

Dual coil domestic hot water storage tank 79 and 119 USG / 300 and 450 ltr

Technical Data Manual

Model Nos. and pricing: see Price List

Vitocell 100-B

CVB Series

Vertical indirect-fired dual coil domestic hot water storage tank made of steel with Ceraprotect enamel coating

One heat exchanger coil facilitates heat transfer from the solar collectors to domestic hot water, a second heat exchanger coil allows reheating of the water content by the hot water heating boiler.

This tank version is not suitable for steam heating applications.

Product Information

Product Information

Domestic hot water storage tank of corrosion protected steel with built-in insulation made of PUR Foam.

Fully hygienic, efficient and economical domestic hot water production by solar collectors and a hot water heating boiler. Heat from the solar collectors is transferred to the domestic hot water via the lower tank coil.

Benefits at a glance:

- Corrosion-resistant tank with Ceraprotect enamel coating ensures a long service life. Additional cathode protection is provided by a magnesium anode.
- The entire water content is heated by a coiled 1"/25 mm diameter steel heat exchanger surface which extends to the bottom of the tank.
- Large heat exchanger surfaces allow fast and even heating of the entire water content, guaranteeing a high level of domestic hot water comfort.
- Increased energy savings thanks to highly effective, foamed-in-place HCFC-free insulation keeping standby losses at a minimum.
- Two thermometers to show the DHW temperature at the top of the tank and at the midpoint of the tank.
- The Vitocell-B 100 119 USG / 450 L capacity tank is supplied with removable soft PET insulation for easier handling.

- For dual-mode DHW heating with solar panels in conjunction with a boiler. The solar energy gathered by the solar panels is transferred to the DHW by the lower indirect coil. For mono-mode DHW heating with a boiler or heat pump - both indirect coils can be connected in series.
- Certified to CSA Low Lead Content Certification Program; including US Safe Drinking Water Act, NSF/ANSI 372 as well as other applicable US State requirements.

Technical Data

Technical Data

For DHW production in conjunction with heating boilers, and heating systems without low limit for dual coil operation

Suitable for heating systems with:

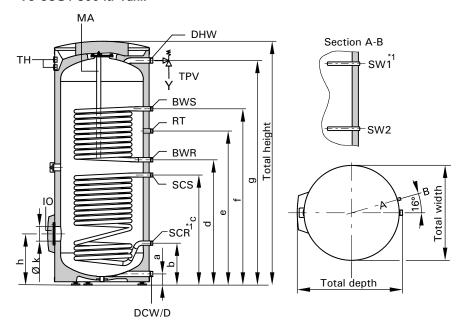
- max. working pressure on heat exchanger side up to 150 psig at 320°F/160°C
- max. working pressure on DHW water side of up to 150 psig at 210°F/99°C
- max. testing pressure on DHW side of 300 psig

			tootiiig procoa		e o coc pois	,	
Storage capacity			USG / ltr		79 / 300		119 / 450
Coil				upper * 1	lower*2	upper *1	lower *2
Recovery rate *3		194°F/90°C	MBH / kW	106 / 31	181 / 53	160 / 47	239 / 70
with a DHW temperature increase		194°F/90°C	GPH / ltr/h	201 / 761	344 / 1302	305 / 1154	454 / 1720
10 to 45 °C and a supply water	r temperature of	176°F/80°C	MBH / kW	89 / 26	151 / 44	136 / 40	198 / 58
		176 F/60 C	GPH / ltr/h	169 / 640	286 / 1081	259 / 982	376 / 1425
		158°F/70°C	MBH / kW	68 / 20	113 / 33	102 / 30	153 / 45
	_	130 1/70 C	GPH / ltr/h	129 / 491	214 / 811	195 / 737	292 / 1106
		140°F/60°C	MBH / kW	51 / 15	79 / 23	75 / 22	109 / 32
	-	GPH / ltr/h	97 / 368	150 / 566	143 / 540	208 / 786	
		122°F/50°C	MBH / kW	38 / 11	62 / 18	55 / 16	82 / 24
		122 1700 0	GPH / ltr/h	71 / 270	117 / 442	104 / 393	156 / 589
Recovery rate *3		194°F/90°C	MBH / kW	79 / 23	154 / 45	123 / 36	181 / 53
with a DHW temperature increa		,	GPH / ltr/h	104 / 395	205 / 774	164 / 619	241 / 911
10 to 60 °C and a supply water	r temperature of	176°F/80°C	MBH / kW	68 / 20	116 / 34	102 / 30	151 / 44
			GPH / Itr/h	91 / 344	154 / 584	136 / 516	200 / 756
		158°F/70°C	MBH / kW	51 / 15	79 / 23	75 / 22	113 / 33
			GPH / ltr/h	68 / 258	104 / 395	100 / 378	150 / 567
Insulation				На	rd PUR Foam	Soft P	ET insulation
Standby losses *4			MBH/24 h		7.8		9.5
Overall dimensions with insulat	ion* ⁵						
Overall width (Ø)			inches		25		33½
Overall Width (2)			mm		633		850
Overall depth			inches		28		36
•			mm		705		918
Overall height			inches		68¾		77
			mm		1746		1955
Tilt height including insulation			inches		70½		-
Tilt height excluding insulation			mm inches		1792		73 ¹ / ₈
The height excluding insulation			mm				1860
Weight			lbs		352		452
Tank with insulation			kg		160		205
Heat exchanger coil liquid conto	ent		USG	1.6	2.6	2.3	3.3
at ononanger our inquia cont	•		ltr	6	10	9	12.5
Heat exchanger area			ft. ²	9.7	16.1	15	20.5
			m ²	0.9	1.5	1.4	1.9
Connections	Coils	Ø" (male	thread)	1"	1″		1"
	Domestic cold/hot water			1"	1"		1 1/4 "
	Recirculation	\varnothing " (male	thread)	1"	1"		1"

^{*1} The upper coil is designated for connection to a hot water heating boiler or a heat pump.

^{*2} The lower coil is designated for connection to solar collector panels or heat pumps.

^{*3} When planning for the recovery rate as stated or calculated, allow for the corresponding circulation pump.

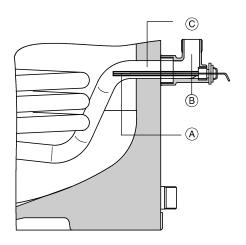

The stated recovery rate is only achieved when the rated output of the boiler is equal to or greater than that stated under "Recovery rate".

^{*4} Measured values are based on a room temperature of 68°F / 20°C and a domestic hot water temperature of 149°F / 65°C and can vary by 5%.

^{*5} For other dimensions, see illustration and table on page 5.

[▶] For information regarding other Viessmann System Technology componentry, please reference documentation of the respective product.

79 USG / 300 ltr Tank

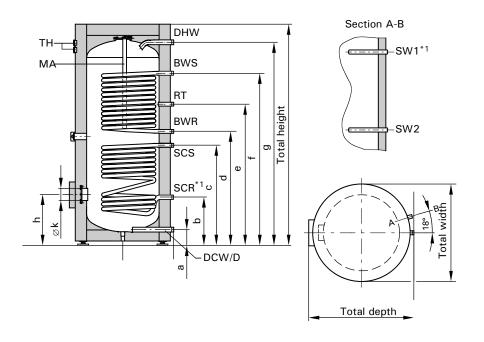

Legend	
10	Inspection and cleanout opening
D	Drain
BWR	Boiler water return (upper coil)
SCR	Solar collector return (lower coil) or
	boiler return
BWS	Boiler water supply (upper coil)
SCS	Solar collector supply (lower coil) o
	boiler supply
DCW	Domestic cold water
SW1*1	Sensor well for tank temperature
	sensor of boiler control at BWS
	level
SW2	Sensor well for the lower
	thermometer at SCS level
DHW	Domestic hot water
RT	Recirculation tapping
TPV	Temperature and pressure relief
	valve

^{*1}For solar heating systems Viessmann recommends placement of the DHW tank temperature sensor of the solar control in the solar collector return (SCR). This requires a brass elbow with sensor well included in the accessory pack. The DHW tank temperature sensor of the boiler control is placed in the SW1 sensor well (see installation example on page 8).

Protective magnesium anode

 MA

DHW tank temperature sensor in solar heating applications 79 USG / 300 ltr

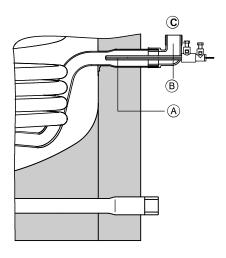


- DHW tank temperature sensor for solar application (included with Solar control)
- B Brass elbow with sensor well (accessory pack)
- © Solar collector return connection

Storage	USG /	79 /
capacity	ltr	300
а	inches	3
	mm	76
b	inches	101/4
	mm	260
С	inches	34 1/2
	mm	875
d	inches	39
	mm	995
е	inches	433/4
	mm	1115
f	inches	531/4
	mm	1355
g	inches	63
	mm	1600
h	inches	13
	mm	333
k	inches	4
	mm	101

Technical Data

119 USG / 450 ltr Tank

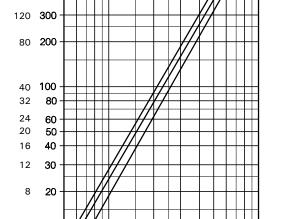


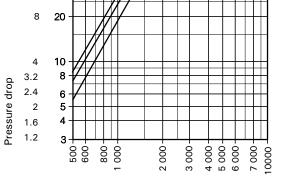
Legend

3	
10	Inspection and cleanout opening
D	Drain
BWR	Boiler water return (upper coil)
SCR	Solar collector return (lower coil) or
	boiler return
BWS	Boiler water supply (upper coil)
SCS	Solar collector supply (lower coil) o
	boiler supply
DCW	Domestic cold water
SW1*1	Sensor well for tank temperature
	sensor of boiler control at BWS
	level
SW2	Sensor well for the lower
	thermometer at SCS level
DHW	Domestic hot water
RT	Recirculation tapping
TPV	Temperature and pressure relief
	valve
MA	Protective magnesium anode

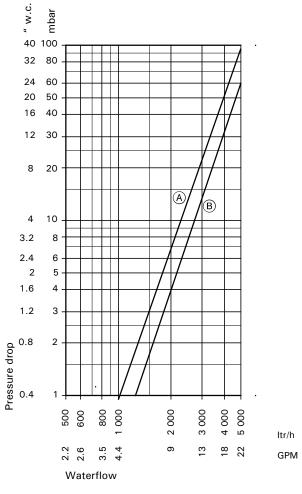
^{*1}For solar heating systems Viessmann recommends placement of the DHW tank temperature sensor of the solar control in the solar collector return (SCR). This requires a brass elbow with sensor well included in the accessory pack. The DHW tank temperature sensor of the boiler control is placed in the SW1 sensor well (see installation example on page 8).

DHW tank temperature sensor in solar heating applications 119 USG / 450 ltr


- A DHW tank temperature sensor for solar application (included with solar control unit)
- B Brass elbow with sensor well (accessory pack)
- © Solar collector return connection


Storage	USG /	119
capacity	ltr	450
а	inches	4 1/4
	mm	107
b	inches	13¾
	mm	349
С	inches	36 ³ /8
	mm	924
d	inches	41
	mm	1044
е	inches	48 ³ / ₈
	mm	1230
f	inches	56 ⁷ / ₈
	mm	1444
g	inches	70 1/4
	mm	1784
h	inches	16 ⁵ /8
	mm	422
k	inches	4
	mm	100

Pressure drop on heating water side


of a single coil

© B A 400 1000 320 800 240 600 200 500 160 400

Domestic hot water pressure drop

- (A) 79 USG / 300 ltr
- (B) 119 USG / 450 ltr

(A) Upper indirect coil, 300 ltr capacity

Waterflow

- B Lower indirect coil, 300 ltr and upper indirect coil, 450 ltr capacity
- © Lower indirect coil, 450 ltr capacity

Domestic hot water draw rate

Storage tank contents heated to 140°F / 60°C, boiler not reheating

13

18 22 26 26 31 44

Storage capacity	USG ltr	79 300	119 450
Domestic hot water draw	USG	300	53
Water with $t = 140^{\circ}F / 60^{\circ}C$ (constant)	ltr	110	220
Percentage tank volume		37%	50%

ltr/h

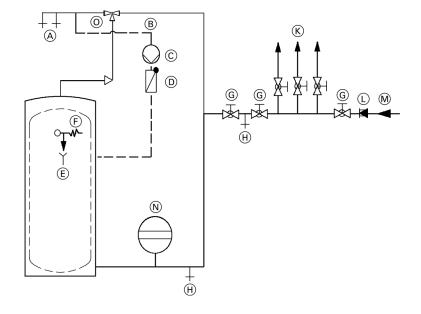
GPM

Standard Equipment/Product Installation

Standard Equipment

Vitocell 100-B (79 USG / 300 ltr capacity) DHW Tank

DHW tank made from steel with Ceraprotect enamel coating.


- 2 welded sensor wells for DHW tank temperature sensor, i.e. aquastat, and the thermometer
- adjustable leveling bolts
- protective magnesium anode
- fitted thermal insulation made from hard PUR foam
- threaded elbow with sensor well The color of the epoxy-coated sheet metal casing is Vitosilver.

The following are packed separately and attached to the crate:

- 1 brass elbow with sensor well
- 1 Loctite package
- 1 temperature and pressure relief valve
- 2 thermometers °F / °C
- 7 brass adaptors (1")
- 1 brass tee (1")
- 1 brass hex bushing (1"x¾")
- 1 brass cap (1")

Product Installation

Domestic hot water connection

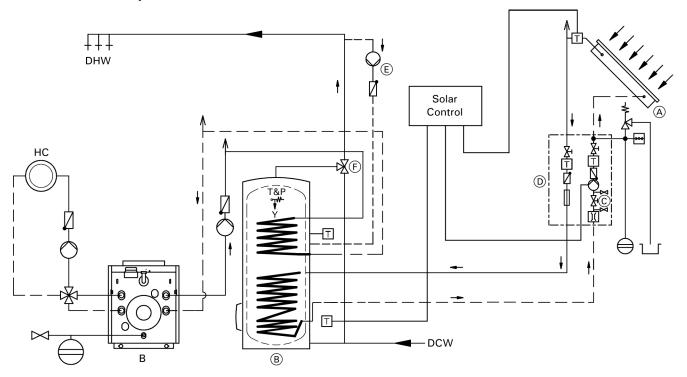
Vitocell 100-B (119 USG / 450 ltr capacity) DHW Tank

DHW tank made from steel with Ceraprotect enamel coating.

- 2 welded sensor wells for DHW tank temperature sensor, i.e. aquastat, and the thermometer
- protective magnesium anode
- fitted thermal insulation made from soft PET insulation, packed separately
- threaded elbow with sensor well
- adjustable leveling bolts
- protective magnesium anode

The color of the plastic-coated thermal insulation is Vitosilver.

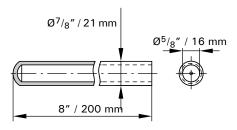
The following are packed separately and attached to the crate:


- 5 brass adaptors (1")
- 2 brass adaptors (1 1/4 ")
- 1 Loctite package
- 1 temperature and pressure relief valve
- 1 brass tee (1 ¼ ")
- 1 brass elbow with sensor well
- 1 brass cap
- 2 thermometers $\,^{\mathrm{o}}\mathrm{F}\,/\,\,^{\mathrm{o}}\mathrm{C}$
- 1 plug (R1½")
 - Domestic hot water supply
- DHW recirculation line
- DHW recirculation pump
- Spring-loaded flow check valve
- Discharge pipe
- Pressure and temperature relief valve
- Shut-off valve
- Domestic cold water supply lines
- Backflow preventer
- Domestic cold water inlet
- Precharged expansion tank (required where backflow preventer is installed; check local plumbing codes and requirements)
- Thermostatic mixing valve/anti-scald valve for solar applications (field supplied)

WARNING

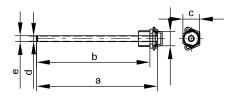
Due to the potentially high DHW temperatures generated by the solar heating system, the domestic hot water temperature must be limited to a maximum of 140°F/60°C by installing a mixing device, e.g. a thermostatic mixing valve. The mixing device does not completely eliminate the risk of scalding at the tap. The installation of a mixing tap is required.

Installation example



- A Solar collector
 B Vitocell 100-B
 C Filling valve
 D Solar-Divicon (pumping station)
 E Recirculation pump
 F Anti-scald tempering valve
- Heating circuit HC
- Oil/Gas-fired boiler
- DCW Domestic cold water
- DHW Domestic hot water
- T&P Temperature and pressure relief valve

System Design Guidelines


Sensor wells

The sensor wells are welded into the DHW tank.

Sensor wells for solar operation

For solar heating systems, Viessmann recommends placement of the DHW tank temperature sensor in the solar collector return. This requires installation of a a brass elbow with sensor well included in the accessory pack.

Dimension		79/300	119/450	
а	inches	6 1/4	8.7	
	mm	160	220	
b	inches	5.9	7.9	
	mm	150	210	
С	inches	7/8"	7/8"	
	mm	22	22	
d	inches	1/4	1/4	
	mm	6.5	6.5	
е	inches	1/3	1/3	
	mm	8	8	

Heating water supply temperature over 230°F / 110°C

These operating conditions require the installation of an additional safety high limit into the DHW storage tank, preventing the domestic hot water temperature from rising above 203 °F/ 95 °C. A domestic hot water tempering valve must be used.

Temperature and pressure relief valve

A temperature and pressure relief valve (T&P relief valve) is supplied with the tank. The heating contractor must install the valve on each tank in a method meeting code requirements. If local codes require a different relief valve, substitute the manufacturer's supplied valve. The tank is approved for 150 psig. Maximum operating pressure is 150 psig.

The T&P relief valve supplied with the tank is tested under ANSI Z21.22 Code for Relief Valves and Automatic Gas Shut-off Devices for Hot Water Supply Systems.

Backflow preventers

Where backflow preventers are required, a domestic water expansion tank installation is recommended in the cold water inlet piping before the cold water enters the Vitocell. For the backflow device, observe local plumbing codes and regulations.

Watts Model 40XL-8	150 psig (US and Canada)
ASME pressure steam rating	1438 MBH
CSA temperature steam rating	205 MBH
Relief temperature	210°F (99°C)
Inlet thread	¾" male
Outlet thread	¾" female

Warranty excerpt

Our warranty for domestic hot water tanks states that the water to be heated must be of drinking (potable) water quality and that any water treatment equipment in use must function correctly.

Viessmann accepts no responsibility for damage howsoever caused and reserves the right to withdraw the product warranty if the product has been improperly installed or misapplied by the installer, contractor or end user. In order to qualify for product warranty, strict adherence to the installation and service manuals must be assured. In the event that Viessmann non-approved components are utilized, Viessmann reserves the right to withdraw all expressed or implied warranties without written notice.

The water to be heated with the Vitocell must be drinking (potable) water quality. If the tank is used to heat other media, the warranty will be null and void. Damage resulting from excessive pressure or temperature is clearly not the responsibility of Viessmann.

The amount of chloride and sulfate acceptable to the tank is limited. In areas where high concentrations of chloride and sulfate are present in drinking water, please consult Viessmann for directions.

For full warranty details, please read the product warranty card.

VITOCELL 100-B

Viessmann Manufacturing Company Inc. 750 McMurray Road Waterloo, Ontario • N2V 2G5 • Canada TechInfo Line 1-888-484-8643 1-800-387-7373 • Fax (519) 885-0887 www.viessmann.ca • info@viessmann.ca Viessmann Manufacturing Company (U.S.) Inc. 45 Access Road Warwick, Rhode Island • 02886 • USA TechInfo Line 1-888-484-8643 1-800-288-0667 • Fax (401) 732-0590 www.viessmann-us.com • info@viessmann-us.com