
JAVASCRIPT GUIDE

© 2007 Adobe Systems Incorporated. All rights reserved.

Adobe® Creative Suite 3 Bridge JavaScript Guide for Windows® and Macintosh®.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication (whether in hardcopy or
electronic form) may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of Adobe Systems Incorporated. The software described in this document is furnished under
license and may only be used or copied in accordance with the terms of such license.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes, and noninfringement of third party rights.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual
organization.

Adobe, the Adobe logo, Illustrator, Photoshop, InDesign, and Version Cue are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

Apple, Mac, Macintosh, and Mac OS are trademarks of Apple Inc., registered in the United States and other countries. Microsoft, and
Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and other countries. JavaScript and all
Java-related marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a
registered trademark of The Open Group.

All other trademarks are the property of their respective owners.

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part
of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording,
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected
under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in the informational content contained in this guide.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

 3

Contents

Welcome ... 6
About This Book.. 6

Who should read this book .. 6
What is in this book ... 7
Document conventions ... 7

Typographical conventions ... 7
Where to go for more information .. 7

1 Scripting Adobe Bridge... 9
Scripting Overview .. 9

Documentation and sample code ... 9
Executing scripts for Adobe Bridge...10

The Adobe Bridge Browser Window and Object Model ..10
The Adobe Bridge browser window ...11
Accessing the Adobe Bridge browser through scripts...12

The Adobe Bridge Object Model ..14
Basic node model...15

The application and documents ..15
Thumbnails in documents..15

Scripting Adobe Bridge interactions...16
Application preferences..16
User-interaction events ...16

Customizing the user interface...17
Customizing the browser window ..17
Communicating with the user from a script..19

Extending browser behavior ...21

2 Interacting with Adobe Bridge through Scripts.. 23
Accessing Thumbnails with Scripts ...23

Thumbnails as node references..23
Using and accessing thumbnails..24

Accessing many thumbnails correctly ...24
Ensuring valid thumbnail data..25

Metadata for thumbnails...25
Embedding metadata in a script as XML...26

Event Handling in Adobe Bridge ..27
Defining event handlers ..27
Registering event handlers...28

Communicating with Other Applications ...28

3 Creating a User Interface for a Script ... 30
User Interface Options for Scripts...30

Navigation bars...31
Dialogs boxes ..32
Content pane...32
Tabbed palettes..32

Displaying ScriptUI in Adobe Bridge...32

 4

Displaying ScriptUI dialogs...33
Displaying ScriptUI elements in a navigation bar ..33
Displaying ScriptUI elements in a custom palette ...33

Displaying HTML in Adobe Bridge ...34
Defining callbacks for HTML scripts ..34
Executing script functions defined on HTML UI pages ..35
Displaying HTML in Adobe Bridge dialogs ...36
Communicating with Adobe Bridge from dialog JavaScript ...36
Using callbacks in an HTML dialog ..37

Calling functions defined in an HTML dialog ..37
Displaying HTML in a navigation bar..37

Calling functions defined in an HTML navigation bar..37
Displaying HTML in a custom palette...38

Passing Complex Values in Remote Calls ..38
Scheduling Tasks from Callbacks..38

4 Customizing the Adobe Bridge Browser Window... 40
Creating a Customized Tabbed Palette..40
Script-Defined Inspector Panels..41

Creating and displaying inspector panels ..42
Specifying string values in an inspector panel..42

Panelette markup elements for dynamic text...43
Markup examples ..43

Extending Adobe Bridge Menus...44

5 Extending Adobe Bridge Node-Handling Behavior.. 45
Creating Script-Defined Node-Handling Extensions...45

Registering your node-handling extension ...46
Installing a node-handling extension...46

Installation structure ..47
Extension workspaces..48
Shared startup scripts ..48

Accessing the node-handling model and data...48
Defining an ExtensionHandler...49

Immediate handler operations ...49
Long-running handler operations ...49

Defining an ExtensionModel..50
Immediate model operations..51
Long-running model operations..53

Defining Node Data Sets ..54
Managing the data cache ...54
Core node data ...55

Defining Long-Running Operations..56
Implementing an operation...56
Monitoring operation progress and status...58
Resolving conflicts...59

Defining Node Searches and Filters ..61
Handling interactive node searches ...61

Implementing getSearchDefinition() ...62
Implementing getBridgeUriForSearch()..63

Adding filters ...63
Implementing the getFilterCriteria() method ...64

 5

6 Porting Guide... 66
New Features in Adobe Bridge CS3...66

Node handling customization...66
Browser customization ..66

Changes and Deprecations in Adobe Bridge CS3 ..67
Object model additions ...67

Index ... 68

 6

Welcome

Welcome to the Bridge JavaScript Guide. This book describes how to use JavaScript to manipulate and
extend Adobe® Bridge, a powerful file-browser available with many Adobe applications, which you can
invoke from the Go to Bridge icon.

Adobe Bridge provides a highly customizable platform that can be extended using a rich JavaScript API,
Flash® components, and HTML-based solutions. It includes the ExtendScript Toolkit, an interactive
development environment for JavaScript.

About This Book
This document describes how to use the scripting API to extend and manipulate Adobe Bridge. Complete
reference information for the JavaScript objects, properties, and functions defined by Adobe Bridge is
provided in a companion document, the Bridge JavaScript Reference.

● Adobe provides the ExtendScript Toolkit an interactive development environment (IDE) for JavaScript,
with all JavaScript-enabled Adobe applications. The ExtendScript Toolkit is documented in the
JavaScript Tools Guide. This book also provides documentation for various utilities and tools that are
part of ExtendScript, the Adobe extended implementation of JavaScript.

● The Bridge SDK, which contains this document, also contains a set of code samples (“Snippets”), that
demonstrate how to use the features of the Bridge JavaScript API. This book refers to these samples by
name for illustration of concepts and techniques. You can download the SDK from Adobe Developer
Center, http://www.adobe.com/devnet/.

Who should read this book

This book is for developers who want to extend the capabilities of Adobe Bridge using JavaScript, call
Bridge functionality from scripts, and use scripts to communicate between Bridge-enabled applications. It
assumes a general familiarity with the following:

● JavaScript

● Adobe Bridge

● Any other Bridge-enabled applications you are using, such as Adobe Illustrator®, Adobe Photoshop®, or
Adobe InDesign®. The scripting API details for each application are included with the scripting
documentation for that product.

Note: If you have already been using the scripting interface to Bridge CS 2, see Chapter 6, “Porting Guide”
for information about changes in this release.

http://www.adobe.com/devnet/
http://www.adobe.com/devnet

Welcome About This Book 7

What is in this book

This book contains the following chapters:

● Chapter 1, “Scripting Adobe Bridge,” introduces some important concepts in Adobe Bridge scripting
and describes the Bridge JavaScript document object model (DOM).

● Chapter 2, “Interacting with Adobe Bridge through Scripts,” discusses the various ways of accessing
Thumbnail objects, describes how Bridge generates user-interaction events, and shows how you can
respond to these events by defining event handlers in your scripts.

● Chapter 3, “Creating a User Interface for a Script,” discusses the various options available to scripts for
interaction with Bridge users, such as dialog boxes and navigation bars, and describes how to use
these means to display a user interface defined in ScriptUI or in HTML.

● Chapter 4, “Customizing the Adobe Bridge Browser Window” describes how to add a script-defined
palette to Bridge, how to build a customized object-inspector pane that displays information related to
the selected node in any way you choose, and how to customize Bridge menus.

● Chapter 5, “Extending Adobe Bridge Node-Handling Behavior,” is intended for tool developers. It
describes how to extend the node-handling behavior of Bridge and define your own node types.

● Chapter 6, “Porting Guide,” summarizes changes and additions to this release, to help you in porting
existing scripting applications.

Document conventions

Typographical conventions

Note: Notes highlight important points that deserve extra attention.

Where to go for more information
● For complete reference information for the JavaScript objects, properties, and functions defined by

Adobe Bridge, see the Bridge JavaScript Reference.

● Adobe provides an extended version of JavaScript, used in many Adobe products, called ExtendScript.
ExtendScript is a complete implementation of ECMA JavaScript, plus additional tool and utilities.

The JavaScript API includes rich functionality such as building blocks for user interface elements and
network connectivity. In addition, it allows you to to develop C and C++ native extensions.

For a description of the objects, tools, and utilities defined by Adobe ExtendScript, including the
ExtendScript Toolkit, see:

JavaScript Tools Guide

Monospaced font Literal values; code, such as JavaScript or HTML code; file and path names.

Italics Variables or placeholders in code. For example, in name="myName", the text
myName represents a value you are expected to supply, such as name="Fred".
Also indicates the first occurrence of a new term.

Blue underlined text An active link to a related section in this book or to a URL in your web browser.

Sans-serif bold font The names of Bridge UI elements (menus, menu items, and buttons).

The > symbol is used as shorthand notation for navigating to menu items. For
example, Edit > Cut refers to the Cut item in the Edit menu.

Welcome About This Book 8

● For a general introduction to scripting as a tool for working with Adobe applications, see:

Adobe Creative Suite: Introduction to Scripting

This book does not describe the JavaScript language. For documentation of the JavaScript language or
descriptions of how to use it, see any of numerous works on this subject, including the following:

● The public JavaScript standards organization web site: www.ecma-international.org

● JavaScript: The Definitive Guide, 4th Edition; Flanagan, D.; O’Reilly 2001; ISBN 0-596-00048-0

● JavaScript Programmer’s Reference; Wootton, C.; Wrox 2001; ISBN 1-861004-59-1

● JavaScript Bible. 5th Edition; Goodman, D. and Morrison, M.; John Wiley and Sons1998; ISBN
0-7645-57432

http://www.ecma-international.org

 9

1 Scripting Adobe Bridge

This chapter introduces some important concepts in Adobe Bridge scripting and describes the Adobe
Bridge JavaScript API object model. For detailed descriptions of the objects and their properties and
methods, see the Bridge JavaScript Reference.

Note: If you have already been using the scripting interface to Adobe Bridge CS 2, see Chapter 6, “Porting
Guide” for information about changes in this release.

Scripting Overview
Adobe Bridge provides a configurable, extensible browser platform that allows users to search for, select,
and organize files by navigating among files and folders in the local file system, those on remote file
systems, and also web pages accessible over the Internet.

Adobe Bridge is integrated with Adobe applications, which bring up the Adobe Bridge browser window in
response to specific user actions that require file selection, or through a Browse button or command. You
can also bring up a browser window independently, by invoking it interactively or through a script.

The browser is highly configurable and extensible, using JavaScript. Adobe Bridge supports ExtendScript,
the Adobe extended implementation of JavaScript. ExtendScript files are distinguished by the .jsx
extension. ExtendScript offers all standard JavaScript features, plus additional features and utilities, such
as:

● Platform-independent file and folder representation

● Tools for building a user interface to a script

● An interactive development and debugging environment, the ExtendScript Toolkit

For details of these features, see the JavaScript Tools Guide.

You can use JavaScript to manipulate browser windows and their contents programmatically, and to
change and extend their functionality. This manual describes what you can do, and provides an overview
of the JavaScript objects and functions that you can use to program Adobe Bridge.

Documentation and sample code

The Adobe Bridge Software Developer’s Kit (SDK), available from Adobe Developer Center,
http://www.adobe.com/devnet/, contains many code samples for Adobe Bridge and the JavaScript tools.
You can download and install the SDK in a folder with a name and location of your choice, referred to here
as sdkInstall. The SDK contains:

sdkInstall/docs/ This document, and the companion documents Adobe Bridge
JavaScript Reference and JavaScript Tools Guide.

sdkInstall/javascript/docs/ Documentation for all of the JavaScript sample code in HTML
format.

sdkInstall/javascript/sdksamples/ A set of JavaScript code samples that illustrate Adobe Bridge
scripting concepts and techniques.

http://www.adobe.com/devnet/
http://www.adobe.com/devnet

1: Scripting Adobe Bridge The Adobe Bridge Browser Window and Object Model 10

The sections in this manual that discuss particular concepts list the code samples that demonstrate the
related techniques.

Executing scripts for Adobe Bridge

Adobe Bridge executes JavaScript scripts in any of these ways:

● You can load and run a script in the ExtendScript Toolkit, specifying Adobe Bridge as the target
application. This is how to run the example code Snippets. The Toolkit is a development environment
for JavaScript, in which you can see debugging output and step through execution.

If you run a script for the ExtendScript Toolkit that has Adobe Bridge as its target, the Toolkit
automatically launches Adobe Bridge if it is not already running. Similarly, if another application sends
a JavaScript message to Adobe Bridge, the messaging framework launches Adobe Bridge if necessary.
For details of the Toolkit and messaging framework, see the JavaScript Tools Guide.

● You can create a menu command that runs a script and add it to a menu or submenu in the Adobe
Bridge browser, using the MenuElement object. See ‘Extending Adobe Bridge Menus’ on page 44.

● When the browser window displays a JSX file, you can double-click that file thumbnail to run the script
in its target application. It runs in Adobe Bridge if the script specifies Adobe Bridge as its target
application by including the directive:

#target bridge-2.0

If the script specifies another application as its target, ExtendScript prompts the user to start that
application if necessary. If the script does not specify a target application, it opens in the ExtendScript
Toolkit. For details of application specifier syntax, see the JavaScript Tools Guide.

● You can pass a script to the Adobe Bridge executable, to be executed on startup, by dragging the JSX
file icon onto the Adobe Bridge executable file icon or shortcut. This script is executed after all startup
scripts found in the startup folders.

● Adobe Bridge has a dedicated location for user-installed startup scripts. This is the location referred to
by the Reveal button in the Preference/General panel. All JSX files found in these locations are
automatically run when Adobe Bridge is launched.

● In Windows, the user startup folder is:

%APPDATA%\Adobe\Bridge CS3\Startup Scripts\

● In Mac OS, the user startup folder is:

~/Library/Application Support/Adobe/Bridge CS3/StartupScripts/

Other locations are used for the Adobe startup scripts that are supplied on installation of Adobe
Bridge-enabled applications. As a third-party developer, you must be very careful when installing
anything in these locations. They should be used only for extensions to the Adobe Bridge node-handling
model that support companion applications. For details, see Chapter 5, “Extending Adobe Bridge
Node-Handling Behavior.

The Adobe Bridge Browser Window and Object Model
An object model is an application programming interface (API), which allows you to programmatically
access various components of a document (as defined for that application) through a scripting language
such as JavaScript. In the case of Adobe Bridge, a "document" is defined as the browser window. This
section shows how each aspect of the API relates to the parts of the browser. A more detailed description
of the objects of the Adobe Bridge model follows in ‘The Adobe Bridge Object Model’ on page 14.

1: Scripting Adobe Bridge The Adobe Bridge Browser Window and Object Model 11

The Adobe Bridge browser window

The browser window is highly configurable. A browser configuration is called a workspace. There are
predefined workspaces, and you can save and set the workspace interactively through the Window >
Workspace menu, or through a script. User-defined workspaces are saved as XML files with the
.workspace extension, in these locations:

● In Windows, the user workspace folder is:

%APPDATA%\Adobe\Bridge CS3\Workspaces\

● In Mac OS, the user workspace folder is:

~/Library/Application Support/Adobe/Bridge CS3/Workspaces/

The following figure identifies parts of the browser window in a default configuration and viewing mode.

The tabbed palettes are arranged in three columns . You can change the arrangement interactively.
Columns can be resized, and palette groups can also be resized within the column. Individual tabbed
palettes can be opened and closed, and dragged into different relative positions. Dragging a palette to the
bottom of an existing set adds a new tab set at the bottom of that column.

Your scripts can add customized palettes and menus, and control various aspects of the window
configuration and display.

FOLDER and
FAVORITES
palettes

CONTENT pane

PREVIEW
palette

METADATA
and
KEYWORDS
palettes

status line

menu bar

FILTER palette

upper
navigation bar

FAVORITES:
User section

browser modethumbnailsthumbnails

tabbed palettes

flyout
menu

workspaces

FAVORITES:
Standard section

1: Scripting Adobe Bridge The Adobe Bridge Browser Window and Object Model 12

Accessing the Adobe Bridge browser through scripts

The following table describes how the Adobe Bridge JavaScript API maps to the various parts and features
of the browser window, and how a script can access each part or feature through the Adobe Bridge object
model.

Window area Purpose Scripting control

Browser window Displays files, folders, and web
pages, along with related file
information and tools.

Represented by the Document object. Current
browser window (the one with the operating
system focus) is in app.document. All open
browser windows are in app.documents.

A script can create a new browser window by
creating a new Document object.

The browser mode (full or compact) is
controlled by app.document.browserMode.

The overall configuration of palettes is
controlled by app.document.workspace. All
defined configurations are in
app.workspaces.

Thumbnails The labeled icons that appear
in the Folders/Favorites panes
as navigation nodes, and in
the Content pane and Preview
palette to represent files and
folders.

The Thumbnail object represents a node in
the browser navigation hierarchy.
Thumbnails can represent File or Folder
objects, URLs, or script-defined nodes
associated with script-defined
node-handling extensions. Adobe Version
Cue® nodes are an example of script-defined
nodes with their own behavior.

Favorites palette Provides a place for users to
drag and drop favorite items
(in the bottom half of the
pane).

Displays only top-level
containers and one level of
subnodes.

Access the visible thumbnails through the
app.favorites property, and traverse the
hierarchy through the Thumbnail.children
properties.

The Favorites object allows you to add
thumbnails to this pane.

User interaction with a thumbnail in this
pane generates an event with a Thumbnail
target object and a location of favorites.

Folder palette Displays the file-system
navigation hierarchy.

Displays only containers (such
as folders and subfolders). The
content of the selected
container appears in the
Content pane.

Access the currently selected thumbnail in
the Folders pane through the
Document.thumbnail property. Traverse the
hierarchy through the Thumbnail.parent and
Thumbnail.children properties.

User interaction with a thumbnail in this
pane generates an event with a Thumbnail
target object and a location of document.

1: Scripting Adobe Bridge The Adobe Bridge Browser Window and Object Model 13

Content pane Displays container contents
when you select a container
node in the Folders or
Favorites palette, or when you
double-click a navigable node
(such as a folder) in the
Content pane itself.

Displays both containers (such
as subfolders) and leaf nodes
(such as files and images).

Can also display web pages.

Controlled by the
Document.presentationMode, which you set
with Document.setPresentationMode() to
one of these values:

● browser: Displays file and folder nodes,
represented by Thumbnail objects, found
at the path specified in
Document.presentationPath. When a
folder is selected in the Folders pane,
access the current contents of the
Content pane through
app.document.thumbnail.children[].

● html: Displays an HTML page (local or
remote) specified by a URL in
Document.presentationPath.

User interaction with a thumbnail in this
pane generates an event with a Thumbnail
target object and a location of document. The
selected thumbnails are available through
Document.selections.

Preview palette Displays image previews. User interaction with a thumbnail in this
pane generates an event with a Thumbnail
target object and a location of preview.

Filter palette Allows you to sort thumbnails
in the Content pane, or limit
the nodes shown to those
matching selected criteria.

The FilterDescription object allows you to
specify filtering criteria for script-defined
node types.

When displaying a handled container node,
Adobe Bridge builds the list of filters by
calling the developer-defined
getFilterCriteria() method of the node's
ExtensionModel.

Metadata palette Displays embedded file
metadata information.

Embedded metadata is displayed and can be
modified for a specific thumbnail. Access
XMP metadata, encapsulated in a Metadata
object, from the Thumbnail.metadata
property.

Set app.synchronousMode before accessing
metadata in a script, to ensure that Adobe
Bridge retrieves the latest valid data.

Keywords palette Displays keyword information. Not directly accessible to scripts, except
insofar as you can modify keywords defined
in embedded metadata.

1: Scripting Adobe Bridge The Adobe Bridge Object Model 14

The Adobe Bridge Object Model
Each application has its own object model, which consists of a hierarchical representation of the
application, and of the documents used in the application. The object model allows you to

Custom tabbed
palettes (not shown)

Script-defined tabbed palettes
that can be added to the
default palettes.

A new palette is represented by the
TabbedPalette object. A palette can display
HTML or ScriptUI user-interface elements;
ScriptUI can display Flash animation. The
TabbedPalette.title value is shown in the
tab.

Inspector (not shown) An object-inspection palette
that displays further
information related to a
selected thumbnail in the
Content pane.

This type of palette is
script-defined; there is no
default version.

Each palette is represented by the
InspectorPanel object, which contains one
or more subpanels. The subpanels display
information related to the focus thumbnail,
directly or indirectly through Thumbnail or
Metadata properties. Various types of
subpanel are represented by subclasses of
the Panelette base class.

View mode controls Various controls at the bottom
right of the browser that set
the viewing mode to
predefined pane
configurations, and set the
display size of thumbnails in
the Content pane.

The view mode is controlled by
app.document.thumbnailViewMode. You can
control various aspects of the view with
other Document properties such as
displayInspectorView, showFolders,
showThumbnailName, and so on.

Status line The bottom bar on the
browser window that displays
current status information.

Set text to be shown in the status line with
Document.status.

Menubar The menubar at the top of the
browser window that contains
Adobe Bridge commands.

While this is not an object under direct
Document control, you can add menus and
commands using the MenuElement object, by
referring to existing menus and commands.

Context menus The right-click menus
associated with thumbnails,
and flyout menus for some
palettes, containing
context-specific commands.

You can add submenus and commands to
these menus using the MenuElement object,
by referring to existing commands.

Browser window upper
navigation bar

The navigation bar
immediately under the
menubar. Not configurable.

Not accessible to scripts.

Top and bottom
navigation bars

Two configurable navigation
bars that can appear above
and below the Content pane.

Represented by predefined NavBar objects,
accessed through the Document.navbars
property. By default, the navigation bars are
invisible. You can make a bar visible, and add
ScriptUI or HTML UI elements to it.

1: Scripting Adobe Bridge The Adobe Bridge Object Model 15

programmatically access and manipulate the document and its components. Since the use of a document
varies for each application, the object model terminology varies for each application. For example, each
application's object model includes a Document class, but the object referred to is different for each
application, and the Document class has different properties and methods for each application.

Applications typically define a Document class to deal with files of a particular type, such as HTML pages,
images, or PDF documents. However, Adobe Bridge uses a different approach. In the object model, the
Document class refers to a browser window, and the properties and methods of Document refer to
various components of the user interface (UI). The browser window displays icons that reference the files
that other applications consider documents—HTML pages, images, PDFs, and so on. In the object model,
these icons are represented by the Thumbnail class.

Basic node model

The application and documents

The Adobe Bridge App object is the root of the hierarchy, and represents the Adobe Bridge application. A
single global instance of the App class, named app, is created when the application is started, and
provides access to global values. Even though the user can create multiple browser windows by selecting
the File > New Window command, making it appear that separate Adobe Bridge applications are running
in parallel, only a single instance of the application is running, which is reflected by a single instance of the
app object.

The Document object represents a browser window. Each time a user selects File > New Window, a new
document object is created. When multiple browser windows are open, the user can select which window
to use by clicking the window to make it active. In a script, you can access the active, or most recently
used, browser window through the app.document property. The set of all open browser windows is
available through the app.documents array.

Thumbnails in documents

The Thumbnail object type represents a node, or browsable element in the browser navigation hierarchy.
It typically represents a a file or folder, but can also be associated with a web page. A document contains
various collections of Thumbnail objects.

● Thumbnail objects can contain other Thumbnail objects, as for example, when a folder contains
files. In this case, the container property of the Thumbnail is true, and the children property
contains a hierarchy of Thumbnail objects that represent files and folders contained in the folder.

App

Document

Thumbnail

Thumbnail

File, Folder

Favorites

Metadata

1: Scripting Adobe Bridge The Adobe Bridge Object Model 16

● The Folders pane shows the full navigation hierarchy of folders and subfolders for the local file system,
and for virtual file systems such as that defined by Version Cue. Scripts can add nodes to the Folders
pane using app.addCustomRoot(). A script can access the currently selected thumbnail through
the app.document.thumbnail property, and can walk the navigation hierarchy by accessing the
parent and children properties of each Thumbnail object.

● The Favorites pane shows a selection of high-level nodes, some predefined (in the upper Standard
section) and some chosen by the user (in the lower User section). These nodes can represent web
pages, virtual locations such as Stock Photos, and remote folders, as well as local folders. The
Favorites object represents the navigation nodes in the Favorites pane. A document contains a
single Favorites object, which contains two arrays of Thumbnail objects, for the Standard and User
sections. Access the Favorites object through app.favorites.

● A script can add thumbnails to the User section of the Favorites pane by using the Favorites
object’s insert method, and one level of sub-nodes using the addChild method. A subnode can
be any thumbnail; it does not have to be part of the root node’s children hierarchy.

● A script cannot remove thumbnails in the Standard section, but they can be shown or hidden with a
Preference, and a script can modify the Preference and display state using Favorites.enable()
and Favorites.disable().

● You can add customized panes or palettes to the browser window which can display thumbnails, or
information directly or indirectly contained in selected thumbnails; see ‘Customizing the user interface’
on page 17.

For additional information about how to work with Thumbnail objects, see ‘Accessing Thumbnails with
Scripts’ on page 23.

Scripting Adobe Bridge interactions

Application preferences

The Preferences object allows a script to access Adobe Bridge application preferences. These are the
values that can be viewed interactively in the Preferences dialog, in response to the Edit > Preferences
command. The settings are stored and persist across sessions. Your script can use the Preferences
object to view or set existing preferences, or to add new preference fields. In some cases, when you modify
persistent preference values, the new settings are not reflected in the browser window until the
application is restarted.

When the user brings up a Preferences dialog, Adobe Bridge invokes a ScriptUI dialog window, and
generates a create event with the PreferencesDialog object as its target. You can define and
register an event handler for this event that uses the object’s add method to add a ScriptUI panel
containing ScriptUI controls that show and allow the user to modify script-defined preference values.

User-interaction events

When interacting with Adobe Bridge, a user takes actions such as changing the thumbnail selection, or
creating a new browser window. For most of these actions, Adobe Bridge triggers a user-interaction event,

Event

Preferences PreferencesDialogApp

1: Scripting Adobe Bridge The Adobe Bridge Object Model 17

represented by an Event object of a particular event type, with a particular target object, such as an App,
Document, or Thumbnail object. Some function calls can also trigger events.

Adobe Bridge defines default behavior for user-interaction events. You can extend or override the default
behavior by defining and registering an event-handler function. This function receives the Event object as
an argument, and returns a value that tells Adobe Bridge whether to continue with the default behavior or
to ignore it.

For more information, see ‘Event Handling in Adobe Bridge’ on page 27.

Customizing the user interface

You can add user interfaces to your scripts or browser interactions, and your scripts can customize the
browser window.

Customizing the browser window
● You can define additional tabbed palettes like those provided by default, using the TabbedPalette

object. These can display HTML or ScriptUI content. Script UI provides a complete set of user-interface
components that includes a Flash movie player.

● You can define object-inspection palettes using the InspectorPanel, which contains customized
subpanels that display information related to the currently selected thumbnail. The selected thumbnail
is the inspection focus of the display.

By default, these script-defined palettes appear in the upper left of the browser, but once they are
displayed, you can resize them and drag them to new locations, like the predefined palettes.

The following figures show a script-defined palette with ScriptUI content, and a script-defined Inspector
panel, both created by the example scripts in the Adobe Bridge SDK.

Document

InspectorPanel

MenuElement

NavBar

TabbedPalette

Dialog

App TextPanelette

ThumbnailPanelette

IconListPanelettePanelette

1: Scripting Adobe Bridge The Adobe Bridge Object Model 18

The displayed information in an Inspector can be related to the selected node through embedded file
metadata (in associated Metadata objects) or through Adobe Bridge- or script-defined properties of the
Thumbnail object (see Chapter 5, “Extending Adobe Bridge Node-Handling Behavior").

For information on how to make these additions, see Chapter 4, “Customizing the Adobe Bridge Browser
Window.

1: Scripting Adobe Bridge The Adobe Bridge Object Model 19

Communicating with the user from a script

Your script can display information to or collect information from the user by configuring the supplied
Navigation bars, or by creating and displaying Dialogs.

ExtendScript provides a set of user-interface objects in the ScriptUI module, which defines windows and
user-interface controls. You can use these objects to define a user interface for your application, in the
form of popup dialogs, persistent dialogs (called palettes), or as part of navigation bars. The usage of the
ScriptUI objects is discussed in the JavaScript Tools Guide.

You can also define a user interface using standard HTML. When integrating your user interface with the
browser, you can use either ScriptUI or HTML controls for any window or pane, but cannot mix the two. For
a complete discussion, see Chapter 3, “Creating a User Interface for a Script."

In addition to displaying a user interface for your script, you can script user interactions by extending the
Adobe Bridge Menus.

Navigation bars

The Adobe Bridge navigation bar immediately below the menubar cannot be scripted, but there are two
configurable navigation bars, above and below the Content pane. They are represented by NavBar
objects, which you can access through the Document object’s navbars property.

The following figure shows a navigation bar defined by Adobe StockPhotos.

By default, the navigation bars are hidden and empty.

● You can show and hide a navigation bar by setting the object’s visible property.

● You can configure a navigation bar to display either ScriptUI user-interface controls, or straight HTML
controls. It cannot mix the two.

● To display ScriptUI controls, set the type property to "scriptui", then use the NavBar.add
method to add controls.

● To display HTML controls, set the type property to "html", and the file property to the HTML file
that defines the page you want to display.

You can program the controls to display information to or collect information from the user. For additional
details, see ‘Navigation bars’ on page 31.

Dialogs

Your script can define dialogs to display information to or get information from the user. There are two
ways to define these:

● ScriptUI Dialogs: Use the ScriptUI Window object to define a dialog that displays ScriptUI controls. For
details of programming ScriptUI dialogs, see the JavaScript Tools Guide.

1: Scripting Adobe Bridge The Adobe Bridge Object Model 20

● HTML Dialogs: The Adobe Bridge Dialog object represents a window that displays an HTML page,
rather than ScriptUI controls. For details of programming Adobe Bridge dialogs, see ‘Displaying HTML
in Adobe Bridge dialogs’ on page 36.

You can invoke ScriptUI or Adobe Bridge dialogs from a script as modal or nonmodal dialogs.

● A modal dialog retains the input focus, and does not allow the user to interact with any other
application windows until the dialog is dismissed. The function that invokes it does not return until the
dialog is dismissed.

● A nonmodal dialog (known in ScriptUI as a palette), does not keep the input focus. The user can interact
with other application windows while the dialog is up. The function that invokes it returns
immediately, leaving the dialog on screen until the user or script closes it.

Menus

The MenuElement object allows you to extend Adobe Bridge menus. A script cannot remove or alter the
behavior of predefined menu items, but you can add, remove, and modify script-defined menus,
submenus and commands.

The menu bar, and most menus, submenus, and context menus can be extended by creating new
MenuElement objects that reference existing menus and menu items. The identifiers of all menus and
menu items that are accessible to scripts are listed with the description of the MenuElement object in
‘Extending Adobe Bridge Menus’ on page 44.

1: Scripting Adobe Bridge The Adobe Bridge Object Model 21

Extending browser behavior

Adobe Bridge provides a development infrastructure for advanced developers who want to create plug-in
type extensions to basic Adobe Bridge functionality, in order to integrate Adobe Bridge with other
applications and systems.

An advanced developer can extend the default node-handling behavior by defining a new node type, and
a node-handling extension that manages that node type. When you define a node type, you assign an
identifying prefix (or more than one), and register that prefix to associate it with the ExtensionHandler
object that implements the handler.

To implement a node-handling extension, you define ExtensionHandler and ExtensionModel
classes, providing the node-handling methods.

● You can create script-defined properties in the Thumbnail object for your handled nodes, using the
Infoset object. You can access and display this kind of node data in a custom Inspector panel; see
‘Script-Defined Inspector Panels’ on page 41.

● You can define node search and filter criteria that consider the values of metadata and node data
properties associated with your node types.

● You can define sorting criteria that determine how your nodes are ordered in the Content pane or
Inspector panels.

● For time- or resource-intensive tasks such as those involving file-system access, your model methods
must define an Operator object to execute and monitor the operation.

For a complete discussion, see Chapter 5, “Extending Adobe Bridge Node-Handling Behavior."

App

ExtensionModel

ExtensionHandler

SortCriterion

Infoset

SearchDefinition

SearchCriteria

InfosetMemberDescription

FilterDescription

SearchSpecification

SearchCondition

Operator

ModalOperator

ProgressOperator

1: Scripting Adobe Bridge The Adobe Bridge Object Model 22

The following figure show the result of running the basic node-handling extension example provided with
the Adobe Bridge SDK. Additional examples show how to add node-specific information to your own node
types, and how to search and filter nodes of the handled type, based on the node-specific information.

Node of handled type added to
Favorites palette

Container and leaf nodes of handled type displayed in
Content pane

 23

2 Interacting with Adobe Bridge through Scripts

The Thumbnail object is the basic JavaScript representation of the entities that your Adobe Bridge
browser displays; see ‘Accessing Thumbnails with Scripts’ on page 23.

As a user interacts with the browser window, Adobe Bridge generates user-interaction events. Your scripts
can detect and respond to these events in order to extend or override the default behavior; see ‘Event
Handling in Adobe Bridge’ on page 27.

Your scripts can communicate with other Adobe JavaScript-enabled applications, such as Photoshop,
Illustrator, and InDesign. You can, for example, send a file that a user selects in the Adobe Bridge browser
to be opened in Photoshop. See ‘Communicating with Other Applications’ on page 28.

Accessing Thumbnails with Scripts
The Thumbnail object represents a navigation node. Thumbnails can represent entities such as files and
folders, accessed through a local or remote file system, or web pages accessed over the internet and
displayed in an embedded web browser. A thumbnail can also represent a service, such as Stock Photo or
Adobe Media Gallery.

Thumbnails as node references

The Thumbnail object represents a node in a navigation tree. The basic behavior of a thumbnail icon is
determined by a node handler; the core node handler provides the default behavior. Node handling is
generally internal, although it is extensible by tool developers. By default, a node is associated with a
file-system path or a File or Folder object, or with a URL. Clicking the node displays the associated
folder contents, file, or page in the standard Adobe Bridge panes.

● Any scripter can define an event handler that responds to these standard thumbnail interaction events;
see ‘Event Handling in Adobe Bridge’ on page 27.

A Thumbnail object is identified by a unique identifying string called a Bridge URI, which is available to
scripts through the Thumbnail.uri property. The URI consists of a path or URL string, with a prefix string
that serves as a node identifier. The node identifier determines how the node is handled when the user
selects the icon. The default behavior is determined by the default node handler, which is identified by the
default prefix bridge:.

● A tool developer can extend the default node-handling behavior, defining new node types and adding
properties to the Thumbnail object; see ‘Extending browser behavior’ on page 21.

Here are some examples of complete, or canonical, Bridge URIs, including the prefix registered for the
node handler:

Standard file, with default node
handling

bridge:fs:file:///C:/BridgeScripts/icons/2.jpg

HTML page in Content pane,
with default node handling

bridge:html:file://C:\myWebPage.html

file:///C:/BridgeScripts/icons/2.jpg
file://C:\myWebPage.html

2: Interacting with Adobe Bridge through Scripts Accessing Thumbnails with Scripts 24

Using and accessing thumbnails

Thumbnails are used in a number of ways within a browser window, and the objects are referenced
according to their use. For example:

● Access thumbnails that appear in the Favorites pane through app.favorites

● Access a thumbnail that is selected in the Folders pane through app.document.thumbnail

● Access thumbnails that appear in the Content pane through
app.document.thumbnail.children

● Access thumbnails that are associated with a context menu through app.document.context

● Access thumbnails that have been selected in the Content pane through
app.document.selections, or app.document.getSelection().

● Access those thumbnails that are currently visible in the Conent pane through
app.document.visibleThumbnails.

Note: Be careful when accessing selected or visible thumbnails, as it is possible for very large numbers of
thumbnails to be selected or visible, and accessing a large array very often can affect performance;
see Accessing many thumbnails correctly below.

Accessing many thumbnails correctly

Accessing many thumbnails can be a time-intensive operation for your scripts. Performance can suffer if
you do so unnecessarily.

● Check the number of selections first with app.document.selectionLength, to avoid unnecessary
access to a very large selection. This is much more efficient than accessing the collection, then
checking its size. Similarly, use app.document.visibleThumbnailsLength to avoid accessing a
very large array in app.document.visibleThumbnails.

● Use app.document.getSelection()to limit the collection to thumbnails for files of a specific type,
or to collect only those thumbnails that are currently visible. This function takes an optional argument,
a list of file extensions. For example:

// Get the selected Thumbnail objects - only accept these file types
var thumbs = app.document.getSelection("psd, jpg, png, tif, gif");

By default, it matches all file types. If no thumbnails of the given type are selected, it returns those that
are visible in the Content pane. See examples in Bridge SDK samples SnpSaveAsJPEG.jsx and
SnpRotateImage.jsx.

Script-defined node-handling
extension (from the Bridge SDK
example)

bridge:beNode:/BERoot/EHFolder1

Adobe Stock Photos Favorite bridge:script:stockphoto://home

Version Cue project file bridge:vc:vcstable:project/44940038-11e4-104c-bd8a-9211234f21d
6/44940038-11e4-104c-bd8a-9211234f21d6_1_1

Version Cue asset bridge:vc:vcstable:file/44940038-11e4-104c-bd8a-9211234f21d6/4
4940038-11e4-104c-bd8a-9211234f21d6_1_1/Folder%20One/thumbTest
.jpg

2: Interacting with Adobe Bridge through Scripts Accessing Thumbnails with Scripts 25

● If you must iterate over many thumbnails, be careful to collect the Thumbnail objects first, then
perform the iteration, rather than accessing the objects repeatedly.

The correct style of thumbnail access is hundreds of times faster than the incorrect style. This example
illustrates correct and incorrect styles of iteration.

// correct: access thumbnails once, outside loop
var theChildren = myThumb.children;
for(var f = 0; f < theChildren.length; ++f) {

var child = theChildren[f];
}
// wrong: access thumbnails repeatedly, inside loop
for(var f = 0; f < myThumb.children.length; ++f) {

var child = myThumb.children[f];
}

Ensuring valid thumbnail data

When a script accesses the properties of a Thumbnail object, some properties of the object may not be
immediately available. To ensure the object contains current data, set app.synchronousMode to true
before accessing properties. If you do not do so, you may find that the values of Thumbnail properties
are undefined, or not what you expect.

The default value of app.synchronousMode is false, for performance reasons; this is because
thumbnails are accessed internally by Adobe Bridge much more frequently than by scripts. In your scripts,
however, you should make a habit of setting it to true. It is automatically reset to false after scripts
complete.

Metadata for thumbnails

A Thumbnail object is associated with a Metadata object, which allows you to access the embedded
metadata for the associated file, such a copyright owner, author, or camera settings. Metadata is kept in
the Adobe XMP format. It includes metadata defined in other formats, such as EXIF, in namespaces for
those formats. For more information on the XMP metadata format, see the XMP Specification.

When a script needs to access the metadata through the Thumbnail object, it is important to make sure
that the returned object contains the most current data. To ensure this, your script should set
app.synchronousMode to true before attempting to retrieve values through Thumbnail.metadata,
or else use Thumbnail.synchronousMetadata.

Keep in mind, however, that metadata access is a time-intensive operation. Do not do it unnecessarily, or
as part of operations that occur very frequently, such as a MenuItem.onDisplay callback function.

Note: For metadata properties that are known date formats, the corresponding Metadata object
property contains an ISO-8601 date string. For more information on date formats, see the XMP
Specification.

You can extend the Adobe Bridge browser to display context-specific information indirectly associated
with a selected thumbnail through its metadata. See ‘Customizing the browser window’ on page 17.

http://partners.adobe.com/public/developer/xmp/topic.html
http://partners.adobe.com/public/developer/xmp/topic.html
http://partners.adobe.com/public/developer/xmp/topic.html

2: Interacting with Adobe Bridge through Scripts Accessing Thumbnails with Scripts 26

➤ Example code

The sample code distributed with the Adobe Bridge SDK includes these code examples that specifically
demonstrate thumbnail and metadata access:

Embedding metadata in a script as XML

Adobe Bridge allows you to embed certain metadata in a script that describes the script file itself, using
XML delimited by special tags within a comment block. Only Dublin Core properties can be embedded
this way. The following Dublin Core properties are particularly useful for describing a JavaScript file:

For details of the Dublin Core metadata specification, see http://dublincore.org/documents/dces/.

Adobe Bridge uses the embedded metadata title and description (if it is less than 50 characters) in the
Startup Scripts page of the Preferences dialog.

The tags @@@START_XML@@@ and @@@END_XML@@@ enclose a block of XML within a C-style comment
block in a JavaScript script:

/*
@@@START_XML@@@
 XML block goes here
@@@END_XML@@@
*/

All XML in this block must be UTF-8 encoded:

/*
@@@START_XML@@@
<?xml version="1.0" encoding="UTF-8"?>
 ...
@@@END_XML@@@
*/

Within the XML block, use the <ScriptInfo> tag to describe each XMP metadata element. The XML may
contain one or more <ScriptInfo> elements.

● A <ScriptInfo> element must specify the xml:lang attribute as an Adobe-supported language
code.

● Within a <ScriptInfo> element block, you can specify Dublin Core metadata key-value pairs, each
on a separate line. Specify each metadata property as an element whose name is the key and whose
text content is the value:

<dc:title>Adobe Flash CS3 Professional</dc:title>

Thumbnail metadata access in sdkInstall/sdksamples/javascript/

SnpInspectMetadata.jsx Shows how to acquire metadata.

SnpModifyMetadata.jsx Shows how to alter metadata on a selected file.

dc:title The display name for the script.

dc:description A short description of the script.

dc:source Where to get updates to the script.

http://dublincore.org/documents/dces/
http://dublincore.org/documents/dces

2: Interacting with Adobe Bridge through Scripts Event Handling in Adobe Bridge 27

Adobe Bridge's parser does not perform full XML parsing. It looks for the <ScriptInfo> block that
matches the current locale, then searches from there for the relevant tags. For example, the following
specifies two language versions of a description for the containing script:

/*
@@@START_XML@@@
<?xml version="1.0" encoding="UTF-8"?>
<ScriptInfo xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="en_US">

 <dc:title>Adobe Flash CS3 Professional</dc:title>
 <dc:description>This script enables other applications to communicate

with Adobe Flash.<dc:description>
</ScriptInfo>
<ScriptInfo xmlns:dc="http://purl.org/dc/elements/1.1/" xml:lang="fr_FR">

 <dc:title>Adobe Flash CS3 Professional</dc:title>
 <dc:description>Ce script permet à d'autres applications de communiquer

avec Adobe Flash.</dc:description>
</ScriptInfo>
@@@END_XML@@@

*/

Event Handling in Adobe Bridge
When a user takes certain actions in Adobe Bridge, such as copying a file, or creating a new browser
window, Adobe Bridge generates a user-interaction event. User-interaction events include actions on
thumbnails (such as selecting them), and also actions on the application (quitting) and on the browser
window (such as activating it in the windowing system).

You can modify the way Adobe Bridge responds to these events by defining your own event handlers.
Scripts can also generate events through function calls, that simulate user activity, such as
Thumbnail.open(), or Document.select().

Note: The event handling mechanism described in this chapter applies only to the Adobe Bridge objects.
If your script defines its own user interface, events are handled differently, depending on what kind
of object generated them:

● For events generated by ScriptUI objects (such as controls in the navigation bar), see the
JavaScript Tools Guide.

● For events generated by menu elements, see ‘Extending Adobe Bridge Menus’ on page 44.

● Events generated by HTML controls in HTML navigation bars or dialogs are handled by their own
HTML-defined handlers. These can access Adobe Bridge objects through a callback mechanism.
See ‘Displaying HTML in Adobe Bridge’ on page 34.

Defining event handlers

An event-handler function takes one argument, an Event object. This object, which is passed to your
registered handler when the event occurs, contains all of the context information about the event, such as
which type of event occurred, the target object that generated it, and where that object was located
within the browser window.

Your handler returns an object with a boolean handled property.

● When an event handler returns {handled:true}, Adobe Bridge does not look for any more handlers,
nor does it execute the default handler.

http://purl.org/dc/elements/1.1
http://purl.org/dc/elements/1.1

2: Interacting with Adobe Bridge through Scripts Communicating with Other Applications 28

● When an event handler returns {handled:false}, Adobe Bridge continues to look for registered
handlers, and if no more script-defined handlers are registered, it executes the default handler. This is
the default behavior if your handler does not return a value.

Using this mechanism, you can extend the default behavior of the Adobe Bridge objects. For example,
when the user quits the Adobe Bridge application, your destroy or close event handler can take
additional actions, such as cleaning up structures you have made, or displaying status information. To
extend the default behavior, your handler returns the object {handled:false}.

In many cases, such as Thumbnail events, you can use the event handler to override the default behavior.
You do this by returning the object {handled:true}, which prevents Adobe Bridge from executing the
default handler.

For some events, such as Document events, you cannot override the default behavior of the event. Even if
your handler returns {handled:true}, the default behavior still executes when your handler has
finished. The {handled:true} return value does, however, prevent Adobe Bridge from executing any
subsequent script-registered event handlers.

Registering event handlers

To register an event-handler function you have defined, create an EventHandler object and add it to
the array app.eventHandlers. An EventHandler is a simple JavaScript object with a handler
property that specifies the name of the event-handler function. There is no constructor, it is a simple
script-defined object. For example:

var myEventHandler = { handler: doThisEvent };
app.eventHandlers.push (myEventHandler);

It is most efficient to write one handler that responds to many different events, rather than write one
handler for each type of event. When an event occurs, Adobe Bridge iterates through the
app.eventHandlers array, trying each handler in sequence, passing in the triggering event object. If
one of the event handlers returns {handled:true} Adobe Bridge stops the iteration.

➤ Example code

The sample code distributed with the Adobe Bridge SDK includes a number of examples that use event
handling in the course of demonstrating various other features. These code examples specifically
demonstrate event handling:

Communicating with Other Applications
The Adobe scripting environment provides an interapplication communication framework, a way for
scripts to communicate with other Adobe applications, from Adobe Bridge or among themselves.

● A script can call certain basic functions exported by all JavaScript-enabled applications. For example,
an Adobe Bridge script could ask the user to select an image file, then open that file in Photoshop® or

Event handling examples in sdkInstall/sdksamples/javascript/

SnpDefineAppClosingHandler.jsx Shows how to create an event listener that responds to quitting
from the Adobe Bridge application.

SnpListenDocEvents.jsx Shows how to create separate event handlers for different
events.

2: Interacting with Adobe Bridge through Scripts Communicating with Other Applications 29

Illustrator® by calling the photoshop.open or illustrator.open function. These basic exported
functions are called the Cross DOM.

● Individual applications export additional functions to make more complex functionality available to
scripts. For example, an Adobe Bridge script can request a photo-merge operation in Photoshop by
calling photoshop.photomerge with a set of selected image files. The set of functions available for
each application varies widely.

● A messaging protocol based on the JavaScript BridgeTalk object provides a general and extensible
framework for passing any kind of data between messaging enabled applications. Many Adobe
applications are messaging enabled. You can send messages that contain JavaScript scripts. The target
application can evaluate a script that it receives, and send results back in a response message.

For complete details, see the JavaScript Tools Guide.

➤ Example code

The sample code distributed with the Adobe Bridge SDK includes these code examples that specifically
demonstrate interapplication messaging between Adobe Bridge and Photoshop:

Interapplication messaging examples in sdkInstall/sdksamples/javascript/

SnpOpenInPhotoshop.jsx Shows how to call on another JavaScript-enabled application
to open a file using the Cross DOM functionality.

SnpSaveAsPNG.jsx Shows how to send multiple image files to Photoshop to be
saved in a PNG format.

SnpSendMessage.jsx Demonstrates interapplication communication using
BridgeTalk messages, showing the order of arrival of messages
and message responses.

SnpSendCustomObject.jsx Shows how to pass a custom object from Adobe Bridge to
Photoshop.

SnpSendArray.jsx Shows how to pass an array from Photoshop to Adobe Bridge.

SnpSendDOMObject.jsx Shows how to pass an object-model object from Photoshop to
Adobe Bridge through the interapplication messaging
framework.

 30

3 Creating a User Interface for a Script

The Adobe Bridge scripting environment provides a number of options for interacting with users.

● You can define a response to a user’s interaction with Adobe Bridge objects, such as thumbnails,
through the event-handling mechanism, as discussed in Chapter 2, “Interacting with Adobe Bridge
through Scripts. "

● This chapter discusses the various ways you can build a user interface into your scripts, either bringing
up your own dialogs, or displaying UI controls in the navigation bar or Content pane.

● For more extensive customization of the browser window (adding menus and commands, tabbed
palettes, and Inspector panels), see Chapter 4, “Customizing the Adobe Bridge Browser Window."

➤ Code examples for UI techniques

The sample code distributed with the Adobe Bridge SDK includes these code examples that specifically
demonstrate various techniques for building a user interface for an Adobe Bridge script:

User Interface Options for Scripts
If you want to display your own window or pane to the user, you can do so in several ways: by creating
popup or persistent dialogs; by configuring and displaying predefined navigation bars; or by defining
user-interface controls to be displayed in the Content pane, in response to selection of specially defined
thumbnails.

ScriptUI user interface examples in sdkInstall/sdksamples/javascript/

SnpAddScriptUINavBar.jsx Shows how to add a ScriptUI navigation bar to the Adobe Bridge
browser window, and adds an event handler for changes in the selected
thumbnail (file or folder).

SnpCreateDialog.jsx Shows how to create and display a ScriptUI dialog with OK/ Cancel
buttons and event listeners

HTML user interface examples in sdkInstall/sdksamples/javascript/

SnpAddHTMLNavBar.jsx Shows how to load an HTML page into the bottom navigation bar and
execute a script embedded in the HTML page.

SnpCreateHTMLDialog.jsx Shows how to create and display an Adobe Bridge dialog containing
HTML components and use callbacks to pass simple data.

SnpShowHTMLInContent.jsx Shows how to display a local HTML file in the Adobe Bridge Content
pane.

SnpPassObjectToHTML.jsx Shows how to pass complex values from callback functions in Adobe
Bridge to a call made from an HTML page.

SnpScheduleTask.jsx Shows how to schedule tasks that call JavaScript functions defined in an
HTML page displayed in the Adobe Bridge Content pane.

3: Creating a User Interface for a Script User Interface Options for Scripts 31

You can define user-interface controls in any of these places in two ways:

● ScriptUI Elements: ScriptUI is a JavaScript module that defines windows and user-interface controls.
You can create ScriptUI Dialogs boxes, or customized Tabbed palettes, and populate them with
ScriptUI controls; or you can add ScriptUI controls to the existing Navigation bars. If you use ScriptUI
controls, you can take advantage of the ExtendScript localization feature.

For complete details about using ScriptUI, see the JavaScript Tools Guide.

● HTML Pages: An HTML page can contain standard HTML user-interface controls. You can display HTML
pages in Navigation bars, in Adobe Bridge Dialogs boxes, in the Content pane, or in customized
Tabbed palettes.

You cannot use ExtendScript features or Adobe Bridge objects directly in an HTML page; for details, see
‘Displaying HTML in Adobe Bridge’ on page 34.

Your script-defined windows or panels must use one or the other of these methods. You cannot mix
ScriptUI controls with HTML controls.

Navigation bars

Adobe Bridge provides two configurable navigation bars, one of which can be displayed at the top of the
browser window (below the application navigation bar), and one at the bottom (above the status bar).
There are two versions of each bar, for use with the two display modes of the Content pane. Access these
existing NavBar object objects through the Document object’ s properties.

● When the Content pane is displaying a web page (Document.contentPaneMode="web"), use these
bars:

topbar = app.document.navbars.web.top
btmbar = app.document.navbars.web.bottom

● When the Content pane is displaying a folder’s contents
(Document.contentPaneMode="filesystem"), use these bars:

topbar = app.document.navbars.filesystem.top
btmbar = app.document.navbars.filesystem.bottom

The navigation bars are hidden by default. You can show and hide them by setting the NavBar object’s
visible property.

A navigation bar typically contains user-interface controls such as push buttons, radio buttons, scroll bars,
list boxes, and so on. The NavBar objects are initially empty.

A navigation bar can display either ScriptUI user-interface controls that you add as children of the NavBar
object, or an HTML page that you reference from the NavBar object. It cannot mix the two. In either case,
you define the controls and program them to display information to or collect information from the user.

● Set the NavBar.type to "scriptUI" to display ScriptUI controls. See ‘Displaying ScriptUI elements
in a navigation bar’ on page 33.

● Set the NavBar.type to "html" to display HTML controls. See ‘Displaying HTML in a navigation bar’
on page 37.

3: Creating a User Interface for a Script Displaying ScriptUI in Adobe Bridge 32

Dialogs boxes

A dialog box, like a navigation bar, can display either ScriptUI controls or HTML controls, but not both. In
the case of dialogs, there are two different types of objects.

● Create a ScriptUI Window object to display ScriptUI controls. See ‘Displaying ScriptUI dialogs’ on
page 33.

● Create an Adobe Bridge Dialog object to display HTML controls. See ‘Displaying HTML in Adobe
Bridge dialogs’ on page 36.

Content pane

The Content pane display is determined by the presentation mode of the browser. Access the current
presentation mode with Document.presentationMode, and set it, using
Document.setPresentationMode(). The presentation mode determines how the Content pane
interprets and displays the value of Document.presentationPath.

Tabbed palettes

Your script can add palettes using the TabbedPalette object. A script-defined palette can display a user
interface defined in ScriptUI or in HTML.

● To display HTML, specify the type "web", and give a URL for the page to show. The URL is kept in the
TabbedPalette.url property, and your scripts can modify it.

● To display a ScriptUI interface, specify the type "script". In this case, the
TabbedPalette.content property automatically contains a ScriptUI Group object. Use that
object’s add() method to add UI elements.

For complete information on custom palettes that your script defines with the TabbedPalette object,
see Chapter 4, “Customizing the Adobe Bridge Browser Window."

Displaying ScriptUI in Adobe Bridge
ScriptUI is a module that defines windows and user-interface controls. There are three ways to display
ScriptUI elements:

● You can create an independent ScriptUI window, populate it with ScriptUI controls, and invoke it from
your script using the window’s show function. See ‘Displaying ScriptUI dialogs’ on page 33

● You can add ScriptUI controls to the existing Navigation bars, and display them by setting by setting
the NavBar object’s visible property to true.

Mode Path Content pane display

browser A path to a file system location or a location
defined by a node-handling extension.

File and folder nodes, represented by Thumbnail
objects.

When a folder is selected in the Folders pane,
you can access the current contents of the
Content pane through
app.document.thumbnail.children[].

html A URL for a local or remote HTML page. A web page. You can define an HTML page
containing user-interface controls.

3: Creating a User Interface for a Script Displaying ScriptUI in Adobe Bridge 33

● You can display ScriptUI controls in a script-defined tabbed palette; see Chapter 4, “Customizing the
Adobe Bridge Browser Window."

Displaying ScriptUI dialogs

A script can define a window entirely in ScriptUI, by creating a Window object and populating it with
ScriptUI controls using its add method.

You can invoke a ScriptUI window from a script as a modal or modeless dialog.

● A modal dialog retains the input focus, and does not allow the user to interact with any other windows
in the application (in this case, the browser window) until the dialog is dismissed. The function that
invokes it does not return until the dialog is dismissed.

● A modeless dialog does not keep the input focus. The user can interact with the browser window while
the dialog is up. The function that invokes it returns immediately, leaving the dialog on screen until the
user or script closes it.

In ScriptUI, a modal dialog is a window of type dialog, and a modeless dialog is a window of type
palette. (Do not confuse this ScriptUI term with the Bridge tabbed palette, which is part of the browser
and is represented by the TabbedPalette object.)

● Invoke a dialog-type window as a modal dialog using the window object’s show function. In this
case, the function does not return until the user dismisses the dialog, or you close it from a control’s
callback using the window’s hide or close function. The close function allows you to return a value,
which is passed to and returned from the call to show.

● Invoke a palette-type window as a modeless dialog using the window object’s show function, which
returns immediately, leaving the window on screen. The user can close the window using the
OS-specific close icon on the frame, or you can close it from the script or a control’s callback using the
window’s hide function.

The usage of the ScriptUI objects is discussed fully in the JavaScript Tools Guide.

Displaying ScriptUI elements in a navigation bar

To display ScriptUI controls, set the type property to "scriptui", then use the NavBar.add method to
add controls. This is the same as the ScriptUI Window.add method.

● For an example of this, see the script SnpAddScriptUINavBar.jsx, included in the Adobe Bridge
SDK.

● For detailed information on using the ScriptUI objects, see the JavaScript Tools Guide.

Displaying ScriptUI elements in a custom palette

To display ScriptUI controls, set the type property to "script". The TabbedPalette.content
property automatically contains a ScriptUI Group object. Use that object’s add() method to add UI
elements.

● For an example of this, see the script SnpCreateTabbedPaletteScriptUI.jsx, included in the
Adobe Bridge SDK.

● For detailed information on using the ScriptUI objects, see the JavaScript Tools Guide.

● For further details on creating customized tabbed palettes, see Chapter 4, “Customizing the Adobe
Bridge Browser Window."

3: Creating a User Interface for a Script Displaying HTML in Adobe Bridge 34

Displaying HTML in Adobe Bridge
There are four mechanisms you can use to display an HTML UI within Adobe Bridge:

● A top or bottom NavBar displays HTML when navBar.file is set to the path of the HTML file, and
navBar.type="html".

● A Dialog object always displays HTML UI controls (as opposed to a ScriptUI dialog object, which
displays ScriptUI controls). You specify the HTML file to display as the argument when creating the
Dialog object. For example:

var myDialog = new Dialog("/C/BridgeScripts/HTML/dialogUI.html");

● When you set Document.presentationPath to the path of an HTML file, and
Document.presentationMode="html", the HTML page is displayed in the Content pane.

● You can display HTML controls in a script-defined tabbed palette; see Chapter 4, “Customizing the
Adobe Bridge Browser Window."

In order to display the HTML, Adobe Bridge opens an embedded browser, which runs a standard
JavaScript engine in a different process from the Adobe Bridge ExtendScript engine. The standard
JavaScript engine can access only the standard HTML object model. A script on the HTML page cannot
directly access the Adobe Bridge object model, or make use of ExtendScript features such as localization.

For a script in your UI page to communicate with the Adobe Bridge object model, the HTML JavaScript
engine and the Adobe Bridge ExtendScript engine must exchange values via remote calls.

● For the JavaScript code to make remote calls to ExtendScript, you define callback functions on the
Adobe Bridge object, and invoke them from the HTML page with the JavaScript call function. The
callback functions access Adobe Bridge objects on the Adobe Bridge side and pass values back to the
HTML page. See ‘Defining callbacks for HTML scripts’ on page 34.

● Your HTML page can define its own JavaScript functions in a script. For the Adobe Bridge side to use
these functions, it must make a remote call using the Adobe Bridge object’s execJS function. See
‘Executing script functions defined on HTML UI pages’ on page 35.

The three mechanisms for displaying an HTML UI differ slightly in the details of how you define and pass
callbacks and invoke script-defined functions. This section provides examples for a web page displayed in
the Content pane, in response to selecting a web-type thumbnail. Examples for navigation bars and
dialogs are given with the discussions of those objects above.

When you make remote calls, you can pass simple values such as strings and numbers directly. However, in
order to pass complex values such as objects and arrays, you must deconstruct them on the passing side
using the JavaScript function toSource, and reconstruct them on the receiving side using the JavaScript
function eval. Examples are given for callbacks; see ‘Passing Complex Values in Remote Calls’ on page 38.
The embedded browser does not support toSource, so you cannot pass complex values from the HTML
page back to the Adobe Bridge ExtendScript engine.

Defining callbacks for HTML scripts

If you want to make use of Adobe Bridge object values to dynamically alter the HTML controls as the user
works with them, you must make calls back to the Adobe Bridge object model through a set of callbacks

3: Creating a User Interface for a Script Displaying HTML in Adobe Bridge 35

that you define. The exact way that you define and store the callbacks depends on which of the HTML
mechanisms you are using:

● Defining callbacks for a dialog

For a dialog, you define callback functions in a structure that you pass to the Dialog.open or run
function when you invoke the dialog. The syntax for the callbacks argument is:

{
fn_name1: function(args) { fn1_definition },
fn_name2: function(args) { fn2_definition }

}

The dialog’s HTML page can invoke these functions using the JavaScript call method. See the ‘Using
callbacks in an HTML dialog’ on page 37.

● Defining callbacks for the Content pane or navigation bar

For HTML displayed in a navigation bar or in the Content pane, you define callback functions in the
jsFuncs property of the appropriate object:

● When a Thumbnail object displays an HTML page in the Content pane, the Document.jsFuncs
property stores callback functions for that page. See the examples given below.

● For a page displayed in a navigation bar, the callbacks are stored in the NavBar.jsFuncs
property. For examples, see ‘Displaying HTML in a navigation bar’ on page 37.

From the HTML page, you can invoke your defined callback functions using the JavaScript call function.
Typically, you will do this from a control's event handler, such as the onClick method for a button. For
example, suppose one of your callbacks is defined as:

{ myCB: function(x) { return x > 0 } }

This defines a function named myCB. Within the HTML page's JavaScript, invoke the myCB Adobe Bridge
object method as follows:

var positive = call("myCB", 29);

You must use the JavaScript call method to invoke callback functions. You cannot simply invoke them
by name.

A callback function can access the Adobe Bridge object model and pass back a response, as shown in the
examples. The callback functions can receive and return simple types directly, but must use eval to
reconstruct complex types passed as arguments from the HTML side, and use toSource to serialize
complex types that you wish to return. See ‘Passing Complex Values in Remote Calls’ on page 38.

Executing script functions defined on HTML UI pages

An HTML page that displays user-interface controls within Adobe Bridge can itself contain a script that
defines functions. The execJs method (defined on the Document, NavBar, and Dialog objects) allows
an Adobe Bridge script to invoke a JavaScript method defined in an HTML page.

● When a Thumbnail object displays an HTML UI in the Content pane, use the Document.execJS()
method to execute functions defined in the script for that page. See the example below.

● For a page displayed in a navigation bar, use the NavBar.execJS() method to execute functions
defined in the script for that page.

● For a modeless HTML dialog, use the Dialog.execJS() method to execute functions defined in the
script for the dialog.

3: Creating a User Interface for a Script Displaying HTML in Adobe Bridge 36

You should make sure that the HTML page which defines the remote function is actually loaded before
you invoke the remote function with execJS.

Caution: You cannot call the execJS method from within a callback function. Doing so causes Adobe
Bridge to hang. For an alternative, see ‘Scheduling Tasks from Callbacks’ on page 38.

The execJS method takes as its argument a string that contains the entire function call to be executed.
For example, this JavaScript code packages a call to the function updatePath, defined in the HTML
displayed by myDialog:

myDialog.execJS("updatePath('" + escape(tn.path) + "')");

In this case, it is passing a pathname that contains the backslash (\), which is an escape character. It uses
the escape function to create the argument string, and on the HTML side, the updatePath function uses
unescape to retrieve the path from the argument string:

<script> //define fns to be called from Bridge
function updatePath(path) { window.path.value = unescape(path) };

</script>

The technique is exactly the same for a dialog as for a navigation bar, except for calling the function in the
dialog object. See ‘Calling functions defined in an HTML navigation bar’ on page 37.

Displaying HTML in Adobe Bridge dialogs

The Dialog object represents a window that displays an HTML page. The window can be modal or
modeless. A modal dialog prevents user interaction in other windows while it is open.

● Use the Dialog.run() function to open a modal dialog. This function does not return until the user
dismisses the dialog. It then returns true.

● Use the Dialog.open() function to open a modal or modeless dialog. This function returns
immediately, and the dialog remains on screen until the user or script dismisses it.

Both invocation functions takes as an argument a set of callback functions. These callbacks are used to
respond to a dialog-closing event, and to provide the dialog’s HTML JavaScript code with access to the
Adobe Bridge object model (see ‘Communicating with Adobe Bridge from dialog JavaScript’ on page 36).

You can provide a special callback function named doClose. If provided, this is called automatically when
the dialog closes in response to a user action (such as clicking the window’s close icon, or clicking your
button that sets closing to true). The doClose function takes no arguments and returns a Boolean
value. The callback is not called when your script closes a modeless dialog using its close method.

Communicating with Adobe Bridge from dialog JavaScript

The HTML page displayed in a dialog runs its own JavaScript engine, which has access only to the HTML
object model. If the page needs to exchange data with your Adobe Bridge objects, you must use the
remote call mechanisms.

● You can define callbacks and pass them to the dialog as arguments to the run() or open() function
that invokes it. You can call them remotely from the HTML page’s JavaScript using the JavaScript call
function. These callbacks provide access to the Adobe Bridge objects. See ‘Using callbacks in an HTML
dialog’ on page 37.

● You can define JavaScript functions in the HTML page’s script, and call them remotely from Adobe
Bridge using the Dialog.execJS() function—as long as you do not call them directly from a

3: Creating a User Interface for a Script Displaying HTML in Adobe Bridge 37

callback. See ‘Calling functions defined in an HTML dialog’ on page 37 and ‘Scheduling Tasks from
Callbacks’ on page 38.

Simple values such as strings and numbers can simply be passed back and forth, as shown in the examples
below. Complex value such as arrays or objects must be deconstructed and reconstructed, using
toSource and eval. For details of how to pass objects in remote function calls, see ‘Passing Complex
Values in Remote Calls’ on page 38.

Using callbacks in an HTML dialog

The callback functions that you define for a dialog are available to the code in the HTML page, which can
invoke them using the call function. They run in Adobe Bridge’s JavaScript engine, and can use Adobe
Bridge objects.

For example, suppose the callback argument that you pass to the open() function has the value:

{ isGreater: function(x) { return x > myDialog.height } }

A method in the HTML page (an event handler, for instance) can invoke the function and receive the result
as follows:

var newHeightOK = call("isGreater", 29);

Calling functions defined in an HTML dialog

If the HTML page displayed in the dialog defines any JavaScript functions of its own, Adobe Bridge can
make remote calls to those functions using the Dialog.execJS() function. For a modeless dialog, this
works exactly the same way as for a navigation bar or a page displayed in the Content pane. See ‘Calling
functions defined in an HTML navigation bar’ on page 37.

Caution: You cannot call the execJS method from within a callback function. Doing so causes Adobe
Bridge to hang. For an alternative, see ‘Scheduling Tasks from Callbacks’ on page 38.

Displaying HTML in a navigation bar

To display HTML controls, set, set the type property to "html", and the file property to the HTML file
that defines the page you want to display.

When a navigation bar displays HTML, it runs its own JavaScript engine, which has access only to the HTML
object model. If the page needs to exchange data with your Adobe Bridge objects, you must use the
remote call mechanisms.

● You can define and store callbacks in the NavBar.jsFuncs property and call them remotely from the
HTML page’s JavaScript using the JavaScript call function. These callback provide access to the
Adobe Bridge objects.

● You can define JavaScript functions in the HTML page’s script, and call them remotely from Adobe
Bridge using the NavBar.execJS() function—as long as you do not call them directly from a
callback. See ‘Calling functions defined in an HTML navigation bar’ on page 37 and ‘Scheduling Tasks
from Callbacks’ on page 38.

Calling functions defined in an HTML navigation bar

If the HTML page displayed in a navigation bar defines any JavaScript functions of its own, Adobe Bridge
can make remote calls to those functions using the NavBar.execJS() function, as shown in the Bridge

3: Creating a User Interface for a Script Passing Complex Values in Remote Calls 38

SDK example SnpAddHTMLNavBar.jsx. If an Adobe Bridge HTML dialog displays the HTML page, use
the same technique, but call the Dialog.execJS() function.

Before you use execJS to call functions defined in the HTML JavaScript code, you need to make sure that
the page is loaded, so that the functions are defined when you call them. You can use the HTML/JavaScript
onloaded event defined on the BODY tag to invoke a callback (defined in the NavBar’s jsFuncs
property). You can, for example, set a global variable, which the event handler can check before calling the
remote functions.

Note: JavaScript uses the backslash (\) as the escape character, but the backslash is part of Windows
platform path names. Therefore, in order to pass a path name value, a script must use the JavaScript
escape function to encode the name it sends to HTML. On the HTML JavaScript side, unescape
decodes the string so it is properly displayed in the UI with the backslash character.

Displaying HTML in a custom palette

To display HTML, specify the type "web", and give a URL for the page to show. The URL is kept in the
TabbedPalette.url property, and your scripts can modify it.

● For an example of this, see the script SnpCreateTabbedPaletteHTML.jsx, included in the Adobe
Bridge SDK.

● For further details on creating customized tabbed palettes, see Chapter 4, “Customizing the Adobe
Bridge Browser Window."

Passing Complex Values in Remote Calls
To exchange simple values such as strings and numbers between Adobe Bridge and an HTML UI page, you
can simply pass arguments and return values of those types in your callback and execJS functions.
However, complex values such as objects and arrays must be broken down and reconstructed on the other
side. This is true for communication in both directions—callbacks from HTML to Adobe Bridge, and
execution of HTML script functions by Adobe Bridge using execJs.

For a callback to receive an object as an argument, the calling function on the HTML side must serialize the
object into a string, using toSource, and pass the serialized string. On the Adobe Bridge side, the callback
function uses eval to reconstruct the object from the serialized string. Similarly, to pass an object back,
the callback function must use toSource to serialize the object and return the serialized string. The
receiving code on the HTML side must in turn reconstruct the object using eval.

Note: The embedded browser does not support the toSource method, so you cannot use this
mechanism to pass complex values to and from HTML-page functions that you invoke using the
execJS method. Pass only simple values from the HTML JavaScript engine to the Adobe Bridge
ExtendScript engine.

Scheduling Tasks from Callbacks
You cannot call the execJS method from within a callback function (either stored in a jsCallbacks
property or passed as an argument to the Dialog open or run method). This attempts to re-enter the
JavaScript engine, which is already running and is not re-entrant. If you try to do this, Adobe Bridge will
hang.

3: Creating a User Interface for a Script Scheduling Tasks from Callbacks 39

The alternative is to schedule a task, using the app.scheduleTask() function, from within the callback
function. From the function associated with the task, you can call execJS. Because it is not executed until
the callback returns, the task is free to make another remote call.

Note: If the scheduled script needs to load another script, do not use the JavaScript eval() function to
do so. Instead use the ExtendScript $.loadFile() function; see the JavaScript Tools Guide for
details.

The first argument to scheduleTask is a string containing a script—in this case, a call to the execJS
function. For example:

var result = app.scheduleTask("myFn(3);", 10);

If the script itself contains any strings, those must be indicated by enclosed quotes. For example:

var result = app.scheduleTask("myFn('string argument');", 10);

If the enclosed string contains values derived from expressions, the script string must be concatenated,
and can become quite complex:

var result = app.scheduleTask("myFn('" + escape(tn.path) + "')", 10);

The argument to execJS is also a string containing a script—in this case, a call to a function defined on an
HTML page. When the arguments to that function are also strings, and those contain values derived from
expressions, the resulting string is very complex.

The example below makes this string a little more manageable by breaking it down into modular pieces.
First, it builds the argument string for the remote function:

var toRecordArg = "'For File: " + tn.metadata.FileName + "'";

It uses that to build the entire string for the remote function call, which is the argument to execJS:

var execFn = "recordData(" + toRecordArg + ")";

Building the string for the call to execJS requires an additional layer of embedded quotes, which is very
difficult to achieve with only two types of quote character. To get around this, the example creates a
variable for a string containing the double-quote character, and uses it to build the entire function call
string, which is passed to scheduleTask:

var quote = '"';
app.scheduleTask("app.document.execJS(" + quote + execFn + quote + ")")

Note: For the complete script from which these code fragments are taken, see the Bridge SDK example
SnpScheduleTask.jsx.

 40

4 Customizing the Adobe Bridge Browser Window

The browser window has a set of default panes and palettes that the user can show or hide and drag to
different positions. Your scripts can access the contents of these default panes to some extent, as
described in ‘Accessing the Adobe Bridge browser through scripts’ on page 12.

In addition to the default palettes, however, there are two completely script-defined display areas that
allow you much greater control:

● Use the TabbedPalette object to create entirely new palettes for display or user interface, defined
by ScriptUI or HTML. See ‘Creating a Customized Tabbed Palette’ on page 40.

● Use the InspectorPanel object to create object-inspector panels, which provide additional
information related to the currently selected thumbnail in the Content pane. See ‘Script-Defined
Inspector Panels’ on page 41.

You can also customize the browser by adding your own menus, submenus, and commands to the default
Adobe Bridge menu bar and menus. See ‘Extending Adobe Bridge Menus’ on page 44.

Creating a Customized Tabbed Palette
The default configuration of Adobe Bridge provides a number of tabbed palettes that the user can open
and close, and resize or move into different combinations. They are arranged in three columns, and the
user can drag any of the palettes into any of the columns, or any vertical position within a column.

Your script can add palettes using the TabbedPalette object. A script-defined palette can display a user
interface defined in ScriptUI or in HTML.

● To display HTML, specify the type "web", and give a URL for the page to show. The URL is kept in the
TabbedPalette.url property, and your scripts can modify it.

● To display a ScriptUI interface, specify the type "script". In this case, the
TabbedPalette.content property automatically contains a ScriptUI Group object. Use that
object’s add() method to add UI elements. See the JavaScript Tools Guide for information on ScriptUI.

You can specify an onResize() method for the Group object, which will be used to automatically
resize the elements when the palette is resized. See the JavaScript Tools Guide for details.

You can add a palette to any existing browser, or use the document create event to add your palette to
new browser windows; see ‘Event Handling in Adobe Bridge’ on page 27.

A script-defined palette is always added at the top of the leftmost column, and its name is automatically
added to all relevant menus. You cannot specify where the palette goes, or move it programmatically.
When it is shown, however, it can be dragged and dropped like the default palettes.

You can save a workspace with a script-defined palette that has been moved to a non-default position;
however, before your script can reload the workspace successfully, it must recreate the palette objects and
contents. See the example SnpLoadSavedWorkspace.jsx.

You can get a list of all defined palettes, including both default and script-defined ones, from
app.document.palettes. You can show or hide any palette from a script by setting the
TabbedPalette.visible property to true or false. To remove the palette permanently and destroy
the object, use the TabbedPalette.remove() method.

4: Customizing the Adobe Bridge Browser Window Script-Defined Inspector Panels 41

➤ Code examples

The sample code distributed with the Adobe Bridge SDK includes these code examples that demonstrate
how to define tabbed palettes:

Script-Defined Inspector Panels
An object inspector is a script-defined panel which provides context for the selected thumbnail by
displaying information related to that node. As a user browses through thumbnails in the Content pane,
each new selected thumbnail becomes the inspection focus of the panel. The Inspector panel can show
simple text or Thumbnail property values, or more indirectly derived node information.

There is no default content in an inspector panel; the information that it shows and the way it retrieves
that information from the focus thumbnail is entirely script defined. A browser can display one inspector
panel, represented by an InspectorPanel object; the panel can contain multiple subpanels,
represented by subtypes of the Panelette class. The type of node-related information you can display in
the subpanels is extremely flexible. You can specify information that is directly or indirectly linked to the
focus thumbnail through layers of pointers in metadata, or you can calculate display values from the
linked data.

Like the TabbedPalette, the panel is placed by default in the upper left palette position. After its initial,
automatic placement, the user can open and close it and drag it to other palette locations, like any other
palette.

The InspectorPanel object acts as a container for one or more subpanels, represented by types of
Panelette. The different types of subpanels display, in various ways, information or other nodes that are
related to the inspected node through the Thumbnail, Metadata or Infoset objects.

You define the display format, and generate dynamic values using Adobe Bridge- or script-defined
properties of the inspected thumbnail. You can access embedded metadata for a file through the
Metadata object in the Thumbnail.metadata property.

The type of Panelette are:

● TextPanelette: Displays a simple block of static or dynamic text.

● IconListPanelette: Displays two or three columns. The first contains an icon, and the others
contain static or dynamic text.

● ThumbnailPanelette: Displays resizeable thumbnail icons, plus a set of text items for each
thumbnail.

Tabbed palette examples in sdkInstall/sdksamples/javascript/

SnpCreateTabbedPaletteScriptUI.jsx Shows how to create a tabbed palette containing ScriptUI
components, in response to browser-creation event.

SnpCreateWebTabbedPalette.jsx Shows how to create a tabbed palette containing HTML
components, in response to browser-creation event.

SnpLoadSavedWorkspace.jsx Shows how to defined a workspace that contains a
script-defined palette, save the workspace, and reload it after
recreating the palette.

4: Customizing the Adobe Bridge Browser Window Script-Defined Inspector Panels 42

Text in any of these subpanels can be specified with literal strings, or derived dynamically at display time
from the inspected thumbnail, its metadata, and its related Infoset properties; or values can be
otherwise calculated using JavaScript.

Dynamic text is specified using special panelette markup elements, indicated by double-brackets. See
‘Specifying string values in an inspector panel’ on page 42.

Creating and displaying inspector panels

To create an inspector panel, create the InspectorPanel object and its subpanel objects, using the
subclasses of the Panelette base class. Add each subpanel to the panel, then add your Inspector panel
to the set of available panels for Adobe Bridge:

myPanel = new InspectorPanel("MyPanel", "My Panel");
myTextSubpanel = new TextPanelette ("MyText", "More about your selection",

"[[this]]", [["key1: ", "value 1"]["key2: ", "value 2"]]);

myPanel.registerPanelette(myTextSubpanel);
app.registerInspectorPanel(myPanel);

Registered panels appear in the various view menus, and the user can choose whether and where to
display them. To turn the display of registered panels on or off programmatically in a particular browser
window, use Document.displayInspectorView. For example, to show the Inspector panels in the
current browser window:

app.document.displayInspectorView = true;

You can access the currently registered subpanels for a particular panel with
InspectorPanel.panelettes, and remove them with
InspectorPanel.unregisterPanelette().

Similarly, you can access all currently registered Inspector panels with app.inspectorPanels, and
remove them with app.unregisterInspectorPanel().

➤ Code examples

The sample code distributed with the Adobe Bridge SDK includes these code examples that demonstrate
how to define object-inspection panels:

Specifying string values in an inspector panel

A display string in a TextPanelette or ThumbnailPanelette is specified as a key-value pair, an array
with two string elements:

[key_string, value_string]

Inspector panel examples in sdkInstall/sdksamples/javascript/

SnpCreateTextInspectorPanel.jsx Shows how to display static and dynamic text in an Inspector
panel.

SnpCreateIconInspectorPanel.jsx Shows how to display text with icons in an Inspector panel.

SnpCreateThumbInspectorPanel.jsx Shows how to display thumbnails with associated text in an
Inspector panel.

4: Customizing the Adobe Bridge Browser Window Script-Defined Inspector Panels 43

The key string is displayed in bold text on the left of a text field in the subpanel, and the value string is
displayed in plain text on the right.

These strings, and all other display strings in an Inspector panel, including panel-title and tab-title strings,
can be specified as literal text, or can combine literal text with markup elements that calculate or retrieve
values dynamically and concatenate them into display strings.

Panelette markup elements for dynamic text

You can specify dynamic or calculated string content to be displayed in the subpanels, or in the title string
of the panel (InspectorPanel.displayTitle) or subpanels (Panelette.displayTitle). To
specify these special string values, you use panelette markup elements.

Markup elements are enclosed by double brackets:

[[markupElement]]

The special markup element [[this]] is a variable that refers to the currently selected thumbnail. For
example, here the variable is used to derive the thumbnails parameter for the subpanel constructor,
which identifies the subpanel’s focus object or objects:

var tp = new TextPanelette("SnpCreateTextInspectorPanel Text Panelette",
"Information about thumbnails", "[[this]]", keyValuePairs);

When specifying text in a subpanel, markup can indicate:

● Dynamic text: Dynamic text values are retrieved from the thumbnail’s associated node data. To insert a
dynamic value retrieved from node data, use a markup element that identifies the
ExtensionHandler, Infoset, and member element:

[[extensionName.infosetName.elementName]]

● JavaScript: Values can be retrieved or calculated at display time using JavaScript. To specify a
dynamically calculated value, embed JavaScript within the content string, using this tag:

[[javascript:code]]

A function in this context is not allowed to block; if it takes more than 10 milliseconds, the display string
is converted to an error string.

Within the context of the markup tag, you can refer to the currently selected Thumbnail object using
a special variable inspectorThumbnail. This is useful for accessing embedded file metadata. For
example:

[[javascript:"Name: " + inspectorThumbnail.name]]
[[javascript:"Author: " + inspectorThumbnail.metadata.author]]

● Hyperlinks: To insert a hypertext link element in a string, use the format:

[[Link text][URL]]

For example:

[[Click here][http://www.myURL.com]]

Markup examples

Display strings can be constructed from literal text, markup elements, or a combination. For example:

["Checkin: ","[[versioncue.versionData.checkinDate]]"]

http://www.myURL.com

4: Customizing the Adobe Bridge Browser Window Extending Adobe Bridge Menus 44

The key field here is a string literal. The value field displays the string retrieved from the indicated node
data field: "3/10/2007 12:32 pm". You can also combine dynamic and literal text in a single field. For
example:

["State: ", "Checked in at" + "[[versioncue.versionData.version]]"]

Here, the value field concatenates the string literal to the retrieved string: "Checked in at 3/10/2007 12:32
pm".

To retrieve values from application, browser window, or thumbnail properties, access them using
JavaScript. You can also use JavaScript to calculate a value at display time. For example, this element
concatenates a string literal to a string retrieved from a property:

[[javascript:"Siblings: " + app.document.thumbnail.children.length]]

Extending Adobe Bridge Menus
The MenuElement class is used to represent Adobe Bridge application menu bars, their menus and
submenus, and individual items or commands. Each Adobe Bridge host application creates
MenuElement instances for each of the existing menu elements, and you can create additional instances
to extend the existing menus.

Each MenuElement object has a unique identifier. Existing menu elements that can be extended have
predefined identifiers, listed in the Adobe Bridge JavaScript Reference. Not all existing menu elements can
be extended.

● A script can execute an Adobe Bridge menu command using
app.document.chooseMenuItem(menuId).

● To add a menu, submenu, or command, create a MenuElement instance, providing the identifier of an
existing element, and a new identifier for the new item and a localized display string. The new item is
placed relative to the existing item.

The menu, submenu, and command identifier names do not necessarily match the display names. Menu
identifiers are case sensitive. They are not displayed and are never localized. When a script creates a new
menu or command, you should assign a descriptive unique identifier. If you do not, one is generated using
an alphanumeric value in the form "JavaScriptCommand0..n".

The display text of a new menu element can be localized by specifying it with the global localize
function, provided by ExtendScript; see the JavaScript Tools Guide.

Menu separators are not independent elements, but can be inserted before or after an element that you
add to a menu. Specify a separator on creation of the menu element, by putting a dash character (-) at the
beginning or end of the location string.

➤ Code examples

The sample code distributed with the Adobe Bridge SDK includes these code examples that demonstrate
how to extend Adobe Bridge menus:

Menu modification examples in sdkInstall/sdksamples/javascript/

SnpAddMenuItem.jsx Shows how to add a new menu element to Adobe Bridge.

SnpAddContextMenuItem.jsx Shows how to add a context-sensitive menu item when a folder or file is
selected.

 45

5 Extending Adobe Bridge Node-Handling Behavior

This chapter is intended for advanced users, tool developers who want to create plugin-type extensions to
basic Adobe Bridge functionality, in order to integrate Adobe Bridge with other applications and systems.

The basic behavior of a thumbnail icon is determined by a node handler. A node handler determines how
Adobe Bridge performs navigation for each thumbnail—that is, exactly what happens internally when a
user opens, closes, clicks, double-clicks, or otherwise interacts with the Thumbnail object in an Adobe
Bridge pane.

The core node handler provides the default behavior, such as displaying the contents of a folder, or
displaying a web page (see ‘Thumbnails as node references’ on page 23). Other Adobe applications that
are integrated with Adobe Bridge, such as Version Cue and Stock Photos, define their own node handlers
and node types.

You can extend the node handling behavior to handle new types of nodes that you define. To do this, you
define a node-handling extension, using the ExtensionHandler and ExtensionModel objects.

● ‘Creating Script-Defined Node-Handling Extensions’ on page 45

● ‘Defining Long-Running Operations’ on page 56

● ‘Defining Node Data Sets’ on page 54

● ‘Defining Node Searches and Filters’ on page 61

Creating Script-Defined Node-Handling Extensions
The ExtensionHandler object, together with an associated ExtensionModel object, defines the
properties and callback methods needed to extend the Adobe Bridge node model. To define your own
type of node, you create and register an ExtensionHandler object, implementing all of the required
callback methods; these include a makeModel() method that creates the associated ExtensionModel
object. See ‘Defining an ExtensionHandler’ on page 49 and ‘Defining an ExtensionModel’ on page 50.

A prefix for the Adobe Bridge node URI identifies node types and associates them with their handlers. For
example, the VersionCue handler handles nodes with the prefix "vc:". Your handler can register one or
more prefixes for the node types it handles; see ‘Registering your node-handling extension’ on page 46.

An extension defines one and only one ExtensionHandler object. Adobe Bridge uses that object’s
makeModel() method to create an ExtensionModel object every time it needs to display a handled
node.

Your ExtensionHandler object must implement all of the node-handling behavior that you need for
your own node types, either in its own methods or in the methods defined for the ExtensionModel
object it creates.

● Some handler and model methods simply perform the desired action and return a value. For
potentially time-intensive or resource-intensive file-system operations, the model method does not
perform the action directly. Instead, it defines and returns an Operator object that can perform the
action, blocking the main thread but allowing for a progress report. When the model method returns,
Adobe Bridge uses the Operator object to initiate the action at an appropriate point. See ‘Defining
Long-Running Operations’ on page 56.

5: Extending Adobe Bridge Node-Handling Behavior Creating Script-Defined Node-Handling Extensions 46

● Node handlers can associate their nodes with private data, represented by the Infoset object. Adobe
Bridge defines core data sets that all handlers must support, and you can also define your own node
data for your node types. Scripts can access the private node data through the Thumbnail object for a
node. See ‘Accessing the node-handling model and data’ on page 48.

● You can define your own searching and filtering criteria for your node types. See ‘Defining Node
Searches and Filters’ on page 61.

Registering your node-handling extension

Register your script-defined ExtensionHandler with app.registerExtension(). You can access
the global list of all registered extensions through the property app.extensions.

To associate your node type with your script-defined extension handler, you register a URI prefix, using
app.registerPrefix(). The prefix is prepended to a pathname or URL with a colon separator:

myPrefix:myPath/myFile.ext

You can register any number of prefixes to identify your handled nodes. All nodes created with a given
prefix are managed by the handler that registers that prefix. For example, the versioncue extension
handler manages nodes whose URIs begin with the string "vc:" or "bridge:versioncue:".

➤ Code example

The sample code distributed with the Adobe Bridge SDK includes these code examples that demonstrate
how to define node-handling extensions:

Installing a node-handling extension

A node-handling extension, like other JavaScript scripts, can run from any location. However, when you
are ready to deploy it, you will want it loaded automatically on startup of the application. Startup scripts
are automatically loaded from the Bridge CS3 Extensions folder, a fixed location shared by all users.

For deployment, use the startup script location to install your extension definition files and all their
resources, including JavaScript files, libraries, string files, images, and so on.

● In Windows®, the location is:

%CommonProgramFiles%\Adobe\Bridge CS3 Extensions\

● In Mac OS®, the location is:

/Library/Application Support/Adobe/Bridge CS3 Extensions/

Group all files related to your extension in an appropriately named subfolder. The Workflow Automation
Scripts, for example, are installed in a subfolder named Adobe Workflow Automation. Your installer

Node-handling extension examples in sdkInstall/sdksamples/javascript/

BasicExtensionHandler.jsx Shows how to create a basic node-handler, defining a
minimal set of handler and model methods.

CustomInfosetExtensionHandler.jsx Extends the basic example to define node information for
the defined node type.

CustomSearchExtensionHandler.jsx Extends the basic and infoset examples to implement a
search among handled nodes, using the defined node
information.

5: Extending Adobe Bridge Node-Handling Behavior Creating Script-Defined Node-Handling Extensions 47

should create these folders, including the Bridge CS3 Extensions folder if necessary, and install the
files as appropriate. Your installer does not need to know where Adobe Bridge is installed.

Installation structure

The subfolder for your extension should have this structure:

Bridge CS3 Extensions/
 My Extension/
 My Extension.jsx
 Read Me.txt
 manifest.xml
 Resources/
 Images/
 myext.png
 Scripts/
 001_myext.jsx
 002_myext.jsx
 Plugins/
 myext.dll

Your extension’s main folder should contain a single JSX file, your main script, whose name is the name of
your extension (the same as your folder). This file should do the minimal amount of work to install your
extension on Adobe Bridge startup. It is best to make your extension as unobtrusive as possible for users
that may not need it. Your main script should load other scripts as necessary on demand; for example,
when the user invokes your extension in Adobe Bridge.

● Include a Read Me file next your main script, with a brief description of the purpose of your extension
and the version number. You can also include, for example, a link to a web site with more information.

● The optional manifest.xml contains the extension name, version, and localized description, in the
following format:

<?xml version="1.0" encoding="UTF-8"?>
 <bridge_extension>
 <name>My Extension</name>
 <version>1.0</version>
 <description locale="en_US">My Extension is amazing!</description>
 <description locale="fr">My Extension est fantastique!</description>
 </bridge_extension>

The <name> element is required; other elements are optional. The description, if supplied, should be
short, no more than two or three sentences.

● The Resources folder should contain all support files, such as other scripts, image files, libraries, and
so on. You can organize the content as you wish.

You can include shared libraries, compiled for a specific platform, as resources. Load them into
JavaScript as external objects. For example:

Folder.current = File ($.fileName).parent;
new ExternalObject("Plugins/myext");

See the ExternalObject documentation in the JavaScript Tools Guide.

Note: The folder and file names must not be localized, except the Read Me file, if you wish. If you do
localize this name, be aware that in Mac OS X, some Vietnamese characters trigger a corruption
warning from Disk First Aid.

5: Extending Adobe Bridge Node-Handling Behavior Creating Script-Defined Node-Handling Extensions 48

Extension workspaces

Your extension can define a workspace to be automatically loaded and added to the Workspace menu.
Workspaces are defined as XML files the .workspace extension; for an example of the syntax, save a
workspace and examine the resulting file in the user location (see ‘The Adobe Bridge browser window’ on
page 11). For your workspace to be automatically loaded on startup, save it in these locations:

● In Windows, the user workspace folder is:

%CommonProgramFiles%\Adobe\Bridge CS3 Extensions\Workspaces\

● In Mac OS, the user workspace folder is:

/Library/Application Support/Adobe/Bridge CS3 Extensions/Workspaces/

Shared startup scripts

You may need to have a script loaded by other Adobe applications, for example to add a "Go To"
command. On startup, Adobe Bridge executes all JSX files that it finds in the installation startup folder. For
each platform, there is a startup folder shared by all Adobe applications that support JavaScript.

● In Windows®, the installation startup folder is:

%CommonProgramFiles%\Adobe\Startup Scripts CS3\

● In Mac OS®, the installation startup folder is:

/Library/Application Support/Adobe/Startup Scripts CS3/

If your script is in the shared startup folder, it is executed by all Adobe JavaScript-enabled applications at
startup; use the application-specific folder if possible. See the JavaScript Tools Guide for details of targeting
a startup script to a specific application.

It is recommended that you name the startup script for your extension using the name and version
number of the extension, in order to avoid collision with other scripts.

Accessing the node-handling model and data

When Adobe Bridge needs to create a thumbnail of a type that is managed by your handler, it uses the
handler's makeModel() method to create an instance of your ExtensionModel that implements the
set of methods it will need to manage your node type (see ‘Defining an ExtensionModel’ on page 50).

Your model allows you to create and update a set of script-defined properties in the Thumbnail objects
for your nodes. Data managed by each model is kept in Infoset objects. When you define an Infoset
member, you can access it as a Thumbnail property.

The Thumbnail object has a property with the same name as each extension handler that manages it. To
access a script-defined property value in a Thumbnail object, use this format:

thumbnailName.handlerName.infosetName.memberName

For example, suppose the myHandler extension handler is associated with an Infoset named mySet,
which contains a member named color. To access this value in Thumbnail object t1, use:

currentColor = t1.myHandler.mySet.color;

Adobe Bridge defines a core set of data in predefined Infoset objects, and a core set of node-handling
methods. Your handler must support core data and methods, but can add new data sets and methods. See
‘Defining Node Data Sets’ on page 54.

5: Extending Adobe Bridge Node-Handling Behavior Defining an ExtensionHandler 49

Defining an ExtensionHandler
Your ExtensionHandler instance must implement all of the methods described here. Handler methods
can be immediate or long-running:

● Immediate handler operations simply perform an operation and return when it is done. These
functions must not take a significant amount of time; if they are slow, they will negatively affect Adobe
Bridge browsing performance.

● Long-running handler operations create and return Operator objects to perform time-intensive
file-system operations that block the main thread. Adobe Bridge view code or your display code passes
the object to app.enqueueOperation() to initiate the action when appropriate.

Immediate handler operations

Long-running handler operations

Implement these functions to create Operator objects which can perform the desired operation, and if
needed, provide Adobe Bridge with information about the status and progress. See Defining
Long-Running Operations.

Method Return type

getBridgeUriForPath (path : String)

Returns a unique Bridge URI for the supplied path, parsing it as needed. The URI must
begin with a registered prefix for this handler, but can otherwise include any path
string.

If the path cannot be parsed, return "undefined".

String

getBridgeUriForSearch
(scope : Thumbnail,
specification : SearchSpecification)

Performs the specified search within the container node specified by scope, and
returns the Bridge URI for a container node that contains the matching nodes.

Called when the user initiates a search in a handled node.

String

makeModel (path : String)

Creates a model instance that implements this extension for a specific thumbnail. See
‘Defining an ExtensionModel’ on page 50.

Called when Adobe Bridge needs to display a node managed by this handler.

ExtensionModel

Method Return type

acquirePhysicalFile
(sources : Array of Thumbnail, timeoutInMs* : Number,
showUi* : Boolean, message* : String, recursionOption* : String)

Creates and returns an operator that acquires actual file data for a set of placeholder
nodes.

Operator

duplicate
(sources : Array of Thumbnail, timeoutInMs* : Number,
showUi* : Boolean, message* : String)

Creates and returns an operator that duplicates a set of nodes.

Operator

5: Extending Adobe Bridge Node-Handling Behavior Defining an ExtensionModel 50

Defining an ExtensionModel
The ExtensionModel that your handler creates implements the actual node-handling methods that
perform operations on a selected thumbnail. Model methods can override or extend the default node
handling behavior.

These model methods must be implemented:

A variety of other node operations are scriptable, but you only need to define the ones of interest to you.
These can include, for example:

● Node labeling, sorting, and searching behavior.

● Procedures to copy, move, or duplicate nodes.

● Procedures to acquire or create files associated with your nodes.

Your extension must inform Adobe Bridge of which of the optional methods your handler supports by
setting the corresponding values in the Core node data sets item and itemContent. Your handler’s
refreshInfoset() method should do this. For example, if you implement the
createNewContainer() method, set the corresponding capability value:

...
myModel.refreshInfoset = function(infosetName) {

if(infosetName == "item") {
this.privateData.cacheElement.item.canCreateNewContainer = true;

}
...

Model methods can be immediate or long-running:

● Immediate model operations simply perform an operation and return when it is done.

● Long-running model operations create and return Operator objects to perform time-intensive
file-system operations that block the main thread. Adobe Bridge view code or your display code passes
the object to app.enqueueOperation() to initiate the action when appropriate.

moveToTrash
(sources : Array of Thumbnail, timeoutInMs* : Number,
showUi* : Boolean, message* : String)

Creates and returns an operator that deletes a set of nodes, marking the associated files
for deletion on disc by moving them to the system trash or recycle bin.

Operator

setXmp
(targets : Array of Thumbnail, xmpPackets : Array of String,
timeoutInMs* : Number, showUi* : Boolean, message* : String)

Creates and returns an operator that embeds XMP file metadata packets in a set of files.

Operator

Method Return type

initialize()
terminate()
exists()
authenticate()

Basic node creation and access.

refreshInfoset()
getCacheStatus()

Association and update of script-defined Thumbnail properties, defined by
Infoset objects

5: Extending Adobe Bridge Node-Handling Behavior Defining an ExtensionModel 51

Immediate model operations

Method Return type

addToDrag (pointerToOsDragObject : Number)

Adds this model object to the platform-specific drag object.

Boolean

authenticate ()

Required. Handles any required authentication for this node.
undefined

cancelRefresh (infosetName : String)

Cancels a background refresh task started by a call to refreshInfoset().
undefined

createNewContainer (name : String)

Creates a new container node in this container node, and returns its URI
string. If this node is not a container, does nothing.

String

exists ()

Required. Reports whether this node is valid according to this model.
Boolean

getCacheStatus
(infoset : Infoset, cookie : String)

Required. Reports the cache status of a node data set for this node. See
‘Managing the data cache’ on page 54.

String

getFileUrl ()

Retrieves a file URL for this node.
String

getDisplayName ()

Retrieves a display name for this node.
String

getFilterCriteria ()

Creates the full set of filter criteria that can be applied to this container node.
These filters appear in the Filter palette when Adobe Bridge displays the
contents of this container.

 Array of
FilterDescription

getParent()

Returns the Bridge URI of the parent node of this node.
String

getSearchDefinition ()

Creates a search definition with which to populate the Find dialog when it is
invoked for this node.

SearchDefinition

getSearchDetails()

Retrieves or recreates the search specification and target node that were
used to create this search-result container node, when it was created by the
ExtensionHandler.getBridgeURIForSearch() method.

SearchDetails

getSortCriteria ()

Creates the full set of sorting criteria for member nodes of this container
node. Can construct an entirely new list of criteria, or retrieve the default set
from app.defaultSortCriteria and modify or append criteria, or return the
set unchanged.

Array of SortCriteria

5: Extending Adobe Bridge Node-Handling Behavior Defining an ExtensionModel 52

initialize ()

Required. A constructor for the model instance for this node. Creates any
necessary support data structures and stores them in this object. This is the
equivalent of a constructor for this model instance.

Called by handler’s makeModel() when Adobe Bridge needs to display a
handled node.

undefined

needAuthentication ()

Reports whether this node requires authentication.
Boolean

refreshInfoset
(infosetName : String,
priority* : "low" | "high",
cost* : guaranteedLowCost | lowCostEvenIfFail |

lowCostEvenIfLowQuality | unlimited ,
pageNumber* : Number)

Required. Starts a background task with the specified priority and processing
cost, to update the data in an node data set for this node. Called when any
related Infoset or CacheData values change.

The pageNumber parameter is used for nodes that represent multi-page
documents; for other node types, it is ignored.

Within this method, access each data element in the stored data cache, using
this format (assuming you have stored the cache reference in the
privateData property):

this.privateData.cacheElement.setName.memberName

● The operation must set the appropriate core item and itemContent
capability values to reflect which optional model methods are supported
by this handler. See ‘Defining an ExtensionModel’ on page 50 and ‘Core
node data’ on page 55.

● If the node is a container, the operation must add its child nodes to the
the core children data set.

● The operation must set the cache status. See ‘Managing the data cache’
on page 54.

undefined

registerInterest (cacheElement : CacheElement)

Required. Notifies this model object of the cache that contains the model
itself and all its associated data. Your implementation must store the cache
object, and use it to access the node data. Typically, you store it in the
model’s privateData property.

Adobe Bridge instantiates the cache element and passes the object to this
method whenever it displays a handled node.

undefined

setName (newName : String)

Sets the file name of this node. Changes the base name and extension, but
does not affect the path name. Returns the new URI for the node.

String

terminate ()

Required. A destructor for the model instance. Cleans up any private data
created by the initialization.

undefined

Method Return type

5: Extending Adobe Bridge Node-Handling Behavior Defining an ExtensionModel 53

Long-running model operations

Implement these methods to create Operator objects which can perform the desired operation, and if
needed, provide Adobe Bridge with information about the status and progress. See ‘Defining
Long-Running Operations’ on page 56.

All of these methods are optional.

unregisterInterest (cacheElement : CacheElement)

Required. Removes the association between this model and the cache
element that contains it. Your implementation must remove the stored
reference to the cache object, typically in the model’s privateData property.

undefined

verifyExternalChanges ()

Called when the user attempts to view data in this model's children core
data set, and its cache status is good. The model can decide whether to force a
refresh or not.

undefined

wouldAcceptDrop
(type : "copy" | "move" ,
sources : Array of String,
osDragRef : Number)

Reports whether this node can accept a drop of a specific set of nodes in a
drag-and-drop operation of a particular type. Adobe Bridge passes a pointer
to a platform-specific structure containing the nodes to be dropped. This is
the same set of nodes as specified in the sources array, but a handler might
prefer this format. Your implementation must return the type string if the
drop of that type can be accepted, or false if it cannot.

String

Method Return type

Method Return type

 copyFrom
(sources : Array of Thumbnail, timeoutInMs* : Number,
showUi* : String, message* : String, newNames* : Array of String)

Creates and returns an Operator that copies a set of nodes, allowing rename.

Operator

 eject
(sources : Array of Thumbnail, timeoutInMs* : Number,
showUi* : String, message* : String)

Creates and returns an Operator that unmounts a path.

Operator

 moveFrom
(sources : Array of Thumbnail, timeoutInMs* : Number,
showUi* : String, message* : String, newNames* : Array of String)

Creates and returns an Operator that moves a set of nodes, allowing rename.

Operator

 resolveLink
(sources : Array of Thumbnail, timeoutInMs* : Number,
showUi* : String, message* : String)

Creates and returns an Operator that resolves the link path for this node; for example,
by mounting a volume.

Operator

5: Extending Adobe Bridge Node-Handling Behavior Defining Node Data Sets 54

Defining Node Data Sets

Your script can define node data using the Infoset object. Data kept in Infoset objects is specific to
Adobe Bridge. It can be any information related to nodes, as defined by Adobe Bridge itself or by an
Adobe Bridge script. By creating and registering an Infoset, you add a set of script-defined properties to
the Thumbnail object for any handled node.

Note: Node data differs from metadata. Metadata is associated with the file that a node represents,
external to Adobe Bridge. It is represented by Adobe Bridge in the Metadata object. It is stored in
XMP format, which includes other standard metadata formats such EXIF.

The Infoset mechanism is closely integrated with Adobe Bridge node handling, and can be built into
your own node-handling extensions by declaring an Infoset object associated with your
ExtensionHandler, using app.registerInfoset(). The Infoset object is added to the list in the
ExtensionHandler.infosets property, and the Infoset.extension property contains a
reference back to the handler name.

An Infoset is a named set of data elements. The name of the set becomes a property of the
ExtensionModel for its handler, whose name is a property of each handled Thumbnail. Thus, you can
access the set through the Thumbnail object. For example, to access an Infoset object named myInfo
in thumbnail t1, where the myInfo set is managed by myExtension, use:

mySet = t1.myExtension.myInfo;

Each member element of the set has a name and data type, defined by an
InfosetMemberDescription. The member name becomes a property of the containing Infoset,
and you can access the data value, of the corresponding type, through that property.

For example, to access a color value in myInfo in thumbnail t1, where the myInfo set is managed by
myExtension, use:

colorValue = t1.myExtension.myInfo.color;

➤ Code example

The sample code distributed with the Adobe Bridge SDK includes this code example that demonstrates
how to define node information sets:

Managing the data cache

Adobe Bridge tracks all node data for a given node using a data cache, represented by the CacheElement
object. When Adobe Bridge needs to display a node, it instantiates this class with the current complete set
of Infoset objects, each of which is associated with a CacheData object that reflects its cache status.
The status determines whether any data associated with a set has changed, requiring that set to be
updated or refreshed.

Within the model methods that you implement, you must use the cache to access all Adobe
Bridge-defined and script-defined Thumbnail properties.

Node data set example in sdkInstall/sdksamples/javascript/

CustomInfosetExtensionHandler.jsx Extends the basic example to define node information for the
defined node type.

5: Extending Adobe Bridge Node-Handling Behavior Defining Node Data Sets 55

When Adobe Bridge needs to display a handled node, it calls the handler’s makeModel() method to
create a new ExtensionModel object; it stores the model object itself in a CacheElement. It then
passes this CacheElement object to the model method registerInterest(), so that the model
object itself knows what cache it belongs to.

Your model must implement the registerInterest() method to store the cache with the model
object, so that your model methods can access the data. In particular, the model’s refreshInfoset()
method must use the stored cache object to update the associated data.

Typically, you store the cache in the model’s privateData property. For example, to store the cache
reference in the model (and remove the reference when the node is no longer displayed):

// associate this node with the node data cache
myModel.registerInterest = function(cacheElement) {

this.privateData.cacheElement = cacheElement;
}
// dissociate this node from the node data cache
myModel.unregisterInterest = function() {

this.privateData.cacheElement = undefined;
}

Your model methods can then access your data through the cache:

this.privateData.cacheElement.myInfoset.myInfosetMember

Adobe Bridge calls the model’s refreshInfoset() method whenever it needs to access the data (or
the cache status of data) associated with the node. Your implementation should update the cache status,
as well as all other relevant data. For example:

myModel.refreshInfoset = function(infosetName) {
... // update the cache status

if(infosetName == "immediate") {
this.privateData.cacheElement.immediate.cacheData.status = "good";

}
...

Core node data

Adobe Bridge defines a core set of data in predefined Infoset objects. All node-handling extensions
must support the core data values that Adobe Bridge uses for its default node handling. For example, a
container node must set the core data value immediate.isContainer to true in order for Adobe
Bridge to treat the node as a container.

Core data values that a handler needs to set are generally in the immediate, item, and itemContent
sets. These sets include flags for handler capabilities, which you must set if your handler supports a
capability. For example, if your handler supports node searches, it should set item.canSearch.

A container must store its child nodes in the core set children, using the Infoset.addChild()
function.

These values are available to scripts through the Thumbnail.core property; for example:

myThumbSize = myThumb.core.immediate.size

Within a model method, they are available through the CacheElement object, typically stored in
this.privateData.cacheElement. For example:

5: Extending Adobe Bridge Node-Handling Behavior Defining Long-Running Operations 56

myModel.refreshInfoset = function(infosetName) {
// retrieve the cache
thisCache = this.privateData.cacheElement;

... // update the cache status
if(infosetName == "immediate") {

thisCache.immediate.cacheData.status = "good";
}

...

Note: Refreshing of infosets occurs frequently and needs to be very fast. For time-intensive operations, it
is better to schedule a task; see ‘Scheduling Tasks from Callbacks’ on page 38 and the Bridge SDK
example SnpScheduleTask.jsx.

The Adobe Bridge JavaScript Reference provides a complete list of core data Infoset and member names,
with the description of the Infoset object.

Defining Long-Running Operations
For operations that are time- or resource-intensive, such as those that involve file-system access, the
override method you define for your model should create and return an Operator object.

The Operator class itself is a template. You define one of the two types of Operator to perform the
desired operation, and to provide Adobe Bridge with feedback on the status and progress of the
operation. An operation can be one of these types, as specified in Operator.operatorType:

● modal: Performs a task that blocks the main thread and provides its own user interface. This type of
operation is encapsulated in an instance of ModalOperator.

● progress: Adobe Bridge provides a progress bar, and you can schedule a task to periodically update
the progress value. This type of operation is encapsulated in an instance of ProgressOperator.
Depending on the extension implementation, it can be modal, or can spawn a thread to perform a
background task, and return to the main thread.

Your node-handling ExtensionModel method, such as copyTo() or moveTo(), creates and returns an
Operator object that implements the desired operation. You (or Adobe Bridge) can then pass the object
to app.enqueueOperation().

When it is ready, Adobe Bridge calls the Operator.start() method of a queued operation to begin
execution.

● For a modal operation, the start() method returns when the operation is completed.

● For a progress operation, the start() method returns immediately and Adobe Bridge displays the
Progress bar, then resumes activity on the main thread. If the user clicks Cancel in the Progress bar,
Adobe Bridge halts the operation. Otherwise, the operation thread must notify Adobe Bridge of status
changes using app.operationChanged(). Adobe Bridge then queries the Operator object to
update the UI appropriately.

Implementing an operation

For a ModalOperator object, you must define a start() method that executes the entire operation,
providing any user interface you require.

5: Extending Adobe Bridge Node-Handling Behavior Defining Long-Running Operations 57

To create a ProgressOperator object, you must define all of the following methods:

Method Return type

getConflictInfo ()

Returns a description of a file-system conflict that prevents the operation from
being performed on the current thumbnail. This string should be suitable for
display in a conflict-resolution dialog.

String

getOperationStatus ()

Returns the current status of the operation with respect to the current source
thumbnail.

String, one of:

incomplete
inCancellation
inConflict
inError
succeeded
cancelled
failed

getPercentageComplete ()

Returns the percentage of the operation that has currently been completed. Used
in displaying the Progress dialog.

Number [0..100]

getProcessedNodeCount ()

Returns the number of source nodes that have been processed so far.
Number

getProcessingStatus ()

Returns the current overall status of the operation with respect to Adobe Bridge;
that is, whether the operation has begun, is still going on, has been paused by the
user, or has finished.

String, one of:

notStarted
inProgress
awaitingResume
completed

getProgressMessage ()

Returns a message suitable for display in the Progress dialog.
String

getTotalBytesTransferred ()

Returns the current number of bytes that have been transferred to the target in
the course of this operation.

Number

getTotalNodeCount ()

Returns the total number of source nodes to be operated on.
Number

getType ()

Returns the subclass type of this operator.
String, one of:

modal
progress

resume ()

Sets up the operator to resume execution after it has been interrupted.
Boolean, true if
the operation can
be resumed.

resolveConflict
(method : "noOverride" | "abort" | "override" |

"overrideConditionally",
policy : "applyForOneConflictOnly" | "applyToAllConflicts")

Implements a conflict resolution selected by the user in the Adobe Bridge
conflict-resolution dialog. See ‘Resolving conflicts’ on page 59.

undefined

5: Extending Adobe Bridge Node-Handling Behavior Defining Long-Running Operations 58

Monitoring operation progress and status

For a ProgressOperator, Adobe Bridge automatically displays a Progress dialog (unless you specifically
disable UI). In the course of performing the operation, you can update the Operator object with the
current status, and inform Adobe Bridge using app.operationChanged(). You can simply make this
call as needed, or, for example, use app.scheduleTask() to perform the update periodically.

When Adobe Bridge is informed of a change, it gathers information about the change by checking
properties and calling developer-defined methods in the Operator object. It then updates the Progress
dialog, and, if necessary, invokes the conflict-resolution dialog; see ‘Resolving conflicts’ on page 59.

Many of the Operator properties and methods, such as getPercentageComplete(), report the
current progress in various ways. There are also two general types of status to maintain, the operation
status and the processing status.

● An operation status describes the result of the attempt to perform the specific action (copying, for
example) on the current source thumbnail. Adobe Bridge uses the developer-defined method to
update this value during the processing of each source thumbnail.

The developer-defined Operator.getOperationStatus() method must return one of these
status strings:

start ()
Begins execution of the operation after Adobe Bridge enqueues it, following a

call to app.enqueueOperation().

undefined

stop ()

Halts execution of the operation when the operator is stopped by user interaction
in the Progress dialog.

undefined

Method Return type

incomplete The operation is still in progress for the current thumbnail.

inCancellation Operator.cancelRequested is set to true when the user requests cancellation
through the Progress dialog.

inConflict Set Operator.conflictType to identify the type of conflict:

userConfirmationRequired
fatal

Set Operator.conflictMessage to specify a string to display in the
conflict-resolution dialog. Use the following string values to identify predefined
Adobe Bridge error messages:

readOnlyFile
readOnlyFileExists
targetFolderExists
fileExists
sameFile
sameFolder
moveToChild
sourceNotAvailable
storageFull
sourceAccessDenied
targetAccessDenied
unknown

5: Extending Adobe Bridge Node-Handling Behavior Defining Long-Running Operations 59

● Processing status describes the current overall status of the operation thread with respect to Adobe
Bridge; that is, whether the operation has begun, is still going on, has been paused by the user, or has
finished.

The developer-defined Operator.getProcessingStatus() method must return one of these
status strings:

Resolving conflicts

File-system conflicts or errors can prevent the operation from being carried out. Some conflicts are
correctable or continuable, others are fatal. If a conflict is not fatal, it can be retried or ignored, after which
the operation can attempt to continue.

For a ModalOperator, you must supply any user interface you need for error handling and conflict
resolution.

For a ProgressOperator, your operation can set the operationStatus and conflictMessage,
then call app.operationChanged() to notify Adobe Bridge, which provides an interface for error and
conflict handling:

● When the file system reports a fatal error that your Operator code cannot handle, your handler
should set Operator.operationStatus to inError. Adobe Bridge checks the
Operator.conflictMessage value, displays an appropriate error dialog, and offers the user the
opportunity to halt execution of your operation.

● If a file-system conflict occurs during the execution of your operation should set the
Operator.operationStatus to inConflict. Adobe Bridge then displays the conflict-resolution
dialog. This gives the user an opportunity to correct the problem and instruct your handler to retry, or
instruct your handler to skip the current action and attempt to continue the operation, or simply to
quit the operation.

● If the user cancels from the dialog, Adobe Bridge halts execution of the operation.

● If the user chooses to continue, Adobe Bridge passes the user’s choices to your
Operator.resolveConflict() method. Your implementation of this method must resolve the
conflict as directed.

inError Set Operator.errorTarget to the source Thumbnail for which the error occurred.

succeeded The operation succeeded for the current source thumbnail.

cancelled The operation was cancelled by the user in the Progress dialog.

failed The operation failed for the current source thumbnail.

notStarted Adobe Bridge has not yet called the start() method of this Operation.

inProgress Adobe Bridge has called the start() method of this Operation to enqueue the
thread.

awaitingResume Adobe Bridge has called the start() method of this Operation, but has later called
the stop() method to interrupt processing, typically because the operation has
encountered an error condition. The operation can be resumed by calling the
resume() method.

completed The thread has been terminated, because the operation has completed or timed out,
or because it has been cancelled by the user or aborted because of a conflict.

5: Extending Adobe Bridge Node-Handling Behavior Defining Long-Running Operations 60

Your resolveConflict() method can handle a conflict using the following basic resolution methods.,
which correspond to choices in the conflict-resolution dialog:

The user can also choose a policy by checking or unchecking Apply to all in the conflict-resolution dialog.
The policy parameter passed to your Operator.resolveConflict() method is one of these
constants, which correspond to the checked state:

The constant values passed to your resolveConflict() method are also the allowed values of
Operator.resolveMethod and Operator.resolvePolicy properties; however, Adobe Bridge
does not check the values of these properties. They are entirely for your own use, in implementing a
ModalOperator or an operator that suppresses the Adobe Bridge-supplied interface.

noOverride Do not perform the current action, but continue with the operation.
Corresponds to Skip in the conflict-resolution dialog.

override Make another attempt to perform the current action. Corresponds to Replace
in the conflict-resolution dialog.

overrideConditionally Use an extension-defined default style of resolving the conflict. Corresponds
to Auto-resolve in the conflict-resolution dialog.

applyForOneConflictOnly Resolve as specified for the current action, but request user input again if
the same type of conflict occurs again.

applyToAllConflicts Resolve as specified for the current action, then resolve with this method
again if the same type of conflict occurs again.

5: Extending Adobe Bridge Node-Handling Behavior Defining Node Searches and Filters 61

Defining Node Searches and Filters
Adobe Bridge allows a user to search for nodes that match a set of criteria that the user selects from the
Find dialog. The user can also select filters from the filter panel, which has the same effect as searching for
nodes that match the filter criteria.

Your scripts can interact with both of these searching mechanisms. If you define your own node types, you
can customize the available search or filter parameters to include node attributes that you have defined.

● Your extension can define a set of search objects and methods that the Find dialog can use to search
among nodes that are handled by that extension. See ‘Handling interactive node searches’ on page 61.

● You can customize the Filter palette by adding filters for your own node types. See ‘Adding filters’ on
page 63.

Handling interactive node searches

When the user invokes the Find dialog for a handled container node, the dialog calls the model method
getSearchDefinition() to retrieve the handler-defined SearchDefinition object, and uses this
object to populate the drop-down lists in the dialog fields.

When the user makes selections in the dialog and clicks Find, the dialog creates a
SearchSpecification object from the user selections, and passes it, along with the target node (the
node that was selected when the dialog was invoked), to the model’s getBridgeUriForSearch()
method. The target node tells the function where to search from, and the SearchSpecification tells
the function what to search for. The search returns a result node, which is a container for all nodes that
match the search criteria. Adobe Bridge then displays the contained nodes in the Content pane.

To support searching with the Find dialog for your own node types, you must implement these two
methods for your node handler.

➤ Code examples

The sample code distributed with the Adobe Bridge SDK includes this code example that demonstrates
how to define node searches:

Node search examples in sdkInstall/sdksamples/

CustomSearchExtensionHandler.jsx Extends the basic and infoset examples to implement a search
among handled nodes, using the defined node information.

5: Extending Adobe Bridge Node-Handling Behavior Defining Node Searches and Filters 62

➤ Node search workflow

1. User invokes the Find dialog for a handled node.

2. If the selected node is handled by a node-handling extension, the dialog calls the node handler's
model method getSearchDefinition() to retrieve the extension-defined SearchDefinition.

3. Adobe Bridge populates the Find dialog fields according to the SearchDefinition.

4. User makes selections in the dialog and clicks Find.

5. Adobe Bridge creates a SearchSpecification object from user selections in the dialog.

6. Adobe Bridge executes the search query, which calls the node handler's
getBridgeUriForSearch(). It passes this function a target node (where to search from, the
originally selected node) and the SearchSpecification object (what to search for).

7. The getBridgeUriForSearch() implementation uses the target node and the
SearchSpecification to build up a container of child nodes that match the search criteria. It
returns the URI for the container node.

8. Adobe Bridge displays the search results in the Content pane. For each handled node, it calls the node
handler's makeModel() method, and associates the resulting ExtensionModel object with the
Thumbnail object for that node.

Implementing getSearchDefinition()

Your implementation of ExtensionModel.getSearchDefinition() creates and returns a
SearchDefinition object, which defines search parameters within your node type. The definition
provides a set of possible search criteria, defined by SearchCriteria objects, which identify node
attributes of interest and the values to match against.

Each SearchCriteria object corresponds to a line in the Criteria section of the Find dialog. The object
specifies:

● A search field, which appears in the drop-down list on the left side.

● A value type or closed list of operands, used on the right side. For a simple value type, the string "Enter
text" appears in the right-side field; for a date, it shows the expected format. If you specify a list of
operands (defined by the Operand object), they are use to populate the drop-down list.

5: Extending Adobe Bridge Node-Handling Behavior Defining Node Searches and Filters 63

● Optionally, a subset of the predefined operators to exclude. By default, all operators are available. If you
specify an exclusion list, those operators are not available for the search field. Operators are identified
by the string that appears in the middle drop-down list.

Your returned SearchDefinition object can also include:

● An optional set of scope modifiers (such as the default option to search subfolders), which you can use
to limit or expand the basic scope of the search. A scope modifier is encapsulated in a Scope object,
which simply identifies a modification. The nature of the modification is determined entirely by your
search implementation.

● An optional set of limits to the number of results, and, if results are limited, a set of possible rank fields.
Adobe Bridge sorts result nodes by the value of the rank field, and returns no more than the maximum
number of result nodes with the highest rank values. When the result is displayed, the view sorts the
nodes again using its sorting criteria. The attribute name and display name of a rank field are
encapsulated in a Rank object.

Implementing getBridgeUriForSearch()

The method ExtensionHandler.getBridgeUriForSearch() takes a target node and
SearchSpecification object. Your implementation must perform the specified search. It must collect
matching nodes into a container node, and return the Bridge URI of that container node.

Adobe Bridge can query the result node of a search to retrieve the SearchSpecification object used
to create it. It does so using the method getSearchSpecification() that you define for your
ExtensionModel. You might want to save the SearchSpecification object passed to
getBridgeUriForSearch() such that the model method can later retrieve it. Alternatively, you can
implement the getSearchSpecification() method to recreate the specification by some other
means.

Similarly, the model for the returned search-result node must implement the getSearchDetails()
method to retrieve the search target node and search criteria used to create the result.

Adding filters

Filters allows the user to organize and filter the display of thumbnails in the Content pan. When the user
selects on or more filter values from the Filter palette, Adobe Bridge applies that filter to children of the
current container node whenever it needs to display that container's contents. It shows only those nodes
whose attribute values match the selection—that is, those nodes that match the filtering criteria. The
selected filters also control the population of any menus that list children of the container.

5: Extending Adobe Bridge Node-Handling Behavior Defining Node Searches and Filters 64

The FilterDescription object provides programmatic control and customization of the Filter palette.
Each FilterDescription object corresponds to one filter entry in the Filter palette.

When displaying a container node handled by a node-handling extension, Adobe Bridge builds the list of
filters by calling the developer-defined getFilterCriteria() method of the node's
ExtensionModel. Your implementation of this method can use the FilterDescription object to
define new filters. In this way, you can allow the user to filter on the values of properties that you have
defined for you own node types.

A list of all filters that are available for the currently displayed container node is kept in the
Document.filters property. This list includes filters you have added with the
getFilterCriteria() method.

Implementing the getFilterCriteria() method

Your implementation of ExtensionModel.getFilterCriteria() must create and return an array of
FilterDescription objects. The Filter palette is initially populated with a set of default file filters; your
getFilterCriteria() method can retrieve this list from app.defaultFilterCriteria, and
modify it or add to it.

A FilterDescription associates a filter name with a node attribute, which is typically an XMP
metadata property. For your own node types, you can specify an Infoset member as the filtering
attribute. For example:

myFilter = new FilterDescription("myfiltername", "My Filter",
"MyHandler.MyInfoset.MyInfosetMember", false);

Filter entry (XMP
property)
with collected
values

5: Extending Adobe Bridge Node-Handling Behavior Defining Node Searches and Filters 65

Beneath each filter attribute, the Filter tab lists all values that occur for that attribute in all child nodes in
the current scope, along with the number of nodes found with each value. It does not normally list nodes
that have no value for a particular attribute. You can choose to allow nodes that have no value for the
attribute by adding the empty string to the values list in the
FilterDescription.closedValuesList property.

 66

6 Porting Guide

This chapter summarizes changes between this release and the previous release of Adobe Bridge, to aid
you in porting applications to this release.

New Features in Adobe Bridge CS3
Two major features are new in Bridge:

● Node-handling customization through the new ExtensionHandler and ExtensionModel objects.

● Browser customization through script-defined palettes created with the TabbedPalette object, and
the Inspector, which shows context-specific information for the selected thumbnail.

Node handling customization

The browser node mechanism that underlies the Thumbnail object has been completely reworked. The
internal Adobe Bridge node structure is now referenced through a unique resource identifier called the
Bridge URI, a filesystem path or URL preceded by an identifying prefix: for example,
mynode:path/file.ext. Each prefix is registered with an ExtensionHandler, which defines how
nodes of that type should be handled.

The behavior of a node handler is implemented through the ExtensionModel, whose properties and
methods are provided by the developer. Whenever Adobe Bridge displays a handled node, it calls the
methods of the associated model to perform operations such as file manipulation and node searches.

A node handler associates type-specific node data with the Thumbnail object using the new Infoset
object. This has the effect of adding developer-defined properties to the Thumbnail object for the
handled node. Scripts can use these properties to define display filters and searches, and to display
context for selected nodes.

Browser customization
● All tabbed palettes can be shown or hidden, or moved to any location by the user. The visibility is now

scriptable; individual tabbed palettes are represented by the TabbedPalette object, and are
available to scripts through the app.document.palettes property. You can now add your own
script-defined palettes using the TabbedPalette object, with contents defined in ScriptUI or HTML.
ScriptUI can now display Flash animation.

● The new object-inspector palette extends the Content pane by showing specific information directly or
indirectly related to the selected thumbnail. It is completely script-defined; there is no default
Inspector.

Inspector panels are defined by the InspectorPanel, and each panel contains subpanels defined by
Panelette objects. The subpanels content can be specified in a flexible format that allows you to
access embedded metadata through the Metadata object, and node data associated with the
thumbnail through its node handler and Infoset objects.

● Adobe Bridge CS3 provides a Filter palette that allows users to select criteria by which to filter the
thumbnail display. The set of filter criteria that populates this palette is extensible for script-defined
node types, using the FilterDescription object.

6: Porting Guide Changes and Deprecations in Adobe Bridge CS3 67

Changes and Deprecations in Adobe Bridge CS3
● The browse-scheme mechanism has been completely replaced by the node-handling

ExtensionHandler/ExtensionModel mechanism. The following methods and properties are
removed or deprecated:

● app.browseTo() and app.registerBrowseScheme() methods

● Thumbnail.displayMode, displayPath, and path properties

● BrowseSchemeEvent object

● ThumbnailIterator object

● Document.bottomNavbar and topNavbar are deprecated in favor of Document.navbars.

● Document.content and contentPaneMode properties are deprecated in favor of
Document.presentationPath and presentationMode.

● app.preflightFiles() has been deprecated in favor of app.acquirePhysicalFiles().

● For the Event object, the thumbnail select and deselect event types have been replaced with two
new document events, selectionsChanged and selectionsChanging.

● The Preferences dialog has changed, and this is reflected in the properties and methods of the
Preferences object.

● Menus have changed, resulting in new and changed menu identifiers; see the MenuElement object in
the Bridge JavaScript Reference.

Object model additions

The following new objects have been defined:

General Node-handling Node search and sort

BitmapData
Color

TabbedPalette

InspectorPanel
Panelette
IconListPanelette
TextPanelette
ThumbnailPanelette

ExtensionHandler
ExtensionModel

CacheElement
CacheData

Infoset
InfosetMemberDescription

Operator
ModalOperator
ProgressOperator

SearchSpecification
SearchDefinition
SearchCriteria
SearchCondition

Operand
Rank
Scope
SearchDetails

FilterDescription
SortCriterion

 68

Index

A
application object

about 15
registering event handlers 28

applications, communicating 28
arrays, passing between engines 38

B
basic node model 15
bibliography 7
Bridge URI 23
browser window

about 9
area descriptions 12
as document object 14
components 11
CS3 changes 66
customizing 17, 40
extending behavior 21
extending the Content pane 41
panes 16

browse-scheme mechanism 67

C
cache management 54
callbacks

Content pane 35
defining for HTML scripts 34
dialogs 35
executing 36
navigation bar 35
passing complex values 38
scheduling tasks 38
using in HTML dialogs 37

code examples, See example code
commands, adding to menus 44
communication framework, interapplication 28
conflict resolution 59
Content pane

about 13
adding an inspector panel 41
defining callbacks 35
determining display 32

context menus 14
conventions, typographic 7
core Infosets 55
CS3 features 66

D
data

associating with nodes 54
cache status 54

ensuring validity 25
managing cache 54
node handling data 48
passing between engines 34, 38
refreshed 54

date formats 25
dialogs

about 19, 32
closing 36
defining callbacks 35
displaying HTML controls 36
displaying ScriptUI 33
executing callbacks and remote functions 36
HTML 19
modal and modeless 20
modal and modelessl 36
ScriptUI 19
using callbacks 37

document object model (DOM) 14
documents

about 10, 14
reference materials 7, 9
thumbnails 15

Dublin Core properties 26
dynamic text values, inserting 43

E
embedded browser for displaying HTML 34
embedded metadata 25
engines, JavaScript 34
error handling 59
event handling

Bridge events 23
defining handlers 27
example code 28
registering handlers 28
user-interaction events 16, 27

events, version changes 67
example code

event handling 28
inspector panels 42
interapplication communication 29
locations 9
markup elements 43
menu elements 44
metadata access 26
node filters 54
node searches 61
node-handling extensions 46
tabbed palettes 41
UI techniques 30

ExtendScript
communicating with users 19

Index 69

executing scripts 10
ExtensionHandler object

about 45
defining 49

ExtensionModel object
about 45
accessing through thumbnail 48
defining 50

extensions
about 45
defining node data 54
defining searches in 61
installation structure 47
installing 46
node-handling 21
registering 46
script-defined 45
workspaces 48

F
Favorites pane

about 12, 16
illustration 11

Filter pane
about 13
applying filters 63
illustration 11

filters
adding 63
defining 61

Find dialog, extending 61
flyout menus 14
Folders pane

about 12, 16
illustration 11

fonts used in this guide 7
formats for metadata dates 25

G
getBridgeUriForSearch() method 63
getFilterCriteria() method 64
getSearchDefinition() method 62
global information 15

H
handlers

about 45
core data capabilities 55
default behavior 23
defining 27
immediate vs. long-running operations 49
registering 28

HTML
defining callbacks 34
defining user interfaces 19
dialog box controls 32
dialogs 19
display mechanisms 34

displaying controls in navigation bars 37
displaying controls in tabbed palettes 38
displaying in dialogs 36
executing script functions 35
navigation bar controls 31
user interface controls 31

hyperlinks, inserting 43

I
immediate handler operations

about 49
method descriptions 49

immediate model operation methods 51
Infoset object

accessing through thumbnail 48
defining node data 54
predefined sets 55

inspector panels
about 14
creating and displaying 42
script-defined 41
specifying string values 42

InspectorPanel object 41
interapplication communication framework 28

J
JavaScript

additional resources 7
engines for web browser and Bridge 34
panelette markup elements 43
standards information URL 8

K
Keywords pane

about 13
illustration 11

L
long-running handler operations

about 49
method descriptions 49

long-running model operations
about 50
method descriptions 53

M
Mac OS

extensions folder 46
startup folder 10, 48
user workspace folder 11
workspace folder 48

main window, See browser window
markup elements, panelettes 43
menubar

about 14
extending 44

menus

Index 70

about 20
context and flyout 14
element objects 44
extending 44
version changes 67

metadata
display 13
embedding as XML 26
example code 26
files associated with thumbnails 25
node handling 21
pane illustration 11
vs. node data 54

methods, version changes 67
modal dialogs

about 20
displaying 33
displaying HTML 36

ModalOperator object, methods 56
modeless dialogs

about 20
displaying 33
displaying HTML 36

models
extension 50
immediate operations 51
managing data cache 54
node handling 48

N
navigation bars

about 14, 19, 31
configuring 19
defining callbacks 35
displaying HTML controls 37
displaying ScriptUI 33
executing remote functions 37
showing and hiding 31

navigation nodes 23
node data

core 55
defining 46, 54
managing cache 54
sets 54
vs. metadata 54

node handling
about 45
accessing model and 48
associating private data 46
core data values 55
creating script-defined extensions 45
customization 66
extending behavior 45
extension models 50
extensions 21
installing extensions 46
long-running operations 56
registering extensions 46
searches 61

nodes
inspection 41
navigation 23
object model 15
references 23
thumbnails 15

O
object model

about 10, 14
application and document 15
thumbnails 15
version changes 67

objects
extending default behavior 28
inspector 41
menus and commands 44
passing between engines 38
version changes 67

operations
defining long-running 56
handler 49
implementing 56
model 50
progress and status 58
resolving conflicts 59

Operator object 56

P
palettes

custom tabbed 14
defining 17
listing 40
modeless dialogs 20
removing 40
script-defined 40
tabbed 40

panelettes
markup elements 43
string values 42
types 41

panels, panelette types 41
panes

browser window 16
customizing 40
defining 17

performance
node-handling operations 56
thumbnail access 24

plug-in extensions, creating 45
porting guide 66
preferences, application 16
prefixes

about 45
registering 46

presentation mode, Content pane display 32
Preview pane

about 13
illustration 11

Index 71

ProgressOperator object methods 57
properties, associating with nodes 54

R
reference materials

code examples and tools 9
more information 7

references, nodes 23
release notes 66
remote functions, executing

dialogs 36
HTML 35
navigation bars 37

S
scripting

additional resources 7
interactions 16
overview 9
user interaction 30

scripts
access to Bridge window 11
accessing browser window 12
accessing preferences 16
adding palettes 40
adding user interfaces 17
communicating with users 19
creating user interfaces 30
defining callbacks 34
embedding metadata 26
executing 10, 35
search mechanisms 61
shared startup 48
startup 10
user interface options 30

ScriptUI
dialog box controls 32
dialogs 19, 33
displaying elements 32
navigation bar controls 31
navigation bars 33
tabbed palettes 33
user-interface controls 31

searches
defining 61
interactive 61
specifying parameters 62
workflow 62

startup scripts
locations 10, 48
shared 48

status
in browser window 14
monitoring for operations 58

string values
panelette markup elements 43
specifying 42

subpanels

markup elements 43
string values 42
types 41

T
tabbed palettes

about 14
creating 40
displaying HTML controls 38
displaying ScriptUI 33

TabbedPalette object 40
tabs, adding to browser 40
tasks, scheduling 38
thumbnails

about 12
accessing 24
basic behavior 23
ensuring valid data 25
example code 26
in documents 15
inspection 41
metadata 25
performance considerations 24

typographic conventions 7

U
user interfaces

creating for scripts 30
customizing 17
script options 30
ScriptUI elements 32
using HTML 19

user-interaction events 16, 27

V
version differences in CS3 66
view mode controls 14
view, Inspector 41

W
web browsers, embedded 34
window, See browser window
Windows

extensions folder 46
startup folder 10, 48
user workspace folder 11
workspace folder 48

workflow, node searches 62
workspaces

extensions 48
folder locations 11

X
XML, embedding metadata with 26
XMP metadata 25

	Contents
	Welcome
	About This Book
	Who should read this book
	What is in this book
	Document conventions
	Typographical conventions

	Where to go for more information

	Scripting Adobe Bridge
	Scripting Overview
	Documentation and sample code
	Executing scripts for Adobe Bridge

	The Adobe Bridge Browser Window and Object Model
	The Adobe Bridge browser window
	Accessing the Adobe Bridge browser through scripts

	The Adobe Bridge Object Model
	Basic node model
	The application and documents
	Thumbnails in documents

	Scripting Adobe Bridge interactions
	Application preferences
	User-interaction events

	Customizing the user interface
	Customizing the browser window
	Communicating with the user from a script

	Extending browser behavior

	Interacting with Adobe Bridge through Scripts
	Accessing Thumbnails with Scripts
	Thumbnails as node references
	Using and accessing thumbnails
	Accessing many thumbnails correctly
	Ensuring valid thumbnail data

	Metadata for thumbnails
	Embedding metadata in a script as XML

	Event Handling in Adobe Bridge
	Defining event handlers
	Registering event handlers

	Communicating with Other Applications

	Creating a User Interface for a Script
	User Interface Options for Scripts
	Navigation bars
	Dialogs boxes
	Content pane
	Tabbed palettes

	Displaying ScriptUI in Adobe Bridge
	Displaying ScriptUI dialogs
	Displaying ScriptUI elements in a navigation bar
	Displaying ScriptUI elements in a custom palette

	Displaying HTML in Adobe Bridge
	Defining callbacks for HTML scripts
	Executing script functions defined on HTML UI pages
	Displaying HTML in Adobe Bridge dialogs
	Communicating with Adobe Bridge from dialog JavaScript
	Using callbacks in an HTML dialog
	Calling functions defined in an HTML dialog

	Displaying HTML in a navigation bar
	Calling functions defined in an HTML navigation bar

	Displaying HTML in a custom palette

	Passing Complex Values in Remote Calls
	Scheduling Tasks from Callbacks

	Customizing the Adobe Bridge Browser Window
	Creating a Customized Tabbed Palette
	Script-Defined Inspector Panels
	Creating and displaying inspector panels
	Specifying string values in an inspector panel
	Panelette markup elements for dynamic text
	Markup examples

	Extending Adobe Bridge Menus

	Extending Adobe Bridge Node-Handling Behavior
	Creating Script-Defined Node-Handling Extensions
	Registering your node-handling extension
	Installing a node-handling extension
	Installation structure
	Extension workspaces
	Shared startup scripts

	Accessing the node-handling model and data

	Defining an ExtensionHandler
	Immediate handler operations
	Long-running handler operations

	Defining an ExtensionModel
	Immediate model operations
	Long-running model operations

	Defining Node Data Sets
	Managing the data cache
	Core node data

	Defining Long-Running Operations
	Implementing an operation
	Monitoring operation progress and status
	Resolving conflicts

	Defining Node Searches and Filters
	Handling interactive node searches
	Implementing getSearchDefinition()
	Implementing getBridgeUriForSearch()

	Adding filters
	Implementing the getFilterCriteria() method

	Porting Guide
	New Features in Adobe Bridge CS3
	Node handling customization
	Browser customization

	Changes and Deprecations in Adobe Bridge CS3
	Object model additions

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

