

Features:

Bluetooth 3.0+EDR Wireless Speaker module

• Bluetooth 3.0+EDR compliant

Bluetooth Qualified

Typical +2dBm Class 2 output power

Version: 0.3

• Receiver Sensitivity: GFSK typical -91dBm, π/4 PSK typical

Jan 2013

-92dBm, 8DPSK typical -84dBm

• Piconet and Scatter net support

• HCI UART interface

•CVSD, A-law, μ-law CODEC algorithms for voice applications

• SBC decode for Bluetooth audio streaming

• Build-in High performance stereo audio codec

• Cap-less/single end headphone driver

• Audio DAC: 94dB SNR

Build in Max. 350mAH Li-ion battery charger

• HSP, HFP, A2DP, AVRCP profile support

• 3V operating voltage

ROM version: 32Kb EEPROM

• Size: 23mm x 14mm • Build-in PCB Antenna

RoHS compliant

Product Description:

The WLIS01-SM is a highly integrated Bluetooth 3.0+EDR stereo module, designed for high data rate, short-range wireless communication in the 2.4 GHz ISM band. With ISSC Bluetooth stack and profile, the WLIS01-SM provides a low power and ultra-low cost Bluetooth 3.0+EDR solution for wireless voice/audio applications.

Applications:

- High quality stereo speaker and HiFi
- High quality wireless stereo audio receiver
- Hands HiFi-Free Car Kits
- High-END stereo wireless headsets

Tel: +886-3-4811534

Outline Dimension & Pin Definition:

Pin No.	I/O	Name	Description	
1	Р	P30	GPIO, default pull-high input Line-in detection, 1: no line-in detected; 0: line-in detected	
2	I/O	P20	GPIO, default pull-high input System Configuration, H: Application; L: Baseband(IBDK Mode)	
3	I/O	P00	GPIO, default , pull-low input. Slide Switch Detector	
4	I/O	P04	GPIO, default pull-high input Audio AMP Enable/NFC detect	
5	AO	SPKR	R-channel analog headphone output, single-ended application only	
6	AO	AOHPM	Headphone common mode output/sense input	
7	AO	SPKL	L-channel analog headphone output, single-ended application only	
8	Р	VDDAO	Positive power supply dedicated to CODEC output amplifiers	
9	Р	GND	Ground	
10	Al	MIC1_P	Mic 1 mono differential analog positive input	
11	Al	MIC1_N	Mic 1 mono differential analog negative input	
12	AP	MIC_BIAS	Microphone biasing voltage	
13	Al	AIR	Stereo analog line in, R-channel	
14	Al	AIL	Stereo analog line in, L-channel	
15	I/O	RST_N	System Reset Pin	
16	Р	GND	Ground	
17	Р	ADAP_IN	Power adaptor input	
18	Р	BAT_IN	Battery input	
19	Р	SYS_PW	System Power Output	
20	I/O	SK1/P35	Default SAR input for battery detection This pin can be re-defined as GPIO3_5	
21	Р	BK_OUT	Buck feedback sense pin	
22	Р	GND	Ground	
23	Р	MFB	Multi-Function Push Button key Combined Play/Panse key when A2DP enabled.	
24	Р	LED1	LED Driver 1	
25	Р	LED2	LED Driver 2	
26	I/O	P02	GPIO, default pull-high input PLAY/PAUSE button	

27	1/0	P27	GPIO, default pull-high input
21	27 I/O P27		Foward button
28	I/O	P05	GPIO, default pull-high input
20	1/0	F 05	REW button
29	0	HCI_TXD	HCI TX data
30	I	HCI_RXD	HCI RX data
31	31 I/O P16		GPIO, default pull-high input
31	I/O	PIO	Volume down button
32	I/O	P01	GPIO, default pull-high input
32	1/0	PUI	Volume up button
33	I/O	P03	GPIO, default pull-high input, RX_IND
34	Р	GND	Ground

Electrical Characteristics:

Absolute Maximum Ratings

Rating		Min	Max	Max
Operation Temperature		-20°C	+70°C	°C
Core supply voltage	VDD_CORE, VCC_RF, AVDD_SAR, AVDD_PLL	1.7V	1.98V	V
Codec supply voltage	VDD_AUDIO		3.3	V
I/O voltage	VDD_IO		3.3	V
	BK_VDD		4.7	V
Supply voltage	3V1_VIN		5	V
	BAT_IN		4.3	V
	ADAP_IN		6	V
	LED[1:0]		5	V
	Power switch		6	V

Recommended Operate Condition:

Symbol	Parameter	Min	Typical	Max	Unit
V _{DD18}	Digital core supply voltage				
	SAR ADC supply voltage	1.62	1.8	1.92	V
	CODEC supply voltage				
V _{DDIO}	I/O supply voltage	2.5	2.7	2.2	V
	RF supply voltage	2.5	2.7	3.3	V
T _{OPERATION}	Operating temperature range	-20	+25	+70	°C
T _{stg}	Storage temperature	-40		+125	°C
V _{LDO}	LDO supply voltage	1.8		3.3	V
V _{BAT_IN}	Input voltage for SAR ADC	0.9		3.3	V

Audio Codec: ADC

Test Condition:

T= 25°C, Vdd=2.8V, 1KHz sine wave input, Bandwidth = 20~20KHz

Parameter	Condition	on	Min.	Тур.	Max.	Unit
Input full-scale	Full scale (lin	ne-in)		the state of the s	2.2	Vpp
Resolution				16		bits
Input Sampling Rate			8		48	kHz
SNR	f _{in} =1KHz	8KHz		83		
	B/W=20~20KHz A-weighted	16KHz	(0	83		
	THD+N < 1%	32KHz		83		dB
	150mVpp input	44.1KHz		83		
		48KHz		83		

SNR	A-weighted 1KHz@full scale,	ē	75		dB
	Microphone boost enable				
THD+N (Mic input)		e	0.04		%
@30mVrms input					
THD+N (line input)		e:	0.01		%
Mic Boost Gain			20		dB
Digital Gain		-54		4.85	dB
Analog Gain				26	dB
Digital Gain Step			6		dB
Analog Gain Step			1.7		dB
Input impedance	Input impedance		6	10	KΩ
(microphone mode)	Input capacitance			20	pF
Analog supply voltage (AVDD)		1.8	2.8	3.0	V

Audio Codec: DAC

Parameter	Condition	on	Min.	Тур.	Max.	Unit
Output Level	Full scale			2.1		Vpp
Resolution			16			bits
Output Sampling Rate			8		48	KHz
SNR	f _{in} =1KHz B/W=20~20KHz A-weighted THD+N < 0.01% 0dBFS signal	8KHz		94		dB
		16KHz	(6	94	*	dB
		32KHz		94		dB
		44.1KHz		94		dB
Load=100K Ω	Load=100KΩ	48KHz		94		dB
May Output Bawar	R _L =160I	nm		35		mW
Max Output Power	R _L =32Ohm			17	2	mW

TUDAN	160hm load			0.05	%
THD+N	100K Ω load			0.01	%
Digital Gain		-54		4.85	dB
Digital Gain Resolution			6		dB
Analog Gain		-28		3	dB
Analog Gain step			1		dB
Output resistance	R_L	8	16		Ohm
Output capacitance	Ср			500	pF
Crosstalk between channels	L vs. R, measured at -10dBFS@1KHz input		-90	-80	dB
Analog supply voltage (AVDD)		1.8	2.8	3.0	V

Battery Charger:

Charging Mode (BAT_IN rising to 4.2V)		Min	Тур	Max	Unit
Operation Temperature Input Voltage (Vin) Note: It needs more time to get battery fully charged when Vin=4.5V		-20		70	°C
		4.5	,	6	٧
Battery trickle charge current (BAT_IN < trickle charge voltage threshold)			0.1C		mA
Trickle charge voltage threshold			3		٧
Maximum battery	Headroom > 0.7V		350		mA
charge current	Headroom = 0.3V	8	150		mA
Minimum battery	Headroom > 0.7∨		1		mA
charge current	Headroom = 0.3V	36	1		mA

Battery charge termination current, % of fast charge current	10	%
Battery recharge hysteresis (Note1)	100	mV
Battery recharge current (Note2)	0.25C	mA
Note: C → Battery capacity	0.250	mA

Note1: When charging complete and the adapter is still in, the battery voltage will slowly drop down.

when the voltage drop is larger than 100mV from the full voltage, the re-charging cycle will start.

Note2: If the battery voltage during plug in is larger than 4V, the charging current will be limited to 0.25C to avoid the battery voltage overshoot.

FCC ID: OZJWLIS-01SM

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The OEM integrator is still responsible for the FCC compliance requirement of the end product, which integrates this module. Appropriate measurements (e.g. 15 B compliance) and if applicable additional equipment authorizations (e.g. Verification, Doc) of the host device to be addressed by the integrator/manufacturer.

Attention:

This RF Module does not have an own shielding, so that a Limited Modular Approval (LMA) was granted: This RF module is strictly limited to the integration by the Grantee himself or the dedicated OEM integrators under the control of the Grantee. Proper measurements of the host device including this RF module (radiated spurious emissions and bandegde) are required to assure compliance with the FCC regulations.

Tel: +886-3-4811534

Any other integrator must contact the Grantee to determine necessary compliance measurements and/or additional equipment authorizations (e.g. Class II Permissive Change or New Equipment Authorization) for his configuration.

This RF Module must not be sold to the general public.

IMPORTANT NOTE: In the event that these conditions cannot be met (for example: certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Please notice that if the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains FCC ID: OZJWLIS-01SM" any similar wording that expresses the same meaning may be used.

IC: 10725A-01SM

BQB:

QDL Bluetooth® Qualified Design Listing

The Bluetooth SIG Hereby Recognizes

WLINK TECHNOLOGY (HK) CO., LIMITED

Member Company

Audio BT module

Qualified Design Name

Qualified Design ID(s): B021126

Specification Name: 3.0
Product Type: End Product

Model Number: WLIS01-SM BQE Name: Totti Huang

Listing Date: 13 June 2013

Assessment Date: 13 June 2013

Hardware Version Number: V1.1

Software Version Number: V1

This certificate acknowledges the Bluetooth® Specifications declared by the member were achieved in accordance with the Bluetooth Qualification Process as specified within the Bluetooth Specifications and as required within the current PRD

Mechanical specification:

