

Using Help Back 1

Help Using Help

Using Help Back 1

Using Help

About Help

Adobe Systems Incorporated provides complete documentation in an Adobe PDF-based
help system. This help system includes information on all tools, commands, and features
of an application. It is designed for easy on-screen navigation and can also be printed and
used as a desktop reference. Additionally, it supports third-party screen-reader applica-
tions that run in a Windows environment.

Navigating in Help

Help opens in an Adobe Acrobat window with the Bookmarks pane open. (If the
Bookmarks pane is not open, click the Bookmarks tab at the left edge of the window.) At
the top and bottom of each page is a navigation bar containing links to this page (Using
Help), the table of contents (Contents), and the index (Index).

To move through pages sequentially, you can click the Next Page and the Previous
Page arrows; click the navigation arrows at the bottom of the page; or click Back to
return to the last page you viewed.

You can navigate Help topics by using bookmarks, the table of contents, the index, or the
Search (Acrobat 6) or Find (Acrobat 5) command.

To find a topic using bookmarks:

1

I

n the Bookmarks pane, click the plus sign (+) (Windows) or the right-facing arrow (Mac
OS) next to a bookmark topic to view its subtopics.

2

C

lick the bookmark to go to that topic.

To find a topic using the table of contents:

1

C

lick Contents in the navigation bar.

2

On the Contents page, click a topic to go to that topic.

3

To view a list of subtopics, click the plus sign (+) (Windows) or the right-facing arrow
(Mac OS) next to the topic name in the Bookmarks pane.

To find a topic using the index:

1

D

o one of the following:

•

Click Index in the navigation bar, and then click a letter at the top of the page.

•

Ι

n the Bookmarks pane, expand the Index bookmark to view the letter subtopics; then
click a letter.

2

Locate the entry you want to view, and click the page number to go to that topic.

3

To view other entries for the same topic, click Back to return to the same place in the
index, and then click another page number.

Using Help Back 2

Help Using Help

Using Help Back 2

To find a topic using the Search command (Acrobat 6):

1

Choose Edit > Search.

2

Type a word or phrase in the text box and click Search. Acrobat searches the document
and displays every occurrence of the word or phrase in the Results area of the Search PDF
pane.

To find a topic using the Find command (Acrobat 5):

1

Choose Edit > Find.

2

Type a word or phrase in the text box and click Find. Acrobat searches the document,
starting from the current page, and displays the first occurrence.

3

To find the next occurrence, choose Edit > Find Again.

Printing Help

Although Help is optimized for on-screen viewing, you can print selected pages or the
entire file.

To print Help:

Choose File > Print, or click the Print icon in the Acrobat toolbar.

Using Help Back 3

Help Overview

Using Help Back 3

Overview

The

Adobe After Effects 6.5 Render Automation & Scripting Guide

 demonstrates how to take procedural control
of your After Effects projects via scripting. This feature set is available only in Adobe After Effects 6.5 Profes-
sional Edition.

With the use of system-level scripting, you can streamline your render pipeline and avoid a lot of repetitive
pointing and clicking. If you have used expressions or other JavaScript-like techniques for animating, or
worked with system scripting in AppleScript or Visual Basic, you will recognize the power of application
scripting in After Effects. With some practice, and with sufficient experience using the JavaScript language,
you can take control of your graphics pipeline.

If you know nothing about scripting

After Effects 6.5 is a visual tool with a graphical user interface; you are used to interacting with it via interface
elements such as menus, palettes and icons. For the most part, this is the most accessible way to work.
Scripting is designed for situations in which this methodology involves tedious repetition or painstaking
searching and sorting that could be automated. It is also useful for leveraging the power of networked
rendering in situations where Watch Folder is less powerful (and less convenient to set up).

Scripting is designed to help users of After Effects get past these types of obstacles, and it is available even to
users who have no inclination to learn the JavaScript language. If you are this type of user, you can still harness
the power of scripting via third party solutions such as Rush Render Queue, a graphical user interface to set
up distributed renders from any computer on the network without having to set up on individual machines.

You can also leverage the contributions of scripting users who share scripts with other users. Larger studios
may have such users in-house, while other users can visit forums such as those found at www.adobe-
forums.com.

After Effects objects

You may not think of After Effects as a collection of hierarchical objects, but when you make use of render
queue items, compositions, and projects, that is how they appear in scripting. Just as the expressions features
in After Effects give you access to virtually any property of any layer inside any composition of your project
(each of which we refer to as an object), scripting gives you access to the hierarchy of objects within After
Effects and allows you to make changes to these objects.

After Effects scripting is based on ECMAScript (or more specifically, the 3rd Edition of the ECMA-262
Standard). Further documentation on this standard can be found at www.ecma-international.org.

Expressions and motion math

Because scripting can access individual layer properties, and because it utilizes JavaScript, one might assume
that expressions and scripting are one and the same. However, they are two entirely distinct entities. Expres-
sions have no ability to access information from scripts (such as variables and functions), although a script
can be written to create or edit an expression.

The similarity between expressions and scripting is, however, apparent in that they are both drawn from the
same language, ECMA standard JavaScript. Thus, knowing how to utilize one is helpful in understanding the
other.

Using Help Back 4

Help Overview

Using Help Back 4

Motion math is no longer included in After Effects; its functionality has been superseded by scripting and
expressions. All mathematical and logical operators common to ECMAScript are available in scripting.

For example, with expressions it is possible to simulate the physics of a a bouncing ball by applying mathe-
matical rules to a “ball” layer. But using scripting, you can create a whole user interface that allows a bouncing
ball and shadow layer to be animated using criteria entered by the user.

About this guide

This guide is for users who manage a graphics pipeline (which may include other scriptable applications as
well) and who want to write scripts to add custom capabilities to After Effects.

This functionality is also offered via third-party network rendering management solutions. These products
feature software designed to help manage this process, so it is possible to take advantage of this functionality
without having to perform manual editing of scripts.

Although this guide is intended to provide an understanding of the extensions that have been added to the
ECMAScript/JavaScript language for scripting of After Effects projects, to take full advantage of what is
possible with scripting you will also need an understanding of writing scripts at the system level (for
integration with AppleScript on the Mac and DOS shell scripts on Windows systems) and a background in
how to work with JavaScript.

Much of what scripting can accomplish replicates what can be done via the After Effects user interface, so a
thorough knowledge of the application itself is also essential to understanding how to use this functionality.

Note that JavaScript objects normally referred to as “properties” are consistently called “attributes” in this
guide, to avoid confusion with After Effects’ own definition of a Property (an animatable value of an effect or
transform within an individual layer).

Activating full scripting features

For security reasons, the scripting features that operate outside the After Effects application (such as adding
and deleting files and folders on volumes, or accessing the network) are disabled by default.

To enable these features, choose Preferences > General, and select Allow Scripts to Write Files and Access
Network.

By selecting this box, you enable the following:

•

Writing files

•

Creating folders

•

Setting the current folder

•

Creating a socket

•

Opening a socket

•

Listening to a socket

The JavaScript Debugger is disabled by default so that casual users do not encounter it. When editing or
writing scripts, the JavaScript Debugger can help you diagnose script problems more quickly.

To activate the JavaScript Debugger on the local machine when a script error is encountered, choose Prefer-
ences > General, and select Enable JavaScript Debugger.

Note that the JavaScript Debugger operates only when executing a script, not with expressions, even though
expressions also make use of JavaScript.

Using Help Back 5

Help Overview

Using Help Back 5

For detailed information on the JavaScript Debugger, see “JavaScript Debugging” on page 15.

Accessing and writing scripts

To create and edit scripts for After Effects, use an external text-editing application that creates files with
Unicode UTF-8 text encoding. Beware of applications such as Microsoft Word that by default add header
information to files (these create line 0 errors in scripts, causing them to fail). A script can reside anywhere,
although to appear in the Scripts menu it must be saved in the Scripts folder within the After Effects appli-
cation folder. For details on writing and editing scripts, see “Writing Scripts” on page 6.

There is no built-in method for recording a series of actions in After Effects into a script, as you can with
Photoshop actions. Scripts are created outside After Effects and then executed within it, or externally via a
command-line or third-party render management software.

Uses of After Effects scripting

One primary use for scripting in After Effects 6.5 is render automation. Anyone charged with managing a
complex rendering pipeline will be interested in this. Render automation can be accomplished either by hand-
coding scripts or via a third-party network rendering solution that supports automated management of
network rendering pipelines.

There are other uses for scripting; it can be a shortcut around tedious tasks that would otherwise involve
repetitious pointing and clicking.

See “Examples” on page 179 for examples of what scripts can do.

Using Help Back 6

Help Writing Scripts

Using Help Back 6

Writing Scripts

When you use Adobe After Effects, you create projects, compositions, and Render Queue items along with all
of the elements that they contain: footage, images, solids, layers, masks, effects, and properties. Each of these
items, in scripting terms, is an object.

The heart of a scriptable application is the object model. In After Effects, the object model is composed of
projects, items, compositions, layers, and Render Queue items. Each object has its own special attributes, and
every object in an After Effects project has its own identity (although not all are accessible to scripting).

You should be familiar with the After Effects object model in order to create scripts. For more resources for
learning scripting, see “More resources to learn scripting” on page 8.

Editing scripts

After Effects 6.5 does not include a script editor. You can use any text editor to create, edit, and save scripts,
but it is recommended that you choose an application that does not automatically add header information
when saving files and that saves with Unicode (UTF-8) encoding.

Windows applications that are useful for editing scripts include EM Editor or the built-in Notepad (be sure to
set Encoding within save options to UTF-8).

Mac OS applications that are useful for editing scripts include BBEdit or the built-in OS X Textedit (be sure
to set the Save type in Preferences to Unicode [UTF-8]).

The .jsx format

After Effects scripts must include the .jsx file extension in order to be properly recognized by the application.
This extension is a variation on the standard “.js” extension used with normal JavaScript files; any UTF-8
encoded text file with this extension will be recognized.

The Scripts menu and Scripts folder

After Effects scripts reside in the Scripts folder, within the same folder as your After Effects 6.5 application file.
Only scripts contained in this Scripts folder are automatically listed in the Scripts menu, although a script file
can reside anywhere.

To run a script that does not appear in the Scripts menu, choose File > Run Script > Choose File, and choose
the script in the Open dialog box. Alternatively, you can send After Effects a script from a command line (on
Windows) or from AppleScript (on Mac OS).

To appear in the Open dialog box, your script must include the proper .jsx file extension.

Shutdown and Startup folders

Within the Scripts folder are two folders called Startup and Shutdown. After Effects runs scripts in these
folders automatically on starting and quitting, respectively.

In the Startup folder you can place scripts that you wish to execute at startup of the application. They are
executed after the application is initialized and all plug-ins are loaded.

Using Help Back 7

Help Writing Scripts

Using Help Back 7

Scripting shares a global environment, so any script executed at startup can define variables and functions that
are available to all scripts. In all cases, variables and functions, once defined by running a script that contains
them, persist in succeeding scripts during a given After Effects session. Once the application is quit, all such
globally defined variables and functions are cleared.

Please note that this persistence of global settings also means that if you are not careful about giving variables
in scripts unique names, you can inadvertently reassign global variables intended to persist throughout a
session.

Properties can also be embedded in existing objects such as the Application object (see “Application object”
on page 26) to extend the application for other scripts.

The Shutdown folder scripts are executed as the application quits. This occurs after the project is closed but
before any other application shutdown occurs.

Sending a script to After Effects from the system

If you are familiar with how to run a script from the command line in Windows or via AppleScript, you can
send a script directly to the open After Effects application, which then runs automatically.

How to include After Effects scripting in a command line (Windows)

Following are examples of DOS shell scripts that will send an After Effects script to the application without
using the After Effects user interface to execute the script.

In the first example, you would copy and paste your After Effects script directly into the command line script
and then run it, as follows (your script text would appear in quotation marks following the afterfx.exe -s
command):

af ter fx .exe –s “a ler t (“You just sent an a ler t to After Ef fects”)”

Alternatively, you could specify the location of the .jsx file to be executed, as follows:

af ter fx .exe –r c : \myDocuments\Scr ipts\yourAEScr iptHere . j sx

How to include After Effects scripting in an AppleScript (Mac OS)

Following are three examples of AppleScripts that will send an existing .jsx file containing an After Effects
script to the application without using the After Effects user interface to execute the script.

In the first example, you copy your After Effects script directly into the AppleScript and then run it, as follows
(your script text would appear in quotation marks following the DoScript command):

te l l appl icat ion “Adobe After Ef fects 6 .5”

DoScr ipt “a ler t (\”You just sent an a ler t to After Ef fects\”)”

end te l l

Alternatively, you could display a dialog box asking for the location of the .jsx file to be executed, as follows:

set thefile to choose file

te l l appl icat ion “Adobe After Ef fects 6 .5”

DoScr ipt thefile

end te l l

Using Help Back 8

Help Writing Scripts

Using Help Back 8

Finally, this script is perhaps most useful when you are working directly on editing a .jsx script and want to
send it to After Effects for testing or to run. To use it effectively you must enter the application that contains
the open .jsx file (in this example it is TextEdit); if you do not know the proper name of the application, type
in your best guess to replace “TextEdit” and AppleScript prompts you to locate it.

Simply highlight the script text that you want to run, and then activate this AppleScript:

(*

This scr ipt sends the current se lect ion to After Ef fects as a scr ipt .

*)

te l l appl icat ion “ TextEdit”

set the_scr ipt to se lect ion as text

end te l l

te l l appl icat ion "Adobe After Ef fects 6 .5"

act ivate

DoScr ipt the_scr ipt

end te l l

For more information on using AppleScript, check out Matt Neuberg’s

AppleScript: the Definitive Guide

(O’Reilly & Associates) or Sal Soghoian’s

AppleScript 1-2-3

 (Peachpit Press).

Testing and troubleshooting

Any After Effects script that contains an error preventing it from being completed generates an error message
from the application. This error message includes information about the nature of the error and the line of
the script on which it occurred.

Additionally, After Effects includes a JavaScript debugger. For more information on activating and using the
debugger, see “JavaScript Debugging” on page 15.

More resources to learn scripting

Many resources exist for learning more about scripting that uses the ECMA standard.

The After Effects scripting engine supports the 3rd Edition of the ECMA-262 Standard, including its
notational and lexical conventions, types, objects, expressions and statements.

For a complete listing of the keywords and operators included with ECMAScript, please refer to Ecma-
262.pdf, available at www.ecma-international.org/publications/standards/ECMA-262.HTM.

Books that deal with JavaScript 1.2 are also useful for understanding how scripting works in After Effects. One
book that is something of a standard for JavaScript users is

JavaScript, The Definitive Guide

 (O’Reilly) by David
Flanagan. Another very readable source is

JavaScript: A Beginner’s Guide

 (Osborne) by John Pollock. Both of
these texts contain information that pertains only to extensions of JavaScript for Internet browsers; however,
they also contain thorough descriptions of scripting fundamentals.

There are also books for using AppleScript and creating Windows command line scripts, each of which can be
used to send scripts to After Effects.

Using Help Back 9

Help Writing Scripts

Using Help Back 9

Keywords and statement syntax

Although it is not possible to provide an exhaustive resource describing usage of JavaScript, the following
tables provide an overview of keywords, statements, operators, precedence and associativity.

The following table lists and describes all keywords and statements recognized by the After Effects scripting
engine.

Table 1 Keywords and Statement Syntax

Operators

The following tables list and describe all operators recognized by the After Effects scripting engine and show
the precedence and associativity for all operators.

Table 2 Description of Operators

Keyword/Statement Description

break

Standard JavaScript; exit the currently executing loop.

cont inue

Standard JavaScript; cease execution of the current loop iteration.

case

label used in a switch statement

default

label used in a switch statement when a case label is not found

do - whi le

Standard JavaScript construct. Similar to the

whi le

 loop, except loop condition evaluation occurs
at the end of the loop.

fa l se

Literal representing boolean false.

for

Standard JavaScript loop construct.

for - in

Standard JavaScript construct. Provides a way to easily loop through the properties of an object.

funct ion

Used to define a function.

i f / i f - e l se

Standard JavaScript conditional constructs.

new

Standard JavaScript constructor statement.

nul l

Assigned to a variable, array element, or object property to indicate that it does not contain a legal
value.

re turn

Standard JavaScript way of returning a value from a function or exiting a function.

sw itch

Standard JavaScript way of evaluating an expression and attempting to match the expression's
value to a

case

 label.

this

Standard JavaScript method of indicating the current object.

t rue

Literal representing boolean true.

undefined

Indicates that the variable, array element, or object property has not yet been assigned a value.

var

Standard JavaScript syntax used to declare a local variable.

whi le

Standard JavaScript construct. Similar to the

do - whi le

 loop, except loop condition evaluation
occurs at the beginning of the loop.

w ith

Standard JavaScript construct used to specify an object to use in ensuing statements.

Operators Description

new

Allocate object.

Using Help Back 10

Help Writing Scripts

Using Help Back 10

de le te

Deallocate object.

t y peof

Returns data type.

void

Returns undefined value.

.

Structure member.

[]

Array element.

()

Function call.

++

Pre- or post-increment.

- -

Pre- or post-decrement.

-

Unary negation or subtraction.

 ~

Bitwise NOT.

!

Logical NOT.

*

Multiply.

/

Divide.

%

Modulo division.

+

Add.

<<

Bitwise left shift.

>>

Bitwise right shift.

>>>

Unsigned bitwise right shift.

<

Less than.

<=

Less than or equal.

>

Greater than.

>=

Greater than or equal.

==

Equal.

!=

Not equal.

&

Bitwise AND.

^

Bitwise XOR.

|

Bitwise OR.

&&

Logical AND.

| |

Logical OR.

? :

Conditional (ternary).

=

Assignment.

+=

Assignment with add operation.

-=

Assignment with subtract operation.

*=

Assignment with multiply operation.

Operators Description

Using Help Back 11

Help Writing Scripts

Using Help Back 11

Table 3 Operator Precedence

Render automation with aerender

One primary use for scripting in After Effects 6.5 is render automation. Anyone charged with managing a
complex rendering pipeline will be interested in this. Render automation can be accomplished either by hand-
coding scripts or via a third-party network rendering solution that supports automated management of
network rendering pipelines.

Note:

 There are other uses for scripting; it can be a shortcut around tedious tasks that would otherwise involve
repetitious pointing and clicking. See “Examples” on page 179 for examples of what scripts can do.

/=

Assignment with divide operation.

%=

Assignment with modulo operation.

<<=

Assignment with bitwise left shift operation.

>>=

Assignment with bitwise right shift operation.

>>>=

Assignment with bitwise right shift unsigned operation.

 &=

Assignment with bitwise AND operation.

 ^=

Assignment with bitwise XOR operation.

 |=

Assignment with bitwise OR operation.

,

Multiple evaluation.

Operators (Listed from highest precedence —top row—to lowest) Associativity

[] , () , .

left to right

new, delete , -(unar y negat ion) , ~, ! , t y peof , void,++, -- right to left

*, / , % left to right

+, -(subtract ion) left to right

<<, >>, >>> left to right

<, <=, >, >= left to right

==, != left to right

& left to right

^ left to right

| left to right

&& left to right

| | left to right

? : right to left

=, /=, %=, <<=, >>=, >>>=, &=, ^=, |=, +=, -=, *= right to left

, left to right

Operators Description

Using Help Back 12

Help Writing Scripts

Using Help Back 12

Usage

The command-line application aerender renders After Effects compositions. The render may be performed
either by an already running instance of After Effects or by a newly invoked instance. By default, aerender will
invoke a new instance of After Effects, even if one is already running. To change this, see the "-reuse" flag in
the following “Arguments” below.

Arguments

From the command line aerender takes a series of optional arguments that are added following the executable
command (i.e. aerender.exe). Some are single flags, like "-reuse". Some come in flag-argument pairs, like "-
project project_path". And one comes in a triplet, -mem_usage image_cache_percent max_mem_percent.

With 0 arguments, or with any argument equaling "-help", aerender prints a usage message with the infor-
mation contained in this section.

Argument Usage

-help print usage message

-reuse Use this flag if you want to try and reuse an already running instance
of After Effects to perform the render. By default, aerender launches
a new instance of After Effects, even if one is already running. But,
if After Effects is already running, and the -reuse flag is provided,
aerender asks the already running instance of After Effects to
perform the render. Whenever aerender launches a new instance of
After Effects, it tells After Effects to quit when rendering is
completed; otherwise, it doesn’t quit After Effects. Also, the prefer-
ences are written to file upon quitting when the -reuse flag is
specified; otherwise it isn’t written.

-project project_path where project_path is a file path or URI specifying a project file to
open. If none is provided, aerender will work with the currently
open project. If no project is open and no project is provided, an
error will result.

-comp comp_name where comp_name specifies a comp to be rendered.

If the comp is in the render queue already, and in a queueable state,
then (only) the first queueable instance of that comp on the render-
queue is rendered.

If the comp is in the project but not in the render queue, then it is
added to the render queue and rendered.

If no -comp argument is provided, aerender renders the entire
render queue as is. In this case (no -comp), the only other
arguments used are -project , - log , -v, -mem_usage, and -c lose ;

the -RStemplate , -OMtemplate , -output , -s , -e , and arguments
are ignored.

Using Help Back 13

Help Writing Scripts

Using Help Back 13

-RStemplate

render_sett ings_template

where render_sett ings_template is the name of a template to apply
to the render queue item.

If the template does not exist, it is an error. Default is to use the
render template already defined for the item.

-OMtemplate

output_module_template

where output_module_template is the name of a template to apply
to the output module. If the template does not exist, it is an error.
Default is to use the template already defined for the output
module.

-output output_path where output_path is a file path or URI specifying the destination
render file. Default is the path already in the project file.

- log logfile_path where logfile_path is a file path or URI specifying the location of
the log file. Default is s tdout.

-s s tar t_frame where star t_frame is the first frame to render. Default is the start
frame in the file.

-e end_frame where end_frame is the last frame to render. Note, this is "inclusive;"
the final frame is rendered. Default is the end frame in the file.

- i increment where increment is the number of frames to advance before
rendering a new frame. A value of 1 (the default) results in a normal
rendering of all frames. Higher increments will repeat the same
(frame increment-1) times and then render a new one, starting the
cycle again. Higher values result in faster renders but choppier
motion. Default is 1.

-mem_usage

image_cache_percent

max_mem_percent

where image_cache_percent specifies the maximum percent of
memory used to cache already rendered images/footage, and
max_mem_percent specifies the total percent of memory that can
be used by After Effects.

-v verbose_flag where verbose_flag specifies the type of messages reported.
Possible values are ERRORS (prints only fatal and problem errors)
or ERRORS_AND_PROGRESS (prints progress of rendering as
well). Default value is ERRORS_AND_PROGRESS.

-c lose c lose_flag where c lose_flag specifies whether or not toclose the project when
done rendering, and whether or not to save changes.

If c lose_flag is DO_NOT_SAVE_CHANGES, the project is closed
without saving changes.

If c lose_flag is SAVE_CHANGES, project is closed and changes are
saved. If c lose_flag is DO_NOT_CLOSE the project is left open; but
the project is left open only if using an already-running instance of
After Effects, since new invocations of After Effects must always
close and quit when done. Default value is
DO_NOT_SAVE_CHANGES.

Argument Usage

Using Help Back 14

Help Writing Scripts

Using Help Back 14

Examples

To render just Comp 1 to a specified file, enter:

aerender -project c : \projects\proj1 .aep -comp "Comp 1" -output c : \output\proj1\proj1 .av i

To render everything in the render queue as is in the project file, enter:

aerender -project c : \projects\proj1 .aep

To render frames 1-10 using multi-machine render, enter:

aerender -project c : \projects\proj1 .aep -comp "Comp 1" -s 1 -e 10

-RStemplate "Mult i-Machine Sett ings"

-OMtemplate "Mult i-Machine Sequence"

-output c : \output\proj1\ frames[####] .psd

-sound sound_flag where sound_flag specifies whether or not to play a sound when
rendering is complete. Possible values are ON or OFF. Default value
is OFF.

-vers ion Displays the version number of aerender to the console. Does not
render.

Argument Usage

Using Help Back 15

Help JavaScript Debugging

Using Help Back 15

JavaScript Debugging

This section describes the JavaScript Debugger, which appears when the Enable JavaScript Debugger
preference is selected in General Preferences (it is deselected by default) and there is an error when executing
a script.

JavaScript Debugger window
A. Stack trace view B. Resume C. Pause D. Stop E. Step over F. Step into
G. Step out H. Breakpoints display I. Command line J. Debug output view
K. JavaScript source view

The current stack trace appears in the upper-left pane of the JavaScript Debugger window. This Stack Trace
view displays the calling hierarchy at the time of the breakpoint. Double-clicking a line in this view changes
the current scope, enabling you to inspect and modify scope-specific data.

All debugging output appears in the upper-right pane of the JavaScript Debugger window. Specifically, output
from the print method of the $ object appears in this Debug Output view.

The currently executing JavaScript source appears in the lower pane of the JavaScript Debugger window.
Double-clicking a line in this JavaScript Source view sets or clears an unconditional breakpoint on that line.
That is, if a breakpoint is in effect for that line, double-clicking it clears the breakpoint, and vice-versa. The
line number display on the left part displays a red dot for all lines with a breakpoint.

I

J

K

BA C D E F G H

Using Help Back 16

Help JavaScript Debugging

Using Help Back 16

If Enable JavaScript Debugger is deselected in General Preferences, you see an error message but not the
JavaScript Debugger itself. This is the typical setup used in situations in which professional roles are divided
between those writing and administering scripts (technical directors, system administrators, and so on) and
those using them (the artist or animators). If you are writing and debugging your own scripts, you will want
to enable the JavaScript Debugger.

Controlling code execution in the JavaScript Debugger
This section describes the buttons that control the execution of code when the JavaScript Debugger window
is active. Most of these buttons also provide a keyboard shortcut.

Resume
Ctrl+R (Windows)
Command+R (Mac OS)

Resume execution of the script with the JavaScript Debugger window open. When the script terminates, the application closes the Jav-
aScript Debugger window automatically. Closing the window manually also causes script execution to resume. This button is enabled
when script execution is paused or stopped.

Pause
Ctrl+P (Windows)
Command+P (Mac OS)

Halt the currently executing script temporarily and reactivate the JavaScript Debugger. This button is enabled when a script is running.
,,Ray, funnyy wrapping on this line . . . -cj>>

Stop
Ctrl+K (Windows)
Command+K (Mac OS)

Stop execution of the script and generate a runtime error. This button is enabled when a script is running.

Step Over
Ctrl+S (Windows)
Command+S (Mac OS)

Halt after executing a single JavaScript statement in the script; if the statement calls a JavaScript function, execute the function in its
entirety before stopping.

Step Into
Ctrl+T (Windows)
Command+T (Mac OS)

Halt after executing a single JavaScript statement in the script or after executing a single statement in any JavaScript function that the
script calls.

Using Help Back 17

Help JavaScript Debugging

Using Help Back 17

Step Out
Ctrl+U (Windows)
Command+U (Mac OS)

When the JavaScript Debugger is paused within the body of a JavaScript function, resume script execution until the function returns.
When the JavaScript Debugger is paused outside the body of a function, resume script execution until the script terminates.

Script Breakpoints Display

Display the Script Breakpoints window.

Using the JavaScript command line entry field
You can use the JavaScript Debugger’s command line entry field to enter and execute JavaScript code interac-
tively within a specified stack scope. Commands entered in this field execute with a time-out of one second. If
a command takes longer than one second to execute, the script terminates and generates a time-out error.

Command line entry field

Enter in this field a JavaScript statement to execute within the stack scope of the line highlighted in the Stack
Trace view. When you’ve finished entering the JavaScript expression, you can execute it by clicking the
Command Line Entry button or pressing the Enter key. Click the button next to the field, or press Enter to
execute the JavaScript code in the command line entry field. The application executes the contents of the
command line entry field within the stack scope of the line highlighted in the Stack Trace view.

The command line entry field accepts any JavaScript code, making it very convenient to use for inspecting or
changing the contents of variables.

Note: To list the contents of an object as if it were JavaScript source code, enter the object.toSource() command.

Setting breakpoints
You can set breakpoints in the JavaScript Debugger itself, by calling methods of the $ object, or by defining
them in your JavaScript code.

Setting breakpoints in the JavaScript Debugger

When the JavaScript Debugger window is active, you can double-click a line in the JavaScript Source view to
set or clear a breakpoint at that line. Alternatively, you can click the Script Breakpoints Display button to
display the Script Breakpoints window and set or clear breakpoints in this window as described in “Script
Breakpoints window” on page 18.

Setting breakpoints in JavaScript code

Adding the debugger statement to a script sets an unconditional breakpoint. For example, the following code
causes the script to halt and display the JavaScript Debugger as soon as it enters the setupBox function.

funct ion setupBox(box) {

/ / break uncondit ional ly at the next l ine

debugger ;

Using Help Back 18

Help JavaScript Debugging

Using Help Back 18

box.w idth = 48;

box.height = 48;

box.ur l = "none" ;

}

To execute a breakpoint in runtime code, call the $.bp() method, as shown in the following example:

funct ion setupBox(box) {

box.w idth = (box.w idth == undefined) ? $.bp() : 48 ;

box.height = (box.height == undefined) ? $.bp() : 48 ;

box.ur l = (box.ur l == undefined) ? $.bp() : "none" ;

}

This example breaks into the JavaScript Debugger if any of the width, height, or url attributes of the custom
element are undefined. Of course, you wouldn’t put bp method calls into production code—it’s more appro-
priate for shipping code to set default values for undefined properties, as the previous example does.

Script Breakpoints window

Display of the Script Breakpoints window is controlled by the Script Breakpoints button in the JavaScript
Debugger. This window displays all defined breakpoints. This window does not display temporary break-
points or breakpoints defined by the debugger statement in JavaScript code.

The Script Breakpoints window provides the following controls:

• The Line field contains the line number of the breakpoint.

• The Condition field may contain a JavaScript expression to evaluate when the breakpoint is reached. If the
expression evaluates to false, the breakpoint is not executed.

• Breakpoints set in this window persist across multiple executions of a script. When the application quits or
a script is reloaded, it removes all breakpoints.

To set a breakpoint in the Script Breakpoints window:

1 Click New to create a new breakpoint, or click the breakpoint that you wish to edit.

2 Enter a line number in the Line Number field, or change the existing line number.

3 Optionally, enter a condition such as (i>5) in the Condition field. This can be any valid JavaScript
expression. If the result of evaluating the expression is true, the breakpoint activates.

The $ object
The $ object (Debugger Object) provides properties and methods you can use to debug your JavaScript code.
For example, you can call its methods to set or clear breakpoints programmatically, or to change the language
flavor of the script currently executing. It also provides properties that hold information about the version of
the host platform’s operating system.

Note: The $ object is not a standard JavaScript object.

Properties

Name Type Description

error Error Retrieve the last runtime error. Reading this property returns an Error
object containing information about the last runtime error.

Using Help Back 19

Help JavaScript Debugging

Using Help Back 19

Debug output method
w rite (text , …);

w r i te ln (text , …);

Write the given string to the Debug Output window. The writeln method appends a New Line character to its
arguments.

Parameters

Returns

None.

Clear breakpoint method
clearbp (scr ipt letName, l ine) ;

Clear a breakpoint. The breakpoint is defined by the name of the scriptlet or function and the line number. If
the scriptlet name is the empty string or is missing, the name of the currently executing scriptlet is used. If the
line number is zero or not supplied, the current line number is used. Thus, the call $.clearbp() without param-
eters clears a breakpoint at the current position.

The special string "NEXTCALL" as the scriptlet name causes the engine to clear a breakpoint at the next
function call.

Parameters

Returns

None.

Execute breakpoint method
bp([condit ion]) ;

Execute a breakpoint at the current position. Optionally, a condition may be supplied. The condition is a
JavaScript expression string that is evaluated before the breakpoint is executed. The breakpoint is executed
only if the expression returns true. If no condition is given, the use of the debugger statement is recommended
instead as it is a more widely supported JavaScript standard statement.

vers ion String Returns the version number of the JavaScript engine as a three-part num-
ber like e.g. "3.1.11". Read only.

os String Outputs the current operating system version. Read only.

text String All parameters are concatenated to a single string.

scr ipt letName String The name of the scriptlet where the breakpoint is to be cleared.

l ine Number The line number where the breakpoint is to be cleared.

Using Help Back 20

Help JavaScript Debugging

Using Help Back 20

Parameters

Returns

None.

Garbage collection method
gc ()

Initiate a garbage collection. Garbage collection is the process by which the JavaScript interpreter cleans up
memory it is no longer using. This is done automatically. Occasionally when you’re debugging a script, it may
be useful to call this process.

Returns

None.

condit ion String An optional JavaScript expression string that is evaluated before the
breakpoint is executed. The expression needs to evaluate to the equivalent
of true in order to activate the breakpoint.

Using Help Back 21

Help Reference

Using Help Back 21

Reference

This chapter lists and describes syntax (keywords, statements, operators,classes, objects, methods, attributes,
and global functions) particular to the After Effects scripting engine.

The After Effects Scripting engine supports the 3rd Edition of the ECMA-262 Standard, including its
notational and lexical conventions, types, objects, expressions and statements. For a complete listing of the
keywords and operators included with ECMAScript, please refer to Ecma-262.pdf, available at www.ecma-
international.org/publications/standards/ECMA-262.HTM

For an overview of the most common keywords and statements available from ECMA-262, see “Keywords and
statement syntax” on page 9.

Objects, methods, attributes, and globals
As you look through this reference section, which is organized alphabetically according to object groupings,
you can refer to the following diagrams for an overview of where the various objects fall within the hierarchy,
and their correspondence to the user interface.

Hierarchy diagram of the main After Effects scripting objects

application

projectsettings

renderQueue item(s)

item(s) may be any of the following 3 types of item:

ITEM(S)

renderQueueItem(s)

outputModule(s)

socketfile foldersystem

folderItemfootageItem

proxySource proxySourcemainSource

solidSource

color

fileSource

file

placeholderSource

layer(s)

properties

compItem

OR

OR

OR

OR

mainSource & proxySource
may be any of the following 3 types of item:

Using Help Back 22

Help Reference

Using Help Back 22

The hierarchy of objects in scripting corresponds to the hierarchy in the user interface. The Application contains a Project window that
contains a Composition with a Layer. The source for the Layer can be a footage file, placeholder, or solid, and it is also listed in the Project
window. The Layer in turn contains settings known as Properties, and these can hold individual keyframes. The Render Queue contains
Render Queue Items as well as Render Settings and Output Modules. All of these rules are directly analogous to scripting.

Attributes and properties

Note that in ECMAScript and JavaScript, a named piece of data of a certain type is commonly referred to as a
property. However, After Effects already has a separate definition of a “property”: It is a specific editable value
within a layer. Therefore in this section the synonymous term “attribute” refers to these same pieces of data.

Global functions
This section describes globally available functions that are specific to After Effects. Any JavaScript object or
function can call the functions in this section.

Using Help Back 23

Help Reference

Using Help Back 23

Functions

alert() global function

aler t(tex t)

Description

The Alert global function opens an alert dialog that can contain a text alert. The user then has the option of
clicking OK to close the window.

Parameters

Example

aler t ("CoSA Lives !") ;

clearOutput() global function

clearOutput()

Description

The clearOutput global function clears the output in the info palette.

Parameters

None.

Function Reference Description

aler t() see “alert() global function” on page 23 displays an alert dialog displaying a specified
text string

prompt() see “prompt() global function” on
page 25

opens a dialog box with a text field into which
the user can enter a text string

w rite() see “write() global function” on page 26 writes output to the Info palette, with no line
break added

w riteLn() see “writeLn() global function” on
page 26

writes output to the info palette, adding a line
break at the end

clearOutput() see “clearOutput() global function” on
page 23

clears the Info palette

confirm() see “confirm() global function” on
page 24

 prompts the user with a modal dialog and yes/
no buttons which clear the dialog and return a
boolean

fileGetDialog() see “fileGetDialog() global function” on
page 24

presents the platform’s standard Open dialog
box

filePutDialog() see “filePutDialog() global function” on
page 24

presents the platform’s standard Save dialog
box

fo lderGetDialog() see “folderGetDialog() global function”
on page 25

displays a dialog in which the user can select a
folder

text text string that is displayed in the dialog, which can display up to 240 characters

Using Help Back 24

Help Reference

Using Help Back 24

confirm() global function

confirm(tex t)

Description

The Confirm global function prompts the user with a modal dialog and yes/no buttons that clear the dialog.
These return a boolean; true if yes, false if no.

Parameters

Returns

Boolean.

Example

var shouldAdd = confirm("Add to Render Queue?") ;

i f (shouldAdd == "true"){

proj .renderQueue. i tems.add(myCompItem);

}

fileGetDialog() global function

fileGetDialog(prompt , typeLis t)

Description

The fileGetDialog global function presents the Open dialog box that is standard for the platform on which
After Effects is running.

The typeList is a semicolon-separated list of four-character Mac OS file types followed by Windows file exten-
sions. For example, a value of "EggP aep" for this argument specifies that the Open dialog box is to display
After Effects project items only; other file types will be grayed out.

Parameters

Returns

File object, or null if the user cancels the dialog.

filePutDialog() global function

filePutDialog(prompt ,de faul t , t ype)

Description

The filePutDialog global function presents the Save dialog box that is standard for the platform on which After
Effects is running.

text text string; Mac OS user interface can display 256 characters, Windows, 30 characters

prompt message that displays on the title bar of the dialog; truncated if too long

ty peList a platform-specific value indicating a list of file types to display

Using Help Back 25

Help Reference

Using Help Back 25

Parameters

Returns

File object, or null if the user cancels the dialog.

folderGetDialog() global function

fo lderGetDialog(prompt)

Description

The folderGetDialog global function displays a dialog in which the user can select a folder.

Parameters

Returns

Folder object, or null if the user cancels the dialog.

prompt() global function

prompt(prompt , de faul t)

Description

The prompt global function opens a dialog box with a text field into which the user can enter a text string. The
text string is returned as a value, or is null if the dialog is cancelled.

Parameters

Returns

String, or null if dialog is cancelled. Read-only.

Example

/ / presuming a project loaded w ith at least one comp is open:

var myCompItem = app.project . i tem(1) ;

var newName = prompt("What would you l ike to name the comp?") ;

/ / rename i t

i f (newName) { / / i f the user cancels , newName is nul l

myCompItem.name = newName; / / newName now holds a s t r ing

}

prompt message that appears on the title bar of the dialog; truncated if too long

default default file name to display in the file-saving dialog; this value must observe the file-naming
conventions of the platform on which After Effects is running

ty pe specified file type

prompt message that appears on the title bar of the dialog; truncated if too long

prompt text string that appears in the prompt dialog

default text string that appears by default in the text field

Using Help Back 26

Help Reference

Using Help Back 26

write() global function

w rite(tex t)

Description

The write global function writes output to the Info palette, with no line break added.

Parameters

Example

w rite(“ This text appears in Info palet te .”) ;

See also

“writeLn() global function” on page 26

writeLn() global function

w riteLn(tex t)

Description

The write global function writes output to the info palette and adds a line break at the end.

Parameters

Example

w riteLn(“ This l ine of text appears in the console w indow w ith a l ine break at the end.”) ;

See also

“TextDocument.” on page 178

Application object
app.

Description

The application (app) global object enables access to data and functionality within the After Effects appli-
cation. Attributes of the Application object provide access to specific objects within After Effects. Methods of
the Application object can create documents, open existing documents, control Watch Folder mode, purge
memory, and quit the After Effects application. When the After Effects application quits, it closes the open
project, prompting the user to save or discard changes as necessary, and creates a project file as necessary.

text text string; truncated if too long for the info palette

text text string

Using Help Back 27

Help Reference

Using Help Back 27

Attributes

Methods

Attribute Reference Description

project see “Application project attribute” on
page 34 and “Project object” on
page 121

instance of the current After Effects Project
and all of its associated methods & attributes

language see “Application language attribute” on
page 32

identifies the language in which the applica-
tion is running

vers ion see “Application version attribute” on
page 36

identifies the version number of the After
Effects application

ser ia lNumber see “Application serialNumber
Attribute” on page 35

identifies the serial number of the After Effects
installation

reg is teredName see“Application registeredName
attribute” on page 35

identifies the name to which the After Effects
installation is registered

reg is teredCompany see “Application registeredCompany
attribute” on page 35

identifies the company to which the After
Effects installation is registered

bui ldName see “Application buildName attribute”
on page 29

identifies the name of this build of the applica-
tion

bui ldNumber see “Application buildNumber
attribute” on page 29

identifies the number of this build of the appli-
cation

i sProfess ionalVers ion see “Application isProfessionalVersion
attribute” on page 31

identifies if the After Effects version is the Pro-
fessional Version

i sWatchFolder see “Application isWatchFolder
attribute” on page 31

boolean that returns true when the local appli-
cation is running in Watch Folder mode

i sRenderEngine see “Application isRenderEngine
attribute” on page 31

identifies whether the local After Effects appli-
cation is installed as a render engine

set t ings see “Application settings attribute” on
page 36 and “Settings object” on
page 170

calls settings within After Effects that can be
set via scripting

onError see “Application onError attribute” on
page 33

a callback that is called when an error occurs in
the application

exi tCode see “Application exitCode attribute” on
page 31

Used only when executing script externally
(i.e., from a command line or AppleScript). Set
to zero, indicates no error occurred; set to a
positive number, indicates an error occurred
while running the script.

exi tAfterLaunchAndEval see “Application exitAfterLaunchAndE-
val attribute” on page 30

specifies whether the application remains
open after running a script from the command
line on Windows

Method Reference Description

newProject() see “Application newProject() method”
on page 32

opens a new project in After Effects

open() see “Application open() method” on
page 33

opens a project or an Open Project dialog

Using Help Back 28

Help Reference

Using Help Back 28

Application beginSuppressDialogs() method

app .beg inSuppressDialogs()

Description

This method begins suppression of dialogs in the user interface.

Parameters

None.

Returns

None.

Application beginUndoGroup() method

app .beg inUndoGroup(undoSt r ing)

Description

An undo group allows a script to logically group all of its actions as a single undoable action (for use with the
Edit Undo/Redo menu items). Should be used in conjunction with the application.endUndoGroup() method.

Please note that beginUndoGroup() and endUndoGroup() pairs can be nested. Groups within groups become
part of the larger group, and will undo correctly. In such cases, the names of inner groups are ignored.

quit() see “Application quit() method” on
page 34

quits the application

watchFolder() see “Application watchFolder() method”
on page 37

starts watch-folder mode; does not return until
watch-folder mode is turned off

pauseWatchFolder() see “Application pauseWatchFolder()
method” on page 34

pauses a current watch-folder process

endWatchFolder() see “Application endWatchFolder()
method” on page 30

ends a current watch-folder process

purge() see “Application purge() method” on
page 34

purges a targeted type of cached information
(replicates Purge options in the Edit menu)

beg inUndoGroup() see “Application beginUndoGroup()
method” on page 28

groups the actions that follow it into a single
undoable step

endUndoGroup() see “Application endUndoGroup()
method” on page 29

ends an undo group; needed only when one
script contains more than one undo group

beg inSuppressDialogs() see “Application beginSuppressDia-
logs() method” on page 28

begins suppression of dialogs in the user inter-
face

endSuppressDialogs() see “Application endSuppressDialogs()
method” on page 29

ends suppression of dialogs in the user inter-
face

setMemor yUsageLimits() see “Application setMemoryUsageLim-
its() method” on page 36

sets memory usage limits as in the Cache pref-
erences tab

setSavePreferencesOnQuit() see “Application setSavePreferencesOn-
Quit() method” on page 36

sets whether Preferences are saved when the
application is quit

Method Reference Description

Using Help Back 29

Help Reference

Using Help Back 29

Parameters

See also

“Application endUndoGroup() method” on page 29

Application buildName attribute

app .bui ldName

Description

The buildName attribute identfies the name of the build of After Effects being run. This attribute is used
primarily by Adobe for testing and troubleshooting purposes.

Type

String; read-only.

Application buildNumber attribute

app .bui ldNumber

Description

The buildNumber attribute identfies the number of the build of After Effects being run. This attribute is used
primarily by Adobe for testing and troubleshooting purposes.

Type

Integer; read-only.

Application endSuppressDialogs() method

app . endSuppressDialogs(aler t)

Description

This method ends the suppression of dialogs in the user interface. It should be called only if beginSuppress-
Dialogs() has previously been called.

If the input argument 'alert' is true, and any errors occurred between the calls to beginSuppressDialogs() and
endSuppressDialogs(), then a dialog will be presented to the user displaying that error message.

Parameters

See also

“Application beginSuppressDialogs() method” on page 28

Application endUndoGroup() method

app . endUndoGroup()

undoStr ing (mandatory) the text that will appear for the Undo command in the Edit menu (i.e., “Undo undoStr ing”)

aler t boolean; specifies whether errors that have occurred following beginSuppressDialogs() should be dis-
played

Using Help Back 30

Help Reference

Using Help Back 30

Description

This ends the undo group begun with the app.beginUndoGroup() method. You can use this method to place
an end to an undo group in the middle of a script, should you wish to use more than one undo group for a
single script.

If you are using only a single undo group for a given script, you do not need to use this method; in its absence
at the end of a script, the system will close the undo group automatically.

Calling this method without having set a beginUndoGroup() method yields an error.

Parameters

None.

Returns

None.

See also

“Application beginUndoGroup() method” on page 28

Application endWatchFolder() method

app . endWatchFolder()

Description

The endWatchFolder() method ends watch folder mode.

Parameters

None

See also

“Application version attribute” on page 36

“Application pauseWatchFolder() method” on page 34

Application exitAfterLaunchAndEval attribute

app . ex i tAfterLaunchAndEval

Description

This attribute is used only when executing a script from a command line on Windows. When the application
is launched from the command line, the -r or -s command line flag will cause the application to run a script
(from a file and from a string, respectively).

If this attribute is set to true, After Effects will exit after the script is run; if it is false, the application will remain
open.

Note that this attribute only has an effect when After Effects is run, and it has no effect on Mac OS.

Type

Boolean; read/write.

Using Help Back 31

Help Reference

Using Help Back 31

Application exitCode attribute

app . ex i tCode

Description

The exitCode attribute is used only when executing a script from outside After Effects (i.e., from a command
line or AppleScript).

On Mac OS and Windows, the exitCode is set to 0 (EXIT_SUCCESS) at the beginning of each script evalu-
ation. In the event of an error while the script is running, it will be set to a positive integer.

Type

Integer; read/write.

Example

app.exi tCode = 2 ; / /on quit , i f va lue i s 2 , no error has occurred

Application isProfessionalVersion attribute

app . i sProfess ionalVers ion

Description

The isProfessionalVersion attribute is a boolean used to determine if the locally installed After Effects appli-
cation is the Standard or Professional version.

Type

Boolean; read-only.

Example

var PB = app. isProduct ionBundle ;

a ler t("It i s " + PB + " that you are running the Product ion Bundle .") ;

Application isRenderEngine attribute

app . i sRenderEngine

Description

The isRenderEngine attribute is a boolean used to determine if an installation of After Effects is a Render
Engine only installation.

Type

Boolean; read-only.

Application isWatchFolder attribute

app . i sWatchFolder

Description

The isWatchFolder attribute is a boolean used to determine if the Watch Folder dialog is currently displayed
(and the application is currently watching a folder for rendering). This returns true when the Watch Folder
dialog is open.

Using Help Back 32

Help Reference

Using Help Back 32

Type

Boolean; read-only.

Application language attribute

app . language

Description

The language attribute indicates in which language After Effects is running. The codes for the language
attribute are as follows:

• Language.ENGLISH

• Language.FRENCH

• Language.GERMAN

• Language.JAPANESE

Type

Language enumerated type (listed above).

Example

var lang = app. language;

i f (lang == Language.JAPANESE){

aler t("After Ef fects i s running in Japanese .")} ;

e l se i f (lang == Language.ENGLISH){

aler t("After Ef fects i s running in Eng l ish.")} ;

e l se i f (lang == Language.FRENCH){

aler t("After Ef fects i s running in French.")} ;

e l se{

a ler t("After Ef fects i s running in German.")

} ;

Application newProject() method

app.newProject()

Description

The newProject method opens a new project in After Effects, replicating the File > New > New Project menu
command. If a project is already open and has been edited, the user will be prompted to save.

Use app.project.close(CloseOptions.DO_NOT_SAVE_CHANGES) to close an open project before opening
a new one.

Parameters

None.

Returns

Project object; null if the user cancels a Save dialog in response to having an open project that has been edited
since the last save.

Using Help Back 33

Help Reference

Using Help Back 33

Example

app.project .c lose(CloseOptions .DO_NOT_SAVE_CHANGES);

app.newProject() ;

See also

“Project close() method” on page 123

Application onError attribute

app .onError

Description

The onError attribute takes a function to perform an action when an error occurs. By creating a function and
assigning it to onError, you can respond to the error systematically, e.g., close and restart the application,
noting the error in a log file if it occurred during rendering.

Type

Function that takes a string, or null if no function is assigned.

Example

funct ion err(errStr ing) (

a ler t(errStr ing) ;

)

app.onError = err

Application open() method

app .open()

app .open(file)

Description

The open() method opens a project. If the file parameter is null (i.e., if no argument is used) the user will be
presented with a dialog to select and open a file.

Parameters

Returns

Project object (the file specified as a parameter), or null if the user cancels the Open dialog.

Example

var my_file = new Fi le(" . . /my_folder/my_test .aep") ;

i f (my_file .exis t){

new_project = app.open(my_file) ;

i f (new_project){

a ler t(new_project .file .name);

}

}

file (Optional) File object being opened

Using Help Back 34

Help Reference

Using Help Back 34

Application pauseWatchFolder() method

app .pauseWatchFolder(pause)

Description

The pauseWatchFolder() method pauses searching the target folder for render items.

Parameters

See also

“Application version attribute” on page 36

“Application endWatchFolder() method” on page 30

Application project attribute

app.project

Description

This attribute is the project that is currently loaded.

For more information about what is contained in the Project object, see “Project object” on page 121.

Type

Project; read-only.

Application purge() method

app .purge(target)

Description

The purge method replicates the functionality and target options of the Purge options within the Edit menu.
The target parameter contains the area of memory to be purged; the options for target are listed as enumerated
variables below.

Parameters

Enumerated Types

Application quit() method

app.quit()

pause boolean (paused - true or false)

target the type of elements to purge from memory; use one of Enumerated Types below

PurgeTarget .ALL_CACHES purges all data that After Effects has cached to physical memory

PurgeTarget .UNDO_CACHES purges all data saved in the undo cache

PurgeTarget .SNAPSHOT_CACHES purges all data cached as comp/layer snapshots

PurgeTarget . IMAGE_CACHES purges all saved image data

Using Help Back 35

Help Reference

Using Help Back 35

Description

The quit method quits the application.

Parameters

None.

Returns

None.

Application registeredCompany attribute

app . reg is teredCompany

Description

Text string; name (if any) that the user of the application entered as the registered company at the time of
installation.

Type

Text string; read-only.

Example

var company = app.reg is teredCompany ;

a ler t(“Your company name is “ + company + “.”) ;

Application registeredName attribute

app . reg is teredName

Description

The registeredName attribute contains the text string that the user of the application entered for the registered
name at the time of installation.

Type

Text string; read-only.

Example

var userName = app.reg is teredName;

confirm(“Are you “ + userName + “?”) ;

Application serialNumber Attribute

app . ser ia lNumber

Description

The serialNumber attribute contains an alphanumeric string that is the serial number of the installed version
of After Effects.

Type

String; read-only.

Using Help Back 36

Help Reference

Using Help Back 36

Example

var ser ia l = app.ser ia lNumber ;

a ler t("This copy i s ser ia l number " + ser ia l) ;

Application setMemoryUsageLimits() method

app . setMemor yUsageLimits(imageCachePercentage , max imumMemor yPercentage)

Description

This method sets memory usage limits as in the Cache preferences tab.

Parameters

Returns

None.

Application setSavePreferencesOnQuit() method

app . setSavePreferencesOnQuit(doSave)

Description

This method sets the toggle that determines whether preferences are saved when the application is closed
(quit).

Parameters

Returns

None.

Application settings attribute

app.settings

Description

This attribute holds the currently loaded settings.

For more information about what is contained in the Settings object, see “Settings object” on page 170.

Type

Settings; read-only.

Application version attribute

app .vers ion

imageCachePercentage floating-point value; percentage of memory assigned to image cache

maximumMemor yPercentage floating-point value; maximum usable percentage of memory

doSave boolean; if true, preferences are set to save on quit

Using Help Back 37

Help Reference

Using Help Back 37

Description

The version attribute returns an alphanumerical string indicating which version of After Effects is running.

Type

String; read-only.

Example

var ver = app.vers ion;

a ler t("This machine i s running vers ion " + ver + " of After Ef fects . ") ;

Application watchFolder() method

app .watchFolder(fo lder_objec t_to_watch)

Description

The watchFolder() method starts a watch folder (network rendering) process pointed at a specified folder.

Parameters

Example

var theFolder = new Folder(“c : \ \ tool”) ;

app.watchFolder(theFolder) ;

See also

“Application endWatchFolder() method” on page 30

“Application pauseWatchFolder() method” on page 34

AVItem object
app.projec t . i tem(index)

Description

The AVitem object provides access to attributes and methods of audio/visual files imported into After Effects.

AVItem is the base class for both CompItem and FootageItem, so AVItem attributes and methods are also
available when working in CompItem and FootageItem.

Attributes

fo lder_object_to_watch the Folder object to be watched

Attribute Reference Description

name see “AVItem name attribute” on page 41 name of the object as shown in the Project
window

w idth see “AVItem width attribute” on page 44 integer [1 ..30,000] describing the width, in pix-
els of the item

height see “AVItem height attribute” on
page 41

integer [1 .. 30,000] describing the height, in
pixels of the item

Using Help Back 38

Help Reference

Using Help Back 38

Attributes from Item object (See “Item object” on page 97)

Methods

pixelAspect see “AVItem pixelAspect attribute” on
page 41

pixel aspect ratio; floating-point value [0.01
..100]

f rameRate see “AVItem frameRate attribute” on
page 40

frame rate of the AVItem [1..99]

f rameDurat ion see “AVItem frameDuration attribute”
on page 39

frame rate for the AVItem [1/99 .. 1]

durat ion see “AVItem duration attribute” on
page 39

duration of the AVItem, in seconds [0 .. 10,800]

useProxy see “AVItem useProxy attribute” on
page 44

boolean describing whether a proxySource
should be used for this item

proxySource see “AVItem proxySource attribute” on
page 42

FootageItem used as proxy of the AVItem;
read-only

t ime see “AVItem time attribute” on page 44 current time of the AVItem in seconds

usedIn see “AVItem usedIn attribute” on
page 44

array containing all the CompItems that use
this AVItem

hasVideo see “AVItem hasVideo attribute” on
page 40

true if the AVItem has an audio component

hasAudio see “AVItem hasAudio attribute” on
page 40

true if the AVItem has a video component

footageMiss ing see “AVItem footageMissing attribute”
on page 39

true if the AVItem cannot be found or if it is a
placeholder

Attribute Reference Description

name see “Item name attribute” on page 98 name of the object as shown in the Project
window

comment see “Item comment attribute” on
page 98

string that holds a comment

id see “Item id attribute” on page 98 unique integer ID for this item

parentFolder see “Item parentFolder attribute” on
page 98

parent folder of this item

se lected see “Item selected attribute” on page 99 true if this item is currently selected

ty peName see “Item typeName attribute” on
page 99

string corresponding to the type of item

Method Reference Description

setProxy() see “AVItem setProxy() method” on
page 42

sets a proxy for the AVItem

setProxyWithSequence() see “AVItem setProxyWithSequence()
method” on page 43

sets a sequence as a proxy for the AVItem

Attribute Reference Description

Using Help Back 39

Help Reference

Using Help Back 39

Method from Item object (See“Item object” on page 97)

AVItem duration attribute

app.projec t . i tem(index) .durat ion

Description

The duration attribute returns the duration, in seconds, of the item. This attribute is read-only unless it is a
CompItem.

Permissible range of values is [0..10,800]. In a FootageItem, duration is linked to the duration of the
mainSource; in a CompItem, it is linked to the duration of the composition. This value may be written only
in a CompItem. It is an error to change this value if the item is a FootageItem.

Note: Still footage items have a duration of 0.

Type

Floating-point value; seconds. Read/write when item is a CompItem; otherwise, read-only.

AVItem footageMissing attribute

app.projec t . i tem(index) . footageMiss ing

Description

The footageMissing attribute is true if the AVItem cannot be found or if it is a placeholder.

Type

Boolean; read-only.

AVItem frameDuration attribute

app.projec t . i tem(index) . f rameDurat ion

Description

The frameDuration attribute returns the length, in seconds, of a frame for this AVItem.

Permitted range is [1/99 .. 1]. This is the reciprocal of frameRate. When you set the frameDuration, you are
really storing the reciprocal as a new frameRate.

setProxyWithSol id() see “AVItem setProxyWithSolid()
method” on page 43

sets a solid as a proxy (feature available only via
scripting)

setProxyWithPlaceholder() see “AVItem setProxyWithPlaceholder()
method” on page 42

sets a placeholder as a proxy

setProxyToNone() see “AVItem setProxyToNone() method”
on page 42

removes the proxy

Method Reference Description

remove() see “Item remove() method” on page 99 deletes the item from the project

Method Reference Description

Using Help Back 40

Help Reference

Using Help Back 40

When you read the value back, you are retrieving the reciprocal of the frameRate. Hence, if you set and then
get the value to be a frameDuration that does not evenly divide into 1.0 (for example, 0.3), the value you get
back will be close, but not exactly equal; due to numerical limitations, (1 / (1 / 0.3)) != 0.3, but rather
something close to 0.3.

If the AVItem is a FootageItem, then this attribute is readOnly.

In the case of a FootageItem, you must write to the conformFrameRate of the mainSource in order to change
the frameRate, and hence the frameDuration.

Type

Floating-point value; seconds. Read/write or read-only if AVItem is a FootageItem.

AVItem frameRate attribute

app.projec t . i tem(index) . f rameRate

Description

The frameRate attribute returns frame rate of the AVItem.

Permitted range is [1..99]. If the AVItem is a CompItem, then this corresponds to the frameRate of the comp.

If the AVItem is a FootageItem, then this corresponds to the displayFrameRate of the mainSource, and is
readOnly.

In the case of a FootageItem, you must write to the conformFrameRate of the mainSource in order to change
the frame rate.

Type

Floating-point value; frames per second. Read/write or read-only if AVItem is a FootageItem.

AVItem hasAudio attribute

app.projec t . i tem(index) .hasAudio

Description

The hasAudio attribute is true if the AVItem has an audio component.

In the case of a CompItem, the value reflects the value for the comp. In the case of a FootageItem, the value
reflects the value for the mainSource.

Type

Boolean; read-only.

AVItem hasVideo attribute

app.projec t . i tem(index) .hasVideo

Description

The hasVideo attribute is true if the AVItem has a video component.

In the case of a CompItem, the value reflects the value for the comp. In the case of a FootageItem, the value
reflects the value for the mainSource.

Using Help Back 41

Help Reference

Using Help Back 41

Type

Boolean; read-only.

AVItem height attribute

app.projec t . i tem(index) .height

Description

The height attribute is the height, in pixels, of the item.

Permitted range is [1 ..30,000]. In a FootageItem, height is linked to the height of the mainSource; in a
CompItem, it is linked to the height of a composition. It is legal to change the height of a CompItem or a
FootageItem whose mainSource is a SolidSource. It is an error to change the height if the item is a FootageItem
whose mainSource is not a SolidSource.

Type

Integer; read-only unless a CompItem.

AVItem name attribute

app.projec t . i tem(index) .name

Description

The name attribute is the name of the object as shown in the Project window.

In a FootageItem, the name is linked to the mainSource.

It is an error to attempt to change the name if the mainSource is a FileSource; in that case, the name is tied to
the name of the file(s) and may not be changed.

Type

String; read/write.

AVItem pixelAspect attribute

app.projec t . i tem(index) .pixelAspect

Description

The pixelAspect attribute determines the pixel aspect ratio of a given item.

Permitted range is [0.01 .. 100]. In a FootageItem, pixelAspect is linked to the pixelAspect of the mainSource;
in a CompItem, it is linked to the pixelAspect of a composition.

Certain pixelAspect values are specially known to After Effects, and will be stored/retrieved with perfect
accuracy. These are the set { 1, 0.9, 1.2, 1.07, 1.42, 2, 0.95, 1.9 }. Other values may experience slight rounding
errors when you set them and get them. Thus, the value you retrieve after setting may be slightly different from
the value you supplied.

Type

Floating-point value; read-only unless a CompItem.

Using Help Back 42

Help Reference

Using Help Back 42

AVItem proxySource attribute

app.projec t . i tem(index) .proxySource

Description

The proxySource attribute is the FootageSource being used as a proxy.

The attribute is read-only, but it can be changed by calling any of the AVItem methods that change the proxy
source: setProxy(), setProxyWithSequence(), setProxyWithSolid(), and setProxyWithPlaceholder().

Type

FootageSource; read-only.

AVItem setProxy() method

app.projec t . i tem(index) . se tProxy(Fi le file)

Description

The setProxy method sets a file as the proxy of an AVItem.

It loads the given file into a FileSource and establishes this as the new proxySource. It does not preserve the
interpretation parameters, instead using the user preference.

This is different than what happens with a FootageItem's main source, but both are the same behavior as the
user interface. If the file has an unlabeled alpha channel, and the user preference says to ask the user what to
do via a dialog, scripting will guess the alpha interpretation instead of asking the user. After changing the
proxySource, this method will set the value of useProxy to true.

Parameters

Returns

None.

AVItem setProxyToNone() method

app.projec t . i tem(index) . setProxyToNone()

Description

The setProxyToNone method removes the proxy from this AVItem. Following this, the value of proxySource
is null.

Returns

None.

AVItem setProxyWithPlaceholder() method

app.projec t . i tem(index) . setProxyWithPlaceholder(name, w idth, he ight , f rameRate , durat ion)

Fi le file to be used as a proxy

Using Help Back 43

Help Reference

Using Help Back 43

Description

The setProxyWithPlaceholder method creates a PlaceholderSource with specifications according to the input
arguments and establishes this as the new proxySource.

Note that there is no direct way to set a placeholder as a proxy in the user interface; this behavior occurs when
a proxy has been set and then moved or deleted.

This method does not preserve the interpretation parameters. After changing the proxySource, the value of
useProxy is set to true.

Parameters

Returns

None.

AVItem setProxyWithSequence() method

app.projec t . i tem(index) . setProxyWithSequence(file , forceAlphabet ica l)

Description

The setProxy method loads the given sequence into a FileSource and establishes this as the new proxySource.

It loads the given sequence into a FileSource and establishes this as the new proxySource. It does not preserve
the interpretation parameters, instead using the user preference.

If the file has an unlabeled alpha channel, and the user preference says to ask the user what to do via a dialog,
scripting will guess the alpha interpretation instead of asking the user.

Parameters

Returns

None.

AVItem setProxyWithSolid() method

app.projec t . i tem(index) . se tProxyWithSol id(co lor, name, w idth, he ight , p ixe lAspect)

Description

The setProxyWithSolid method creates a SolidSource with specifications according to the input arguments
and establishes this SolidSource as the new proxySource.

Note that there is no way, using the user interface, to set a solid as a proxy; this feature is available only via
scripting.

name text string

w idth, height pixel dimensions of solid[4..30,000]

f rameRate frames per second [1..99]

durat ion length in seconds [0..10,800] (up to 3 hours)

Fi le file to be used as a proxy.

forceAlphabet ica l boolean determining whether to use the “force alphabetical order” option

Using Help Back 44

Help Reference

Using Help Back 44

This method does not preserve the interpretation parameters. After changing the proxySource, the value of
useProxy is set to true.

Parameters

Returns

None.

AVItem time attribute

app.projec t . i tem(index) . t ime

Description

The time attribute is the current time of the item when it is being previewed directly from the Project window.

It is an error to set this on a FootageItem whose mainSource is a still (i.e., if mainSource.isStill is true).

Type

Floating-point value; read/write.

AVItem usedIn attribute

app.projec t . i tem(index) .usedIn

Description

The usedIn attribute is an array containing all the CompItems that use this AVItem.

Note: The returned value will not automatically update in response to changes that occur after you retrieve it. So
if you retrieve usedIn and then add this item into another comp, you need to retrieve usedIn again in order to get
an array that includes the new comp.

Type

Array of CompItem; read-only.

AVItem useProxy attribute

app.projec t . i tem(index) .useProxy

Description

The useProxy attribute determines whether a proxy should be used for the item.

Type

Boolean; read/write.

AVItem width attribute

app.projec t . i tem(index) .w idth

color array of 3 floats in the range [0..1] (red, green, and blue values)

w idth, height pixel dimension of solid[1..30,000]

pixe lAspect pixel aspect of solid [0.01 .. 100]

Using Help Back 45

Help Reference

Using Help Back 45

Description

The width attribute specifies the width, in pixels, of the item. Permitted range is [1 ..30,000].

In a FootageItem, width is linked to the mainSource's width; in a CompItem, it is linked to the comp's width.
It is legal to change the width of a CompItem or a FootageItem whose mainSource is a SolidSource. It is an
error to change the width if the item is a FootageItem whose mainSource is not a SolidSource.

Type

Integer; read-only unless a CompItem.

AVLayer object
app.projec t . layer(index)

Description

The AVLayer object provides an interface to those layers that contain AVItems (Comp layers, footage layers,
solid layers, text layers, and sound layers).

Since AVLayer is a subclass of Layer, all methods and attributes of Layer, in addition to those listed below, are
available when working with AVLayer.

Attributes

Attribute Reference Description

source see “AVLayer source attribute” on
page 51

source item for this layer

i sNameFromSource see “AVLayer isNameFromSource
attribute” on page 50

true if the layer has no expressly set name, but
contains a named source

height see “AVLayer height attribute” on
page 50

height of the layer in pixels

w idth see “AVLayer width attribute” on
page 52

width of the layer in pixels

audioEnabled see “AVLayer audioEnabled attribute” on
page 47

true if the layer's audio is enabled

motionBlur see “AVLayer motionBlur attribute” on
page 51

true if layer's motionBlur is enabled

ef fectsAct ive see “AVLayer effectsActive attribute” on
page 49

true if the layer's effects are active

adjustmentLayer see “AVLayer adjustmentLayer attribute”
on page 46

true if this is an adjustment layer

guideLayer see “AVLayer guideLayer attribute” on
page 50

specifies whether this AVLayer is a guide layer

threeDLayer see “AVLayer threeDLayer attribute” on
page 52

true if this is a 3D layer

canSetCol lapseTransformation see “AVLayer canSetCollapseTransfor-
mation attribute” on page 48

true if it is legal to change the value of collapse-
Transformation on this layer

col lapseTransformation see “AVLayer collapseTransformation
attribute” on page 49

true if collapse transformation is on

Using Help Back 46

Help Reference

Using Help Back 46

Method

Example

If the first item in the project is a CompItem, and the first layer of that CompItem is an AVLayer, the following
would set the layer quality, startTime, and inPoint.

var firstLayer = app.project . i tem(1) . layer(1) ;

firstLayer.qual i ty = LayerQual i ty.BEST;

firstLayer.s tar tTime = 1 ;

firstLayer. inPoint = 2 ;

AVLayer adjustmentLayer attribute

app.projec t . i tem(index) .adjustmentLayer

Description

The adjustmentLayer attribute returns a value of true if the layer is an adjustment layer.

frameBlending see “AVLayer frameBlending attribute”
on page 49

true if frame blending is enabled

canSetTimeRemapEnabled see “AVLayer canSetTimeRemapEn-
abled attribute” on page 49

true if it is legal to change the value of timeR-
emap

t imeRemapEnabled see “AVLayer timeRemapEnabled
attribute” on page 52

true if time remapping is enabled on this layer

hasAudio see “AVLayer hasAudio attribute” on
page 50

true if the layer contains an audio component

audioAct ive see “AVLayer audioActive attribute” on
page 47

true if the layer's audio is active at the current
time

blendingMode see “AVLayer blendingMode attribute”
on page 47

blending mode of the layer

preser veTransparency see “AVLayer preserveTransparency
attribute” on page 51

true if preserve transparency is enabled

t rackMatteTy pe see “AVLayer trackMatteType attribute”
on page 52

if layer has a track matte, specifies the way it
will be applied

i sTrackMatte see “AVLayer isTrackMatte attribute” on
page 51

true if this layer is being used as a matte track
for the layer below it

hasTrackMatte see “AVLayer hasTrackMatte attribute”
on page 50

true if the layer above is being used as a track
matte on this layer

qual i ty see “AVLayer quality attribute” on
page 51

layer quality setting

guideLayer see “AVLayer guideLayer attribute” on
page 50

true if the layer is a guide layer

Method Reference Description

audioAct iveAtTime() see “AVLayer audioActiveAtTime()
method” on page 47

given a time, returns whether this layer's audio
is active at that time

Attribute Reference Description

Using Help Back 47

Help Reference

Using Help Back 47

Type

Boolean; read/write.

AVLayer audioActive attribute

app.projec t . i tem(index) .audioAct ive

Description

The audioActive attribute returns a value of true if the layer's audio is active at the current time.

To be true, audioEnabled must be true, no other layer with audio may be soloing unless this layer is soloed
too, and the time must be in between the inPoint and outPoint of this layer.

Type

Boolean; read-only.

AVLayer audioActiveAtTime() method

app.projec t . i tem(index) .audioAct iveAtTime(t ime)

Description

Given a time, the audioActiveAtTime method returns whether this layer's audio will be active at that
time.

To be true the layer’s audioEnabled attribute must be true, no other layer containing audio may be soloing
unless this layer is soloed too, and the given time must be between this layer's inPoint and outPoint.

Parameters

Returns

Boolean.

AVLayer audioEnabled attribute

app.projec t . i tem(index) .audioEnabled

Description

The audioEnabled attribute is true if the layer's audio is enabled. This attribute corresponds to the speaker
button in the user interface.

Type

Boolean; read/write.

AVLayer blendingMode attribute

app.projec t . i tem(index) .blendingMode.

Description

The blendingMode is the blending mode of the layer.

t ime time, in seconds (floating-point value)

Using Help Back 48

Help Reference

Using Help Back 48

Type

Enumerated type (read/write); one of the following:

BlendingMode.ADD

BlendingMode.ALPHA_ADD

BlendingMode.CLASSIC_COLOR_BURN

BlendingMode.CLASSIC_COLOR_DODGE

BlendingMode.CLASSIC_DIFFERENCE

BlendingMode.COLOR

BlendingMode.COLOR_BURN

BlendingMode.COLOR_DODGE

BlendingMode.DANCING_DISSOLVE

BlendingMode.DARKEN

BlendingMode.DIFFERENCE

BlendingMode.DISSOLVE

BlendingMode.EXCLUSION

BlendingMode.HARD_LIGHT

BlendingMode.HARD_MIX

BlendingMode.HUE

BlendingMode.LIGHTEN

BlendingMode.LINEAR_BURN

BlendingMode.LINEAR_DODGE

BlendingMode.LINEAR_LIGHT

BlendingMode.LUMINESCENT_PREMUL

BlendingMode.LUMINOSITY

BlendingMode.MULTIPLY

BlendingMode.NORMAL

BlendingMode.OVERLAY

BlendingMode.PIN_LIGHT

BlendingMode.SATURATION

BlendingMode.SCREEN

BlendingMode.SILHOUETE_ALPHA

BlendingMode.SILHOUET TE_LUMA

BlendingMode.SOFT_LIGHT

BlendingMode.STENCIL_ALPHA

BlendingMode.STENCIL_LUMA

BlendingMode.VIVID_LIGHT

AVLayer canSetCollapseTransformation attribute

app.projec t . i tem(index) .canSetCol lapseTransformation

Using Help Back 49

Help Reference

Using Help Back 49

Description

The canSetCollapseTransformation attribute returns a value of true if it is legal to change the value of the
collapseTransformation attribute on this layer.

Type

Boolean; read-only.

AVLayer canSetTimeRemapEnabled attribute

app.projec t . i tem(index) .canSetTimeRemapEnabled

Description

The canSetTimeRemapEnabled attribute returns a value of true if it is legal to change the value of the timeR-
emapEnabled attribute on this layer.

Type

Boolean; read-only.

AVLayer collapseTransformation attribute

app.projec t . i tem(index) .col lapseTransformation

Description

The collapseTransformation attribute returns a value of true if collapse transformation is on for this layer.

Type

Boolean; read/write.

AVLayer effectsActive attribute

app.projec t . i tem(index) .ef fectsAct ive

Description

The effectsActive attribute returns a value of true if the layer's effects are active.

Type

Boolean; read/write.

AVLayer frameBlending attribute

app.projec t . i tem(index) . f rameBlending

Description

The frameBlending attribute returns a value of true if frame blending is enabled.

Type

Boolean; read/write.

Using Help Back 50

Help Reference

Using Help Back 50

AVLayer guideLayer attribute

app.projec t . i tem(index) .guideLayer

Description

This attribute returns a value of true if the layer is a guide layer.

Type

Boolean; read-only.

AVLayer hasAudio attribute

app.projec t . i tem(index) .hasAudio

Description

The hasAudio attribute holds a value of true if the layer contains an audio component, regardless of whether
it is audioEnabled or soloed.

Type

Boolean; read-only.

AVLayer hasTrackMatte attribute

app.projec t . i tem(index) .hasTrackMatte

Description

The hasTrackMatte attribute returns a value of true if the layer in front of this layer is being used as a track
matte on this layer. If true, then this layer's trackMatteType controls how the matte is applied.

Type

Boolean; read-only.

AVLayer height attribute

app.projec t . i tem(index) .height

Description

The height attribute is the height of the layer, in pixels.

Type

Floating-point value; read-only.

AVLayer isNameFromSource attribute

app.projec t . i tem(index) . i sNameFromSource

Description

The isNameFromSource attribute returns a value of true if the layer has no expressly set name, but the layer
contains a named source. In this case, layer.name will be the same as layer.source.name. It returns false if the
layer has an expressly set name, or if neither the layer nor the layer's source has a name.

Using Help Back 51

Help Reference

Using Help Back 51

Type

Boolean; read-only.

AVLayer isTrackMatte attribute

app.projec t . i tem(index) . i sTrackMatte

Description

The isTrackMatte attribute returns a value of true if this layer is being used as a matte track for the layer behind
it.

Type

Boolean; read-only.

AVLayer motionBlur attribute

app.projec t . i tem(index) .motionBlur

Description

The motionBlur attribute returns a value of true if the layer's motionBlur is enabled.

Type

Boolean; read/write.

AVLayer preserveTransparency attribute

app.projec t . i tem(index) .preser veTransparency

Description

The preserveTransparency attribute returns a value of true if preserve transparency is enabled for the layer.

Type

Boolean; read/write.

AVLayer quality attribute

app.projec t . i tem(index) .qual i ty.

Description

The quality is the layer quality specifying how this layer is to be displayed.

Type

Enumerated type (read/write); one of the following:

LayerQual i ty.BEST

LayerQual i ty.DRAFT

LayerQual i ty.WIREFRAME

AVLayer source attribute

app.projec t . i tem(index) . source

Using Help Back 52

Help Reference

Using Help Back 52

Description

The source attribute is the source AVItem for this layer.

The value of the source will be null in a Text layer.

Type

AVItem; read-only.

AVLayer threeDLayer attribute

app.projec t . i tem(index) . threeDLayer

Description

The threeDLayer attribute is true if this is a 3D layer.

Type

Boolean; read/write.

AVLayer timeRemapEnabled attribute

app.projec t . i tem(index) . t imeRemapEnabled

Description

The timeRemapEnabled attribute is true if time remapping is enabled on this layer.

Type

Boolean; read/write.

AVLayer trackMatteType attribute

app.projec t . i tem(index) . t rackMatteTy pe

Description

If this layer has a track matte, the trackMatteType specifies the way the track matte will be applied.

Type

Enumerated type (read/write); one of the following:

TrackMatteTy pe.ALPHA

TrackMatteTy pe.ALPHA_INVERTED

TrackMatteTy pe.LUMA

TrackMatteTy pe.LUMA_INVERTED

TrackMatteTy pe.NO_TRACK_MAT TE

AVLayer width attribute

app.projec t . i tem(index) .w idth

Description

The width attribute is the width of the layer, in pixels.

Using Help Back 53

Help Reference

Using Help Back 53

Type

Floating-point value; read-only.

Collection object

Description

A Collection object acts like an array that provides access to its elements by index. Like an array, a collection
associates a set of objects or values as a logical group and provides random access to them. However, most
collection objects are read-only. You do not assign objects to them yourself—their contents update automat-
ically as objects are created or deleted.

The index numbering of a collection starts with 1, not 0.

Objects

Attributes

Methods

CompItem object
app.projec t . i tem(index)

Description

The CompItem object provides access to attributes and methods of Compositions. These are accessed via their
index number.

Attributes

Object Reference Description

ItemCol lect ion see “ItemCollection” on page 99 a collection of all of the items (imported files,
folders, solids, etc.) found in the Project win-
dow

LayerCol lect ion see “LayerCollection” on page 110 contains all of the layers in a composition

OMCollect ion see “OMCollection” on page 119 contains all of the OutputModule items in the
project

RQItemCol lect ion see “RQItemCollection” on page 164 contains all of the RenderQueue items in the
project

length the number of objects in the collection (applies to all collections)

[] retrieves an object or objects in the collection via its index number

Attribute Reference Description

f rameDurat ion see “CompItem frameDuration
attribute” on page 58

The duration of a single frame in seconds. This
is the inverse of the framerate.

Using Help Back 54

Help Reference

Using Help Back 54

Attributes inherited from Item object and AVItem object (see “Item object” on page 97 and “AVItem object” on

page 37)

workAreaStar t see “CompItem workAreaStart
attribute” on page 61

the work area start time (in seconds)

workAreaDurat ion see “CompItem workAreaDuration
attribute” on page 61

the work area duration (in seconds)

numLayers see “CompItem numLayers attribute” on
page 59

number of layers in the CompItem

hideShyLayers see “CompItem hideShyLayers
attribute” on page 58

corresponds to the value of the Hide All Shy
Layers button in the Composition window

motionBlur see “CompItem motionBlur attribute”
on page 59

if true, motion blur is enabled for this comp

draft3d see “CompItem draft3d attribute” on
page 57

sets the 3d display mode to Draft quality

f rameBlending see “CompItem frameBlending
attribute” on page 57

if true, time filtering is enabled for this comp

preser veNestedFrameRate see “CompItem preserveNestedFrameR-
ate attribute” on page 59

boolean determining whether the frame rate
of nested compositions should be preserved

preser veNestedResolut ion see “CompItem preserveNestedResolu-
tion attribute” on page 60

boolean determining whether the resolution
of nested compositions should be preserved

bgColor see “CompItem bgColor attribute” on
page 56

background color of the composition

act iveCamera see “CompItem activeCamera attribute”
on page 56

current active Camera Layer

displayStar tTime see “CompItem displayStartTime
attribute” on page 57

changes the display of the start time in the
Timeline window

resolut ionFactor see “CompItem resolutionFactor
attribute” on page 60

integer array determining the factor by which
the x and y resolution of the Composition win-
dow is downsampled

shutterAng le see “CompItem shutterAngle attribute”
on page 61

integer value (0 - 720) determining the camera
shutter angle

shutterPhase see “CompItem shutterPhase attribute”
on page 61

integer value (0 - 360) determining the camera
shutter phase

layers see “LayerCollection” on page 110 LayerCollection containing the layers of the
compItem

se lectedLayers see “CompItem selectedLayers
attribute” on page 60

array containing all selected Layers

se lectedProper t ies see “CompItem selectedProperties
attribute” on page 60

array containing all selected Properties

Attribute Reference Description

name see “Item name attribute” on page 98 name of the object as shown in the Project
window

comment see “Item comment attribute” on
page 98

string that holds a comment

Attribute Reference Description

Using Help Back 55

Help Reference

Using Help Back 55

Methods

id see “Item id attribute” on page 98 unique integer ID for this item

parentFolder see “Item parentFolder attribute” on
page 98

parent folder of this item

se lected see “Item selected attribute” on page 99 true if this item is currently selected

ty peName see “Item typeName attribute” on
page 99

string corresponding to the type of item

w idth see “AVItem width attribute” on page 44 integer [1 ..30,000] describing the width, in pix-
els, of the item

height see “AVItem height attribute” on
page 41

integer [1 .. 30,000] describing the height, in
pixels, of the item

pixelAspect see “AVItem pixelAspect attribute” on
page 41

pixel aspect ratio; floating-point value [0.01
..100]

f rameRate see “AVItem frameRate attribute” on
page 40

frame rate of the AVItem [1..99].

f rameDurat ion see “AVItem frameDuration attribute”
on page 39

frame rate for the AVItem [1/99 .. 1].

durat ion see “AVItem duration attribute” on
page 39

duration of the AVItem, in seconds [0 .. 10,800]

useProxy see “AVItem useProxy attribute” on
page 44

boolean describing whether a proxySource
should be used for this item

proxySource see “AVItem proxySource attribute” on
page 42

FootageItem used as proxy of the AVItem;
read-only

t ime see “AVItem time attribute” on page 44 current time of the AVItem in seconds

usedIn see “AVItem usedIn attribute” on
page 44

array containing all the CompItems that use
this AVItem

hasVideo see “AVItem hasVideo attribute” on
page 40

true if the AVItem has an audio component

hasAudio see “AVItem hasAudio attribute” on
page 40

true if the AVItem has a video component

footageMiss ing see “AVItem footageMissing attribute”
on page 39

true if the AVItem cannot be found or if it is a
placeholder

Method Reference Description

dupl icate() see “CompItem duplicate() method” on
page 57

creates and returns a duplicate of this comp
item

layer() see “CompItem layer() method” on
page 58

returns the layer using index, relative index or
name

Attribute Reference Description

Using Help Back 56

Help Reference

Using Help Back 56

Methods inherited from Item object and AVItem object (see “Item object” on page 97 and “AVItem object” on

page 37)

Example

Given that the first item in the project is a CompItem, the following code would result in two alerts. The first
would display the number of layers in the CompItem, and the second would display the name of the last Layer
in the CompItem.

var firstComp = app.project . i tem(1) ;

a ler t("number of layers i s " + firstComp.numLayers) ;

a ler t("name of last layer i s " + firstComp.layer(firstComp.numLayers) .name) ;

CompItem activeCamera attribute

app.projec t . i tem(index) .act iveCamera

Description

The active camera is the front-most camera layer that is enabled. The value is null if the comp contains no
enabled camera layers.

Type

Layer; read-only.

CompItem bgColor attribute

app.projec t . i tem(index) .bgColor

Description

The bgColor attribute specifies the background color of the comp. The value should be an array containing
three floats in the range [0..1] for red, green, and blue.

Type

Array of three floating-point values from 0 to 1: [R, G, B); read/write.

Method Reference Description

remove() see “Item remove() method” on page 99 deletes the item from the project

setProxy() see “AVItem setProxy() method” on
page 42

sets a proxy for the AVItem

setProxyWithSequence() see “AVItem setProxyWithSequence()
method” on page 43

sets a sequence as a proxy for the AVItem

setProxyWithSol id() see “AVItem setProxyWithSolid()
method” on page 43

sets a solid as a proxy (feature available only via
scripting)

setProxyWithPlaceholder() see “AVItem setProxyWithPlaceholder()
method” on page 42

sets a placeholder as a proxy

setProxyToNone() see “AVItem setProxyToNone() method”
on page 42

removes the proxy

Using Help Back 57

Help Reference

Using Help Back 57

CompItem displayStartTime attribute

app.projec t . i tem(index) .displayStar tTime

Description

The displayStartTime attribute corresponds the time, in seconds, set as the begining of the composition. This
is the equivalent of the Start Timecode or Start Frame setting in the Composition Settings window, expressed
in seconds.

The permissible range is [0...86339] (86339 is 1 second less than 25 hours).

Type

Floating-point value; time, in seconds. Read/write.

CompItem draft3d attribute

app.projec t . i tem(index) .draft3d

Description

The draft3d attribute determines whether Draft 3D mode is enabled for the Composition window. This corre-
sponds to the value of the draft3d button in the Composition window.

Type

Boolean; if true, enables Draft 3D. Read/write.

CompItem duplicate() method

app.projec t . i tem(index) .dupl icate()

Description

The duplicate() method creates and returns a duplicate of this comp item. The duplicate will contain the same
layers as the original.

Parameters

None.

Returns

CompItem.

CompItem frameBlending attribute

app.projec t . i tem(index) . f rameBlending

Description

The frameBlending attribute determines whether frame blending is enabled for this Composition. Corre-
sponds to the value of the frame blending button in the Composition window.

Type

Boolean; if true, frame blending is enabled; read/write.

Using Help Back 58

Help Reference

Using Help Back 58

CompItem frameDuration attribute

app.projec t . i tem(index) . f rameDurat ion

Description

The frameDuration attribute returns the duration of a frame, in seconds. This is the inverse of the framerate
(or frames per second). This attribute is read-only.

Type

Floating-point value; read-only.

CompItem hideShyLayers attribute

app.projec t . i tem(index) .hideShyLayers

Description

The hideShyLayers attribute determines whether shy layers should be visible in the Timeline window. It corre-
sponds to the value of the Hide All Shy Layers button in the Composition window.

If false, then only layers with "shy" set to false will be shown. If true, then all layers will be shown regardless of
the value of their "shy" attributes.

Type

Boolean; if true, shy layers are visible. Read/write.

CompItem layer() method

app.projec t . i tem(index) . layer(index)

app.projec t . i tem(index) . layer(otherLayer, re l Index)

app.projec t . i tem(index) . layer(name)

Description

The layer() method returns a specified layer object.

Using the syntax layer(int index) this method returns the layer with the given index. The given
index must be in the range [1,numLayers], where numLayers is the number of layers in the Composition.

Using the syntax layer(Layer otherLayer, int re l Index) this method returns the layer whose index is that of
the given otherlayer added to the given relindex. Relindex must be in the range [(1-otherlayer.index),
(numlayers-otherlayer.index)].

Using the syntax layer(Str ing name) this method returns the layer within the CompItem whose name
matches the given name.

Parameters

Note that there are three separate types of usage possible with layer, with unique syntax for each:

index index number of the specified layer; an integer

Using Help Back 59

Help Reference

Using Help Back 59

or

or

Returns

Layer object.

CompItem layers attribute

app.projec t . i tem(index) . layers

Description

The layers attribute contains the LayerCollection for this composition.

Type

LayerCollection. Read-only.

CompItem motionBlur attribute

app.projec t . i tem(index) .motionBlur

Description

The motionBlur attribute determines whether motion blur is enabled for the Composition. Corresponds to
the value of the motion blur button in the Composition window.

Type

Boolean; if true, motion blur is enabled. Read/write.

CompItem numLayers attribute

app.projec t . i tem(index) .numLayers

Description

The numLayers attribute is the number of layers in the CompItem. This always equals length of the LayerCol-
lection.

Type

Integer. Read-only.

CompItem preserveNestedFrameRate attribute

app.projec t . i tem(index) .preser veNestedFrameRate

otherLayer index number of the layer to which an offset will be applied

re l Index relative position of the layer; the difference between the two index numbers expressed as an
integer

name name of the specified number; a text string

Using Help Back 60

Help Reference

Using Help Back 60

Description

The preserveNestedFrameRate attribute determines whether the frame rate of nested compositions is
preserved in the current composition. This corresponds to the value of the Preserve Frame Rate When Nested
or in Render Queue option in the Advanced tab of the Composition Settings dialog box.

Type

Boolean; if true, nested frame rate is preserved. Read/write.

CompItem preserveNestedResolution attribute

app.projec t . i tem(index) .preser veNestedResolut ion

Description

The preserveNestedResolution attribute determines whether the resolution of nested compositions is
preserved in the current composition. This corresponds to the value of the Preserve Resolution When Nested
option in the Advanced tab of the Composition Settings dialog box.

Type

Boolean; if true, nested frame rate is preserved. Read/write.

CompItem resolutionFactor attribute

app.projec t . i tem(index) .resolut ionFactor

Description

The resolutionFactor attribute specifies the sampling resolution of the comp when rendering.

Each of the two values in the array specifies how many pixels to skip when sampling in one of the two direc-
tions. The first number controls horizontal sampling; the second controls vertical sampling. Each of the two
integers must lie in the range [1..99]. Full resolution is [1,1], half resolution is [2,2], and quarter resolution is
[4,4]. The default is [1,1].

Type

Array of two integers, describing the x and y downsample resolution factor; read/write.

CompItem selectedLayers attribute

app.projec t . i tem(index) . se lectedLayers

Description

This attribute yields an array containing all of the selected Layers in this CompItem.

Type

Array of Layer objects; read-only.

CompItem selectedProperties attribute

app.projec t . i tem(index) . se lectedProper t ies

Using Help Back 61

Help Reference

Using Help Back 61

Description

This attribute yields an array containing all of the selected Property and PropertyGroup objects in this
CompItem.

Type

Array of Property and PropertyGroup objects; read-only.

CompItem shutterAngle attribute

app.projec t . i tem(index) . shutterAng le

Description

The shutterAngle attribute determines the shutter angle setting for the composition. This setting corresponds
to the Shutter Angle setting found under the Advanced tab of the Composition Settings dialog box. Acceptable
integer settings are within the range of 0 - 720.

Type

Integer value (0 - 720 range only). Read/write.

CompItem shutterPhase attribute

app.projec t . i tem(index) . shutterPhase

Description

The shutterPhase attribute determines the shutter phase setting for the composition. This setting is the equiv-
alent of the Shutter Phase setting found under the Advanced tab of the Composition Settings dialog box.
Acceptable integer settings are within the range of 0 - 360.

Type

Integer value (-360 - 360 range only). Read/write.

CompItem workAreaDuration attribute

app.projec t . i tem(index) .workAreaDurat ion

Description

The workAreaDuration attribute determines the duration, in seconds, of the work area. This value is the
difference of the start point time of the Composition work area and the end point.

Type

Floating-point value; time, in seconds. Read/write.

CompItem workAreaStart attribute

app.projec t . i tem(index) .workAreaStar t

Description

The workAreaStart attribute determines the time, in seconds, where the Composition work area begins.

Using Help Back 62

Help Reference

Using Help Back 62

Type

Floating-point value; time, in seconds. Read/write.

File Class
The File Class contains methods and attributes common to File objects. A File object corresponds to a disk file.

Also included in this class are all attributes and methods within the FileSystem class, as those apply to Files as
well as Folders.

Note that the difference between the File Class and File object is that the class attributes and methods require
no specific instance of a File, whereas class methods and attributes do.

Class attributes inherited from FileSource object (see “FileSource object” on page 71)

Methods

Class methods inherited from FileSource object (see “FileSource object” on page 71)

File() Class method

Fi le(path)

new Fi le(path)

Description

This function constructs a new File object. If the given path name refers to an already existing folder, a Folder
object is returned instead.

The CRLF sequence is preset to the system default, and the encoding is preset to the default system encoding.

Class attribute Reference Description

f s see “FileSystem fs class attribute” on
page 74

name of the file system; read-only

Method Reference Description

Fi le()

new Fi le()

see “File() Class method” on page 62 constructs a new File object

openDialog() see “File openDialog() Class method” on
page 67

opens the built-in operating-system dialog to
select an existing file to open

saveDialog() see “File saveDialog() Class method” on
page 69

opens the built-in operating-system dialog to
select a file name to save a file into

Class method Reference Description

decode() see “FileSystem decode() class method”
on page 73

decodes the input string from UTF-8

encode() see “FileSystem encode() class method”
on page 73

encodes the input string in UTF-8

Using Help Back 63

Help Reference

Using Help Back 63

Parameters

Path, expressed as a string. If missing, a temporary name is generated.

Returns

File (or Folder if path refers to an existing folder).

File object
Fi le(“path”)

Description

The File object contains methods and attributes common to File objects. A Folder object corresponds to a
folder.

Also included in this object are all attributes and methods within the FileSystem object, as those apply to Files
as well as Folders.

Attributes

Attributes inherited from FileSystem object (see “FileSystem object” on page 74)

Attribute Reference Description

creator see “File creator attribute” on page 65 Macintosh file creator as a four-character string

encoding see “File encoding attribute” on page 65 gets or sets the encoding for subsequent read/
write operations

eof see “File eof attribute” on page 66 has the value true if a read attempt caused the
current position to be behind the end of the
file

hidden see “File hidden attribute” on page 66 set to true if the file is invisible

length see “File length attribute” on page 66 size of the file in bytes

l ineFeed see “File lineFeed attribute” on page 66 way line feed characters are written

readonly see “File readonly attribute” on page 69 when set, prevents the file from being altered
or deleted

ty pe see “File type attribute” on page 70 Macintosh file type as a four-character string

Attribute Reference Description

absoluteURI see “FileSystem absoluteURI attribute”
on page 75

full path name for the object in URI notation

al ias see “FileSystem alias attribute” on
page 76

returns true if the object refers to a file system
alias

created see “FileSystem created attribute” on
page 76

creation date of the object

error see “FileSystem error attribute” on
page 76

contains a message describing the last file sys-
tem error

Using Help Back 64

Help Reference

Using Help Back 64

Methods

Methods inherited from FileSystem object (see “FileSystem object” on page 74)

exis ts see “FileSystem exists attribute” on
page 76

returns true if the path name of this object
refers to an actually existing file or folder

f sName see “FileSystem fsName attribute” on
page 77

file-system specific name of the object as a full
path name

modified see “FileSystem modified attribute” on
page 77

date of the object's last modification

name see “FileSystem name attribute” on
page 77

name of the object without the path specifica-
tion

parent see “FileSystem parent attribute” on
page 78

folder object containing this object

path see “FileSystem path attribute” on
page 78

path portion of the absolute URI

re lat iveURI see “FileSystem relativeURI attribute” on
page 78

path name for the object in URI notation, rela-
tive to the current folder

Method Reference Description

close() see “File close() method” on page 65 closes the open file

copy() see “File copy() method” on page 65 copies the file to the given location

open() see “File open() method” on page 67 opens the file for subsequent read/write oper-
ations

read() see “File read() method” on page 68 reads the contents of the file from the current
position on

readch() see “File readch() method” on page 68 reads one single text character

readln() see “File readln() method” on page 69 reads one line of text

seek() see “File seek() method” on page 70 seeks to a certain position in the file

te l l () see “File tell() method” on page 70 returns the current position in the file as an off-
set in bytes

w rite() see “File write() method” on page 71 writes the given string to the file

w rite ln() see “File writeln() method” on page 71 writes the given string to the file and append a
line feed sequence

Method Reference Description

getRelat iveURI() see “FileSystem getRelativeURI()
method” on page 77

calculates and returns the relative URI, given a
base path, in URI notation

remove() see “FileSystem remove() method” on
page 78

deletes the file or folder that this object repre-
sents

rename() see “FileSystem rename() method” on
page 79

renames the object to the new name

resolve() see “FileSystem resolve() method” on
page 79

attempts to resolve the file system alias that
this object points to

Attribute Reference Description

Using Help Back 65

Help Reference

Using Help Back 65

File close() method

Fi le(path) . c lose()

Description

The close() method closes the open file. The return value is true if the file was closed, false on I/O errors.

Parameters

None.

Returns

Boolean.

File copy() method

Fi le(path) .copy(targe t)

Description

The close() method copies the file to the given location.

You can supply a URI path name as well as another File object. If there is a file at the target location, it is
overwritten.

The method returns true if the copy was successful, false otherwise. The method resolves any aliases to find
the source file.

Parameters

Returns

Boolean.

File creator attribute

Fi le(path) . creator

Description

The creator attribute is the Macintosh file creator as a four-character string. On Windows, the return value is
always "????".

Type

String; read-only.

File encoding attribute

Fi le(path) . encoding

Description

The encoding attribute gets or sets the encoding for subsequent read/write operations.

target File object or String specifying the target location

Using Help Back 66

Help Reference

Using Help Back 66

The encoding is one of several predefined constants that follow the common Internet encoding names. Valid
names are UCS-2, X-SJIS, ISO-8851-9, ASCII or the like.

A special encoder, BINARY, is used to read binary files. This encoder stores each byte of the file as one Unicode
character regardless of any encoding. When writing, the lower byte of each Unicode character is treated as a
single byte to write. See “Encoding Names” on page 228 for a list of encodings. If an unrecognized encoding
is used, the encoding reverts to the system default encoding.

Type

String; read/write.

File eof attribute

Fi le(path) . eof

Description

The File eof attribute has the value true if a read attempt caused the current position to be past the end of the
file.

If the file is not open, the value is true.

Type

Boolean; read-only.

File hidden attribute

Fi le(path) .h idden

Description

The File hidden attribute has the value true if the file is invisible. Assigning a Boolean value sets or clears this
attribute.

Type

Boolean; read/write.

File length attribute

Fi le(path) . length

Description

The File length attribute is size of the file in bytes. When setting the file size, the file must not be open.

Type

Number; read-only.

File lineFeed attribute

Fi le(path) . l ineFeed

Using Help Back 67

Help Reference

Using Help Back 67

Description

The File lineFeed attribute determines the way line feed characters are written. This can be one of the three
values: macintosh, unix or windows (actually, only the first character is interpreted).

Type

String (one of: macintosh, unix, windows); read/write.

File open() method

Fi le(path) .open(mode, t ype , c reator)

Description

The File open() method opens the file for subsequent read/write operations. The type and creator arguments
are optional and Macintosh specific; they specify the file type and creator as two four-character strings. They
are used if the file is newly created. On other platforms, they are ignored.

When open() is used to open a file for read access, the method attempts to detect the encoding of the open
file. It reads a few bytes at the current location and tries to detect the Byte Order Mark character 0xFFFE. If
found, the current position is advanced behind the detected character and the encoding property is set to one
of the strings UCS-2BE, UCS-2LE, UCS4-BE, UCS-4LE or UTF-8. If the marker character cannot be found,
it checks for zero bytes at the current location and makes an assumption about one of the above formats
(except for UTF-8). If everything fails, the encoding property is set to the system encoding. The method
resolves any aliases to find the file.

You should be careful if you try to open a file more than once. The operating system usually permits you to do
so, but if you start writing to the file using two different File objects, you may destroy your data.

The return value is true if the file has been opened successfully, false otherwise.

Parameters

Returns

Boolean.

File openDialog() Class method

Fi le .openDialog(prompt , s e lec t)

Description

The File.openDialog class method presents the Open dialog box that is standard for the platform on which
After Effects is running. This method overlaps somewhat with the easier to use fileGetDialog() global
function.

mode one of r, w or e:

r (read) Opens for reading. If the file does not exist or cannot be found, the call fails.

w (write) Opens an empty file for writing. If the file exists, its contents are destroyed.

e (edit) Opens an existing file for reading and writing.

ty pe The Macintosh file type; a four-byte character string; ignored on non-Macintosh operating systems.

creator The Macintosh file creator; a four-byte character string; ignored on non-Macintosh operating systems.

Using Help Back 68

Help Reference

Using Help Back 68

Parameters

Returns

File object, or null if the user cancels the dialog.

See also

“FileSource object” on page 71.

File read() method

Fi le(path) . read(chars)

Description

The File read() method reads the contents of the file from the current position on. Returns a string that
contains up to the number of characters that were supposed to be read.

Parameters

Returns

String.

File readch() method

Fi le(path) . readch()

Description

The File readch() method reads one single text character. Line feeds are recognized as CR, LF, CRLF or LFCR
pairs. If the file is encoded, multiple bytes may be read to create single Unicode characters.

Parameters

None.

prompt An optional prompt (expressed as a string) that is displayed as part of the dialog if the dialog permits the
display of an additional message.

se lect This argument allows the pre-selection of the files that the dialog displays. Unfortunately, this argument is
different on Mac OS and on Windows.

s e lec t (Win) Windows selection string is actually a list of file types with explanative text. This list appears in the bottom
of the dialog box as a drop-down list box so the user can select which types of files to display. The elements
of this list are separated by commas. Each element starts with the descriptive text, followed by a colon and
the file search masks for this text. Again, each search mask is separated by a semicolon. A Selection list that
allowed the selection of all text files (*.TXT and *.DOC) or all files would look like this:

Text Files:*.TXT;*.DOC,All files:*

A single asterisk character is a placeholder for all files.

s e lec t (Mac

OS)

On Mac OS, the optional second argument is a callback function. This function takes one argument, which
is a File object. When the dialog is set up, it calls this callback function for each file that is about to be dis-
played. If the function returns anything else than true, the file is not displayed. This is true only for the open-
Dialog() method; the saveDialog() method ignores this callback method.

chars The number of characters to read, expressed as an integer. If the number of characters to read
is not supplied, the entire file is read in one big chunk, starting at the current position. If the
file is encoded, multiple bytes may be read to create single Unicode characters.

Using Help Back 69

Help Reference

Using Help Back 69

Returns

String.

File readln() method

Fi le(path) . readln()

Description

The File readch() method reads one line of text. Line feeds are recognized as CR, LF, CRLF or LFCR pairs. If
the file is encoded, multiple bytes may be read to create single Unicode characters.

Parameters

None.

Returns

String.

File readonly attribute

Fi le(path) . readonly

Description

The File readonly attribute, when set, prevents the file from being altered or deleted.

Type

Boolean; read/write.

File saveDialog() Class method

Fi le . saveDialog(prompt , s e lec t)

Description

The File.saveDialog class method presents the Save dialog box that is standard for the platform on which After
Effects is running. This method overlaps somewhat with the easier-to-use filePutDialog() global function.

Parameters

prompt An optional prompt (expressed as a string) that is displayed as part of the dialog if the dialog
permits the display of an additional message.

se lect This argument allows the pre-selection of the files that the dialog displays. Unfortunately, this
argument is different on Mac OS and on Windows.

se lect (Win) Windows selection string is actually a list of file types with explanative text. This list is dis-
played in the bottom of the dialog as a drop-down list box so the user can select which types
of files to display. The elements of this list are separated by commas. Each element starts with
the descriptive text, followed by a colon and the file search masks for this text. Again, each
search mask is separated by a semicolon. A Selection list that allowed the selection of all text
files (*.TXT and *.DOC) or all files would look like this:

Text Files:*.TXT;*.DOC,All files:*

A single asterisk character is a placeholder for all files.

Using Help Back 70

Help Reference

Using Help Back 70

Returns

File object, or null if the user cancels the dialog.

See also

“filePutDialog() global function” on page 24

File seek() method

Fi le(path) . seek(pos , mode)

Description

The File seek() method seeks to a certain position in the file. This method does not permit seeking to positions
less than 0 or greater than the current file size.

Parameters

Returns

Boolean; true if the position was changed.

File tell() method

Fi le(path) . te l l ()

Description

The File tell() method returns the current position in the file as an offset in bytes.

Parameters

None.

Returns

Integer.

File type attribute

Fi le(path) . t y pe

Description

The File type attribute holds the Macintosh file type as a four-character string.

se lect (Mac OS) On Mac OS, the optional second argument is a callback function. This function takes one
argument, which is a File object. When the dialog is set up, it calls this callback function for
each file that is about to be displayed. If the function returns anything else than true, the file
is not displayed. This is true only for the openDialog() method; the saveDialog() method
ignores this callback method.

pos the new current position inside the file as an offset in bytes (an integer), dependent on the
seek mode

mode the seek mode (0 = seek to absolute position, 1 = seek relative to the current position, 2 = seek
backwards from the end of the file)

Using Help Back 71

Help Reference

Using Help Back 71

On Mac OS, the file type is returned. On Windows, "appl" is returned for .EXE files, "shlb" for .DLLs and
"TEXT" for any other file. If the file does not exist, the file type is "????".

Type

Boolean; read-only.

File write() method

Fi le(path) .w r i te(tex t , . . .)

Description

The File write() method writes a given string to the file. The parameters of this function are concatenated to
a single string. Returns true on success.

For encoded files, writing a single Unicode character may result in multiple bytes being written. Take care not
to write to a file that is open in another application or object. This may cause loss of data, since a second write
issued from another File object may overwrite existing data.

Parameters

Returns

Boolean.

File writeln() method

Fi le(path) .w r i te ln(tex t , . . .)

Description

The File writeln() method writes a given string to the file. The parameters of this function are concatenated
to a single string, and a Line Feed sequence is appended. Returns true on success.

If the file is encoded, multiple bytes may be read to create single Unicode characters.

Parameters

Returns

Boolean.

FileSource object
app.projec t . i tem(index) .mainSource

app.projec t . i tem(index) .proxySource

Description

The FileSource describes footage that comes from a file. FileSource is a subclass of FootageSource and so it
inherits all attributes and methods of FootageSource.

text A string or set of strings. All arguments are concatenated to form the string to be written.

text A string or set of strings. All arguments are concatenated to form the string to be written.

Using Help Back 72

Help Reference

Using Help Back 72

Attributes

Methods

FileSource file attribute

app.project .file

Description

The FileSource file attribute specifies the file that defines this FileSource. The attribute is readOnly.

Note that there are other ways to change the file. If this FootageSource is a proxySource of an AVItem, you can
call setProxy() or setProxyWithSequence() to change files. If this FootageSource is a mainSource of a
FootageItem, you can call replace() or replaceWithSequence() to change files.

Type

File; read-only.

FileSource reload() method

app.projec t .mainSource . re load()

Description

The FileSource reload() method reloads the asset from the file. This method can be called only on a
mainSource, not a proxySource.

Parameters

None.

Returns

None.

FileSystem Class
Fi le .

Folder.

Description

The FileSystem class contains methods and attributes common to both File and Folder objects. A File object
corresponds to a disk file, while a Folder object matches a folder.

Attribute Reference Description

file see “FileSource file attribute” on page 72 specifies the file that defines this FileSource

Method Reference Description

re load() see “FileSource reload() method” on
page 72

reloads the asset from the file

Using Help Back 73

Help Reference

Using Help Back 73

This attribute and methods differ from those found under the FileSystemObject in that they can be applied
without referring to a particular instance of a file or folder.

Class attributes

Class methods

FileSystem decode() class method

Fi le .decode(s t r ing)

Folder.decode(s t r ing)

Description

The decode() class method of File or Folder decodes escaped characters and then interprets them as UTF-8.

Parameters

Returns

String.

See also

“FileSystem encode() class method” on page 73

FileSystem encode() class method

Fi le . encode(s t r ing)

Folder. encode(s t r ing)

Description

The encode() class method of File or Folder converts the input string to UTF-8 and then encodes it such that
all characters are usable in a URI (or URL).

Parameters

Returns

String.

Class attribute Reference Description

f s see “FileSystem fs class attribute” on
page 74

 name of the files system; read-only

Class method Reference Description

decode() see “FileSystem decode() class method”
on page 73

decodes the input string from UTF-8

encode() see “FileSystem encode() class method”
on page 73

encodes the input string in UTF-8

s t r ing string to be decoded

s t r ing string to be encoded

Using Help Back 74

Help Reference

Using Help Back 74

See also

“FileSystem alias attribute” on page 76

FileSystem fs class attribute

Fi le . f s

Folder. f s

Description

The fs class attribute of File or Folder holds the name of the file system (operating system). Possible values are
“Windows” or “Macintosh”.

Type

String; read-only.

Example

w rite("The local file system is " + Fi le . f s) ;

FileSystem object
Fi le(“path”) .

Folder(“path”) .

Description

The FileSystem object contains methods and attributes common to both File and Folder objects. A File object
corresponds to a disk file, while a Folder object matches a folder. “FileSystem” is a name used to refer to both
Folders and Files.

These attributes and methods differ from those found under the FileSystem Class in that they cannot be
applied without referring to a particular instance of a file or folder, expressed as a path to that file or folder.

You can use absolute path names and relative path names. Absolute path names start with one or two slash
characters. These path names describe the full path from a root folder down to a file or folder. Relative path
names start from a known location, the current folder. A relative path name starts either with a folder name
or with one of the special names “.” and “..”. The name “.” refers to the current folder, and the name “..” refers
to the parent folder. The slash character is used to separate path elements. Special characters are encoded in
UTF-8 notation.

The FileSystem objects support a common convention. A volume name may be the first part of an absolute
path. The objects know where to look for the volume names on Mac OS and Windows and they translate the
volume names accordingly.

A path name can also start with the tilde “~” character. This character stands for the user’s home directory (on
Mac OS). On Windows, a directory with the environment variable HOME or, failing that, the desktop is used
as a home directory.

The following table illustrates how the root element of a full path name is used on different file systems. In
these examples, the current drive is C: on Windows and “Macintosh HD” on Mac OS.

URI Windows name Mac OS name

/d/dir/name.ext D:\dir\name.ext Macintosh HD:d:dir:name.ext

Using Help Back 75

Help Reference

Using Help Back 75

Thus if you have to use a script with URI notation on both Mac OS and Windows, try to use relative path
names, or try to originate your path names from the home directory. If that is not possible, it is recommended
that you work with Mac OS X aliases and UNC names on Windows, and store files on a machine that is remote
to the Windows machine on which the script is running.

Attributes

Methods

FileSystem absoluteURI attribute

Fi le(path) .absoluteURI

/Macintosh HD/dir/name.ext C:\Macintosh HD\dir\name.ext Macintosh HD:dir:name.ext

Attribute Reference Description

absoluteURI see “FileSystem absoluteURI attribute”
on page 75

full path name for the object in URI notation

al ias see “FileSystem alias attribute” on
page 76

returns true if the object refers to a file system
alias

created see “FileSystem created attribute” on
page 76

creation date of the object

error see “FileSystem error attribute” on
page 76

contains a message describing the last file sys-
tem error

exis ts see “FileSystem exists attribute” on
page 76

returns true if the path name of this object
refers to an actually existing file or folder

f sName see “FileSystem fsName attribute” on
page 77

file-system specific name of the object as a full
path name

modified see “FileSystem modified attribute” on
page 77

date of the object's last modification

name see “FileSystem name attribute” on
page 77

name of the object without the path specifica-
tion

parent see “FileSystem parent attribute” on
page 78

folder object containing this object

path see “FileSystem path attribute” on
page 78

path portion of the absolute URI

re lat iveURI see “FileSystem relativeURI attribute” on
page 78

path name for the object in URI notation, rela-
tive to the current folder

Method Reference Description

getRelat iveURI() see “FileSystem getRelativeURI()
method” on page 77

calculate and return the relative URI, given a
base path, in URI notation

remove() see “FileSystem remove() method” on
page 78

delete the file or folder that this object repre-
sents

rename() see “FileSystem rename() method” on
page 79

rename the object to the new name

resolve() see “FileSystem resolve() method” on
page 79

attempt to resolve the file system alias that this
object points to

Using Help Back 76

Help Reference

Using Help Back 76

Folder(path) .absoluteURI

Description

The absoluteURI attribute of File or Folder is the full path name for the object in URI notation.

Type

String; read-only.

FileSystem alias attribute

Fi le(path) .al ias

Folder(path) .al ias

Description

The alias attribute of File or Folder returns true if the object refers to a file system alias.

Type

Boolean; read-only.

FileSystem created attribute

Fi le(path) .created

Folder(path) .created

Description

The created attribute of File or Folder is the creation date of the object. If the object does not refer to a folder
or file on the disk, the value is null.

Type

Date, or null if the object does not refer to a file or folder on disk; read-only.

FileSystem error attribute

Fi le(path) .error

Folder(path) .er ror

Description

The error attribute of File or Folder contains a message describing the last file system error. Setting this value
clears any error message and resets the error bit for opened files.

Type

Boolean; read/write (writing resets the error bit).

FileSystem exists attribute

Fi le(path) .exis ts

Folder(path) . ex is ts

Using Help Back 77

Help Reference

Using Help Back 77

Description

The exists attribute of File or Folder returns true if the path name of this object refers to an already existing
file or folder.

Type

Boolean; read-only.

FileSystem fsName attribute

Fi le(path) . f sName

Folder(path) . f sName

Description

The fsName attribute of File or Folder is the file-system specific name of that object as a full path name.

Type

String; read-only.

FileSystem getRelativeURI() method

Fi le(path) .getRelat iveURI(s t r ing)

Folder(path) .getRelat iveURI(s t r ing)

Description

The getRelativeURI() method of File or Folder calculates and returns the relative URI, given a base path, in
URI notation. If the base path is omitted, the path of the current folder is assumed.

Parameters

Returns

String.

FileSystem modified attribute

Fi le(path) .modified

Folder(path) .modified

Description

The modified attribute of File or Folder is the date of the object's last modification. If the object does not refer
to a folder or file on disk, the value is null.

Type

Date, or null if no valid FileSystem object is referenced; read-only.

FileSystem name attribute

Fi le(path) .name

Folder(path) .name

str ing base path, in URI notation

Using Help Back 78

Help Reference

Using Help Back 78

Description

The name attribute of File or Folder is the name of the object without the path specification.

Type

String; read-only.

FileSystem parent attribute

Fi le(path) .parent

Folder(path) .parent

Description

The parent attribute of File or Folder is the folder object containing this object. If this object already is the root
folder of a volume, the property value is null.

Type

Folder, or null if the object has no parent; read-only.

FileSystem path attribute

Fi le(path) .path

Folder(path) .path

Description

The path attribute of File or Folder is the path portion of the absolute URI. If the name does not have a path,
this property contains the empty string.

Type

String, empty if name has no path; read-only.

FileSystem relativeURI attribute

Fi le(path) . re lat iveURI

Folder(path) . re lat iveURI

Description

The relativeURI attribute of File or Folder is the path name for the object in URI notation, relative to the
current folder.

Type

String; read-only.

FileSystem remove() method

Fi le(path) . remove()

Folder(path) . remove()

Description

The remove() method of File or Folder deletes the file or folder that this object represents. Folders must be
empty before they can be deleted. The return value is true if the file or folder has been deleted.

Using Help Back 79

Help Reference

Using Help Back 79

IMPORTANT: The remove() method deletes the referenced file or folder immediately. It does not move the refer-
enced file or folder to the system trash. The effects of the remove method cannot be undone. It is recommended that
you prompt the user for permission to delete a file or folder before deleting it. The method does not resolve aliases;
it rather deletes the file alias itself.

Parameters

None.

Returns

Boolean.

FileSystem rename() method

Fi le(path) . rename(s t r ing)

Folder(path) . rename(s t r ing)

Description

The rename() method of File or Folder renames the object to a new name. The new name must not have a
path. This method returns true if the object was renamed. The method does not resolve aliases, but rather
renames the alias file.

Parameters

Returns

Boolean.

FileSystem resolve() method

Fi le(path) . resolve()

Folder(path) . resolve()

Description

The resolve() method of File or Folder attempts to resolve the file system alias that this object points to. If
successful, a new File or Folder object is returned that points to the resolved file system element. If the object
is not an alias, or if the alias could not be resolved, the return value is null.

Parameters

None.

Returns

FileSystem object (File or Folder) or null if no alias.

Folder class
Folder.

s t r ing the new name for the object

Using Help Back 80

Help Reference

Using Help Back 80

Description

The Folder class contains methods and attributes common to Folder objects. A Folder object corresponds to
a folder.

Also included in this class are all attributes and methods within the FileSystem class, as those apply to Folders
as well as Files.

Note that the difference between the Folder Class and Folder object is that the class attributes and methods
require no specific instance of a Folder, whereas class methods and attributes do.

Attributes

Class attributes from FileSystem object (see “FileSystem object” on page 74)

Methods

Class methods from FileSystem object (see “FileSystem object” on page 74)

Attribute Reference Description

current see “Folder current Class attribute” on
page 81

current folder is returned as a Folder object

s tar tup see “Folder startup Class attribute” on
page 81

folder containing the executable image of the
running application

system see “Folder system Class attribute” on
page 82

folder containing the operating system files

temp see “Folder temp Class attribute” on
page 82

default folder for temporary files

t rash see “Folder trash Class attribute” on
page 82

folder containing deleted items

Class attribute Reference Description

f s see “FileSystem fs class attribute” on
page 74

 name of the files system; read-only

Method Reference Description

Folder()

new Folder()

see “Folder create() method” on page 84 constructs a new Folder object

se lectDia log() see “Folder selectDialog() Class method”
on page 81

opens a dialog box that permits you to select a
folder using the OS specific folder select dialog

Class method Reference Description

decode() see “FileSystem decode() class method”
on page 73

decodes the input string from UTF-8

encode() see “FileSystem encode() class method”
on page 73

encodes the input string in UTF-8

Using Help Back 81

Help Reference

Using Help Back 81

Folder() Class method

Folder(path)

new Folder(path)

Description

This function constructs a new Folder object. If the given path name refers to an already existing disk file, a
File object is returned instead.

The folder that the path name refers to does not need to exist. If the argument is omitted, a temporary name
is generated.

Parameters

Returns

Folder (or File if path refers to an existing file).

Folder current Class attribute

Folder. current

Description

The current attribute of Folder is the current folder. It is returned as a Folder object. Assigning either a Folder
object or a string containing the new path name sets the current folder.

Type

Folder; read/write.

Folder selectDialog() Class method

Folder. se lectDia log(prompt, prese t)

Description

The Folder SelectDialog() method opens a dialog box that permits you to select a folder using the platform-
specific selection dialog box. Both arguments are optional.

Parameters

Returns

Folder object pointing to the selected folder, or null if the user cancels the dialog.

Folder startup Class attribute

Folder. s tar tup

path path for the folder created, expressed as a string

prompt String displays a prompt text if the dialog allows the display
of such a message; optional

preset Folder a folder that is pre-selected when the dialog opens

Using Help Back 82

Help Reference

Using Help Back 82

Description

The startup attribute of Folder is the folder containing the executable image of the running application.

Type

Folder; read-only.

Folder system Class attribute

Folder. system

Description

The system attribute of Folder is the folder containing the operating system files.

Type

Folder; read-only.

Folder temp Class attribute

Folder. temp

Description

The temp attribute of Folder is the default folder for temporary files.

Type

Folder; read-only.

Folder trash Class attribute

Folder. t rash

Description

The trash attribute of Folder is the folder containing deleted items.

Type

Folder; read-only.

Folder object
Folder(“path”) .

Description

The Folder object contains methods and attributes common to Folder objects. A Folder object corresponds to
a folder.

Also included in this object are all attributes and methods within the FileSystem object, as those apply to
Folders as well as Files.

Using Help Back 83

Help Reference

Using Help Back 83

Attributes inherited from the FileSystem object (see “FileSystem object” on page 74)

Methods

Methods inherited from FileSystem object (see “FileSystem object” on page 74)

Attribute Reference Description

absoluteURI see “FileSystem absoluteURI attribute”
on page 75

full path name for the object in URI notation

al ias see “FileSystem alias attribute” on
page 76

returns true if the object refers to a file system
alias

created see “FileSystem created attribute” on
page 76

creation date of the object

error see “FileSystem error attribute” on
page 76

contains a message describing the last file sys-
tem error

exis ts see “FileSystem exists attribute” on
page 76

returns true if the path name of this object
refers to an actually existing file or folder

f sName see “FileSystem fsName attribute” on
page 77

file-system specific name of the object as a full
path name

modified see “FileSystem modified attribute” on
page 77

date of the object's last modification

name see “FileSystem name attribute” on
page 77

name of the object without the path specifica-
tion

parent see “FileSystem parent attribute” on
page 78

folder object containing this object

path see “FileSystem path attribute” on
page 78

path portion of the absolute URI

re lat iveURI see “FileSystem relativeURI attribute” on
page 78

path name for the object in URI notation, rela-
tive to the current folder

Method Reference Description

create() see “Folder create() method” on page 84 attempts to create a folder at the location the
path name points to

getFi les() see “Folder getFiles() method” on
page 84

gets a list of File and Folder objects contained
in the folder object

Method Reference Description

getRelat iveURI() see “FileSystem getRelativeURI()
method” on page 77

calculates and returns the relative URI, given a
base path, in URI notation

remove() see “FileSystem remove() method” on
page 78

deletes the file or folder that this object repre-
sents

rename() see “FileSystem rename() method” on
page 79

renames the object to the new name

resolve() see “FileSystem resolve() method” on
page 79

attempts to resolve the file system alias that
this object points to

Using Help Back 84

Help Reference

Using Help Back 84

Folder create() method

Folder(path) . create()

Description

The create() method attempts to create a folder at the location the path name points to.

Parameters

None.

Returns

Boolean; true if the folder was created.

Folder getFiles() method

Folder.getFi les(mask)

Description

The Folder getFiles() method returns a list of File and Folder objects contained in the folder object. The mask
parameter is the search mask for the file names, expressed as a string. It may contain question marks and
asterisks and is preset to * to find all files.

Alternatively, a function may be supplied. This function is called with a File or Folder object for every file or
folder in the directory search. If the function returns true, the object is added to the array.

On Windows, all aliases end with the extension ".lnk". This extension is stripped from the file name when
found to preserve compatibility with other operating systems. You can, however, search for all aliases by
supplying the search mask "*.lnk". This is not recommended, however, because it is not portable.

Parameters

Returns

Array of File & Folder objects or null if the folder does not exist.

FolderItem object
app.projec t .FolderItem

Description

The FolderItem object corresponds to any folder in your Project window. It can contain various types of items
(footage, compositions, solids) as well as other folders.

Attributes

mask String search mask for the files names (see above)

Attribute Reference Description

i tems see “FolderItem items attribute” on
page 85

ItemCollection that represents the contents of
this FolderItem

Using Help Back 85

Help Reference

Using Help Back 85

Methods

Example

Given that the second item in the project is a FolderItem, the following code puts up one alert for each top-
level item in the folder. The alerts display the name of each top-level item.

var secondItem = app.project . i tem(2) ;

i f (! (secondItem instanceof FolderItem)) {

a ler t("problem: second i tem is not a fo lder") ;

} e l se {

for (i = 1 ; i <= secondItem.numItems; i++) {

a ler t(" i tem number " + i + " w ithin the folder i s named "

+ secondItem.i tem(i) .name);

}

}

FolderItem item() method

app.projec t . fo lderItem. i tem(index)

Description

The FolderItem item() method returns the top-level item in this FolderItem with the given index. Note that
“top-level” here means top-level within the folder, not necessarily within the project.

Parameters

Returns

Item.

FolderItem items attribute

app.projec t . fo lderItem. i tems

Description

The items attribute is the ItemCollection that represents the contents of this FolderItem.

Unlike the ItemCollection that is owned by the Project object, a FolderItem’s ItemCollection contains only the
top-level Items in the FolderItem.

Note that “top-level” indicates top-level within the folder, not necessarily within the project. Only in the case
of the rootFolder are the top-level items in the FolderItem also top-level items in the Project.

numItems see “FolderItem numItems attribute” on
page 86

number of items contained in the FolderItem

Method Reference Description

i tem() see “FolderItem item() method” on
page 85

returns an Item

index Integer index number of the FolderItem

Attribute Reference Description

Using Help Back 86

Help Reference

Using Help Back 86

Type

ItemCollection; read only.

FolderItem numItems attribute

app.projec t . fo lderItem.numItems

Description

The numItems attribute is the number of items contained in the FolderItem.

This number is the number of top-level Items within the folder. In other words, if this FolderItem contains
another FolderItem, then the contained FolderItem counts as one item, even if there are further sub-items
inside the contained folder.

Type

Integer; read only.

FootageItem object
app.projec t . i tem(index)

app.projec t . i tems[index]

Description

The FootageItem object represents a footage item imported into the project, which appears in the Project
window.

Attributes

Methods

Attribute Reference Description

file see “FootageItem file attribute” on
page 87

footage source file

mainSource see “FootageItem mainSource attribute”
on page 87

contains all settings related to the footage
item

Method Reference Description

replace() see “FootageItem replace() method” on
page 87

replaces a footage file with another footage
file

replaceWithPlaceholder() see “FootageItem replaceWithPlace-
holder() method” on page 87

replaces a footage file with a placeholder
object

replaceWithSequence() see “FootageItem replaceWithSe-
quence() method” on page 88

replaces a footage file with an image sequence

replaceWithSol id() see “FootageItem replaceWithSolid()
method” on page 88

replaces a footage file with a solid

Using Help Back 87

Help Reference

Using Help Back 87

FootageItem file attribute

app.project . i tem(index) .file

Description

The file attribute is the File object of the footage's source file.

If the FootageItem's mainSource is a FileSource, this is the same thing as mainSource.file Otherwise it is
NULL.

Type

File object (or null if mainSoure is not a FileSource); read only.

FootageItem mainSource attribute

app.projec t . i tem(index) .mainSource .

Description

The footage item mainSource attribute contains all of the settings related to that footage item, including those
that are normally accessed via the Interpret Footage dialog box. See also FootageSource (and its three types:
SolidSource, FileSource, and PlaceholderSource).

The attribute is read-only, but it can be changed by calling any of the FootageItem methods that change the
footage source: replace(), replaceWithSequence(), replaceWithSolid(), and replaceWithPlaceholder().

Type

FootageSource. Read-only.

FootageItem replace() method

app.projec t . i tem(index) . replace(file)

Description

The FootageItem replace() method replaces the FootageItem with the file given as a parameter.

In After Effects 6.5, in addition to loading the given file, this method does the following:

• Sets the mainSource to a new value reflecting the contents of the new file.

• Sets the name, width, height, frameDuration, and duration attributes, defined in the base AVItem class,
based on the contents of the file.

• Preserves interpretation parameters from the previous mainSource.

• Guesses the alpha if replace() is called with a file that has an unlabeled alpha channeI.

Parameters

FootageItem replaceWithPlaceholder() method

app.projec t . i tem(index) . replaceWithPlaceholder(name, w idth, he ight , f rameRate , durat ion)

file File object

Using Help Back 88

Help Reference

Using Help Back 88

Description

The FootageItem replaceWithSequence() method replaces the FootageItem with the image sequence given as
a parameter.

In After Effects 6.5, in addition to loading the given file, this method does the following:

• Sets the mainSource to a new value reflecting the contents of the new file.

• Sets the name, width, height, frameDuration, and duration attributes, defined in the base AVItem class,
based on the contents of the file.

• Preserves interpretation parameters from the previous mainSource.

• Guesses the alpha if replace() is called with a file that has an unlabeled alpha channeI.

Parameters

FootageItem replaceWithSequence() method

app.projec t . i tem(index) . replaceWithSequence(file , forceAlphabet ica l)

Description

The FootageItem replaceWithSequence() method replaces the FootageItem with the image sequence given as
a parameter.

In After Effects 6.5, in addition to loading the given file, this method does the following:

• Sets the mainSource to a new value reflecting the contents of the new file.

• Sets the name, width, height, frameDuration, and duration attributes, defined in the base AVItem class,
based on the contents of the file.

• Preserves interpretation parameters from the previous mainSource.

• Guesses the alpha if replace() is called with a file that has an unlabeled alpha channel.

Parameters

FootageItem replaceWithSolid() method

app.projec t . i tem(index) . replaceWithSol id(co lor, name, w idth, he ight , p ixe lAspect)

name string name of the placeholder

w idth integer width of the placeholder [4..30,000]

height integer height of the placeholder [4..30,000]

f rameRate Floating-point value frame rate of the Placeholder [1..99]

durat ion Floating-point value duration of the Placeholder [0..10,800]

file File object replacement file

forceAlphabet ica l boolean value of true is equivalent to activating the Force
Alphabetical Order option in the File > Replace >
Footage > File dialog box.

Using Help Back 89

Help Reference

Using Help Back 89

Description

The FootageItem replaceWithSequence() method replaces the FootageItem with the image sequence given as
a parameter.

In After Effects 6.5, in addition to loading the given file, this method does the following:

• Sets the mainSource to a new value reflecting the contents of the new file.

• Sets the name, width, height, frameDuration, and duration attributes, defined in the base AVItem class,
based on the contents of the file.

• Preserves interpretation parameters from the previous mainSource.

• Guesses the alpha if replace() is called with a file that has an unlabeled alpha channeI.

Parameters

FootageSource object
app.projec t . i tem(index) .mainSource .

app.projec t . i tem(index) .proxySource .

Description

The FootageSource object holds information describing the source of some footage. It is used to hold the
mainSource of a FootageItem, or the proxySource of an AVItem. AVItem is the base class of FootageItem and
CompItem; thus proxySource appears in both these types of Item.

Attributes

color Floating-point array color of the solid (an array of four floating-point values from 0 to
1: [R, G, B, A])

name string name of the solid

w idth integer width of the solid [4..30,000]

height integer height of the solid [4..30,000]

pixe lAspect Floating-point value pixel aspect ratio of the Solid [0.01..100]

Attribute Reference Description

hasAlpha see “FootageSource hasAlpha attribute”
on page 92

specifies if a footage clip or proxy includes an
alpha channel

alphaMode see “FootageSource alphaMode
attribute” on page 90

specifies the mode of an alpha channel

premulColor see “FootageSource premulColor
attribute” on page 94

specifies the color to be premultiplied

inver tAlpha see “FootageSource invertAlpha
attribute” on page 93

specifies if an alpha channel in a footage clip or
proxy should be inverted

isStill see “FootageSource isStill attribute” on
page 93

specifies if footage is a still image

fieldSeparat ionTy pe see “FootageSource fieldSepara-
tionType attribute” on page 91

specifies the field separation type

Using Help Back 90

Help Reference

Using Help Back 90

Methods

FootageSource alphaMode attribute

app.projec t . i tem(index) .mainSource .alphaMode

app.projec t . i tem(index) .proxySource . alphaMode

Description

The alphaMode attribute of footageSource defines how the alpha information in the footage is to be inter-
preted. If hasAlpha is false, this attribute has no relevant meaning.

Type

AlphaMode; one of the following (read/write):

AlphaMode.IGNORE

AlphaMode.STRAIGHT

AlphaMode.PREMULTIPLIED

FootageSource conformFrameRate attribute

app.projec t . i tem(index) .mainSource .conformFrameRate

app.projec t . i tem(index) .proxySource .conformFrameRate

Description

The conformFrameRate attribute of FootageSource determines a frame rate to use instead of the nativeFram-
eRate. If set to 0, the nativeFrameRate will be used instead. Permissible range is [0 .. 99.0].

It is an error to set this value if FootageSource.isStill is true. It is an error to set this value to 0 if remove-
Pulldown is not set to PulldownPhase.OFF. If this is 0 when you set removePulldown to a value other than
PulldownPhase.OFF, then this will be set to be equal to nativeFrameRate by default.

highQual i tyFie ldSeparat ion see “FootageSource highQualityField-
Separation attribute” on page 92

specifies how the fields are to be separated in
a non-still footage.

removePul ldow n see “FootageSource removePulldown
attribute” on page 94

specifies the Pulldown Type for the footage

loop see “FootageSource loop attribute” on
page 93

specifies how many times an image sequence
is set to loop

nat iveFrameRate see “FootageSource nativeFrameRate
attribute” on page 93

the native frame rate of the footage

displayFrameRate see “FootageSource displayFrameRate
attribute” on page 91

the effective frame rate as displayed and ren-
dered in compositions by After Effects

conformFrameRate see “FootageSource conformFrameRate
attribute” on page 90

specifies the rate to which footage should con-
form

Method Reference Description

guessAlphaMode() see “FootageSource guessAlphaMode()
method” on page 91

guesses the alphaMode setting

guessPul ldow n() see “FootageSource guessPulldown()
method” on page 92

guesses the pulldownType setting

Attribute Reference Description

Using Help Back 91

Help Reference

Using Help Back 91

Type

Floating-point value; read/write.

FootageSource displayFrameRate attribute

app.projec t . i tem(index) .mainSource .displayFrameRate

app.projec t . i tem(index) .proxySource .displayFrameRate

Description

The displayFrameRate attribute of FootageSource corresponds to the effective frame rate as displayed and
rendered in compositions by After Effects.

If removePulldown is PulldownPhase.OFF, then this will be the conformFrameRate (if non-zero) or the
nativeFrameRate (if conformFrameRate is 0). If removePulldown is not PulldownPhase.OFF, then this will be
(0.8 * conformFrameRate), the effective frame rate after removing 1 of every 5 frames.

Type

Floating-point value; read-only.

FootageSource fieldSeparationType attribute

app.projec t . i tem(index) .mainSource .fieldSeparat ionTy pe

app.projec t . i tem(index) .proxySource .fieldSeparat ionTy pe

Description

The fieldSeparationType attribute of FootageSource specifies how the fields are to be separated in a non-still
footage.

It is an error to attempt to write to this attribute if isStill is true. It is an error to set this value to FieldSepara-
tionType.OFF if removePulldown is not PulldownPhase.OFF. You must instead change removePulldown to
PulldownPhase.OFF, and then set the fieldSeparationType to FieldSeparationType.OFF.

Enumerated Types

FieldSeparationType (read/write); one of:

NONE

UPPER_FIELD_FIRST

LOWER_FIELD_FIRST

FootageSource guessAlphaMode() method

app.projec t . i tem(index) .mainSource .guessAlphaMode()

app.projec t . i tem(index) .proxySource .guessAlphaMode()

Description

The guessAlphaMode() method sets alphaMode, premulColor, and invertAlpha to the best guesses for this
footage source. If hasAlpha is false, no change will occur.

Parameters

None.

Using Help Back 92

Help Reference

Using Help Back 92

Returns

None.

FootageSource guessPulldown() method

app.projec t . i tem(index) .mainSource .guessPul ldow n(method)

app.projec t . i tem(index) .proxySource .guessPul ldow n(method)

Description

The guessPulldown() method sets the fieldSeparationType and removePulldown to the best guesses for this
footage source. If isStill is true, no change will occur.

Parameters

Enumerated Types

Returns

None.

FootageSource hasAlpha attribute

app.projec t . i tem(index) .mainSource .hasAlpha

app.projec t . i tem(index) .proxySource .hasAlpha

Description

The hasAlpha attribute of FootageSource is true if the footage has an alpha component.

If true, then the attributes alphaMode, invertAlpha, and premulColor will have relevance. If false, then those
three fields have no relevant meaning for the footage.

Type

Boolean; true if alpha exists. Read-only.

FootageSource highQualityFieldSeparation attribute

app.projec t . i tem(index) .mainSource .highQual i tyFie ldSeparat ion

app.projec t . i tem(index) .proxySource .highQual i tyFie ldSeparat ion

Description

The highQualityFieldSeparation attribute of FootageSource specifies whether After Effects will use special
algorithms to determine how to perform field separation.

It is an error to attempt to write to this attribute if isStill is true. It is an error to attempt to write to this
attribute if fieldSeparationType is FieldSeparationType.OFF.

Pul ldow n-

Method

 used as an input argument to the guessPulldown()method of a FootageSource; use one of Enumerated
Types below

PULLDOWN_3_2 uses 3:2 pulldown method

ADVANCE_24P uses Advance 24p method

Using Help Back 93

Help Reference

Using Help Back 93

Type

Boolean; true if high quality is activated. Read/write.

FootageSource invertAlpha attribute

app.projec t . i tem(index) .mainSource . inver tAlpha

app.projec t . i tem(index) .proxySource . inver tAlpha

Description

The invertAlpha attribute of footageSource determines if an alpha channel in a footage clip or proxy should
be inverted.

This attribute is valid only if an alpha is present. If hasAlpha is false, or if alphaMode is AlphaMode.IGNORE,
then this attribute has no relevant meaning.

Type

Boolean; true if alpha is inverted. Read/write.

FootageSource isStill attribute

app.projec t . i tem(index) .mainSource . i sSt i l l

app.projec t . i tem(index) .proxySource . i sSt i l l

Description

The isStill attribute of footageSource specifies whether the footage is still or has a time-based component.

Examples of still footage are JPEG files, solids, and placeholders with duration of 0. Examples of non-still
footage are movie files, sound files, sequences, and placeholders of non-zero duration.

Type

Boolean; true if a still frame. Read-only.

FootageSource loop attribute

app.projec t . i tem(index) .mainSource . loop

app.projec t . i tem(index) .proxySource . loop

Description

The loop attribute of footageSource specifies the number of times that the footage is to be played consecutively
when used in a comp.

Legal range for values is [1 .. 9999] with a default value of 1. It is an error to attempt to write this attribute if
isStill is true.

Type

Integer; number of times the sequence will loop. Read/write.

FootageSource nativeFrameRate attribute

app.projec t . i tem(index) .mainSource .nat iveFrameRate

app.projec t . i tem(index) .proxySource .nat iveFrameRate

Using Help Back 94

Help Reference

Using Help Back 94

Description

The nativeFrameRate attribute of footageSource corresponds to the native frame rate of the footage.

Type

Floating-point value. Read/write.

FootageSource premulColor attribute

app.projec t . i tem(index) .mainSource .premulColor

app.projec t . i tem(index) .proxySource .premulColor

Description

The premulColor attribute of footageSource determines the color to be premultiplied. This attribute is valid
only if the alphaType is set to PREMULTIPLIED.

Type

Color (an array of four floating-point values from 0 to 1: [R, G, B, A]); read/write.

FootageSource removePulldown attribute

app.projec t . i tem(index) .mainSource . removePul ldow n

app.projec t . i tem(index) .proxySource . removePul ldow n

Description

The removePulldown attribute of Footage File Info specifies how the pulldowns are to be removed when field
separation is used.

It is an error to attempt to write to this attribute if isStill is true. It is an error to attempt to set this to a value
other than PulldownPhase.OFF in the case where fieldSeparationType is FieldSeparationType.OFF. The field-
SeparationType must be changed first.

Enumerated Type

PulldownPhase (read/write); one of:

RemovePul ldow n.OFF

RemovePul ldow n.WSSWW

RemovePul ldow n.SSWWW

RemovePul ldow n.SWWWS

RemovePul ldow n.WWWSS

RemovePul ldow n.WWSSW

RemovePul ldow n.WSSWW_24P_ADVANCE

RemovePul ldow n.SSWWW_24P_ADVANCE

RemovePul ldow n.SWWWS_24P_ADVANCE

RemovePul ldow n.WWWSS_24P_ADVANCE

RemovePul ldow n.WWSSW_24P_ADVANCE

ImportOptions object
new Impor tOptions() ;

new Impor tOptions(Fi le) ;

Using Help Back 95

Help Reference

Using Help Back 95

Description

The ImportOptions object provides the ability to create, change, and access options for the importFile()
method. You can create ImportOptions using one of two constructors, one of which takes arguments, the
other which does not.

Constructors

If importFile() is set without arguments, it has a “file” that does not exist unless it is set in another statement:

new Impor tOptions() .file = new Fi le("my file .psd") ;

Otherwise importFile can be set with a single argument, which is a File object:

var my_io = new Impor tOptions(new Fi le("my file .psd")) ;

Attributes

Methods

ImportOptions canImportAs() method

impor tOpt ions . canImpor tAs(Impor tAsType)

Description

The canImportAs() method is used to determine whether a given file can be imported as a given Impor-
tAsType, passed in as an argument.

Parameters

ImportAsType; one of:

Impor tAsTy pe.COMP

Impor tAsTy pe.FOOTAGE

Impor tAsTy pe.COMP_CROPPED_LAYERS

Impor tAsTy pe.PROJECT

Returns

Boolean.

Attributes Reference Description

impor tAs see “ImportOptions importAs attribute”
on page 96

contains the ImportAsType

sequence see “ImportOptions sequence attribute”
on page 96

boolean to determine whether a sequence or
an individual file is imported

forceAlphabet ica l see “ImportOptions forceAlphabetical
attribute” on page 96

boolean to determine whether the Force
Alphabetical Order option is set

file see “ImportOptions file attribute” on
page 96

the file to import

Method Reference Description

canImpor tAs() see “ImportOptions canImportAs()
method” on page 95

sets the ImportAsType, allowing the input to
be restricted to a particular type

Using Help Back 96

Help Reference

Using Help Back 96

Example

var io = new Impor tOptions(Fi le(“c : \ \ foo.psd”)) ;

io.canImpor tAs(Impor tAsTy pe.COMP)

ImportOptions file attribute

impor tOpt ions .fi le

Description

The file attribute specifies the file to be imported. This is used to get or change the file that is set in the
constructor.

Type

File; read/write.

ImportOptions forceAlphabetical attribute

impor tOpt ions . forceAlphabet ica l

Description

The forceAlphabetical attribute is a boolean. A value of true is equivalent to activating the Force Alphabetical
Order option in the File > Import > File dialog box.

Type

Boolean; read/write.

ImportOptions importAs attribute

impor tOpt ions . impor tAs

Description

The importAs attribute holds the importAsType for the file to be imported. You can set it by setting a file of
the type you want to import as an argument.

Enumerated Type

ImportAsType; read/write. One of:

Impor tAsTy pe.COMP_CROPPED_LAYERS

Impor tAsTy pe.FOOTAGE

Impor tAsTy pe.COMP

Impor tAsTy pe.PROJECT

ImportOptions sequence attribute

impor tOpt ions . sequence

Description

The sequence attribute is a boolean; it determines whether a sequence or an individual file is imported.

Using Help Back 97

Help Reference

Using Help Back 97

Type

Boolean; read/write.

Item object
app.project . i tem(index)

app.project . i tems[index]

Description

The Item object represents an item that can appear in the Project window. FootageItem, CompItem, and
FolderItem are all types of Item.

Note that numbering of the index for item starts at 1, not 0.

Attributes

Methods

Example

The following example will get the second item from the project and check that the typeName of that item is
"Folder". Then it will remove from that folder any top-level item that is a Solid, but only if it is not currently
selected. The example will also check to make sure that, for each item in the folder, the parentFolder is properly
set to be the correct folder.

var myFolder = app.project . i tem(2) ;

i f (myFolder. ty peName != "Folder") {

a ler t("error : second i tem is not a fo lder") ;

}

e lse {

var numInFolder = myFolder.numItems;

/ / Always run loops backwards when delet ing things :

for(i = numInFolder ; i >= 1; i --) {

var curItem = myFolder. i tem(i) ;

i f (curItem.parentFolder != myFolder) {

Attributes Reference Description

name see “Item name attribute” on page 98 name of the object as shown in the Project
window

comment see “Item comment attribute” on
page 98

string that holds a comment

id see “Item id attribute” on page 98 unique integer ID for this item

parentFolder see “Item parentFolder attribute” on
page 98

parent folder of this item

se lected see “Item selected attribute” on page 99 true if this item is currently selected

ty peName see “Item typeName attribute” on
page 99

string corresponding to the type of item

Method Reference Description

remove() see “Item remove() method” on page 99 deletes the item from the project

Using Help Back 98

Help Reference

Using Help Back 98

aler t("errorw ithin AE: the parentFolder i s not set correct ly") ;

}

e lse {

i f (!curItem.se lected && curItem.ty peName == "Footage") {

/ / Aha! an unselected sol id .

curItem.remove() ;

}

}

}

}

Item comment attribute

app.projec t . i tem(index) .comment

Description

The item comment attribute is a string that holds a comment, up to 15,999 bytes in length after any encoding
conversion. The comment is for the user's purpose only; it has no effect on the Item's appearance or behavior.

Type

String; read/write.

Item id attribute

app.projec t . i tem(index) . id

Description

The item ID attribute is a unique and persistent identification number used to identify an item between
sessions. The value of the ID will not change even after the project is saved to file and read in at a later time.

An ID is thus effectively permanent except when importing a project into another project, in which case new
IDs are assigned to the newly imported items.

Type

Integer; read-only.

Item name attribute

app.projec t . i tem(index) .name

Description

The item name attribute is the name of the item as displayed in the Project window.

Type

String; read/write.

Item parentFolder attribute

app.projec t . i tem(index) .parentFolder

Using Help Back 99

Help Reference

Using Help Back 99

Description

The Parent Folder attribute yields the Folder Item that contains the selected item. If this Item is at the top level
of the project, then the parentFolder will be the project's root folder, (app.project.rootFolder).

Type

FolderItem; read-only.

Item remove() method

app.projec t . i tem(index) . remove()

Description

The Item remove() method removes (deletes) this item from the project window. If the item is a FolderItem,
all the items contained in the folder will also be removed.

Parameters

None.

Returns

None.

Item selected attribute

app.projec t . i tem(index) . se lected

Description

The selected attribute defines whether an item is selected or not. Multiple Items can be selected simultaneously
at any given time.

The selected attribute is true if this Item is currently selected. Setting this attribute to true will select the item.

Type

Boolean; read/write.

Item typeName attribute

app.projec t . i tem(index) . ty peName

Description

The typeName attribute is a string representing a user-readable name of the type. Examples are Folder,
Footage and Composition.

Type

String; read-only.

ItemCollection
app.projec t . i tems

Using Help Back 100

Help Reference

Using Help Back 100

Description

The ItemCollection object represents a collection of Items. The ItemCollection belonging to a Project object
represents all the Items in the project. The ItemCollection belonging to a FolderItem object represents all the
Items in that folder.

Attributes

Methods

ItemCollection addComp() method

app.projec t . ItemCol lec t ion.addComp(name, w idth, he ight , p ixe lAspect , durat ion, f rameRate)

Description

The itemCollection addcomp() method creates a new CompItem and adds it to the ItemCollection.

If the ItemCollection belongs to the project or the root folder, then the new comp's parentFolder will be the
root folder. Otherwise, the new comp's parentFolder will be the FolderItem that owns the ItemCollection.

Parameters

Returns

CompItem.

KeyframeEase object
The KeyframeEase object specifies the KeyframeEase setting of a keyframe, which is determined by its speed
and influence settings.

Attributes

length the number of objects in the collection (applies to all collections)

[] retrieves an object or objects in the collection via its index number

addComp() creates a new CompItem and adds it to the ItemCollection

name string name of the new CompItem

w idth integer width of the new CompItem [4.. 30,000]

height integer height of the new CompItem [4.. 30,000]

pixe lAspect floating-point value pixel aspect ratio of the Solid [0.01..100]

durat ion floating-point value duration of the new CompItem [0 .. 10800]

f rameRate floating-point value frame rate of the new CompItem [1 .. 99]

Attribute Reference Description

speed see “KeyframeEase speed attribute” on
page 101

corresponds to the speed setting for a key-
frame

Using Help Back 101

Help Reference

Using Help Back 101

Method

KeyframeEase keyframeEase() method

myKe y.key frameEase(speed, influence)

Description

This constructor creates a KeyframeEase value. Both paramters are required. Note that for non-spatial 2D and
3D properties you must set an easeIn and and easeOut for each dimension (see example below). Note also that
there are two types of ease: temporal and spatial.

Parameters

Returns

None.

Example

var easeIn = new Key frameEase(0.5 , 50) ;

var easeOut = new Key freameEase(0.75, 85) ;

myPosi t ionProper ty.setTemporalEaseAtKey(2, [easeIn] , [easeOut]) ;

KeyframeEase influence attribute

myKe y,Ke y frameEase . influence

Description

This attribute specifies the influence value of the keyframe. The valid range is 0.1 to 100.0.

Type

Floating-point value; read/write.

KeyframeEase speed attribute

myKe y,Ke y frameEase .speed

Description

This attribute specifies the speed value of the keyframe.

influence see “KeyframeEase influence attribute”
on page 101

corresponds to the influence setting for a key-
frame in range [0.1..100.0]

Method Reference Description

key frameEase() see “KeyframeEase keyframeEase()
method” on page 101

returns a KeyframeEase

speed Floating-point value; the keyframe speed

influence Floating-point value in range [0.1..100.0]; the keyframe influence

Attribute Reference Description

Using Help Back 102

Help Reference

Using Help Back 102

Type

Floating-point value; read/write.

Layer object
app.projec t . i tem(index) . layer(index)

Description

The Layer object provides access to a layer within Compositions. It can be accessed either by index number or
by a name string.

Those layers that are AV layers (Comp layers, footage layers, etc.) will be represented as AVLayer objects.
AVLayer is a subclass of Layer and contains additional methods and attributes. (See “AVLayer object” on
page 45 for more information.)

The Layer object is derived from PropertyGroup. All attributes of the PropertyBase and PropertyGroup
objects are available on Layers, as well.

Attributes

Attribute Reference Description

index see “Layer index attribute” on page 105 index of the layer, in the range [1,numLayers]

name see “Layer name attribute” on page 107 name of the layer

parent see “Layer parent attribute” on page 107 parent of this layer

t ime see “Layer time attribute” on page 109 current time of the layer

s tar tTime see “Layer startTime attribute” on
page 109

startTime of the layer, expressed in comp time

s t retch see “Layer stretch attribute” on
page 109

time stretch, expressed as a percentage

inPoint see “Layer inPoint attribute” on
page 105

inPoint of the layer, expressed in comp time

outPoint see “Layer outPoint attribute” on
page 107

outPoint of the layer, expressed in comp time

enabled see “Layer enabled attribute” on
page 104

true if the layer is enabled

solo see “Layer solo attribute” on page 109 true if the layer is soloed

shy see “Layer shy attribute” on page 108 true if the layer is shy

locked see “Layer locked attribute” on page 105 true if the layer is locked

hasVideo see “Layer hasVideo attribute” on
page 105

true if the layer contains a video component

act ive see “Layer active attribute” on page 103 true if the layer is active at the current time

nul lLayer see “Layer nullLayer attribute” on
page 107

true if this is a null layer

se lectedProper t ies see “Layer selectedProperties attribute”
on page 108

array containing all selected Property and
PropertyGroup objects in Layer

Using Help Back 103

Help Reference

Using Help Back 103

Methods

Example

If the first item in the project is a CompItem, the following example would disable the first layer in that
composition (i.e., turn the eyeball icon off) and rename it to "Lord High Imperial Layer."

var firstLayer = app.project . i tem(1) . layer(1) ;

firstLayer.enabled = fa lse ;

firstLayer.name = "Lord High Imper ia l Layer" ;

Layer active attribute

app.projec t . i tem(index) . layer(index) . act ive

Description

The Layer active attribute is true if the layer's video is active at the current time.

To be true, the layer must be enabled; no other layer may be soloing unless this layer is soloed too, and the time
must be in between the inPoint and outPoint of this layer.

Note that an audio layer will not have active as true; there is a separate audioActive attribute in the AVLayer
object.

Type

Boolean; read-only.

Layer activeAtTime() method

app.projec t . i tem(index) . layer(index) .act iveAtTime(t ime)

Method Reference Description

remove() see “Layer remove() method” on
page 108

deletes the layer from the composition

moveToBeg inning() see “Layer moveToBeginning() method”
on page 106

moves the layer to the top of the composition
(the first layer)

moveToEnd() see “Layer moveToEnd() method” on
page 106

moves the layer to the bottom of the composi-
tion (the last layer)

moveAfter() see “Layer moveAfter() method” on
page 105

moves the layer below another, specified layer

moveBefore() see “Layer moveBefore() method” on
page 106

moves the layer above another, specified layer

dupl icate() see “Layer duplicate() method” on
page 104

duplicates the layer

copyToComp() see “Layer copyToComp() method” on
page 104

copies the layer to the top and beginning of
another composition

act iveAtTime() see “Layer activeAtTime() method” on
page 103

given a time, returns whether this layer will be
active at that time

setParentWithJump() see “Layer setParentWithJump()
method” on page 108

establishes newParent as the parent of this
layer

Using Help Back 104

Help Reference

Using Help Back 104

Description

The layer activeAtTime method returns whether this layer will be active at a given time. To be true, the layer’s
enabled attribute must be true, no other layer may be soloing unless this layer is soloed too, and the given time
must be between this layer's inPoint and outPoint.

Parameters

Returns

Boolean.

Layer copyToComp() method

app.projec t . i tem(index) . layer(index) . copyToComp(intoComp)

Description

The layer copyToComp() method copies the layer into the comp specified by intoComp. The original layer
will remain unchanged.

Parameters

Returns

None.

Layer duplicate() method

app.projec t . i tem(index) . layer(index) .dupl icate()

Description

The layer duplicate method duplicates the layer. This has the same effect as selecting a layer in the user
interface and choosing Edit > Duplicate, except the selection in the user interface does not change when you
call this method.

Parameters

None.

Returns

Layer.

Layer enabled attribute

app.projec t . i tem(index) . layer(index) . enabled

Description

The Layer enabled attribute is true if the layer is enabled, false otherwise. This corresponds to the toggle
control in the Layer window.

t ime floating-point value time (in seconds) to evaluate

comp target composition where the layer will be moved

Using Help Back 105

Help Reference

Using Help Back 105

Type

Boolean; read/write.

Layer hasVideo attribute

app.projec t . i tem(index) . layer(index) .hasVideo

Description

The Layer hasVideo attribute is true if the layer is enabled, false otherwise. This corresponds to the toggle
control in the Layer window.

Type

Boolean; read-only.

Layer index attribute

app.projec t . i tem(index) . layer(index) . index

Description

The Layer index attribute is the index of the layer, in the range [1,numLayers].

Type

Integer; read-only.

Layer inPoint attribute

app.projec t . i tem(index) . layer(index) . inPoint

Description

The Layer inPoint attribute is the in-point of the layer, expressed in comp time. Values may be in the range [-
10800, 10800].

Type

Floating-point value; read/write.

Layer locked attribute

app.projec t . i tem(index) . layer(index) . locked

Description

The Layer locked attribute is true if the layer is locked, false otherwise. This correponds to the lock toggle in
the Layer window.

Type

Boolean; read/write.

Layer moveAfter() method

app.projec t . i tem(index) . layer(index) .moveAfter(layer)

Using Help Back 106

Help Reference

Using Help Back 106

Description

The Layer moveAfter method moves the layer below another, specified layer

Parameters

Returns

None.

Layer moveBefore() method

app.projec t . i tem(index) . layer(index) .moveBefore(layer)

Description

The Layer moveAfter method moves the layer above another, specified layer.

Parameters

Returns

None.

Layer moveToBeginning() method

app.projec t . i tem(index) . layer(index) .moveToBeg inning()

Description

The Layer moveToBeginning method moves the layer to the top of the layer stack (the first layer).

Parameters

None.

Returns

None.

Layer moveToEnd() method

app.projec t . i tem(index) . layer(index) .moveToEnd()

Description

The Layer moveToEndmethod moves the layer to the bottom of the layer stack (the last layer).

Parameters

None.

Returns

None.

layer target layer that this layer will follow

layer target layer that this layer will precede

Using Help Back 107

Help Reference

Using Help Back 107

Layer name attribute

app.projec t . i tem(index) . layer(index) .name

Description

The Layer name attribute is the name of the layer. This can be unique from the Source name (which cannot
be changed in the Layer window), although by default they are identical until edited.

Type

String; read/write.

Layer nullLayer attribute

app.projec t . i tem(index) . layer(index) .nul lLayer

Description

The Layer nullLayer attribute is true if the layer was created as a null object, false otherwise.

Type

Boolean; read/write.

Layer outPoint attribute

app.projec t . i tem(index) . layer(index) .outPoint

Description

The Layer outPoint attribute is the out-point of the layer, expressed in comp time (seconds). Values may be in
the range [-10800, 10800].

Type

Floating-point value; read/write.

Layer parent attribute

app.projec t . i tem(index) . layer(index) .parent

Description

The Layer parent attribute is the parent of this layer. The value may be null and may be set to null.

Note that, as in the regular application, if you set the parent, there will be no apparent jump in the layer's
transform. This is because offset values will be calculated to counterbalance any transforms above it in the
hierarchy. For example, if the new parent has a rotation of 30 degrees, then the child layer would be given a
rotation of -30 degrees.

If you want to set the parent while keeping the child layer's transform values from changing, use the “Layer
setParentWithJump() method” on page 108.

Type

Layer; read/write.

Using Help Back 108

Help Reference

Using Help Back 108

Layer remove() method

app.projec t . i tem(index) . layer(index) . remove()

Description

This method deletes the specified layer from the composition.

Parameters

None.

Layer selectedProperties attribute

app.projec t . i tem(index) . layer(index) . se lectedProper t ies

Description

This attribute yields an array containing all of the selected Property and PropertyGroup objects in the layer.

Type

Array of PropertyBase; read-only.

Layer setParentWithJump() method

app.projec t . i tem(index) . layer(index) . setParentWithJump(newParent)

Description

The Layer setParentWithJump() method establishes newParent as the parent of this layer.

This method does not change the transform values of the child layer, and as a result, there may be an apparent
jump in the rotation, translation, or scale of the child layer.

If you do not want the child layer to jump, set the parent attribute directly (as in "childLayer.parent =
newParent;"). When you set the parent attribute directly, an offset will be calculated and set in the child layer's
transform fields, which will prevent the jump from occurring.

Parameters

Returns

None.

Layer shy attribute

app.projec t . i tem(index) . layer(index) . shy

Description

The Layer shy attribute is true if the layer is shy, and therefore will be hidden in the Layer window if the compo-
sition’s hide all shy layers is toggled on.

Type

Boolean; read/write.

newParent replacement parent layer

Using Help Back 109

Help Reference

Using Help Back 109

Layer solo attribute

app.projec t . i tem(index) . layer(index) . so lo

Description

The Layer solo attribute is true if a layer is soloed, false otherwise.

Type

Boolean; read/write.

Layer startTime attribute

app.projec t . i tem(index) . layer(index) . s tar tTime

Description

The Layer startTime attribute is the startTime of the layer, expressed in comp time. Permitted values are in the
range [-10800, 10800] seconds, corresponding to +/- 3 hours.

Type

Floating-point value; read/write.

Layer stretch attribute

app.projec t . i tem(index) . layer(index) . s t retch

Description

The Layer stretch attribute is the layer’s time stretch, expressed as a percentage. A value of 100 means no
stretch.

Range can be [-9900, 9900]. Values between [-1, 1] will be clipped to minimum acceptable values. Those
between [0, 1] will be clipped to 1, and those between [-1, 0] (not including 0) will be set to -1.

Type

Floating-point value; read/write.

Layer time attribute

app.projec t . i tem(index) . layer(index) . t ime

Description

The Layer time attribute is the current time of the layer, expressed in comp time (seconds).

Type

Floating-point value; read-only.

Returns

None.

Using Help Back 110

Help Reference

Using Help Back 110

LayerCollection
app.projec t . i tem(index) . l col l

Description

The Layer Collection represents a collection of layers. Each CompItem object contains one LayerCollection.
The LayerCollection attributes and methods provide access to and the ability to add new layers.

Attributes

Methods

Example

Given that the first item in the project is a CompItem and the second item in the project is an AVItem, the
following code shows how to display the number of layers in the CompItem's layer collection, add a new layer
based on an AVItem in the project, and then display the new number of layers in the layer collection.

var firstComp = app.project . i tem(1) ;

var layerCol lect ion = firstComp.layers ;

a ler t("number of layers before i s " + layerCol lect ion. length) ;

var anAVItem = app.project . i tem(2) ;

layerCol lect ion.add(anAVItem);

a ler t("number of layers a f ter i s " + layerCol lect ion. length) ;

LayerCollection add() method

app.projec t . i tem(index) . l co l l .add(i tem, durat ion)

length the number of objects in the collection (applies to all collections)

Method Reference Description

[] (no cross-reference) retrieves an object or objects in the collection
via its index number

add() see “LayerCollection add() method” on
page 110

creates a new AVLayer containing the given
AVItem and adds it to the CompItem

addNul l() see “LayerCollection addNull() method”
on page 112

layer returned is a newly created layer in the
Comp that owns the LayerCollection

addSol id() see “LayerCollection addSolid()
method” on page 112

creates a new FootageItem that has a Solid-
Source according to the specified parameters,
and adds it to the project

addText() see “LayerCollection addText() method”
on page 113

creates a new Text layer with the specified
source text

addCamera() see “LayerCollection addCamera()
method” on page 111

creates a new Camera layer with the specified
name and center point

addLight() see “LayerCollection addLight()
method” on page 111

creates a new Light layer with the specified
name and center point

byName() see “LayerCollection byName() method”
on page 113

returns the first layer found with the given
name

precompose() see “LayerCollection precompose()
method” on page 113

collects the layers referred to by the indices
given in layerIndices, and puts them into a new
CompItem with the given name

Using Help Back 111

Help Reference

Using Help Back 111

Description

The LayerCollection add() method creates a new AVLayer containing the given AVItem, and adds the new
AVLayer to the containing CompItem.

This method generates an exception if the item cannot be added as a layer to this CompItem.

The duration parameter, if provided, will affect the method only if the given AVItem contains a piece of still
footage; it has no effect on movies, sequences or audio. If duration is provided, then the duration of the newly
created layer will be the passed value. If duration is not provided, then the duration will be determined by the
user preferences.

Note that by default, user preferences proscribe that the duration be set equal to that of the CompItem into
which the layer is being added. The preference can be changed to a specific duration. Choose Edit > Prefer-
ences > Import (Windows) or After Effects > Preferences > Import, and specify options under Still Footage.

Parameters

Returns

AVLayer.

LayerCollection addCamera() method

app.projec t . i tem(index) . l co l l .addCamera(name, centerPoint)

Description

This method creates a new camera layer within the LayerCollection.

Parameters

Returns

Camera layer.

LayerCollection addLight() method

app.projec t . i tem(index) . l co l l .addLight(name, centerPoint)

Description

This method creates a new light layer within the LayerCollection.

i tem AVItem to be added

durat ion optional floating-point value specifying the length of a still layer

name string; name of the new layer

centerPoint floating-point array; center of the new camera

Using Help Back 112

Help Reference

Using Help Back 112

Parameters

Returns

Light layer.

LayerCollection addNull() method

app.projec t . i tem(index) . l co l l .addNul l(durat ion)

Description

The LayerCollection addNull() method returns a newly created layer in the Comp that owns the LayerCol-
lection. The method has the same effect as choosing Layer > New > Null Object.

If duration is provided, then the duration of the newly created layer will be the passed value. If duration is not
provided, then the duration will be determined by user preferences.

Note that by default, user preferences specify that the duration be set equal to that of the CompItem into which
the layer is being added. The preference can be changed to a specific duration in the Preferences dialog box.
Choose Edit > Preferences > Import (Windows) or After Effects > Preferences > Import, and specify options
under Still Footage.

Parameters

Returns

AVLayer.

LayerCollection addSolid() method

app.projec t . i tem(index) . l co l l .addSol id(co lor, name, w idth, he ight , p ixe lAspect , durat ion)

Description

The layerCollection addSolid() method creates a new FootageItem whose mainSource is a SolidSource
according to the specified parameters, and adds it to the project. This method also creates a new AVLayer that
has that new FootageItem as its source, and adds that layer to the containing CompItem.

Note that by default, user preferences proscribe that the duration be set equal to that of the CompItem into
which the layer is being added. The preference can be changed to a specific durationin the Preferences dialog
box. Choose Edit > Preferences > Import (Windows) or After Effects > Preferences > Import, and specify
options under Still Footage.

name string; name of the new layer

centerPoint floating-point array containing 2 values; center of the new light

durat ion optional floating-point value specifying the duration of the new layer

Using Help Back 113

Help Reference

Using Help Back 113

Parameters

Returns

AVLayer.

LayerCollection addText() method

app.projec t . i tem(index) . l co l l .addText(sourceText)

Description

This method creates a new text layer within the LayerCollection.

Parameters

Returns

Text layer.

LayerCollection byName() method

app.projec t . i tem(index) . l co l l .byName(name)

Description

The LayerCollection byName() method returns the first layer found with the given name. This method returns
null if no layer with the given name is found.

Parameters

Returns

Layer; null if name is not found.

LayerCollection precompose() method

app.projec t . i tem(index) . l co l l .precompose(layerIndic ies , name, moveAl lAtt r ibutes)

color Establishes the color of the new FootageItem (a solid) contained in the layer. The
color argument must be an array of 3 floats lying in the range [0..1].

name Establishes the name of the new layer and the new FootageItem.

w idth Specifies the width, in pixels, of the new layer and the new FootageItem. Permit-
ted values are in the range [1 .. 30,000].

height Specifies the height, in pixels, of the new layer and the new FootageItem. Permit-
ted values are in the range [1 .. 30,000].

pixe lAspect Specifies the pixel aspect ratio for the new FootageItem.

durat ion Optional floating-point value specifying the length of a still layer.

sourceText string; optional, serves as the source text of the new layer

name string - the name of the layer being sought

Using Help Back 114

Help Reference

Using Help Back 114

Description

The LayerCollection precompose() method collects the layers referred to by the given indices (first parameter)
and puts them into a new CompItem that has the given name (second parameter). The given layers are
removed from the LayerCollection. The new CompItem is added into the LayerCollection and is also returned
by the precompose() method.

Parameters

Returns

CompItem.

MarkerValue object
app.projec t . i tem(index) . layer(index) .MarkerValue

Description

The MarkerValue object holds the representation of a layer marker. It contains four string attributes:
comment, chapter, url, and frameTarget.

For more on the usage of markers see “Using markers” in After Effects Help.

Methods

Attributes

layerIndices indices of layers to be collected

name establishes the name of the new compItem

moveAl lAttr ibutes Optional boolean, defaults to true; may be set to false only if there is only 1 index
in the layerIndices array. Setting this to true corresponds to selecting the Move
All Attributes into the New Composition option in the Pre-Compose dialog box.
Setting it to false corresponds to selecting the Leave All Attributes In option in
the Pre-Compose dialog box.

Method Reference Description

MarkerValue() see “MarkerValue method” on page 115 Returns a MarkerValue. Sets the comment and,
optionally, the chapter, url and frameTarget
attributes.

Attribute Reference Description

comment see “MarkerValue Comment attribute”
on page 116

string comment included with the marker

chapter see “MarkerValue Chapter attribute” on
page 115

string Chapter Link reference point included
with the marker

url see “MarkerValue URL attribute” on
page 116

string Uniform Resource Locator included with
the marker

f rameTarget see “MarkerValue FrameTarget
attribute” on page 116

string target (specifying a Web site frame)
included with the marker

Using Help Back 115

Help Reference

Using Help Back 115

Examples

To set a marker that says “Fade Up” at the 2 second mark:

var myMarker = new Marker("Fade Up") ;

myLayer.proper ty("Marker") . setValueAtTime(2, myMarker) ;

To get a comment value from a particular marker:

var commentOfFirstMarker = app.project . i tem(1). layer(1) .proper ty("Marker") .keyValue(0) .comment;

var commentOfMarkerAtTime4 = app.project . i tem(1) . layer(1) .proper ty("Marker") .va lue-

AtTime(4.0 ,TRUE) .comment

var markerProper ty = app.project . i tem(1) . layer(1) .proper ty("Marker") ;

var markerValueAtTimeClosestToTime4 = markerProper ty

.keyValue(markerProper ty.nearestKeyIndex(4.0)) ;

var commentOfMarkerClosestToTime4 = markerValueAtTimeClosestToTime4.comment;

MarkerValue method

app.projec t . i tem(index) . layer(index) .MarkerValue(comment)

app.projec t . i tem(index) . layer(index) .MarkerValue(comment , chapter)

app.projec t . i tem(index) . layer(index) .MarkerValue(comment , chapter, ur l)

app.projec t . i tem(index) . layer(index) .MarkerValue(comment , chapter, ur l , f rameTarge t)

Description

The markerValue method sets between one and four specific attributes of the marker and returns a Marker-
Value.

Parameters

Returns

MarkerValue (a marker keyframe containing the above four string values).

MarkerValue Chapter attribute

app.projec t . i tem(index) . layer(index) .MarkerValue . chapter

Description

The MarkerValue chapter attribute is a text chapter link attached to a given layer marker. Chapter links initiate
a jump to a chapter in a QuickTime movie or in other formats that support chapter marks (for more on
markers see “Using markers” in After Effects Help).

comment string see “MarkerValue Comment attribute” on page 116

chapter string see “MarkerValue Chapter attribute” on page 115

url string see “MarkerValue URL attribute” on page 116

f rameTarget string see “MarkerValue FrameTarget attribute” on
page 116

Using Help Back 116

Help Reference

Using Help Back 116

Type

String; read/write.

MarkerValue Comment attribute

app.projec t . i tem(index) . layer(index) .MarkerValue.comment

Description

The MarkerValue comment attribute is a text comment attached to a given layer marker. This comment
appears in the Timeline window next to the layer marker (for more on markers see “Using markers” in After
Effects Help).

Type

String; read/write.

MarkerValue FrameTarget attribute

app.projec t . i tem(index) . layer(index) .MarkerValue . f rameTarget

Description

The MarkerValue frameTarget attribute is a text frame marker attached to a given layer marker. Used with a
URL, this can target a specific frame within a Web site (for more on markers see “Using markers” in After
Effects Help).

Type

String; read/write.

MarkerValue URL attribute

app.projec t . i tem(index) . layer(index) .MarkerValue .ur l

Description

The MarkerValue URL attribute is a text Uniform Resource Locator attached to a given layer marker. This URL
is an automatic link to a site (for more on markers see “Using markers” in After Effects Help).

Type

String; read/write.

MaskPropertyGroup object
app.projec t . i tem(index) . layer(index) .mask

Description

The MaskPropertyGroup object is derived from PropertyGroup and inherits all the attributes and methods of
PropertyBase and PropertyGroup, along with its own attributes and methods as follows.

Using Help Back 117

Help Reference

Using Help Back 117

Attributes

MaskPropertyGroup color attribute

app.projec t . i tem(index) . layer(index) .mask(index) . color

Description

This attribute is the color used to draw the mask outline as it appears in the user interface (Composition
window, Layer window, and Timeline window).

Type

Array of three floating-point values from 0 to 1: [R, G, B); read/write.

MaskPropertyGroup inverted attribute

app.projec t . i tem(index) . layer(index) .mask(index) . inver ted

Description

This attribute is a boolean specifying whether the mask is inverted.

Type

Boolean; read/write.

MaskPropertyGroup locked attribute

app.projec t . i tem(index) . layer(index) .mask(index) . locked

Description

This attribute is a boolean specifying whether the mask is locked and cannot be edited in the user interface.

Type

Boolean; read/write.

MaskPropertyGroup maskMode attribute

app.projec t . i tem(index) . layer(index) .mask(index) .maskMode

Attribute Reference Description

maskMode see “MaskPropertyGroup maskMode
attribute” on page 117

specifies the MaskMode for this mask

inver ted see “MaskPropertyGroup inverted
attribute” on page 117

specifies whether the mask is inverted

rotoBezier see “MaskPropertyGroup rotoBezier
attribute” on page 118

specifies whether the shape of the mask is
Rotobezier

maskMotionBlur see “MaskPropertyGroup maskMotion-
Blur attribute” on page 118

specifies how motion blur is applied to this
mask

locked see “MaskPropertyGroup locked
attribute” on page 117

true if the mask is locked

color see “MaskPropertyGroup color
attribute” on page 117

color used to draw the mask outline in the user
interface

Using Help Back 118

Help Reference

Using Help Back 118

Description

This attribute is an enumerated type specifying the MaskMode for this mask.

Enumerated Types

MaskPropertyGroup maskMotionBlur attribute

app.projec t . i tem(index) . layer(index) .mask(index) .maskMotionBlur

Description

This attribute is an enumerated type specifying how motion blur is applied to this mask.

Enumerated Type

MaskPropertyGroup rotoBezier attribute

app.projec t . i tem(index) . layer(index) .mask(index) . rotoBezier

Description

This attribute is a boolean specifying whether the mask is in RotoBezier mode.

Type

Boolean; read/write.

OutputModule object
app.projec t . renderQueue. i tem(index) .outputModule(index)

Description

The outputModule object of renderQueueItem generates a single file or sequence via a render, and contains
attributes and methods relating to that file to be rendered. It returns an Output Module with the given index
number. The indexed items are numbered beginning with 1.

MaskMode.NONE None

MaskMode.ADD Add

MaskMode.SUBTRACT Subtract

MaskMode.INTERSECT Intersect

MaskMode.LIGHTEN Lighten

MaskMode.DARKEN Darken

MaskMode.DIFFERENCE Difference

MaskMotionBlur.SAME_AS_LAYER Same as Layer

MaskMotionBlur.ON On

MaskMotionBlur.OFF Off

Using Help Back 119

Help Reference

Using Help Back 119

Attributes

Methods

OMCollection
app.projec t . renderQueue. i tems .outputModules

Description

The OMCollection contains all of the Output Modules in the project.

Attributes

Methods

See also

“Collection object” on page 53

OutputModule applyTemplate() method
app.projec t . renderQueue. i tem(index) .outputModules[i] . applyTemplate(templateName)

Description

Applies an existing Output Module template, identified by name.

Attribute Reference Description

file see “OutputModule file attribute” on
page 120

path and name of the file to be rendered

postRenderAct ion see “OutputModule postRenderAction
attribute” on page 120

one of the postRenderAction types

name see “OutputModule name attribute” on
page 120

name of the Output Module as presented to
the user

templates see “OutputModule templates
attribute” on page 121

array of all Output Module templates

Method Reference Description

remove() see “OutputModule remove() method”
on page 120

removes the Output Module

saveAsTemplate() see “OutputModule saveAsTemplate()
method” on page 121

saves a new Output ModuleTemplate with the
given name

applyTemplate() see “OutputModule applyTemplate()
method” on page 119

applies a pre-set Output Module Template

length number of objects in the collection (applies to all collections)

[] retrieves an object or objects in the collection via its index number

add() adds an Output Module with a specified template

Using Help Back 120

Help Reference

Using Help Back 120

Parameters

Returns

None.

OutputModule file attribute

app.projec t . renderQueue. i tem(index) .outputModules[i] . file

Description

The file attribute is the File object to which the output module is set to render.

Type

File object; read-write.

OutputModule name attribute

app.projec t . renderQueue. i tem(index) .outputModules[i] . name

Description

The name attribute is the output module name as it is presented to the user, expressed as a string.

Type

Str ing; read-only.

OutputModule postRenderAction attribute

app.projec t . renderQueue. i tem(index) .outputModules[i] . postRenderAct ion

Description

The postRenderAction attribute returns the Post Render Action (listed below).

Type

PostRenderAction (read/write); one of the following:

postRenderAct ion.NONE

postRenderAct ion.IMPORT

postRenderAct ion.IMPORT_AND_REPLACE_USAGE

postRenderAct ion.SET_PROXY

OutputModule remove() method

app.projec t . renderQueue. i tem(index) .outputModules[i] . remove()

Description

Deletes an Output Module.

templateName name of the template to be applied

Using Help Back 121

Help Reference

Using Help Back 121

Parameters

None.

Returns

None.

OutputModule saveAsTemplate() method

app.projec t . renderQueue. i tem(index) .outputModules[i] . saveAsTemplate(name)

Description

Saves an Output Module with the name given as a parameter.

Parameters

Returns

None.

OutputModule templates attribute

app.projec t . renderQueue. i tem(index) .outputModules[i] . templates

Description

The templates attribute is an array of strings; these are the names of the templates in the local installation of
After Effects.

Type

Array ; read-only.

PlaceholderSource object
app.project . i tem(index) .mainSource

app.project . i tem(index) .proxySource

Description

The PlaceholderSource object holds information describing the footage source of a placeholder. It is a subclass
of FootageSource and so it inherits all attributes and methods of the FootageSource object. (See “Footage-
Source object” on page 89.)

There are no attributes or methods in PlaceholderSource other than those inherited from the FootageSource
object.

Project object
app .project

name name of the new template

Using Help Back 122

Help Reference

Using Help Back 122

Description

The project object enables access to data and functionality within a particularAfter Effects project.

Attributes of the Project object provide access to specific objects within an After Effects project, such as
imported files and footage, comps, as well as project settings such as the timecode base.

Methods of the Project object can import footage, can create solids, compositions and folders, and can save
changes.

Attributes

Methods

Attribute Reference Description

file see “Project file attribute” on page 124 file object of the currently open project

rootFolder see “Project rootFolder attribute” on
page 127

folderItem containing all the contents of the
project; the equivalent of the Project window

i tems see “Project items attribute” on
page 126

itemCollection representing all items in the
project

act iveItem see “Project activeItem attribute” on
page 123

currently active item, or null if none is active or
multiple items are active

bitsPerChannel see “Project bitsPerChannel attribute”
on page 123

color depth of the current project

t ransparencyGr idThumbnai ls see “Project transparencyGridThumb-
nails attribute” on page 130

determines if thumbnail views should use the
transparency checkerboard pattern

t imecodeDisplayTy pe see “Project timecodeDisplayType
attribute” on page 129

method with which timecode is set to display

t imecodeBaseTy pe see “Project timecodeBaseType
attribute” on page 128

timecode base as set in the File > Project Set-
tings dialog box

t imecodeNTSCDropFrame see “Project timecodeNTSCDropFrame
attribute” on page 129

equivalent to Drop Frame or Non-Drop Frame
in the File > Project Settings dialog box

t imecodeFi lmTy pe see “Project timecodeFilmType
attribute” on page 129

method with which timecode is set to display

numItems see“Project numItems attribute” on
page 126

total number of items contained in the project

se lect ion see “Project selection attribute” on
page 128

array of the items selected in the Project win-
dow

renderQueue see “Project renderQueue attribute” on
page 127

the project’s render queue

Method Reference Description

i tem() see “Project item() method” on
page 125

returns an item

consol idateFootage() see“Project consolidateFootage()
method” on page 124

replicates the functionality of File > Consoli-
date All Footage

removeUnusedFootage() see “Project removeUnusedFootage()
method” on page 127

replicates the functionality of File > Remove
Unused Footage

Using Help Back 123

Help Reference

Using Help Back 123

Project activeItem attribute

app.projec t .act iveItem

Description

The project attribute activeItem returns the item that is currently active and is to be acted upon, or a null if no
item is currently selected or if multiple items are selected.

Type

The item that is currently active; read-only.

Project bitsPerChannel attribute

app.projec t .b i tsPerChannel

Description

The bitsPerChannel attribute is an integer describing the color depth of the current project (either 8 or 16
bits).

Type

Integer (8 or 16 only); read/write.

Project close() method

app.projec t .close(CloseOpt ions)

Description

Closes the project with the option of saving changes automatically, prompting the user to save changes or
closing without saving changes.

reduceProject() see “Project reduceProject() method” on
page 126

replicates the functionality of File > Reduce
Project

close() see“Project close() method” on
page 123

closes the project with normal save options

save() see “Project save() method” on page 127 saves the project (or displays a Save dialog box
if project has never been saved)

saveWithDialog() see “Project saveWithDialog() method”
on page 128

displays a Save dialog box; returns true if file
was saved

impor tPlaceholder() see “Project importPlaceholder()
method” on page 125

replicates the functionality of File > Import >
Placeholder.

impor tFi le() see “Project importFile() method” on
page 124

replicates the functionality of File > Import >
File.

impor tFi leWithDialog() see “Project importFileWithDialog()
method” on page 125

displays an Import dialog box; returns an array
of all imported items

showWindow() see “Project showWindow() method” on
page 128

if true, shows the project window

Method Reference Description

Using Help Back 124

Help Reference

Using Help Back 124

Parameters

Enumerated Types

Returns

Boolean. False only in one case: the file has not been previously saved; the user is presented with a Save dialog
box, and cancels the save.

Project consolidateFootage() method

app.projec t .consol idateFootage()

Description

Replicates the functionality of the Consolidate All Footage command.

Parameters

None.

Returns

Integer; the total number of footage items removed.

Project file attribute

app.projec t .fi le

Description

The file attribute is a File object representing the project that is currently open.

Type

File Object or null if project has not been saved; read-only.

Project importFile() method

app.projec t . impor tFi le(Impor tOpt ions)

Description

Replicates the functionality of the Import File dialog box.

Parameters

CloseOptions action to be performed on close (see Enumerated Types, below)

CloseOptions .DO_NOT_SAVE_CHANGES close without saving

CloseOptions .PROMPT_TO_SAVE_CHANGES send a prompt asking whether to save changes before close

CloseOptions .SAVE_CHANGES save automatically on close option

Impor tOptions options as set in the ImportOptions object

Using Help Back 125

Help Reference

Using Help Back 125

Returns

FootageItem

Example

app.project . impor tFi le(Impor tOptions(Fi le(“sample .psd”))

See also

“ImportOptions object” on page 94

Project importPlaceholder() method

app.projec t . impor tPlaceholder(name, w idth, he ight , f ramerate , durat ion)

Description

Replicates the functionality of File > Import > Placeholder; adds a placeholder footage item of a specified
name, width, height, framerate, and duration to the project.

Parameters

Returns

FootageItem.

Project importFileWithDialog() method

app.projec t . impor tFi leWithDialog()

Description

Replicates the functionality of File > Import > File and produces an Import dialog box for the user. Unlike
importFile(), importWithDialog() does not take arguments.

Returns

Array of Items created during import; or null if the user cancels the dialog.

Project item() method

app.projec t . i tem(index)

Description

This method returns an item with the given index number.

name name of the placeholder

w idth width in pixels of the placeholder footage

height height in pixels of the placeholder footage

f ramerate frame rate of the placeholder footage

durat ion duration of the placeholder footage, in seconds

Using Help Back 126

Help Reference

Using Help Back 126

Parameters

Returns

Item.

Project items attribute

app.projec t . i tems

Description

This attribute represents all of the items in the project.

Type

ItemCollection; read-only.

Project numItems attribute

app.projec t .numItems

Description

The numItems attribute represents the total number of items contained in the project, including folders and
all types of footage.

Type

Integer; read-only.

Example

n = app.project .numItems;

a ler t("There are " + n + " i tems in this project . ")

Project reduceProject() method

app.projec t .reduceProject(array_of_i tems)

Description

Replicates the functionality of File > Reduce Project.

Parameters

Returns

Integer; the total number of items removed.

Example

var theItems = new Array() ;

theItems[theItems. length] = app.project . i tem(1) ;

theItems[theItems. length] = app.project . i tem(3) ;

index integer; the index of the item

array_of_items items to which the project is to be reduced

Using Help Back 127

Help Reference

Using Help Back 127

app.project . reduceProject(theItems) ;

Project removeUnusedFootage() method

app.projec t .removeUnusedFootage()

Description

Replicates the functionality of File > Remove Unused Footage.

Parameters

None.

Returns

Integer; the total number of footage items removed.

Project renderQueue attribute

app.projec t . renderQueue

Description

This attribute represents the render queue of the project.

Type

RenderQueue; read-only.

Project rootFolder attribute

app.projec t . rootFolder

Description

The rootFolder attribute is the root folder containing the root contents of the project; this is a conceptual
folder that contains all items in the Project window, but not items contained inside other folders in the Project
window.

Type

FolderItem; read-only.

Project save() method

app.projec t . save()

app.projec t . save(Fi le)

Description

Saves the project (or prompts the user if the file has never previously been saved). Passing in a File object is
equivalent to the Save As command and allows you to save a project to a new file.

Parameters

Fi le File object to save

Using Help Back 128

Help Reference

Using Help Back 128

Returns

None.

Project saveWithDialog() method

app.projec t . saveWithDialog()

Description

This method presents the Save dialog box to a user. The user can either name a file with a location and save it,
or click Cancel and exit the dialog.

This method returns a boolean that is true if the file was saved, and false if not.

Parameters

None.

Returns

Boolean; true if file was saved.

Project selection attribute

app.projec t . se lect ion

Description

The selection attribute contains an array of the items selected in the Project window.

Type

Array; read-only.

Project showWindow() method

app.projec t . showWindow(doShow)

Description

This method shows or hides the Project window, depending on how its argument is set.

Parameters

Returns

None.

Project timecodeBaseType attribute

app.projec t . t imecodeBaseTy pe

Description

The timecodeBaseType attribute reveals the Timecode Base as set in the Project Settings dialog box.

doShow boolean; if true, shows the Project window, if false, hides the Project window

Using Help Back 129

Help Reference

Using Help Back 129

Enumerated Type

One of the following (read/write):

TimecodeBaseTy pe.FPS24

TimecodeBaseTy pe.FPS25

TimecodeBaseTy pe.FPS30

TimecodeBaseTy pe.FPS48

TimecodeBaseTy pe.FPS50

TimecodeBaseTy pe.FPS60

TimecodeBaseTy pe.FPS100

Project timecodeDisplayType attribute

app.projec t . t imecodeDisplayTy pe

Description

The timecodeDisplayType attribute describes the method with which timecode is set to display. The
enumerated values are found in a menu in the Project Settings dialog box.

Enumerated Type

One of the following (read/write):

TimecodeDisplayTy pe.TIMECODE

TimecodeDisplayTy pe.FRAMES

TimecodeDisplayTy pe.FEET_AND_FRAMES

Project timecodeFilmType attribute

app.projec t . t imecodeFi lmTy pe

Description

The timecodeFilmType attribute describes the film type that has been selected for the Feet + Frames option
in the Project Settings dialog box.

Enumerated Type

One of the following (read/write):

TimecodeFi lmTy pe.MM16

TimecodeFi lmTy pe.MM35

Project timecodeNTSCDropFrame attribute

app.projec t . t imecodeNTSCDropFrame

Description

The timecodeNTSCDropFrame attribute describes how timecode for 29.97 fps footage is displayed. This
corresponds to the Drop Frame or Non-Drop Frame pulldown options under “NTSC” in the Project Settings
dialog box.

Type

Boolean (read/write); true if NTSC Drop Frame is set as the current project display style.

Using Help Back 130

Help Reference

Using Help Back 130

Project transparencyGridThumbnails attribute

app.projec t . t ransparencyGr id

Description

The transparencyGridThumbnails attribute determines if thumbnail views should use the transparency
checkerboard pattern (yes or no).

Type

Boolean (read/write).

Property object
app.projec t . i tem(index) . layer(index) .proper ty

Description

The Property object contains value, keyframe, and/or expression information about a particular property of
the layer. Examples of a Property are position, zoom, and mask feather.

Note that in standard JavaScript descriptions a “property” and an “attribute” are synonymous. Because After
Effects contained this separate use of the term “property” before any scripting support was added, this
documentation refers only to “attributes” when speaking about accessible values within scripting. “Property”
meanwhile remains the term for values attached to layers, effects and masks both within this document and
throughout After Effects.

Attributes

Attribute Reference Description

proper tyValueTy pe see “Property propertyValueType
attribute” on page 142

type of value stored in this property

value see “Property value attribute” on
page 149

value of the property at the current time

hasMin see “Property hasMin attribute” on
page 135

true if there is a minimum permitted value

hasMax see “Property hasMax attribute” on
page 135

true if there is a maximum permitted value

minValue see “Property minValue attribute” on
page 142

minimum permitted value

maxValue see “Property maxValue attribute” on
page 141

maximum permitted value

i sSpat ia l see “Property isSpatial attribute” on
page 136

true if property defines a spatial value

canVar yOverTime see “Property canVaryOverTime
attribute” on page 134

true if the property can be keyframed

i sTimeVar y ing see “Property isTimeVarying attribute”
on page 136

true if the property has keyframes or an
expression enabled that vary its values

numKeys see “Property numKeys attribute” on
page 142

number of keyframes on this property

Using Help Back 131

Help Reference

Using Help Back 131

Methods

unitsText see “Property unitsText attribute” on
page 149

text description of the units in which the value
is expressed

express ion see “Property expression attribute” on
page 134

the expression string for this property

express ionEnabled see “Property expressionEnabled
attribute” on page 135

if true, the expression is used to generate val-
ues for the property

express ionError see “Property expressionError attribute”
on page 135

contains error if the last expression evaluated
with an error

Key frameInterpolat ionTy pe see “Property KeyframeInterpolation-
Type attribute” on page 136

type of interpolation used at a keyframe

se lectedKeys see “Property selectedKeys attribute” on
page 144

array containing the indices of all selected key-
frames of the Property

Method Reference Description

valueAtTime() see “Property valueAtTime() method”
on page 149

returns value of the property evaluated at
given time

setValue() see “Property setValue() method” on
page 147

sets the static value of the property

setValueAtTime() see “Property setValueAtTime()
method” on page 148

creates a keyframe at the given time (if none
exists) for the property

setValuesAtTimes() see “Property setValuesAtTimes()
method” on page 148

creates a keyframe that is an array at the given
time (if none exists) for the property

setValueAtKey() see “Property setValueAtKey() method”
on page 148

finds the keyframe with the given index and
sets the value of the property at that keyframe

nearestKeyIndex() see “Property nearestKeyIndex()
method” on page 142

returns the index of the keyframe nearest to
the given time

keyTime() see “Property keyTime() method” on
page 141

returns the time at which the condition given
by the arguments occurs

keyValue() see “Property keyValue() method” on
page 141

returns the value of the property at the time at
which the condition given by the arguments
occurs

addKey() see “Property addKey() method” on
page 134

adds a new keyframe at the given time

removeKey() see “Property removeKey() method” on
page 143

removes the keyframe with the given index

i s Interolat ionTy peVal id() see “Property isInterpolationTypeValid()
method” on page 136

true if this property can be interpolated

setInterpolat ionTy peAtKey() see “Property setInterpolationTypeAt-
Key() method” on page 144

sets the interpolation type for the key

keyInInterpolat ionTy pe() see “Property keyInInterpolationType()
method” on page 137

returns the 'in' interpolationType for the given
key

keyOutInterpolat ionTy pe() see “Property keyOutInterpolation-
Type() method” on page 138

returns the 'out' interpolationType for the
given key

Attribute Reference Description

Using Help Back 132

Help Reference

Using Help Back 132

Examples

1 Getting and setting the value of an opacity

opacity has propertyValueType of OneD, and is stored as a float.

var myProper ty = myLayer.opaci ty ;

myProper ty.setValue(0.5) ;

/ / This new var iable myOpacity w i l l be a float va lue .

var myOpacity = myProper ty.va lue;

setSpat ia lTangentsAtKey() see “Property setSpatialTangentsAt-
Key() method” on page 146

sets the in and out tangent vectors for the
given key

keyInSpat ia lTangent() see “Property keyInSpatialTangent()
method” on page 137

returns the 'in' spatial tangent for the given key

keyOutSpat ia lTangent() see “Property keyOutSpatialTangent()
method” on page 138

returns the 'out' spatial tangent for the given
key

setTemporalEaseAtKey() see “Property setTemporalEaseAtKey()
method” on page 147

sets the in and out temporal ease for the given
key

keyInTemporalEase() see “Property keyInTemporalEase()
method” on page 137

returns the 'in' temporal ease for the given key

keyOutTemporalEase() see “Property keyOutTemporalEase()
method” on page 138

returns the 'out' temporal ease for the given
key

setTemporalContinuou-

sAtKey()

see “Property setTemporalContinuou-
sAtKey() method” on page 146

specifies whether the keyframe has temporal
continuity

keyTemporalContinuous() see “Property keyTemporalContinuous()
method” on page 140

returns whether the keyframe has temporal
continuity

setTemporalAutoBezierAtKey() see “Property setTemporalAutoBezier-
AtKey() method” on page 146

specifies whether the keyframe has temporal
auto bezier

keyTemporalAutoBezier() see “Property keyTemporalAutoBezier()
method” on page 140

returns whether the keyframe has auto bezier

setSpat ia lContinuousAtKey() see “Property setSpatialContinuousAt-
Key() method” on page 145

specifies whether the keyframe has spatial
continuity

keySpat ia lContinuous() see “Property keySpatialContinuous()
method” on page 140

returns whether the keyframe has spatial con-
tinuity

setSpat ia lAutoBezierAtKey see “Property setSpatialAutoBezierAt-
Key() method” on page 145

specifies whether the keyframe has spatial
auto bezier

keySpat ia lAutoBezier() see “Property keySpatialAutoBezier()
method” on page 139

returns whether the keyframe has spatial auto
bezier

setRov ingAtKey() see “Property setRovingAtKey()
method” on page 144

specifies whether the keyframe is roving

keyRov ing() see “Property keyRoving() method” on
page 139

returns whether the keyframe is roving

setSe lectedAtKey() see “Property setSelectedAtKey()
method” on page 145

sets whether the keyframe is selected

keySelected() see “Property keySelected() method” on
page 139

returns whether the keyframe is selected

Method Reference Description

Using Help Back 133

Help Reference

Using Help Back 133

2 Getting and setting the value of a position

position has propertyValueType of ThreeD_SPATIAL and is stored as an array of three floats.

var myProper ty = myLayer.posi t ion;

myProper ty.setValue([10,30,0]) ;

/ / This new var iable myPosi t ion be an array of 3 floats :

var myPosi t ion = myProper ty.value;

3 Changing the value of a mask shape to be open instead of closed

var myMask = mylayer.mask(1) ;

var myProper ty = myMask.maskShape;

myShape = myProper ty.va lue;

myShape.c losed = fa lse ;

myProper ty.setValue(myShape) ;

4 Getting the value of a color at a particular time

A color is stored as an array of four floats (r,g,b,opacity). The following code sets the value of the red
component of a light's color at time 4 to be half of that at time 2:

var myProper ty = myLight .color ;

var colorValue = myProper ty.valueAtTime(2, t rue) ;

colorValue[0] = 0 .5 * colorValue[0] ;

myProper ty.setValueAtTime(4,colorValue) ;

5 How to check that a scale calculated by an expression at time 3.5 is the expected value of [10,50]

var myProper ty = myLayer.sca le ;

/ / fa l se va lue of preExpress ion means evaluate the express ion

var sca leValue = myProper ty.valueAtTime(3.5 , fa lse) ;

i f (sca leValue[0] == 10 && scaleValue[1] == 50) {

a ler t("hurray") ;

e l se {

a ler t("oops") ;

}

6 Keyframing a rotation from 0 to 90 and back again

The animation is 10 seconds, and the middle keyframe is at the 5 second mark. Rotation properties are stored
as a OneD value.

myProper ty = myLayer.rotat ion;

myProper ty.setValueAtTime(0, 0) ;

myProper ty.setValueAtTime(5, 90) ;

myProper ty.setValueAtTime(10, 0) ;

7 Changing the keyframe values for the first three keyframes of some source text

myProper ty = myTextLayer.sourceText ;

i f (myProper ty.numKeys < 3) {

a ler t("error, I thought there were 3 key frames") ;

}

myProper ty.setValueAtKey(1, new TextDocument("key number 1") ;

myProper ty.setValueAtKey(2, new TextDocument("key number 2") ;

Using Help Back 134

Help Reference

Using Help Back 134

myProper ty.setValueAtKey(3, new TextDocument("key number 3") ;

8 Setting values using the convenience syntax for position, scale, color, or source text

// These two are equivalent . The second fil l s in a default of 0 .

myLayer.posi t ion.setValue([20, 30, 0]) ;

myLayer.posi t ion.setValue([20, 30]) ;

/ / These two are equivalent . The second fil l s in a default of 100.

myLayer.sca le . setValue([50, 50, 100]) ;

myLayer.sca le . setValue([50, 50]) ;

/ / These two are equivalent . The second fil l s in a default of 1 .0

myLight .color.setValue([.8 , .3 , .1 , 1 .0]) ;

myLight .color.setValue([.8 , .3 , .1]) ;

/ / These two are equivalent . The second creates a TextDocument

myTextLayer.sourceText .setValue(new TextDocument("foo")) ;

myTextLayer.sourceText .setValue("foo") ;

Property addKey() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .addKey(t ime)

Description

The property addKey method adds a new keyframe at the given time and returns the index of the new
keyframe.

Parameters

Returns

Integer; the index of the new keyframe.

Property canVaryOverTime attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . canVar yOverTime

Description

The Property canVaryOverTime attribute is true if this property can vary over time, in other words, if
keyframe values or expressions can be written to this property.

Type

Boolean; read-only.

Property expression attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . express ion

Description

The Property expression attribute is the expression for this property, expressed as a string. This attribute forces
an evalution of the given expression string. The value always changes to the given expression string even if the
string is not a valid expression.

t ime floating-point value; the time at which the keyframe is added

Using Help Back 135

Help Reference

Using Help Back 135

If the given string is a valid expression, expressionEnabled becomes true. If the given string is not a valid
expression, an error is generated, and expressionEnabled is set to false. If you set a property’s expression to the
empty string, expressionEnabled will be set to false.

Type

String; read/write.

Property expressionEnabled attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . express ionEnabled

Description

The Property expressionEnabled attribute, if true, uses the expression to generate the value for the property.
If the attribute is false, then the expression is not used; keyframe information or the static value of the property
is used. This attribute can be set to true only if the expression contains a valid expression string.

Type

Boolean; read/write.

Property expressionError attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . express ionError

Description

The Property expressionError attribute contains the error if the last expression string given to the expression
attribute evaluated with an error.

If no expression string has been given to the expression, or if the last expression string given to expression
evaluated without error, it contains the empty string ("").

Type

String; read-only.

Property hasMax attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .hasMax

Description

The Property hasMax attribute is true if there is a maximum permitted value for this property.

Type

Boolean; read-only.

Property hasMin attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .hasMin

Description

The Property hasMin is true if there is a minimum permitted value for this property.

Using Help Back 136

Help Reference

Using Help Back 136

Type

Boolean; read-only.

Property isInterpolationTypeValid() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . i s Interpolat ionTy peVal id(theType)

Description

This method returns true if this Property can be interpolated using the theType.

Parameters

Returns

Boolean.

Property isSpatial attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . i sSpat ia l

Description

The Property isSpatial attribute is true if the property defines a spatial value. Examples are position and effect
point controls.

Type

Boolean; read-only.

Property isTimeVarying attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . i sTimeVar y ing

Description

The Property isTimeVarying attribute is true if the property is time varying. A property is time varying if it
has keyframes or an enabled expression. If isTimeVarying is true, then canVaryOverTime must also be true.

Type

Boolean; read-only.

Property KeyframeInterpolationType attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . setInterpolat ionTy peAtKey

(1,Key frameInterpolat ionTy pe.LINEAR,Key frameInterpolat ionTy pe.BEZIER)

Description

This enumerated type specifies the type of interpolation used at a keyframe.

Enumerated Types

Possible values are:

theTy pe KeyframeInterpolationType

Using Help Back 137

Help Reference

Using Help Back 137

Property keyInInterpolationType() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyInInterpolat ionTy pe(ke yIndex)

Description

This method returns the 'in' interpolationType for the given key.

Parameters

Returns

KeyframeInterpolationType.

Property keyInSpatialTangent() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyInSpat ia lTangent(ke yIndex)

Description

This method returns the 'in' spatial tangent for the given key.

If the PropertyValueType is TwoD_SPATIAL, the return value contains 2 floating-point values. If the Proper-
tyValueType is ThreeD_SPATIAL, the return value contains 3 floating-point values.

If the PropertyValueType is neither TwoD_SPATIAL nor ThreeD_SPATIAL, an exception is generated.

Parameters

Returns

Array of floating-point values.

Property keyInTemporalEase() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyInTemporalEase(ke yIndex)

Description

This method returns the 'in' temporal ease for the given key.

The return value is an array of KeyframeEase objects. The dimension of the array depends on the dimension
of the property's keyframeValueType. For ThreeD, the dimension of the array is 3. For TwoD, it is 2. For all
other keyframeValueTypes, it is 1.

Key frameInterpolat ionTy pe.LINEAR specifies a linear keyframe

Key frameInterpolat ionTy pe.BEZIER specifies a bezier keyframe.

Key frameInterpolat ionTy pe.HOLD specifies a hold keyframe

keyIndex Integer; the keyframe being evaluated

keyIndex Integer; the keyframe being evaluated

Using Help Back 138

Help Reference

Using Help Back 138

Parameters

Returns

KeyframeEase expressed as an array.

Property keyOutInterpolationType() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyOutInterpolat ionTy pe(ke yIndex)

Description

This method returns the 'out' interpolationType for the given key.

Parameters

Returns

KeyframeInterpolationType.

Property keyOutSpatialTangent() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyOutSpat ia lTangent(ke yIndex)

Description

This method returns the 'out' spatial tangent for the given key.

If the PropertyValueType is TwoD_SPATIAL, the return value contains 2 floating-point values. If the Proper-
tyValueType is ThreeD_SPATIAL, the return value contains 3 floating-point values.

If the PropertyValueType is neither TwoD_SPATIAL nor ThreeD_SPATIAL, an exception is generated.

Parameters

Returns

Array of floating-point values.

Property keyOutTemporalEase() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyOutTemporalEase(ke yIndex)

Description

This method returns the 'out' temporal ease for the given key.

The return value is an array of KeyframeEase objects. The dimension of the array depends on the dimension
of the property's keyframeValueType. For ThreeD, the dimension of the array is 3. For TwoD, it is 2. For all
other keyframeValueTypes, it is 1.

keyIndex Integer; the keyframe being evaluated

keyIndex Integer; the keyframe to be evaluated

keyIndex Integer; the keyframe being set

Using Help Back 139

Help Reference

Using Help Back 139

Parameters

Returns

KeyframeEase expressed as an array.

Property keyRoving() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyRov ing(ke yIndex)

Description

This method returns whether the keyframe is roving.

If the PropertyValueType is neither TwoD_SPATIAL nor ThreeD_SPATIAL, an exception is generated.

Parameters

Returns

Boolean.

Property keySelected() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyRov ing(ke yIndex)

Description

This method returns whether the keyframe is selected.

Parameters

Returns

Boolean.

Property keySpatialAutoBezier() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keySpat ia lAutoBezier(ke yIndex)

Description

This method returns whether the keyframe has spatial auto-bezier interpolation.

If the PropertyValueType is neither TwoD_SPATIAL nor ThreeD_SPATIAL, an exception is generated.

Note that spatial auto-bezier has an effect at this keyframe only if keySpatialContinuous(keyIndex) is true.

keyIndex Integer; the keyframe being set

keyIndex Integer; the keyframe being evaluated

keyIndex Integer; the keyframe being evaluated

Using Help Back 140

Help Reference

Using Help Back 140

Parameters

Returns

Boolean.

Property keySpatialContinuous() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keySpat ia lContinuous(ke yIndex)

Description

This method returns whether the keyframe has spatial continuity.

If the PropertyValueType is neither TwoD_SPATIAL nor ThreeD_SPATIAL, an exception is generated.

Parameters

Returns

Boolean.

Property keyTemporalAutoBezier() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyTemporalAutoBezier(ke yIndex)

Description

This method returns whether the keyframe has auto-bezier interpolation.

Note that temporal auto-bezier has an effect at this keyframe only if the KeyframeInterpolationType is
BEZIER for both keyInInterpolation(keyIndex) and keyOutInterpolation(keyIndex).

Parameters

Returns

Boolean.

Property keyTemporalContinuous() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyTemporalContinuous(ke yIndex)

Description

This method returns whether the keyframe has temporal continuity.

Note that temporal continuity has an effect at this keyframe only if the KeyframeInterpolationType is BEZIER
for both keyInInterpolation(keyIndex) and keyOutInterpolation(keyIndex).

keyIndex Integer; the keyframe being evaluated

keyIndex Integer; the keyframe being evaluated

keyIndex Integer; the keyframe being evaluated

Using Help Back 141

Help Reference

Using Help Back 141

Parameters

Returns

Boolean.

Property keyTime() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyTime(ke yIndex)

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyTime(markerComment)

Description

The property keyTime method finds the keyframe or marker specified in the arguments and returns the time
at which it occurs.

If no keyframe or marker can be found that matches the argument, this method generates an exception, and
an error is displayed.

Parameters

Returns

Floating-point value; the time at which the keyframe or marker occurs.

Property keyValue() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyValue(ke yIndex)

app.projec t . i tem(index) . layer(index) .proper ty(name) .keyValue(markerComment)

D e s c r i p t io n

The property keyValue method finds the keyframe or marker specified in the arguments and returns the time
at which it occurs.

If no keyframe or marker can be found that matches the argument, this method generates an exception, and
an error is displayed.

Parameters

Returns

Floating-point value; the time at which the keyframe or marker occurs.

Property maxValue attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .maxValue

keyIndex Integer; the keyframe being evaluated

keyIndex integer; the keyframe index number, (in range 0..numKeys)

markerComment string; the comment attached to a marker (see “MarkerValue Comment attribute” on page 116)

keyIndex integer; the keyframe index number, (in range 0..numKeys)

markerComment string; the comment attached to a marker (see “MarkerValue Comment attribute” on page 116)

Using Help Back 142

Help Reference

Using Help Back 142

Description

The Property maxValue attribute contains the maximum permitted value of the property. If the hasMax
attribute is false, an exception occurs, and an error is generated.

Type

Floating-point value; read-only.

Property minValue attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .minValue

Description

The Property maxValue attribute contains the minimum permitted value of the property. If the hasMax
attribute is false, an exception occurs, and an error is generated.

Type

Floating-point value; read-only.

Property nearestKeyIndex() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .nearestKeyIndex(t ime)

Description

The property nearestKeyIndex method returns the index of the keyframe nearest to the given time.

Parameters

Returns

Integer; the index of the nearest keyframe.

Property numKeys attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .numKeys

Description

The Property numKeys attribute contains the number of keyframes in this property. If this attribute’s value is
0, then the property is not being keyframed.

Type

Integer; read-only.

Property propertyValueType attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .proper tyValueTy pe

Description

The Property numKeys attribute contains the type of value stored in this property.

t ime floating-point value; the time at which to search for the nearest key

Using Help Back 143

Help Reference

Using Help Back 143

The enumerated type associated with this attribute has one value for each type of data that can be stored in
and/or retrieved from a property. All property objects store data that falls into one of these categories.

Each type of data is stored and retrieved in a different kind of structure. For example, a 3D spatial property
(like a layer's position) is stored as an array of three floating point values. When setting a value for position,
you'd pass in such an array, as in:

mylayer.proper ty("posi t ion") .setValue([10,20,0]) ;

For another example, a shape property (such as a layer's mask shape) is stored as a Shape object. When setting
a value for a shape, pass in a shape object, as in:

var myShape = new Shape() ;

myShape.ver t ices = [[0 ,0] ,[0 ,100] ,[100,100] ,[100,0]] ;

var myMask = mylayer.proper ty("ADBE Mask Parade") .proper ty(1) ;

myMask.proper ty("ADBE Mask Shape") .setValue(myShape) ;

Enumerated Types

Property removeKey() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . removeKey(ke yIndex)

Description

The property removeKey method removes a keyframe with the given keyIndex. If no keyframe with that
keyIndex exists, this method generates an exception and an error is displayed.

Proper tyValueTy pe.NO_VALUE stores no data

Proper tyValueTy pe.ThreeD_SPATIAL array of three floating point positional values, e.g., Anchor
Pont [10, 20.2, 0]

Proper tyValueTy pe.ThreeD array of three floating point quantitative values, e.g., Scale
[100, 20.2, 0]

Proper tyValueTy pe.TwoD_SPATIAL array of 2 floating point positional values, e.g., Anchor Pont
[5.1, 10]

Proper tyValueTy pe.TwoD array of 2 floating point quantitative values, e.g., Scale [5.1,
100]

Proper tyValueTy pe.OneD a floating point value

Proper tyValueTy pe.COLOR array of 4 floating point values in the range 0..1, e.g., [.8, .3, .1,
1.0]

Proper tyValueTy pe.CUSTOM_VALUE unimplemented type; you cannot get and set values for
properties with this type

Proper tyValueTy pe.MARKER MarkerValue object (see “MarkerValue object” on page 114)

Proper tyValueTy pe.LAYER_INDEX integer; a value of 0 means none (no layer)

Proper tyValueTy pe.MASK_INDEX integer; a value of 0 means none (no mask)

Proper tyValueTy pe.SHAPE shape object

Proper tyValueTy pe.TEXT_DOCUMENT TextDocument object (see “TextDocument object” on
page 177)

Using Help Back 144

Help Reference

Using Help Back 144

Parameters

Returns

None.

Property selectedKeys attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . se lectedKeys

Description

The Property selectedKeys attribute yields an array of indices of all the selected keyframes in this Property. If
no keys are selected, or if the property has no keyframes, an empty array is returned.

Type

Array of integers; read-only.

Property setInterpolationTypeAtKey() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . setInterpolat ionTy peAtKey(inType, outType)

Description

This method sets the in and out interpolation types for the given key.

If an outType is not provided, then outType will be set equal to the inType.

Parameters

Returns

None.

Property setRovingAtKey() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . se tRov ingAtKey(ke yIndex, newVal)

Description

This method specifies whether the keyframe is roving.

If the PropertyValueType is neither TwoD_SPATIAL nor ThreeD_SPATIAL, an exception is generated.

Note: The first and last key in any property never will rove. Setting to true will be ignored and the value will remain
false.

keyIndex integer; the index of the keyframe being removed

inTy pe KeyframeInterpolationType; the incoming interpolation type

outTy pe KeyframeInterpolationType (optional); the outgoing interpolation type

Using Help Back 145

Help Reference

Using Help Back 145

Parameters

Returns

None.

Property setSelectedAtKey() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . se tSe lectedAtKey(ke yIndex, onOff)

Description

This method specifies whether the keyframe is selected.

Parameters

Returns

None.

Property setSpatialAutoBezierAtKey() method

app.project . i tem(index) . layer(index) .proper ty(name).setSpat ia lAutoBezierAtKey(keyIndex, newVal)

Description

This method specifies whether the keyframe has spatial continuity.

If the PropertyValueType is neither TwoD_SPATIAL nor ThreeD_SPATIAL, an exception is generated.

Parameters

Returns

None.

Property setSpatialContinuousAtKey() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . se tSpat ia lContinuousAtKey(ke yIndex, newVal)

Description

This method specifies whether the keyframe has spatial continuity.

If the PropertyValueType is neither TwoD_SPATIAL nor ThreeD_SPATIAL, an exception is generated.

keyIndex Integer; the keyframe being set

newVal Boolean; if set to true, keyframe is set to be roving

keyIndex Integer; the keyframe being specified

onOff the new setting to use; if true, keyframe is selected, if false, deselected

keyIndex Integer; the keyframe being set

newVal Boolean; if set to true, keyframe is set to be auto-bezier

Using Help Back 146

Help Reference

Using Help Back 146

Parameters

Returns

None.

Property setSpatialTangentsAtKey() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . setSpat ia lTangentsAtKey(ke yIndex, inTangent ,
outTangent)

Description

This method sets the in and out tangent vectors for the given key.

If no outTangent argument is provided, outTangent will be set equal to inTangent. If the PropertyValueType
is TwoD_SPATIAL, the inputs should be arrays containing 2 floating-point values. If the PropertyValueType
is ThreeD_SPATIAL, the inputs should be arrays containing 3 floating-point values.

If the PropertyValueType is neither TwoD_SPATIAL nor ThreeD_SPATIAL, an exception is generated.

Parameters

Returns

None.

Property setTemporalAutoBezierAtKey() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . setTemporalAutoBezierAtKey(ke yIndex, newVal)

Description

This method specifies whether the keyframe has temporal auto-bezier interpolation.

Note that spatial auto bezier has an effect at this keyframe only if keySpatialContinuous(keyIndex) is true.

Parameters

Returns

None.

Property setTemporalContinuousAtKey() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . setTemporalContinuousAtKey(ke yIndex, newVal)

keyIndex Integer; the keyframe being set

newVal Boolean; if set to true, keyframe is set to be continuous

keyIndex Integer; the keyframe being set

inTangent Floating-point value; the in tangent vector for this keyframe

outTangent Floating-point value (optional); the out tangent vector for this keyframe

keyIndex Integer; the keyframe being set

newVal Boolean; if set to true, keyframe is set to be continuous

Using Help Back 147

Help Reference

Using Help Back 147

Description

This method specifies whether the keyframe has temporal continuity.

Note that temporal continuity has an effect at this keyframe only if the KeyframeInterpolationType is BEZIER
for both keyInInterpolation(keyIndex) and keyOutInterpolation(keyIndex).

Parameters

Returns

None.

Property setTemporalEaseAtKey() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . setTemporalEaseAtKey(ke yIndex, inTemporalEase ,
outTemporalEase)

Description

This method sets the in and out temporal ease for the given key.

If outTemporalEase is not provided, then outTemporalEase will be set equal to the inTemporalEase.

InTemporalEase and outTemporalEase are arrays of KeyframeEase objects. The dimension of the array
depends on the dimension of the property's keyframeValueType. For ThreeD, the dimension of the array is 3.
For TwoD, it is 2. For all other keyframeValueTypes, including TwoD_SPATIAL and ThreeD_SPATIAL types,
it is 1.

Parameters

Returns

None.

Property setValue() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . setValue(newValue)

Description

The property setValue method sets the static value of the property.

If the property has keyframes, this method cannot be used; see “Property setValueAtTime() method” on
page 148 or “Property setValueAtKey() method” on page 148 instead. If used with a property that has
keyframes, this method generates an exception and an error is displayed.

The type of value to use as an argument depends on the propertyValueType.

keyIndex Integer; the keyframe being set

newVal Boolean; if set to true, keyframe is set to be continuous

keyIndex Integer; the keyframe being set

inTemporalEase KeyframeEase; the incoming temporal ease setting

outTemporalEase KeyframeEase; the outgoing temporal ease setting

Using Help Back 148

Help Reference

Using Help Back 148

Parameters

Returns

None.

Property setValueAtKey() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . setValueAtKey(ke yIndex, newValue)

Description

The property setValueAtKey method finds the keyframe with the given keyIndex and sets the value at that
keyframe.

If the property has no keyframes, or no keyframe with the given keyIndex, this method generates an exception
and an error is displayed.

The type of value to use as an argument depends on the propertyValueType.

Parameters

Returns

None.

Property setValueAtTime() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . setValueAtTime(t ime, newValue)

Description

The property setValueAtTime method creates a keyframe at the given time (if none exists) and sets the value
at that keyframe.

If no keyframes yet exist, this method creates and sets the first keyframe at the given time. If no keyframe exists
at the given time, this method creates one. If a keyframe does exist at the given time, this method sets its value.

The type of value to use as an argument depends on the propertyValueType.

Parameters

Returns

None.

Property setValuesAtTimes() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . setValuesAtTimes([t imes] , [newValues])

newValue propertyValueType; a value appropriate for the type of property being set

keyIndex integer; the index of the keyframe to receive a value

newValue propertyValueType; a value appropriate for the type of property being set

t ime floating point value; the time at which to set a keyframe

newValue propertyValueType; a value appropriate for the type of property being set

Using Help Back 149

Help Reference

Using Help Back 149

Description

The property setValuesAtTimes method creates keyframes at a given series of times (for those times where no
keyframes exist) and sets values of those keyframes.

If no keyframes yet exist, this method creates a set of keyframes and sets the first keyframe at the given time.
If no keyframe exists at the given time, this method creates one. If a keyframe does exist at the given time, this
method sets its value.

Times and values are expressed as arrays. The type of value to use as arguments depends on the propertyVal-
ueType.

Parameters

Returns

None.

Property unitsText attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .unitsText

Description

The Property unitsText attribute is a text description of the units in which the value is expressed.

Type

String; read-only.

Property value attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .va lue

Description

The Property value attribute contains the value of the property at the current time. If expressionEnabled is
true, value returns the evaluated expression value; if there are keyframes, value returns the keyframed value at
the current time; in all other cases, value returns the static value for the property.

The type of value returned depends on the propertyValueType of the stream.

Type

Dependent on stream being evaluated; read-only.

Examples

See “Getting and setting the value of an opacity” on page 132, “Getting and setting the value of a position” on
page 133, and “Changing the value of a mask shape to be open instead of closed” on page 133 under Property
Object Examples.

Property valueAtTime() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .va lueAtTime(t ime, preExpress ion)

[t imes] floating point value; an array of times at which to set keyframes

[newValues] propertyValueType; an array of values appropriate for the type of property being set

Using Help Back 150

Help Reference

Using Help Back 150

Description

The property valueAtTime method returns the value of the property as evaluated at the given time. Time is in
seconds with the beginning of the composition represented as zero.

The preExpression option is relevant only if the property has an expression applied; otherwise it is ignored. It
controls whether any expression is used to calculate the value.

Note that the type of value returned is not made explicit; it will be of a different type, depending on the
property evaluated.

Parameters

Returns

Value (type depends on the propertyValueType).

PropertyBase object
app.projec t . i tem(index) . layer(index) .proper tyBase

Description

PropertyBase is the base class for both PropertyGroup and Property, so PropertyBase attributes and methods
are also available to PropertyGroup and Property. Because PropertyGroup is the base class for Layer, its
attributes and methods are available for Layers as well.

Attributes

t ime floating point value; the time at which to set a keyframe

preExpress ion boolean; determines whether to evaluate the property before or after applying any active
expression

Attribute Reference Description

name see “PropertyBase name attribute” on
page 154

name of the property

matchName see “PropertyBase matchName
attribute” on page 153

special name for the property used to build
unique naming paths

proper tyIndex see “PropertyBase propertyIndex
attribute” on page 155

index of a PropertyBase within its ParentGroup

proper tyDepth see “PropertyBase propertyDepth
attribute” on page 154

indicates number of levels of parent Property-
Groups between the PropertyBase and the
layer

proper tyTy pe see “PropertyBase propertyType
attribute” on page 155

returns the PropertyType describing this Prop-
ertyBase

parentProper ty see “PropertyBase parentProperty
attribute” on page 154

returns the PropertyGroup that is the parent of
this PropertyBase

i sModified see “PropertyBase isModified attribute”
on page 153

returns true if the PropertyBase has been
changed since its creation

canSetEnabled see “PropertyBase canSetEnabled
attribute” on page 151

true if the user interface displays an eyeball
icon for this property

enabled see “PropertyBase enabled attribute” on
page 152

corresponds to the setting of the eyeball icon,
if there is one

Using Help Back 151

Help Reference

Using Help Back 151

Methods

PropertyBase active attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . act ive

Description

This attribute specifies whether the property is active. For a layer, this corresponds to the setting of the eyeball
icon. For an effect and all properties, it is the equivalent to the “enabled” attribute.

This attribute can be written only if canSetEnabled is true.

Type

Boolean; read/write (read-only if canSetEnabled is false).

PropertyBase canSetEnabled attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . canSetEnabled

Description

This attribute specifies whether you can write as well as read the enabled attribute. As a rule of thumb, this
attribute is set to true if the user interface displays an eyeball icon for this property (thus it is true for all layers).

Type

Boolean; read-only.

act ive see “PropertyBase active attribute” on
page 151

determines if PropertyBase is active

el ided see “PropertyBase elided attribute” on
page 152

returns whether this property is elided (not
displayed) in the user interface

i sEf fect see “PropertyBase isEffect attribute” on
page 153

true if this property is an effect PropertyGroup

i sMask see “PropertyBase isMask attribute” on
page 153

true if this property is a mask PropertyGroup

se lected see “PropertyBase selected attribute” on
page 156

determines whether this PropertyBase is
selected

Method Reference Description

proper tyGroup() see “PropertyBase propertyGroup()
method” on page 155

returns the parent PropertyGroup

remove() see “PropertyBase remove() method” on
page 156

removes the PropertyBase from the project

moveTo() see “PropertyBase moveTo() method”
on page 154

moves the PropertyBase to the specified
newIndex within its PropertyGroup

dupl icate() see “PropertyBase duplicate() method”
on page 152

duplicates the PropertyBase and returns the
duplicate

Attribute Reference Description

Using Help Back 152

Help Reference

Using Help Back 152

PropertyBase duplicate() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .dupl icate()

Description

The PropertyBase duplicate method duplicates the PropertyBase and returns the duplicate.

This method is valid only for children of indexed groups; if not, an exception is generated and an error is
displayed.

Parameters

None.

Returns

PropertyBase; the duplicate.

PropertyBase elided attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . e l ided

Description

This attribute specifies whether this property is elided in the user interface. If elided, then this property is just
a group used to organize other properties. The property is not displayed in the user interface and its child
properties are not indented in the Timeline window.

Type

Boolean; read-only.

Example

Given a text layer with two animators and no properties twirled down, you would see:

• Text

• Path Options

• More Options

• Animator 1

• Animator 2

However, Animator 1 and Animator 2 are actually contained in a PropertyBase called “Text Animators”, which
is not displayed in the user interface, and so these two properties are not indented in the Timeline window.

PropertyBase enabled attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . enabled

Description

This attribute specifies whether this property is enabled. It corresponds to the setting of the eyeball icon, if
there is one.

If there is no eyeball icon, this attribute will default to true; you can write this attribute only if canSetEnabled
is true.

Using Help Back 153

Help Reference

Using Help Back 153

If you try to write this attribute and canSetEnabled is false, an exception will be generated.

Type

Boolean; read/write (read-only if canSetEnabled is false).

PropertyBase isEffect attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . i sEf fect

Description

This attribute specifies whether this property is an effect PropertyGroup (in which case it is set to true).

Type

Boolean; read-only.

PropertyBase isMask attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . i sMask

Description

This attribute specifies whether this property is a mask PropertyGroup (in which case it is set to true).

Type

Boolean; read-only.

PropertyBase isModified attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . i sModified

Description

The PropertyBase isModified attribute returns true if the PropertyBase has been changed since its creation.

Type

Boolean; read-only.

PropertyBase matchName attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .matchName

Description

The PropertyBase matchName attribute is a special name for the property used to build unique naming paths.
This name helps to identify that the property is part of a unique classification.

Every property has a unique matchName identifier. MatchNames are meant to be stable from version to
version regardless of its "name" in the user interface or any changes to the application. You can't see match-
Names directly through the user interface. But you can refer to them through scripting and sample them via
this attribute.

Note: Unlike names, matchNames do not change based on the language of the After Effects user interface (English/
French/German/Japanese).

Using Help Back 154

Help Reference

Using Help Back 154

Children of INDEXED_GROUP PropertyGroups (see “PropertyBase propertyType attribute” on page 155)
do not always have a “name,” defaulting instead to an empty string, but in all cases, they have a matchName.

Type

String; read-only.

PropertyBase moveTo() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .moveTo(newIndex)

Description

The PropertyBase moveTo method moves the PropertyBase to the specified newIndex within its Property-
Group.

This method is valid only for children of indexed groups; if not, or if newIndex is not valid, an exception is
generated and an error is displayed.

Parameters

Returns

None.

PropertyBase name attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .name

Description

The PropertyBase name attribute is the name of the property.

It is an error to attempt to set the name if the property is not a child property of an INDEXED_GROUP.

Type

String; read/write.

PropertyBase parentProperty attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .parentProper ty

Description

The PropertyBase parentProperty returns the PropertyGroup that is the parent of this PropertyBase, or null
if this PropertyBase is a layer.

Type

PropertyGroup; read-only.

PropertyBase propertyDepth attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .proper tyDepth

newIndex integer; the index within the same PropertyGroup to which the PropertyBase is to be moved.

Using Help Back 155

Help Reference

Using Help Back 155

Description

The PropertyBase propertyDepth is 0 for a layer. Add 1 (one) for each level of parent PropertyGroup above
this PropertyBase until the layer has been reached.

Type

String; read-only.

PropertyBase propertyGroup() method

app.projec t . i tem(index) . layer(index) .proper ty(name) .proper tyGroup()

app.projec t . i tem(index) . layer(index) .proper ty(name) .proper tyGroup(countUp)

Description

The PropertyBase propertyGroup method returns the parent PropertyGroup, found by moving up the
hierarchy the number of levels proscribed by countUp.

The countUp is optional and defaults to 1 if not provided. Range of countUp must be within [1 ...property-
Depth]. Returns NULL if countUp takes you as far up as the parent of the layer containing this propertyBase.

Parameters

Returns

PropertyGroup. Null if countUp reaches the layer parent.

PropertyBase propertyIndex attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .proper tyIndex

Description

The PropertyBase propertyIndex is the index of a PropertyBase within its ParentGroup.

Note that some properties, such as Layers or "position," will not have a propertyIndex. Others, such as
individual effects or masks, will have an index within their parent PropertyGroup.

Type

Integer; read-only.

PropertyBase propertyType attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) .proper tyTy pe

Description

The PropertyBase propertyType returns the PropertyType describing this PropertyBase.

Enumerated Types

PropertyType is an enumerated type returned by propertyType (read-only). It specifies a particular type of
PropertyBase, as follows:

countUp integer (optional); defaults to 1; the number of levels to ascend within the range 1..property-
Depth.

Using Help Back 156

Help Reference

Using Help Back 156

PropertyBase remove() method

app.projec t . i tem(index) . layer(index) .proper ty(name) . remove()

Description

The PropertyBase remove method removes the PropertyBase from its parent group. If the PropertyBase is a
PropertyGroup, it removes the child properties as well.

This method is valid only for children of indexed groups; if not, an exception is generated and an error is
displayed.

This method may be called on a text animation property (any animator that has been set to a text layer).

Parameters

None.

Returns

None.

PropertyBase selected attribute

app.projec t . i tem(index) . layer(index) .proper ty(name) . se lected

Description

This attribute specifies whether this PropertyBase is selected. Setting selected to true selects the property;
setting it to false deselects.

The value of this attribute can be read for any Property, PropertyGroup or Layer. The value can be written on
a PropertyGroup only if it is an effect or mask; attempting to set this attribute for any other kind of Property-
Group will generate an exception.

Note that sampling this attribute can slow down system performance if it is used repeatedly to sample a large
number of properties. To read the full set of selected Properties for a Comp or Layer, use the selectedProperties
attribute of Comp or Layer.

Type

Boolean; read/write.

PropertyGroup object
app.projec t . i tem(index) . layer(index) .proper tyGroup

PROPERTY specifies a single property such as position or zoom

INDEXED_GROUP specifies a PropertyGroup whose members have an editable name and
an index, e.g., the “Masks” property of a layer, which refers to a variable
number of individual masks by index number.

NAMED_GROUP specifies a PropertyGroup whose members have an uneditable name
and an index, e.g., a layer

Using Help Back 157

Help Reference

Using Help Back 157

Description

The PropertyGroup object represents a group of PropertyBase objects, (i.e., Property objects and/or Proper-
tyGroup objects). PropertyGroups may be nested to provide a chain all the way from the Layer at the top down
to a single Property (such as the mask feather of the third mask).

Attributes

Methods

PropertyGroup addProperty() method

app.projec t . i tem(index) . layer(index) .proper tyGroup(index) .addProper ty(name)

Description

This method adds a property with the given name to this group.

Properties may only be added to a PropertyGroup whose propertyType is PropertyType.INDEXED_GROUP.
The only exception to this rule is a text animator property, which is contained in a NAMED_GROUP.

This method generates an exception if a property cannot be created with the given name, so it is always a good
idea to call PropertyGroup canAdd Property() method first to check. (See “PropertyGroup canAddProperty()
method” on page 158.)

The following names are supported:

• Any matchName for a property that can be added normally using the user interface. For example, ADBE
Mask Atom, ADBE Paint Atom, ADBE Text Position, ADBE Text Anchor Point.

• When adding to an ADBE Mask Parade: ADBE Mask Atom, Mask.

• When adding to an ADBE Effects Parade, any effect by matchName, such as ADBE Bulge, ADBE Glo2, APC
Vegas.

• Any effect by display name, such as Bulge, Glow, Vegas.

• For text animators and selectors, Text Animator maps to ADBE Text Animator, Range Selector maps to
ADBE Text Selector, Wiggly Selector maps to ADBE Text Wiggly Selector, and Expression Selector maps to
ADBE Text Expressible Selector.

Attribute Reference Description

numProper t ies see “PropertyGroup numProperties
attribute” on page 158

number of indexed properties in the group

Method Reference Description

proper ty() see “PropertyGroup property() method”
on page 158

returns the child PropertyGroup or Property
with the given propertyIndex or name

canAddProper ty() see “PropertyGroup canAddProperty()
method” on page 158

true if a property with the given name can be
added to the PropertyGroup

addProper ty() see “PropertyGroup addProperty()
method” on page 157

adds a property with the given name to the
PropertyGroup

Using Help Back 158

Help Reference

Using Help Back 158

Parameters

Returns

PropertyBase.

PropertyGroup canAddProperty() method

app.projec t . i tem(index) . layer(index) .proper tyGroup(index) . canAddProper ty(name)

Description

This method returns true if a property with the given name can be added to this PropertyGroup.

Parameters

Returns

Boolean.

Example

The maskGroup can only add masks. The only legal input arguments are as follows:

• mask

• ADBE Mask Atom

Any other argument is illegal. Therefore:

• maskGroup.canAddProperty("mask") returns true

• maskGroup.canAddProperty("ADBE Mask Atom") returns true

Any other input for maskGroup argument is false. For example, maskGroup.canAddProperty("blend")
returns false

PropertyGroup numProperties attribute

app.projec t . i tem(index) . layer(index) .proper tyGroup(index) .numProper t ies

Description

This attribute represents the number of indexed properties in this group.

Note: For Layers only, this can appear misleading, as it returns a value of 3. These correspond to the mask, effect,
and motion tracker groups inside the Layer. However, Layers also have a host of other properties available only by
name; see the “PropertyGroup property() method” on page 158.

Type

Integer; read-only.

PropertyGroup property() method

app.projec t . i tem(index) . layer(index) .proper tyGroup(index) .proper ty(index)

app.projec t . i tem(index) . layer(index) .proper tyGroup(index) .proper ty(name)

name string; the name to be added to the PropertyGroup

name string; the name to be added to the PropertyGroup

Using Help Back 159

Help Reference

Using Help Back 159

Description

This method finds and returns the child PropertyBase, using either its propertyIndex or its name.

If using a string to provide the name argument, you may use any of the following:

• Any name used in expressions “parenthesis style” syntax, meaning the display name or the compact English
name

• Any match name

• Any expressions intercap sytax

See below for examples of these various types of names. Essentially, the method replicates syntax available with
expressions. In other words, the following are all allowed and are virtually interchangeable (where “mylayer”
is an already identified layer):

• mylayer.posi t ion

• mylayer("posi t ion")

• mylayer.proper ty("posi t ion")

as well as the following, which are also interchangeable with one another:

• mylayer(1)

• mylayer.proper ty(1)

• Note that some properties of a Layer, such as position and zoom, can be accessed only by name. When using
the name argument to find a property that is multiple levels down, you will need to make more than one
call of this method; for example,

myLayer.proper ty("ADBE Masks") .proper ty(1)

will search two levels down, and return the first mask in the mask group.

If no Property or PropertyGroup can be found with the given name, this method returns a value of null.

Properties that can be accessed using this method with the name argument include:

Properties that can be accessed by name from any
Layer

• "ADBE Mask Parade", or “Masks”

• "ADBE Effect Parade", or “Effects”

• "ADBE MTrackers", or “Motion Trackers”

Properties that can be accessed by name from an
AVLayer

• "Anchor Point" or "anchorPoint"

• "Position" or "position"

• "Scale" or "scale"

• "Rotation" or "rotation"

• "Z Rotation" or "zRotation" or "Rotation Z" or "rotationZ"

• "Opacity" or "opacity"

• "Marker" or "marker"

Properties that can be accessed by name from a cam-
era layer

• "Zoom" or "zoom"

• "Depth of Field" or "depthOfField"

• "Focus Distance" or "focusDistance"

• "Aperture" or "aperture"

• "Blur Level" or "blurLevel"

Using Help Back 160

Help Reference

Using Help Back 160

Parameters

Returns

PropertyBase; or NULL if no property with the given string name can be found.

Examples

1 If a layer (e.g., myLayer) has a Box Blur effect, you can retrieve the effect in any of the following ways:

myLayer.proper ty(“Effects”) .proper ty(“Box Blur”) ;

myLayer.proper ty(“Effects”) .proper ty(“boxBlur”) ;

Properties that can be accessed by name from a light
layer

• "Intensity" or "intensity"

• "Color" or "color"

• "Cone Angle" or "coneAngle"

• "Cone Feather" or "coneFeather"

• "Shadow Darkness" or "shadowDarkness"

• "Shadow Diffusion" or "shadowDiffusion"

• "Casts Shadows" or "castsShadows"

Properties that can be accessed by name from a 3D
layer

• "Accepts Shadows" or "acceptsShadows"

• "Accepts Lights" or "acceptsLights"

• "Ambient" or "ambient"

• "Diffuse" or "diffuse"

• "Specular" or "specular"

• "Shininess" or "shininess"

• "Casts Shadows" or "castsShadows"

• "Light Transmission" or "lightTransmission"

• "Metal" or "metal"

Properties that can be accessed by name from a cam-
era, light or 3D layer

• "X Rotation" or "xRotation" or "Rotation X" or "rotationX"

• "Y Rotation" or "yRotation" or "Rotation Y" or "rotationY"

• "Orientation" or "orientation"

Properties can be accessed by name from a text layer • "Source Text" or "sourceText" or "Text" or "text"

Properties that can be accessed from an AVLayer with
a non-still source

• "Time Remap" or "timeRemapEnabled"

Properties that can be accessed from an AVLayer with
an audio

• "Audio Levels" or "audioLevels"

Properties that can be accessed by name from a Prop-
ertyGroup "ADBE Mask Parade"

• "ADBE Mask Atom"

Properties that can be accessed by name from a Prop-
ertyGroup "ADBE Mask Atom"

• "ADBE Mask Shape", or “maskShape”

• "ADBE Mask Feather", or “maskFeather”

• "ADBE Mask Opacity", or “maskOpacity”

• "ADBE Mask Offset", or “maskOffset”

index integer; the propertyIndex of the target PropertyBase, in the range [1..numProperties]

name string; the name of the target PropertyBase, which is a child of the current one.

Using Help Back 161

Help Reference

Using Help Back 161

myLayer.proper ty(“Effects”) .proper ty(“ADBE Box Blur”) ;

2 If a layer (e.g., myLayer) has a mask named “Mask 1” you can retrieve it as follows:

myLayer.proper ty(“Masks”) .proper ty(“Mask 1”) ;

3 To get a Bulge Center value from a Bulge effect, you could use any of the following:

myLayer.proper ty(“Effects”) .proper t y(“Bulge”) .proper ty(“Bulge Center”) ;

myLayer.proper ty(“Effects”) .proper t y(“Bulge”) .proper ty(“bulgeCenter”) ;

RenderQueue object
app.projec t .renderQueue

Description

The RenderQueue object enables access to data and functionality within the Render Queue area of a particular
After Effects project. This object is pivotal to render automation.

Attributes of the RenderQueue object provide access to items in the Render Queue and their render status.

Methods of the RenderQueue object can start, pause, and stop the render process.

The RenderQueueItem object provides access to the specific settings for an item to be rendered.

Attributes

Methods

RenderQueue Item() method

app.projec t . renderQueue. i tem(index)

Attribute Reference Description

render ing see “RenderQueue rendering attribute”
on page 163

determines whether a render is in progress

numItems see “RenderQueue numItems attribute”
on page 162

total number of items in the Render Queue

i tems see “ItemCollection” on page 99 collected items in the Render Queue

Method Reference Description

showWindow() see “RenderQueue showWindow()
method” on page 163

boolean to show/hide the Render Queue win-
dow

render() see “RenderQueue render() method” on
page 162

starts the render; does not return until render
is complete

pauseRender ing() see “RenderQueue pauseRendering()
method” on page 162

pauses the render

stopRender ing() see “RenderQueue stopRendering()
method” on page 163

stops the render

i tem() see “RenderQueue Item() method” on
page 161

returns a RenderQueueItem

Using Help Back 162

Help Reference

Using Help Back 162

Description

This method returns a render queue item with the given index number.

Parameters

Returns

RenderQueueItem.

RenderQueue items attribute

app.projec t . renderQueue . i tems

Description

The items attribute of renderQueue provides a collection of all items in the Render Queue as a collection.

Type

RQItemCollection; read-only.

See also

“RQItemCollection” on page 164

RenderQueue numItems attribute

app.projec t . renderQueue .numItems

Description

The numItems attribute indicates the total number of render queue items in the Render Queue.

Type

Integer; read-only.

RenderQueue pauseRendering() method

app.projec t . renderQueue.pauseRender ing(pause)

Description

Pauses the Render Queue; equivalent to use of the Pause button in the Render Queue window during a render.

Parameters

Returns

None.

RenderQueue render() method

app.projec t . renderQueue. render()

index integer; the index of the item

pause boolean; set to true, it pauses the render, set to false, it continues a paused render

Using Help Back 163

Help Reference

Using Help Back 163

Description

Starts the Render Queue; equivalent to use of the Render button in the Render Queue window. Does not
return until render is complete.

Set the app.onError if you wish to be notified of errors during the rendering process.

Set the RenderQueueItem.onStatusChanged attribute of a particular RenderQueueItem to get updates while
the render is progressing.

Parameters

None.

Returns

None.

See also

“Application open() method” on page 33

“RenderQueueItem onStatusChanged attribute” on page 167

RenderQueue rendering attribute

app.projec t . renderQueue . render ing

Description

The rendering attribute indicates whether rendering is in progress. This is a read-only attribute; use the
render() and stopRendering() methods to control it. If the render is paused, this is set to true.

Type

Boolean; read-only.

RenderQueue showWindow() method

app.projec t . renderQueue. showWindow(doShow)

Description

The showWindow method of RenderQueue is a boolean; if true, it makes the Render Queue window visible,
if false, it hides the window.

Parameters

Returns

None.

RenderQueue stopRendering() method

app.projec t . renderQueue. stopRender ing()

doShow boolean; if true, shows the Render Queue window; if false, conceals it

Using Help Back 164

Help Reference

Using Help Back 164

Description

Stops the Render Queue; equivalent to use of the Stop button in the Render Queue window during a render.
Useful to call in the event of an onStatusChanged callback.

Parameters

None.

Returns

None.

See also

“RenderQueueItem onStatusChanged attribute” on page 167.

RQItemCollection
app.projec t . renderQueue. i tems

Description

The RQItemCollection contains all of the Render Queue items. This is the equivalent of all of the items found
in the Render Queue window of a given project.

Attributes

Methods

See also

“Collection object” on page 53

RenderQueueItem object
app.project .renderQueue. i tem(index)

Description

The RenderQueueItem object is an individual item in the Render Queue.

Attributes

length number of objects in the collection (applies to all collections)

[] retrieves an object or objects in the collection via its index number

add() adds a RenderQueueItem for a specified composition

Attribute Reference Description

numOutputModules see “RenderQueueItem numOutput-
Modules attribute” on page 166

total number of Output Modules assigned to a
given Render Queue item

render see “RenderQueueItem render
attribute” on page 168

boolean that shows true if this item will render
when the queue is started

Using Help Back 165

Help Reference

Using Help Back 165

Methods

RenderQueueItem applyTemplate() method

app.projec t . renderQueue. i tem.applyTemplate(templateName)

Description

The applyTemplate method of renderQueueItem applies a Render Settings template to the item.

Parameters

s tar tTime see “RenderQueueItem startTime
attribute” on page 169

Date object representing time program began
rendering the item

elapsedSeconds see “RenderQueueItem elapsedSeconds
attribute” on page 166

time elapsed in the current render, in seconds

t imeSpanStar t see “RenderQueueItem timeSpanStart
attribute” on page 170

start time, in seconds, in the comp to be ren-
dered

t imeSpanDurat ion see “RenderQueueItem timeSpanDura-
tion attribute” on page 169

duration of the comp to be rendered, in sec-
onds

skipFrames see “RenderQueueItem skipFrames
attribute” on page 168

number of frames to skip when rendering

comp see “RenderQueueItem comp attribute”
on page 166

composition being rendered by this RQ item

outputModules see “RenderQueueItem outputModules
attribute” on page 167

collection of the Output Modules

templates see “RenderQueueItem templates
attribute” on page 169

array of the Render Settings templates

s tatus see “RenderQueueItem status attribute”
on page 169

current status of a Render Queue item

onStatusChanged see “RenderQueueItem onStatus-
Changed attribute” on page 167

condition in which the status of an item
changes (e.g., from RENDERING to DONE sta-
tus)

logTy pe see “RenderQueueItem logType
attribute” on page 166

returns one of the log types

Method Reference Description

outputModule() see “RenderQueueItem outputModule()
method” on page 167

returns an Output Module for the item

remove() see “RenderQueueItem remove()
method” on page 167

deletes the item from the Render Queue

saveAsTemplate() see “RenderQueueItem saveAsTem-
plate() method” on page 168

saves a new Render Settings Template with the
given name

applyTemplate() see “RenderQueueItem applyTemplate()
method” on page 165

applies a pre-set Render Settings Template

templateName name of the template to apply

Attribute Reference Description

Using Help Back 166

Help Reference

Using Help Back 166

Returns

None.

RenderQueueItem comp attribute

app.projec t . renderQueue. i tem(index) .comp

Description

The comp attribute returns the CompItem object that will be rendered by this Render Queue item. This is a
read-only attribute; to change the Composition, the Render Queue item must be deleted and re-created.

Type

CompItem; read-only.

RenderQueueItem elapsedSeconds attribute

app.projec t . renderQueue. i tem(index) .elapsedSeconds

Description

The elapsedSeconds attribute shows the number of seconds spent rendering the item.

Type

Integer, or null if item has not been rendered; read-only.

RenderQueueItem logType attribute

app.projec t . renderQueue. i tem(index) .outputModule . logTy pe

Description

The logType attribute returns one of the log types (listed below).

Enumerated Type

LogType (read/write); one of the following:

LogTy pe.ERRORS_ONLY

LogTy pe.ERRORS_AND_SET TINGS

LogTy pe.ERRORS_AND_PER_FRAME_INFO

RenderQueueItem numOutputModules attribute

app.projec t . renderQueue. i tem(index) .numOutputModules

Description

The numOutputModules attribute represents the total number of Output Modules assigned to a given Render
Queue item.

Type

Integer; read-only.

Using Help Back 167

Help Reference

Using Help Back 167

RenderQueueItem onStatusChanged attribute

app.projec t . renderQueue. i tem(index) .onStatusChanged

Description

The onStatusChanged attribute is invoked whenever the value of the RenderQueueItem.status attribute is
changed.

Note that changes cannot be made to render queue items (or to the application) while a render is in progress
(including when paused). This mirrors the regular application functionality.

Type

Function.

Example

funct ion myStatusChanged() {

a ler t(app.project .renderQueue. i tem(1).s tatus)

}

app.project .renderQueue. i tem(1).onStatusChanged = myStatusChanged() ;

app.project .renderQueue. i tem(1).render = fa lse ; / / shows dia log

RenderQueueItem outputModules attribute

app.projec t . renderQueue. i tem(index) .outputModules

Description

The outputModules attribute returns the collection of Output Modules for the item.

Type

OMCollection; read-only.

RenderQueueItem outputModule() method

app.projec t . renderQueue. i tem(index) .outputModule(index)

Description

This method returns an output module with the given index.

Parameters

Returns

OutputModule.

RenderQueueItem remove() method

app.projec t . renderQueue. i tem(index) . remove()

index integer; the index of the output module

Using Help Back 168

Help Reference

Using Help Back 168

Description

The remove method of renderQueueItem deletes the referenced item from the Render Queue.

Parameters

None.

Returns

None.

RenderQueueItem render attribute

app.projec t . renderQueue. i tem(index) . render

Description

The render attribute determines whether an item will render when the Render Queue is started.

Type

Boolean; read/write.

RenderQueueItem saveAsTemplate() method

app.projec t . renderQueue. i tem(index) . saveAsTemplate(name)

Description

The saveAsTemplate method of RenderQueueItem saves the item’s current render settings as a new template
with the name passed as a parameter.

Parameters

Returns

None.

RenderQueueItem skipFrames attribute

app.projec t . renderQueue. i tem(index) . skipFrames

Description

The skipFrames attribute specifies the number of frames to skip when rendering. It is used to do quicker
rendering tests than a full render. The total length of time remains unchanged.

A value of 0 specifies no skipped frames and results in regular rendering of all frames. A value of 1 specifies
that every other frame is to be skipped. This is equivalent to "rendering on twos." Higher values will skip a
larger number of frames. For example, if skip has a value of 1, for sequence output you'd get half the number
of frames and for movie output each frame would be double the duration.

The permissible range of values for skipFrames is [0..99].

name name of the new template

Using Help Back 169

Help Reference

Using Help Back 169

Type

Integer. Read/write.

RenderQueueItem startTime attribute

app.projec t . renderQueue. i tem(index) . s tar tTime

Description

The startTime attribute returns a Date object showing the day and time that the item started rendering.

Type

Date; null if the item has not started rendering. Read-only.

RenderQueueItem status attribute

app.projec t . renderQueue. i tem(index) . s tatus

Description

The status attribute represents the current render status of the item.

Enumerated Type

RQItemStatus - one of the following attributes:

RenderQueueItem templates attribute

app.projec t . renderQueue. i tem(index) . templates

Description

The templates attribute returns an array of the names of Render Settings templates available for the item. It is
a read-only attribute.

Type

Array; read-only.

RenderQueueItem timeSpanDuration attribute

app.projec t . renderQueue. i tem(index) . t imeSpanDurat ion

RQItemStatus .WILL_CONTINUE render has been paused

RQItemStatus .NEEDS_OUTPUT item lacks a valid output path

RQItemStatus .UNQUEUED render item is listed in the Render Queue window but is not ready to render

RQItemStatus .QUEUED composition is ready to render

RQItemStatus .RENDERING composition is rendering

RQItemStatus .USER_STOPPED rendering process was stopped by the user

RQItemStatus .ERR_STOPPED rendering process was stopped due to an error

RQItemStatus .DONE rendering process for the item is complete

Using Help Back 170

Help Reference

Using Help Back 170

Description

The timeSpanDuration attribute determines the duration, in seconds, of the comp to be rendered. This
achieves the same effect as setting a custom end time in the Render Settings dialog box, although the duration
is determined by subtracting the start time from the end time.

Type

Floating-point value; read/write.

RenderQueueItem timeSpanStart attribute

app.projec t . renderQueue. i tem(index) . t imeSpanStar t

Description

The timeSpanStart attribute determines the time in the comp, in seconds, at which rendering will begin. This
is the equivalent of setting a custom start time in the Render Settings dialog box.

Type

Floating-point value; read/write.

Settings object

Description

The Settings object provides an easy way to manage settings for scripts. The settings are persistent between
application launches, saved in the After Effects Preferences file.

Methods

Settings getSetting() method

app.se t t ing s .getSet t ing(s ec t ionName,ke yName)

Description

The getSetting method retrieves a setting found in the Prefs file.

Parameters

Method Reference Description

saveSett ing() see “Settings saveSetting() method” on
page 171

can save a default value for a preferences item

getSett ing() see “Settings getSetting() method” on
page 170

retrieves a setting found in the Prefs file

haveSett ing() see “Settings haveSetting() method” on
page 171

used to determine whether a given section
name and key name have a setting assigned

sect ionName text string that holds the name of a section of settings; in the prefs file these are the names
enclosed in brackets and quotation marks

keyName text string that describes an individual setting name; these are listed in quotation marks below
the sectionName

Using Help Back 171

Help Reference

Using Help Back 171

Returns

String representing the value of the setting.

Example

var n = app.set t ings .getSett ing("Eraser - Paint Set t ings" , "Al igned Clone") ;

a ler t("The set t ing i s " + n) ;

See also

“Settings haveSetting() method” on page 171

“Settings saveSetting() method” on page 171

Settings haveSetting() method

app.se t t ing s .haveSett ing(s ec t ionName,ke yName)

Description

The haveSetting method is used to determine whether a given section name and key name have a setting
assigned.

Returns

Boolean.

See also

“Settings getSetting() method” on page 170

“Settings saveSetting() method” on page 171

Settings saveSetting() method

app.se t t ing s . saveSett ing(s ec t ionName,ke yName,value)

Description

The saveSetting method can save a default value for a scripting preferences item.

Parameters

See also

“Settings getSetting() method” on page 170

“Settings haveSetting() method” on page 171

sect ionName text string that holds the name of a section of settings; in the prefs file these are the names
enclosed in brackets and quotations

keyName text string that describes an individual setting name; these are listed in quotations below the
sectionName

value value assigned to the setting

Using Help Back 172

Help Reference

Using Help Back 172

Shape object
app.projec t . i tem(index) . layer(index) .proper ty(1) .proper ty(index) .proper ty("maskShape") .va lue

Description

The Shape object holds information describing the outline shape of a Mask.

Attributes

Methods

Examples

1 Creating a square mask

A square is a closed shape with 4 points. The inTangents and outTangents for connected straightline segments
are always 0, the default. Since the default values are the desired values, you do not need to set them here.

var myShape = new Shape() ;

myShape.ver t ices = [[0 ,0] , [0 ,1] , [1 ,1] , [1 ,0]] ;

myShape.c losed = t rue;

2 Creating a “U” shaped mask

A "U" is an open shape with the same 4 points used in Example 1:

var myShape = new Shape() ;

myShape.ver t ices = [[0 ,0] , [0 ,1] , [1 ,1] , [1 ,0]] ;

myShape.c losed = fa lse ;

3 Creating an oval

An oval is a closed shape with 4 points and inTangents and outTangents:

var myShape = new Shape() ;

myShape.ver t ices = [[300,50] ,[200,150] ,[300,250] ,[400,150]] ;

myShape. inTangents = [[55.23,0] ,[0 ,-55.23] ,[-55.23,0] ,[0 ,55.23]] ;

myShape.outTangents = [[-55.23,0] ,[0 ,55.23] ,[55.23,0] ,[0 ,-55.23]] ;

myShape.c losed = t rue;

Attribute Reference Description

closed see “Shape closed attribute” on
page 173

specifies whether the shape is a closed curve

ver t ices see “Shape vertices attribute” on
page 174

array of floating-point pairs specifying the
anchor points of the shape

inTangents see “Shape inTangents attribute” on
page 173

array of floating-point pairs specifying the tan-
gent vectors coming into the shape vertices

outTangents see “Shape outTangents attribute” on
page 173

array of floating-point pairs specifying the tan-
gent vectors coming out of the shape vertices

Method Reference Description

shape() see “Shape Shape() method” on
page 174

constructor to create a new Shape

Using Help Back 173

Help Reference

Using Help Back 173

Shape closed attribute

app.projec t . i tem(index) . layer(index) .proper ty(1) .proper ty(index) .proper ty("maskShape") .va lue.c losed

Description

This attribute specifies whether the shape is a closed curve. If true, the first and last vertices will be connected
to form a closed curve. If false, the closing segment will not be drawn.

Type

Boolean; read/write.

Shape inTangents attribute

app.projec t . i tem(index) . layer(index) .proper ty(1) .proper ty(index) .proper ty("maskShape") .va lue. inTan-
gents

Description

This attribute describes an array of float pairs specifying the tangent vectors (direction handles) associated
with the vertices of the shape.

Each float pair specifies one inTangent. There is one inTangent and one outTangent associated with each
vertex in the vertices array. However, when creating a shape to set as a keyframe value, you may leave inTangent
and/or outTangent null, or you may leave entries unfilled; they will be automatically padded with zeroes. This
will result in straight line segments in the non-RotoBezier case; in the RotoBezier case the zeros will be ignored
and the inTangents/outTangents will be automatically calculated.

Each vertex on the shape has two direction handles. The inTangent is the direction handle associated with the
line segment 'coming into' the vertex from the preceding vertex in the shape.

The inTangents are x,y coordinates specified relative to the associated vertex. For example, an inTangent of [-
1,-1] is located above and to the left of the vertex and has a 45 degree slope, regardless of the actual location
of the vertex. The longer a handle is, the greater an influence it has, so an incoming shape segment will hug
the tangent vector closer for an inTangent of [-2,-2] than it will for an inTangent of [-1,-1], even though both
of these come toward the vertex from the same direction.

If a shape is not closed, the inTangent for the first vertex and the outTangent for the final vertex will be ignored.
These two vectors would otherwise specify the dirction handles of the final connecting segment out of the final
vertex and back into the first vertex.

Note that if a shape is used in a mask with Rotobeziers, then the tangent values will be ignored on write (i.e.,
ignored when you set the new shape), because RotoBezier masks calculate their tangents automatically. This
means that, for RotoBezier masks, you can construct a shape by setting only the vertices attribute and setting
inTangents and outTangents both to null. If you set the shape without tangents, then follow this by getting the
shape once again; the new shape's tangent values will be filled with the automatically-calculated tangent
values.

Type

Array of floating-point pairs; read/write.

Shape outTangents attribute

app.projec t . i tem(index) . layer(index) .proper ty(1) .proper ty(index) .proper ty("maskShape") .va lue.outTan-
gents

Using Help Back 174

Help Reference

Using Help Back 174

Description

This attribute describes an array of float pairs specifying the tangent vectors (direction handles) associated
with the vertices of the shape.

Each float pair specifies one inTangent. There is one inTangent and one outTangent associated with each
vertex in the vertices array. However, when creating a shape to set as a keyframe value, you may leave inTangent
and/or outTangent null, or you may leave entries unfilled; they will be automatically padded with zeroes. This
will result in straight line segments in the non-RotoBezier case; in the RotoBezier case the zeros will be ignored
and the inTangents/outTangents will be automatically calculated.

Each vertex on the shape has two direction handles. The outTangent is the direction handle associated with
the line segment 'going out of ' the vertex toward the next vertex in the shape.

The outsTangent are x,y coordinates specified relative to the associated vertex. For example, an inTangent of
[-1,-1] is located above and to the left of the vertex, and has a 45 degree slope, regardless of the actual location
of the vertex. The longer a handle is, the greater an influence it has, so an incoming shape segment will hug
the tangent vector closer for an inTangent of [-2,-2] than it will for an inTangent of [-1,-1], even though both
of these come toward the vertex from the same direction.

If a shape is not closed, the inTangent for the first vertex and the outTangent for the final vertex will be ignored.
These two vectors would otherwise specify the dirction handles of the final connecting segment out of the final
vertex and back into the first vertex.

Note that if a shape is used in a mask with Rotobeziers, then the tangent values will be ignored on write (i.e.,
ignored when you set the new shape), because RotoBezier masks calculate their tangents automatically. This
means that, for RotoBezier masks, you can construct a shape by setting only the vertices attribute and setting
inTangents and outTangents both to null. If you set the shape without tangents, then follow this by getting the
shape once again, the new shape's tangent values will be filled with the automatically-calculated tangent
values.

Type

Array of floating-point pairs; read/write.

Shape Shape() method

New Shape()

Description

This method is the constructor to create a new shape. After constructing a shape with this method, set the
various attributes individually to fill the shape with desired values.

Parameters

None.

Returns

Shape.

Shape vertices attribute

Description

This attribute describes an array of float pairs specifying the anchor points of the shape. Each float pair is an
array of two floats.

Using Help Back 175

Help Reference

Using Help Back 175

Type

Array of floating-point pairs; read/write.

SolidSource object
app.projec t . i tem(index) .mainSource

app.projec t . i tem(index) .proxySource

Description

The SolidSource object holds information describing a solid color footage source. It is a subclass of Footage-
Source and so it inherits all attributes and methods of the “FootageSource object” on page 89.

Attributes

SolidSource color attribute

app.projec t . i tem(index) . so l idSource .color

Description

The color attribute of SolidSource specifies the color of the solid. The value is an array of three floats for red,
green, and blue, where those floats are in the range [0..1].

Type

Array of three floating-point values from 0 to 1: [R, G, B]); read/write.

System object
system

Description

The System object provides access to attributes found on the user’s system, such as the user name or the name
and version of the operating system.

Attributes

color see “SolidSource color
attribute” on page 175

specifies the color of the solid

Attribute Reference Description

userName see “System userName attribute” on
page 176

user name logged in to the current session of
the operating system

machineName see “System machineName attribute”
on page 176

name of the host machine

osName see “System osName attribute” on
page 176

name of the operating system currently run-
ning

osVers ion see “System osVersion attribute” on
page 176

version of the operating system currently run-
ning

Using Help Back 176

Help Reference

Using Help Back 176

System machineName attribute

sy s tem.machineName

Description

The machineName attribute specifies the name of the machine on which the program is running, and is
expressed as a text string.

Type

String; read-only.

Example

alert ("Your machine is called " + system.machineName + ".");

System osName attribute

sy s tem.osName

Description

The osName attribute specifies the name of the operating system on which the program is running, and is
expressed as a text string.

Type

String; read-only.

Example

alert ("Your OS is " + system.osname + ".");

System osVersion attribute

sy s tem.osVers ion

Description

The osVersion attribute specifies the version of the current local operating system, and is expressed as a text
string.

Type

String; read-only.

Example

alert ("Your OS is " + system.osname + " running version " + system.osversion);

System userName attribute

sy s tem.userName

Description

The userName attribute specifies the name of the user logged on to the system, and is expressed as a text string.

Using Help Back 177

Help Reference

Using Help Back 177

Type

String; read-only.

Example

confirm("You are : " + system.userName + " running on " + system.machineName + " . ") ;

TextDocument object

Description

The TextDocument object holds a string an attribute named "text." It is used to store values for a text layer's
Source Text property.

Attributes

Methods

Examples

1 Set a value of some source text and then display an alert showing the new value:

var myTextDocument = new TextDocument("Happy Cake") ;

myTextLayer.proper ty("Source Text") . setValue(myTextDocument) ;

a ler t(myTextLayer.proper ty("Source Text") .getValue()) ;

2 Set keyframe values for text that will show different words over time:

var textProp = myTextLayer.proper ty("Source Text") ;

textProp.setValueAtTime(0, new TextDocument("Happy")) ;

textProp.setValueAtTime(.33, new TextDocument("cake")) ;

textProp.setValueAtTime(.66, new TextDocument(" is")) ;

textProp.setValueAtTime(1, new TextDocument("yummy!")) ;

TextDocument text attribute

TextDocument . text

Description

The actual text string stored in this TextDocument.

Type

String; read/write.

Attribute Reference Description

text see “TextDocument text attribute” on
page 177

text string stored in the TextDocument

Method Reference Description

TextDocument() see “TextDocument TextDocument()
method” on page 178

constructor to create a TextDocument

Using Help Back 178

Help Reference

Using Help Back 178

TextDocument TextDocument() method

New TextDocumnent(docText)

Description

This method is the constructor for a new TextDocument.

Parameters

Returns

TextDocument.

docText string; text contents of the TextDocument

Using Help Back 179

Help Examples

Using Help Back 179

Examples

Following are sample scripts included on your CD with an overview of what they do and a step-by-step
breakdown of how they work. This set of examples is by no means exhaustive, but it does demonstrate some
of scripting’s more complex features in action. It also shows some typical programming constructions from
JavaScript that apply to scripting.

For examples specific to the use of the user interface, see “Creating User Interface Elements” on page 197. For
more examples from Adobe, as well as from other After Effects users, visit Adobe Studio Exchange at http://
share.studio.adobe.com, and choose Scripting under the Adobe After Effects section.

Apply effect
This example is a rather simple one; it first requires that the user select an AVLayer and, if that condition is
met, sets a 10-pixel Fast Blur to the selected layer (or layers), with Repeat Edge Pixels set to true.

The comments that appear on lines beginning with double forward slashes (//) describe what is occurring in
each section of the script. The script does the following, in order:

• checks that at least one selected layer can have effects applied to it

• adds Fast Blur to any selected layer that can

• sets Blurriness to 10 and turns on Repeat Edge Pixels

• returns a boolean stating whether the effect was added

• starts an undo group so that if the effect is being applied to more than one layer, the entire script operation
can be undone in one step rather than several

• sets an error with instructions to the user should the script fail to apply an effect to any layer

{

// This funct ion appl ies the e f fect to one s ing le layer

//

funct ion applyFastBlurToLayer(the_layer)

{

var addedIt = fa lse ;

/ / Can only add an ef fect i f there ' s an ef fects group in the layer.

/ / Some layers don't have one, l ike camera and l ight layers .

i f (the_layer("Effects") != nul l) {

/ / Always best to check i f i t ' s safe before adding:

i f (the_layer("Effects") .canAddProper ty("Fast Blur")) {

/ / add a new Fast Blur e f fect to the ef fects group of the layer

the_layer("Effects") .addProper ty("Fast Blur") ;

/ / set the parameter va lues

the_layer("Effects")("Fast Blur") .b lurr iness . setValue(10) ;

the_layer("Effects")("Fast Blur") .repeatEdgePixels . setValue(true) ;

addedIt = t rue;

}

Using Help Back 180

Help Examples

Using Help Back 180

}

/ / Return a boolean say ing whether we added the e f fect

return addedIt ;

}

/ / Star t an undo group. By us ing this w ith an endUndoGroup() , you

// a l low users to undo the whole scr ipt w ith one undo operat ion.

app.beg inUndoGroup("Apply Fast Blur to Se lect ions") ;

/ / I f we don't find any se lected layers , we ' l l put up an a ler t at the end.

var numLayersChanged = 0 ;

/ / Get the act ive comp

var act iveItem = app.project .act iveItem;

i f (act iveItem != nul l && (act iveItem instanceof CompItem)){

var act iveComp = act iveItem;

// t r y to apply to ever y se lected layer

var se lectedLayers = act iveComp.se lectedLayers ;

for (var i = 0 ; i < se lectedLayers . length; i++) {

var curLayer = se lectedLayers[i] ;

/ / The method returns t rue i f i t adds the ef fect , fa l se otherw ise .

i f (applyFastBlurToLayer(curLayer) == true) {

numLayersChanged++;

}

}

}

// Pr int a message i f no layers were af fected

i f (numLayersChanged == 0) {

a ler t("Please se lect an AV layer or layers and run scr ipt again") ;

}

app.endUndoGroup() ;

}

Replace text
This script performs an action much too specific to be useful as it is, but it shows the basics for a very useful
general operation, which is the automatic editing of text layers. Quite simply, the script looks for selected text
layers that contain the text string “blue” and changes this string to read “monday”--note that “blue” could
appear anywhere in the selected layer, even as part of another word, and still be changed. For example,
“bluejean” will read “mondayjean” after the effect is applied.

The comments that appear on lines beginning with double forward slashes (//) describe what is occurring in
each section of the script. The script does the following, in order:

Using Help Back 181

Help Examples

Using Help Back 181

• sets a function that replaces all instances of “blue” with “monday”

• sets a function that applies the first function to a single layer, looking for all Source Text keyframes where
“blue” might appear, evaluating each time whether any text was changed (and returning a boolean stating
whether it was changed)

• sets a single undo group for all changes made by the script

• pops up a warning if no layers were changed, instructing the user how to properly apply the script

{

// This scr ipt replaces text in a l l the se lected text layers .

/ /

/ / It finds a l l instances of the word "blue" and changes them to "monday"

//

/ / This funct ion takes theStr ing and replaces firstWord w ith secondWord.

// It repeats , so i t w i l l replace a l l instances of firstWord in theStr ing .

/ / Returns the changed s t r ing .

funct ion replaceTextInStr ing(theStr ing , firstWord, secondWord)

{

var newStr ing = theStr ing;

whi le(newStr ing . indexOf(firstWord) != -1) {

newStr ing = newStr ing .replace(firstWord,secondWord);

}

return newStr ing;

}

/ / This funct ion appl ies the change to one s ing le layer

//

funct ion replaceTextInLayer(theLayer, firstWord, secondWord)

{

var changedSomething = fa lse ;

/ / Get the sourceText proper ty, i f there i s one.

var sourceText = theLayer.sourceText ;

i f (sourceText != nul l) {

i f (sourceText .numKeys == 0) {

/ / textValue i s a TextDocument. Retr ieve the s t r ing ins ide

var oldStr ing = sourceText .va lue. text ;

i f (oldStr ing . indexOf(firstWord) != -1) {

var newStr ing = replaceTextInStr ing(oldStr ing , firstWord, secondWord);

i f (oldStr ing != newStr ing) {

sourceText .setValue(newStr ing) ;

changedSomething = t rue;

}

}

} e l se {

/ / Do i t for each key frame:

for (var keyIndex = 1 ; keyIndex <= sourceText .numKeys ; keyIndex++) {

/ / textValue i s a TextDocument. Retr ieve the s t r ing ins ide

var oldStr ing = sourceText .keyValue(keyIndex) . text ;

Using Help Back 182

Help Examples

Using Help Back 182

i f (oldStr ing . indexOf(firstWord) != -1) {

var newStr ing = replaceTextInStr ing(oldStr ing , firstWord, secondWord);

i f (oldStr ing != newStr ing) {

sourceText .setValueAtKey(keyIndex,newStr ing) ;

changedSomething = t rue;

}

}

}

}

}

/ / Return a boolean say ing whether we replaced any text

return changedSomething;

}

/ / Star t an undo group. By us ing this w ith an endUndoGroup() , you

// a l low users to undo the whole scr ipt w ith one undo operat ion.

app.beg inUndoGroup("Apply Text Change to Se lect ions") ;

/ / I f we don't make any changes , we ' l l put up an a ler t at the end.

var numLayersChanged = 0 ;

/ / Get the act ive comp

var act iveItem = app.project .act iveItem;

i f (act iveItem != nul l && (act iveItem instanceof CompItem)){

var act iveComp = act iveItem;

// t r y to apply to ever y se lected layer

var se lectedLayers = act iveComp.se lectedLayers ;

for (var i = 0 ; i < se lectedLayers . length; i++) {

var curLayer = se lectedLayers[i] ;

/ / The method returns t rue i f i t changes any text , fa l se otherw ise .

i f (replaceTextInLayer(curLayer, "blue" , "monday") == true) {

numLayersChanged++;

}

}

}

// Pr int a message i f no layers were af fected

i f (numLayersChanged == 0) {

/ / Note : i f you put quotes in the inter ior of the s t r ing ,

/ / they must be preceded by a backs lash, as in \"blue\" be low.

aler t("Please se lect a text layer or layers containing the word \"blue\" and run scr ipt again") ;

}

app.endUndoGroup() ;

}

Using Help Back 183

Help Examples

Using Help Back 183

Save and increment
Although much of the functionality of this script has been superseded by the incremental save feature that is
new to After Effects 6.5, it is still included here because it makes effective use of conditionals, functions, and
the File and FileSystem objects.

This script automatically saves a new copy of the open After Effects project and increments a three-digit
number in its name to distinguish it from preceding versions of the project. This script is saved as
save_and_increment.jsx on your install CD.

The first step is to determine whether the currently open project has ever been saved. This is accomplished
with an opening if/else statement. The first condition, “!app.project.file” is saying that if the project has not
been saved, an alert telling the user to save the project is popped up, and the script ends.

i f (!app.project .file) {

a ler t ("This project must be saved before running this scr ipt . ") ;

Next, if the project has been saved at least once before, we set some variables to point to the name of the file
and to the numbering and file extension that we plan to add to it. The lastIndexOf() JavaScript searches a
string backwards (from end to start) and in this case looks for the dot that separates the name from the
extension.

} e l se {

var currFi le = app.project .file ;

var currFi leName = currFi le .name;

var extPos = currFi leName. lastIndexOf(" . ") ;

var ext = "" ;

Now we set the currFileName variable to the current name, before the dot.

i f (extPos != -1) {

ext = currFi leName.substr ing(extPos , currFi leName. length) ;

currFi leName = currFi leName.substr ing(0, extPos) ;

}

Next we set a variable that will increment versions starting with 0, and we check to see if there is an underscore
character four characters from the end of currFileName. If there is, we assume that the incrementer has run
before, as its job is to assign a 3-digit suffix after an underscore incremented one higher than the last suffix. In
that case we set incrementer to the current numerical string and extract the name without this numerical
extension.

var incrementer = 0 ;

i f (currFi leName.charAt(currFi leName. length -4) == "_") {

incrementer = currFi leName.substr ing(currFi leName. length - 3 , currFi leName. length) ;

currFi leName = currFi leName.substr ing(0, currFi leName. length -4) ;

}

Now we add an incrementer loop and test for whether numbering has extended to two or three digits (e.g., if
the numbering has reached “_010” or above, or “_100” or above), assigning a zero for each if not.

incrementer++;

var i s t r ing = incrementer + "" ;

i f (incrementer < 10) {

i s t r ing = "0" + i s t r ing;

}

Using Help Back 184

Help Examples

Using Help Back 184

i f (incrementer < 100) {

i s t r ing = "0" + i s t r ing;

}

Finally we create a new file using our updated name and extension, display an alert letting the user know the
new file name being saved, and save the project with the new file name.

var newFi le = Fi le(currFi le .path + "/" + currFi leName + "_" + i s t r ing + ext) ;

a ler t(newFi le . f sName);

app.project . save(newFi le) ;

}

Render named items
This script allows you to find compositions in the open project with a particular text string in their names and
send all such compositions to the Render Queue.

To start, we check to see if a default string for rendering has already been set in the user preferences. If so, we
set this as a user prompt, handy if you’re always looking for the same string (for example, “FINAL” or
“CURRENT”). If not, we set a new sectionName and keyName for the preferences file along with a placeholder
value for the string that will be entered by the user.

var sect ionName = "AE Example Scr ipts" ;

var keyName = "Render comps w ith this s t r ing" ;

var searchStr ing = "" ;

i f (app.set t ings .haveSett ing(sect ionName, keyName)) {

searchStr ing = app.set t ings .getSett ing(sect ionName, keyName);

}

Now we display a prompt to the user asking for what text string we should use.

searchStr ing = prompt("What s t r ing to render?" , searchStr ing) ;

We next go through the project looking for the text entered by the user, and seeing if the item that contains
that text is a composition, sending all compositions with that text string in their names to the Render Queue.
If the user cancels, the text is undefined. Otherwise, we save the new setting in preferences, convert it to all
lowercase letters for consistency’s sake (keeping in mind that the search will not be case sensitive).

i f (searchStr ing) {

app.set t ings .saveSett ing(sect ionName, keyName, searchStr ing) ;

searchStr ing = searchStr ing . toLowerCase() ;

for (i = 1 ; i <= app.project .numItems; ++i) {

var curItem = app.project . i tem(i) ;

i f (curItem instanceof CompItem) {

i f (curItem.name.toLowerCase() . indexOf(searchStr ing) != -1) {

app.project .renderQueue. i tems.add(curItem);

}

}

}

Using Help Back 185

Help Examples

Using Help Back 185

Finally, we make the Render Queue window visible and bring it to the front, ready for the user to assign save
locations for the new render queue items.

app.project .renderQueue.showWindow(true) ;

}

New render locations
This script allows the user to select queued items in the Render Queue and assign a new render destination for
them.

First, we prompt the user for a new folder to use as a render destination.

var newLocat ion = folderGetDialog("Select a render dest inat ion. . . ") ;

Next, we make certain that the user entered a new location (and didn’t cancel the dialog). Then we create a
loop for each selected render queue item. If this item is queued, we take the current render location, give it a
new name and location, and then display an alert stating the new file path.

i f (newLocat ion) { / /boolean to see i f the user cancel led

for (i = 1 ; i <= app.project .renderQueue.numItems; ++i) {

var curItem = app.project .renderQueue. i tem(i) ;

i f (curItem.status == RQItemStatus .QUEUED) {

for (j = 1 ; j <= curItem.numOutputModules ; ++j) {

var curOM = curItem.outputModule(j) ;

var o ldLocat ion = curOM.file ;

curOM.file = new Fi le(newLocat ion.toStr ing() + "/" + oldLocat ion.name);

a ler t(curOM.file . f sName);

}

}

}

}

Smart import
This script allows the user to import the full, nested contents of a folder just by selecting it. It attempts to detect
whether each item is a still, moving footage, or an image sequence. The user still has to make other choices via
dialogs, such as which layer of a multi-layer image (e.g., a .psd file) to import.

First, we prompt the user for a folder whose contents are to be imported, and ascertain that the user chooses
a folder rather than cancelling the dialog. We then call a function that appears below to import all of the files,
one by one.

var targetFolder = folderGetDialog("Impor t Items from Folder. . . ") ;

/ /returns a fo lder or nul l

i f (targetFolder) {

funct ion processFi le (theFi le) {

var impor tOptions = new Impor tOptions (theFi le) ;

/ /create a var iable containing Impor tOptions

impor tSafeWithError (impor tOptions) ;

}

Using Help Back 186

Help Examples

Using Help Back 186

Now we add a function to test whether a given file is part of a sequence. This uses Regular Expressions, which
are a special type of JavaScript designed to reduce the number of steps required to evaluate a string. The first
one tests for the presence of sequential numbers anywhere in the file name, followed by another making
certain that the sequential files aren’t of a type that can’t be imported as a sequence (moving image files).

We then check adjacent files to see if a sequence exists, stopping after we’ve evaluated ten files to save
processing time.

funct ion testForSequence (files){

var searcher = new RegExp ("[0-9]+") ;

var mov ieFi leSearcher = new RegExp ("(mov|av i |mpg)$" , " i ") ;

var parseResults = new Array ;

for (x = 0 ; (x < files . length) & x < 10; x++) {

/ / test that we have a sequence, s top pars ing af ter 10 files

var mov ieFi leResult = movieFi leSearcher.exec(files[x] .name);

i f (! mov ieFi leResult) {

var currentResult = searcher.exec(files[x] .name);

If no match is found using the Regular Expression looking for a number string, we get null and assume there
is no image sequence. Otherwise, we want an array consisting of the matched string and its location within
the file name.

i f (currentResult) {

/ /we have a match - the s t r ing contains numbers

// the match of those numbers i s s tored in the array[1]

// take that number and save i t into parseResults

parseResults[parseResults . length] = currentResult[0] ;

}

e lse {

parseResults[parseResults . length] = nul l ;

}

}

e lse {

parseResults[parseResults . length] = nul l ;

}

}

Now if all of the files just evaluated indicated that they are part of a numbered sequence, we assume that we
have a sequence and return the first file of that sequence. Otherwise, we end this function.

var resul t = nul l ;

for (i = 0 ; i < parseResults . length; ++i) {

i f (parseResults[i]) {

i f (! resul t) {

resul t = files[i] ;

}

} e l se {

/ /case in which a file name did not contain a number

resul t = nul l ;

break;

}

Using Help Back 187

Help Examples

Using Help Back 187

}

return resul t ;

}

Next we add a function to pop up error dialogs if there is a problem with any file we are attempting to import.

funct ion impor tSafeWithError (impor tOptions) {

t r y {

app.project . impor tFi le (impor tOptions) ;

} catch (error) {

a ler t(error. toStr ing() + impor tOptions .file . f sName);

}

}

Next comes a function to actually import any image sequence that we discover using testForSequence(),
above. Note that there is an option for forcing alphabetical order in sequences, which is commented out in the
script as written. If you want to force alphabetical order, un-comment the line “importOptions.forceAlpha-
betical = true” by removing the two slashes at the beginning of that line.

funct ion processFolder(theFolder) {

var files = theFolder.getFi les() ;

/ /Get an array of files in the target fo lder

// test whether theFolder contains a sequence

var sequenceStar tFi le = testForSequence(files) ;

/ / i f i t does contain a sequence, impor t the sequence

i f (sequenceStar tFi le) {

var impor tOptions = new Impor tOptions (sequenceStar tFi le) ;

/ /create a var iable containing Impor tOptions

impor tOptions .sequence = t rue;

/ / impor tOptions . forceAlphabet ica l = true;

/ /un-comment this i f you want to force a lpha order by default

impor tSafeWithError (impor tOptions) ;

}

/ /otherw ise , impor t the files and recurse

for (index in files) {

/ /Go through the array, set each e lement to s ing leFi le , run this :

i f (files[index] instanceof Fi le) {

i f (! sequenceStar tFi le) {

/ / i f fi le i s a lready par t of a sequence, don't impor t i t indiv idual ly

processFi le (files[index]) ;

/ /ca l l s the processFi le funct ion above

}

}

i f (files[index] instanceof Folder) {

processFolder (files[index]) ; / / recurs ion

}

}

}

processFolder(targetFolder) ;

Using Help Back 188

Help Examples

Using Help Back 188

}

Render and email
This script renders all queued items in an open project and sends an email report to indicate when the render
has completed. It makes use of two other scripts that follow, email_methods.jsx (to send the email properly)
and email_setup.jsx (which establishes the sender, recipient, and email server).

We start by establishing conditions under which the script will run. An open project with at least one item
queued is required.

{

var safeToRunScr ipt = t rue;

safeToRunScr ipt = app.project != nul l ;

i f (! app.project) {

a ler t ("A project must be open to run this scr ipt . ") ;

}

i f (safeToRunScr ipt) {

debugger ;

/ /check the render queue and make cer ta in at least one i tem is queued

safeToRunScr ipt = fa lse ;

for (i = 1 ; i <= app.project .renderQueue.numItems; ++i) {

i f (app.project .renderQueue. i tem(i) . s tatus ==

RQItemStatus .QUEUED) {

safeToRunScr ipt = t rue;

break;

}

}

i f (! safeToRunScr ipt) {

a ler t ("You do not have any i tems set to render.") ;

}

}

Now we check whether we have email settings already saved in the Preferences. If so, we don’t need to prompt
the user. If not, we run the email_setup.jsx script, which prompts the user as to the mail gateway, sender and
recipient addresses. If there are saved settings that you need to change, you can always run email_setup.jsx to
make new settings that overwrite the existing ones.

i f (safeToRunScr ipt) {

var set t ings = app.set t ings ;

i f (! set t ings .haveSett ing("Emai l Set t ings" , "Mai l Ser ver") | |

 ! set t ings .haveSett ing("Emai l Set t ings" , "Reply-to Address") | |

 ! set t ings .haveSett ing("Emai l Set t ings" , "Render Repor t

Recipient")){

/ / We don't have the set t ings yet , so run emai l_setup. j sx

// to prompt for them

var emai l_setupfile = new Fi le("emai l_setup. j sx") ;

emai l_setupfile .open("r") ;

Using Help Back 189

Help Examples

Using Help Back 189

eval(emai l_setupfile .read()) ;

emai l_setupfile .c lose() ;

}

var myQueue = app.project .renderQueue / /creates a shor tcut for RQ

Now we’re ready to render. Once rendering is complete, the script creates a text string for the email message
that contains the start time of the render, the render time of each item in the queue, and the total render time.

myQueue.render() ;

var projectName = "Unsaved Project" ;

i f (app.project .file) {

projectName = app.project .file .name;

}

var myMessage = "Render ing of " + projectName + " i s complete . \n\n" ;

Now email the message, using the three settings from the email_methods.jsx script that has been automatically
run to prompt the user for the server, above.

i f (! set t ings .haveSett ing("Emai l Set t ings" , "Mai l Ser ver") | |

 ! set t ings .haveSett ing("Emai l Set t ings" , "Reply-to Address") | |

 ! set t ings .haveSett ing("Emai l Set t ings" , "Render Repor t

Recipient")){

a ler t("Can't send an emai l , I don't have a l l the set t ings I need.

Abor t ing .") ;

} e l se {

/ / Load code from a file w ith handy emai l ing methods:

var emai lCodeFi le = new Fi le("emai l_methods. j sx") ;

emai lCodeFi le .open("r") ;

eval(emai lCodeFi le .read()) ;

emai lCodeFi le .c lose() ;

Finally, we send an error if for any reason we are unable to send the mail.

var ser verSett ing = set t ings .getSett ing("Emai l Set t ings" , "Mai l

Ser ver") ;

var f romSett ing = set t ings .getSett ing("Emai l Set t ings" , "Reply-

to Address") ;

var toSett ing = set t ings .getSett ing("Emai l Set t ings" , "Render

Repor t Recipient") ;

var myMail = new Emai lSocket(ser verSett ing) ;

i f (! myMail . send (fromSett ing , toSett ing , "AE Render Completed" , myMessage)) {

a ler t("Sending mai l fa i led") ;

}

}

}

}

Using Help Back 190

Help Examples

Using Help Back 190

Email methods
This script creates an email object for use with the Render and Email script, described above. It uses code that
is specific to the socket object and therefore requires advanced understanding of networking to edit; the
comments below describe its operation.

// Create an emai l object . The funct ion may be ca l led both

// as a g lobal funct ion and as a constructor. It takes the

// name of the emai l ser ver, and an opt ional Boolean that ,

/ / i f t rue, pr ints debugg ing messages .

/ / This object i s not guaranteed to work for a l l SMTP ser vers ,

/ / some of them may require a di f ferent set of commands.

/ / funct ions :

/ / send (fromAddress , toAddress , subject , text) - send an emai l

/ / auth (name, pass) - do an author izat ion v ia POP3

// both funct ions return fa lse on errors

// sample :

/ / e = new Emai lSocket ("mai l .host .com");

/ / author ize v ia POP3 (not a l l ser vers require author izat ion)

// e .auth ("myname", "my pass") ;

/ / send the emai l

/ / e . send ("me@my.com", "you@you.com", "My Subject" , "Hi there!")

/ / This scr ipt makes use of the Socket object , and creates a new c lass

/ / ca l led Emai lSocket that i s der ived from Socket . For more information on

// creat ing new c lasses in this way, consult chapter 7 of JavaScr ipt , The

// Definit ive Guide, by Dav id Flanagan (O'Rei l ly) .

/ /This i s the constructor for the emai l socket . It takes as arguments :

/ /ser ver - the address of the emai l ser ver (i s not checked for va l idi ty here)

//dbg - a boolean, i f t rue, pr ints addit ional er ror information

funct ion Emai lSocket (ser ver, dbg) {

var obj = new Socket ;

obj ._host = ser ver ;

obj ._debug = (dbg == true) ;

obj .__proto__ = Emai lSocket .prototy pe;

return obj ;

}

/ / correct the protoy pe chain to point to the Socket prototy pe chain

// - this i s what actual ly causes the der ivat ion from Socket .

Emai lSocket .prototy pe.__proto__ = Socket .prototy pe;

/ / This sets up the send() member funct ion. send() takes as arguments :

/ / f rom - the emai l address of the sender. This i s not va l idated.

/ / to - the emai l address of the recipient . I f there i s an error,

/ / and the from address i s incorrect , you w i l l not be not ified.

/ / subject - the contents of the subject field.

Using Help Back 191

Help Examples

Using Help Back 191

/ / text - the body of the message.

/ /

/ / Returns :

/ / t rue i f sending succeeded

// fa l se otherw ise (i f there was an error)

//

/ / Note that this code uses a local funct ion object to create

// the funct ion that i s ass igned to send.

Emai lSocket .prototy pe.send = funct ion (from, to, subject , text) {

/ / open the socket on por t 25 (SMTP)

if (! this .open (this ._host + " :25"))

return fa lse ;

t r y {

/ / d iscard the greet ing

var greet ing = this . read() ;

i f (this ._debug)

w r ite ("RECV: " + greet ing) ;

/ / i ssue EHLO and other commands

this ._SMTP ("EHLO " + from);

this ._SMTP ("MAIL FROM: " + from);

this ._SMTP ("RCPT TO: " + to) ;

this ._SMTP ("DATA");

/ / send subject and t ime s tamp

this .w r i te ln ("From: " + from);

this .w r i te ln ("To: " + to) ;

this .w r i te ln ("Date : " + new Date() . toStr ing()) ;

i f (ty peof subject != undefined)

this .w r i te ln ("Subject : " + subject) ;

this .w r i te ln() ;

/ / send the text

i f (ty peof text != undefined)

this .w r i te ln (text) ;

/ / terminate w ith a s ing le dot and wait for response

this ._SMTP (" . ") ;

/ / terminate the sess ion

this ._SMTP ("QUIT") ;

this .c lose() ;

return t rue;

}

catch (e) {

this .c lose() ;

return fa lse ;

}

}

/ / Author ize v ia POP3. Supply name and password.

/ /

/ / Returns :

/ / t rue i f sending succeeded

// fa l se otherw ise (i f there was an error)

Using Help Back 192

Help Examples

Using Help Back 192

/ /

/ / Arguments :

/ / name - the userName of the account

// pass - the password

Emai lSocket .prototy pe.auth = funct ion (name, pass) {

/ / open the connect ion on por t 110 (POP3)

i f (! this .open (this ._host + " :110"))

return fa lse ;

t r y {

/ / d iscard the greet ing

var greet ing = this . read() ;

i f (this ._debug)

w r ite ("RECV: " + greet ing) ;

/ / i ssue POP3 commands

this ._POP3 ("USER " + name);

this ._POP3 ("PASS " + pass) ;

this ._POP3 ("QUIT") ;

this .c lose() ;

return t rue;

}

catch (e) {

this .c lose() ;

return fa lse ;

}

}

/ / Users of the Emai lSocket do not need to be concerned w ith

// the fo l low ing method. It i s an implementat ion helper.

/ / local funct ion to send a command & check a POP3 reply

// throws in case of er ror

Emai lSocket .prototy pe._POP3 = funct ion (cmd) {

i f (this ._debug)

w r ite ln ("SEND: " + cmd);

i f (! this .w r i te ln (cmd))

throw "Error" ;

var reply = this . read() ;

i f (this ._debug)

w r ite ("RECV: " + reply) ;

/ / the reply s tar ts by e i ther + or -

i f (reply [0] == "+")

return;

throw "Error" ;

}

/ / Users of the Emai lSocket do not need to be concerned w ith

// the fo l low ing method. It i s an implementat ion helper.

/ / local funct ion to send a command & check a SMTP reply

// throws in case of er ror

Using Help Back 193

Help Examples

Using Help Back 193

Emai lSocket .prototy pe._SMTP = funct ion (cmd) {

i f (this ._debug)

w r i te ln ("SEND: " + cmd);

i f (! this .w r i te ln (cmd))

throw "Error" ;

var reply = this . read() ;

i f (this ._debug)

w r ite ("RECV: " + reply) ;

/ / the reply i s a three-dig i t code fol lowed by a space

var match = reply.match (/^(\d{3})\s/m);

i f (match. length == 2) {

var n = Number (match [1]) ;

i f (n >= 200 && n <= 399)

return;

}

throw "Error" ;

}

/ / nice to have: a toStr ing()

// This funct ion a l lows the emai l object to be pr inted.

Emai lSocket .prototy pe. toStr ing = funct ion() {

return "[object Emai l]" ;

}

Email setup
A simple script that prompts the user for the server name, email sender, and email recipient that are saved as
Settings for the Render and Email script (above). You can run this script as standalone any time you want to
change the settings. The script will run email_setup.jsx whenever the settings don't exist; under normal
circumstances this would happen only the first time, or if the settings/preferences file is deleted.

This script is a good example of how a script can create settings that are saved in Preferences for the sole use
of scripting (as opposed to altering existing After Effects Preferences settings).

{

/ / This scr ipt sets up 3 emai l set t ings .

/ / It can be run a l l by i t se l f , but i t i s a l so ca l led

/ / w ithin "3-Render and Mai l . j sx" i f the set t ings aren' t yet set .

var ser verValue = prompt("Enter name of mai l ser ver :") ;

var fromValue = prompt("Enter reply-to emai l address : ") ;

var toValue = prompt("Enter recipient ' s emai l address") ;

i f (ser verValue != nul l && ser verValue != "") {

app.set t ings .saveSett ing("Emai l Set t ings" , "Mai l Ser ver" ,

ser verValue) ;

}

i f (fromValue != nul l && fromValue != "") {

app.set t ings .saveSett ing("Emai l Set t ings" , "Reply-to Address" ,

f romValue) ;

}

i f (toValue != nul l && toValue != "") {

Using Help Back 194

Help Examples

Using Help Back 194

app.set t ings .saveSett ing("Emai l Set t ings" , "Render Repor t

Recipient" , toValue) ;

}

}

Dialogs and console
This script shows how to use the various dialogs (alert(), prompt(), confirm()) and how to write to the info
palette (write(), writeLn() and clearOutput()). Although this script serves no practical use, these dialogs and
info palette prompts are highly useful and should be familiar to all script creators.

/ / Use confirm() to le t the user te l l us whether he can see the " info" w indow.

// Depending how the user c l icks , t rue or fa lse i s re turned.

i f (confirm("Can you see the \" info\" palet te?")){

/ / Star t by c lear ing the information area .

c learOutput() ;

/ / w r i te and w r i teLn w i l l w r i te to the info tab w ith or w ithout a

/ / 'newl ine '

/ / a t the end.

w r i te("Roses are red,") ;

w r i teLn("v iolets are b lue") ;

w r i te("Sugar i s sweet , ") ;

w r i teLn("and so i s Equal . ") ;

var reply = prompt("Did you l ike my poem?") ;

i f (reply == "yes" | | reply == "YES"){

a ler t("See the info w indow for a specia l secret for tune.") ;

/ / This gets r id of the old w r i t ing on the info tab.

c learOutput() ;

w r i teLn("You have a future as a l i terar y cr i t ic . ") ;

}

e l se {

a ler t("Hmm, I ' l l t r y once more. . . ") ;

w r i teLn(" ") ;

w r i teLn("Roses are red, v iolets are b lue,") ;

w r i teLn("I 've got some gum, on the sole of my shoe.") ;

}

a ler t("Okay, a l l done w ith this test . ") ;

}

e l se {

/ / a ler t() just displays a message in a dia log box.

a ler t("Please make i t so you can see the info palet te and run this scr ipt

again") ;

}

Using Help Back 195

Help Examples

Using Help Back 195

File fun
This script shows how to open files, open projects, collect names of the Comps in the scene, prompt a user for
where to write a file, write to a text file, and save the text file. It is useful only as an example of how the
individual methods and attributes operate; it doesn’t serve any useful production purpose.

// F irs t , c lose any project that might be open.

i f (app.project != nul l){

/ / 3 choices here , CloseOptions .DO_NOT_SAVE_CHANGES,

/ / CloseOptions .PROMPT_TO_SAVE_CHANGES, and CloseOptions .SAVE_CHANGES

app.project .c lose(CloseOptions .DO_NOT_SAVE_CHANGES);

}

/ / Prompt the user to pick a project file :

/ / F irs t argument i s a prompt, second is the file ty pe.

var pfile = fileGetDialog("Select a project file to open" , "EggP aep") ;

i f (pfile == nul l){

a ler t("No project file se lected. Abor t ing .") ;

} e l se {

/ / Open that file . It becomes the current project .

var my_project = app.open(pfile) ;

/ / Bui ld a default text file name from the project ' s fi lename.

// Remove the " .aep" file extension (i f present) , then add

/ /_compnames. txt .

var default_text_filename;

var suffix_index = pfile .name. lastIndexOf(" .aep") ;

i f (suffix_index != -1){

default_text_filename = pfile .name.substr ing(0,suffix_index) ;

}e lse {

default_text_filename = pfile .name;

}

default_text_filename += "_compnames. txt" ;

/ / Create another file object for the file we' l l w r i te out .

/ / F irs t argument i s the prompt, second is a default file name, third i s

/ / the file ty pe.

var text_file = filePutDialog("Select a file to output your resul ts" ,

default_text_filename, "TEXT txt") ;

i f (text_file == nul l){

a ler t("No output file se lected. Abor t ing .") ;

} e l se {

/ / opens file for w r i t ing . Firs t argument i s mode ("w" for w r i t ing) ,

/ / second argument i s fi le t y pe (for mac only) ,

/ / third argument i s creator (mac only, " ????" i s no specific app).

text_file .open("w","TEXT","????") ;

/ / Write the heading of the file :

text_file .w r i te ln("Here i s a l i s t of a l l the comps in " +

pfile .name);

Using Help Back 196

Help Examples

Using Help Back 196

text_file .w r i te ln() ;

for (var i = 1 ; i <= app.project .numItems; i++){

i f (app.project . i tem(i) instanceof CompItem){

text_file .w r i te ln(app.project . i tem(i) .name);

}

}

text_file .c lose() ;

a ler t("Al l done!") ;

}

}

Using Help Back 197

Adobe After Effects Help Creating User Interface Elements

Using Help Back 197

Creating User Interface Elements

A JavaScript framework for creating user interface (UI) elements is included in After Effects 6.5.

This framework allows developers to use JavaScript to create UI components such as windows, panels,
buttons, checkboxes, and so on. The framework--called the scripting user interface--is built as an abstraction
layer on top of the windowing framework provided by the host platform on which After Effects is running.
Both Windows and MAC OS X native windowing systems are supported.

The motivation behind the creation of this scripting user interface was twofold:

• To enable JavaScripts to create dialogs and interact with controls. This satisfies a fundamental need on the
part of developers to create parameterized scripts, whose actions can be controlled more directly by the end
user.

• To extend the JavaScript environment to allow scripts to create UI elements dynamically. In this way, devel-
opers can create specialized interactive access to an application’s functionality.

Types of interface elements
The following controls and UI elements are supported:

• Panels (frames) -- (classname Panel) a container to group and organize other control types

• Push buttons -- (classname Button) a button containing a text string

• Radio buttons-- (classname RadioButton) a dual-state control, usually grouped with other radio buttons,
only one of which is set

• Checkbox buttons -- (classname Checkbox) a dual-state control showing a checked box (if true) or an
empty box (if false)

• Edit text -- (classname EditText) an text field that the user can change.

• Static text -- (classname StaticText) a text field that the user cannot change

• Scrollbars -- (classname Scrollbar) a standard scrollbar with a moveable element and stepper buttons to
incrementally move the element.

• Sliders -- (classname Slider) a standard slider with a moveable position indicator

In addition, the given classnames described above can used in window resource specifications to define
controls within a window or panel. See “Creating a window using window resource specifications” on
page 203 for more information.

JavaScript UI interface
This section provides a description of the scripting user interface programming model.

UI objects

The scripting user interface defines Window objects that wrap native windows and various control elements
(Buttons, StaticText, etc.), which wrap simple native controls. These objects share common methods such as
“query the element type”, “move the elements around”, and “set the title, caption or content”. For a complete
list of properties and methods, see “Reference” on page 21.

Using Help Back 198

Adobe After Effects Help Creating User Interface Elements

Using Help Back 198

Creating a window

To create a new window, use the Window constructor function. The constructor takes the desired type of the
window (dialog) as a parameter. You can supply optional arguments to specify an initial window title and
bounds.

The code examples provided in the JavaScript Interface section consist of short segments from a complete
script that is included later in this document. The examples presented build upon each other.

The following example creates an empty dialog with the variable name dlg. This dialog is carried though to
subsequent examples:

// Create an empty dia log w indow near upper le f t of the screen var

var dlg = new Window('dia log ' , 'Aler t Box Bui lder ' , [100,100,480,245]) ;

dlg .show() ;

.Newly created windows are initially invisible; the show() method makes them visible.

Roughly speaking, the numeric parameters to the constructor correspond to the top left and bottom right
coordinates of the window. The bounds supplied when creating the dialog specify the requested size of the
client area, which is the area of the dialog on which you can create controls. It does not include the title bar
and borders around the client area. The size and position of the dialog as a whole are automatically adjusted
to maintain the requested client area size.

For a more detailed description of window bounds, see “Element size and location” on page 198.

Container elements

All windows are containers, which is to say that they contain other elements such as panels, buttons, and check-
boxes within their boundaries.

Within a window, you can create other types of container elements and add interface components to them,
just as you add elements to a window. Elements added to a container are considered children of that container,
and certain operations performed on a container element also apply to its children. For instance, calling the
container’s hide() method makes the container invisible and makes all of its visible children invisible as well.

Along the same lines, calling the container’s show() method makes the container visible as well as any child
elements that were visible before the container was hidden. The following properties and methods of
containers also apply to all children of that container: visible, enabled, hide(), show().

Element size and location

To set the size and location of windows and controls, use the bounds property. As is typical when working with
window systems, the location of a window is defined as the point (pair of coordinates) where the top left
corner of the window is specified in the screen coordinate system.

Using Help Back 199

Adobe After Effects Help Creating User Interface Elements

Using Help Back 199

The location of an element within a window or other container element is defined as the point where the top
left corner of an element is specified in the window coordinate system, relative to the container the element
lies within. Size is specified by width and height in pixels. A complete bounds specification therefore consists
of 4 integer values that define the position of the upper left corner of the object and its dimensions.

The value of the bounds property can take several forms: a string with special contents, an inline JavaScript
“Bounds” object, or a four-element array. The following examples show equivalent ways of placing a 380-by-
390 pixel window near the upper left corner of the screen:

var dlg = new Window(‘dia log’, ‘Aler t Box Bui lder ’, [100,100,480,490]) ;
dlg .bounds = [100,100,480,490] ;
dlg .bounds = { le f t :100, top:100, r ight :480, bottom:490} ;
dlg .bounds = “ le f t :100, top:100, r ight :480, bottom:490”;

Note that the window dimensions define the size of the “client area” of the window, which is the portion of
the window that an application can directly control. The actual window size will typically be larger, because
the host platform’s window system can add title bars and borders to windows.

When read, the bounds property returns a Bounds object--an array of four values representing the coordi-
nates of the upper left and lower right corners of the element: [left, top, right, bottom].

Adding elements
To add elements to a window or other container, use the container’s add() method. This method accepts the
type of the element to be created and some optional parameters, depending on the element type. The return
value is the UI object created or null on errors. The value of the element’s visible property defaults to “true”.
The element is initially visible, but it will remain invisible as long as its parent object is invisible.

A second (optional) parameter may be used to specify the initial bounds. The bounds is relative to the working
area of its parent container. For elements that display text, the text may be specified as the third (optional)
parameter--other types of elements have different semantics for a third argument.

For more information on the way in which each type of element interprets optional parameters, see “JavaS-
cript UI reference” on page 213. These optional parameters are positional, meaning that if you want to specify
some text for an element, but don’t care about its bounds, you must still provide an argument for the second
parameter in order to supply a value for the third (text) parameter. You can ‘skip over’ a positional parameter
by specifying the ‘undefined’ value as its argument value. In the example below, a Button element is created
with an initial text value, but no bounds value.

dlg .btnPnl = dlg .add(‘panel ’, [15,330,365,375] , ‘Bui ld i t ’) ;
d lg .btnPnl . testBtn = dlg .btnPnl .add(‘button’, undefined, ‘ Test’) ;

Dynamically creating a property such as btnPnl to reference the control object returned by add() is not
required, but can make it easier to later refer to the control. See “Accessing child elements” on page 200 for
more information.

Creation properties

Some element types have attributes that may only--in fact, can only--be specified when the element is created.
These are not normal properties of the element, in that they cannot be changed during the element’s lifetime,
and they are needed only once. For these element types, an optional creation properties argument may be
supplied to the add() method--this argument is an object with one or more properties that control things like
the element’s appearance, or special functions like ‘read-only’ for an edit text element.

Using Help Back 200

Adobe After Effects Help Creating User Interface Elements

Using Help Back 200

All UI elements have a creation property called name, which can be used to assign a name for identifying that
element. In the following example, the new Button element is assigned the name ‘ok’:

dlg .btnPnl .bui ldBtn = dlg .btnPnl .add(‘button’, [125,15,225,35] , ‘Bui ld ’,
{name: ’ok’}) ;

Accessing child elements

A reference to each element added to a window is appended to the window’s children property.

The children collection is an array containing every defined element, indexed from 0 to the number of
elements minus 1. For controls or other elements that do not have children, the children collection is empty.

The number of child elements in a window is equal to the value of the length property of the children
collection. In the example below, since the ‘msgPnl’ panel was the first element created in dlg, the text for the
panel’s title can be set as follows:

var dlg = new Window('dia log ' , 'Aler t Box Bui lder ' , [100,100,480,245]) ;
dlg .msgPnl = dlg .add('panel ' , [25,15,355,130]) ;
dlg .chi ldren[0] . text = 'Messages ' ;

d lg .show() ;

Using creation properties, a name can be assigned to a newly created element. If this is done, a child can be
referred to by its name. For instance, the Button in the example in the previous section was named ‘ok’, so the
Button could now be referred to like this:

dlg .btnPnl .chi ldren[‘ok’] . text = “Bui ld”;

An even simpler way to refer to a named child element is to use its name as a property of its parent element.
We can also refer to the Button from the previous example like this:

dlg .btnPnl .ok. text = “Bui ld”;

The value of an element’s internal name property is used by the scripting user interface when a script accesses
a property of the element’s parent object that does not match any of the predefined properties.

In this case, the framework searches the names of the parent element’s children to see if a match exists, and if
so, returns a reference to the matching child object.

Types of UI elements

This section introduces the types of user interface elements you can create within a Window or other type of
container element.

The Panel element

The Panel element is the only type of non-window container that is currently defined. Panels are typically used
to visually organize related controls.

Using Help Back 201

Adobe After Effects Help Creating User Interface Elements

Using Help Back 201

You can also use panels as separators: panels with width = 0 appear as vertical lines and panels with height =
0 appear as horizontal lines. When you create a Panel, you can specify an optional borderStyle property (used
only at creation time) to control the appearance of the border drawn around the panel.

var dlg = new Window('dia log ' , 'Aler t Box Bui lder ' , [100,100,480,245]) ;
dlg .msgPnl = dlg .add('panel ' , [25,15,355,130] , 'Messages ') ;
d lg .show() ;

The Static Text element

StaticText elements are typically used to display text strings that are not intended for direct manipulation by
a user, like informative messages or identifying information for other elements. In the following example, a
Panel is created, and several StaticText elements are added to it:

/ / sample code for sect ion 2 .6 .2
var dlg = new Window('dia log ' , 'Aler t Box Bui lder ' , [100,100,480,245]) ;
dlg .msgPnl = dlg .add('panel ' , [25,15,355,130] , 'Messages ') ;
d lg .msgPnl . t i t leSt = dlg .msgPnl .add('s tat ictext ' , [15,15,105,35] ,

'Aler t box t i t le : ') ;
d lg .msgPnl .msgSt = dlg .msgPnl .add('s tat ictext ' , [15,65,105,85] ,

'Aler t message: ') ;
d lg .show() ;

The EditText element

EditText elements are typically used to provide a means for users to enter text to be supplied to the script when
the dialog is dismissed. Text in EditText elements can be selected by a user and copied from or pasted into. The
text property can be assigned to in order to display text in the element, and it can be read from to obtain the
current text value.

The textselection property can be assigned to in order to replace the current selection with new text, or to insert
text at the cursor (insertion point). It can be read from to obtain the current selection, if any.

Using the same panel pictured above, the example now adds some EditText elements, with initial values that
a user can accept or replace:

var dlg = new Window('dia log ' , 'Aler t Box Bui lder ' , [100,100,480,245]) ;
dlg .msgPnl = dlg .add('panel ' , [25,15,355,130] , 'Messages ') ;
d lg .msgPnl . t i t leSt = dlg .msgPnl .add('s tat ictext ' , [15,15,105,35] ,

 'Aler t box t i t le : ') ;
d lg .msgPnl . t i t leEt = dlg .msgPnl .add('edi t text ' , [115,15,315,35] , 'Sample Aler t ') ;
d lg .msgPnl .msgSt = dlg .msgPnl .add('s tat ictext ' , [15,65,105,85] , 'Aler t message : ') ;
d lg .msgPnl .msgEt = dlg .msgPnl .add('edi t text ' , [115,45,315,105] ,

'<your message here>' , {mult i l ine : t rue}) ;
dlg .show() ;

Using Help Back 202

Adobe After Effects Help Creating User Interface Elements

Using Help Back 202

Note the creation property on the second EditText field, where multiline:true is specified. multiline:true
indicates that the text in the item should wrap to the next page. In other words, it specifies a field in which a
long text string may be entered, and the text will wrap to appear as multiple lines.

The Button element

Button elements are typically used to initiate some action from a Window when a user clicks the mouse pointer
over the button; for example: accepting a dialog’s current settings, canceling a dialog, bringing up a new dialog
box, etc. The text property provides a label to identify a Button’s function:

var dlg = new Window('dia log ' , 'Aler t Box Bui lder ' , [100,100,480,245]) ;
dlg .btnPnl = dlg .add('panel ' , [15,50,365,95] , 'Bui ld i t ') ;
d lg .btnPnl . testBtn = dlg .btnPnl .add('button' , [15,15,115,35] , 'Test ') ;
d lg .btnPnl .bui ldBtn = dlg .btnPnl .add('button' , [125,15,225,35] ,

 'Bui ld ' , {name: 'ok '}) ;
d lg .btnPnl .cancelBtn = dlg .btnPnl .add('button' , [235,15,335,35] ,

'Cancel ' , {name: 'cancel ' }) ;
d lg .show() ;

The Slider element

Slider elements are typically used to select within a range of values, allowing the user to hold the mouse pointer
down over a moveable position indicator on the slider and drag this indicator within the range of the slider.
If you click the mouse pointer on a point on the slider bar, the position indicator will jump to that location.

A Slider has a value property that reflects the position of the moveable indicator, and minvalue and maxvalue
properties to define the endpoints of the slider’s range of values.

To make a slider control appear like those used in After Effects, adjust the height of the control until the slider
bar appears as a single line.

The Scrollbar element

Scrollbar elements are similar to Slider elements, in that they are often used to select within a range of values,
and have a moveable position indicator. They have all the properties of sliders, and in addition, they have
‘stepper buttons’ at each end of the scrollbar for moving the position indicator in fixed-size steps.

Using Help Back 203

Adobe After Effects Help Creating User Interface Elements

Using Help Back 203

You can control the size of each ‘step’ by setting the stepdelta property. Clicking ahead of or behind the position
indicator makes the position indicator jump a fixed number of values toward the point where you clicked. You
can control the size of this jump by setting the jumpdelta property.

You can create scrollbars with horizontal or vertical orientation; if width is greater than height, the orientation
is horizontal, otherwise it is vertical. The following example creates a Scrollbar element with associated
StaticText and EditText elements within a panel:

dlg .s izePnl = dlg .add(‘panel ’, [60,240,320,315] , ‘Dimensions’) ;
d lg .s izePnl .w idthSt = dlg .s izePnl .add(‘s tat ictext’, [15,15,65,35] ,

‘Width: ’ ;
d lg . s izePnl .w idthScr l = dlg .s izePnl .add(‘scrol lbar ’,

[75,15,195,35] ,300, 300, 800) ;
dlg .s izePnl .w idthEt = dlg .s izePnl .add(‘edit text’, [205,15,245,35]) ;

Note that the last 3 arguments to the add() method that creates the scrollbar define the values for the value,
minvalue and maxvalue properties. Scrollbars are often created with an associated EditText field to display the
current value of the scrollbar, and to allow setting the scrollbar’s position to a specific value.

Creating a window using window resource specifications

A specially formatted string provides a simple and compact means of creating a window and its component
elements as a resource specification. A resource specification allows you to define and configure multiple
window components in one easy-to-reference script.

The special string is passed as the type parameter to the Window constructor function, as follows:

// create a new dia log from a resource specificat ion
var a ler tBui lderResource =

“dia log { text : ‘Aler t Box Bui lder ’, bounds:[100,100,480,490] , \
msgPnl : Panel { text : ‘Messages’, bounds:[25,15,355,130] , \

t i t leSt :Stat icText { text : ’Aler t box t i t le : ’, \
bounds:[15,15,105,35] } , \

t i t leEt :EditText { text : ’Sample Aler t’, bounds:[115,15,315,35] } , \
msgSt : Stat icText { text : ’Aler t message: ’, \

bounds:[15,65,105,85] } , \
msgEt : EditText { text : ’<your message here>’, \

 bounds:[115,45,315,105] , proper t ies :{mult i l ine : t rue} } \
} , \
hasBtnsCb: Checkbox { text : ’Has a ler t buttons? ’, a l ignment : ’center ’, \

bounds:[125,145,255,165] } , \
a ler tBtnsPnl : Panel { text : ‘Button a l ignment’, bounds:[45,180,335,225] , \

a l ignLeftRb:RadioButton { text : ’Lef t’, bounds:[15,15,95,35] } , \
a l ignCenterRb:RadioButton { text : ’Center ’, \

bounds:[105,15,185,35] } , \
a l ignRightRb:RadioButton { text : ’Right’, bounds:[195,15,275,35] } \

} , \
s izePnl : Panel { text : ‘Dimensions’, bounds:[60,240,320,315] , \

w idthSt :Stat icText { text : ’Width: ’, bounds:[15,15,65,35] } , \
w idthScr l :Scrol lbar { minvalue:300, maxvalue:800, \

bounds:[75,15,195,35] } , \
w idthEt :EditText { bounds:[205,15,245,35] } , \
heightSt :Stat icText { text : ’Height : ’, bounds:[15,45,65,65] } , \
heightScr l :Scrol lbar { minvalue:200, maxvalue:600, \

bounds:[75,45,195,65] } , \
heightEt :EditText { bounds:[205,45,245,65] } \

} , \
btnPnl : Panel { text : ‘Bui ld i t ’, bounds:[15,330,365,375] , \

testBtn:Button { text : ’Test’, bounds:[15,15,115,35] } , \
bui ldBtn:Button { text : ’Bui ld ’, bounds:[125,15,225,35] , \

proper t ies :{name: ’ok’} } , \

Using Help Back 204

Adobe After Effects Help Creating User Interface Elements

Using Help Back 204

cancelBtn:Button { text : ’Cancel ’, bounds:[235,15,335,35] , \
proper t ies :{name: ’cancel ’ } } \

} \
}” ;
dlg = new Window (aler tBui lderResource) ;

The general structure of a window resource specification is a Window type specification (i.e., “dialog”),
followed by a set of braces enclosing one or more property definitions. Controls are defined as properties
within windows and other containers by specifying the classname of the control in a property definition, with
properties of the control enclosed in braces {}, for example: testBtn: Button { text: ‘Test’ }.

Creation properties are specified in a properties property as named properties of an inline object (see example
above). The syntax of window resource specification strings is completely described below.

Window resource specification syntax

The window resource specification syntax is given in BNF (Backus-Naur Form) below:

resourceSpec = ‘” ’ w indowTy peName inl ineObject ‘” ’

w indowTy peName = [a modal dia log]

inl ineObject = “{“ proper t iesLis t “}”

proper t iesList = proper tyDefn { “,” proper tyDefn }

proper tyDefn = proper tyName “ :” proper tyValue

proper tyName = [a JavaScr ipt proper ty name]

proper tyValue = “nul l” | “t rue” | “fa lse” | s t r ing | number

| in l ineArray |objectDefn

str ing = [a JavaScr ipt s t r ing l i tera l]

number = [any JavaScr ipt integer or rea l number l i tera l]

inl ineArray = “[“ proper tyValue { “,” proper tyValue } “]”

objectDefn = (namedObject | in l ineObject)

namedObject = [any object c lassname] inl ineObject

Note: To create a UI element, the classname in the namedObject definition above can be any element classname
referred to in “Types of interface elements” on page 197. For example:

“dia log { \
text : ‘From Resource’, bounds: [10, 10, 210, 110] , \
box: Panel { \

bounds: [10, 10, 190, 90] , \
ok: Button { \

text : ‘OK’, bounds:[40, 30, 140, 50] , \
} \

} \
}” ;

Interacting with controls: events and event callbacks

When a script creates a window, it typically adds control elements to the window that a user can manipulate,
for instance, by clicking a button, entering text in a text box, moving a scrollbar, etc.

These user actions or manipulations generate events within the user interface system. The script that creates a
window needs a way to be notified of events from that window or from controls within the window. The
scripting user interface provides a number of event callback methods that a script can define as properties of
any UI element that the script needs to interact with.

Using Help Back 205

Adobe After Effects Help Creating User Interface Elements

Using Help Back 205

Each class of UI element has a set of callback methods defined for it. For windows, there are callbacks like
onClose(), onMove(), and onResize(). For controls, callbacks vary from type to type. A typical callback is
onClick() for button, radiobutton, and checkbox elements, and onChange() for edittext fields, scrollbars, and
sliders.

To handle a given event for some UI element, simply define a property of the same name as the event callback
in the element and assign a JavaScript function you have defined to it. The example below uses "in line"
functions, which employ a unique syntax and do not require a name. However, you can also define the
function elsewhere in the script. In that case, simply assign the name of the function to the event handler
property. The scripting user interface calls these functions on event notifications if defined.

Examples:

/* ‘has buttons’ checkbox enables or disables the panel that
determines the just ificat ion of the ‘a ler t’ button group */
dlg .hasBtnsCb.onClick =

funct ion () { this .parent .a ler tBtnsPnl .enabled = this .va lue; } ;

/ /The Bui ld and Cancel buttons c lose this dia log
w ith (dlg .btnPnl) {

bui ldBtn.onClick =
funct ion () { this .parent .parent .c lose(1) ; } ;

cancelBtn.onClick =
funct ion () { this .parent .parent .c lose(2) ; } ;

} ;

Because event callback functions work as methods of the object in which they are defined, the functions have
access to the object via the “this” JavaScript keyword. In the examples above, “this” refers to the UI object a
given callback is defined in, so properties of the UI object can be accessed relative to the “this”. For example,
because each UI object has a parent property which is a reference to its container object, this.parent gets you a
reference to the object’s parent object.

To elaborate further on this point, a button() is contained within a panel, which is contained within a window,
all of which are ultimately closed. The progression is from smaller to larger UI moving from left to right.

Also be aware that you can simulate user actions by sending an event notification directly to a UI element, via
the element’s notify() method. In this manner, a script can generate events in the controls of a window, as if a
user was clicking buttons, entering text, moving a window, etc.

radiobutton and checkbox elements have a boolean value property; using notify() to simulate a click on these
elements also changes the value of this property, just like clicking the element would do. For instance, if the
value of a checkbox ‘hasBtnsCb’ in our example above is true, the following example changes the value to false:

i f (dlg .hasBtnsCb.value == true)
dlg .hasBtnsCb.not i fy() ;

/ / d lg .hasBtnsCb.value i s now fa lse

For a complete description of the different event callback methods and notify(), see “Common methods and
event handlers” on page 217.

buildBtn.onClick = function () {this.parent.parent.close(1);};

button

panel

dialog

Using Help Back 206

Adobe After Effects Help Creating User Interface Elements

Using Help Back 206

Modal dialogs

A modal dialog is initially invisible. When calling its show() method, the dialog is displayed and starts
executing. The call to show() does not return until the dialog has been dismissed, typically by the user clicking
an OK or Cancel button.

When calling the hide() or close() methods during the execution of a modal dialog, the dialog is dismissed.
The close() method accepts an optional argument that the call to show() returns.

Warning: You cannot use the JavaScript Debugger to debug event callback functions for modal dialogs, because
once the dialog starts executing, it captures all mouse events. Setting a breakpoint in an event callback function for
a modal dialog will result in an apparent application hang if the breakpoint is ever reached.

To work around this restriction, an effective debugging technique is to create your dialog, but not call its show()
method to make it visible. Then use the debugger to call the notify() method on controls whose event callback
functions you wish to debug. It’s considered good design practice to keep the code in the event callback functions
simple, while deferring the primary script logic execution until after the dialog has been dismissed.

Default and Cancel elements

Modal dialogs can usually be dismissed by typing certain keyboard shortcuts. In addition to clicking the ‘OK’
or ‘Cancel’ buttons, typing the ‘Enter’ key normally produces the same results as clicking the ‘OK’ (or default)
button, and typing the ‘Esc’ key is equivalent to clicking the ‘Cancel’ button. In each case, the keyboard
shortcut is the same as if your script had called the notify() method for the associated Button. The dialog
designer has explicit control over which Button elements are notified by these keyboard shortcuts: a newly-
created dialog has defaultElement and cancelElement properties that are initially undefined. The dialog
designer can set these properties to the objects representing the buttons that should be notified when the
respective keyboard shortcut is typed.

The scripting user interface provides reasonable defaults if the defaultElement and cancelElement properties
are still undefined when the dialog is about to be shown for the first time.

Default values for the defaultElement property are determined by the following algorithm:

• The scripting user interface searches the dialog’s buttons for a button whose name property has the string
value “ok” (case is not important). If one is found, defaultElement is set to that object.

• If no matching named object is found, the scripting user interface searches the dialog’s buttons for a button
whose text property has the string value “ok” (case is not important). If one is found, defaultElement is set
to that object.

Default value for the cancelElement property are determined by the following algorithm:

• The scripting user interface searches the dialog’s buttons for a button whose name property has the string
value “cancel” (case is not important). If one is found, cancelElement is set to that object.

• If no matching named object is found, the scripting user interface searches the dialog’s buttons for a button
whose text property has the string value “cancel” (case is not important). If one is found, cancelElement is
set to that object.

These algorithms handle most dialog boxes without the designer having to explicitly set these properties.
When you add buttons to a dialog that will be used to dismiss the dialog, use creation properties to set the name
property of such buttons to ‘ok’ or ‘cancel’, depending on the desired semantics; this precaution makes the
above algorithm work properly even when the text of such buttons is localized. If the scripting user interface
cannot find a matching button for either case, the respective property is set to null, which means that keyboard
shortcuts for default or cancel will not notify any elements.

Using Help Back 207

Adobe After Effects Help Creating User Interface Elements

Using Help Back 207

Guidelines for creating and using modal dialogs

When your script creates a dialog, you typically create controls that the user must interact with in order to
enter values that your script will use. In general, you can minimize the number of event callback functions you
attach to various controls in your dialogs, unless interaction with those controls changes the operation of the
dialog itself. In most cases where you simply want to read the states of various controls when the dialog is
dismissed, you do not need to handle events for them. For instance, you often don’t need onClick() functions
for every checkbox and radiobutton in your dialog: when the dialog is dismissed, read their states using their
value properties.

Some exceptions to this guideline:

• onChange() functions are needed for edittext elements, if users enter values which must be validated (like a
number within a range). The event callback must perform any necessary validation, and interact with the
user on errors.

• Define onClick() for OK and Cancel buttons which close the dialog with a given value.

Note: Perform this function only if you have not defined the defaultElement and/or cancelElement properties or
named these buttons in such a way that they will automatically be identified as the OK and Cancel buttons.

Prompts and Alerts

Some JavaScript environments provide functions on the global window object to display message boxes or
alert boxes and a prompt box that displays one or two lines of text and then allows the user to enter one line
of text.

The scripting user interface defines functions alert(), confirm() and prompt() on the Window class that
provides this standard functionality. The host application controls the appearance of these simple dialog
boxes, so they are consistent with other alert and message boxes displayed by the application. See the “JavaS-
cript UI reference” on page 213 for details.

JavaScript UI example
Having explored the individual scripting components that make up the user interface, you are now ready to
see the parts assembled into real-world JavaScript code that produces a fully functional user interface.

The JavaScript UI code sample described below includes the following functions, which creates a simple user
interface builder window populated with various panels, checkboxes, buttons and controls. When you run the
builder, you can then cause it to create an Alert Box.

• createBuilderDialog() -- Creates an empty dialog window near the upper left of the screen and adds a title
panel, a checkbox, a control panel and a panel with buttons to test parameters and create the Alert Box
specification.

• initializeBuilder() --Sets up initial control states and attaches event callback functions to controls.

• runBuilder() -- Runs the builder dialog and returns the resulting Alert Box UI

• createResource() -- Creates and returns a string containing a dialog resource specification that creates the
Alert Box UI using the parameters entered

• stringProperty() -- Returns a formatted string

• arrayProperty() -- Returns a formatted array

• createTestDialog() -- Creates a new Test dialog

These functions are bundled together into a Main script, which assembles the final Alert Box dialog.

Using Help Back 208

Adobe After Effects Help Creating User Interface Elements

Using Help Back 208

createBuilderDialog

Most of the heavy-lifting for visual components of the JavaScript UI code sample occurs in the createBuilder-
Dialog() function, where the main components of the dialog are configured, as displayed below.

funct ion createBui lderDialog()
{

 / /Create an empty dia log w indow near the upper le f t of the screen
var dlg = new Window('dia log ' , 'Aler t Box Bui lder ' , [100,100,480,490]) ;

 / /Add a panel to hold t i t le and 'message text ' s t r ings
dlg .msgPnl = dlg .add('panel ' , [25,15,355,130] , 'Messages ') ;
d lg .msgPnl . t i t leSt = dlg .msgPnl .add('s tat ic text ' , [15,15,105,35] , 'Aler t box t i t le : ') ;
d lg .msgPnl . t i t leEt = dlg .msgPnl .add('edi t text ' , [115,15,315,35] , 'Sample Aler t ') ;
d lg .msgPnl .msgSt = dlg .msgPnl .add('s tat ictext ' , [15,65,105,85] , 'Aler t message : ') ;
d lg .msgPnl .msgEt = dlg .msgPnl .add('edi t text ' , [115,45,315,105] , '<your message here>' ,
{mult i l ine : t rue}) ;

 / /Add a checkbox to control the presence of buttons to dismiss the a ler t box
dlg .hasBtnsCb = dlg .add('checkbox' , [125,145,255,165] , 'Has a ler t buttons? ') ;

 / /Add panel to determine a l ignment of buttons on the a ler t box
dlg .a ler tBtnsPnl = dlg .add('panel ' , [45,180,335,225] , 'Button a l ignment ') ;
d lg .a ler tBtnsPnl .a l ignLeftRb = dlg .a ler tBtnsPnl .add('radiobutton' , [15,15,95,35] , 'Lef t ') ;
d lg .a ler tBtnsPnl .a l ignCenterRb = dlg .a ler tBtnsPnl .add('radiobutton' , [105,15,185,35] , 'Center ') ;
d lg .a ler tBtnsPnl .a l ignRightRb = dlg .a ler tBtnsPnl .add('radiobutton' , [195,15,275,35] , 'Right ') ;

 / /Add a panel w ith controls for the dimensions of the a ler t box
dlg .s izePnl = dlg .add('panel ' , [60,240,320,315] , 'Dimensions ') ;
d lg .s izePnl .w idthSt = dlg .s izePnl .add('s tat ictext ' , [15,15,65,35] , 'Width: ') ;
d lg .s izePnl .w idthScr l = dlg .s izePnl .add('scrol lbar ' , [75,15,195,35] , 300, 300, 800) ;
dlg .s izePnl .w idthEt = dlg .s izePnl .add('edi t text ' , [205,15,245,35]) ;
dlg .s izePnl .heightSt = dlg .s izePnl .add('s tat ictext ' , [15,45,65,65] , 'Height : ') ;
d lg .s izePnl .heightScr l = dlg .s izePnl .add('scrol lbar ' , [75,45,195,65] , 200, 200, 600) ;
dlg .s izePnl .heightEt = dlg .s izePnl .add('edi t text ' , [205,45,245,65]) ;

 / /Add a panel w ith buttons to test parameters and create the a ler t box specificat ion
dlg .btnPnl = dlg .add('panel ' , [15,330,365,375] , 'Bui ld i t ') ;
d lg .btnPnl . testBtn = dlg .btnPnl .add('button' , [15,15,115,35] , 'Test ') ;
d lg .btnPnl .bui ldBtn = dlg .btnPnl .add('button' , [125,15,225,35] , 'Bui ld ' , {name: 'ok '}) ;
d lg .btnPnl .cancelBtn = dlg .btnPnl .add('button' , [235,15,335,35] , 'Cancel ' , {name: 'cancel ' }) ;

re turn dlg ;

/ / createBui lderDialog

1

2

3

4

Using Help Back 209

Adobe After Effects Help Creating User Interface Elements

Using Help Back 209

This code snippet, when broken down into smaller segments--and run in the context of the entire UI sample
code that follows--produces the following succession of dialogs, which coalesce into one final Alert Box
window.

For the final dialog to actually display, supporting code to initialize and run the Alert Box Builder must be
included, as illustrated below.

function ini t ia l izeBui lder(bui lder)
{

 / /Set up ini t ia l control s tates
w ith (bui lder) {

hasBtnsCb.value = t rue;
a ler tBtnsPnl .a l ignCenterRb.value = t rue;
w ith (s izePnl) {

w idthEt . text = w idthScr l .va lue;
heightEt . text = heightScr l .va lue;

}

1

2

3

4

Final Dialog
Created

Using Help Back 210

Adobe After Effects Help Creating User Interface Elements

Using Help Back 210

}

 / /Attach event ca l lback funct ions to controls

 /* 'has buttons ' checkbox enables or disables the panel that
determines the just ificat ion of the 'a ler t ' button group */

bui lder.hasBtnsCb.onClick =
funct ion () { this .parent .a ler tBtnsPnl .enabled = this .va lue; } ;

 /*The edit text fields and scrol lbars in s izePnl are connected */
w ith (bui lder.s izePnl) {

w idthEt .onChange =
funct ion () { this .parent .w idthScr l .va lue = this . text ; } ;

w idthScr l .onChange =
funct ion () { this .parent .w idthEt . text = this .va lue; } ;

heightEt .onChange =
funct ion () { this .parent .heightScr l .va lue = this . text ; } ;

heightScr l .onChange =
funct ion () { this .parent .heightEt . text = this .va lue; } ;

}

w ith (bui lder.btnPnl) {
 / /The Test button creates a t r ia l Aler t box from the current specificat ions

testBtn.onClick =
funct ion () {

Window.aler t('Ty pe Enter or Esc to dismiss the test Aler t box') ;
createTestDialog(createResource(this .parent .parent)) ;

} ;

 / /The Bui ld and Cancel buttons c lose this dia log
bui ldBtn.onClick =

funct ion () { this .parent .parent .c lose(1) ; } ;
cancelBtn.onClick =

funct ion () { this .parent .parent .c lose(2) ; } ;
} ;

} / / ini t ia l izeBui lder

funct ion runBui lder(bui lder)
{

 / /Run the bui lder dia log , re turn i t s resul t
return bui lder.show() ;

}

/*This funct ion creates and returns a s t r ing containing a dia log
resource specificat ion that w i l l create an Aler t dia log us ing
the parameters the user entered. */

funct ion createResource(bui lder)
{

 / /Define the ini t ia l par t of the resource spec w ith dia log parameters
var dlgWidth = Number(bui lder.s izePnl .w idthEt . text) ;
var dlgHeight = Number(bui lder.s izePnl .heightEt . text) ;
var res = "dia log { " +

str ingProper ty("text" , bui lder.msgPnl . t i t leEt . text) +
arrayProper ty("bounds" , 0 , 0 , d lgWidth, d lgHeight) +

"\n" ;

 / /Define the a ler t message s tat ictext e lement , s iz ing i t to the a ler t box
var marg in = 15; var l , t ;
var msgWidth, msgHeight ;
var hasButtons = bui lder.hasBtnsCb.value;
var btnsHeightUsed = hasButtons ? 20 + marg in : 0 ;
msgHeight = 60;
msgWidth = dlgWidth - (marg in * 2) ;

l = marg in;
t = (dlgHeight - msgHeight - btnsHeightUsed) / 2 ;
res += " msg: Stat icText { " +

str ingProper ty("text" , bui lder.msgPnl .msgEt . text) +
arrayProper ty("bounds" , l , t , l + msgWidth, t + msgHeight) +
" just i fy : 'center ' , proper t ies :{mult i l ine : t rue} }" ;

 / /Define buttons i f des ired
i f (hasButtons) {

var btnWidth = 90;
/ /Al ign buttons as specified
w ith (bui lder.a ler tBtnsPnl) {

i f (a l ignLeftRb.value)

Using Help Back 211

Adobe After Effects Help Creating User Interface Elements

Using Help Back 211

l = marg in;
e lse i f (a l ignCenterRb.value)

l = (dlgWidth - (btnWidth * 2 + 10)) / 2 ;
 e l se

l = dlgWidth - ((btnWidth * 2 + 10) + marg in) ;
}
t = dlgHeight - btnsHeightUsed;
res += " , \n" +

" okBtn: Button { " +
str ingProper ty("text" , "OK") +
arrayProper ty("bounds" , l , t , l + btnWidth, t + 20) +

"} , \n" ;
l += btnWidth + 10;
res += " cancelBtn: Button { " +

str ingProper ty("text" , "Cancel") +
arrayProper ty("bounds" , l , t , l + btnWidth, t + 20) +

"}" ;
}

/ /Al l done!
res += "\n}" ;
return res ;

}

funct ion s t r ingProper ty(pname, pval)
{

return pname + " : ' " + pval + " ' , " ;
}

funct ion arrayProper ty(pname, l , t , r, b)
{

return pname + " :[" + l + " , " + t + " , " + r + " , " + b + "] , " ;
}

funct ion createTestDialog(resource)
{

var target = new Window (resource) ;
return target . show() ;

}

/ /------------- Main scr ipt -------------/ /
var bui lder = createBui lderDialog() ;
ini t ia l izeBui lder(bui lder) ;
i f (runBui lder(bui lder) == 1) {

 / /Create the Aler t dia log resource specificat ion s t r ing
var resSpec = createResource(bui lder) ;

 / /Write the resource specificat ion s t r ing to a file , us ing the s tandard file open dia log
var fname = Fi le .openDialog('Save resource specificat ion') ;
var f = Fi le(fname);
i f (f .open('w')) {

var ok = f .w r i te(resSpec) ;
i f (ok)

ok = f .c lose() ;
i f (! ok)

Window.aler t("Error creat ing " + fname + " : " + f .er ror) ;
}

}

Sample code summary

This sample code is used to demonstrate some practical applications of the scripting interface. Here a few of
the major intentions of the script:

• To provide a simple real-world example of creating a user interface with multiple components and controls.

• To show how certain controls such as sliders and edit text boxes can interact.

• To show how radio buttons work and how to set radio buttons to true and initialize them.

• To show a multi-line text edit box as displayed in the messages panel of the dialog box.

• To show how you can associate static text fields with edit text fields and static text with other types of
controls.

Using Help Back 212

Adobe After Effects Help Creating User Interface Elements

Using Help Back 212

• To show how simple event callback functions work and how you can attach event handler functions to any
controls that can generate events.

• To show how to enable and disable sets of controls. For example, in the alert checkbox,
if you unclick the checkbox then everything in the button alignment field suddenly gets greyed out.

• To demonstrate how you typically dismiss a modal dialog by providing an OK and Cancel button.

• To show you can still read property values out of the dialog and its controls after the dialog has been
dismissed.

Resource-specification sample code

To run this JavaScript UI code using a resource specification, change the lines indicated below and include the
resource specification sample code. For more information on resource specifications, refer to “Creating a
window using window resource specifications” on page 203.

Note: This is a complete example of a resource specification string. The alertBuilderResource() code displayed
below is a way to create the same main dialog box created by the createBuilderDialog() function.

Using Help Back 213

Adobe After Effects Help Creating User Interface Elements

Using Help Back 213

/ /------------- Alternate dia log creat ion using resource specificat ion -------------/ /
/*
To use this code, replace the l ine above that says

var bui lder = createBui lderDialog() ;
w ith

var bui lder = createBui lderDialogFromResource() ;
*/

var a ler tBui lderResource =
"dia log { text : 'Aler t Box Bui lder ' , bounds:[100,100,480,490] , \

msgPnl : Panel { text : 'Messages ' , bounds:[25,15,355,130] , \
t i t leSt :Stat icText { text : 'Aler t box t i t le : ' , bounds:[15,15,105,35] } , \
t i t leEt :EditText { text : 'Sample Aler t ' , bounds:[115,15,315,35] } , \
msgSt : Stat icText { text : 'Aler t message: ' , bounds:[15,65,105,85] } , \
msgEt : EditText { text : '<your message here>' , bounds:[115,45,315,105] ,

proper t ies :{mult i l ine : t rue} } \
 } , \

hasBtnsCb: Checkbox { text : 'Has a ler t buttons? ' , a l ignment : 'center ' ,
bounds:[125,145,255,165] } , \

a ler tBtnsPnl : Panel { text : 'Button a l ignment ' , bounds:[45,180,335,225] , \
a l ignLeftRb:RadioButton { text : 'Lef t ' , bounds:[15,15,95,35] } , \
a l ignCenterRb:RadioButton { text : 'Center ' , bounds:[105,15,185,35] } , \
a l ignRightRb:RadioButton { text : 'Right ' , bounds:[195,15,275,35] } \

 } , \
s izePnl : Panel { text : 'Dimensions ' , bounds:[60,240,320,315] , \

w idthSt :Stat icText { text : 'Width: ' , bounds:[15,15,65,35] } , \
w idthScr l :Scrol lbar { minvalue:300, maxvalue:800, bounds:[75,15,195,35] } , \
w idthEt :EditText { bounds:[205,15,245,35] } , \
heightSt :Stat icText { text : 'Height : ' , bounds:[15,45,65,65] } , \

heightScr l :Scrol lbar { minvalue:200, maxvalue:600, bounds:[75,45,195,65] } , \
heightEt :EditText { bounds:[205,45,245,65] } \

 } , \
btnPnl : Panel { text : 'Bui ld i t ' , bounds:[15,330,365,375] , \
 tes tBtn: Button { text : 'Test ' , bounds:[15,15,115,35] } , \

 bui ldBtn:Button { text : 'Bui ld ' , bounds:[125,15,225,35] , proper t ies :{name: 'ok '} } , \
 cancelBtn:Button { text : 'Cancel ' , bounds:[235,15,335,35] , proper t ies :{name: 'cancel ' } } \

 } \
}" ;

funct ion createBui lderDialogFromResource()
{

//Create from resource
return new Window(aler tBui lderResource) ;

} / / createBui lderDialogFromResource

JavaScript UI reference
The JavaScript user interface defines the global elements of the Window object and properties and methods
of all the UI classes.

Global elements of the Window object

The following functions are class methods of the global Window class only; windows created via new Window()
do not have these functions defined.

To call class methods, use the following example syntax: Window.alert("Class method!");

aler t (text)

Displays the specified string in a user alert box that provides an OK button. The alert dialog is not intended
for lengthy messages. When the string argument to the alert method is too long, the alert dialog truncates it.

confirm (text)

Displays the specified string in a self-sizing modal dialog box that provides Yes (default) and No buttons.
When this user clicks one of these buttons, this method hides the dialog and returns a value indicating the
button the user clicked to dismiss the dialog. A return value of true indicates that the user clicked the Yes
button to dismiss the confirm box. The confirmation dialog displays lengthier messages than the alert and
prompt dialogs do, but if this string is too long, the dialog truncates it.

Using Help Back 214

Adobe After Effects Help Creating User Interface Elements

Using Help Back 214

find (ty pe, t i t le)

return value: Object

Finds an existing window already created by a script. title is the title of the window and type is modal dialog.
This value is a hint in case more than one window has the same title; if the type is unimportant, null or an
empty string can be passed. If the window was found, the corresponding JavaScript Window object is
generated and returned; if the window cannot be determined, the return value is null.

prompt (prompt [, default])

Displays a modal dialog that returns the user’s text input. When the dialog opens, it displays the given prompt
text and its text edit field is initialized with any specified default text. When the user clicks OK to dismiss the
dialog, it returns the text the user entered. If the user clicks the Cancel button in this dialog, this method’s
result is the value null.

Common object properties

The following table shows the common properties defined for each element type.

W
in

d
o

w

P
an

el

St
at

ic
Te

xt

Ed
it

Te
xt

B
u

tt
o

n

C
h

ec
k

b
o

x

R
ad

io
B

u
tt

o
n

Sc
ro

llb
ar

Sl
id

er

active x x x x x x x

bounds x x x x x x x x x

children x x x x x x x x x

enabled x x x x x x x x x

jumpdelta x

justify x x x x x x x

maxvalue x x

minvalue x x

parent x x x x x x x x x

stepdelta x

text x x x x x x x

textselection x

type x x x x x x x x x

value x x x x

visible x x x x x x x x x

Using Help Back 215

Adobe After Effects Help Creating User Interface Elements

Using Help Back 215

Properties

Following are the properties defined for each element types listed above.

Property Type Description

active Boolean Contains true if the object is active, false otherwise. An active floating dialog
is the front-most dialog. A modal dialog that is visible is by definition the
active dialog. An active control is the one which will accept keystrokes, or in
the case of a Button, be activated (clicked) when the user types a return. Set
this true to make a given control or dialog active.

bounds Bounds Contains a Bounds object describing the location and size of the element as
array values representing the coordinates of the upper left and lower right
corners of the element: [left, top, right, bottom]. These are screen coordinates
for window elements, and window-relative coordinates for other elements.
See “Element Size and Location “

for a definition of the Bounds object.

children Object The collection of UI elements that the UI object contains. This is an array
indexed by number or by a string containing an element’s name. The length
property of this array is the number of child elements for container elements
and is zero for controls; future implementations may return additional ele-
ments for composite controls. Read only.

enabled Boolean Contains true if the object is enabled, false otherwise. If set to true, control
elements will accept input. If set to false, control elements will not accept
input, and all types of elements may change to a ‘grayed-out’ appearance.

jumpdelta Number Contains the value to increment or decrement a Scrollbar element’s position
by, when the user clicks ahead or behind the moveable element of the Scroll-
bar to make the scroll position ‘jump’.

justify String Controls justification of text in static text and edit text controls. The value is
either “left”, “center”, or “right” and the default value is left-justified. Some
implementations may not fully support this property, and it may be ignored
for some types of controls.

maxvalue Number Contains the maximum value that the value property can have. If maxvalue
is reset less than value, value will be reset to maxvalue. If maxvalue is reset less
than minvalue, minvalue will be reset to maxvalue.

minvalue Number Contains the minimum value that the value property can have. If minvalue is
reset greater than value, value will be reset to minvalue. If minvalue is reset
greater than maxvalue, maxvalue will be reset to minvalue.

parent Object The parent object of a UI object. This property returns null for window
objects. Read only.

placement Bounds An alternate name for the bounds property; bounds is the preferred name,
and use of placement is deprecated.

stepdelta Number Contains the value to increment or decrement a Scrollbar element’s position
by, when a stepper button at either end of the scrollbar is clicked.

text String The title, label or text. May be ignored for certain window types. For controls,
its usage depends on the control type. Many controls like buttons use the
text as a label, while other controls, such as edit fields, use the text to access
its content.

textselection String Replace the current text selection with the specified text string, modifying
the value of the text property. If there is no selection, the specified text is
inserted into the text property string at the current insertion point. Reading
the textselection property returns any selected text, or an empty string if
there is no selection.

type String Contains the type name of the element. For Window objects, this is the value
of the first argument to the Window constructor function. For controls, this is
the value of the first argument to the add() method. Read only.

value Boolean (for Checkbox and RadioButton) true if the control has been set (i.e., a check-
box shows a check mark), false if not set.

Using Help Back 216

Adobe After Effects Help Creating User Interface Elements

Using Help Back 216

Properties found only in Window elements

Window elements contain the following properties, in addition to those described in the previous section.

defaultElement -- Object

The element to notify when a user types the Enter key, with the intent to dismiss the dialog as if the “OK”
button had been clicked.

cancelElement -- Object

The element to notify when a user types the Esc key (or the <Cmd .> combination on a Mac), with the intent
to dismiss the dialog as if the “Cancel” button had been clicked.

Objects used as property values

The values of certain properties are represented by objects that the scripting interface defines. This section
describes those objects. It includes a description of their semantics, ways to create them, and descriptions of
their properties.

The Bounds Object

A Bounds object is used to define the boundaries of a Window or UI element within its
coordinate space. You cannot directly create a Bounds object; one is created when you set an
element’s bounds property. Reading the bounds property always yields a Bounds object. Bounds
contains an array describing the position and size of a UI element. The array values represent
the coordinates of the upper left and lower right corners of the element: [left, top, right,
bottom]. These are screen coordinates for window elements, and are relative to the coordinate
space of the parent (container) element for other element types.

You can set an element’s bounds property and indirectly create a Bounds object in any of
these ways:

e .bounds = Objec t

The object must contain properties named left, top, right, bottom, or x, y, width, height, where each property
has an integer coordinate value.

e .bounds = Array

The array must have integer coordinate values in the order [left, top, right, bottom].

e .bounds = St r ing

The string must be an executable JavaScript inline object declaration, containing the same property names as
in the object case just described.

See “Element size and location” on page 198 for examples.

A Bounds object may be accessed as an array. In addition, it supports the following properties

value Number (for Scrollbar and Slider) the value of the control, for instance, the position of
the moveable part of a Scrollbar or Slider. If value is reset outside the
bounded range minvalue, maxvalue, value is set to the closest boundary.

visible Boolean Contains true if the object is physically visible, false otherwise. If set to false,
the UI object is hidden, and if set to true, the object is made visible.

Property Type Description

le f t Number The ‘x’ coordinate value of the left edge of the element.

top Number The ‘y’ coordinate value of the top edge of the element.

Property Type Description

Using Help Back 217

Adobe After Effects Help Creating User Interface Elements

Using Help Back 217

Common methods and event handlers

Following are the common methods and event handlers defined for each element type.

Methods

Descriptions of the common methods and event handlers listed above follow:

r ight Number The ‘x’ coordinate value of the right edge of the element.

bottom Number The ‘y coordinate value of the bottom edge of the element.

x Number Same as left.

y Number Same as top.

w idth Number right - left.

height Number bottom - top.

W
in

d
o

w

P
an

el

St
at

ic
Te

xt

Ed
it

Te
xt

B
u

tt
o

n

C
h

ec
k

b
o

x

R
ad

io
B

u
tt

o
n

Sc
ro

llb
ar

Sl
id

er

add() x x

center() x

close() x

hide() x x x x x x x x x

notify() x x x x x x

show() x x x x x x x x x

onChange() x x x

onClick() x x x

onClose() x

onMove() x

onResize() x

Method Returns Description

add (type [, bounds, text, {
<creation

properties> }]);

Object Creates a new UI element and add it to the children
array of its parent Window or Panel element. The
optional parameter bounds is a Bounds object
describing its position and size. This may also be a
four-element array. The optional parameter text is
assigned to the UI element as the initial text or title.
The UI element itself decides how to use this string; it
may be ignored.

In general, a Button uses the text as its label, while a
edit field uses it as its initial content. Internally, the
text is assigned to the text property of the element.
The optional parameter <creation properties> is an
object with properties that specify attributes of the
UI element that are used only when the element is
created. <creation properties> are specific to the type
of UI element, and are described below in the sec-
tions for each element type. The return value is the
newly created UI element or null on errors.

center([window]) no return value Centers a Window on screen, or optionally, within the
specified window object.

Property Type Description

Using Help Back 218

Adobe After Effects Help Creating User Interface Elements

Using Help Back 218

close ([value]) no return value Closes a Window. For modal dialogs, the optional
value is returned as the result of the show() call that
caused the dialog to display and execute.

hide() no return value Hides the element. If hide() is called on a modal dia-
log, dismiss the dialog and set the dialog result to 0.
The application may choose to ignore this call for cer-
tain UI object types.

notify([event]) no return value Sends a notification message to whatever listens to
the UI object. notify() effectively lets you control a
dialog programmatically. Calling this method with
no argument on a control simulates the activation of
the control; a Button signals that it has been clicked
via its onClick() method, an EditText element tells its
listener that it contents have changed via its
onChange() method, and so on. You can supply an
optional argument to notify(), which is the name of
the event handler to call. For instance, to simulate a
dialog dlg being moved by a user, you can send a
notification message as follows: dlg.notify(“onMove”).

show() Number Displays the UI object. A Window may choose to
ignore the setting of the visibility state if it is not
applicable, like for inspectors whose visibility is con-
trolled by the application only. If show() is called for a
modal dialog, the dialog is displayed and executed.
The call to show() will not return until the dialog has
been dismissed. The result of show() is the dialog
result as supplied to close(). For all other elements,
the result is 0.

onClick() no return value This method is called when a control has been acti-
vated by clicking it. Not all types of controls imple-
ment this callback. If you are interested in processing
this event, define a function of this name in the con-
trol element.

onChange() no return value This method is called when the content of a control
has been changed. Not all types of controls imple-
ment this callback. If you are interested in processing
this event, define a function of this name in the con-
trol element.

onClose() no return value This method is called when a Window is closed. If you
are interested in processing this event, define a func-
tion of this name in the Window object.

Method Returns Description

Using Help Back 219

Adobe After Effects Help Creating User Interface Elements

Using Help Back 219

UI object descriptions

This section describes UI objects such as windows, panels, buttons, checkboxes and so on.

Window object

To create a new Window object:

The panel element

To add a Panel element to a window w:

To add a border style around a panel.

If you specify a Panel whose width is 0, it will appear as a vertical line; a panel whose height is 0 will appear as
a horizontal line. Making a panel invisible will also hide all its children; making it visible again will also make
visible those children that were visible when the panel was made invisible.

onMove() no return value This method is called when a Window has been
moved. If you are interested in processing this event,
define a function of this name in the Window object.

onResize() no return value

This method is called when a Window has been
resized. If you are interested in processing this event,
define a function of this name in the Window object.

Method Returns Description

new Window (“dia log” [, t i t le , bounds]) ; Object Creates a new Window. The required type argument
contains the requested element type for a modal dia-
log. The optional title argument is used to set the
window title, if specified. Optionally, a Bounds object
or array may be supplied that describes the bounds
of the window. If no bounds are given, a default
bounds is chosen. The return value is the newly cre-
ated window or null on errors.

Method Returns Description

w.add (“panel” [, bounds, text ,

{<creat ion proper t ies>}]) ;

Object The optional parameter bounds defines the ele-
ment’s position and size. The optional parameter text
is the text displayed in the border of the panel. The
optional parameter <creation properties> is an object
that can contain any of the following properties:

Method Returns Description

borderSty le String Specifies the appearance of the border drawn
around the panel. It can be one of: none, etched,
raised, sunken, black. The default borderStyle is
etched.

Method Returns Description

Using Help Back 220

Adobe After Effects Help Creating User Interface Elements

Using Help Back 220

The statictext control

To add a StaticText element to a window:

The edittext control

To add an EditText element to a window:

The EditText control calls the onChange() event method if the editable text is changed or if its notify() method
is called. It also has a textselection property to access any text selection within the edit field.

The button control

To add a Button element to a window:

The Button control calls the onClick() event method if the control is clicked or if its notify() method is called.

Method Returns Description

w.add (“stat ictext” [, bounds, text ,

{<creat ion proper t ies>}]) ;

Object The optional parameter bounds defines the ele-
ment’s position and size. The optional parameter text
is the text displayed by the control. The optional
parameter <creation properties> is an object contain-
ing any of the following properties:

mult i l ine Boolean If false (default) the control accepts a single line of
text. If true, the control accepts multiple lines, in
which case the text wraps within the width of the
control.

scrol l ing Boolean If false (default), the text displayed cannot be
scrolled. If true, scrolling buttons appear and the text
displayed can be vertically scrolled; this case implies
multiline.

Method Returns Description

w.add (“edit text” [, bounds, text ,

{<creat ion proper t ies>}]) ;

Object The optional parameter bounds defines the ele-
ment’s position and size. The optional parameter text
is the initial text displayed by the control. The
optional parameter <creation properties> is an object
containing any of the following properties:

mult i l ine Boolean If false (default) the control accepts a single line of
text. If true, the control accepts multiple lines, in
which case the text wraps within the width of the
control.

readonly Boolean If false (default), the control accepts text input. If true,
the control will not accept input text, but simply dis-
plays the contents of its text property.

noecho Boolean If false (default), the control displays text that is typed
as input. If true, the control will not display input text
(useful for password fields).

Method Returns Description

w.add (“button” [, bounds, text]) ; Object The optional parameter bounds defines the ele-
ment’s position and size. The optional parameter text
is the text displayed inside the button control.

Using Help Back 221

Adobe After Effects Help Creating User Interface Elements

Using Help Back 221

The checkbox control

To add a Checkbox element to a window w:

The Checkbox control calls the onClick() event method if the control is clicked or if its notify() method is called.
It also has a value property which indicates whether the control is set or not.

The radiobutton control

To add a RadioButton element to a window w:

All RadioButtons in a group must be created sequentially, with no intervening creation of other element types.
Only one RadioButton in a group can be set at a time; setting a different RadioButton unsets the original one.
The RadioButton control calls the onClick() event method if the control is clicked or if its notify() method is
called. It also has a value property which indicates whether the control is set or not.

The scrollbar control

To add a Scrollbar element to a window w:

The Scrollbar control will have a horizontal orientation if the specified width is greater than its height at
creation time; its orientation will be vertical if its height is greater than its width. It calls the onChange() event
method if the position of the moveable element is changed by the user, or if its notify() method is called. The
value property contains the current position of the scrollbar’s moveable position indicator within the scrolling
area, within the range of minvalue and maxvalue.

The slider control

To add a Slider element to a window w:

All Slider controls have a horizontal orientation. The Slider control calls the onChange() event method if the
position of the slider is changed by the user, or if its notify() method is called. The value property contains the
current position of the slider’s moveable position indicator, within the range of minvalue and maxvalue.

Method Returns Description

w.add (“checkbox” [, bounds,
text]);

Object The optional parameter bounds defines the ele-
ment’s position and size. The optional parameter text
is the text displayed next to the checkbox control.

Method Returns Description

w.add (“radiobutton” [, bounds,
text]);

Object The optional parameter bounds defines the ele-
ment’s position and size. The optional parameter text
is the text displayed next to the radiobutton control.

Method Returns Description

w.add (“scrollbar” [, bounds,
value, minvalue, maxvalue]);

Object The optional parameter bounds defines the ele-
ment’s position and size. The optional parameter
value is the initial position of the moveable element.
The optional parameters minvalue and maxvalue
define the range of values that can be returned by
changing the position of the moveable element.

Method Returns Description

w.add (“slider” [, bounds,
value, minvalue, maxvalue]);

Object The optional parameter bounds defines the ele-
ment’s position and size. The optional parameter
value is the initial position of the moveable element.
The optional parameters minvalue and maxvalue
define the range of values that can be returned by
changing the position of the moveable element.

Using Help Back 222

Adobe After Effects Help The Socket Object

Using Help Back 222

Appendix A: The Socket Object

TCP connections are the basic transport layer of the Internet. Every time your Web browser connects to a
server and requests a new page, it opens a TCP connection to handle the request as well as the server's reply.
The JavaScript Socket object lets you connect to any server on the Internet and to exchange data with this
server.

The Socket object provides basic functionality to connect to a remote computer over a TCP/IP network or the
Internet. It provides calls like open() and close() to establish or to terminate a connection, or read() or write()
to transfer data. The object also contains a listen() method to establish a simple Internet server; the server uses
the method poll() to check for incoming connections.

Many of these connections are based on simple data exchange of ASCII data, while other protocols, like the
FTP protocol, are more complex and involve binary data. One of the simplest protocols is the HTTP protocol.
The following sample TCP/IP client connects to a WWW server (which listens on port 80); it then sends a very
simple HTTP GET request to obtain the home page of the WWW server, and then it reads the reply, which is
the home page together with a HTTP response header.

reply = "" ;

conn = new Socket ;

/ / access Adobe's home page

i f (conn.open ("www.adobe.com:80")) {

/ / send a HT TP GET request

conn.w r i te ("GET / index.html HT TP/1.0\n\n") ;

/ / and read the ser ver ' s reply

reply = conn.read() ;

conn.c lose() ;

}

After executing above code, the variable homepage contains the contents of the Adobe home page together
with a HTTP response header.

Establishing an Internet server is a bit more complicated. A typical server program sits and waits for incoming
connections, which it then processes. Usually, you would not want your application to run in an endless loop,
waiting for any incoming connection request. Therefore, you can ask a Socket object for an incoming
connection by calling the poll() method of a Socket object. This call would just check the incoming connec-
tions and then return immediately. If there is a connection request, the call to poll() would return another
Socket object containing the brand new connection. Use this connection object to talk to the calling client;
when finished, close the connection and discard the connection object.

Before a Socket object is able to check for an incoming connection, it must be told to listen on a specific port,
like port 80 for HTTP requests. Do this by calling the listen() method instead of the open() method.

The following example is a very simple Web server. It listens on port 80, waiting until it detects an incoming
request. The HTTP header is discarded, and a dummy HTML page is transmitted to the caller.

conn = new Socket ;

/ / l i s ten on por t 80

i f conn. l i s ten (80)) {

/ / wait forever for a connect ion

var incoming;

do incoming = conn.pol l() ;

Using Help Back 223

Adobe After Effects Help The Socket Object

Using Help Back 223

while (incoming == nul l) ;

/ / discard the request

read() ;

/ / Reply w ith a HT TP header

incoming .w r i te ln ("HT TP/1.0 200 OK") ;

incoming .w r i te ln ("Content-Ty pe: text/html") ;

incoming .w r i te ln() ;

/ / Transmit a dummy homepage

incoming .w r i te ln ("<html><body><h1>Homepage</h1></body></html>") ;

/ / done!

incoming .c lose() ;

delete incoming;

}

Often, the remote endpoint terminates the connection after transmitting data. Therefore, there is a connected
property that contains true as long as the connection still exists. If the connected property returns false, the
connection is closed automatically.

On errors, the error property of the Socket object contains a short message describing the type of the error.

The Socket object lets you easily implement software that talks to each other via the Internet. You could, for
example, let two Adobe applications exchange documents and data simply by writing and executing JavaScript
programs.

JavaScript Reference

Properties

Methods

[new] Socket () ;

Creates a new Socket object.

Returns

Object.

c lose() ;

connected Boolean Contains true if the connection is still active. Read only.

eof Boolean This property has the value true if the receive buffer is empty. Read only.

error String Contains a message describing the last error. Setting this value clears any error mes-
sage.

host String Contains the name of the remote computer when a connection is established. If the
connection is shut down or does not exist, the property contains the empty string.
Read only.

t imeout Number The timeout in seconds to be applied to read or write operations. Defaults to 10 (ten
seconds).

Using Help Back 224

Adobe After Effects Help The Socket Object

Using Help Back 224

Terminates the open connection. The return value is true if the connection was closed, false on I/O errors.
Deleting the connection has the same effect. Remember, however, that JavaScript garbage collects the object
at some null time, so the connection may stay open longer than you want to if you do not close it explicitly.

Returns

Boolean

lis ten (Number por t [, St r ing encoding]) ;

Instructs the object to start listening for an incoming connection. The port argument is the TCP/IP port
number where the object should listen on; typical values are 80 for a Web server, 23 for a Telnet server and so
on. The encoding parameter is optional. The call to listen() is mutually exclusive to a call to open(). The result
is true if the connection object successfully started listening, false otherwise.

Parameters

Returns

Boolean

open (Str ing computer [, St r ing encoding]) ;

Open the connection for subsequent read/write operations. The computer name is the name or IP address,
followed by a colon and the port number to connect to. The port number is mandatory. Valid computer names
are, for example, "www.adobe.com:80" or "192.150.14.12:80". The encoding parameter is optional; currently,
it can be one of "ASCII", "binary" or "UTF-8". The call to open() is mutually exclusive to a call to listen().

Parameters

Returns

Boolean

pol l() ;

Check a listening object for a new incoming connection. If a connection request was detected, the method
returns a new Socket object that wraps the new connection. Use this connection object to communicate with
the remote computer. After use, close the connection and delete the JavaScript object. If no new connection
request was detected, the method returns null.

Returns

a new Socket object or null.

read ([Number count]) ;

por t Number The port number to listen on. Valid port numbers are 1 to 65535.

encoding String The encoding to be used for the connection. Typical values are "ASCII", "binary", or
"UTF-8". This parameter defaults to ASCII.

host String The name or IP address of the remote computer, followed by a colon and the port
number to connect to. The port number is mandatory. Valid computer names are e.g.
"www.adobe.com:80" or "192.150.14.12:80".

encoding String The encoding to be used for the connection. Typical values are "ASCII", "binary", or
"UTF-8". This parameter defaults to ASCII.

Using Help Back 225

Adobe After Effects Help The Socket Object

Using Help Back 225

Read up to the given number of characters from the connection. Returns a string that contains up to the
number of characters that were supposed to be read. If no count is supplied, the connection attempts to read
as many characters it can get until the remote server closes the connection or a timeout occurs.

Parameters

Returns

String

readln() ;

Read one line of text up to the next line feed. Line feeds are recognized as CR, LF, CRLF or LFCR pairs.

Returns

String

w rite (Str ing text , …);

Write the given string to the connection. The parameters of this function are concatenated to a single string.
Returns true on success.

Parameters

Returns

Boolean

w rite ln (Str ing text , …);

Write the given string to the connection and append a Line Feed character. The parameters of this function
are concatenated to a single string. Returns true on success.

Parameters

Returns

Boolean

Chat server sample
The following sample code implements a very simple chat server. A chat client may connect to the chat server,
who is listening on port number 1234. The server responds with a welcome message and waits for one line of
input from the client. The client types some text and transmits it to the server who displays the text and lets
the user at the server computer type a line of text, which the client computer again displays. This goes back
and forth until either the server or the client computer types the word "bye".

count Number The number of characters to read. If no count is supplied, the connection attempts to
read as many characters it can get until the remote server closes the connection or a
timeout occurs.

text String All arguments are concatenated to form the string to be written.

text String All arguments are concatenated to form the string to be written.

Using Help Back 226

Adobe After Effects Help The Socket Object

Using Help Back 226

funct ion chatSer ver() {

var tcp = new Socket ;

/ / l i s ten on por t 1234

w r ite ln ("Chat ser ver l i s tening on por t 1234") ;

i f (tcp. l i s ten (1234)) {

for (; ;) {

/ / pol l for a new connect ion

var connect ion = tcp.pol l() ;

i f (connect ion != nul l) {

w r i te ln ("Connect ion from " + connect ion.host) ;

/ / we have a new connect ion, so welcome and chat

// unt i l c l ient terminates the sess ion

connect ion.w r i te ln ("Welcome to a l i t t le chat !") ;

chat (connect ion) ;

connect ion.w r i te ln ("*** Goodbye ***") ;

connect ion.c lose() ;

delete connect ion;

w r i te ln ("Connect ion c losed") ;

}

}

}

}

funct ion chatCl ient() {

var connect ion = new Socket ;

/ / connect to sample ser ver

i f (connect ion.open ("remote-pc.corp.adobe.com:1234")) {

/ / then chat w ith ser ver

chat (connect ion) ;

connect ion.c lose() ;

delete connect ion;

}

}

funct ion chat (c) {

/ / se lect a long t imeout

c . t imeout=1000;

whi le (t rue) {

/ / get one l ine and echo i t

w r i te ln (c .read()) ;

/ / s top i f the connect ion is broken

if (!c .connected)

break;

/ / read a l ine of text

w r i te ("chat : ") ;

var text = readln() ;

i f (text == "bye")

// s top conversat ion i f the user entered "bye"

break;

e lse

// otherw ise t ransmit to ser ver

Using Help Back 227

Adobe After Effects Help The Socket Object

Using Help Back 227

c .w r i te ln (text) ;

}

}

Using Help Back 228

Help Encoding Names

Using Help Back 228

Appendix B: Encoding Names

Supported encoding names
The following list of names is a basic set of encoding names supported by the FileSystem object. Some of the
character encoders are built in, while the operating system is queried for most of the other encoders.

Depending on the language packs installed, some of the encodings may not be available. Names that refer to
the same encoding are listed in one line. Underlines are replaced with dashes before matching an encoding
name.

Note, however, that the FileSystem object cannot process extended Unicode character with values greater than
65535. These characters are left encoded as specified in the UTF-16 standard in as two characters in the range
from 0xD700-0xDFFF.

Built-in encodings are:

US-ASCII ,ASCII , ISO646-US,ISO-646.IRV:1991,ISO-IR-6, ANSI-X3.4-

1968,CP367,IBM367,US,ISO646.1991-IRV

UCS-2,UCS2, ISO-10646-UCS-2

UCS2LE,UCS-2LE,ISO-10646-UCS-2LE

UCS2BE,UCS-2BE,ISO-10646-UCS-2BE

UCS-4,UCS4, ISO-10646-UCS-4

UCS4LE,UCS-4LE,ISO-10646-UCS-4LE

UCS4BE,UCS-4BE,ISO-10646-UCS-4BE

UTF-8,UTF8,UNICODE-1-1-UTF-8,UNICODE-2-0-UTF-8,X-UNICODE-2-0-UTF-8

UTF16,UTF-16,ISO-10646-UTF-16

UTF16LE,UTF-16LE,ISO-10646-UTF-16LE

UTF16BE,UTF-16BE,ISO-10646-UTF-16BE

CP1252,WINDOWS-1252,MS-ANSI

ISO-8859-1,ISO-8859-1,ISO-8859-1:1987,ISO-IR-100,LATIN1

MACINTOSH,X-MAC-ROMAN

BINARY

The ASCII encoder raises errors for characters greater than 127, and the BINARY encoder simply converts
between bytes and Unicode characters by using the lower 8 bits. This encoder is convenient for reading and
writing binary data.

Additional encodings

In Windows, all encodings use so-called code pages. These code pages are assigned numeric values. The usual
Western character set that Windows uses is, for example, the code page 1252. Windows code pages may be
selected by prepending the number of the code page with "CP" or "WINDOWS- like "CP1252" for the code
page 1252. The File object has a lot of other encoding names built-in that match predefined code page
numbers. If a code page is not present, the encoding cannot be selected.

On Mac OS, encoders may be selected by name rather than by code page number. The File object queries Mac
OS directly for an encoder. As far as Mac OS character sets are identical with Windows code pages, Mac OS
also knows the Windows code page numbers.

Using Help Back 229

Help Encoding Names

Using Help Back 229

Common encoding names

The following encoding names are implemented both on Windows and Mac OS:

UTF-7,UTF7,UNICODE-1-1-UTF-7,X-UNICODE-2-0-UTF-7

ISO-8859-2,ISO-8859-2,ISO-8859-2:1987,ISO-IR-101,LATIN2

ISO-8859-3,ISO-8859-3,ISO-8859-3:1988,ISO-IR-109,LATIN3

ISO-8859-4,ISO-8859-4,ISO-8859-4:1988,ISO-IR-110,LATIN4,BALTIC

ISO-8859-5,ISO-8859-5,ISO-8859-5:1988,ISO-IR-144,CYRILLIC

ISO-8859-6,ISO-8859-6,ISO-8859-6:1987,ISO-IR-127,ECMA-114,ASMO-708,ARABIC

ISO-8859-7,ISO-8859-7,ISO-8859-7:1987,ISO-IR-126,ECMA-118,ELOT-928,GREEK8,GREEK

ISO-8859-8,ISO-8859-8,ISO-8859-8:1988,ISO-IR-138,HEBREW

ISO-8859-9,ISO-8859-9,ISO-8859-9:1989,ISO-IR-148,LATIN5,TURKISH

ISO-8859-10,ISO-8859-10,ISO-8859-10:1992,ISO-IR-157,LATIN6

ISO-8859-13,ISO-8859-13,ISO-IR-179,LATIN7

ISO-8859-14,ISO-8859-14,ISO-8859-14,ISO-8859-14:1998,ISO-IR-199,LATIN8

ISO-8859-15,ISO-8859-15,ISO-8859-15:1998,ISO-IR-203

ISO-8859-16,ISO-885,ISO-885,MS-EE

CP850,WINDOWS-850,IBM850

CP866,WINDOWS-866,IBM866

CP932,WINDOWS-932,SJIS ,SHIFT-JIS ,X-SJIS ,X-MS-SJIS ,MS-SJIS ,MS-KANJI

CP936,WINDOWS-936,GBK,WINDOWS-936,GB2312,GB-2312-80,ISO-IR-58,CHINESE

CP949,WINDOWS-949,UHC,KSC-5601,KS-C-5601-1987,KS-C-5601-1989,ISO-IR-149,KOREAN

CP950,WINDOWS-950,BIG5,BIG-5,BIG-FIVE,BIGFIVE,CN-BIG5,X-X-BIG5

CP1251,WINDOWS-1251,MS-CYRL

CP1252,WINDOWS-1252,MS-ANSI

CP1253,WINDOWS-1253,MS-GREEK

CP1254,WINDOWS-1254,MS-TURK

CP1255,WINDOWS-1255,MS-HEBR

CP1256,WINDOWS-1256,MS-ARAB

CP1257,WINDOWS-1257,WINBALTRIM

CP1258,WINDOWS-1258

CP1361,WINDOWS-1361,JOHAB

EUC-JP,EUCJP,X-EUC-JP

EUC-KR,EUCKR,X-EUC-KR

HZ,HZ-GB-2312

X-MAC-JAPANESE

X-MAC-GREEK

X-MAC-CYRILLIC

X-MAC-LATIN

X-MAC-ICELANDIC

X-MAC-TURKISH

Additional Windows encoding names

CP437,IBM850,WINDOWS-437

CP709,WINDOWS-709,ASMO-449,BCONV4

EBCDIC

KOI-8R

KOI-8U

ISO-2022-JP

ISO-2022-KR

Using Help Back 230

Help Encoding Names

Using Help Back 230

Additional Mac OS encoding names

These names are alias names for encodings that Mac OS might know.

TIS-620,TIS620,TIS620-0,TIS620.2529-1,TIS620.2533-0,TIS620.2533-1,ISO-IR-166

CP874,WINDOWS-874

JP,JIS-C6220-1969-RO,ISO646-JP,ISO-IR-14

JIS-X0201,JISX0201-1976,X0201

JIS-X0208,JIS-X0208-1983,JIS-X0208-1990,JIS0208,X0208,ISO-IR-87

JIS-X0212,JIS-X0212.1990-0,JIS-X0212-1990,X0212,ISO-IR-159

CN,GB-1988-80,ISO646-CN,ISO-IR-57

ISO-IR-16,CN-GB-ISOIR165

KSC-5601,KS-C-5601-1987,KS-C-5601-1989,ISO-IR-149

EUC-CN,EUCCN,GB2312,CN-GB

EUC-TW,EUCTW,X-EUC-TW

Using Help Back 231

Help

Using Help Back 231

Object Properties
(output of dump_objects.jsx from After Effects 6.5)

==
=======
AlphaMode enum
--

 AlphaMode.IGNORE
 AlphaMode.PREMULTIPLIED
 AlphaMode.STRAIGHT
--

==
=======
Application object
--

 beginSuppressDialogs() no return
 beginUndoGroup(string undoName) no return
 buildName : string : readOnly
 buildNumber : integer : readOnly
 endSuppressDialogs(boolean showAlert) no return
 endUndoGroup() no return
 endWatchFolder() no return
 exitAfterLaunchAndEval : boolean : read/write
 exitCode : integer : read/write
 isProfessionalVersion : boolean : readOnly
 isRenderEngine : boolean : readOnly
 isUISuppressed : boolean : readOnly
 isWatchFolder : boolean : readOnly
 language : Language : readOnly
 newProject() no return
 open([File file]) returns Project
 pauseWatchFolder(boolean doPause) no return
 project : Project : readOnly
 purge(PurgeTarget target) no return
 quit() no return
 registeredCompany : string : readOnly
 registeredName : string : readOnly
 serialNumber : string : readOnly
 setMemoryUsageLimits(float imageCachePercent,
 float maximumMemoryPercent) no return
 setSavePreferencesOnQuit(boolean doSave) no return
 settings : Settings : readOnly
 version : string : readOnly
 watchFolder(File file) no return
 onError(string errorString,
 string severity) no return
--

Using Help Back 232

Help

Using Help Back 232

==
=======
AVLayer object
--

 (integer propertyIndex) returns
PropertyBase
 (string propertyName) returns
PropertyBase
 active : boolean : readOnly
 activeAtTime(float atTime) returns boolean
 addProperty(string propertyName) returns
PropertyBase
 adjustmentLayer : boolean : read/write
 audioActive : boolean : readOnly
 audioActiveAtTime(float atTime) returns boolean
 audioEnabled : boolean : read/write
 blendingMode : BlendingMode : read/write
 canAddProperty(string propertyName) returns boolean
 canSetCollapseTransformation : boolean : readOnly
 canSetEnabled : boolean : readOnly
 canSetTimeRemapEnabled : boolean : readOnly
 collapseTransformation : boolean : read/write
 copyToComp(CompItem intoComp) no return
 duplicate() returns AVLayer
 effectsActive : boolean : read/write
 elided : boolean : readOnly
 enabled : boolean : read/write
 frameBlending : boolean : read/write
 guideLayer : boolean : read/write
 hasAudio : boolean : readOnly
 hasTrackMatte : boolean : readOnly
 hasVideo : boolean : readOnly
 height : float : readOnly
 inPoint : float : read/write
 index : integer : readOnly
 isEffect : boolean : readOnly
 isMask : boolean : readOnly
 isModified : boolean : readOnly
 isNameFromSource : boolean : readOnly
 isTrackMatte : boolean : readOnly
 locked : boolean : read/write
 matchName : string : readOnly
 motionBlur : boolean : read/write
 moveAfter(Layer otherLayer) no return
 moveBefore(Layer otherLayer) no return
 moveTo(integer index) no return
 moveToBeginning() no return
 moveToEnd() no return
 name : string : read/write
 nullLayer : boolean : readOnly

Using Help Back 233

Help

Using Help Back 233

 numProperties : integer : readOnly
 outPoint : float : read/write
 parent : Layer : read/write
 parentProperty : PropertyGroup : readOnly
 preserveTransparency : boolean : read/write
 property(integer propertyIndex) returns
PropertyBase
 property(string propertyName) returns
PropertyBase
 propertyDepth : integer : readOnly
 propertyGroup([integer countUp]) returns
PropertyGroup
 propertyType : PropertyType : readOnly
 quality : LayerQuality : read/write
 remove() no return
 selected : boolean : read/write
 selectedProperties : Array of PropertyBase: readOnly
 setParentWithJump(Layer newParent) no return
 shy : boolean : read/write
 solo : boolean : read/write
 source : AVItem : readOnly
 startTime : float : read/write
 stretch : float : read/write
 threeDLayer : boolean : read/write
 time : float : readOnly
 timeRemapEnabled : boolean : read/write
 trackMatteType : TrackMatteType : read/write
 width : float : readOnly
--

==
=======
BlendingMode enum
--

 BlendingMode.ADD
 BlendingMode.ALPHA_ADD
 BlendingMode.CLASSIC_COLOR_BURN
 BlendingMode.CLASSIC_COLOR_DODGE
 BlendingMode.CLASSIC_DIFFERENCE
 BlendingMode.COLOR
 BlendingMode.COLOR_BURN
 BlendingMode.COLOR_DODGE
 BlendingMode.DANCING_DISSOLVE
 BlendingMode.DARKEN
 BlendingMode.DIFFERENCE
 BlendingMode.DISSOLVE
 BlendingMode.EXCLUSION
 BlendingMode.HARD_LIGHT
 BlendingMode.HARD_MIX
 BlendingMode.HUE

Using Help Back 234

Help

Using Help Back 234

 BlendingMode.LIGHTEN
 BlendingMode.LINEAR_BURN
 BlendingMode.LINEAR_DODGE
 BlendingMode.LINEAR_LIGHT
 BlendingMode.LUMINESCENT_PREMUL
 BlendingMode.LUMINOSITY
 BlendingMode.MULTIPLY
 BlendingMode.NORMAL
 BlendingMode.OVERLAY
 BlendingMode.PIN_LIGHT
 BlendingMode.SATURATION
 BlendingMode.SCREEN
 BlendingMode.SILHOUETE_ALPHA
 BlendingMode.SILHOUETTE_LUMA
 BlendingMode.SOFT_LIGHT
 BlendingMode.STENCIL_ALPHA
 BlendingMode.STENCIL_LUMA
 BlendingMode.VIVID_LIGHT
--

==
=======
CloseOptions enum
--

 CloseOptions.DO_NOT_SAVE_CHANGES
 CloseOptions.PROMPT_TO_SAVE_CHANGES
 CloseOptions.SAVE_CHANGES
--

==
=======
CompItem object
--

 activeCamera : Layer : readOnly
 bgColor : Array of float : read/write
 comment : string : read/write
 displayStartTime : float : read/write
 draft3d : boolean : read/write
 duplicate() returns
CompItem
 duration : float : read/write
 footageMissing : boolean : readOnly
 frameBlending : boolean : read/write
 frameDuration : float : read/write
 frameRate : float : read/write
 hasAudio : boolean : readOnly
 hasVideo : boolean : readOnly

Using Help Back 235

Help

Using Help Back 235

 height : integer : read/write
 hideShyLayers : boolean : read/write
 id : integer : readOnly
 layer(integer layerIndex) returns Layer
 layer(string layerName) returns Layer
 layer(Layer otherLayer, integer relativeIndex) returns Layer
 layers : LayerCollection: readOnly
 motionBlur : boolean : read/write
 name : string : read/write
 numLayers : integer : readOnly
 parentFolder : FolderItem : readOnly
 pixelAspect : float : read/write
 preserveNestedFrameRate : boolean : read/write
 preserveNestedResolution : boolean : read/write
 proxySource : FootageSource : readOnly
 remove() no return
 resolutionFactor : Array of integer : read/write
 selected : boolean : read/write
 selectedLayers : Array of Layer : readOnly
 selectedProperties : Array of PropertyBase: readOnly
 setProxy(File proxyFile) no return
 setProxyToNone() no return
 setProxyWithPlaceholder(string name,
 integer width,
 integer height,
 float frameRate,
 float duration) no return
 setProxyWithSequence(File proxyFile,
 boolean forceAlphabetical) no return
 setProxyWithSolid(ArrayOfFloat color,
 string name,
 integer width,
 integer height,
 float pixelAspecRatio) no return
 shutterAngle : integer : read/write
 shutterPhase : integer : read/write
 time : float : read/write
 typeName : string : readOnly
 useProxy : boolean : read/write
 usedIn : Array of CompItem : readOnly
 width : integer : read/write
 workAreaDuration : float : readOnly
 workAreaStart : float : readOnly
--

==
=======
FieldSeparationType enum
--

 FieldSeparationType.LOWER_FIELD_FIRST

Using Help Back 236

Help

Using Help Back 236

 FieldSeparationType.OFF
 FieldSeparationType.UPPER_FIELD_FIRST
--

==
=======
FileSource object
--

 alphaMode : AlphaMode : read/write
 conformFrameRate : float : read/write
 displayFrameRate : float : readOnly
 fieldSeparationType : FieldSeparationType : readOnly
 file : File : readOnly
 guessAlphaMode() no return
 guessPulldown(PulldownMethod pulldownMethod) no return
 hasAlpha : boolean : readOnly
 highQualityFieldSeparation : boolean : read/write
 invertAlpha : boolean : read/write
 isStill : boolean : readOnly
 loop : integer : read/write
 nativeFrameRate : float : readOnly
 premulColor : Array of float : read/write
 reload() no return
 removePulldown : PulldownPhase : readOnly
--

==
=======
FolderItem object
--

 comment : string : read/write
 id : integer : readOnly
 item(integer itemIndex) returns Item
 items : ItemCollection : readOnly
 name : string : read/write
 numItems : integer : readOnly
 parentFolder : FolderItem : readOnly
 remove() no return
 selected : boolean : read/write
 typeName : string : readOnly
--

==
=======
FootageItem object

Using Help Back 237

Help

Using Help Back 237

--

 comment : string : read/write
 duration : float : readOnly
 file : File : readOnly
 footageMissing : boolean : readOnly
 frameDuration : float : readOnly
 frameRate : float : readOnly
 hasAudio : boolean : readOnly
 hasVideo : boolean : readOnly
 height : integer : read/write
 id : integer : readOnly
 mainSource : FootageSource : readOnly
 name : string : read/write
 parentFolder : FolderItem : readOnly
 pixelAspect : float : read/write
 proxySource : FootageSource : readOnly
 remove() no return
 replace(File proxyFile) no return
 replaceWithPlaceholder(string name,
 integer width,
 integer height,
 float frameRate,
 float duration) no return
 replaceWithSequence(File proxyFile,
 boolean forceAlphabetical) no return
 replaceWithSolid(ArrayOfFloat color,
 string name,
 integer width,
 integer height,
 float pixelAspecRatio) no return
 selected : boolean : read/write
 setProxy(File proxyFile) no return
 setProxyToNone() no return
 setProxyWithPlaceholder(string name,
 integer width,
 integer height,
 float frameRate,
 float duration) no return
 setProxyWithSequence(File proxyFile,
 boolean forceAlphabetical) no return
 setProxyWithSolid(ArrayOfFloat color,
 string name,
 integer width,
 integer height,
 float pixelAspecRatio) no return
 time : float : readOnly
 typeName : string : readOnly
 useProxy : boolean : read/write
 usedIn : Array of CompItem : readOnly
 width : integer : read/write
--

Using Help Back 238

Help

Using Help Back 238

==
=======
ImportAsType enum
--

 ImportAsType.COMP
 ImportAsType.COMP_CROPPED_LAYERS
 ImportAsType.FOOTAGE
 ImportAsType.PROJECT
--

==
=======
ImportOptions object
--

 new ImportOptions(File fileToImport) returns
ImportOptions
 canImportAs(ImportAsType asType) returns boolean
 file : File : read/write
 forceAlphabetical : boolean : read/write
 importAs : ImportAsType : read/write
 sequence : boolean : read/write
--

==
=======
ItemCollection object
--

 addComp(string name,
 integer width,
 integer height,
 float pixelAspectRatio,
 float duration,
 float frameRate) returns
CompItem
--

==
=======
KeyframeEase object
--

 new KeyframeEase(float speed,

Using Help Back 239

Help

Using Help Back 239

 float influence) returns
KeyframeEase
 influence : float : read/write
 speed : float : read/write
--

==
=======
KeyframeInterpolationType enum
--

 KeyframeInterpolationType.BEZIER
 KeyframeInterpolationType.HOLD
 KeyframeInterpolationType.LINEAR
--

==
=======
Language enum
--

 Language.ENGLISH
 Language.FRENCH
 Language.GERMAN
 Language.JAPANESE
--

==
=======
Layer object
--

 (integer propertyIndex) returns
PropertyBase
 (string propertyName) returns
PropertyBase
 active : boolean : readOnly
 activeAtTime(float atTime) returns boolean
 addProperty(string propertyName) returns
PropertyBase
 canAddProperty(string propertyName) returns boolean
 canSetEnabled : boolean : readOnly
 copyToComp(CompItem intoComp) no return
 duplicate() returns Layer
 elided : boolean : readOnly
 enabled : boolean : read/write
 hasVideo : boolean : readOnly

Using Help Back 240

Help

Using Help Back 240

 inPoint : float : read/write
 index : integer : readOnly
 isEffect : boolean : readOnly
 isMask : boolean : readOnly
 isModified : boolean : readOnly
 locked : boolean : read/write
 matchName : string : readOnly
 moveAfter(Layer otherLayer) no return
 moveBefore(Layer otherLayer) no return
 moveTo(integer index) no return
 moveToBeginning() no return
 moveToEnd() no return
 name : string : read/write
 nullLayer : boolean : readOnly
 numProperties : integer : readOnly
 outPoint : float : read/write
 parent : Layer : read/write
 parentProperty : PropertyGroup : readOnly
 property(integer propertyIndex) returns
PropertyBase
 property(string propertyName) returns
PropertyBase
 propertyDepth : integer : readOnly
 propertyGroup([integer countUp]) returns
PropertyGroup
 propertyType : PropertyType : readOnly
 remove() no return
 selected : boolean : read/write
 selectedProperties : Array of PropertyBase: readOnly
 setParentWithJump(Layer newParent) no return
 shy : boolean : read/write
 solo : boolean : read/write
 startTime : float : read/write
 stretch : float : read/write
 time : float : readOnly
--

==
=======
LayerCollection object
--

 add(AVItem theItem,
 [float duration]) returns AVLayer
 addCamera(string name,
 ArrayOfFloat centerPoint) returns Layer
 addLight(string name,
 ArrayOfFloat centerPoint) returns Layer
 addNull([float duration]) returns AVLayer
 addSolid(ArrayOfFloat color,
 string name,

Using Help Back 241

Help

Using Help Back 241

 integer width,
 integer height,
 float pixelAspectRatio,
 [float duration]) returns AVLayer
 addText([TextDocument textDoc]) returns AVLayer
 addText(string text) returns AVLayer
 byName(string name) returns Layer
 precompose(ArrayOfInteger layerIndices,
 string name,
 [boolean moveAllAttributes]) returns
CompItem
--

==
=======
LayerQuality enum
--

 LayerQuality.BEST
 LayerQuality.DRAFT
 LayerQuality.WIREFRAME
--

==
=======
LogType enum
--

 LogType.ERRORS_AND_PER_FRAME_INFO
 LogType.ERRORS_AND_SETTINGS
 LogType.ERRORS_ONLY
--

==
=======
MarkerValue object
--

 new MarkerValue(string comment,
 [string chapter],
 [string url],
 [string frameTarget]) returns
MarkerValue
 chapter : string : read/write
 comment : string : read/write
 frameTarget : string : read/write
 url : string : read/write

Using Help Back 242

Help

Using Help Back 242

--

==
=======
MaskMode enum
--

 MaskMode.ADD
 MaskMode.DARKEN
 MaskMode.DIFFERENCE
 MaskMode.INTERSECT
 MaskMode.LIGHTEN
 MaskMode.NONE
 MaskMode.SUBTRACT
--

==
=======
MaskMotionBlur enum
--

 MaskMotionBlur.OFF
 MaskMotionBlur.ON
 MaskMotionBlur.SAME_AS_LAYER
--

==
=======
MaskPropertyGroup object
--

 (integer propertyIndex) returns
PropertyBase
 (string propertyName) returns
PropertyBase
 active : boolean : readOnly
 addProperty(string propertyName) returns
PropertyBase
 canAddProperty(string propertyName) returns boolean
 canSetEnabled : boolean : readOnly
 color : Array of float : read/write
 duplicate() returns
MaskPropertyGroup
 elided : boolean : readOnly
 enabled : boolean : readOnly
 inverted : boolean : read/write
 isEffect : boolean : readOnly

Using Help Back 243

Help

Using Help Back 243

 isMask : boolean : readOnly
 isModified : boolean : readOnly
 locked : boolean : read/write
 maskMode : MaskMode : read/write
 maskMotionBlur : MaskMotionBlur : read/write
 matchName : string : readOnly
 moveTo(integer index) no return
 name : string : read/write
 numProperties : integer : readOnly
 parentProperty : PropertyGroup : readOnly
 property(integer propertyIndex) returns
PropertyBase
 property(string propertyName) returns
PropertyBase
 propertyDepth : integer : readOnly
 propertyGroup([integer countUp]) returns
PropertyGroup
 propertyIndex : integer : readOnly
 propertyType : PropertyType : readOnly
 remove() no return
 rotoBezier : boolean : read/write
 selected : boolean : read/write
--

==
=======
OMCollection object
--

 add() returns
OutputModule
--

==
=======
OutputModule object
--

 applyTemplate(string templateName) no return
 file : File : read/write
 name : string : readOnly
 postRenderAction : PostRenderAction : read/write
 remove() no return
 saveAsTemplate(string templateName) no return
 templates : Array of string: readOnly
--

Using Help Back 244

Help

Using Help Back 244

==
=======
PlaceholderSource object
--

 alphaMode : AlphaMode : read/write
 conformFrameRate : float : read/write
 displayFrameRate : float : readOnly
 fieldSeparationType : FieldSeparationType : read/write
 guessAlphaMode() no return
 guessPulldown(PulldownMethod pulldownMethod) no return
 hasAlpha : boolean : readOnly
 highQualityFieldSeparation : boolean : read/write
 invertAlpha : boolean : read/write
 isStill : boolean : readOnly
 loop : integer : read/write
 nativeFrameRate : float : readOnly
 premulColor : Array of float : read/write
 removePulldown : PulldownPhase : read/write
--

==
=======
PostRenderAction enum
--

 PostRenderAction.IMPORT
 PostRenderAction.IMPORT_AND_REPLACE_USAGE
 PostRenderAction.NONE
 PostRenderAction.SET_PROXY
--

==
=======
Project object
--

 activeItem : Item : readOnly
 bitsPerChannel : integer : read/write
 close(CloseOptions closeOptions) returns boolean
 consolidateFootage() returns integer
 file : File : readOnly
 importFile(ImportOptions importOptions) returns Item
 importFileWithDialog() returns
ArrayOfItem
 importPlaceholder(string itemName,
 integer itemWidth,
 integer itemHeight,
 float frameRate,

Using Help Back 245

Help

Using Help Back 245

 float duration) returns
FootageItem
 item(integer itemIndex) returns Item
 items : ItemCollection : readOnly
 numItems : integer : readOnly
 reduceProject(ArrayOfItem itemsToPreserve) returns integer
 removeUnusedFootage() returns integer
 renderQueue : RenderQueue : readOnly
 rootFolder : FolderItem : readOnly
 save(File toFile) returns boolean
 saveWithDialog() returns boolean
 selection : Array of Item : readOnly
 showWindow(boolean doShow) no return
 timecodeBaseType : TimecodeBaseType : read/write
 timecodeDisplayType : TimecodeDisplayType : read/write
 timecodeFilmType : TimecodeFilmType : read/write
 timecodeNTSCDropFrame : boolean : read/write
 transparencyGridThumbnails : boolean : read/write
--

==
=======
Property object
--

 active : boolean : readOnly
 addKey(float atTime) returns integer
 canSetEnabled : boolean : readOnly
 canVaryOverTime : boolean : readOnly
 duplicate() returns
Property
 elided : boolean : readOnly
 enabled : boolean : readOnly
 expression : string : read/write
 expressionEnabled : boolean : read/write
 expressionError : string : readOnly
 hasMax : boolean : readOnly
 hasMin : boolean : readOnly
 isEffect : boolean : readOnly
 isInterpolationTypeValid(
 KeyframeInterpolationType type) returns boolean
 isMask : boolean : readOnly
 isModified : boolean : readOnly
 isSpatial : boolean : readOnly
 isTimeVarying : boolean : readOnly
 keyInInterpolationType(integer keyIndex) returns
KeyframeInterpolationType
 keyInSpatialTangent(integer keyIndex) returns
ArrayOfFloat
 keyInTemporalEase(integer keyIndex) returns
ArrayOfKeyframeEase

Using Help Back 246

Help

Using Help Back 246

 keyOutInterpolationType(integer keyIndex) returns
KeyframeInterpolationType
 keyOutSpatialTangent(integer keyIndex) returns
ArrayOfFloat
 keyOutTemporalEase(integer keyIndex) returns
ArrayOfKeyframeEase
 keyRoving(integer keyIndex) returns boolean
 keySelected(integer keyIndex) returns boolean
 keySpatialAutoBezier(integer keyIndex) returns boolean
 keySpatialContinuous(integer keyIndex) returns boolean
 keyTemporalAutoBezier(integer keyIndex) returns boolean
 keyTemporalContinuous(integer keyIndex) returns boolean
 keyTime(integer keyIndex) returns float
 keyTime(string markerName) returns float
 keyValue(integer keyIndex) returns type-
stored-in-property
 keyValue(string markerName) returns type-
stored-in-property
 matchName : string : readOnly
 moveTo(integer index) no return
 name : string : readOnly
 nearestKeyIndex(float atTime) returns integer
 numKeys : integer : readOnly
 parentProperty : PropertyGroup : readOnly
 propertyDepth : integer : readOnly
 propertyGroup([integer countUp]) returns
PropertyGroup
 propertyType : PropertyType : readOnly
 propertyValueType : PropertyValueType : readOnly
 remove() no return
 removeKey(integer keyIndex) no return
 selected : boolean : read/write
 selectedKeys : Array of integer : readOnly
 setInterpolationTypeAtKey(integer keyIndex,
 KeyframeInterpolationType inType,
 [KeyframeInterpolationType outType]) no return
 setRovingAtKey(integer keyIndex,
 boolean isRoving) no return
 setSelectedAtKey(integer keyIndex,
 boolean isSelected) no return
 setSpatialAutoBezierAtKey(integer keyIndex,
 boolean isAutoBezier) no return
 setSpatialContinuousAtKey(integer keyIndex,
 boolean isContinuous) no return
 setSpatialTangentsAtKey(integer keyIndex,
 ArrayOfFloat inTangent,
 [ArrayOfFloat outTangent]) no return
 setTemporalAutoBezierAtKey(integer keyIndex,
 boolean isAutoBezier) no return
 setTemporalContinuousAtKey(integer keyIndex,
 boolean isContinuous) no return
 setTemporalEaseAtKey(integer keyIndex,
 ArrayOfKeyframeEase inEase,

Using Help Back 247

Help

Using Help Back 247

 [ArrayOfKeyframeEase outEase]) no return
 setValue(type-stored-in-property newValue) no return
 setValueAtKey(integer keyIndex,
 type-stored-in-property newValue) no return
 setValueAtTime(float atTime,
 type-stored-in-property newValue) no return
 setValuesAtTimes(ArrayOfFloat atTimes,
 ArrayOf-type-stored-in-property newValues) no return
 unitsText : string : readOnly
 value : type-stored-in-property:
readOnly
 valueAtTime(float atTime,
 bool preExpression) returns type-
stored-in-property
--

==
=======
PropertyGroup object
--

 (integer propertyIndex) returns
PropertyBase
 (string propertyName) returns
PropertyBase
 active : boolean : readOnly
 addProperty(string propertyName) returns
PropertyBase
 canAddProperty(string propertyName) returns boolean
 canSetEnabled : boolean : readOnly
 duplicate() returns
PropertyGroup
 elided : boolean : readOnly
 enabled : boolean : readOnly
 isEffect : boolean : readOnly
 isMask : boolean : readOnly
 isModified : boolean : readOnly
 matchName : string : readOnly
 moveTo(integer index) no return
 name : string : readOnly
 numProperties : integer : readOnly
 parentProperty : PropertyGroup : readOnly
 property(integer propertyIndex) returns
PropertyBase
 property(string propertyName) returns
PropertyBase
 propertyDepth : integer : readOnly
 propertyGroup([integer countUp]) returns
PropertyGroup
 propertyIndex : integer : readOnly
 propertyType : PropertyType : readOnly

Using Help Back 248

Help

Using Help Back 248

 remove() no return
 selected : boolean : readOnly
--

==
=======
PropertyType enum
--

 PropertyType.INDEXED_GROUP
 PropertyType.NAMED_GROUP
 PropertyType.PROPERTY
--

==
=======
PropertyValueType enum
--

 PropertyValueType.COLOR
 PropertyValueType.CUSTOM_VALUE
 PropertyValueType.LAYER_INDEX
 PropertyValueType.MARKER
 PropertyValueType.MASK_INDEX
 PropertyValueType.NO_VALUE
 PropertyValueType.OneD
 PropertyValueType.SHAPE
 PropertyValueType.TEXT_DOCUMENT
 PropertyValueType.ThreeD
 PropertyValueType.ThreeD_SPATIAL
 PropertyValueType.TwoD
 PropertyValueType.TwoD_SPATIAL
--

==
=======
PulldownPhase enum
--

 PulldownPhase.OFF
 PulldownPhase.SSWWW
 PulldownPhase.SWWWS
 PulldownPhase.SWWWW_24P_ADVANCE
 PulldownPhase.WSSWW
 PulldownPhase.WSWWW_24P_ADVANCE
 PulldownPhase.WWSSW
 PulldownPhase.WWSWW_24P_ADVANCE

Using Help Back 249

Help

Using Help Back 249

 PulldownPhase.WWWSS
 PulldownPhase.WWWSW_24P_ADVANCE
 PulldownPhase.WWWWS_24P_ADVANCE
--

==
=======
PulldownMethod enum
--

 PulldownMethod.ADVANCE_24P
 PulldownMethod.PULLDOWN_3_2
--

==
=======
PurgeTarget enum
--

 PurgeTarget.ALL_CACHES
 PurgeTarget.IMAGE_CACHES
 PurgeTarget.SNAPSHOT_CACHES
 PurgeTarget.UNDO_CACHES
--

==
=======
RenderQueue object
--

 item(integer itemIndex) returns
RenderQueueItem
 items : RQItemCollection : readOnly
 numItems : integer : readOnly
 pauseRendering(boolean doPause) no return
 render() no return
 rendering : boolean : readOnly
 showWindow(boolean doShow) no return
 stopRendering() no return
--

==
=======
RenderQueueItem object

Using Help Back 250

Help

Using Help Back 250

--

 applyTemplate(string templateName) no return
 comp : CompItem : readOnly
 elapsedSeconds : float : readOnly
 logType : LogType : read/write
 numOutputModules : integer : readOnly
 outputModule(integer outputModuleIndex) returns
OutputModule
 outputModules : OMCollection : readOnly
 remove() no return
 render : boolean : read/write
 saveAsTemplate(string templateName) no return
 skipFrames : integer : read/write
 startTime : float : readOnly
 status : RQItemStatus : readOnly
 templates : Array of string: readOnly
 timeSpanDuration : float : read/write
 timeSpanStart : float : read/write
 onStatusChanged() no return
--

==
=======
RQItemCollection object
--

 add(CompItem compToAdd) returns
RenderQueueItem
--

==
=======
RQItemStatus enum
--

 RQItemStatus.DONE
 RQItemStatus.ERR_STOPPED
 RQItemStatus.NEEDS_OUTPUT
 RQItemStatus.QUEUED
 RQItemStatus.RENDERING
 RQItemStatus.UNQUEUED
 RQItemStatus.USER_STOPPED
 RQItemStatus.WILL_CONTINUE
--

Using Help Back 251

Help

Using Help Back 251

==
=======
Settings object
--

 getSetting(string sectionName,
 string sectionKey) returns string
 haveSetting(string sectionName,
 string sectionKey) returns boolean
 saveSetting(string sectionName,
 string sectionKey,
 string newValue) no return
--

==
=======
Shape object
--

 new Shape() returns Shape
 closed : boolean : read/write
 inTangents : Array of float[2] : read/write
 outTangents : Array of float[2] : read/write
 vertices : Array of float[2] : read/write
--

==
=======
SolidSource object
--

 alphaMode : AlphaMode : read/write
 color : Array of float : read/write
 conformFrameRate : float : readOnly
 displayFrameRate : float : readOnly
 fieldSeparationType : FieldSeparationType : readOnly
 guessAlphaMode() no return
 guessPulldown(PulldownMethod pulldownMethod) no return
 hasAlpha : boolean : readOnly
 highQualityFieldSeparation : boolean : readOnly
 invertAlpha : boolean : read/write
 isStill : boolean : readOnly
 loop : integer : readOnly
 nativeFrameRate : float : readOnly
 premulColor : Array of float : read/write
 removePulldown : PulldownPhase : readOnly
--

Using Help Back 252

Help

Using Help Back 252

==
=======
System object
--

 machineName : string : readOnly
 osName : string : readOnly
 osVersion : string : readOnly
 userName : string : readOnly
--

==
=======
TextDocument object
--

 new TextDocument(string text) returns
TextDocument
 text : string : read/write
--

==
=======
TimecodeBaseType enum
--

 TimecodeBaseType.FPS100
 TimecodeBaseType.FPS24
 TimecodeBaseType.FPS25
 TimecodeBaseType.FPS30
 TimecodeBaseType.FPS48
 TimecodeBaseType.FPS50
 TimecodeBaseType.FPS60
--

==
=======
TimecodeDisplayType enum
--

 TimecodeDisplayType.FEET_AND_FRAMES
 TimecodeDisplayType.FRAMES
 TimecodeDisplayType.TIMECODE
--

Using Help Back 253

Help

Using Help Back 253

==
=======
TimecodeFilmType enum
--

 TimecodeFilmType.MM16
 TimecodeFilmType.MM35
--

==
=======
TrackMatteType enum
--

 TrackMatteType.ALPHA
 TrackMatteType.ALPHA_INVERTED
 TrackMatteType.LUMA
 TrackMatteType.LUMA_INVERTED
 TrackMatteType.NO_TRACK_MATTE
--

	About Help
	Navigating in Help
	Printing Help
	Overview
	If you know nothing about scripting
	After Effects objects
	Expressions and motion math
	About this guide
	Activating full scripting features
	Accessing and writing scripts
	Uses of After Effects scripting

	Writing Scripts
	Editing scripts
	The .jsx format
	The Scripts menu and Scripts folder
	Shutdown and Startup folders

	Sending a script to After Effects from the system
	How to include After Effects scripting in a command line (Windows)
	How to include After Effects scripting in an AppleScript (Mac OS)

	Testing and troubleshooting
	More resources to learn scripting
	Keywords and statement syntax
	Operators
	Render automation with aerender

	JavaScript Debugging
	Controlling code execution in the JavaScript Debugger
	Using the JavaScript command line entry field
	Command line entry field

	Setting breakpoints
	Setting breakpoints in the JavaScript Debugger
	Setting breakpoints in JavaScript code
	Script Breakpoints window

	The $ object
	Debug output method
	Clear breakpoint method
	Execute breakpoint method
	Garbage collection method

	Reference
	Objects, methods, attributes, and globals
	Attributes and properties

	Global functions
	alert() global function
	clearOutput() global function
	confirm() global function
	fileGetDialog() global function
	filePutDialog() global function
	folderGetDialog() global function
	prompt() global function
	write() global function
	writeLn() global function

	Application object
	Application beginSuppressDialogs() method
	Application beginUndoGroup() method
	Application buildName attribute
	Application buildNumber attribute
	Application endSuppressDialogs() method
	Application endUndoGroup() method
	Application endWatchFolder() method
	Application exitAfterLaunchAndEval attribute
	Application exitCode attribute
	Application isProfessionalVersion attribute
	Application isRenderEngine attribute
	Application isWatchFolder attribute
	Application language attribute
	Application newProject() method
	Application onError attribute
	Application open() method
	Application pauseWatchFolder() method
	Application project attribute
	Application purge() method
	Application quit() method
	Application registeredCompany attribute
	Application registeredName attribute
	Application setMemoryUsageLimits() method
	Application setSavePreferencesOnQuit() method
	Application settings attribute
	Application version attribute
	Application watchFolder() method

	AVItem object
	AVItem duration attribute
	AVItem footageMissing attribute
	AVItem frameDuration attribute
	AVItem frameRate attribute
	AVItem hasAudio attribute
	AVItem hasVideo attribute
	AVItem height attribute
	AVItem name attribute
	AVItem pixelAspect attribute
	AVItem proxySource attribute
	AVItem setProxy() method
	AVItem setProxyToNone() method
	AVItem setProxyWithPlaceholder() method
	AVItem setProxyWithSequence() method
	AVItem setProxyWithSolid() method
	AVItem time attribute
	AVItem usedIn attribute
	AVItem useProxy attribute
	AVItem width attribute

	AVLayer object
	AVLayer adjustmentLayer attribute
	AVLayer audioActive attribute
	AVLayer audioActiveAtTime() method
	AVLayer audioEnabled attribute
	AVLayer blendingMode attribute
	AVLayer canSetCollapseTransformation attribute
	AVLayer canSetTimeRemapEnabled attribute
	AVLayer collapseTransformation attribute
	AVLayer effectsActive attribute
	AVLayer frameBlending attribute
	AVLayer guideLayer attribute
	AVLayer hasAudio attribute
	AVLayer hasTrackMatte attribute
	AVLayer height attribute
	AVLayer isNameFromSource attribute
	AVLayer isTrackMatte attribute
	AVLayer motionBlur attribute
	AVLayer preserveTransparency attribute
	AVLayer quality attribute
	AVLayer source attribute
	AVLayer threeDLayer attribute
	AVLayer timeRemapEnabled attribute
	AVLayer trackMatteType attribute
	AVLayer width attribute

	Collection object
	CompItem object
	CompItem activeCamera attribute
	CompItem bgColor attribute
	CompItem displayStartTime attribute
	CompItem draft3d attribute
	CompItem duplicate() method
	CompItem frameBlending attribute
	CompItem frameDuration attribute
	CompItem hideShyLayers attribute
	CompItem layer() method
	CompItem layers attribute
	CompItem motionBlur attribute
	CompItem numLayers attribute
	CompItem preserveNestedFrameRate attribute
	CompItem preserveNestedResolution attribute
	CompItem resolutionFactor attribute
	CompItem selectedLayers attribute
	CompItem selectedProperties attribute
	CompItem shutterAngle attribute
	CompItem shutterPhase attribute
	CompItem workAreaDuration attribute
	CompItem workAreaStart attribute

	File Class
	File() Class method

	File object
	File close() method
	File copy() method
	File creator attribute
	File encoding attribute
	File eof attribute
	File hidden attribute
	File length attribute
	File lineFeed attribute
	File open() method
	File openDialog() Class method
	File read() method
	File readch() method
	File readln() method
	File readonly attribute
	File saveDialog() Class method
	File seek() method
	File tell() method
	File type attribute
	File write() method
	File writeln() method

	FileSource object
	FileSource file attribute
	FileSource reload() method

	FileSystem Class
	FileSystem decode() class method
	FileSystem encode() class method
	FileSystem fs class attribute

	FileSystem object
	FileSystem absoluteURI attribute
	FileSystem alias attribute
	FileSystem created attribute
	FileSystem error attribute
	FileSystem exists attribute
	FileSystem fsName attribute
	FileSystem getRelativeURI() method
	FileSystem modified attribute
	FileSystem name attribute
	FileSystem parent attribute
	FileSystem path attribute
	FileSystem relativeURI attribute
	FileSystem remove() method
	FileSystem rename() method
	FileSystem resolve() method

	Folder class
	Folder() Class method
	Folder current Class attribute
	Folder selectDialog() Class method
	Folder startup Class attribute
	Folder system Class attribute
	Folder temp Class attribute
	Folder trash Class attribute

	Folder object
	Folder create() method
	Folder getFiles() method

	FolderItem object
	FolderItem item() method
	FolderItem items attribute
	FolderItem numItems attribute

	FootageItem object
	FootageItem file attribute
	FootageItem mainSource attribute
	FootageItem replace() method
	FootageItem replaceWithPlaceholder() method
	FootageItem replaceWithSequence() method
	FootageItem replaceWithSolid() method

	FootageSource object
	FootageSource alphaMode attribute
	FootageSource conformFrameRate attribute
	FootageSource displayFrameRate attribute
	FootageSource fieldSeparationType attribute
	FootageSource guessAlphaMode() method
	FootageSource guessPulldown() method
	FootageSource hasAlpha attribute
	FootageSource highQualityFieldSeparation attribute
	FootageSource invertAlpha attribute
	FootageSource isStill attribute
	FootageSource loop attribute
	FootageSource nativeFrameRate attribute
	FootageSource premulColor attribute
	FootageSource removePulldown attribute

	ImportOptions object
	ImportOptions canImportAs() method
	ImportOptions file attribute
	ImportOptions forceAlphabetical attribute
	ImportOptions importAs attribute
	ImportOptions sequence attribute

	Item object
	Item comment attribute
	Item id attribute
	Item name attribute
	Item parentFolder attribute
	Item remove() method
	Item selected attribute
	Item typeName attribute

	ItemCollection
	ItemCollection addComp() method

	KeyframeEase object
	KeyframeEase keyframeEase() method
	KeyframeEase influence attribute
	KeyframeEase speed attribute

	Layer object
	Layer active attribute
	Layer activeAtTime() method
	Layer copyToComp() method
	Layer duplicate() method
	Layer enabled attribute
	Layer hasVideo attribute
	Layer index attribute
	Layer inPoint attribute
	Layer locked attribute
	Layer moveAfter() method
	Layer moveBefore() method
	Layer moveToBeginning() method
	Layer moveToEnd() method
	Layer name attribute
	Layer nullLayer attribute
	Layer outPoint attribute
	Layer parent attribute
	Layer remove() method
	Layer selectedProperties attribute
	Layer setParentWithJump() method
	Layer shy attribute
	Layer solo attribute
	Layer startTime attribute
	Layer stretch attribute
	Layer time attribute

	LayerCollection
	LayerCollection add() method
	LayerCollection addCamera() method
	LayerCollection addLight() method
	LayerCollection addNull() method
	LayerCollection addSolid() method
	LayerCollection addText() method
	LayerCollection byName() method
	LayerCollection precompose() method

	MarkerValue object
	MarkerValue method
	MarkerValue Chapter attribute
	MarkerValue Comment attribute
	MarkerValue FrameTarget attribute
	MarkerValue URL attribute

	MaskPropertyGroup object
	MaskPropertyGroup color attribute
	MaskPropertyGroup inverted attribute
	MaskPropertyGroup locked attribute
	MaskPropertyGroup maskMode attribute
	MaskPropertyGroup maskMotionBlur attribute
	MaskPropertyGroup rotoBezier attribute

	OutputModule object
	OMCollection
	OutputModule applyTemplate() method
	OutputModule file attribute
	OutputModule name attribute
	OutputModule postRenderAction attribute
	OutputModule remove() method
	OutputModule saveAsTemplate() method
	OutputModule templates attribute

	PlaceholderSource object
	Project object
	Project activeItem attribute
	Project bitsPerChannel attribute
	Project close() method
	Project consolidateFootage() method
	Project file attribute
	Project importFile() method
	Project importPlaceholder() method
	Project importFileWithDialog() method
	Project item() method
	Project items attribute
	Project numItems attribute
	Project reduceProject() method
	Project removeUnusedFootage() method
	Project renderQueue attribute
	Project rootFolder attribute
	Project save() method
	Project saveWithDialog() method
	Project selection attribute
	Project showWindow() method
	Project timecodeBaseType attribute
	Project timecodeDisplayType attribute
	Project timecodeFilmType attribute
	Project timecodeNTSCDropFrame attribute
	Project transparencyGridThumbnails attribute

	Property object
	Property addKey() method
	Property canVaryOverTime attribute
	Property expression attribute
	Property expressionEnabled attribute
	Property expressionError attribute
	Property hasMax attribute
	Property hasMin attribute
	Property isInterpolationTypeValid() method
	Property isSpatial attribute
	Property isTimeVarying attribute
	Property KeyframeInterpolationType attribute
	Property keyInInterpolationType() method
	Property keyInSpatialTangent() method
	Property keyInTemporalEase() method
	Property keyOutInterpolationType() method
	Property keyOutSpatialTangent() method
	Property keyOutTemporalEase() method
	Property keyRoving() method
	Property keySelected() method
	Property keySpatialAutoBezier() method
	Property keySpatialContinuous() method
	Property keyTemporalAutoBezier() method
	Property keyTemporalContinuous() method
	Property keyTime() method
	Property keyValue() method
	Property maxValue attribute
	Property minValue attribute
	Property nearestKeyIndex() method
	Property numKeys attribute
	Property propertyValueType attribute
	Property removeKey() method
	Property selectedKeys attribute
	Property setInterpolationTypeAtKey() method
	Property setRovingAtKey() method
	Property setSelectedAtKey() method
	Property setSpatialAutoBezierAtKey() method
	Property setSpatialContinuousAtKey() method
	Property setSpatialTangentsAtKey() method
	Property setTemporalAutoBezierAtKey() method
	Property setTemporalContinuousAtKey() method
	Property setTemporalEaseAtKey() method
	Property setValue() method
	Property setValueAtKey() method
	Property setValueAtTime() method
	Property setValuesAtTimes() method
	Property unitsText attribute
	Property value attribute
	Property valueAtTime() method

	PropertyBase object
	PropertyBase active attribute
	PropertyBase canSetEnabled attribute
	PropertyBase duplicate() method
	PropertyBase elided attribute
	PropertyBase enabled attribute
	PropertyBase isEffect attribute
	PropertyBase isMask attribute
	PropertyBase isModified attribute
	PropertyBase matchName attribute
	PropertyBase moveTo() method
	PropertyBase name attribute
	PropertyBase parentProperty attribute
	PropertyBase propertyDepth attribute
	PropertyBase propertyGroup() method
	PropertyBase propertyIndex attribute
	PropertyBase propertyType attribute
	PropertyBase remove() method
	PropertyBase selected attribute

	PropertyGroup object
	PropertyGroup addProperty() method
	PropertyGroup canAddProperty() method
	PropertyGroup numProperties attribute
	PropertyGroup property() method

	RenderQueue object
	RenderQueue Item() method
	RenderQueue items attribute
	RenderQueue numItems attribute
	RenderQueue pauseRendering() method
	RenderQueue render() method
	RenderQueue rendering attribute
	RenderQueue showWindow() method
	RenderQueue stopRendering() method

	RQItemCollection
	RenderQueueItem object
	RenderQueueItem applyTemplate() method
	RenderQueueItem comp attribute
	RenderQueueItem elapsedSeconds attribute
	RenderQueueItem logType attribute
	RenderQueueItem numOutputModules attribute
	RenderQueueItem onStatusChanged attribute
	RenderQueueItem outputModules attribute
	RenderQueueItem outputModule() method
	RenderQueueItem remove() method
	RenderQueueItem render attribute
	RenderQueueItem saveAsTemplate() method
	RenderQueueItem skipFrames attribute
	RenderQueueItem startTime attribute
	RenderQueueItem status attribute
	RenderQueueItem templates attribute
	RenderQueueItem timeSpanDuration attribute
	RenderQueueItem timeSpanStart attribute

	Settings object
	Settings getSetting() method
	Settings haveSetting() method
	Settings saveSetting() method

	Shape object
	Shape closed attribute
	Shape inTangents attribute
	Shape outTangents attribute
	Shape Shape() method
	Shape vertices attribute

	SolidSource object
	SolidSource color attribute

	System object
	System machineName attribute
	System osName attribute
	System osVersion attribute
	System userName attribute

	TextDocument object
	TextDocument text attribute
	TextDocument TextDocument() method

	Examples
	Apply effect
	Replace text
	Save and increment
	Render named items
	New render locations
	Smart import
	Render and email
	Email methods
	Email setup
	Dialogs and console
	File fun

	Creating User Interface Elements
	Types of interface elements
	JavaScript UI interface
	UI objects
	Creating a window
	Container elements
	Element size and location

	Adding elements
	Creation properties
	Accessing child elements
	Types of UI elements
	Creating a window using window resource specifications
	Interacting with controls: events and event callbacks
	Modal dialogs

	JavaScript UI example
	createBuilderDialog
	Sample code summary

	JavaScript UI reference
	Global elements of the Window object
	Common object properties
	Objects used as property values
	Common methods and event handlers
	UI object descriptions

	The Socket Object
	JavaScript Reference
	Chat server sample

	Encoding Names
	Supported encoding names
	Additional encodings
	Common encoding names
	Additional Windows encoding names
	Additional Mac OS encoding names

	Object Properties

