APIREL

Consulting - Research «Training -Certification Testing Since 1981

FCC ID: PQS-BM 29001

Exhibit 9 for Boomer |1 900 MHz

User’s Manual

October 2002 OAPREL Project No.: WV TB-Boomer |1 Modem-3922-2

Boomer Il
OEM Modem

User Manual
and
Integrator’s Guide

August 2002

© Wavenet Technology Pty Ltd
ACN 079 965 003

Publication No. BM210012WT11 (11 September 2002)

Published August 2002

This publication is copyright and no part may be reproduced or copied without the prior consent of:

Wavenet Technology Pty Ltd.
140 Burswood Rd

Burswood, 6100

Western Australia

Telephone: +61 8 9262 0200
Facsimile: +61 8 9355 5622

E-mail: wavenet@wavenet.com.au
Web Site: WWW.wavenet.com.au

This manual isintended to be used for the operation of Wavenet Technology equipment. Performance
figures quoted are typical values and subject to normal manufacturing and service tolerances.

Wavenet Technology Pty Ltd reservesthe right to alter, without notice, the equipment, software or
specification to meet technological advancement.

Microsoft, Windows and the Windows logo are registered trademarks or trademarks of Microsoft
Corporation in the United States and other countries. Other product and company names herein may be
the trademarks of their respective owners.

Whilst every precaution has been taken in the preparation of this document, neither Wavenet
Technology Pty Ltd nor any of its representatives shall have any liability to any person or entity with
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by the
information contained in this book.

Published by Wavenet Technology Pty Ltd.

Thisdevice has not been authorized asrequired by the rules of the Federal Communications
Commission (FCC). Thisdeviceisnot, and may not be, offered for sale or lease, or sold or leased
within the USA, until authorization is obtained.

Contents
TaYagoTo [V ot 1To] o RSOOSR 7
Y 0] 0] o= 110} g SRS 8
ComPlaNCE STALEMENTt e s e e s s ebre e e s s sareee s 9
Information for YOUr Safely ... 10
HOSE REQUITEMENTS....ccuviieciieeetee ettt ettt e e sare e e are e eaneesneeesbeeesaneeas 11
[FES) 7= 11 =T 0] OO P 13
Mounting the Boomer || OEM Modem to Your DeVICE........ccccueeeeeeeccreeernnen. 14
Connecting the Data Interface POrt ... 15
PiN DESCHPLIONS ...vee ettt et be e st e b e saeeebeesanesbeesaeeenneennns 15
Serial Communications INtErfacCe........coeevee e 16
Status INPUL / QULIPUL TINESeeeceeeeeteee ettt 17
LED INTEITACE ..veee ettt ettt e e e et e et e et e e bae e sneeesabeeeens 17
Connecting & Positioning the ANtENNAcccveveeiee e 20
71110 1T 1o 20
SUPPIYING POWET ...ttt ettt sree s be e s ane e re e saaesbeesnneereesnneens 21
[SF2 1L =T OO 21
PlUg-IN SUPPIIES ..ottt ettt et et e e ebee e sne e e sareeeens 21
AULOMOLIVE SUPPIIES ...veeeeteeeeee ettt 22
Environmental ConSiderationscceveeeeeeieeciee et 22
L IE=TS) T TSRO 23
| =Tz LU (=TS SO 23
Exploring the BOOMEr I TESt Jig...eccoveeireeeiieiiie e eriee et esree et 24
LTI CE= U= 111 o] = 1 (] o 27
Y= A0 oSSR 28
RSUSER ...ttt ettt et st e b e e e e et e e saeeebeesateenbeesaneenbeeanns 30
(@] 01= 7= L[] 1 30
USING RSUSER.......ccti ettt sttt be e s st s ane s re e sareeneeenes 31
[(010 S A B T ot 1 0] 1T R 31
Reprogramming MOGEIMS.......c.veiiiieeciee ettt etee et eeeare e sree e sareeeeas 35
Software DeVvelopMENT Kil........ccivecieiiieeie e esee et ree e sre s sreesneenreesaneens 37
Native Control Language Application Programmer’s Interface..................... 38
IMPIEMENTALION. ...ttt e sbe e e sbe e e sareeens 38
LOQICAl ATCNITECIUIE.......veeectee ettt ettt et e e are e e sbae e eae e e sreeeens 39
APPIICAtioN INLEITACE........c.ee e s 41
Standard Context Routing Application Programmer’s Interface................... 58
[Tag] o] (=10 01=Y g1 7= 1 o] o OO 59
SCR SITUCTUIES ..ottt ettt e ettt e e e e e e e are e e e e e tre e e s e saneeeaeennraeeseanseeeasanns 59

SCR FUNCLIONSviiiieectee ettt stee et stee b e st e sreesreesareesbeesnsessbessaresnsessnns 64
Application DEVEIOPMENL.........eieiiie ettt err e e sre e saree s 77
ROAMING ISSUESc..utiieiieee ettt ceree ettt s e s tee e st e e e e b e e e ase e eeaeeesneeesnbeeesnneens 78
R0OAMING REQUITEMENTS......cceeiiieitieereectee ettt ettt ere e sare b s areebeesareereeenns 78
INDOUN SDU FAIUIESoeeieecee ettt re e s e 80
OUtbOUNd SDU FAIUIE ...veecveee ettt et et 81
LOSS Of NEtWOIK CONTACTcccvieieireeccieee ettt ettt ere e saree e 81
Power ManagemeENL..........coooiiiee ettt e e rare e e e e srae e e s e nr e e e e e e nre e e s ennneeeaas 82
POWEISAVE MOUEcccveeciieecteectee ettt ebe e s e be e s be e sareebeeenes 82
[INACHIVILY TIME-OUL.......oeeiiieciee ettt sbe e sar e e be e s aneeneas 82
ONn/Off UPON USEIr DEMANGcvveieieeecrie ettt 83
Radio On/Off on Application Command...........cccoeeeevreeeeireeeciee e 83
Battery Life CONSIAEratioNScccceeiiieeeiieeeiree et et cree e et esevee e sreeeens 83
POWErSave ProtOCOL.........cucceeiiiieiiiciee ettt re e srre b eas 83
Wireless Data Systems CoNSIAerationsS..........ccceevveeeeevveeseeseeesreesreeereeseeesnens 84
ApPPLCatioN EffICIENCYciiviiictie ettt et 85
Large MesSage TraNSTEIceccvie ettt ettt e e e ree e sbeeens 85
MeSSAage TraNSIt TIME ...cccceieeiieeeeree et et e cree et e e ere e e sreeeeare e e raseeeaeeesabeeeens 85
Message Routing and MIgrationccececveeeceeeciiee et 88
MESSAGE ROULINGveiiitiieiiieecree ettt e eette e estee et e e eteeeereeesareeeenseesebseesneeesareeens 88
NEIWOTIK LINK LAYEIS......eiiiteectiectee et ccree sttt et sre e saaeebeesanesbeesareenbeennns 89
Standard Context ROULING (SCR)....cccoieiieiirieieecitee e eree et sreesre s e sane s 90
SCR MESSAGE TYPES ..uvrvreriieieiiiiriiiererriessssssssssesrrsssssssssssssssseeessssssssssesssssessnns 91
Highlights Of SCR DIffErE&NCES....cuvieieieeeee ettt 91
SCR HEAEN CRAITScuveeeeiee ettt et e 95
Host Request Message Header FieldS.......ccccooeeveeeieeiieccee e 96
Host Confirmation Message Header Fieldsccccooveveeceecceeviee e, 98
Mobile Information Message Header Fields........cccoeeevieeeieecciec e, 100
DataTAC MeSSagiNg (DIM).....cveeeeiiecciree et et cree et eeree e esre e sre e sre e sans 102
DM MESSAUE TYPES cerreeeiieeeieicitieeeie e e e e sesttrreeeaaeesssattereeeeeaseessssnsseeeeeaaessannnns 102
Highlights of DM DIiffEr&€NCESccveeieeecteececctee ettt s 102
DM Header ChartS.......c.coiuiiiiieiee ettt ettt esre e e s resreesaneens 103
Message Generate Header FIeldS.......oouiviiiceie it 103
Receive Header FIElIAS ...ttt 105
Host MeSSaging (HM)oooueeeeee ettt ettt 107
Other DEVEIOPMENT ISSUESccuveeireecieeeiree e etee sttt esreesreebeesrreesbeesaneereas 107
Localizing an APPlICALION.........ccueeieeiieeecee ettt sreesaee s 107
Testing AN APPHCALION ...eeiiieeeeee ettt e e e s s sbreeessaaes 108
ApPPENdIX A = NCL INTEIACE ...c.vee ettt ere e sare s 110
Generic NCL (Native MOOE)........cccieiiieieeiieeiee ettt sre e sneeneas 110

g Command SDUS (CMND, ASCIILA)..... et esreesneens 110
g Event Report SDUS (EVENT, ASCII B) ...cceeoeeieeeiee et 113
o Response Status SDUS (RESP, ASCI C) .ooooeeerreeeeeie e 114
Wavenet Specific NCL EXIENSIONSccovvecveeecreeccree ettt e 116
O GET STATUS COMMANDS.......ocoieceeetee ettt ereesane s 116

g Generic set RPM Configuration command (WN SET PARAM):...121
g Generic get RPM Configuration command (WN GET PARAM):..123
Q

NCL LAl VAIUEBS.ot e e e e e e e e e e e e aa e e s e sesesesaaeaaeaaaaaens 124

SAR ROULING FUNCHON ..o 125
SAR AlQOITNM . 126
APPENAIX B - SAMPIE PrOOTAMNSeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseneeesesssensnsnnnsnnnnnes 127
Client APPIICATION. ... 127
Server APPRIICALION ..o 130
INItIAlISAtION AN LOGIN .cceeeeeeeeeee et e e e e e e e e e e e e e e e e e eaaane 131
Appendix C - Wavenet APPHCAION LOAAEGTeeeeeeeeeeeeeeeeeeeeeeeeeeenenenes 133
Updating Application Loader Software on Your Modemcccooeeeeveeeeeeenn. 133
THOUDIESNOOTING ..ot e e e e e e e e e e e e e e eeeeeeeenannnees 135
Appendix D - NUmMeric CONVErSION CNaITeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseennnes 137
APPENAIX G = SO CITICATIONS ...vveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeesssesesssnsesssensnsnnnnnnnnnes 139

Introduction

The Boomer 1| OEM Modem is a radio packet modem, intended for
use on the Motorola DataT AC 4000 SFR and DataTAC 5000 MFR
data communication networks.

It is primarily designed to be integrated into customer equipment as an
OEM modem. There are two versions available, an 800MHz version (A
band) and a 900MHz version (B band).

The modem interfaces to the equipment’ s controller by using the data
interface port. The protocol supported over thislink is Native Control
Language (NCL).

Although the modem has embedded software, it has no built in
application software. All application software must be separately
installed and run from the device to which the modem is connected.

A Software Development Kit (SDK) is available and described later in
this manual to assist this process.

A picture of the Boomer II OEM Modem is shown below.

/ RF Connector

LED
Window

Data Interface Port

This manual contains the following sections:
Section 1: General product information.

Section 2: Installation Guide.

Section 3: Test Jig and Boomer |1 Evaluation Guide.

Section 4: Software Development Kit Guide for the modem interface
(NCL) and the network host interface (SCR).

Section 5: Client Application Guide.
Section 6: Message Routing Guide.

Features

The Boomer 11 OEM modem is approximately the size of a credit card
and just 9mm thick. The modem is easily connected to many other
devices and can be incorporated into a variety of package formats. The
modem hasa TTL serid port.

The Boomer 1| OEM Modem has the following features:

o Seria communications interface port (TTL level)
running an NCL protocol

o Indicator lights shows the status of the network coverage and
power supply

a Four configurable digital input/output lines for external
control/monitoring

o Software configurable RF calibration adjustments to suit
specific networks

a High sensitivity reception
Small footprint and low profile design

O

Low-voltage and low standby current consumption for battery
based products

Auto-wake up of host on incoming messages
Roaming capabilities as used in DataTAC system
Modem is aways online using the DataTAC network

0o O 0O O

Easy to install, service and update

Applications

Suitable devices in which the Boomer 1| OEM Modem can be used
include the following applications:

Meter Reading

The modem can be used to read billing information from intelligent
electrical meters and basic disc meters. Datais transmitted wirelessly
through aradio network to billing computers.

EFTPOS

The modem can perform handshaking and complete verification of all
data transmitted through the wireless network.

Vending Machines

Vending machines can also utilise radio data technology. Many
machines already transmit usage and refill requirements to company
head offices via standard telephone lines. Radio modems alow vending
machines to be placed in areas with poor access to telecommunications
infrastructure, providing a cost-effective aternative to installing new
telephone lines. On refilling, only the required refills will be

despatched to the required sites maximising truck carrying capacity and
consequently efficiency.

Fire Alarm Detection

Conventional telephone wire connections are slow to dial out and can
burn before the emergency call can be placed. Laws in many states and
countries require businesses to have an on-line dial out fire alarm
system. The Boomer |1 OEM Modem offers areal solution to this
problem.

Parking, Buses and Ticketing

Ticketing machines are being be converted to cashless operation. The
Boomer |1 OEM Modem is the best alternative to facilitate the
introduction of this cashless technology.

Compliance Statement

Thisdevice has not been authorized asrequired by the rules of the Federal
Communications Commission (FCC). Thisdeviceisnot, and may not be, offered
for saleor lease, or sold or leased within the USA, until authorization is obtained.

The Boomer || modem is supplied as an OEM Modem Module for
Integration into a customer specific product. This combined product
will have it's own antenna, RF cable and unique FCC ID. This
combined product will require its own testing by an FCC testing house
and submission to the FCC for approval.

This equipment generates, uses and can radiate radio frequency energy
and, if not installed and used in accordance with the manufacturer’s
Instructions, may cause interference harmful to radio communications.

There is no guarantee however, that interference will not occur in a
particular installation. If this equipment does cause harmful
interference to radio or television reception, which can be determined
by turning the equipment off and on, the user is encouraged to try to
correct the interference by one or more of the following measures:

o Reorient or relocate the receiving antenna.
0 Increase the separation between the equipment and receiver.

a Connect the equipment into an outlet on a circuit different from
that to which the receiver is connected.

o Consult your supplier or an experienced radio/TV technician
for assistance.

Warning: Changes or modifications to this unit not expressly
approved by the party responsible for compliance could void the user’s
authority to operate this equipment.

Information for Your Safety

Please read these safety instructions and the operation instructions
provided in this manual before operating the Boomer |1 OEM Modem.

Safe Use

Switch the modem off in areas where radio devices are forbidden, or
when it may cause interference or danger. For example, fuel depots
(fuel storage and distribution areas), chemical plants, locationsin
which hazardous or combustible gases may be present and where
blasting operations are in progress.

Do not use the modem in an aircraft. Such use may affect aircraft
Instrumentation, communication and performance and may be illegal.

Be aware that the modem may interfere with the functionality of
inadequately protected medical devices, including pacemakers.
Additionaly, the effect of the radio signals from the modem on other
electronic systems, including those in your car (such as electronic fuel-
injection systems, electronic anti-skid braking systems, and electronic
cruise-control systems) may affect the operation of these systems,
which should be verified before use in the applications

Do not place the modem on an unstable surface. It may fall and damage
the equipment.

Never push objects of any kind into the modem through openings as
they may short out parts that could result in afire or electrical shock.
Never spill liquid of any kind on the modem. Do not use the modem
near water (for example near a bathtub or sink, in a wet basement, near
a swimming pool etc.). The modem should be situated away from heat
Sources.

Disconnect the modem from the power source before cleaning. Do not
use liquid or aerosol cleaners. Use a damp cloth to clean the unit.

Disconnect the modem from the power source and contact your
supplier if:

o Liquid has been spilled or objects have fallen onto the modem.
a It has been exposed to rain or water.

o It has been dropped or damaged in any way.

a

It does not operate normally by following the instructions
contained in this manual.

o It exhibits adistinct change in performance.

Failure to observe dl these instructions will void the limited warranty.

Host Requirements

The minimum system requirements of the host interface PC in order to
utilise the Software Development Kit (SDK) are:

]

0O 0O 0O 0O O O

Intel compatible Pentium computer or higher

Windows 95 or later

16MB RAM (memory) minimum, 32MB recommended
1MB available hard disk space

9-pin seria Port using a 16550 UART

3.5-inch Disk Drive

CD-ROM drive

Installation

This section will help you to successfully integrate the Boomer || OEM
Modem into your custom application. Before using your modem you
must:

o Mount the Boomer II| OEM Modem to your device
a Connect the Data Interface Port
o Connect and position the antenna
o Supply power
A picture of the Boomer II OEM Modem is shown below.

/ RF Connector

LED
Window

Data Interface Port

The modem has the following interfaces:
Data Interface Port 30-way connector

LED Window Power Green, flashes when scanning
LED On, when locked

Off, when the modem is off

Receive Green, flashes when receiving
LED

Tranamit Red, flashes when transmitting
LED

RF Connector MMCX female socket

70

Mounting the Boomer || OEM Modem to Your De

vice

The Boomer 11| OEM Modem has an M2 Mounting Bolt hole in each
corner, which should be used to bolt the modem onto an appropriate

surface. The mounting hole pattern is four holes in a 60mm

X 46mm X

42mm trapezoid, with each hole to suit an M2 (2.0mm) bolt. Refer to

the following diagram.

= 48,00 CTRS =

Hole diameter:

60.00 £TRS

i’

ﬂ n"@ I]: __i/_—i_-————— T E/;;(lngscrewsme.

4 x 2.30mm

—'“‘F'

' . T
= [- 400 CTRS =
' |

Top View Side View Mounting Details

The mating surface should be flat and ensure a rigid mounti
modem to minimise the transmission of vibration to the uni

ng for the
t.

There should be an adequate supply of airflow to ensure the modem’s

temperature limits are not exceeded.

Connecting the Data Interface Port

There are two connectors to interface the Boomer || OEM Modem with
your device.

o RF Connector (described in the next section), and
o Data Interface Port

The data interface port is used to interface the modem to a seria
computing device and a power supply. The power supply requirements
are described in the next section.

A flat 30-way Flexible Printed Circuit (FPC) cable 0.3mm thick with
1mm centreline spacing is used between the Boomer 1| OEM Modem’s
data interface port and your device.

The asynchronous serial interface on the Boomer 1| OEM Modem
operates at 3V and can be controlled by awide variety of
microcontrollers and microprocessors. The modem can be connected
directly to amicrocontroller or through a universal asynchronous
receiver/transmitter (UART) to a microprocessor data bus.

If the modem is to be connected directly to a PC or other RS232
device, an interface must be provided to convert the signal voltage to
the higher values required by an RS232 device.

Data Interface Pin Descriptions

Pin Signal Description
1 DCD Data Carrier Detect
2 RXD Receive Data
3 TXD Transmit Data
4 DTR Data transmit ready
5 GND Ground
6 DSR Data Set Ready
7 RTS Request to Send
8 CTS Clear to Send
9 RI Ring Indicator

10 HCRESET Modem Reset

11 TEST PIN Not connected

12 HOSTPWR_ON Modem Power on/off

13 LEDO_MSGWTG Message Waiting

14 LED1_INRANGE In Range

15 LED2_LOWBAT Low Battery

16 SS0/RXD2 Status Signal 0

17 SS1/TXD2 Status Signal 1

18 SS2 Status Signal 2

19 SS3 Status Signal 3

20 HOST 3.8V Supply Voltage (3.4 — 4.2V)
21 HOST3.8V Supply Voltage (3.4 — 4.2V)
22 HOST 3.8V Supply Voltage (3.4 — 4.2V)
23 HOST3.8V Supply Voltage (3.4 —4.2V)
24 TEST-PIN Not connected

25 HOST GND Ground

26 HOST GND Ground

27 HOST GND Ground

28 HOST GND Ground

29 TEST-PIN Not connected

30 TEST-PIN Not connected

Serial Communications Interface

The modem communicates with the controller using the Data Interface
Port connection interface. The protocol supported over thislink is the
Native Control Language (NCL). The dataformat for NCL is: 8 data
bits, no parity, 1 stop bit.

The serial interface lines (RXD, TXD, DCD, DTR, DSR, RTS, CTS,
RI) are TTL compatible. They are fitted with a 33U series resistor and
clamp diode to the internal supply line for protection. The electrical
interface capability of these signalsis as follows:

Input Voltage Range 0-3.3V or 0- 5V
Output Voltage Range 0- 3.3V
Current Source/Sink + 3mA (maximum)

The operation and active condition of these lines is summarized below.

Serial Communications Interface Definitions

P}]nl# Signal | Description Signal | Active State

1 DCD Data Carrier Detect Output | Low when modem in-range

2 RXD Receive Data Output | Low when active

3 XD Transmit Data Input Low when active

4 DTR Data transmit ready Input Low when ready

6 DSR Data set ready Output | Low when ready

7 RTS Request to send Input High v_vhen host requires data
throttling

8 TS Clear to send Output | High when .modem requires
data throttling

9 RI Ring indicator Output Pulses_l__ow when messages
are waiting

Status Input / Output lines
Note: Not currently supported but may be added in future releases.

The status lines (SSO to SS3) may be software configured for bi-
directional operation. Each line has a 33U series resistor and clamp
diode to the internal supply line for protection. The electrical interface
capability and function of these signals are as follows:

Input Voltage Range 0-3.3V or 0- 5V
Output Voltage Level 0- 3.3V
Current Source/Sink ~ + 3mA (maximum)

The operation and active condition of these lines is summarized below.

Status Input/Output Interface Definitions

P\i]nl# Signal | Description Signal Active State
16 SS0 gtatus Signal Input/ Output User configurable (future option)
17 SSs1 ftatus Signal Input/ Output User configurable (future option)
18 SS2 gtatus Signal Input/ Output User configurable (future option)
19 SS3 gtatus Signal Input/ Output User configurable (future option)

LED Interface

The modem provides three on-board indicators (LEDS), for diagnostic
monitoring purposes as well as three modem controllable LED outputs
through the Data I nterface Connector.

On-Board LED Indicators

The on-board LEDSs are visible through a small window in the case of
the modem. In order of sequence (from left to right when viewing the
modem facing the data interface connector) the LEDs are as follows:

Power Green flashes when power norma and scanning for
LED channel
On when power norma and locked on channel
Off when the modem is off
Transmit Red flashes when data is transmitted

LED

Receive
LED

Green flashes when datais received

LED Output Lines

In addition to the on-board LEDs there are three signal lines (Low
Battery, Message Waiting, In-range), which are controllable by the
modem for connection to an externa LED. Each line has a 33U series
resistor and clamp diode to the internal supply line for protection. It is
recommended a series resistor be used with the external LED to limit
current accordingly. The electrical interface capability and function of
these signals are as follows:

Output Voltage Level 0-3.3Vv
Current Source/Sink + 3mA (maximum)

The operation and active condition of these lines is summarized below.

LED Interface Definitions

‘_]1 Signal Description Signal | Active State
Pin #
13 LEDO_MSGWTG Me_s_sage Output | Low when message waiting
waiting

14 LED1_INRANGE | Inrange Output | Low when modem in-range
Low when battery is less than
3.5V,

15 LED2_LOWBAT Low battery Output))
High when battery is greater
than 3.6V

Low Battery

The Low Battery signal is held active low whenever the supply voltage
drops below an acceptable level (lessthan 3.5V) and deactivated when
the voltage level becomes acceptable again (greater than 3.6V). The
transitions will occur at the same time as the low battery event occurs
(or would occur if the event was activated). Note that in the case of a
very fast transition between voltages, it may take up to 20 seconds for
the modem to confirm a change in battery status.

M essage Waiting

The Message waiting signal is held active low whenever thereis at
least one message waiting in the inbound buffers to finish being sent to
the network, or at least one complete message in the outbound buffers
which hasn’t been sent to the local device.

In-Range

The In Range signd is held active low whenever the modem isin
range. It tracks the function of the Data Carrier Detect (DCD) signal.

Connecting & Positioning the Antenna

The Boomer II OEM Modem provides an MMCX RF connector
interface located at the top of the unit, to attach to the antenna cable.

The antenna does not plug directly into the modem but uses an antenna
cable to interface between your device and the modem.

The antenna cable should be alow loss, 50W impedance and have a
MMCX plug that can mate with the modem’s MM CX socket
(82MMCX-S50-0-2). It is recommended that a Huber+Suhner
connector be used to connect to the modem as below;

11 MMCX Straight Connector
16 MMCX Right Angle Connector

If an extension cable is required to the antenna, it should be low loss, as
short as possible and an impedance of 50 ohms. Proper matching
connectors should be used, as each connector introduces a return loss
and reduces performance.

The minimum requirements for the antenna used with the Boomer 11
OEM Modem are:

Impedance: 50W

Centre Frequency: 833MHz + 5SMHz

Frequencies of operation: 806 to 825MHz (transmit)
851 to 870MHz (receive)

Acceptable return loss: VSWR < 1.5 or RL <-14dB (recommended)
VSWR < 2.0 or RL <-10dB (minimum)

The power output of the Boomer II OEM Modem is nominally 1.8W at
the antenna port. The antenna gain or loss will affect this value.

Positioning
Positioning the antenna will affect the gain provided by the antenna.

The antenna should be orientated so that it provides vertical
polarisation as the DataTAC network is based on vertically polarised
radio-frequency transmission.

The antenna should be located as far from the active el ectronics of the
computing device as possible. Typically, ameta case of a computing
device and its internal components may attenuate the signal in certain
directions. Thisis undesirable as the sensitivity and transmit
performance of the Boomer 11 would be reduced. However, careful use
of metal used for the ground plane for an antenna can improve the
antenna gain and the coverage area for the system.

If your device is designed to sit on a surface, the antenna should be
positioned as far from the bottom of the device as possible. Thisisto

reduce the radio frequency reflections if the device is placed on a metal
surface.

If your device is hand held or is worn next to the body, the antenna
should be positioned to radiate away from the body.

Supplying Power

The Boomer 1| OEM Modem must be provided with a clean power
source capable of delivering bursts of high current.

The modem draws its power in bursts. The power required changes
rapidly depending on whether the modem is transmitting, receiving or
on standby.

The power supply requirements are:

Voltage: 3.8V (3.4t0 4.2V range)
Transmitter: 1.7A
Receiver: 85mA
Transmit Duration: 32ms (minimum)
1s (maximum)
Off current consumption: < 100pA
Power Supply Ripple: < 15mV peak to peak
Batteries

The Boomer 1| OEM Modem may be powered by batteries if used with
ahandheld device.

Nickel cadmium (NiCad) batteries may be used for devices requiring
wide temperature ranges. Nickel metal hydride (NiMH) and lithium ion
(Li+) batteries may also be used for devices utilised above 0°C.
Specifications for these batteries should be obtained from the
manufacturer.

The selected battery must be able to meet the Boomer 11 power
requirements as mentioned previoudly.

Plug-in Supplies

A mains plug-in supply must be designed to ensure that voltage spikes,
lightening and other power fluctuations cannot damage the Boomer I1.
Transient voltage protection zener diodes or other spike arrestor
circuits may be added to keep the inputs within the power requirements
mentioned previously. These should have a value of 20V and be placed
on the supply side of the regulator circuit.

Automotive Supplies

Extra protection is required from an automotive supply to protect the
Boomer I OEM Modem from power fluctuations when used in an
automobile.

The electrical transient conditions (e.g. battery jump start), may
damage the modem if not adequately clamped and filtered.

Environmental Considerations

The environmental requirements of the Boomer |1 OEM Modem are as
follows:

Operating Temperature: -30° to +60°C
Storage Temperature: -40° to +70°C

Y ou should ensure these limits are not exceeded in the intended
application.

Test Jig

The Boomer 11 Test Jig provides RS-232 serial interface ports between
a PC and the modem. It is designed to enable you to quickly interface
the Boomer |1 to a standard PC (through a COM port) or a terminal
device with an RS-232 serial port.

The test jig acts as a temporary host for the modem and provides access
points to the radio’s communication port, allowing you to monitor
activity with alogic probe, multimeter or oscilloscope.

Features

Q

All Input/Output Lines configurable by jumpers and/or
accessible through parallel FPC connector.

On-board dual RS232 Serial Communication interface ports
with DB9 connectors

Through the SPY MODEM connector, you can monitor the data
transmitted from the modem (RX, DSR, and CTS).

Through the PORT 2/SPY PC connector, you can monitor the
data transmitted from the PC (TX, RTS and DTR), or talk to the
second seria port of the modem. Y ou can make this choice by
putting all five jJumper links on the right or left side of the RDW
header connector near the port.

Switches and LED indicators on SO - SS3 modem 1/O lines.
On-board voltage regulator for Boomer 11 OEM supply rail.
On-board LEDs for three external signals:

Low battery

Message waiting

In range

On-board antenna matching network allowing conversion from
MMCX to SMA connectors.

Exploring the Boomer Il Test Jig
The test jig comprises the following components:

DC Jack
on/off Input Supply 8-way Port 2/ SPY PC Interface

Switch\A \ DIP switch DB9 Connector
e
LT

3 RDW
3.15A Fuse > = ° vee Z'f&deec'mr < SPY Modem Interface

testpin

5X20mm ADJVCC DB9 Connector

1 e [
I:I: ® astoin
\ Host PC Interface
Audio In DB9 Connector
BNC Connector
Audio Out

BNC Connector / Boomer I \ Parallel 30-pin FPC Connector
On-board

For signal access
LED indicators

Lower 30-pin FPC Connector
For connection to modem

SMA SMA
Antenna Modem
socket socket

On/ Off switch Switches the power to the test jig on or off.

DC Jack Provides power to the test jig. (3.8V)
DIP Switch 8-way DIP switch used to configure the test jig.
The following table shows the DIP switch configuration.
Dip Signal On Off Default
Switch # Position
1 PA7 Always leave this switch in the OFF position OFF
2 OSC OFF Always leave this switch in the ON position ON
3 SS3 3V 10k Pul Idown to GND OFF
4 SS2 3V 10k Pull down to GND OFF
5 SS1 3V 10k Pull down to GND OFF
6 SSO 3V 10k Pull down to GND OFF
7 H-P-ON Turn the modem off Turn the modem on OFF
8 RESET Keep modem reset Keep modem in working status OFF

Port 2/ SPY PC
Connector

SPY Modem
Connector

Host PC Connector

Pardle FPC
Connector

Lower FPC
Connector

Modem Connector

Antenna Connector
LEDs

DB9 connector used for two purposes depending
upon the settings of the jumper switches located
just behind the connector on the PCB. If the
jumpers are used to connect the centre column to
the right hand outer column (TX, RTS etc), then
the port acts as a spy connection for the data
between the PC and the modem via the PC
connector.

An analyser program such as “spy.exe” can be
used to view the data

DB9 connector, used to spy on the RS-232 data
sent by the modem to the DTE (using DSR, RX,
CTSand GND signals).

An analyser program such as “spy.exe’ can be
used to view the data. A communication program
such as “HyperTermina” can be of limited use if
the data spied upon contains alot of apha-
numeric ASCII characters.

DB9 connector, used to connect serial port 1

(of 2) of the modem to the DTE. The default
values for this RS-232 connection is 9600bps, 8
bits, no parity, 1 stop bit.

This port can aso be used to download new
modem software to the Boomer I1.

30-way FPC (Flexible Printed Circuit) connector
used for signal access.

30-way FPC (Flexible Printed Circuit) connector
used to connect the Boomer 11 to the test jig.

Used to connect the Boomer |1’ s antenna socket
to the antenna connector.

Used to connect the external antenna.

There are eight LEDs used to indicate the
following:

Power

Low Battery

In Range

Message Waiting

SSO

SS1

SS2

SS3

3 RDW
Header
connector
3 RDW
Header
connector

Audio Out

AudioIn

3 RDW Header
Connector

52-pin Header
Connector

Connector for monitoring an audio output. Used
to monitor baseband signal, BIT Error Rate
(requires aPER test jig), receiver and
demodulation.

Warning: Must use a high impedance monitor,
100kU.

Connector for monitoring an audio input. Used to
monitor modulation and transmission.

Warning: Must use a high impedance monitor,
100kU.

Connectors used for jumpers (supplied).

For Port 2 use, al the jumpers are positioned
from the centre column to the left hand column.

For Spy PC use, all the jumpers are positioned
from the centre column to the right hand column.

Connector used for jumpers (supplied).
All the jumpers are connected as default.

1 DCD

2 RX

3 X

4 DTR

5 GND

6 DSR

7 RTS

8 CTS

9 RI

10 RESET
11 H-P-ON
12 MSGWTG
13 INRANGE
14 LOWBAT
15 SSO/RX2
16 SS1/TX2
17 SS2/CTS2
18 SS3/RTS2
19 3.8V

20 3.8V

21 3.8V

22 3.8V

23 GND

24 GND

25 GND

26 GND

Initial Calibration

Without connecting a Boomer II OEM Modem to the Test Jig, initially
check the calibration of the on-board voltage regulator. (This regulator

supplies the RS232 converter and other on-board circuitry only. 1t does
not supply power to the modem).

1. Connect the centre pin of the DC jack to the +3.8V power
supply with 2A capability and the external pin to the ground.

2. Adjust the trimpot marked ADJ VCC to make sure the voltage
on the test pin next to the ADJVCC is 3.3V.

3. Keep dl of the switches on the dipswitch in the off position
(except DIP switch 2) for norma modem operation.

Set Up

With the power off,

1. Connect the Boomer II OEM modem to the lower FPC
connector on the test jig using a 30-way FPC cable.

Use the following procedure to insert the cable into the FPC
connector.

a. Lift up the lock lever of the FPC connector by flipping it
up with the nail of your thumb or index finger.

\
L@J

Lock Lever

b. Ensure that the cable is inline with the connector and
insert the FPC cable into the connector with the
conducting surface of the cable facing downwards.

.ﬂ“-‘fz :’T\J—M___ FPC conductor side

L)

c. Press down the lock lever.

Note: If the cable has been partially inserted, or out of
alignment, the lock lever will not engage. Should this
occur, remove the cable (see below) and repeat steps
a-C.

Use the following procedure to remove the cable from the FPC
connector.

a Lift up thelock lever of the FPC connector by flipping it
up with the nail of your thumb or index finger.

\

LR

Lock Lever

b. Remove the cable after the lock is released.

. Instal an antennato the modem. Use either the on-board SMA

connection and an adapter cable between the modem MMCX
connector and the test jig, or directly to the modem itself.

. Connect the PC to the DB9 connector marked “PC” using a

standard serial cable.

4. Switch the power supply on.
. Select the DIP switch labelled H-P-ON to the ON position.

The Power LED on the modem should illuminate.

Y ou are now ready to communicate with the modem using the
PC asahost.

The modem should be able to talk to the PC by using Wavenet
RSUSER software, or other NCL protocol software.

RSUSER

The Radio Service Utility software (RSUSER) enables a user to
exercise and configure Wavenet Modems. This software runsin a DOS
window under Windows 95, 98, NT, or 2000.

RSUSER interfaces with the Boomer 1| OEM Modem viaaPC's
communications port and the Test Jig's PC port using an RS-232 cable
with DB9 connectors.

RSUSER is issued with the following files:
0 RSUSER.EXE Theexecutable
o RSTEST.DEF Definition file for scripts
0 RSUSER.INI Initialisation file. Created by RSUSER.EXE
o RPM.LOG Log file. Created by RSUSER.EXE.
Refer to Appendix E for the NCL command list.

Operations
The following screen is displayed on start up or whenever the Help Hot
Key <?> is pressed.

*********RSLBER M V2' XX HELPk*********
NCL COMVANDS

(- enabl e receive _ - Cet RPMstatus @- disable receive
) - enable transmt & - Get Next Mg # - disable transmt
SEND MESSAGES (bl ocks conposed of ...)
n - Text ' '-'z'var length , for short text
/ - random bytes var length %for short random

- Dotting ('Us) nessage > for canned nessage
< - sequential text var length
M SCELLANEQUS
F5 - Change COMregs [4, 3F8] Alt'b' - Change baud rate [9600]
F11 - Toggl e dunpi ng of data bytes of inconmi ng NCL
F9 - Activate packet | oopbacks F10 - Configure | oopback tining
CONFI G PROGRAMM NG
At3 - Program hone area At6 - Program G oup LLIs
At5 - Program Channel s At C -Read parans from nodem

Left/Right arrow - send XOFF/ XON. At X/ Z - rts off/on At S/A- dtr off/on
At w- Batt. status At d - Radio status

F1 - Source LLI [90100001] F2 - Destination LLI [90100001]

F3 - Sys Address[A1010A] F4 - Conpile NCL Msg

ESC - QJT program F6 - Auto sync LLIs and hone area

Type '?' to get back to this help screen

RSUSER allows operators to exercise the modem via Native NCL
Commands (and Vendor Specific Commands), hot keys or an input
line. Common user commands such as enabling the modems receiver
and transmitter are included in the Hot Key list. Native NCL
commands can be issued from the F4 Hot key. A log file RPM.log is
automatically started for a new session of RSUSER. To save a session,
exit RSUSER and rename the RPM.log file.

Using RSUSER

1. Supply power to the modem (e.g. via the test jig), switch it on
and plug the modem into the communications port of the
computer. (Refer to the modem’s user or test jig documentation
for cabling and connection instructions).

2. Execute RSUSER.EXE

3. Check that the communication port settings displayed are
correct under the Miscellaneous Heading.

4. If the communications port settings are incorrect, press <F5>,
enter new settings, and exit from RSUSER by pressing
<Escape> and return to step 2.

5. Pressthe <_> key (the underline) to seeif you receive a
response from the modem. If not, there may be a problem with
the connection or communication settings. Reset the modem,
exit from RSUSER, check all connections and return to step 1.

6. Use RSUSER as required and when finished, press <Escape>
to exit.

When first run, RSUSER.EXE cresates a file RSUSER.INI in the
current directory, which saves the last used options (communications
configuration) of RSUSER.EXE. These options will be used next time
RSUSER is executed.

Hot Key Descriptions
<Alt> +<3> Home Area Programming

Press <Alt> and <3> keys together to program the home area into the
modem's non-volatile memory. You will be asked to enter the home
area (e.g. C20101), and then press <Enter>. Y ou will see three
“CMND.....ILLEGAL BYTE” lines, followed by three “ SUCCESS’
lines. Thisis normal. You must reset the modem (<F4> 66 <Enter>)
before the changes will take effect. If you do not receive the
“SUCCESS’ responses, then reset the modem, reset RSUSER, and try

again.

<Alt> + <5> Static Channd Programming

This alows you to change the static channel list in the modem'’s non-
volatile memory. You will be prompted to enter the channel list.

Type each channel individually, as per the example. Y ou must type the
four hexadecimal digits of the channel (e.g. 25ED), followed by a
space, and then four hexadecimal digits for the channel attributes
(0401). (Refer to the DataTac RD-LAP manual for channel designators
and channel attribute descriptions.)

Y ou should see two “CMND.....ILLEGAL BYTE” lines, followed by
two “SUCCESS’ lines. Thisis normal. Y ou must reset the modem
(<F4> 66 <Enter>) before the changes will take effect. If you do not
receive the “SUCCESS’ responses, reset the modem, reset RSUSER,
and try again.

<Alt> + <6> Group LLI Programming

This allows you to program up to 16 group LLIs into the non-volatile
memory of the modem. Y ou will be prompted for each LLI
individually. When finished, press <Enter> when prompted for the
next LLI.

Y ou should seetwo “CMND.....ILLEGAL BYTE” lines, followed by
two “SUCCESS’ lines. Thisis normal. Y ou must reset the modem
(<F4> 66 <Enter>) before the changes will take effect. If you do not
receive the “SUCCESS’ responses, then reset the modem, reset
RSUSER, and try again.

<Alt> + <C> Read Config Parameters

This option reads the current configuration from the modem, and
reports on it. The configuration includes the LLI, Seria #, home area,
channels, group LLIs and some redundant data.

<Alt> + <D> Get Radio Status

This option sends a command to the modem requesting the current
radio status of the modem. The response contains information on the
current RSSI level, signal quality, current channel, base Id and severa
other data.

<Alt> + <W> Get Battery Status

This option sends a command to the modem requesting the current
status of the battery power. The response contains the voltage level of
the battery as an absolute voltage and as an estimated percentage of

capacity.

<F1> Set SourcellLl

This option tells RSUSER which LLI should be listed as the source
LLI on all packets which are sent by RSUSER using the "SEND
MESSAGES' options. This setting will be saved in the RSUSER.INI
initialisation file. There is no need to reset the modem or RSUSER
after this option.

<F2> Set Destination LLI

Similar to the above option, but sets the destination LLI for messages
sent by the "SEND MESSAGES" options.

<F6> Automatically Set SRC/Dest LLIsAnd Home Area

Automatically queries the modem for its LLI and home area, and sets
the above two options with that LLI for loopback tests, and the next
option with that home area address. This is easier than typing the LLI
for both source and destination options, and the destination address.

<F3> SYS Address

This option sets the default destination area for messages sent with the
"Send Messages' option. This value is saved in the initialisation file.

<F4> Compile NCL Message, or Send NCL Script

This option allows you to send any NCL command to the modem. For
example, by pressing <F4>, typing "4z" and then pressing <Enter>
will cause a command SDU to be sent to the modem asking for the
static channel table. To enter a non-ASCII value, use the form \7C
where the backslash indicates that the next two characters are to be
treated as a hexadecimal byte value (in this case 7C). This option is
only useful if you have a copy of the NCL specification to trandate
commands into byte values.

RSUSER is aso able to send commands taken from the definition file
rstest.def. This file contains a list of “scripts’, which contain
predefined commands. The comments in the sample rstest.def file
describe how to format the scriptsin the file.

To send a script, press <F4>, and then type the script name prefixed by
the"=" (equals) sign.

For example, to run the "enablerx™ script, press <F4>, and type
"=enablerx”, followed by <Enter>.

<F5> Change Com Port Parameters

This option allows you to change the communications port settings
which RSUSER uses to communicate with the modem. Y ou will be
asked for the port address and port IRQ. You will be given examples
for the common four PC com ports.

Note: You must exit from and restart RSUSER befor e these settings will
take effect.

<Alt> + Change Baud Rate

This option changes the baud rate the RSUSER program uses. Y ou will
be asked for the baud rate you wish to change to. Valid baud rates are
300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600 or 115200.

The change will take effect immediately. The baud rate is not preserved
on exit from RSUSER. It defaults back to 9600 on next invocation.

<F11> Toggle Dumping Of NCL Data Bytes

Incoming NCL responses/events from the modem are trandated and
displayed on screen by default. The actual data bytes making up the
packet may be optionally displayed. Press <F11> to toggle this option.

< _ > Get StatusBlock

This option sends a status request command to the modem. It is a short
cut, rather than using the above F4 option and typing the ASCI|
characters.

<(> Receiver On / <@ > Receiver Off

This option sends a command to the modem to switch the receiver on
or off.

<)> Transmitter On [<#> Transmitter Off

This option sends a command to the modem to switch the transmitter
on or off.

Send M essages Options

These varying options send messages to the modem to be sent to the
network. They each have a source and destination LLI and destination
area as set by F1, F2 and F3 respectively. The contents of the message
vary depending on the particular option. Some options are of fixed
length, and some ask you for the desired length. They are mainly self-
explanatory.

<>> Canned message.

Y ou will be asked for afile name. The contents of this file will be used
as the contents of the data portion of the SDU.

<,>

A random sequence of binary numbers will form the data portion of the
message. Its length is approximately 20 characters.

<<>

A sequential sequence of ASCII characters will form the data portion
of the message. Y ou will be prompted for the length of the data portion
of the message. A number from 1 to 2010 is allowed.

M essage L oopback Options

The F9 and F10 commands, together with the above “ send message”
commands can be used to set up some automatic message sending and
loopback tests. When in loopback mode, RSUSER will cause a
message to be sent out for a definable amount of time (called “time
between”) after every time one is received from the network (or we
obtain afail response to a send). The sent message will be the same
mode and length as the last message sent by a “send messages’
command above. We also send another packet if we don’t receive a
failure response, or a network packet within a definable time (called
“timeout”).

<F9>
Toggles automatic packet sending (loopback mode) on and off.

<F10>

Sets the timing parameters “time between” and “timeout”. These values
will be reset back to defaults (O and 60 seconds respectively) whenever
RSUSER is executed.

For throughput tests where the network is bouncing back packets, the
values of 0 and 60 is recommended.

For throughput tests where the network doesn’t bounce back packets,
the values of 5 and 5 are recommended. This will send a packet every
five seconds (which allows time for retries etc.)

Reprogramming Modems

A self-extracting loader program is supplied for every software
upgrade. Refer to Appendix C - Wavenet Application Loader on page
133.

Software Development Kit

DataTAC networks allow wireless communication and are installed in
many different countries around the world. The Wavenet Software
Development Kit (SDK), has been developed to facilitate development
of applications for these networks by providing a ssimple program
interface for communicating with the network devices.

The SDK supports the following network types:
o DaaTAC® 4000 networks
o DataTAC® 5000 networks
o DaaTAC® 6000 networks

The SDK is made up of two major components:

o Native Control Language Application Programmer's Interface
(NCL API)

o Standard Context Routing Application Programmer's Interface
(SCR API)

The NCL API isthe wireless client component of the SDK. It provides
routines for sending and receiving data using an NCL compliant Radio
Packet Modem (RPM).

The SCR AP is the server component of the SDK. It provides routines
for encoding and decoding of SCR protocol messages and is used for
communicating with the network switch or radio network gateway
(RNG).

Native Control Language Application Programmer’s
Interface

The Native Control Language Application Programmer's Interface
(NCL API) isthe client component of the WAPI. The NCL API
provides routines for sending and receiving data messages through the
DataTAC wireless network, using aradio packet modem (RPM). It also
allows the client application to control configuration parameters of the
RPM and to retrieve status information from the RPM.

Implementation

The NCL API isimplemented asaDLL library of writtenin C++ for
windows using Microsoft~ Visual C++ Version 6.0.

The NCL API communicates with PC or Pocket PC applications based
on the following model. The NCL API is supplied as a Virtual Device
Driver (VDD) for a PC (Win 98 or better) or a Pocket PC (Win CE
Version 3.0 or better). Multiple applications can access the RPM via
NCL encoded messages.

Layer 6 (Presentation)
Layer 5 (Session)

Level 4 (Transport)

MSMQ MSMQ IN 1 TX Queue |MSMQ INN |

! ! !

Message Router & NCL Interpreter

I

Layer 2 (Data) Serial Port Drivers

Layer 3 (Network)

Layer 1 (Physical)
Serial Port to modem

Wavenet NCL APl Model

Logical Architecture

The following table lists the required functionality for the API per
layer. The code formsa DLL, with only a subset of functions available
for third party developers.

LAYER NAME CONTENT FUNCTION
Applications are to initidize aRX MSMQ (Microsoft
7. APPLICATION Application specific data. Message Queuing system) queue and open a session
with the VDD by passing the RX queue handler.
6. PRESENTATION LAYER Unused
5. SESSION LAYER Unused
4. TRANSPORTLAYER Unused
MSMQ isrun asadevice driver on the Pocket PC
and isrun from power up (ie Non-suspend mode).
The VDD will post events (RCV messages etc) to all
application RX queues enabled for that event.
Responses to application requests will be posted to
3. NETWORK LAYER Router the calling application RX queue.
The VDD process TX requests viaa FIFO queueto
the NCL Interpreter. The Host base routing or Peer-
to-Peer routing SDU formatting is contained in the
NCL interpreter.
Application NCL API function requests are processed
NCL Interpreter & viaa FIFO queue. RPM responses or received datais
2. DATALINKLAYER] tagged and encoded for the router as required Also
Extender port — Serial the UART DLL that handlesthe extender port UART
Driver. to modem communications residesin the link layer
modules..
L E':\\((ESAL /BIT TRANSFER Extender Port to RPM. 9600, 8, 1, N on serid port and awakeup line.

Wavenet's current NCL API protocol stack is implemented with the
hierarchical structure. All DLLs including MSMQ files are included in
the install cabinet files for the VDD.

Router

The PC or PPC loads MSMQ as a device driver. Applications using the
modem must open a session with VDD by calling ‘VDDOpen()’ which
will create a private Receive MSMQ queue for the instance of the
application (client). The name of this private queue will be sent to the
seria port server (VDD) along with an open session request. The port
server will in turn create a private MSMQ queue to receive data from
the client. All Modem Events and response messages to be
communicated between the VDD and the application will be via the
receive queues. Transmit function requests from the applications
(clients) are queued by the VDD and are processed as a FIFO buffer by
the NCL interpreter. On Wakeup the VDD will be activated, if any
applications receive queues are open the RX event will be posted to
those queues. If no receive queues are active, the VDD will buffer the
RX events and start up the registered on_wakeup applications. After

the applications have successfully opened a VDD session the VDD will
pass the RX events to those applications.

NCL Interpreter

The NCL Interpreter strips NCL API function calls from application
messages, queue the calls and execute the calls on a FIFO basis.
Received messages will be queued and matched against an appropriate
request (if not an event), and passed to the router with the
corresponding tags.

Link Layer

The RPM communicates with a PC via a standard communications port
and a user supplied RS232 to CMOS level device. For the Pocket PC
(PPC) the RPM communicates via the PPC extender port UART. The
PPC performs an auto detect and wakeup when an attached modem
receives some data and the PPC is in suspend mode.

Application Interface

o Opening a Session

Applications are required to first open a session with the VDD by
calling the API function ‘VDDOpen()’. All other API functions will
return an error unless an open session with the VDD was established.

If successful this operation will result in the creation of two MSMQ
gueues for use by the client. One MSMQ will be used to send messages
from the VDD to the client and the other for messages from the client
to the VDD. Note that the client does not deal with MSMQ queues
directly because all operations are wrapped in API calls.

Prototype:
int VDDOpen(void)

Description:
Opens a session with the VDD.

Input:

none

Output:

Returnvalue =0 | Operation was successful

Return value OO | Operation failed. Value specifies the error type

o Close Session

Applications can call this function to close its session with the VDD.
An application should call this function before it terminates if a session
was earlier established with the VDD. The reason for thisisto ensure
that all created MSMQ queues for the client are deleted. This will
prevent irrelevant/outdated messages from being posted to inactive
MSMQ queues.

Prototype:
int VDDClose(void);

Description:
Close a session with the VDD.

Input:

None

Output:

Returnvalue =0 | Operation was successful

Return value 00 | Operation failed. Value specifies the error type

o Send Datato a Radio Host

Applications can call this function to send data to aradio host. The
Host ID will automatically be inserted into the data header of the SDU
for message routing purposes.

Prototype:

int nclSendData(word *usSduTag, byte *szHostld, byte ucldLen, byte
*ucData, int iDatLen, bool bResend);

Response:
The VDD will track the response with the Host ID and SDU tag will
post the response to the corresponding RX queue for that session. The

application is responsible for reading and processing the response on
the RX queue. By calling ‘ nclReceiveData()’.

Description:
Send application data to the radio host identified by the host ID.

Input:

> usSduTag Pointer to a word where the SDU tag can be stored
> szHostld Pointer to a buffer specifying the Host identity. The Host ID is
typically 3 bytes in length for DataTac systems. The NCL API will
truncate Host ID’s longer than NCL_MAX_UH_LEN (63) bytes in
length.
> ucldLen Total length of the session ID
> ucData Pointer to the data to be sent
> iDatLen Length of the data to be sent
> bResend Resend flag must be set to false, except if the packet of data is
being re-sent due to a failure of the previous send. Setting the
flag to true prevents the possibility of receiving duplicate packets
at the server application. This flag cannot be used for resending
data prior to the previous packet.
Output:
Return value =0 Operation was successful
Return value 0O | Operation failed. Value specifies the error type
< usSduTag Pointer to a word containing a reference of the corresponding
SDU tag which was generated by the NCL API for this command
to the RPM.

o Receive Data From RPM

Applications can call this function to obtain data sent from the RPM.
This applies to both event and response type data from the RPM. Note
thisisthe only way to obtain response data originating from the RPM
as aresult of issuing commands to it by means of other API functions
described in this document. The return code of all API functions
Issuing commands to the modem only provides feedback about the
posted command. It does not guarantee delivery to the RPM. It is thus
imperative for applications to use ‘nclReceiveData()’ to obtain
feedback directly from the RPM on commands sent to it. Responses to
commands are asynchronous meaning multiple commands can be
issued to the RPM before the application needs to look at all the
responses. Thisis the reason why every command provides the
application with a copy of the unique SDU tag generated for the
command. Every response message contains the same SDU tag of its
associated command. The VDD uses the SDU tag to route response
messages to the originating application (client). The
‘nclReceiveData()’ function provides the SDU tag of the response
message. Applications can use these tags to tie up responses with
previously sent commands. One notable exception exist when the SDU
tag is equal to 65535 (FFFF hexadecimal). Only event messages
contain an SDU tag equal to 65535. The received event/ response
messages will be represented as an array of bytes which must be typed
cast to a structure identified by returned structure ID.

The RCV_MSG_NOTIFICATION event will be handled by the VDD,
which will read the messages from the RPM and pass the messages to
all clients with open sessions.

Other Event types shall be posted to al clients with open sessions
registered for that event. If no applications are registered for that event
the event will be disabled in the modem.

Prototype:

int nclReceiveData(DWORD dwTimeOut, BY TE *ucStructld, WORD
*usSduTag, int *iBufLen, BY TE *ucBuf);

Description:
Receive messages from the RPM.
Input:
> dwTimeOut The time (in milliseconds) to wait for the next message. Use 0 to
return immediately or FFFFFFFF (hexadecimal) to hang on
indefinitely for a message. The calling thread will be suspended
until a message arrive or the time-out period has elapsed,
whichever occurs first.
> ucStructld Pointer to a byte where the structure ID can be stored.
> usSduTag Pointer to a word where the SDU tag can be stored
> iBufLen Pointer to a integer specifying the total size of ucBuf.
> ucBuf Pointer to the buffer (of size iBufLen) where receive data can be
placed
Output:
Return value =0 Operation was successful
< Return value 00 | Operation failed. Value specifies the error type
ucStructld This value identifies the structure of the data in ucBuf. See the
following paragraphs for details.
< usSduTag Pointer to a word containing a reference of the corresponding
SDU tag which was generated by the NCL API for this command
to the RPM.
< iBufLen Size (in bytes) of the data in ucBuf. Note: Buffer lengths of O is
possible — rely solely on the return value in such cases
< ucBuf Pointer to buffer containing the received data

/*** Define types for retrieving data from the RPM ***/

typedef unsigned char BYTE;
typedef unsigned short WORD;

[*Parameter Structure IDs - Do not alter sequence*/

enum

{
NCLNone_ID =0,
NCLEvent_ID,
NCLProdid_ID,
NCLVersion_ID,
NCLRpmid_ID,
NCLConfigBlock_ID,
NCL StatusBlock_ID,
NCLChanBlock_ID,
NCLGroupLlis_ID,
NCLChannelTable ID,
NCLWaveSettings ID,
NCLWaveRadio |ID,
NCLWaveGen_ID,
NCLByte ID,
NCLByte2_|ID,
NCLWord_ID,
NCLMsg_ID,
NCLRaw_ID
/*additional structure IDsto be added here including vendor specific types */

H
/* Use 1 byte alignment for the following structures */

#pragma pack(1)

/* Product ID structure */
typedef struct NCLProdid

{
BYTE hw_platform;
BYTE rf_protocol;
BYTE ncl_compliance;
BYTE release levd;
}NCLProdid;

/* NCL version structure */
typedef struct NCLVersion

{
char major[2];
char minor[2];
}NCLVersion;

/* RPM ID structure */
typedef struct NCLRpmid

BYTE b_val4];
}NCLRpmid;

/* Config block structure*/
typedef struct NCL ConfigBlock
{

NCLProdid
NCLVersion
NCLRpmld
WORD
WORD
}NCL ConfigBlock;

[* Status block structure */
typedef struct NCL StatusBlock
{

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

WORD

WORD

WORD
}NCL StatusBlock;

/* Channel block structure */
typedef struct NCL ChanBlock

{
BYTE

WORD
BYTE
BYTE
BYTE
}NCL ChanBlock;

#define MAX_GROUP_LLIS
#defineLLI_BYTE_WIDTH

prod_id;
Sw_version;
rpm_id;
reserved;
max_data_size;

rx_status;
tx_status;
antenna;
radio_in_range;
flow_control;
rcv_mode;
event_states;
ob_msg_count;
ib_msg_count;
radio_channel;

radio_in_range;
radio_channel;
attribute;
protocol;

rssi;

[0e]

#define NCL_NUM_CHANNELS 64

/* Group LLIsarray */
typedef struct NCLGroupLlis

{

BYTE Ili[MAX_GROUP_LLIS][LLI_BYTE_WIDTH];

BYTE num;
}NCLGroupLlis;

[* Channel Table*/

typedef struct NCL Channel Table

{

WORD

BYTE num;
}NCLChannel Table;

channel[NCL_NUM_CHANNELS];

/* Vendor Spesific: Wavenet Get Settings*/

typedef struct NCLWaveSettings {

BYTE
BYTE
} NCLWaveSettings,

LLI[4];
SerNum[16];

/* Vendor Spesific: Wavenet Get Radio Settings*/

typedef struct NCLWaveRadio {
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

} NCLWaveRadio;

rssi[2];
reservedi,;
reserved?;
reserveds3;
reserved4;
reservedb;
reservedo;
reserved?,;
reserveds;
frequency[4];
channel[2];
base id;

I* Vendor Spesific: Wavenet Generic*/

typedef struct NCLWaveGen {
BYTE
} NCLWaveGen;

byte{100];

/* NCL status information structure */

typedef union NCL Status
{
NCLProdid
BYTE
NCLVersion
NCLRpmld
BYTE
NCLGroupLlis
WORD
BYTE
BYTE
BYTE
BYTE
WORD
WORD
BYTE
BYTE
BYTE
WORD
NCLChannel Table
NCLChannel Table

prod_id;
vendor_id;
Sw_version;
rpm_id;
rpm_vid[2];
rpm_gid;
max_data_size;
rx_status;
tx_status;
antenna;
radio_in_range;
ob_msg_count;
ib_msg_count;
flow_control;
rcv_mode;
event_states;
radio_channel;
chan_table;
dchan_table;

NCL ConfigBlockconfig_block;
NCL StatusBlock status_block;

NCL ChanBlock

BYTE

NCLWaveSettings

NCLWaveRadio

NCLWaveGen
}NCL Status;

/* Event Type*/
typedef struct NCLEventType

{
BYTE etype;

chan_block;
bat_level;
wave_set;
wave_radio;
wave_generic;

/* NCL_RCV_MSG_DATA

/* NCL_MSG_NOTIFICATION
/* NCL_TX_EVENT

/* NCL_RX_EVENT

/* NCL_HW_EVENT

A
‘B’
o
D"
e

Received message data */

Received Message notification */
Transmitter event */
Receiver event */
Hardware event */

/* NCL_RCV_ERR_EVENT P
/* NCL_CONTROL_EVENT 'G'

BYTE EventCode;

/* NCL_MSG_NOTIFICATION_LEN
/* NCL_TX_EVENT_KEYED ‘v
/* NCL_TX_EVENT_DEKEYED ‘2
I* NCL_RX_EVENT_INRANGE ‘71’

/* NCL_RX_EVENT_OUTRANGE ‘2’

/* NCL_RX_EVENT_PSENAB ‘3
/* NCL_RX_EVENT_PSDISAB ‘4’
/* NCL_HW_EVENT STEST ‘T’
/* NCL_HW_EVENT_LBATT ‘2
/* NCL_HW_EVENT MFULL '3
/* NCL_HW_EVENT BATOK ‘&4
/* NCL_HW_EVENT MEMOK ‘5
/* NCL_HW_EVENT_MEMOK ‘6

/* NCL_RCV_ERR_EVENT_RTD ‘1’

disabled */

/* NCL_CONTROL_EVENT_C ‘1’

}NCLEventType;

/* RCV_MSG_Data */
#defineNCL_MAX_DATA_SIZE
#defineNCL_MAX_UH_LEN 63

typedef struct NCLMsg

{
BYTE

BYTE
BYTE
WORD len;
BYTE

} NCLMsg;

2048

buf[NCL_MAX_DATA_SIZE];

/* End of 1 byte alignment */

#pragma pack()

Unreceivable Message Event */

Control Event

Transmitter keyed
Transmitter dekeyed
RFinrange

RF out of range
Power Save enabled
Power Save disabled
Self Test Failed
Low battery
Memory Full

Battery Level OK
Memory Ok

Device shutdownisi

*/

N- Number of buffered msgsto beread */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
mminent */

ACK required PDU received but TX

RPM / DTE connected */

/* max length of user header */

is_message; /* If FALSE, only len and buf components are valid. */
sessionID[NCL_MAX_UH_LEN + 1]; /* NULL terminated */
msg_type; /* Used by NCL_DATATAC_5000 networks */

o Get RPM Status Information

The application can call this function to obtain status information about
the RPM. The following types of status information can be obtained:

Status Request (non vendor
specific)

Response Structure

Description

NCL_R_CONFIG_BLOCK NCLConfigBlock Get RPM configuration block
NCL_R_STATUS_BLOCK NCLStatusBlock Get RPM status block
NCL_R_PROD_ID NCLProdld Get RPM product ID
NCL_R_SW_VERSION NCLVersion Get software version number
NCL_R_RPM_ID NCLRpmid Get RPM address

NCL_R_RPM_VID

NCLStatus.rpm_vid[2]

Get RPM VID address (MDC)

NCL_R_MAX_DATA_SIZE

NCLStatus.max_data_size

Get SDU data limit

NCL_R_RCV_MODE

NCLStatus.rcv_mode

Get mode of notification to
DTE for received SDUs.

NCL_R_RX_STATUS

NCLStatus.rx_status

Get receiver enable status

NCL_R_TX_STATUS

NCLStatus.tx_status

Get transmitter enable status

NCL_R_ANTENNA

NCLStatus.antenna

Get antenna selection status

NCL_R_RADIO_IN_RANGE

NCLStatus.radio_in_range

Get radio in range status

NCL_R_OB_MSG_COUNT

NCLStatus.ob_msg_count

Get count of outbound
messages queued

NCL_R_IB_MSG_COUNT

NCLStatus.ib_msg_count

Get count of inbound

NCL_R_FLOW_CONTROL

NCLStatus.flow_control

Get flow control status

NCL_R_EVENT_STATES

NCLStatus.event_states

Get current event reporting
(enable/disable) state

NCL_R_RADIO_CHANNEL

NCLStatus.radio_channel

Get current radio channel

NCL_R_CHAN_TABLE

NCLChannelTable

Read radio channel table

NCL_R_CHAN_BLOCK

NCLChanBlock

Read the channel block

NCL_R_BAT LEVEL

NCLStatus.bat_level

Read the battery level

NCL_R_RPM_GID

NCLGrouplLlis

Get RPM group IDs

NCL_R_VENDOR_ID

NCLStatus.vendor_id

Get vendor identification

NCL_R_DCHAN_TABLE

NCLChannelTable

Read the D-channel table

NCL_R_RF_STATISTICS

Specific to RF protocol used:
RD-LAP [F] or MDC [G]

Read the RF statistics

Status Request (Wavenet
Technology specific)

Response Structure

Description

WN_GET_STATUS_RADIO

NCLWaveRadio

Get RPM Radio Status

WN_GET_STATUS_BATTERY NCLWaveGen Get RPM Battery Status
WN_GET_STATUS_ONTIME NCLWaveGen Get RPM on-time status
WN_GET_STATUS_CONFIG NCLWaveGen Get RPM configuration status

Prototype:

int nclGetStatus (word *usSduTag, byte ucVendor, byte ucType, byte
ucRequest);

Description:
Command the RPM to send the requested status information.

Input:

usSduTag Pointer to a word where the SDU tag can be stored

ucVendor Vendor identifier. Use:
NCL_NO_VEND = 0 if not vendor specific or
NCL_VEND_WAVENET ="F’ for Wavenet Technology specific
requests

ucType The type of status information to retrieve from the RPM (Used by
Vendor specific requests). Set to zero for non-vendor requests or
WN_GET_STATUS = ‘?’ for Wavenet Technology specific
requests

ucRequest The requested status information, as listed in one of the
appropriate tables above, to retrieve from the RPM.

Output:

Return value =0 Operation was successful

Return value 00 | Operation failed. Value specifies the error type

usSduTag Pointer to a word containing a reference of the corresponding
SDU tag which was generated by the NCL API for this command
to the RPM.

The response is posted to the corresponding RX queue associated with
the VDD session ID. If the session ID is not recognized all active RX
queues will be posted the response.

o Set Configuration ITEMS Within the RPM

By default the modem will have the receiver and transmitter enabled
and the RX notification event enabled. Modem Configuration items via
NCL are TBA and will be restricted to service personnel.

o Reset RPM

The application can call this function to reset the RPM. There are
severa different levels of RPM reset commands that may be issued to
the RPM, as listed below:

Reset Level

Description

NCL_RESET_INBOUND

Flush the Inbound queue

NCL_RESET_OUTBOUND

Flush the Outbound queue

NCL_RESET_BOTH

Flush both the Inbound and Outbound queues

NCL_RESET_WARM

Warm start: flush queues, default Native settings, remain in
Native mode

NCL_RESET_TRANS

Not Supported

NCL_RESET_FULL

Full reset: Power-on reset

NCL_RESET_NCL

Reset NCL interpreter

NCL_RESET_OFF

Power off the RPM

Prototype:

int nclResetRPM (word *usSduTag, byte ucResetLevel);

Description:

Command the RPM to perform a specified level reset

Input:
> usSduTag Pointer to a word where the SDU tag can be stored
> ucResetLevel The level of the Reset as listed in the above table
Output:
< Return value =0 Operation was successful

Return value OO0

Operation failed. Value specifies the error type

usSduTag

Pointer to a word containing a reference of the corresponding
SDU tag which was generated by the NCL API for this command
to the RPM.

The response is posted to the corresponding RX queue associated with
the VDD session ID. If the session ID is not recognized all active RX
gueues will be posted the response.

o Register Event Callback Function

Since the RX events will be posted to private Receive MSMQ queues
the VDD is not required to support callback functions. Applications
can call the API function ‘nclReceiveData()’, to wait on response and
event messages from the RPM on their on account. The API function
‘nclReceiveData()’ will return within the time-out period specified, so
applications will not be hung-up indefinitely.

o Enable/Disable Events

The application can call this function to enable or disable individual
event types being reported by the RPM. By default, only the Receive
Message Data event is enabled (NCL_RCV_MSG_DATA). All other
event types for an application are disabled unless they have been
specifically enabled / disabled using this function. The
NCL_RCV_MSG _NOTIF event is handled by the VDD, which will
post the received messages to al active RX queues (that have
NCL_RCV_MSG_DATA enabled) using the NCLRXDatalD structure
type.

Prototype:
int nclSetEvent (word *usSduTag, byte ucType, byte ucSetting);

Description:
Enable / Disable event reporting by the RPM for the specified event
type.
Input:
> iSessionID VDD session ID
usSduTag Pointer to a word where the SDU tag can be stored
> ucType The type of event to enable/disable:
NCL_RCV_MSG_DATA (Received message data)
NCL_TX_EVENT (Physical-level transmitter event)
NCL_RX_EVENT (Physical-level receiver event)
NCL_HW_EVENT (Hardware event)
NCL_RCV_ERR (Un-receivable message event)
NCL_CONTROL (Control event)
NCL_VEND_EVENT (Vendor specific event)
> ucSetting NCL_DISABLE (Disable event reporting)
NCL_ENABLE (Enable event reporting)

Output:

Return value =0 Operation was successful

Return value 00 | Operation failed. Value specifies the error type

< usSduTag Pointer to a word containing a reference of the corresponding
SDU tag which was generated by the NCL API for this command
to the RPM.

a Get Error Description

The application can call this function to obtain a string representation
for a specified error code.

Error Code Value Description
NCL_ERR_NONE 0 No error has occurred
NCL_ERR_SESSION_IS_CLOSED -1 NCL API: Session has not been opened
NCL_ERR_SESSION_IS_OPEN -2 NCL API: Session is already open
NCL_ERR_ENCODE -3 NCL API: NCL Frame encoding error
NCL_ERR_DECODE -4 NCL API: NCL Frame decoding error
NCL_ERR_PARAM -5 NCL API: Invalid parameter passed
NCL_ERR_TIMEOUT -6 NCL API: Time-out elapsed waiting for response
NCL_ERR_MSMQ_OPEN -7 NCL API: An error occurred opening a MSMQ
NCL_ERR_MSMQ_CLOSE -8 NCL API: An error occurred closing a MSMQ
NCL_ERR_MSMQ_SEND -9 NCL API: An error occurred sending a MSMQ
NCL_ERR_MSMQ_RECEIVE -10 NCL API: An error occurred receiving a MSMQ
NCL_ERR_MSMQ_CREATE -11 NCL API: An error occurred creating a MSMQ
NCL_ERR_MSMQ_DELETE -12 NCL API: An error occurred deleting a MSMQ
NCL_ERR_MSMQ_NAME -13 NCL API: An error occurred searching for a MSMQ
NCL_ERR_MAX_CLIENTS -14 NCL API: Maximum number of supported clients
reached
NCL_ERR_INVALID 'b' NCL Syntax error: Invalid options
NCL_ERR_TOO_LONG ‘'c' NCL Syntax error: Data too long
NCL_ERR_ES _NAME d' NCL Syntax error: Invalid name
NCL_ERR_NO_RESPONSE ‘A’ Execution error: No response from network
NCL_ERR_NO_ACK 'B' Execution error: Negative ACK received
NCL_ERR_HOST_DOWN 'C Execution error: Host down
NCL_ERR_NOT_REGISTERED D Execution error: RPM not registered
NCL_ERR_LOW_BATTERY E Execution error: Low battery - can't transmit
NCL_ERR_IBQ_FULL F Execution error: RPM inbound queue full
NCL_ERR_TX_DISABLED 'G' Execution error: Radio transmitter disabled
NCL_ERR_BUSY H Execution error: Resource unavailable
NCL_ERR_NOT_AVAILABLE T Execution error: Unimplemented services
NCL_ERR_HW_ERROR ‘J Execution error: Generic
NCL_ERR_INVALID_MODE 'K Execution error: Invalid mode of operation
NCL_ERR_NO_MESSAGES L' Execution error: No outbound messages available

Error Code Value Description
NCL_ERR_MSGS_PENDING ‘™M Execution error: Pending inbound messages
NCL_ERR_SW_ERROR N' Execution error: Software error has been
encountered
NCL_ERR_OUT_OF_RANGE ‘0’ Execution error: Cannot send data when out of
range
NCL_ERR_PACKET_ERROR 'Z' Execution error: SDU data corruption detected
Error Not Listed All other | Unknown error
values

Prototype:
char * nclGetErrorDescription (int iErrorCode);

Description:

Return a pointer to a character string describing the specified error
code.

[nput:

iErrorCode Integer specifying the error code for which a string description is
required.

Output:

WCHAR * Pointer to a NULL terminated wide character (Unicode) string

describing the error

o Register Wakeup Application

By default the VDD is executed on wakeup. In addition an application
can register to be executed on wakeup via the VDD. On wakeup the
VDD will post any Received data to the current active queues. If there
are no active queues the VDD will execute the Registered applications.
Once an application has initiated a successful VDD session (i.e. via
‘“VDDOpen ()’) the VDD will post the Received data to the
applications RX queue. A timeout (Wktm = 10 seconds) will be used to
hold the data for an application to initialize and commence a VDD
session before the datais discarded. The default application will be the
Modem Information application as supplied as a sample application
with the VDD.

Prototype:

int nclRegWakeupApp (WCHAR *usAppName, WORD
usWakeupReason);

Description:

Register an application for wakeup when specified events occur.

Input:
> usAppName Pointer to a buffer specifying the full path name (Null terminated)
of the application to execute on a wakeup.
> usWakeupReason | Logical OR the required reasons for wakeup from the following
values (exclude unwanted reasons):
WAKE_MODEM_INSERTION — Wakeup application when
modem is attached
WAKE_MESSAGE_RECEIVED — Wakeup application when a
message is received but no client applications are running
Output:

Return value =0

Operation was successful

< Return value 0O

Operation failed. Value specifies the error type

o Deregister Wakeup Application

The application can call this function to deregister an application that
was previously registered to wakeup.

Prototype:

int nclDeregWakeupApp (WCHAR *usAppName);

Description:

Deregister awakeup application.

Input:
> usAppName Pointer to a buffer specifying the full path name (Null terminated)
of the application to execute on a wakeup.
Output:
< Returnvalue =0 | Operation was successful
< Return value 00 | Operation failed. Value specifies the error type

a Switch RPM On/Off
The application can call this function to switch the RPM on or off.

Prototype:
int ncl SwitchRPM Power (word usSetting);

Description:
Switch the RPM power to the desired setting.

Input:

usSetting If this value is zero, the RPM should power down else it should
power up

Output:

Returnvalue =0 | Operation was successful

Return value 00 | Operation failed. Value specifies the error type

o Send Generic NCL Command To RPM

The application can call this function to send application specific
commands to the RPM.

Prototype:

int ncl SendGenericCommand (WORD *usSduTag, BY TE ucLength, BY TE
*ucParam);

Description:

Send an NCL command to the RPM of which the payload contents consist of
data from the specified buffer.

Input:

usSduTag Pointer to a word where the SDU tag can be stored

ucLength Pointer to a byte specifying the total size of ucParam.

ucParam Pointer to the buffer (of size ucLength) containing the data to be
send to the RPM

Output:

Returnvalue =0 | Operation was successful

Return value 00 | Operation failed. Value specifies the error type

o Get Software Version

The application can call this function obtain the software version of the
server application or the VDD DLL.

Prototype:

int VDDgetVersion (WORD* usVersion);

Description:

Obtain the software version of the specified software entity.

Input:
> usVersion Set this value to zero to request the VDD DLL version or to any
other value to request the server application version
Output:
< Returnvalue =0 | Operation was successful
< Return value 00 | Operation failed. Value specifies the error type

usVersion

The upper 8 bits contain the major version and the lower 8 bits
contain the minor software version if the return value is zero

Standard Context Routing Application Programmer’s
Interface

The Standard Context Routing Application Programmer's Interface
(SCR API) isthe server component of the SDK. The SCR API
provides routines for encoding and decoding SCR messages for
communication with the DataTAC® network switch or radio network
gateway (RNG). Decoded SCR messages are stored in structures
defined to represent SCR messages. Encoded messages are stored in
memory buffers.

To encode a message, an application will first set up a structure
representing the desired SCR message. This structure is then passed to
the encoding function, scr_Encode(), which encodes the message into a
memory buffer. The application can then send this encoded message to
the DataTAC network switch or RNG.

To decode an SCR message received from the network switch, the
application passes the received message buffer to the decode routine,
scr_Decode(), which decodes the message into a structure containing
the data from the message.

Routines are also provided to convert some of the message codes into
English language descriptions of the code.

The SCR API does not contain routines for reading the SCR messages
from the message switch interface or for sending encoded SCR
messages to the message switch. The connection to the message switch
isnormally viaan X.25 connection or a TCP/IP connection.

When you are using an X.25 connection to the network switch or RNG,
communication will be viaan X.25 card. You will need to get an X.25
and appropriate drivers for this card. To develop your own application,
you will also need the developer's kit for your X.25 card. The sample
application has been written to use an EICON X.25 card. To run over
an X.25 connection, the sample application requires an EICON X.25
card, plus EICON WAN Services driver software. To modify and
compile the sample application, or to write your own application, you
will aso need the EICON X.25 Development Tools for Win 32.
Contact EICON Technology (www.eicon.com) for more information
on these products.

When you are using a TCP/IP connection to the network switch or
RNG, communication will be via some form of TCF/IP link. This may
be via an Ethernet card or through a modem connection running SLIP
or PPP. The appropriate drivers will need to be configured for the
Ethernet card, and TCP/IP will need to be configured as a network
protocol. Contact your hardware supplier for more details on
configuring the TCPm connection. To communicate through the
TCP/1P connection, the sample application uses the standard Winsock
interface provided with the Microsoft Windows operating system. Most

Windows compilers come with a standard devel oper's kit to interface to
the Winsock routines.

Implementation

The SCR API isimplemented as a library of routines written in ANSI
C and compiled for Windows NT using the Microsoft Visual C++
compiler. All default project settings were used to compile the .lib file.

SCR Structures

The SCR APl makes use of several important structures to store the
SCR messages. The main structure is the SCRMsg structure. This
structure is a union of structures, each of which represents asingle
message type in the SCR protocal.

The SCRMgg structure is shown here. The msg_type field indicates
which element of the union is valid. The appropriate value for the
msg_type field is shown in the comments.

/* The SCR Message data structure. */
typedef struct SCRMsg {
int msg_type;

union{
SCRhrr r; /*msg_type: SCR_HR*/
SCRar ar; /*msg_type: SCR_AR*/
SCRIr Ir; /*msg_type: SCR_LR*/
SCRhc hc; /*msg_type: SCR_HC*/
SCRac ac; /*msg_type: SCR_AC*/
SCRIc Ic; /*msg_type: SCR_LC*/
SCRmi mi; /*msg_type: SCR_MI*/
SCRci ci; /*msg_type: SCR_CI1*/
SCRdi di; /*msg_type: SCR_DI*/
SCRrs rs; /*msg_type: SCR_RS*/
SCRrr rr; /*msg_type: SCR_RR*/
SCRib ib; /*msg_type: SCR_IB*/
SCRob ob; /*msg_type: SCR_OB*/
SCRab ab; /*msg_type: SCR_AB*/
SCRregstat reqstat; /*msg_type:
SCR_REQ_STAT*/
SCRstatrsp statrsp; /*msg_type:
SCR_STAT_RSP*/
SCRtonet tonet; /*msg_type:
SCR_TO_NET*/
SCRfromnet fromnet; /*msg_type:
SCR_FROM_NET*/
SCRack ack; /*msg_type: SCR_ACK*/
}u;
} SCRMsg;

Definitions for al SCR message structures can be found in the file
scrapi.h. (SCR SDK)

Network Independent Messages

The SCR API provides several network independent message types.
These message types represent basic functions within the SCR protocol
that are applicable to all DataTAC network types. The SCR AP
encodes and decodes these message types as the appropriate message
for the correct network type, as given in the call to the scr_Init()
function.

It is recommended that you use these network independent message
types wherever possible, to enhance the portability of the code between
different DataT AC network versions.

The three network independent message types are listed here:

SCR_FROM_NET Generic From Network message. Thisis used
for receiving data from awireless device.
Depending on the network setting, this
corresponds to either a Basic Outbound (OB)
message for DataT AC 4000 networks, or a
Message Indication (MI) for DataT AC 5000 or
6000 networks.

SCR_TO_NET Generic To Network message. Thisis used for
sending data to a wireless device. Depending on
the network setting, this will be encoded as
either a Basic Inbound (IB) message for

DataT AC 4000 networks, or a Host Request
(HR) message for DataTAC 5000 or 6000
networks.

SCR_ACK Generic Acknowledgment message. Thisis
used to receive an acknowledgment for data
sent to awireless device.

SCR_TO_NET messages may be passed to scr_Encode(), and they will
be encoded as the appropriate message type for the current network, as
set in the call to scr_Init(). When a received packet is decoded using
scr_Decode(), it converts the received packet to an SCRMsg structure.
The received messages are decoded for the current network type, and
stored in the SCRM sg structure as their actual message type. However,
the definition of the generic From Network message structure,
SCRfromnet, is exactly the same as both the Message Indication (M)
message structure, SCRmi, and the Basic Outbound (OB) message
structure, SCRob. Because of this, the decoded message structure may
be interpreted as any of these structures. Similarly, the message type
values SCR_FROM_NET, SCR_MI, and SCR_OB are defined to be
the same value.

Also, the message types SCRack, SCRhc, and SCRab are all the same,
and the message-type constants SCR_ACK, SCR_HC, and SCR_AB
are al the same, and so may be interpreted interchangeably.

Coupled with the interchangeable use of the message structures
SCRack, SCRhc, and SCRab is the function scr_NakReasonText(). The
response code field within the SCRack structure is network specific,

but the scr_NakReasonText() function will interpret the response code
appropriately for the network type specified to scr_Init() and will return
atext description of the error code, or aNULL pointer if the code
represents successful delivery.

Network Specific Messages

The SCR API defines network specific message structures for each of
the network specific SCR message types. These messages apply only to
particular versions of the DataT AC network.

When a message is passed to the scr_ Encode() routine, and that
message is not valid for the specified network type, it is encoded as the
corresponding message type for the network version specified to
scr_Init() wherever possible. For example, if scr_Init() is used to set the
network type to DataTAC 5000, and an SCR_IB message is passed to
scr_Encode(), it will be encoded as a Host Request (HR) message.

Also, due to the same structure definitions and equivalent message type
constants being used across all network types for the From Network
(OB and MI) and Acknowledgment (AB and HC) messages, the
decoded structures may be interpreted as network specific structures,
and this will still work on other network types. For example, if
scr_Init() is used to set the network type to DataTAC 5000, and a
SCR_MI message is received from the network and decoded, this

decoded structure may be interpreted as an SCR_OB structure with no
Side effects.

DataT AC® 4000 Networ k M essages

The following message types are specific to the DataTAC 4000
network:

SCR_OB Basic Outbound message for receiving data from a
wireless device

SCR_IB Basic Inbound message for sending data to a wireless
device

SCR_AB Basic Acknowledgment of data sent to awireless device

DataTAC® 5000 Network M essages

The following message types are extended SCR messages that are only
used on the DataT AC 5000 network.

SCR_LR Loopback Request

SCR LC Loopback Confirmation (response to LR)
SCR_CI Connect Indication

SCR_DI Disconnect Indication

SCR_AR Activity Request

SCR_AC Activity Confirmation (response to AR)
SCR_RS Receiver Suspend

SCR_RR Receiver Resume

DataTAC® 5000 and DataTAC® 6000 Network M essages

The following message types are common to the DataT AC 5000 and
6000 networks:

SCR_MI Message Indication message for receiving data from a
wireless device.

SCR_HR Host Request message for sending data to a wireless
device

SCR_HC Host Confirmation for acknowledgment of data sent to a
wireless device

Data Header

All data messages (M1, HR, OB, 1B, TO_NET, FROM_NET) contain a
data header field. Thisfield is used to route messages to the correct
server from client RPM devices. The data header is al'so sometimes
referred to as the session, and this is reflected in some of the NCL AP
function parameters. For example, the szHostld parameter in
nclSendData and in the data header for the nclReceiveData functions.
This data header is represented in the SDK as a NULL terminated
string.

Refer to section Message Routing and Migration sub section SCR
Header charts on page x for the formatting of the header fields. How
the use of the Data Header field varies between the network typesis
described below.

For DataT AC 4000 and 6000 networks, a host slot is used to route data
from the wireless client to the correct server. RPM devices can be
configured with up to five host slots, each routed to a different server
application. When the client application sends a message, the data
header is used to specify which host dot to send on, and hence which
server application the data will be sent to. The host slot is represented
by asingle ASCII digit from 1 to 5. Thisdigit must be given as the last
character of the data header. For example, a data header of | would
route the information on host slot 1, whereas a data header of TE3
would route the data on host slot 3.

For the DataTAC 5000 network, a 2-character session ID is used for
routing data from the wireless client to the correct server. RPM devices
may be configured with many sessions, each routed to different server
applications. The session ID is made up of any two characters from A
to Z or 0 to 9. When aclient application sends data to a server
application, it must set the first two characters of the data header to the
session number. For example, a data header of Al routes data on
session A1, and a data header of TEI routes data on session TE.

To simplify porting of applications between different network types,
the use 3-character data headers, such as TEI. Using a data header of
this format, DataT AC 4000 and 6000 networks look only at the last
character of the data header and route on host ot 1, while a DataTAC
5000 network will look at the first two characters and route on session
TE. This alows the same data header to be used on all network types.

It is recommended that the data header is also set for messages from
server to client. Thisis not critical for routing messages back to the
client, but it is useful for the client to know on which session or host
dot (and therefore from which host) the data came.

SCR Functions

a scr_Init()
Prototype:

int scr_Init(byte |_network_type);

Description:

This routine initialises the library and sets the network type being used-
DataTAC® 4000, 5000, or 6000. The network type affects the encoding
and decoding of messages by validating that the message type is
applicable to this network type. This network type is also used to
correctly encode/decode the network independent message types
SCR_FROM_NET, SCR_TO_NET, and SCR_ACK.

Note: This function must be called before any other SCR API functions.
The operation of all other functions depends on the network type given
to this function.

Input:

I_network_type The network type to be used.
Valid values are:
SCR_DATATAC_4000 SCR_DATATAC_5000
SCR_DATATAC_6000

Output:

Returnvalue =0 | Operation was successful

Return value 00 | Operation failed. Value SCR_ERROR is returned to indicate an
error

Example
#include <scrapi.h>
main()
int Irc;
Irc = scr_Init(SCR_DATATAC_4000);

if (Irc == SCR_ERROR) {
;xit(O);

/* perform other SCR operations */

o scr_Encode()

Prototype:

int scr_Encode(byte *|_buf, SCRMsg *|_msQ)

Description

This routine encodes a SCRM sg structure into an SCR encoded data
buffer. This routine transparently converts and encodes 1B, OB, AB,
HC, HR, and M| messages for the correct network type. For example,
if scr_Init() has been used to set the network type to DataT AC 4000,
and an MI message is passed to scr_Encode(), it will be encoded as an

OB message.
Input:
> *|_buf The buffer for the encoded message to be returned in. When
calling this function, this parameter must point to an allocated
buffer of at least SCR_MAX_LEN bytes. The encoded message
is returned as a binary array. It is not a NULL terminated string.
> *|_msg An SCRMsg structure representing the message to be encoded.
For a description of the SCRMsg structure, refer to "SCR
Structures.
Output:
< Return value =0 | Operation was successful and the encoded message is returned
in I_buf.
< Return value 00 | Operation failed. Value SCR_ERROR is returned to indicate an
error

Example

#include <scrapi.h>

{

SCRMsg Imsg; /* SCR message struct */
byte Idata[200]; /* data to send to host */
byte Ibuffer[SCR_MAX_LEN]; /* buffer for encoded SCR msg
*/

int llen; /* length of encoded SCR msg
*/

strcpy((char *)ldata, "Hello world™)

/* initialize message structure */
Imsg.msg_type = SCR_TO_NET; /* send data to client
device */
Imsg.u.tonet.1li = OXEE021234; /* set device LLI to
send to */
Imsg.u.tonet.ack = SCR_TONET_ACK_NONE; /* no
acknowledgment
*
/

Imsg.u.tonet.data_header = “BB1”;
/* Note: On a DataTAC 4000 or 6000 network,
this message */
/* will be routed on host slot 1. On a
DataTAC 5000 */
/* network, the message will be routed on
session "BB. "*/
/* See Section “Data Header” for further
details. */

Imsg.u.tonet.data.data = ldata;

Imsg.u.tonet.data.len = strlen(ldata);

llen = scr_Encode(lbuffer, &Imsg);

if (llen = SCR_ERROR) {
/* send encoded message to network */
x25_send(. . . [buffer, lien, . . .)

else {
/* report an error */

o scr_Decode()

Prototype:

int scr_Decode(int |_len, byte *|_buf, SCRMsg *|_msg)

Description

Thisroutine is used to decode an SCR message from a received buffer
and produce an SCRM sg structure representing the received message.

When this routine returns successfully, some memory may have been
allocated within the SCRMsg structure. scr_FreeDecoding() should
always be called after a successful scr_Decode() to free any memory
that may have been allocated. When scr_Decode() returns
SCR_ERROR or 0, scr_FreeDecoding() should not be called.

Input:
> I_len The length of the data contained in |_buf.
*|_buf The buffer containing received SCR data
*|_msg The decoded SCRMsg is returned is |_msg. When calling this
function, this parameter must point to an allocated SCRMsg
structure. Refer to "SCR Structures".
Output:
< Return value =0 | Operation was successful but the buffer contains only a partial
SCR message inl_msg.
< Return value <0 | Operation failed. Value SCR_ERROR is returned to indicate an
error
< Return value >0 | Operation was successful .and the decoded message is returned
inl_msg.

Example

#include <scrapi.h>

{

*/
*/
*/
*/

SCRMsg Imsg; /* SCR message struct
byte 1buffer[SCR_MAX_LEN];/*buffer for received SCR msg
int llen; /* length of received SCR msg

int lused; /* return code from scr_Decode

/* receive data into lbuffer */
llen = x25recv(- . . lbuffer, . . .);

lused = scr_Decode(llen, lbuffer, &Imsg);
if (lused > 0) {
/* process message */

scr_FreeDecoding(Imsg); /* free decoded message */

}
else if (lused == 0) {
/* incomplete message received */

else {
/* report an.error */

}

o scr_FreeDecoding()
Prototype:

void scr_FreeDecoding(SCRMsg *1_msg)

Description

Thisroutine is used to free any memory allocated inside an SCRM sy
structure by a successful call to scr_Decode(). All callsto scr_Decode()
that return a successfully decoded SCR message (the return value is a
positive value) must be followed by a call to scr_FreeDecoding(), after
the caller has fully processed the decoded message. If
scr_FreeDecoding() is not called, memory leaks will occur.

Note: The SCRMsg structure itself is not freed. Only allocated memory
within this structure is freed. After scr_FreeDecoding() has been
called, all pointerswithin the SCRMsg structure will be invalid.

Input:

*|_msg The SCRMsg structure to have its internal memory allocations
freed. Note that the SCRMsg structure itself is not freed.

Output: None
Example

Refer to the example for the function scr_Decode() on the previous
page.

o scr_EncodeLogin()
Prototype:

int scr_Encodel ogin(byte *1_buf, char *|_hostid, char *|_passwd)

Description

For DataTAC® 5000 Networks Only. This function is used to encode
the RNG login packet that is sent to the RNG when the connection is
first established.

Input:

*|_buf The buffer for the encoded login packet to be returned in. When
calling this function, this parameter must point to an allocated
buffer of at least SCR_MAX_LEN bytes.

*_hostid The DataTAC host login or host id

*|_passwd The DataTAC host password

Output:

Return value =0 | Operation failed. The Network Type is not set to DataTAC 5000.

Return value <0 | Operation failed. Value SCR_ERROR is returned to indicate an
error

Return value >0 | Operation was successful and the number of bytes is returned in
I_buf.

Example
#include <scrapi.h>

byte Ibuffer[SCR_MAX_LEN]; /*buffer for SCR login
packet*/
int llen; /*length of SCR login packet*/

x25call(C . . .); /*make the connection to the RNG*/

llen = scr_EncodeLogin(buffer, "LOGIN®, "PASSWORD");
if (llen == SCR_ERROR) {
/*report an error*/

}
else if (Ilen > 0) { /*for non-DataTAC 5000 networks, "/
/*1len will be zero, so we do not

*
/
/*need to send the login message.
*
/
/* For DataTAC S000, send encoded login message to RNG
*
/
x25 send(. . . [buffer, lien, . . .)
3

o scr_Print()
Prototype:

void scr_Print(FILE *1_fp, SCRMsg *Imsg)

Description

This routine prints an ASCII representation of the SCR message
structure to the given file. Thisis intended to be used for debugging or
tracing purposes.

Input:
*_fp The file pointer to write the message details to.
*|_msg The message structure to print.

Output: None

Example

#include <scrapi.h>

SCRMsg Imsg; /* SCR message struct */
FILE *1fp; /* file to dump message to */

/* receive a message and decode it into Imsg */

Ifp = fopen(“debug.trc”, "a")
if (Ifp '= (FILE *)NULL) {
fprintfF(Ifp, “\nReceived the following
message:\n'");
scr_Print(Ifp, &lImsg);
3 fclose(1fp);

/* process message */

Sample Output

The output from the scr_Print() function shows the message type,
followed by all the appropriate fields from the message structure.
Shown here are several examples of possible output from the
scr_Print() function:

FROM_NET Message

The FROM_NET message is printed as an OB message for a DataTAC
4000 network.

*** OB message***
LLI 80051234

Dataheader - BB1

Data—

0546869732069 7320 73 6F 6D 6520 64 61 74 Thisissome
1061 2E data

For DataTAC 5000 and DataTAC 6000 networks, aFROM_NET
message is printed as an M1 message.

»5% M1 message ***

LLI 80051234

Dataheader - BB1

Data—
0546869732069 7320 73 6F 6D 652064 61 74 Thisissome
1061 2E data

TO_NET Message

*** TO_NET message***

LLI 87654321

Savebytes—AA

Acknowledgment - SCR_TONET_ACK_REMOTE

Dataheader - BB1

Data—

0546869732069 7320 73 6F 6D 6520 64 61 74 Thisissome

1061 2E deta
ACK Message
For DataTAC 5000 or DataTAC 6000 networks, an ACK message is
printed as an HC message.

% HC message*

LLI 87654321

Savebytes—AA

Response - 78 - MT out of range or powered off
For the DataTAC 4000 network, an ACK message is printed as an AB
message.

*xx AB message***

LLI 87654321

Savebytes—AA

Response - 78 - No response from wireless device

o scr_NakReasonText()

Prototype:

char *scr_NakReasonText(char *|_reason_code)

Description

This routine converts a response code from an HC or AB message into
atext string describing that code. The returned pointer is a pointer to a
static text string within the library. This string must not be overwritten
or freed. This string pointer will stay valid for the duration of the
program'’s execution. The text strings correspond to the text given in
the DataTAC 5000 System Host Application Programmer's Manual .

This routine can aso be used to perform a network independent test for
successful delivery by checking for a NULL return vaue from this
function.

Input:

*|_reason code The response code from the Ack/AB/HC message.

Output:

Return NULL Operation successful delivery of the message.

Return INULL Operation failed. Value a char pointer to a text string buffer
containing an English description for the meaning of the given
response code.

Example

#include <scrapi.h>

{
SCRMsg Imsg; /* SCR message struct */

char *lreason; /* reason code string */

/* receive a message and decode it into Imsg */

if (Imsg.msg_type == SCR_ACK) {
Ireason =
scr_NakReasonText(Imsg.u.ack.response_code)

if (Ireason == (char *)NULL) {
printf(“Successful delivery of message\n”);

else {
printf(“Failed delivery to LLI %08X -
reason “%s*"\n", Imsg.u.ack.lli, lreason);

o scr_ACReasonText()
Prototype:

char *scr_ ACReasonText(char *|_reason_code)

Description
For the DataT AC 5000 Network Only.

This routine converts a reason code from an Activity Confirmation
(AC) message into atext string describing that code. The returned
pointer is a pointer to a static text string within the library. This string
must not be overwritten or freed. This string pointer stays valid for the
duration of the program's execution. The text strings correspond to the
text given in the DataTAC 5000 System Host Application
Programmer's Manual.

Input:

*|_reason code The reason code from the AC message

Output:

Return INULL Operation successful. Value a char pointer to a text string buffer
containing an English description for the meaning of the given
response code.

Return NULL Operation failed.

Example

#include <scrapi.h>

{

SCRMsg Imsg; /* SCR message struct */
char *lreason; /* reason code string */

/* receive a message and decode it into Imsg */

if (Imsg.msg_type == SCR_AC) {
Ireason = scr_ACReasonText(Imsg.u.ac.reason_code);
if (lreason !'= (char *)NULL) {
printf(““Activity Confirmation LLI %08X -
reason "%s"\n”, Imsg.u.ac.lli, lreason);

}

o scr_DIReasonText()

Prototype:

char *scr_DIReasonText(char *|_reason_code)

Description

For DataT AC 5000 Dynamic Routed Sessions Only

This routine converts a reason code from a Disconnect Indication (DI)
message into atext string describing that code. The returned pointer is
a pointer to a static text string within the library. This string must not
be overwritten or freed. This string pointer stays valid for the duration
of the program'’s execution. The text strings correspond to the text
given in the DataTAC 5000 System Host Application Programmer's

Manual.

Input:

*|_reason code

The reason code from the DI message

Output:

Return INULL

Operation successful. Value a char pointer to a text string buffer
containing an English description for the meaning of the given
response code.

Return NULL

Operation failed.

Example

#include <scrapi.h>

{
SCRMsg Imsg; /* SCR message struct
*/
char *lreason; /* reason code string
*/

/* receive a message and decode it into Imsg */

if (Imsg.msg_type == SCR_DI) {
Ireason = scr_DIReasonText(Imsg.u.di.reason_code);
if (Ireason != (char *)NULL) {

printf(“Disconnection - LLI %08X — reason

"%s*\n”, Imag.u.di.lli, lIreason);

}

Application Development

This section provides comments and advice that can help you develop
successful wireless enabled applications for DataTAC systems.

Application development for NCL-compliant wireless modem devices
Is atwo-part process.

Q

Q

The first step sets up the interface between the device host and
the wireless modem. In this step you must consider the
Interactions with the wireless modem, as established by the
NCL 1.2 reference specification and the vendor specific
extensions.

The second step involves addressing message routing
information to identify the message destination within the
DataTAC network.

Use the following suggestions to help you develop wireless enabled
applications.

Q

Use PowerSave mode of operation to extend battery life and
operationa time for the user. We recommend that the
application does not modify this mode dynamicaly.

Use the Confirmed mode of operation to perform the following
functions:

Check the SDU checksum for validity.
Re-read SDUs received in error.

Read past the last message in Confirmed mode to make
sure the device buffer is fully flushed. If the buffer is not

flushed, the last message is held, consuming valuable
buffer space.

Anticipate new NCL command, event, and response codes:
Perform exact matches on event and response codes.
Discard any unknown event type.

Map any unknown XFAIL code to be a NAK.
Use SDU tags to uniquely identify application-generated SDUS.

Anticipate the user will move between IN_RANGE and
OUT_OF _RANGE conditions. This means you need to
provide:

A user indicator that identifies the current operating
status.

Recovery mechanisms when application transactions
fail asaresult of losing network contact.

Roaming Issues

During development, consider how the coverage for your wireless
enabled application could be affected by a user moving in and out of
the network coverage area. Coverage can be temporarily impacted by
moving from one side of a building to another. Coverage can be lost for
alonger time by moving beyond the network coverage boundary.

In application development, addressing this temporary or longer term
gap in coverage, even in midst of an application transaction, is
essential.

Y ou can address this consideration by providing a transport level
protocol that can account for the following roaming related situations
when used with a DataTAC wire-less modem:

o Inbound SDU failure
o Outbound SDU failure
o Lossof network contact
These situations are discussed in detail from page 80.

In this case, the transport level protocol must have components both
within the server and client application environment. This transport
level protocol can be provided using existing third party software for
DataTAC systems. Alternatively, you can develop atransport level
protocol with your application in mind.

Roaming Requirements

The roaming agorithms for the wireless modem are described as
follows:

Note: In each case, re-establishing network contact requires the
wireless modem to scan all likely channels and to handshake with the
networKk.

Send a quick (bounded) response to SDU transmit requests

When the wireless modem loses network contact, SDUs are returned
with an out-of-range failure code. In this case, the wireless modem also
indicates that it is out-of-range via an NCL event. When network
contact is re-established, the wireless modem indicates an in-range
event. The client application then resubmits any SDU last rejected with
an out-of-range response.

Acquirethe channel quickly

All channels are scanned quickly, starting with the dynamic channel
list that contains the last used channel and its neighbours. (Thislist is
broadcast periodically by the network.) If you cannot establish network
contact using the dynamic channel list, the wireless modem scans
quickly using the preprogrammed, network-specific static channel list.
If network contact is not established using either list, this sequence is

repeated after adelay interval. See “ Conserve battery life when out of
range” below.

Conserve battery life when out-of-range

When all channels (from both dynamic and static channel lists) are
scanned and network contact is not established, the wireless modem
enters a scan-delay state. The scan-delay starts at one second and
doubles on each scan cycle failure, to a maximum of 255 seconds
between scan cycles. This delay time is reset to one second by
establishing a network connection or by power-cycling the device.

Re-establish network contact following inbound SDU failure (no
response) and poor RF RSSI or signal quality

Any wireless modem experiencing a no-response inbound SDU failure
and either with RSSI or quality below the exit threshold level must re-
establish network contact. If unable to re-establish network contact, the
modem indicates an out-of-range event. When network contact is re-
established, the wireless modem indicates an in-range event. The client
application then resubmits any queued inbound SDU last rejected with
an out-of-range response.

Re-establish networ k contact dueto loss of outbound channel

The wireless modem attempts to re-establishes network contact
following loss of the outbound channel. If unable to re-establish
network contact, the modem indicates an out-of-range event, and
procedures to re-establish network contact are initiated. When network
contact is re-established, the wireless modem indicates an in-range
event. The client application then resubmits any queued inbound SDU
last rejected with an out-of-range response.

Seek and locate the preferred alter nate channel when the existing
channel degradesto a marginal level

When the existing RF channel degrades to a marginal (but still usable)
level, the device periodically listens to neighbouring channels to
determine whether a preferred alternate channel exists. This action
occurs when the device would otherwise be sleeping, to prevent impact
to the device's synchronized-receive capability with the network.

To be considered, a preferred aternate channel must meet the
minimum channel entry criteriaand be 5 dBm better than the current
channel. If located, a full channel acquisition is performed to verify all
other aspects of the aternate channel before registering to the new
channel. This preferred-channel pre-roam algorithm is performed at
intervals that increase exponentially and with identical reset conditions.
See “Conserve battery life when out-of-range” above.

Inbound SDU Failures

Potential SDU inbound failure codes are described below. The list
identifies all likely SDU failure responses. The remaining SDU
responses that appear in the NCL 1.2 reference manual are not
expected to occur within the Motorola DataT AC wireless modem.

Inbound SDU failure, no response from networ k

The SDU was transmitted, but not acknowledged by the network. The
SDU may have been delivered; the acknowledgment might have been
the element that could not be successfully returned to the originating
device.

Inbound SDU failure, host down

This failure indicates that the internal network connection to the
application host computer is currently unavailable. Because DataTAC
networks are designed with very high reliability, this failure is
extremely rare.

Inbound SDU failure, low battery

The SDU could not be delivered due to alow battery condition. When
alow battery condition is reached, the radio network connection is
dropped until the low battery condition is corrected. (This can be
addressed by replacing the battery or, if trickle charging is enabled,
waiting for a sufficient charge level to be reached.)

Inbound SDU failure, inbound queue full

This response indicates that the maximum number (2) of SDUs are
already queued within the wireless modem. Another SDU can be
submitted when the NCL response for one of the pending SDUs has
been returned.

Inbound SDU failure, out of range

The wireless modem has either lost network coverage or isin the
process of re-establishing network contact. See “Loss of Network
Contact” on the following page.

Inbound SDU failure, transmitter disabled

This SDU failure code indicates that the radio transmitter has been
disabled, under application control, within the wireless modem. The
transmitter must be enabled prior to submitting an SDU.

Note: This could be the result of transmitting a Receiver Disable
command to the wireless modem. This command requires both
Receiver Enable and Transmitter Enable commands to recover two-
way communications.

Outbound SDU Failure

Due to the unreliable delivery of RF data packets (and their responses),
aclient application must consider the possibility of an outbound SDU
being delivered to the client, with the transport confirmation of that
data packet being lost (RF acknowledgment and/or transport level
acknowledgment).

Note: When developing a centralized server and distributed-mobile
client wireless enabled application, outbound SDU failureis primarily
a server application issue.

When this occurs, the client and server transport levels must
resynchronise to a common level before proceeding. Such an
understanding might require retransmission of the transaction or
retransmission of the transport confirmation.

Loss of Network Contact

When a wireless modem experiences a loss of network contact, queued
SDUs are returned with the out-of-range response code and with out-
of-range event indicated. A loss of contact can occur for the following
reasons:

Moving beyond network coverage

When the device moves beyond the network boundary, network contact
loss could occur for an extended period. Depending upon the user route
and network coverage area, thisinterval could extend from afew
minutes to several hours (or longer). Once network contact is re-
established, the client and server application must be resynchronised if
applications transactions have failed during the interval. After network
contact has been announced, further delays should be minimised, as the
user becomes acquainted with the coverage area.

Moving between areas of network coverage

Small movements within the area of network coverage can result in the
loss and reacquisition of network contact, as a result of RF penetration
difficulties with specific network topology and terrain. It might take
from afew tenths of a second to a few minutes to recognize the channel
has degraded to an unusable level, to qualify a new channel, and to re-
establish network contact. Again, the client and server application must
be resynchronised if application transactions failed during this interval.

Acquiring improved network coverage

A channel might originally have been marginal, or might have
degraded from a good to a marginal level, or might be negatively
impacted by the presence of other objects that influence its capability
to send and receive data. Under such circumstances, the wireless
modem seeks a preferred alternate channel, as previously described.

Usually this situation does not produce notification of network contact
and reacquisition.

Low battery

Network contact is dropped when alow battery condition is reached.
This follows a battery alert notification (warning) that occurs while the
battery still has some remaining usable capacity. The time between
these events is much influenced by the battery technology and the level
of transmit activity within the wireless modem. A relatively inactive
device provides more warning time than an active device. Also, an
alkaline battery provides more warning than a NiCad battery.

Low buffers

If outbound SDUs remain unread within the wireless modem, its
outbound buffers are eventually filled. When this occurs, network
contact is dropped. Network contact is re-established when the internal
buffer pool within the wireless modem reaches a usable level, as a
result of SDU reads by the application. This Situation never occurs
when the client application reads continuously to clear the wireless
modem of received outbound SDUs.

Receiver disabled

The client application can disable the wireless modem transceiver by
using the Receiver Disable NCL command. When this occurs, network
contact is dropped and the radio is turned off. Network contact is re-
established when the application issues the Receiver Enable, then the
Transmitter Enable NCL commands.

Power Management

The following modem power management options can be included in
an application to maximize battery life:

PowerSave Mode

The wireless modem defaults to PowerSave mode when turned on if
the network supports the PowerSave protocol. If you are concerned
about latency of unsolicited outbound messages, you can turn off the
PowerSave mode, but at the expense of consuming more battery power.
For details, refer to the NCL 1.2 command S POWER_SAVE_MODE.
See “Battery Life Consderations” and “PowerSave Protocol” on the
following page.

Dynamically modifying the PowerSave mode of the device is not
recommended.

Inactivity Time-Out

Configure inactivity time-out to trigger if a message is not read from
the modem within a certain number of minutes.

To keep the wireless modem card from disconnecting from the network
(and turn off its radio) following an undeliverable outbound message,
disable the host inactivity timeout by issuing an

S INACTIVITY_TIMEOUT command to the wireless modem card.
Set the timeout value to 255 (the default).

On/Off upon User Demand

To extend battery life, design the application to switch the modem on
and off as the usage need arises. This method is especialy effective for
session-based, user-initiated applications.

Radio On/Off on Application Command

The radio is the primary power-consuming component in the wireless
modem card. Use S RX_CONTROL for very effective control of
session-based, user-initiated applications.

Battery Life Considerations

In addition to specific power management options, some application
design decisions greatly affect battery life, as follows:

User traffic, amount and frequency

Commercially available compression techniques can significantly
reduce traffic volume, which improves device battery life and reduces
network usage costs. PowerSave mode batches outbound traffic at a
periodicity equal to the network-defined PowerSave protocol frame
Sze.

Data compression

Improve battery life by reducing and compressing the broad-cast
application data. Network usage costs can aso be significantly reduced
as aresult.

PowerSave Protocol

The following points describe unique operational characteristics of
devices that are compliant with the PowerSave protocol when
operating on a network, as compared to those that are not. Specific
PowerSave timing parameters can vary by network, based on how the
network operator sets up PowerSave protocol parameters.

Under PowerSave protocol, unsolicited outbound traffic to a non-
awake device is delayed. The worst case delay until the first transmit
opportunity is 128 seconds under DataT AC 4000 networks and 64
seconds under DataT AC 5000 networks. The average delay until the
next delivery opportunity is one haf of the worst case time, given the
current network and device configuration.

In DataTAC 4000 systems, initial unsolicited outbound transmission
attempts are actually “ping” messages used to locate the device.

In DataT AC 5000 systems, unsolicited outbound messages (or
messages that have missed the previous transmit opportunity) are
delivered in the “root” (that is, home) window for the recipient device.
Once the device is thus awakened, it remains awake for about n
seconds after each message or ACK transmission from the device.
During the wake time the network delivers messages to the device as it
would to a device that is non-compliant with the PowerSave protocol.
(Default n = 20 seconds for DataT AC 4000 networks and 8 seconds for
DataTAC 5000 networks.)

Roaming and location update reporting to the network happens more
slowly because the PowerSave protocol device takes longer to respond
to changes in the RF environment. The infrequent worst case latency in
responding to external stimuli (resulting in either alocation update or
new channel scan) is about 9 minutes for DataT AC 4000 networks.
DataTAC 5000 networks respond typically in 1.5 Power-Save protocol
frame times, or about 96 seconds.

Wireless Data Systems Considerations

The wireless modems application developer must account for the
limitations of awireless data system to minimize their impact on the
user.

Limited Data Capacity on Radio Frequency Channels

The channels available to wireless modems are narrow-band and have
limited information carrying capacity (bandwidth) when compared to
traditional wireline communications. Additional capacity can be gained
only by increasing the number of channels, improving the hardware
technology, or by developing more efficient applications. As aresult of
al these limitations, it is not surprising that wireless networks are often
more expensive to operate on a per-packet basis than wireline Wide
Area Networks (WAN). To address this concern, the NCL has been
designed to provide the most efficient way of using the limited channel
bandwidth.

M essage Delivery Cannot Be Guar anteed

Because a wireless device can roam without restriction, it can exit the
network RF coverage area, leaving it unable to receive or successfully
transmit messages. When a device is outside the coverage area, the
applications are informed of failed inbound delivery. The application is
required to take appropriate recovery action.

Variation in Message Transit Times Across the Networ k

The time interval messages transit the network is affected by the RF
protocol, the message load on the network, and the length of a
message. These variations might need to be taken into account by the
application.

The following sections address some of these shortcomings in more
detail.

Application Efficiency

One goal of application development is to provide the required
functionality with the least amount of messaging. The consideration
here is to minimize the number of interactions in an information
exchange. Doing so addresses the limited data capacity and increased
costs of wireless messaging. In addition, the pricing structure of
network operators encourages efficient application design. In fact,
applications can be designed to use data compression or to apply
techniques that send only data fields that change between transactions.

Large Message Transfer

Message size is a key factor affecting response times in wireless data
systems. To efficiently accommodate typical data applications, the
DataT AC 5000 system is optimized for the transfer of short and
medium length messages. Typically, messages up to 512 bytes are
transferred across the network as a single data packet. Messages larger
than 512 bytes are segmented into 512-byte packets by the DataTAC
system before being transmitted over the air. The packets are
reassembled before they are delivered to the application. For MDC
4800 operation on DataTAC 4000 systems, the segmentation sizeis
256 bytes.

For example, a 600-byte user message or service data unit (SDU)
results in the delivery of two packets, or protocol data units (PDU), that
are reassembled in the wireless device. Each PDU requires a Radio
Data-Link Access Procedure (RD-LAP) acknowledgment from the
device, which takes a few seconds to complete. The fewer PDUsin a
message, the shorter the delivery time. If messages larger than 2 kB are
to be sent across the system, the host and wireless device application
must provide the segmentation and reconstruction functions.

Message Transit Time

The time required for an inbound or outbound message to travel across
the network is primarily a function of the queuing delays associated
with each product in the network infrastructure and the message load
on the system. As system traffic builds, queuing delays increase for
outbound traffic, while the average time to access the inbound channel
increases, resulting in longer inbound message transit times.

Additional delays are encountered when the wireless terminal isin the
process of roaming from one cell on one radio channel to acell on
another radio channel. If the cells are controlled by the same cell
controller, the delay time is quite short. The delay time can increase if
the cells are controlled by different cell controllers on different
subnetworks.

For a DataTAC 5000 fixed-end system operating at full rated capacity,
the mean transit delay between a network host and awireless device is
typically no more than four seconds.

The application devel oper must develop operational scenarios to
accommodate the variable transit time in the application design.

Message Routing and Migration

This section offers devel opers advice on how to migrate their
applications. That is, how to create new versions of their wireless
applications for porting to other DataTAC® systems. You can aso use
this information to plan ahead for portability as you begin your initial
application devel opment effort.

As the developer and user communities become more international in
scope, successful applications will be distinguished by their portability
across existing DataTAC networks. Thisis true whether you are
designing a new application or migrating an existing application to
other networks.

Message Routing

Three versions of DataTAC systems are in operation worldwide, as
noted by where they are currently implemented:

o DataTAC 4000 systems (North America)
o DataTAC 5000 systems (Asia-Pacific and Middle East)
o DataTAC 6000 systems (Europe)

The architectures of the three systems are basically alike. Although
they support different link layer protocols, the systems the systems
differ mainly in their message header syntax.

The distinction between host communications and peer-to-peer
messaging is also important. Separate DataT AC protocols support each
of these application models. The primary host communications mode is
Standard Context Routing (SCR), also known as fleet mode. Another
application mode is DataTAC Messaging (DM) , which handles
messaging among terminals (subscriber units).

SCR and DM are the common sets of rules that describe how to format
message headers on DataTAC systems. Although the header format
differs dightly among DataT AC 4000, 5000, and 6000 systems, the
functional concepts of operation are the same. The exact SCR and DM
syntax for each system is available in their separate Host Application
Programmer’s Manuals.

Other connection options are available for DataT AC 5000 and 6000
systems. Two of these are known as “personal shared” (Typel)
connections and “personal dedicated” (Type Il) connections. These are
covered in the system host programming guides.

Note: In this section, “ host” refersto the network fixed host.
“Terminal” refersto a subscriber device. In these guidelines a byteis
8 hits.

Network Link Layers

Before a message can be routed, it must contain a header and be
wrapped in alink layer protocol supported by the DataT AC network.
Many link layer protocols are available, but not all are supported by
each DataTAC network.

The X.25 protocol is common to all three systems and supports both
PVC and SVC host connection line types. X.25 is a popular choice for
developers looking for a worldwide connectivity solution.

Other supported protocols include:

a DataTAC 4000 system X.25, TCP/IP, LUG.2, leased line,
dial-up, RF-Loopback

o DataTAC 5000 system X.25, TCP/IP, SLIP
a DataTAC 6000 system X.25

Standard Context Routing (SCR)

SCR allows the central host to communicate with hundreds, even
thousands of terminals across a single host connection. But the real
advantage of using SCR is economic: The host only pays for asingle
connection to the network, significantly reducing communications cost.

When a terminal sends a message to the host, the message must contain
a header that includes the sending termina ID. This enables the host to
identify which terminal sent the message and which terminal the host is

to pall.

DataTAC 6000 Systems DiataTAC 5000 Systems

e 24 L Communicamans
ff.-.,-::l\ RME 5000 RNG 5000 sttt o
Area Hutz

Flestyaoak | |

| TCRIP Ememet

Fadio Mebwork Radio Metwork Radia Nebwork Radio Nebwork 5
Controfer Conkrolles Caontroler Coaninodhes B
& Rabaark
Management
Matwork
AfE Malrix Managament AE Matrix
Swilch Swilch
T Bagse Sileg To Base Siles
RO-LAP 9.6 RO-LAP 18.2

DataTAC 4000 Syslams

ARDIE
Mesgage Swilch

X.25

Backup RNC | - - - - 4 Radio Network
Conbrolke

ARDIE Basa
Malrix Swilch

]

To Base Siles

RO-LAP 18.2 7 MDC 4.8
DataTAC System Architectures

Other header fields provide the host with options for instructing the
network on handling undeliverable messages. For example, the host
can ask the network to:

o Provide adelivery status of messages.
o Hold messages on the network for a later delivery.
o Discard messages.

This header and instruction information is the basis of the SCR
protocol.

SCR Message Types
Fleet mode of communications uses three types of messages:

o Commands/ Host Requests (host-to-network)
EXAMPLE: Send Message #1 to LL| 87654321

o Responses/ Host Confirmations (network-to-host)
EXAMPLE: Message #1 to LLI 87654321 was ACKed

o Events/ Mobile Information (terminal-to-network-to-host)
EXAMPLE: Message received from LLI 12345678

A fourth type of message, the status message, is alowed on DataTAC
4000 and 5000 systems, but it is not supported on DataTAC 6000
systems.

Each message type must include a unique header; small differences
within each type of header exist among the systems. The charts
graphically compare the headers for each system.

Highlights of SCR Differences

The following topics explain:
o Which system or systems implement a particular function.
o What this function does and how it varies by system.
o How to migrate an application from one system to another.

Nomenclature

When migrating applications, use the correct message type codes.
Because DataTAC systems were originally designed for unique
markets during different development periods, each shows its separate
lineage and is described using inconsistent terminology. For example,
this occurs at the beginning of the SCR header, where the code
designating the message type varies by system, as shown in the
following table.

Message Type DataTAC 4000 DataTAC 5000 DataTAC 6000
(direction) System System System

Command B HR HR
(host-to-network) (inbound basic) (host request) (hostrequest)
Response AB HC HC
(network-to-host) (acknowledgment basic) (host confirmation) (host confirmation)
Event OB Mi Mi
(terminal-to-host) (outbound basic) (mobile information) (mobile information)

Note: The DataTAC 4000 system designates the direction of the
command message as inbound from the host to the network and

outbound from the network to the host (opposite from current industry
terminol ogy).

ASCII versus Binary Encoding

DataTAC 4000 system SCR fields are all ASCII encoded fields of
numeric values or alphanumeric strings. DataT AC 5000 and 6000
systems use a mixture of ASCII and binary encoded fields. All three
systems allow the user to send binary data, regardless of header
encoding.

Support for TCP/IP

DataT AC 5000 systems provide support for TCP/IP hosts, allowing
interconnection across local Ethernet LANS or even the Internet. SCR
messages are carried within a single TCP/IP data stream, which allows
SCR communications with multiple terminals.

Although TCP/IP provides areliable stream of contiguous data, the
application must be able to determine the beginning and end of each
SCR message. The SCR header on DataTAC 5000 systems must start
with a 16 bit (2 byte) length field (bytes L1 and L2), which specifies
the length of the frame.

Length Prefix Field

DataT AC 5000 systems require all SCR messages to be prefixed by a
two-byte binary encoded length field (L1 and L2). Thisfield provides
TCP/IP based connections with data that determines the length of each
SCR message. The length count includes everything in the message
packet, except for the length prefix.

When converting an application to a DataTAC 5000 network, the
length field must be prefixed to all SCR messages.

Host Authentication

Before SCR transactions can be performed on DataTAC 5000 and
DataTAC 6000 systems using a host-initiated connection, the host first
sends a host authentication message to the radio network gateway
(RNG). The authentication message must be the first message sent to
the RNG after establishing link layer communications. The RNG drops
the connection when any of the following conditions occurs:

o The host does not send the authentication message within one
minute

o Thehost ID and password do not match those in the RNG
database

a Thehost is not enabled in the RNG database
o Thehost is aready connected to the RNG
On DataT AC 5000 systems the authentication message consists of:
o Host ID (up to 20 characters)
a ASCII ;" (semicolon) delimiter
o Host password of 1 to 8 bytes
o

Carriage return

On DataTAC 6000 systems the host 1D field consists of :
o 1lto4bytes
a ASCIl ;" (semicolon) delimiter
o Host password of 1 to 8 bytes
a Carriagereturn

On DataTAC 4000 systems the RNG (ARDIS switch) locates the
calling X.25 address to verify it isin the database. A valid calling
address is then associated with only those terminals alocated to a
particular host.

Extended SCR

DataTAC 4000 and 5000 systems support additional message types and
functions beyond the basic SCR functionality. Specifically, extended
SCR supports the following features:

On DataTAC 4000 systems:
o Sends binary headers and data
o Notifies the host of terminal network activity
On DataT AC 5000 systems:
o Notifies the host of terminal network activity
o Performs loopback diagnostics

o Notifies the host of terminal-to-host connection (session)
activity
For afull description of these extensions, refer to the system host
application programmer’s manuals.

On DataT AC 4000 and 5000 systems the extended functions enable the
network to notify the host that a termina has registered with or
deregistered from the network. This alows the host to avoid X.25
communications costs associated with attempting to reach a shut down
terminal.

This extension set also involves the no-acknowledgment (No-ACK)
option for host-to-terminal messages. When the No-ACK option is
used on DataTAC 5000 systems, the host instructs the RNG to deliver
the over-the-air message as “No-ACK-needed”, and none is returned.

On DataTAC 4000 and 6000 systems, which lack the No-ACK option,
the RNG sends al messages as “ACK-required,” regardless of a host
request for “No-ACK-needed.” When the RNG receives the ACK from
the termind, it is discarded or used to provide input to other system-
specific features.

Avoid using additional message types if you want the application to be
widely compatible. These extended features are not always available on
all DataTAC 5000 systems. These features are enabled and controlled
by the network operator on a per-host basis. Check with your target
network operators before using SCR system extensions.

Note: To run your application on DataTAC 4000 or 6000 systems, you
must isolate the use of extended SCR or avoid it entirely.

Service Data Unit (SDU) Size

An application SDU consists of the complete message; both user data
and data header. See “Data Header Routing” below. The maximum size
of an application SDU is 2048 bytes for DataT AC 5000 and 6000
systems, and 2550 bytes for DataT AC 4000 systems. For this reason,
the recommended maximum SDU size for tri-system applicationsis
2048 bytes.

For transport over the air, the SDU is broken up into smaller physical
data units (PDUs). Most network operators price their service at cost
per PDU or cost per SDU. Gather data from your various operators to
develop an application design that favorably considers these cost
factors.

Note: Asa general rule, it isless expensive to send fewer large packets
than many small packets. Try to take full advantage of the space
available in each packet.

Data Header Routing

To use the data header to route messages properly, first consider the
data header as a pointer to a destination.

In early DataTAC systems, al mobile units sent their messagesto a
single host. Because all traffic went to one destination, there was no
need for a destination header. Later, a data header field was added to
inform the network where (to which host or peer) to direct a particular
SDU or message.

Although the data header field can range in size from 0 to 64 bytes, by
convention most applications are written using a 3-byte data header.
The DataTAC systems each use a different portion of these three bytes
as a pointer to a destination. This pointer is caled asession ID. Setting
these three bytes (the entire data header field) to a common value
guarantees compatibility across al three systems.

Here are the specific differences in how the systems implement the
session ID:

On DataTAC 5000 systems, the first two bytes of the data header point
to a destination. (These two bytes are referred to as the session ID.)

On DataT AC 4000 and 6000 systems, the third byte only of the data
header pointsto a destination. (The third byte is also known as a host
dot on these systems.)

An example of these system differencesisillustrated below. Each row
in the table depicts the application-visible portion of the DataTAC
system header for the identified system. In the data header column the
session ID bytes appear in bold typeface. The data header offset field
identifies the length in bytes of the data header field.

DataTAC Header Fields Data Header Data Header Data

System Type (Not Shown) Offset

4000 . 03 TEL Hello World
5000 . 03 TE1 Hello World
6000 . 03 TEl Hello World

In this example the data header TEL is a sample. The data header could
also have been RO3, TX4, SS2, or many others, depending on the
configuration of the network infrastructure.

The DataTAC 4000 and 6000 systems use 1 as a pointer to a
destination and TE to refer to an application 1D. Conversely, the
DataTAC 5000 system uses TE as a pointer to a destination and 1 as an
extra byte, which only has meaning if active carrier management
(ACM) isused. Since SCR does not require ACM, this byte can be
ignored.

Note: Using this example, for cross compatible applications (to all
DataTAC systems), set a data header offset of 03 (ASCII) and set the
same data header for all three systems (in this example, TEL).

Consider another example. A DataT AC 4000 or 6000 system could use
a data header of XY 3 for one message and a data header of AB3 for
another message. According to current system implementations of the
session ID feature, both SDUs would go to the same destination
because the third byte (the pointer to the destination) is the same.

SCR Header Charts

The chartsin this section allow you to compare SCR syntax across al
three DataTAC systems. Each chart displays a different set of headers
based on message type. For example, the length prefix on the DataTAC
5000 system header and much of the DataT AC 4000 system header are
shaded in gray to highlight fields where differences exist. Two of the
data headers are shaded for the same reason, indicating that they differ
in unique ways from the DataTAC 5000 system data header.

Note: All header reserve fields must be set to ASCII 0 (0x30) or binary
NULL (0x00), depending on the format requirements of the field.

The following table shows the terminology of other communications
protocols (for example, Native Control Language), and the SCR header
types.

Other Protocol Terminology SCR Terminology
Command Message Host Request Message
Response Message Host Confirmation Message

Event Message Mobile Information Message.

The list preceding each chart describes the contents of the header

fields.

Host Request Message Header Fields

Save Bytes

Length
Prefix

Type Code

LLI

Format
Indicator

Delivery
Option

Confirmation
Mode

Format

Format
Dependent

Data Header
Offset

Supplied by the host and used by the network to tie
the confirmation to the original host request. Save
bytes are ASCII for DataTAC 4000 systems. Save
bytes can be ASCII or binary for DataT AC 5000 and
6000 systems.

DataTAC 5000 systems require all SCR messages to
designate the length of the message. The length count
does not include the length prefix itself, but does
include everything else in the message packet.

Identifies the type of the SCR message: Use ‘I’ ‘B’ for
DataTAC 4000 systems. Use ‘H’ ‘R’ for the other
systems.

I dentifies the subscriber termina to which the
message is being routed. On DataTAC 4000 systems
the field (also known as Terminal ID) is ASCII-
encoded in 8 bytes. On the other systems it is binary
encoded in 4 bytes (the first four bytes of this 8-byte
field are reserved).

Used in DataTAC 4000 systems only, to specify the
format of the data in the user data section of the
message. Thisfield is reserved on the other systems
and handled by their Format field, as noted in this list.

DataTAC 4000 systems allow four priorities for a
message in the Priority field. Other systems allow two
delivery options: Send once and quit; send and queue
until delivered or timed ouit.

On DataTAC 4000 systems thisis also known as
Acknowledgment Indicator. On all systems this mode
allows the host to specify the conditions under which
a confirmation message is returned for the message
being submitted.

For DataTAC 5000 and 6000 systems only, a fixed
value set to $15 (hex). This field replaces the Format
Indicator field on DataTAC 4000 systems.

For DataTAC 5000 and 6000 systems only, afixed
value set to $CO (hex).

On DataTAC 4000 systems thisfield is also called
Data Header Size. On all systems it specifies the
number bytes in the data header portion of the

message.

For al systems, these fields include the data header

and user data for the application.

Information

SSIURISYID HIOMSU LM 5D = _H_

(Aeuig) piey wapuads Jeuuo |+

siapesH 15anbay 1S0H [SPUBLILLION YI0MISN-0FISOH

swaisAg 0009 DV 1EIEQ

M% M% [1] ; _H_....:_n_“. S ! I I I I T I ¥ H
02 fil Bl 1 Gl £ 4 1 0 i 4 5 F E b)
18RS BEQ | sy peiy | =g emeg | (370 (L {sm} [T Epory Bl |
[[L
ElBQ 1250 | I=peaH BEq] muig) |77 —
L (pajou ssaun | 105 SDIRY 1Y) =

UOIELL]|

[pomian-0-1s0H) Japeay jsenbay IS0y HOS

(fieuig) piat Juapuadag jeuod —g swe)sAs 0005 DV .LeIeq
m% .w% [Z=[M) T BT [[[[[[I 4 [H [
17 Bl =11 ri al ol El Zl L 1] i]] F E [Z1 'y
JapiEag EEg L pas | sapig aseg | (27 m = [EEN T oy u_»“.._. e phue
[I | L]
BlE(] 128] lapesH Be(|_ iheug) T — (Areuig)
L. L (P210U SS2UN |05y SBIRY IY) |
e TOHELIO] i [HOMIEN-OHS0H) J3P82 H 188nbay 1S0H HOS o
swe)sAs 000¥ Ov.1eleq
%% %% N TP T =] [[I I I I I I B[
Bl AL al Gi £l Zh bi i 6 B A a G ¥ €] 1
IBPEEH BB [y jElan| sEig BeES 1 s | Bp0D Bl
i i I |
ejeq sosp) - lapeay eeg] |_ Hoswim —
| i (DS spiay i) 3

UoE IO

(yom)apN-0-150H) JapesH 1sanbay 1504 4OS

Host Confirmation Message Header Fields

Length Prefix

Type Code

LLI

Save Bytes

Response Code

DataTAC 5000 systems require all SCR
messages to designate the length of the
message. The length count does not include
the length prefix itself, but does include
everything else in the message packet.

Identifies the type of the SCR message: Use
‘A’ ‘B’ for DataTAC 4000 systems. Use 'H’
‘C’ for the other systems.

| dentifies the subscriber terminal to which the
message is being routed. On DataTAC 4000
systems the field (also known as Terminal ID)
is ASCII-encoded in 8 bytes. On the other
systemsi it is binary encoded in 4 bytes (the
first four bytes of this 8-byte field are
reserved).

Supplied by the host and used by the network
to tie the confirmation to the original host
reguest. Save bytes are ASCII for DataTAC
4000 systems. Save bytes can be ASCII or
binary for DataT AC 5000 and 6000 systems.

Known as Acknowledgment code in
DataTAC 4000 systems, this field indicates
the delivery status of the message to which
the save bytes refer. On DataTAC 4000
systems, acknowledgments are indicated by
the ASCII value ‘00". On other systems,
acknowledgments are indicted by any value
(ASCII-encoded hex) from ‘08’ through ‘OF'.
NAKSs (negative acknowledgments) are in the
range of ‘10’ to ‘AO’ for DataTAC 4000
systems and in the range of 40-97, AO-A5 for
DataTAC 5000 and 6000 systems. DataTAC
5000 and 6000 systems also have these
additional response codes:

‘A1’ Terminal message in progress
‘A2 Terminal out of service

‘A3 Invalid session or host ID (invalid
routing info.)

‘A4 Maximum terminal queue exceeded.

SI9PEaH UOIBWIYUOD 150 (Sasuodsay 1SOH-01-1I0MIBN

SE0URIBYID IOMBU LI STS _H_

swaisg 0009 Ovieieq

[
i £l
B SEURTEEY

_ T T 1 e |
i

[1 X £
=E MBS is1h m L5k

[H
& 1
G L

et

iheug) _

(pEou SSSUN || DSy SR i)

-

(1S0H-01I0MEN | JiEsH UONBWIYLOD ISOH YOS

(pajou ssSUN |95y spIY Iy

swaishs 0005 JV.LEIEQ
] [[[[[[2 [H [
¥ £l L 1 o i o G ¥ £ s I Tl)
epog esucdsey| se1dg BeEg (g m =1 PEeaey Bpog edd | e yiliue)
I _|_|
(Amug) 1M] (Aueuig)

[150H-0)-}10AYaN] 120821 UD|IBWLIIUODD 1S0H HOS

-

swajshs 000¥ OVL1EIEQ

g ¥
w.,_.'w_.__.., ?_G_m_h_"w__w_u.m m_,
Bp0Ty esLDisEy | smih aarg () Bl | apoey ok |
[I
(osv) m —
- (105 spiEy i)

(1501 -C1-sI0maN | JapES| UOPBLLBUDD 1S0H HOS

»

Mobile Information Message Header Fields

Length Prefix

Type Code

LLI

Format Indicator

Delivery Option

Format

Format Dependent

Data Header Offset

Information

DataTAC 5000 systems require all SCR
messages to designate the length of the
message. The length count does not
include the length prefix itself, but does
include everything else in the message
packet.

Identifies the type of the SCR message:
Use ‘O’ ‘B’ for DataTAC 4000 systems.
Use ‘M’ ‘I’ for the other systems.

Identifies the subscriber terminal from
which the message is being received. On
DataTAC 4000 systems the field (also
known as Termina ID) is ASCII-
encoded in 8 bytes. On the other systems
it is binary encoded in 4 bytes (the first
four bytes of this 8-byte field are
reserved).

Used in DataTAC 4000 systems only, to
specify the format of the data in the user
data section of the message. Thisfield is
reserved on the other systems and
handled by their format field, as noted
below in thislist.

DataTAC 4000 systems allow 4
priorities for a message in the field
formerly known as Priority. The
Delivery Option field is reserved on the
other systems.

For DataTAC 5000 and 6000 systems
only, afixed value set to $15 (hex). This
field replaces the format indicator field
on DataT AC 4000 systems.

For DataTAC 5000 and 6000 systems
only, afixed value set to $CO (hex).

On DataTAC 4000 systems thisfield is
also caled Data Header Size. On all
systems it specifies the number bytesin
the data header of the information
section of the message.

For al systems, these fields include the

data header and user data for the

application.

SRS YD HIOMSU L SRS _H_

SI8pEaH UOHBULOLU| 1SOH SIUSAS 1SOH-01-4I0MIBN-0)-|BUILLIS |

(fusug) pay uspuadan 1euwoy |+ swa)sAs 0009 OV.LEIEQ
%W ww a | 0% | n o U | oo ! ! U, g s |y g 11w
JSDESH BB PERIReEY =11) m [DR By Bl |
I _
S g thseuig) (11 —
(pajou ssEUN |08 SPEI V)
b =l 3l

(Aieung) pai4 uspuadso 1euuo |+

UOH ELLLIGJU|

Lo |

(1S0H-01HIOM] SN-0 - [EUILLS |) ISpEaH USRI 3)IGOW DS

swe)sAg 000G DV.Lera

w (= T [N T T I I I [T I I
iy ol =11 Fi £l A N8 o4 L.]] _F E £ L &1 il
: _ BEEEH BEd IEULDY | peAeEEH _ 5 m [swh eI _ apoy e whE 16LE
EjEQ _mw_._l_ sepeat] egg - (ueug) |11 — (Auig)
L (p=ou SS3IUN DSy SPEY Iv) -
LG IELLIC | (150 0] -0 MaN -0)-EU LS | | JDDEaH UORBWIO] SIGON HOS
swa)shg 000¥ Ov.LEIRQ
w Gl w._.r.uot__u_m_. _.__uw__.u..u _._:.._.".m._a.“_ o _ E _ B _ £ _ G _ c _ F _ E W _ _._..4
sppeag B |As o] peusng O TELLLE | oy add |
| | |
e J=sn i JapeaH eleg ll syl —
s il (18 Y spi@y i) ui
U f i]

UOELLIOU|

(150 H =01 -OM 1B -01-BUILLS |) J8PESH UORBWIGU] 8IQON 0%

DataTAC Messaging (DM)

DM alows one terminal to communicate with up to ten other terminals
by routing a message through the DataTAC system network. As such,
DM provides the protocol for basic E-mail functionality. System
differences with regard to DM appear mainly as differencesin DM
syntax.

DM Message Types

Peer-to-peer communications uses two types of messages.
o Generate (originator-to-network)
0 Receive (network-to-destination)

Each message type must include its own type of header. Within each
system, each type of header has small differences in syntax. The charts
graphically compare the headers across systems.

Highlights of DM Differences

Each of the three DataTAC systems varies slightly according to how it
implements DM. Use the table below to identify the system differences
by DM attribute.

: DataTAC 4000 DataTAC DataTAC

DM attribute
Systems 5000Systems 6000Systems

Address length 8 bytes 14 bytes 14 bytes

Error reporting Does not include an Includes an error Does not include an
error number prefix number prefix as part error number prefix
as part of the error of the error text. as part of the error
text. text.

Time-stamping Yes Yes No

Message storage Configurable 10 messages 100 messages

DataTAC Messaging Implementation Differences

DM Header Charts

The chartsin this section allow you to compare DM syntax across all
three DataTAC systems. Each chart displays a different set of headers
based on message type. The charts show the differences you need to be
aware of for your particular project. The list preceding each chart
describes the contents of the header fields.

Message Generate Header Fields

Type

Sender ID

First Destination ID

Last Destination ID

Flag Bytes
Date & Time of
Message Generation

Date & Time for
Delayed Action

Originator’s ID

Sequence Number

Message Text

All systems use ASCII ‘M’ ‘G’ to indicate
a Message Generate type message header.

The ID of the originating wireless
terminal. On DataT AC 4000 systems this
field is 8 bytes. On other systemsiit is 14
bytes.

The ID of the first of up to 10 destination
terminals.

The ID of the last of up to 10 optional
destination terminals.

Settings for optional delivery services.

The current date and time the message is
generated.

The date and time when the message is to
be displayed at the destination. This option
Is present is the corresponding flag bit is
Set.

The ID of the previous terminal of a
message being forwarded by arecipient.
This option is present is the corresponding
flag bit is set.

A number used by a DM application to
match replies and error messages with a
previously sent message.

Can be binary or ASCII, depending on
requirements of the application.

siapeaH eelaussy abessaly yoman-ol-loeuBug
spy [Euond g _H_

=pgE 1D H
e <0 (|08 E

swa)sAg 0009 OV1EIEQ

[T Tl [T [l | P e e | [l [1 [THT T T Taln
POy ooy PRERD |undEiEu AEes ey wm._..m_ b | gihsneiszeg| [/ o Nworemssg| F o o - A B
abesmap [yo| sownbes Juo) g fesieufuc) oo eun) g BEQ FO B | BB L 158 1204 dl [spusmg ad]

swa)sAs 0005 Dv.Leea

aln
1 _=E_:_._z_ L _LEF_.H_. _._%..mm_a _.__H_m..m_.__ﬁ..,. .m_.mmw_m.m} E__._m Pl ci__wcw_o.ua f S lai Ehm:._mn.u PR ET! _f LT 5 _ r _ £ |E _ !
[O S |) eouenbeg |wo | gifsmeubunl so eun) g sieg 0Bl | T BB Geiy EE] = al JBpuEs s

swa)shs 000¥ oV.LEEQ

[[T 1 [[T 11 T 11 [[T [1 [T&T T T T2ln
JEaInY DYy patERD |uosEmuen ebessayy| SHAE |Ho|obh ueteusseg| f J | afvotemssg| f o 6 g r e|lE 1
shess|ua] eowenbes [yolonfdssoenbog) op eun| g seg) FO Bua] e Beyy EE] = Ol ff depues Bl

8 ol (pajou sSaIN 10SY SPIRY IIV) .|
o mpm— oman-0-0 euBun) Jepesy alesauas abessap o
e (3ZIS XYW QS = 2ag) -

(Nas walwun =Beg s0res Wo

Receive Header Fields

Type

Sender ID

First Destination 1D

Flag Bytes
Date & Time of
Message Generation

Date & Time for
Delayed Action

Originator’s ID

Sequence Number

Message Text

All systems use ASCII ‘R’ ‘M’ to indicate
a Recelve Message type message header.

The ID of the originating wireless
terminal. On DataT AC 4000 systems this
field is 8 bytes. On other systemsit is 14
bytes.

The ID of the destination terminal
Settings for optional delivery services.

The current date and time the message is
generated.

The date and time when the message is to
be displayed at the destination. This option
is present is the corresponding flag bit is
Set.

The ID of the previous terminal of a
message being forwarded by a recipient.
This option is present is the corresponding
flag bit is set.

A number used by a DM application to
match replies and error messages with a
previously sent message.

Can be binary or ASCII, depending on
requirements of the application.

spioy fevondo | |

SIWIRD J, 108V H

SEHUED <4 D (108 E

slapeay anlgoey UoBUISaa-0-IoMEaN

swaIsAs 0009 OV 1eIeq

I I] [I e e gl el [[TT T 1 TRE
gy padepiag | opemues abe sy ,.u.w_‘..m_ Fal L P] ____. (-] g F £ - i
LI abessap| yo [Sawny cusnbeg | wo | @/ soeufu A0 5un| % S0 10 BUn| § IR0 Bep| wo 180+ 11 JSpURE B
sweisAs 0005 OV LEleq
TAT 1 | e [H
_ _ _ _ _ LRy pedEE] E___mhn.._r.“. .u.._hm.ww_..._} uﬂ__.‘._m [} [Pl TFTLA] .___. ai _m_. _ _ G _ F _ £ mn _ i
xe| efessegy (w0 |sequing mwnbos | wo | g ff sseewfig A0§ BUH | T BB O BN BB by wo Lsiiy al Epues aof |

swaysAg 000F OV.LEIEQ

T afm T
i b sy

HD

Jiquingy wousanbeg

HD

2%

[T I 1 1
Loy ek
saopebiy s

[
E}
oy BUN| F I0 U] % BIED GEid | w0 LIE; a1) spues ad)

T 1 H
% c_u_.,m».__._an. m_w@ww_,} .wm_.._.m i mm L LR _.___ T_ & _mw_ G _] _ (' m_ _ Y

(p=1ou sS2(UN | 1IDSY SRR IIY)

-l_

L et

UDIJELLLGL| W0

e

{uoneunsa-o)yioman) BpesH abessay anasad o
3715 v nas =aasg) L

(NOs wWal un BlEq s3mss g

Host Messaging (HM)

Host Messaging (HM) is achieved by placing a DM header inside an
SCR header. In addition, the first two bytes (either MG or RM) must be
replaced with HM to signify the message was received from a host,
rather than a peer. HM used in conjunction with DM allows the
terminal to use the same routing protocol regardless of its destination.
(Despite its smplicity, use of HM is not recommended because it is
inefficient). For further details, refer to the InNfoTAC Application
Developer’s Guide, Motorola reference: 6804018C65.

Other Development Issues

Localizing and testing your applications are not issues related
specifically to application migration. The following comments are
provided as a helpful reminder only.

Localizing an Application

Whether you are preparing your application for sale internationally or
developing it internally for an international company, consider
designing in international characteristics from the beginning, such as
character encoding, language enabling, and specia text formatting.
While such an effort can take longer up front, any eventua re-porting
of the application will be much easier to manage.

Character Encoding

If your application supports languages that use Latin-based characters
(for example, English, Spanish, and German), design your application
for compatibility with 7-bit ASCII/1SO 646 and Latin 1/1SO 8859-1, 8-
bit display fonts.

If your application support dialects of non-Latin languages, such as
Chinese, Japanese, Korean, or Thai, design your application to work
with Unicode or another 16-bit character encoding standard. In
addition, provide your application with flexible keyboard mapping.

Language Enabling

Isolate all translatable strings, icons, and menus from your program.
Then the greater part of alocalization effort will be trandation, rather
than re-engineering. Allow for expansion of text strings during
localization. Most trandlations are longer than the orig-inal. Allow your
program to accept variable-length strings or use the international
language capabilities inherent in the application environment, such as
Windows 3.1, Windows 95, Windows NT, or Windows CE.

Special Text Formatting

The display of dates, numbers, and monetary values varies among
locales. Support for these differences may be provided by your
programming environment to simplify the development of code. If your
programming environment doesn’t provide such support, include
alternative tables or options for use when localizing.

Testing an Application

Virtually all public network operators have some testing or certification
procedure available to help ensure that your new applications behave
appropriately when brought onto the network. Many systems aso have
test nodes, which allow program testing without risk of interrupting the
public network. Because each operator’ s procedures and requirements
differ, check with the operator of your target network regarding their
individual certification procedure.

With the proper documentation, writing an application that will operate
on awireless network anywhere in the world is not difficult. You don’t
have to develop an application on site in the region where it will
operate. For example, if your local and target networks are the same,
the logistics associated with testing the application are fairly minimal.

Testing an application for a distant target network requires a bit more
planning, since the network is not directly accessible from your
development site. In this case, two approaches are worth considering:

a If your application is designed for a DataTAC network in
another country and your local network uses the same version
of DataTAC system as the target network, sign up with your
local network operator for service during development, test, and
support. When the application is complete, it is likely that the
target network operator will require validation or certification
tests. After having used your local network for development
tests, validation testing will probably be a straightforward
process.

If your local network is other than the target network, you might still
want to develop aloca version of the application to test the logic and
performance of your program in a controlled environment. (Be sureto
get advanced approval from the local operator to run your test version
without it being validated.) In this case, the target network will not be
tested directly and more verification testing will be required.

Appendix A - NCL Interface

The Boomer 11 is compliant to Native Control Language (NCL) 1.2.
Wavenet Vendor-specific extensions are also listed here.

The specification for the NCL protocol may be obtained in Adobe
Acrobat format from the Motorola website at
http://www.mot.com/MIMS/WDG/pdf docs/8-.pdf

Generic NCL (Native Mode)

o Command SDUs (CMND, ASCII A)

Commands Value Parameters Value Sub-values and Descriptions

SEND ASCII 1 Send message.

READ_MSG ASCII 2 Read queued message in RPM. True only if confirmed delivery mode
enabled.

CTL_EVENT ASCII 3 Event Report SDUs. Control event.

GET_STATUS ASCII 4 Get RPM status/configuration.

R_CONFIG_BLOCK ASCII A Get RPM configuration block.

R_RF_BLOCK ASCII A Vendor-specific: Get RF status block.

R_STATUS_BLOCK ASCII B Get RPM status block.

R_PROD_ID ASCIIC Get RPM product ID:

RF_RDLAP_9.6
RF protocol is RD-LAP 9600.
ASCII 0

RF_RDLAP_19.2
RF protocol is RD-LAP 9200.
ASCII 1

RF_MDC4800
RF protocol is MDC 4800.
ASCII 2

RF DUAL
Dua RD-LAP 9.2/MDCA4800.
ASCII 3

NCL_PRE1.2
NCL support isR1.0 or R1.1.
ASCII 0

NCL_1.2
NCL support is R1.2.
ASCII 2

Commands Value Parameters Value Sub-values and Descriptions
R_SYSID ASCII C Vendor-specific: Get system ID of current RF system.
R_SW_VERSION ASCII D Get software version number.
R_RPM_ID ASCII E Get RPM address.
R_RF_BLOCK_SHORT ASCII E Vendor-specific: Get short form of RF status block.
ASCII F Reserved.
R_MAX_DATA_SIZE ASCII G Get SDU data limit.
R_RPM_GID ASCII H Get RPM group IDs.
R_WAN_TYPE ASCII | Get WAN Type Code.
R_RF_VERSION ASCII J Get RF protocol version number.
R_VENDOR_ID ASCII K Get vendor information: VEND_MOTOROLA Vendor is Motorola
ASCII 0
ASCII Reserved.
L..Z
R_RCV_MODE ASCIl a Get mode of notification to the DTE for received SDUs.
R_RX_STATUS ASCII b Get receiver enable status.
R_TX_STATUS ASCIl ¢ Get transmitter enable status.
R_ANTENNA ASCIl d Get antenna selection status.
R _RADIO_IN_RANGE ASCll e Get radio in range status.
R_OB_MSG_COUNT ASCII f Count of outbound messages queued.
R_IB_MSG_COUNT ASCll g Count of inbound messages queued.
R_FLOW_CONTROL ASCII h Get flow control status.
R_EVENT_STATES ASCII i Get current event reporting enable/disable state.
R_RADIO_CHANNEL ASCII j Get current radio channel.
R_CHAN_BLOCK ASCII k Get RPM RF channel status block.
R_RF_STATISTICS ASCII | Get RPM RF statistics block.
R_BAT_LEVEL ASCIl m Get battery status.
ASCII n.. Reserved.
R_DCHAN_TABLE ASCll y Read dynamic channel table.
R_CHAN_TABLE ASCII z Read static channel table.
SET_CNF ASCII 5 Set modem configuration.
S RCV_MODE ASCII A Select the confirmed/unconfirmed Receive Data mode.
S INACTIVITY_ ASCII A Vendor-specific: Set read time for outbound packet.
TIMEOUT
S TX_CONTROL ASCII B Enable/disable the transmitter.
S RX_CONTROL ASCII C Enable/disable the radio.
S FLOW_CONTROL ASCII D Select the flow control method:
FLOW_NONE No flow contral. ASCII 0
FLOW_XONXOFF XON/XOFF ASCII 1
FLOW_RTSCTS RTS/ICTS ASCII 2
S RADIO_CHANNEL ASCII E Select the radio channel.

Commands Value Parameters Value Sub-values and Descriptions
S CUR_CNF ASCII F Save the modem configuration
R_DEF_CNF ASCII G Restore the modem configuration
R_STO_CNF ASCII H Read the modem configuration:
CNF_EVENT_ Event control flag ASCII 0
FLAGS settings
CNF_DELIVERY_ Outbound SDU ddl. ASCII 1
MODE mode
CNF_RADIO_ Radio control ASCII 2
CONTROL settings:
S RX_CONTROL ASCII C
S TX_CONTROL ASCII B
S POWER_SAVE ASCII | Set the PowerSave mode.
S ROAM_MODE ASCII J Set the roaming mode:
ROAM_
MANUAL
Set to manual.
ASCII 0
ROAM_AUTO
Set to automatic.
ASCII 1
S BAUD ASCII K Set the baud rate for NCL communications:

BAUD_1200
1200 baud
ASCII 0

BAUD_2400
2400 baud
ASCII 1

BAUD_4800
4800 baud
ASCII 2

BAUD_9600
9600 baud
ASCII 3

BAUD_19K2
19200 baud
ASCII 4

Commands Value Parameters Value Sub-values and Descriptions

BAUD_38K4
38400 baud
ASCII 5
S ANTENNA Undefined Select the antenna
ASCII Reserved.
L.z
RESET_RPM ASCII 6 Reset RPM.
FLUSH_INBOUND ASCII 1 Flush inbound message queue.

FLUSH_OUTBOUND ASCII 2 Flush outbound message queue.

FLUSH_BOTH ASCII 3 Flush inbound and outbound message queues.
RESET_WARM ASCII 4 Warm start RPM.
RESET_TRANS ASCII 5 Reset to Transparent Mode, if Transparent Mode is supported.
RESET_FULL ASCII 6 Full reset of RPM.
RESET_NCL ASCII 7 Reset NCL interpreter only.
RESET_OFF ASCII 8 Power off the RPM.
RESET_DIAG ASCII A Vendor-specific: Cause DTE to enter diagnostic mode.
ASCII Reserved.
ALY, 7.9
VENDOR ASCII Z Vendor-specific command.
a Event Report SDUs (EVENT, ASCII B)
Events Value Event Report Bit Parameters Value Descriptions
Enable
RCV_MSG_ ASCII A RCV_MSG_DATA_ $10 Received message
data
DATA BIT
RCV_MSG_ ASCII B RCV_MSG_ $08 Received message
notification. True only
NOTIFICATION NOTIFY_BIT if confirmed delivery
mode enabled.
TX_EVENT ASCII C TX_EVENT_BIT $04 Physical-level
transmitter event.
TX_KEYED ASCII 1 Transmitter keyed.
TX_DEKEYED ASCII 2 Transmitter dekeyed.
RX_EVENT ASCII D RX_EVENT_BIT $02 Physical-level receiver
event.
RX_IN_RANGE ASCII 1 RF in range.

RX_OUT_OF RANGE ASCII 2 RF out of range.

RX_PWR_SAVE_ ASCII 3 Power saving enabled.

ENABLED

RX_PWR_SAVE_ ASCII 4 Power saving disabled.

DISABLED

RX_ACTIVE ASCII 5 Device in active state
on RF channel.

CHAN_DISALLOWED ASCII 6 Device disallowed on
channel.

RX_REG_DENIED ASCII 7 Flash LED for

registration denial.

HW_EVENT ASCII E HW_EVENT_BIT $01 Hardware event.
HW_SELF_TEST ASCII 1 Self-test failed.
HW_LOW_BATT ASCII 2 Low battery.
HW_MEM_FULL ASCII 3 Memory full.
HW_BATT_OK ASCII 4 Battery level OK.
HW_MEM_OK ASCII 5 Memory OK.
HW_OFF ASCII 6 _Devi_ce shutdown
imminent.
HW_BATT_WARN ASCII 7 Battery at warning
level.
RCV_ERR ASCII F Unreceivable message
event.
RCV_TX_DISABLED ASCII 1 ACK required, PDU
received. Cannot
ACK, transmitter
disabled. PDU
discarded.
CONTROL ASCII G CONTROL_BIT $20 Control event.
CONNECT ASCII 1 NCL connect between
RPM and DTE .
ASCII Reserved.
H.Y, 1.9
VENDOR ASCII Z Vendor-specific event.
o Response Status SDUs (RESP, ASCII C)
Responses Value Parameters Value Description/Error Code
SUCCESS ASCII 1 Successful.

I1BQ_FLUSHED ASCIl a Error code. Pending SDUs in inbound queue flushed;
transmitter disabled. Used only if the RPM cannot support
message buffering while transmitter disabled.

XFAIL ASCII 2 Command execution error. Note the following error codes:

NO_RESPONSE ASCII A No response from network.

NO_ACK ASCII B Negative ACK received.

HOST_DOWN ASCII C Host access is down.

NOT_REGISTERED ASCII D RPM not registered.

LOW_BATTERY ASCII E Low battery—cannot transmit.

IBQ_FULL ASCII F RPM inbound queue is full.

TX_DISABLED ASCII G Radio transmitter is disabled.

BUSY ASCII H Resource is unavailable.

NOT_AVAILABLE ASCII | Unimplemented services.

HW_ERROR ASCII J Generic error.

INVALID_MODE ASCII K Invalid mode of operation.

NO_MESSAGES ASCII L No outbound messages available.

MSGS_PENDING ASCII M Cannot execute command due to pending inbound messages.

SW_ERROR ASCII N Software error.

OUT_OF_RANGE ASCII O RF not in range.

PACKET_ERROR ASCII Z SDU data corruption. True only if confirmed delivery mode

enabled.

ASCII

Reserved.

P.Y, 1.9

SYNTAX ASCII 3 Command SDU syntax error. Note the following error codes:
INVALID ASCIl b Invalid options.
TOO_LONG ASCIl ¢ Dataistoo long.

VENDOR ASCll Z ASCII Z Vendor-specific response.

Wavenet specific NCL Extensions

The following table describes Wavenet specific extensions to the NCL
1.2 specification. All SDUs include three VENDOR control byte and
the vendor Id. (the *\' character is used as an escape character for
hexadecimal bytes below):

Command Type Command Description Ncl String
1. Get status commands Get radio status ZF?r
Get modem battery status ZFNv
Get modem “on” time ZF2t
Get saved modem configuration settings ZF?2u
Get modem seria number: ZFts
2. Generic “Set RPM Set modem configuration parameters, eg: ZFN[2 Byte ID][2 byte Length][Val]
configuration” command.
* Power save mode. ZF"p\00\00\01[new mode (byte)]
* Select new active profile. ZF\00\00\01[new profile (byte)]
* NCL recelve message notify timer. ZF*n\00\00\02[2 bytes time (msec)]
3. Generic “Get RPM Get modem configuration, eg: ZF$[2 Byte ID]
configuration” command.
* Power save mode. ZF$p\00
* Get list of profiles, number of ZF$A\00

profiles and currently selected active
profile. ZF$n\00

* NCL receive message notify timer.

o GET STATUS COMMANDS:

This command alows the DTE to request the current status and
configuration settings of certain aspects of the modem.

FORMAT:

WN_GET_STATUS Command Syntax (NCL string “ZF?...”):

Status
CMND |Length SDU Tag VENDOR = iy =
‘7 : equest
T T
VEND_ WAVENET WN_GET_STATUS
WN_GET_STATUS Response Syntax

Response

RESP |Length SDU Tag VENDOR| ‘P ‘q dota

o OPERAND DESCRIPTIONS AND RESPONSES:

The various Vendor Status Requests that can be made, and the format
of their response information in the SUCCESS response SDU, are
described as follows. Please note that al multiple byte fields are stored

MSB first.

WN_GET_RADIO:

Get radio statusinformation (NCL string “ZF2r").

SUCCESS is followed by a block of status information as shown

below:

WN_GET_RADIO Response Format:

7 6 5

4

3 2 1 0

RSS! [2 bytes]

Reserved (ignore) [1 byte]

Reserved (ignore)

1 byte]

Reserved (ignore)

1 byte]

Reserved (ignore)

[1 byte]

Reserved (ignore)

[1 byte]

Reserved (ignore)

[1 byte]

Reserved (ignore)

1 byte]

Reserved (ignore)

1 byte

Current Frequency [4 bytes]

Current Channel [2 bytes]

Current Base Station ID [1 unsigned byte]

Where:

RSSI:

Current Frequency:

Current channdl:

Two byte signed integer representing the
strength of the received signal from the
base station measured in dBm. A typical
value could be -90.

Four byte unsigned integer representing
the frequency of the inbound signal in Hz
for the channel the modem is currently
scanning or locked on to.

Unsigned word (2 bytes) representing
current channel.

Current Base Station ID: Unsigned byte representing

current base station ID.

WN_GET_BATT_VOLT: Get modem battery status information
(NCL string “ZFA/").

SUCCESS is followed by a block of status information in the format
shown below:

WN_GET_BATT_VOLT Response Format:

7 6 5 4 3 2 1 0

Battery Voltage (2 bytes)
Battery Percentage

Where:

Battery Voltage: Two byte unsigned integer representing
the Voltage of the battery in mV.

Battery Percentage: ~ Estimate of the remaining capacity of the
battery. This value ranges from 0 to 100
(unsigned byte).

WN_GET_TIME: Get modem time information (NCL string
“ZF2X").

SUCCESS is followed by a block of status information in the format
shown below:

WN_GET_TIME Response Format:

7 6 |5 |4 |3 |2 |1 Jo |

Elapsed Time [4 bytes]

Elapsed Time is afour byte unsigned integer, which represents the
number of milliseconds, which have passed since the modem was last,
turned on or reset. It is accurate to within 50ms of when the last byte
of the request message was received by the modem.

WN_GET_SETTINGS:

string “ZF2u”).

Get configuration information (NCL

SUCCESS is followed by a block of status information in the format

shown below:

WN_GET_SETTINGS Response Format:

LLI [4 bytes]

Serial Number [16 bytes]

Reserved (ignore)

Home System Prefix

Home System ID

Home Area ID

5 Reserved bytes (ignore)

NCL Confirmation Mode

NCL Rx Control

NCL Tx Control

NCL Event Flags

Number of Group LLIs (n)

Group LLIs[4*n bytes]

Number of static channels (m)

Static channels [2* m bytes]

Reserved (ignore) [17 bytes]

Serial Number:

Four byte unsigned integer (the standard
NCL command 4E also givesthe LLI
number back).

ASCII string containing the serial number
of the modem. Unused bytes are zeros.
The NCL command ZFts also gives the
seria number back.

NCL Confirmation Mode: Default start-up state for the

confirmation mode of the NCL layer. It
is a zero for unconfirmed mode, or a one
for confirmed mode.

NCL Rx Control and NCL Tx Control:

Indicate the start-up state for the NCL
settings for RX_STATUS and
TX_STATUS respectively. A zero
indicates disabled, a one indicates
enabled.

NCL Event Flags: Byte which indicates the start-up state of
the NCL event reporting. A set bit
indicates the relevant event is enabled. A
cleared bit indicates the event is disabled.
The bits are as follow:

Bit 7 - Reserved (ignore)
Bit 6 - Rx_Error

Bit 5 - Control

Bit 4 - Rev_Msg Data
Bit 3- Rcv_Msg_Notify

Bit2- Tx
Bit 1 - Rx
Bit 0 - Hwr

Number of Group LLIs:Number of Group LLI fields which
follow.

Group LLlIs: Each is afour byte unsigned integer. The
number of Group LLIsisgivenin the
previous field.

Number of Static Channels: Number of channel fields
which follow.

Static Channels: Each is atwo byte unsigned integer. The
number of Static Channelsis given in the
previous field.

WN_GET_SERIAL: Get modem serial number (NCL string “ZFts’).

SUCCESS is followed by a block of status information in the format
shown below:

WN_GET_SERIAL Response Format:

7 6 5 4 3 2 1 0

Modem serial number [10 bytes]

The modem serial number is unique to each modem and consists of
ASCII characters. The tenth character istypically anull termination
character.

o Generic set RPM Configuration command
(WN_SET_PARAM):

This command allows the DTE to set the configuration settings of
certain aspects of the modem.

FORMAT:

WN_SET_PARAM Command Syntax (NCL string “ZF»..."):

CMND Length SDU Tag VENDOR ‘F ‘N | Parameter number| Parameter length | Parameter
‘7 f f contents ...
VEND_WAVENET WN_SET_PARAM
WN_SET_PARAM Response Syntax:
RESP Length SDU Tag VENDOR

i

VEND_WAVENET SUCCESS

o OPERAND DESCRIPTIONS AND RESPONSES:

The various Vendor Parameter settings that can be made are described
asfollows. Please note that al multiple byte fields are stored MSB
first. Numbers prefixed with “0x” are expressed as hexadecimal.
“Byte” (optionally followed by a sequence number) is used to indicate
asingle byte.

Parameter Number A 16-bit field, which is unique to each
parameter, used to differentiate them.

Parameter Length A 16 hit field, which indicates the length
of the following parameter, in bytes.

Parameter Contents The actual bytes set for the parameter.

The format is parameter specific.

The Parameter Name is alabel used to refer to particular parameters,
and is used as a definition for the parameter number.

WN_SET_PARAM: Set Modem Configuration (NCL string
“ZFM\[2 byte parameter number][2 Byte
parameter length][parameter block..]”).

Parameter name :
Parameter number :
Parameter length :
Parameter contents :

Parameter name:

Parameter number :

Parameter length :

Parameter contents:

Parameter name:

Parameter number :

Parameter length :

Parameter contents:

WN_PWR_SAVE_MODE

0x7000 (“BytelByte2") (ASCIl 0x70="p’)
0x0001 (“Byte3Byted™)
One unsigned byte (“Byte5") indicating the
PowerSave mode as follow:

ASCII ‘0" : EXPRESS (Disabled
PowerSave or “full awake” mode).

ASCII ‘1" : MAXIMUM (4 windows).

ASCII ‘2" : AVERAGE (8 windows).

ASCII ‘3 : MINIMUM (16 windows).
WN_PROFILE

0x6600 (“BytelByte2")

0x0001 (“Byte3Byted”)

One unsigned byte with the number of the new
active profile.

(ASCII 0x66 = ‘')

WN_MSG_RX_NOTIF_TMR

O0x6E00 (“BytelByte2")

0x0002 (“Byte3Byted”)
One unsigned word (2 bytes) containing the
number of milliseconds between message
notifications to the Palm. The maximum setting is
65 seconds (65000 milliseconds).

(ASCII OX6E = ‘)

o Generic get RPM Configuration command
(WN_GET_PARAM):

This command allows the DTE to get the configuration settings of
certain aspects of the modem. This section should be seen together
with the previous section (“ Generic GET RPM Configuration
command”).

FORMAT:

WN_GET_PARAM Command Syntax (NCL string “ZF$..."):

CMND Length SDU Tag VENDOR Parameter number

c | 4

$
T

o
VEND _WAVENET WN_GET_PARAM

WN_GET_PARAM Response Syntax:

‘s Parameter Parameter

CMND Length SDU Tag VENDOR
z f Length Value

c | 4

e
VEND_WAVENET SUCESS

o OPERAND DESCRIPTIONS AND RESPONSES:

The various Vendor Parameter values that can be requested are listed
in the previous section (“ Generic set RPM Configuration command”).
The responses to these commands obey the WN_GET_PARM response
syntax as shown above. The one exception is the “ Get Active Profile’
command, which returns more than just the “active profile’:

Parameter Number A 16-hit field, which is unique to each
parameter, used to differentiate them.

Parameter Length A 16 bit field, which indicates the length
of the following parameter, in bytes.

Parameter Value The actual value of the parameter. The
format is parameter specific.

WN_ PROFILE Get list of profiles from modem (NCL string
“ZF$A\00” with “\00” representing one byte with value of zero).

SUCCESS is followed by a block of information in the format shown

below:

WN_GET_PROFILE_LIST Response Format:

Number of profiles (n) [1 byte]

Active profile number [1 byte]

Profile Name 1 (up to 24 byte null terminated string)

Profile Name 2 (up to 24 byte null terminated string)

H'(Sfi leNamen (null terminated string) [24 bytes]

Where:

Number of profiles:

Active profile number:

Profile name:

o NCL Label Values

Unsigned byte giving the current number of
profilesin configuration sector. The number
of profiles may change.

Unsigned byte giving the number (or index) of
the currently active profile.

Null terminated string of 24 bytes of length
(the string may be shorter than the 24 bytes as
long asit isfollowed immediately by the null
termination character). The 24 bytes do not
include the null termination character.

Please note the following additiong/clarifications to the NCL Label

Vaues Table:

CMND ASCII ‘A
RESP ASCII 'C'
SUCCESS ASCII '1'
VENDOR ASCIl 'Z'

VEND_MOTOROLA ASCII 'O’
VEND_WAVENET ASCII 'F

WN_GET_STATUS ASCII '?

WN_GET_RADIO ASCII r!
WN_GET_BATT_VOLT ASCII V'
WN_GET_TIME ASCII 't

WN_GET_SETTINGS ASCII 'u
WN_GET_SERIAL ASCII ‘s

(eg NCL command ZF?r)
(eg NCL command ZF?v)
(eg NCL command ZF?)
(eg NCL command ZF?u)
(eg NCL command ZFts)

WN_SET_PARAM ASCI| ~ (eg NCL cmd ZFM\04\00\00\01\09)
WN_GET_PARAM ASCII ‘$ (eg NCL commandS ZF$..)
WN_PWR_SAVE_MODE 0x7000 (eg NCL cmd ZF$\70\00 = ZF$p\00)
WN_PROFILE 0x6600 (eg NCL cmd ZF$\66\00 = ZF$f\00)

WN_MSG_RX_NOTIF_TMR Ox6E00 (eg NCL cmd ZF$\6E\00 = ZF$n\00)

WN_CMD ASCII ™

(eg NCL commands ZF*..)

SAR Routine Function

An SAR limiting function is available for end user applications to limit
the average transmitted power by preventing new data transmissions
until the previous period' s average transmitted power is less than the
required SAR level.

During all transmission times a Retransmit Delay Accumulator is
incremented by a value of:

time Td = Duty Factor constant x actual time of block.
The Duty Factor is aratio of non transmit to transmit time:
= (100 — DutyCycle%) / DutyCycle%

When the current data block and any retries have been sent, the next
transmission is inhibited, dependent on the required duty cycle and the
last transmission time. Data to be transmitted will be accumulated in a
data buffer.

When not transmitting, the Retransmit Delay Accumulator decrements
until the timer has expired.

The transmit may restart again, if there is data to send.

The default setting of the modem is 10% Duty Cycle unless otherwise
programmed.

SAR Algorithm

Initialise duty cycle of non transmit time, back off timer and Tx on

timer.

Then execute the following state machine.

Idle

Tx

Are we

—oam > '
Daia backing off

TX?

No Yes

A
No

More data to send?

Has back

LYes pf offtimer

expired?

No >
Buffer data

Yes

Tx data

1 resetTxon

time

All data
sent

Txon
time
Expired?

Finish Tx
current

packet

h 4 h 4

Recalculate / Set
back off timer

based on duty
cycle and last
transmission time

Appendix B - Sample Programs

Sample programs are provided with the SDK. The purpose of these
sample programs is to show how a complete working client server
application can be built using the SDK NCL API with the client
program and the SDK SCR API with the server program.

These sample programs demonstrate how to write a simple application
that allows awireless client to send data to a central server application
and receive responses back from the central server application. The
sample programs are not intended to be a functiona application, but the
programs are intended to serve as a guide to writing applications and
can be used as a basis for devel oping more complex applications.

The information given in this document is intended to supplement the
source code for the applications by providing a high-level overview of
the source code.

In the following sections, the client and server applications are
described separately.

Client Application

The client application is called Modeminfo that uses the NCL API to
interface to the DataTAC® network. The sample client program
retrieves the modems current status, and enables the user to send and
receive messages on the current channel the device is registered to.

hMaodermlnfa 3 x|

Metwiark. Prafile !M,:,t,:,r,:,|a Test

b odem Powveer l e

Fower Save i Express

50 5 [=0 [50

Yibrate Mode i On

The Modem setting Tab displays the modems current profile (i.e.
Channel list, RD —Lap version, etc), if the modem is on or off, the
modems power save mode, and if supported it’s vibrator mode.

Modeminfo x|

S ettings | Wersions I teszages I About I
FF Fraotocal RD-L&P 9600
Charinel 238F
Frequency |EH 7.387500 MHz
Signal [R551] |-?? dBrm
R adic Carrier |In R ange
Base Station 1D |I:I‘I

pattery 1002 (411

____W'w"

W AV ENET
TECHMNMOLOGY

E uit |

The status tab displays the modem’s current channel (if registered) and
it's RSS! level. If the device is not registered it will be in scan mode,
scanning the channels from the channel list in its current profile.

todermninfo x|
LLI |E||:|'| 03282
Serial Mo, |I:IE'| BO029

H ardware Platform I'W
S oftware Yersion I“-II:IE.EE

) __W.»

W A VENIET
TECHNOLOGY

E xit |

The versions Tab displays the devices LLI, seria number, Hardware
Platform and software version.

Modeminfo x|

I About I

Send Mezzagels]: Send Message |

Received Meszage(z]:

E xit |

The messages Tab allows a user to send and receive messages from the
channel the device is currently registered on.

Modermlnfa x|

todern Info .01
By
Wiavenet Technalogy Py, Lid.

Wigw aur Products at:

LA, W AN ENEL, SO, AU
Copyright 2002

W AV EN ET
TECH O L O G Y

E xit |

M

Server Application

The server program is a Windows NT command line program that
connects to the DataTAC® network switch and waits to receive data
from wireless client devices. Any data received from wireless clientsis
echoed back to the same client on the same session. The server
program can handle simultaneous connections from multiple clients.

All activity indications (data transfer, connections and disconnections)
are logged to the screen. The server program operates without requiring
any user input.

Communications to the RNG are established either viaa TCP/IP or an
X.25 connection, based on command line parameters.

The server program is implemented in a single module; server.c.

The server program uses SCR API to decode, encode, and interpret the
messages from the network. The server program contains code to
communicate with the network switch or RNG via either X.25 or
TCP/IP. The X.25 connection code is written using the EICON X.25
Developer's Tools for Win32. To run the application over an X.25
connection, you must have an X.25 connection to the switch, aswell as
an EICON X.25 card plus EICON WAN Services drivers for this card.

To run the sample application via TCP1IP, you must have a TCP/IP
connection to the network switch. For help in getting this connection
set up, contact your DataTAC network operator.

The following pseudo code outlines the implementation of the main() function.

main O

Initialize application variables
Set default values for user configurable parameters

Process command line and update parameters
Initialize X.25 APl or Winsock DLL (connection to
RNG)

Initialize SCR APl using scr_Init()
Establish a connection to the DataTAC network

while (Iterminate){
Read data from the network
Handle Message zHandleMessage()

}

Terminate connection to RNG
Clean up

Initialisation and Login

zEstablishConnection() establishes the connection to the RNG, using
either TCP/IP or X.25. When either a DataTAC(D 4000 or DataTAC
6000 network is used, thisis all that is needed for the server to connect
to the DataTAC network.

When a DataT AC 5000 network is being used, the server application
must login to the RNG to identify itself. The login message is encoded
using scr_Encodel ogin() with the host ID and password as specified
by the command line parameters. The encoded login message is then
sent to the RNG.

Before the program exits, the connection to the RNG is closed. No
specia SCR processing is needed here.

Data Transfer

zSendData() is a function that sends data to the RNG, using TCP/IP or
X.25 as appropriate. zRecelveData() is a similar function used to
receive data from the RNG. These two routines hide the low-level
details of the X.25 or TCP/IP connection to the DataT AC network.

When the server application receives a message from the DataTAC
network, using zReceiveData(), the message is passed to
zHandleMessage(). This routine uses scr_Decode() to decode the
incoming data, and then uses a switch statement to process the
message.

All data transfer within the server program is interpreted using the
DataTAC network independent data message types, such as
SCR_FROM_NET and SCR_TO_NET messages. This makes the code
applicable to all DataTAC network versions and reduces the problems
in porting an application from one DataT AC network type to another.
The server application also handles message types SCR_LR, SCR_Cl,
and SCR_DI, which are specific to the DataT AC 5000 network. These
message types will not be received on DataT AC 4000 or DataTAC
6000 networks, and therefore will not affect the operation of the
program.

All messages received from the DataT AC network result in a message
being output to the screen to indicate that the message was received.

Some message types, such as SCR_ACK or SCR_CI, require no further
processing other than the output of a message. Other message types,
such as SCR_FROM_NET or SCR_LR, require a response message to
be sent to the DataTAC network. Thisis handled by formatting the
response within the switch statement, and this response is sent to the
DataTAC network at the end of the zHandleMessage() function.

The following pseudo code gives an overview of the implementation of
zHandleM essage().

zHandleMessage(msg)

{

scr_Decode (msg); /* decode the message */

if (error decoding) {
Report SCR decoding error
return

}

switch (Message Type){ /* examine the message type*/
case SCR_LR: /* loopback request*/
/* this message is only applicable */
Prepare message "LC' /* to DataTAC 5000 networks*/
break;

case SCR_ACK: /* Host msg delivery Confirmation*/

scr_NakReasonText(); /* returns NULL if no error
occurred */
if (an error occurred){
Print reason text

else{
Report successful delivery of message

break;

case SCR_FROM_NET: /* Received inbound message*/
prepare message ""TO_NET"

/*echo data back to the client*/
break;

case SCR_CI: /* Connect indication DataTAC 5000 only */
Report "LLI x has connected”
break;

case SCR_DI: /* Disconnect indication DataTAC 5000 only
*/
Report "LLI x has disconnected”
break;

default: /* Unknown message type*/
Report “"Unhandled message type~
break;

}

scr_FreeDecoding ;

/*free dynamically allocated buffers in AP1*/
/*when it decoded the current message*/

if (a Response has to be sent){
scr_Encode (); /*encode the response message*/
IT (encoded successfully){
Send data to the network

else{
Report *SCR encoding error*®

Appendix C - Wavenet Application Loader

The Application Loader software is used to upgrade the resident
software installed on your Wavenet OEM modem.

For optimum performance ensure that you are using the latest
application version.

This appendix, for your convenience, explains the procedure for
updating the Application Loader software and has a troubleshooting
section to assist with any problems.

Please refer to the Application Loader User Manual to ensure you have
the latest information.

Updating Application Loader Software on Your Modem

The Application Loader software may be used for all Wavenet
modems. The procedure is the same for all modems but some of the
screens may differ in appearance.

Follow the procedure below to check the software version currently
loaded on your modem and if necessary, to upload the modem
application.

1. Connect the Boomer Il to the Test Jig as described on page 22.

2. Connect the Data Communications Modem connector to the
Boomer |1 Test Jig's PC connector.

3. Connect the Data Communications PC connector to a COM
(serial) port on your computer. Note that the Data Comms PC
connector is a9-pin plug. If your computer has a 25-pin serial
port you will need a 9-pin to 25-pin adapter.

4. Switch the modem on.
5. Switch your PC on.

6. From the PC, open the appropriate Application Loader
(Apploader) file for your modem.

The letter(s) preceding the three numerical characters at the end
of the Apploader file name denotes which modem the fileis
appropriate for, i.e. M for the Dualwave M modem, V for the
Duawave V modem and BM2 for the Boomer 1| OEM modem.

The three numerical characters at the end of the file name show
the version number of the application software, i.e.

408 is software version 4.08 and

233 is software version 2.33

If you select the incorrect Apploader file for your modem the
following typical message will be displayed.

!'I-,. This lamevare & Fo Wavenel's Dushywaye M modem. 'v'ous modem is not supponied.

Note: The message shown above will appear if you are
attempting to upgrade using ApploaderM408.exe with a
Dualwave V modem.

7. Thefollowing screen is displayed.

Select the Displays the current
appropriate version of Application
/ software on your

com port on A L ———

your PC that modem.

the modem Galecl, Modem Fos Custenkt Veszions

is connected oL na3

to. ; e Displays the new
oot 1% — play

Apikcstion B30 N Ao 5357 41 application available.
e

Click the - . -~

Download Aok i S olwe Versona difer Press T cwrlosd Applcalion ho updats. ‘\\ Status bar.

Application

button to

download

the latest 8. Select the appropriate PC communications port to which the

version. modem is connected.

9. If the program recognises that the version of Application you
are attempting to install is later than the version currently
installed, the Download Application button will become
enabled. A message is displayed in the status bar advising that
the application software versions differ and requesting that you
press the Download Application button to update.

If the program recognises that the version of Application you
are attempting to install is earlier than the version currently
installed, the Download Application button will remain
disabled. A message is displayed in the status bar advising that
the application software version on the modem is up to date and
requesting that you exit the program.

10. Click Domsibsiess] 1y update the Application software.

A progress bar is displayed informing you of the progress of the
update.

11. After the application has been updated, the modem is
automatically switched off. A message is displayed prompting
you to switch the modem on again.

DUALWAENE_V_FIRMWARE 23

) Diowmboad succssshl. The modem shoukd ban Lol ol Flasss swich e modem D o veily the lest applcaton

VEIRION.

12. Press the modem’ s On/Off button and click [_ %]

13. A message is then displayed in the status bar, informing you
that that the application software on the modem is up to date.

14. Click __&& | to exit the program. This will automatically
switch your modem off.

Troubleshooting

Y ou shouldn’t encounter any problems updating the Application
Loader software, however the following messages may appear.

LOADER]

An o occiaad dang s dosmicad Flease press e ieest Bution on the hack of the modem aid swatch £ 0N, Tao
ety pleass chok the Tioswnload Sppication’ bufon when it becomes snabled

This message will appear if the modem is disconnected during the
download. Ensure that al the connections between the PC and the
modem are secure, check the battery connections, ensure the modem is
switched on and follow the instructions in the message to try again.

LOADER [}

!'I-,‘ Ensues modem is smiched OM & connected ho S selected COM Port

This message will appear if the modem is disconnected whilst running
the Application Loader. Ensure that all the connections between the PC
and the modem are secure, check the battery connections and ensure
the modem is switched on.

DUALWAVE V_FIRMWARE 233

!'I-,‘ Ths ool doss nob support the cunent loaded B oolioader Verson on the Hodam

This message will appear if the bootloader version on the modem is too
old to alow you to upgrade the application. Return the modem to your
supplier to be upgraded.

!'l-.I This lamevare & For Wavenel's Dushywaye M modem. "Yious modem is not supporied.

This message (or similar) will appear if you have attempted to upgrade
your modem with the incorrect Application Loader file.

The ApploaderM408.exe is applicable to the Dualwave M modem and
ApploaderV233.exe is applicable to the Dualwave V modem.

The letter preceding the three numerical characters at the end of the
Apploader file name denotes which modem the file is appropriate for,
I.e. BM2 for the Duawave Boomer II OEM modem, M for Dualwave
M modem and V for Duawave V modem.

If the modem does not respond after an error message and you cannot
switch it off/on, reset the modem by inserting the end of a paper clip
into the reset hole at the back of the modem. Then switch the modem
on and continue the upload.

Appendix D - Numeric Conversion Chart

Binary/Octal/Decimal/Hex/C/ASCII Conversion Table

Binary Oct Dec Hex C ASCII Definition Binary Oct Dec Hex Cc ASCII
00000000 000 0 00 C NUL Null, or all zeros 01000000 100 64 40 P @
00000001 001 1 01 C SOH Start of Heading 01000001 101 65 41 UX A
00000010 002 2 02 C STX Start of Text 01000010 102 66 42 UXx B
00000011 003 3 03 C ETX End of Text 01000011 103 67 43 UXx C
00000100 004 4 04 C EOT End of Transmission 01000100 104 68 44 UX D
00000101 005 5 05 C ENQ Enquiry 01000101 105 69 45 UXx E
00000110 006 6 06 C ACK Acknowledge 01000110 106 70 46 UXx F
00000111 007 7 07 C BEL Bell 01000111 107 71 47 U G
00001000 010 8 08 C BS Backspace 01001000 110 72 48 V] H
00001001 011 9 09 CS HT Horizontal Tab 01001001 111 73 49 U |
00001010 012 10 0A CS LF Line Feed 01001010 112 74 4A U J
00001011 013 11 0B CS VT Vertical Tab 01001011 113 75 4B V] K
00001100 014 12 oc Cs FF Form Feed 01001100 114 76 e} U L
00001101 015 13 oD CS CR Carriage Return 01001101 115 77 4D U M
00001110 016 14 OE C SO Shift Out 01001110 116 78 4E V] N
00001111 017 15 OF C Sl Shift In 01001111 117 79 4F U (0]
00010000 020 16 10 C DLE Data Link Escape 01010000 120 80 50 V] P
00010001 021 17 11 C DC1 Device Control 1 (XON) 01010001 121 81 51 V] Q
00010010 022 18 12 C DC2 Device Control 2 01010010 122 82 52 U R
00010011 023 19 13 C DC3 Device Control 3 (XOFF) 01010011 123 83 53 V] S
00010100 024 20 14 C DC4 Device Control 4 01010100 124 84 54 V] T
00010101 025 21 15 C NAK Negative Acknowledge 01010101 125 85 55 U U
00010110 026 22 16 C SYN Synchronous Idle 01010110 126 86 56 V] \%
00010111 027 23 17 C ETB End Transmission Block 01010111 127 87 57 U w
00011000 030 24 18 C CAN Cancel 01011000 130 88 58 U X
00011001 031 25 19 C EM End of Medium 01011001 131 89 59 V] Y
00011010 032 26 1A C SUB Substitute 01011010 132 90 5A U z
00011011 033 27 1B C ESC Escape 01011011 133 91 5B P [
00011100 034 28 1C C FS File Separator 01011100 134 92 5C P \
00011101 035 29 1D C GS Group Separator 01011101 135 93 5D P]
00011110 036 30 1E C RS Record Separator 01011110 136 94 5E P n
00011111 037 31 1F C us Unit Separator 01011111 137 95 5F P _
00100000 040 32 20 S SP Space 01100000 140 96 60 P)
00100001 041 33 21 P ! 01100001 141 97 61 LX a
00100010 042 34 22 P " 01100010 142 98 62 LX b
00100011 043 35 23 P # 01100011 143 99 63 LX c
00100100 044 36 24 P $ 01100100 144 100 64 LX d
00100101 045 37 25 P % 01100101 145 101 65 LX e
00100110 046 38 26 P & 01100110 146 102 66 LX f
00100111 047 39 27 P ' 01100111 147 103 67 L g
00101000 050 40 28 P (01101000 150 104 68 L h
00101001 051 41 29 P) 01101001 151 105 69 L i
00101010 052 42 2A P * 01101010 152 106 6A L i
00101011 053 43 2B P + 01101011 153 107 6B L k
00101100 054 44 2C P , 01101100 154 108 6C L |
00101101 055 45 2D P - 01101101 155 109 6D L m
00101110 056 46 2E P . 01101110 156 110 6E L n
00101111 057 47 2F P / 01101111 157 111 6F L o
00110000 060 48 30 NX 0 01110000 160 112 70 L p
00110001 061 49 31 NX 1 01110001 161 113 71 L q
00110010 062 50 32 NX 2 01110010 162 114 72 L r
00110011 063 51 33 NX 3 01110011 163 115 73 L s
00110100 064 52 34 NX 4 01110100 164 116 74 L t
00110101 065 53 35 NX 5 01110101 165 117 75 L u
00110110 066 54 36 NX 6 01110110 166 118 76 L v
00110111 067 55 37 NX 7 01110111 167 119 77 L w
00111000 070 56 38 NX 8 01111000 170 120 78 L X
00111001 071 57 39 NX 9 01111001 171 121 79 L y
00111010 072 58 3A P : 01111010 172 122 7A L z
00111011 073 59 3B P ; 01111011 173 123 7B P {
00111100 074 60 3C P < 01111100 174 124 7C P |
00111101 075 61 3D P = 01111101 175 125 7D P }
00111110 076 62 3E P > 01111110 176 126 7E P ~
00111111 077 63 3F P ? 01111111 177 127 7F C DEL

Appendix G - Specifications

Weight < 509
Size (L X W x H) 70mm x 52mm x 9mm

Modem to radio network protocol RD-LAP 3.1, 3.2, 3.3
Modem to terminal (e.g. handheld) protocol NCL 1.2

Operating temperature -30°C to +60°C
Storage temperature -40°C to 70°C

Data Interface Port TTL compatible serial port,
9600 baud
RF Connector MMCX female, 50W.

Straight connection or right angle

Power Green flashes when scanning
On, when locked
Off, when the Boomer Il is off

Receive Green flashes when receiving

Transmit Red flashes when transmitting

Voltage 3.8V (3.4 to 4.2V range)
Transmitter <1.7A

Receiver < 85mA

Transmit Duration 32ms (minimum)

1s (maximum)
Off current consumption < 100pA

Power Supply Ripple < 15mV peak to peak

-

Frequency range 806 — 825MHz (A),

890 — 902MHz (B)
Channel spacing 25kHz (A)

12.5kHz (B)
Frequency Error +1.5ppm (<1300Hz) (A)
(-30° ~ +60°C) +0.8ppm (750Hz) (B)

o Transmier

Frequency range 806 — 825MHz (A),

896 — 901MHz (B)
Channel spacing 25kHz (A)

12.5kHz (B)
Data rate MDC 4.8kbps (A)

RDLAP 9.6kbps (A)
RDLAP 19.2kbps (A)
RDLAP 9.6kbps (B)

Modulation 2-Level FSK MDC 4.8 2.5kHz deviation (A)
4-Level FSK RDLAP 9.6 3.9kHz deviation (A)
4-Level FSK RDLAP 19.2 5.6kHz deviation (A)
4-Level FSK RDLAP 9.6 2.5kHz deviation (B)

RF output power (at 50W antenna port) 1.8W nominal (2W maximum)
Duty Cycle (over 5 min) 20% maximum

Turn on time <5ms

Spurious emission <-30dBm

Adjacent channel power < - 55dBc at 25kHz channels (A)

< - 45dBc at 12.5kHz channels (B)

Frequency range 851 — 870MHz (A)
935 — 941MHz (B)
Channel spacing 25kHz (A)
12.5kHz (B)
Settling time <b5ms
Sensitivity <-111dBm at 5% PER RD-LAP 19.2
<-114dBm at 5% PER MDC
Spurious emission (receive mode) < -57dBm
Channel selectivity > 50dB (5kHz dev 1kHz tone) (A)
> 50dB (2.5kHz dev 1kHz tone) (B)
Spurious rejection > 70dB

Image rejection > 60dB

RSSI Reading -120dBm ~ -45dBm

