

**Welink Your Smart** 

# Hardware Development Guide of Module Product

ZM8620\_V2

Version 2.3, 2014-04-15



Hardware Development Guide of Module Product

### **Legal Information**

By receiving the document from Shenzhen ZTEWelink Technology Co., Ltd (shortly referred to as ZTEWelink), you are deemed to have agreed to the following terms. If you don't agree to the following terms, please stop using the document.

Copyright © 2013 Shenzhen ZTEWelink Technology Co., Ltd. All rights reserved. The document contains ZTEWelink's proprietary information. Without the prior written permission of ZTEWelink, no entity or individual is allowed to reproduce, transfer, distribute, use and disclose this document or any image, table, data or other information contained in this document.

As the wholly-owned subsidiaries of ZTE, ZTEWelink is the professional company engaging in R&D,

manufacture and sales of wireless module product. **ZTEWelink** is the registered trademark of ZTEWelink. The name and logo of ZTEWelink are ZTEWelink's trademark or registered trademark. Meanwhile, ZTEWelink is a wholly-owned subsidiary of ZTE Corporation, and is granted to use ZTE Corporation's registered trademark. The other products or company names mentioned in this document are the trademark or registered trademark of their respective owner. Without the prior written permission of ZTEWelink or the third-party oblige, no one is allowed to read this document.

The product meets the design requirements of environmental protection and personal security. The storage, use or disposal of products should abide by the product manual, relevant contract or the laws and regulations of relevant country.

ZTEWelink reserves the right to make modifications on the product described in this document without prior notice, and keeps the right to revise or retrieve the document any time.

If you have any question about the manual, please consult the company or its distributors promptly.



# **Applicability Table**

Product

ZM8620\_V2EUD

ZM8620\_V2LAT

# **Revision History**

| Version | Date       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|---------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| V1.0    | 2013-02-22 | First published                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| V2.0    | 2013-03-20 | Delete the part of 4.8 in the former version, and change the head front cover, legal information and footer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|         | 2013-08-16 | <ol> <li>Modify the legal information</li> <li>Modify the part of 7.1.1</li> <li>Modify the format of footer and header</li> <li>Modify the figure of PIN Configuration Diagram</li> <li>Add the figure of PIN Distribution Diagram</li> <li>Add chapter 8 of Debugging Environment and Method</li> <li>Modify chapter 7 of Antenna</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| V2.1    | 2013-09-30 | <ol> <li>Modify the typical voltage of power supply to 3.8V</li> <li>Add the support of WinCE OS</li> <li>Update the Product Material Object Picture of Figure 2-1</li> <li>Modify the support of GPRS Class B in Table 2-1</li> <li>Modify the Specification of SIM interface in Table 2-1</li> <li>Modify the pin NO. of USIM in Table 4-4</li> <li>Modify the Figure of (U)SIM Card Signal Connection Circuit</li> <li>Modify the support of MMS, RAS, phonebook, network lock, and USSD in Table 2-1</li> <li>Add the Figure 4-4 of Module Serial Port &amp; AP Application Processor</li> <li>Add the Table 4-6 of Definition of UART Signal</li> <li>Add 4.10 of W_DISABLE_N Signal</li> <li>Modify chapter 5.3 of Resetting Flow</li> <li>Delete the part of Power-on/Resetting Period</li> <li>Complete and modify Table 4-2 of PIN Interface Definition</li> </ol> |  |
|         | 2013-10-11 | <ul><li>23. Add chapter 4.8 of SPI Interface</li><li>24. Add chapter 6 of Related Test &amp; Testing Standard</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|         | 2013-12-12 | <ol> <li>25. Add Contact Information</li> <li>26. Modify Power-on/Resetting Period in chapter 5</li> <li>27. Add the document in table List for Supported&amp; Related Documents</li> <li>28. Modify LTE TDD in Technical Standard to DL 50Mbps / UL 25Mbps (10MHz) in Table 2-1</li> <li>29. Modify the RxDiv Band in Table 2-1</li> <li>30. Add the power consumption in the mode of UMTS/LTE in</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

| Version | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chapter 5.1<br>31. Modify the antenna interface to MHF-A13 of I-PEX                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| V2.2    | <ol> <li>Modify the typical voltage of power supply to 3.3V, and the range to 3.1-3.6V</li> <li>Modify the the Profile Dimensions in Figure 8-1 and The PC layout is shown in the Figure 8-2.</li> <li>Modify the antenna interface to U.FL-R-SMT-1(80)(HRS ECT818000071(ECT)</li> <li>Modify the pins in chapter 4.1</li> <li>Modify the chapter 4.6 of UART interface</li> <li>Update the format and template of the document</li> <li>Update the Product Material Object Picture in Figure 2-1</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| V2.3    | 2014-04-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ol> <li>Update the document as the hardware development guide of module ZM8620_V2</li> <li>Add the difference between the module ZM8620_V2 and ZM8620.</li> <li>Update the bands information of two variants ZM8620_V2EUD and ZM8620_V2LAT</li> <li>Modify the Figure in chapter of UART electric feature</li> <li>Add the chapter of 10 and 11</li> <li>Update the Overview of Major Technical Parameters in Table 2–2</li> </ol> |  |  |

Note: Because of ZTEWelink ZM8620\_V2 module is still under revision to improve its performances, the present document could be subject to revisions without notice.



# **Contact Information**

| Post   | 9/F, Tower A, Hans Innovation Mansion,<br>North Ring Rd., No.9018, Hi-Tech Industrial Park,<br>Nanshan District, Shenzhen, P.R.China. |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|
| Web    | www.ztewelink.com                                                                                                                     |
| Phone  | +86-755-86360200-8679                                                                                                                 |
| E-Mail | ztewelink@zte.com.cn                                                                                                                  |

Note: Consult our website for up-to-date product descriptions, documentation, application notes, firmware upgrades, troubleshooting tips, and press releases

Besides, ZTEWelink provides various technical support ways to the customers, such as support by phone, website, instant messaging, E-mail and on-site.



# Contents

| LE | LEGAL INFORMATIONI |      |                                  |
|----|--------------------|------|----------------------------------|
| 1  | A                  | BOUT | T THIS DOCUMENT1                 |
|    | 1.1                | App  | lication Range1                  |
|    | 1.2                | Purp | bose                             |
|    | 1.3                | Sup  | ported & Reference Document List |
|    | 1.4                | Abb  | reviations2                      |
| 2  | PI                 | RODI | JCT OVERVIEW                     |
|    | 2.1                | Proc | luct Technical Parameter         |
|    | 2.2                | Fun  | ction Overview7                  |
|    | 2.                 | 2.1  | Baseband Function7               |
|    | 2.                 | 2.2  | Radio Frequency Function7        |
| 3  | М                  | ECH  | ANIC FEATURE                     |
|    | 3.1                | Dim  | ensions and Interface            |
|    | 3.2                | Ante | enna Interface                   |
|    | 3.3                | The  | rmal Design                      |
| 4  | PI                 | N DE | SCRIPTION                        |
|    | 4.1                | Dim  | ensions and Interface            |
|    | 4.                 | 1.1  | Definition of PIN I/O Parameters |
|    | 4.                 | 1.2  | PIN Configuration Diagram14      |
|    | 4.                 | 1.3  | PIN Description                  |
|    | 4.2                | Feat | ure of Interface Power Level     |
|    | 4.                 | 2.1  | Power Level of IO Interface      |
|    | 4.3                | Pow  | er Interface                     |
|    | 4.                 | 3.1  | Description of Power PINs        |
|    | 4.                 | 3.2  | Requirement of Power Supply19    |
|    | 4.4                | (U)S | SIM Card Interface               |
|    | 4.                 | 4.1  | Description of PINs              |

Hardware Development Guide of Module Product

|   |      | 4.4.2  | Electric Feature                                  | 20 |
|---|------|--------|---------------------------------------------------|----|
|   | 4.5  | USB    | 2.0 Interface                                     | 20 |
|   |      | 4.5.1  | Description of PINs                               | 20 |
|   |      | 4.5.2  | Electric Feature                                  | 21 |
|   | 4.6  | UAR    | T Interface                                       | 21 |
|   |      | 4.6.1  | Description of PINs                               | 21 |
|   |      | 4.6.2  | Electric Feature                                  | 22 |
|   | 4.7  | SPI I  | nterface                                          | 23 |
|   | 4.8  | Rese   | t Signal PERST#                                   | 24 |
|   | 4.9  | WAK    | KE# Signal                                        | 24 |
|   | 4.10 | ) W_D  | DISABLE_N Signal                                  | 25 |
|   | 4.11 | l Reco | mmended Upgrade Methods                           | 26 |
| 5 |      | ELECT  | RIC FEATURE                                       | 27 |
|   | 5.1  | Powe   | er Feature                                        | 27 |
|   |      | 5.1.1  | Power Supply                                      | 27 |
|   |      | 5.1.2  | Working Current                                   | 27 |
|   | 5.2  | Powe   | er-on/Resetting Flow                              | 28 |
|   | 5.3  | Rese   | tting Flow                                        | 29 |
| 6 |      | RELATE | ED TEST & TESTING STANDARD                        | 30 |
|   | 6.1  | Testi  | ng Reference                                      | 30 |
|   | 6.2  | Desc   | ription of Testing Environment                    | 30 |
|   | 6.3  | Relia  | bility Testing Environment                        | 31 |
|   | 6.4  | Relia  | bility Test Result                                | 32 |
| 7 |      | RF SPE |                                                   | 34 |
|   | 7.1  | Tech   | nical Specification for UMTS Mode Radio Frequency | 34 |
|   |      | 7.1.1  | Maximum Transmission Power                        | 34 |
|   |      | 7.1.2  | Receiving Sensitivity                             | 34 |
|   |      | 7.1.3  | Spurious Specification                            | 35 |
|   | 7.2  | Tech   | nical Specification of GSM Mode Radio Frequency   | 35 |

# ZTE Welink

Hardware Development Guide of Module Product

|   |            | 7.2.1                                                                         | Maximum Transmission Power                                                                                                                                           |  |
|---|------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   |            | 7.2.2                                                                         | Receiving Sensitivity                                                                                                                                                |  |
|   | 7.3        | B Tech                                                                        | nical Specification of LTE Mode Radio Frequency                                                                                                                      |  |
|   |            | 7.3.1                                                                         | Maximum Transmission Power                                                                                                                                           |  |
|   |            | 7.3.2                                                                         | Receiving Sensitivity                                                                                                                                                |  |
|   |            | 7.3.3                                                                         | Spurious Specification                                                                                                                                               |  |
| 8 |            | ANTEN                                                                         | INA 41                                                                                                                                                               |  |
|   | 8.1        | RF                                                                            | Antenna Specification                                                                                                                                                |  |
|   |            | 8.1.1                                                                         | Technical Parameter for the Main Antenna Connector                                                                                                                   |  |
|   | 8.2        | 2 Prop                                                                        | bosal on Layout of Product in Terminal Product                                                                                                                       |  |
|   | 8.3        | 3 Ante                                                                        | enna Dimensions and Location                                                                                                                                         |  |
|   | 8.4        | l Dive                                                                        | ersity Antenna Design                                                                                                                                                |  |
|   |            |                                                                               |                                                                                                                                                                      |  |
| 9 |            | DEBUG                                                                         | GGING ENVIRONMENT AND METHOD                                                                                                                                         |  |
| 9 | 9.1        |                                                                               | GGING ENVIRONMENT AND METHOD                                                                                                                                         |  |
| 9 | 9.1<br>9.2 | Deb                                                                           |                                                                                                                                                                      |  |
| 9 |            | Deb                                                                           | ugging Board                                                                                                                                                         |  |
| 9 |            | Deb<br>2. Inte                                                                | ugging Board                                                                                                                                                         |  |
| 9 |            | Deb<br>2 Inte<br>9.2.1                                                        | ugging Board                                                                                                                                                         |  |
| 9 |            | Deb<br>2 Inte<br>9.2.1<br>9.2.2                                               | ugging Board                                                                                                                                                         |  |
| 9 |            | Deb<br>2 Inte<br>9.2.1<br>9.2.2<br>9.2.3                                      | ugging Board                                                                                                                                                         |  |
| 9 |            | Deb<br>Inte<br>9.2.1<br>9.2.2<br>9.2.3<br>9.2.4                               | ugging Board44faces on Debugging Board45JTAG Interface45USB Interface45Power-supply Interface45USIM Card Console Interface46                                         |  |
| 9 |            | Deb<br>2 Inte<br>9.2.1<br>9.2.2<br>9.2.3<br>9.2.4<br>9.2.5                    | ugging Board44faces on Debugging Board45JTAG Interface45USB Interface45Power-supply Interface45USIM Card Console Interface46PON_RESET_N Button46                     |  |
| 9 | 9.2        | Deb<br>2 Inter<br>9.2.1<br>9.2.2<br>9.2.3<br>9.2.4<br>9.2.5<br>9.2.6<br>9.2.7 | ugging Board44faces on Debugging Board45JTAG Interface45USB Interface45Power-supply Interface45USIM Card Console Interface46PON_RESET_N Button46W_DISABLE_N Button46 |  |

Hardware Development Guide of Module Product

# Figures

| Figure 2–1  | Product Material Object Picture                                  | 4  |
|-------------|------------------------------------------------------------------|----|
| Figure 2–2  | System Connection Diagram                                        | 7  |
| Figure 3–1  | PCI Express Mini Card Dimensions Type and Slot Compatibility     |    |
| Figure 3–2  | Antenna Interface Flag Diagram (with Diversity)                  |    |
| Figure 3–3  | Radio Frequency Interface Test Base                              |    |
| Figure 4–1  | PIN Distribution Diagram                                         | 15 |
| Figure 4–2  | PIN Configuration Diagram                                        | 15 |
| Figure 4–3  | (U)SIM Card Signal Connection Circuit                            | 19 |
| Figure 4–4  | Module Serial Port & AP Application Processor                    |    |
| Figure 4–5  | The connection of ZM8620_V2 UART and Standard RS-232-C interface | 23 |
| Figure 4–6  | Reference Circuit Design of PERST# Signal                        |    |
| Figure 4–7  | Reference Connection Circuit of WAKE# Signal                     | 25 |
| Figure 4–8  | Reference Circuit Design of W_DISABLE_N Signal                   |    |
| Figure 5–1  | Module Reset Flow                                                |    |
| Figure 8–1  | the Profile Dimensions                                           | 41 |
| Figure 8–2  | Recommended PCB layout                                           |    |
| Figure 9–1  | The diagram for the switching board                              | 44 |
| Figure 9–2  | Debugging Board                                                  | 45 |
| Figure 10–1 | Package process of ZM8620_V2 modules                             | 47 |

Hardware Development Guide of Module Product

# Tables

| Table 1–1  | List for Supported& Related Documents                             | 1   |
|------------|-------------------------------------------------------------------|-----|
| Table 1–2  | Abbreviation List                                                 | 2   |
| Table 2–1  | The bands informaiton of ZM8620_V2 module                         | 3   |
| Table 2–2  | Overview of Major Technical Parameters                            | 4   |
| Table 2–3  | Product Operating Frequency Band                                  | 8   |
| Table 3–1  | PCI Express Mini Card                                             | 9   |
| Table 4–1  | PIN Parameters                                                    | .14 |
| Table 4–2  | PIN Interface Definition                                          | .15 |
| Table 4–3  | Power Level Range of Digital Signal                               | .18 |
| Table 4–4  | Definition & Description of (U) SIM Card Signal Group             | .20 |
| Table 4–5  | Definition of UART Signal                                         | .21 |
| Table 4–6  | Definition and Description of SPI Control Signal Group            | .23 |
| Table 4–7  | Definition and Description of PERST# Signal                       | .24 |
| Table 4–8  | Definition and Description of W_DISABLE_N Signal                  | .25 |
| Table 5–1  | Input Voltages                                                    | .27 |
| Table 5–2  | Averaged standby DC power consumption                             | .27 |
| Table 5–3  | DC power consumption in UMTS mode                                 | .27 |
| Table 5–4  | DC power consumption in LTE mode (Unit: mA)                       | .28 |
| Table 5–5  | Power-on/Resetting Period                                         | .28 |
| Table 6–1  | Testing Standard                                                  | .30 |
| Table 6–2  | Testing Environment                                               | .31 |
| Table 6–3  | Testing Instrument & Device                                       | .31 |
| Table 6–4  | Reliability Feature                                               | .31 |
| Table 6–5  | Temperature Testing Result under Windless Environment             | .32 |
| Table 6–6  | Test Results of High/low Temperature Running and Reliability Test | .33 |
| Table 7–1  | Maximum Transmission Power                                        | .34 |
| Table 7–2  | Receiving Sensitivity Reference Table                             | .34 |
| Table 7–3  | General Requirement of Receiver Spurious Emission                 | .35 |
| Table 7–4  | Additional Spurious Emission Requirement                          | .35 |
| Table 7–5  | Maximum Transmission Power                                        | .35 |
| Table 7–6  | Reference Table of Receiving Sensitivity                          | .36 |
| Table 7–7  | Maximum Transmission Power                                        | .36 |
| Table 7–8  | Receiving Sensitivity Reference Table                             | .37 |
| Table 7–9  | General Requirement of Receiver Spurious Emission                 | .38 |
| Table 7–10 | UE Co-existence Spurious Emission Requirement                     | .38 |

Hardware Development Guide of Module Product

# **1** About This Document

# **1.1** Application Range

This document is applicable as the hardware development guide of ZM8620\_V2 LTE module product. The user can conduct secondary development according to the requirement and guidance in this document. And it is only applicable for the hardware application development based on the use of ZM8620\_V2 module product.

## 1.2 Purpose

This document provides the design and development fundamentals for the users of ZM8620\_V2. By reading this document, the user can have an overall knowledge of this product, and a clear understanding of the technical parameters, hardware interfaces, electrical and mechanical details of this product. With this document, the user can use ZM8620\_V2 successfully fulfill the wireless communication function development of M2M applications including Wireless POS, mobile terminal products such as Tablet, Notepad etc.

# **1.3 Supported & Reference Document List**

Besides this hardware development document, ZTEWelink also provides the software development guide. Table 1-1 is the list of supported documents.

| NUM | Document Name                                                                                                                           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1   | ZTEWelink Software Development Guide of LTE Module Products-V2.3.pdf                                                                    |
| 2   | ZTEWelink ZM8620_V2 Module Specification.pdf                                                                                            |
| 3   | AT Command reference guide for ZTEWelink LTE Module.pdf                                                                                 |
| 4   | 3GPP LTE 36.101 protocol (Evolved Universal Terrestrial Radio Access<br>(E-UTRA); User Equipment (UE) radio transmission and reception) |

 Table 1–1
 List for Supported& Related Documents

5

3GPP TS 34.121 protocol

# 1.4 Abbreviations

Table 1-2 is a list of the relevant abbreviations, and interpretations in Chinese and English involved in the whole document.

| Abbreviations | English full name                           |
|---------------|---------------------------------------------|
| BER           | Bit Error Rate                              |
| DCE           | Data circuit-terminating equipment          |
| DL            | Downlink                                    |
| DTE           | Data terminal equipment                     |
| DTR           | Data terminal ready                         |
| DPCH          | Dedicated Physical Channel                  |
| DPCH_Ec       | Average energy per PN chip for DPCH. DPCH   |
| EMC           | Electromagnetic compatibility               |
| ESD           | Electro-Static discharge                    |
| FDD           | Frequency Division Duplexing                |
| GPRS          | General Packet Radio Service                |
| GSM           | Global Standard for Mobile Communications   |
| I/O           | Input/output                                |
| LED           | Light Emitting Diode                        |
| РСВ           | Printed Circuit Board                       |
| SIM           | Subscriber Identification Module            |
| SMS           | Short Message Service                       |
| SPI           | Serial Peripheral Interface                 |
| UART          | Universal asynchronous receiver-transmitter |
| UMTS          | Universal Mobile Telecommunication System   |
| USB           | Universal Serial Bus                        |
| WCDMA         | Wideband Code Division Multi Access         |

Table 1–2 Abbreviation List

Hardware Development Guide of Module Product

# **2** Product Overview

ZM8620\_V2 is a multimode wireless communication module with mini-PCIE express interface, which can be applied in but not limited to equipment such as Tablet, Vehicle Mounted Terminals, CPE and electronic consumer products, and provides equipment with high-speed data access service in mobile environment (LTE FDD, UTMS and GSM network).

ZM8620\_V2contains two variants ZM8620\_V2EUD and ZM8620\_V2LAT. Customer can choose the dedicated type based on the wireless network configuration. The following table shows the entire radio band configuration of ZM8620\_V2series.

|         | BAND     | ZM8620_V2EUD | ZM8620_V2LAT |
|---------|----------|--------------|--------------|
|         | BAND 1   | $\checkmark$ | $\checkmark$ |
|         | BAND 2   |              | $\checkmark$ |
|         | BAND 3   | $\checkmark$ |              |
|         | BAND 4   |              | $\checkmark$ |
| FDD-LTE | BAND 5   |              | $\checkmark$ |
|         | BAND 7   | $\checkmark$ | $\checkmark$ |
|         | BAND 8   | $\checkmark$ | $\checkmark$ |
|         | BAND12   |              | $\checkmark$ |
|         | BAND 20  | $\checkmark$ |              |
|         | BAND 38  |              | $\checkmark$ |
| TD-LTE  | BAND 40  | $\checkmark$ |              |
|         | BAND 1   | $\checkmark$ | $\checkmark$ |
|         | BAND 2   | $\checkmark$ | $\checkmark$ |
| UMTS    | BAND 4   |              | $\checkmark$ |
|         | BAND 5   | $\checkmark$ | $\checkmark$ |
|         | BAND 8   | $\checkmark$ | $\checkmark$ |
| GSM     | Quadband | $\checkmark$ | $\checkmark$ |

Table 2–1The bands information of ZM8620\_V2 module

### NOTE:

In the Table 2-1 " $\sqrt{}$ " means the band is supported by module ZM8620\_V2, while "--" means not supported

The Figure 2-1 below shows the product material object picture.

# ZTE Welink

Hardware Development Guide of Module Product

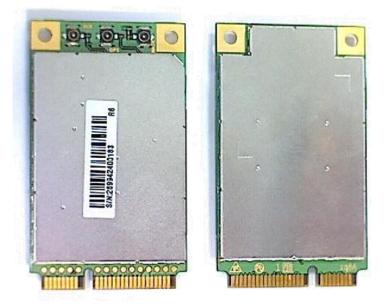



Figure 2–1 Product Material Object Picture

# 2.1 Product Technical Parameter

The major features of ZM8620\_V2 can be described from the aspects of mechanic feature, base band, radio frequency, technical standard and environment feature. Table 2-2 is a list of the major technical parameters and features supported by ZM8620\_V2.

| Item                       | Feature                                | Specifications                |
|----------------------------|----------------------------------------|-------------------------------|
|                            | Dimensions                             | 51mm x 30mm x 4.9mm           |
| Mechanic<br>Specifications | Weight                                 | About 11g                     |
| Specifications             | Form Factor                            | Mini-PCIE package(52Pin)      |
|                            | (U)SIM/SIM                             | 3V SIM card and 1.8V SIM card |
|                            | Memory(SDRAM/<br>NAND)                 | 128MByte & 256MByte           |
|                            | MICRO SD Card                          | No memory card support        |
| Decelored                  | USB Version                            | USB 2.0 HIGH SPEED            |
| Baseband                   | UART Interface                         | Yes                           |
|                            | Reset/Power_on/Po<br>wer_off interface | Yes                           |
|                            | SPI Interface                          | Yes                           |
|                            | Maximum power                          | TBD                           |

Table 2–2Overview of Major Technical Parameters

# ZTE Welink

Item Feature Specifications consumption Typical is 3.3V, the range is 3.4-3.6V Power supply Peak current About 2.5A Working current Average normal working current TBD Standby current TBD Yes, Module can output the signal to control the LED of the main LED Control board GSM Band EDGE/GPRS/GSM: 1900/1800/900/850MHz CDMA Band N/A RF switch RF switch controlled by AT command UMTS: 2100/1900/850/900MHz ZM8620\_V2EUD LTE FDD: Band 1,3,7,8,20 LTE TDD: Band 40 **RxDiv Band** UMTS: 2100/1900/1700/850/900MHz LTE FDD: Band 1,2,4,5,7,8,14089 ZM8620\_V2LAT LTE TDD: Band 38 WCDMA/HSDPA 2100/1900/1700/850/900MHz: Power Class 3 (+24dBm+1/-3dB)LTE FDD: 2600/2100/1900/1700/900/850/700MHz Power Class 3 (+23dBm +2.7/-2.7dB) LTE TDD: Band 38 Power Class 3 (+23dBm +2.7/-2.7dB) Max. transmitter RF GSM/GPRS 850MHz/900MHz: Power Class 4 (+33dBm±2dBm) power GSM/GPRS 1800MHz/1900MHz: Power Class 1 (+30dBm±2 dBm) EDGE 850MHz/900MHz: Power Class E2 (+27dBm ±3dBm) EDGE 1800MHz/1900MHz: Power Class E2 (+26dBm -4/+3dBm) UMTS2100/1700: ≤-106.7 dBm UMTS1900/850: ≤-104.7 dBm UMTS900: ≤-103.7 dBm LTE 2600/1900: ≤-92dBm(20 MHz) Receiving LTE 2100/1700: ≤-94dBm(20 MHz) sensitivity LTE 900/700: ≤-94dBm(10 MHz) LTE 850: ≤-95dBm(10 MHz) LTE Band 38: ≤-94dBm(20 MHz) GSM850/900/1800/1900: ≤-102dBm

Hardware Development Guide of Module Product

# ZTE Welink

Hardware Development Guide of Module Product

| Item                  | Feature                            | Specifications                                                                                                                                              |                               |  |
|-----------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
|                       | Equalization                       | Yes                                                                                                                                                         |                               |  |
|                       | Main Antenna                       | Provide external main Antenna In                                                                                                                            | nterface of RF connector mode |  |
|                       | GPS Antenna                        | Provide external GPS Antenna In                                                                                                                             | terface of RF connector mode  |  |
|                       | Receive Diversity<br>Antenna       | Provide external Diversity Antenna Interface of RF connector mode                                                                                           |                               |  |
|                       | LTE TDD                            | DL 50Mbps / UL 25Mbps (10MHz)                                                                                                                               |                               |  |
| Technical<br>Standard | GSM/EDGE/WCD<br>MA                 | GSM CS: UL 9.6kbps/DL 9.6kbps<br>GPRS: Multi-slot Class 10<br>EDGE: Multi-slot Class 12<br>WCDMA CS: UL 64kbps/DL 64kbps<br>WCDMA PS: UL 384kbps/DL 384kbps |                               |  |
|                       | HSDPA/HSUPA/<br>HSPA+/<br>DC-HSPA+ | HSDPA Rel 6: DL 14.4Mb/s<br>HSUPA Rel 6: UL 5.76Mb/s<br>HSPA+ Rel 7: DL 28/UL 5.76Mb/s<br>DC-HSPA+ Rel 8: DL 42/UL 5.76 Mb/s                                |                               |  |
|                       | CDMA 1xEV-DO                       | N/A                                                                                                                                                         |                               |  |
|                       | LTE-FDD                            | DL 100Mbps / UL 50Mbps (Category 3)                                                                                                                         |                               |  |
|                       | 3GPP Release                       | R99, R5, R6, R7, R8(HSPA+),R9(FDD)                                                                                                                          |                               |  |
|                       | OS                                 | Windows XP/Vista/7/8, Android, Linux, WinCE                                                                                                                 |                               |  |
|                       | GPRS Class                         | Class A                                                                                                                                                     |                               |  |
|                       | Operating<br>Temperature           | -10 to 60 °C                                                                                                                                                |                               |  |
| Environment           | Storage<br>Temperature             | -40 to 85 °C                                                                                                                                                |                               |  |
|                       | Humidity                           | 5%~95%                                                                                                                                                      |                               |  |
|                       |                                    | RAS                                                                                                                                                         | Yes                           |  |
|                       | DATA                               | ECM                                                                                                                                                         | Yes                           |  |
|                       |                                    | NDIS                                                                                                                                                        | Yes                           |  |
|                       | SMS                                | Yes                                                                                                                                                         |                               |  |
| Application           | MMS                                | Yes, not support embedded MMS stack                                                                                                                         |                               |  |
|                       | STK                                | No                                                                                                                                                          |                               |  |
|                       | TCP/IP                             | No                                                                                                                                                          |                               |  |
|                       | USSD                               | Yes (Phase I & Phase II)                                                                                                                                    |                               |  |
|                       | Phonebook                          | Yes                                                                                                                                                         |                               |  |
|                       |                                    |                                                                                                                                                             |                               |  |

| Item | Feature         | Specifications |
|------|-----------------|----------------|
|      | NETWORK<br>LOCK | No             |
|      | BAND LOCK       | Yes            |
|      | SIM Reader      | Yes            |
|      | Firmware Update | Yes            |
|      | GPS/AGPS        | Yes            |

## 2.2 Function Overview

### 2.2.1 Baseband Function

When connect the module product ZM8620\_V2 to the system board, there are several main signal groups as follows: USB signal, SIM card signal, UART signal, GPIO signal, SPI signal, power on and resetting signal, wakeup signal, power supply and ground. At the same time, ZM8620\_V2 has the main antenna interface, diversity antenna interface, and GPS antenna interface.

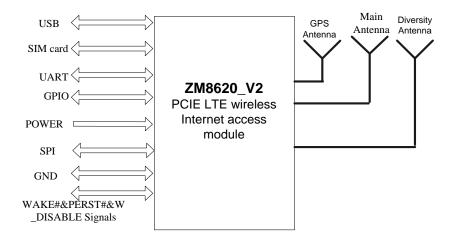



Figure 2–2 System Connection Diagram

### 2.2.2 Radio Frequency Function

The radio frequency function of ZM8620\_V2 can be viewed from the aspect of over-the-air wireless bearer network, frequency band, whether receive diversity feature is supported.

(a) Support LTE FDD, LTE TDD, UMTS;

- (b) Support GSM 850/900/1800/1900 MHz;
- (c) Support the diversity receives;

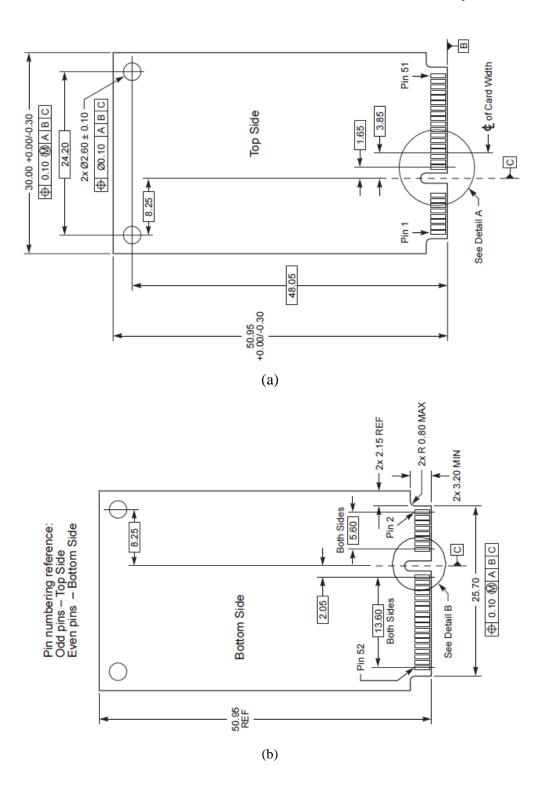
The operating frequencies of module ZM8620\_V2 are shown as Table 2-3.

| Operating Frequency<br>Band | Uplink Frequency Band<br>(Uplink) | Downlink Frequency Band<br>(Downlink) |
|-----------------------------|-----------------------------------|---------------------------------------|
| UMTS850                     | 824 MHz — 849 MHz                 | 869 MHz — 894 MHz                     |
| UMTS900                     | 880 MHz — 915 MHz                 | 925 MHz — 960 MHz                     |
| UMTS1700                    | 1710 MHz — 1755MHz                | 2110 MHz — 2155MHz                    |
| UMTS1900                    | 1850 MHz — 1910 MHz               | 1930 MHz — 1990 MHz                   |
| UMTS2100                    | 1920 MHz — 1980 MHz               | 2110 MHz — 2170 MHz                   |
| GSM1900                     | 1850 MHz — 1910 MHz               | 1930 MHz — 1990 MHz                   |
| GSM850                      | 824 MHz — 849 MHz                 | 869 MHz — 894 MHz                     |
| GSM900                      | 890 MHz — 915MHz                  | 935 MHz — 960MHz                      |
| GSM1800                     | 1710 MHz — 1785MHz                | 1805 MHz — 1880MHz                    |
| LTE-FDD Band17              | 788 MHz — 798 MHz                 | 734 MHz — 746 MHz                     |
| LTE-FDD Band5               | 824 MHz — 849MHz                  | 869 MHz — 894 MHz                     |
| LTE-FDD Band8               | 880 MHz — 915 MHz                 | 925 MHz — 960 MHz                     |
| LTE-FDD Band4               | 1710 MHz — 1755MHz                | 2110 MHz — 2155 MHz                   |
| LTE-FDD Band2               | 1850 MHz — 1910MHz                | 1930 MHz — 1990MHz                    |
| LTE-FDD Band1               | 1920 MHz — 1980 MHz               | 2110 MHz — 2170 MHz                   |
| LTE-FDD Band7               | 2500 MHz — 2570MHz                | 2620 MHz — 2690MHz                    |
| LTE-TDD Band38              | 2570 MHz — 2620MHz                | 2570 MHz — 2620MHz                    |

| Table 2–3 | Product Operating Frequency Band |
|-----------|----------------------------------|
|-----------|----------------------------------|

# ZTE Welink

# **3** Mechanic Feature


# **3.1** Dimensions and Interface

This product adopts the standard PCI Express Mini Card interface type, and the contour size is designed according to F1 type. Figure 3-1 illustrates the dimensions and slot compatibility of PCI Express Mini Card.

Users of this module can refer to the document named PCI Express Mini Card Electromechanical Specification Revision 1.2, October 26 2007 for the detail of PCIE interface.

| Card Type |                                            | Full-Mini-<br>Only Socket | Half-Mini-<br>Only Socket | Dual-Use<br>Socket | Dual Head-to-Head<br>Socket |           |
|-----------|--------------------------------------------|---------------------------|---------------------------|--------------------|-----------------------------|-----------|
| Card      | Гтуре                                      | Connector                 | Connector                 | Connector          | Connector                   | Connector |
|           |                                            | Α                         | Α                         | Α                  | Α                           | В         |
| <b>F1</b> | Full-Mini                                  | Yes                       | No                        | No                 | No                          | No        |
| F2        | Full-Mini with<br>bottom-side keep<br>outs | Yes                       | No                        | Yes                | Yes                         | No        |
| F3        | Half-Mini                                  | No                        | Yes                       | Yes                | Yes                         | No        |
| F4        | Half-Mini with<br>bottom-side keep<br>outs | No                        | Yes                       | Yes                | Yes                         | Yes       |

Hardware Development Guide of Module Product



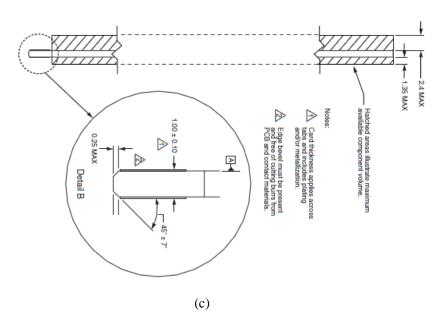



Figure 3–1 PCI Express Mini Card Dimensions Type and Slot Compatibility

Figure (a) is TOP surface dimensions; Figure (b) is BOTTOM surface dimensions; Figure (c) is thickness information.

## 3.2 Antenna Interface

This product has three radio frequency antenna interfaces: One is the main antenna interface (there is the "MAIN" flag on the PCB), one is a diversity receiving antenna (diversity optional) interface (there is "AUX" flag on the PCB), and one is GPS antenna, as shown in Figure 3-2. The radio frequency bases adopted by the antenna interface of ZM8620\_V2 module are all U.FL-R-SMT-1(80)(HRS)/ECT818000071(ECT) at present as shown in Figure 3-3.

NOTE:

The radio frequency bases adopted by the antenna interface of ZM8620\_V2 module is U.FL-R-SMT-1(80)(HRS)/ECT818000071(ECT) at present instead of adopting 20429-001E MHF-A13 of I-PEX by ZM8620 before.

# ZTE Welink

#### Hardware Development Guide of Module Product



Figure 3–2 Antenna Interface Flag Diagram (with Diversity)

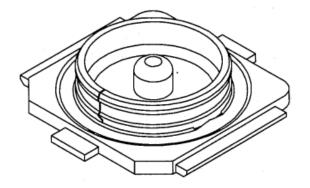



Figure 3–3 Radio Frequency Interface Test Base

This product antenna is placed on the side of the system board. If this product is embedded in a notebook, place it on the top of the LCD screen.

# 3.3 Thermal Design

The thermal design of this product strictly complies with the specification [PCI Express Mini Card Electromechanical Specification Revision 1.2, October 26, 2007], and distributes the heat source evenly, and has excellent heat dissipating design. As the maximum power consumption of the overall system is very high when transmitting, if it is impossible to ensure the temperature of ZM8620\_V2 less than 60 C, the rise of the overall system temperature will lead to the performance degradation of ZM8620\_V2, or even not operate normally. In order to ensure product performance, safety and stability, the following proposals are provided for the main board design:

(a) Locate the module far away from the switch power and high-speed signal cable as much as

possible. Well protect the wiring of the interference sources.

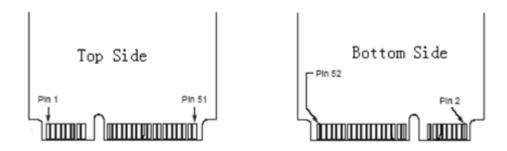
- (b) The antenna, and the coaxial cable connecting the network cable and the antenna, cannot be located close the interference sources.
- (c) Do not locate the module close to devices with large heat dissipation, such as CPU, south bridge, etc. The high temperature will affect the RF performance.

# **4** Pin Description

ZTE Welink

## 4.1 Dimensions and Interface

### 4.1.1 Definition of PIN I/O Parameters


The definition of the module's I/O parameter is as shown in Table 4-1.

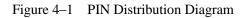

| PIN Attribute | Description                                     |
|---------------|-------------------------------------------------|
| AI            | Analog signal input                             |
| AO            | Analog signal output                            |
| В             | bidirectional digital with CMOS input           |
| DI            | Digital signal input                            |
| DO            | Digital signal output                           |
| Z             | High-resistance output                          |
| P1            | PIN group 1, the power supply voltage is VDD_P1 |
| P2            | PIN group 2, the power supply voltage is VDD_P2 |
| PU            | PIN internal pull-up                            |
| PD            | PIN internal pull-down                          |

Table 4–1 PIN Parameters

### 4.1.2 PIN Configuration Diagram

The PIN sequence of interfaces on the module is following the mini-PCIE interface and defined as shown in Figure 4-2.





|           | 1  |                        |           |                     |                           |
|-----------|----|------------------------|-----------|---------------------|---------------------------|
| WAKE #    | -1 |                        |           | 3V3VAUX[0]          | <u>2 VDD_</u> 3V3         |
| SPI_SDI   | 3  | COEX1                  |           | GND[0]              | 4 <u>G</u> ND             |
| SPI_SDO   | 5  | COEX2                  |           | 1V5[0]              | <u> </u>                  |
| SPI_CLK   | _7 | CLKREQ*                |           |                     | 8 VREG_UIM                |
| GND       | 9  | GND[1]                 |           | UIM_PWR<br>UIM DATA | <u> </u>                  |
| UART1_RX  | 11 | REFCLK-                |           | UIM CLK             | <u>12</u> UIM_CLK         |
| UART1_TX  | 13 | REFCLK+                |           | UIM_RESET           | <u>    14    </u> UIM_RST |
| GND       | 15 | GND[2]                 |           | UIM_VPP             | <u>16</u> UART1_DSR       |
| UART1_RI  | 17 | RESERVED5_UIM_C8       |           | GND[3]              | 18 GND                    |
| GPIO_79   | 19 | RESERVED4_UIM_C4       |           | W DISABLE*          | 20 W_DISABLE_N            |
| GND       | 21 | GND[4]                 |           | PERST*              | 22 perst#                 |
| UART1_CTS | 23 | PERNO                  |           | 3V3VAUX[1]          | 24 VDD_3V3                |
| UART1_RFR | 25 | PERPO                  |           | GND[5]              | 26 GND                    |
| GND       | 27 | GND[6]                 | ZM8620_V2 | 1V5[1]              | 28 GPIO                   |
| GND       | 29 | GND[7]                 |           |                     | <u>30</u> NC              |
| UART1_DTR | 31 | PETNO                  |           | SMB_CLK             | 32 NC                     |
| UART1_DCD | 33 | PETPO                  |           | SMB_DATA<br>GND[8]  | 34 GND                    |
| GND       | 35 | GND[9]                 |           | USB D-              | <u>36 USB</u> DM          |
| GND       | 37 | GND[10]                |           | USB_D+              | <u>38 USB</u> DP          |
| VDD_3V3   | 39 | 3V3VAUX[2]             |           |                     | <u>40 G</u> ND            |
| VDD_3V3   | 41 | 3V3VAUX[2]             |           |                     | 42 LED_PWR                |
| GND       | 43 | GND[12]                |           | LED_WWAN*           | 44 NC                     |
| RESERVED  | 45 |                        |           | LED_WLAN*           | 46 SLIC_INT               |
| RESERVED  | 47 | RESERVED3<br>RESERVED2 |           | LED_WPAN*<br>1V5[2] | 48_SLIC_RESET             |
| RESERVED  | 49 | RESERVED2              |           | GND[13]             | <u>50</u> GND             |
| RESERVED  | 51 | RESERVEDT              |           | 3V3VAUX[4]          | <u>52 VDD_</u> 3V3        |
|           |    | NESEN(LES)             |           |                     |                           |
|           |    |                        |           |                     |                           |
|           |    |                        |           |                     | •                         |

Figure 4–2 PIN Configuration Diagram

### 4.1.3 **PIN Description**

 Table 4–2
 PIN Interface Definition

Hardware Development Guide of Module Product

| Pin | Standard PIN     | ZM8620_V2 PIN | Description                                                                                                                                              | I/O   | Remark                                                                        |
|-----|------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------|
| 1   | WAKE#            | WAKE#         | Wake up the system host                                                                                                                                  | DO    |                                                                               |
| 2   | 3.3Vaux          | VDD_3V3       | 3.3V supply                                                                                                                                              | DI    | 3.1V-3.6V, The typical value is 3.3V                                          |
| 3   | COEX1            | SPI_SDI       | SPI data signal                                                                                                                                          | DI    | 3.3V                                                                          |
| 4   | GND              | GND           | Ground                                                                                                                                                   |       | Ground pin                                                                    |
| 5   | COEX2            | SPI_SDO       | SPI data signal                                                                                                                                          | DO    | 3.3V                                                                          |
| 6   | 1.5V             | SPI_CS        | SPI segment signal                                                                                                                                       | DO    | 3.3V                                                                          |
| 7   | CLKREQ#          | SPI_CLK       | SPI synchronization clock                                                                                                                                |       | 3.3V                                                                          |
| 8   | UIM_PWR          | VREG_UIM      | USIM card power supply                                                                                                                                   | DO    | 2.85V/1.8V for SIM card                                                       |
| 9   | GND              | GND           | Ground                                                                                                                                                   |       | Ground pin                                                                    |
| 10  | UIM_DATA         | UIM_DATA      | USIM card data signal                                                                                                                                    | DI/DO | 2.85V/1.8V.this<br>signal requires a<br>pull-up resistor<br>on the host board |
| 11  | REFCLK-          | UART1_RX      | UART port receive data                                                                                                                                   | DI    | 3.3V                                                                          |
| 12  | UIM_CLK          | UIM_CLK       | USIM card clock signal                                                                                                                                   | DO    | 2.85V/1.8V                                                                    |
| 13  | REFCLK+          | UART1_TX      | UART port transmit data                                                                                                                                  | DO    | 3.3V                                                                          |
| 14  | UIM_RESET        | UIM_RST       | USIM card reset signal                                                                                                                                   | DO    | 2.85V/1.8V                                                                    |
| 15  | GND              | GND           | Ground                                                                                                                                                   |       | Ground pin                                                                    |
| 16  | UIM_VPP          | UATR1_DSR     | Data is ready                                                                                                                                            | DO    | 1.8V                                                                          |
| 17  | Reserved(UIM_C8) | UART1_RI      | Ringtone indicator                                                                                                                                       | DO    | 1.8V                                                                          |
| 18  | GND              | GND           | Ground                                                                                                                                                   |       | Ground pin                                                                    |
| 19  | Reserved(UIM_C4) | GPIO_79       | The standby and wakeup of module                                                                                                                         |       |                                                                               |
| 20  | W_DISABLE#       | W_DISABLE_N   | Active low signal. This<br>signal is used by the system<br>to disable radio operation on<br>add-in cards that implement<br>radio frequency applications. | DI    | Active low                                                                    |
| 21  | GND              | GND           | Ground                                                                                                                                                   |       | Ground pin                                                                    |
| 22  | PERST#           | PERST#        | Module resetting                                                                                                                                         | DI    | 1.8V                                                                          |
| 23  | PERn0            | UART1_CTS     | UART port, clear to send                                                                                                                                 | DI    | 1.8V                                                                          |
| 24  | +3.3Vaux         | VDD_3V3       | 3.3V supply                                                                                                                                              | DI    | 3.1V-3.6V, The<br>typical value is<br>3.3V                                    |
| 25  | PERp0            | UART1_RFR     | UART port, preparing to receive                                                                                                                          | DO    | 1.8V                                                                          |
| 26  | GND              | GND           | Ground                                                                                                                                                   |       | Ground pin                                                                    |
| 27  | GND              | GND           | Ground                                                                                                                                                   |       | Ground pin                                                                    |

All Rights reserved, No Spreading abroad without Permission of ZTEWelink

# ZTE Welink

Hardware Development Guide of Module Product

| Pin | Standard PIN | ZM8620_V2 PIN | Description                                                                           | I/O   | Remark                                     |
|-----|--------------|---------------|---------------------------------------------------------------------------------------|-------|--------------------------------------------|
|     |              |               | General Purpose                                                                       |       |                                            |
| 28  | +1.5V        | GPIO          | Input/Output                                                                          | DI/DO | 1.8V                                       |
| 29  | GND          | GND           | Ground                                                                                |       | Ground pin                                 |
| 30  | SMB_CLK      | NC            |                                                                                       |       |                                            |
| 31  | PETn0        | UART1_DTR     | UART1 data terminal ready                                                             | DI    | 1.8V                                       |
| 32  | SMB_DATA     | NC            |                                                                                       |       |                                            |
| 33  | PETp0        | UART1_DCD     | UART1 carrier wave detection                                                          | DO    | 1.8V                                       |
| 34  | GND          | GND           | Ground                                                                                |       | Ground pin                                 |
| 35  | GND          | GND           | Ground                                                                                |       | Ground pin                                 |
| 36  | USB_D-       | USB_DM        | USB differential signal, minus side                                                   | DI/DO |                                            |
| 37  | GND          | GND           | Ground                                                                                |       | Ground pin                                 |
| 38  | USB_D+       | USB_DP        | USB differential signal, positive side                                                | DI/DO |                                            |
| 39  | +3.3Vaux     | VDD_3V3       | 3.3V supply                                                                           | DI    | 3.1V-3.6V, The<br>typical value is<br>3.3V |
| 40  | GND          | GND           | Ground                                                                                |       | Ground pin                                 |
| 41  | +3.3Vaux     | VDD_3V3       | 3.3V supply                                                                           | DI    | 3.1V-3.6V, The typical value is            |
|     |              |               |                                                                                       |       | 3.3V                                       |
| 42  | LED_WWAN#    | LED_PWR       | Open drain, active low<br>signals. This signal is used<br>to provide status indicator | DO    |                                            |
| 43  | GND          | GND           | Ground                                                                                |       | Ground pin                                 |
| 44  | LED_WLAN#    | NC            |                                                                                       |       |                                            |
| 45  | Reserved     | Reserved      |                                                                                       |       |                                            |
| 46  | LED_WPAN#    | SLIC_INT      | exclusive use for routing adaptation                                                  | DO    |                                            |
| 47  | Reserved     | Reserved      |                                                                                       |       |                                            |
| 48  | +1.5V        | SLIC_RESET    | exclusive use for routing adaptation                                                  | DO    |                                            |
| 49  | Reserved     | Reserved      |                                                                                       |       |                                            |
| 50  | GND          | GND           | Ground                                                                                |       | Ground pin                                 |
| 51  | Reserved     | Reserved      |                                                                                       |       |                                            |
| 52  | +3.3Vaux     | VDD_3V3       | 3.3V supply                                                                           | DI    | 3.1V-3.6V, The<br>typical value is<br>3.3V |

## NOTE:

The voltage design of external circuit interfaces should match that of the ZM8620\_V2 PINs.

In the Table 4-2, the Power supply of ZM8620\_V2 has been updated between 3.1V-3.6V, and the typical value is 3.3V at present. While in ZM8620 module, the Power supply is 3.4-4.2V, and typical is 3.8V before.

In ZM8620\_V2, the signal of pin 6,11,13,16,17,23,25,28,30~33,44,46.48 is different from that of module ZM8620.

# 4.2 Feature of Interface Power Level

### 4.2.1 Power Level of IO Interface

| Signal | Description                  | Min         | Max             | Units |
|--------|------------------------------|-------------|-----------------|-------|
| VIH    | High level of input voltage  | 0.65*VDD_PX | VDD_PX+0.3      | V     |
| VIL    | Low level of input voltage   | -0.3        | 0.35*<br>VDD_PX | V     |
| VOH    | High level of output voltage | VDD_PX-0.45 | VDD_PX          | V     |
| VOL    | Low level of output voltage  | 0           | 0.45            | V     |

Table 4–3Power Level Range of Digital Signal

## NOTE:

1. The high/low PWL of input voltage should comply with the range in the table.

2. The high/low PWL of external interface signal should match the interface PWL of ZM8620\_V2.

3. VDD\_PX indicates the typical voltage of each Pin specified in Table 4-2.

## 4.3 **Power Interface**

### 4.3.1 Description of Power PINs

Power VCC (PIN No: 2, 24, 39, 41, 52). This is the positive signal of 3.3V power supply.

GND signal (PIN No: 4, 9, 15, 18, 21, 26, 27, 29, 34, 35, 37, 40, 43, 50). This is the power ground and signal ground of the module, which needs to be connected to the ground on the system board. If the GND signal is not connected completely, the performance of the module will be affected.

### 4.3.2 Requirement of Power Supply

The power supply is recommended to be within the range of 3.1~3.6V. If the network is in poor situation, the antenna will transmit at the maximum power, and the transient maximum peak current less than 2G mode can reach as high as 1.8A. So the power supply capacity for peak current needs to be above 2.5A, and the average peak current needs to be above 0.9A.

### 4.4 (U)SIM Card Interface

### 4.4.1 Description of PINs

ZM8620\_V2 module baseband processor integrates the (U)SIM card interface. The signals on SIM card interface is as shown in Figure 4-3.

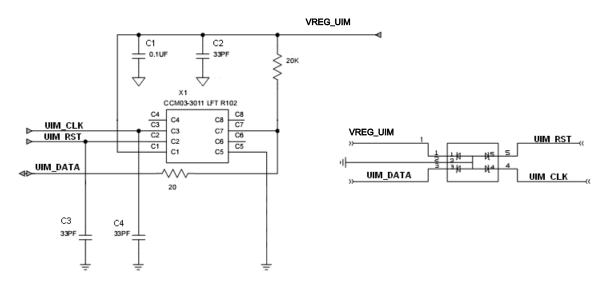



Figure 4–3 (U)SIM Card Signal Connection Circuit

## NOTE:

The PCB wiring of UIM card should be laid closely around the module as possible as you can, and the ESD component should be put near the UIM card socket by the customer.

 Table 4–4
 Definition & Description of (U) SIM Card Signal Group

| PIN | Signal Name | Signal Description                             |
|-----|-------------|------------------------------------------------|
| 8   | VREG_UIM    | USIM card power, output from the module        |
| 10  | UIM_DATA    | USIM card DATA signal, two-way signal          |
| 12  | UIM_CLK     | USIM card clock signal, output from the module |
| 14  | UIM_RST     | USIM card reset signal, output from the module |

### 4.4.2 Electric Feature

The signals of (U)SIM card signal group are described in Table 4-4. As the USIM card console is placed on the system board side, be sure to add the ESD protection during the design.

To comply with the requirements of 3GPP TS 51.010-1 and EMC authentication, it is recommended to place (U)SIM card console close to the (U)SIM card interface, to prevent the wiring from being too long, which might seriously distort the waveform and thus affect the signal integrity. It is recommended to make the grounding protection for UIM\_CLK and UIM\_DATA signal wiring.

Cascade one 0.1uF and 33pF capacitor between VREG\_UIM and GND, and cascade a 33pF bypass capacitor between UIM\_CLK, UIM\_RST and GND, to filter out the interference by RF signals. It is recommended to cascade a 20ohm resistance on UIM\_DATA signal. And UIM\_DATA must be pulled up via a 20K ohm resistance to VREG\_UIM.

## 4.5 USB2.0 Interface

### 4.5.1 Description of PINs

ZM8620\_V2 has the high-speed USB2.0 interface,. USB is connected to the system board side via the PCI-E interface, to communicate with the processor on the system board side. Its PINs are PIN36 (USB\_DM), PIN38 (USB\_DP). The USB interface can be mapped to difference ports, such as Diagnostics port to capture the log, AT port is used to complete AT command interaction with the AP side.

### 4.5.2 Electric Feature

The USB interface of Module complies with the USB2.0 specifications and the electrical characteristics. During the PCB wiring, the wires must be parallel, the distance should be as short as possible and as far away as possible from the antenna, and it's enveloped by the ground wires to avoid strong interference sources. USB\_DP and USB\_DM should be wired strictly in the differential mode, and the length difference of the two signals is within 1mm.

### **NOTE:**

The differential resistance needs to be controlled within 90 $\Omega$ , and the difference cannot exceed 5%.

It is recommended to cascade the high-speed common-mode rejection filter on the USB differential traces. If some of the trace is exposed, it is recommended to add the ESD protection device, and the junction capacitor of the ESD protection device should better be kept within 1.5pF. Large junction capacitor will distort the waveform, and affect the bus communication.

### 4.6 UART Interface

The UART interface is used as MODEM port by default which is occupied by data service.

#### 4.6.1 Description of PINs

The wireless module ZM8620\_V2 supports the full UART interface with flow control function, which complies with the RS-232 interface protocol, and supports the 8-wires serial bus interface or 2-wires serial interface. The module can perform the serial communication and AT instruction interaction with external.

This UART port supports the programmable data width, programmable data stop bit and programmable parity check, and has an independent TX and RX FIFOs (512 bytes for each). For the normal UART application (non-Bluetooth), the maximum baud rate is 230400bps, and the default baud rate is 115200bps. The PINs are defined as shown in Table 4-5.

| PIN | Signal Name | Description                | Level                |  |  |
|-----|-------------|----------------------------|----------------------|--|--|
| 11  | UART1_RX    | UART port RX receive data  | Power level is 3.3V. |  |  |
| 13  | UART1_TX    | UART port TX transmit data | Power level is 3.3V. |  |  |

Table 4–5 Definition of UART Signal

| 16 | UART1_DSR | Data is ready                      |                      |
|----|-----------|------------------------------------|----------------------|
| 17 | UART1_RI  | Ringtone indicator                 |                      |
| 23 | UART1_CTS | UART port CTS clear to send        |                      |
| 25 | UART1_RFR | UART port RFR preparing to receive | Power level is 1.8V. |
| 31 | UART1_DTR | DTE is ready                       |                      |
| 33 | UART1_DCD | Carrier detection                  |                      |

### 4.6.2 Electric Feature

During the software interconnection process, there is a method of capturing logs, and it is recommended that this interface be kept during the design and the testing point be reserved. If the module is used together with the application processor, and the PWL of it matches with the power level of the module, the connection mode is as shown in Figure 4-4. The 4-wires or 2-wires mode can also be used for connection. If it does not match the PWL of AP interface, it is recommended to add the PWL conversion circuit. Otherwise, it might cause unstable com ports because the level is not matched or cause damage to the module because it is at high level for long time.

The connection of ZM8620\_V2 UART port and standard RS-232-C interface can be through the chip like class 232. The design involves the transformation of TTL level and EIA level. We recommend to use the chip of NLSX5014MUTAG. If using the 2-byte serial bus interface, MAX3232 is recommended, and if using the 8-byte serial bus interface, SP3238 or MAX3238 is recommended. The connection mode is as shown in Figure 4-5.

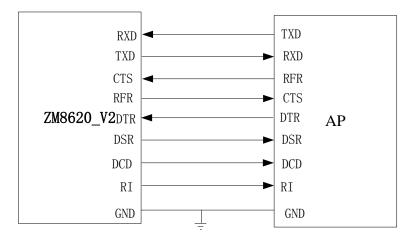
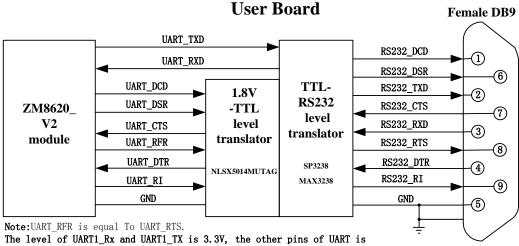




Figure 4–4 Module Serial Port & AP Application Processor



1.8V and needs the TTL level translator

Figure 4–5 The connection of ZM8620\_V2 UART and Standard RS-232-C interface

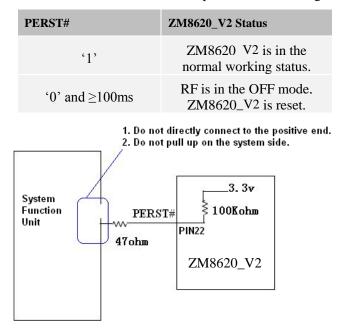
### 4.7 SPI Interface

The SPI signal interface is used to control PCI voices. The SPI\_CLK clock is 127.2kHz. Pin No: 3/5/6/7 are SPI control signals. Table 4-6 describes detailed definition for each signal. The system board side needs to convert the power level of SPI\_SDI (SPI control output signal cable on the system board side) into 3.3V, to comply with the high power level VIH input requirements.

| PIN | Signal Name | I/O | Signal Description                                                                                           |
|-----|-------------|-----|--------------------------------------------------------------------------------------------------------------|
| 3   | SPI_SDI     | Ι   | SPI data signal, ZM8620_V2 input, input high power level is VIH, and low power level is VIL.                 |
| 5   | SPI_SDO     | 0   | SPI data signal, ZM8620_V2 output, input high power level is VOH, and low power level is VOL.                |
| 6   | SPI_CS      | 0   | SPI chip select pin, ZM8620_V2 output, input high power level is VOH, and low power level is VOL.            |
| 7   | SPI_CLK     |     | SPI synchronization clock, 100kHz, output by ZM8620_V2, high power level is VOH, and low power level is VOL. |

Table 4–6 Definition and Description of SPI Control Signal Group

## NOTE:


VIH, VIL, VOH, and VOL comply with the power I/O interface power level requirements in 4.2.1.

## 4.8 Reset Signal PERST#

The PERST# signal (PIN No: 22) is the system reset signal of ZM8620\_V2, active low. Table 4-7 illustrates its control logic. It shows that pull down the reset key (PERST#) to 100ms will reset the module.

### NOTE:

Do not directly connect this signal to the positive end of power supply.



#### Table 4–7 Definition and Description of PERST# Signal

Figure 4–6 Reference Circuit Design of PERST# Signal

### 4.9 WAKE# Signal

Figure 4-7 illustrates the reference connection circuit of WAKE# signal. The WAKE# signal (PIN No.: 1) is an output signal, active low level or low fall edge. This signal is a reserved signal for ZM8620\_V2 to wake up the system host. ZM8620\_V2 pulls up the power level to VDD\_3V3 internally by the 10Kohm resistance. It is recommended to connect the 47ohm resistance to the GPIO PIN on the main chip (If this GPIO PIN is on the system side, it can wake up the host).

Hardware Development Guide of Module Product

## NOTE:

Do not directly connect this signal to the positive end of power supply.

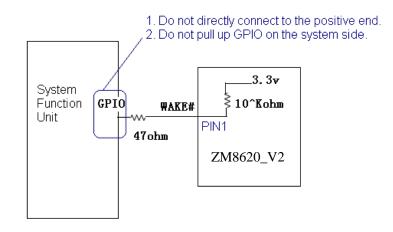



Figure 4–7 Reference Connection Circuit of WAKE# Signal

## 4.10 W\_DISABLE\_N Signal

The W\_DISABLE\_N signal (PIN No: 20) is the input signal of ZM8620\_V2, active low. Table 4-8 describes its control logic.

Table 4-8 Definition and Description of W\_DISABLE\_N Signal

| W_DISABLE_N | ZM8620_V2 Status |
|-------------|------------------|
| '1'         | RF is enabled.   |
| ·0'         | RF is disabled.  |

The W\_DISABLE\_N signal is pulled up by the 150Kohm resistance to 3.3V inside ZM8620\_V2, so the system side does not pull up this circuit any more.

## NOTE:

Do not directly connect this signal to the positive end of power supply.

Figure 4-8 illustrates the reference circuit design of W\_DISABLE\_N signal.

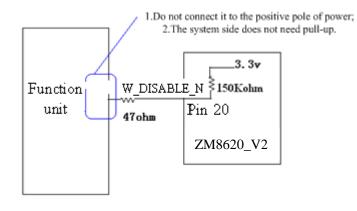



Figure 4-8 Reference Circuit Design of W\_DISABLE\_N Signal

## 4.11 Recommended Upgrade Methods

It's recommended to use the one-click software upgrade tool to upgrade through the USB port provided by ZTEWelink in the Windows system. If the customers want to upgrade the module in other operation systems, ZTEWelink provides the corresponding reliable tools too.

# **5** Electric Feature

### 5.1 **Power Feature**

#### 5.1.1 **Power Supply**

The input voltage range of the module is DC  $3.1V \sim 3.6V$ , and the typical value is 3.3V, as shown in Table 5-1.

| Parameter     | Min  | Typical | Max  |
|---------------|------|---------|------|
| Input voltage | 3.1V | 3.3V    | 3.6V |

### 5.1.2 Working Current

The working current range of the module is as shown in Table 5-2 to Table 5-4. The tables provide the working power consumption under LTE and WCMA mode. As the power consumptions are affected by many factors, it's normal that there are some differences when tested by users, and these tables can only be viewed as one example.

Table 5–2 Averaged standby DC power consumption

| Mode                                                                                        | Bands      | Test value (mA) | Remark     |  |  |
|---------------------------------------------------------------------------------------------|------------|-----------------|------------|--|--|
| HSDPA/WCDMA                                                                                 | UMTS bands | TBD             | Sleep mode |  |  |
| GSM/GPRS/EDGE                                                                               | GSM bands  | TBD             | Sleep mode |  |  |
| LTE                                                                                         | LTE bands  | TBD             | Sleep mode |  |  |
| Note: assumes USB bus is fully suspended during measurements. Under different               |            |                 |            |  |  |
| environments, the testing results might be slightly different. Take the actual situation as |            |                 |            |  |  |
| the reference.                                                                              |            |                 |            |  |  |

| Table 5–3 DC power consumption in UMTS mode | Table 5–3 | DC power | consumption | in | UMTS mode |
|---------------------------------------------|-----------|----------|-------------|----|-----------|
|---------------------------------------------|-----------|----------|-------------|----|-----------|

| Power Consumption of R99        |                                   |     |       |       |       |  |
|---------------------------------|-----------------------------------|-----|-------|-------|-------|--|
| BAND                            |                                   |     | BAND2 | BAND5 | BAND8 |  |
| Power Consumption<br>(Unit: mA) | Maximum Transmit power (23.32dBm) | TBD | TBD   | TBD   | TBD   |  |

| Power Consumption of HSDPA                 |                                      |       |       |       |       |
|--------------------------------------------|--------------------------------------|-------|-------|-------|-------|
| Power Consumption with<br>HS-DPCCH (HSDPA) | Maximum Transmit power<br>(dBm)      | 22.62 | 22.56 | 22.04 | 22.51 |
| IIS-DFCCII (IISDFA)                        | Power Consumption (mA)               | TBD   | TBD   | TBD   | TBD   |
| Power Consumption of HSUPA                 |                                      |       |       |       |       |
| Power Consumption with                     | Maximum Transmit power<br>(dBm)      | 22.2  | 21.9  | 21.7  | 21.7  |
| HS-DPCCH (HSUPA)                           | Power Consumption (mA)               | TBD   | TBD   | TBD   | TBD   |
| Power Consumption of HSPA+                 |                                      |       |       |       |       |
| Power Consumption<br>(Unit: mA)            | Maximum Transmit power<br>(22.89dBm) | TBD   | TBD   | TBD   | TBD   |

Table 5–4 DC power consumption in LTE mode (Unit: mA)

| Te                       | st band               | BAND<br>1 | BAND<br>2 | BAND<br>4 | BAND<br>5 | BAND<br>7 | BAND<br>8 | BAND<br>12 | TDD<br>BAND38 |
|--------------------------|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|---------------|
| BW 10M                   | band channel          | 300       | 650       | 2175      | 2450      | 3400      | 3500      | 5130       | 38200         |
| Power<br>Consumpti<br>on | QPSK 1RB<br>MAX PWR   | TBD        | TBD           |
|                          | QPSK 12RB<br>MAX PWR  | TBD        | TBD           |
|                          | QPSK 50RB<br>MAX PWR  | TBD        | TBD           |
|                          | 16QAM 12RG<br>MAX PWR | TBD        | TBD           |
|                          | 16QAM 50RG<br>MAX PWR | TBD        | TBD           |

# NOTE:

Under different environments and conditions (for example: under different band channel, transmit power, power level etc.), the testing values of Table 5-3 and Table 5-4 might be slightly different. Take the actual situation as the reference.

# 5.2 **Power-on/Resetting Flow**

Table 5–5 Power-on/Resetting Period

Hardware Development Guide of Module Product

| No. | Status                                  | Average   | Remark                                                  |
|-----|-----------------------------------------|-----------|---------------------------------------------------------|
| 1   | Response time of power-on and power-off | About 12s | From the time of module power-on to port initialization |
| 2   | Searching network upon power-on         | About 15s | Depending on the actual network situation               |

Note:

1. The specific power-on/power-off response time depends on the actual software versions. The time of searching network upon power-on differs according to the network quality. The above values are only an example.

2. By default, the module is started up upon power-on.

# 5.3 Resetting Flow

The failing edge of PERST# reset signal initiates a reset process. The module is reset by driving this pin with a low pulse.

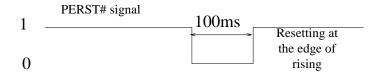



Figure 5–1 Module Reset Flow

# 6 Related Test & Testing Standard

# 6.1 Testing Reference

ZTE Welink

The related tests of ZM8620\_V2 comply with the IEC standard, including the equipment running under high/low temperature, storage under high/low temperature, temperature shock and EMC. Table 6-1 is the list of testing standard, which includes the related testing standards for ZM8620\_V2.

| Testing Standard  | Document Reference                                                                                                                                    |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEC6006826        | Environmental testing-Part2.6:Test FC: Sinusoidal Vibration                                                                                           |
| IEC60068234       | Basic environment testing procedures part2.                                                                                                           |
| IEC60068264       | Environmental testing-part2-64: Test FH: vibration, broadband random and guidance.                                                                    |
| IEC60068214       | Environmental testing-part 2-14: Test N:change of temperature.                                                                                        |
| IEC60068229       | Basic environmental testing procedures-part2: Test EB and guidance.                                                                                   |
| IEC6006822        | Environmental testing-part2-2:Test B:dry heat                                                                                                         |
| IEC6006821        | Environment testing-part2-1: Test A: cold.                                                                                                            |
| GB/T 15844.2      | MS telecommunication RF wireless phone-set environment<br>requirement & experimental method – part 4: Strict level of<br>experimental condition       |
| GB/T 2423.17      | Basic environment experiment of electronic products-Experiment Ka:<br>Salt mist experiment method                                                     |
| GB/T 2423.5       | Basic environment experiment of electronic<br>products-Part2:Experiment method Try Ea & Introduction: Shock                                           |
| GB/T 2423.11      | Basic environment experiment of electronic<br>products-Part2:Experiment method Try Fd: Broad frequency band<br>random vibration (General requirement) |
| TIA/EIA 603 3.3.5 | TIA Standard-part3-5:Shock Stability                                                                                                                  |

| Table 6–1 | Testing Standard |
|-----------|------------------|
|-----------|------------------|

Note: 1. IECL International Electro technical Commission; 2. GB/T: Recommended national standard

# 6.2 Description of Testing Environment

The working temperature range of ZM8620\_V2 is divided into the normal working temperature range

and the extreme working temperature range. Under the normal working temperature range, the testing result of RF complies with the requirements of 3GPP specifications, and its function is normal. Under the extreme temperature range, the RF index basically complies with the 3GPP specifications, and the quality of data communication is affected to a certain extent, but its normal function is not affected. ZM8620\_V2 has passed the EMC test. Table 6–2 is the requirement for the testing environment, and Table 6–3 lists out the instruments and devices that might be used during the test.

| Working Condition         | Min<br>Temperature | Max<br>Temperature | Remark                              |
|---------------------------|--------------------|--------------------|-------------------------------------|
| Normal working condition  | -10 °C             | 60 °C              | All the indexes are good.           |
| Extreme working condition | -20 °C             | 70 °C              | Some indexes become poorer.         |
| Storage                   | -40 °C             | 85 °C              | Storage environment<br>of ZM8620_V2 |

| Table 6–2 | <b>Testing Environment</b> |
|-----------|----------------------------|
|-----------|----------------------------|

Table 6–3 Testing Instrument & Device

| Testing Item                                | Instrument & Device                   |
|---------------------------------------------|---------------------------------------|
| RF test                                     | Comprehensive testing device          |
|                                             | RF cable                              |
|                                             | Tower antenna                         |
|                                             | Microwave darkroom                    |
| High/Low-temperature running & storage test | High/Low-temperature experimental box |
| Temperature shock test                      | Temperature shock<br>experimental box |
| Vibration test                              | Vibration console                     |

## 6.3 Reliability Testing Environment

The reliability test includes the vibration test, high/low-temperature running, high/low-temperature storage and temperature shock experiment test. Refer to Table 6-4 for the specific parameters.

Table 6–4 Reliability Feature

Hardware Development Guide of Module Product

| Test Standard<br>Test Item         | Test Condition                                                                                                                                                   | Test Reference                        |  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|
| Random Oscillation                 | Frequency range: 5-20Hz,<br>PSD:1.0m2/s3;<br>Frequency range: 20-200Hz, -3dB/oct;<br>On the 3 axis, 1 hour for each axis                                         | IEC 68-2-6                            |  |  |
| Shock Testing                      | Half sine wave shock<br>Acceleration: 20g<br>Short time: 11ms<br>On 6 axis, one shock on each axis (±x,<br>y and z)                                              | TIA/EIA 603 3.3.5<br>GB/T 15844.2.4.1 |  |  |
| Temperature Shock                  | Low temperature: -40 °C ±2 °C<br>High temperature: +80 °C ±2 °C<br>Temperature changing time: less than<br>30 seconds<br>Testing duration: 2 hours<br>Cycles: 10 | IEC 68-2-14 Na                        |  |  |
| High-temperature<br>Working        | Temperature: +60 °C<br>Testing duration: 24h                                                                                                                     | ZTE standard                          |  |  |
| Low-temperature<br>Working         | Temperature: -10 °C<br>Testing duration: 24h                                                                                                                     | ZTE standard                          |  |  |
| High-temperature and high humidity | Temperature: +55 °C<br>Humidity: 95%<br>Duration: 48 hours                                                                                                       | ZTE standard                          |  |  |
| High-temperature<br>Storage        | Temperature: 85 °C<br>Testing duration: 24h                                                                                                                      | IEC 68-2-1 Ab                         |  |  |
| Low-temperature<br>Storage         | Temperature: -40 ℃<br>Testing duration: 24h                                                                                                                      | IEC 68-2-2 Bb                         |  |  |

# 6.4 Reliability Test Result

**ZTE Welin**k

Table 6–5 Temperature Testing Result under Windless Environment

| Mode          | Ambient<br>Temperature | Voltage | Transmission<br>power | Duration      | Results |
|---------------|------------------------|---------|-----------------------|---------------|---------|
| GPRS Class 10 | +25 ℃                  | 3.3V    | Max                   | $\geq 1$ hour | Pass    |
| EDGE Class 12 | +25 ℃                  | 3.3V    | Max                   | $\geq 1$ hour | Pass    |

All Rights reserved, No Spreading abroad without Permission of ZTEWelink

#### Hardware Development Guide of Module Product

| WCDMA | +25 °C | 3.3V | Max | $\geq 1$ hour | Pass |
|-------|--------|------|-----|---------------|------|
| LTE   | +25 ℃  | 3.3V | Max | $\geq 1$ hour | Pass |

### Table 6-6 Test Results of High/low Temperature Running and Reliability Test

| Test Item                                | Test Conditions and<br>Criteria | Test Items                | Results |
|------------------------------------------|---------------------------------|---------------------------|---------|
| Random vibration                         | Refer to Table 6-4              | RF test and function test | Pass    |
| Impact test                              | Refer to Table 6-4              | RF test and function test | Pass    |
| Temperature impact                       | Refer to Table 6-4              | RF test and function test | Pass    |
| Running at low temperature               | Refer to Table 6-4              | RF test and function test | Pass    |
| Running at high temperature              | Refer to Table 6-4              | RF test and function test | Pass    |
| Running at the limit of low temperature  | Refer to Table 6-4              | RF test and function test | Pass    |
| Running at the limit of high temperature | Refer to Table 6-4              | RF test and function test | Pass    |
| Storage at low temperature               | Refer to Table 6-4              | RF test and function test | Pass    |
| Storage at high temperature              | Refer to Table 6-4              | RF test and function test | Pass    |

# **7 RF** Specifications

The following content is the description of module radio frequency performance.

# 7.1 Technical Specification for UMTS Mode Radio Frequency

#### 7.1.1 Maximum Transmission Power

In the normal test environment, UMTS 2100/1900/850/900/(1700)MHz maximum output power meets the requirement in Table 7-1. The test values are the average of some test samples. Under different environments, the testing results might be slightly different. Take the actual situation as the reference.

Table 7–1Maximum Transmission Power

| Power grade | Maximum output power | Tolerance value | Test value |
|-------------|----------------------|-----------------|------------|
| Class 3     | 24dBm                | +1/-3dBm        | TBD        |

### 7.1.2 Receiving Sensitivity

UMTS 2100/1900/850/900/(1700)MHz receiving sensitivity meets 3GPP TS 34.121 protocol requirement. Under the specification that BER does not exceed 0.001, it meets the requirement in Table 7-2. The test values are the average of some test samples. Under different environments, the testing results might be slightly different. Take the actual situation as the reference.

Operating Unit DPCH\_Ec <REFIOR> **Test value** band <REFSENS> TBD Ι dBm/3.84 MHz -106.7 -117 TBD II dBm/3.84 MHz -115 -104.7 TBD IV dBm/3.84 MHz -117 -106.7 TBD V dBm/3.84 MHz -115 -104.7 TBD VIII dBm/3.84 MHz -114 -104.7

 Table 7–2
 Receiving Sensitivity Reference Table

NOTE 1: For Power class 3 this shall be at the maximum output power

NOTE 2: For Power class 4 this shall be at the maximum output power

NOTE 3: For the UE which supports both Band  $^{\rm III}$  and Band  $^{\rm IX}$  operating frequencies, the reference sensitivity level of -114.5 dBm DPCH\_Ec<REFSENS> shall apply for Band  $\rm IX.$ 

Hardware Development Guide of Module Product

The corresponding <REFIOR> is -104.2 dBm

#### 7.1.3 Spurious Specification

Spurious emission meets 3GPP TS 34.121 protocol requirement.

The receiver spurious emission power refers to the spurious power generated or amplified by the receiver, which is tested from the antenna connector.

The spurious emission shall meet the requirements in Table 7-3 and Table 7-4:

| Table 7–3 | General Requiremen | t of Receiver Spur | ious Emission |
|-----------|--------------------|--------------------|---------------|
|-----------|--------------------|--------------------|---------------|

| Frequency band                        | Resolution rate<br>bandwidth | Minimum requirement |
|---------------------------------------|------------------------------|---------------------|
| $9 \text{ kHz} \le f < 1 \text{ GHz}$ | 100 kHz                      | -57 dBm             |
| $1 \; GHz \leq f < 12.75 \; GHz$      | 1 MHz                        | -47 dBm             |

Table 7-4 Additional Spurious Emission Requirement

| Frequency band                                  | Measurement<br>bandwidth | Minimum requirement |
|-------------------------------------------------|--------------------------|---------------------|
| $1920 \text{ MHz} \leq f \leq 1980 \text{ MHz}$ | 3.84 MHz                 | -60 dBm             |
| $2110 \text{ MHz} \leq f \leq 2170 \text{ MHz}$ | 3.84 MHz                 | -60 dBm             |

# 7.2 Technical Specification of GSM Mode Radio Frequency

#### 7.2.1 Maximum Transmission Power

In the normal test environment, GSM: 1900/1800/900/850MHz maximum output power meets the requirement in Table 7-5. The test values are the average of some test samples. Under different environments, the testing results might be slightly different. Take the actual situation as the reference.

| Operating band | Power<br>control level | Power<br>class | Maximum<br>output power | Tolerance<br>value | Test<br>Value |
|----------------|------------------------|----------------|-------------------------|--------------------|---------------|
| II             | 2                      | Class 2        | 30dBm                   | ±2dBm              | TBD           |
| III            | 2                      | Class 2        | 30dBm                   | ±2dBm              | TBD           |

Table 7–5Maximum Transmission Power

| V    | 2 | Class 4 | 33dBm | ±2dBm | TBD |
|------|---|---------|-------|-------|-----|
| VIII | 2 | Class 4 | 33dBm | ±2dBm | TBD |

#### 7.2.2 Receiving Sensitivity

GSM 1900/1800/900/850MHz receiving sensitivity meets 3GPP TS 34.121 protocol requirement. Under the specification that BER does not exceed 2.24, it meets the requirement smaller than -102dBm. It meets the requirement in Table 7-6. The test values are the average of some test samples. Under different environments, the testing results might be slightly different. Take the actual situation as the reference.

Table 7–6 Reference Table of Receiving Sensitivity

| <b>Operating Band</b> | Unit         | 3GPP Protocol Claim | Test value |
|-----------------------|--------------|---------------------|------------|
| GSM850                | dBm/3.84 MHz | ≤-102dBm            | TBD        |
| GSM900                | dBm/3.84 MHz | ≤-102dBm            | TBD        |
| GSM1800               | dBm/3.84 MHz | ≤-102dBm            | TBD        |
| GSM1900               | dBm/3.84 MHz | ≤-102dBm            | TBD        |

### 7.3 Technical Specification of LTE Mode Radio Frequency

#### 7.3.1 Maximum Transmission Power

The maximum output power of LTE FDD, LTE TDD in the normal test environment meets Table 7-7 requirement. The test values are the average of some test samples. Under different environments, the testing results might be slightly different. Take the actual situation as the reference.

Table 7–7 Maximum Transmission Power

| Power grade | Maximum output power | Tolerance value | Test value |
|-------------|----------------------|-----------------|------------|
| Class 3     | 23 dBm               | +2.7/-2.7dBm    | 21.4 dBm   |

#### 7.3.2 Receiving Sensitivity

LTE FDD/TDD receiving sensitivity meets 3GPP TS 36.101 protocol requirement. Under the specification that the throughput is not smaller than 95% of the maximum throughput, it meets Table 7-8 requirement. The test values are the average of some test samples. Under different environments, the

testing results might be slightly different. Take the actual situation as the reference.

| Channel bandwidth |         |        |       |        | Test value |        |        |       |
|-------------------|---------|--------|-------|--------|------------|--------|--------|-------|
| E-UTRA            | 1.4 MHz | 3 MHz  | 5 MHz | 10 MHz | 15 MHz     | 20 MHz | Duplex | (dBm) |
| Band              | (dBm)   | (dBm)  | (dBm) | (dBm)  | (dBm)      | (dBm)  | Mode   |       |
| 1                 | -       | -      | -100  | -97    | -95.2      | -94    | FDD    | TBD   |
| 2                 | -102.7  | -99.7  | -98   | -95    | -93.2      | -92    | FDD    | TBD   |
| 3                 | -101.7  | -98.7  | -97   | -94    | -92.2      | -91    | FDD    |       |
| 4                 | -104.7  | -101.7 | -100  | -97    | -95.2      | -94    | FDD    | TBD   |
| 5                 | -103.2  | -100.2 | -98   | -95    |            |        | FDD    | TBD   |
| 6                 |         |        | -100  | -97    |            |        | FDD    |       |
| 7                 |         |        | -98   | -95    | -93.2      | -92    | FDD    | TBD   |
| 8                 | -102.2  | -99.2  | -97   | -94    |            |        | FDD    | TBD   |
| 9                 |         |        | -99   | -96    | -94.2      | -93    | FDD    |       |
| 10                |         |        | -100  | -97    | -95.2      | -94    | FDD    |       |
| 11                |         |        | -100  | -97    |            |        | FDD    |       |
| 12                | -101.7  | -98.7  | -97   | -94    |            |        | FDD    | TBD   |
| 13                |         |        | -97   | -94    |            |        | FDD    |       |
| 14                |         | -99.2  | -97   | -94    |            |        | FDD    |       |
|                   |         |        |       |        |            |        |        |       |
| 17                | -102.2  | -99.2  | -97   | -94    |            |        | FDD    |       |
| 18                |         |        | -100  | -97    | -95.2      |        | FDD    |       |
| 19                |         |        | -100  | -97    | -95.2      |        | FDD    |       |
| 20                |         |        | -97   | -94    | -91.2      | -90    | FDD    |       |
| 21                |         |        | -100  | -97    | -95.2      |        | FDD    |       |
|                   |         |        |       |        |            |        |        |       |
| 33                |         |        | -100  | -97    | -95.2      | -94    | TDD    |       |
| 34                |         |        | -100  | -97    | -95.2      | -94    | TDD    |       |
| 35                | -106.2  | -102.2 | -100  | -97    | -95.2      | -94    | TDD    |       |
| 36                | -106.2  | -102.2 | -100  | -97    | -95.2      | -94    | TDD    |       |
| 37                |         |        | -100  | -97    | -95.2      | -94    | TDD    |       |
| 38                |         |        | -100  | -97    | -95.2      | -94    | TDD    | TBD   |
| 39                |         |        | -100  | -97    | -95.2      | -94    | TDD    |       |
| 40                |         |        | -100  | -97    | -95.2      | -94    | TDD    |       |

 Table 7–8
 Receiving Sensitivity Reference Table

All Rights reserved, No Spreading abroad without Permission of ZTEWelink

Hardware Development Guide of Module Product

| 41      |                                                        | [-100]        | [-97]       | [-95.2]       | [-94]        | TDD           |              |
|---------|--------------------------------------------------------|---------------|-------------|---------------|--------------|---------------|--------------|
| Note 1: | The transmitter shall be set of 3GPP TS 36.101         | to maximum (  | output powe | r level as de | fined in cla | use 6.2.5 in  | the protocol |
| Note 2: | Reference measurement cha<br>FDD/TDD as described in A | •             |             |               | 2            |               | m OP.1       |
| Note 3: | The signal power is specifie                           | d per port    |             |               |              |               |              |
| Note 4: | For the UE which supports                              | both Band 3 a | nd Band 9 t | he reference  | sensitivity  | level of Ban  | d 3 + 0.5    |
|         | dB is applicable for band 9                            |               |             |               |              |               |              |
| Note 5: | For the UE which supports                              | both Band 11  | and Band 2  | 1 the referen | ce sensitivi | ty level is F | FS.          |

### 7.3.3 Spurious Specification

Spurious emission meets 3GPP TS 36.101 protocol requirement.

The receiver spurious emission power refers to the spurious power generated or amplified by the module, which is tested from the antenna connector.

The spurious emission shall meet the requirement of Table 7-9 and Table 7-10:

| Frequency range                           | Maximum level | Measurement bandwidth |
|-------------------------------------------|---------------|-----------------------|
| $9 \text{ kHz} \leq f < 150 \text{ kHz}$  | -36 dBm       | 1 kHz                 |
| $150 \text{ kHz} \leq f < 30 \text{ MHz}$ | -36 dBm       | 10 kHz                |
| $30 \text{ MHz} \le f < 1000$ MHz         | -36 dBm       | 100 kHz               |
| $1 \ GHz \leq f < 12.75 \ GHz$            | -30 dBm       | 1 MHz                 |

 Table 7–9
 General Requirement of Receiver Spurious Emission

Table 7–10 UE Co-existence Spurious Emission Requirement

| E-UTRA | Spurious emission              |                          |                |                    |                                       |  |  |
|--------|--------------------------------|--------------------------|----------------|--------------------|---------------------------------------|--|--|
| Band   | Protected band                 | Frequency range<br>(MHz) | Level<br>(dBm) | Bandwidth<br>(MHz) | Comment                               |  |  |
| 1      | E-UTRA Band 1, 3, 7, 8, 9, 11, |                          |                |                    |                                       |  |  |
|        | 34, 38, 40                     | FDL_low - FDL_high       | -50            | 1                  |                                       |  |  |
|        | Frequency range                | 860-895                  | -50            | 1                  |                                       |  |  |
|        |                                | 1884.5-1919.6            |                |                    | Note <sup>6</sup> ,Note <sup>7</sup>  |  |  |
|        | Frequency range                | 1884.5-1915.7            | -41            | 0.3                | Note <sup>6</sup> , Note <sup>8</sup> |  |  |
|        | E-UTRA band 33                 | 1900-1920                | -50            | 1                  | Note <sup>3</sup>                     |  |  |
|        | E-UTRA band 39                 | 1880-1920                | -50            | 1                  | Note <sup>3</sup>                     |  |  |
| 2      | E-UTRA Band 2, 4, 5, 10, 12,   |                          |                |                    |                                       |  |  |
|        | 13, 14, 17                     | FDL_low- FDL_high        | -50            | 1                  |                                       |  |  |

Hardware Development Guide of Module Product

| 3  | E-UTRA Band 1, 3, 7, 8, 9, 11, |                   |     |         |                     |
|----|--------------------------------|-------------------|-----|---------|---------------------|
|    | 33, 34, 38                     | FDL_low- FDL_high | -50 | 1       |                     |
| 4  | E-UTRA Band 2, 4, 5, 10, 12,   |                   |     |         |                     |
|    | 13, 14, 17                     | FDL_low- FDL_high | -50 | 1       |                     |
| 5  | E-UTRA Band 2, 4, 5, 10,       |                   |     |         |                     |
|    | 12, 13, 14, 17                 | FDL_low- FDL_high | -50 | 1       |                     |
| 6  | E-UTRA Band 1, 9, 11, 34       | FDL_low- FDL_high | -50 | 1       |                     |
|    | Frequency range                | 860-875           | -37 | 1       |                     |
|    | Frequency range                | 875-895           | -50 | 1       |                     |
|    |                                | 1884.5-1919.6     |     |         | Note <sup>7</sup>   |
|    | Frequency range                | 1884.5-1915.7     | -41 | 0.3     | Note <sup>8</sup>   |
| 7  | E-UTRA Band 1, 3, 7, 8, 33,    |                   |     |         |                     |
|    | 34                             | FDL_low- FDL_high | -50 | 1       |                     |
|    | E-UTRA Band 38                 | 2570-2620         | -50 | 1       | Note <sup>3</sup>   |
| 8  | E-UTRA Band 1, 8, 7, 33,       |                   |     |         |                     |
|    | 34, 38, 39, 40                 | FDL_low- FDL_high | -50 | 1       |                     |
|    | E-UTRA band 3                  | 1805-1830         | -50 | 1       | Note <sup>4</sup>   |
|    | E-UTRA band 3                  | 1805-1880         | -36 | 0.1     | Note <sup>2,4</sup> |
|    | E-UTRA band 3                  | 1830-1880         | -50 | 1       | Note <sup>4</sup>   |
|    | E-UTRA band 7                  | 2640-2690         | -50 | 1       | Note <sup>4</sup>   |
|    | E-UTRA band 7                  | 2640-2690         | -36 | 0.1     | Note <sup>2,4</sup> |
| 9  | E-UTRA Band 1, 9, 11, 34       | FDL_low- FDL_high | -50 | 1       |                     |
|    | Frequency range                | 860-895           | -50 | 1       |                     |
|    |                                | 1884.5-1919.6     |     |         | Note <sup>7</sup>   |
|    |                                |                   | 41  | 0.0     |                     |
| 10 | Frequency range                | 1884.5-1915.7     | -41 | 0.3     | Note <sup>8</sup>   |
| 10 | E-UTRA Band 2, 4, 5, 10, 12,   |                   | 50  | 1       |                     |
|    | 13, 14, 17                     | FDL_low- FDL_high | -50 | 1       |                     |
| 11 | E-UTRA Band 1, 9, 11, 34       | FDL_low- FDL_high | -50 | 1       |                     |
|    | Frequency range                | 860-895           | -50 | 1       | - 7                 |
|    |                                | 1884.5-1919.6     |     |         | Note <sup>7</sup>   |
|    | Frequency range                | 1884.5-1915.7     | -41 | 0.3     | Note <sup>8</sup>   |
| 12 | E-UTRA Band 2, 4, 5, 10,       |                   |     |         |                     |
|    | 12, 13, 14, 17                 | FDL_low- FDL_high | -50 | 1       |                     |
| 13 | E-UTRA Band 2, 4, 5, 10,       |                   |     |         |                     |
|    | 12, 13, 14, 17                 | FDL_low- FDL_high | -50 | 1       |                     |
|    | Frequency range                | 763-775           | -35 | 0.00625 |                     |
| 14 | E-UTRA Band 2, 4, 5, 10,       |                   |     |         |                     |
|    | 12, 13, 14, 17                 | FDL_low- FDL_high | -50 | 1       |                     |
|    | Frequency range                | 763-775           | -35 | 0.00625 |                     |
| 17 | E-UTRA Band 2, 4, 5, 10,       |                   |     |         |                     |
|    | 12, 13, 14, 17                 | FDL_low FDL_high  | -50 | 1       |                     |
|    |                                |                   |     |         |                     |

| 33   | E-UTRA Band 1, 3, 8, 34,                                                                             |                                                                                                   |              |                  |                   |  |  |
|------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------|------------------|-------------------|--|--|
|      | 38, 39, 40                                                                                           | FDL_low- FDL_high                                                                                 | -50          | 1                | Note <sup>5</sup> |  |  |
| 34   | E-UTRA Band 1, 3, 7, 8, 9,                                                                           |                                                                                                   |              |                  |                   |  |  |
|      | 11, 33, 38,39, 40                                                                                    | FDL_low- FDL_high                                                                                 | -50          | 1                | Note <sup>5</sup> |  |  |
|      | Frequency range                                                                                      | 860-895                                                                                           | -50          | 1                |                   |  |  |
|      |                                                                                                      | 1884.5-1919.6                                                                                     |              |                  | Note <sup>7</sup> |  |  |
|      | Frequency range                                                                                      | 1884.5-1915.7                                                                                     | -41          | 0.3              | Note <sup>8</sup> |  |  |
| 35   |                                                                                                      |                                                                                                   |              |                  |                   |  |  |
| 36   |                                                                                                      |                                                                                                   |              |                  |                   |  |  |
| 37   |                                                                                                      |                                                                                                   |              |                  |                   |  |  |
| 38   | E-UTRA Band 1,3, 33, 34                                                                              | FDL_low- FDL_high                                                                                 | -50          | 1                |                   |  |  |
| 39   | E-UTRA Band 34, 40                                                                                   | FDL_low- FDL_high                                                                                 | -50          | 1                |                   |  |  |
| 40   | E-UTRA Band 1, 3, 33, 34, 39                                                                         | FDL_low- FDL_high                                                                                 | -50          | 1                |                   |  |  |
| Note |                                                                                                      |                                                                                                   |              |                  |                   |  |  |
| 1    | FDL_low and FDL_high refer to                                                                        | FDL_low and FDL_high refer to each E-UTRA frequency band specified in Table 5.5-1 in the protocol |              |                  |                   |  |  |
|      | of 3GPP TS 36.101                                                                                    |                                                                                                   |              |                  |                   |  |  |
| 2    | As exceptions, measurements w                                                                        | ith a level up to the applie                                                                      | cable requi  | rements defined  | in Table 7-9 are  |  |  |
|      | permitted for each assigned E-UTRA carrier used in the measurement due to 2nd or 3rd harmonic        |                                                                                                   |              |                  |                   |  |  |
|      | spurious emissions. An exception is allowed if there is at least one individual RE within the        |                                                                                                   |              |                  |                   |  |  |
|      | transmission bandwidth (see Figure 5.6-1 in the protocol of 3GPP TS 36.101) for which the 2nd or 3rd |                                                                                                   |              |                  |                   |  |  |
|      | harmonic, i.e. the frequency ec                                                                      | qual to two or three time                                                                         | s the frequ  | ency of that R   | E, is within the  |  |  |
|      | measurement bandwidth.                                                                               |                                                                                                   |              |                  |                   |  |  |
| 3    | To meet these requirements son                                                                       | ne restriction will be neede                                                                      | ed for eithe | er the working b | and or protected  |  |  |
|      | band                                                                                                 |                                                                                                   |              |                  |                   |  |  |
| 4    | Requirements are specified in terms of E-UTRA sub-bands                                              |                                                                                                   |              |                  |                   |  |  |
| 5    | For non synchronized TDD operation to meet these requirements some restriction will be needed for    |                                                                                                   |              |                  |                   |  |  |
|      | either the working band or protected band                                                            |                                                                                                   |              |                  |                   |  |  |
| 6    | Applicable when NS_05 in section 6.6.3.3.1 in the protocol of 3GPP TS 36.101 is signaled by the      |                                                                                                   |              |                  |                   |  |  |
|      | network.                                                                                             |                                                                                                   |              |                  |                   |  |  |
| 7    | Applicable when co-existence with                                                                    | th PHS system working in.                                                                         | . 1884.5-19  | 19.6MHz.         |                   |  |  |
|      |                                                                                                      |                                                                                                   |              |                  |                   |  |  |

#### Hardware Development Guide of Module Product

8 Applicable when co-existence with PHS system working in 1884.5-1915.7MHz.



### 8.1 **RF Antenna Specification**

#### 8.1.1 Technical Parameter for the Main Antenna Connector

The main and diversity antenna is the product U.FL-R-SMT-1(80)(HRS)/ ECT818000071(ECT). The Profile Dimensions is shown in Figure 8-1. If more technical parameter for the main antenna connector is needed, please contact with ZTEWelink.

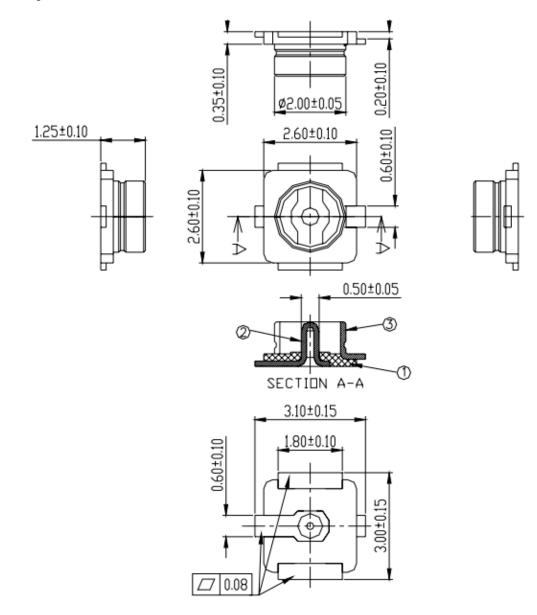



Figure 8–1 the Profile Dimensions



ZTE Welink

The PCB layout is shown in the Figure 8-2.

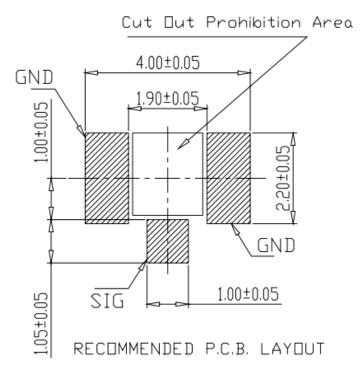



Figure 8–2 Recommended PCB layout

### NOTE:

The radio frequency bases adopted by the antenna interface of ZM8620\_V2 module is U.FL-R-SMT-1(80)(HRS)/ECT818000071(ECT) at present instead of adopting 20429-001E MHF-A13 of I-PEX by ZM8620 before.

### 8.2 Proposal on Layout of Product in Terminal Product

The module layout among other terminal products should take full consideration of the electric magnetic compatibility. As the types of terminal products vary and their circuit layouts are different, when considering the module layout, we should reduce the electric magnetic interference from other devices upon the module. Taking 3G Internet-access laptop as an example, during the layout of laptops, make sure that the module is not adjacent to the switch power or the high-speed signal cable, and well protect the cabling of these interference sources. At the same time, keep the antenna and the coaxial cables of network cables and antenna far away from the interference sources. Keep the module away from the devices that have a large heat-radiating capacity such as CPU, hard disk and south bridge, to guarantee that heat can be radiated effectively.

# 8.3 Antenna Dimensions and Location

The dimensions of different terminal products are different, so they impose different requirements upon the performance of antenna. The dimensions and location of antennas are also different. Taking 3G Internet-access laptop as an example, it is recommended that the antenna be placed on the top of LCD.

## 8.4 Diversity Antenna Design

ZM8620\_V2 supports diversity receiving function, and if it is necessary to support diversity, the notebook needs to add diversity antenna. The design method of the diversity antenna is consistent with the main antenna, and its efficiency index is allowed to reduce by 3dB. The isolation of the main antenna and the diversity antenna is required to be bigger than 12dB.

# **9** Debugging Environment and Method

In the process of the actual implementation, it is necessary to adopt the switching board to convert MINI PCIE module interface into the standard USB interface to connect the host for debugging verification. It is also necessary to connect external power supply adaptor to provide the module with sufficient current, and the diagram for the switching board is as follows:

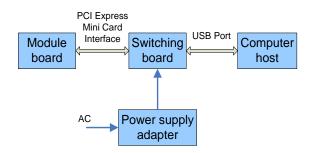



Figure 9–1 The diagram for the switching board

# 9.1 Debugging Board

Figure 9-2 shows the module debugging & installation method. The debugging board is mainly used to debug the basic functions of ZM8620\_V2 module, such as downloading the JTAG program, resetting the module, powering off and shutting down RF, LED indicator display, making a call or browsing web pages via computer UI by inserting the USIM card into the switching board. The USB interface supplies power to the debugging board, provides it to the module after LDO conversion, and directly supplies the power to the module by the power socket on the board.

# ZTE Welink

Hardware Development Guide of Module Product

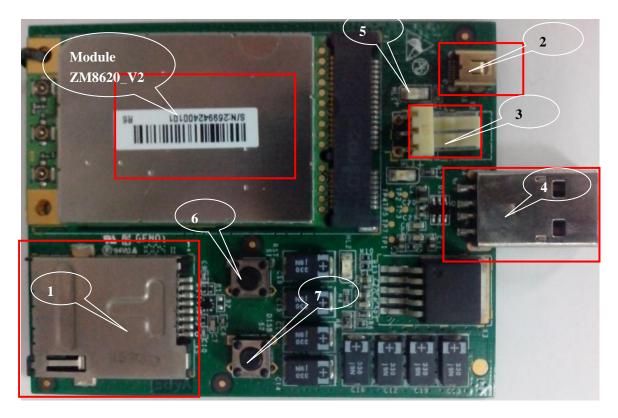



Figure 9–2 Debugging Board

Note: 1 – UIM card console; 2 –JTAG downloading interface; 3- DC power interface; 4 – USB interface; 5 – LED indicator; 6 - PON\_RESET\_N button (module resetting); 7 –W\_DISABLE\_N button (RF switch)

# 9.2 Interfaces on Debugging Board

#### 9.2.1 JTAG Interface

The JTAG interface can be used to download and debug the firmware program. This interface is reserved in the module of ZM8620\_V2.

#### 9.2.2 USB Interface

The USB2.0 interface on the debugging board is connected to the PCI-E interface on ZM8620\_V2.

#### 9.2.3 **Power-supply Interface**

The USB interface as illustrated in Figure 9-2 supplies power, provides the 3.3V power to the module after LDO conversion, and directly supplies the 3.3V power to the module by the power socket on the board.

#### 9.2.4 USIM Card Console Interface

As shown in Figure 9-2, 1 the USIM card console is the 5PIN USIM card console on the conversion board, connecting to: power, ground, UIM\_DATA, USIM\_CMD and UIM\_CLK. It supports the 1.8V/3V USIM card.

#### 9.2.5 PON\_RESET\_N Button

This button corresponds to the PON\_RESET\_N PIN of the PCI-E interfaced. The user presses the button to reset the module.

#### 9.2.6 W\_DISABLE\_N Button

This button corresponds to the W\_DISABLE\_N PIN of the PCI-E interface. The user presses this button to enable or disconnect RF, so as to perform the debugging of this PIN.

#### 9.2.7 LED Indicator

The LED indicator on the debugging board is connected to the LED\_WWAN\_N interface of ZM8620\_V2. By controlling the indicator, the user can debug the function of this interface.

# **10** Package System

ZTE Welink

The ZM8620\_V2 modules are wrapped with anti-static shielding bags, which is packaged on EPE trays of 6 pieces each. And these modules are put into cardboard box in a set of 10 trays. Each cardboard box is with 60 modules typically.

The package process of ZM8620\_V2 modules is shown as the Figure below. The unit of dimensions is mm.

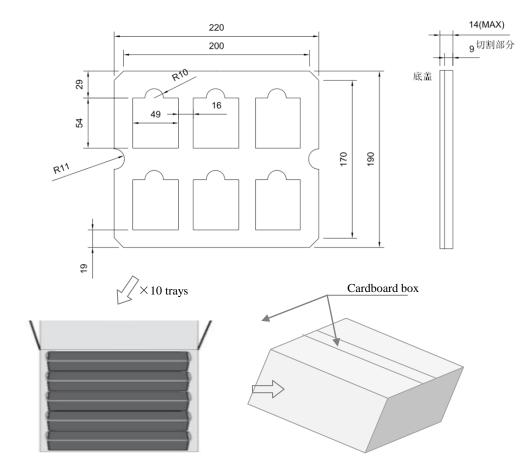



Figure 10–1 Package process of ZM8620\_V2 modules

Hardware Development Guide of Module Product

# **11** Safety Information

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal incorporating ZM8620\_V2 module. Manufacturers of the cellular terminal should send the following safety information to users, operating personnel and to incorporate these guidelines into all manuals supplied with the product.

The use of this product may be dangerous and has to be avoided in the following areas:

- Where it can interfere with other electronic devices in environments such as hospitals, aircrafts, airports, etc, switch off before boarding an aircraft. Make sure the cellular terminal is switched off in these areas. The operation of wireless appliances in the hospitals, aircrafts and airports are forbidden to prevent interference with communication systems.
- Areas with potentially explosive atmospheres including fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as gasoline stations, oil refineries, etc make sure that wireless devices are turned off.

It's the responsibility of users to enforce other country regulations and the specific environment regulations. And ZTEWelink does not take on any liability for customer failure to comply with these precautions.

#### 12.NOTICE

Note1: This device complies with Part 15 of the FCC Rules, Operation is subject to the following two conditions:

- (1) this device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

Note2: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Note3: For EUT which intended use is at least 20 cm between human body and antenna.

#### Note4: Label of The End Product

The final end product must be labeled in a visible are with the following "Contains TX FCC ID:SRQ-ZM8620". The FCC part 15.19 statement below has to also be available on the label: This device complies with Part 15 of FCC rules. Operation is subject to the foll owing two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause u ndesired operation. To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation.

A user manual with the end product must clearly indicate the operating requirements a nd conditions that must be observed to ensure compliance with current FCC RF expos ure guidelines. The end product with an Module may also need to pass the FCC Part 1 5 unintentional emission testing requirements and be properly authorized per FCC Part 15. Note: If this module is intended for use in a portable device, you are responsible for separate approval to satify the SAR requirements of FCC Part 2.1093.