

ZXSDR R8862A Product Description

UniRAN 16/GUL Multi-mode

ZXSDR R8862A Product Description

Version	Date	Author	Reviewer	Notes	
				1.	Update capacity
\/1.0	2017/01/20	Vu Vona		2.	Update receiver sensitivity
V1.0	2017/01/20	Yu Yang			Update power consumption
				4. Update CPRI interface	
\/4.4	2047/02/07	V V		1.	Add 710MHz & 700MHz technical
V1.1	2017/03/07	Yu Yang			specifications

 $\hbox{@}$ 2017 ZTE Corporation. All rights reserved.

ZTE CONFIDENTIAL: This document contains proprietary information of ZTE and is not to be disclosed or used without the prior written permission of ZTE.

Due to update and improvement of ZTE products and technologies, information in this document is subjected to change without notice.

TABLE OF CONTENTS

1	Overview	5
1.1	Introduction	5
1.2	LTE Network Architecture	5
1.3	Benefits	6
1.4	Application Scenarios	7
2	Product Architecture	8
2.1	Physical Appearance	8
2.2	Hardware Architecture	8
2.2.1	QTR	9
2.2.2	DFL	10
2.2.3	PA	10
2.2.4	PWR	11
2.2.5	PIB	11
2.3	Software Architecture	11
2.4	Functionality	12
3	Technical Specifications	13
3.1	Physical Indices	13
3.2	Performance Indices	14
3.2.1	Operation Frequency Band	14
3.2.2	Capacity	15
3.2.3	ToC Output Power	16
3.2.4	Bandwidth	16
3.2.5	Receiver Sensitivity	16
3.3	Power Indices	17
3.3.1	Power Requirements	17
3.3.2	Power Consumption	17
3.4	Interface Indices	18
3.5	Transmission	21
3.6	Working Environment Indices	21
3.7	Electromagnetic Compatibility Indices	22
3.8	Reliability Indices	
4	Glossary	23

FIGURES

Figure 1-1	LTE Network Architecture	6
Figure 1-2	BS8700 Application Scenarios	7
Figure 2-1	R8862A Appearance	8
Figure 2-2	R8862A System Structure	9
Figure 2-3	R8862A Software Architecture	11
Figure 3-1	R8862A Physical Appearance Type I (850/900/1700/1800/2100/2600 MHz)	13
Figure 3-2	R8862A Physical Appearance Type II (AP700/710/700 MHz)	13
Figure 3-3	External Interfaces at the Bottom	19
Figure 3-4	External Interfaces on the Right Side	20
Figure 3-5	LED Indicators on the Panel	21
TABLE	ES	
Table 3-1	Physical Indices	14
Table 3-2	Operation Frequency Band	14
Table 3-3	Capacity	15
Table 3-4	ToC Output Power	16
Table 3-5	R8862A Receiver Sensitivity	17
Table 3-6	Power Supply	17
Table 3-7	R8862A Power Consumption in LTE Single Mode	17
Table 3-8	R8862A Power Consumption in LTE Single Mode	18
Table 3-9	R8862A Power Consumption in U/L Dual-mode	18
Table 3-10	R8862A Power Consumption in G/L Dual-mode	18
Table 3-11	Description of the External Interfaces at the Bottom	19
Table 3-12	Description of the External Interfaces on the Right Side	20
Table 3-13	CPRI Interfaces	21

Table 3-14	Environment Indices	.21
Table 3-15	Electromagnetic Compatibility Indices	.22
Table 3-16 I	R8862A Reliability Characteristics	.22

1 Overview

1.1 Introduction

This document provides a high level description of ZTE ZXSDR R8862A (hereinafter R8862A), which is one new compact distributed RRU (Remote Radio Unit) used in ZTE wireless total solution. The RRU is based on common ZTE compacted RRU platform, and can work in GSM, CDMA, UMTS or LTE single mode or Multi-Mode at the same frequency band.

The document is designed to give an overview of the characteristics of R8862A, the key benefits, architecture, functionality and services. The document also describes the system capabilities.

1.2 LTE Network Architecture

LTE is a market driven technology, which offers higher data rate (150Mbps downlink and 75Mbps uplink for each cell @ 20MHz, MIMO 2*2) with low latency and short setup delay that aim to improve end-user throughput, increase cell capacity, reduce user plane latency, and consequently offer superior user experience with full mobility. The flat, all IP-based network architecture and improved spectrum efficiency (2 to 4 times higher compared with HSPA Release 6) have laid the foundation for low cost per bit delivery and overall CAPEX/OPEX reduction.

Unlike other technologies like HSPA, LTE is contained within a new Packet Core architecture called EPC (Evolved Packet Core) network architecture. Technically, 3GPP specifies the EPC to support the E-UTRAN. TCP/IP protocols are adopted in EPC, so LTE can support all IP-based services including voice, on-line gaming, IPTV and message with end-to-end QoS (Quality of Service). The EPC network architecture can improve the connection and hand-over to other fixed-line and wireless access technologies, which enables operator to deliver a seamless mobility experience.

eNodeB –
Distributed SDR

eNodeB –
Integrated SDR

eNodeB –
Distributed SDR

EUTRA

EPC

EPS

Figure 1-1 LTE Network Architecture

To achieve all the targets mentioned herein, LTE PHY (Physical Layer) employs advanced technologies including Orthogonal Frequency Division Multiple Access (OFDMA) and Multiple-Input and Multiple-Output (MIMO) data transmission. Furthermore, the LTE PHY deploys the OFDMA for the downlink and Single Carrier Frequency Division Multiple Access (SC-FDMA) for the uplink. These technologies will further minimize the LTE system and UE complexities while allowing flexible spectrum deployment in the existing or new frequency spectrum.

1.3 Benefits

2*4 MIMO Capability, Better Performance

R8862A is based on new compacted RRU platform and high efficiency Power Amplifier technology. With two transmitting channels and four receiving channels, it supports 2*4 MIMO to improve coverage, data throughput and peak download speed.

Faster deployment

R8862A is 12L in volume and 15Kg in weight. It is portable to transport and flexible to install on the pole, tower and wall, thus reducing OPEX.

Higher Efficiency, Lower TCO

R8862A's PA efficiency can reach up to 45% (The PA efficiency is different based on different working frequency bands);

It supports dynamic adaptive PA power supply due to the output power, which reduces power consumption.

It is passive thermal dissipation designed, so it is power saving and less noisy.

Integrated lightning protection unit

R8862A supports integrated Lightning protection unit (PIB), and the protection level is 20 KA.

1.4 Application Scenarios

R8862A as the Remote Radio Unit (RRU) and Baseband Unit (BBU) comprise distributed macro eNodeB BS8700.

Typical application scenarios of BS8700 are shown in the following figure:

2 Product Architecture

2.1 Physical Appearance

The physical appearances of R8862A are shown in the following figure.

Figure 2-1 R8862A Appearance

2.2 Hardware Architecture

The hardware architecture of R8862A is shown in Figure 2-2.

Figure 2-2 R8862A System Structure

Notes: QTR means Quad-channel Transceiver used for 2T4R.

R8862A includes 5 main hardware modules.

- Quad-channel Transceiver (QTR)
- Duplex Filters LNA (DFL)
- 2x Power Amplifier (PA)
- Power module (PWR)
- Protecting Interface Board (PIB)

2.2.1 QTR

The QTR has following functions:

- Process 4 received signals and 2 transmitted signals;
- Radio signal Up/Down Conversion;

- Downlink IQ signal multiplexing and uplink signal de-multiplexing;
- Signal amplifying, filter, A/D conversion and D/A conversion;
- Convert between optical and electric signal;
- Capture reference clock signal from baseband unit and provide clock signal to other units;
- Voltage Standing Wave Ratio (VSWR) measurement and report;
- Hardware failure self-detection and alarm;
- Over-heat detection and alarm;
- Provide communication interfaces, 2 CPRI interfaces, One DB15 port, for dry contact, local debugging or AISG connection through different kind of cables;
- Reset function.

2.2.2 DFL

The DFL has following functions:

- Combine and isolate transmitted and received signals;
- Filter the transmitted signal and received signal;
- Provide DFL alarm monitor function.

2.2.3 PA

The PA has following functions:

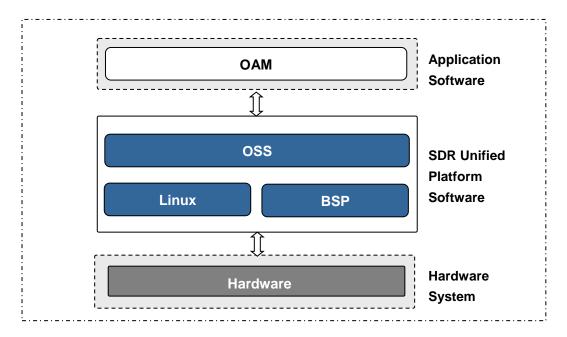
- Perform radio signal amplifying function;
- Temperature report function;
- Low-Noise-Amplifier (LNA) function;
- Over-current, over-heat, over-power and over-standing wave protecting function.

2.2.4 PWR

The PWR has following functions:

- Provide power supply function;
- Monitor input over-voltage/under-voltage, input power outage, output over-voltage/under-voltage, output over-current alarm, and report it to QTR board.

2.2.5 PIB


The PIB has the following function:

 Integrated lightning protect unit for the AISG and dry contacts, and the protection level is 20 KA.

2.3 Software Architecture

The software architecture of R8862A can be divided into two layers: SDR Unified Platform Software and Application Software. The architecture is shown in the following figure:

Figure 2-3 R8862A Software Architecture

The Operating and Maintenance (OAM) sub-system is the application layer. Its main functions are software downloading, configuration, management, system maintenance and measurement.

The Operation Support Sub-system (OSS) is the supporting layer in this entire framework. It is a hardware independent layer that provides basic functions such as scheduling, timer, and memory management, communication, sequencing control, monitoring, alarming and logging.

The Board Support Package (BSP) provides device driver & initialization and supports basic functions like alarming and monitoring. It also provides the related interfaces and services to the Operating System.

2.4 Functionality

R8862A is the remote radio unit of distributed base station. The signal is transmitted /received through R8862A to/from base band processing unit for further processing via standard CPRI interface.

By applying the distributed system, the feeder loss will be eliminated when the radio unit is positioned close to the antenna. The coverage is enlarged with this solution.

The functions of R8862A include:

- Support the LTE configuration of 1.4MHz/3MHz/5MHz/10MHz/15MHz/20MHz
 scalable bandwidth defined in 3GPP
- Supports the UMTS configuration of 5MHz/4.8MHz/4.6MHz/4.4MHz/4.2MHz
 channel interval of each carrier
- Band Supported: AP700/710/700/850/900/AWS/1800/2100/2600 MHz
- Support 2T4R(S8500/S1700/S1800/S2100/S2600) in one box which can optimize spectrum efficiency greatly and improve network uplink performance
- Support 64QAM modulation in both LTE downlink and uplink
- Support transmit power report function for every carrier

- Support overload protection function for power amplifier
- Support transmit channel switching on/off function
- R8862A software failure will not affect the running of BBU and other R8862As which are connected to it.

3 Technical Specifications

3.1 Physical Indices

R8862A is one new compacted RRU. For band 1/3/5/7/8, the dimension is 12L and the weight (without sunshield) 15 kg. For band 28/13/12+17, due to increased depth of duplexer, the size is a little bigger than the others.

Figure 3-1 R8862A Physical Appearance Type I (850/900/1700/1800/2100/2600 MHz)

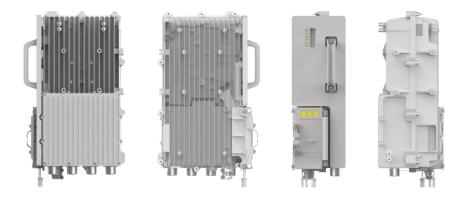


Figure 3-2 R8862A Physical Appearance Type II (AP700/710/700 MHz)

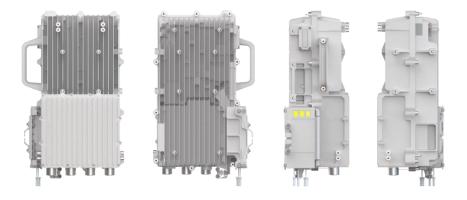


Table 3-1 Physical Indices

Module	Dimension
R8862A S8500/S9000/S1700/S1800/S2100/S 2600/S2601	Size (H*W*D): 422 * 218 * 133 mm ³ , 12L Weight: 15 kg Color: Silver gray
R8862A S7200/S7000/S7100	Size (H*W*D): 422 * 218 * 165 mm³, 15L Weight: 17 kg Color: Silver gray

3.2 Performance Indices

3.2.1 Operation Frequency Band

Table 3-2 Operation Frequency Band

Module	Band	Operation Radio Frequency Band	Mode
R8862A S7200	B28, AP700 MHz	Tx: 758 – 803 MHz Rx: 703 – 748 MHz	LTE
R8862A S7100	B13 710 MHz	Tx: 746 MHz–756 MHz Rx: 777 MHz–787 MHz	LTE
R8862A S7000	B12+B17 700 MHz	Tx: 728 MHz–746 MHz Rx: 698 MHz–716 MHz	LTE
R8862A S8500	B5, 850 MHz	Tx: 859– 894 MHz Rx: 814 – 849 MHz	UMTS/LTE
R8862A S9000	B8, 900 MHz	Type1: Tx: 925 – 960 MHz Rx: 880 – 915 MHz Type2: Tx: 934 – 960 MHz Rx: 889 – 915 MHz	GSM/UMTS/LTE
R8862A S1700	B4, AWS	Tx: 2110 – 2155 MHz Rx: 1710 – 1755 MHz	UMTS/LTE
R8862A S1800	B3, 1800 MHz	Type1:	GSM/LTE

Module	Band	Operation Radio Frequency Band	Mode
		Tx: 1805 – 1860 MHz	
		Rx: 1710 – 1765 MHz	
		Type2:	
		Tx: 1830 – 1880 MHz	
		Rx: 1735 – 1785 MHz	
		Type3:	
		Tx: 1805 – 1880 MHz	
		Rx: 1710 – 1785 MHz	
R8862A S2100	B1, 2100 MHz	Tx: 2110 - 2170 MHz	UMTS/LTE
		Rx: 1920 - 1980 MHz	
R8862A S2600	B7, 2600 MHz	Tx: 2620 – 2690 MHz	LTE
R8862A S2601		Rx: 2500 – 2570 MHz	

3.2.2 Capacity

Table 3-3 Capacity

System	RRU Capacity	
LTE single mode	2 LTE 20MHz 2T2R/2T4R cell	
GSM single mode 900 MHz	8 GSM TRXs	
GSM single mode 1800 MHz	12 GSM TRXs	
GU dual-mode 900MHz	8 GSM TRXs + 4 UMTS carriers	
GL dual-mode 900 MHz	8 GSM TRXs +1 LTE 10MHz 2T2R Cell	
GL dual-mode 1800 MHz	8 GSM TRXs +1 LTE 20MHz 2T4R Cell or	
GL dual-mode 1000 Mil 12	4 GSM TRXs + 2 LTE 20MHz 2T4R Cell	
UMTS single mode 2100	8 UMTS carriers (non-MIMO)	
MHz	4 UMTS carriers (MIMO)	
UL dual-mode 850MHz	4 UMTS carriers + 1 LTE 10MHz 2T2R/2T4R Cell	
UL dual-mode 900MHz	4 UMTS carriers + 1 LTE 10MHz 2T2R Cell	
UL dual-mode 1700MHz	4 UMTS carriers + 1 LTE 20MHz 2T2R/2T4R Cell	

UL dual-mode 2100 MHz/AWS	2 UMTS carriers (MIMO) + 2 LTE 20MHz 2T2R Cell, or 4 UMTS carriers (non-MIMO) + 1 LTE 20MHz 2T2R Cell
GUL multi-mode 900MHz	4 GSM TRXs + 2 UMTS carriers + 1 LTE 10MHz 2T2R Cell

3.2.3 ToC Output Power

Table 3-4 ToC Output Power

Туре	PA Output Power	TOC Output Power [1]
R8862A S7200 (AP700)	2*75W	2*60W
R8862A S7100	2*55 W	2*40 W
R8862A S7000	2*55 W	2*40 W
R8862A S8500	2*75W	2*60W
R8862A S9000	2*75W	2*60W
R8862A S1700	2*75W	2*60W
R8862A S1800	2*75W	2*60W
R8862A S2100	2*75W	2*60W
R8862A S2600	2*50W	2*40W
R8862A S2601	2*75W	2*60W

3.2.4 Bandwidth

R8862A supports all LTE bandwidth defined in 3GPP:

1.4M, 3M, 5M, 10M, 15M and 20MHz.

3.2.5 Receiver Sensitivity

The receiver sensitivity of R8862A is shown as following table.

-

¹ The TOC here means the max capability of the hardware. The specific TOC output power is limited by the license.

Mode	Frequency Spectrum(MHz)	Single Antenna (dBm)	Dual Antennas (dBm)	Four Antennas (dBm)
GSM	900/1800	-113.5	-116.1	N/A
LIMTO	2100	-126.5	-129.2	N/A
UMTS	900	-126.4	-129.1	N/A
LTE	710/700/AP700/ 850/900	-106.6	-109.4	-112.2
	AWS/1800/2100/ 2600	-106.4	-109.2	-112

Table 3-5 R8862A Receiver Sensitivity

3.3 Power Indices

3.3.1 Power Requirements

The following table describes the power supply and the fluctuation range.

Table 3-6 Power Supply

Item	Index	
Dower Supply	DC: -48 V (-37 V – -60 V DC)	
Power Supply	AC: 220 V / 110 V (100 V – 240 V AC)	

R8862A supports integrated lightning protection module for DC power supply. Its protection level is 20 KA.

3.3.2 Power Consumption

Power consumption of R8862A in UL dual-mode and LTE single mode are shown in the table below.

Table 3-7 R8862A Power Consumption in LTE Single Mode

Configuration: LTE single carrier, 2PA, 60W/LTE

Module	Average PC (W)	Peak PC (W)
R8862A S7200	220	440
R8862A S8500	210	430
R8862A S9000	210	415
R8862A S1800	220	370
R8862A S2100	210	440
R8862A S2601	240	470

Table 3-8 R8862A Power Consumption in LTE Single Mode

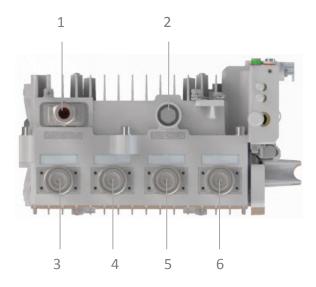
Configuration: LTE single carrier, 2PA, 40W/LTE		
Module	Average PC (W)	Peak PC (W)
R8862A S7100	210	400
R8862A S7000	210	400
R8862A S2600	230	430

Table 3-9 R8862A Power Consumption in U/L Dual-mode

Configuration: 4U+1L 2*2 MIMO, 2PA, 20W/LTE, 20W/UMTS		
Module Average PC (W) Peak PC (W)		
R8862A S2100	250	420

Table 3-10 R8862A Power Consumption in G/L Dual-mode

Configuration: 4G+1L 2*2 MIMO, 2PA, 20W/LTE, 20W/GSM		
Module Average PC (W) Peak PC (W)		
R8862A S9000	290	415
R8862A S1800	245	370


3.4 Interface Indices

The external interfaces of the R8862A are located at the bottom and on the front side of the chassis.

Figure 3-3 shows the external interfaces at the bottom of the R8862A chassis.

Figure 3-3 External Interfaces at the Bottom

For a description of the external interfaces at the bottom of the R8862A chassis, refer to Table 3-11.

Table 3-11 Description of the External Interfaces at the Bottom

No.	Label	Interface	Interface Type/Connector
		AISG equipment interface	
1	AISG/MON	MON external monitoring	DB15 connector
'	AIOO/MOIN	interface	DD10 connector
		LMT O&M Ethernet interface	
2	GND	Protective grounding interface	16 mm2 yellow-green round
	GND	Protective grounding interface	terminal
	ANT1	TV/DV automo interfere	FO O DIN made connector
3	(TX/RX)	TX/RX antenna interface	50 Ω DIN-mode connector
_			
4	ANT2 (RX)	RX antenna interface	50 Ω DIN-mode connector
5	ANT3 (RX)	RX antenna interface	50 Ω DIN-mode connector

No	. Label	Interface	Interface Type/Connector
6	ANT4 (TX/RX)	TX/RX antenna interface	50 Ω DIN-mode connector

Figure 3-4 shows the external interfaces on the right side of the R8862A chassis.

Figure 3-4 External Interfaces on the Right Side

For a description of the external interfaces on the right side of the R8862A chassis, refer to Table 3-12.

Table 3-12 Description of the External Interfaces on the Right Side

No.	Label	Interface	Interface Type/Connector
1	OPT1	Interface for communication between the RRU and a BBU, or RRU cascading interface	LC-type optical interface (IEC 874)
2	OPT2	RRU cascading interface	LC-type optical interface (IEC 874)
3	PWR	Power input interface	2-pin customized connector

Additionally, R8862A provides 6 LED indicators. The indicators on the R8862A panel indicate the operating status of the RRU. The indicators are located on the front side of the chassis, see Figure 3-5.

Figure 3-5 LED Indicators on the Panel

3.5 Transmission

R8862A is connected to BBU through CPRI interfaces. For more information about CPRI interfaces, refer to the following table.

Table 3-13 CPRI Interfaces

Item	Value	Interface Type	Speed	Standard
CPRI interface	2	SFP (LC)	6Gbps [2]	CPRI V4.2

3.6 Working Environment Indices

Table 3-14 Environment Indices

Item	Characteristics
Temperature	-40 to +55 °C
Relative Humidity	5% to 100%
Waterproof/Dustproof	IP65
Ground	\leq 5 Ω; earth resistance can be less than 10 Ω in thunder-less area where thunderstorm days is less than 20

² The speed here refers to the max capability of the hardware. The specific speed depends on the optical module configuration.

Item	Characteristics	
	per year.	

3.7 Electromagnetic Compatibility Indices

Table 3-15 Electromagnetic Compatibility Indices

Item	Characteristics	
Static Discharge	Contact Discharge: ±6000V	
Immunity	Air Discharge: ±8000V	
Surge Impact Immunity	DC Power port Line(Ground): ±2000V	

3.8 Reliability Indices

Table 3-16 R8862A Reliability Characteristics

Item	R8862A
MTBF	DC: ≥464,000 hours
	AC: ≥442,000 hours
MTTR	1 hour
Availability index	DC: ≥99.999784%
	AC: ≥99.999774%
Down duration	DC: ≤1.133 min/year
	AC: ≤1.189 min/year

4 Glossary

Abbreviations	Full Name
3GPP	3 rd Generation Partnership Project
BBU	Base Band processing Unit
BSP	Board Support Package
CAPEX	Capital Expenditure
CPRI	Common Public Radio Interface
DIF	Digital Intermediate Frequency
DL	Downlink
DFL	Duplexer & Filters
DPD	Digital Pre-Distortion
EUTRAN	Evolved Universal Mobile Telecommunications System
GSM	Global System for Mobile communications
HSPA+	HSPA Evolution
LMT	Local Maintenance Terminal
LNA	Low-Noise-Amplifier
LTE	Long Term Evolution
МСРА	Multi-Carrier Power Amplifier
MIMO	Multi Input Multi Output
MTBF	Mean Time Between Failures
MTTR	Mean Time To Recovery
OAM	Operating And Maintenance
OFDMA	Orthogonal Frequency Division Multiple Access
OPEX	Operation Expenditure
oss	Operation Support Sub-system
PA	Power Amplifier
PWR	Power
QTR	Quad-channel Transceiver
RF	Radio Frequency
RRU	Remote Radio Unit
SC-FDMA	Single Carrier Frequency Division Multiple Access

Abbreviations	Full Name
SDR	Software Defined Radio
ToC	Top of Cabinet
UE	User Equipment
UL	Uplink
UTRAN	UMTS Terrestrial Radio Access Network
VSWR	Voltage Standing Wave Ratio