an enthalpy controlled economizer. When the unit is off the motor will drive the outside air damper full closed and the return air damper full open.

OA/RA Mod Mtr W/ Space Pressure Controller

Modulating motor with spring return and interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a pressure sensor located in the building. Non-spring return.

□ OA/RA Mod Mtr W/S-350P Proportional Mixed Air Control/SR Modulating motor with spring return and interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a solid-state mixed air sensor and S-350 proportional controller. When the unit is off the motor will drive the outside air damper full closed and the return air damper full open.

□ OA/RA Mtr. W/External 4-20 mA or 0-10VDC Analog Input/Spring Return Modulating motor interlocked with outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a 4-10 mA or 0-10VDC signal supplied by an external DDC controller. The spring return feature drives the outside air damper full closed and the return air damper full open when the unit is shut down.

□ ASHRAE Cycle I (OA/RA Two-Position w/warm-up stat/SR) Two-position spring return motor with interlocked outside and return air dampers shall be provided. The motor shall power the outside air damper full open after a warm up period determined by a minimum supply air temperature sensor when the unit is on, and full closed when the unit is off.

ASHRAE Cycle II (OA/RA Mod W/ Warm-up Stat/Mixed Air/Min Pot/ Spring Return)

Modulating motor with interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller located in the mixed air stream after a warm-up period determined by a minimum supply air temperature sensor. Units shall also be provided with a minimum position potentiometer for minimum outside air damper position. When the unit is off, the motor will drive the outside air damper full closed and the return air damper full open.

ASHRAE Cycle III (OA/RA Mod. W/ Warm-up Stat/Mixed Air/SR Modulating motor with spring return and interlocked outside and return air dampers shall be provided. The motor shall modulate the position of the outside and return air dampers in response to a thermostatic controller located in the mixed air stream after a warm-up period determined by a minimum supply air temperature sensor. Units shall also be provided with a minimum position potentiometer for minimum outside air damper position. When the unit is off, the motor will drive the outside air damper full closed and the return air damper full open.

Manual Dampers

Units with outside air and return air shall be provided with manually set outside and return air dampers.

Additional Factory Installed Options Firestat

If temperature reaches the setpoint, the unit will close all gas valves, return the dampers to their normal position and shut down the blower. Manual reset.

□ Return Air Mounted (setpoint typically 130 F) Standard on Arrangement G-L. Utilized on these arrangements as a reverse airflow switch.

Supply Air Mounted (setpoint typically 150 F)

Freezestat

Rooftop unit shall be provided with a freezestat (0-100 F) with the sensing bulb located in the discharge air stream. Wired as an interlock to prevent cold air discharge.

Orifices for Elevations over 2000 feet

□ 409 Stainless Steel Furnace Drip Pan Replaces the standard aluminized steel furnace drip pan.

□ Foil Face Insulation

Fan section and supply plenum (when provided) shall be insulated with oneinch foil face insulation. Conforms with ASHRAE Standard 62-1989.

Clogged Filter Switch

A clogged filter pressure switch with adjustable operating range and normally open switch shall be installed to sense increased suction pressure by the blower due to filter obstruction. Provision for remote indication shall be provided by terminal block connection points. Includes a status lamp mounted in the electrical cabinet.

Moisture Eliminators

Provided in place of an inlet screen on the outside air hood. Includes a pressure switch.

Horizontal Return

Unit shall be supplied with the return air opening at or under the outside air opening location depending on the Air Inlet Configuration.

□ Continuous Fan Relay — 24V Coil DPDT 10A

Relay provided with 24-volt coil and double pole double throw 10 amp contacts. Plugs into the main connection PC board in the electrical cabinet. May also be utilized as an exhaust fan interlock.

□ Interlock Relay — 24/115V Coil SPDT 10A

Relay has a selectable coil voltage of 24 or 115-volts and single pole double throw 10 amp contacts with LED on indicator lamp. Relay is utilized as an auxiliary relay.

□ Interlock Relay — 24/115-230V Coil DPDT 10A

Relay has a selectable coil voltage of 24, 115 or 230-volts and double pole double throw 10 amp contacts. Utilized as an auxiliary relay for general purpose duty.

High/Low Gas Pressure Limit Switches

A high pressure and a low pressure interlock switch and shutoff valve shall be provided for each furnace section. High/low gas pressure limits disengage heating upon detecting either high line pressure or low manifold pressure.

□ Status Indicator Lamps (Electrical Cabinet)

Status indicator lamps shall include power on, blower on and one lamp per stage of heat mounted in the electrical cabinet.

Ambient Lockout

□ Airflow Proving Switch

Field Installed Accessories

□ Manual Reset High Limit Switch The rooftop unit shall be provided with a manual reset high limit switch wired in series to the lead furnace high limit. If the setpoint is reached, the gas valve will close and the blower will continue to run until the sensed temperature is below the setpoint.

□ High Gas Line Pressure Regulator Reduces main gas line pressure to a minimum of 7-nches WC. Pressure at the jobsite must be specified. The regulator is selected to accommodate that specific pressure.

□ Remote Control Station Wall mounted. Provides six LED status lamps with System On/Off, Fan Auto/ On, Heat Auto/Off, Cool Auto/Off, Auxiliary On/Off switching and Modulating damper potentiometer mounting. Designed for easy installation with plug-in terminal block wiring and wall mounting bracket. (Auxiliary On/Off may be used with the Evaporative Cooler fill and drain kit.)

□ Seven-Day Timeclock Provides single pole double throw (SPDT) relay output at setpoint time with maximum six setpoints per day. 24-Hour Timeclock Provides single pole double throw (SPDT) relay output at setting time with maximum 12 setpoints per day.

Disconnect Switch

□ 115V Convenience Outlet GFI (Ground Fault Convenience Outlet) is manual reset with weatherproof enclosure (requires separate 115V power source).

□ Roof Mounting Curb Roof curb shall be shipped unassembled with hardware package and gasket attached. Curb and rail shall total 16-inches high and supplied with a cross-member which allows the isolation of the return and supply air streams (when supplied).

Roof curb can be supplied with oneinch fiberglass insulation.

Optional Filters (One-inch permanent standard)

Two-inch permanent

Two-inch Throwaway

- One-inch 30 percent Pleated Media
- Two-inch 30 percent Pleated Media

THERMOSTATS

Low voltage room thermostat, single-stage with fan auto-on-switch and system heat-off cool switch

Low voltage room thermostat, single-stage with fan auto-on switch

Low voltage room thermostat, twostage with fan auto-on switch and system off-heat-auto-cool switch

Low voltage programmable room thermostat, two stage with LCD display, fan auto-on switch and system off-heatauto-cool switch.

 \Box Universal tamper proof guard for all room thermostats

Low voltage duct thermostat, singlestage

Low voltage duct thermostat, two-stage

Room thermostat, electronic modulating control

Duct thermostat, electronic modulating control

Duct thermostat, electronic modulating control with override room thermostat

Evaporative Cooler

General

An evaporative cooler with 8-inch media shall be provided. The evaporative cooler shall be of a selfcleaning design with a stainless steel water tank, regulated water flow and overflow protection. The cooler shall have a cabinet assembly of heavygauge aluminized steel with weatherproof finish, a UL recognized, thermally protected sealed recirculating pump motor, two-inch distribution pad, and corrosion resistant PVC water distribution tubes.

Factory Installed Options

□ 12" Evaporative Media 12" media shall be provided for the evaporative cooler.

Field Installed Accessories

Evaporative Cooler Platform
 Provides mounting support for
 evaporative cooler only

□ Fill and Drain Kit

Includes three-way valve and relay and automatic fill and drain for the evaporative cooler.

🗆 Freezestat

Freezestat provides automatic shutoff and drain upon meeting outside air setpoint.

North American Commercial Group

The Trane Company 3600 Pammel Creek Road La Crosse, WI 54601-7599 www.trane.com

An American Standard Company

Since The Trane Company has a policy of continuous product improvement, it reserves the right to change design and specification without notice.

Library	Product Literature
Product Section	Air Handling
Product	Make-Up Air
Model	000
Literature Type	Data Sales Catalog
Sequence	5
Date	January 1998
File No.	PL-AH-MUA-000-DS-5-198
Supersedes	MUA-DS-5 595
Ordering No.	MUA-DS-5