
ADOBE® INDESIGN® CS6

GETTING STARTED WITH ADOBE
INDESIGN CS6

PLUG-IN DEVELOPMENT

 2012 Adobe Systems Incorporated. All rights reserved.

Getting Started with the Adobe® InDesign® CS6 Plug-InDevelopment

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software
described in it, is furnished under license and may be used or copied only in accordance with the terms of such license.
Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated. Please note that the content in this guide is protected under copyright law
even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or
liability for any errors or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under
copyright law. The unauthorized incorporation of such material into your new work could be a violation of the rights of
the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to
refer to any actual organization.

Adobe, the Adobe logo, InCopy, and InDesign are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries. Windows s either a registered trademark or a trademark of
Microsoft Corporation in the United States and/or other countries. Mac OS is a trademark of Apple Computer,
Incorporated, registered in the United States and other countries. All other trademarks are the property of their
respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA. Notice to U.S. Government End Users.
The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of
“Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48
C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through
227.7202-4, as applicable, the Commercial Computer Software and Commercial Computer Software Documentation are
being licensed to U.S. Government end users (a) only as Commercial Items and (b) with only those rights as are granted
to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright
laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S.
Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if appropriate, the
provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act
of 1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR
Parts 60-1 through 60-60, 60-250, and 60-741. The affirmative action clause and regulations contained in the preceding
sentence shall be incorporated by reference.

 3

Contents

1 Introduction . 6
About this document . 6

About InDesign plug-ins . 6

Plug-in classification . 7

How InDesign plug-ins are developed . 7

2 Getting Started with the InDesign SDK . 8
SDK Overview . 8

Development environments . 11

Anatomy of a plug-in’s project files . 15

Tutorial: Creating a plug-in from scratch . 16

Step 1: Use DollyXs to generate a dialog-based plug-in project . 17

Files included in the project generated by DollyXs . 21

Create an InDesign SDK Xcode project from the template (Mac OS only) . 25

Step 2: Add a DropDownListWidget to the dialog . 27

Step 3: Add a TextEditBoxWidget . 31

Step 4: Add a StaticTextWidget . 32

Using resources in plug-ins . 34

Step 5: Obtain a value from DropDownListWidget . 39

Step 6: Get the text in the TextEditBoxWidget . 40

Using boss classes in plug-ins . 40

Using interfaces in plug-ins . 41

Using databases and objects in plug-ins . 44

Step 7: Insert a string into a text frame . 44

Using commands in plug-ins . 46

Step 8: Disable the menu with no text selection . 46

Step 9: Initialize dialog widgets . 47

Conclusion . 49

3 Introduction to ODFRC . 50
FR file compilation . 50

FR file contents . 50

PluginVersion . 50

PluginDependency . 52

ExtraPluginInfo . 52

 4

CriticalTags and IgnoreTags . 52

SchemaList . 53

ImplementationAlias . 54

ClassDescriptionTable . 54

FactoryList . 55

LocaleIndex . 55

StringTable . 56

UserErrorTable . 56

Other resources . 56

4 Introduction to the InDesign Object Model . 58
Boss classes . 58

Writing your own interface . 63

Writing your own implementation . 64

Constructing a boss instance . 65

Persistence . 65

Making a boss persistent . 65

Writing your own persistent implementation . 66

Examples of Persistent Implementations . 67

Changing persistent data with commands . 68

Writing your own command . 69

Facades . 71

PluginVersion . 72

The lifecycle of a plug-in . 73

5 Localization . 74
InDesign locales . 74

Checking the locale in C++ . 74

Controlling plug-in loading . 75

PMString . 75

String-translation tables . 76

Localizing other resources . 77

6 Building Blocks . 79
Boss-object web . 79

Iterating the draw order . 80

Service providers . 80

Startup and shutdown services . 81

Responders . 82

 5

Draw event handlers . 82

Page-item adornments . 83

Selection suites . 83

Scripting . 85

List Plug-ins in Extension Manager . 86

7 InDesign Server Plug-in Techniques . 89
Introduction . 89

Terminology . 89

Key concepts . 89

How desktop InDesign and InDesign Server differ . 90

Minimum requirements for an InDesign Server plug-in . 92

Removing calls to APIs that depend on active context or something in “front” 94

Using MessageLog or IErrorList in place of custom error/warning dialogs (other than CAlert) . . 95

Adding custom features to InDesign Server . 97

Performance considerations . 97

64-bit plug-ins (Windows only) . 98

Testing techniques . 103

8 Feature Development with Scripting . 110
Scripting . 110

Scripting versus C++ . 111

Building blocks for using ExtendScript to implement a feature with scripting 111

Tips and hints . 121

Building blocks for using ActionScript to implement user interfaces . 124

Frequently asked questions . 128

Resources . 129

 6

1 Introduction

This document is for C++ programmers who want to learn how to write Adobe® InDesign® plug-ins. It also
is appropriate reading for experienced InDesign programmers who need a refresher. It is designed to give
an introduction to plug-in development, show how to create some simple plug-ins, and teach the
architecture behind InDesign products—InDesign, Adobe InCopy®, and Adobe InDesign® Server.

About this document
 Chapter 2, “Getting Started with the InDesign SDK introduces the files in the SDK, covers development

tools, and provides an initial plug-in development tutorial. If you are new to InDesign development,
completing the tutorial in that chapter will provide you the context necessary to review or try what is
discussed in the rest of this document.

 Chapter 3, “Introduction to ODFRC.” InDesign makes heavy use of the OpenDoc Framework Resource
Compiler. This chapter introduces some of the most common resources types that you will encounter
in ODFRC FR files,

 Chapter 4, “Introduction to the InDesign Object Model,” discusses boss classes, interfaces, persistence,
commands, facades, and the lifecycle of a plug-in.

 Chapter 5, “Localization,” covers the basic mechanisms for localizing strings and other resources used
by your plug-in.

 Chapter 6, “Building Blocks,” introduces a set of concepts and patterns that are used in many different
scenarios. These concepts are the building blocks on which you will make things happen with your
plug-in.

 Chapter 7, “InDesign Server Plug-in Techniques,” provides technical details to help developers create
new plug-ins or port existing plug-ins to use with InDesign Server.

 Chapter 8, “Feature Development with Scripting,”describes how to go beyond automation to
developing new features for InDesign. It describes XHTML Export, whichs is a feature developed with
ExtendScript, and FlexUIStroke, which is a use- interface sample developed with ActionScript and
Creative Suite SDK

After finishing this document, you will be familiar enough with InDesign plug-in development to begin
using the sample code, Adobe InDesign Plug-In Programming Guide, and Adobe InDesign SDK Solutions as
needed.

About InDesign plug-ins
The InDesign Products SDK provides the necessary files to develop plug-ins for InDesign, InCopy, and
InDesign Server. Before getting too far into the technical details, it is important to understand that all
InDesign products are developed from the same code base. A plug-in can be written to load under any
combination of InDesign products. Many Adobe plug-ins are compiled and deployed with all three
applications. Each product application comprises a small executable that loads and initializes plug-ins.
Each executable does very little that is recognizable by an end user; instead, nearly all features are

CHAPTER 1: Introduction Plug-in classification 7

contributed by plug-ins. This same plug-in architecture used by Adobe Engineering is made available to
third-party developers in the InDesign products SDK.

On Windows, plug-in are DLLs with an “.apln” file extension. On Mac OS, they are Frameworks with an
“.InDesignPlugin” file extension.

Plug-in classification
There are several ways to classify InDesign plug-ins:

 By the applications under which they load. For example, you may create an InCopy-only plug-in.

 As model or user-interface plug-ins. A model plug-in writes data to an InDesign document. A
user-interface plug-in provides a user interface. An InDesign plug-in must identify whether it supports
model or user-interface operations.

 Required or optional plug-ins implement core application features. Third-party plug-ins cannot be
considered required.

How InDesign plug-ins are developed
InDesign is written in C++ and makes heavy use of a resource compiler called ODFRC (OpenDoc
Framework Resource Compiler). ODFRC files end with the “.fr” extension and are used for many things,
including user interfaces, menus, and localization. Chapter 3, “Introduction to ODFRC,” gives a high-level
overview of most of what you can expect to encounter in an ODFRC file.

Perhaps most significantly, ODFRC is used to define and extend classes in the InDesign object model.
These are not C++ classes, but rather an InDesign type of class called a boss. Working with bosses and
instantiated boss objects is at the heart of InDesign plug-in development. Bosses are mentioned in
passing in Chapter 3, “Introduction to ODFRC,” then are covered more thoroughly in Chapter 4,
“Introduction to the InDesign Object Model.”

 8

2 Getting Started with the InDesign SDK

This chapter describes how to get started with the Adobe® InDesign® CS6 Products SDK. It provides an
overview of the files in the SDK, instructions for working with the sample plug-ins, a tutorial for creating a
basic plug-in, and information about where to go for help.

An InDesign plug-in is an extension library that is loaded dynamically by InDesign. It represents a standard
interface to InDesign. On Windows®, it is a dynamic link library; on Mac OS®, it is a dynamic shared library
packaged in a framework.

SDK Overview
The SDK (denoted in paths by <SDK>) includes several types of files. This section discusses these files and
their respective locations within the SDK.

Documentation

To develop InDesign plug-ins, you must understand many concepts and design patterns implemented in
C++ and OpenDoc Framework Resource Compiler (ODFRC) resource files. This chapter will help you get
started compiling and building simple plug-ins. For a more thorough introduction, read Chapter 3,
“Introduction to ODFRC,” through Chapter 6, “Building Blocks.” After reading those chapters, you should
have enough familiarity with InDesign development to go deeper using the rest of the chapters, the
sample code, and remaining documentation.

PDF versions of all SDK documentation are in the following location:

<SDK>/docs/guides

The SDK API Reference is provided in two files:

<SDK>/docs/references/index.chm
<SDK>/docs/references/sdkdocs.tar.gz

Both files contain reference documentation for all public APIs and SDK sample code.

The index.chm file is a compressed HTML file for use on Windows. To view the contents, double-click the
index.chm file icon.

The sdkdocs.tar.gz archive is for use on Mac OS. To expand this archive, double-click the file. It
decompresses to a folder named sdkdocs. To view the reference, double-click on index.html.

Libraries

InDesign plug-in development requires the use of several libraries supplied by Adobe. On Windows, this
amounts to only a handful of static lib files. Debug and release versions of these libraries are in the
following locations:

<SDK>/build/win/objd
<SDK>/build/win/objr

To support 64-bit InDesign Server plug-ins (Windows only), 64-bit versions are in the following location:

CHAPTER 2: Getting Started with the InDesign SDK SDK Overview 9

<SDK>/build/win/objdx64
<SDK>/build/win/objrx64

Compiling on the Mac requires many dynamic libraries and Framework files. These files are embedded in a
directory structure that resembles the actual application package:

<SDK>/build/mac/debug/packagefolder/contents/macos
<SDK>/build/mac/release/packagefolder/contents/macos

Several libraries also are available in the <SDK>/external directory. These libraries originated outside the
InDesign engineering team. Windows typically uses these libraries in place; on the Mac, a copy is moved or
a symlink is created into the appropriate package folder.

Source code

The InDesign Products SDK contains several different types of source-code files.

The public API

InDesign-specific public headers are in the following directory:

<SDK>\source\public

External APIs

Several header files are in the external folder:

<SDK>\external

These are not InDesign-specific header files, but they may be used in the InDesign code base. One
example is the header files for the Boost C++ library, a non-Adobe library that is used in the InDesign code
base. Another example is the header files for the Adobe File Library, an Adobe-engineered library that is
not specific to InDesign.

Open folder

The goal of the “open” folder is to provide production InDesign user-interface code to developers, as
examples of complex InDesign user-interface code, and to provide complete plug-ins. At a minimum, an
open plug-in must be able to compile with the Release target. An open plug-in might or might not be able
to compile with the Debug target.

The open folder is not a public API: The code may changed or be removed in the next version. Also, open
plug-ins are not documented in the SDK.

The open folder has three subfolders:

 Components — <SDK>/source/open/components/. The source for the plug-ins.

 Includes — <SDK>/source/open/includes/. Subfolders that group the actual include files into
functional categories.

 Interfaces — <SDK>/source/open/interfaces/. Subfolders that group the actual include interface files
into functional categories.

CHAPTER 2: Getting Started with the InDesign SDK SDK Overview 10

Project files for the Open plug-ins are located at: <SDK>/build/mac|win/prj/. The open project files are
named with the following extensions:

 .open.xcodeproj on Mac

 .open.vcproj on Windows

Sample plug-ins

The SDK contains many sample plug-ins. The project files are in the following directory:

<SDK>/build/mac|win/prj

The source files for the sample projects are in the following directory:

<SDK>/source/sdksamples

Every sample has a design document, which is available in the index.chm or corresponding HTML API
documents. The design document provides details about the functional area each sample illustrates and
the architecture behind the plug-in.

Snippets

The SnippetRunner sample plug-in provides a convenient way to demonstrate and test small snippets of
code.

The SnippetRunner interface has a drop-down list to choose the snippet to execute; control buttons to
start the snippet, clear the log, and so on; areas to enter text; and a read-only log widget. SnippetRunner
offers some services to its client code, such as an API to write to this log widget. The contents of the log can
be saved to a file. The logging function is the same, regardless of whether the SnippetRunner is executing
in the debug or release version.

Snippet Runner source code is supplied with the SDK in the following directory:

<SDK>/source/sdksamples/snippetrunner

And the project file is located in:

<SDK>/build/win│mac/prj/SnippetRunner.vcproj│xcodeproj

All the SDK code snippets included in Snippet Runner are located in the following directory:

<SDK>/source/sdksamples/codesnippets

For more detail about the SnippetRunner plug-in and the snippet framework, see the API documentation
associated with the plug-in.

To facilitate the implementation of a code snippet, a snippet template, SnpTemplate.cpp, is included in the
SnippetRunner project. Open this file in the project, and the comment block for the SnpTemplate class
provides instructions for creating your own code snippet.

Tools

The <SDK>/devtools folder contains the following folders:

CHAPTER 2: Getting Started with the InDesign SDK Development environments 11

 bin — This contains some tools that are essential to InDesign plug-in development. They primarily are
used to help compile and merge resources with the plug-in executable. A typical SDK sample project
should be set up to use these tools automatically. The projects in different platforms require different
sets of tools, but you need not be concerned about how to use them, as long as your project settings
are similar to the SDK samples.

 scripts — There is a PList.py script on Mac OS for packaging a plug-in executable. It is used only by the
SDK’s Xcode project.

 sdktools — This folder contains several tools to help facilitate the development of InDesign plug-ins.
DollyXs is a project wizard for generating a project that is ready to build in the SDK with some basic
plug-in functionality, such as hooking up a basic user interface. The later part of this document
discusses how to use DollyXs to generate a project.

 sdktools/idmltools — This folder contains some Java-based tools for working with IDML, ICML, and
IDMS files. These tools allow you to validate package and nonpackage files, compress and decompress
IDML packages, and generate and transform IDML files with XSLT. For details, see the readme file in
<SDK>/devtools/sdktools/idmltools/.

 statics_reporter — The Static Reporter tool searches InDesign’s object code for global and static
variables, producing a text file for each object file that contains globals or statics.

Development environments
This section describes the required tools and environment for developing plug-ins, how to compile and
execute sample code, and how to start a debugging session.

Requirements

The required environment for developing plug-ins for InDesign CS6 varies by operating system.

All systems

The following table lists the basic component requirements for the InDesign CS6 plug-in development
environment for all systems:

Windows

Developing plug-ins under Windows has the following additional requirements:

Required component Notes

Applications: InDesign CS6, Adobe InCopy® CS6,
or InDesign Server CS6

We recommend that you have both the debug and
release applications. The debug application is
instrumented to detect bugs and is essential to
successful plug-in development.

OpenDoc Framework Resource Compiler (ODFRC) Included with the InDesign SDK.

1 GB of memory or more (2 GB recommended)

CHAPTER 2: Getting Started with the InDesign SDK Development environments 12

Before building on Windows, you need to alter the environment so Visual Studio knows where to find our
custom Adobe build tools, such as ODFRC:

1. Start Visual Studio 2010.

2. Bring up the Visual Studio Options dialog by clicking on the Tools menu and choosing Options.

3. In the widget on the left, expand Projects and Solutions, then click on VC++ Directories.

4. Add the path to your local copy of <SDK>\devtools\bin.

Mac OS

Developing plug-ins under Mac OS has the following additional requirements:

Compiling and executing sample code

Building a sample plug-in

Start by double-clicking on any SDK sample project.

Windows

1. Use Build > Configuration Manager... to make sure you are building the desired configuration.

2. Choose Build > Clean to remove the previous build artifact.

3. Choose Build > Build to do the build.

Mac OS

1. Use the Active Target drop-down list on the top left corner of the project window to make sure you are
building the desired target.

2. Choose Build > Rebuild ### to do a clean rebuild of the project.

Required component Notes

Intel® Pentium® 4 or AMD Athlon® 64 processor or better

Windows XP with Service Pack 2 or later

Visual C++ 10 A component of Visual Studio 2010.

Required component

Intel® processor

Mac OS® X 10.6 or later

Xcode 3.2.5

CHAPTER 2: Getting Started with the InDesign SDK Development environments 13

Building samples from the command line

There are command-line utilities on both the PC and Mac for building project files. For your convenience,
the SDK contains scripts to build all sample projects.

Windows

The devenv command can be used for command-line compilation of a project file. For example, the
following builds the debug target of the Basic Dialog project. (The Rebuild option is equivalent to a clean
followed by a build.)

devenv BasicDialog.sdk.vcproj /Rebuild Debug

The buildAllSamples.bat file (in <SDK>\build\win\prj) uses devenv to build all Windows sample projects.
This script does not check build results. That is up to you. Before running the script, correct the path in the
DEVENV variable if necessary. To run the script, type the following commands:

1. cd <SDK>\build\win\prj

2. buildAllSamples.bat

Mac OS

The xcodebuild utility is useful for building XCode projects on the command line. For example, the
following builds the release target of the Basic dialog project:

xcodebuild -project BasicDialog.sdk.xcodeproj -target Release build

The buildAllSamples perl script (in <SDK>/build/mac/prj) uses xcodebuild to build all Mac OS sample
projects. This script does rudimentary error checking. It dies on the first project failure. To run the script,
type the following commands:

1. cd <SDK>/build/mac/prj

2. buildAllSamples

Launching InDesign with the samples

For your plug-ins to be used in InDesign, InDesign must know about your plug-ins at launch time. You can
do this in one of two ways: Use a special configuration file called PlugInConfig.txt or copy your plug-in to
InDesign’s Plug-ins folder.

Using PlugInConfig.txt

1. If InDesign is running, exit it.

2. Go to the inDesign preference folder in the following directory (where <locale> is a locale-specific
subdirectory; for example, en_US for English):

Windows XP: C:\Documents and Settings\<user>\Application Data\
 Adobe\InDesign\Version 8.0\<locale>
Windows Vista: C:\Users\<user>\AppData\Roaming\
 Adobe\InDesign\Version 8.0\<locale>
Mac OS: <user-home>/Library/Preferences/
 Adobe InDesign/Version 8.0/<locale>

3. Create a text file named “PlugInConfig.txt” in that directory, and enter the following text into it:

CHAPTER 2: Getting Started with the InDesign SDK Development environments 14

=Path

4. Edit the sections as desired. For example, the following tells InDesign to load every plug-in in the SDK
folder:

Windows:

=Path
"C:\Adobe InDesign CS6 Products SDK\build\win\debug\sdk"

Mac OS:

=Path
"/Adobe InDesign CS6 Products SDK/build/mac/debug/sdk"

NOTE: You also can use an “=Exclude” tag to exclude a certain plug-in from being loaded. This is useful if
you do not want to load everything in the “=Path” folder.

NOTE: This is target specific. You cannot launch the release version of InDesign with debug plug-ins. It is
convenient to add both debug and release paths, commenting out the target that is not in use. For
single-line comments, start the comment line with a “;” (semicolon).

5. Save the PlugInConfig.txt file.

6. Restart InDesign.

7. Verify that the set of plug-ins loaded by selecting the About Plug-ins menu.

Moving a plug-in to the Plug-ins folder

By default, all SDK samples are built into the following folder:

<SDK>/build/win│mac/debug│release/sdk

You can move the plug-in(s) that you want to load with InDesign from that path into the following folder:

<InDesign Application Folder>/Plug-ins

Having the project build directly into the Plug-ins folder

You can change the project setting so the plug-in binary is built directly into the InDesign application’s
Plug-ins folder.

On Windows, the project’s output setting is specified in the Visual Studio project’s Properties >
Configuration Properties > Linker > General > Output File.

On Mac OS, the project’s output setting is specified in the Xcode project’s ID_SDK_DIR variable in each
Target.

Starting a debugging session from your plug-in project

Windows

1. From your project window, choose Debug > Start Debugging.

A dialog pops up to prompt you to select the executable file for the debug session.

2. Under the “Executable file name” drop-down list, select Browse and browse to the InDesign.exe in
your InDesign CS6 folder.

CHAPTER 2: Getting Started with the InDesign SDK Anatomy of a plug-in’s project files 15

3. Select the InDesign.exe and click OK to begin the debugging session.

Mac OS

To debug an InDesign plug-in from an Xcode project, you need to define an executable environment.
Because you are building an InDesign plug-in, you need to tell Xcode where to find the host application,
InDesign, when you try to start your plug-in from the Xcode project. To define a new executable:

1. Find the Executable group under the Groups & Files pane of the project window. Right-click on
Executables to bring up its contextual menu.

2. Choose Add > New custom executables. An executables set-up assistant is displayed.

3. Give the executable a name.

4. In Executable Paths, specify the path to InDesign CS6.

5. Select the project to add for the executable. This should be the current project you are trying to
debug.

6. Click Finish. An Executable Info window pops up to summarize the executable environment you just
created.

If you set up only one executable for the project, it becomes the active executable. When you choose Build
> Build And Debug, a debug window appears, and InDesign CS6 starts.

Anatomy of a plug-in’s project files
Typically, an InDesign project contains the following C++, ODFRC, and library files.

C++ files

 Declaration of abstract base classes for interfaces.

 Definition of implementation classes.

 Identification of the implementation ID and name of the InDesign object model.

ODFRC resource files

 The PluginVersion resource establishes a plug-in’s name/ID, the plug-in version and InDesign version
required, and the plug-in’s data-format number for conversion.

 Boss resources establish relationships among boss IDs for the InDesign object model, the IDs of
interfaces, and the IDs of C++ implementations.

 Localization mechanism.

 User-interface widget declaration.

 Data-conversion schema and plug-in dependency.

CHAPTER 2: Getting Started with the InDesign SDK Tutorial: Creating a plug-in from scratch 16

Library files

Public libraries that contains code that you must link against when building your plug-in.

Tutorial: Creating a plug-in from scratch
The rest of this chapter guides you through creating a basic InDesign plug-in and illustrates how to add
functionality to that basic plug-in.

The source code for InDesign plug-ins is largely platform independent. The InDesign plug-in development
process is unique, because it has its own user-interface and object-oriented API. This section focuses on
these two unique aspects, to help you develop plug-ins for both Windows and Mac OS.

Introducing the sample plug-in

The example describes how to build the WriteFishPrice sample plug-in that is available in the InDesign
SDK. This sample allows the user to enter fish names and current prices into a text frame at the text-cursor
position. It incorporates several common user-interface components: menus, dialog boxes, pull-down
menus, text-edit boxes, static-text fields, and buttons.

To see the finished plug-in toward which you are working, start InDesign with WriteFishPrice loaded, and
create a document. In the new document, create a text frame and place a text cursor in the frame. From
the main menu, choose Plug-In > SDK > WriteFishPrice(US):

The WriteFishPrice(US) dialog opens:

From the drop-down menu, select a fish name. Enter its price in the text box:

When you click OK, the name of the fish selected from the drop-down menu and the price you entered
appear in the text frame at the insertion point of the text cursor. As you continue making entries in the text
frame, the output appears like that shown here:

CHAPTER 2: Getting Started with the InDesign SDK Step 1: Use DollyXs to generate a dialog-based plug-in project 17

This simple plug-in serves as a good starting point, because it incorporates fundamental and common
components. The following sections describe how to create this plug-in. The main steps are as follows:

 “Step 1: Use DollyXs to generate a dialog-based plug-in project”

 “Step 2: Add a DropDownListWidget to the dialog”

 “Step 3: Add a TextEditBoxWidget”

 “Step 4: Add a StaticTextWidget”

 “Step 5: Obtain a value from DropDownListWidget”

 “Step 6: Get the text in the TextEditBoxWidget”

 “Step 7: Insert a string into a text frame”

 “Step 8: Disable the menu with no text selection”

 “Step 9: Initialize dialog widgets”

Step 1: Use DollyXs to generate a dialog-based plug-in project
Before you begin, have a mental picture of the plug-in you want to create—what it should do and what
sort of interface it should present to the user. Then you can use DollyXs to create the basic skeleton for
your plug-in.

DollyXs is a plug-in development tool included in the InDesign SDK. This tool, written in Java™, uses XSL
templates to generate fundamental plug-in projects for Microsoft Visual C++ and Apple® Xcode. See the
DollyXs Readme.txt file for details, including how to obtain the Java Runtime Environment for Windows.

To create a working plug-in that provides a solid starting point for your plug-in development, you can run
DollyXs and fill in the fields in the DollyXs interface. For this example, you will choose a dialog-box user
interface as the foundation for your WriteFishPrice plug-in. In other circumstances, you might choose the
panel-based or script-provider-based user interfaces that DollyXs supplies.

DollyXs is located in the <SDK>/devtools/sdktools/dollyxs directory.

NOTE: On Mac OS, as an alternative to using DollyXs to generate a dialog-based plug-in project, you can
use the template to generate an empty InDesign SDK project file. See “Create an InDesign SDK Xcode
project from the template (Mac OS only)” on page 25.

CHAPTER 2: Getting Started with the InDesign SDK Step 1: Use DollyXs to generate a dialog-based plug-in project 18

Step 1.1. Start DollyXs

To start, execute DollyXs.bat (on Windows) or the DollyXs.sh shell script (on Mac OS). When DollyXs starts,
you see this dialog:

Step 1.2: Specify plug-in names

In the Plugin tab, enter the two plug-in names:

 Long Name is the name of the plug-in itself. It is used as a string in the Plug-ins menu and in the About
This Plug-in dialog.

 Short Name is used as part of the source-code files, class names, and IDs that are generated. We
recommend that Short Name have approximately six characters.

For this exercise, enter WriteFishPrice for Long Name and WFP for Short Name.

For Author, enter your name. This string is used in the About This Plug-in dialog and comments in source
code.

Step 1.3: Specify the prefix ID

A prefix ID is a unique value assigned by Adobe for your plug-in development. For plug-ins that you will
release outside your organization, make sure to use a prefix ID assigned to you by Adobe. Information
about obtaining a plug-in prefix ID is at Adobe’s InDesign Developer Center,
http://www.adobe.com/devnet/indesign/.

NOTE: This is very important, because the prefix ID is used to define the plug-in’s IDs and resources. There
must be no overlap in the prefix IDs used by plug-ins. Plug-ins with the same prefix ID cannot be loaded
simultaneously.

http://www.adobe.com/devnet/indesign/

CHAPTER 2: Getting Started with the InDesign SDK Step 1: Use DollyXs to generate a dialog-based plug-in project 19

For this exercise, specify 0x61000 (the default). This prefix ID was allocated for the purpose of this exercise.

Step 1.4: Specify directory locations

Windows

Click the Win tab, and specify the directory paths that you want to use. For Project Dir, specify the
complete path to the directory where you want your Visual C++ project (.vcproj) file to be generated. If you
installed the SDK in a different directory, edit the default path.

The other directories are relative to Project Dir. For this exercise, you will work in the WriteFishPrice
directory. For Source Dir and Header Dir, specify WriteFishPrice as your subdirectory in sdksamples.

The Shared RSP Files group lets you use existing .rsp file(s). A .rsp file is used in an SDK project to specify
common search paths for the C++ and ODFRC compilers.

Mac OS

Click the Mac tab, and specify the directory paths that you want to use. For Project Dir, specify the
complete path to the directory where you want your Xcode project (.xcodeproj) file to be generated. If you
installed the SDK in a different directory, edit the path.

The other directories are relative to Project Dir. For this exercise, you will work in the WriteFishPrice
directory. For Source Dir and Header Dir, specify WriteFishPrice as your subdirectory in sdksamples.

In the Architectures pop-up menu, the choice corresponds to the Architectures variable in the Xcode’s
project/target setting. Choose the platform that you want to target.

The Shared XCConfig Files group lets you use existing xcconfig files on your computer. The xcconfig file is
used in the Xcode project to provide base settings for project/targets. The file specified in the Main
xcconfig field is used as the xcconfig file for the project-level build setting in the generated project; the file
specified in the Debug xcconfig field is used for the Debug-target build setting; and the file specified in the
Release xcconfig field is used for the Release-target build setting. The SDK comes with a set of xcconfig
files in the projects folder, which you can reuse if you use settings like those in the SDK project.

Step 1.5: Specify template

Click the Features tab, and select Generate Dialog.

Step 1.6: Verify entered information and generate plug-in project

Verify your settings, then click OK.

Verify that DollyXs has generated files in the project and code directories you specified. In the project
directory, you should see WriteFishPrice.vcproj or WriteFishPrice.xcodeproj. In the source directory, you
should see a group of C++ source files that begin with WFP. For details about each file, see “Files included
in the project generated by DollyXs” on page 21.

CHAPTER 2: Getting Started with the InDesign SDK Step 1: Use DollyXs to generate a dialog-based plug-in project 20

Step 1.7: Build the plug-in

Windows

Before building your plug-in, set up your InDesign development environment (IDE) to use the InDesign
ODFRC. To do this, choose Tools > Options, and add the <SDK>\devtools\bin directory under the
Executable Files directory path.

To build your plug-in:

1. Open WFP.vcproj using Microsoft Visual C++.

2. When the project is open, make sure Debug is the active configuration: Choose Project >
WriteFishPrice Properties. The configuration in the Property Pages dialog box should be Active
(Debug).

3. To build the plug-in, choose Build > Build WriteFishPrice.

4. When you are asked to save a Solutions file (.sln), save it to the same directory as the project (.vcproj)
file.

Mac OS

The Xcode project generated by DollyXs is already set up to find the ODFRC compiler from its default SDK
location. Unless you moved the ODFRC.cmd to somewhere other than its default location, you do not
need to do anything to specify the location of the ODFRC compiler.

To build your plug-in:

1. Open the WriteFishPrice.xcodeproj file using Xcode.

2. Choose Debug from the Active Target pop-up menu, on the top left corner of the project window.

3. Choose Build > Build, or click the Build button on the Project Window.

Step 1.8: Load the plug-in

The plug-in you just built has the filename WriteFishPrice.pln (Windows) or WriteFishPrice.InDesignPlugin
(Mac OS) and is in the following directory in your <SDK> directory:

Windows:

 Debug: <SDK>\build\win\debug\SDK

 Release: <SDK>\build\win\release\SDK

Mac OS:

 Debug: <SDK>/build/mac/debug/SDK

 Release: <SDK>/build/mac/release/SDK

Copy the WriteFishPrice plug-in file to the Plug-Ins directory in the InDesign CS6 directory; then the
WriteFishPrice plug-in will be loaded when InDesign is launched.

CHAPTER 2: Getting Started with the InDesign SDK Files included in the project generated by DollyXs 21

NOTE: Do not install debug plug-ins to the Plug-Ins directory for the release build of InDesign, or vice versa;
if you do, your plug-in will fail to load.

When the plug-in is loaded, InDesign displays a Plug-Ins menu containing a WriteFishPrice menu item.

Step 1.9: Start InDesign through your IDE

If you successfully built and loaded your plug-in, you can start InDesign through your IDE by following the
steps in this section.

On Windows:

1. Using Microsoft Visual C++ and with the project file open, choose Project > WriteFishPrice Properties.

2. In the Debugging panel of Configuration Properties, set the Command field to InDesign.exe. If you
know the path, type it; otherwise, click the Command field, then click the Down button to open a
Browse window that you can use to navigate to where InDesign.exe is located on your computer.

3. Click OK to complete the process.

On Mac OS:

 For information on starting an Xcode debugging session, see “Starting a debugging session from your
plug-in project” on page 14.

You are now ready to start the application from your IDE. In Visual C++, choose Debug from the IDE main
menu, and click Start. The process is similar for Xcode.

After you start InDesign, open the dialog from the Plug-Ins menu:

No widgets are placed on your dialog yet, nor is the menu name correct, so you still have some work to do.

Files included in the project generated by DollyXs
This section describes the files that DollyXs generates. Go back to the project in your IDE, and follow along
with this section to examine each file.

Source files

 WFPID.h — This header file is a central repository for plug-in IDs. Some IDs are numeric, and some are
string values; some IDs are unique across the application, and some are unique only within the
plug-in. This file is critical for plug-ins and is included by all plug-in project files.

 WFPFactoryList.h — This header file contains macros that allow the core InDesign object model to
create and destroy instances of the implementations through factory classes.

CHAPTER 2: Getting Started with the InDesign SDK Files included in the project generated by DollyXs 22

 WFPNoStrip.cpp — This file prevents the C++ compiler optimizations from dead stripping (eliminating
code that appears to the compiler to be unused). Because most of the code in a plug-in is not used
directly from within the plug-in itself, much of this code can appear to the compiler to be dead.
WFPNoStrip.cpp contains a function, DontDeadStrip, which includes WFPFactoryList.h.

 WFPID.cpp — This file allows the IDs defined in WFPID.h to be included as strings in the debug build
symbols.

 SDKPlugInEntrypoint.cpp — This file, in the <SDK>/source/sdksamples/common directory, specifies
the plug-in’s entry point. This file is not modified by any DollyXs settings but is simply included in the
project.

 TriggerResourceDeps.cpp — This file ensures that the ODFRC resource is relinked when the .fr file is
compiled on Windows.

 WFPDialogController.cpp — This source file contains a class used for initializing, validating, and
responding to dialog widgets. The WFPDialogController class specifies what happens when the dialog
is initialized and when OK is clicked.

 WFPDialogObserver.cpp — The WFPDialogObserver class in this file dynamically processes changes to
the widgets on the dialog. To observe events pertaining to any other widgets you may place on the
dialog, this is where you add your code.

 WFPActionComponent.cpp — The WFPActionComponent class in this source file defines what happens
when the plug-in’s menu item is selected. In this case, the Plug-Ins menu item and About This Plug-In
menu items are handled. The About This Plug-In menu item is displayed in the Help > About Plug-Ins
> SDK menu item (Windows) or the Apple Menu menu item (Mac OS). This class also opens the About
This Plug-In dialog box in the DoAbout method.

Resource files

 WFP.fr — This file defines resources unique to InDesign. These cross-platform resource definitions are
compatible with Windows and Mac OS. This file contains resources other than strings.

 WFP_enUS.fr — This file contains string resources in a string-table resource used for the US English
locale. These resources are used when the plug-in is used with InDesign in the US English locale. Also,
this file can contain user-interface specifications, especially when they differ by locale.

 WFP_jaJP.fr — This file contains string resources in a string-table resource used for the Japanese
locale. These resources are used when the plug-in is used with InDesign in the Japanese locale. Also,
this file can contain user-interface specifications, especially when they differ by locale.

 WFP.rc — This file defines resources specific to Windows; in particular, the plug-in file version.

Project files

 WFP.vcproj — This is a Visual C++ project file for Windows. By default, it is in <sdk>\build\win\prj.

 WFP.xcodeproj — This is an Xcode project file for Mac OS. By default, it is in <sdk>/build/mac/prj.

Detailed descriptions of code generated by DollyXs

This section provides more detail about the source files that you will modify throughout this exercise.
Follow along with this section by using your IDE to open and examine the code of each file.

CHAPTER 2: Getting Started with the InDesign SDK Files included in the project generated by DollyXs 23

WFPActionComponent.cpp

 WFPActionComponent — This class inherits the CActionComponent class, which implements the
IActionComponent interface. The WFPActionComponent class responds to menu selections in the
DoAction method and distinguishes the selected menu item by means of the corresponding ActionID.

 WFPActionComponent::DoAction — This method overrides the DoAction method in its parent class,
(CActionComponent), receives the selected ActionID as a parameter, and compares it with
kWFPAboutActionID and kWFPDialogActionID (defined in WFPID.h). If there is a match, the DoAction
method calls the appropriate DoAbout or DoDialog method.

 WFPActionComponent::DoAbout — This method is called from WFPActionComponent::DoAction. It
displays a CAlert::ModalAlert dialog.

 WFPActionComponent::DoDialog — This method first obtains the IApplication interface by means of
GetExecutionContextSession()->QueryApplication(). GetExecutionContextSession() returns a pointer
to the ISession interface aggregated in the kSessionBoss, which is a boss-class object that describes
the current InDesign application session. IApplication is an interface aggregated on kAppBoss, which
is a boss-class object that describes the InDesign application itself. See the following figure. From the
IApplication interface, DoDialog obtains the IDialogMgr interface, which enables you to get to the
InDesign dialog manager’s boss class. Next, DoDialog loads the dialog resources that correspond to
the current user-interface locale during the first instantiation, and DoDialog saves it to the InDesign
database, so it can be loaded efficiently during subsequent instantiations. The current user-interface
locale is obtained by instantiating a RsrcSpec object, dialogSpec, by calling LocaleSetting::GetLocale.
There are several kinds of constructors for the RsrcSpec object, but this method uses the constructor
shown in the code. As shown, once you instantiate a RsrcSpec object, DoDialog calls the
CreateNewDialog method on the IDialogMgr interface. The parameter list contains the dialogSpec
that was just instantiated and a constant that specifies the modality of the dialog (kMovableModal
constant defined in the IDialog interface). CreateNewDialog then creates a movable dialog based on
the dialogSpec and returns a pointer to a dialog (IDialog on kDialogWindowBoss, or a derived boss
class). Finally, the Open method on the IDialog interface is called, and the dialog is opened.

WFPDialogObserver.cpp

 WFPDialogObserver — This class inherits the CDialogObserver class, which implements the IObserver
interface. Through this class, you can register to observe dynamic changes to the widgets on the
dialog. The example simply provides some stub code so your code can observe changes to widget
states, such as a custom button. The observer provides a mechanism to listen to changes to specific
objects, known as subjects. By attaching to a subject, observers can be notified when a change occurs,
rather than having to poll for changes.

CHAPTER 2: Getting Started with the InDesign SDK Files included in the project generated by DollyXs 24

 WFPDialogObserver::AutoAttach — This method is called by the application and enables observers to
attach themselves to a subject. By attaching, an observer can be notified when there is a change to the
subject. In the example, there are no widgets handled. If you need to observe other widgets on this
dialog, you can add them here. Alternately, you can observe each widget in separate observers. To
keep the code simple, however, the example collectively observes all widgets on this dialog. By
default, the OK and Cancel buttons (with widget IDs of kOKButtonWidgetID and
kCancelButton_WidgetID, respectively) are observed by the parent class, CDialogObserver. Consider
how this works. First, the WFPDialogObserver::AutoAttach method calls the
CDialogObserver::AutoAttach method in the parent class. This is so the OK and Cancel buttons can be
handled. Afterward, the IPanelControlData interface (from the same boss object that hosts the current
implementation, WFPDialogObserver) is obtained and, by using the parent class’s
CDialogObserver::AttachToWidget method, it can attach to any other widget on the dialog.

 WFPDialogObserver::AutoDetach — This method, which is called by the InDesign application, allows
observers to detach from a subject. Detaching an observer is the reverse of attaching, which means
the detached observer is no longer notified of changes. Again, the OK and Cancel buttons are handled
by default in the parent class, CDialogObserver. Like the AutoAttach method, the
CDialogObserver::AutoDetach method is called to handle the OK and Cancel buttons. Afterward, the
IPanelControlData interface (from the same boss class in which the current class resides) is obtained
and, by using the parent class's CDialogObserver::DetachFromWidget method, an observer can
detach from any other widget on the dialog.

 WFPDialogObserver::Update — This method is called by the host when a change occurs to the
observed object. (In the example, there are no widgets other than the OK and Cancel buttons, so there
is not much extra code.) When a widget is changed, the CDialogObserver::Update method is called to
handle the OK and Cancel buttons up front, then the IControlView interface of the widget that caused
the change is obtained from the theSubject parameter. To determine which widget ID caused the
change, the GetWidgetID method is called on the IControlView interface. Suppose you want to add
another button with a specific widget ID, like kWFPIconSuiteWidgetID, to this dialog. For a button
press to be responded to, the widget ID must correspond to the ID for your button, and the message
ID from the theSubject parameter must be something like kTrueStateMessage (indicating the button
is pressed).

WFPDialogController.cpp

 WFPDialogController — This class inherits the CDialogController class, which implements the
IDialogController interface. This class handles the dialog initialization, as well as data validation and
the OK button click.

 WFPDialogController::InitializeDialogFields — This method initializes the widgets on the dialog. This
method is called by the parent class when the dialog is opened and when the dialog’s Reset button is
clicked, if you did not override the CDialogController::ResetDialogFields method. This method first
needs to call the CDialogController::InitializeDialogFields method in the parent class. (Note: Cancel
becomes Reset when you hold the Alt or Option key.)

 WFPDialogController::ValidateDialogFields — This method validates the fields on the dialog. When the
OK button is clicked, this method is called before the ApplyDialogFields method. Again, the
CDialogController::ValidateDialogFields method in the parent class is called first. If there is even one
field with an invalid value, you can return the WidgetID to be selected. If all fields have valid values,
you can return kDefaultWidgetId, which allows the parent class to call the ApplyDialogFields method.

CHAPTER 2: Getting Started with the InDesign SDK Create an InDesign SDK Xcode project from the template (Mac OS only)
25

 WFPDialogController::ApplyDialogFields — This method retrieves the values from the dialog fields and
acts on them. The widgetId from the parameter list contains the widget ID that caused this method to
be called. By default, this parameter contains kOKButtonWidgetID.

Create an InDesign SDK Xcode project from the template (Mac
OS only)

On Mac OS, as an alternative to using DollyXs to generate a plug-in project, you can use the template to
generate an empty InDesign SDK project file. The development environment for the InDesign SDK is
XCode 3.2.5 for Mac OS 10.6.x (also known as Snow Leopard). To create an InDesign template project for
XCode 3.2.5, see the following section.

Add the SDK project template for Xcode

Add the SDK template project folder InDesign Project from <SDK>/devtools/sdktools/xcodetemplates to
<your-start-up-disk-volume>/Developer/Library/Xcode/Project Templates. The template is one of the
methods that you can use to convert or create a new Xcode project for an InDesign plug-in.

Follow these steps:

1. Start Xcode.

2. From the Xcode menu, choose File > New project to bring up the New Project window:

CHAPTER 2: Getting Started with the InDesign SDK Create an InDesign SDK Xcode project from the template (Mac OS only)
26

3. Select the “InDesign Project” group, select “SDK Project”, and click Choose... The Save As dialog
appears:

4. Name the project and give it a proper path. The path should be in the same directory as the SDK’s prj
folder. By default, Xcode appends a project folder after you specify the SDK project path. Click Save,
and a windows appears to “Select the directory to use as the project root”:

CHAPTER 2: Getting Started with the InDesign SDK Step 2: Add a DropDownListWidget to the dialog 27

5. Select the directory to use as the project root and click Open.

6. Copy the project file from the project folder to the SDK project folder. (If you prefer to create a project
outside the prj folder, consider using DollyXs, as it supports the feature.)

7. If a “Files to be Overwritten” dialog pops up with an invisible .DS.store file shown as the existing file,
click “Overwrite Select Files.” Now a new project with the name you specified above is created in the
prj location. Go to the prj location; you will find the xcodeproj file is created and a folder named
<your-project-name>-#.moved-aside also is created. This folder contains the files that are being
overwritten. If .DS.store file is the only file being overwritten, you can safely discard this <your-project
name>-#moved-aside.

NOTE: The template works only when you create the project file in the same directory as the prj folder.

NOTE: The template uses InDesignModel.framework by default. If your plug-in needs UI elements, you
need to replace InDesignModel.framework with InDesignModelAndUI.framework. Otherwise, you will get
many link errors.

NOTE: You need to add any necessary header file paths to the project’s Header Search Paths.

Step 2: Add a DropDownListWidget to the dialog
You have created the rough foundation for your plug-in. Now it is time to start building your plug-in by
improving its dialog widget.

Step 2.1: Add a widget ID

Open WFPID.h in your IDE and find the widget definitions for the dialog, as shown here:

CHAPTER 2: Getting Started with the InDesign SDK Step 2: Add a DropDownListWidget to the dialog 28

// WidgetIDs:
DECLARE_PMID(kWidgetIDSpace, kWFPDialogWidgetID, kWFPPrefix + 1)

On the next line, add the following:

// DropDownList widget ID
DECLARE_PMID(kWidgetIDSpace, kWFPDropDownListWidgetID, kWFPPrefix + 2)

Step 2.2: Define string keys for list items

Next, define string keys for the items in the DropDownList. InDesign has a base type object, PMString, that
is used extensively for user-interface strings; for this type, InDesign has a locale-based, string look-up
mechanism for automatic string translation. The translated strings are defined in a string-table resource; if
a string is specified by its key, InDesign automatically replaces it with the corresponding localized string. If
you look at WFPID.h in the “Other StringKeys” section, you can see several string keys defined there.

To define a string key for the DropDownListWidget items, first find the following in WFPID.h:

// Other StringKeys:
#define kWFPAboutBoxStringKey kWFPStringPrefix "kWFPAboutBoxStringKey"
#define kWFPTargetMenuPath kWFPPluginsMenuPath

Immediately after this, add the following lines:

#define kWFPDropDownItem_1Key kWFPStringPrefix "kWFPDropDownItem_1Key"
#define kWFPDropDownItem_2Key kWFPStringPrefix "kWFPDropDownItem_2Key"
#define kWFPDropDownItem_3Key kWFPStringPrefix "kWFPDropDownItem_3Key"
#define kWFPDropDownItem_4Key kWFPStringPrefix "kWFPDropDownItem_4Key"

If you know what your string key will be—for instance, kWFP_TunaKey—you can define the key using the
string, so you can find it more easily later.

Step 2.3: Define locale-specific strings for list items on
DropDownListWidget

Next, define the string-table resource entries that correspond to the string keys you just defined. These
string tables are defined in WFP_enUS.fr and WFP_jaJP.fr, for use in the US English and Japanese locales,
respectively. These two resource files are included by WFP.fr.

Start by defining the US English string-table entries. Open WFP_enUS.fr to see that the string keys and the
English strings are paired up. Add strings for the four string keys you just defined. Look for the following in
WFP_enUS.fr:

resource StringTable (kSDKDefStringsResourceID + index_enUS)
{
 // Locale Id
 k_enUS,
 // Character encoding converter
 kEuropeanMacToWinEncodingConverter,
 {
 // ...omitted
 // ----- Panel/dialog strings
 kWFPDialogTitleKey, kWFPPluginName "[US]",

Immediately after this, add the following lines:

CHAPTER 2: Getting Started with the InDesign SDK Step 2: Add a DropDownListWidget to the dialog 29

// Drop-down list item strings
kWFPDropDownItem_1Key, "Tuna",
kWFPDropDownItem_2Key, "Salmon",
kWFPDropDownItem_3Key, "Bonito",
kWFPDropDownItem_4Key, "Yellowtail",

Similarly, you can add strings to the Japanese string table. Open WFP_jaJP.fr and look for the following:

resource StringTable (kSDKDefStringsResourceID + index_jaJP)
{
 k_jaJP,// Locale Id
 0, // Character encoding converter
 {
 //...omitted
 // ----- Panel/dialog strings
 kWFPDialogTitleKey, kWFPPluginName "[JP]",

Immediately after this, add the following lines:

// Drop-down list item strings
kWFPDropDownItem_1Key, "Tuna [JP]",
kWFPDropDownItem_2Key, "Salmon [JP]",
kWFPDropDownItem_3Key, "Bonito [JP]",
kWFPDropDownItem_4Key, "Yellowtail [JP]",

For this exercise, it is not necessary to enter Japanese characters into the resource string tables. The SDK
sample plug-ins often put a locale-specific suffix on these strings, such as “[JP],” so you know the
appropriate string table is being used. You can choose to do the same.

If you will release your plug-ins commercially, however, there is a chance an InDesign Japanese version will
use your plug-in. In that case, it is advisable to define strings for the Japanese string table. Better yet,
obtain help in translating the strings into Japanese or other locales supported by InDesign.

Step 2.4: Add a DropDownListWidget to your dialog resource

The dialog resource is defined in WFP.fr, toward the end of the file. This resource already contains two
widgets: the default OK button and Cancel button. Look for the following:

resource WFPDialogWidget (kSDKDefDialogResourceID + index_enUS)
{

FILE__, __LINE__,
kWFPDialogWidgetID, // WidgetID
kPMRsrcID_None, // RsrcID

 kBindNone, // Binding
 0, 0, 388,112, // Frame (l,t,r,b)
 kTrue, kTrue, // Visible, Enabled
 kWFPDialogTitleKey, // Dialog name
 {
 ...omitted
 CancelButtonWidget
 (
 ...omitted
),

Immediately after this, add the following lines:

CHAPTER 2: Getting Started with the InDesign SDK Step 2: Add a DropDownListWidget to the dialog 30

// Drop-down list widget resource
DropDownListWidget
(
 kWFPDropDownListWidgetID, // WidgetId
 kSysDropDownPMRsrcId, // RsrcId
 kBindNone, // Frame binding
 Frame(10,16,140,36), // Frame (l,t,r,b)
 kTrue, kTrue, // Visible, Enabled
 {{ // List Items
 kWFPDropDownItem_1Key,
 kWFPDropDownItem_2Key,
 kWFPDropDownItem_3Key,
 kWFPDropDownItem_4Key,
 }}
),

This drop-down list widget is now added to your dialog.

Step 2.5: Correct the localized menu strings

Earlier, when you first looked at your dialog (“Step 1.9: Start InDesign through your IDE” on page 21), the
menu string in the Plug-Ins > SDK menu was Show Dialog. You want it to be WriteFishPrice[US] or
WriteFishPrice[JP], so you need to change it.

1. Open WFP_enUS.fr, and look for the following:

kWFPDialogMenuItemKey, "Show dialog[US]",

2. Change this line to the following:

kWFPDialogMenuItemKey, kWFPPluginName "[US]",

3. Also do this in your Japanese string table. Open WFP_jaJP.fr, and look for the following:

kWFPDialogMenuItemKey, "Show dialog[JP]",

4. Change this line to the following:

kWFPDialogMenuItemKey, kWFPPluginName "[JP]",

NOTE: kWFPPluginName is defined in WFPID.h.

Step 2.6: Save, build, and test

Save the source files you edited, build the plug-in, move the plug-in to the Plug-Ins directory, start
InDesign, and try using your new drop-down list.

When you first open the dialog, notice there is no default value in the drop-down list. You will set up a
default value for this drop-down list in a later step.

Click the drop-down list widget. The drop-down list widget should show the four strings you just added:

CHAPTER 2: Getting Started with the InDesign SDK Step 3: Add a TextEditBoxWidget 31

Step 3: Add a TextEditBoxWidget

Step 3.1: Add a widget ID

1. In preparation for adding a TextEditBoxWidget on your dialog, open WFPID.h again, so you can define
widget IDs.

2. Immediately after the place where you added widget IDs in “Step 2.1: Add a widget ID” on page 27,
add a widget ID for your TextEditBox. Look for the following:

// WidgetIDs:
DECLARE_PMID(kWidgetIDSpace, kWFPDialogWidgetID, kWFPPrefix + 1)
DECLARE_PMID(kWidgetIDSpace, kWFPDropDownListWidgetID, kWFPPrefix + 2)

//DropDownList

3. Immediately after this, add the following line:

DECLARE_PMID(kWidgetIDSpace, kWFPTextEditBoxWidgetID, kWFPPrefix + 3) //TextEditBox

Step 3.2: Add a TextEditBoxWidget resource

Next, you need to add the TextEditBoxWidget resource into your dialog resource definition. Define this
immediately after the place where you added your DropDownListWidget. In WFP.fr, look for the following:

DropDownListWidget
(
 // ...omitted
),

Immediately after this, add the following lines:

CHAPTER 2: Getting Started with the InDesign SDK Step 4: Add a StaticTextWidget 32

// TextEditBox Widget resource
TextEditBoxWidget
(
 kWFPTextEditBoxWidgetID, // WidgetId
 kSysEditBoxPMRsrcId, // RsrcId
 kBindNone, // Frame binding
 Frame(200, 16, 250, 36), // Frame (l,t,r,b)
 kTrue, kTrue // Visible, Enabled
 0, // Widget id of nudge button (0 so we don't get one)
 0, 0,// small, large nudge amount
 0, // max num chars(0 = no limit)
 kFalse,// is read only
 kFalse,// should notify each key stroke
 kFalse,// range checking enabled
 kFalse,// blank entry allowed
 0, // Upper bounds
 0, // Lower bounds
 "", // Initial text
),

This is all that is necessary to put a text-edit box on a dialog.

Step 3.3: Save, build, and test

Save the source file you edited, build the plug-in, move the plug-in to the Plug-Ins directory, start
InDesign, and try using your new text-edit box:

Try entering some characters or copying text from another application and pasting it into the text-edit box
using shortcut keys. InDesign automatically handles the shortcut keys.

Step 4: Add a StaticTextWidget
So far, you added a drop-down list to select the product and a text-edit box to enter the unit price. In
addition, you should have a currency symbol next to your text-edit box. InDesign can be used in various
locales; this is a good opportunity to use the power of the application’s international capabilities. In this
section, you will modify your dialog to display $ (dollar symbol) or ¥ (yen symbol), based on the locale.

Step 4.1: Add a Widget ID

To add an ID for your StaticTextWidget, open WFPID.h. After the lines you added for the
TextEditBoxWidget, define the ID for your StaticTextWidget. Look for the following:

// widget IDs
DECLARE_PMID(kWidgetIDSpace, kWFPDialogWidgetID, kWFPPrefix + 1)
DECLARE_PMID(kWidgetIDSpace, kWFPDropDownListWidgetID, kWFPPrefix + 2) //DropDownList
DECLARE_PMID(kWidgetIDSpace, kWFPTextEditBoxWidgetID, kWFPPrefix + 3) //TextEditBox

Immediately after this, add the following lines:

CHAPTER 2: Getting Started with the InDesign SDK Step 4: Add a StaticTextWidget 33

DECLARE_PMID(kWidgetIDSpace, kWFPStaticTextWidgetID, kWFPPrefix + 4) //StaticText

Step 4.2: Define a string key

Next, define a string key for each currency symbol that will be displayed in the static-text widget:

// StaticText string key (yen or dollar character)
#define kWFPStaticTextKey kWFPStringPrefix "kWFPStaticTextKey"

Step 4.3: Define locale-specific strings for your StaticTextWidget

Define the localized strings that correspond to this string key in the string-table resources in WFP_enUS.fr
and WFP_jaJP.fr.

1. In WFP_enUS.fr, look for this comment:

// Panel/dialog strings

Immediately after this, add the following lines:

// StaticText string key (yen or dollar character)
kWFPStaticTextKey, "$",

2. In WFP_jaJP.fr, look for this comment:

// Panel/dialog strings

Immediately after this, add the following lines:

// StaticText string key. (yen or dollar character)
kWFPStaticTextKey, "¥",

The yen symbol is specified here as a double-byte character (specifically, ShiftJIS code 0x8F81). If you
cannot enter Japanese characters, specify this string as an uppercase Y.

Step 4.4: Add a StaticTextWidget resource to your dialog resource

Add the StaticTextWidget resource immediately after where you added the TextEditBoxWidget. In WFP.fr,
look for the following:

// TextEditBox Widget resource
TextEditBoxWidget
(
 // ...omitted
),

Immediately after this, add the following lines:

CHAPTER 2: Getting Started with the InDesign SDK Using resources in plug-ins 34

// StaticText widget resource
StaticTextWidget
(
 kWFPStaticTextWidgetID, // WidgetId
 kSysStaticTextPMRsrcId, // RsrcId
 kBindNone, // Frame binding
 Frame(150,16,190,36), // Frame (l,t,r,b)
 kTrue, kTrue, kAlignRight, // Visible, Enabled, Alignment
kDontEllipsize, kTrue, // don't add any ellipses
kWFPStaticTextKey, // Text

 // WidgetID for associated shortcut ctrl
 kWFPTextEditBoxWidgetID
),

Step 4.5: Save, build, and test

Save the source file you edited, build the plug-in, move the plug-in to the Plug-Ins directory, start
InDesign, and try using your new static-text widget. The following figure shows what you see in the US
English locale:

The following figure shows what you see in the Japanese locale:

As you can see, different strings can be displayed based on the locale. You can do the same with other
user-interface widgets in InDesign.

In this case, the meaning of the data you enter in the text-edit box will change, so you may have to do
extra processing later.

This concludes your design of the dialog. As we demonstrated, you can design your plug-ins starting with
the user interface, before implementing what the plug-in does. In other words, you can develop the
controller in a manner that is decoupled from the rest of the plug-in.

Using resources in plug-ins
This plug-in’s resources are defined in WFP.fr (and the _enUS.fr and _jaJP.fr files that are included). InDesign
uses resource definitions for strings, dialogs, panels, menus, and boss classes that are cross platform
between the Windows and Mac OS development environments. (There are a few resource types not
included in these resource definitions. They are limited to a few types that are not compatible across
platforms: file version, icon, and picture resources.) To share resource definitions across platforms,
InDesign uses the ODFRC.

CHAPTER 2: Getting Started with the InDesign SDK Using resources in plug-ins 35

Follow along with this section by using your IDE to take a closer look at various resources defined in WFP.fr.

PluginVersion resource

The PluginVersion resource describes the plug-in version. It is defined in
<SDK>/source/public/includes/objectmodeltypes.fh.

This entry is the build number of InDesign that is the target for the plug-in:

kTargetVersion,

Normally, you specify this using the kTargetVersion macro, which expands depending on whether the
plug-in is being built for the release or debug build.

This entry is an ID unique to this plug-in. It is defined in WFPID.h:

kWFPPluginID,

These entries give the major and minor versions of the plug-in and the major and minor versions of the
host application:

kSDKDefPlugInMajorVersionNumber, kSDKDefPlugInMinorVersionNumber,
kSDKDefHostMajorVersionNumber, kSDKDefHostMinorVersionNumber,

The version numbers are defined in <SDK>/source/sdksamples/common/SDKDef.h for the SDK you are
using.

This entry gives the major and minor version of this plug-in, defined in WFPID.h:

kWFPCurrentMajorFormatNumber, kWFPCurrentMinorFormatNumber,

This entry list specifies which applications (products) you are targeting:

{ kInDesignProduct, kInCopyProduct },

The InDesign SDK can be used to build plug-ins for InDesign, InCopy, and InDesign Server; however, there
may be times when you want to allow your plug-in to be loaded in only one application. In the example
used in this document, you want to be able to use your plug-in in InDesign and InCopy but not InDesign
Server.

This entry is an array that specifies the feature set with which this plug-in works:

{ kWildFS },

A feature set is an abstraction of a set of application features and is different from a user-interface locale.
The feature-set setting allows you to customize not only the user interface but also the behavior of your
plug-in. You can choose from product and language settings. For details, see
<SDK>/source/public/includes/FeatureSets.h. This document’s sample plug-in is specified to work with
any feature set, so it specifies kWildFS.

The last entry is a string that the Adobe Update Manager displays in the plug-in’s About box:

kWFPVersion

It is the plug-in’s version, defined in WFPID.h and based on kSDKDefPluginVersionString, which is defined
in <SDK>/source/sdksamples/SDKDef.h.

CHAPTER 2: Getting Started with the InDesign SDK Using resources in plug-ins 36

Boss-class-definition resource

Boss-class definitions specify the InDesign object model. They are somewhat analogous to C++ class
definitions. Boss classes are discussed in detail later, so this section highlights only the resource part.

Each boss-class definition shown in this file begins with the resource keyword Class, which is used to
define a new boss class in the InDesign object model.

You also can start a boss class with the keyword AddIn. This allows you to add interfaces to existing
boss-class definitions. For an example of an AddIn resource, see the SDK sample plug-in FrameLabel.

The next component in the resource definitions for your plug-in, kWFPDialogBoss, is the ID of this boss
class. After that, kDialogBoss indicates the ID of the parent boss class. All the functionality provided by
kDialogBoss (all implementations backing the interfaces aggregated on the boss class) is provided for
kWFPDialogBoss. kWFPDialogBoss can extend this functionality (by adding other interfaces) or adapt it (by
overriding existing interfaces and mapping them onto its own implementation). If you do not want to
specify a parent boss class, specify kInvalidClass in its place.

Next is the interface-to-implementation mapping list for the boss class. In this dialog boss class, you are
overriding the IID_IDIALOGCONTROLLER and IID_IOBSERVER interfaces from kDialogBoss. The actual C++
implementations are referred to indirectly by their implementation IDs, namely kWFPDialogControllerImpl
and kWFPDialogObserverImpl, respectively.

InDesign plug-ins use the CREATE_PMINTERFACE macro to bind a specific implementation ID to a specific
C++ class. This allows InDesign to call the C++ implementation by its implementation ID.

Open the API reference documentation (in <SDK>/docs/references), click the Boss Classes link at the top of
the page, and navigate to the “kDialogBoss Class Reference” page. You can see that kDialogBoss inherits
another boss class, kPrimaryResourcePanelWidgetBoss, and overrides five interfaces. The entire InDesign
object model is built with a collection of these boss classes, and you can build your plug-ins by overriding
and/or extending existing boss classes, just as you did for kWFPDialogBoss.

FactoryList resource

This resource allows you to register the implementation IDs for your C++ implementations in the InDesign
object model. The WFPFactoryList.h header file registers the implementation IDs with the use of the
REGISTER_PMINTERFACE macro, and it also is included in WFPNoStrip.cpp to prevent dead stripping. By
sharing this piece of code, you prevent a situation in which you forget to specify the implementation ID in
one place or the other.

The REGISTER_PMINTERFACE macro in WFPFactoryList.h defines the implementation ID when used in a
resource definition and prevents dead stripping when used in a .cpp file.

MenuDef resource

The first block defines the menu used to show the About This Plug-In dialog. The second block defines the
menu used to show the dialog you just designed for your plug-in.

In each block:

 The first line is the action ID issued when the associated menu item is selected.

CHAPTER 2: Getting Started with the InDesign SDK Using resources in plug-ins 37

 The second line specifies the menu path that corresponds to the action ID specified directly above it.
In the example, kWFPAboutMenuPath is a preprocessor #define statement that expands to
Main:&Help:AboutPlugins:SDK on Windows and Main:AppleMenu:AboutPlugins:SDK on Mac OS.

 The third line specifies the position of the menu item relative to other menu items in the same menu
path. kSDKDefAlphabeticPosition is defined in SDKDef.h. If you use this constant (defined as 1.0),
InDesign builds the menu after sorting individual menu items in the same path. In most cases, you can
use this constant.

 The fourth line defines the behavior of the menu item. To change the menu each time it is displayed,
set this to kSDKDefIsDynamicMenuFlag; otherwise, set it to kSDKDefIsNotDynamicMenuFlag.
Normally, you specify kSDKDefIsNotDynamicMenuFlag.

ActionDef resource

This resource defines the action invoked from the menu. An action is an abstraction for what happens
when a menu item is selected or a shortcut key is pressed.

In the first line, kWFPActionComponentBoss is a boss class that handles the action IDs.

In the second line, kWFPAboutActionID is an action ID that is to be handled by the boss class specified in
the first line.

In the third line, kWFPAboutMenuKey is the string key that corresponds to the action ID listed in the
second line.

In the fourth line, kOtherActionArea specifies the keyboard shortcut editor (KBSCE) area; in the example,
you are using “other.” KBSCE areas are defined in <SDK>/source/public/includes/ActionDefs.h.

The fifth line specifies the action type. Generally, you specify kNormalAction here.

The sixth line specifies how the menu is enabled or disabled. Again, these enabling types are defined in
ActionDefs.h.

The seventh line specifies the interfaceID for the selection required for the action to be active. If you do not
require any selections for your action to be active, specify kInvalidInterfaceID.

The eighth line specifies whether the shortcut key entry is visible in the KBSCE.

LocaleIndex resource

This resource cross-references the string tables with the InDesign feature set and locale information.

kStringTableRsrcType specifies the type of resource you are cross-referencing. In this case, this resource is
used as a locale-index resource to switch the string tables. kWildFS means this entry applies to all feature
sets (defined in FeatureSets.h). k_enUS specifies that the corresponding locale is US English. So, the first
line in the curly brackets after kStringTableRsrcType means that, for all feature sets and in the US English
locale, use the string table referenced by the resource ID kSDKDefStringsResourceID + index_enUS.

The next line specifies that when the feature set is kInDesignJapaneseFS and the locale is Japanese
(k_jaJP), use the string table referenced by the resource ID kSDKDefStringsResourceID + index_jaJP. In the
example, resource definitions for other locales (like French, German, and UK English) are omitted. It is extra
work to define resources for other languages from the beginning of development, so if you change the
k_enUS to kWild in the first line, your plug-in uses the US English string resources for locales other than
Japanese. This probably is a practical change to make, until you define resources for other locales. For a list

CHAPTER 2: Getting Started with the InDesign SDK Using resources in plug-ins 38

of supported locales, see <SDK>/source/public/includes/MLocaleIds.h and
<SDK>/source/public/includes/WLocaleIds.h.

The next LocaleIndex resource defines a no-translation string table, as there may be strings that you do
not want to be translated automatically.

LocaleIndex resource definition for dialogs

This is similar to the LocaleIndex resource for the string tables, except dialogs are defined as
kViewRsrcType resources instead of kStringTableRsrcType. In the example, all feature sets and locales use
the same US English dialog resource. Although the dialog resource comes strictly from the US English
locale index, the strings on the dialog are localized, as you defined above with kStringTableRsrcType.

Custom type definitions

This resource defines a widget type. In the example, WFPDialogWidget belongs to the kViewRsrcType
resource type and inherits the DialogBoss widget. This statement defines the boss class that backs the user
interface of this type:

type WFPDialogWidget(kViewRsrcType) : DialogBoss(ClassID = kWFPDialogBoss)
{
};

The DialogBoss widget type inherits from PrimaryResourcePanelWidget. Both are defined in
<SDK>/source/public/widgets/includes/Widgets.fh.

Dialog (view) resource

This resource defines your plug-in’s dialog box. This dialog is specified for the US English locale; however,
as specified in the LocaleIndex resource, it is used for all feature sets and locales. Since your plug-in does
not require a different dialog definition for each locale (that is, the widget arrangement is the same no
matter what locale is used), the definitions are consolidated into one .fr file.

This resource is complex, so we present the suggested way to navigate through the resource definitions.
First, look at the definition of the parent widget type, DialogBoss. Open
<SDK>/source/public/widgets/includes/Widgets.fh to see this:

type DialogBoss (kViewRsrcType) : PrimaryResourcePanelWidget (ClassID = kDialogBoss)
{
};

Notice that the parent of DialogBoss is PrimaryResourcePanelWidget. Now, examine the definition of
PrimaryResourcePanelWidget, to see that its parent is the root Widget; this is the top of the hierarchy. Look
at PrimaryResourcePanelWidget.

Go deeper and examine CControlView, defined in Widgets.fh:

CHAPTER 2: Getting Started with the InDesign SDK Step 5: Obtain a value from DropDownListWidget 39

type CControlView : Interface (IID = IID_ICONTROLVIEW)
{
 longint;// fWidgetId
 PMRsrcID;// fRsrcId, fRsrcPlugin
 integer; // fFrameBinding
 Frame; // fFrame
 integer; // fVisible
 integer; // fEnabled
};

Look at the first line in the type definition. It is a bit different than other widget type definitions you have
seen so far, as it specifies an IID instead of ClassID. This is an interface type. It indicates that CControlView is
a persistent interface in kPrimaryResourcePanelWidgetBoss.

Search for kPrimaryResourcePanelWidgetBoss in the API reference documentation, and see its aggregated
interfaces.

String-table resource

The string-table resource is next. WFP.fr includes two other .fr files, WFP_enUS.fr and WFP_jaJP.fr. They
specify US English and Japanese string table resources, respectively. Because the string-table resources are
separated by locale, they are easier to manage.

WFP_enUS.fr gives the US English string-table resource definition. The first line specifies the locale ID,
k_enUS. The next line specifies the character-encoding converter, which deals with the differences
between high-ASCII characters on Windows and Mac OS. The next line is where the string table is defined.
The string key and corresponding localized strings are comma-separated pairs.

Next, look at the Japanese-locale string table. The first line specifies the locale ID, k_jaJP. Because a
character-encoding converter for Japanese is not needed, the next line contains a zero. The string table is
defined after that, as in the US English string table, with the string key and localized strings in
comma-separated pairs.

Step 5: Obtain a value from DropDownListWidget
In this section, you obtain the string value from a dialog widget and create a string that you can insert into
an InDesign document.

Step 5.1: Get string value of selected item

The first step is to add code to get the fish name from the DropDownListWidget. You want your plug-in to
insert text into the InDesign document when the user clicks OK. Recall that the method that gets called
when OK is clicked is WFPDialogController::ApplyDialogFields. Because the actual handling of the button
click is delegated to CDialogController, the parent class of WFPDialogController, you already have some
basic dialog function in your plug-in.

Look at the code for the WFPDialogController::ApplyDialogFields method using your IDE. This code was
generated by DollyXs from the Dialog template. To obtain the text on the widget, call
CDialogController::GetTextControlData. This method requires a widget ID as a parameter and returns a
PMString object. You will use this method (from the ITextControlData interface in the dialog boss class) to
obtain the text data on the widget. The string returned is not the string you see on your dialog, but the
string key you defined in the string-table resource.

CHAPTER 2: Getting Started with the InDesign SDK Step 6: Get the text in the TextEditBoxWidget 40

On the next line, the lookup feature of the PMString object is used to translate the PMString to a string in
the current locale. Add the following code:

//Get selected text of DropDownList.
PMString resultString;
resultString = this->GetTextControlData(kWFPDropDownListWidgetID);
// Look up string and replace.
resultString.Translate();

Step 5.2: Save, build, and test

Save the source file you edited, build the plug-in, move the plug-in to the Plug-Ins directory, start
InDesign, create a text frame, and put the cursor in it.

Select your plug-in from the Plug-Ins menu, select Bonito from the drop-down list, and click OK.

Step 6: Get the text in the TextEditBoxWidget

Step 6.1: Get the string value

As you did in “Step 5.1: Get string value of selected item” on page 39, modify the
WFPDialogController::ApplyDialogFields method. Immediately after the line with resultString, add this
code:

// Get the editbox list widget string.
PMString editBoxString = this->GetTextControlData(kWFPTextEditBoxWidgetID);

Step 6.2: Form a string to insert into the text frame

Concatenate a string to insert into the InDesign document. Append strings in the following order: product
name, tab character, currency symbol, price, and new line.

The following code creates a PMString object, moneySign, that holds the string key for the currency
symbol. The code translates the string based on the current locale. Then, the code concatenates the tab
character, currency symbol, TextEditBoxWidget string that represents the price the user enters, and a
newline character, using the PMString::Append method.

PMString moneySign(kWFPStaticTextKey);
moneySign.Translate(); // Look up string and replace.
resultString.Append('\t'); // Append tab code.
resultString.Append(moneySign);
resultString.Append(editBoxString);
resultString.Append('\r'); // Append return code.

The PMString class has a wide variety of methods and is quite useful.

Using boss classes in plug-ins
A boss class is a class of objects in the InDesign object model. A boss class is like a C++ class; however, boss
classes are declared differently. InDesign consists of boss classes that represent document objects (like
images, text, and layers), as well as widgets (like dialog buttons and input fields). For example, InDesign
pages are represented by this object hierarchy: document, spread, layer, page. This hierarchy is
represented by a boss-class architecture.

CHAPTER 2: Getting Started with the InDesign SDK Using interfaces in plug-ins 41

Plug-in developers can access these boss-class objects when developing InDesign plug-ins. To use the
appropriate boss class for the desired task at hand, you must understand the InDesign object model and
its architecture. Also, you need to be aware of which boss class provides what kind of functionality. Like
C++ objects, boss-class objects can be invoked by calling methods (or member functions), but the way
you call boss-class objects differs from how you call methods in C++. For details, see “Using interfaces in
plug-ins” on page 41.

As with C++ classes, boss classes can inherit other boss classes. For example, kSplineItemBoss inherits from
kDrawablePageItemBoss, and kDrawablePageItemBoss inherits from kPageItemBoss. Child boss classes
can call methods in parent boss classes, making for a truly abstract, object-oriented programming model.

Boss classes developed by third-party plug-in developers are recognized by InDesign and used just like
boss classes that are part of the core InDesign application. For example, you can make a new boss class (in
this case, a custom page item) that inherits from kDrawablePageItemBoss, instantiate this boss class, and
put it on an InDesign document.

Using interfaces in plug-ins
When you call methods in a boss class, you do so in a style that differs from how you normally call a
method on a C++ class. First, you obtain an interface from a boss class, and then you call a method on that
interface. This concept of an interface refers to something unique to the InDesign object model. InDesign
interfaces are analogous to Microsoft Component Object Model (COM) interfaces.

Normally, you group related methods into a set. Interfaces in the InDesign object model comprise sets of
such grouped methods and are denoted as pure abstract C++ classes. By denoting them as pure abstract
C++ classes, you can call all methods within a particular interface in a boss class, even from outside the
interface itself.

For example, kPageItemBoss represents the base class for all page items that can be placed on a
document. This boss class aggregates (contains) the IHierarchy interface. By obtaining this interface and
calling its methods, you can obtain information about the object hierarchy of image and text-frame items
in an InDesign document.

InDesign’s naming convention is that all interface names begin with a capital “I,” so you can distinguish
interfaces at a glance.

IPMUnknown class

The base class of almost all InDesign interfaces is IPMUnknown. For the InDesign object model to function
correctly, interfaces must inherit from IPMUnknown and support the QueryInterface, AddRef, and Release
methods. You can query a boss for an interface pointer of type IPMUnknown and get back a valid interface
pointer.

Querying for interfaces and reference counts

QueryInterface is used to query for an interface on a boss. This function returns a pointer to an interface; it
returns nil if an instance of the interface is not available. QueryInterface automatically calls AddRef, which
increments the reference count on the interface. The object model keeps track of the reference count for
interfaces on bosses. If all interfaces on a boss have a reference count of zero, the boss can be marked for
deletion. If you used QueryInterface to obtain an interface pointer, you must call the Release method
when you are through with the interface, so the reference count for the interface is decremented correctly.

CHAPTER 2: Getting Started with the InDesign SDK Using interfaces in plug-ins 42

Forgetting to call Release results in an interface with a positive reference count; this condition (boss leak) is
a memory leak in the InDesign object model.

What is InterfacePtr?

InterfacePtr (<SDK>/source/public/includes/InterfacePtr.h) is a wrapper class that wraps IPMUnknown. In
addition to the AddRef method that is called automatically by QueryInterface, this template-based
wrapper class also calls Release when the interface pointer goes out of scope. This ensures that Release is
called on an interface, preventing boss leaks.

Here is a sample of how you would instantiate an interface pointer to ISpreadList from IDocument, using
InterfacePtr:

InterfacePtr<ISpreadList> iSpreadList(iDocument, UseDefaultIID());

Which variety of InterfacePtr constructor should I use?

There are many InterfacePtr constructors, which may seem overwhelming; however, three major types of
constructors are used commonly.

Type 1a: To get an interface in the same boss class (using default PMIID)

InterfacePtr::InterfacePtr(const IPMUnknown* p, const UseDefaultIID&)

This assumes that you already have an InterfacePtr of some kind or a pointer to an object derived from
IPMUnknown. You use this to obtain an interface aggregated on the same boss class. If the interface
declaration defines an enum kDefaultIID, the UseDefaultIID construct automatically uses the default PMIID
(interface ID). In this case, the new InterfacePtr has its reference count incremented by the
IPMUnknown::AddRef method:

IDocument* doc = Utils<ILayoutUIUtils>()->GetFrontDocument();
InterfacePtr<ISpreadList> iSpreadList(doc, UseDefaultIID());

Type 1b: To get an interface in the same boss class (specifying a PMIID)

InterfacePtr::InterfacePtr(const IPMUnknown* p, PMIID iid);

This assumes that you already have an InterfacePtr of some kind or a pointer to an object derived from
IPMUnknown. You use this to obtain an interface aggregated on the same boss class, but the interface
declaration does not define an enum kDefaultIID. You also use this when there are multiple
implementations of the same interface aggregated on the same boss class. In this case, the new
InterfacePtr has its reference count incremented by the IPMUnknown::AddRef method. There are
situations when you must specify a PMIID, like when you want to obtain an IStyleNameTable on
kWorkspaceBoss or kDocWorkspaceBoss. You also can regard this as a trick to aggregate multiple
implementations of the same interface into your boss class.

// docWorkspace is an IWorkspace aggregated on kDocBoss.
InterfacePtr<IStyleNameTable> iParaStyleTable(docWorkspace, IID_IPARASTYLENAMETABLE);
InterfacePtr<IStyleNameTable> iCharStyleTable(docWorkspace, IID_ICHARSTYLENAMETABLE);

CHAPTER 2: Getting Started with the InDesign SDK Using interfaces in plug-ins 43

Type 2: To Get a specific interface, not IPMUnknown*, from a Bridge Method

explicit InterfacePtr::InterfacePtr(IFace* p);

Generally, Query... methods (commonly known as bridge methods, see “Using databases and objects in
plug-ins” on page 44) return a pointer to an interface derived from IPMUnknown and increment the
reference count; however, you still want to take advantage of the automated cleanup provided by
InterfacePtr. To prevent reference counts from incrementing, as in Type 1a and 1b, use this constructor,
which does not call IPMUnknown::AddRef:

InterfacePtr<IGeometry> iPageGeometry(iSpread->QueryNthPage(0));

The following line of code looks innocent, but if you execute this and quit InDesign, you will get a boss
leak:

InterfacePtr<IGeometry> iPageGeometry(iSpread->QueryNthPage(0), UseDefaultIID());

Look carefully: ISpread->QueryNthPage(0) increments the reference count and, by means of InterfacePtr
constructor Type 1a, the reference count increments again.

The easiest remedy is to remove UseDefaultIID. If you leave it as is and fail to notice that a call to
iPageGeometry->Release is necessary, you will get a boss leak.

Type 3a: To get a persistent object on a database using a UIDRef

InterfacePtr::InterfacePtr(const UIDRef& ref, PMIID iid);
// Usable when kDefaultIID is defined
InterfacePtr::InterfacePtr(const UIDRef& ref, const UseDefaultIID&);

In this case, you use a preexisting UIDRef on a boss class. A UIDRef is a combination of the database that is
the target of persistence and a unique ID (UID) of a boss class object. This constructor is useful after
obtaining a UIDList from a command or a selection target.

The following code processes NewFrameCmd, and then obtains the frame’s IHierarchy:

InterfacePtr<IHierarchy> newPageItemHierarchy((newFrameCmd->
GetItemListReference()).GetRef(0), UseDefaultIID());

The following code obtains the first layer that contains page items:

IDocument* iDocument = Utils<ILayoutUIUtils>()->GetFrontDocument();
UIDRef layerRef(::GetDataBase(iDocument), iSpreadHier->GetChildUID(2));
InterfacePtr<ISpreadLayer> spreadLayer(layerRef, UseDefaultIID());

Type 3b: To get a persistent object on a database using a UID

InterfacePtr::InterfacePtr(IDataBase* db, UID uid, PMIID iid);
// Usable when kDefaultIID is defined
InterfacePtr::InterfacePtr(IDataBase *db, UID uid, const UseDefaultIID&);

This is like Type 3a, but it is useful when you do not need to create another UIDRef; specifically, when you
are getting interfaces on the same database. This is commonly used when you navigate the page item
parent/child relationship.

The following code obtains the first layer (spread-layer index 2) that contains page items:

CHAPTER 2: Getting Started with the InDesign SDK Using databases and objects in plug-ins 44

IDocument* iDocument = Utils<ILayoutUIUtils>()->GetFrontDocument();
IDataBase* iDataBase = ::GetDataBase(iDocument);
InterfacePtr<ISpreadLayer> spreadLayer(iDataBase, iSpreadHier->GetChildUID(2),
UseDefaultIID());

The following code navigates up from kFrameItemBoss(ITextFrameColumn), kMultiColumnItemBoss, and
to kSplineItem (see IDataBase, IHierarchy):

InterfacePtr<IHierarchy> frameItemHierarchy(iTextFrameColumn, UseDefaultIID());
InterfacePtr<IHierarchy> mcitemHierarchy
 (iDataBase, frameItemHierarchy->GetParentUID(), UseDefaultIID());
InterfacePtr<IHierarchy> splineItemHierarchy
 (iDataBase, mcitemHierarchy->GetParentUID(), UseDefaultIID());

Using databases and objects in plug-ins
In InDesign, document files are represented internally as databases. You can make boss-class objects
persistent by storing them in databases. In a C++ programming model, C++ classes generally are declared
with a class keyword and instantiated in memory (for example, a heap). By serializing the data in the
instantiated object, the data can be stored in a complex class structure in a file and retrieved from the file.

To store boss-class objects in a database, a unique identifier (UID) is assigned to each boss-class object. In
the InDesign object model, UIDs (which are stored internally as 32-bit unsigned integers) are handles that
are treated somewhat like pointers. For example, a document boss (kDocBoss) aggregates ISpreadList, an
interface that owns the UIDs of all spreads within a document; within each spread, you can obtain
page-item objects and pages by means of the UIDs obtained from IHierarchy (a bridge interface for the
object tree in a document). Furthermore, these UIDs are persistent across InDesign application sessions, so
even after quitting and restarting InDesign, the UIDs stored in your documents continue to be valid.

To call methods on interfaces aggregated on these boss-class objects in a C++ program, the actual objects
must be instantiated in memory as C++ objects. You can obtain pointers to these interfaces using the
various Get... and Query... methods (bridge methods). The general rule of thumb with bridge methods is
that Get... methods do not increment reference count, but Query... methods do.

Step 7: Insert a string into a text frame

Step 7.1: Insert text into the current text selection

The selection architecture is used to make changes to currently selected items. This architecture is built on
a group of selection-suite interfaces, which usually contain “Suite” in the interface name and have
methods like I<Xxx>Suite::CanDoSomething and I<Xxx>Suite::DoSomething. One good thing about this
approach is that you do not have to worry about what the selected items are, because the branching is
done behind the scenes; you do not have to handle everything in your plug-in code. To learn more about
the selection architecture, see the “Selection” chapter of Adobe InDesign Plug-In Programming Guide.

In this case, you want to edit the text at the current selection. Look in the
<SDK>/source/public/interfaces/text directory, and you will find a few interfaces ending in *Suite.h. One of
them is ITextEditSuite.h. Examine this interface; it contains the methods you need:

virtual bool16 CanEditText() = 0;
virtual ErrorCode InsertText(const WideString& theText) = 0;

The basic idea is to first test to determine whether text on the current selection can be edited (true or false)
and, if so, insert text.

CHAPTER 2: Getting Started with the InDesign SDK Step 7: Insert a string into a text frame 45

To query for an instance of this interface, use IActiveContext::GetContextSelection to get to an
ISelectionManager. From ISelectionManager, you can query a suite interface to see whether the queried
suite is available on the current selection. When IActiveContext is not available, you can also use the
ISelectionUtils interface. Because it is aggregated on the kUtilsBoss, you can use the Utils template-based
helper class.

To add code to insert a string into a text frame, open WFPDialogController.cpp and add these #include
statements at the top of the file:

#include "ISelectionManager.h"
#include "ITextEditSuite.h"

Next, add the following code in the WFPDialogController::ApplyDialogFields method, immediately after
where you left off in “Step 6.2: Form a string to insert into the text frame”. Find the following line:

resultString.Append('\r');

After that line, add the following code, which uses IActiveContext to obtain the current selection and uses
ITextEditSuite to insert text into the current text selection:

InterfacePtr<ITextEditSuite> textEditSuite(
 myContext->GetContextSelection(), UseDefaultIID());
if (textEditSuite && textEditSuite->CanEditText())
{
 ErrorCode status = textEditSuite->InsertText(WideString(resultString));
 ASSERT_MSG(status == kSuccess, "WFPDialogController::ApplyFields: can't insert
text");
}

Inside the implementation for ITextEditSuite, text is inserted by processing a command
(ITextModelCmds::TypeTextCmd) on the text model. Commands are used throughout the InDesign API to
change the model.

Step 7.2: Save, build, and test

After making the changes, save all your edited source files, build the plug-in, move the plug-in to the
Plug-Ins directory, and start InDesign. Then, create a text frame on a new document, make sure the cursor
is blinking, select the Plug-in menu so your dialog shows up, select a fish type, and enter its price. Click OK.
The following figure shows the result:

CHAPTER 2: Getting Started with the InDesign SDK Using commands in plug-ins 46

Using commands in plug-ins
InDesign uses commands to modify internal data. This offers the following benefits:

 You do not have to modify the internal data (model) directly. The internal data can stay encapsulated.

 Commands facilitate actions such as Undo and Redo.

 Commands allow your plug-in to be notified about details of changes to the model, through the use of
observers.

You also can create custom commands. If you create custom commands, you can separate the user
interface and core-feature implementation components, making for a more extensible design.

To find out more about processing commands, see the “Commands” chapter of Adobe InDesign Plug-In
Programming Guide.

Step 8: Disable the menu with no text selection
Because you do not want this dialog to be opened when there is no text selection, you will make some
changes so that the menu is disabled when there is no text selection.

Step 8.1: Modify ActionDef

Open the WFP.fr resource file and add the following line toward the top of the file, with all the other
#include statements:

#include "TextID.h"

Go down to the ActionDef resource, to the second block, which begins with kWFPActionComponentBoss.
Change kDisableIfLowMem to kDisableIfSelectionDoesNotSupportIID. On the next line, change
kInvalidInterfaceID to IID_ITEXTEDIT_ISUITE. These constants are defined in ActionDefs.h and TextID.h.

resource ActionDef (kSDKDefActionResourceID)
{
 {
 ... omitted

 kWFPActionComponentBoss,

 kWFPDialogActionID,
 kWFPDialogMenuItemKey,
 kOtherActionArea,

 kNormalAction,
 kDisableIfSelectionDoesNotSupportIID,// Change this!
 IID_ITEXTEDIT_ISUITE,// Change this!

 kSDKDefVisibleInKBSCEditorFlag,
 }
};

Step 8.2: Save, build, and test

After making the changes, save all your edited source files, build the plug-in, move the plug-in to the
Plug-Ins directory, and start InDesign. Now create a new document, put a new text frame on it, and see
whether the menu item for your plug-in is available.

CHAPTER 2: Getting Started with the InDesign SDK Step 9: Initialize dialog widgets 47

Step 9: Initialize dialog widgets
As shown in the dialog in the following figure, the drop-down list shows nothing, and the text-edit box is
blank when you open the dialog box.

NOTE: There is a hidden feature in this dialog. While the dialog box is active, hold down the Alt key
(Windows) or Option key (Mac OS), to change the Cancel button to the Reset button. See the following
figure. Dialogs in InDesign have the capability to reset fields to an initial state.

By adding functionality to the WFPDialogController::InitializeDialogFields method, you can handle the
initialization and resetting of dialog-box fields. In the following sections, you will add functionality to the
InitializeDialogFields method.

Step 9.1: Add code to initialize the DropDownListWidget

Open WFPDialogController.cpp. You will add code to the WFPDialogController::InitializeDialogFields
method. This method first delegates to the same method in the parent class,
CDialogController::InitializeDialogFields. The parent-class method sets a flag that keeps track of whether
this InitializeDialogFields method was called, so make sure you call
CDialogController::InitializeDialogFields:

/* InitializeDialogFields
*/
void WFPDialogController::InitializeDialogFields(IActiveContext* dlgContext)
{
 CDialogController::InitializeDialogFields(dlgContext);
 // Put code to initialize widget values here.
}

Next, you will add some code to initialize the DropDownListWidget.

By calling the CDialogController::QueryIfNilElseAddRef method, you obtain a pointer to the
IPanelControlData interface. This method takes an IPanelControlData interface pointer as a parameter. If
that pointer is nil, the method returns the IPanelControlData interface of the same boss class. If the pointer
is not nil, the method increments the reference count to that pointer and returns the pointer. Add the
following line at the top of WFPDialogController.cpp:

#include "IPanelControlData.h"

Next, insert the following code immediately after where CDialogController::InitializeDialogFields is called:

CHAPTER 2: Getting Started with the InDesign SDK Step 9: Initialize dialog widgets 48

do {
 // Get current panel control data.
 InterfacePtr<IPanelControlData> pPanelData(QueryIfNilElseAddRef(nil));
 if (pPanelData == nil)
 {
 ASSERT_FAIL("WFPDialogController::InitializeDialogFields: PanelControlData is
nil!");
 break;
 }

If the pPanelData interface pointer is valid, call IPanelControlData::FindWidget in the IPanelControlData
interface, to obtain an IControlView interface pointer. This method takes a widget ID as a parameter and
returns the corresponding IControlView interface pointer.

NOTE: IControlView is the interface for CControlView, which was seen while ascending the hierarchy of
widget type definitions.

Insert the following code:

else {
 // Find drop-down list menu control view from panel data.
 IControlView* pDropDownListControlView =
 pPanelData->FindWidget(kWFPDropDownListWidgetID);
 if(pDropDownListControlView == nil)
 {
 // Is the widget on the dialog box?
 ASSERT_FAIL("WFPDialogController::InitializeDialogFields: "
"DDListControlView is nil");
 break;
 }

Using the obtained IControlView interface pointer, obtain the IDropDownListController interface pointer,
which exists in the same boss class, kDropDownListWidgetBoss. The kDropDownListWidgetBoss is
responsible for controlling the DropDownListWidget (as defined in the resource definitions). To use the
IDropDownListController interface, you must add the following include statement at the top of
WFPDialogController.cpp:

#include "IDropDownListController.h"

Then, add the following code immediately after the call to pPanelData->FindWidget:

// Get IDropDownListController interface pointer.
InterfacePtr<IDropDownListController>

pDropDownListController(pDropDownListControlView, UseDefaultIID());
if(pDropDownListController == nil)
{
 // Is the controller available?
 ASSERT_FAIL("WFPDialogController::InitializeDialogFields: DDListControlView is
nil!");
 break;
}

If the pDropDownListController interface pointer is valid, call the IDropDownListController::Select method
to set the initial state of the DropDownListWidget to show the first element. If nothing is selected in the
DropDownListWidget, the IDropDownListController::GetSelected method returns -1, which is an invalid
index. The top of the list has index 0. Add the following code where you left off:

// Select the element at the given position in the list.
pDropDownListController->Select(0);

CHAPTER 2: Getting Started with the InDesign SDK Conclusion 49

Step 9.2: Add code to initialize the TextEditBoxWidget

Initialize the text-edit box. Create an initial string using a PMString initialized with an empty (null) string.
Then, set the value of the TextEditBoxWidget to the initial string by calling the SetTextControlData
method. Add the following code:

 // Initialize TextEditBox.
 PMString InitialString("");
 SetTextControlData(kWFPTextEditBoxWidgetID, InitialString);
} while (kFalse);

Step 9.3: Save, build, and test

Save your files, build the plug-in, move it to the Plug-Ins directory, and start InDesign to try your plug-in.
When you open the dialog, you should see the first list element automatically shown in the drop-down list.
Select another entry from the drop-down list, hold down the Alt (Windows) or Option (Mac OS) key, and
click Reset on the dialog. The drop-down list should reset to its initial state.

Conclusion
The goal of this document was to help you become familiar with developing plug-in-based solutions for
InDesign. While this document covers many important, fundamental aspects of InDesign development, it
is only the first step. If you study the code and header files used in our completed plug-in line by line, you
may find more functionality.

The Adobe InDesign and InCopy SDK contains an enormous amount of information to help you develop
plug-in-based solutions for InDesign. At first, you may be overwhelmed, and if you try too much too soon,
you may get discouraged. We recommend that you start by building some of the sample plug-in projects
that are provided and using them with the debug build of InDesign. We hope that you find the sample
plug-ins useful.

 50

3 Introduction to ODFRC

This chapter introduces some of the most common resources types you will encounter in ODFRC
(OpenDoc Framework Resource Compiler) files. This is not an ODFRC reference; it is just enough to get you
comfortable with what you will see in a typical FR file. (By convention, ODFRC files have a “.fr” file extension
and are referred to as FR files.)

FR file compilation
Each plug-in project must define certain resources in an FR file. There are resources that describe required
data for a plug-in, and there are many optional resources. One FR file can contain all the resources
necessary for the plug-in, or it can #include other FR files. Regardless of whether everything is in a single
file or resources are spread across multiple files, the main FR file is configured to compile with the ODFRC.

The Windows and Mac OS ODFRC executables are located in the <SDK>/devtools/bin directory. The
Windows version is Odfrc.exe, and the Mac OS version is odfrc-cmd. Adding a search path to this directory
is a necessary step in setting up Visual Studio for InDesign development. This is covered in Chapter 2,
“Getting Started with the InDesign SDK.” The Mac OS project must contain a path to odfrc-cmd.

Visual Studio projects are configured to compile FR files using a custom build tool that calls Odfrc.exe.
Visual Studio custom build tools are not very smart about dependencies on changes to the input file. To
trigger recompiles when the FR file changes and skip them when the file has not changed, the custom
build tool is associated with an object file. This special object file is generated from a C++ file that
#includes the FR file; each plug-in has one such file, usually called TriggerResourceDeps.cpp. When
configured properly, ODFRC is called only when changes occur to the FR file.

The situation is more straightforward on Mac OS, where dependency checking works. InDesign plug-in
projects must contain a build rule for *.fr files. Then, this rule is configured to compile FR files with
odfrc-cmd. For examples of how your plug-in should be configured, see the sample projects or use the
DollyXs plug-in generation tool.

FR file contents
FR files contain three types of content:

 #include statements — Two types of files are included, those that provide IDs that are used in
resources, and those that contain additional resource definitions or declarations.

 Resource definitions — Some FR files define new types of resources; for example, Widgets.fh, where
various types of user-interface-based resources are defined.

 Resource declarations — An FR file contains some actual resource declarations that can be read by the
InDesign architecture

PluginVersion
Each plug-in must declare a PluginVersion resource. This resource is used to provide plug-in-specific
information to the InDesign object model. The name may be a bit misleading, because the resource

CHAPTER 3: Introduction to ODFRC PluginVersion 51

includes more than version information: It also includes the target (debug or release) for which the plug-in
was compiled, the plug-in’s ID, whether it supports model or user-interface operations, and supported
applications and feature sets.

The following is a typical PluginVersion resource declaration, followed by comments about the fields in the
resource.

resource PluginVersion (kSDKDefPluginVersionResourceID)
{

kTargetVersion, // 1
kFrmLblPluginID, // 2
kSDKDefPlugInMajorVersionNumber, kSDKDefPlugInMinorVersionNumber, //3
kSDKDefHostMajorVersionNumber, kSDKDefHostMinorVersionNumber, //4
kFrmLblLastMajorFormatChange, kFrmLblLastMinorFormatChange, //5
{ kInDesignProduct, kInCopyProduct, kInDesignServerProduct}, //6
{ kWildFS },//7
kModelPlugIn, // 8
kFrmLblVersion // 9

};

1. The target for which this plug-in was built. This is done using kTargetVersion, which is defined
differently for each target (debug or release). This is important because a plug-in’s target must match
the application with which it is trying to launch. For example, a debug plug-in is not compatible with
the release version of the application. The application checks this resource during launch and refuses
to load the plug-in if there is a mismatch.

2. The plug-in’s unique ID. This sometimes is called a prefix ID, because it makes a range of IDs available
to the plug-in. These IDs are used for various constructs in the InDesign architecture. This value is
assigned by Adobe. For more information on acquiring a unique plug-in ID, visit
http://www.adobe.com/devnet/indesign/prefix_reg.html.

3. The major and minor version numbers for this plug-in. Typically, these are the same as the application
version numbers in the next two fields.

4. The major and minor version of the application that this plug-in supports. Plug-ins must be compiled
for a particular major format number. These fields should be set to “kMajorVersionNumber,
kMinorVersionNumber.” The samples use “kSDKDefPlugInMajorVersionNumber,
kSDKDefPlugInMinorVersionNumber,” which are simply #defines of kMajorVersionNumber and
kMinorVersionNumber.

5. A plug-in can be versioned for conversion purposes. These two fields contain the major and minor
format number for the plug-in. The major version should be set to match the major version of the
application when the plug-in was introduced or its data format changed. The minor version number is
used to mark plug-in data-format changes that occur during a product cycle.

6. A plug-in can target one or all InDesign products (InDesign, InCopy, and/or InDesign Server). This tells
the architecture which product the plug-in supports. There are additional rules for plug-ins that
support InDesign Server: they must not link against WidgetBin or InDesignModelAndUI.framework,
and they must be model-only plug-ins.

7. The InDesign products include several different feature sets. This is related to, but different than,
locales. Some localized InDesign products, like InDesign J, contain additional features; these are called
feature sets. You can target any combination of feature sets in the PluginVersion resource. To target all
feature sets, specify kWileFS.

8. This field declares whether the plug-in supports model (kModelPlugIn) or user-interface (kUIPlugIn)
operations, making model/user-interface separation mandatory. These values come from the

http://www.adobe.com/devnet/indesign/prefix_reg.html

CHAPTER 3: Introduction to ODFRC PluginDependency 52

PlugInModel_UIAttributes.h header. This is important in InDesign’s multithreaded environment. Only
model plug-ins are available for operations that occur on background threads.

9. This final field is the plug-in’s four-part version string (for example, 7.0.0.0).

PluginDependency
One plug-in can depend on another plug-in. Consider user-interface and model plug-ins. A user-interface
plug-in is meaningless without a model plug-in present.

resource PluginDependency(1)
{

kWildFS,
{

kWatermarkPluginID, kWatermarkPluginName,
kMajorVersionNumber, kMinorVersionNumber,

}
};

ExtraPluginInfo
InDesign plug-ins can contribute data to a document. It is safe to open such a document if the plug-in is
missing, but the document will not behave as expected. The ExtraPluginInfo allows a plug-in to control the
error message that is presented when the plug-in is determined to be missing.

resource ExtraPluginInfo(1)
{

“Adobe Systems Incorporated”,// Company name
“http://www.adobe.com/devnet/indesign”,// URL
“You may download this plug-in from...”,// Missing plug-in alert text

};

CriticalTags and IgnoreTags
InDesign offers some control over what happens when your plug-in is missing. By default, it warns you
about the missing plug-in. You can suppress these warnings using an IgnoreTags resource, or you can
trigger a more stern warning using CriticalTags. Both resources allow you to specify implementation or
class IDs.

CHAPTER 3: Introduction to ODFRC SchemaList 53

resource CriticalTags(1)
{

kImplementationIDSpace,
{

kPstLstDataPersistImpl,
kPstLstUIDListImpl,

}
};

resource CriticalTags(2)
{

kClassIDSpace,
{

kPstLstDataBoss,
}

};

resource IgnoreTags(1)
{

kImplementationIDSpace,
{

kPersistBoolDataImpl,
}

};

SchemaList
InDesign plug-ins can write (or retain) implementation data in document databases. Such plug-ins must
be able to read and write this data when directed by the system. Sometimes, however, an implementation
needs to change what data it writes, while being aware of data from prior versions of the plug-in. Schema
conversion is a convenient way to handle data conversion at the resource level. Typically, you will
encounter or implement something like the following:

resource SchemaList(1)
{{

Schema
{

kMyDataImpl,
{kRocketMajorFormat, kMyDataChangeChg},

{
{Int32 {1, kMyDataDefaultIndex}},

{Int32 {2, kMyDataDefaultSize}},
}

};

This resource captures a data-format change. It records what data kMyDataImpl writes at a particular
revision number; in this case, it is a pair of int32 values along with default values (kMyDataDefaultIndex,
and kMydataDefaultSize) to be used during conversion (if, for example, you opened an older document
without that data present).

This also is important if the implementation needs to be changed. For example, if an extra bool16 is added
to the stream, it could be described using another schema.

CHAPTER 3: Introduction to ODFRC ImplementationAlias 54

resource SchemaList(2)
{{

Schema
{

kMyDataImpl,
{kRocketMajorFormat, kMyDataChangeChg2},
{

{Int32 {1, kMyDataDefaultIndex}},
{Int32 {2, kMyDataDefaultSize}},
{Bool16 {3, kMyDataDefaultActive}},

}
};

This is an extremely basic introduction to schemas. For details about schema conversion, see the
“Persistent Data and Data Conversion” chapter in Adobe InDesign Plug-In Programming Guide.

ImplementationAlias
The InDesign object model references C++ implementations by ID. You may find it desirable to add an
implementation to a boss class more than once; however, the InDesign object model does not support
adding duplicate implementation IDs. The ImplementationAlias resource allows you to create a new
implementation ID for an existing implementation.

resource ImplementationAlias(1)
{

{
kSnippetNameDataImpl, kStringDataImpl,
kSnippetCategoriesDataImpl, kStringListDataImpl,
kSnippetDescriptionDataImpl, kStringDataImpl,
kSnippetPreconditionsDataImpl, kStringDataImpl,

}
};

ClassDescriptionTable
As mentioned previously, boss classes are at the heart of the InDesign object model. The
ClassDescriptionTable resource allows you to declare new bosses or to modify existing bosses. You can add
an interface/implementation pair into an existing boss using an AddIn directive. To declare a new boss,
you can use Class directives. Examples of both follow.

CHAPTER 3: Introduction to ODFRC FactoryList 55

resource ClassDescriptionTable(1)
{{{

AddIn
{

kWorkspaceBoss,
kInvalidClass,
{

IID_IMYDATA, kMyDataImpl,
}

},

Class
{

kMyDataBoss,
kSomeBaseClassDataBoss, // Base Class
{

IID_IMYDATA, kMyDataImpl,
}

},
}}};

Boss classes support inheritance. This allows a child boss class to inherit all the interface/implementation
pairs from another boss. This is done by specifying a valid ClassID in the second field of the Class directive.
The preceding example inherits the implementations in kSomeBaseClassDataBoss.

FactoryList
InDesign plug-ins must register each implementation. This prevents the linker from looking at them as
dead code. The FactoryList resource typically #includes the implementation registrations from another
header file.

resource FactoryList (1)
{

kImplementationIDSpace,
{

#include "FrmLblUIFactoryList.h"
}

};

In effect, this amounts to something like the following:

resource FactoryList (1)
{

kImplementationIDSpace,
{

REGISTER_PMINTERFACE(FrmLblUIActionComponent, kFrmLblUIActionComponentImpl)
REGISTER_PMINTERFACE(FrmLblUIDialogController, kFrmLblUIDialogControllerImpl)

}
};

LocaleIndex
InDesign plug-ins are fully localizable, including the ability to provide both localized strings and
user-interface layout. The following declares that the plug-in will provide localization strings for the
Japanese feature set, running in the Japanese locale, but use English for everything else.

CHAPTER 3: Introduction to ODFRC StringTable 56

resource LocaleIndex (kSDKDefStringsResourceID)
{

kStringTableRsrcType,
{

kWildFS, k_enUS, kSDKDefStringsResourceID + index_enUS
kInDesignJapaneseFS, k_jaJP, kSDKDefStringsResourceID + index_jaJP
kWildFS, k_Wild, kSDKDefStringsResourceID + index_enUS

}
};

In this example, kStringTableRsrcType tells InDesign that these resources are for strings. A LocaleIndex that
specifies kViewRsrcType is used to localize ODFRC-based user-interface components like dialogs and
panels.

StringTable
The StringTable resource is used to provide a set of string translations for a given locale. It typically looks
something like the following, but with many more strings.

resource StringTable (kSDKDefStringsResourceID + index_enUS)
{

k_enUS,// Locale Id
kEuropeanWinToMacEncodingConverter,// Character encoding converter (irp)
{
 // ----- Menu strings
 "MyDataOnMenuItem","My Data On",
 ...
}

};

When kMyDataOnMenuItem is used in a PMString, it is translated to My Data On. This is not very
interesting when dealing with English strings, but it is extremely useful when localizing your plug-in. For
details, see the chapter on “Localization”.

UserErrorTable
Some InDesign APIs return an ErrorCode on failure. An ErrorCode is a value that InDesign or a plug-in
defines within in the kErrorIDSpace using a plug-in prefix, as follows:

DECLARE_PMID(kErrorIDSpace, kMySetDataFailureErrorCode, kMyPluginPrefix + 0)

An ErrorCode can be mapped to a more descriptive string using the UserErrorTable.

resource UserErrorTable(kSDKDefErrorStringResourceID)
{

{
kMySetDataFailureErrorCode, “Failed to Set Data“,

}
};

Other resources
You will encounter several other significant and sometimes complex resource types that, in conjunction
with C++ code, are used to implement user interfaces and scripting. MenuDef and ActionDef resources are
used to define InDesign menus and actions. There are many widget resource types used to describe

CHAPTER 3: Introduction to ODFRC Other resources 57

dialogs and panels. The VersionedScriptElementInfo resources describe the objects and properties that a
plug-in contributes to InDesign’s scripting model. Scripting-related resources are covered in more detail in
the “Scriptable Plug-in Fundamentals” chapter of Adobe InDesign Plug-In Programming Guide.

Resource folder

InDesign supports multithreaded resource access. When a plug-in is compiled, ODFRC generates several
new folders containing resource files. On Windows, these folders are in the “(<PluginName> Resources)”
directory, parallel to the plug-in file. (Note that the parentheses are part of the directory name.) On Mac
OS, the folders are in the Resources directory of the plug-in bundle. On Windows and Mac OS, if the folder
name is inconsistent with the plug-in name or a resource file is missing, the plug-in cannot be loaded.

 58

4 Introduction to the InDesign Object Model

This chapter discusses boss classes, interfaces, persistence, commands, facades, and the lifecycle of a
plug-in.

Boss classes
A boss class defines an aggregate object type comprising one or more C++ classes. Like C++ classes, a
boss class can be instantiated into an instance, and bosses support inheritance. Unlike a C++ class,
however, a boss does not comprise methods and variables. The member type of a boss is a C++ class,
accessible via an interface; this also is known as an interface/implementation pair. And unlike C++ classes,
you can change the definition of existing boss classes by adding additional interface/implementation
pairs. This is demonstrated below.

Interfaces and implementations

Interfaces are purely abstract classes, commonly used in object-oriented systems to provide a common
contract between callers and different underlying types. In C++, they are classes consisting entirely of pure
virtual functions. Interfaces are not instantiated but instead can be implemented, meaning a subclass
inherits the interface and provides definitions for all the pure virtual functions. The subclass is then
instantiated. For example, InDesign includes several implementations of the IShape interface. Each
implementation is unique, but all are accessible via the IShape interface.

The following figure gives you an idea what a boss looks like in memory.

Defining and adding to bosses in ODFRC

Boss definitions and add-ins are defined in a ClassDescriptionTable in your plug-in’s ODFRC resource file.
For example, the following is a ClassDescriptionTable containing one boss definition and one boss add-in:

«boss class»
kBscMnuActionComponentBoss

DoAction ()
UpdateActionStates ()

«interface»
IActionComponent

GetUID()
GetDataBase()

«interface»
IPMPersist

GetClass()
GetRefCount()

«interface»
IControllingUnknown

CHAPTER 4: Introduction to the InDesign Object Model Boss classes 59

resource ClassDescriptionTable(kMyClassDescriptionTableResourceID) {{{
Class {

kMyNewBoss,
kInvalidClass, {

IID_IMYNEW, kMyNewImpl,
IID_IMYNEWDATA, kMyNewDataImpl,

}}
AddIn {

kUtilsBoss,
kInvalidClass, {

IID_ICJKGRIDUTILS, kCJKGridUtilsImpl,
IID_ICJKGRIDFACADE, kCJKGridFacadeImpl,

}
}

}}};

Usually, a plug-in has one ClassDescriptionTable resource, but it can have more. If it has more, each
resource must be assigned a unique resource ID. This particular resource ID is a simple integer ID, unique
within the plug-in. Since these IDs are not used outside the plug-in, typically they are simple integers (1, 2,
3, ...).

A ClassDescriptionTable contains Class definitions and AddIn directives; the preceding example contains
one of each. Aside from those keywords and the braces, commas, and semicolon, everything is a 32-bit ID.

In the Class block, the first field is an ID for the new boss (kMyNewBoss). The second field is used to specify
a parent boss. Bosses inherit all the interface/implementation pairs of their parent. The example specifies a
parent of kInvalidClass, meaning there is no parent. Finally, a boss definition contains a block of
interface/implementation pairs.

An AddIn adds an interface/implementation pair to an existing boss class. This is useful when you need to
add functionality to existing InDesign objects; for example, the kDocBoss represents an InDesign
document. You may find it useful to create an AddIn for the kDocBoss. The syntax for an AddIn is similar to
a boss definition, but it specifies an existing boss in the first field. The second field, which specifies a parent
in the Class definition, must be set to kInvalidClass. Then the AddIn contains a block of
interface/implementation pairs to add into the existing boss.

Unique prefix-based IDs

Each boss, interface, and implementation has a unique ID that identifies it within the space of all InDesign
bosses, interfaces, or implementations. The boss, interface, and implementation ID spaces are separate
spaces, so your plug-in can safely use the same number for an interface and a boss, but there should be no
overlap within a space; for example, no overlap of bosses with other bosses.

The IDs are 32-bit unsigned integers. To ensure that unique IDs are used in each plug-in, you must request
a 24-bit prefix from InDesign Developer Support. There is a request form at
http://www.adobe.com/devnet/indesign/prefix_reg.html. The 24-bit prefix you receive is reserved for use
in your plug-in, giving you a maximum value of 256 values for bosses, interfaces, or any other prefix-based
IDs. Typically, this is more than enough for any plug-in; in fact, sometimes this is enough for a set of
plug-ins.

The following table lists the InDesign naming conventions for boss, interface, and implementation
constants.

http://www.adobe.com/devnet/indesign/prefix_reg.html

CHAPTER 4: Introduction to the InDesign Object Model Boss classes 60

You can use the same naming conventions for the bosses and interfaces that make up your plug-in. This
will help you quickly differentiate between bosses and interfaces and keep them separate from other
groups of unique IDs. Each plug-in (yours included) has an XXXID.h file (where XXX is the short name of the
plug-in) that defines the prefix ID used and various IDs used by the plug-in. For an example of such a file,
see any of the sample plug-ins.; in particular, see the FrameLabel samples at:

<SDK>/source/sdksamples/framelabel/FrmLblID.h.

IPMUnknown

Interface classes that are used as a component of a boss are either provided by the SDK, such as
ICommand, or written by the plug-in developer to provide some plug-in-specific function. They can
contain any types of methods, but to work as a component of a boss, they must inherit from IPMUnknown.
For example, see the definition of the ICommand interface:

class ICommand : public IPMUnknown
{

...
};

Any interface you write needs to publicly inherit IPMUnknown, which contains three important methods:
AddRef(), Release(), and QueryInterface(). AddRef() and Release() deal with reference counting.
QueryInterface() provides access to the other interfaces on the boss.

Querying for other interfaces on the boss

The QueryInterface (PMIID interface ID) on IPMUnknown allows you to acquire a pointer to other
interfaces on the boss or determine that a boss does not support a particular interface. If the boss contains
an interface for the passed-in ID, it calls AddRef() and returns a pointer to the interface; otherwise, it
returns nil.

IFoo * foo = bar->QueryInterface(IID_IFOO);

Reference counting

Bosses are reference-counted objects. A reference count is maintained for the boss, not for the individual
interfaces. When you call AddRef() or Release() on an interface, the reference count for the entire boss
object is adjusted. Sometime after the reference count reaches zero (this is not guaranteed to happen
right away), the object model deletes the boss from memory.

When your code needs to manage a reference to a boss object, you must call AddRef(). If this is not done,
you run the risk of the boss being deleted while still in use. Likewise, when the reference is no longer
needed, the reference count must be deleted by calling Release(). If this is not done, you will create a boss
leak (which, in turn, creates memory leaks). In essence, you are allocating system resources and never
freeing them.

Constant type Prefix Suffix

Boss k Boss

Interface ID IID_ (none)

Implementation ID k Impl

CHAPTER 4: Introduction to the InDesign Object Model Boss classes 61

Reference-counting example

Consider the MyClass::AddBarRef example below. The caller passes an IBar* to AddBarRef(), and MyClass
stores the pointer for later use. Unless AddRef() is called, the code cannot assume that fBar will point to a
valid object when it is used later. In this case, MyClass holds a reference to the boss and needs to call
AddRef().

void MyClass::AddBarRef(IBar* bar)
{

if(bar)
{
fBar = bar;
fBar->AddRef();
}

}

If a MyClass instance holds a valid fBar reference, Release() needs to be called at some point. This could
happen in the destructor:

MyClass::~MyClass()

{
if(fBar)
{
fBar->Release();
fBar = nil;
}

}

NOTE: If the preceding MyClass instance and fBar were part of the same boss class, this code would create a
boss leak. Destructors are not called until after the boss’s reference count reaches zero. In this case, the
reference count would never reach zero, so the destructor would never be called. Do not make this
mistake!

In other cases, it is entirely appropriate to pass an interface pointer to a function without calling AddRef().
For example, consider the following CallBar example. This method does not need to hold a reference to
the boss. It simply performs some operation on the passed-in pointer; it does not save it for later use.

void MyClass2::CallBar(IBar * bar)
{

if(bar)
{

bar->DoSomething();
}

}

InterfacePtr

Typically, you will not need to store a reference to a boss. Most often, your code will acquire a reference to
a boss, use it within a local scope, and eventually need to call Release(). In this case, you should not call
QueryInterface(), AddRef(), and Release() yourself. The SDK includes a templated class called InterfacePtr
that acts much like a smart pointer. The object is created on the stack and initialized with a
reference-counted interface pointer. When the InterfacePtr goes out of scope, it calls Release() in its
destructor.

CHAPTER 4: Introduction to the InDesign Object Model Boss classes 62

void MyClass2::CallBar(IPMunknown * obj)
{

InterfacePtr<IBar> bar(obj, UseDefaultIID());
if (bar)
{

...
if(GetErrorState())

return;
bar->DoSomething();

}
}

You will find code similar to the preceding throughout the InDesign code base. It is important to
understand what is really happening and the true benefits of using InterfacePtr. In this case, the
InterfacePtr constructor calls QueryInterface on obj (if it is non-nil). It uses a PM_IID (this is the type for an
interface ID that is defined in a plug-in’s ID.h file) that it extracts from an enumeration item called
kDefaultIID within the IBar interface. While we recommend including such an enumeration, it is not
required. If IBar did not include such an enumeration, this code would fail to compile. An alternative is to
construct the InterfacePtr with the ID:

InterfacePtr<IBar> bar(obj, IID_IBAR);

The preceding two InterfacePtr constructions are roughly equivalent to calling QueryInterface directly:

InterfacePtr<IBar> bar(obj->QueryInterface(IID_IBAR));

The one way in which the two constructors differ is that the constructor in the first two examples checks
whether the passed-in pointer is nil. If it is, an InterfacePtr is constructed, but its data member is nil. If the
data member is non-nil, the InterfacePtr destructor calls Release() when the object goes out of scope. The
constructor does nothing if the InterfacePtr’s data member is nil. A similar thing happens with the
indirection operator '->'. It is overloaded, to behave as if you are dealing with a real pointer; however, in the
debug build, it asserts that the actual pointer is non-nil. This provides an opportunity to find crashes right
before they occur.

The final thing to understand about the MyClass2::CallBar is one of the real advantages to using an
InterfacePtr. In this example, the function might need to return abruptly due to an error condition.
Because it uses an InterfacePtr, the code can just return. The InterfacePtr, which is constructed on the
stack, is destructed on return, so Release() is called automatically. Often, InDesign plug-in code queries for
several interfaces. If they are not stored in an InterfacePtr, the code must make sure each code path results
in appropriate calls to Release().

InterfacePtr tips and tricks

Sometimes, you might want to set an InterfacePtr after it is constructed. This is common if the InterfacePtr
can be initialized to different objects. In this case, you can use the reset() method:

InterfacePtr<IBar> bar;
if(someCondition)

bar->reset(document->QueryInterface(IID_IBAR);
else

bar->reset(obj->QueryInterface(IID_IBAR);

The reset() method also calls Release(), if its data points to a non-nil object. There may be circumstances
where you need to remove the data from an InterfacePtr without calling Release(). For this case,
InterfacePtr also supplies a forget() method. The forget() method sets the InterfacePtr data to nil and
returns the original data to the caller; therefore, it can be used to transfer ownership from an InterfacePtr
to a caller. The following code is perfectly safe:

CHAPTER 4: Introduction to the InDesign Object Model Writing your own interface 63

InterfacePtr<IBar> bar(obj->QueryInterface(IID_IBAR));
IBar * bar2 = bar->forget();
bar->reset(bar2);
bar2 = nil;

Writing your own interface
When writing InDesign plug-ins, you often will need to add interface/implementation pairs to a boss.
There are many examples of interfaces in the SDK; see the files in <SDK>/source/public/interfaces. Often,
you can reuse an existing interface. For example, if you need to add integer data to a boss, you can reuse
the SDK’s IIntData interface. Sometimes, however, you will need to write a new interface.

Before writing an implementation, you must add an interface ID (PMIID) to your plug-in’s ID.h file. For
example, the following adds an interface ID (IID_IMYINTDATA) for IMyIntData:

DECLARE_PMID(kInterfaceIDSpace, IID_IMYINTDATA, kLearnIDDevPrefix + 2)

Once you have an interface ID, you are ready to code your interface. Most interfaces will look something
like the following:

#ifndef __IMYDATA
#define __IMYDATA
#include "IPMUnknown.h"
#include "LearnIDDevID.h"
class IMyIntData : public IPMUnknown
{

enum { kDefaultIID = IID_IMYINTDATA };
virtual in32 GetIntData() const = 0;
virtual void SetIntData(int32 i) = 0;

};
#endif

In the preceding example, note the following:

 By convention, this class definition should be stored in a file called IMyIntData.h.

 All code in the file is wrapped in an #ifndef block, so it can be included many times within the same
compilation.

 To be part of a boss, the new class must inherit from IPMUnknown directly or through a subclass of
IPMUknown. Thus, we include IPMUknown.h.

 Each interface is identified in the object model by ID. In this case, a new interface ID (IID_IMYINTDATA)
is created in LearnIDDevID.h.

 By convention, the interface contains a kDefaultIID enumeration identifying the new interface ID. This
is used by UseDefaultIID() in an InterfacePtr.

 The new class includes some pure virtual functions that will be implemented to perform some
operation; in this case, get and set some integer data.

Each interface you write will be similar, but you will provide your own name, ID, and set of pure virtual
functions.

CHAPTER 4: Introduction to the InDesign Object Model Writing your own implementation 64

Writing your own implementation
Interfaces and implementations go together. Conceptually, the interface comes first, but it is not unusual
to develop an interface and its implementation together. It also is not unusual to develop an
implementation for an existing, Adobe-supplied interface.

For example, to add a new implementation of the previously defined IMyIntData, called MyIntData, you
must add a new implementation ID to your plug-in’s ID.h file. The following adds an implementation ID
(kMyIntDataImpl) for the MyIntData class:

DECLARE_PMID(kImplementationIDSpace, kMyIntDataImpl, kLearnIDDevPrefix + 6)

Dead-stripping is a compiler optimization that removes code that is not used in a binary. Because of how
InDesign code is referenced, the compiler can be fooled into optimizing it away. To prevent dead stripping,
your plug-in should have a file that references the new C++ class, so it is not dead-stripped. This prevents
the compilers from optimizing your code away because it appears not to be referenced. If you generated
your plug-in project and source code with DollyXs, you will have a file that ends in “FactoryList.h”. Adding
the following line prevents dead-stripping of the MyIntData class:

REGISTER_PMINTERFACE(MyIntData, kMyIntDataImpl)

The following implementation of IMyIntData illustrates the normal steps for implementing an interface:

#include "VCPlugInHeaders.h"
#include "IMyIntData.h"
#include "LearnIDDevID.h"

class MyIntData : public CPMUnknown<IMyIntData>
{
public:

MyIntData(IPMUnknown* boss) : CPMUnknown<IMyIntData>(boss), fMyInt(0) {};
virtual int32 GetIntData() const;
virtual void SetIntData(int32 i);

private:
int32 fMyInt;

};

CREATE_PMINTERFACE(MyIntData, kMyIntDataImpl)

int32 MyIntData::GetIntData() const
{

return fMyInt;
}

void MyIntData::SetIntData(int32 i)
{

fMyInt = i;
}

In the preceding example, note the following:

 Implementation files that are built into a plug-in always include VCPlugInHeaders.h.

 IMyIntData.h is included, because this class implements the IMyIntData interface.

 Rather than inheriting directly from IMyIntData, MyIntData inherits from the templated class
CPMUnknown. This is a convenient way to implement the IPMUnknown methods AddRef(), Release(),
and QueryInterface(). It also adds a helper method, PreDirty(), which is used only for persistent

CHAPTER 4: Introduction to the InDesign Object Model Constructing a boss instance 65

interfaces. You may run into implementations that instead inherit directly from an interface and then
add a macro called HELPER_METHODS_INIT below their method declarations; this is an older way of
achieving the same results. The CPMUnknown mechanism is preferred, for its simplicity.

 The constructor initializes the base class, CPMUnknown<IMyIntData>. This is required to initialize data
in CPMUnknown.

 The CREATE_PMINTERFACE macro binds the implementation to the ID and makes this implementation
usable in the InDesign object model.

 The code contains an int32 instance variable called fMyIntData. This variable follows a naming
convention that you see in most InDesign source files. Instance variables always begin with the letter
“f.”

 The class contains implementations of the two virtual methods.

Each implementation you write will be somewhat similar. The name, ID, and virtual methods will vary, but
the use of CPMUnknown and CREATE_PMINTERFACE will be the same.

Constructing a boss instance
There are several global functions for constructing (or instantiating) boss objects in the SDK header file
CreateObject.h. There are different functions for creating persistent and nonpersistent boss instances. To
create a nonpersistent instance of a boss, you can call CreateObject as follows:

InterfacePtr<IMyIntData> myIntData((IMyIntData*)::CreateObject(kMyIntBoss,
 IID_IMYINTDATA));

In this example, CreateObject returns an IPMUnknown *, which must be cast to the type of the InterfacePtr
data. There is a slightly better way to do this, if the interface supports the kDefaultIID enumeration. You
can avoid both the casting and specification of a PM_IID by using the CreateObject2 template function:

InterfacePtr<IMyIntData> myIntData(::CreateObject2<IMyIntData>(kMyIntBoss));

Regardless of how you create a boss, on success a pointer to the requested interface is returned, and the
reference count is one. A nil pointer is returned if the designated boss cannot be created. This may seem
unlikely, but it is possible for several reasons, most notably a missing plug-in.

Persistence
A persistent boss object can be removed from main memory and later reconstructed, unchanged.
InDesign stores such objects in database files. An InDesign document really is just a database of persistent
boss objects. Each persistent boss instance can be identified by an integer key called a UID (unique
identifier).

The application maintains several different databases for various purposes. The application defaults,
clipboard, and user-interface settings are saved in different databases. Also, as mentioned previously, each
InDesign document is a database file.

Making a boss persistent
To make a boss persistent, add the IID_IPMPERSIST, kPMPersistImpl interface pair:

CHAPTER 4: Introduction to the InDesign Object Model Writing your own persistent implementation 66

Class
{

kMyFirstPersistentBoss,
kInvalidClass,
{
IID_IPMPERSIST, kPMPersistImpl,
IID_IMYINTDATA, kMyIntDataImpl,
}

}

This alone does not cause the boss to be written to the database. To do that, the boss must have at least
one persistent implementation.

Writing your own persistent implementation
Persistent and nonpersistent implementations are very similar. The following implementation,
MyPersistIntData, also implements IMyIntData:

#include "VCPlugInHeaders.h"
#include "IMyIntData.h"
#include "IPMStream.h"
#include "LearnIDDevID.h"

class MyPersistIntData : public CPMUnknown<IMyIntData>
{
public:

MyIntData(IPMUnknown* boss) : CPMUnknown<IMyIntData>(boss), fMyInt(0) {};
void ReadWrite(IPMStream* s, ImplementationID prop);
virtual int32 GetIntData() const;
virtual void SetIntData(int32 i);

private:
int32 fMyInt;

};

CREATE_PERSIST_PMINTERFACE(MyPersistIntData, k MyPersistIntDataImpl)

void MyPersistIntData::ReadWrite(IPMStream* s, ImplementationID prop)
{

s->XferInt32(fMyInt);
}

int32 MyPersistIntData::GetIntData() const
{

return fMyInt;
}

void MyPersistIntData::SetIntData(int32 i)
{

if(fMyInt != i)
{
PreDirty();
fMyInt = i;
}

}

MyPersistIntData differs from its nonpersistent counterpart, MyIntData, in the following ways:

 MyPersistIntData includes IPMStream.h, which is used to read and write a stream of data.

CHAPTER 4: Introduction to the InDesign Object Model Examples of Persistent Implementations 67

 MyPersistIntData uses the CREATE_PERSIST_PMINTERFACE macro in place of CREATE_PMINTERFACE.

 MyPersistIntData::SetIntData() checks to see whether the passed-in value is different from fMyIntData.
If the values differ, it calls PreDirty() before changing fMyInt. In short, the object model must know
before you change a persistent object. This allows the undo architecture to take snapshots, so changes
can be rolled back if needed.

 MyPersistIntData contains a ReadWrite method. This method is responsible for reading and writing
the object's persistent data using the passed-in IPMStream.

Examples of Persistent Implementations
There are many examples of persistent implementations in the SDK sample projects. For a fairly
straightforward example, consider the Frame Label project. See the FrmLblData.cpp file in the Frame Label
sample at:

<SDK>/source/sdksamples/framelabel/FrmLblData.cpp

The Frame Label plug-in adds this implementation to the application and document workspaces and to
each page item. The sample does this by adding the IID_IFRMLBLDATA/kFrmLbldataImpl
interface/implementation pair to the kWorkspaceBoss, kDocWorkspaceBoss, kDrawablePageItemBoss in
its ClassDescriptionTable as follows:

AddIn
{

kWorkspaceBoss,
kInvalidClass,
{
IID_IFRMLBLDATA, kFrmLblDataImpl,
}

},
AddIn
{

kDocWorkspaceBoss,
kInvalidClass,
{
IID_IFRMLBLDATA, kFrmLblDataImpl,
}

},
AddIn
{ kDrawablePageItemBoss,

kInvalidClass,
{
IID_IFRMLBLDATA, kFrmLblDataImpl,
}

}

These bosses already are persistent, so there is no need to add an IPMPersist implementation. There also is
no need to create an instance, because the application already manages these bosses.

This and other persistent implementations always are very similar to the example listed in “Writing your
own persistent implementation” on page 66. Most examples differ from the preceding only in
inconsequential ways. For example, a mutator (SetXXX) method may not check to see that a data member
has really changed before calling PreDirty(); this check is an optimization.

What differs across examples is the data that the implementation manages. Each ReadWrite method is
crafted to match the data to be retained. It is a good idea to look at a handful of examples. You can find

CHAPTER 4: Introduction to the InDesign Object Model Changing persistent data with commands 68

these examples by searching for ReadWrite() in the sample files. Notice that a ReadWrite() method
commonly calls methods on IPMStream to stream simple data types. More complex data types have their
own ReadWrite() methods. For example, the first item handled in FrmLblData::ReadWrite() is a WideString.
The FrmLbldata::ReadWrite method calls ReadWrite on the WideString instance, passing along the current
stream and implementation information.

Changing persistent data with commands
Changing a persistent data member requires more than simply calling the member’s mutator (SetXXX)
method. The InDesign object model performs changes in transactions. This allows InDesign to manage the
integrity of a document and supports InDesign’s undo capability. Data changes also require notification, so
dependent user interfaces can be updated.

These requirements are facilitated by InDesign’s use of the Command design pattern. To change existing
persistent data members in InDesign, you must process the appropriate command. Processing amounts to
calling or executing; often, it may be referred to as firing.

If you have written your own persistent implementations, you must write your own new command. Then
this command must be used to change your persistent data.

A command is simply a boss that consists of an ICommand implementation. It almost always contains one
or more data members that are used to specify data for the operation. For example, consider the
command used to alter the Frame Label’s various IFrmLblData implementations:

Class
{

kFrmLblCmdBoss,
kInvalidClass,
{
IID_ICOMMAND, kFrmLblCmdImpl,
IID_IFRMLBLDATA, kFrmLblDataImpl
}

}

To process a command, the caller first creates an instance of the command:

InterfacePtr<ICommand> labelCommand(CmdUtils::CreateCommand(kFrmLblCmdBoss));

The caller must then specify which boss instances are being operated on. This is done through the
ICommand::SetItemList() method:

labelCommand->SetItemList(items);

Typically, the next step is to query the command for any data instances and set them appropriately:

InterfacePtr<IFrmLblData> labelData(labelCommand, UseDefaultIID());
labelData->Set(frmLblInfo);

NOTE: Code that queries for another interface on a boss commonly includes checks to make sure the data
interface is not nil. This is left out for brevity.

The final step is to process the command and check for errors:

CHAPTER 4: Introduction to the InDesign Object Model Writing your own command 69

error = CmdUtils::ProcessCommand(labelCommand);
// Check for errors, issue warning if so:
if (error != kSuccess)
{

...
}

Writing your own command
If you introduce a new persistent implementation, you will need to add your own command boss. This will
include a custom implementation of ICommand and some type of data interface. This interface may very
well be the exact interface that is being changed. You can see this in the kFrmLblCmdBoss example. The
IFrmLblData interface that was added into the workspace and page-item bosses exists on the command.
You also can write a custom data interface/implementation pair for your command or reuse existing
interfaces/implementations like IIntData and IBoolData. The last option works fine and is done in the
InDesign code base, but it is not a best practice, because often this option makes it harder to understand
what the data member represents.

Most ICommand implementations extend the Command class. This provides most of the plumbing for
your command and leaves you with a few important methods to implement. These methods are described
below, starting with the most significant.

Do()

A typical command has one more data interface. When writing a Do() method, a typical first step is to
query for the command’s data interfaces. This will look something like the following:

InterfacePtr<IMyCmdData> commandData(this, UseDefaultIID());

Commands operate on one or more boss objects. Typically, these objects are specified as a UIDList saved
within the command. This UIDList is initialized by the caller via SetItemList(). It is available as an instance
variable or by calling IComand::GetItemList(). Some commands operate only on one item; more
commonly, though, a command operates on a list of items. In that case, the command iterates through the
items in the list. For each item, it queries the targeted boss for the interface or interfaces being changed
and copies from the command data to these interfaces. Typically, that will look like this:

for(int32 i = 0; i < fItemList.Length(); i++)
{

InterfacePtr<IMyData> myData(fItemList.GetRef(i),UseDefaultIID());
myData.copyFrom(commandData);

}

The preceding copyFrom() method would have to exist on the IMyData interface. Some interfaces have
such a method; alternately, the command data could have such a method. Other commands may copy
items from their data method by method. In any event, this step amounts to copying data from the
command to the targeted item.

You may see more advanced commands that do some type of filtering. This is to support what is known as
mixed mode. Mixed mode allows you to operate on the common settings in a multiple selection, while
leaving the settings that are not common unchanged. For example, consider the Frame Label sample. If
you create several frames and apply frame-label settings, with some of the settings the same across frames
and others unique for each frame, you can select all the frames and make change to those settings that are
the same without altering those that are unique. This type of support ultimately should be provided by the
underlying command. The Frame Label sample provides such an example in FrmLblCmd.

CHAPTER 4: Introduction to the InDesign Object Model Writing your own command 70

DoNotify()

There are dependencies on persistent data. For example, changing persistent data may make a panel out
of date. Because there may be unknown dependencies on persistent data, InDesign does not hard-code
updates; instead, it uses the Subject/Observer design pattern to support the ability to dynamically
subscribe to notifications. A command’s DoNotify method broadcasts on some subject (ISubject) that it
has changed persistent data. Some commands are written to change one instance at a time. For example,
a command that changes some data on the application workspace does not process a list of items. Such
commands typically broadcast on the ISubject interface of the item they have changed. For example, this
code broadcasts on the application workspace:

InterfacePtr<IWorkspace> theWorkSpace
(GetExecutionContextSession()->QueryWorkspace());

InterfacePtr<ISubject> subject(theWorkSpace, IID_ISUBJECT);
if (subject)
{
 subject->ModelChange(kSetMydataCmdBoss,

IID_IMYDATA, this);
}

Because notification is dynamic, each plug-in has the opportunity to attach an IObserver instance to an
ISubject. An observer is attached by calling ISubject::AttachObserver(). In addition to taking a pointer to
the IObserver instance, this method takes two PMIIDs. The first PMIID is a ClassID that describes the
change. Usually, this is the ClassID for the command that performed the change. The second PMIID is an
interface ID that narrow the scope. An attached observer is called when a notification with matching
parameters occurs.

Most commands are writen to operate on a list of items. An example of this is any command that operates
on a list of page items. Such commands are necessary to support making changes on a multiple selection
(that is, multiple page items selected). It is not efficient to broadcast on each individual object that is
changed. Such commands broadcast on the document. For example, consider the FrmLblCmd::DoNotify():

Utils<IPageItemUtils>()->NotifyDocumentObservers
(
fItemList.GetDataBase(),
kLocationChangedMessage,
IID_ITRANSFORM_DOCUMENT,
this,
nil /* nil cookie */
);

This command uses a utility that broadcasts on the kDocBoss. This works because the broadcast passes
enough information for the observers to follow. In this case, the command itself (passed as a pointer) gives
access to the item list of what has changed.

It is not always desirable for observers to be updated immediately; for example, the many panels that
watch selection attributes would be updated more than necessary during normal operations. To get
around this, InDesign supports two notification types: regular and lazy notification. Regular notification
happens right away. Lazy notifications are queued for later use. This is thoroughly described in the
“Notification” chapter of Adobe InDesign Plug-In Programming Guide. There are a handful of SDK sample
plug-ins that use lazy notification. Observers often are in user-interface code. For an example of a regular
observer, see <SDK>/source/sdksamples/watermarkui/WatermarkUIDialogObserver.cpp. For an example
of a lazy observer see <SDK>/source/sdksamples/customdatalink/CusDtLnkDocObserver.cpp.

CHAPTER 4: Introduction to the InDesign Object Model Facades 71

CreateName()

Each command is given a name. This may appear on the undo stack, depending on how your command is
called. For example, the FrmLblCmd specifies its name as follows:

PMString* FrmLblCmd::CreateName(void)
{

// Core resource for string:
PMString* string = new PMString(kFrmLblCmdStringKey);
return string;

}

The kFrmLblCmdStringKey is simply a macro for a constant string that is defined in FrmLblID.h Because the
command name may appear in the user interface, it must be localized. For information on how to localize
strings, see the “Localization” chapter.

LowMemIsOK()

This method tells the application whether your command can operate in low-memory situations. Most
commands override the default implementation and return kFalse. This means the application checks for
low memory before it runs your command. If it finds itself in a low-memory situation, it purges some of the
undo stack. If your command returns kTrue, this check and possible purging is skipped. Returning kTrue is
rare.

Facades
Processing commands is somewhat tedious. Because a command is the norm for changing persistent data,
the InDesign code base is somewhat of an API of commands. Adobe and plug-in developers often have
duplicated the effort of creating, initializing, and processing commands. For example, a plug-in usually
must call the same command to implement a user interface and scripting.

To get around this, some InDesign engineers recognized that it was advantageous to create utility
methods to create, initialize, and execute commands. There were various attempts at this. Some attempts
simply automated the creation and initialization of the command. Others went as far as to actually process
the command. After some time, we standardized on an approach called facades. A facade essentially is a
procedural wrapper on a command or set of commands. It may provide methods for retrieving data, but
its primary purpose is to provide an API for processing underlying commands. This makes changing
persistent data a matter of locating the facade and calling the appropriate method with the appropriate
data.

Writing facades is a best practice that has developed over time. We wrote facades for some legacy areas
but have not reworked all legacy features. All recent features are written with facades. You should strongly
consider facades when coding your plug-ins.

The facades that are built into the product follow specific guidelines:

 Facade interfaces are named IXXXFacade, where XXX is a unique name of the subsystem being
covered; for example, ITransformFacade.

 Facades are declared to be part of the Facade namespace.

 Facades provide a kDefaultIID enumeration.

 Facades must not consider global or static state. You should pass to them everything they need.

CHAPTER 4: Introduction to the InDesign Object Model PluginVersion 72

 The first parameter to a facade method is the object or objects that are being acted on. Usually, this is
passed by a UIDList.

 Facade methods that set data must return ErrorCode.

 Facades are added into the kUtilsBoss

To execute a facade method, you typically write code like the following.

Utils<Facade::IMyFacade>()->SetMyData(items, someData);

The Utils<> template class is like InterfacePtr. It queries for the specified facade using its kDefaultIID enum.
Utils contains an operator that allows you to call methods on a pointer data member that it manages. Like
an InterfacePtr, Utils calls Release() on the pointer when the object is destructed.

To enhance your understanding of facades, study the following examples of facade interfaces:

 <SDK>/source/public/interfaces/text/IConditionalTextFacade.h

 <SDK>/source/public/interfaces/layout/ITransformFacade.h

 <SDK>/source/public/interfaces/layout/IGeometryFacade.h

The SDK also provides examples of facade implementations in the sample projects. These facades can be
studied for further understanding:

 <SDK>/source/sdksamples/watermark/IWatermarkDataFacade.h

 <SDK>/source/sdksamples/framelabel/IFrmLblDataFacade.h

PluginVersion
InDesign requires a plug-in to provide a PluginVersion resource that describes whether the plug-in
supports model operations or user interfaces. Model plug-ins are available on InDesign Server and
background threads. This declaration occurs in the PluginVersion resource. The following example is for a
model plug-in: it uses the kModelPlugIn constant. If it were a user-interface plug-in, it would have used
kUIPlugIn.

//---
// Plugin Version
//---
resource PluginVersion (1)
{

kTargetVersion,
kMyPluginID,
kMajorVersionNumber, kMinorVersionNumber,
kMajorVersionNumber, kMinorVersionNumber,
kMyMajorFormatNumber, kMyInitialMinorFormatNumber,
{ kInDesignProduct, kInCopyProduct, kInDesignServerProduct },
{ kAllProductsJapaneseFS, kInDesignServerRomanFS },
kModelPlugIn,
kMyVersionStr};

CHAPTER 4: Introduction to the InDesign Object Model The lifecycle of a plug-in 73

The lifecycle of a plug-in
This section describes the stages that InDesign goes through while starting up. It also discusses what
happens when a boss inside a plug-in is instantiated.

InDesign start-up sequence

The stages a user sees on the application’s start-up screen depend primarily on whether plug-ins were
added, removed, or modified since the last session. The following table shows the start-up stages and
factors that affect each stage.

Stage Description of activity

Initializing... Nonapplication core services and components are initialized.

Scanning for plug-ins... Compares the SavedData file to the plug-ins in the application’s directories.
If plug-ins were added or removed, or they have changed modification
dates, a more complete start-up procedure must take place to reinitialize
the application.

Registering <n> plug-ins Registers every plug-in when it starts for the first time and again when you
add, remove, or modify plug-ins. If no plug-ins changed between sessions,
start-up skips this registration step, and the application is initialized from
the saved state.

Completing object
model...

Processes inheritance in the object model. Checks for invalid cases, like two
plug-ins that claim to implement the same boss interface. Some plug-ins
may load, if necessary to complete the object model.

Saving object model... Creates a new, blank, SavedData file and writes newly revised data to it.

Load plug-ins... Loads plug-ins that must be loaded at start-up. Most plug-ins are loaded
only as needed.

Calling early initializers... Calls Initializer Services for strings and selection extensions.

Starting up service
registry...

Sets up the mechanism for services.

Executing start-up
services...

Performs operations requested by plug-ins that registered as a
kStartupShutdownService.

Lazy start-up service
initialization...

Installs lazy start-up service registered as a
kAppLazyStartupShutdownService. These services are called via an idle task
after application start-up.

Loading tools... Loads tools.

Completing initialization... Initializes the Clipboard, DragandDrop, and Paths. Sets up, but does not run,
IdleTask.

Calling late initializers... Calls Initializer Services for menus, actions, kits, panels, tools, tips, and
scripting resources (such as ScriptInfo).

Loading shortcuts... Reads shortcuts file and loads shortcuts.

 74

5 Localization

The InDesign plug-in architecture supports localization. This chapter covers the basic mechanisms for
localizing strings and other resources used by your plug-in.

InDesign locales
An InDesign locale is represented by the PMLocaleId class. You will find this class in the following location:

<SDK>/source/public/includes/PMLocaleId.h

This class represents the following three pieces of an InDesign locale:

 Product-feature set — InDesign, InCopy, and InDesign Server are built from the same code base. By
design, it is possible to write a plug-in that will run under all three products. The product-feature set
describes the product or products to which a locale is specific. It is possible to specify a single product
or a combination of products.

 Language-feature set — InDesign and InCopy contain some language-specific features; for example,
the Japanese version includes some layout and frame-grid features specific to Japanese users. The
language-feature set describes the language-feature set or sets to which a locale is specific. This
setting does not have to do with the strings on the screen but rather the features that are present.

 User-interface language (or language locale) — This describes the language in which the user interface
will be displayed.

The types of feature sets are represented together as a bit field, and the user-interface language is
represented alone. You will find constants representing different feature sets and user-interface locales in
the following files:

<SDK>/source/public/includes/FeatureSets.h

<SDK>/source/public/includes/PMLocaleIds.h

Checking the locale in C++
Your plug-ins may need to know which feature set or language locale they are running under. You can
access an instance of PMLocaleId that describes the current locale by using the LocaleSettings header. The
following demonstrates making a decision based on the three components of a PMLocaleId:

CHAPTER 5: Localization Controlling plug-in loading 75

#include "LocaleSetting.h"
...
if (LocaleSetting::GetLocale().GetProductFS() != kInCopyProductFS)
{

// Something specific to InCopy
}

if (LocaleSetting::GetLocale().GetLanguageFS() != kJapaneseLanguageFS)
{

// Something specific to the Japanese feature set
}

if(LocaleSetting::GetLocale().GetUserInterfaceId() == k_enUS)
{

// Something specific to the English UI
}

For an example of this, see the following SDK sample file.

<SDK>/source/sdksamples/printmemorystream/PrtMemActionComponent.cpp

Controlling plug-in loading
InDesign gives you the ability to control the feature sets under which your plug-ins will load. This is done in
ODFRC using the PluginVersion resource:

resource PluginVersion (kSDKDefPluginVersionResourceID)
{

kTargetVersion,
kFrmLblUIPluginID,
kSDKDefPlugInMajorVersionNumber, kSDKDefPlugInMinorVersionNumber,
kSDKDefHostMajorVersionNumber, kSDKDefHostMinorVersionNumber,
kFrmLblUICurrentMajorFormatNumber, kFrmLblUICurrentMinorFormatNumber,
{ kInDesignProduct},
{ kWildFS },
kUIPlugIn,
kFrmLblUIVersion

};

In the preceding example, the third- and fourth-to-last lines represent the product- and language-feature
sets under which this plug-in will load. In this case, it will load under any language feature set (kWildFS) of
InDesign (kInDesignProduct). Because this resource is set to load only under InDesign, it will not load
under InCopy, even if the plug-in is copied to the plug-ins directory for InCopy.

PMString
InDesign provides the PMString class for those strings that are designed to show up in the user interface.
We already encountered one such string in this document: a command name may show up on the undo
menu. Therefore, a translation should be provided.

PMString is not a general-purpose string class; WideString is far better for this purpose. What PMString
does well is manage translatable strings that will appear in the user interface. PMStrings interact with
translation tables defined in ODFRC. Each string has a key value, which can be translated into many
languages.

CHAPTER 5: Localization String-translation tables 76

A PMString instance eventually is translated; however, you can work with it before it is translated. You can
determine whether it has been translated by calling HasTranslated(). You can force a string to be translated
by calling Translate(). Translate() is called on all PMStrings before they are added to the user interface.

String-translation tables
Providing translations for PMStrings is a fairly straightforward process handled in ODFRC. If you use
DollyXs to generate your plug-in, most of the plumbing is provided. Below, we explain the various
resources that are used.

Each plug-in should provide two LocaleIndex resources that contain a kStringTableRsrcType. One
LocaleIndex is used for translated strings; the other, for strings that will have no translations. These
resources will look something like the following example from Frame Label:

resource LocaleIndex (kSDKDefStringsResourceID)
{

kStringTableRsrcType,
{
 kWildFS, k_enUS, kSDKDefStringsResourceID + index_enUS
 kInDesignJapaneseFS, k_jaJP, kSDKDefStringsResourceID + index_jaJP
 kWildFS, k_Wild, kSDKDefStringsResourceID + index_enUS
}

};

resource LocaleIndex (kSDKDefStringsNoTransResourceID)
{

kStringTableRsrcType,
{
 kWildFS, k_Wild, kSDKDefStringsNoTransResourceID + index_enUS
}

};

Each LocaleIndex resource must have a resource ID that is unique to this plug-in. Because it has to be
unique only within the plug-in, most samples reuse the same resource IDs for translated and
nontranslated LocaleIndex resources (kSDKDefStringsResourceID and kSDKDefStringsNoTransResourceID,
respectively).

Each LocaleIndex also contain a kStringTableRsrcType. This provides one or more references to a
StringTable. Such a reference consists of the feature set (product and language) and language locale that
the StringTable is for and the resource ID of the StringTable. The first LocaleIndex above provides
translations for all versions of all applications. The first entry targets any feature set (kWildFS) and the
English (k_enUS) language. The second entry targets the Japanese feature set and the Japanese (k_jaJP)
language. The third entry specifies that any other feature set and language combination should use
English strings.

Each StringTable resource provides the same set of translations. For example, here is a portion of the Frame
Label sample’s English StringTable:

CHAPTER 5: Localization Localizing other resources 77

resource StringTable (kSDKDefStringsResourceID + index_enUS)
{

k_enUS,// Locale Id
kEuropeanWinToMacEncodingConverter,// Character encoding converter (irp)
{
 // ----- Menu strings
 kFrmLblCompanyKey, FrmLblCompanyValue,
 ...
}

};

In this example, kFrmLblCompanyKey and kFrmLblCompanyValue are simply macros that represent
strings. This could just as easily have been something like the following.

"CompanyName", "Adobe Systems",

The first string is a key; the second, the English translation. The key is significant in that it must be unique
(across all plug-ins). In this case, “CompanyName” is the key and “Adobe Systems” is the English translation.

The nontranslated LocaleIndex will contain one item that specifies a separate StringTable resource for all
applications and user-interface languages. This additional StringTable holds a set of Strings that have no
translations:

resource StringTable (kSDKDefStringsNoTransResourceID + index_enUS)
{

k_enUS,// Locale Id
kEuropeanMacToWinEncodingConverter,// Character encoding converter
{
// No-Translate strings go here:
}

};

The SDK samples usually provide only Japanese and English translations. To extend this, you must add
more specific translation scenarios to the translated LocaleIndex and provide the new StringTable
resources.

Localizing other resources
Other resources are localized in a similar way. Like strings, an alternate user interface can be given using a
LocaleIndex. The following example uses a different version of kMyDialogRsrcID for Japanese. This is how
ODFRC-based user interfaces handle different user-interface layouts caused by string size.

resource LocaleIndex (kMyDialogRsrcID)
{

kViewRsrcType,
{
 kInDesignJapaneseFS, k_Wild, kMyDialogRsrcID + index_jaJP
 kWildFS, k_Wild, kMyDialogRsrcID + index_enUS
}

}

Menus, actions, and the other resource types work the same way. For an inventory of resource types, see
source/public/includes/CoreResTypes.h.

Similarly, you can control which feature sets and locales a scripting resource is available on, using the
VersionedScriptElementInfo resource. Here, the last two items in each entry contain feature-set and
language-locale IDs. The following example makes a scripting resource that is available on InDesign and
InDesign Server locales:

CHAPTER 5: Localization Localizing other resources 78

resource VersionedScriptElementInfo(1)
{

//Contexts
{
 kBasilScriptVersion, kCoreScriptManagerBoss,
 kInDesignAllLanguagesFS, k_Wild,

 kBasilScriptVersion, kCoreScriptManagerBoss,
 kInDesignServerAllLanguagesFS, k_Wild,
}

 79

6 Building Blocks

InDesign plug-in development requires you to become familiar with a set of concepts and patterns that
are used in many different scenarios. These concepts are the building blocks on which you will make
things happen with your plug-in. This chapter introduces you to some common building blocks. This is not
an exhaustive list, but this survey of building blocks will help familiarize you with how things are done in
the InDesign architecture.

Boss-object web
It is important to begin by understanding how to navigate the web of InDesign boss objects that exist in
the application. This includes how to access documents and their content. In a running InDesign instance,
each execution context (thread) has one session object represented by the kSessionBoss. You can use a
global function (GetExecutionContextSession) to gain access to the current session. The following
demonstrates how to use the session to query for the IWorkspace interface on the kWorkspaceBoss, and
the IApplication interface on kAppBoss:

InterfacePtr<IWorkspace> sessionWorkspace(
GetExecutionContextSession()->QueryWorkspace());

InterfacePtr<IApplication> application(
GetExecutionContextSession()->QueryApplication());

The kWorkspaceBoss contains interfaces that control the application’s copy of preferences, defaults, styles,
swatches, and so on. The IApplication interface provides access to several interfaces that manage portions
of the application, including IToolMgr, IActionMgr, and IPanelMgr. As their names suggest, these interfaces
allow you to manage tools (like the Text or Direct Select tools), actions, and panels. The IApplication
interface also provides access to the list of documents the application has open. This comes in the form of
an IDocumentList interface on the session’s instance of kDocumentListBoss. The following demonstrates
acquiring the document list:

InterfacePtr<IDocumentList> docList(app->QueryDocumentList());

The IDocumentList provides access to a kDocBoss instance for each document that is open:

for (int32 i = 0; i < docList->GetDocCount(); i++)
{

IDocument* theDoc = docList->GetNthDoc(i);
...

}

The preceding IDocument interface is saved in a different database from the kAppBoss and
kWorkspaceBoss. Also, note that documents maintain defaults for many of the objects that appear in the
kWorkspaceBoss. Documents store these defaults in kDocWorkspaceBoss, which is available via the
GetDocWorkSpace() method on IDocument.

A kDocBoss has many interfaces; some of the more significant interfaces are IStoryList, ILayerList,
IMasterSpreadList, and ISpreadList. As their names indicate, these interfaces manage the stories, layers,
master spreads, and spreads within an InDesign document.

NOTE: Pages have second-class status in the InDesign model. They are merely geometrical in that they
designate where the page is. They really do not hold any content. All content belongs to the spread.

CHAPTER 6: Building Blocks Iterating the draw order 80

The ISpreadList give you access to an ISpread interface on an instance of kSpreadBoss for each spread in
the document. The page items are not children of the spread; instead, between the page items and the
spread is an object called a spread layer (kSpreadLayerBoss). There are spread layers for each layer in the
document and two extra layers for pages and guides. The fact that page items live on spread layers is a
significant detail in the implementation of layers. For our purposes, it is a fact we need to understand when
navigating the document. A navigation from spread to page item demonstrates how the hierarchy works:

InterfacePtr<ISpreadLayer> spreadLayer(spread->QueryLayer(docLayer));
InterfacePtr<IHierarchy> spreadLayerHier(spreadLayer, UseDefaultIID());
for (int32 i = (spreadLayerHier->GetChildCount() - 1); i >= 0; i--)
{
// Get the nth page item

InterfacePtr<IHierarchy> childHier(spreadLayerHier->QueryChild(i));
...

}

Each IHierarchy instance can provide access to zero to many children, and also can provide access back to
its parent. Every object in the hierarchy has a parent except the root, which usually is the kSpreadBoss.

Iterating the draw order
You may need to write code that navigates through all or a subset of the page items in a document. Trying
to write that code by hand using IHierarchy can be tedious and error prone. InDesign provides a way to
iterate through page items in the order in which they draw. Instead of handling the navigation, our code
provides a callback. Your callback is given the opportunity to decide what to do with the particular object.

To iterate the draw order, write an implementation of the ICallback interface. This interface is available at
<SDK>/source/public/interfaces/layout/ICallback.h. Notice that it is not an IPMUnknown but a standard
C++ interface.

To begin iteration, you need to create an instance of the kDrawMgrBoss and your callback. The following
code has “...” in the MyCallBack constructor, because you will provide some context and/or data structures
for the callback to work on. You also choose which point in the hiearchy to begin with. This code starts
with a spread object. You also can set draw flags according to your preferences; these draw flags exist on
the IShape interface.

InterfacePtr<IDrawMgr> drawMgr ((IDrawMgr *)::CreateObject (kDrawMgrBoss,
IID_IDRAWMGR));

MyCallBack callback (...);
const int32 drwMgrFlags = IShape::kSkipHiddenLayers+IShape::kSkipGuideLayers;
drawMgr->IterateDrawOrder(&matrix, ::GetUIDRef(spread), &callback,

drwMgrFlags);

For an example of iterating the draw order, see
<SDK>/source/sdksamples/printselection/PrnSelSuiteCSB.cpp.

Service providers
Service providers are basic building block that are very straightforward and that are used as a component
of many extension points. A service provider is a mechanism by which a plug-in can publish its ability to
provide a particular type of service (or function). Such a plug-in can introduce new types of services or
implement a service of an existing type.

CHAPTER 6: Building Blocks Startup and shutdown services 81

Service-provider boss

A service provider is simply a boss that provides an implementation of the IK2ServiceProvider interface:

Class
{

kMyServiceProviderBoss,
kInvalidClass,
{
 IID_IK2SERVICEPROVIDER, kMyServiceProviderImpl,
 IID_IMYSERVICE, kMyServiceImpl,
}

}

The IK2ServiceProvider interface includes methods that describe details common to all services. Most
notably, the service reports its name and which ServiceID (or IDs) it supports. A ServiceID has the same
form as all other application ID-space values, like ClassID and IID values. It is not unique to the service but
instead identifies the type of service that is provided. All services providers of a particular type return the
same ServiceID.

A service provider contains one or more additional interface/implementation pairs; for example,
“IID_IMYSERVICE, kMyServiceImpl” in the preceding boss. Such additional interfaces provide what is
unique to the service. Each type of service has its own requirements concerning additional interfaces.

Service registry

The application provides an implementation of IK2ServiceRegistry that manages all available service
providers. This interface is available on the session and can be queried for as follows:

InterfacePtr<IK2ServiceRegistry> serviceRegistry(GetExecutionContextSession(),
UseDefaultIID());

During application start-up, the service registry finds all service providers, by iterating through the object
model and registering every boss that has an IK2ServiceProvider interface. A plug-in can query for services
using the session’s IK2ServiceRegistry interface. There are methods for iterating through all the services of
a particular type (ServiceID) and methods that allow you to query for the default service or a service with a
particular ClassID.

Startup and shutdown services
Your plug-in may need to handle some tasks on application startup and shutdown. This can be achieved
by implementing an application startup/shutdown service. InDesign provides two startup and shutdown
service types; their ServiceIDs are kAppStartupShutdownService and kAppLazyStartupShutdownService,
respectively. All service providers that support the kAppStartupShutdownService services are called
during startup. Those that support kAppLazyStartupShutdownService are called on an idle task after
startup is complete. Each startup/shutdown service also needs to provide an implementation of
IStartupShutdownService (IID_IAPPSTARTUPSHUTDOWN).

The application includes reusable implementations that describe the two types of shutdown services. The
implementation IDs for these implementations are kCStartupShutdownProviderImpl and
kLazyStartupShutdownProviderImpl. The following demonstrates examples of the two types of
startup/shutdown services:

CHAPTER 6: Building Blocks Responders 82

Class
{

kMyStartupShutdownBoss,
kInvalidClass,
{
 IID_IAPPSTARTUPSHUTDOWN, kMyStartupShutdownImpl,
 IID_IK2SERVICEPROVIDER, kCStartupShutdownProviderImpl,
}

}...
Class
{

kMyLazyStartupShutdownBoss,
kInvalidClass,
{
 IID_IAPPSTARTUPSHUTDOWN, kMyLazyStartupShutdownImpl,
 IID_IK2SERVICEPROVIDER, kLazyStartupShutdownProviderImpl,

}

The IStartupShutdownService interface contains simple Startup() and Shutdown() methods.

Responders
In addition to command notification, some changes are broadcast through the signal/responder protocol.
The signal/responder protocol is used for broadcasting certain types of model changes. Signals provide
coarser information than command notifications. Signals signal the responder that a change of a certain
class has occurred. There are signals for various document events, such as new, open, and close; these are
designated by unique ServiceIDs. There are numerous reusable implementations that return the existing
ServiceIDs. For example, the Watermark sample implements a responder. Because it uses the
kAfterNewDocSignalRespServiceImpl, it receives signals after a new document is created:

Class
{

kWatermarkNewDocResponderBoss,
kInvalidClass,
{
 IID_IRESPONDER, kWatermarkDefaultResponderImpl,
 IID_IK2SERVICEPROVIDER, kAfterNewDocSignalRespServiceImpl,
}

}

The “Notification” chapters of Adobe InDesign Plug-In Programming Guide and Adobe InDesign SDK Solutions
contain more information on implementing responders and the various types of signals that are available.

Draw event handlers
A Draw event handler allows a plug-in to draw within a document at various points (or events). It is a
service provider that supports the kDrawEventService and also implements the IDrwEvtHandler interface.
The IDrwEvthandler interface contains methods to register and unregister draw events. For a list of
available draw events, see the following header:

<SDK>/source/public/interfaces/graphics/DocumentContextID.h

When it comes time to actually draw, the HandleEvent method is called on the IDrwEvthandler instance.
The passed-in eventData contains the context and graphics port necessary for drawing.

CHAPTER 6: Building Blocks Page-item adornments 83

The Watermark and BasicDrwEvtHandler samples are good examples of Draw event handlers. The
BasicDrwEvtHandler demonstrates registering to handle many events, and the Watermark sample
demonstrates actually drawing something of interest to a document.

Page-item adornments
Page-item adornments allow plug-ins to do custom drawing on a page items. An adornment is a
nonpersistent boss that provides an implementation of IAdornmentShape. Adornments are referenced by
ClassID. You can add or remove adornments using the AddAdornment and RemoveAdornment methods
on IPageItemAdornmentList. This interface is available on all page-item boss classes. As the page item
draws, it checks the IPageItemAdornmentList and instantiates and calls any adornments that are
registered to draw at particular points in the draw order.

Your implementation of IAdornmentShape::GetDrawOrderBits() provides the points in the draw order that
your adornment will be called on to draw. There are various points defined in the
IAdornmentShape::AdornmentDrawOrder enumeration. Some of the items are relevant only to certain
types of page items. An adornment can specify multiple points by adding different draw order values
together.

When it is time for the adornment to draw, the application calls IAdornmentShape::Draw() on the
adornment:

virtual void Draw(
IShape* iShape, // owning page item
AdornmentDrawOrder drawOrder,
GraphicsData* gd,
int32 flags
) = 0;

While an adornment cannot be persistent, it is passed a pointer to the shape it is drawing on (iShape). This
allows adornments to access data that is specific to the page item. This can include data that your plug-in
adds to the page item. The Draw method also is passed the AdornmentDrawOrder value describing the
current point in the draw order; this provides a way for one Draw method to handle different points in the
draw order. The next parameter passed is a GraphicsData object, which provides the means to actually
draw into the document. The final parameter is a set of flags that describe some attributes of the current
situation; for example, these flags can be used to determine whether the application is printing.

If the adornment draws outside the bounds of the page item, it effectively extends the painted bounds of
the page item. The adornment needs to report this to the application, so the correct screen area can be
invalidated when the item is moved. This is done using the GetPaintedBBox() method.

The Frame Label sample is an excellent example of how to implement a page-item adornment. For more
detail about page-item adornments, see the “Graphics Fundamentals” chapter of the Adobe InDesign
Plug-In Programming Guide.

NOTE: There also are handle shape adornments that allow you to adorn page-item handles and participate
in hit testing.

Selection suites
This guide does not cover implementing user-interface components like panels, menus, and dialogs. For
that, see Adobe InDesign Plug-In Programming Guide, Adobe InDesign SDK Solutions Guide, or the numerous
samples that demonstrate creating user interfaces.

CHAPTER 6: Building Blocks Selection suites 84

If you were to write a user interface, it would need to operate on a selection. This section introduces you to
how InDesign handles selection.

Rather than querying the application for a list of selected objects, iterating through the list, and calling
commands (or facades), an InDesign user interface queries for a particular selection suite and calls
methods on that suite. The user interface is not allowed to be concerned with what is selected. It strictly
calls through the suite. This design facilitates adding selection types without changing large amounts of
client code.

A selection suite is specific to a particular domain. For example, the IGeometrySuite can be used to change
the geometry of the current selection (ResizeSelection) or to find out if that is even possible
(CanChangeSelectionHeight) with the current selection.

To get to a selection suite, you must first access the selection manager. Each user-interface component is
passed or initialized with an IActiveContext pointer. This pointer is the proper way to gain access to the
selection manager:

ISelectionManager* selectionMgr = ac->GetContextSelection();

Some global utilities exist that return an ISelectionManager. These bypass the ActiveContext and make
their decision based on the front document in the user interface. These work as long as the front
document and the IActiveContext are in sync. While there is code in the application that does it that way,
the application is suspicious when dealing with multiple views. Furthermore, this approach is not well
positioned for upcoming InDesign changes. We recommend that you acquire ISelectionManager through
the IActiveContext interface. Once you have an ISelectionManager, you can query for a suite:

InterfacePtr<IFrmLblDataSuite> frmLblDataSuite(dlgContext,
GetContextSelection(),UseDefaultIID());

The preceding is important for code that consumes (or calls) selection suites. If you implement commands
that change data, you will need to implement your own selection suite. Adobe InDesign Plug-In
Programming Guide has an entire chapter dedicated to this. It demonstrates all the types of selections that
can be supported. There also are many samples that implement selection suites. Also, DollyXs can
generate a plug-in with a selection suite.

The following is a high-level view of the process of writing a selection suite, to provide you with some
familiarity with the process:

1. Write commands that change your data.

2. Write a facade that provides a procedural means to call your data.

3. Write an interface for your selection suite. This will be very similar to your facade’s interface, except it
will not have any information about what to target. It also may have some other operations that check
to see whether an operation in the user interface is possible with the current selection.

4. Write one implementation of this interface for each type of selection that your suite will handle.
Examples of types your suite might handle include text, layout (page items), defaults, and table
selections. By convention, these implementations contain “CSB” and the type of selection
(“LayoutCSB) in their class and filenames. CSB stands for “Concrete Selection Boss” and is where the
selection suite actually is located.

5. Also provide another implementation of the suite, which will live on the active selection boss. By
convention, ASB is in the filename of this type of implementation. It provides the template magic that
allows the selection manager to call through to the right CSB or CSBs to handle a request.

6. Add your selection suite into the correct CSB bosses.

CHAPTER 6: Building Blocks Scripting 85

Scripting
InDesign supports three higher-level programming languages: JavaScript, VBScript, and AppleScript.
These scripting languages can be used to automate repetitive tasks. JavaScript has even been used to
implement a product feature, Export for Dreamweaver; the source code is available in the InDesign SDK.

Adobe is investing in enhancing the scripting model, so more solutions can be built with scripting. Other
important technologies, such as IDML , are based on scripting. A good plug-in should provide scripting
support for any persistent data that it introduces to a document. This allows the data to be represented in
IDML (InDesign Markup Language).

For example, consider the following script that exercises the Frame Label feature using scripting:

var doc = app.documents[0]
doc.viewPreferences.verticalMeasurementUnits = MeasurementUnits.points;
doc.viewPreferences.horizontalMeasurementUnits = MeasurementUnits.points;

var rect = doc.pages[0].rectangles.add();
rect.geometricBounds = [36,36, 136, 136];
rect.framelabelString = "Hello World";
rect.framelabelPosition = FramelabelPositionEnum.framelabelRight;
rect.framelabelSize = 15;
rect.framelabelFontColor = UIColors.green;
rect.framelabelVisibility = true;

The FrameLabel plug-in adds “framelabel” properties to InDesign page-item types. Here, a rectangle is
decorated with a green “Hello World” frame label. This same frame label is represented in IDML. This can
be seen in the following blurb:

<Spread Self="ubd">
 <Rectangle Self="uda" ...

FramelabelString="Hello World"
 FramelabelSize="15"

FramelabelVisibility="true"
FramelabelPosition="FramelabelRight">

To make this possible, a plug-in must provide scripting support. In addition to the Frame Label sample,
there are many other examples in the SDK. Similar to the situation with selection suites, DollyXs can
generate a plug-in with stubbed-out scripting support, and Adobe InDesign Plug-In Programming Guide
dedicates an entire chapter (“Scriptable Plug-in Fundamentals”) to the subject. You will need to seek out
those resources when making your plug-in scriptable. The following is a high-level overview:

1. Decide how your data will be represented in scripting. This includes identifying which objects,
properties, enums, and events you will introduce.

2. Each of the items requires a unique name that is mapped to a unique four-character ID. These name/ID
pairs must be registered with Adobe. Typically, these values are made part of an enum and are saved
in a header file for later use.

3. Generate GUIDs for each new scripting object you introduce. This can be done using the Microsoft
GUID Generator (GUIDGEN.exe). This is only for objects and is not required for properties, enums, and
events. These GUIDs are #defined in a header for later use.

4. The scripting objects, events, properties, and enums are described in a VersionedScriptElementInfo
resource in your plug-ins ODFRC file. This requires you to add several new IDs in the
kScriptInfoIDSpace. This also identifies at least one ScriptProvider.

CHAPTER 6: Building Blocks List Plug-ins in Extension Manager 86

5. A ScriptProvider is a boss that provides an implementation of IScriptProvider. Your implementation
handles any properties or events specified in the VersionedScriptElementInfo.

Additional points are described in the “Scriptable Plug-in Fundamentals” chapter of Adobe InDesign Plug-In
Programming Guide. When all is said and done, adding scripting support primarily amounts to knowing
how to deal with various ID types, crafting a VersionedScriptElementInfo, and writing some C++ code that
maps IDs and scripting constructs to the InDesign object model.

List Plug-ins in Extension Manager
For your plug-ins to be used in InDesign, InDesign must know about your plug-ins at launch time so that it
can load them. “Launching InDesign with the samples” on page 13 explains how to do this.

In addition, you can add your plug-ins to the Extension Manager. This enables users to view information
about loaded plug-ins while InDesign is running. This is optional; the functionality of your plug-ins is not
affected either way.

The following steps show how to list your plug-ins in the Extension manager.

Step 1: Create the extension installation file

An InDesign extension installation file is an XML file with the MXI file extension. (MXI stands for
Macromedia Extension Information.) It provides the information required by the Extension Manager about
extensions and about plug-ins, which can be contained in extensions. The installation file consists of the
root element macromedia-extension, its attributes, and its child elements.

Here is an example MXI file for the SDK sample plug-in BasicDalog. You can find it at
<SDK>/source/sdksamples/basicdialog/BasicDialog_win|mac.mxi.

CHAPTER 6: Building Blocks List Plug-ins in Extension Manager 87

<?xml version="1.0" encoding="UTF-8"?>
<macromedia-extension

name="BasicDialog"
version="8.0.0.297"
type="object"
locked="false"
pkgtype="zxp"
plugin-manager-type="all-users"
enabled-for-enabled-all="true">

<author name="Adobe Systems Incorporated" />
<products>

<product name="InDesign" version="8.0" primary="true" />
</products>
<description>

<![CDATA[SDK Sample BasicDialog]]>
</description>
<files>

<file source="SDK/BasicDialog.sdk.pln"
destination="$indesign/Plug-Ins/SDK/BasicDialog.sdk.pln"
platform="win" file-type="plugin" />

<file source="SDK/BasicDialog.pdb"
destination="$indesign/Plug-Ins/SDK/BasicDialog.pdb"
platform="win" />

<file source="SDK/(BasicDialog.sdk Resources)"
destination="$indesign/Plug-Ins/SDK"
platform="win" />

</files>
</macromedia-extension>

The root element macromedia-extension has the following attributes:

 name — A string with a maximum of 255 characters that represents the plug-in’s name.

 version — The plug-in’s version number in the format a{.b{.c}}, where a, b, and c are all positive
integers.

 type — Indicates what kind of extension this is. For a plug-in, set this to “object”.

 locked — Indicates whether the plug-in is required. If "true’’, the user cannot disable the plug-in using
Extension Manager.

 pkgtype — Indicates the plug-in’s package type.

 plugin-manager-type — Indicates howthe plug-in is managed. Valid values are "all-users" and
"current-user". The first value sets the management type to enable-for-all, disable-for-one, which
means that only one user needs to enable the plug-in in Extension Manager and then all users can use
it, and each user can disable the plug-in individually without affecting other users. The second value
sets the management type to enable-for-one, disable-for-all, which means that the plug-in is enabled
only for the user who enabled the plug-in in Extension Manager. If this item is a plug-in, you must
specify this attribute.

 enabled-for-enabled-all — The value “all” indicates that the plug-in works for every user or the current
user after one user installs this plug-in.

The element macromedia-extension has the following children:

 author — A string representing the name of the plug-in’s creator.

 products — A container element with a child product element for each supported host.

CHAPTER 6: Building Blocks List Plug-ins in Extension Manager 88

 description — Text that explains what the plug-in does or is used for.

 ui-access — Text that describes how to access the plug-in from the user interface.

 files — Indicates what files need to be added to the extension package (see Step 2), and where they
will be installed.

Step 2: Create the extension package

An Extension Manager package is an archive file with file extension ZXP. It is used to install the extension
or plug-in across platforms. To create the package, do either of the following:

 Launch Extension Manager, File > Package ZXP Extension.

 Copy the MXI file to the folder containing BasicDialog.sdk.pln and BasicDialog.pdb, then double-click
MXI file. A ZXP file is created by Extension Manager.

Step 3: Install the plug-in

To install the plug-in:

1. Open Extension Manager and click Install.

2. Browse to the location where your ZXP file is saved, select it, and click Open to start the installation
process.

3. After the installation is complete, confirm that the plug-in appears in Extension Manager, and that the
plug-in file is copied to the <InDesign>/Plug-Ins/SDK/ folder.

NOTE: Extension Manager needs to be launched one time by a user with admin rights, so that it can load
and cache the extensions. After that, Extension Manger can also show the list of extensions and plug-ins to
normal users.

To remove a plug-in from Extension Manager:

1. Select the extension from the pop-up menu that lists the installed programs.

2. Choose File > Remove Extension.

NOTE: The plug-in is not removed from the <InDesign>/Plug-Ins/SDK/ folder.

 89

7 InDesign Server Plug-in Techniques

This chapter provides technical details to help developers create new plug-ins or port existing plug-ins to
use with InDesign Server.

Introduction
Developing a plug-in for InDesign Server requires the same fundamental C++ and object oriented
programming and design skills needed to develop plug-ins for the regular version of InDesign, which we
call desktop InDesign. However, because InDesign Server does not have a user interface like its desktop
counterpart, there are many considerations when porting an existing InDesign plug-in for use under the
InDesign Server product.

This chapter compares the object models of desktop InDesign and InDesign Server, identifies the key areas
of InDesign plug-in code that you must review or modify for use with InDesign Server, and suggests
programming techniques to ensure that your plug-ins can run safely under InDesign Server.

The chapter is organized by the different areas of InDesign plug-in code that you must review to
determine its degree of compatibility with InDesign Server, and provides techniques to solve
incompatibility issues. Where necessary, this document includes discussions of techniques to make the
same code run under both desktop InDesign and InDesign Server.

After reading this chaper, you should be able to do the following:

 Safely port desktop InDesign plug-ins for use with InDesign Server.

 Achieve better plug-in architecture and performance.

Terminology
This section defines terms that are used in this chapter.

 Desktop InDesign —The regular version of InDesign that runs with a full user interface. You create and
modify layouts using this version of InDesign by interacting with the user interface.

 InDesign Server — The server version of InDesign. It has no user interface. To interact with InDesign
Server, you send it commands in the form of SOAP packets.

Key concepts

Model and view (in the MVC paradigm)

InDesign uses the model-view-controller (MVC) architecture from SmallTalk to factor its user interface. The
model manages the behavior and data of the application domain, delivers information about its state to
the view, and makes changes to its state as directed by the controller. The view manages the user interface,
including the onscreen representation of the model. The controller interprets the mouse gestures and
keyboard input from the user, commanding the model and or view to change as appropriate. The
following are mapped onto InDesign:

CHAPTER 7: InDesign Server Plug-in Techniques How desktop InDesign and InDesign Server differ 90

 The model is a document containing publishing assets such as text or images, organized into pages,
spreads, and layers.

 The view is a window opened on the document, displaying the contents of the document to the user.

 A controller is an object that facilitates communication between the model and the view (for example,
a dialog controller or event handler).

One way of thinking about MVC is that it formalizes the relationships among input, output, and data
processing. If you constructed a view of your model (which could be a window displaying a document),
you could easily have multiple views of the same model. Conversely, if you design your plug-ins according
to this paradigm, you can easily interchange the view of your model or eliminate it altogether.

Active context

In desktop InDesign, the active context refers to an object with which a user is interacting. Object types
include documents, selected items, control views, and workspaces. At any time, there could be one object
of each kind in the active context. The active context is identified by the IActiveContext interface.
Developers can get the active context object by calling one of the Get*** methods in IActiveContext.

In InDesign Server, however, not all types of active context may be available. For instance, there is no view
for InDesign Server.

How desktop InDesign and InDesign Server differ
Although both desktop InDesign and InDesign Server were developed from the same code base, there are
many configuration differences. For instance, desktop InDesign requires a full-featured user interface, but
InDesign Server does not. Also, InDesign Server provides features enabling control by sending SOAP
packets over the network. Most configuration differences are in the set of plug-ins installed and/or loaded
by each application. These configuration differences present a different object model landscape;
therefore, plug-in developers must exercise caution when porting plug-ins for use with InDesign Server.
For instance, user-interface elements in desktop InDesign are not available in InDesign Server.
Assumptions about the existence of certain interfaces, especially ones related to user-interface
components (dialogs/panels, observers attached to such components, and menus/actions), must be
fortified with code that handles such cases properly.

The lists in the following sections present a complete set of configuration differences between desktop
InDesign and InDesign Server, primarily at the plug-in and binary component level (frameworks and
dynamic link libraries).

Windows® plug-ins are DLLs with the extension .apln (application) or .rpln (required). Mac OS® plug-ins are
created as framework bundles. The folder that stores a bundle has the extension “.framework”. For brevity,
these extensions are omitted in the following lists.

What InDesign Server has that desktop InDesign does not have

The following plug-ins are unique to InDesign Server (that is, their Product resource contains only
kInDesignServerProduct):

 <InDesign CS6 Server>/Plug-Ins/Server/Corba Generator

 <InDesign CS6 Server>/Plug-Ins/Server/Corba Utils

CHAPTER 7: InDesign Server Plug-in Techniques How desktop InDesign and InDesign Server differ 91

 <InDesign CS6 Server>/Plug-Ins/Server/ServerStatistics

 <InDesign CS6 Server>/Plug-Ins/Server/SOAPServer

InDesign Server includes the following plug-in, which is installed only with the Japanese version of
InDesign CS6:

 <InDesign CS6>/Contents/MacOS/Required/CJKLayout

The following boss classes are published from the Corba Generator, Corba Utils, ServerStatistics, and
SOAPServer plug-ins:

 Corba Generator:

 kCorbaGeneratorBoss

 kCorbaGeneratorScriptProviderBoss

 kCorbaHeaderFileGeneratorBoss

 kCorbaImplFileGeneratorBoss

 kCorbaInterfaceFileGeneratorBoss

 kPackagesInitializerBoss

 kTemplateInitializerBoss

 Corba Utils:

 kCorbaAPIScriptMgrBoss

 ServerStatistics:

 kServerStatisticsScriptProviderBoss

 kServerStatisticsStartupShutdownBoss

 SOAPServer:

 kErrorListScriptObjectBoss

 kErrorListScriptProviderBoss

 kModelUIScriptProviderBoss (debug only)

 kServerDocFileHandlerBoss (NOTE: A different DocFileHandler boss is available in desktop
InDesign)

 kServerSettingsScriptProviderBoss

 kServerTestScriptProviderBoss

 kShutdownRequestIdleTaskBoss

 kSoapServerIdleTaskBoss

 kSoapServerScriptProviderBoss

 kSoapServerStartupShutdownBoss

CHAPTER 7: InDesign Server Plug-in Techniques Minimum requirements for an InDesign Server plug-in 92

 kXSLEnablerServiceBoss

The following public add-ins are published from the plug-ins:

 IID_IDOCUMENTUIACTIONS (boss: kUtilsBoss; interface: IDocumentUIActions. Desktop InDesign also
has an implementation of this interface.)

 IID_IERRORLIST (boss: kSessionBoss; interface: IErrorList)

 IID_IEVENTDISPATCHER (boss: kAppBoss; interface: IEventDispatcher. Desktop InDesign also has an
implementation of this interface.)

 IID_ISERVERSETTINGS (boss: kSessionBoss; interface: IServerSettings)

 IID_IPERFORMANCECOUNTERS (boss: kUtilsBoss; interface: IPerformanceCounters))

What desktop InDesign has that InDesign Server does not have

Most of the plug-ins and related components distributed and loaded only in desktop InDesign are related
to the application’s user interface or “view” components. These elements are not necessary for InDesign
Server, because InDesign Server has no user interface.

Minimum requirements for an InDesign Server plug-in
A plug-in for InDesign Server should meet at least the following requirements:

 The plug-in should be developed using the InDesign CS6 Product Software Development Kit (SDK).

 The ProductIds field in the PluginVersion resource should contain at least kInDesignServerProduct.
(See “Making a plug-in load (or not load) in InDesign Server” on page 92.)

 The threading policy field in PluginVersion should be set to kModelPlugin. Background threads
behave much like InDesign Server, in that user-interface components are not available.

 The plug-in must truly be model only. There should be no dependencies on user-interface-related
components available only in desktop InDesign, like the WidgetBin.dll (Windows) or
InDesignModelAndUI.framework (Mac OS). For more information, see the “Model and UI Separation”
chapter in the Adobe InDesign Plug-In Programming Guide.

Making a plug-in load (or not load) in InDesign Server

You can specify whether a plug-in should be loaded, by specifying the ProductIds flags in the
PluginVersion resource. The following example shows a PluginVersion resource for a plug-in that will be
loaded only in InDesign Server:

CHAPTER 7: InDesign Server Plug-in Techniques Minimum requirements for an InDesign Server plug-in 93

resource PluginVersion (1)
{
 kTargetVersion,
 kMyPluginID,
 kMajorVersionNumber, kMinorVersionNumber,
 kMajorVersionNumber, kMinorVersionNumber,
 kMyPluginLastMajorFormat, kMyPluginLastMinorFormat,
 { kInDesignServerProduct }, /* ProductIds field */
 { kWildFS },
 kModelPlugIn,
 kAUMComponentVersionStr
};

If you omit kInDesignServerProduct from the ProductIds field, the plug-in is not loaded in InDesign Server.

If you specify { kInDesignProduct, kInCopyProduct, kInDesignServerProduct } in the ProductIds field, the
plug-in is loaded in all three products in the InDesign product family: InDesign, InCopy, and InDesign
Server.

A plug-in must specify whether it supports model or user-interface (view) operations. This is called the
plug-in’s threading policy, because it was introduced to support InDesign’s multithreading model, which
makes model operations threadable. As mentioned above, InDesign Server plug-ins must specify
kModelPlugIn in this field.

The SDK contains a set of plug-ins that will load under InDesign Server:

 BasicPersistInterface

 CandleChart

 CHLinguistic

 CHMLFilter

 CustomConditionalText

 ExtendedLink

 FrameLabel

 HiddenText

 Hyphenator

 InCopyExport

 InCopyImport

 INXErrorLogging

 PersistentList

 PreflightRule

 SingleLineComposer

 TextImportFilter

 TransparencyEffect

CHAPTER 7: InDesign Server Plug-in Techniques Removing calls to APIs that depend on active context or something in
“front” 94

 Watermark

 XDocBookWorkflow

 XMLCatalogHandler

 XMLDataUpdater

These plug-ins provide services used by application features; therefore, no special script provider
implementations are necessary for them to be driven by a script. For details on how to use a plug-in’s
features though scripting, see the documentation for each sample.

Detecting whether your plug-in is running under InDesign Server

You can distinguish between desktop InDesign and InDesign Server at runtime by getting the product ID
via the LocaleSetting singleton class. The call LocaleSetting::GetLocale().GetProductFS() returns one of the
following values (defined in <SDK>/source/public/includes/FeatureSets.h):

 kInCopyProductFS: Plug-in is running under InCopy.

 kInDesignProductFS: Plug-in is running under desktop InDesign.

 kInDesignServerProductFS: Plug-in is running under InDesign Server.

You also can use the LocaleSetting::GetLocale().IsProductFS(<productId>) method to test for one of the
preceding values. For more information on these methods, see
<SDK>/source/public/includes/PMLocaleTypes.h.

Verifying whether your plug-in is loaded in InDesign Server

There are two ways to verify whether your plug-in is loaded in InDesign Server:

1. Load your plug-in in InDesign Server, start the application, shut it down, and then examine the
QA/Logs/configuration_NNNNN/PluginLoadLog.txt file (where NNNNN is the InDesign Server TCP/IP
port number).

2. Use the QATest script event with a plug-in information related parameter. For information on scripting
features related to testing, see “Testing techniques” on page 103.

Removing calls to APIs that depend on active context or
something in “front”

Several methods in the InDesign C++ API rely on an object that is “front”; for example, a document or
layout that is in front of others. These APIs are not available in InDesign Server, which does not have a user
interface and, consequently, has no concept of an object being in front. For example, instead of using
ILayoutUIUtils::GetFrontDocument, you need to access IDocumentList or store the instance of the
document in a variable when you create it.

CHAPTER 7: InDesign Server Plug-in Techniques Using MessageLog or IErrorList in place of custom error/warning
dialogs (other than CAlert) 95

Using MessageLog or IErrorList in place of custom
error/warning dialogs (other than CAlert)

In desktop InDesign, plug-ins may invoke custom modal dialogs (other than CAlert) to inform users of an
error or warning. An example of such a dialog is the missing plug-ins dialog, which displays the message,
“The document (name) uses one or more plug-ins which are not currently available…” A user must click on
a button on this dialog for the application to proceed.

In an application without a user interface, such as InDesign Server, showing a modal dialog is equivalent to
the server application hanging. As a result, plug-ins running under InDesign Server must use a different
mechanism to report messages to the user. Instead of displaying a dialog, messages must be written to a
message log.

Third-party plug-ins can use the message log by using one of the following APIs:

 MessageLog — To write to the message log. See “Writing messages to the log with MessageLog” on
page 95.

 IErrorList — To read from the message log. See “Inspecting the list of logged messages with IErrorList”
on page 96.

Writing messages to the log with MessageLog

The API MessageLog utility (<SDK>/source/public/includes/MessageLog.h) allows plug-in code to add
messages to the message log. If your desktop InDesign plug-in code invokes modal dialogs to inform users
of an error or warning, you must augment your code to instead send the message to the message log
when running under InDesign Server. Ideally, you also would move your desktop InDesign dialog code to a
user-interface-only plug-in so that it will not load under InDesign Server.

NOTE: You do not need to replace calls to CAlert methods with MessageLog, because the InDesign Server
implementation of CAlert internally logs messages using MessageLog.

There are three runtime global instances of type MessageLog that can be used to log messages at one of
three different levels. For example, to log an information message, use the following:

gInfoLog.Write("Executing Script"); // errorlevel = CAlert::eInformationIcon

To log a warning, use the following:

gWarnLog.Write("Missing Font"); // errorlevel = CAlert::eWarningIcon

And to log an error, use the following:

gErrorLog.Write("Invalid Path"); // errorlevel = CAlert::eErrorIcon

All these examples use constant value strings. The Write method takes a PMString, so the messages can be
localized and constructed using standard InDesign string mechanisms, such as locale-specific string.fr files
and ReplaceStringParameters.

When you write to the message log in this way, the messages are added to the in-memory error list using
IErrorList (see “Inspecting the list of logged messages with IErrorList” on page 96) and are written to stdout
or stderr, depending on the level of the message. Information and warning messages go to stdout; error
messages, to stderr.

CHAPTER 7: InDesign Server Plug-in Techniques Using MessageLog or IErrorList in place of custom error/warning
dialogs (other than CAlert) 96

Outside of the context of a plug-in (for example, from an application that invokes InDesign Server), you
can redirect the stdout and stderr pipes to capture the log. You can use the standard mechanisms on Unix
and Windows for redirecting stdout and stderr.

Inspecting the list of logged messages with IErrorList

The IErrorList interface, which should be used by third-party plug-ins only to inspect the list of logged
messages, is aggregated on the kSessionBoss only under InDesign Server. (This interface is not available at
runtime when running under desktop InDesign.)

To get the number of logged messages, do the following:

InterfacePtr<IErrorList> errorList(GetExecutionContextSession(), UseDefaultIID());
int16 numMessages = errorList->GetNumErrors();

Then, to inspect the nth logged message (where 0 <= n < numMessages), do the following:

PMString message = errorList->GetErrorMessage(n);

Finally, to inspect the nth logged message’s error level, do the following:

int32 errorLevel = errorList->GetErrorLevel(n);

where the error level value is one of the enums defined in typedef CAlert::eAlertIcon.

For details on the IErrorList interface, see the HTML-based reference documentation.

Scripting clients of InDesign Server can retrieve these messages in a similar way. You can get details about
logged messages, such as the error code, error level as defined in the typedef CAlert::eAlertIcon, message
string, and timestamp, by accessing the ListErrorCode property, ListErrorLevel property, ListErrorMessage
property, and ListErrorTime property, respectively, on a specific ErrorListError collection item.

NOTE: With the exception of the MessageLog implementation and error list script provider
implementation, do not use the IErrorList interface to write a message to the log. To write a message to the
log from plug-in code, use the MessageLog mechanism (see “Writing messages to the log with
MessageLog” on page 95).

Writing messages directly to standard error and standard output
without writing them to the message log

Even if you do not want your messages written to the log, you can still write messages to the console (from
which you invoked InDesign Server) from within your plug-in code, using cerr or cout:

if (LocaleSetting::GetLocale().GetProductFS() == kInDesignServerProductFS)
std::cout << "(This is some message)" << std::endl;

The key point is that the call to cout is executed only if the runtime check for the InDesign Server feature
set passes. These extra user interface updates may slow down the application; therefore, we recommend
that you use this technique only when needed, for example, when debugging.

The Application script object for InDesign Server also has events that allow a script to write text to the
standard error and standard output streams. They are Consoleerr and Consoleout, respectively. Both
events take a string parameter containing the message to be written.

NOTE: If you write messages directly to standard error and standard output, you cannot retrieve them later
using IErrorList.

CHAPTER 7: InDesign Server Plug-in Techniques Adding custom features to InDesign Server 97

Adding custom features to InDesign Server
With desktop InDesign, you can add user interface components to let users use the custom features
provided by your plug-in. With InDesign Server, however, there is no user interface. The recommended
way to expose your plug-in’s custom features to clients of InDesign Server is to implement script providers
for your custom features, so clients can drive them by scripts. The “Scriptable Plug-in Fundamentals”
chapter of Adobe InDesign Plug-In Programming Guide provides more details on how to add script
providers to your plug-ins.

Before you make your plug-in scriptable, you may need to perform a set of preparatory refactoring tasks to
make the process go smoothly; for example, making sure that the model and user-interface components
are separated. For instance, if you are performing key tasks, such as processing commands, directly from
within an action component or dialog controller, consider moving that code to a utility or facade class that
can be called from multiple components.

Performance considerations
One reason for using InDesign Server is to take advantage of the high-performance publication
generation engine made possible due to the lack of a user interface; however, removing the user-interface
components from your plug-ins goes only so far. There are other plug-in programming techniques that
you can incorporate to improve the performance of your plug-in:

 Make sure no unneeded observers are attached (especially those that watch for model changes to
update a user interface).

 Make sure there are no unnecessary idle tasks.

 Remove unnecessary global recompositions of text stories.

Make sure no unneeded observers are attached

The InDesign change manager calls observers one by one whenever there is a change of interest.
Therefore, processing gets slower as more observers are attached to a subject. If you have any observers
that were attached to model subjects to update a user interface (such as a widget on a panel, dock bar, or
kit), eliminate them (or put them in plug-ins that load only under kInDesignProduct or kInCopyProduct),
because your InDesign Server plug-in will not need them.

NOTE: There are precautions to take when moving persistent implementations to a plug-in with a different
plug-in ID. For more information, refer to the “Model and UI Separation” chapter of the Adobe InDesign
Plug-In Programming Guide.

Make sure there are no unnecessary idle tasks

As with observers, processing time increases as more idle tasks are installed in the application. If you have
idle tasks monitoring specific operating system events or messages, and they are not part of your InDesign
Server workflow, eliminate them (or put them in plug-ins that load only under kInDesignProduct or
kInCopyProduct).

NOTE: There are precautions to take when moving persistent implementations to a plug-in with a different
plug-in ID. Refer to the “Model and UI Separation” chapter of the Adobe InDesign Plug-In Programming
Guide.

CHAPTER 7: InDesign Server Plug-in Techniques 64-bit plug-ins (Windows only) 98

Remove unnecessary global recompositions of text stories

Many existing scripting providers force text composition when they need to return data that relies on
composition. (It might be useful for script authors to know that the operations they are performing are
forcing composition. They might then be able to combine these operations at the end of the script or even
remove them.) If there is a bottleneck for text composition in your script provider, this can be set as a
simple preference, for instance, where a message is displayed to the console (stdout) every time text
composition is forced, so the script author is notified when this happens. The script author can then
refactor the script to reduce such bottlenecks.

64-bit plug-ins (Windows only)
The InDesign Server Windows code base and project files support 64-bit plug-ins. The Mac OS code base
relies heavily on Carbon, which does not support 64-bit plug-ins.

For your plug-in to load and run under InDesign Server x64, you must convert your plug-in to a 64-bit
version. All SDK sample Visual Studio plug-in project files contain 64-bit targets, even though they do not
all run under InDesign Server (because some have user-interface elements). You can run your 32-bit
plug-in on a 64-bit machine, by running the 32-bit version of InDesign CS6 Server. 32-bit applications can
run on a 64-bit platform in the emulation mode called WOW64 (Win32 On Win64); however, 64-bit
applications cannot run on a 32-bit platform.

This section contains information about setting up Visual Studio and your plug-in project files to build
64-bit targets, and about converting your plug-in code to be 64-bit compatible.

Updating Visual Studio to use 64-bit components

This section explains how to set up your installation of Visual Studio to enable building 64-bit plug-ins. You
can compile and build a 64-bit plug-in on a 32-bit machine, but you can execute it only on a 64-bit
machine.

Install 64-bit components to Visual Studio

If you have not already done so, install the 64-bit components as follows:

1. The original Visual Studio installer, vs_setup.msi, is required for installing the 64-bit components. If you
no longer have the installer on your machine, the update process will let you know and allow you to
insert the CD or point to the installer file at another location.

2. Choose Start > Control Panel > Add/Remove Programs > Change or Remove Programs. Choose
Microsoft Visual Studio 2008.

 Choose Add or Remove Features.

 Choose Microsoft VS 2008 > Language Tools > Visual C++ > X64 Compilers and Tools.

 Click Update. You will see some dialogs with progress bars. If you do not have the installer on the
local machine, you will be asked to locate vs_setup.msi.

3. Install Visual Studio 2008 Service Pack 1.

CHAPTER 7: InDesign Server Plug-in Techniques 64-bit plug-ins (Windows only) 99

ODFRC settings in Visual Studio

The following procedure gives Visual C access to ODFRC, the core-resource (*.fr) compiler for InDesign
plug-in development:

1. Launch Visual Studio.

2. Choose Tools > Options > Projects and Solutions > VC++ Directories.

3. Make sure “Show directories for” is set to “Executable files” (look for a drop-down list near the
upper-right corner of the dialog).

4. Set “Platform” to “x64.”

5. Add an entry for <SDK>\devtools\bin (replace <SDK> with a valid path to the InDesign Products SDK).

6. Close the dialog.

7. Choose File > Save All.

8. Quit Visual Studio, then restart to confirm that the setting was accepted. If the setting was not
accepted, you probably will encounter an error when merge_res.cmd is executed while building your
plug-in.

Adding a 64-bit target to a Visual Studio project

This section explains how to add 64-bit targets to an existing InDesign plug-in Visual Studio project file. To
begin, open your project file. It needs to have an established 32-bit target for the following steps to make
sense. Next, open the Properties dialog for the project and make the following changes.

Add a new configuration for the x64 platform

1. Select Configuration: Debug.

2. Select Platform: Win32.

3. Click “Configuration Manager...”

4. In the “Active solution platform:” list, select “new...”.

5. Choose x64.

6. Leave “Copy settings from:” set as Win32.

7. Repeat the previous steps, using Release?Win32 as the base target.

Modify the settings for the new x64 targets using the Properties dialog

Now you have x64 targets based on your Win32 targets. Most settings convert correctly and will not need
to be modified, but you must turn on warnings for 64-bit porting issues and change paths so that they
point to the appropriate object and build folders:

objD -> objDx64

objR -> objRx64

CHAPTER 7: InDesign Server Plug-in Techniques 64-bit plug-ins (Windows only) 100

debug -> debugx64

release -> releasex64

The properties that you need to change are listed below. Before editing the properties, be sure you select
the x64 Platform. The paths here assume that you are building your project from within the SDK; if you are
not building from within the SDK, adjust the paths to your own system. Also, where you see
<MyProjectName>, replace it with the actual name of your project.

Configuration Properties > General: Output Directory

Debug: ..\objDx64\<MyProjectName>

Release: ..\objRx64\<MyProjectName>

Configuration Properties > General: Intermediate Directory

Debug: ..\objDx64\<MyProjectName>

Release: ..\objRx64\<MyProjectName>

Configuration Properties > C/C++ > General: Detect 64-bit Portability Issues

All Configurations: Yes (/Wp64)

Configuration Properties > C/C++ > Precompiled Headers: Precompiled Header File

All Configurations: $(IntDir)\<MyProjectName>.pch

Configuration Properties > C/C++ > Output Files

All Configurations: ASM List Location => $(IntDir)\

All Configurations: Object File Name => $(IntDir)\

All Configurations: Program Database File Name => $(IntDir)\

Configuration Properties > Linker > General: Output File

Debug: ..\debugx64\SDK\<MyProjectName>

Release: ..\releasex64\SDK\<MyProjectName>

Configuration Properties > Linker > Input: Additional Dependencies

Debug: Change all paths to point to objDx64 rather than objD

Release: Change all paths to point to objRx64 rather than objR

Configuration Properties > Linker > Debugging: Generate Program Database File

Debug: ..\debugx64\sdk\<MyProjectName>.pdb

Release: ..\releasex64\sdk\<MyProjectName>.pdb

Configuration Properties > Linker > Advanced: Import Library

Debug: ..\objDx64\MyProjectName/<MyProjectName>.lib

Release: ..\objRx64\MyProjectName/<MyProjectName>.lib

CHAPTER 7: InDesign Server Plug-in Techniques 64-bit plug-ins (Windows only) 101

NOTE: If you ever add an include path or new library to your project, make sure to add the appropriate
settings for both the Win32 and x64 targets.

Converting 32-bit code to 64-bit

To start, read the information about writing 64-bit compliant code on Microsoft’s MSDN Web site:

 http://msdn.microsoft.com/en-us/library/ms775157.aspx (Programming Guide for 64-Bit Windows)

 http://msdn.microsoft.com/en-us/library/h2k70f3s.aspx (64-Bit Programming with Visual C++)

 http://msdn.microsoft.com/en-us/library/ms241064.aspx (64-bit Applications)

General approach

The following list provides a general approach to converting your plug-in code to be 64-bit compliant:

 After you enable the 64-bit Portability Issues warning (/Wp64) for your project, try to compile your
32-bit target, then record the number and type of warnings. For more information on the /Wp64
compiler setting, go to http://msdn.microsoft.com/en-us/library/yt4xw8fh.aspx.

 Use C++-style casts — static_cast<> and reinterpret_cast<> — instead of C-style casts. This makes the
intent clear and allows you to find your casts much more easily.

 Look for any 32-bit APIs that were deprecated, and replace them with the 64-bit version.

 Look for pointers being stored as 32-bit int or long. In 64-bit Visual Studio applications, pointers are 64
bits, so storing one in a 32-bit int/long truncates the pointer. Use pointer types instead, such as
uintptr_t, intptr_t, or ptrdiff_t (see http://msdn.microsoft.com/en-us/library/aa384264.aspx).

 Look for places where you retain data, and ensure that proper conversion of data size is being done
when reading or writing that data. Do not write size_t or pointer types to a document (XferPointer will
assert if you try to write a pointer to a document).

 Use IPointerData and IStream::XferPointer with extreme care; neither one prevents the pointer from
going stale.

 Look for any assembly code that is not 64-bit compliant.

 Make sure any third-party libraries or source code that you use also is 64-bit compliant.

 If you use STL types, use the appropriate size_type variable when accessing or performing size
operations on the data.

Common /Wp64 warnings and their resolutions

 warning C4267: 'initializing' : conversion from 'size_t' to 'int32', possible loss of data. This warning typically
occurs when assigning a size_t to an int32. For this case, a static_cast is required:

 Old:
int32 foo = some_vector->size();

 New:
int32 foo = static_cast<int32>(some_vector->size());

 warning C4312: 'type cast' : conversion from 'unsigned int' to 'IControlView *' of greater size and warning
C4311: 'type cast' : pointer truncation from 'IControlView *' to 'int32'. These usually occur in pairs. The first

http://msdn.microsoft.com/en-us/library/ms775157.aspx
http://msdn.microsoft.com/en-us/library/h2k70f3s.aspx
http://msdn.microsoft.com/en-us/library/ms241064.aspx
http://msdn.microsoft.com/en-us/library/yt4xw8fh.aspx
http://msdn.microsoft.com/en-us/library/aa384264.aspx

CHAPTER 7: InDesign Server Plug-in Techniques 64-bit plug-ins (Windows only) 102

warning occurs when we store an integer type into a pointer, and the second occurs when we retrieve
that integer type. For this situation, two helper templates were added:

 Old:
someSubject->Change(..., ..., (void *) someEnumValue);
...
int32 someEnumValue = (int32) changedBy;

 New:
#include "typecasts.tpp"
...
someSubject->Change(..., ..., to_voidptr_cast(someEnumValue));
...
int32 someEnumValue = from_voidptr_cast<int32>(changedBy);

Some less-common problems and their solutions

 Passing a pointer in an interface to a command:

 Old, dangerous code:
InterfacePtr<IIntData> intData(cmd, UseDefaultIID());
intData->Set((int32)somePointer);

 New, slightly less dangerous code:
InterfacePtr<IPointerData> ptrData(cmd, UseDefaultIID());
ptrData->SetPointer(reinterpret_cast<uintptr_t>(somePointer));

 Implementing an object’s copy stream by copying pointers:

 Old, dangerous code:
s->XferInt32(fSomePtr);

 New, slightly less dangerous code:
s->XferPointer(fSomePtr);

Window’s specific problems and their solutions

 Old:
SetWindowLong(hwnd, GWL_USERDATA, (LONG)pUserData));
somePtr = (SomePtr *)GetWindowLong(hwnd, GWL_USERDATA);

 New:
SetWindowLongPtr(hwnd, GWL_USERDATA,
 reinterpret_cast<uintptr_t>(pUserData)));
somePtr =
 reinterpret_cast<SomePtr*>(static_cast<uintptr_t>(GetWindowLongPtr(hwnd,
 GWL_USERDATA));
// Yes, the double cast is necessary

 Old:
int32 error = (int32) ::ShellExecute(...);

 New:
int32 error =
 static_cast<int32>(reinterpret_cast<uintptr_t>(::ShellExecute(...)));

Truncated pointers

Truncated pointers may be found in several forms. All the following pseudocode examples result in
truncated pointers:

CHAPTER 7: InDesign Server Plug-in Techniques Testing techniques 103

 address = address ^ 0x10000000

 address = address & 0xFFFFFFFE

 uint32 address = (uint32)somePointer

 sprintf(buf, “0x%x”, somePointer);

 Consider the following method:

someFunction(size_t* foo) //prototype
long x;
someFunction((size_t*)&x) // call
// x in bytes is, for example, │0│0│0│h│
// (size_t*)&x would then be interpreted as │0│0│0│h│0│0│0│0│

 Consider the following struct:

struct {
 int* m1;
 int m2; // typical comment: offset == 4 [i.e. offset w/in struct]
}
// Warning: offset would not be 4 in an 8-byte world

 Consider the following union:

union {
 int32 fZ; // zzzz
 char* fP; // pppppppp
}
fZ = 0;
if (fP)

Testing techniques
After you have ported your plug-in code for use with InDesign Server, removed all view components, and
refactored for performance improvements, you are ready to test your plug-in in the debug build of
InDesign Server.

If you added script providers to your plug-in, you can test your plug-ins through your own scripts. It is
essential that you become comfortable writing automation scripts with the InDesign Server scripting
library. For further references on scripting with InDesign, refer to the Adobe InDesign Scripting Guide.

In addition to testing your own plug-in’s features with scripts, you can use some of the testing features
exposed through the script provider for InDesign Server’s debug build. Some of these features also are
available in the “QA” and “Test” menus in desktop InDesign. You can write scripts to exercise these features
and supplement the tests for your own plug-ins.

These debug-only scripting features are provided for internal use by Adobe Engineering, and the
documentation for these features is provided only as a reference and convenience for developers. Some
components necessary to fully execute these features may not be available in the debug distribution.

Scripting objects you can use for testing

The following table lists script events and properties provided only in the InDesign Server debug build for
testing purposes. The events and properties listed in the table are written using VisualBasic syntax. See the
language-specific examples for Apple Script and JavaScript.

CHAPTER 7: InDesign Server Plug-in Techniques Testing techniques 104

Events and properties on debug-only script objects:

Test names for the QATest Event

Basics

Specify the following test names for basic testing features:

 “BuildNumber” — Returns the build number as a string.

 “CancelTest” — Cancels the suite that is running, if any.

 “GenerateScripts” — Generates scripts in the same way as the menu item QA > Generate Scripts >
Generate Scripts. You must specify the category of scripts to be generated: “AppleScript,” “Javascript,”
“VisualBasic,” “HLA,” “AppleScript objects,” “Javascript objects,” “VisualBasic objects,” or “HLA objects.”

Event or property

Description

InDesignServer.Application.pluginswithui property

Returns a list of strings containing UI-related IIDs

InDesignServer.Application.modelpluginswithui property

Returns a list of strings containing UI-related IIDs implemented in a hard-coded list of model
plug-ins known to the product.

InDesignServer.Application.uipluginswithmodel property

Returns a list of strings containing model IIDs (e.g., IID_ICOMMAND) implemented by a
hard-coded list of user interface plug-ins.

InDesignServer.Application.QAScriptingObject property (Type: QAScript)

Provides access to the QAScript object, which provides the QATest event, TestFlags property, and
TestIsRunning property. The QAScript.QATest event also is available as the
InDesignServer.Application.QATest event (see below), and the QAScript.TestIsRunning property
also is available as the InDesignServer.Application.TestIsRunning property (see below).

InDesignServer.Application.QATest event

Takes two parameters: “named,” a required string parameter that specifies the name of the test
or operation to perform, and “with parameter,” an optional string parameter that specifies any
parameters for the test or operation. This event also returns a string, which usually contains the
response to the test or operation specified in “named.” For details, see “Test names for the
QATest Event” on page 104.

InDesignServer.Application.ServerTest event

Takes one string parameter (“test name”), indicating which server test operation to perform. No
value is returned. The string should be one of the following (case sensitive): “purge everything”
(equivalent to the Test > Memory > Purge Everything menu item in desktop InDesign), “purge
frequently” (Test > Memory > Purge Frequently), or “purge normal” (Test > Memory > Purge
Normally).

CHAPTER 7: InDesign Server Plug-in Techniques Testing techniques 105

 “GetTestResults” — Returns the results of the suite most recently completed. The results are formatted
as follows, where “CR” represents a carriage return and line feed (Windows) or a line feed (Mac OS):
errorsCRwarningsCRfatalerrorsCRskippedCRqabugsCRelapsedtime.

 “ListEveryTestPath” — Returns a string containing the paths of all nodes in the TestSuiteTreeView (that
is, the view displayed in the Test panel). The paths are separated by platform-specific line endings.

 “RunSimplePath” — Runs the tests specified in the accompanying string, as they would be listed in the
RunTest panel suite[:provider[:test]].

 “RunTest” — Runs the test specified in the accompanying string: test. If there are two tests with the
same name, the first one ITestMgr finds is run.

 “RunTestPath” — Runs the tests specified in the accompanying string, as they would be listed in the
tree-view Test panel category:suite:provider[:group1[:group2[:group3]]]:test:.

 “QuitApplication” — Quits the application.

 “RedrawLayout” — Forces the front-most window, if any, to redraw.

 “<nameofsuite>” — Runs the named suite (replace <nameofsuite> with the suite’s name). If there is an
accompanying string, it restricts the suite to the provider or test named in that string.

 “TestMinimal” — Runs the Minimal suite.

 “TestBenchmark” — Runs the Benchmark suite (kBenchmarkSuiteBoss), using the number of
repetitions specified in the accompanying string.

 “TestBuildAcceptance” — Runs the NewBuildAcceptance suite.

 “TestIsRunning” — Returns “1” if a test is running and “0” if no test is running.

 “TestTeamTests” — Runs the Team Tests suite.

 “WhichTestIsRunning” — Returns the name of the test that is running, if any.

Settings

Specifying any set of tests and then running them is referred to as running a suite.

The Boolean settings have only two possible values, equivalent to on and off. If you set a Boolean and do
not specify a second parameter, the setting is turned on. To explicitly turn on such a setting, specify “True,”
“Yes,” “On,” or “”, where the interpretation of the parameter is case-insensitive; other values are equivalent
to off. Returned values always are “True” or “False.”

 “SetShowSuiteAlert” and “GetShowSuiteAlert” — Boolean; controls whether a dialog summarizing
test results appears after running a suite.

 “SetLogAsserts” and “GetLogAsserts” — Boolean; controls whether failed assertions are logged during
tests instead of producing dialogs.

 “SetLogAlerts” and “GetLogAlerts” — Boolean; controls whether alerts are logged during tests instead
of producing dialogs.

 “SetAutoUI” and “GetAutoUI” — You can treat this as Boolean, to turn on or off user interface
emulation during tests. To turn on this setting and specify the delay after each user interface event,
specify only the number of seconds to use for the delay.

CHAPTER 7: InDesign Server Plug-in Techniques Testing techniques 106

 “SetInstanceCache” — Debug-only Boolean; controls whether the instance cache is on or off during
testing.

 “SetLogXML” and “GetLogXML” — Boolean; controls whether an XML log is generated during testing,
in addition to the standard QASessionLog.txt.

 “SetCrashRecovery” and “GetCrashRecovery” — Boolean; controls whether testing tries to resume
after a crash and restart.

 “SetOpenAllPanels” and “GetOpenAllPanels” — Boolean; controls whether panels are opened
automatically at the start of a run of any suite.

 “SetCloseAllPanels” and “GetCloseAllPanels” — Boolean; controls whether panels are closed
automatically at the start of a run of any suite.

 “SetForceHighDisplayPerformance” and “GetForceHighDisplayPerformance” — Boolean; controls
whether display performance is automatically set to high during tests.

 “SetPurgeMemoryBetweenTests” and “GetPurgeMemoryBetweenTests” — Boolean; controls whether
memory is purged between tests. This is used by the benchmarking system.

 “SetSnapshotOnUndoRedo” and “GetSnapshotOnUndoRedo” — Boolean; controls whether
snapshotting is used in conjunction with automatic undo/redo testing.

 “SetValidateUndoRedoUsingExportToInCStory” and “GetValidateUndoRedoUsingExportToInCStory”
— Boolean; controls whether validation via an exported InCopy story is used in conjunction with
automatic undo/redo testing.

 “SetBenchmarkIterations” and “GetBenchmarkIterations” — Sets the number of iterations used during
benchmark testing.

 “SetRestartBetweenGroups” and “GetRestartBetweenGroups” — Boolean; controls whether the
application is restarted between groups of benchmark tests.

 “SetRestartBetweenIterations” and “GetRestartBetweenIterations” — Boolean; controls whether the
application is restarted between iterations of benchmark tests.

 “GetQAFolder” — Returns the location of the QA folder. If you specify a string argument, that string is
appended to the path.

 “GetQALogFolder” — Returns the location of the QA:Logs folder. If you specify a string argument, that
string is appended to the path.

 “GetQAStatusFolder” — Returns the location of the QA:Status folder. If you specify a string argument,
that string is appended to the path.

 “GetQATestFileFolder”: — Returns the location of the QA:Testfile folder. If you specify a string
argument, that string is appended to the path.

 “GetQATrashFolder” — Returns the location of the QA:QATrash folder. If you specify a string argument,
that string is appended to the path.

 “SetVersionCue” and “GetVersionCue” — Boolean; controls whether Adobe Version Cue® is enabled
during tests.

 “SetLogState” and “GetLogState” — String; controls which information is logged during tests:
“LogBAComments,” “LogErrors,” “LogEverything,” or “NoLogging.”

CHAPTER 7: InDesign Server Plug-in Techniques Testing techniques 107

 “SetRunOnlyHeadlessTests” and “GetRunOnlyHeadlessTests” — Boolean; when “True,” tests that
cannot be run in headless mode are skipped, regardless of whether the application is currently
running in headless mode.

 “SetHonorStatusFile” and “GetHonorStatusFile” — Boolean; when “True,” entries in Status.txt files are
honored.

 “SetPurgeAfterTest” and “GetPurgeAfterTest” — String; controls the level of memory purging after
each test: “NoPurging,” “SwitchingDocuments,” “SwitchingApplications,” “LowMemory1,”
“LowMemory2,” “LowMemory3,” or “ReleaseEverything.”

 “SetUseManagedLocations” and “GetUseManagedLocations” — Boolean; when “True” and when
VersionCue is on, QAFile supports the use of managed locations.

 “SetReportUnexpectedAlertsAsErrors” and “GetReportUnexpectedAlertsAsErrors” — Boolean; when
“True,” alerts signaled during automated tests are not displayed as dialogs, but their messages are
logged as errors in QASessionLog.txt.

Plug-in information

To get information about plug-ins loaded into InDesign Server, specify the following test names:

 “CountPlugins” — Returns the number of plug-ins in the application’s list.

 “IsLoadedNamedPlugin” — Takes the name of a plug-in (for example, “ACTIONS.RPLN”) and returns
“True” or “False,” depending on whether the plug-in is loaded.

 “Is Loaded Nth Plug in” — Takes the index of a plug-in in the application’s list, and returns “True” or
“False,” depending on whether the plug-in is loaded.

 “LocateNthPlugin” — Takes the index of a plug-in in the application’s list and returns the path to the
plug-in as a file.

 “NameNthPlugin” — Takes the index of a plug-in in the application’s list and returns the name of the
plug-in.

Examples in AppleScript

The following examples show how to use some of these debug-only scripting features in AppleScript:

Running Minimal: This script runs the “minimal” test:

tell application "InDesignServer"
 QATest named "Minimal"
end tell

Running One Test: This script runs a single test:

tell application "InDesignServer"
 QATest named "RunSimplePath" with parameter "BuildAcceptance:Conversion:InDesign
1.0 Mac"
end tell

Is a Test Running: This script asks whether any test is running:

CHAPTER 7: InDesign Server Plug-in Techniques Testing techniques 108

tell application "InDesignServer"
 QATest named "TestIsRunning"
 if result = "1" then
 display dialog "A test is running."
 else
 display dialog "No test is running."
 end if
end tell

Examples in VBScript

The following examples show how to use some of these debug-only scripting features in VBScript. To run a
script that targets a particular version of InDesign, you may need to run that version once before using the
script, so the application can be entered properly in the Windows registry. The name of the application, as
it appears in the CreateObject() call, should be listed in the Registry under HKEY_CLASSES_ROOT.

Running Minimal: This script runs the “minimal” test:

Set myApp = CreateObject("InDesignServer.Application")
myApp.QATest "TestMinimal"

Running One Test: This script runs a single test:

Set myApp = CreateObject("InDesignServer.Application")
myApp.QATest "RunSimplePath", "BuildAcceptance:Conversion:InDesign 1.0 Mac"

Is a Test Running: This script asks whether any test is running:

Set myApp = CreateObject("InDesignServer.Application")
running = myApp.QATest("TestIsRunning")
if (running) then
 MsgBox("Running")
else
 MsgBox("Not running")
end if

Turning off the Suite Alert: This script suppresses the display of a dialog that reports a summary of test
results at the end of running a test suite:

Set myApp = CreateObject("InDesignServer.Application")
myApp.QATest "SetShowSuiteAlert", "False"

Examples in JavaScript

The following examples show how to use some of these debug-only scripting features in JavaScript.

Using the JavaScript File object to output information obtained in a script to a Windows path:

var sink;
sink = new File("c:\\miscell\\dummy.txt");
sink.open("w");
var count;
count = app.qatest("CountPlugins");
var name;
var sIndex;
var n;

CHAPTER 7: InDesign Server Plug-in Techniques Testing techniques 109

for (n = 0; n < count; n++) {
 sIndex = String(n);
 if (app.qatest("IsLoadedNthPlugin", sIndex) == "True") {
 name = app.qatest("NameNthPlugin", sIndex);
 sink.writeln(name);
 }
}
sink.close();

Accessing the pluginswithui, modelpluginswithui, and uipluginswithmodel properties:

// NOTE: these are available in the debug build of InDesign Server only!
ids_pluginswithui = app.pluginswithui;
ids_modelpluginswithui = app.modelpluginswithui;
ids_uiplugingswithmodel = app.uipluginswithmodel;
// report properties to a dump file
// NOTE: This puts a file in the same folder as the InDesignServer program.
dumpfile = new File("dumpfile.txt");
dumpfile.open("w");
// report plugins with ui
if (ids_pluginswithui.length == 0) {
 dumpfile.writeln("there are no plugins with ui.");
} else {
 for (i = 0 ; i < ids_pluginswithui.length ; i++) {
 dumpfile.writeln("pluginswithui: " + ids_pluginswithui[i]);
 }
}
// report model plugins with ui
if (ids_modelpluginswithui.length == 0) {
 dumpfile.writeln("there are no model plugins with ui.");
} else {
 for (i = 0 ; i < ids_modelpluginswithui.length ; i++) {
 dumpfile.writeln("modelpluginswithui: " + ids_modelpluginswithui[i]);
 }
}
// report ui plugins with model
if (ids_uiplugingswithmodel.length == 0) {
 dumpfile.writeln("there are no ui plugins with model.");
} else {
 for (i = 0 ; i < ids_uiplugingswithmodel.length ; i++) {
 dumpfile.writeln("uipluginswithmodel: " + ids_uiplugingswithmodel[i]);
 }
}
dumpfile.close();

 110

8 Feature Development with Scripting

Scripting is often used to automate InDesign features. This chapter describes how to go beyond
automation to developing new features for InDesign.

NOTE: This chapter describes XHTML Export, which is a feature developed with ExtendScript, and
FlexUIStroke, which is a user-interface sample developed with ActionScript and Creative Suite SDK.

Scripting
A feature developed with ExtendScript, such as Export XHTML, takes advantage of some portion of the
following InDesign capabilities and related technologies:

 JavaScript (ExtendScript) — InDesign supports JavaScript for cross-platform development. Adobe’s
implementation is called ExtendScript. JavaScript’s cross-platform nature makes it more useful for
feature development than the platform-specific scripting languages AppleScript and VBScript. You
can use these languages when developing a feature, but you’d then have to write platform-specific
versions of your scripts.

 Menu/action scripting — The InDesign scripting DOM includes access to its menu and action system.
These are typically used to add menus and actions.

 ScriptUI — ScriptUI provides a mechanism to create user interfaces using ExtendScript. This is the
method used by Export XHTML.

 Script events — Script events provide a way for scripting code to watch for changes in the application.
For example, you can observe changes in selection and in attributes of selected objects. This makes it
possible to create high-quality panels that update automatically.

 Custom script events — InDesign provides a fixed set of events. It’s possible that you might need to
observe some change that is not covered by InDesign events. InDesign makes it possible to add
custom events with a relatively simple C++ plug-in. This allows you to provide the majority of your
solution in scripting, even if the necessary events are not provided.

 Idle tasks — It is sometimes desirable to postpone certain operations until the application is idle. In
the plug-in world, this is known as an idle task. InDesign provides the ability to implement idle tasks
using scripting and attachable events.

User interfaces built with ActionScript typically take advantage of the following additional technologies.

 ActionScript — Adobe Flash-based technologies provide the most powerful and convenient way to
create user interfaces for scripting-based solutions. The Creative Suite SDK provides ActionScript
access to the suite application scripting DOMs.

 Creative Suite SDK — An environment and tool set for creating ActionScript Creative Suite extensions.
The Eclipse-based environment is also known as Creative Suite Extension Builder (CS Extension
Builder). CS Extension Builder provides a convenient way to create Flex- and ActionScript-based user
interfaces for Creative Suite applications. It greatly simplifies creative containers (panels and dialogs)
and menu items while providing ActionScript access to the InDesign scripting DOM.

CHAPTER 8: Feature Development with Scripting Scripting versus C++ 111

 CSXS — The Creative Suite Extensibility infrastructure, accessible in ActionScript through CSXSLib.
This component provides the container for Flash-based UIs.

 HBAPI — The High Bandwidth API is a suite-wide component that provides ActionScript access to the
application scripting DOMs.

 CSAWLib — A library that provides ActionScript wrappers for the ExtendScript classes defined for each
application.

Scripting versus C++
The capabilities provided by some InDesign Products SDK samples can be implemented with a script
instead of a plug-in. For example, WriteFishPrice inserts tab-delimited text inside a text frame; this can be
achieved more easily with a script that targets the current text selection. The TableBasics plug-in inserts a
table in a text frame, which also can be automated easily via scripting. BasicTextAdornment, however, adds
a new character-text attribute (kBscTAAttrBoss) to the InDesign model. It is not possible to implement
such a feature using scripting.

Scripting is commonly used for controlling existing features. It is now especially useful for creating user
interfaces using Flash-based technologies. The C++ SDK, on the other hand, is most commonly used for
introducing features that can add to the InDesign data model, such as a new text attribute or a page-item
adornment.

Scripting is far easier to understand and use than the C++ SDK. By using scripting, you can leverage
well-designed APIs that are thoroughly tested in several InDesign code paths. Also, the scripting DOM is
versioned, so a script written in one version usually is forward compatible in future releases and can be
used without a major porting effort.

The advantages of developing features with scripting are as follows:

 Reduced development effort.

 Easier to debug and test.

 Cross-platform solution (one run-time environment targeting different platforms).

 Lower deployment cost.

 Higher reliability, as the scripting DOM is well tested.

The disadvantages of scripting-based solutions are as follows:

 It requires all features that it uses to be exposed to the scripting.

 Executing a script typically is slower than executing C++ code.

 Options for adding data to a document are limited to adding data to the script labels feature.

 Selection Suites are a C++-based solution. Script-based UI code will have to discover the selection.

Building blocks for using ExtendScript to implement a feature
with scripting

In InDesign, the Export as XHTML/Dreamweaver feature is implemented completely using ExtendScript.
Export as XHTML/Dreamweaver is not distributed as a traditional InDesign plug-in; instead, it is installed as

CHAPTER 8: Feature Development with Scripting Building blocks for using ExtendScript to implement a feature with
scripting 112

a folder containing several ExtendScript binaries, within the InDesign scripts folder located in
<InDesignInstallFolder>/Scripts/export as XHTML. The source code for Export as XHTML is included in
<SDK>/source/public/components/xhtmlexport. Export as XHTML is used throughout this chapter to
illustrate what it takes to implement a new feature using ExtendScript.

Scripts folder

There are two scripts folders where the user can install scripts, so InDesign recognizes them as the scripts
that you want to run with InDesign:

 The user’s preferences folder. On Windows®, this is C:\Documents and
Settings\<username>\Application Data\Adobe\InDesign\Version 8.0\<locale>\Scripts. On Mac OS®, it
is <username>/Library/Preferences/Adobe InDesign/Version 8.0/<locale>/Scripts.

 The application’s scripts folder. On Windows or Mac OS, this is <InDesignInstallFolder>/Scripts/

Having these two folders allows an administrator to install system-wide scripts and allows individual users,
who might not have write access to the application folder, to install user-specific scripts.

Inside the default Scripts folder in the application folder, there are folders called Export As XHTML, Scripts
Panel, XML Rules, and so on. Scripts inside the Scripts Panel folder are displayed in InDesign’s Scripts Panel,
so users can run them from the InDesign user interface. The Export As XHTML folder is where the Export as
XHTML feature’s binaries are located. If you open the Export As XHTML folder, you will see a startup scripts
folder, along with some files with the .jsxbin extension. The .jsxbin files are compiled JavaScript; they are in
binary format so the source code is not exposed, which serves several purposes:

 Source code can be protected.

 Scripts will not be modified accidentally, which could cause features to behave incorrectly.

Any script located inside a folder named startup scripts that is under the application-specific or
user-specific Scripts folder is executed when InDesign launches.

NOTE: Scripts located under a folder named Scripts Panel—even if they are in a folder named startup
scripts—are ignored by the code that executes startup scripts.

NOTE: If a script inside the startup scripts folder is in binary format, it cannot use the #targetengine
directive as discussed in “ExtendScript engines” on page 113.

The XHTMLExportMenuItemLoader.jsx script (inside Export As XHTML’s startup scripts folder) serves only
one purpose: Load and execute another script (in binary format), XHTMLExportMenuItem.jsxbin.
XHTMLExportMenuItem.jsxbin has one main purpose, to install a menu and the menu’s event handlers for
the feature at startup. The following table is a brief overview of the Export As XHTML scripts folder. It
shows the three main JavaScript binary components for Export as XHTML.

CHAPTER 8: Feature Development with Scripting Building blocks for using ExtendScript to implement a feature with
scripting 113

<SDK>/source/public/components/xhtmlexport/ also contains these folders:

 The include folder. The scripts inside this folder are included by the three main scripts in the preceding
table, and they are compiled into binary form along with the script that includes them.

 The resource folder. It contains localized string resource to be loaded by the three main scripts in the
preceding table. Localization is discussed in “Localization” on page 115.

If you are developing features using scripting, we encourage you to create a folder inside the Scripts folder
and/or use the startup scripts folder to store files that you need to use at startup. Because a script in binary
format cannot use the #targetengine directive, if you want to target a specific engine during startup, you
need to make that script an uncompiled one, like XHTMLExportMenuItemLoader.jsx.

ExtendScript engines

InDesign has two types of ExtendScript engines. Each type of engine supports the same scripting DOM
and other capabilities:

 The default engine, named “main,” is created automatically and is reset after each time it executes a
script.

 Persistent session engines, which exist until the application quits and are not reset, may be created at
any time by running a script with a #targetengine directive. The engine will have whatever name is
specified in the #targetengine directive. It retains objects and properties between scripts. This is
important for scripts attached as function call-backs, such as event handlers, which must remain active
after they are attached. It also is a requirement for scripts that display floating script user-interface
panels, which may float around indefinitely during an entire user session. The engine is visible to the
debugger.

Name Source-code path Type Purpose

XHTMLExport.jsxb
in

<SDK>/source/public/comp
onents/xhtmlexport/XHTM
LExport.jsx

Model This script contains the main logic of
iterating over the model and generating
and saving XHTML. It also contains the
model’s implementation of XHTML Export
Options and a stub implementation for a
progress bar in case it is called, for
example, from InDesign Server.

XHTMLExportMen
uItem.jsxbin

<SDK>/source/public/comp
onents/xhtmlexport/XHTM
LExportMenuItem.jsx

User
interface

This script is executed automatically on
launch. It loads the other two scripts as
needed and installs the menu item along
with the necessary event handlers. When
the user chooses the menu item, it brings
up the necessary user interface (using
XHTMLExportUI.jsxbin) and triggers the
export using XHTMLExport.jsxbin.

XHTMLExportUI.js
xbin

<SDK>/source/public/comp
onents/xhtmlexport/XHTM
LExportUI.jsx

User
interface

This script contains the strings (along with
the localization mechanism), the XHTML
Export dialog, and an implementation of a
progress bar.

CHAPTER 8: Feature Development with Scripting Building blocks for using ExtendScript to implement a feature with
scripting 114

To target a specific engine, use the #targetengine directive at the beginning of your script. For example,
the following code executes the script in an engine named “mySession”:

#targetengine "mySession"

NOTE: You may use “#targetengine main” to target the main engine; however, typically you do not need to
do so, because scripts are run in the main engine by default.

If a #targetengine directive specifies an engine name that InDesign does not recognize, InDesign
automatically creates a persistent engine with that name. This feature prevents conflicts caused by other
scripts changing objects/values your script uses. To specify your own script engine, simply put
“#targetengine <your engine name>” at the top of your script.

You also can create an ExtendScript engine via the C++ API (see the new IExtendScriptUtils interface).
There are three customizable options: engine name, whether the engine is reset after every script, and
whether the engine is visible to the debugger.

Loading external scripts

As discussed in “Scripts folder” on page 112, Export As XHTML creates its own script folder under
InDesign’s main Scripts folder, to organize its scripting files. There are two major reasons why Export As
XHTML modularizes its scripts in this way:

 Model/user-interface separation — See “Model/user-interface separation” on page 120.

 Loading of localization scripts — See “Localization” on page 115.

ExtendScript has an #include feature that you can use to include an external JavaScript file, so the
functions in the include file are available for the current script to use; however, you cannot use it to load a
compiled binary script. If you want to distribute your JavaScript feature in binary format like Export As
XHTML, you cannot use #include to load an external JavaScript file.

The recommended approach to loading (and executing) an external script is calling app.doScript(). The
source for Export As XHTML also uses a function called loadScript(), defined as in the following example:

XHTMLExportMenuItem.loadScript = function(filename)
{

return File(XHTMLExportMenuItem.scriptsFolder + '/' + filename);
}

The loadScript function simply returns a File object that contains the script. The application object’s
doScript method is then called (as shown in the XHTMLExportMenuItem.install() function) to execute the
script.

Using a startup script to install a menu when InDesign launches

InDesign provides the ability to create new menu items and manipulate application-defined menu items
via scripting. A menu in InDesign has a two-layer architecture, separating the underlying action and the
displayed menu item. When a menu is invoked, the underlying action is executed. An action is an internal
object that invokes a command or event. An action is not necessarily associated with a menu item. The
scripting DOM mirrors the internal design; through scripting, you can access menus, menu items, and the
underlying actions. You also can add or delete menus and menu items. A new menu item can be
associated with an existing, application-defined action or a new, script-defined action. The behavior of a
script-defined action is implemented via an attached script. Scripts also can be attached to execute before
or after an action is invoked and before a menu or menu item is displayed.

CHAPTER 8: Feature Development with Scripting Building blocks for using ExtendScript to implement a feature with
scripting 115

NOTE: A script registered before an action can cancel the action’s default behavior.

Although you can dynamically install a menu at run time, in most cases, menus/actions are created at
startup. Export to XHTML installs its menu item during startup, so as soon as InDesign is launched, its
menu item is available. As noted in “Scripts folder” on page 112, Export as XHTML has one startup script,
which loads and executes another script in binary format, XHTMLExportMenuItem.jsxbin.

XHTMLExportMenuItem.jsx’s main script contains only one line. It calls XHTMLExportMenuItem.install(),
which is responsible for the following tasks:

1. Create a menu action and the action in the “KBSCE File menu” action area, which is defined in
ActionDefs.h. The need to add an action to a specific action area is like defining an action through C++
API, where you must specify an action-area entry in the ActionDef resource.

2. Install event listeners for the new action. The following table provides more details about the event
listener.

3. Install the menu item in the specific menu location, File > Export for > Dreamweaver...

Event handlers for Export As XHTML action:

When XHTMLExportMenuItem.install adds a new action, the action name is localized, which is important
in supporting your feature in different InDesign locales. Localization is discussed further in “Localization”
on page 115.

Just like the C++ plug-in’s typical action-component implementation, scripting allows you to listen to
menu-action events in various stages when an action is invoked. An action object’s addEventListener
method is used to install the event and handler for the action. The preceding table shows the three events
that Export As XHTML listens to and handles.

Localization

To support scripting features in different InDesign locales, you must localize your user interface and even
your feature. Specializing your feature to meet different locales’ needs is beyond the scope of this article. In
this section, we discuss how you can handle string localization through the InDesign scripting DOM and
ExtendScript’s localization objects.

Event Handler Description

afterInvoke XHTMLExportMenuItem.cleanup afterInvoke is a good place to clean up any
unfinished business during onInvoke. For example,
XHTMLExportMenuItem.cleanup makes sure the
progress bar is closed, in case the user cancels the
script.

beforeDisplay XHTMLExportMenuItem.enable
Disable

This handles the menu item’s enable/disable states.
Export As XHTML should be enabled only when
there is a front document.
XHTMLExportMenuItem.enableDisable uses the
application document object count to modify the
state of its action before the menu is displayed.

onInvoke XHTMLExportMenuItem.exportS
electedItems

exportSelectedItems is called when the menu is
invoked. It executes the Export as XHTML feature.

CHAPTER 8: Feature Development with Scripting Building blocks for using ExtendScript to implement a feature with
scripting 116

Access to InDesign internal string tables

InDesign provides access to internal string-translation tables via the scripting DOM.

Format of key strings

To access internal string tables from the scripting DOM, key strings must be modified to include the prefix
“$ID/.” For example, if the key string appears as “my internal key string” in the internal string-translation
tables, for scripting you would use “$ID/my internal key string.”

Accessing key strings

If you have a translated string that is included in the internal InDesign string-translation tables for the
current locale, you can access the associated key string(s) via the “find key strings” method on the
application object. The return value is an array of strings, since there may be zero, one, or more keys that
translate to the desired string. The following shows sample uses.

var keys = app.findKeyStrings("Black") ; //Returns: $ID/Black

var keys = app.findKeyStrings("Scripts") ; //Returns:
$ID/Script_Tree,$ID/Script_PanelName,$ID/KBSCE Scripts
menu,$ID/Scripts,$ID/ScriptsFolder

var keys = app.findKeyStrings("None existing string") ; //Returns: empty array

Accessing translations

After you have a key string that is included in the internal InDesign string-translation tables, you can access
the associated translation for the current locale by passing the key string in place of any other string, as
you normally would do in the scripting DOM. Note, however, that for the translation to happen, the string
must pass through the scripting-language client code inside InDesign. The following example shows how
to access translated strings. The last alert in the example will not show the translated string, because the
alert string is not passed through InDesign.

alert(app.colors.add({name:"$ID/OutOfRangeError"}).name) ; //Alert "Data is out of
range." since a color is created with the translated string

alert(app.colors.add({name:"OutOfRangeError"}).name) ; //Alert "OutOfRangeError"
since a color is created with the un-prefixed ($ID) string

alert(app.paragraphStyles.add({name:"$ID/None existing string"}).name) ; //Assert
"No translation of key 'None existing string' to English string", then alert "None
existing string" since a paragraph style is created with the un-translated, un-prefixed
string

alert("$ID/OutOfRangeError") ; //Alert "$ID/OutOfRangeError" since the alert() method
is handled by the ExtendScript engine, not InDesign's scripting architecture

The new scripting API translateKeyString() of the application object also allows you to access an existing
user-interface string by name in a locale-independent manner. For example:

alert(app.translateKeyString("$ID/OutOfRangeError")) ; //Alert "Date is out of
range."

ExtendScript localization objects

In addition to providing access to InDesign’s internal string-translation table, ExtendScript supports
localization objects. Localization objects essentially are an array of strings mapped to different locales. In

CHAPTER 8: Feature Development with Scripting Building blocks for using ExtendScript to implement a feature with
scripting 117

the following example, all localized strings are stored in the array variable CANCEL. When it is time to use
the variable, localize() is used to make sure the proper localized string is put into the variables, based on
the current locale of the host environment.

var CANCEL = { en: 'Cancel', de: 'Abbrechen' };
var s = localize(CANCEL);

There was one problem with using the preceding approach for Export as XHTML: putting all languages in
one file makes it hard for Adobe’s internal localization team to manage different languages. Therefore,
Export As XHTML adopts a slight variation of ExtendScript’s localization objects: It uses localization objects
with only English strings, then it dynamically loads and executes a locale-specific language script that
adds the necessary properties. The XHTMLExportMenuItem.install method in XHTMLExportMenuItem.jsx
loads the localized string resource whenever necessary, as shown in the following example:

if($.locale != 'en_US') {
// try to load localized strings
var localizationScript = XHTMLExportMenuItem.loadScript('Resources/XHTMLStrings-'

+ $.locale + '.jsxbin');
if (!localizationScript.exists)
{
 localizationScript = XHTMLExportMenuItem.loadScript('Resources/XHTMLStrings-'

+ $.locale + '.jsx');
}
if (localizationScript.exists)
{
 ...
}

}
var actionname = localize(xhtmlExportStrings.HTMLACTIONNAME);

ExtendScript stores the current locale in the $.locale variable. This variable is updated whenever the locale
of the hosting application changes. The example checks whether the current locale is English; if not, it tries
to load the localized strings list in the Resources folder. It uses the technique discussed in “Loading
external scripts” on page 114 to load the script and make all strings in the localized resource file available
to the current function. All the English strings are defined in XHTMLStrings-en_US.jsx inside the include
folder and included in the beginning of XHTMLExport.jsx, which also is loaded by the
XHTMLExportMenuItem.install.

Setting up scripting preferences

For many things in InDesign, you must temporarily change some preferences to achieve what you want.
For example, to read the coordinates of a page item in a specific measurement unit, you must switch the
view preferences. You may want to restore the preferences after you are done with your task. The CS6
version of Export As XHTML requires scripting DOM version 8.0. It also requires enableRedraw to be set to
true, so the progress bar can be drawn correctly, and it needs to allow the user a full level of user
interaction.

To set application preferences temporarily and then restore the old values, Export As XHTML implements a
helper class, prefsContext, in XHTMLUtils. prefsContext is an object that manages the tasks of only
changing those preferences that need to be changed and remembering what was changed and what
were the old values. You simply pass a reference to the preferences object into its constructor and use its
methods to change and restore the preferences.

CHAPTER 8: Feature Development with Scripting Building blocks for using ExtendScript to implement a feature with
scripting 118

Storing persistent data

JavaScript has built-in features for storing and retrieving data; that is, the tosource() and eval() functions.
tosource() is a method for all built-in objects that returns a string representing the source of the object.
eval() evaluates a string of JavaScript code. The following example shows how tosource()/eval() is used
typically:

var obj = { prop: "value" };
var storedObj = obj.toSource();
// storedObj -> "({prop:"value"})"
var clone = eval(storedObj);
// clone.prop -> "value"

There is one major security concern with using the technique in this example: you end up saving a script in
your document that you later load and execute. It would be possible to create a virus script that would
procreate whenever you export as XHTML. To address this potential security risk, Export As XHTML uses
E4X to save its data in XML format, then a string representation of the XML data is stored as a label
(XHTMLExportOptions) in the document.

InDesign supports adding script labels to objects within a document. Each label essentially is a key-value
pair.

According to Wikipedia, “ECMAScript for XML (E4X) is a programming language extension that adds native
XML support to ECMAScript (ActionScript™, DMDScript, E4X, JavaScript, JScript)”. For more information
about E4X, see http://www.ecma-international.org/publications/standards/Ecma-357.htm. ExtendScript
supports a subset of E4X.

To use E4X to store your object:

1. Create an XML class object that represents your DOM. For Export As XHTML, data is represented by the
XHTMLExportOptions object. SOS.serialize() in SimpleObjectStore.jsx instantiates a new XML object,
then it iterates through all properties in XHTMLExportOptions and stores the properties as elements
and attributes in the XML object.

2. Serialize the XML object; that is., create a string representation of the XML. After you have an XML
object, you can call the toXMLString() method of the XML object to serialize the XML object.

3. Save the serialized string as a label in the document. Use app.activeDocument.insertLabel() to insert a
label that contains the serialized XML data in the current active document.

To use E4X to retrieve an object saved in a document:

1. Extract the serialized XML data from the saved label in the current document, using
app.activeDocument.extractLabel().

2. Deserialize the saved label. Use the label extracted from the previous step to construct a new XML
object.

3. Restore the properties of the object that represents your saved data from the XML object created in
the previous step. For example, SOS.serialize() in SimpleObjectStore.jsx uses XHTMLExportOptions’s
property name as the corresponding XML attribute’s name, so in SOS.deserialize(), it simply uses the
same name to search the XML object for an attribute tag that matches the property name, then it
restores the property value with the found attribute value.

For implementation details, see the Export as XHTML source code.

http://www.ecma-international.org/publications/standards/Ecma-357.htm

CHAPTER 8: Feature Development with Scripting Building blocks for using ExtendScript to implement a feature with
scripting 119

User interface

InDesign integrates the ExtendScript user-interface library, called ScriptUI, which also is supported in
other Adobe Creative Suite® applications. ScriptUI enables the creation of dialogs and floating panels that
are children of InDesign application windows. It supports most standard, platform-widget types. Windows
created with ScriptUI are not native InDesign user interface, because they do not contain native InDesign
user-interface widgets; they use platform user-interface widgets. However, they interact with other
InDesign windows as if they were owned by the application. Widgets interact with each other and with the
InDesign scripting DOM via scripts attached as event handlers. Dialog widgets can be laid out using a
string-based resource and/or dynamically created at run-time via scripting.

NOTE: The Dialog object in the scripting DOM uses the native InDesign user interface.

Export As XHTML uses the Window class in ExtendScript to create its export-options dialog. It uses a
three-stage process to bring up the dialog as users see it in InDesign:

1. It passes a string-based resource (XHTMLExportDialog.dlgResource) into the Window class
constructor during Window object instantiation. The string resource specifies the initial layout of the
dialog.

2. It handles things that cannot be done in the resource string; for example, it populates pop-up menus.
Also, it installs event handlers for the widgets, to dynamically handle widget state changes.

3. It initializes the dialog widgets with the export-options data stored in the document.

There are other user-interface elements that you might want to implement; for example, a progress bar for
long operations. Export As XHTML implements a general-purpose progress bar that can be reused; for
details, see ProgressBar.jsx. Adobe InDesign Scripting Guide also has a progress-bar sample using ScriptUI
technology.

Responding to events

It is possible to automatically trigger scripts or script functions when certain changes are made to the
application or to a document. This mechanism is similar to the responder pattern used in the InDesign C++
SDK. The scripting DOM for InDesign event handling is based on the W3C DOM for Level 2 Events
Specification. A script can be attached as an external file or in JavaScript as a function callback. A script
attached to a document event like open is triggered by user actions or a script.

Scripts can add and remove event listeners by calling the addEventListener and removeEventListener
scripting methods. These methods are supported on a number of objects, but most commonly will be
called on the application or document objects. Because events are not persistent, events need to be
registered each time the feature is added or enabled. This commonly is done with a startup script or in
response to a menu item or action.

One very relevant use of event listeners comes in implementing panels. A panel needs to respond to
changes in the model (document and application persistent data) and selection. For example, the stroke
weight panel displays a different value based on what’s selected. It also updates any time the stroke
weight of the selected item is changed. This can happen via a UI operation, script, or plug-in code. Export
As XHTML doesn’t contain such a panel. There is, however, support for this in the scripting DOM. For an
example, see the FlexUIStroke sample in the InDesign Products SDK.

To listen for events, a panel implementation should use event listeners. The following example
demonstrates the code that would be used to add and remove event listener functions. It would be
desirable for an implementation to call addMyEventListeners when the panel is activated, and

CHAPTER 8: Feature Development with Scripting Building blocks for using ExtendScript to implement a feature with
scripting 120

removeMyEventListeners when the panel is closed. This results in the onSelChg and OnSelAttrChg
implementations being called when the selection changes or a property of the selection changes. These
two methods would then need to contain panel-specific code to deal with changes in the selection.

#targetengine "session"
// Add Selection Events
function addMyEventListners()
{

app.addEventListener("afterSelectionChanged", onSelChg, false);
app.addEventListener("afterSelectionAttributeChanged", onSelAttrChg, false);

}
function removeMyEventListerns()
{

app.removeEventListener("afterSelectionChanged", onSelChg, false);
app.removeEventListener("afterSelectionAttributeChanged", onSelAttrChg,false);

}
// The Selection Changed
function onSelChg (myEvent){

//... Respond to the change in the seleciton
}
// Some attribute (or property) of the selected object or objects changed.
function onSelAttrChg(myEvent){

//... Respond to a possible change in the selected object
}

NOTE: Scripts that use handler functions (script files) must use #targetengine "session". If the script is run
using #targetengine "main" (the default), the function will not be available when the event occurs, and the
script will generate an error.

Events are covered in more detail in the “Events” chapter in Adobe InDesign Scripting Guide.

Model/user-interface separation

Separating the user interface and the model can make your scripting plug-in functionality available on
InDesign Server, just like a C++ plug-in. One of the design goals for Export As XHTML is to use it within an
ID Server workflow. Thus, we separated the user interface from the underlying functionality, which also
helps automate testing. As discussed in “Scripts folder” on page 112, Export As XHTML consists of three
main ExtendScript binaries.

There is an includes folder inside the Export As XHTML’s source folder in
<SDK>/source/public/components/xhtmlexport. You do not see this folder in the feature’s script folder,
because scripts inside the includes folder are “included” in one of the three main JavaScript files listed in
the table in “Scripts folder” on page 112. ExtendScript supports an #include statement that can be used to
split a function among multiple JavaScript source files. The #include statement is very useful for
structuring source code (for example, model/view separation and having all strings in one file for easy
localization). The #include statement also provides an easy way to reuse code.

To support progress bars in a server environment, Export As XHTML has two versions of the progress bar,
one of which does not do anything that is used in the server. The same approach can be used in other
model/user-interface separation cases.

CHAPTER 8: Feature Development with Scripting Tips and hints 121

Script optimization

The ExtendScript Toolkit has a built-in profiling capability through the IDE’s Profile menu. It is useful for
tightening loops and spotting CPU-intensive code lines. Once source code is profiled, the ExtendScript
Toolkit shows the result in a color-coded bar, which makes it easy to spot bottlenecks in your program. For
more information about using the profiling feature of the ExtendScript Toolkit, see JavaScript Tools Guide.

Compile a script into binary format

To compile a script into binary format, simply open the script in the ExtendScript ToolKit and choose File >
Export As Binary.... to save the .jsx script to a file with a .jsxbin extension.

Tips and hints
This section provides script-development tips and tricks that were learned during the development of
Export As XHTML.

Development techniques

Use object-oriented techniques

Export As XHTML source code was designed using object-oriented techniques. In most cases, classes that
hold attributes and methods were implemented.

Use global variables/namespaces

In the current design, all scripts that install menus need to share the same scripting engine. This means
they also share their global variables. Best practice for JavaScript development is to use namespaces to
encapsulate global variables and functions.

Use undefined instead of nil or “”

When checking missing function parameters, arrays elements, or variables, use undefined, as shown in the
following snippet:

ProgressBar.prototype.newSection = function(numSteps, title, fractionOfParentStep)
{

if (fractionOfParentStep == undefined)

InDesign errors out when asking for an nonexisting property

You cannot do the following:

var footnotes = story.footnotes;
if (footnotes != undefined) {

Instead, you need to do this:

if('footnotes' in story) {
footnotes = story.footnotes

CHAPTER 8: Feature Development with Scripting Tips and hints 122

InDesign’s collection objects are not completely compatible with JavaScript
arrays

InDesign collection objects offer features that JavaScript arrays do not have, such as itemByRange() and
nextItem(). If you want to read the items from a collection into an array, use everyItem() or iterate; however,
you will lose the capabilities of the collection objects.

Error handling

JavaScript’s built-in exception handling, such as try...catch blocks, works very well. For examples of
try...catch blocks, see the Export As XHTML source code. For more information on error handling, see
Adobe InDesign Scripting Guide.

Differentiating between InDesign’s feature sets

Check for app.featureSet. It returns a FeatureSetOptions enum that contains either
FeatureSetOptions.roman for the Roman feature set or FeatureSetOptions.japanese for the Japanese
feature set.

DOM versioning

As discussed in “Setting up scripting preferences” on page 117, the CS6 version of Export As XHTML
requires DOM version 8.0. The DOM version is available from the script-preferences property,
app.scriptPreferences.version.

Persistent data versioning

You can version your own saved data, but be careful not to confuse your persistent-data version with the
DOM version. Versioning your own persistent data makes it easier to maintain compatibility for your
feature among different releases. For example, in different versions of your software, you might have saved
different sets of data. If you versioned the saved data in your code, you can provide conversion code to
deal with compatibility issues. Export As XHTML stores its saved-data version as a property, currVersion, in
the XHTMLExportOptions class. In XHTMLExportOptions.restore(), where saved data is restored, the
version is checked to ensure that the proper options are restored or a new default set of options is used if
the saved version is too old.

Edit-compile-run

“Loading external scripts” on page 114 discusses the benefits of modularizing your scripts and loading the
script module as needed dynamically. One benefit of this approach is quick development time. At startup,
InDesign loads only the script that installs the menu, and this part of the script probably is easy enough
that you do not have to debug it much. For the rest of the scripts, you can always edit and compile, then
return to InDesign and execute the already loaded menu, which dynamically loads the newly modified
modules so you can check the correctness of the new implementation.

CHAPTER 8: Feature Development with Scripting Tips and hints 123

Debugging modular scripts

ExtendScript ToolKit’s debugging feature does not work with binary scripts or dynamically loaded scripts.
There is no easy way to deal with this limitation. Usually, it is necessary to write test code within a module
boundary. Also, the “divide and conquer” technique always is an effective way of debugging; that is,
comment out different blocks of code to narrow your investigation until you isolate the problematic code.

NOTE: The earlier version of the ExtendScript ToolKit supported a “#show include” directive to help
debug-included scripts. The latest version of the ExtendScript ToolKit has built-in support for include-file
debugging; thus, the “#show include” directive is deprecated.

Mixing and matching JavaScript and C++

Sometimes, you may want to use C++; for example, for performance considerations, if you are adding a
feature that a script cannot achieve, or you simply want to reuse existing features that you implemented in
C++. To achieve this, expose your C++ features in the scripting DOM; then you can call those features from
within your script. For information on how to make your C++ plug-in scriptable, see the “Scriptable Plug-in
Fundamentals” chapter of Adobe InDesign Plug-In Programming Guide.

To run a script from C++, use IScriptUtils::DispatchScriptRunner. Alternately, you can use the lower-level
APIs as shown in the following snippet to access the IScriptRunner::RunFile. (IScriptRunner is aggregated
on kJavaScriptMgrBoss.)

// assume scriptFile is an IDFile representing the script file to run
InterfacePtr<IScriptRunner>
scriptRunner(Utils<IScriptUtils>()->QueryScriptRunner(scriptFile));
if (scriptRunner)
{
 ScriptRecordData arguments;
 ScriptData resultData;
 PMString errorString;
 const bool16 showErrorAlert = kTrue;
 const bool16 invokeDebugger = kFalse;
 scriptRunner->RunFile(scriptFile, arguments, resultData, errorString,

showErrorAlert, invokeDebugger);
}

Performance techniques

Minimize access to InDesign’s DOM

Querying the InDesign DOM may be the main performance bottleneck for your script. A considerable
amount of time typically is spent resolving object references, because InDesign does not hand out
pointers to objects but rather uses references that need to be resolved every time they are used. Here are
some techniques to alleviate this problem:

 Reduce the number of calls to the scripting DOM.

 Store and reuse resolved references in variables wherever possible.

 Use everyItem() to fetch and cache data of a collection object all at once, instead of querying the
properties with separate calls.

CHAPTER 8: Feature Development with Scripting Building blocks for using ActionScript to implement user interfaces
124

Fast array look-ups with object properties

JavaScript objects essentially are associative arrays; there is a built-in hashing function for properties on an
object. Any JavaScript array can use other objects as keys to look for value. That is, the property:

myArray.one

is the same as:

myArray['one']

Combining this capability with the “for (var i in object)” statement, which goes through each element of an
associative array, you can write efficient code for fast array look-ups.

Concatenating large strings is slow

JavaScript’s String class-concatenation methods, such as += operator, can be very slow, especially with
large strings. Try to minimize the number of concatenations and the size of the strings that are be
concatenated. One common method to reduce String class overhead is to write your own string-buffer
class to gain a performance boost; this uses the Array object’s join method to “concatenate” all the
elements of an array into one string.

Using regular expressions

JavaScript supports Perl-style regular expressions, which can be very useful for string manipulation such as
complex string replacements.

Building blocks for using ActionScript to implement user
interfaces

It is easier than ever to create Flash/ActionScript-based panels and dialogs for a number of Creative Suite
applications, including InDesign. The building blocks for using ActionScript and other Flash-based
technologies such as Flex are primarily covered in the Creative Suite SDK. This section highlights the
FlexUIStroke panel (which was reimplemented using the Creative Suite SDK) and other points of interest to
the InDesign developer.

Creative Suite SDK

The Creative Suite SDK allows developers to create extensions for several of the Creative Suite applications.
Such an extension can be either a panel or dialog. This provides a convenient way to implement most of
the InDesign user interfaces required by third-part components.

Communicating with InDesign

CS Extension Builder project’s properties can be set to target one or more of a number of supported
Creative Suite applications. Targeting InDesign automatically imports the CSAWLib wrapper library that
allows you to call InDesign’s ExtendScript DOM from ActionScript. This includes excellent type-ahead
support in Eclipse, making this a very comfortable environment for coding and debugging.

CHAPTER 8: Feature Development with Scripting Building blocks for using ActionScript to implement user interfaces
125

Working with ExtendScript

Where possible, convert your ExtendScript to ActionScript. The syntax is similar and the strongly typed
development environment will be helpful. It may be necessary to make calls between ExtendScript and
ActionScript.

Calling ExtendScript from ActionScript

An extension can include an ExtendScript component. A path to the file is specified in the extension’s
manifest.xml file. In the development environment, you will find the manifest.xml file in the
.staged-extension/CSXS directory. When deployed, this appears in the CSXS directory at the root of the
extension. The code is executed in a scripting target engine that is unique to the extension. You can call
functions declared in the script filing using the CSXSInterface instance and evalScript() as follows:

CSXSInterface.getInstance().evalScript("foo()");

Calling ActionScript from ExtendScript

To call from ExtendScript into ActionScript, you need to call through a reference to an ActionScript class
instance. This reference needs to be passed to the ExtendScript code but it can’t be passed through a
CSXSInterface and evalScript(). For example, to call a function called registerFlashExtension() in the
ExtendScript file, and pass a reference to the ExtendScript code, use HostObject as follows:

_extendScriptInterface = HostObject.getRoot("com.adobe.indesign.MYEXTENSIONID");

if(_extendScriptInterface != null)
_extendScriptInterface.registerFlashExtension(this);

Handling InDesign events

CSXS includes a number of Suite-wide events, but these events are not as extensive as InDesign’s
ExtendScript events. InDesign ExtendScript events include events for selection changes, idle tasks, placing
files, updating links, and more. These are important events for writing meaningful InDesign panels.

Although the methods to register event listeners are exposed in ActionScript, they don’t currently do
anything; registering ActionScript event listeners is not supported. The workaround is to register and
implement event handlers in ExtendScript and call back into the ActionScript-based extension when the
events are triggered. This relies on the techniques for calling between ExtendScript and ActionScript and is
demonstrated in the FlexUIStroke sample. The ExtendScript code will be something like the following,
where _flashExtensionInterface is a reference to the extension’s ActionScript class and updatePanel() is an
ActionScript method.

 function updateNow()
{

_flashExtensionInterface.updatePanel();
}

function addEventListeners()
{

app.addEventListener(Event.AFTER_SELECTION_CHANGED, updateNow, false);
app.addEventListener(Event.AFTER_SELECTION_ATTRIBUTE_CHANGED, updateNow,
false);
app.addEventListener(Event.AFTER_CONTEXT_CHANGED, updateNow, false);

}

CHAPTER 8: Feature Development with Scripting Building blocks for using ActionScript to implement user interfaces
126

Event listeners need to be added when the panel is presented to the user, and removed when it is hidden.
This code needs to be called from the applicationComplete and removedFromStage events in the panel’s
mxml file. This is demonstrated in the main.mxml of the FlexUIStroke sample.

Working with selection

Another part of writing meaningful panels can require working with InDesign’s selection model. There are
no selection suites in scripting like there are in C++. To initialize an extension’s UI based on the selection,
you must write the appropriate code to determine what is selected and what should be presented to the
user. Similarly, you must write code that sets the properties on the selected items. There are a number of
scenarios to keep in mind, and each is demonstrated in the FlexUIStroke sample.

InDesign includes a selection object. Acquiring the selection in ActionScript and ExtendScript is roughly
equivalent. The application object includes a selection property.

var selections:Object = InDesign.app.selection;

If there is no selection, selections.length is zero. When that is the case, the application panels and dialogs
set application and/or document defaults. An extension may need to behave similarly. If there is no
selection and no open document, InDesign UIs act on the application defaults. If there is a document
open, InDesign UIs can act on either the application or document defaults depending on the property.
Certain settings (typically related to viewing options) exist only in the application defaults.

If there is an open document with a selection, you might encounter the following objects in the selection’s
objects:

 PageItem — It’s possible to select one or more page items. This is equivalent to a layout selection in
C++. In this case, there will be one or more PageItem objects in the selection.

 InsertionPoint — A selection can include exactly one text insertion point. This is equivalent to a
flashing I-beam cursor in a single text frame. This is represented by the InsertionPoint object. If there is
an InsertionPoint in the selection, there will be only one InsertionPoint and it will be the only thing in
the selection; there cannot be a mix of other selection types.

 Text — It’s possible to select a range of text in a single text frame or across linked frames. Such a range
of text is represented by a single Text object.

 Table — An entire table selected is represented by a Table object.

 Cell — One or more selected table cells are represented by a Cell object.

Overriding default menu placement

NOTE: Overriding the default menu position is supported by InDesign, but not yet by other Creative Suite
applications.

By default, CSXS supports a single main menu item, which appears in the application’s Window >
Extensions menu. Extension developers may prefer a different menu location. InDesign supports a Menu
element and Placement attribute in the manifest.xml that allows an extension to override the default
menu position. For example:

<Menu Placement="'Main:&Window',600.0,'KBSCE Window menu'">FlexUIStroke</Menu>

The Placement attribute needs to be created with care. See the FlexuUIStroke code for a more precise
example (without a line break).

CHAPTER 8: Feature Development with Scripting Building blocks for using ActionScript to implement user interfaces
127

 Strings must be enclosed in single quotes.

 Commas (without white space) are used to separate fields.

Menu path

The menu path format is similar to the format used by MenuDef ODFRC resources (see also
IMenuManager.h).

 Menu path components must either be localizable key strings or be prefixed with the
kDontTranslateChar (.).

 The accelerator key must be escaped using & in the menu path. To include an actual ampersand
character in a menu path component or menu item, use a double ampersand (&&).

 If the first character in the menu path is a hyphen, InDesign inserts a menu separator before the
extension’s menu item. Similarly, if the last character is a hyphen, InDesign inserts a separator
afterwards. Both may be specified.

 Menu paths must exactly match the key string for existing menus. The easiest way to determine these
strings is to dump the existing menus in the debug build using Test > UI > Actions > Dump MenuMgr
info(all). This uses TRACE commands, so you must first set the location of trace output. For example,
you can set it to trace text into an open copy of Notebook. Search for a string such as “Main:&Window”
to find menu items that belong to the Window menu.

Menu position

The menu position value is identical to the one used by MenuDef ODFRC resources (see also
IMenuManager.h).

 To sort a menu item alphabetically, use the same menu position as the other menu item(s).

 Refer to AdobeMenuPositions.h for predefined menu positions of other menu items.

ActionArea

The action area format is identical to the one used by ActionDef ODFRC resources (see also
IActionManager.h).

 The action area string must be a localizable key string.

 Refer to ActionDefs.h for predefined action areas used by other menu items.

Debugging

Debugging extensions requires you to set a flag on the system that will create the Flash player with
debugging enabled. You also may need to set the location of the InDesign executable. These settings are
covered in the Creative Suite SDK documentation.

CHAPTER 8: Feature Development with Scripting Frequently asked questions 128

Frequently asked questions

Is it possible to have a mixed plug-in, with new user-interface items in
a script and old user-interface items in C++?

Each user-interface object, like a dialog, needs to be one or the other; otherwise, yes.

Can script-based floating panels be 100% equivalent to native panels?

ScriptUI panels do not behave like native panels. Their container is fundamentally different. It cannot be
docked and undocked, and it cannot have a fly-out menu. ScriptUI panels also cannot be included in a
panel workspace.

CS Extension Builder panels are native panels containing a Flash player widget. They can be docked and
undocked, provide fly-out menus, and be included in a panel workspace.

Can an ExtendScript or ActionScript based panel react to the current
selection?

Yes. InDesign includes the afterSelectionChanged and afterSelectionAttributeChanged attributes that
provide notification when selection, or some attribute of selection, changes. These events are covered in
the “Events” chapter of the Adobe InDesign Scripting Guide.

NOTE: As discussed in “Handling InDesign events” on page 125, there is a limitation in ActionScript. The
current support provides no way to register an ActionScript event handler. To work around this, events can
be handled in a small bit of ExtendScript and forwarded to ActionScript. This is relatively simple and is
demonstrated in the FlexUIStroke sample.

Can you add a panel to InDesign’s Preferences dialog using
ExtendScript or ActionScript?

No, not in InDesign CS6. You can, however, add a pane containing an OWL Flash Player Widget to the
dialog using ODFRC resources, then implement it using Flash. The “Flash/FlexUI” chapter in Adobe InDesign
CS6 Solutions describes how to implement a Flash player widget using Flash. You also can add your own
preferences dialog and preferences menu item next to the regular preferences menu item.

Can you access the file system and other local and external resources
from ExtendScript and ActionScript?

ExtendScript provides access to Adobe BridgeTalk-aware applications and the file system. It also includes a
full socket implementation. For more information, see the JavaScript Tools Guide.

CS Extension Builder extensions can access resources through numerous ActionScript APIs. Extension UIs
are executed using an Adobe AIR runtime so the file system on the local machine is accessible using Adobe
AIR APIs if the panel loads the SWF from the local file system. Loading a remote SWF places the code in a
security sandbox that prevents access to the local file system.

CHAPTER 8: Feature Development with Scripting Resources 129

Resources
Adobe CS6 comes with guides and tools mentioned in this article, including the following:

 JavaScript Tools Guide — This is the official ExtendScript ToolKit guide. It provides detailed information
about ExtendScript ToolKit features, including the IDE and profiling features. It also has chapters
dedicated to user-interface tools; specifically, how to create a user interface using ScriptUI. There is a
chapter about the unique ExtendScript features that are not in normal JavaScript, like the Dollar ($)
object.

 ExtendScript ToolKit — This is the tool that you may want to use to develop your ExtendScript project.
It is an ExtendScript IDE, scripting-dictionary viewer, and profiling tool, and it compiles ExtendScript
into a binary format.

 Adobe InDesign Scripting Guide — This provides a lot of good information and script samples showing
how to script via the InDesign scripting DOM.

 “Scriptable Plug-in Fundamentals” chapter of Adobe InDesign Plug-In Programming Guide — This
chapter shows how to make your C++ feature scriptable. It is useful if you are developing mix-in style
plug-ins, as mentioned in this document. It also lists the SDK samples that have scripting support.

 Creative Suite SDK — CS Extension Builder includes documentation and samples that cover creating
Creative Suite extensions.

	Getting Started with the Adobe® InDesign® CS6 Plug-InDevelopment
	Introduction
	About this document
	About InDesign plug-ins
	Plug-in classification
	How InDesign plug-ins are developed

	Getting Started with the InDesign SDK
	SDK Overview
	Documentation
	Libraries
	Source code
	The public API
	External APIs
	Open folder
	Sample plug-ins
	Snippets
	Tools

	Development environments
	Requirements
	All systems
	Windows
	Mac OS

	Compiling and executing sample code
	Building a sample plug-in
	Building samples from the command line
	Launching InDesign with the samples

	Starting a debugging session from your plug-in project
	Windows
	Mac OS

	Anatomy of a plug-in’s project files
	C++ files
	ODFRC resource files
	Library files

	Tutorial: Creating a plug-in from scratch
	Introducing the sample plug-in

	Step 1: Use DollyXs to generate a dialog-based plug-in project
	Step 1.1. Start DollyXs
	Step 1.2: Specify plug-in names
	Step 1.3: Specify the prefix ID
	Step 1.4: Specify directory locations
	Windows
	Mac OS

	Step 1.5: Specify template
	Step 1.6: Verify entered information and generate plug-in project
	Step 1.7: Build the plug-in
	Windows
	Mac OS

	Step 1.8: Load the plug-in
	Step 1.9: Start InDesign through your IDE

	Files included in the project generated by DollyXs
	Source files
	Resource files
	Project files
	Detailed descriptions of code generated by DollyXs
	WFPActionComponent.cpp
	WFPDialogObserver.cpp
	WFPDialogController.cpp

	Create an InDesign SDK Xcode project from the template (Mac OS only)
	Add the SDK project template for Xcode

	Step 2: Add a DropDownListWidget to the dialog
	Step 2.1: Add a widget ID
	Step 2.2: Define string keys for list items
	Step 2.3: Define locale-specific strings for list items on DropDownListWidget
	Step 2.4: Add a DropDownListWidget to your dialog resource
	Step 2.5: Correct the localized menu strings
	Step 2.6: Save, build, and test

	Step 3: Add a TextEditBoxWidget
	Step 3.1: Add a widget ID
	Step 3.2: Add a TextEditBoxWidget resource
	Step 3.3: Save, build, and test

	Step 4: Add a StaticTextWidget
	Step 4.1: Add a Widget ID
	Step 4.2: Define a string key
	Step 4.3: Define locale-specific strings for your StaticTextWidget
	Step 4.4: Add a StaticTextWidget resource to your dialog resource
	Step 4.5: Save, build, and test

	Using resources in plug-ins
	PluginVersion resource
	Boss-class-definition resource
	FactoryList resource
	MenuDef resource
	ActionDef resource
	LocaleIndex resource
	LocaleIndex resource definition for dialogs
	Custom type definitions
	Dialog (view) resource
	String-table resource

	Step 5: Obtain a value from DropDownListWidget
	Step 5.1: Get string value of selected item
	Step 5.2: Save, build, and test

	Step 6: Get the text in the TextEditBoxWidget
	Step 6.1: Get the string value
	Step 6.2: Form a string to insert into the text frame

	Using boss classes in plug-ins
	Using interfaces in plug-ins
	IPMUnknown class
	Querying for interfaces and reference counts
	What is InterfacePtr?
	Which variety of InterfacePtr constructor should I use?
	Type 1a: To get an interface in the same boss class (using default PMIID)
	Type 1b: To get an interface in the same boss class (specifying a PMIID)
	Type 2: To Get a specific interface, not IPMUnknown*, from a Bridge Method
	Type 3a: To get a persistent object on a database using a UIDRef
	Type 3b: To get a persistent object on a database using a UID

	Using databases and objects in plug-ins
	Step 7: Insert a string into a text frame
	Step 7.1: Insert text into the current text selection
	Step 7.2: Save, build, and test

	Using commands in plug-ins
	Step 8: Disable the menu with no text selection
	Step 8.1: Modify ActionDef
	Step 8.2: Save, build, and test

	Step 9: Initialize dialog widgets
	Step 9.1: Add code to initialize the DropDownListWidget
	Step 9.2: Add code to initialize the TextEditBoxWidget
	Step 9.3: Save, build, and test

	Conclusion

	Introduction to ODFRC
	FR file compilation
	FR file contents
	PluginVersion
	PluginDependency
	ExtraPluginInfo
	CriticalTags and IgnoreTags
	SchemaList
	ImplementationAlias
	ClassDescriptionTable
	FactoryList
	LocaleIndex
	StringTable
	UserErrorTable
	Other resources
	Resource folder

	Introduction to the InDesign Object Model
	Boss classes
	Interfaces and implementations
	Defining and adding to bosses in ODFRC
	Unique prefix-based IDs
	IPMUnknown
	Querying for other interfaces on the boss
	Reference counting
	Reference-counting example

	InterfacePtr
	InterfacePtr tips and tricks

	Writing your own interface
	Writing your own implementation
	Constructing a boss instance
	Persistence
	Making a boss persistent
	Writing your own persistent implementation
	Examples of Persistent Implementations
	Changing persistent data with commands
	Writing your own command
	Do()
	DoNotify()
	CreateName()
	LowMemIsOK()

	Facades
	PluginVersion
	The lifecycle of a plug-in
	InDesign start-up sequence

	Localization
	InDesign locales
	Checking the locale in C++
	Controlling plug-in loading
	PMString
	String-translation tables
	Localizing other resources

	Building Blocks
	Boss-object web
	Iterating the draw order
	Service providers
	Service-provider boss
	Service registry

	Startup and shutdown services
	Responders
	Draw event handlers
	Page-item adornments
	Selection suites
	Scripting
	List Plug-ins in Extension Manager
	Step 1: Create the extension installation file
	Step 2: Create the extension package
	Step 3: Install the plug-in

	InDesign Server Plug-in Techniques
	Introduction
	Terminology
	Key concepts
	Model and view (in the MVC paradigm)
	Active context

	How desktop InDesign and InDesign Server differ
	What InDesign Server has that desktop InDesign does not have
	What desktop InDesign has that InDesign Server does not have

	Minimum requirements for an InDesign Server plug-in
	Making a plug-in load (or not load) in InDesign Server
	Detecting whether your plug-in is running under InDesign Server
	Verifying whether your plug-in is loaded in InDesign Server

	Removing calls to APIs that depend on active context or something in “front”
	Using MessageLog or IErrorList in place of custom error/warning dialogs (other than CAlert)
	Writing messages to the log with MessageLog
	Inspecting the list of logged messages with IErrorList
	Writing messages directly to standard error and standard output without writing them to the message log

	Adding custom features to InDesign Server
	Performance considerations
	Make sure no unneeded observers are attached
	Make sure there are no unnecessary idle tasks
	Remove unnecessary global recompositions of text stories

	64-bit plug-ins (Windows only)
	Updating Visual Studio to use 64-bit components
	Install 64-bit components to Visual Studio
	ODFRC settings in Visual Studio

	Adding a 64-bit target to a Visual Studio project
	Add a new configuration for the x64 platform
	Modify the settings for the new x64 targets using the Properties dialog

	Converting 32-bit code to 64-bit
	General approach

	Testing techniques
	Scripting objects you can use for testing
	Test names for the QATest Event

	Feature Development with Scripting
	Scripting
	Scripting versus C++
	Building blocks for using ExtendScript to implement a feature with scripting
	Scripts folder
	ExtendScript engines
	Loading external scripts
	Using a startup script to install a menu when InDesign launches
	Localization
	Access to InDesign internal string tables
	ExtendScript localization objects

	Setting up scripting preferences
	Storing persistent data
	User interface
	Responding to events
	Model/user-interface separation
	Script optimization
	Compile a script into binary format

	Tips and hints
	Development techniques
	Use object-oriented techniques
	Use global variables/namespaces
	Use undefined instead of nil or “”
	InDesign errors out when asking for an nonexisting property
	InDesign’s collection objects are not completely compatible with JavaScript arrays
	Error handling
	Differentiating between InDesign’s feature sets
	DOM versioning
	Persistent data versioning
	Edit-compile-run
	Debugging modular scripts
	Mixing and matching JavaScript and C++

	Performance techniques
	Minimize access to InDesign’s DOM
	Fast array look-ups with object properties
	Concatenating large strings is slow
	Using regular expressions

	Building blocks for using ActionScript to implement user interfaces
	Creative Suite SDK
	Communicating with InDesign
	Working with ExtendScript
	Calling ExtendScript from ActionScript

	Handling InDesign events
	Working with selection
	Overriding default menu placement
	Menu path

	Debugging

	Frequently asked questions
	Is it possible to have a mixed plug-in, with new user-interface items in a script and old user-interface items in C++?
	Can script-based floating panels be 100% equivalent to native panels?
	Can an ExtendScript or ActionScript based panel react to the current selection?
	Can you add a panel to InDesign’s Preferences dialog using ExtendScript or ActionScript?
	Can you access the file system and other local and external resources from ExtendScript and ActionScript?

	Resources

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

