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Preface

This document introduces the Adobe® Illustrator® API for plug-ins.

 Chapter 1, “Overview” describes the basic concepts behind Illustrator plug-in programming.

 Chapter 2, “Tutorial” describes plug-in programming fundamentals using an example project.

 Chapter 3, “Creating an HTML/JS UI for Plug-ins" describes how to create a user interface for your 
plug-in using Adobe Flash®. 

 Chapter 3, “Plug–in Techniques” describes Plug-in property lists (PiPL resources) in detail, and explains 
how to handle Live Effects in plug-ins.

Terminology and notational conventions
API — Application programming interface.

Application — Illustrator CC 2015, unless otherwise specified.

PiPL — Plug-in property list.

SDK — Software development kit for the application. <SDK> indicates your locally installed SDK root 
folder. The actual root location depends on the installation and operating system.

Supporting documentation
The following documents are companions to this guide:

 Getting Started with Adobe Illustrator CC 2015 Development — Describes platforms supported for 
plug-in development, how to set up the development environment, and the code samples included in 
the SDK. Provides step by step guides on creating new projects either from scratch or from the 
templates provided with the SDK.

 Adobe Illustrator CC 2015 Porting Guide — Describes issues related to porting plug-ins across different 
versions of the Illustrator API. See <SDK>/docs/guides/porting-guide.pdf.

 Adobe Illustrator API Reference — Describes the suites and functions in the Illustrator API in detail. See 
the <SDK>/docs/references/ folder.

 Using the Adobe Text Engine with Illustrator CC 2015 — Describes how to use the Adobe text engine—
the text API provided by the Adobe® Illustrator® CC 2015 SDK—in your Illustrator plug-ins. 

Sample code
Sample plug-ins are provided in the sample code folder in the SDK, and described in Getting Started with 
Adobe Illustrator CC 2015 Development. Chapter 2, “Tutorial,” describes plug-in programming 
fundamentals using the Tutorial sample project.
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1 Overview

This chapter introduces the Adobe® Illustrator® plug-in architecture. It shows how plug-ins interact with 
Illustrator and gives an idea of the power of plug-ins.

What is a plug-in?
A plug-in is a library that extends or changes the behavior of Illustrator. On Windows, a plug-in is built as a 
DLL (dynamic-link library). On Mac OS, a plug-in is built as a bundle that contains a shared library.

The plug-in architecture in Illustrator is very powerful. Plug-ins have access to Illustrator’s elegant vector, 
text, and raster engines, as well as Illustrator’s user interface. The API is a fundamental part of the 
application; in fact, most of Illustrator itself is implemented as plug-ins.

You can create plug-ins that add new tools to the drawing, shading, and raster tools already in Illustrator. 
Plug-ins can turn Illustrator into a powerful CAD, cartographic, or other custom design application. Users 
can add or remove plug-ins to quickly and easily customize Illustrator to their needs.

The Illustrator API offers several benefits to plug-in developers. Because Illustrator handles large 
application tasks like printing and saving files, you can concentrate on the implementation of your 
plug-in’s unique features. Plug-ins do not need to support undo or window updating; these are handled by 
the API and are invisible to the plug-in. This translates into shorter development cycles.

A brief history of the Adobe Illustrator API
The Illustrator API first appeared in version 5.0. It supported one type of plug-in, filters. This was extended 
in Adobe Illustrator 5.5 to include file formats. The 5.x APIs displayed characteristics of many early API 
design efforts: the interface was monolithic, incorporating enough function to achieve its intended 
purpose, but not allowing for future expansion. A single callback function table was provided, with no 
means to extend or update it. Platform abstraction was minimal, and interaction with the user was 
restricted to modal.

The Illustrator 6.0 API began addressing these limitations, using a modular and extensible approach . 
Callback functions were organized into suites that could be easily replaced or extended. The plug-in types 
were abstracted and extended to include tools, floating windows, menu items, events, and combinations 
of these types. The first steps towards platform abstraction were taken.

The Illustrator 7.0 API refined prior efforts. The API was extended to be truly cross-platform (the Windows 
version of Adobe Illustrator jumped from version 4.2 directly to 7.0), including a complete set of 
user-interface suites. The plug-in management core was generalized for both cross-platform and 
cross-product use. More of Illustrator’s core functionality was implemented through plug-ins, allowing the 
application’s behavior to change without modifying the application itself.

The Illustrator 8.0 API switched from fixed to floating-point numbers and included more than a dozen new 
suites, many corresponding to new user features like plug-in groups, cursor snapping, and actions.

Illustrator 9.0 stopped loading Mac OS plug-ins containing Motorola 68K code. Only plug-ins with the 
Illustrator 9 version information in the PiPL were recognized and included in Illustrator 9’s initial start-up 
process; however, Illustrator 6 and 5.5 plug-ins were supported by adapters.
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The Illustrator 10.0 API changed API structures in Mac OS to use PowerPC (4-byte) alignment instead of 68K 
(2-byte) alignment, requiring Mac OS plug-ins to be rebuilt. Illustrator plug-ins for Windows built with the 
Illustrator 9 SDK or earlier were not affected and remained compatible with Illustrator 10.

Illustrator CS1 (Illustrator version 11.0) integrated a new text engine, the Adobe Text Engine (ATE). This 
change broke backward compatibility. Illustrator plug-ins that used the obsolete text API had to be rebuilt 
with the Illustrator 11 SDK and ported to use the new ATE API.

The Illustrator CS2 API (Illustrator version 12.0) introduced Unicode support. In Mac OS, the object-file 
format for Illustrator plug-ins changed from PEF to Mach-O. 

The Illustrator CS3 API (Illustrator version 13.0) introduced support for universal binary plug-ins in Mac OS. 
The plug-in development environment in Mac OS switched to Xcode from CodeWarrior.

The Illustrator CS4 API (Illustrator version 14.0) introduced support for multiple artboards and the FXG file 
format. 

In Illustrator CS5 API (Illustrator version 15.0), Adobe Dialog Manager (ADM) was deprecated. This release 
introduced the Beautiful Strokes feature, and improved and enhanced existing features, such as 
perspective grids. 

In Illustrator CS6 API (Illustrator version 16.0), ADM was removed. A new vectorization engine replaced the 
former tracing functionality; the ability to create patterns and gradients on strokes was added; and the API 
provided support for UI color themes. This release supported the 64-bit Windows platforms, with the 
development environments Visual Studio 2010 and Xcode 3.2.5. 

In Illustrator CC 2014 API (Illustrator version 18.0), the ASReal data types was removed in favor of AIReal. 
The development environment in Mac OS was updated to Xcode 5.1.1 with LLVM GCC4.2 

In Illustrator CC 2015 API (Illustrator version 19.0), the development environment in Windows is updated to 
Visual Studio 2013, and in Mac OS to Xcode 6.2. For documentation on these changes and other API 
changes, see the Adobe Illustrator CC 2015 Porting Guide. 

Anatomy of a plug-in
Like most programs, Illustrator plug-ins contain both code and data. The Illustrator plug-in manager loads 
and executes a plug-in’s code when required, sending various messages to the plug-in. The plug-in 
manager also unloads plug-ins that are no longer needed. See the following figure.
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Plug-ins are notified by Illustrator when they have just been loaded or are about to be unloaded, 
permitting them to restore or save any state information.

Types of plug-ins
This section describes the different types of Illustrator plug-ins you can create. A single plug-in file can 
contain multiple plug-in types. For example, a shape creation plug-in may implement several plug-in 
filters and a plug-in tool. Plug-in types are listed in the following table and described more fully after the 
table.

Adobe
Illustrator

Pl
ug

-in
 m

an
ag

er

Required
plug-ins

Additional
plug-ins

Plug-in Type What it does

Action Playback or register actions.

Effects Add menu items to the Effects menu.

File format Add file types to the Open, Save, and Export commands.

Filter Add menu items to the Filter menu.

Menu command Add menu items to the general menu structure.

Notifier Receive and process art-state events.

Plugin group Maintain “display” art that is associated with another art object

Suite Implement and publish your own suite of callback functions.

Timer Receive periodic notification.

Tool Add tools to the Tools panel.

Transform again Set the transform-again feature.
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Action plug-ins

Action plug-ins are used to execute Illustrator commands. An action plug-in can register itself so it can be 
recordable via the Actions panel. For more information, see AIActionManagerSuite in Adobe Illustrator 
API Reference.

Plug-in file formats

Plug-in file formats are used to extend the number of file types Illustrator can read and write. Plug-ins 
indicate which file formats they support during initialization, specifying the supported names and file 
types (or extensions). One plug-in can register as many formats as desired.

The file types supported by a file-format plug-in can appear in Illustrator's Export, Save, and Open dialogs, 
depending on the options specified when the new file type is added.

For more information, see AIFileFormatSuite in Adobe Illustrator API Reference

Plug-in filters

Plug-in filters appear under the Object menu and are used to create or manipulate Illustrator artwork. 
Typically, filters present a modal interface to the user, who can set parameters before executing.

NOTE: In other applications (including Adobe PageMaker® and Adobe FrameMaker®), the term “filter” or 
“filter plug-in” sometimes is used to describe software that reads and writes non-native files (e.g., TIFF or 
JPEG files). In Illustrator, these are called file-format plug-ins. Illustrator uses the term “filter plug-in” in a 
way similar to Adobe Photoshop: a filter plug-in modifies the artwork in an algorithmic fashion.

Illustrator updates the Repeat and Undo menus automatically, making filters one of the simplest plug-in 
types to create.

For more information, see AIFilterSuite in Adobe Illustrator API Reference.

NOTE: AIFilterSuite is deprecated in favor of AILiveEffectSuite. We recommend that you change 
plug-ins which implement filters to use live effects instead, as AIFilterSuite will be removed at some 
point in the future.

Plug-in menu commands

Plug-in menus are used to add menu items to Illustrator's menu structure other than the Filter menu. A 
typical use of this plug-in type is to add a Hide/Show Window menu item to Illustrator's Window menu.

Plug-in menu commands can be added at several places in the menu structure.

For more information, see AIMenuSuite in Adobe Illustrator API Reference.

Plug-in notifiers and timers

Plug-in notifiers and timers are used by a plug-in to have Illustrator inform it of certain events.

A notifier plug-in is notified when the state of an Illustrator document changes. For example, a plug-in may 
request to be notified when the selection state changes. A notifier plug-in registers for one or more 
notifications during start-up.
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A timer plug-in is notified at regular time intervals. For example, a timer plug-in may request to be notified 
once a second.

For more information, see AINotifierSuite and AITimerSuite in Adobe Illustrator API Reference.

Plugin-group plug-ins

Plugin-group plug-ins maintain one or more plug-in groups. A plug-in group is a special art object that 
contains editable art as well as art that is displayed but not editable. A plugin-group plug-in is responsible 
for regenerating the display art (or result art) whenever there is a change in the edit art. Plug-in groups are 
used to make special art types like Live Blends and Brushes.

For more information, see AIPluginGroupSuite in Adobe Illustrator API Reference.

Plug-in tools

Plug-in tools add an icon to the Tools panel, expanding the number of tools available to the user. Many 
standard Illustrator tools, including the knife tool, shape tools, and twirl tool, are implemented as plug-in 
tools.

When selected, a tool plug-in can track the mouse, determine which artwork was selected, and act on it. 
For example, a tool might create or distort objects. Some things are handled automatically for plug-in 
tools, like scrolling the window.

For more information, see AIToolSuite in Adobe Illustrator API Reference.

Combining multiple plug-in types

As mentioned before, it is likely one plug-in file implements multiple plug-in types. A plug-in also may 
need to add multiple instances of a single plug-in type. The plug-in API supports both these cases.

Where plug-ins live
Illustrator's Plug-ins folder is in the following locations:

Windows: C:\Program Files\Adobe\Adobe Illustrator CC 2015\Plug-ins\ 

Mac OS: /Applications/Adobe Illustrator CC 2015/Plug-ins/ 

A user-specific Plug-ins folder, which may be appropriate to use in multi-user systems, is located as 
follows:

Windows 7: C:\Users\<username>\AppData\Roaming\Adobe\

Adobe Illustrator CC 2015 Settings\<localeCode>\Plug-ins\ 

Mac OS /Users/{username}/Library/Application Support/Adobe/
Adobe Illustrator CC 2015/<localeCode>/Plug-ins 

Optionally, an additional folder can be specified using Illustrator's Additional Plug-ins Folder preference.

In general, each plug-in type is in a specific subfolder; for example, tool plug-ins are in a folder named 
Tools.
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What defines a plug-in?
On Windows, an Illustrator plug-in is a DLL (dynamic-link library). In Mac OS, an Illustrator plug-in is a 
bundle that contains a shared library. An Illustrator plug-in has the following characteristics:

 A file extension of .aip; for example, CoolEffect.aip.

 A valid plug-in PiPL resource. The PiPL resource contains information about your plug-in. Illustrator 
considers only those files with PiPL resources to be potential plug-ins. Files with the correct properties 
are added to the plug-in list.

 A code entry point containing binary code that can run on the target platform. The entry point is 
specified in the PiPL resource and is called with several messages telling it which actions to take. 

PiPL resources
A plug-in property list (PiPL) resource contains properties used by the Illustrator plug-in manager, 
including the following:

 The type of the plug-in, given by the kind property.

 The calling mechanism for the plug-in code, given by the ivrs property.

 The entry point of the plug-in, given by a code descriptor property.

Illustrator considers only files with a valid PiPL to be potential plug-ins. PiPL properties are defined using 
native platform resources. For more information about PiPL resources and samples, see Chapter 4, “Plug–
in Property Lists.

Plug-in management
When Illustrator is launched, only plug-ins with a valid PiPL and code entry point are recognized and 
included in the initial start-up process. Each plug-in is loaded into and unloaded from memory as needed 
by Illustrator. A plug-in needs to be written assuming it is not always in memory. This is why a plug-in 
should save and restore state information during unload and reload. A plug-in can expect certain services 
from the application. Because a plug-in may be unloaded, Illustrator provides a means of storing 
important data when the plug-in is unloaded. Each time a plug-in is called, it is given enough information 
to accomplish the action to be performed.

The loading order of plug-ins becomes important when one plug-in depends on a resource provided by 
another, as the resource providing plug-in must be loaded first. As mentioned above, plug-ins that export 
one or more suites must declare (in the PiPL resource) what they export. Illustrator uses this information 
when loading and executing plug-ins, ensuring that suites and other resources are available.

Plug-in entry point and messages
The Illustrator plug-in manager communicates with your plug-in by loading the plug-in code into memory 
if necessary, then calling the entry point given by the code-descriptor property in the PiPL. By convention, 
the entry point is called PluginMain and is compiled with C linkage:

extern "C" ASAPI ASErr PluginMain(char* caller, char* selector, void* message);

Three arguments are passed to the PluginMain function; collectively, they make up a message.
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The first two parameters represent the message action, describing what the plug-in is supposed to do, as 
described in the following section. The third parameter is a pointer to a data structure, which varies 
depending on the message action. When you determine the message action, you typecast the data in the 
message parameter as needed. 

The result of the function is an error code.

Message actions: callers and selectors

Each time your plug-in is called, it receives a message action from Illustrator. The message action notifies 
your plug-in that an event happened or tells your plug-in to perform an action.

The message action passed to your plug-in consists of two identifiers:

 The caller identifies the sender of the message (PICA, the host application, or a plug-in) and a general 
category of action.

 The selector specifies the action to take within the category of action. All plug-ins receive at least four 
message actions: reload, unload, startup and shutdown. In addition, your plug-in may receive 
additional message actions specific to the plug-in type.

For example, Illustrator sends a plug-in a message action based on these two strings, when the plug-in is 
unloaded and reloaded:

#define kSPAccessCaller           "SP Access"
#define kSPAccessUnloadSelector   "Unload"
#define kSPAccessReloadSelector   "Reload"
The caller and selector identifiers are C strings. By convention, each caller string has a prefix. This is so new 
message actions can be easily defined by other plug-ins, with little chance of conflict. For example, callers 
and selectors from Illustrator suites use the prefix “AI”, while those from PICA use the prefix “SP.”

Illustrator message actions are used to indicate events in which a plug-in has interest. Information on the 
callers and selectors supported by the API is given by the Plug-in Callers and Plug-in Selectors pages in 
Adobe Illustrator API Reference.

Core message actions

The following table contains the set of core message actions received by all plug-ins and corresponding 
actions your plug-in should take.

Caller Selector Action to perform

kSPAccessCaller

(“SP Access”)
kSPAccessReloadSelector

(“Reload”)
Restore any state information (globals).

kSPAccessUnloadSelector

(“Unload”)
Save any state information (globals).

kSPInterfaceCaller

(“SP Interface”)
kSPInterfaceStartupSelector

(“Startup”)
Initialize globals and add features to the 
application.

kSPInterfaceShutdownSelector

(“Shutdown”)
Free globals, remove features from the 
application, and save preferences.



CHAPTER 1 Overview Plug-in entry point and messages     11

Reload and unload messages

Whenever a plug-in is loaded into memory or unloaded from memory, Illustrator sends it an access 
message action:

#define kSPAccessCaller           "SP Access"
#define kSPAccessUnloadSelector   "Unload"
#define kSPAccessReloadSelector   "Reload" 

The message action contains the access caller and a reload or unload selector. This is your plug-in’s 
opportunity to set up, restore, or save state information. The access caller/selectors bracket all other callers 
and selectors.

Access messages bracket all other messages. Reload is the first message your plug-in receives; unload is 
the last. At these times, your plug-in should not acquire or release suites other than those built into 
Illustrator.

Start-up and shut-down messages

Illustrator has two core interface message actions, where the plug-in can interact with the application:

#define kSPInterfaceCaller "SP Interface"
#define kSPInterfaceStartupSelector "Startup"
#define kSPInterfaceShutdownSelector "Shutdown"

When Illustrator is launched, it sends a “startup” message to each plug-in it finds. This allows your plug-in 
to allocate global memory, add user-interface items to Illustrator, register suites, or perform other 
initialization. The start-up message action consists of the interface caller (kSPInterfaceCaller) and 
start-up selector (kSPInterfaceStartupSelector).

When the user quits Illustrator, it sends each plug-in a “shutdown” message. The shut-down message 
action comprises the interface caller (kSPInterfaceCaller) and shut-down selector 
(kSPInterfaceShutdownSelector). Shut-down is intended for flushing files and preserving preferences, 
not destruction. A plug-in that exports a suite should not dispose of its plug-in globals or suite 
information, since it may be called after its own shut-down by another plug-in’s shut-down. For example, if 
your plug-in implements a preferences suite that other plug-ins use, they may call you in their shut-down 
handlers after you already shut down.

Notifiers

Some message actions also are referred to as notifiers, indicating something in Illustrator was changed by 
the user; for example, when the user selects an object.

Plug-ins must register for the notifiers in which they are interested. The Notifier suite is used to register and 
remove notification requests (see AINotifierSuite).

Plug-ins also can create their own notifiers, which can be used to broadcast changes to other plug-ins.

Handling callers and selectors

Your plug-in’s organization is based largely on the messages it receives. The main routine of your plug-in 
must first determine the message action, using the caller and selector parameters. For example:

extern "C" ASAPI ASErr PluginMain(char* caller, char* selector, void* message)
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{
ASErr error = kNoErr;
if ( strcmp( caller, kSPAccessCaller ) == 0 ) {

// Handle Reload and Unload
if ( strcmp( selector, kSPAccessReloadSelector ) == 0 )

error = MyRestoreGlobals( message );
else if ( strcmp( selector, kSPAccessUnloadSelector ) == 0 )

error = MySaveGlobals( message );
} else if ( strcmp( caller, kSPInterfaceCaller ) == 0 ) {

// Handle Startup and Shutdown
if ( strcmp( selector, kSPInterfaceStartupSelector ) == 0 )

error = MyStartupPlugin( message );
else if ( strcmp( selector, kSPInterfaceShutdownSelector ) == 0 )

error = MyShutdownPlugin( message );
} else if ( strcmp( caller, kCallerAIMenu ) == 0 &&

 strcmp( selector, kSelectorAIGoMenuItem ) == 0 ) ){
// Handle menu message
error = MyHandleMenu( message );

}
return error;

}

Message data

The last argument passed to your plug-in entry point is a pointer to a message data structure, which 
contains information appropriate to the message action. For example, when a mouse-clicked message 
action is received, the message data structure contains the mouse position.

The contents of the message data structure depend on the message action and are not completely known 
until your plug-in identifies this. While the contents of the message data vary, by convention all message 
data structures begin with the common fields that are grouped into the SPMessageData structure:

typedef struct SPMessageData {
ai::int32 SPCheck;
struct SPPlugin *self;
void *globals;
struct SPBasicSuite *basic;

} SPMessageData;

If this is a valid message, the SPCheck field contains kSPValidSPMessageData.

The self field is a reference to the plug-in being called. The reference to the running plug-in’s self is used 
to add plug-in suites, adapters, and other plug-in data to Illustrator. Illustrator stores this value with the 
added data. It is used to recall your plug-in as needed.

The globals pointer is for use by your plug-in, to preserve any information between calls that it needs. 
Usually, it is a pointer to a block of memory allocated by your plug-in at start-up. This value is preserved by 
Illustrator when your plug-in is unloaded and passed back to the plug-in each time it is called. Plug-ins use 
this block to store any state information they need to maintain between unload and reload. 

NOTE: It is important that the memory for globals be allocated using Illustrator's memory-allocation APIs; 
otherwise, the memory may be destroyed by the operating system when a plug-in is unloaded.

The basic field is a pointer to the Basic suite (see SPBasicSuite), which allows your plug-in to acquire 
other suites and provides basic memory management. See “Suites” on page 13.
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When Illustrator or a plug-in wants to send a message to your plug-in, it passes in a relevant message data 
structure. Some examples are given below.

Once a plug-in identifies the message action via the caller and selector parameters, it casts the message 
parameter to access further message data. For example:

if (strcmp(caller, kSPAccessCaller) == 0) {
SPAccessMessage* accessMsg = static_cast<SPAccessMessage*>(message);
// access accessMsg

} 
else if (strcmp(caller, kSPInterfaceCaller) == 0) {

SPInterfaceMessage* interfaceMsg = static_cast<SPInterfaceMessage*>(message);
// access interfaceMsg

}
else if (strcmp(caller, kCallerAIMenu) == 0) {

AIMenuMessage* menuMsg = static_cast<AIMenuMessage*>(message);
// access menuMsg

}

Live Effect messages

For specific information about the message handlers you use in a plug-in that adds an item to the Live 
Effects menu, see “Handling Live Effects” on page 31.

Illustrator API

Suites

The Illustrator plug-in manager calls a plug-in through the plug-in’s entry point, sending various messages 
as described in the previous section. When a plug-in is active, it needs a way to perform actions within 
Illustrator. The mechanism for this is plug-in suites, which are one or more related functions grouped 
together in a C structure.

Functions are grouped into suites based on the services they provide; for example the Path Suite (see 
AIPathSuite) contains functions that create and manipulate paths and segments. For detailed 
documentation on the suites and functions provided, see Adobe Illustrator API Reference.

Illustrator’s suite architecture (also known as the Plug-in Component Architecture, or PICA) also is found in 
the latest versions of Adobe Photoshop and other Adobe applications. A former term for PICA was Suite 
Pea (SP). Suites that are part of PICA all start with the suffix SP; for example, SPBasicSuite.

Suites fall into two general categories: those that implement a plug-in type (see “Types of plug-ins” on 
page 6) and those that provide general functions. Suites that provide general functions make up most of 

Caller Message type Description

kSPAccessCaller SPAccessMessage Contains SPMessageData.

kSPInterfaceCaller SPInterfaceMessage Contains SPMessageData.

kCallerAIMenu AIMenuMessage Contains SPMessageData and a reference to a menu 
item that was chosen.



CHAPTER 1 Overview Illustrator API     14

the API; they provide a wide range of capabilities for manipulating text, gradients or raster images, or 
performing math functions. The following table lists several major suites and what they do.

For detailed descriptions of suites and their associated functions, see Adobe Illustrator API Reference.

Acquiring and releasing suites

Before you can use a function in a suite, you must first acquire the suite. When the suite’s functions are no 
longer needed, your plug-in must release the suite.

It is important to release suites so the Illustrator plug-in manager can run optimally. The plug-in manager 
uses the acquire/release mechanism to determine when plug-ins can be unloaded to free memory.

When your plug-in is first called, it “knows about” only the Basic suite (see SPBasicSuite), which was 
introduced earlier in this chapter (as part of the SPMessageData structure). The Basic suite is used to 
acquire and release other suites.

The following code snippet shows how to pop an alert on start-up using MessageAlert() function in the 
AIUser suite.

Suite Name Suite Services provided

Art suite AIArtSuite Access the artwork tree.

Block suite AIBlockSuite SPBlocksSuite Allocate and free memory.

Custom Color suite AICustomColorSuite Create or work with custom colors.

Document list suite AIDocumentListSuite Create or work with documents

Document suite AIDocumentSuite Get and set document information.

Gradient suite AIGradientSuite Create or work with gradients.

Group suite AIGroupSuite Make clipped groups.

Layer suite AILayerSuite Get information about layers.

Path suite AIPathSuite Work with Illustrator paths.

Random suite AIRandomSuite Generate random numbers.

Raster suite AIRasterSuite Work with raster objects.

Real Math suite AIRealMathSuite Many useful math functions.

Tag suite AITagSuite Associate information with art objects.

Text frame suite AITextFrameSuite Work with text objects.
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#include "IllustratorSDK.h"
// Tell Xcode to export the following symbols
#if defined(__GNUC__)
#pragma GCC visibility push(default)
#endif
// Plug-in entry point
extern "C" ASAPI ASErr PluginMain(char * caller, char* selector, void* message); 
// Tell Xcode to return to default visibility for symbols
#if defined(__GNUC__)
#pragma GCC visibility pop
#endif

extern "C"
{

AIUnicodeStringSuite* sAIUnicodeString = NULL;
SPBlocksSuite* sSPBlocks = NULL;

}

extern "C" ASAPI ASErr PluginMain(char* caller, char* selector, void* message)
{

ASErr error = kNoErr;
SPBasicSuite* sSPBasic = ((SPMessageData*)message)->basic;
if (sSPBasic->IsEqual(caller, kSPInterfaceCaller)) {

AIUserSuite *sAIUser = NULL;
error = sSPBasic->AcquireSuite(kAIUserSuite, kAIUserSuiteVersion, (const void**) 

&sAIUser);
error = sSPBasic->AcquireSuite(kAIUnicodeStringSuite, kAIUnicodeStringSuiteVersion, (const 

void**) &sAIUnicodeString);
error = sSPBasic->AcquireSuite(kSPBlocksSuite, kSPBlocksSuiteVersion, (const void**) 

&sSPBlocks);
if(sSPBasic->IsEqual(selector, kSPInterfaceStartupSelector)){

sAIUser->MessageAlert(ai::UnicodeString("Hello World!"));
}

else if(sSPBasic->IsEqual(selector, kSPInterfaceShutdownSelector)){
sAIUser->MessageAlert(ai::UnicodeString("Goodbye World!"));

}
error = sSPBasic->ReleaseSuite(kAIUserSuite, kAIUserSuiteVersion);
error = sSPBasic->ReleaseSuite(kAIUnicodeStringSuite, kAIUnicodeStringSuiteVersion);
}

return error;
}

This code snippet is intended to illustrate the concepts of acquiring, using, and releasing a suite. To see 
how suites are more typically acquired and released, see the sample plug-ins provided in the SDK.

Publishing suites

All plug-ins use suites, since they are the fundamental mechanism of the Illustrator API. Plug-ins also can 
publish suites of their own, for use by other plug-ins. This feature, where plug-ins may be both clients of 
suites and publishers of suites, is extremely powerful. Several plug-ins included with Illustrator publish 
suites used by many other plug-ins.

From the plug-in’s perspective, it is unimportant whether a particular suite is implemented within 
Illustrator itself or as a plug-in. The Illustrator plug-in manager is responsible for managing suites among 
various plug-ins and the application.

To export a suite, a plug-in must call SPSuitesSuite::AddSuite on start-up. We also recommend that a 
plug-in declare a PIExportsProperty in its PiPL, to allow Illustrator to optimize the plug-in initialization 
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process. Illustrator always tries to load plug-ins with a PIExportsProperty first, so other plug-ins that 
depend on exported suites can load and start up successfully on the first try.

For more information on how to publish suites, see SPSuitesSuite::AddSuite in Adobe Illustrator API 
Reference and “Export property” on page 36.

Binary compatibility

The development environments for Illustrator CC 2015 have changed. This means that you must recompile 
plug-ins built with an earlier version of the Illustrator SDK in order for them to run in Illustrator CC 2015 

 In Windows, use Microsoft Visual Studio 2013.

 In Mac OS, use Xcode 6.2 (requires OSX 10.6.4 or higher), LLVM Clang, and the Apple 10.7 SDK. 

Illustrator's artwork as seen by a plug-in

Most plug-ins manipulate Illustrator artwork (including paths, text, and raster art) in some manner. 
Illustrator artwork objects are presented to plug-ins as a hierarchical tree, which plug-ins can freely modify.

Plug-ins can create, remove, and change the characteristics of artwork objects. For example, plug-ins can 
group objects, move or distort paths, adjust colors, and search and change text.

Cross-platform support

The implementation of the Illustrator API is highly portable across platforms. Plug-ins can be written for 
Mac OS and Windows platforms. Working with Illustrator data types is the same on both platforms. 
Differences are related to the architectures of the hardware or operating system on which Illustrator runs, 
and these are abstracted, so the API call works on both environments with a minimum of platform support 
code. There are platform-specific API functions, but these exist largely for backward compatibility with 
earlier implementations; there are cross-platform versions that we suggest you use instead.

Because of this high level of compatibility, writing an Illustrator plug-in for Mac OS and Windows is fairly 
easy. Platform-specific components, if needed, can be specified in a few lines of code within an #ifdef. For 
example, the Tutorial sample in the SDK uses identical source code; only the resources are platform 
specific.

The main differences are in presenting the user interface and resource data; depending on user-interface 
complexity, this can be a significant undertaking. User-interface items like menus are implemented using 
the Illustrator API and are highly compatible across platforms.

Memory

Memory-management functionality is provided by SPBasicSuite and SPBlocksSuite. The Basic suite 
(SPBasicSuite) memory allocation functions are convenient since this suite is readily available when a 
plug-in is called (see SPMessageData).

Resources

Illustrator plug-ins define their resources in the format native to the platform on which they are running. 
The resources can be accessed from a plug-in using SPAccessSuite::GetAccessInfo.
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Byte information and structures

Illustrator-specific data structures for the Mac OS and Windows implementations are the same, with the 
exception of platform dependencies like byte order. In both Windows and Mac OS, byte alignment is to 
eight-byte boundaries.

System requirements

The platforms supported for Illustrator plug-in development are documented in Getting Started with Adobe 
Illustrator CC 2015 Development. Platform requirements for Illustrator are defined in the product release 
notes.

Helper classes

The API provides helper classes that make it easier to write plug-in code. These classes encapsulate calling 
of suites; they remove the need to call suites directly in your code. For example, ai::UnicodeString 
provides support for Unicode strings and removes the need to call AIUnicodeStringSuite.

Source files for these helpers are provided by the API. To use a helper, add the .cpp file that implements it 
to your project and build the code as part of your plug-in. For example, IAIUnicodeString.cpp file 
implements the ai::UnicodeString class.

NOTE: Using helper classes is different than using suites. Suites are implemented by another binary 
component (the Illustrator application or its plug-ins) and called by your plug-in; an API header file defines 
the interface. Helper classes, on the other hand, are built as part of your plug-in; an API header file defines 
the interface, and an API source file (.cpp file) provides the implementation.

To use a helper class, a plug-in typically must provide pointers to the suites used by the class, in global 
variables with well-known names. For example, ai::UnicodeString requires that the calling plug-in 
acquire a pointer to AIUnicodeStringSuite and SPBlocksSuite in the global variables below:

extern "C" {
AIUnicodeStringSuite* sAIUnicodeString = nil;
SPBlocksSuite* sSPBlocks = nil;

}

If you add a helper class to your plug-in and you do not define the global suite pointers it requires, you will 
get linker errors when you build your project. If you do not acquire the suites the class depends on, 
run-time errors will occur (see “Acquiring and releasing suites” on page 14). On Windows, if you add a 
helper class to your plug-in and your Visual Studio project is using pre-compiled headers, you will get a 
compilation error, because the source file for the helper class does not #include your pre-compiled 
header file. To fix this override the Create/Use Precompiled Header setting to be Not Using Precompiled 
Headers for the helper-class source file.

For documentation on the classes provided, see Adobe Illustrator API Reference > Helper classes.

Plug-in adapters
Support for older plug-ins, as well as for Photoshop plug-ins, is provided through plug-in adapters, plug-ins 
that map API calls between Illustrator and the older or non-native APIs of the other plug-ins. Adapters are 
not discussed in detail in this document.
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About Plug-ins menu
To display company contact information or copyright statements about your plug-in, follow these steps:

 Create a new menu group under Illustrator’s About group (see kAboutMenuGroup), to contain all the 
About plug-in menu items.

 For each plug-in, create a menu item under this new group.

 Handle the menu message related to use of your About plug-in menu item by showing an About box 
containing plug-in specific information.

An illustration of the resulting menus on Mac OS is given below:

Illustrator > About MyCompanyName Plug-ins > MyPluginName1...
MyPluginName2...

An illustration of the resulting menus on Windows is given below:

Help > About MyCompanyName Plug-ins > MyPluginName1...
MyPluginName2...

A helper class that supports this functionality is provided as sample code; see SDKAboutPluginsHelper. 
The Tutorial sample shows how to use this class.

NOTE: Before Illustrator CS3, the list of plug-ins that were loaded was displayed in the About Plug-ins 
dialog, and the user could choose to request further information about a specific plug-in. As of 
Illustrator CS3, the About Plug-ins dialog was removed.

Next steps
In this chapter, we introduced plug-ins for Adobe Illustrator, and defined several key concepts, including:

 Plug-in manager

 Plug-in types

 Messages and message actions

 Notifiers

 Loading and unloading

 Acquiring, using, and releasing suites

Chapter 2, “Tutorial” explains the process of writing a plug-in in more detail. Adobe Illustrator API Reference 
describes each function in detail and provides information on the artwork objects and data structures you 
need to complete the job. Finally, the sample projects in the SDK provides concrete examples and are a 
good starting point for your project.
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2 Tutorial

This chapter describes the fundamentals of Illustrator plug-in programming, using as an example a plug-in 
called Tutorial that is provided on the SDK. Look for the sample project in the sample code folder on the 
SDK, and browse the source code while reading this chapter.

The core characteristics of an Illustrator plug-in were introduced in Chapter 1, “Overview. If you have not 
read that chapter already, do so before proceeding through this chapter. 

PiPL resource and plug-in entry point
Illustrator plug-ins must have a valid PiPL resource and an entry point Illustrator can call.

The Tutorial plug-in’s PiPL resource declaration is in the following source files:

 Windows: Tutorial.rc 

 Mac OS: Tutorial.r 
(a link to <SDK_install)/common/mac/Plugin.r)

For more information on PiPLs, see “Plug–in Property Lists” on page 35.

The Tutorial plug-in’s entry point is the PluginMain function in Tutorial.cpp.

Only plug-ins with the Illustrator version information in the PiPL are recognized and included in 
Illustrator’s initial start-up process. A plug-in is loaded into and unloaded from memory as needed by 
Illustrator. Your plug-in should be written assuming it is not always in memory. This is why your plug-in 
should save and restore state information during unload and reload. Your plug-in can expect certain 
services from the application. Because your plug-in may be unloaded, Illustrator provides a means of 
storing important data when the plug-in is unloaded. Each time the plug-in is called, it is given enough 
information to accomplish the action to be performed.

Handling callers and selectors
Your plug-in’s organization is based largely on the messages received by its PluginMain function. The 
main routine of your plug-in basically becomes a switch implemented as a series of string comparisons 
that call functions appropriate for the message action caller and selector. See “Handling callers and 
selectors” on page 11.

Using suites and callback functions
The Illustrator API provides the core functionality used by a plug-in. Illustrator’s API comprises callback 
functions organized into suites. Before your plug-in can use a function that is part of a suite, the suite 
containing it must first be acquired. A suite is a structure filled with function pointers; when your plug-in 
acquires a suite, a pointer to this structure is returned.

When the suite is no longer needed, the acquired suite is released. It is important to do this, so the 
Illustrator plug-in manager can run optimally. For instance, Illustrator keeps track of how many times a 
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suite was acquired. If a suite added by plug-in is no longer in use (its reference count is 0), the plug-in may 
be unloaded to free memory.

Acquiring and releasing suites and calling suite functions

When your plug-in is first called, it knows about only one suite. The message data structure passed to all 
plug-ins has a member variable named basic, which points to the Basic suite (see SPBasicSuite). The 
Basic suite is used to access other suites and contains two important functions for doing so:

SPAPI SPErr (*AcquireSuite)( const char *name, long version, const void **suite );
SPAPI SPErr (*ReleaseSuite)( const char *name, long version );

A plug-in uses the first function, SPBasicSuite::AcquireSuite, to gain access to a suite of functions. All 
acquired suites must be released with the SPBasicSuite::ReleaseSuite function when the suite is no 
longer required.

To acquire a suite, you first need to declare a suite pointer. Then you call SPBasicSuite::AcquireSuite, 
using the name and version number of the suite you want, found in its public header file. For instance, 
suppose you need to use Illustrator’s Menu suite, AIMenuSuite:

AIMenuSuite* sAIMenu = nil;
SPBasicSuite* sSPBasic = ( ( SPMessageData* )message)->basic;
SPErr error = sSPBasic->AcquireSuite(kAIMenuSuite, kAIMenuSuiteVersion,&sAIMenu);

A pointer to the acquired suite is returned in sAIMenu, and functions in the suite can be called through this 
pointer:

ai::int32 count = 0;
sAIMenu->CountMenuItems(&count);

After the function is used, the suite is released:

sSPBasic->ReleaseSuite( kAIMenuSuite, kAIMenuSuiteVersion );

Since they are used throughout the plug-in code, it is convenient to make suite pointer variables global. 
The convention used for these global variables is a small “s,” followed by the owner of the suite, followed 
by the suite name; e.g., sSPBasic as shown above, sAIMenu for the Menu suite, etc.

Illustrator API suites

Every suite has the suite name and version in the suite header file, along with other definitions, like error 
strings, that are particular to their function. If the suite defines plug-in messages, they also are in the 
header file, with the suite functions. The function pointers are fully prototyped. 

Full documentation on available suites and the functions they contain is in Illustrator API Reference.

Callers and selectors
This section describes and illustrates what the various caller/selector pairs mean and what your plug-in is 
expected to do in response to receiving them.
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Caller: kSPInterfaceCaller, selector: kSPInterfaceStartupSelector

When Illustrator starts up, each plug-in receives a kSPInterfaceStartupSelector message. Only one 
such message is received per Illustrator session. This is where the plug-in needs to allocate memory and 
add plug-in types to Illustrator. Sample code that handles start-up in the Tutorial plug-in looks something 
like this:

typedef struct {
AIFilterHandle filterVariation1;
AIToolHandle toolVariation1;
AIMenuItemHandle aboutPluginMenu;

} Globals;

Globals* g = nil;

static AIErr StartupPlugin ( SPInterfaceMessage* message )
{

AIErr error = kNoErr;
error = AcquireSuites( message->d.basic );
if (!error) {

// Allocate our globals - Illustrator will keep track of these.
error = message->d.basic->AllocateBlock( sizeof(Globals), (void **) &g );
if ( !error ) {

message->d.globals = g;
}

}
if (!error) {

error = AddFilter(message);
}
if (!error) {

error = AddTool(message);
}
if (!error) {

error = AddAction(message);
}
if (!error) {

error = AddMenu(message);
}
ReleaseSuites( message->d.basic );
return error;

}

When allocating memory during this phase, you should use memory management functions provided by 
the Illustrator API (see SPBasicSuite or SPBlocksSuite for example) and put a reference to the memory 
in the globals field of the SPMessageData structure. Illustrator keeps this value for you and passes it back to 
you on subsequent calls, so it is a convenient place to store information you may need next time the 
plug-in is loaded. Illustrator does not care what you put in the globals field. Usually, it is a pointer to a 
block of memory. If you do not have any global data, you can leave the globals field empty.

During the start-up message, you need to inform Illustrator of the filters, tools and so on that your plug-in 
adds. For example, the StartupPlugin function above adds a filter. The filter is added by calling the 
AIFilterSuite::AddFilter function provided by the Illustrator API. See the AddFilter function in 
Tutorial.cpp for the code that makes this call:

error = sAIFilter->AddFilter( message->d.self, "Tutorial", &filterData,
kToolWantsToTrackCursorOption, &g->filterVariation1);
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When adding most plug-in types, the same or similar arguments are used. The first argument is a reference 
to the plug-in itself. You can get this from the SPMessageData structure. The second argument is an 
identifier for the plug-in type. This C-style string identifies the current added plug-in to a second plug-in, 
one perhaps searching for the plug-in’s functionality. To be helpful, it should be as descriptive as possible.

Following the identifier are data and options specific to the plug-in type. The data is any information 
specific to the plug-in type on a platform. For instance, the filter above has a filter category and filter title. 
All filters with the same category are placed together in one submenu.

The options specify plug-in behavior to be provided by Illustrator. Filters do not have any special behavior 
but could use some default behavior options, like the kPluginWantsResultsAutoSelectedOption 
constant, which is used to control how artwork is selected when the plug-in returns control to Illustrator.

The final argument is returned to the plug-in by Illustrator. It is a reference to the added plug-in type. For 
simple plug-ins, where only one instance of a given plug-in type is added, this value can be ignored. If a 
plug-in adds more than one instance of a type, this reference should be saved in the globals block whose 
reference is returned to Illustrator. When a plug-in is called, Illustrator passes the active instance of the 
plug-in inside the message data. The saved references and current plug-in are compared later, to 
determine which plug-in instance was selected by the user:

if ( (AIFilterMessage)message->filter == g->filterVariation1) {
// Do something for this variation

}
else { 

// Do the other variation
}

Of course, if you have no special requirements, you do not need to do any checking. That is it for 
initialization. The kSPInterfaceStartupSelector selector is called only once.

Caller: kSPInterfaceCaller, selector: kSPInterfaceShutdownSelector

When Illustrator is in the process of quitting, each plug-in receives a kSPInterfaceShutdownSelector 
message. Only one such message is received per Illustrator session. Actions that should happen when the 
user is completely finished using the plug-in, like saving preference information, are done at this time. 
Also, any needed follow-up action for something done during the kSelectorAIStartupPlugin message 
should be done now. Some actions, like adding a plug-in type, do not need any clean up. A common 
example is freeing allocated memory that the system does not automatically free when the application is 
quit. A shut-down routine corresponding to the StartupPlugin() function above would look like this:

static AIErr ShutdownPlugin( SPInterfaceMessage* message )
{

AIErr error = kNoErr;
if ( g != nil ) {

message->d.basic->FreeBlock(g);
g = nil;
message->d.globals = nil;

}
return error;

}

Caller: kSPAccessCaller, selector: kSPAccessReloadSelector

Plug-in code is loaded and unloaded dynamically, depending on whether Illustrator is using it. If the code 
is unused by the main application or another plug-in for a pre-defined period of time, it is unloaded. This is 
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true of all plug-in types, including plug-in suites. Illustrator notifies the plug-in of the loading and 
unloading events.

After the start-up selector is received, each time your plug-in is brought into memory, it receives the 
kSPAccessCaller/kSPAccessReloadSelector message pair. Reload is your plug-in’s opportunity to 
restore state information it needs to run, like global variables. Plug-in suites use the reload message to set 
up their function tables. A reload routine looks something like this:

Globals* g;

static AIErr ReloadPlugin( SPAccessMessage *message ) 
{

AIErr error = kNoErr;
g = ( Globals* )message->d.globals;
return error;

}

Caller: kSPAccessCaller, selector: kSPAccessUnloadSelector

The opposite of the reload selector is kSelectorAIUnloadPlugin. This is an opportunity for the plug-in to 
save any state information before being removed from memory. Here is a sample routine for the unload 
selector:

static AIErr UnloadPlugin( SPAccessMessage* message )
{

AIErr error = kNoErr;
message->d.globals = g;
return error;

}

Plug-in type-specific messages
The selectors discussed so far are received by all plug-ins. Other caller/selector pairs a plug-in receives 
depend on the plug-in types added at start-up. This section describes the caller/selector pairs associated 
with the plug-in types used in the Tutorial. For a description of the major plug-in types Illustrator supports, 
see Chapter 1, “Overview.”

Filter plug-ins

Illustrator allows plug-ins to add new filters to the Object menu. To add a filter, your plug-in must do the 
following:

 Call AIFilterSuite::AddFilter on start-up, to add the filter to Illustrator.

 Handle messages relating to filter events.

There are two caller/selector pair messages associated with Filter plug-in types:

 Get-filter parameters (kCallerAIFilter / kSelectorAIGetFilterParameters).

 Go filter (kCallerAIFilter / kSelectorAIGoFilter).

The get-filter-parameters selector pair is an opportunity for your plug-in to present a dialog to the user, 
requesting information about how the plug-in should work. It is followed by the go-selector pair, which is 
when the plug-in actually does its work. The parameters are acquired in a separate call to support the Last 
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Filter feature in the Filter menu, which applies the last-used filter without asking the user for a new set of 
parameters. In this case, you receive a kCallerAIFilter/kSelectorAIGoFilter pair without a preceding 
kCallerAIFilter/kSelectorAIGetFilterParameters pair.

The Tutorial plug-in’s PluginMain function handles these selector pairs as follows:

} else if ( strcmp( caller, kCallerAIFilter ) == 0 ) {
if ( strcmp( selector, kSelectorAIGetFilterParameters ) == 0 )

error = GetFilterParameters( ( AIFilterMessage* )message );
else if ( strcmp( selector, kSelectorAIGoFilter ) == 0 )

error = GoFilter( ( AIFilterMessage* )message );

}

When the user chooses your filter in the Object menu, your plug-in is first called with 
kSelectorAIGetFilterParameters. You should get whatever parameters you need from the user and 
place them in a handle, storing the handle in the parameters field of AIFilterMessage. This is similar to 
how the globals field is used, only parameters must be a handle if it is not nil. The parameters handle is 
given back to you on subsequent calls; therefore, it is necessary to create this handle only once. Each time 
you receive the get-filter-parameters selector, you can use the previous parameters to set the default 
dialog values. If your plug-in places more than one filter in the Object menu, a separate parameters 
handle is kept for each one. Illustrator does not care about the specific contents of the parameters handle, 
but the handle must be self contained; that is, you cannot include pointers or handles to more data inside 
the parameters handle. This is because Illustrator may make copies of the parameters and does not know 
how to copy blocks of memory referenced by the structure. If you do not have any parameters, leave this 
field zero.

The parameters used by the Tutorial plug-in’s filter are shown below:

typedef struct {
ASInt32 corners; // number of corners on the polygon
ASInt32 size; // the maximum size, in points

} MyFilterParameters;

These parameters are obtained from the user by the GetFilterParameters function in Tutorial.cpp. 
The return result from GetFilterParameters should be kNoErr if the user hit OK (or if you do not have 
any parameters) or kCanceledErr if the user cancels the filter.

Immediately after the plug-in returns from GetFilterParameters, it is sent the go-filter selector pair 
(kCallerAIFilter/kSelectorAIGoFilter). When the plug-in receives this, it performs whatever the 
filter does, using the globals and parameters the plug-in set up previously. The Tutorial plug-in’s GoFilter 
function in Tutorial.cpp creates a random polygon each time it is called, by creating a new path art 
object and adding path segments to it.

Tool plug-ins

Illustrator allows plug-ins to add new tools to the Tools panel. To add a tool, your plug-in must do the 
following:

 Provide an icon to represent the tool in the Tools panel.

 Call AIToolSuite::AddTool on start-up, to add the tool to Illustrator.

 Handle tool-related messages relating to mouse events. For example, when the plug-in’s tool is 
selected in the Tools panel and the mouse button goes down and is released, the plug-in is notified by 
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a selector message (kCallerAITool/kSelectorAIToolMouseDown). A similar approach is used to 
communicate mouse drag events, and so on.

The Tutorial plug-in adds a line-drawing tool by calling AIToolSuite::AddTool on start-up. For sample 
code, see the AddTool function in Tutorial.cpp.

The added tool appears in the Tools panel. When it is selected and used, Illustrator calls the plug-in with 
the tool selectors listed above. To create a minimal straight-line tool, the plug-in needs to handle only the 
mouse-down selector. The Tutorial plug-in’s PluginMain function handles this as follows:

else if ( strcmp( caller, kCallerAITool ) == 0  ) {
if ( strcmp( selector, kSelectorAIToolMouseDown ) == 0 )

error = ToolMouseDown( ( AIToolMessage* )message );
}

When the mouse is clicked, the Tutorial plug-in receives this selector and can process it. See the 
ToolMouseDown function in Tutorial.cpp. This function draws path segments to each mouse-down 
location. The location of the mouse is passed in the tool-message structure; see AIToolMessage in Adobe 
Illustrator API Reference. The tool message contains the basic plug-in data and a reference to the tool being 
used. The cursor field contains the point on the art board where the last tool event occurred, and the 
Tutorial plug-in’s mouse-down handler uses this to create a path. The ToolMouseDown function begins by 
acquiring the suites it needs to make a line. The function checks whether a selected path exists. If so, it 
adds path segments to it; otherwise, it creates the first point in a new path. The function ends by releasing 
the suites it acquired.

While the ToolMouseDown function adds a basic tool, other selectors can be processed to give the line tool 
more functionality, like setting the cursor or tracking a mouse drag. This is left as an exercise for the reader.

Action plug-ins

For your plug-in to be recordable by Illustrator’s Actions panel, you must add special code to your plug-in. 
Follow these steps:

1. Register action events — During start-up, your plug-in must register one or more action events. An 
action event is a single operation your plug-in executes. An Action event is shown in Illustrator’s 
Actions panel, if the user chooses to record it.

2. Record action events — During your plug-in’s execution, you must check whether the user is in 
record mode. If so, you must record your action event and pass all relevant parameters to the Action 
Manager.

3. Respond to the DoAction selector — Once you register one or more Action Events, your plug-in 
must be ready to execute those Action Events when requested. Your plug-in must respond to the 
kActionCaller caller and kDoActionSelector selector. These are defined in the Action Manager 
suite header file.

Registering action events

First, determine how many action events your plug-in will register, by separating the functionality of your 
plug-in into discrete operations. Basically, try to think of which operations users will want to record in the 
Actions panel.
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During start-up, your plug-in should first make sure the Action Manager suite (see 
AIActionManagerSuite) is available, by trying to acquire a pointer to the suite. This check is necessary 
because the Action Plug-in may be disabled by removing it from the Plug-ins folder.

To register an action event, your plug-in must do the following:

 Call AIActionManagerSuite::AINewActionParamType to create a type parameter block (TPB) that 
describes the parameters your action event requires.

 Populate the TPB with key-value pairs that give the name and data type of each parameter by calling 
AIActionManagerSuite::AIActionSetTypeKey.

 Call AIActionManagerSuite::RegisterActionEvent to register the action event.

 Call AIActionManagerSuite::AIDeleteActionParamType to dispose of the TPB.

For sample code, see the AddAction function in Tutorial.cpp.

Recording action events

During your plug-in’s execution, if the user is in record mode, you are responsible for recording any action 
events you registered. Illustrator is in record mode when the user is recording actions via the Actions 
panel.

To record an action, your plug-in must do the following:

 Call AIActionManagerSuite::InRecordMode to check if actions are being recorded.

 Call AIActionManagerSuite::AINewActionParamValue to create a Value Parameter Block (VPB) in 
which parameter values are recorded. A VPB is different from a TPB, in that it can contain actual values. 
A TPB can contain only data type descriptions.

 Populate the VPB with key value pairs that give the name and value of each parameter, by calling the 
appropriate AIActionManagerSuite function for the type of data stored in the parameter. See 
AIActionManagerSuite::AIActionSetBoolean, AIActionManagerSuite::AIActionSetInteger, 
etc.

 Call AIActionManagerSuite::RecordActionEvent to record the action event.

 Call AIActionManagerSuite::AIDeleteActionParamValue to dispose of your reference to the VPB.

For sample code, see the GoFilter and RecordFilterAction functions in Tutorial.cpp.

Responding to the DoAction selector

To execute an action, your plug-in must handle the do-action selector pair (kActionCaller/ 
kDoActionSelector) for each action event the plug-in registers. This is Illustrator’s way of requesting that 
a particular action event be executed. 

Your plug-in must add code for detecting such a notification. The Tutorial plug-in’s PluginMain function 
handles the action selector, as follows:

else if ( strcmp( caller, kActionCaller ) == 0 ) {
if ( strcmp( selector, kDoActionSelector ) == 0 )

error = DoAction( ( DoActionMessage* )message );
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}

The DoAction function in Tutorial.cpp executes the requested action event. The message struct sent 
along with the kDoActionSelector is DoActionMessage. Documentation for this structure is in Adobe 
Illustrator API Reference. It contains the recorded parameter values the action must replay. The DoAction 
function extracts the parameter values into its own data structure. The DoActionMessage struct also 
indicates whether a dialog should be popped to allow the user to tune the parameter values before the 
action is executed. The DoAction function responds accordingly, then calls the Tutorial plug-in’s filter 
function, GoFilter, to re-play the action.

Playing action events

You also can play back action events from a plug-in. These action events could originate in the Illustrator 
application or other plug-ins. The SnpDocumentActionHelper code snippet in the SnippetRunner plug-in 
demonstrates how to play action events that originate in the Illustrator application.

Menu plug-ins

Illustrator allows plug-ins to add new menus to its menu structure. To add a menu, your plug-in must do 
the following:

 Call AIMenuSuite::AddMenuItem on start-up, to add the menu to Illustrator.

 Optionally, call AIMenuSuite::AddMenuGroupAsSubMenu to create a group in which further menu 
items can be nested.

 Handle messages related to menu events. For example, when a plug-in’s menu item is clicked, the 
plug-in is notified by a selector message (kCallerAIMenu/kSelectorAIGoMenuItem).

The Tutorial plug-in adds an About plug-in menu on start-up; see “About Plug-ins menu” on page 18. For 
sample code, see the AddMenu function in Tutorial.cpp. A helper class, SDKAboutBoxHelper, is used to 
create the menu that appears under Illustrator's About menu group. When it is used, Illustrator calls the 
plug-in with the tool selectors listed above. The Tutorial plug-in’s PluginMain function handles this as 
follows:

else if ( strcmp( caller, kCallerAIMenu ) == 0  ) {
if ( strcmp( selector, kSelectorAIGoMenuItem ) == 0 )

error = GoMenu( ( AIMenuMessage* )message );
}

When the menu is clicked, the Tutorial plug-in receives this selector and can process it. See the GoMenu 
function in Tutorial.cpp. This function pops an About box that displays contact details and a copyright 
statement.

Next steps
To learn more about Illustrator plug-in programming, explore the samples provided in the SDK and the 
documentation in Adobe Illustrator API Reference. Instructions on running and debugging plug-ins are in 
Getting Started with Adobe Illustrator CS6 Development.
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3 Plug–in Techniques

This chapter discusses plug-in property lists (PiPL) and Live Effects.

 “Plug-in property lists” on page 28

 “Handling Live Effects” on page 31

Plug-in property lists
A plug-in property list (PiPL) resource contains a list of properties that store information about a plug-in. 
Illustrator considers only those files with valid PiPL resources to be potential plug-ins.

PiPL samples

Sample PiPL resource files are provided on the SDK in source code form.

All sample plug-ins in the SDK define their PiPLs in a resource source-code form. For example, the Tutorial 
plug-in’s PiPL is defined in the following source files:

 Windows — See the PiPL resource declaration in the Tutorial.rc file.

 Mac OS — See the PiPL resource declaration in the Tutorial.r file.

As the samples show, it is more flexible to work with PiPL resources in source-code form.

PiPL structure

A plug-in property list has a version number and count, followed by a sequence of arbitrary-length byte 
containers called properties. The core types that define a PiPL are documented in the Illustrator API 
Reference and listed in the following table:

Required PiPL properties

Your plug-in’s PiPL resource must include the required properties listed in the following table.

Type Note

PIProperty A plug-in property. Each property has a vendor ID, key, ID, length, and property 
data (whose size is indicated by the property length). The vendor ID identifies the 
vendor that defined the property type. All PiPL properties defined by the 
Illustrator API use a vendor ID of ADBE. Each property must be padded such that 
the next property begins on a four-byte boundary.

PIPropertyList A plug-in property list has a version number and count, followed by a sequence 
of arbitrary-length byte containers called properties.
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Your plug-in also must have at least one code-descriptor property that tells Illustrator the entry point of 
your code. Code descriptors are available for Intel-based Mac OS, PowerPC-based Mac OS, and 
Windows-based plug-ins:

Your plug-in binary can contain multiple code-descriptors if it will run on different types of machines. For 
example, a universal binary Mac OS plug-in contains Intel and PowerPC code descriptors.

Optional PiPL properties

Your plug-in’s PiPL resource can include the optional properties described in the following table.

Property key Value Description

PIKindProperty kind SPEA Indicates the type of the plug-in file; it is akin to a file type. 
Illustrator loads plug-ins whose kind property have the value 
SPEA.

PISPVersionProperty ivrs 2 Describes to Illustrator the calling conventions expected by 
the plug-in and currently has a value of 2.

Property key Description

PICodeMacIntel32Property mi32 PIMacIntelCodeDesc code descriptor containing entry 
point of Intel code for plug-ins on Mac OS platforms.

PIPowerPCMachOCodeProperty mach PIMachCodeDesc code descriptor containing entry point of 
PowerPC code in Mach-O format for plug-ins on Mac OS 
platforms.

PIWin32X86CodeProperty wx86 PIWin32X86CodeDesc code descriptor containing entry 
point of plug-ins on Windows platforms.

Property key Notes

PIExportsProperty expt Plug-ins can export one or mores suites containing functions for 
use by other plug-ins. Suites are discussed in “Suites” on page 13.

To ensure the interdependencies of plug-ins are handled correctly, 
plug-ins declare in advance what they export. The loading order of 
plug-ins becomes important when one plug-in depends on suites 
provided by another plug-in.

This export information is declared in PiPL export properties, expt, 
which contain the names and API version numbers of the suites a 
plug-in provides. The plug-in manager uses this information to load 
and execute plug-ins, ensuring that suites and other resources are 
available when needed.

PIPluginNameProperty pinm The plug-in name displayed in Illustrator’s Help > System Info 
dialog.
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Export property

Plug-ins can extend the functionality of the API by exporting new suites. To optimize Illustrator's plug-in 
initialization process, a plug-in should add an export property (PIExportsProperty) to its PiPL. See the 
following table.

The property data that describes the suites that are to be exported is represented in the form of C structs, 
below. This representation must be transcribed into a resource source code form (Windows resources 
(.rc) under Visual Studio or Rez resources (.r) on Mac OS):

/** List of suites exported by the plug-in. */
typedef struct MyExportsDesc

{
/** The number of suites exported by the plug-in. */
long fCount;
/** A variable-length list describing each suite exported by the plug-in. */
MyExportDesc fExports[1];

} MyExportsDesc;

/** Description of a suite exported by the plug-in. */
typedef struct MyExportDesc
{

/** The total length in bytes of this MyExportDesc record.*/
long fLength;
/** A C-style string with the name of the suite to be exported. 
* Padded to 4 bytes. */
char fName[1];
/** The version of the suite to be exported. */
long fVersion;

} MyExportDesc;

For more information

Adobe Illustrator API Reference describes the property names and associated data structures, such as 
PIPropertyList. The sample plug-ins on the SDK show how to define a PiPL using native platform 
resources.

Property key Notes

PIExportsProperty expt Plug-ins can export one or mores suites containing functions for use 
by other plug-ins. This export information is declared in PiPL export 
properties, expt, which contain the names and API version numbers 
of the suites a plug-in provides. The plug-in manager uses this 
information to load and execute plug-ins, ensuring that suites and 
other resources are available when needed. When a suite is 
requested (acquired), the export properties of all plug-ins are 
searched for the suite, and the providing plug-in is loaded into 
memory. The plug-in is started if necessary. Once the plug-in 
providing the suite is loaded and the requested suite is available, 
control is returned to the requesting plug-in. One suite request 
could trigger a series of plug-ins to be loaded into memory in a 
cascading fashion.
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Handling Live Effects 
Live Effects allow you to apply an effect to an object, then modify or remove that effect dynamically. When 
you apply a Live Effect to an object, it is automatically added to the Appearance panel. From the 
Appearance panel, you can edit the effect, move it, duplicate it, delete it, or save it as part of a graphic 
style.

Adding functionality to a Live Effect menu item

Your plug-in can add items to the Live Effects menu. In order to handle a Live Effect programmatically, 
provide handlers for these two messages:

 kCallerAILiveEffect/kSelectorAIEditLiveEffectParameters: Sent when the user invokes your 
Life Effect menu item. Your handler receives and fills in a parameters dictionary that controls the effect 
options.

 kCallerAILiveEffect/kSelectorAIGoLiveEffect: Sent when you update the effect parameters. 
Your handler applies the effect, with the parameters you have set, to art that has been selected by the 
user, or created or selected by your code.

Editing effect parameters

When a user invokes your Live Effect menu item, Illustrator sends your plug-in the 
kSelectorAIEditLiveEffectParameters message, passing an AILiveEffectEditParamMessage to 
your handler. 

 The msg->parameters contains a pointer to an AILiveEffectParameters dictionary, which is empty 
on the first invocation. 

 If no art is selected when the user invokes your Live Effect menu item, the parameter 
msg->allowPreview is false.

Your plug-in adds entries to the parameters dictionary to control the effect options. You can show a dialog 
to get user input, or determine the values in your own code. After filling in dictionary values, your edit 
handler must call:

sAILiveEffect->UpdateParameters( msg->context );

Applying the effect

When you make the call to update parameters, Illustrator sends the kSelectorAIGoLiveEffect message, 
passing an AILiveEffectGoMessage to your handler. 

 The msg->parameters contain the dictionary you received and modified in the edit handler.

IMPORTANT: Do not use the LiveEffect Go message handler to modify the dictionary passed in 
msg->parameters. Changes that you make there are not retained. Use only the Edit-parameters 
handler (for kCallerAILiveEffect/kSelectorAIEditLiveEffectParameters) to modify the 
dictionary.

 The msg->art can be the currently selected art or the output of a previous live effect; it is not 
necessarily a group. 

You can duplicate the art and add it to its parent, replacing the current art:
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result = sAIArt->DuplicateArt( art, kPlaceAbove, art, &path );

Or you can create a group, move the current art into that group and return your group in the 
parameter:

inputArt = pMsg->art;
result = sAIArt->GetArtParent(inputArt, &inputParent);
if (result == kNoErr)
result = sAIArt->NewArt(kGroupArt, kPlaceBelow, inputArt, &outputGroup);
if (result == kNoErr)
result = sAIArt->ReorderArt(inputArt, kPlaceInsideOnTop, outputGroup);
//Add some more art to the outputGroup or modify the inputArt
pMsg->art = outputGroup; //this is important

 The msg->instanceInfo parameter allows you to store object-specific data, which is returned to you 
in the GoLiveEffect message whenever that object needs to be updated. 

A typical way to use this is to store a random seed. For example, suppose your Live Effect generates a 
random seed and uses that seed to generate new art, perhaps by applying a color change. You need to 
preserve that seed for every invocation of your effect on that object; otherwise each modification of 
your object generates a new seed, and the effect is different. Many effects generate the random seed 
on the first invocation, then store the seed in the instanceInfo dictionary. Each subsequent 
invocation uses the stored seed, if it exists. This ensures that the same effect on the same object 
produces the same appearance each time it is applied.
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4 Creating an HTML/JS UI for Plug-ins

The Flash-based extension technology, which Adobe provided in previous releases to help third parties 
build UI components, has been replaced by an HTML5/JavaScript extension architecture in the Creative 
Cloud release. You are free to use any UI framework that suits your needs, but a UI solution based on 
HTML5/JavaScript and the CEP extensibility framework is a recommended alternative. 

Existing Flash-based extensions should be ported to HTML, and all new extensions should be created 
using HTML and JavaScript. For more information, see documentation for the CC 2015 Extension SDK.

Creative Cloud extensions
The Adobe Creative Cloud Extension SDK provides developers with a consistent platform in which to 
extend the capabilities of one or more Adobe Creative Cloud desktop applicationsextensions. It is based 
on the Common Extensibility Platform (CEP) and HTML5/JavaScript. Adobe extensions run in much the 
same way in all Adobe Creative Cloud desktop applications, providing users with a rich and uniform 
experience. Developers can use extensions to add services and to integrate new features across multiple 
desktop applications.

The extensions that you can create with the Adobe Creative Cloud Extension SDK can provide both the UI 
and program logic to extend any CC application in a unified way. Such extensions can be shared across 
desktop applications, accessing the host application's scripting interface in order to interact with each 
specific application in an appropriate way.

However, if you are using an extension only to provide a UI for an Illustrator C++ plug-in, you typically put 
the program logic in the C++ plug-in, where you can use Illustrator’s native C++ API rather than the 
scripting interface.

 For C++ plug-in development, it is recommended that you use Visual Studio in Windows and Xcode in 
Mac OS. For details, see Getting Started with Adobe Illustrator CC 2015 Development.

 For extension development, use Creative Cloud Extension Builder 3, an Eclipse-based tool that is part 
of the Extension SDK. The SDK provides complete documentation for installing and using the tools. 

This chapter provides very general guidelines for how a C++ plug-in and HTML extension interact; each 
plug-in has different considerations and requirements. For additional sample code that illustrates how to 
modify your C++ plug-in to use the PlugPlug API, and how to write an HTML extension that provides a UI 
for a C++ plug-in, see the samples that are provided with the Illustrator SDK. 

PRE-RELEASE: Extension Builder 3 is currently in pre-release, and illustrative samples are currently being 
updated and expanded to illustrate the recommended techniques.
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Communication between plug-ins and extensions
Your plug-in communicates with your extension through a low-level messaging subsystem called CEP 
Events. The plug-in loads and unloads the extension, and the plug-in and extension can dispatch and 
respond to user-interaction events.

 The CEP library component that provides the API that the extension uses to interact with C++ plug-ins. 
To dispatch events from an extension to a plug-in, call the JavaScript library function 
dispatchEvent(). This causes the PlugPlug component to invoke the callback function that has been 
registered for that event type.

 The PlugPlug library is a native component that is directly integrated into the host application 
(Illustrator CC 2015). It provides the API that a C++ plug-in uses to interact with HTML/JS extensions. 
To dispatch events from a plug-in to an extension, call the C++ library function 
PlugPlugDispatchEvent(). This causes the CEP component to pass the event to any event listeners in 
the extension that have registered an interest for that event type.

Host application

CEP Events flow from extension to plug-in
and from plug-in to extension through special 
libraries

Extension

CEP

PlugPlug Plug-in

CEP PlugPlugExtension Plug-in

call dispatchEvent()

dispatchEvent()

invoke callbackFunction()

CEPPlugPlug ExtensionPlug-in

call PlugPlugDispatchEvent()

PlugPlugDispatchEvent()

delegateEventToListener()
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Using the PlugPlug API 

The PlugPlug library exposes these functions to C++ plug-ins. For complete reference details, see 
SDK_root/samplecode/common/includes/SDKPlugPlug.h. The class SDKPlugPlug wraps these 
functions for ease of use.

 To receive CEP Events of a certain type in your C++ Plug-in, register a callback function for that event 
type using SDKPlugPlug::AddEventListener(), before loading the extension. For example:

static void OkClickedFunc (const csxs::event::Event* const event, 
void* const context);

AddEventListener("com.adobe.csxs.events.OkClicked", OkClickedFunc, NULL);

 The first parameter is the event type, the second is the callback function, and the third is a 
user-specific context pointer or NULL.

 When the extension sends an event to the plug-in, it passes relevant data as a const char*. Your 
callback function must parse this string into data items useful to the plug-in.

 Before unloading the extension, you must use SDKPlugPlug::RemoveEventListener() to remove 
any event listeners you have registered. For example:

RemoveEventListener("com.adobe.csxs.events.OkClicked", OkClickedFunc, NULL);

 Your plug-in can load and unload the related extension using SDKPlugPlug::LoadExtension() and 
SDKPlugPlug::UnloadExtension().

 To dispatch events from your C++ plug-in to the HTML extension, use 
SDKPlugPlug::DispatchEvent(). You can encapsulate complex values in the associated data using 
XML format. For example:

std::string xmlString = "<payload>...</payload>";
csxs::event::Event event = { 

"com.adobe.csxs.events.UpdateDashPanel",
csxs::event::kEventScope_Application, 
"test", NULL, xmlString.c_str()} ;

csxs::event::EventErrorCode testResult = DispatchEvent(&event);

PlugPlugLoadExtension() Load a given extension, making the HTML UI visible in the 
application and setting the window properties as specified in the 
extension manifest. 

PlugPlugUnloadExtension() Unload a given extension (when implemented), so that the HTML 
UI is no longer visible in the application. 

PlugPlugDispatchEvent() Dispatches a CEP Event, which contains related data passed as a 
string (const char*).

PlugPlugAddEventListener() Registers the plug-in to receive a given event type, and defines 
the callback function for that event. 

PlugPlugRemoveEventListener() Removes the listener for a given event type.
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Using the CEP API

The CEP JavaScript event class, CSEvent, represents a user-interaction event. (If you are porting an existing 
Flash-based extension, this is the same as the ActionScript equivalent.)

/**
  * Class CSEvent.
  * Use to dispatch a standard CEP event
  *
  * @param type Event type.
  * @param scope The scope of event, "GLOBAL" or "APPLICATION"
  * @param appId The unique ID of the application that generated the event
  * @param extensionId The unique ID of the extension that generated the event
  * 
  * @return CSEvent object
  */
function CSEvent(type, scope, appId, extensionId)

The CEP JavaScript class CSInterface class defines dispatchEvent() and addEventListener()  
methods that allow you to send events, and to set up and register event handler callbacks. 

/**
  * Registers an interest in a CEP event of a particular type, and
  * assigns an event handler. The handler can be a named or anonymous 
  * function, or a method defined in a passed object.
  *
  * The event infrastructure notifies your extension when events of this 
  * type occur, passing the event object to the registered handler function.
  *
  * @param type The name of the event type of interest.
  * @param listener The JavaScript handler function or method. 

* Takes one argument, the Event object.
  * @param obj Optional, the object containing the handler method, 
  * if any. Default is null.
  */
CSInterface.prototype.addEventListener = function(type, listener, obj)

/**
  * Triggers a CEP event programmatically. Use to dispatch
  * an event of a predefined type, or of a type you have defined.
  *
  * @param event A CSEvent object.
  */
CSInterface.prototype.dispatchEvent = function(event)

Using the event framework 

If you are already familiar with CEP event handling in Flash extensions, it is practically the same in 
JavaScript. Here is a JavaScript code snippet that shows how you create an event type, define a handler for 
it, set up an event listener to invoke the handler, and dispatch the event.

The CSInterface.addEventListener() method supports both named and anonymous event-handler 
callback functions, as shown in this code snippet:

  // Create your local CSInterface instance
  var csInterface = new CSInterface();

  // Create a named event handler callback function
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  function myEventHandler(event)
  {

console.log(“type=” + event.type + “, data=” + event.data);
  }
  // Register the named event handler
  CSInterface.addEventListener(“com.adobe.cep.test”, myEventHandler);  

  // Register an anonymous event handler
  // (the second argument is the callback function definition)
  csInterface.addEventListener(“com.adobe.cep.test”, 
 function (event) {

console.log(“type=” + event.type + “, data=” + event.data);}
  )

You can create a CSEvent object and dispatch it using CSInterface.dispatchEvent(). 

In your event-handler callback, you can access the properties of the event object. For example, this 
anonymous handler function retrieves the event type and event data:

csInterface.addEventListener(“com.adobe.cep.test”, function (event)
  {
  console.log(“type=” + event.type + “, data=” + event.data);
  }
  ); // Anonymous function is the second parameter

You can pass JavaScript objects as Event.data. For example:

  var csInterface = new CSInterface();
  csInterface.addEventListener(“com.adobe.cep.test”, function (event)
  {
  var obj = event.data;
  console.log(“type=” + event.type + “, data.property1=” + obj.p
   }
  ); // Anonymous handler function expects data to be an object

  Here are some examples of different ways to create and dispatch events in JavaScript:

  // Create an event of a given type, set the data, and send
  var csInterface = new CSInterface();
  var event = new CSEvent("com.adobe.cep.test", "APPLICATION"); 
  event.data = "This is a test!"; 

  csInterface.dispatchEvent(event);

  // Create an event, set all properties, and send
  var event = new CSEvent(); // create empty event

  event.type = "com.adobe.cep.test"; 
  event.scope = "APPLICATION"; 
  event.data = "This is a test!"; 

  csInterface.dispatchEvent(event);

// Send an object as event data
  var event = new CSEvent("com.adobe.cep.test", "APPLICATION");
  var obj = new Object();
  obj.a = "a";
  obj.b = "b";
  event.data = obj;
  cSInterface.dispatchEvent(event);
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Communication between native host API and HTML extensions

For event passing from the native host API to the JavaScript code of an HTML extension, use the PlugPlug 
C++ event methods: PlugPlugAddEventListener() and PlugPlugDispatchEvent().

Unlike Flash extensions, HTML extensions do not support window state-change events. 

Event type support

These event types are defined and supported by Creative Cloud desktop applications. Currently, only the 
Application scope is supported for events.

Delivering a plug-in with an HTML/JS UI
This section uses the FreeGrid sample plug-in and the FreeGridUI sample extension as examples to 
describe how to build, install, and debug a plug-in with an HTML/JavaScript UI. 

Build and install the C++ plug-in

To build your C++ plug-in in Windows, use Visual Studio 2013. In Mac OS, use Xcode 6.2.

1. Open the project file:

 In Windows: SDK_root\samplecode\FreeGrid\FreeGrid.vcxproj

 In Mac OS: SDK_root/samplecode/FreeGrid/FreeGrid.xcodeproj

2. Build the project. The build result is placed in a subfolder of the samplecode folder, depending on 
which target you build:

Event type Sent after Supported in hosts

documentAfterActivate Document has been activated (new 
document created, existing document 
opened, or open document got focus)

Photoshop
InDesign/InCopy
Illustrator

documentAfterDeactivate Active document has lost focus Photoshop
InDesign/InCopy
Illustrator

dcoumentAfterSave Document has been saved Photoshop
InDesign/InCopy

applicationBeforeQuit Host gets signal to begin termination InDesign/InCopy

applicationActivate Host gets activation event from operating 
system

Mac OS only:
Premiere Pro
Prelude

Windows and Mac OS:
Photoshop
InDesign/InCopy
Illustrator
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 In Windows: 
output\win\Win32\Debug or output\win\Win32\Release
output\win\Win64\Debug or output\win\Win64\Release

 In Mac OS: 
output/mac/debug or output/mac/release

3. Copy the build result, FreeGrid.aip to the Adobe Illustrator CC 2015 plug-ins folder. See “Where 
plug-ins live” on page 8. 

Package the HTML extension

In order to distribute your Creative Suite extension, you must package it and sign it so that users can install 
it in their desktop applications using the Extension Manager. The Adobe Extension SDK provides an Export 
wizard to help you do this from Extension Builder 3.

The Adobe Extension SDK .allows you to debug your extension during development, before you actually 
package and install the extension. To do this, you must enable debugging in the operating system, use 
Extension Builder 3 to debug the extension while it is running in the host application, then check the 
various logs for warnings and errors. 

See Adobe Extension SDK documentation for complete details of how to develop and debug an extension.

Install the extension

To run your extension in Illustrator, you must load it into one of the shared extension deployment folders.

Go to the Extension Builder workspace folder that contains your project, find your project’s Output folder 
(the default name is bin). Copy your Output folder to the deployment folder; the name and location of this 
folder depends on the version of Illustrator you are targeting and your platform. From this version onward, 
Illustrator loads extensions from these locations:

 These are the system-wide deployment folders for all users:

 In Windows:
C:\Program Files\Common Files\Adobe\CEP\extensions\

 In Mac OS: 
/Library/Application Support/Adobe/CEP/extensions/

 For a specific user, these are the default locations of the deployment folder. 

 In Windows: 
C:\<username>\AppData\Roaming\Adobe\CEP\extensions\

 In Mac OS: 
~/Library/Application Support/Adobe/CEP/extensions/

On launch, Illustrator searches for extensions in the system folder first, then in the user’s folder. 

If there is a conflict in extension IDs, the last one loaded is used. If the same extension is found in different 
locations, then if they have different bundle-ID versions, the latest version is used.

When you start Illustrator, your extension’s menu (as defined in the manifest file) appears in the Window > 
Extensions menu.
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