
Amazon Simple Storage
Service

Developer Guide

API Version 2006-03-01

Amazon Simple Storage Service: Developer Guide
Copyright © 2008 Amazon Web Services LLC or its affiliates. All rights reserved.

Amazon Simple Storage Service Developer Guide

Table of Contents

What's New .. 1
Welcome to Amazon S3 .. 3
Introduction to Amazon S3 .. 6
Core Concepts .. 7

Components of Amazon S3 .. 7
Operations ...8
Amazon S3 Application Programming Interfaces (API) ..8
Amazon S3 Data Consistency Model ... 9
Paying for Amazon S3 ..10

Using Amazon S3 .. 11
Working with Amazon S3 Components ... 11

Working with Amazon S3 Buckets ...11
Bucket Restrictions and Limitations ..12
Bucket Configuration Options ...13
Buckets and Access Control .. 14
Billing and Reporting of Buckets .. 14

Working with Amazon S3 Objects ..14
Keys ... 15

Listing Keys ... 15
Common List Request Parameters ...16
Common List Response Elements ... 16
Iterating Through Multi-Page Results ..18
Listing Keys Hierarchically using Prefix and Delimiter19

Metadata .. 19
Getting Objects .. 20

Standard Downloads .. 20
Chunked and Resumable Downloads .. 21

Authentication and Access Control .. 21
Authentication ... 22
Access Control Lists ..25
Query String Authentication ... 30

Request Routing ..31
Request Redirection and the REST API ... 31
DNS Considerations ..36

Performance Optimization ..36
TCP Window Scaling ..36
TCP Selective Acknowledgement ...37

Using Amazon DevPay with Amazon S3 ...37
Amazon S3 Customer Data Isolation .. 37
Amazon DevPay Token Mechanism ...38
Amazon S3 and Amazon DevPay Authentication .. 39
Amazon S3 Bucket Limitation ..39
Amazon S3 and Amazon DevPay Process ..40
Additional Information ..40

Working with Errors ... 40
Amazon S3 Error Best Practices ... 40
Error Response .. 41

Error Code ... 41
Error Message ..42
Further Details ... 42
List of Error Codes .. 42

Server Access Logging ... 46
Server Access Logging Configuration API ...47

Amazon Simple Storage Service Developer Guide

Delivery of Server Access Logs ..49
Server Access Log Format .. 50
Setting Up Server Access Logging ... 53

Using the REST API .. 57
Common REST API Elements ... 58
The REST Error Response ..59
Authenticating REST Requests .. 60
Setting Access Policy with REST ...70
Virtual Hosting of Buckets ... 71
Request Redirection and the REST API ... 74
Browser-Based Uploads Using POST .. 77

Introduction ... 77
HTML Forms .. 78
Examples ... 86
POST with Adobe Flash ..94

Operations on the Service ... 95
GET Operation .. 95

Operations on Buckets .. 96
PUT Bucket ... 97
GET Bucket ...98
GET Bucket Location ..100
DELETE Bucket ... 100
POST Object ... 101

Operations on Objects ...107
PUT Object ..107
GET Object ... 109
HEAD Object .. 114
DELETE Object .. 114

Using the SOAP API ..116
Common SOAP API Elements ... 116
The SOAP Error Response ... 117
Authenticating SOAP Requests .. 117
Setting Access Policy with SOAP .. 118
Operations on the Service ... 119

ListAllMyBuckets ... 119
Operations on Buckets .. 120

CreateBucket ... 121
DeleteBucket ... 121
ListBucket ... 122
GetBucketAccessControlPolicy .. 124
SetBucketAccessControlPolicy ...124
GetBucketLoggingStatus .. 125
SetBucketLoggingStatus ... 126

Operations on Objects ...127
PutObjectInline ..127
PutObject ...129
GetObject .. 131
GetObjectExtended ... 136
DeleteObject ..136
GetObjectAccessControlPolicy ...137
SetObjectAccessControlPolicy ... 138

Using BitTorrent™ with Amazon S3 .. 140
How You are Charged for BitTorrent Delivery ..140
Using BitTorrent to Retrieve Objects Stored in Amazon S3141
Publishing Content Using Amazon S3 and BitTorrent ...141

Glossary ... 143
Document Conventions ..144
Index ...147

Amazon Simple Storage Service Developer Guide

What's New

This What's New is associated with the 2006-03-01 release of Amazon S3. This guide was last updated
on April 09, 2008.

The following table describes the important changes since the last release of the Amazon S3 Developer
Guide.

Change Description Release Date

Logging Changes Amazon S3 now enables you to automatically grant access to
logs within a bucket to users other than the bucket owner. For
more information, see Setting Up Server Access Logging.

7 April 2008

TCP Window Scaling Amazon S3 now supports TCP window scaling and TCP
selective acknowledgement which enables you to optimize
network performance. For more information, see Performance
Optimization.

3 March 2008

Chunked and
Resumable
Downloads

The guide was updated to describe how to perform chunked
and resumable downloads. For more information, see
Chunked and Resumable Downloads.

11 January
2008

HTTP POST changes The redirect field was changed to success_action_redirect and
the success_action_status field was added. For more
information, see Browser-Based Uploads Using POST.

31 December
2007

DevPay Amazon DevPay enables you to charge customers for using
your Amazon S3 product through Amazon's authentication
and billing infrastructure. You can charge any amount for
your product including usage charges (storage, transactions,
and bandwidth), monthly fixed charges, and a one-time
charge. For more information, see Using Amazon DevPay
with Amazon S3 .

18 December
2007

HTTP POST Amazon S3 now supports browser-based uploads using
POST, which allows your users to upload content directly to
Amazon S3. For more information, see Browser-Based
Uploads Using POST.

17 December
2007

Restructuring and
Various Edits

The introductory sections of the document were restructured
and numerous edits were made based on customer input from

17 December
2007

Amazon Simple Storage Service Developer Guide

API Version 2006-03-01
1

Change Description Release Date

the Feedback link and forums.

Location Constraints Amazon S3 now supports location constraints, which allow
you to specify where to store data. For more information, see
Location Selection.

15 October
2007

Support for Redirects If DNS information for a bucket is not propagated throughout
the Internet, clients will receive a 307 redirect. If you attempt
use a path-style request to access an object within a bucket
that was created using <CreateBucketConfiguration>,
you will receive a permanent 301 redirect. For more
information on redirects, so you can optimize your code, see
Location Selection.

15 October
2007

Bucket Location Amazon S3 supports a new operation for getting the location
of a bucket. For more information, see GET Bucket Location.

15 October
2007

New Authentication
Section

The authentication section was rewritten to clarify questions
that appeared in the forums. For more information, see
Authentication and Access Control.

10 September
2007

Feedback You can now provide feedback comments on any topic in the
HTML version of this guide. To provide feedback, simply
click the Feedback link at the top of the page.

10 September
2007

Minor Edits Minor edits were made throughout the document to clarify
issues that appeared in the forums and to improve overall
document quality.

10 September
2007

Amazon DevPay Amazon DevPay is a new Amazon service that enables you to
charge customers for use of your Amazon S3 product through
the Amazon authentication and billing infrastructure. For
more information, see Using Amazon DevPay with
Amazon S3 .

10 September
2007

New Bucket Limit In addition to the 100 bucket limit associated with your AWS
account, each of your customers can have up to 100 buckets
for each Amazon DevPay product that you sell. For more
information, see Using Amazon DevPay with Amazon S3 .

10 September
2007

Amazon Simple Storage Service Developer Guide

API Version 2006-03-01
2

Welcome to Amazon S3

Topics

• Audience

• How This Guide Is Organized

• Related Resources

Thank you for your interest in Amazon S3.

This section describes who should read this guide, how the guide is organized, and other resources
related to Amazon S3.

Amazon S3 will occasionally be referred to within this guide as simply "S3"; all copyrights and legal
protections still apply.

We hope you find the service to be easy-to-use, reliable, and inexpensive. If you want to provide
feedback to the Amazon S3 development team, please post a message to the Amazon S3 Developer
Forum.

Audience
This guide describes the Amazon S3 interfaces and functionality in detail and is intended for developers
who are building application and services that need to store and retrieve any amount of data, at any time,
from anywhere on the web.

Required Knowledge and Skills

Use of this guide assumes you are familiar with the following:

• XML (See W3 Schools XML Tutorial)

• Basic understanding of web services (See W3 Schools Web Services Tutorial))

• A programming language for consuming a web service and any related tools

You should also have read the Amazon S3 Getting Started Guide.

Amazon Simple Storage Service Developer Guide
Audience

API Version 2006-03-01
3

http://www.w3schools.com/xml/default.asp
http://www.w3schools.com/webservices/default.asp

How This Guide Is Organized
This guide is organized into several major sections described in the table below.

Information Relevant Sections

General information about Amazon S3 • Introduction to Amazon S3

Conceptual information about
Amazon S3

• Core Concepts

Information about using Amazon S3 • Using Amazon S3

API Information • Using the REST API

• Using the SOAP API

Information about BitTorrent • Using BitTorrent™ with Amazon S3

Typographic and symbol conventions • Document Conventions

Each section is written to stand on its own, so you should be able to look up the information you need
and go back to work. However, you can also read through the major sections sequentially to get in-depth
knowledge about the Amazon S3.

Related Resources
The table below lists related resources that you'll find useful as you work with this service.

Resource Description

Amazon S3 Getting Started Guide The Getting Started Guide provides a quick tutorial of the
service based on a simple use case. Examples and
instructions for Java, Perl, PHP, C#, Python, and Ruby are
included.

Amazon S3 Developer Guide The Developer Guide (which you are reading) provides a
detailed discussion of the service. It includes an overview,
programming reference, and API reference.

Amazon S3 Release Notes The Release Notes give a high-level overview of the current
release. They specifically note any new features, corrections,
and known issues.

AWS Developer Resource Center A central starting point to find documentation, code
samples, release notes, and other information to help you
build innovative applications with AWS.

Amazon Simple Storage Service Developer Guide
Related Resources

API Version 2006-03-01
4

http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=59

Resource Description

Amazon S3 product information The primary web page for information about Amazon S3.

Discussion Forums A community-based forum for developers to discuss
technical questions related to Amazon Web Services.

E-mail address for questions related to
your AWS account:
<webservices@amazon.com>

This e-mail address is only for account questions. For
technical questions, use the Discussion Forums.

Amazon Simple Storage Service Developer Guide
Related Resources

API Version 2006-03-01
5

http://aws.amazon.com/s3
http://developer.amazonwebservices.com/connect/forumindex.jspa

Introduction to Amazon S3

Topics

• Overview of Amazon S3

• Service Features

This introduction to Amazon S3 is intended to give you a detailed summary of this web service. After
reading this section, you should have a good idea of what it offers and how it can fit in with your
business.

Overview of Amazon S3
Amazon S3 is storage for the Internet. It is designed to make web-scale computing easier for developers.

Amazon S3 has a simple web services interface that can be used to store and retrieve any amount of
data, at any time, from anywhere on the web. It gives any developer access to the same highly scalable,
reliable, fast, inexpensive data storage infrastructure that Amazon uses to run its own global network of
websites. The service aims to maximize benefits of scale and to pass those benefits to developers.

Service Features
Amazon S3 is intentionally built with a minimal feature set that focuses on simplicity and
robustness.The following are some of features of the Amazon S3 service:

• Write, read, and delete objects from 1 byte to 5 gigabytes in size with accompanying metadata. There
is no fixed limit on the number of objects you can store.

• A straightforward flat object store model, where each object is stored and retrieved using a unique
developer-assigned key

• Authentication mechanisms are provided to ensure that data is kept secure from unauthorized access.
Objects can be made private or public and rights can be granted to specific users.

• Standards-based REST and SOAP interfaces designed to work with any Internet-development toolkit.

Amazon Simple Storage Service Developer Guide
Overview of Amazon S3

API Version 2006-03-01
6

Core Concepts

Topics

• Components of Amazon S3

• Operations

• Amazon S3 Application Programming Interfaces (API)

• Amazon S3 Data Consistency Model

• Paying for Amazon S3

This chapter describes core concepts you should understand before using Amazon S3.

Note

If you have not read the Getting Started Guide, we recommend you review it first: It
contains a tutorial-style overview of Amazon S3 concepts and functionality and a
walkthrough of sample code.

Components of Amazon S3
This section describes the components of Amazon S3:

• Buckets

• Objects

• Keys

Note

If you already read the Amazon S3 Getting Started Guide (available in the Amazon S3
Resource Center), this section will not contain any new information.

Buckets

Amazon Simple Storage Service Developer Guide
Components of Amazon S3

API Version 2006-03-01
7

http://developer.amazonwebservices.com/s3/resources
http://developer.amazonwebservices.com/s3/resources

A bucket is simply a container for objects stored in Amazon S3. Every object is contained within a
bucket. For example, if the object named photos/puppy.jpg is stored in the johnsmith bucket, then
it is addressable using the URL http://johnsmith.s3.amazonaws.com/photos/puppy.jpg

Buckets serve several purposes: they organize the Amazon S3 namespace at the highest level, they
identify the account responsible for storage and data transfer charges, they play a role in access control,
and they serve as the unit of aggregation for usage reporting.

For more information about buckets, see Working with Amazon S3 Buckets.

Objects

Objects are the fundamental entities stored in Amazon S3. Objects consist of object data and metadata.
The data portion is opaque to Amazon S3. The metadata is a set of name-value pairs that describe the
object. These include some default metadata such as the date last modified, and standard HTTP
metadata such as Content-Type. The developer can also specify custom metadata at the time the Object
is stored.

Keys

A key is the unique identifier for an object within a bucket. Every object in a bucket has exactly one key.
Since a bucket and key together uniquely identify each object, Amazon S3 can be thought of as a basic
data map between "bucket + key" and the object itself. Every object in Amazon S3 can be uniquely
addressed through the combination of the Service endpoint, bucket name, and key, as in
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl, where "doc" is the name of the bucket, and
"2006-03-01/AmazonS3.wsdl" is the key.

Operations
Amazon S3 offers APIs in REST and SOAP. The most common operations you'll execute through the
API include the following:

• Create a Bucket: Create and name your own bucket in which to store your objects.

• Write an Object: Store data by creating or overwriting an object. When you write an object, you
specify a unique key in the namespace of your bucket. This is also a good time to specify any access
control you want on the object.

• Read an Object: Read data back. You can choose to download the data via HTTP or BitTorrent.

• Deleting an Object: Delete some of your data.

• Listing Keys: List the keys contained in one of your buckets. You can filter the key list based on a
prefix.

Details on this and all other functionality are described in detail later in this guide.

Amazon S3 Application Programming Interfaces
(API)

The Amazon S3 architecture is designed to be programming language-neutral, using our supported
interfaces to store and retrieve objects.

Amazon S3 currently provides a REST and a SOAP interface. They are very similar, but there are some
differences. For example, in the REST interface, metadata is returned in HTTP headers. Because we

Amazon Simple Storage Service Developer Guide
Objects

API Version 2006-03-01
8

only support HTTP requests of up to 4k (not including the body), the amount of metadata you can
supply is restricted.

REST Interface

The REST API is an HTTP interface to Amazon S3. Using REST, you use standard HTTP requests to
create, fetch, and delete buckets and objects.

You can use any toolkit that supports HTTP to use the REST API. You can even use a browser to fetch
objects, as long as they are anonymously readable.

The REST API uses the standard HTTP headers and status codes, so that standard browsers and toolkits
work as expected. In some areas, we have added functionality to HTTP (for example, we added headers
to support access control). In these cases, we have done our best to add the new functionality in a way
that matched the style of standard HTTP usage.

SOAP Interface

The SOAP API provides a SOAP 1.1 interface using document literal encoding. The most common way
to use SOAP is to download the WSDL (available at
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl), use a SOAP toolkit such as Apache Axis or
Microsoft .NET to create bindings, and then write code that uses the bindings to call Amazon S3.

Amazon S3 Data Consistency Model
Updates to a single key are atomic. For example, if you PUT to an existing key, a subsequent read might
return the old data or the updated data, but it will never write corrupted or partial data.

Amazon S3 achieves high availability by replicating data across multiple servers within Amazon's data
centers. After a "success" is returned, your data is safely stored. However, information about the changes
might not be replicated across Amazon S3 and you may observe the following behaviors:

• A process writes a new object to Amazon S3 and immediately attempts to read it. Until the change is
fully propagated, Amazon S3 may report "key does not exist".

• A process writes a new object to Amazon S3 and immediately lists keys within its bucket. Until the
change is fully propagated, the object may not appear in the list.

• A process replaces an existing object and immediately attempts to read it. Until the change is fully
propagated, Amazon S3 may return the prior data.

• A process deletes an existing object and immediately attempts to read it. Until the deletion is fully
propagated, Amazon S3 may return the deleted data.

• A process deletes an existing object and immediately lists keys within its bucket. Until the deletion is
fully propagated, Amazon S3 may list the deleted object.

Note

Amazon S3 does not currently support object locking. If two puts are simultaneously made
to the same key, the put with the latest time stamp wins. If this is an issue, you will need to
build an object-locking mechanism into your application.

Updates are key-based; there is no way to make atomic updates across keys. For example,
you cannot make the update of one key dependent on the update of another key unless you
design this functionality into your application.

Amazon Simple Storage Service Developer Guide
REST Interface

API Version 2006-03-01
9

http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl

Paying for Amazon S3
Pricing for Amazon S3 is designed so that you don't have to plan for the storage requirements of your
application. Most storage providers force you to purchase a pre-determined amount of storage and
network transfer capacity: If you exceed that capacity, your service is shut off or you are charged high
overage fees. If you do not exceed that capacity, you pay as though you used it all.

Amazon S3 charges you only for what you actually use, with no hidden fees and no overage charges.
This gives developers a variable-cost service that can grow with their business while enjoying the cost
advantages of Amazon's infrastructure.

Before storing anything in Amazon S3, you need to register with the service and provide a payment
instrument that will be charged at the end of each month. There are no set-up fees to begin using the
service. At the end of the month, your payment instrument is automatically charged for that month's
usage.

For information about paying for Amazon S3 storage, visit the AWS Resource Center.

Amazon Simple Storage Service Developer Guide
Paying for Amazon S3

API Version 2006-03-01
10

http://aws.amazon.com/s3

Using Amazon S3

This section discusses Amazon S3 concepts that apply regardless of the API style you choose. The
following topics are included:

• Working with Amazon S3 Components

• Authentication and Access Control

• Request Routing

• Performance Optimization

• Using Amazon DevPay with Amazon S3

• Working with Errors

• Server Access Logging

Working with Amazon S3 Components
The following topics describe buckets and objects:

• Working with Amazon S3 Buckets

• Working with Amazon S3 Objects

Note

The Authentication and Access Control section describes access control in detail.

Working with Amazon S3 Buckets

Topics

• Bucket Restrictions and Limitations

• Bucket Configuration Options

• Buckets and Access Control

• Billing and Reporting of Buckets

Amazon Simple Storage Service Developer Guide
Working with Amazon S3 Components

API Version 2006-03-01
11

Every object stored in Amazon S3 is contained in a bucket. Buckets partition the namespace of objects
stored in Amazon S3 at the top level. Within a bucket, you can use any names for your objects, but
bucket names must be unique across all of Amazon S3.

Buckets are similar to Internet domain names. Just as Amazon is the only owner of the domain name
Amazon.com, only one person or organization can own a bucket within Amazon S3. Once you create a
uniquely named bucket in Amazon S3, you can organize and name the objects within the bucket in any
way you like and the bucket will remain yours for as long as you like and as long as you have the
Amazon S3 account.

The similarities between buckets and domain names is not a coincidence#there is a direct mapping
between Amazon S3 buckets and subdomains of s3.amazonaws.com. Objects stored in Amazon S3 are
addressable using the REST API under the domain bucketname.s3.amazonaws.com. For example, if
the object homepage.htmlis stored in the Amazon S3 bucket mybucket its address would be
http://mybucket.s3.amazonaws.com/homepage.html. For more information, see Virtual
Hosting of Buckets.

Bucket Restrictions and Limitations

A bucket is owned by the AWS account (identified by AWS Access Key ID) that created it. Each AWS
account can own up to 100 buckets at a time. Bucket ownership is not transferable. However, if a bucket
is empty, it can be deleted and its name can be reused.

Note

If you are using Amazon DevPay, each of your customers can have up to 100 buckets for
each Amazon DevPay product they use. For more information, see Using Amazon DevPay
with Amazon S3 .

Buckets have the following restrictions:

• Bucket names can only contain lowercase letters, numbers, periods (.), underscores (_), and dashes
(-).

• Bucket names must start with a number or letter.

• Bucket names must be between 3 and 255 characters long.

• Bucket names cannot be in an IP address style (e.g., "192.168.5.4").

To conform with DNS requirements, we recommend following these additional guidelines when
creating buckets:

• Bucket names should not contain underscores (_).

• Bucket names should be between 3 and 63 characters long.

• Bucket names should not end with a dash.

• Dashes cannot appear next to periods. For example, "my-.bucket.com" and "my.-bucket" are invalid.

Note

Buckets with names containing uppercase characters are not accessible using the virtual
hosted-style request (e.g., http://yourbucket.s3.amazonaws.com/yourobject)

If you create a bucket using <CreateBucketConfiguration>, you must follow the
additional guidelines.

If you create a bucket using <CreateBucketConfiguration>, applications that access

Amazon Simple Storage Service Developer Guide
Working with Amazon S3 Buckets

API Version 2006-03-01
12

your bucket must be able to handle 307 redirects. For more information, see Request
Redirection and the REST API.

When using virtual hosted-style buckets with SSL, the SSL wildcard certificate only
matches buckets that do not contain periods. To work around this, use HTTP or write your
own certificate verification logic.

There is no limit to the number of objects that can be stored in a bucket and no variation in performance
when using many buckets or just a few. You can store all of your objects in a single bucket or organize
them across several buckets.

Buckets cannot be nested, meaning buckets cannot be created within buckets.

The high availability engineering of Amazon S3 is focused on get, put, list, and delete operations.
Because bucket operations work against a centralized, global resource space, it is not appropriate to
make bucket create or delete calls on the high availability code path of your application. It is better to
create or delete buckets in a separate initialization or setup routine that you run less often.

Note

If your application automatically creates buckets, choose a bucket naming scheme that is
unlikely to cause naming conflicts. Additionally, make sure your application has logic to
choose a different bucket name if a bucket name is already taken.

Bucket Configuration Options

When creating buckets, you can take advantage of additional Amazon S3 features by attaching the
<CreateBucketConfiguration> XML body to a PUT Bucket request. Currently, you can select a
location constraint (see Location Selection).

Buckets created with <CreateBucketConfiguration> are subject to additional restrictions:

• You cannot make a request to a bucket created with <CreateBucketConfiguration> using a
path-style request; you must use the virtual hosted-style request. For more information, see Virtual
Hosting of Buckets. request

• You must follow additional bucket naming restrictions. For more information, see Bucket Restrictions
and Limitations.

Location Selection

You can now choose a location constraint that will affect where objects are stored within Amazon S3.
You can currently specify a Europe (EU) location constraint.

Choosing a location is simple; just specify a location constraint when creating a new bucket and all
objects placed within that bucket are automatically stored in the same location.

Note

If you do not specify a location constraint, Amazon S3 automatically selects a location
which will be billed at the standard Amazon S3 rates.

Pricing varies based on the specified location constraint. For more information, refer to the
Amazon S3 portal page.

The SOAP API does not support requests that use CreateBucketConfiguration.

Amazon Simple Storage Service Developer Guide
Working with Amazon S3 Buckets

API Version 2006-03-01
13

http://aws.amazon.com/s3

Bucket Access

To access Amazon S3 buckets and objects that were created using CreateBucketConfiguration,
you must use the virtual hosted-style request. For example:

http://yourbucket.s3.amazonaws.com/yourobject

You cannot use the path-style request:

http://s3.amazonaws.com/yourbucket/yourobject

If you use the path-style request, you receive a permanent redirect.

Redirection

Amazon supports two types of redirects: temporary and permanent.

Temporary redirects automatically redirect users that do not have DNS information for the requested
bucket. This occurs because DNS changes take time to propagate through the Internet. For example, if a
user creates a bucket with a location constraint and immediately stores an object in the bucket,
information about the bucket might not be distributed throughout the Internet. Because the bucket is a
subdomain of s3.amazonaws.com, Amazon S3 redirects it to the correct Amazon S3 location.

Permanent redirects redirect users from the path-style request to the virtual hosted-style request format
for buckets created using <CreateBucketConfiguration>. Users will be provided with the correct URL,
but will not be forwarded to the correct location.

Buckets and Access Control

Each bucket has an associated access control policy. This policy governs the creation, deletion and
enumeration of objects within the bucket. For more information, see Authentication and Access Control.

Billing and Reporting of Buckets

Fees for object storage and network data transfer are always billed to the owner of the bucket that
contains the object.

The reporting tools available at the Amazon Web Services developer portal organize your Amazon S3
usage reports by bucket.

Working with Amazon S3 Objects

Topics

• Keys

• Metadata

• Getting Objects

Amazon S3 is designed to store objects. Objects are stored in buckets and consist of a value, a key,
metadata, and an access control policy.

The object value is the content that you are storing. The object value can be any sequence of bytes, but
must be smaller than five gigabytes. There is no fixed limit to the number of objects you can store in
Amazon S3.

Amazon Simple Storage Service Developer Guide
Working with Amazon S3 Objects

API Version 2006-03-01
14

The key is the handle that you assign to an object that allows you retrieve it later.

Metadata is a set of key-value pairs with which you can store information regarding the object.

The access control policy controls access to the object.

Keys

The key is the handle that you assign to an object that allows you retrieve it later. A key is a sequence of
Unicode characters whose UTF-8 encoding is at most 1024 bytes long. Each object in a bucket must
have a unique key.

Keys can be listed by prefix. By choosing a common prefix for the names of related keys and marking
these keys with a special character that delimits hierarchy, you can use the list operation to select and
browse keys hierarchically. This is similar to how files are stored in directories within a filesystem. For
more information, see Listing Keys.

Keys often have a suffix that describes the type of data in the object. For example, ".jpg" indicates that
an object is an image. Although Amazon S3 supports key suffixes, they are not required.

Listing Keys

Amazon S3 exposes a list operation that lets you enumerate the keys contained in a bucket. Keys are
selected for listing by bucket and prefix. For example, consider a bucket named 'dictionary' that contains
a key for every English word. You might make a call to list all the keys in that bucket that start with the
letter 'q'. List results are always returned in lexicographic (alphabetical) order.

For API independent information about composing a list request, see Common List Request Parameters.

Both the SOAP and REST list operations return an XML document that contains the names of matching
keys and information about the object identified by each key. This common XML response document is
documented in detail. For more information, see Common List Response Elements.

You can iterate through large collections of keys by making multiple, paginated, list requests. For
example, an initial list request against the dictionary bucket might only retrieve information about the
keys 'quack' through 'quartermaster.' But a subsequent request would retrieve 'quarters' through 'quince',
and so on.

For instructions on how to correctly handle large list result sets, see Iterating Through Multi-Page
Results.

Groups of keys that share a prefix terminated by a special delimiter can be rolled-up by that common
prefix for the purposes of listing. This allows applications to organize and browse their keys
hierarchically, much like how you would organize your files into directories in a filesystem. For
example, to extend the dictionary bucket to contain more than just English words, you might form keys
by prefixing each word with its language and a delimiter, like "French/logiciel". Using this naming
scheme and the hierarchical listing feature, you could retrieve a list of only French words. You could
also browse the top-level list of available languages without having to iterate through all the
lexicographically intervening keys.

For more information on this aspect of listing, see Listing Keys Hierarchically using Prefix and
Delimiter.

List Implementation Efficiency

List performance is not substantially affected by the total number of keys in your bucket, nor by the
presence or absence of the prefix, marker, maxkeys, or delimiter arguments.

Amazon Simple Storage Service Developer Guide
Working with Amazon S3 Objects

API Version 2006-03-01
15

Common List Request Parameters

Both SOAP and REST list requests accept the following parameters:

• Prefix Restricts the response to only contain results that begin with the specified prefix. If you omit
this optional argument, the value of Prefix for your query will be the empty string. In other words, the
results will be not be restricted by prefix.

• Marker This optional parameter enables pagination of large result sets. Marker specifies where in the
result set to resume listing. It restricts the response to only contain results that occur alphabetically
after the value of marker. To retrieve the next page of results, use the last key from the current page of
results as the marker in your next request. See also NextMarker, below. If Marker is omitted, the first
page of results is returned.

• Delimiter If this optional, Unicode string parameter is included with your request, then keys that
contain the same string between the prefix and the first occurrence of the delimiter will be rolled up
into a single result element in the CommonPrefixes collection. These rolled-up keys are not returned
elsewhere in the response.

For example, with Prefix="USA/" and Delimiter="/", the matching keys "USA/Oregon/Salem" and
"USA/Oregon/Portland" would be summarized in the response as a single "USA/Oregon" element in
the CommonPrefixes collection. If an otherwise matching key does not contain the delimiter after the
prefix, it appears in the Contents collection.

Each element in the CommonPrefixes collection counts as one against the MaxKeys limit. The
rolled-up keys represented by each CommonPrefixes element do not.

If the Delimiter parameter is not present in your request, keys in the result set will not be rolled-up
and neither the CommonPrefixes collection nor the NextMarker element will be present in the
response.

• MaxKeys This optional argument limits the number of results returned in response to your query.
Amazon S3 will return no more than this number of results, but possibly less. Even if MaxKeys is not
specified, Amazon S3 will limit the number of results in the response. Check the IsTruncated flag to
see if your results are incomplete. If so, use the Marker parameter to request the next page of results.

For the purpose of counting MaxKeys, a 'result' is either a key in the 'Contents' collection, or a
delimited prefix in the 'CommonPrefixes' collection. So for delimiter requests, MaxKeys limits the
total number of list results, not just the number of keys.

While the SOAP and REST list parameters are substantially the same, the parameter names and the
mechanics of submitting the request are different. A SOAP list request is an XML document, with the
parameters as elements, while a REST list request is a GET on the bucket resource, with parameters in
the query-string. See the API-specific sections for details:

• ListBucket

• GET Bucket

Access Control

The list operation requires READ permission on the bucket in question. Permission to list is conferred for
any value of Prefix, Marker, Delimiter and MaxKeys.

Common List Response Elements

The SOAP and REST XML list response share the same structure and element names.

Amazon Simple Storage Service Developer Guide
Working with Amazon S3 Objects

API Version 2006-03-01
16

Example

<?xml version="1.0" encoding="UTF-8"?>

<ListBucketResult xmlns="http://doc.s3.amazonaws.com/2006-03-01">

<Name>johnsmith</Name>

<Prefix>photos/2006/</Prefix>

<Marker/>

<MaxKeys>1000</MaxKeys>

<Delimiter>/</Delimiter>

<IsTruncated>false</IsTruncated>

<Contents>

<Key>photos/2006/index.html</Key>

<LastModified>2006-01-01T12:00:00.000Z</LastModified>

<ETag>"ce1acdafcc879d7eee54cf4e97334078"</ETag>

<Size>1234</Size>

<Owner>

<ID>214153b66967d86f031c7249d1d9a80249109428335cd08f1cdc487b4566cb1b</ID>

<DisplayName>John Smith</DisplayName>

</Owner>

<StorageClass>STANDARD</StorageClass>

</Contents>

<CommonPrefixes>

<Prefix>photos/2006/January/</Prefix>

</CommonPrefixes>

</ListBucketResult>

ListBucketResult is the root element of the list response document. To make the list response
self-describing, ListBucketResult echoes back the list request parameters that generated it.
ListBucketResult also contains the following elements:

• IsTruncated

A flag that indicates whether or not all results of your query were returned in this response. If your
results were truncated, you can make a follow-up paginated request using the Marker parameter to
retrieve the rest of the results.

• NextMarker

A convenience element, useful when paginating with delimiters. The value of NextMarker, if present,
is the largest (alphabetically) of all key names and all CommonPrefixes prefixes in the response. If the

Amazon Simple Storage Service Developer Guide
Working with Amazon S3 Objects

API Version 2006-03-01
17

IsTruncated flag is set, request the next page of results by setting Marker to NextMarker. This element
is only present in the response if the Delimiter parameter was sent with the request.

The Contents Element (of type ListEntry) contains information about each key that is part of the list
results.

• Key

The object's key.

• LastModified

The time that the object was placed into Amazon S3.

• ETag

The object's entity tag is an opaque string used to quickly check an object for changes. With high
probability, the object data associated with a key is unchanged if and only if the entity tag is
unchanged. Entity tags are useful in conditional gets.

• Size

The number of bytes of object data stored under this key. Size does not include metadata or the size of
the key.

• Owner

This element represents the identity of the principal who created the object. It is only present if you
have permission to view it. See the 'Access Control' discussion, below.

• StorageClass

Always has the value STANDARD

The CommonPrefixes element may be present when you make a list request with the delimiter
parameter. Each element in this collection represents a group of keys that share a common prefix
terminated by the specified delimiter. To expand the list of keys under this prefix, make a new list
request formed by substituting the value of the CommonPrefixes/Prefix response element for the Prefix
request parameter.

• Prefix

The shared common prefix.

Access Control

The Owner element is only present in a given ListEntry element if you have READ_ACP permission on
the object in question, or if you own the containing bucket. Otherwise, it is omitted.

Iterating Through Multi-Page Results

As buckets can contain a virtually unlimited number of keys, the complete results of a list query can be
extremely large. To manage large result sets, Amazon S3 uses pagination to split them into multiple
responses. The following pseudo-code procedure demonstrates how to iteratively fetch an exhaustive list
of results, given a prefix, marker and delimiter:

Example

Amazon Simple Storage Service Developer Guide
Working with Amazon S3 Objects

API Version 2006-03-01
18

function exhaustiveList(bucket, prefix, marker, delimiter) :

do {

result = AmazonS3.list(bucket, prefix, marker, delimiter);

// ... work with incremental list results ...

marker = max(result.Contents.Keys, result.CommonPrefixes.Prefixes)

// or more conveniently, when delimiter != null

// marker = result.NextMarker;

}

while (result.IsTruncated);

Listing Keys Hierarchically using Prefix and Delimiter

The Prefix and Delimiter parameters limit the kind of results returned by a list operation. Prefix limits
results to only those keys that begin with the specified prefix, and Delimiter causes list to roll-up all
keys that share a common prefix into a single summary list result.

The purpose of the prefix and delimiter parameters is to allow you to organize, and then browse, your
keys hierarchically. To do this, first pick a delimiter for your bucket, say '/', that doesn't occur in any of
your anticipated key names. Next, construct your key names by concatenating all containing levels of
the hierarchy, separating each level with the delimiter.

For example, if you were storing information about cities, you might naturally organize them by
continent, then by country, then by province or state. Since these names don't usually contain
punctuation, you might select '/' as the delimiter. In that case, you would name your keys like so:

• Europe/France/Aquitaine/Bordeaux

• North America/Canada/Quebec/Montreal

• North America/USA/California/San Francisco

• North America/USA/Washington/Seattle

• ... and so on.

If you stored data for every city in the world in this manner, it would become awkward to manage a flat
key namespace. But, by using the Prefix and Delimiter parameters with the list operation, you can list
using the hierarchy you've built into your data. For example, to list all the cities in California, set
Delimiter='/' and Prefix='/North America/USA/California/'. To list all the provinces in Canada for which
you have data, set Delimiter='/' and Prefix='North America/Canada/'

A list request with a delimiter lets you browse your hierarchy at just one level, skipping over and
summarizing the (possibly millions of) keys nested at deeper levels.

Metadata

Each Amazon S3 object has a set of key-value pairs with which it is associated. There are two kinds of
metadata: system metadata, and user metadata.

Amazon Simple Storage Service Developer Guide
Working with Amazon S3 Objects

API Version 2006-03-01
19

System metadata is used and is sometimes processed by Amazon S3. System metadata behavior depends
on which API (REST or SOAP) you are using.

User metadata entries are specified by you. Amazon S3 does not interpret this metadata#it simply stores
it and passes it back when you ask for it. Metadata keys and values can be any length, but must conform
to US-ASCII when using REST and UTF-8 when using SOAP or browser-based uploads through POST.

Note

For more information about metadata encodings, go to sections 2 and 4.2 of
http://www.ietf.org/rfc/rfc2616.txt.

Metadata Size

For both REST and SOAP requests to Amazon S3, user metadata size is limited to 2k bytes for the total
length of all values and keys.

Metadata Interoperability

In REST, user metadata keys must begin with "x-amz-meta-" to distinguish them as custom HTTP
headers. When this metadata is retrieved via SOAP, the x-amz-meta- prefix is removed. Similarly,
metadata stored via SOAP will have x-amz-meta- added as a prefix when it is retrieved via REST,
except when the metadata fits an HTTP standard header (e.g., "Content-Type" metadata).

When metadata is retrieved through the REST API, Amazon S3 combines headers that have the same
name (ignoring case) into a comma-delimited list. If some metadata contains unprintable characters, it is
not returned. Instead, the "x-amz-missing-meta" header is returned with a value of the number of the
unprintable metadata entries.

Getting Objects

You get objects from Amazon S3 using the GET operation. This operation returns the object directly
from Amazon S3.

Standard Downloads

The following is an example of a REST GET request:

GET /Nelson HTTP/1.1

Host: quotes.s3.amazonaws.com

Date: Wed, 01 Mar 2006 12:00:00 GMT

Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

which returns the following:

HTTP/1.1 200 OK

x-amz-id-2: j5ULAWpFbJQJpukUsZ4tfXVOjVZExLtEyNTvY5feC+hHIegsN5p578JLTVpkFrpL

x-amz-request-id: BE39A20848A0D52B

Date: Wed, 01 Mar 2006 12:00:00 GMT

x-amz-meta-family: Muntz

Last-Modified: Sun, 1 Jan 2006 12:00:00 GMT

Amazon Simple Storage Service Developer Guide
Working with Amazon S3 Objects

API Version 2006-03-01
20

http://www.ietf.org/rfc/rfc2616.txt

ETag: "828ef3fdfa96f00ad9f27c383fc9ac7f"

Content-Type: text/plain

Content-Length: 5

Connection: close

Server: AmazonS3

HA-HA

Chunked and Resumable Downloads

To provide GET flexibility, Amazon S3 supports chunked and resumable downloads.

This allows you to download part of an object stored in Amazon S3 so you can break large downloads
into smaller chunks or design your applications to recover from failed downloads.

Select from the following:

• For information about using resumable downloads with the REST API, see Chunked and Resumable
Downloads.

• For information about using resumable downloads with the SOAP API, see Chunked and Resumable
Downloads.

Authentication and Access Control
Topics

• Authentication

• Access Control Lists

• Query String Authentication

Authentication is the process of verifying the identity of a user or service trying to access an Amazon
Web Services (AWS) product. Access Control defines who can access objects and buckets within
Amazon S3 and the type of access (e.g., READ, WRITE, and so on). Authentication combined with
access control prevents unauthorized users from accessing your data, modifying your data, deleting your
data, or using your AWS account for services that cost you money.

Every interaction with Amazon S3 is authenticated or anonymous. When you sign up for an AWS
account, you are provided with an AWS Access Key ID and a Secret Access Key. When you perform a
request with Amazon S3, you assemble the request, perform a hash on the request using your Secret
Access Key, attach the Signature (hash) to the request, and forward it to Amazon S3. Amazon S3
verifies the Signature is a valid hash of the request and, if authenticated, processes the request.

To allow selected users to access objects or buckets in your Amazon S3 account, you can use access
control lists (ACLs) or query string authentication.

Amazon Simple Storage Service Developer Guide
Authentication and Access Control

API Version 2006-03-01
21

ACLs allow you grant access to specific AWS users, all AWS users, or any user through anonymous
access. When granting access to a specific AWS user, the user must have an Amazon account and must
be signed up for AWS and Amazon S3. This will enable the user to access any allowed buckets or
objects using his AWS Access Key ID and Secret Access Key. When you grant access to all AWS users,
any AWS user will be able to access allowed buckets or objects using an AWS Access Key ID and
Secret Access Key. When you grant anonymous access, any user will be able to access allowed buckets
or objects by omitting the AWS Access Key ID and Signature from a request.

Any user that is granted access to an object or bucket can construct an HTTP URL that can be used to
access that object or bucket through the query string authentication mechanism. This HTTP URL can be
distributed to any user with a web client or embedded in a web page.

Note

All HTTP queries have an expiration parameter that allows you to set how long the query
will be valid. For example, you can configure a web page graphic to expire after a very
long period of time or a software download to only last for 24 hours.

Authentication

When you create an AWS account, AWS assigns your AWS access key identifiers, a pair of related
credentials:

• Access Key ID (a 20-character, alphanumeric string). For example: 022QF06E7MXBSH9DHM02

• Secret Access Key (a 40-character string). For example:
kWcrlUX5JEDGM/LtmEENI/aVmYvHNif5zB+d9+ct

Important

Your Secret Access Key is a secret and should be known only by you and AWS. It is
important to keep it confidential to protect your account. Never include it in your requests

Amazon Simple Storage Service Developer Guide
Authentication

API Version 2006-03-01
22

to AWS and never e-mail it to anyone. Do not share it outside your organization, even if an
inquiry appears to come from AWS or Amazon.com. No one who legitimately represents
Amazon will ever ask you for your Secret Access Key.

The Access Key ID uniquely identifies an AWS account. You include it in AWS service requests to
identify yourself as the sender of the request.

To prove that you are the owner of the account making the request, you must include a signature. For all
requests, you calculate the signature with your Secret Access Key. AWS uses the Access Key ID in the
request to look up your Secret Access Key and then calculates a signature with the key. If the calculated
signature matches the signature you sent, the request is considered authentic. Otherwise, the request fails
authentication and is not processed.

Viewing Your Credentials

Your Access Key ID and Secret Access Key are displayed when you create your AWS account. They
are not e-mailed to you. If you need to see them again, you can view them at any time from your AWS
account.

To view your AWS access identifiers

1. Go to the Amazon Web Services web site at http://aws.amazon.com.

2. Point to Your Web Services Account to display a list of options.
3. Click View Access Key Identifiers and log in to your AWS account.

Your Access Key ID and Secret Access Key are displayed on the resulting AWS Access Identifiers
page.

Using HMAC-SHA1 Signatures

When accessing Amazon S3 using REST and SOAP, you must provide the following items so the
request can be authenticated:

Request Elements

• AWS Access Key Id—your AWS account is identified by your Access Key ID, which AWS uses to
look up your Secret Access Key.

• Signature—each request must contain a valid request signature, or the request is rejected. A request
signature is calculated using your Secret Access Key, which is a shared secret known only to you and
AWS.

• Time stamp—each request must contain the date and time the request was created, represented as a
string in UTC. The format of the value of this parameter is API-specific.

• Date—each request must contain the time stamp of the request. Depending on the API you're using,
you can provide an expiration date and time for the request instead of or in addition to the time stamp.
See the authentication topic for the particular API to determine what the API requires.

Below are the general steps for authenticating requests to AWS. It is assumed you have already created
an AWS account and received an Access Key ID and Secret Access Key.

You perform the first three steps.

Amazon Simple Storage Service Developer Guide
Authentication

API Version 2006-03-01
23

1. Construct a request to AWS.

2. Calculate a keyed-hash message authentication code (HMAC) signature using your Secret Access
Key

3. Include the signature and your Access Key ID in the request, and then send the request to AWS.
AWS performs the next three steps.

Amazon Simple Storage Service Developer Guide
Authentication

API Version 2006-03-01
24

4. AWS uses the Access Key ID to look up your Secret Access Key.

5. AWS generates a signature from the request data and the Secret Access Key using the same
algorithm you used to calculate the signature you sent in the request.

6. If the signature generated by AWS matches the one you sent in the request, the request is considered
authentic. If the comparison fails, the request is discarded, and AWS returns an error response.

Detailed Authentication Information

For detailed information about REST and SOAP authentication, see Authenticating REST Requests and
Authenticating SOAP Requests.

Using Base64 Encoding

HMAC request signatures must be Base64 encoded. Base64 encoding converts the signature into a
simple ASCII string that can be attached to the request.

For examples of Base64 encoding, refer to the Amazon S3 code samples.

Access Control Lists

Topics

• Grantees

• Permissions

• Using ACLs

Amazon Simple Storage Service Developer Guide
Access Control Lists

API Version 2006-03-01
25

Each bucket and object in Amazon S3 has an ACL that defines its access control policy. When a request
is made, Amazon S3 authenticates the request using its standard authentication procedure and then
checks the ACL to verify sender was granted access to the bucket or object. If the sender is approved,
the request proceeds. Otherwise, Amazon S3 returns an error.

An ACL is a list of grants. A grant consists of one grantee and one permission. ACLs only grant
permissions; they do not deny them.

Note

Bucket and object ACLs are completely independent; an object does not inherit the ACL
from its bucket. For example, if you create a bucket and grant write access to another user,
you will not be able to access the user’s objects unless the user explicitly grants access.
This also applies if you grant anonymous write access to a bucket. Only the user
"anonymous" will be able to access objects the user created unless permission is explicitly
granted to the bucket owner.

Important

We highly recommend that you do not grant the anonymous group write access to your
buckets as you will have no control over the objects others can store and their associated
charges. For more information, see Grantees and Permissions

Grantees

There are five types of grantees that can access a bucket or object within Amazon S3. These include:

• Owner

• User by Email

• User by Canonical Representation

• AWS User Group

• Anonymous Group

Owner

Every bucket and object in Amazon S3 has an owner, the user that created the bucket or object. The
owner of a bucket or object cannot be changed. However, if the object is overwritten by another user
(deleted and rewritten), the new object will have a new owner.

Note

Even the owner is subject to the ACL. For example, if an owner does not have READ
access to an object, the owner cannot read that object. However, the owner of an object
always has write access to the access control policy (WRITE_ACP) and can change the
ACL to read the object.

User by Email

You can grant access to buckets and objects within your Amazon S3 account to anyone with an Amazon
Web Services account. Any users that you grant access will be able to access buckets and objects using
their AWS Access Key IDs and Secret Access Keys.

Amazon Simple Storage Service Developer Guide
Access Control Lists

API Version 2006-03-01
26

The following is the XML format for granting access to a user through an Amazon customer email
address:

<Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="AmazonCustomerByEmail">

<EmailAddress>chriscustomer@email.com</EmailAddress>

</Grantee>

Email grants are internally converted to the CanonicalUser representation when you create the ACL. If
the grantee changes his or her email address, it will not affect the existing Amazon S3 permissions.

Adding a grantee by email address only works if exactly one Amazon account corresponds to the
specified email address. If multiple Amazon accounts are associated with the email address, an
AmbiguousGrantByEmail error message is returned. This is rare but usually occurs if a user created an
Amazon account in the past, forgot the password, and created another Amazon account using the same
email address. If this occurs, the user should contact Amazon.com customer service to have the accounts
merged or you should grant user access specifying the CanonicalUser representation.

User by Canonical Representation

You can grant access to buckets and objects within your Amazon S3 account to anyone with an Amazon
Web Services account. Any users that you grant access will be able to access buckets and objects using
their AWS Access Key IDs and Secret Access Keys.

Note

To locate the CanonicalUser ID for a user, the user must perform the ListAllMyBuckets
operation in his or her Amazon S3 account and copy the ID from the Owner XML object.

The following is the XML format for granting access to a user through an Amazon customer
CanonicalUser ID:

<Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="CanonicalUser">

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>

<DisplayName>chriscustomer</DisplayName>

</Grantee>

The ID string specifies the CanonicalUser ID and must exactly match the ID of the user that you are
adding. The DisplayName element is read-only. If you specify a DisplayName, it will be ignored and
replaced with the name stored by Amazon.

AWS User Group

You can grant access to buckets or objects to anyone with an Amazon AWS account. Although this
inherently insecure as any AWS user who is aware of the bucket or object will be able to access it, you
may find this authentication method useful.

All AWS users can be specified as a grantee using the following example XML representation:

<Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="Group">

<URI>http://acs.amazonaws.com/groups/global/AuthenticatedUsers<URI>

Amazon Simple Storage Service Developer Guide
Access Control Lists

API Version 2006-03-01
27

</Grantee>

AllUsers Group

You can grant anonymous access to any Amazon S3 object or bucket. Any user will be able to access
the object by omitting the AWS Key ID and Signature from a request.

AllUsers can be specified as a grantee using the following example XML representation:

<Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="Group">

<<URI>http://acs.amazonaws.com/groups/global/AllUsers<URI>

</Grantee>

Permissions

The permission in a grant describes the type of access to be granted to the respective grantee. The
following permissions are supported by Amazon S3:

Elements

• READ—when applied to a bucket, grants permission to list the bucket. When applied to an object,
this grants permission to read the object data and/or metadata.

• WRITE—when applied to a bucket, grants permission to create, overwrite, and delete any object in
the bucket. This permission is not supported for objects.

• READ_ACP—grants permission to read the ACL for the applicable bucket or object. The owner of a
bucket or object always has this permission implicitly.

• WRITE_ACP—gives permission to overwrite the ACP for the applicable bucket or object. The
owner of a bucket or object always has this permission implicitly.
Granting this permission is equivalent to granting FULL_CONTROL because the grant recipient can
make any changes to the ACP.

• FULL_CONTROL—provides READ, WRITE, READ_ACP, and WRITE_ACP permissions. It does
not convey additional rights and is provide only for convenience.

Using ACLs

An ACL can contain up to 100 grants. If no ACL is provided when a bucket is created or an object
written, a default ACL is created. The default ACL consists of a single grant that gives the owner (i.e.,
the creator) the FULL_CONTROL permission. If you overwrite an existing object, the ACL for the
existing object is overwritten and will to default to FULL_CONTROL for the owner if no ACL is
specified.

You can change the ACL of a resource without changing the resource itself. However, like Amazon S3
objects, there is no way to modify an existing ACL—you can only overwrite it with a new version.
Therefore, to modify an ACL, read the ACL from Amazon S3, modify it locally, and write the entire
updated ACL back to Amazon S3.

Note

The method of reading and writing ACLs differs depending on which API you are using.
Please see the API-specific documentation for details.

Amazon Simple Storage Service Developer Guide
Access Control Lists

API Version 2006-03-01
28

Regardless of which API you are using, the XML representation of an ACL stored in Amazon S3 (and
returned when the ACL is read) is the same. In the example ACL below, the owner has the default
FULL_CONTROL, the "Frank" and "Jose" users both have WRITE and READ_ACP permissions, and
all users have permission to READ:

<AccessControlPolicy>

<Owner>

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>

<DisplayName>chriscustomer</DisplayName>

</Owner>

<AccessControlList>

<Grant>

<Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="CanonicalUser">

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>

<DisplayName>chriscustomer</DisplayName>

</Grantee>

<Permission>FULL_CONTROL</Permission>

</Grant>

<Grant>

<Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="CanonicalUser">

<ID>79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be</ID>

<DisplayName>Frank</DisplayName>

</Grantee>

<Permission>WRITE</Permission>

</Grant>

<Grant>

<Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="CanonicalUser">

<ID>79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be</ID>

<DisplayName>Frank</DisplayName>

</Grantee>

<Permission>READ_ACP</Permission>

</Grant>

<Grant>

<Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="CanonicalUser">

<ID>e019164ebb0724ff67188e243eae9ccbebdde523717cc312255d9a82498e394a</ID>

Amazon Simple Storage Service Developer Guide
Access Control Lists

API Version 2006-03-01
29

<DisplayName>Jose</DisplayName>

</Grantee>

<Permission>WRITE</Permission>

</Grant>

<Grant>

<Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="CanonicalUser">

<ID>e019164ebb0724ff67188e243eae9ccbebdde523717cc312255d9a82498e394a</ID>

<DisplayName>Jose</DisplayName>

</Grantee>

<Permission>READ_ACP</Permission>

</Grant>

<Grant>

<Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="Group">

<URI>http://acs.amazonaws.com/groups/global/AllUsers</URI>

</Grantee>

<Permission>READ</Permission>

</Grant>

</AccessControlList>

</AccessControlPolicy>

Note

When you write an ACL to Amazon S3 that AmazonCustomerByEmail grantees, they will
be converted to the CanonicalUser type prior to committing the ACL.

Query String Authentication

Query string authentication is useful for giving HTTP or browser access to resources that would
normally require authentication.

When using query string authentication, you create a query, specify an expiration time for the query,
sign it with your signature, place the data in an HTTP request, and distribute the request to a user or
embed the request in a web page.

Query string authentication requests require an expiration date. You can specify any future expiration
time in epoch or UNIX time (number of seconds since January 1, 1970). For example, a query URL will
be similar to the following:

ht
tp://quotes.s3.amazonaws.com/nelson?AWSAccessKeyId=44CF9590006BF252F707&Expir
es=1177363698&Signature=vjbyPxybdZaNmGa%2ByT272YEAiv4%3D

Amazon Simple Storage Service Developer Guide
Query String Authentication

API Version 2006-03-01
30

Request Routing
Topics

• Request Redirection and the REST API

• DNS Considerations

Programs that make requests against buckets created using the <CreateBucketConfiguration> API must
support redirects. Additionally, some clients that do not respect DNS TTLs may encounter issues.

This section describes routing and DNS issues to consider when designing your service or application
for use with Amazon S3.

Request Redirection and the REST API

Overview

Amazon S3 uses the Domain Name System (DNS) to route requests to facilities that can process them.
This system works very effectively. However, temporary routing errors can occur.

If a request arrives at the wrong Amazon S3 location, Amazon S3 responds with a temporary redirect
that tells the requestor to resend the request to a new endpoint.

If a request is incorrectly formed, Amazon S3 uses permanent redirects to provide direction on how to
perform the request correctly.

Important

Every Amazon S3 program must be designed to handle redirect responses. The only
exception is for programs that work exclusively with buckets that were created without
<CreateBucketConfiguration>. For more information on location constraints, see the
section called “Location Selection”.

DNS Routing

DNS routing routes requests to appropriate Amazon S3 facilities.

The following graphic shows an example of DNS routing.

Amazon Simple Storage Service Developer Guide
Request Redirection and the REST API

API Version 2006-03-01
31

Step Action

1 The client makes a DNS request to get an object stored on Amazon S3.

2 The client receives one or more IP addresses for facilities that can process
the request.

3 The client makes a request to Amazon S3 Facility B.

4 Facility B returns a copy of the object.

Amazon Simple Storage Service Developer Guide
Request Redirection and the REST API

API Version 2006-03-01
32

Temporary Request Redirection

A temporary redirect is a type of error response that signals to the requestor that he should resend his
request to a different endpoint.

Due to the distributed nature of Amazon S3, requests can be temporarily routed to the wrong facility.
This is most likely to occur immediately after buckets are created or deleted. For example, if you create
a new bucket and immediately make a request to the bucket, you will receive a temporary redirect. After
information about the bucket propagates through DNS, redirects will be rare.

Temporary redirects contain a URI to the correct facility which you can use to immediately resend the
request.

Important

Do not reuse an endpoint provided by a previous redirect response. It might appear to work
(even for long periods of time), but might provide unpredictable results and will eventually
fail without notice.

The following graphic shows an example of a temporary redirect.

Amazon Simple Storage Service Developer Guide
Request Redirection and the REST API

API Version 2006-03-01
33

Step Action

1 The client makes a DNS request to get an object stored on Amazon S3.

2 The client receives one or more IP addresses for facilities that can process
the request.

3 The client makes a request to Amazon S3 Facility B.

4 Facility B returns a redirect indicating the object is available from Location
C.

Amazon Simple Storage Service Developer Guide
Request Redirection and the REST API

API Version 2006-03-01
34

Step Action

5 The client resends the request to Facility C.

6 Facility C returns a copy of the object.

Permanent Request Redirection

A permanent redirect indicates that your request addressed a resource inappropriately. For example,
permanent redirects occur if you use a path-style request to access a bucket that was created using
<CreateBucketConfiguration>.

To help you find these errors during development, this type of redirect does not contain a Location
HTTP header that allows you to automatically follow the request to the correct location. Consult the
resulting XML error document for help using the correct Amazon S3 endpoint.

Examples

This is an example of a redirect issued by the Amazon S3 REST API.

HTTP/1.1 307 Temporary Redirect

Location: ht
tp://johnsmith.s3-gztb4pa9sq.amazonaws.com/photos/puppy.jpg?rk=e2c69a31

Content-Type: application/xml

Transfer-Encoding: chunked

Date: Fri, 12 Oct 2007 01:12:56 GMT

Server: AmazonS3

<?xml version="1.0" encoding="UTF-8"?>

<Error>

<Code>TemporaryRedirect</Code>

<Message>Please re-send this request to the specified temporary endpoint.

Continue to use the original request endpoint for future re
quests.</Message>

<Endpoint>johnsmith.s3-gztb4pa9sq.amazonaws.com</Endpoint>

</Error>

This is an example of a redirect issued by the Amazon S3 SOAP API.

<soapenv:Body>

<soapenv:Fault>

<Faultcode>soapenv:Client.TemporaryRedirect</Faultcode>

<Faultstring>Please re-send this request to the specified temporary end
point.

Amazon Simple Storage Service Developer Guide
Request Redirection and the REST API

API Version 2006-03-01
35

Continue to use the original request endpoint for future re
quests.</Faultstring>

<Detail>

<Bucket>images</Bucket>

<Endpoint>s3-gztb4pa9sq.amazonaws.com</Endpoint>

</Detail>

</soapenv:Fault>

</soapenv:Body>

DNS Considerations

One of the design requirements of Amazon S3 is extremely high availability. One of the ways we meet
this requirement is by updating the IP addresses associated with the Amazon S3 endpoint in DNS as
needed. These changes are automatically reflected in short-lived clients, but not in some long-lived
clients. Long-lived clients will need to take special action to re-resolve the Amazon S3 endpoint
periodically to benefit from these changes. Please see following for specific information for various
virtual machines (VMs).

• Java: Sun's JVM caches DNS lookups forever by default; see the "InetAddress Caching" section of
the InetAddress documentation for information on how to change this behavior.

• PHP: The persistent PHP VM that runs in the most popular deployment configurations caches DNS
lookups until the VM is restarted. See the getHostByName PHP docs.

Performance Optimization
Topics

• TCP Window Scaling

• TCP Selective Acknowledgement

Amazon S3 provides new features that support high performance networking. These include TCP
window scaling and selective acknowledgements.

Note

For more information on high performance tuning, go to
http://-www.psc.edu/-networking/-projects/-tcptune/.

TCP Window Scaling

TCP window scaling allows you to improve network throughput performance between your operating
system and application layer and Amazon S3 by supporting window sizes larger than 64 KB. At the start
of the TCP session, a client advertises its supported receive window WSCALE factor, and Amazon S3
responds with its supported receive window WSCALE factor for the upstream direction.

Although TCP window scaling can improve performance, it can be challenging to set correctly. Make

Amazon Simple Storage Service Developer Guide
DNS Considerations

API Version 2006-03-01
36

http://java.sun.com/j2se/1.5.0/docs/api/java/net/InetAddress.html
http://us2.php.net/manual/en/function.gethostbyname.php#64070
http://www.psc.edu/networking/projects/tcptune/

sure to adjust settings at both the application and kernel level. For more information about TCP window
scaling, refer to your operating system's documentation and go to RFC 1323.

TCP Selective Acknowledgement

TCP selective acknowledgement is designed to increase recovery time after a large number of packet
losses. TCP selective acknowledgement is supported by most newer operating systems, but might have
to be enabled. For more information about TCP selective acknowledgements, refer to the documentation
that accompanied your operating system and go to RFC 2018.

Using Amazon DevPay with Amazon S3
Topics

• Amazon S3 Customer Data Isolation

• Amazon DevPay Token Mechanism

• Amazon S3 and Amazon DevPay Authentication

• Amazon S3 Bucket Limitation

• Amazon S3 and Amazon DevPay Process

• Additional Information

Amazon DevPay enables you to charge customers for using your Amazon S3 product through Amazon's
authentication and billing infrastructure. You can charge any amount for your product including usage
charges (storage, transactions, and bandwidth), monthly fixed charges, and a one-time charge.

Once a month, Amazon bills your customers for you. AWS then deducts the Amazon DevPay fees and
pays you the difference. AWS then separately charges you for the Amazon S3 usage costs incurred by
your customers.

If your customers do not pay their bills, AWS turns off access to Amazon S3 (and your product). AWS
handles all payment processing.

Amazon S3 Customer Data Isolation

Amazon DevPay requests store and access data on behalf of the users of your product. The resources
created by your application are owned by your users; unless you modify the ACL, you cannot read or
modify the user's data.

Data stored by your product is isolated from other Amazon DevPay products and general Amazon S3
access. Customers that store data in Amazon S3 through your product can only access that data through
your product. The data cannot be accessed through other Amazon DevPay products or through a
personal AWS account.

Two users of a product can only access each other's data if your application explicitly grants access
through the ACL.

Example

The following graphic shows examples of allowed, disallowed, and conditional (discretionary) data
access:

Amazon Simple Storage Service Developer Guide
TCP Selective Acknowledgement

API Version 2006-03-01
37

http://www.ietf.org/rfc/rfc1323.txt
http://www.ietf.org/rfc/rfc2018.txt

For example:

• Betty can access Lolcatz data through the Lolcatz product. If she attempts to access her Lolcatz data
through another product or a personal AWS account, her requests will be denied.

• Betty can access Alvin's eScrapBook data through the eScrapBook product if access is explicitly
granted.

Amazon DevPay Token Mechanism

To enable you to make requests on behalf of your customers and ensure that your customers are billed
for use of your application, your application must send two tokens with each request: the product token
and the user token.

The product token identifies your product; you must have one product token for each Amazon DevPay
product that you provide. The user token identifies a user in relationship to your product; you must have
a user token for each user/product combination. For example, if you provide two products and a user
subscribes to each, you must obtain a separate user token for each product.

For information on obtaining product and user tokens, refer to the Amazon DevPay Developer Guide.

Amazon Simple Storage Service Developer Guide
Amazon DevPay Token Mechanism

API Version 2006-03-01
38

Amazon S3 and Amazon DevPay Authentication

Although the token mechanism uniquely identifies a customer and product, it does not provide
authentication.

Normally, your applications communicate directly with Amazon S3 using your Access Key ID and
Secret Access Key. For Amazon DevPay, Amazon S3 authentication works a little differently.

If your Amazon DevPay product is a web application, you securely store the Secret Access Key on your
servers and use the user token to specify the customer for which requests are being made.

However, if your Amazon S3 application is installed on your customers' computers, your application
must obtain an Access Key ID and a Secret Access Key for each installation and must use those
credentials when communicating with Amazon S3.

The following image shows the differences between authentication for web applications and user
applications.

Amazon S3 Bucket Limitation

Each of your customers can have up to 100 buckets for each Amazon DevPay product that you sell. For
example, if a customer uses three of your products, the customer can have up to 300 buckets (100 * 3)
plus any buckets outside of your Amazon DevPay products (i.e., buckets in Amazon DevPay products
from other developers and the customer's personal AWS account).

Amazon Simple Storage Service Developer Guide
Amazon S3 Bucket Limitation

API Version 2006-03-01
39

Amazon S3 and Amazon DevPay Process

The following provides a high-level overview of the Amazon DevPay process:

Launch Process

1 A customer signs up for your product through Amazon.

2
The customer receives an activation key.

3 The customer enters the activation key into your application.

4 Your application communicates with Amazon and obtains the user's token. If your
application is installed on the user's computer, it also obtains an Access Key ID and Secret
Access Key on behalf of the customer.

5 Your application provides the customer's token and the application product token when
making Amazon S3 requests on behalf of the customer. If your application is installed on
the customer's computer, it authenticates with the customer's credentials.

6 Amazon uses the customer's token and your product token to determine who to bill for the
Amazon S3 usage.

7 Once a month, Amazon processes usage data and bills your customers according to the
terms you defined.

8 AWS deducts Amazon DevPay fees and pays you the difference. AWS then separately
charges you for the Amazon S3 usage costs incurred by your customers.

Additional Information

For information about using, setting up, and integrating with Amazon DevPay, refer to the Amazon
DevPay Developer Guide.

Working with Errors
Topics

• Amazon S3 Error Best Practices

• Error Response

This section describes best practices for managing Amazon S3 errors and the format of an Amazon S3
error response.

Amazon S3 Error Best Practices

When designing an application for use with Amazon S3, it is important to handle Amazon S3 errors
appropriately. This section describes issues to consider when designing your application.

Retry InternalErrors

Internal errors are errors that occur within the Amazon S3 environment.

Amazon Simple Storage Service Developer Guide
Additional Information

API Version 2006-03-01
40

Requests that receive an InternalError response may or may not have been processed. For example, if a
PUT request returns InternalError, a subsequent GET may retrieve the old value or the updated value.

If Amazon S3 returns an InternalError response, retry the request.

Tune Application for Repeated SlowDown errors

As with any distributed system, S3 has protection mechanisms which detect intentional or unintentional
resource over-consumption and react accordingly. SlowDown errors can occur when a high request rate
triggers one of these mechanisms. Reducing your request rate will decrease or eliminate errors of this
type. Generally speaking, most users will not experience these errors regularly; however, if you would
like more information or are experiencing high or unexpected SlowDown errors, contact us via e-mail at
webservices@amazon.com to discuss how to optimize your use of S3 and prevent these types of errors
in your application.

Isolate Errors

Amazon S3 provides a set of error codes that are used by both the SOAP and REST API. The SOAP
API returns standard Amazon S3 error codes. The REST API is designed to look like a standard HTTP
server and interact with existing HTTP clients (e.g., browsers, HTTP client libraries, proxies, caches,
and so on). To ensure the HTTP clients handle errors properly, we map each Amazon S3 error to an
HTTP status code.

HTTP status codes are less expressive than Amazon S3 error codes and contain less information about
the error. For example, the NoSuchKey and NoSuchBucket Amazon S3 errors both map to the HTTP
404 Not Found status code.

Although the HTTP status codes contain less information about the error, clients that understand HTTP,
but not the Amazon S3 API, will usually handle the error correctly.

Therefore, when handling errors or reporting Amazon S3 errors to end users, use the Amazon S3 error
code instead of the HTTP status code as it contains the most information about the error. Additionally,
when debugging your application, you should also consult the human readable <Details> element of the
XML error response.

Error Response

When an Amazon S3 request is in error, the client receives an error response. The exact format of the
error response is API specific: For example, the REST error response differs from the SOAP error
response. However, all error responses have the following common elements:

• Error Code

• Error Message

• Further Details

• List of Error Codes

Error Code

The error code is a string that uniquely identifies an error condition. It is meant to be read and
understood by programs that detect and handle errors by type. Many error codes are common across
SOAP and REST APIs, but some are API-specific. For example, NoSuchKey is universal, but
UnexpectedContent can occur only in response to an invalid REST request. In all cases, SOAP fault
codes carry a prefix as indicated in the table of error codes, so that a NoSuchKey error is actually
returned in SOAP as Client.NoSuchKey.

Amazon Simple Storage Service Developer Guide
Error Response

API Version 2006-03-01
41

Error Message

The error message contains a generic description of the error condition in English. It is intended for a
human audience. Simple programs display the message directly to the end user if they encounter an error
condition they don't know how or don't care to handle. Sophisticated programs with more exhaustive
error handling and proper internationalization are more likely to ignore the error message.

Further Details

Many error responses contain additional structured data meant to be read and understood by a developer
diagnosing programming errors. For example, if you send a Content-MD5 header with a REST PUT
request that doesn't match the digest calculated on the server, you receive a BadDigest error. The error
response also includes as detail elements the digest we calculated, and the digest you told us to expect.
During development, you can use this information to diagnose the error. In production, a well-behaved
program might include this information in its error log.

List of Error Codes

The following table lists the Amazon S3 Error Codes.

Error Code Description HTTP
Status
Code

SOAP
Fault
Code
Prefix

AccessDenied Access Denied 403
Forbidden

Client

AccountProblem There is a problem with your AWS
account that prevents the operation
from completing successfully. Please
contact customer service at
webservices@amazon.com.

403
Forbidden

Client

AmbiguousGrantByEmailAddress The e-mail address you provided is
associated with more than one
account.

400 Bad
Request

Client

BadDigest The Content-MD5 you specified did
not match what we received.

400 Bad
Request

Client

BucketAlreadyExists The requested bucket name is not
available. The bucket namespace is
shared by all users of the system.
Please select a different name and
try again.

409
Conflict

Client

BucketAlreadyOwnedByYou Your previous request to create the
named bucket succeeded and you
already own it.

409
Conflict

Client

BucketNotEmpty The bucket you tried to delete is not
empty.

409
Conflict

Client

CredentialsNotSupported This request does not support
credentials.

400 Bad
Request

Client

CrossLocationLoggingProhibitted Cross location logging not allowed.
Buckets in one geographic location

403
Forbidden

Client

Amazon Simple Storage Service Developer Guide
Error Response

API Version 2006-03-01
42

Error Code Description HTTP
Status
Code

SOAP
Fault
Code
Prefix

cannot log information to a bucket in
another location.

EntityTooSmall Your proposed upload is smaller
than the minimum allowed object
size.

400 Bad
Request

Client

EntityTooLarge Your proposed upload exceeds the
maximum allowed object size.

400 Bad
Request

Client

ExpiredToken The provided token has expired. 400 Bad
Request

Client

IncompleteBody You did not provide the number of
bytes specified by the
Content-Length HTTP header

400 Bad
Request

Client

IncorrectNumberOfFilesInPostRequestPOST requires exactly one file
upload per request.

400 Bad
Request

Client

InlineDataTooLarge Inline data exceeds the maximum
allowed size.

400 Bad
Request

Client

InternalError We encountered an internal error.
Please try again.

500
Internal
Server
Error

Server

InvalidAccessKeyId The AWS Access Key Id you
provided does not exist in our
records.

403
Forbidden

Client

InvalidAddressingHeader You must specify the Anonymous
role.

N/A Client

InvalidArgument Invalid Argument 400 Bad
Request

Client

InvalidBucketName The specified bucket is not valid. 400 Bad
Request

Client

InvalidDigest The Content-MD5 you specified was
an invalid.

400 Bad
Request

Client

InvalidLocationConstraint The specified location constraint is
not valid.

400 Bad
Request

Client

InvalidPayer All access to this object has been
disabled.

403
Forbidden

Client

InvalidPolicyDocument The content of the form does not
meet the conditions specified in the
policy document.

400 Bad
Request

Client

InvalidRange The requested range cannot be
satisfied.

416
Requested
Range Not

Client

Amazon Simple Storage Service Developer Guide
Error Response

API Version 2006-03-01
43

Error Code Description HTTP
Status
Code

SOAP
Fault
Code
Prefix

Satisfiable

InvalidSecurity The provided security credentials are
not valid.

403
Forbidden

Client

InvalidSOAPRequest The SOAP request body is invalid. 400 Bad
Request

Client

InvalidStorageClass The storage class you specified is
not valid.

400 Bad
Request

Client

InvalidTargetBucketForLogging The target bucket for logging does
not exist, is not owned by you, or
does not have the appropriate grants
for the log-delivery group.

400 Bad
Request

Client

InvalidToken The provided token is malformed or
otherwise invalid.

400 Bad
Request

Client

InvalidURI Couldn't parse the specified URI. 400 Bad
Request

Client

KeyTooLong Your key is too long. 400 Bad
Request

Client

MalformedACLError The XML you provided was not
well-formed or did not validate
against our published schema.

400 Bad
Request

Client

MalformedXML The XML you provided was not
well-formed or did not validate
against our published schema.

400 Bad
Request

Client

MaxMessageLengthExceeded Your request was too big. 400 Bad
Request

Client

MaxPostPreDataLengthExceededError Your POST request fields
preceeding the upload file were too
large.

400 Bad
Request

Client

MetadataTooLarge Your metadata headers exceed the
maximum allowed metadata size.

400 Bad
Request

Client

MethodNotAllowed The specified method is not allowed
against this resource.

405
Method
Not
Allowed

Client

MissingAttachment A SOAP attachment was expected,
but none were found.

N/A Client

MissingContentLength You must provide the
Content-Length HTTP header.

411
Length
Required

Client

MissingSecurityElement The SOAP 1.1 request is missing a
security element.

400 Bad
Request

Client

Amazon Simple Storage Service Developer Guide
Error Response

API Version 2006-03-01
44

Error Code Description HTTP
Status
Code

SOAP
Fault
Code
Prefix

MissingSecurityHeader Your request was missing a required
header.

400 Bad
Request

Client

NoLoggingStatusForKey There is no such thing as a logging
status sub-resource for a key.

400 Bad
Request

Client

NoSuchBucket The specified bucket does not exist. 404 Not
Found

Client

NoSuchKey The specified key does not exist. 404 Not
Found

Client

NotImplemented A header you provided implies
functionality that is not
implemented.

501 Not
Implemented

Server

NotSignedUp Your account is not signed up for the
Amazon S3 service. You must sign
up before you can use Amazon S3.
You can sign up at the following
URL: http://aws.amazon.com/s3

403
Forbidden

Client

OperationAborted A conflicting conditional operation
is currently in progress against this
resource. Please try again.

409
Conflict

Client

PermanentRedirect The bucket you are attempting to
access must be addressed using the
specified endpoint. Please send all
future requests to this endpoint.

301
Moved
Permanently

Client

PreconditionFailed At least one of the pre-conditions
you specified did not hold.

412
Precondition
Failed

Client

Redirect Temporary redirect. 307
Moved
Temporarily

Client

RequestIsNotMultiPartContent Bucket POST must be of the
enclosure-type multipart/form-data.

400 Bad
Request

Client

RequestTimeout Your socket connection to the server
was not read from or written to
within the timeout period.

400 Bad
Request

Client

RequestTimeTooSkewed The difference between the request
time and the server's time is too
large.

403
Forbidden

Client

RequestTorrentOfBucketError Requesting the torrent file of a
bucket is not permitted.

400 Bad
Request

Client

SignatureDoesNotMatch The request signature we calculated
does not match the signature you
provided. Check your AWS Secret

403
Forbidden

Client

Amazon Simple Storage Service Developer Guide
Error Response

API Version 2006-03-01
45

Error Code Description HTTP
Status
Code

SOAP
Fault
Code
Prefix

Access Key and signing method. For
more information, see
Authenticating REST Requests and
Authenticating SOAP Requests for
details.

SlowDown Please reduce your request rate. 503
Service
Unavailable

Server

TemporaryRedirect You are being redirected to the
bucket while DNS updates.

307
Moved
Temporarily

Client

TokenRefreshRequired The provided token must be
refreshed.

400 Bad
Request

Client

TooManyBuckets You have attempted to create more
buckets than allowed.

400 Bad
Request

Client

UnexpectedContent This request does not support
content.

400 Bad
Request

Client

UnresolvableGrantByEmailAddress The e-mail address you provided
does not match any account on
record.

400 Bad
Request

Client

UserKeyMustBeSpecified The bucket POST must contain the
specified field name. If it is
specified, please check the order of
the fields.

400 Bad
Request

Client

Server Access Logging
Topics

• Server Access Logging Configuration API

• Delivery of Server Access Logs

• Server Access Log Format

• Setting Up Server Access Logging

Important

This section describes Beta functionality that is subject to change in future releases. Please
provide feedback on this functionality in the Amazon S3 Developer Forum.

An Amazon S3 bucket can be configured to create access log records for the requests made against it.
An access log record contains details about the request such as the request type, the resource with which

Amazon Simple Storage Service Developer Guide
Server Access Logging

API Version 2006-03-01
46

http://developer.amazonwebservices.com/s3/forums

the request worked, and the time and date that the request was processed. Server access logs are useful
for many applications, because they give bucket owners insight into the nature of requests made by
clients not under their control.

By default, server access logs are not collected for a bucket. Learn how to enable server access logging
by consulting the Logging Configuration API documentation.

Once logging is enabled for a bucket, available log records are periodically aggregated into log files and
delivered to you via an Amazon S3 bucket of your choosing. For a detailed description of this process,
see Delivery of Server Access Logs.

For information on how to interpret the contents of log files, see Server Access Log Format.

To walk through the process of enabling logging for your bucket, see Setting Up Server Access
Logging.

Note

There is no extra charge for enabling the server access logging feature on an Amazon S3
bucket, however any log files the system delivers to you will accrue the usual charges for
storage (you can delete the log files at any time). No data transfer charges will be assessed
for log file delivery, but access to the delivered log files is charged for data transfer in the
usual way.

Server Access Logging Configuration API

Important

This section describes Beta functionality that is subject to change in future releases. Please
provide feedback on this functionality in the Amazon S3 Developer Forum.

Each Amazon S3 bucket has an associated XML sub-resource that you can read and write in order to
inspect or change the logging status for that bucket. The XML schema for the bucket logging status
resource is common across SOAP and REST.

The BucketLoggingStatus element has the following structure:

Example

<?xml version="1.0" encoding="UTF-8"?>
<BucketLoggingStatus xmlns="http://doc.s3.amazonaws.com/2006-03-01">

<LoggingEnabled>
<TargetBucket>mylogs</TargetBucket>
<TargetPrefix>access_log-</TargetPrefix>
<TargetGrants>

<Grant>
<Grantee xm

lns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="AmazonCustomerByEmail">

<EmailAddress>email_address</EmailAddress>
</Grantee>
<Permission>permission</Permission>

</Grant>
</TargetGrants>

</LoggingEnabled>
</BucketLoggingStatus>

Amazon Simple Storage Service Developer Guide
Server Access Logging Configuration API

API Version 2006-03-01
47

http://developer.amazonwebservices.com/s3/forums

• LoggingEnabled

The presence of this element indicates that server access logging is enabled for the bucket. The
absence of this element (and all nested elements) indicates that logging is disabled for the bucket.

• TargetBucket

This element specifies the bucket where server access logs will be delivered. You can have your logs
delivered to any bucket that you own, including the same bucket that is being logged. You can also
configure multiple buckets to deliver their logs to the same target bucket. In this case you should
choose a different TargetPrefix for each source bucket so that the delivered log files can be
distinguished by key.

Note

The source and the target buckets must be in the same location. For more information
about bucket location constraints, see Location Selection

• TargetPrefix

This element lets you specify a prefix for the keys that the delivered log files will be stored under. For
information on how the key name for log files is constructed, see Delivery of Server Access Logs.

• TargetGrants

The bucket owner is automatically granted FULL_CONTROL to all logs delivered to the bucket. This
optional element enables you grant access to others (see Access Control Lists). Any specified
TargetGrants are added to the default ACL.

To enable server access logging, Set or PUT a BucketLoggingStatus with a nested
LoggingEnabled element. To disable server access logging, Set or PUT an empty
BucketLoggingStatus element.

In REST, the address of the BucketLoggingStatus resource for a bucket 'mybucket' is
http://s3.amazonaws.com/mybucket?logging. The PUT and GET methods are valid for this
resource. For example, the following request fetches the BucketLoggingStatus resource for
mybucket:

Example

GET ?logging HTTP/1.1
Host: mybucket.s3.amazonaws.com
Date: Wed, 01 Mar 2006 12:00:00 GMT
Authorization: AWS YOUR_AWS_ACCESS_KEY_ID:YOUR_SIGNATURE_HERE

HTTP/1.1 200 OK
Date: Wed, 01 Mar 2006 12:00:00 GMT
Connection: close
Server: AmazonS3

<?xml version="1.0" encoding="UTF-8"?>
<BucketLoggingStatus xmlns="http://doc.s3.amazonaws.com/2006-03-01">

<LoggingEnabled>
<TargetBucket>mybucketlogs</TargetBucket>
<TargetPrefix>mybucket-access_log-/</TargetPrefix>

<TargetGrants>

Amazon Simple Storage Service Developer Guide
Server Access Logging Configuration API

API Version 2006-03-01
48

<Grant>
<Grantee xm

lns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="AmazonCustomerByEmail">

<EmailAddress>user@company.com</EmailAddress>
</Grantee>
<Permission>READ</Permission>

</Grant>
</TargetGrants>

</LoggingEnabled>
</BucketLoggingStatus>

In SOAP, you can work with BucketLoggingStatus resource using the SetBucketLoggingStatus and
GetBucketLoggingStatus operations.

Amazon S3 checks the validity of the proposed BucketLoggingStatus when you try to Set or PUT to
it. If the TargetBucket does not exist, is not owned by you, or does not have the approprate grants,
you will receive the InvalidTargetBucketForLogging error. If your proposed
BucketLoggingStatus document is not well-formed XML or does not match our published schema,
you will receive the MalformedXMLError.

BucketLoggingStatus Changes Take Effect Over Time

Changes to the logging status for a bucket are visible in the configuration API immediately, but they
take time to actually affect the delivery of log files. For example, if you enable logging for a bucket,
some requests made in the following hour may be logged, while others may not. Or, if you change the
target bucket for logging from bucket A to bucket B, some logs for the next hour might continue to be
delivered to bucket A, while others might be delivered to the new target bucket B. In all cases, the new
settings will eventually take effect without any further action on your part.

Delivery of Server Access Logs

Important

This section describes Beta functionality that is subject to change in future releases. Please
provide feedback on this functionality in the Amazon S3 Developer Forum.

Server access logs are delivered by writing them to the bucket of your choice. This 'target bucket' may or
may not be the same as the bucket being logged. The owner of the bucket being logged must match the
owner of the target bucket, otherwise no logs will be delivered.

Note

The source and the target buckets must be in the same location. For more information
about bucket location constraints, see Location Selection.

When a log file is delivered to the target bucket, it is stored under a key of the form:

TargetPrefixYYYY-mm-DD-HH-MM-SS-UniqueString

where YYYY, mm, DD, HH, MM and SS are the digits of the year, month, day, hour, minute, and

Amazon Simple Storage Service Developer Guide
Delivery of Server Access Logs

API Version 2006-03-01
49

http://developer.amazonwebservices.com/s3/forums

seconds (respectively) when the log file was delivered.

A log file delivered at time 't' can contain records written at any point before time 't'. There is no way to
know whether all log records for a certain time interval have been delivered or not.

The TargetPrefix component of the key is a string provided by the bucket owner using the logging
configuration API. For more information, see Server Access Logging Configuration API.

The UniqueString component of the key carries no meaning and should be ignored by log processing
software.

The system does not delete old log files. If you do not want server logs to accumulate, you must delete
them yourself. To do so, use the List operation with the prefix parameter to locate old logs to delete.
For more information, see Listing Keys.

Access Control Interaction

Log files will be written to the target bucket under the identity of a member of the
http://acs.amazonaws.com/groups/s3/LogDelivery group. These writes are subject to the
usual access control restrictions. Therefore, logs will not be delivered unless the access control policy of
the target bucket grants the log delivery group WRITE access. To ensure log files are delivered correctly,
the log delivery group must also have READ_ACP permission on the target bucket. Consult the
Authentication and Access Control section of the documentation for information about access control
lists and groups, or see the Setting Up Server Access Logging for an example of how to correctly
configure your target bucket's access control policy.

Log files created in the target bucket have an access control list entry that consists of a
FULL_CONTROL grant to the bucket owner and grants to any users specified through the
TargetGrants element.

Best Effort Server Log Delivery

The server access logging feature is designed for best effort. You can expect that most requests against a
bucket that is properly configured for logging will result in a delivered log record, and that most log
records will be delivered within a few hours of the time that they were recorded.

However, the server logging feature is offered on a best-effort basis. The completeness and timeliness of
server logging is not guaranteed. The log record for a particular request may be delivered long after the
request was actually processed, or it may never be delivered at all. The purpose of server logs is to give
the bucket owner an idea of the nature of traffic against his or her bucket. It is not meant to be a
complete accounting of all requests.

Usage Report Consistency

It follows from the best-effort nature of the server logging feature that the usage reports available at the
AWS portal may include usage that does not correspond to any request in a delivered server log.

Server Access Log Format

Important

This section describes Beta functionality that is subject to change in future releases. Please
provide feedback on this functionality in the Amazon S3 Developer Forum.

The log files consist of a sequence of new-line delimited log records. Log records appear in no particular
order. Each log record represents one request and consists of the following space delimited fields:

Amazon Simple Storage Service Developer Guide
Server Access Log Format

API Version 2006-03-01
50

http://developer.amazonwebservices.com/s3/forums

Field Name Example Entry Notes

Bucket
Owner 314159b66967d86f031c7249d1d9a8024

9109428335cd0ef1cdc487b4566cb1b

The canonical user id of the owner
of the source bucket.

Bucket
mybucket

The name of the bucket that the
request was processed against. If
the system receives a malformed
request and cannot determine the
bucket, the request will not appear
in any server access log.

Time
[04/Aug/2006:22:34:02 +0000]

The time at which the request was
received. The format, using
strftime() terminology, is
[%d/%B/%Y:%H:%M:%S %z]

Remote IP
72.21.206.5

The apparent Internet address of the
requestor. Intermediate proxies and
firewalls may obscure the actual
address of the machine making the
request.

Requestor
314159b66967d86f031c7249d1d9a80

249109428335cd0ef1cdc487b4566cb1b

The canonical user id of the
requestor, or the string
"Anonymous" for unauthenticated
requests. This identifier is the same
one used for access control
purposes.

Request ID
3E57427F33A59F07

The request ID is a string generated
by Amazon S3 to uniquely identify
each request.

Operation
SOAP.CreateBucket

or

REST.PUT.OBJECT

Either SOAP.operation or
REST.HTTP_method.resource_type

Key
/photos/2006/08/puppy.jpg

The 'key' part of the request, URL
encoded, or '-' if the operation does
not take a key parameter.

Request-URI
"GET /mybucket/photos/2006/08/

puppy.jpg?x-foo=bar"

The Request-URI part of the HTTP
request message.

HTTP status
200

The numeric HTTP status code of
the response.

Error Code
NoSuchBucket

The Amazon S3 Error Code, or '-' if
no error occurred.

Bytes Sent
2662992

The number of response bytes sent,
excluding HTTP protocol overhead,

Amazon Simple Storage Service Developer Guide
Server Access Log Format

API Version 2006-03-01
51

Field Name Example Entry Notes

or '-' if zero.

Object Size
3462992

The total size of the object in
question.

Total Time
70

The number of milliseconds the
request was in flight from the
server's perspective. This value is
measured from the time your
request is received to the time that
the last byte of the response is sent.
Measurements made from the
client's perspective may be longer
due to network latency.

Turn-Around
Time 10

The number of milliseconds that
Amazon S3 spent processing your
request. This value is measured
from the time the last byte of your
request was received until the time
the first byte of the response was
sent.

Referer
"http://www.amazon.com/webservices"

The value of the HTTP Referer
header, if present. HTTP
user-agents (e.g. browsers) typically
set this header to the URL of the
linking or embedding page when
making a request.

User-Agent
"curl/7.15.1"

The value of the HTTP User-Agent
header.

Any field may be set to '-' to indicate that the data was unknown or unavailable, or that the field was not
applicable to this request.

Custom Access Log Information

You can include custom information to be stored in the access log record for a request by adding a
custom query-string parameter to the URL for the request. Amazon S3 will ignore query-string
parameters that begin with "x-", but will include those parameters in the access log record for the
request, as part of the Request-URI field of the log record. For example, a GET request for
"s3.amazonaws.com/mybucket/photos/2006/08/puppy.jpg?x-user=mrbar" will work the same as the
same request for "s3.amazonaws.com/mybucket/photos/2006/08/puppy.jpg", except that the
"x-user=mrbar" string will be included in the Request-URI field for the associated log record. This
functionality is available in the REST interface only.

Extensible Server Access Log Format

From time to time, we may extend the access log record format by adding new fields to the end of each
line. Code that parses server access logs must be written to handle trailing fields that it does not
understand.

Amazon Simple Storage Service Developer Guide
Setting Up Server Access Logging

API Version 2006-03-01
52

Setting Up Server Access Logging

Important

This section describes Beta functionality that is subject to change in future releases. Please
provide feedback on this functionality in the Amazon S3 Developer Forum.

The Amazon S3 server access logging feature lets you generate access log files for buckets that you
own. These log files are delivered to you by writing them into a (possibly different) bucket that you
own. Once delivered, the access logs are ordinary objects that you can read, list or delete at your
convenience.

These instructions assume that you want to enable server access logging on one of your pre-existing
buckets, and that you want to have those logs delivered into a new bucket you will create just for
logging. We suppose that the bucket you want to log access to is called 'mybucket' and the new bucket
you will create to hold your access logs is called 'mylogs'. This makes 'mybucket' the source bucket for
logging and 'mylogs' the target bucket for logging. Whenever you see 'mybucket' or 'mylogs' in the
example, replace them with the name of your bucket that you want to log, and the bucket you want to
store your access logs, respectively.

This tutorial makes use of the s3curl.pl sample program to work with the Amazon S3 REST API. Make
sure you use the most recent version of s3curl, as it has been updated to support this tutorial. After
invoking s3curl, always check for a 200 OK HTTP response. If you get some other response code, refer
to the XML error response which likely contains information about what went wrong.

Preparing the Target Bucket

First, decide if you want your logs delivered to an existing bucket, or if you want to create a new bucket
just for access log files. The following command creates a new target bucket for logging. Notice the
canned ACL argument that grants the system permission to write log files to this bucket.

Note

The source and the target buckets must be in the same location. For more information
about bucket location constraints, see Location Selection

Example

$./s3curl.pl --id YOUR_AWS_ACCESS_KEY_ID --key YOUR_AWS_SECRET_ACCESS_KEY -
-acl log-delivery-write --put /dev/null -- -s -v http://s3.amazonaws.com/my
logs

If you just created a new bucket for logging, skip to the next section. Otherwise, to have your access
logs files delivered to an existing bucket, you must modify the access control policy of that bucket by
hand. Fetch the ?acl sub-resource of the target bucket and save it to a local file:

Example

Amazon Simple Storage Service Developer Guide
Setting Up Server Access Logging

API Version 2006-03-01
53

http://developer.amazonwebservices.com/s3/forums
http://developer.amazonwebservices.com/connect/entry.jspa?categoryID=47&externalID=128

$./s3curl.pl --id YOUR_AWS_ACCESS_KEY_ID --key YOUR_AWS_SECRET_ACCESS_KEY --
-s -v 'http://s3.amazonaws.com/mylogs?acl' > mylogs.acl

Now open the local copy of the logging resource in your favorite text editor and insert a new <Grant>
element to the <AccessControlList> section that gives the log delivery group WRITE and READ_ACP
permission to your bucket.

Example

<Grant>

<Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="Group">

<URI>http://acs.amazonaws.com/groups/s3/LogDelivery</URI>

</Grantee>

<Permission>WRITE</Permission>

</Grant>

<Grant>

<Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="Group">

<URI>http://acs.amazonaws.com/groups/s3/LogDelivery</URI>

</Grantee>

<Permission>READ_ACP</Permission>

</Grant>

Finally, apply the modified access control policy by writing it back to Amazon S3.

Example

$./s3curl.pl --id YOUR_AWS_ACCESS_KEY_ID --key YOUR_AWS_SECRET_ACCESS_KEY -
-put mylogs.acl -- -s -v 'http://s3.amazonaws.com/mylogs?acl'

Enabling Server Access Logging on the Source Bucket

Now that the target bucket can accept log files, we'll update the ?logging sub-resource of the source
bucket to turn on server access logging. Remember that you must be the bucket owner to read or write
this resource.

Fetch the ?logging sub-resource for modification using the command:

Amazon Simple Storage Service Developer Guide
Setting Up Server Access Logging

API Version 2006-03-01
54

Example

$./s3curl.pl --id YOUR_AWS_ACCESS_KEY_ID --key YOUR_AWS_SECRET_ACCESS_KEY --
-s -v 'http://s3.amazonaws.com/mybucket?logging' > mybucket.logging

Open mybucket.logging in your favorite text editor and uncomment the <LoggingSettings> section.
Replace the contents of the <TargetBucket> and <TargetPrefix> with 'mylogs' and
'mybucket-access_log-' respectively.

Additionally, to grant users access to log files within the bucket, you can specify one or more users in
the <TargetGrants> section, You can specify users through their email address (EmailAddress) or
canonical user ID (CanonicalUser). Permissions include READ, WRITE, and FULL_CONTROL. The
result should be similar to the following:

Example

<?xml version="1.0" encoding="UTF-8"?>

<BucketLoggingStatus xmlns="http://doc.s3.amazonaws.com/2006-03-01">

<LoggingEnabled>

<TargetBucket>mylogs</TargetBucket>

<TargetPrefix>mybucket-access_log-/</TargetPrefix>

<TargetGrants>

<Grant>

<Grantee xm
lns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="AmazonCustomerByEmail">

<EmailAddress>user@company.com</EmailAddress>

</Grantee>

<Permission>READ</Permission>

</Grant>

</TargetGrants>

</LoggingEnabled>

</BucketLoggingStatus>

Note

For general information about authentication, see Authentication and Access Control.

Amazon Simple Storage Service Developer Guide
Setting Up Server Access Logging

API Version 2006-03-01
55

Now apply your modifications by writing the document back to the ?logging sub-resource in
Amazon S3.

Example

$./s3curl.pl --id YOUR_AWS_ACCESS_KEY_ID --key YOUR_AWS_SECRET_ACCESS_KEY -
-put mybucket.logging -- -s -v 'http://s3.amazonaws.com/mybucket?logging'

You can confirm your changes by fetching the ?logging sub-resource and comparing it to what you
just wrote.

Server access logging should now be enabled. Make a few requests against the source bucket now, and
your access logs should begin to be delivered to the target bucket within the next few hours.

Disabling Server Logging for a Bucket

Fetch, modify and apply the ?logging sub resource in the same way as described above, except this
time use your text editor to REMOVE the <EnableLogging> element.

Note that it takes some time for changes to take effect, so you may see log files delivered for a while
after disabling logging.

Amazon Simple Storage Service Developer Guide
Setting Up Server Access Logging

API Version 2006-03-01
56

Using the REST API

Topics

• Common REST API Elements

• The REST Error Response

• Authenticating REST Requests

• Setting Access Policy with REST

• Virtual Hosting of Buckets

• Request Redirection and the REST API

• Browser-Based Uploads Using POST

• Operations on the Service

• Operations on Buckets

• Operations on Objects

This section contains information specific to the Amazon S3 REST API.

The examples in this guide use the newer virtual hosted-style method for accessing buckets instead of
the path-style. Although the path-style is still supported for legacy applications, we recommend using
the virtual-hosted style where applicable. For more information, see Working with Amazon S3 Buckets

The following is an example of a virtual hosted-style request to delete the puppy.jpg file from the
mybucket bucket:

DELETE /puppy.jpg HTTP/1.1

User-Agent: dotnet

Host: mybucket.s3.amazonaws.com

Date: Tue, 15 Jan 2008 21:20:27 +0000

x-amz-date: Tue, 15 Jan 2008 21:20:27 +0000

Authorization: AWS 0PN5J17HBGZHT7JJ3X82:k3nL7gH3+PadhTEVn5EXAMPLE

The following is an example of a path-style version of the same request:

Amazon Simple Storage Service Developer Guide

API Version 2006-03-01
57

DELETE /mybucket/puppy.jpg HTTP/1.1

User-Agent: dotnet

Host: s3.amazonaws.com

Date: Tue, 15 Jan 2008 21:20:27 +0000

x-amz-date: Tue, 15 Jan 2008 21:20:27 +0000

Authorization: AWS 0PN5J17HBGZHT7JJ3X82:k3nL7gH3+PadhTEVn5EXAMPLE

Common REST API Elements
Amazon S3 REST Operations are HTTP requests, as defined by RFC 2616
(http://www.ietf.org/rfc/rfc2616.txt). This section describes how Amazon S3 uses HTTP and the parts of
HTTP requests and responses that Amazon S3 REST operations have in common. Detailed descriptions
of individual operations are provided later in this guide.

A typical REST operation consists of a sending a single HTTP request to Amazon S3, followed by
waiting for an HTTP response. Like any HTTP request, a request to Amazon S3 contains a request
method, a URI, request headers, and sometimes a query string and request body. The response contains a
status code, response headers, and sometimes a response body.

Example

The following example of a request shows how to get an object named "Nelson" from the "quotes"
bucket:

Sample Request

GET /Nelson HTTP/1.1
Host: quotes.s3.amazonaws.com
Date: Wed, 01 Mar 2006 12:00:00 GMT
Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Sample Response

HTTP/1.1 200 OK
x-amz-id-2: qBmKRcEWBBhH6XAqsKU/eg24V3jf/kWKN9dJip1L/FpbYr9FDy7wWFurfdQOEMcY
x-amz-request-id: F2A8CCCA26B4B26D
Date: Wed, 01 Mar 2006 12:00:00 GMT
Last-Modified: Sun, 1 Jan 2006 12:00:00 GMT
ETag: "828ef3fdfa96f00ad9f27c383fc9ac7f"
Content-Type: text/plain
Content-Length: 5
Connection: close
Server: AmazonS3

ha-ha

Common Request Headers

Amazon S3 REST requests include headers which contain basic information about the request. The table
below describes common headers for Amazon S3 REST requests.

Amazon Simple Storage Service Developer Guide
Common REST API Elements

API Version 2006-03-01
58

Header Name Description Required

Authorization The information required for request authentication.
See Constructing the Authentication Header for
details about the format.

Yes

Content-Length
Length of the message (without the headers)
according to RFC 2616.

Condition: Required for PUTs and operations that
load XML, such as logging and ACLs.

Conditional

Content-Type The content type of the resource. Example:
text/plain

Optional

Date The current date and time according to the requestor.
Example: Wed, 01 Mar 2006 12:00:00 GMT

Yes

Host
Normally, the value of Host is s3.amazonaws.com.
A Host header with a value other than
s3.amazonaws.com selects the bucket for the
request as described in Virtual Hosting of Buckets.

Condition: Required for HTTP 1.1 (most toolkits add
this header automatically); optional for HTTP/1.0
requests.

Conditional

x-amz-security-token
The security tokens for operations that use Amazon
DevPay. Each request that uses Amazon DevPay
requires two x-amz-security-token headers: one
for the product token and one for the user token.

Condition: Required for requests that use Amazon
DevPay.

Note

When Amazon S3 receives an
authenticated request, it compares the
computed signature with the provided
signature. Improperly formatted
multi-value headers used to calculate a
signature can cause authentication
issues. To ensure the signature is
calculated properly, follow the
instructions in the Constructing the
CanonicalizedResource Element
section.

Conditional

The REST Error Response
If a REST request results in an error, the HTTP reply has:

Amazon Simple Storage Service Developer Guide
The REST Error Response

API Version 2006-03-01
59

• an XML error document as the response body

• Content-Type: application/xml

• an appropriate 3xx, 4xx, or 5xx HTTP status code

Example

An example REST Error Response

<?xml version="1.0" encoding="UTF-8"?>
<Error>

<Code>NoSuchKey</Code>
<Message>The resource you requested does not exist</Message>
<Resource>/mybucket/myfoto.jpg</Resource>
<RequestId>4442587FB7D0A2F9</RequestId>

</Error>

For more information about Amazon S3 errors, see Working with Errors.

Response Headers

The following response headers are returned by all operations:

• x-amz-request-id: This is a unique id assigned to each request by the system. In the unlikely
event that you have problems with Amazon S3, Amazon can use this to help troubleshoot the
problem.

• x-amz-id-2: This is a special token that will help us to troubleshoot problems.

Authenticating REST Requests
Authentication is the process of proving your identity to the system. Identity is an important factor in
Amazon S3 access control decisions. Requests are allowed or denied in part based on the identity of the
requester. For example, the right to create buckets is reserved for registered developers and (by default)
the right to create objects in a bucket is reserved for the owner of the bucket in question. As a developer,
you'll be making requests that invoke these privileges so you'll need to prove your identity to the system
by authenticating your requests. This section shows you how.

Note

The content in this section does not apply to HTTP POST. For more information, see
Browser-Based Uploads Using POST.

The Amazon S3 REST API uses a custom HTTP scheme based on a keyed-HMAC (Hash Message
Authentication Code) for authentication. To authenticate a request, you first concatenate selected
elements of the request to form a string. You then use your AWS Secret Access Key to calculate the
HMAC of that string. Informally, we call this process "signing the request," and we call the output of the
HMAC algorithm the "signature" because it simulates the security properties of a real signature. Finally,
you add this signature as a parameter of the request, using the syntax described below.

When the system receives an authenticated request, it fetches the AWS Secret Access Key that you
claim to have, and uses it in the same way to compute a "signature" for the message it received. It then

Amazon Simple Storage Service Developer Guide
Response Headers

API Version 2006-03-01
60

compares the signature it calculated against the signature presented by the requester. If the two
signatures match, then the system concludes that the requester must have access to the AWS Secret
Access Key, and therefore acts with the authority of the principal to whom the key was issued. If the two
signatures do not match, the request is dropped and the system responds with an error message.

Example An Example Authenticated Amazon S3 REST Request

GET /photos/puppy.jpg HTTP/1.1

Host: johnsmith.s3.amazonaws.com

Date: Mon, 26 Mar 2007 19:37:58 +0000

Authorization: AWS 0PN5J17HBGZHT7JJ3X82:frJIUN8DYpKDtOLCwo//yllqDzg=

Constructing the Authentication Header

The Amazon S3 REST API uses the standard HTTP Authorization header to pass authentication
information. (The name of the standard header is unfortunate, since it carries authentication information,
not authorization). Under the Amazon S3 authentication scheme, the Authorization header has the
following form:

Authorization: AWS AWSAccessKeyId:Signature

Developers are issued an AWS Access Key Id and AWS Secret Access Key when they register. For
request authentication, the AWSAccessKeyId element identifies the secret key that was used to compute
the signature, and (indirectly) the developer making the request.

The Signature element is the RFC 2104 HMAC-SHA1 of selected elements from the request, and so
the Signature part of the Authorization header will vary from request to request. If the request
signature calculated by the system matches the Signature included with the request, then the requester
will have demonstrated possession to the AWS Secret Access Key. The request will then be processed
under the identity, and with the authority, of the developer to whom the key was issued.

The following pseudo-grammar illustrates the construction of the Authorization request header. (\n
means the Unicode code point U+000A)

Authorization = "AWS" + " " + AWSAccessKeyId + ":" + Signa
ture;

Signature = Base64(HMAC-SHA1(UTF-8-Encoding-Of(String
ToSign)));

StringToSign = HTTP-Verb + "\n" +

Content-MD5 + "\n" +

Amazon Simple Storage Service Developer Guide
Constructing the Authentication Header

API Version 2006-03-01
61

Content-Type + "\n" +

Date + "\n" +

CanonicalizedAmzHeaders +

CanonicalizedResource;

CanonicalizedResource = ["/" + Bucket] +

<HTTP-Request-URI, from the protocol
name up to the query string> +

[sub-resource, if present. For ex
ample "?acl", "?location", "?logging", or "?torrent"];

CanonicalizedAmzHeaders = <described below>

HMAC-SHA1 is an algorithm defined by "RFC 2104 - Keyed-Hashing for Message Authentication" .
The algorithm takes as input two byte-strings: a key and a message. For Amazon S3 Request
authentication, use your AWS Secret Access Key as the key, and the UTF-8 encoding of the
StringToSign as the message. The output of HMAC-SHA1 is also a byte string, called the digest. The
Signature request parameter is constructed by Base64 encoding this digest.

Request Canonicalization for Signing

Recall that when the system receives an authenticated request, it compares the computed request
signature with the signature provided in the request. In order for the system-computed signature to
match the developer-computed signature, the StringToSign for a request must be constructed by both
parties in exactly the same way. We call the process of putting a request in an agreed-upon form for
signing "canonicalization".

Constructing the CanonicalizedResource Element

CanonicalizedResource represents the Amazon S3 resource targeted by the request. Construct it for
a REST request as follows:

• Start with the empty string ("")

• If the request specifies a bucket using the HTTP Host header (virtual hosted-style), append the bucket
name preceded by a "/" (e.g., "/bucketname"). For path-style requests and requests that don't address
a bucket, do nothing. For more information on virtual hosted-style requests, see Virtual Hosting of
Buckets.

• Append the path part of the un-decoded HTTP Request-URI, up-to but not including the query string.

• If the request addresses a sub-resource, like ?location, ?acl, or ?torrent, append the
sub-resource including question mark.

Elements of the CanonicalizedResource that come from the HTTP Request-URI should be signed
literally as they appear in the HTTP request, including URL-Encoding metacharacters.

The CanonicalizedResource may not be the same as the HTTP Request-URI. In particular, if your
request uses the HTTP Host header to specify a bucket (as explained here: Virtual Hosting of Buckets),

Amazon Simple Storage Service Developer Guide
Request Canonicalization for Signing

API Version 2006-03-01
62

http://www.ietf.org/rfc/rfc2104.txt

the bucket will not appear in the HTTP Request-URI, however, the CanonicalizedResource
continues to include the bucket. Query string parameters other than sub-resource flags (e.g., "?acl",
"?location", "?logging", or "?torrent") will also appear in the Request-URI but are not included in
CanonicalizedResource. See below for examples.

Constructing the CanonicalizedAmzHeaders Element

To construct the CanonicalizedAmzHeaders part of StringToSign, select all HTTP request headers
that start with 'x-amz-' (using a case-insensitive comparison) and do the following:

• Convert each HTTP header name to lower-case. For example, 'X-Amz-Date' becomes 'x-amz-date'.

• Sort the collection of headers lexicographically by header name

• Combine header fields with the same name into one "header-name:comma-separated-value-list" pair
as prescribed by RFC 2616, section 4.2, without any white-space between values. For example, the
two metadata headers 'x-amz-meta-username: fred' and 'x-amz-meta-username: barney'
would be combined into the single header 'x-amz-meta-username: fred,barney'

• "Un-fold" long headers that span multiple lines (as allowed by RFC 2616, section 4.2) by replacing
the folding white-space (including new-line) by a single space.

• Trim any white-space around the colon in the header. For example, the header
'x-amz-meta-username: fred,barney' would become
'x-amz-meta-username:fred,barney'

Finally, append a new-line (U+000A) to each canonicalized header in the resulting list. Construct the
CanonicalizedResource element by concatenating all headers in this list into a single string.

Positional versus Named HTTP Header StringToSign
Elements

The first few header elements of StringToSign (Content-Type, Date, and Content-MD5) are
positional in nature. StringToSign does not include the names of these headers, only their values from
the request. In contrast, the 'x-amz-' elements are named; Both the header names and the header values
appear in StringToSign.

If a positional header called for in the definition of StringToSign is not present in your request,
(Content-Type or Content-MD5, for example, are optional for PUT requests, and meaningless for
GET requests), substitute the empty string ("") in for that position.

Time Stamp Requirement

A valid time-stamp (using either the HTTP Date header or an x-amz-date alternative) is mandatory
for authenticated requests. Furthermore, the client time-stamp included with an authenticated request
must be within 15 minutes of the Amazon S3 system time when the request is received. If not, the
request will fail with the RequestTimeTooSkewed error status code. The intention of these restrictions
is to limit the possibility that intercepted requests could be replayed by an adversary. For stronger
protection against eavesdropping, use the HTTPS transport for authenticated requests.

Some HTTP client libraries do not expose the ability to set the Date header for a request. If you have
trouble including the value of the 'Date' header in the canonicalized headers, you can set the time-stamp
for the request using an 'x-amz-date' header instead. The value of the x-amz-date header must be in
one of the RFC 2616 formats (http://www.ietf.org/rfc/rfc2616.txt). When an x-amz-date header is
present in a request, the system will ignore any Date header when computing the request signature.
Therefore, if you include the x-amz-date header, use the empty string for the Date when constructing
the StringToSign. See the next section for an example.

Amazon Simple Storage Service Developer Guide
Constructing the CanonicalizedAmzHeaders Element

API Version 2006-03-01
63

Examples

The following examples use the following (non-working) credentials:

Parameter Value

AWSAccessKeyId 0PN5J17HBGZHT7JJ3X82

AWSSecretAccessKey uV3F3YluFJax1cknvbcGwgjvx4QpvB+leU8dUj2o

In the example StringToSigns, formatting is not significant and \n means the Unicode code point
U+000A.

Example Object GET from the 'johnsmith' bucket.

Request StringToSign

GET /photos/puppy.jpg HTTP/1.1

Host: johnsmith.s3.amazonaws.com

Date: Tue, 27 Mar 2007 19:36:42 +0000

Authorization: AWS
0PN5J17HBGZHT7JJ3X82:

xXjDGYUmKxnwqr5KXNPGldn5LbA=

GET\n

\n

\n

Tue, 27 Mar 2007 19:36:42 +0000\n

/johnsmith/photos/puppy.jpg

Note that the CanonicalizedResource includes the bucket name, but the HTTP Request-URI does not (it
is specified by the Host header)

Example Object PUT to the 'johnsmith' bucket.

Request StringToSign

PUT /photos/puppy.jpg HTTP/1.1

Content-Type: image/jpeg

Content-Length: 94328

Host: johnsmith.s3.amazonaws.com

Date: Tue, 27 Mar 2007 21:15:45 +0000

Authorization: AWS
0PN5J17HBGZHT7JJ3X82:

hcicpDDvL9SsO6AkvxqmIWkmOuQ=

PUT\n

\n

image/jpeg\n

Tue, 27 Mar 2007 21:15:45 +0000\n

/johnsmith/photos/puppy.jpg

Amazon Simple Storage Service Developer Guide
Examples

API Version 2006-03-01
64

Request StringToSign

Note the Content-Type header in the request and in the StringToSign. Also note that the Content-MD5 is
left blank in the StringToSign since it is not present in the request.

Example List of the 'johnsmith' bucket

Request StringToSign

GET /
?prefix=photos&max-keys=50&marker=pup
py HTTP/1.1

User-Agent: Mozilla/5.0

Host: johnsmith.s3.amazonaws.com

Date: Tue, 27 Mar 2007 19:42:41 +0000

Authorization: AWS
0PN5J17HBGZHT7JJ3X82:jsRt/rhG+Vtp88Hr
YL706QhE4w4=

GET\n

\n

\n

Tue, 27 Mar 2007 19:42:41 +0000\n

/johnsmith/

Note the trailing slash on the CanonicalizedResource, and the absence of query string parameters.

Example Fetch the access control policy sub-resource for the 'johnsmith' bucket

Request StringToSign

GET /?acl HTTP/1.1

Host: johnsmith.s3.amazonaws.com

Date: Tue, 27 Mar 2007 19:44:46 +0000

Authorization: AWS
0PN5J17HBGZHT7JJ3X82:thdUi9VAkzhkniLj
96JIrOPGi0g=

GET\n

\n

\n

Tue, 27 Mar 2007 19:44:46 +0000\n

/johnsmith/?acl

Notice how the sub-resource query string parameter is included in the CanonicalizedResource.

Example Delete an object from the 'johnsmith' bucket using the path-style and Date alternative

Amazon Simple Storage Service Developer Guide
Examples

API Version 2006-03-01
65

Request StringToSign

DELETE /johnsmith/photos/puppy.jpg
HTTP/1.1

User-Agent: dotnet

Host: s3.amazonaws.com

Date: Tue, 27 Mar 2007 21:20:27 +0000

x-amz-date: Tue, 27 Mar 2007 21:20:26
+0000

Authorization: AWS
0PN5J17HBGZHT7JJ3X82:k3nL7gH3+PadhTEV
n5Ip83xlYzk=

DELETE\n

\n

\n

\n

x-amz-date:Tue, 27 Mar 2007 21:20:26
+0000\n

/johnsmith/photos/puppy.jpg

Note how we used the alternate 'x-amz-date' method of specifying the date (because our client library
prevented us from setting the date, say). In this case the field for the actual 'Date' header is left blank in
the StringToSign.

Example Upload an object to a CNAME style virtual hosted bucket, with metadata

Request StringToSign

PUT /db-backup.dat.gz HTTP/1.1

User-Agent: curl/7.15.5

Host: static.johnsmith.net:8080

Date: Tue, 27 Mar 2007 21:06:08 +0000

x-amz-acl: public-read

content-type: application/x-download

Content-MD5: 4gJE4saaMU4BqNR0kLY+lw==

X-Amz-Meta-ReviewedBy:
joe@johnsmith.net

X-Amz-Meta-ReviewedBy:
jane@johnsmith.net

X-Amz-Meta-FileChecksum: 0x02661779

X-Amz-Meta-ChecksumAlgorithm: crc32

Content-Disposition: attachment; fi
lename=database.dat

Content-Encoding: gzip

Content-Length: 5913339

PUT\n

4gJE4saaMU4BqNR0kLY+lw==\n

application/x-download\n

Tue, 27 Mar 2007 21:06:08 +0000\n

x-amz-acl:public-read\n

x-amz-meta-checksumalgorithm:crc32\n

x-amz-meta-filechecksum:0x02661779\n

x-
amz-
meta-re
viewedby:joe@johnsmith.net,jane@johns
mith.net\n

/stat
ic.johnsmith.net/db-backup.dat.gz

Amazon Simple Storage Service Developer Guide
Examples

API Version 2006-03-01
66

Request StringToSign

Authorization: AWS
0PN5J17HBGZHT7JJ3X82:C0FlOtU8Ylb9KDTp
ZqYkZPX91iI=

Notice how the 'x-amz-' headers are sorted, white-space trimmed, converted to lowercase, and multiple
headers with the same name have been joined using a comma to separate values.

Note how only the Content-Type and Content-MD5 HTTP entity headers appear in the
StringToSign. The other Content-* entity headers do not.

Again, note that the CanonicalizedResource includes the bucket name, but the HTTP Request-URI
does not (the bucket is specified by the Host header).

Example List All My Buckets

Request StringToSign

GET / HTTP/1.1

Host: s3.amazonaws.com

Date: Wed, 28 Mar 2007 01:29:59 +0000

Authorization: AWS
0PN5J17HBGZHT7JJ3X82:Db+gepJSUbZKwpx1
FR0DLtEYoZA=

GET\n

\n

\n

Wed, 28 Mar 2007 01:29:59 +0000\n

/

Example Unicode Keys

Request StringToSign

GET /diction
ary/fran%C3%A7ais/pr%c3%a9f%c3%a8re
HTTP/1.1

Host: s3.amazonaws.com

Date: Wed, 28 Mar 2007 01:49:49 +0000

Authorization: AWS
0PN5J17HBGZHT7JJ3X82:dxhSBHoI6eVSPcXJ
qEghlUzZMnY=

GET\n

\n

\n

Wed, 28 Mar 2007 01:49:49 +0000\n

/diction
ary/fran%C3%A7ais/pr%c3%a9f%c3%a8re

Amazon Simple Storage Service Developer Guide
Examples

API Version 2006-03-01
67

Request StringToSign

Note how the elements in StringToSign that were derived from the Request-URI are taken literally,
including URL-Encoding and capitalization.

Debugging REST Request Signing Problems

When REST request authentication fails, the system responds to the request with an XML error
document. The information contained in this error document is meant to help developers diagnose the
problem. In particular, the StringToSign element of the SignatureDoesNotMatch error document
tells you exactly what request canonicalization the system is using.

Some toolkits may silently insert headers that you do not know about beforehand, such as adding the
header Content-Type during a PUT. In most of these cases, the value of the inserted header remains
constant, allowing you to discover the missing headers using tools such as Ethereal or tcpmon.

Query String Request Authentication Alternative

It is possible to authenticate certain types of requests by passing the required information as query-string
parameters as an alternative to the Authorization HTTP header. This is useful for enabling direct
third-party browser access to your private Amazon S3 data, without proxying the request. The idea is to
construct a "pre-signed" request and encode it as a URL that an end-user's browser can retrieve. Query
string request authentication allows the issuer to limit a pre-signed request to be valid only before a
specified expiration time.

The practice of signing a request and giving it to a third-party for execution is suitable only for simple
object GET requests.

Example An Example Query String Authenticated Amazon S3 REST Request

GET /pho
tos/
puppy.jpg?AWSAccessKeyId=0PN5J17HBGZHT7JJ3X82&Expires=1141889120&Signature=vj
byPxybdZaNmGa%2ByT272YEAiv4%3D HTTP/1.1

Host: johnsmith.s3.amazonaws.com

Date: Mon, 26 Mar 2007 19:37:58 +0000

The query string request authentication method doesn't require any special HTTP headers. Instead, the
required authentication elements are specified as query string parameters:

Query String
Parameter Name

Example Value Description

AWSAccessKeyId 0PN5J17HBGZHT7JJ3X82 Your AWS Access Key Id. Specifies
the AWS Secret Access Key used to
sign the request, and (indirectly) the
identity of the developer making the
request.

Amazon Simple Storage Service Developer Guide
Debugging REST Request Signing Problems

API Version 2006-03-01
68

Query String
Parameter Name

Example Value Description

Expires 1141889120 The time when the signature expires,
specified as the number of seconds
since the epoch (00:00:00 UTC on
January 1, 1970). A request received
after this time (according to the server),
will be rejected.

Signature vjbyPxybdZaNmGa%2ByT272YEAiv4%3DThe URL encoding of the Base64
encoding of the HMAC-SHA1 of
StringToSign, as defined below.

The query string request authentication method differs slightly from the ordinary method but only in the
format of the Signature request parameter and the StringToSign element. The following
pseudo-grammar illustrates the query string request authentication method:

Signature = URL-Encode(Base64(HMAC-SHA1(UTF-8-Encoding-Of(
StringToSign))));

StringToSign = HTTP-VERB + "\n" +

Content-MD5 + "\n" +

Content-Type + "\n" +

Expires + "\n" +

CanonicalizedAmzHeaders +

CanonicalizedResource;

Notice how the Signature is URL-Encoded to make it suitable for placement in the query-string. Also
note that in StringToSign, the HTTP Date positional element has been replaced with Expires. The
CanonicalizedAmzHeaders and CanonicalizedResource are the same as above.

Example Query String Request Authentication Example

Request StringToSign

GET /pho
tos/
puppy.jpg?AWSAccessKeyId=0PN5J17HBGZH
T7JJ3X82&

Signa
ture=rucSbH0yNEcP9oM2XNlouVI3BH4%3D&

Expires=1175139620 HTTP/1.1

Host: johnsmith.s3.amazonaws.com

GET\n

\n

\n

1175139620\n

/johnsmith/photos/puppy.jpg

Amazon Simple Storage Service Developer Guide
Query String Request Authentication Alternative

API Version 2006-03-01
69

Request StringToSign

We assume that when a browser makes the GET request, it won't provide a Content-MD5 or a
Content-Type header, nor will it set any x-amz- headers, so those parts of the StringToSign are left
blank.

Setting Access Policy with REST
There are two ways to set the access control policy with REST. You can set the access control policy
(ACP) for an existing bucket or object by requesting a PUT to /bucket?acl or /bucket/key?acl. Or, at the
time you are writing a bucket or object you can include an x-amz-acl header with your PUT request that
stores a canned ACP with the written resource.

Setting the ACL on an Existing Bucket or Object

You can set the ACL on an existing bucket or object by doing an HTTP PUT to /bucket?acl, or
/bucket/key?acl, where the body of the operation is the new ACL. To edit an existing ACL, fetch
/bucket?acl or /bucket/key?acl to get the existing ACL, edit it locally, and then PUT the modified
version back to ?acl.

Example

The following example demonstrates how to set an existing object ACL so that only the owner has full
access to the object. (The owner's canonical user grant information is first found by executing a GET on
/quotes/Neo?acl.):

PUT /Neo?acl HTTP/1.1
Content-Length: 214
Host: quotes.s3.amazonaws.com
Date: Wed, 01 Mar 2006 12:00:00 GMT
Content-Type: text/plain
Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

<AccessControlPolicy>
<Owner>

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
<DisplayName>chriscustomer</DisplayName>

</Owner>
<AccessControlList>

<Grant>
<Grantee xsi:type="CanonicalUser">

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
<DisplayName>chriscustomer</DisplayName>

</Grantee>
<Permission>FULL_CONTROL</Permission>

</Grant>
</AccessControlList>

</AccessControlPolicy>

Canned Access Policies

Amazon Simple Storage Service Developer Guide
Setting Access Policy with REST

API Version 2006-03-01
70

Because of restrictions in what can be sent via http headers, Amazon S3 supports the concept of canned
access policies for REST. A canned access policy can be included with the x-amz-acl header as part of a
PUT operation to provide shorthand representation of a full access policy. When Amazon S3 sees the
x-amz-acl header as part of a PUT operation, it will assign the respective access policy to the resource
created as a result of the PUT. If no x-amz-acl header is included with a PUT request, then the bucket or
object is written with the private access control policy (even if, in the case of an object, the object
already exists with some other pre-existing access control policy).

The following canned ACLs are supported for REST:

• private: Owner gets FULL_CONTROL. No one else has any access rights. This is the default.

• public-read:Owner gets FULL_CONTROL and the anonymous principal is granted READ access. If
this policy is used on an object, it can be read from a browser with no authentication.

• public-read-write:Owner gets FULL_CONTROL, the anonymous principal is granted READ and
WRITE access. This is a useful policy to apply to a bucket, if you intend for any anonymous user to
PUT objects into the bucket.

• authenticated-read:Owner gets FULL_CONTROL, and any principal authenticated as a registered
Amazon S3 user is granted READ access.

Example

The following example demonstrates how to write data to an object and makes the object readable by
anonymous principals:

Sample Request

PUT /Neo HTTP/1.1
x-amz-acl: public-read
Content-Length: 4
Host: quotes.s3.amazonaws.com
Date: Wed, 01 Mar 2006 12:00:00 GMT
Content-Type: text/plain
Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

woah

Sample Response

HTTP/1.1 200 OK
x-amz-id-2: LriYPLdmOdAiIfgSm/F1YsViT1LW94/xUQxMsF7xiEb1a0wiIOIxl+zbwZ163pt7
x-amz-request-id: 0A49CE4060975EAC
Date: Wed, 01 Mar 2006 12:00:00 GMT
ETag: "aba878a8"
Content-Length: 0
Connection: close
Server: AmazonS3

Virtual Hosting of Buckets
Virtual Hosting, in general, is the practice of serving multiple web sites from a single web server. One
way to differentiate sites is by using the apparent host name of the request instead of just the path name

Amazon Simple Storage Service Developer Guide
Virtual Hosting of Buckets

API Version 2006-03-01
71

part of the URI. An ordinary Amazon S3 REST request specifies a bucket using the first slash delimited
component of the Request-URI path. Alternatively, using Amazon S3 Virtual Hosting, you can address a
bucket in a REST API call using the HTTP Host header. In practice, Amazon S3's interpretation of
Host means that most buckets are automatically accessible (for limited types of requests) at
http://bucketname.s3.amazonaws.com. Furthermore, by naming your bucket after your registered
domain name and by making that name a DNS alias for Amazon S3, you can completely customize the
URL of your Amazon S3 resources, for example: http://my.bucketname.com/

Besides the attractiveness of customized URLs, a second benefit of virtual hosting is the ability to
publish to the 'root directory' of your bucket's virtual server. This can be important because many
existing applications search for files in this standard location. For example, favicon.ico,
robots.txt, crossdomain.xml, are all expected to be found at the root.

Using the HTTP Host Header to Specify the Bucket

So long as your GET request does not use the SSL endpoint, you may specify the bucket for the request
using the HTTP Host header. The Host header in a REST request is interpreted as follows:

• If the Host header is omitted or its value is 's3.amazonaws.com', the bucket for the request will be the
first slash-delimited component of the Request-URI, and the key for the request will be the rest of the
Request-URI. This is the ordinary method, as illustrated by the first and second example in the table
below. Note that omitting the Host header is only legal for HTTP 1.0 requests.

• Otherwise, if the value of the Host header ends in '.s3.amazonaws.com', then the bucket name is the
leading component of the Host header's value up to '.s3.amazonaws.com'. The key for the request is
the Request-URI. This interpretation exposes buckets as sub-domains of s3.amazonaws.com, and is
illustrated by the third and fourth example in the table below.

• Otherwise, the bucket for the request will be the lower-cased value of the Host header and the key for
the request is the Request-URI. This interpretation is useful when you have registered the same DNS
name as your bucket name, and have configured that name to be a CNAME alias for Amazon S3. The
procedure for registering domain names and configuring DNS is outside the scope of this document,
but the result is illustrated by the final example in the table below.

Examples

The following example illustrates these cases:

Example URL Example Request Bucket
Name
for
Request

Key for
Request

Notes

ht
tp://s3.amazonaws.com/

johnsmith/homepage.html

GET /johns
mith/homepage.html HT
TP/1.1

Host: s3.amazonaws.com

johnsmith homepage.htmlThe
ordinary
method

GET /johns
mith/homepage.html HT
TP/1.0

johnsmith homepage.htmlHTTP
1.0 may
omit the
Host
header

johnsmith homepage.htmlAll

Amazon Simple Storage Service Developer Guide
Using the HTTP Host Header to Specify the Bucket

API Version 2006-03-01
72

Example URL Example Request Bucket
Name
for
Request

Key for
Request

Notes

http://johnsmith.

s3.amazonaws.com/homepa
ge.html

GET /homepage.html HT
TP/1.1

Host: johns
mith.s3.amazonaws.com

lower-case
Amazon S3
buckets
are
automatically
addressable
by the
sub-domain
method.

GET /homepage.html HT
TP/1.1

Host: JohnS
mith.s3.amazonaws.com

johnsmith homepage.htmlNote that
the case
of the
Host
header is
insignificant.
Upper-case
bucket
names
are not
accessible
using
this
method.

ht
tp://www.johnsmith.net/

homepage.html

GET /homepage.html HT
TP/1.1

Host: www.johnsmith.net

www.johnsmith.nethomepage.htmlTo host a
website
in
Amazon S3
using
this
method,
you must
configure
your
DNS
name as
a
CNAME
alias for
bucketname.s3.amazonaws.com.

Custom Amazon S3 URLs using CNAMEs

Depending on your needs, you might not want "s3.amazonaws.com" to appear on your web site or
service. For example, if you host your web site's images on Amazon S3, you may prefer a URL like this:

http://images.johnsmith.net/

to one that looks like this:

Amazon Simple Storage Service Developer Guide
Custom Amazon S3 URLs using CNAMEs

API Version 2006-03-01
73

http://johnsmith-images.s3.amazonaws.com/

To associate a hostname with an Amazon S3 bucket using CNAMEs:

1. Select a hostname that belongs to a domain you control. This example uses the images subdomain of
the johnsmith.net domain.

2. Create a bucket that matches the hostname. In this example, the hostname and bucket are named
images.johnsmith.net.

Note

Your bucket name must exactly match the hostname.

3. Create a CNAME record that defines the hostname as an alias for the Amazon S3 bucket. For
example:

images.johnsmith.net CNAME images.johnsmith.net.s3.amazonaws.com

Important

For request routing reasons, the CNAME record must be defined exactly as above.
Otherwise, it might appear to operate correctly, but will eventually result in
unpredictable behavior.

Note

The exact procedure for configuring DNS depends on your DNS server or DNS
provider and is beyond scope of this document.

Limitations

Because DNS names are case insensitive, only lower-case buckets are addressable using the virtual
hosting method.

Specifying the bucket for the request using the HTTP Host header is supported:

• For non-SSL requests.

• Using the REST API. You cannot specify the bucket in SOAP by using a different endpoint.

Backwards Compatibility

Early versions of Amazon S3 incorrectly ignored the HTTP Host header. Applications that depend on
this undocumented behavior must be updated to set the Host header correctly. Because Amazon S3
determines the bucket name from Host when present, the most likely symptom of this problem is to
receive an unexpected NoSuchBucket error result code.

Request Redirection and the REST API
For general information about Amazon S3 redirects, see Request Redirection and the REST API.

Amazon Simple Storage Service Developer Guide
Limitations

API Version 2006-03-01
74

Redirects and HTTP User-Agents

Programs that work against the Amazon S3 REST API can handle redirects either at the application
layer or the HTTP layer. Many HTTP client libraries and user agents can be configured to correctly
handle redirects automatically. However, many others have incorrect or incomplete redirect
implementations.

Before relying on a library to fulfill the redirect requirement, test the following edge cases:

• Verify all HTTP request headers are correctly included in the redirected request (the second request
after receiving a redirect) including HTTP standards such as Authorization and Date

• Verify non-GET redirects, such as PUT and DELETE, work correctly

• Verify large PUT requests follow redirects correctly

• Verify PUT requests follow redirects correctly if the 100-continue response takes a long time to arrive

HTTP user-agents that strictly conform to RFC2616 may require explicit confirmation before following
a redirect when the HTTP request method is not GET or HEAD. It is generally safe to follow redirects
generated by Amazon S3 automatically, as the system will only issue redirects to hosts within the
amazonaws.com domain and the effect of the redirected request will be the same as the original request.

Redirects and 100-Continue

To simplify redirect handling, improve efficiencies, and avoid the costs associated with sending a
redirected request body twice, configure your application to use 100-continues for PUT operations.
When your application uses 100-continue, it does not send the request body until it receives an
acknowledgement. If the message is rejected based on the headers, the body of the message is not sent.
For more information about 100-continue, see RFC 2616 Section 8.2.3

Note

According to RFC 2616, when using Expect: Continue with an unknown HTTP server,
you should not wait an indefinite period before sending the request body. This is because
some HTTP servers do not recognize 100-continue. However, Amazon S3 does recognize
if your request contains an Expect: Continue and will respond with a provisional
100-continue status or a final status code. Additionally, no redirect error will occur after
receiving the provisional 100 continue go-ahead. This will help you avoid receiving a
redirect response while you are still writing the request body.

Example

This section provides an example of client-server interaction using HTTP redirects and 100-continue.

The following is a sample PUT to the quotes.s3.amazonaws.com bucket:

PUT /nelson.txt HTTP/1.1

Host: quotes.s3.amazonaws.com

Date: Mon, 15 Oct 2007 22:18:46 +0000

Content-Length: 6

Expect: 100-continue

Amazon Simple Storage Service Developer Guide
Redirects and 100-Continue

API Version 2006-03-01
75

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.2.3

Amazon S3 returns the following:

HTTP/1.1 307 Temporary Redirect

Location: http://quotes.s3-4c25d83b.amazonaws.com/nelson.txt?rk=8d47490b

Content-Type: application/xml

Transfer-Encoding: chunked

Date: Mon, 15 Oct 2007 22:18:46 GMT

Server: AmazonS3

<?xml version="1.0" encoding="UTF-8"?>

<Error>

<Code>TemporaryRedirect</Code>

<Message>Please re-send this request to the

specified temporary endpoint. Continue to use the

original request endpoint for future requests.

</Message>

<Endpoint>quotes.s3-4c25d83b.amazonaws.com</Endpoint>

<Bucket>quotes</Bucket>

</Error>

The client follows the redirect response and issues a new request to the
quotes.s3-4c25d83b.amazonaws.com temporary endpoint:

PUT /nelson.txt?rk=8d47490b HTTP/1.1

Host: quotes.s3-4c25d83b.amazonaws.com

Date: Mon, 15 Oct 2007 22:18:46 +0000

Content-Length: 6

Expect: 100-continue

Amazon S3 returns a 100-continue indicating the client should proceed with sending the request body:

HTTP/1.1 100 Continue

The client sends the request body:

Amazon Simple Storage Service Developer Guide
Example

API Version 2006-03-01
76

ha ha\n

Amazon S3 returns the final response:

HTTP/1.1 200 OK

Date: Mon, 15 Oct 2007 22:18:48 GMT

ETag: "a2c8d6b872054293afd41061e93bc289"

Content-Length: 0

Server: AmazonS3

Browser-Based Uploads Using POST
Topics

• Introduction

• HTML Forms

• Examples

• POST with Adobe Flash

Introduction

Amazon S3 supports POST, which allows your users to upload content directly to Amazon S3. POST is
designed to simplify uploads, reduce upload latency, and save you money on applications where users
upload data to store in Amazon S3.

The following image shows an upload using Amazon S3 POST.

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

API Version 2006-03-01
77

Step Description

1 The user opens a web browser and accesses your web page.

2 Your web page contains an HTTP form that contains all the information
necessary for the user to upload content to Amazon S3.

3 The user uploads content directly to Amazon S3.

Note

Query string authentication is not supported for POST.

HTML Forms

Topics

Amazon Simple Storage Service Developer Guide
HTML Forms

API Version 2006-03-01
78

• HTML Form Encoding

• HTML Form Declaration

• HTML Form Fields

• Policy Construction

• Signature Construction

• Redirection

When communicating with Amazon S3, you normally use the REST or SOAP APIs to perform put, get,
delete, and other operations. With POST, users upload data directly to Amazon S3 through their
browsers, which do not understand SOAP APIs or how to make a REST PUT request.

To allow users to upload content to Amazon S3 using their browsers, you use HTML forms. HTML
Forms consist of a form declaration and form fields. The form declaration contains high level
information about the request. The form fields contain detailed information about the request as well as
the policy that is used to authenticate it and make sure that it meets conditions that you specify.

Note

The form data and boundaries (excluding the contents of the file) cannot exceed 20K.

This section describes how to use HTML forms.

HTML Form Encoding

The form and policy must be UTF-8 encoded. You can apply UTF-8 encoding to the form by specifying
it in the HTML heading or as a request header.

Note

The HTML form declaration does not accept query string authentication parameters. For
information about query string authentication, see Query String Authentication.

The following is an example of UTF-8 encoding in the HTML heading:

<html>

<head>

...

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

...

</head>

<body>

The following is an example of UTF-8 encoding in a request header:

Content-Type: text/html; charset=UTF-8

Amazon Simple Storage Service Developer Guide
HTML Forms

API Version 2006-03-01
79

HTML Form Declaration

The form declaration has three components: the action, the method, and the enclosure type. If any of
these values is improperly set, the request fails.

The action specifies the URL that processes the request, which must be set to the URL of the bucket. For
example, if the name of your bucket is "johnsmith", the URL is "http://johnsmith.s3.amazonaws.com/".

Note

The key name is specified in a form field.

The method must be POST.

The enclosure type (enctype) must be specified and must be set to multipart/form-data (Per RFC 1867)
for both file uploads and text area uploads.

Example

This is an example of a form declaration for the bucket "johnsmith":

<form action="http://johnsmith.s3.amazonaws.com/" method="post" enc
type="multipart/form-data">

HTML Form Fields

The following table describes a list of fields that can be used within a form.

Note

The variable ${filename} is automatically replaced with the name of the file provided by
the user and is recognized by all form fields. If the browser or client provides a full or
partial path to the file, only the text following the last slash (/) or backslash (\) will be used
(e.g., "C:\Program Files\directory1\file.txt" will be interpreted as "file.txt"). If no file or
filename is provided, the variable is replaced with an empty string.

Element Name Description Required?

AWSAccessKeyId The AWS Access Key ID of the owner of the
bucket who grants an Anonymous user access for
a request that satisfies the set of constraints in the
Policy.

Yes

acl Specifies an Amazon S3 access control list.
Options include private, public-read,
public-read-write, authenticated-read.

The default setting is private.

If an invalid access control list is specified, an
error is generated.

For more information on ACLs, see Access

No

Amazon Simple Storage Service Developer Guide
HTML Forms

API Version 2006-03-01
80

http://www.ietf.org/rfc/rfc1867.txt

Element Name Description Required?

Control Lists.

Cache-Control, Content-Type,
Content-Disposition,
Content-Encoding, Expires

REST-specific headers.

For more information, see PUT Object.

No

key The name of the uploaded key.

To use the filename provided by the user, use the
${filename} variable. For example, if the user
Betty uploads the file the file lolcatz.jpg and you
specify /user/betty/${filename}, the file is stored
as /user/betty/lolcatz.jpg.

For more information, see Keys.

Yes

policy Security Policy describing what is permitted in
the request. Requests without a security policy are
considered anonymous and only work on publicly
writable buckets.

For more information, see Policy Construction

No

success_action_redirect, redirect The URL to which the client is redirected upon
successful upload.

If success_action_redirect is not specified,
Amazon S3 returns the empty document type
specified in the success_action_status field.

If Amazon S3 cannot interpret the URL, it acts as
if the field is not present.

If the upload fails, Amazon S3 displays an error
and does not redirect the user to a URL.

For more information, see Redirection.

Note

The redirect field name is
deprecated and support for the
redirect field name will be removed
in the future.

No

success_action_status The status code returned to the client upon
successful upload if success_action_redirect is not
specified.

Accepts the values 200, 201, or 204 (default).

If the value is set to 200 or 204, Amazon S3
returns an empty document with a 200 or 204
status code.

If the value is set to 201, Amazon S3 returns an
XML document with a 201 status code. For
information on the content of the XML document,
see ???.

If the value is not set or if it is set to an invalid
value, Amazon S3 returns an empty document
with a 204 status code.

No

Amazon Simple Storage Service Developer Guide
HTML Forms

API Version 2006-03-01
81

Element Name Description Required?

Note

Some versions of the Adobe Flash
player do not properly handle HTTP
responses with an empty body. To
support uploads through Adobe
Flash, we recommend setting
success_action_status to 201.

signature The HMAC signature constructed using the secret
key of the provided AWSAccessKeyID.

For more information, see Policy Construction
and Authentication and Access Control.

No

x-amz-security-token Amazon DevPay security token.

Each request that uses Amazon DevPay requires
two x-amz-security-token form fields: one
for the product token and one for the user token.

For more information, see Using Amazon DevPay
with Amazon S3 .

No

Other field names prefixed with
x-amz-meta-

User-specified metadata.

Amazon S3 does not validate or use this data.

For more information, see PUT Object.

No

file File or text content.

The file or text content must be the last field in
the form.

You cannot upload more than one file at a time.

Yes

Policy Construction

The policy is a UTF-8 and Base64 encoded JSON document that specifies conditions which the request
must meet and is used to authenticate the content. Depending on how you design your policy documents,
you can use them per-upload, per-user, for all uploads, or according to other designs that meet your
needs.

The following is an example of a policy document:

{ "expiration": "2007-12-01T12:00:00.000Z",

"conditions": [

{"acl": "public-read" },

{"bucket": "johnsmith" },

["starts-with", "$key", "user/eric/"],

]

}

Amazon Simple Storage Service Developer Guide
HTML Forms

API Version 2006-03-01
82

The policy document contains the expiration and conditions.

Expiration

The expiration specifies the expiration date of the policy in ISO8601 GMT date format. For example,
"2007-12-01T12:00:00.000Z" specifies that the policy is not valid after 12:00 GMT on 2007-12-01.

Conditions

The conditions in the policy document are used to validate the contents of the uploaded object. Each
form field that you specify in the form (except AWSAccessKeyId , signature, file, policy, and field
names that have an x-ignore- prefix) must be included in the list of conditions.

Note

If you have multiple fields with the same name, the values must be separated by commas.
For example, if you have two fields named "x-amz-meta-tag" and the first one has a value
of "Ninja" and second has a value of "Stallman", you would set the policy document to
Ninja,Stallman.

All variables within the form are expanded prior to validating the policy. Therefore, all
condition matching should be against the expanded fields. For example, if you set the key
field to user/betty/${filename}, your policy might be ["starts-with",
"$key", "user/eric/"]. Do not enter ["starts-with", "$key",
"user/eric/${filename}"]. For more information, see Condition Matching.

Element Name Description

acl Specifies conditions the ACL must meet.

Supports exact matching and starts-with.

content-length-range Specifies the minimum and maximum allowable size for the
uploaded content.

Supports range matching.

Cache-Control, Content-Type,
Content-Disposition,
Content-Encoding, Expires

REST-specific headers.

Supports exact matching and starts-with.

key The name of the uploaded key.

Supports exact matching and starts-with.

success_action_redirect, redirect The URL to which the client is redirected upon successful
upload.

Supports exact matching and starts-with.

success_action_status The status code returned to the client upon successful upload
if success_action_redirect is not specified.

Supports exact matching.

x-amz-security-token Amazon DevPay security token.

Each request that uses Amazon DevPay requires two
x-amz-security-token form fields: one for the product
token and one for the user token. As a result, the values must

Amazon Simple Storage Service Developer Guide
HTML Forms

API Version 2006-03-01
83

Element Name Description

be separated by commas. For example, if the user token is
eW91dHViZQ== and the product token is
b0hnNVNKWVJIQTA=, you set the policy entry to: {
"x-amz-security-token":
"eW91dHViZQ==,b0hnNVNKWVJIQTA=" }.

For more information about Amazon DevPay, see Using
Amazon DevPay with Amazon S3 .

Other field names prefixed with
x-amz-meta-

User-specified metadata.

Supports exact matching and starts-with.

Note

If your toolkit adds additional fields (e.g., Flash adds filename), you must add them to the
policy document. If you can control this functionality, prepend x-ignore- to the field so
Amazon S3 ignores the feature and it won't affect future versions of this feature.

Condition Matching

The following table describes condition matching types. Although you must specify one condition for
each form field that you specify in the form, you can create more complex matching criteria by
specifying multiple conditions for a form field.

Condition Description

Exact Matches Exact matches verify that fields match specific values. This
example indicates that the ACL must be set to public-read:

{"acl": "public-read" }

Starts With If the value must start with a certain value, use starts-with. This
example indicates that the key must start with user/betty:

["starts-with", "$key", "user/betty/"]

Matching Any Content To configure the policy to allow any content within a field, use
starts-with with an empty value. This example allows any
success_action_redirect:

["starts-with", "$success_action_redirect", ""]

Specifying Ranges For fields that accept ranges, separate the upper and lower ranges
with a comma. This example allows a file size from 1 to 10
megabytes:

["content-length-range", 1048579, 10485760]

Character Escaping

Amazon Simple Storage Service Developer Guide
HTML Forms

API Version 2006-03-01
84

The following characters must be escaped within a policy document:

Escape Sequence Description

\\ Backslash

\$ Dollar symbol

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\uxxxx All Unicode characters

Signature Construction

Step Description

1 Encode the policy using UTF-8.

2 Encode those UTF-8 bytes using Base64.

3 Sign the policy with your Secret Access Key using HMAC SHA-1.

4 Encode the SHA-1 signature using Base64.

For information about constructing the policy, see Policy Construction. For general information about
authentication, see Authentication and Access Control.

Redirection

General Redirection

On completion of the POST, the user is redirected to the location that you specified in the
success_action_redirect field. If Amazon S3 cannot interpret the URL, it ignores the
success_action_redirect field.

If success_action_redirect is not specified, Amazon S3 returns the empty document type specified in the
success_action_status field.

If the POST fails, Amazon S3 displays an error and does not provide a redirect.

Pre-Upload Redirection

If your bucket was created using <CreateBucketConfiguration>, your end-users might require a redirect.

Amazon Simple Storage Service Developer Guide
HTML Forms

API Version 2006-03-01
85

If this occurs, some browsers might handle the redirect incorrectly. This is relatively rare, but is most
likely to occur right after a bucket is created.

Examples

Topics

• File Upload

• Text Area Upload

File Upload

This example shows the complete process for constructing a policy and form to upload a file attachment.

Constructing the Policy and Form

The following policy supports uploads to Amazon S3 for the johnsmith bucket:

{ "expiration": "2007-12-01T12:00:00.000Z",

"conditions": [

{"bucket": "johnsmith"},

["starts-with", "$key", "user/eric/"],

{"acl": "public-read"},

{"success_action_redirect": "ht
tp://johnsmith.s3.amazonaws.com/successful_upload.html"},

["starts-with", "$Content-Type", "image/"],

{"x-amz-meta-uuid": "14365123651274"},

["starts-with", "$x-amz-meta-tag", ""]

]

}

This policy requires the following:

• The upload must occur before 12:00 GMT on 2007-12-01

• The content must be uploaded to the johnsmith bucket

• The key must start with "/user/eric/"

• The ACL is set to public-read

• The success_action_redirect is set to http://johnsmith.s3.amazonaws.com/successful_upload.html

• The object is an image file

• The x-amz-meta-uuid tag must be set to 14365123651274

• The x-amz-meta-tag can contain any value

Amazon Simple Storage Service Developer Guide
Examples

API Version 2006-03-01
86

The following is a Base64 encoded version of this policy:

eyAiZXhwaXJh
dGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAge
yJidWNrZXQiOiAi
am9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogI
CAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOi
Ai
aHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL3N1Y2Nlc3NmdWxfdXBsb2FkLmh0bWwif
SwKICAgIF
sic3RhcnRzLXdpdGgiLCAiJENvbnRlbnQtVHlwZSIsICJpbWFnZS8iXSwKICAgIHsieC1hbXotbWV
0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1t
ZXRhLXRhZyIsICIiXQogIF0KfQo=

The secret key ID is uV3F3YluFJax1cknvbcGwgjvx4QpvB+leU8dUj2o, so the signature for the
above Policy document is:

0RavWzkygo6QX9caELEqKi9kDbU=

The following form supports a POST to the johnsmith.net bucket using this policy:

<html>

<head>

...

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

...

</head>

<body>

...

<form action="http://johnsmith.s3.amazonaws.com/" method="post" enc
type="multipart/form-data">

Key to upload: <input type="input" name="key" value="user/eric/" />

<input type="hidden" name="acl" value="public-read" />

<input type="hidden" name="success_action_redirect"
value="http://johnsmith.s3.amazonaws.com/successful_upload.html" />

Content-Type: <input type="input" name="Content-Type" value="image/jpeg"
/>

<input type="hidden" name="x-amz-meta-uuid" value="14365123651274" />

Tags for File: <input type="input" name="x-amz-meta-tag" value="" /><br /
>

<input type="hidden" name="AWSAccessKeyId" value="15B4D3461F177624206A" /
>

<input type="hidden" name="Policy" value="POLICY" />

<input type="hidden" name="Signature" value="SIGNATURE" />

File: <input type="file" name="file" />

Amazon Simple Storage Service Developer Guide
Examples

API Version 2006-03-01
87

<!-- The elements after this will be ignored -->

<input type="submit" name="submit" value="Upload to Amazon S3" />

</form>

...

</html>

Sample Request

This request assumes that the image uploaded is 117,108 bytes; the image data is not included.

POST / HTTP/1.1

Host: johnsmith.s3.amazonaws.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.10)
Gecko/20071115 Firefox/2.0.0.10

Accept: text/
xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,im
age/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Content-Type: multipart/form-data; bound
ary=---------------------------9431149156168

Content-Length: 2661134

-----------------------------9431149156168

Content-Disposition: form-data; name="key"

user/eric/MyPicture.jpg

-----------------------------9431149156168

Content-Disposition: form-data; name="acl"

public-read

-----------------------------9431149156168

Content-Disposition: form-data; name="success_action_redirect"

http://johnsmith.s3.amazonaws.com/successful_upload.html

-----------------------------9431149156168

Content-Disposition: form-data; name="Content-Type"

Amazon Simple Storage Service Developer Guide
Examples

API Version 2006-03-01
88

image/jpeg

-----------------------------9431149156168

Content-Disposition: form-data; name="x-amz-meta-uuid"

14365123651274

-----------------------------9431149156168

Content-Disposition: form-data; name="x-amz-meta-tag"

Some,Tag,For,Picture

-----------------------------9431149156168

Content-Disposition: form-data; name="AWSAccessKeyId"

15B4D3461F177624206A

-----------------------------9431149156168

Content-Disposition: form-data; name="Policy"

eyAiZXhwaXJh
dGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAge
yJidWNrZXQiOiAi
am9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogI
CAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOi
Ai
aHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL3N1Y2Nlc3NmdWxfdXBsb2FkLmh0bWwif
SwKICAgIF
sic3RhcnRzLXdpdGgiLCAiJENvbnRlbnQtVHlwZSIsICJpbWFnZS8iXSwKICAgIHsieC1hbXotbWV
0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1t
ZXRhLXRhZyIsICIiXQogIF0KfQo=

-----------------------------9431149156168

Content-Disposition: form-data; name="Signature"

0RavWzkygo6QX9caELEqKi9kDbU=

-----------------------------9431149156168

Content-Disposition: form-data; name="file"; filename="MyFilename.jpg"

Content-Type: image/jpeg

...file content...

-----------------------------9431149156168

Content-Disposition: form-data; name="submit"

Amazon Simple Storage Service Developer Guide
Examples

API Version 2006-03-01
89

Upload to Amazon S3

-----------------------------9431149156168--

Sample Response

The following is the sample response:

HTTP/1.1 303 Redirect

x-amz-request-id: 1AEE782442F35865

x-amz-id-2: cxzFLJRatFHy+NGtaDFRR8YvI9BHmgLxjvJzNiGGICARZ/mVXHj7T+qQKhdpzHFh

Content-Type: application/xml

Date: Wed, 14 Nov 2007 21:21:33 GMT

Connection: close

Location: ht
tp://johnsmith.s3.amazonaws.com/successful_upload.html?bucket=johnsmith&key=u
ser/eric/MyPicture.jpg&etag="39d459dfbc0faabbb5e179358dfb94c3"

Server: AmazonS3

Text Area Upload

This example shows the complete process for constructing a policy and form to upload a text area. This
is useful for submitting user-created content such as blog postings.

Constructing the Policy and Form

The following policy supports text area uploads to Amazon S3 for the johnsmith bucket:

{ "expiration": "2007-12-01T12:00:00.000Z",

"conditions": [

{"bucket": "johnsmith"},

["starts-with", "$key", "user/eric/"],

{"acl": "public-read"},

{"success_action_redirect": "ht
tp://johnsmith.s3.amazonaws.com/new_post.html"},

["eq", "$Content-Type", "text/html"],

{"x-amz-meta-uuid": "14365123651274"},

["starts-with", "$x-amz-meta-tag", ""]

]

}

This policy requires the following:

• The upload must occur before 12:00 GMT on 2007-12-01

Amazon Simple Storage Service Developer Guide
Examples

API Version 2006-03-01
90

• The content must be uploaded to the johnsmith bucket

• The key must start with “user/eric/”

• The ACL is set to public-read

• The success_action_redirect is set to http://johnsmith.s3.amazonaws.com/new_post.html

• The object is HTML text

• The x-amz-meta-uuid tag must be set to 14365123651274

• The x-amz-meta-tag can contain any value

The following is a Base64 encoded version of this policy:

eyAiZXhwaXJh
dGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAge
yJidWNrZXQiOiAi
am9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogI
CAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOi
Ai
aHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL25ld19wb3N0Lmh0bWwifSwKICAgIFsiZ
XEiLCAiJENvbnRlbnQtVHlwZSIs
ICJ0ZXh0L2h0bWwiXSwKICAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sC
iAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZyIsICIiXQogIF0KfQo=

The secret key ID is uV3F3YluFJax1cknvbcGwgjvx4QpvB+leU8dUj2o, so the signature for the
above Policy document is:

qA7FWXKq6VvU68lI9KdveT1cWgE=

The following form supports a POST to the johnsmith.net bucket using this policy:

<html>

<head>

...

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

...

</head>

<body>

...

<form action="http://johnsmith.s3.amazonaws.com/" method="post" enc
type="multipart/form-data">

Key to upload: <input type="input" name="key" value="user/eric/" />

<input type="hidden" name="acl" value="public-read" />

<input type="hidden" name="success_action_redirect"
value="http://johnsmith.s3.amazonaws.com/new_post.html" />

<input type="hidden" name="Content-Type" value="text.html" />

<input type="hidden" name="x-amz-meta-uuid" value="14365123651274" />

Tags for File: <input type="input" name="x-amz-meta-tag" value="" /><br /

Amazon Simple Storage Service Developer Guide
Examples

API Version 2006-03-01
91

>

<input type="hidden" name="AWSAccessKeyId" value="15B4D3461F177624206A" /
>

<input type="hidden" name="Policy" value="POLICY" />

<input type="hidden" name="Signature" value="SIGNATURE" />

Entry: <textarea name="file" cols="60" rows="10">

Your blog post goes here.

</textarea>

<!-- The elements after this will be ignored -->

<input type="submit" name="submit" value="Upload to Amazon S3" />

</form>

...

</html>

Sample Request

This request assumes that the image uploaded is 117,108 bytes; the image data is not included.

POST / HTTP/1.1

Host: johnsmith.s3.amazonaws.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.10)
Gecko/20071115 Firefox/2.0.0.10

Accept: text/
xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,im
age/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Content-Type: multipart/form-data; bound
ary=---------------------------178521717625888

Content-Length: 5299

-----------------------------178521717625888

Content-Disposition: form-data; name="key"

user/eric/NewEntry.html

-----------------------------178521717625888

Amazon Simple Storage Service Developer Guide
Examples

API Version 2006-03-01
92

Content-Disposition: form-data; name="acl"

public-read

-----------------------------178521717625888

Content-Disposition: form-data; name="success_action_redirect"

http://johnsmith.s3.amazonaws.com/new_post.html

-----------------------------178521717625888

Content-Disposition: form-data; name="Content-Type"

text.html

-----------------------------178521717625888

Content-Disposition: form-data; name="x-amz-meta-uuid"

14365123651274

-----------------------------178521717625888

Content-Disposition: form-data; name="x-amz-meta-tag"

Interesting Post

-----------------------------178521717625888

Content-Disposition: form-data; name="AWSAccessKeyId"

15B4D3461F177624206A

-----------------------------178521717625888

Content-Disposition: form-data; name="Policy"

eyAiZXhwaXJh
dGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAge
yJidWNrZXQiOiAi
am9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogI
CAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOi
Ai
aHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL25ld19wb3N0Lmh0bWwifSwKICAgIFsiZ
XEiLCAiJENvbnRlbnQtVHlwZSIs
ICJ0ZXh0L2h0bWwiXSwKICAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sC
iAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZyIsICIiXQogIF0KfQo=

-----------------------------178521717625888

Content-Disposition: form-data; name="Signature"

qA7FWXKq6VvU68lI9KdveT1cWgE=

Amazon Simple Storage Service Developer Guide
Examples

API Version 2006-03-01
93

-----------------------------178521717625888

Content-Disposition: form-data; name="file"

...content goes here...

-----------------------------178521717625888

Content-Disposition: form-data; name="submit"

Upload to Amazon S3

-----------------------------178521717625888--

Sample Response

The following is the sample response:

HTTP/1.1 303 Redirect

x-amz-request-id: 1AEE782442F35865

x-amz-id-2: cxzFLJRatFHy+NGtaDFRR8YvI9BHmgLxjvJzNiGGICARZ/mVXHj7T+qQKhdpzHFh

Content-Type: application/xml

Date: Wed, 14 Nov 2007 21:21:33 GMT

Connection: close

Location: ht
tp://johnsmith.s3.amazonaws.com/new_post.html?bucket=johnsmith&key=user/eric/
NewEntry.html&etag=40c3271af26b7f1672e41b8a274d28d4

Server: AmazonS3

POST with Adobe Flash

Adobe Flash Player Security

By default, the Adobe Flash Player security model prohibits Adobe Flash Players from making network
connections to servers outside the domain that serves the SWF file.

To override the default, you must upload a public-readable crossdomain.xml file to the bucket that will
accept POST uploads. The following is a sample crossdomain.xml file:

<?xml version="1.0"?>

<!DOCTYPE cross-domain-policy SYSTEM

"http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">

<cross-domain-policy>

<allow-access-from domain="*" secure="false" />

</cross-domain-policy>

Amazon Simple Storage Service Developer Guide
POST with Adobe Flash

API Version 2006-03-01
94

Note

We highly recommend reading more about the Adobe Flash security model on the Adobe
web site.

Adding the crossdomain.xml file to your bucket allows any Adobe Flash Player to connect
to the crossdomain.xml file within your bucket. However, it does not grant access to the
actual Amazon S3 bucket.

Other Adobe Flash Considerations

The FileReference API in Adobe Flash adds the Filename form field to the POST request. When
building Adobe Flash applications that upload to Amazon S3 using the FileReference API, include the
following condition in your policy:

['starts-with', '$Filename', '']

Some versions of the Adobe Flash Player do not properly handle HTTP responses that have an empty
body. To configure POST to return a response that does not have an empty body, set
success_action_status to 201. When set, Amazon S3 returns an XML document with a 201 status
code. For information on the content of the XML document, see ???. For information on form fields, see
HTML Form Fields.

Operations on the Service
Topics

• GET Operation

This section describes operations you can perform on the Amazon S3 service.

GET Operation

The GET operation on the Service endpoint (s3.amazonaws.com) returns a list of all of the buckets
owned by the authenticated sender of the request.

Example

Sample Request

GET / HTTP/1.1

Host: s3.amazonaws.com

Date: Wed, 01 Mar 2006 12:00:00 GMT

Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Sample Response

<?xml version="1.0" encoding="UTF-8"?>

<ListAllMyBucketsResult xmlns="http://doc.s3.amazonaws.com/2006-03-01">

Amazon Simple Storage Service Developer Guide
Operations on the Service

API Version 2006-03-01
95

http://www.adobe.com
http://www.adobe.com

<Owner>

<ID>bcaf1ffd86f41caff1a493dc2ad8c2c281e37522a640e161ca5fb16fd081034f</ID>

<DisplayName>webfile</DisplayName>

</Owner>

<Buckets>

<Bucket>

<Name>quotes;/Name>

<CreationDate>2006-02-03T16:45:09.000Z</CreationDate>

</Bucket>

<Bucket>

<Name>samples</Name>

<CreationDate>2006-02-03T16:41:58.000Z</CreationDate>

</Bucket>

</Buckets>

</ListAllMyBucketsResult>

Response Body

• Owner: This provides information that Amazon S3 uses to represent your identity for purposes of
authentication and access control. ID is a unique and permanent identifier for the developer who made
the request. DisplayName is a human-readable name representing the developer who made the
request. It is not unique, and may change over time.

• Name: The name of a bucket. Note that if one of your buckets was recently deleted, the name of the
deleted bucket may still be present in this list for a period of time.

• CreationDate: The time that the bucket was created.

Access Control

You must authenticate with a valid AWS Access Key ID that has been registered as a user of
Amazon S3. Anonymous requests are never allowed to list buckets, and you cannot list buckets that you
did not create.

Operations on Buckets
Topics

• PUT Bucket

• GET Bucket

• GET Bucket Location

• DELETE Bucket

Amazon Simple Storage Service Developer Guide
Operations on Buckets

API Version 2006-03-01
96

• POST Object

This section describes operations you can perform on Amazon S3 buckets.

PUT Bucket

The PUT request operation with a bucket URI creates a new bucket. Depending on your latency and legal
requirements, you can specify a location constraint that will affect where your data physically resides.
You can currently specify a Europe (EU) location constraint.

Note

Not every string is an acceptable bucket name. For information on bucket naming
restrictions, see Working with Amazon S3 Buckets.

If you create a bucket using <CreateBucketConfiguration>, applications that access
your bucket must be able to handle 307 redirects.

If you do not specify a location constraint, Amazon S3 automatically selects a location
which will be billed at the standard Amazon S3 rates.

Example

Creates a bucket named "colorpictures" without a location constraint:

Sample Request

PUT / HTTP/1.1

Host: colorpictures.s3.amazonaws.com

Content-Length: 0

Date: Wed, 01 Mar 2006 12:00:00 GMT

Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Sample Response

HTTP/1.1 200 OK

x-amz-id-2: YgIPIfBiKa2bj0KMg95r/0zo3emzU4dzsD4rcKCHQUAdQkf3ShJTOOpXUueF6QKo

x-amz-request-id: 236A8905248E5A01

Date: Wed, 01 Mar 2006 12:00:00 GMT

Location: /colorpictures

Content-Length: 0

Connection: close

Server: AmazonS3

Creates a bucket named "colourpictures" using the Europe location constraint:

Sample Request

Amazon Simple Storage Service Developer Guide
PUT Bucket

API Version 2006-03-01
97

PUT / HTTP/1.1

Host: colourpictures.s3.amazonaws.com

Content-Length: 111

Date: Wed, 01 Mar 2006 12:00:00 GMT

Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

<CreateBucketConfiguration>

<LocationConstraint>EU</LocationConstraint>

</CreateBucketConfiguration>

Sample Response

HTTP/1.1 200 OK

x-amz-id-2: YgIPIfBiKa2bj0KMg95r/0zo3emzU4dzsD4rcKCHQUAdQkf3ShJTOOpXUueF6QKo

x-amz-request-id: 236A8905248E5A01

Date: Wed, 01 Mar 2006 12:00:00 GMT

Location: /colourpictures

Content-Length: 0

Connection: close

Server: AmazonS3

Access Control

You must authenticate with a valid AWS Access Key ID that has been registered as a user of
Amazon S3. Anonymous requests are never allowed to create buckets.

GET Bucket

A GET request operation using a bucket URI lists information about the objects in the bucket.

For a general introduction to the list operation, see the Listing Keys section.

Example

List up to 40 keys in the "quotes" bucket that have the prefix "N" and occur lexicographically after
"Ned":

Sample Request

GET ?prefix=N&marker=Ned&max-keys=40 HTTP/1.1
Host: quotes.s3.amazonaws.com
Date: Wed, 01 Mar 2006 12:00:00 GMT
Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Amazon Simple Storage Service Developer Guide
GET Bucket

API Version 2006-03-01
98

Sample Response

HTTP/1.1 200 OK
x-amz-id-2: gyB+3jRPnrkN98ZajxHXr3u7EFM67bNgSAxexeEHndCX/7GRnfTXxReKUQF28IfP
x-amz-request-id: 3B3C7C725673C630
Date: Wed, 01 Mar 2006 12:00:00 GMT
Content-Type: application/xml
Content-Length: 302
Connection: close
Server: AmazonS3

<?xml version="1.0" encoding="UTF-8"?>
<ListBucketResult xmlns="http://doc.s3.amazonaws.com/2006-03-01">

<Name>quotes</Name>
<Prefix>N</Prefix>
<Marker>Ned</Marker>
<MaxKeys>40</MaxKeys>
<IsTruncated>false</IsTruncated>
<Contents>

<Key>Nelson</Key>
<LastModified>2006-01-01T12:00:00.000Z</LastModified>
<ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>
<Size>5</Size>
<StorageClass>STANDARD</StorageClass>
<Owner>

<ID>bcaf1ffd86f41caff1a493dc2ad8c2c281e37522a640e161ca5fb16fd081034f</ID>
<DisplayName>webfile</DisplayName>
</Owner>

</Contents>
<Contents>

<Key>Neo</Key>
<LastModified>2006-01-01T12:00:00.000Z</LastModified>
<ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>
<Size>4</Size>
<StorageClass>STANDARD</StorageClass>
<Owner>

<ID>bcaf1ffd86f41caff1a493dc2ad8c2c281e37522a640e161ca5fb16fd081034f</ID>
<DisplayName>webfile</DisplayName>

</Owner>
</Contents>

</ListBucketResult>

Request Parameters

For comprehensive information about the list request parameters, see Common List Request Parameters.

• prefix: Limits the response to keys which begin with the indicated prefix. You can use prefixes to
separate a bucket into different sets of keys in a way similar to how a file system uses folders.

• marker: Indicates where in the bucket to begin listing. The list will only include keys that occur
lexicographically after marker. This is convenient for pagination: To get the next page of results use
the last key of the current page as the marker.

• max-keys: The maximum number of keys you'd like to see in the response body. The server may
return fewer than this many keys, but will not return more.

• delimiter: Causes keys that contain the same string between the prefix and the first occurrence of
the delimiter to be rolled up into a single result element in the CommonPrefixes collection. These
rolled-up keys are not returned elsewhere in the response.

Amazon Simple Storage Service Developer Guide
GET Bucket

API Version 2006-03-01
99

Response Body

For information about the list response, see Common List Response Elements

Access Control

To list the keys of a bucket you need to have READ access to the bucket.

GET Bucket Location

A GET location request operation using a bucket URI lists the location constraint of the bucket.

Example

List the bucket location constraint of the quotes bucket:

Sample Request

GET /?location HTTP/1.1

Host: quotes.s3.amazonaws.com

Date: Tue, 09 Oct 2007 20:26:04 +0000

Authorization: AWS 1ATXQ3HHA59CYF1CVS02:JUtd9kkJFjbKbkP9f6T/tAxozYY=

Sample Response

<?xml version="1.0" encoding="UTF-8"?>

<LocationConstraint xm
lns="http://s3.amazonaws.com/doc/2006-03-01/">EU</LocationConstraint>

Request Parameters

There are no request parameters for the GET location constraint request operation.

Access Control

To view the location constraint of a bucket, you must be the bucket owner.

DELETE Bucket

The DELETE request operation deletes the bucket named in the URI. All objects in the bucket must be
deleted before the bucket itself can be deleted.

Example

Delete the bucket named "quotes"

Amazon Simple Storage Service Developer Guide
GET Bucket Location

API Version 2006-03-01
100

Sample Request

DELETE / HTTP/1.1
Host: quotes.s3.amazonaws.com
Date: Wed, 01 Mar 2006 12:00:00 GMT
Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Sample Response

HTTP/1.1 204 No Content
x-amz-id-2: JuKZqmXuiwFeDQxhD7M8KtsKobSzWA1QEjLbTMTagkKdBX2z7Il/jGhDeJ3j6s80
x-amz-request-id: 32FE2CEB32F5EE25
Date: Wed, 01 Mar 2006 12:00:00 GMT
Connection: close
Server: AmazonS3

Access Control

Only the owner of a bucket is allowed to delete it, regardless of the bucket's access control policy.

POST Object

The POST request operation adds an object to a bucket using forms.

Note

For information about forms and constructing requests using POST, see Browser-Based
Uploads Using POST.

The response indicates that the object is successfully stored. Amazon S3 never stores partial objects: if
you receive a successful response, the entire object was stored.

If the object already exists in the bucket, the new object overwrites the existing object.

Amazon S3 orders all of the requests that it receives. If two requests are sent nearly simultaneously, we
might receive them in a different order than they were sent. The last request received is the one that is
stored in Amazon S3, even though both requests receive a success response. This occurs because
Amazon S3 is a distributed system and it might take a few seconds for one part of the system to realize
that another part has received an object update. In this release of Amazon S3, you cannot lock an object
for writing. If you require this functionality, you should provide it at the application layer.

If you specify a location constraint when creating a bucket, all objects added to the bucket are stored in
the bucket's location. For example, if you specify a Europe (EU) location constraint for a bucket, all of
that bucket's objects are stored in Europe. For more information on location constraints, see Location
Selection.

Example

This request assumes that the image uploaded is 117,108 bytes; the image data is not included.

POST / HTTP/1.1

Host: johnsmith.s3.amazonaws.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.10)
Gecko/20071115 Firefox/2.0.0.10

Amazon Simple Storage Service Developer Guide
POST Object

API Version 2006-03-01
101

Accept: text/
xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,im
age/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Content-Type: multipart/form-data; bound
ary=---------------------------9431149156168

Content-Length: 2661134

-----------------------------9431149156168

Content-Disposition: form-data; name="key"

user/eric/MyPicture.jpg

-----------------------------9431149156168

Content-Disposition: form-data; name="acl"

public-read

-----------------------------9431149156168

Content-Disposition: form-data; name="success_action_redirect"

http://johnsmith.s3.amazonaws.com/successful_upload.html

-----------------------------9431149156168

Content-Disposition: form-data; name="Content-Type"

image/jpeg

-----------------------------9431149156168

Content-Disposition: form-data; name="x-amz-meta-uuid"

14365123651274

-----------------------------9431149156168

Content-Disposition: form-data; name="x-amz-meta-tag"

Some,Tag,For,Picture

-----------------------------9431149156168

Amazon Simple Storage Service Developer Guide
POST Object

API Version 2006-03-01
102

Content-Disposition: form-data; name="AWSAccessKeyId"

15B4D3461F177624206A

-----------------------------9431149156168

Content-Disposition: form-data; name="Policy"

eyAiZXhwaXJh
dGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAge
yJidWNrZXQiOiAi
am9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogI
CAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOi
Ai
aHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL3N1Y2Nlc3NmdWxfdXBsb2FkLmh0bWwif
SwKICAgIF
sic3RhcnRzLXdpdGgiLCAiJENvbnRlbnQtVHlwZSIsICJpbWFnZS8iXSwKICAgIHsieC1hbXotbWV
0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1t
ZXRhLXRhZyIsICIiXQogIF0KfQo=

-----------------------------9431149156168

Content-Disposition: form-data; name="Signature"

0RavWzkygo6QX9caELEqKi9kDbU=

-----------------------------9431149156168

Content-Disposition: form-data; name="file"; filename="MyFilename.jpg"

Content-Type: image/jpeg

...file content...

-----------------------------9431149156168

Content-Disposition: form-data; name="submit"

Upload to Amazon S3

-----------------------------9431149156168--

The following is the sample response:

Sample Response

HTTP/1.1 303 Redirect

x-amz-request-id: 1AEE782442F35865

x-amz-id-2: cxzFLJRatFHy+NGtaDFRR8YvI9BHmgLxjvJzNiGGICARZ/mVXHj7T+qQKhdpzHFh

Content-Type: application/xml

Date: Wed, 14 Nov 2007 21:21:33 GMT

Connection: close

Amazon Simple Storage Service Developer Guide
POST Object

API Version 2006-03-01
103

Location: ht
tp://johnsmith.s3.amazonaws.com/successful_upload.html?bucket=johnsmith&key=u
ser/eric/MyPicture.jpg&etag="39d459dfbc0faabbb5e179358dfb94c3"

Server: AmazonS3

Request Headers

The following table describes request headers.

• Content-Type: This must be set to multipart/form-data. For more information, see RFC 1867.

Form Data

The following table describes form data parts.

Note

The variable ${filename} is automatically replaced with the name of the file provided by
the user and is recognized by all form fields. If the browser or client provides a full or
partial path to the file, only the text following the last slash (/) or backslash (\) will be used
(e.g., "C:\Program Files\directory1\file.txt" will be interpreted as "file.txt"). If no file or
filename is provided, the variable is replaced with an empty string.

Element Name Description Required?

AWSAccessKeyId The AWS Access Key ID of the owner of the
bucket who will be granting an Anonymous user
access for a request that satisfies the set of
constraints in the Policy.

Yes

acl Specifies an Amazon S3 access control list.
Options include private, public-read,
public-read-write, authenticated-read.

The default setting is private.

If an invalid access control list is specified, an
error is generated.

For more information on ACLs, see Access
Control Lists.

No

Cache-Control, Content-Type,
Content-Disposition,
Content-Encoding, Expires

REST-specific headers.

For more information, see PUT Object.

No

key The name of the uploaded key.

To use the filename provided by the user, use the
${filename} variable. For example, if the user
Betty uploads the file the file lolcatz.jpg and you
specify /user/betty/${filename}, the file will be
stored as /user/betty/lolcatz.jpg.

For more information, see Keys.

Yes

Amazon Simple Storage Service Developer Guide
POST Object

API Version 2006-03-01
104

http://www.ietf.org/rfc/rfc1867.txt

Element Name Description Required?

policy Security Policy describing what is permitted in
the request. Requests without a security policy are
considered anonymous and only work on publicly
writable buckets.

For more information, see Policy Construction

No

success_action_redirect, redirect The URL to which the client is redirected upon
successful upload.

If success_action_redirect is not specified,
Amazon S3 returns the empty document type
specified in the success_action_status field.

If Amazon S3 cannot interpret the URL, it acts as
if the field is not present.

If the upload fails, Amazon S3 displays an error
and does not redirect the user to a URL.

For more information, see Redirection.

Note

The redirect field name is
deprecated and support for the
redirect field name will be removed
in the future.

No

success_action_status The status code returned to the client upon
successful upload if success_action_redirect is not
specified.

Accepts the values 200, 201, or 204 (default).

If the value is set to 200 or 204, Amazon S3
returns an empty document with a 200 or 204
status code.

If the value is set to 201, Amazon S3 returns an
XML document with a 201 status code. For
information on the content of the XML document,
see ???.

If the value is not set or if it is set to an invalid
value, Amazon S3 returns an empty document
with a 204 status code.

Note

Some versions of the Adobe Flash
player do not properly handle HTTP
responses with an empty body. To
support uploads through Adobe
Flash, we recommend setting
success_action_status to 201.

No

x-amz-security-token Amazon DevPay security token.

Each request that uses Amazon DevPay requires

No

Amazon Simple Storage Service Developer Guide
POST Object

API Version 2006-03-01
105

Element Name Description Required?

two x-amz-security-token form fields: one
for the product token and one for the user token.

For more information, see Using Amazon DevPay
with Amazon S3 .

Other field names prefixed with
x-amz-meta-

User-specified metadata.

Amazon S3 does not validate or use this data.

For more information, see PUT Object.

No

file File or text content.

The file or text content must be the last field in
the form.

You cannot upload more than one file at a time.

Yes

POST Response Body

If success_action_status is set to 200, 204, or is not specified, the response body will be empty. If
success_action_status is set to 201, Amazon S3 returns a PostResponse XML document which
contains the location of the object, the bucket in which it is stored, the key associated with the object,
and its Etag.

The following is a sample PostResponse XML document:

<PostResponse>

<Location>http://johnsmith.s3.amazonaws.com/user/eric/MyPicture.jpg</Location
>

<Bucket>johnsmith</Bucket>

<Key>user/eric/MyPicture.jpg</Key>

<ETag>"39d459dfbc0faabbb5e179358dfb94c3"</ETag>

</PostResponse>

Request Body

The multipart form data. For more information, refer to RFC 1867.

Response Headers

• ETag: The entity tag is an MD5 hash of the object that you can use to do conditional GET operations
using the If-Modified request tag with the GET request operation.

Amazon Simple Storage Service Developer Guide
POST Object

API Version 2006-03-01
106

http://www.ietf.org/rfc/rfc1867.txt

• success_action_redirect, redirect: The URL to which the client is redirected on successful
upload.

Access Control

The signer of the policy must have WRITE access to the bucket to add an object. If there is no policy,
Anonymous must have write access to the bucket. This is not recommended.

Operations on Objects
Topics

• PUT Object

• GET Object

• HEAD Object

• DELETE Object

This section describes operations you can perform on Amazon S3 objects.

PUT Object

The PUT request operation adds an object to a bucket.

The response indicates that the object has been successfully stored. Amazon S3 never stores partial
objects: if you receive a successful response, then you can be confident that the entire object was stored.

If the object already exists in the bucket, the new object overwrites the existing object. Amazon S3
orders all of the requests that it receives. It is possible that if you send two requests nearly
simultaneously, we will receive them in a different order than they were sent. The last request received
is the one which is stored in Amazon S3. Note that this means if multiple parties are simultaneously
writing to the same object, they may all get a successful response even though only one of them wins in
the end. This is because Amazon S3 is a distributed system and it may take a few seconds for one part of
the system to realize that another part has received an object update. In this release of Amazon S3, there
is no ability to lock an object for writing -- such functionality, if required, should be provided at the
application layer.

If you specify a location constraint when creating a bucket, all objects added to the bucket are stored in
the bucket's location. For example, if you specify a Europe (EU) location constraint for a bucket, all of
that bucket's objects are stored in Europe. For more information on location constraints, see Location
Selection.

Note

To configure your application to send the request headers prior to sending the request
body, use 100-continue. For PUT operations, this helps you avoid sending the message
body if the message is rejected based on the headers (e.g., authentication failure or
redirect). For more information on 100-continue, see Section 8.2.3 of
http://www.ietf.org/rfc/rfc2616.txt.

Example

Amazon Simple Storage Service Developer Guide
Operations on Objects

API Version 2006-03-01
107

http://www.ietf.org/rfc/rfc2616.txt

Write some text and metadata into the "Neo" object in the "quotes" bucket:

Sample Request

PUT /Neo HTTP/1.1

x-amz-meta-family: Anderson

Content-Length: 4

Host: quotes.s3.amazonaws.com

Date: Wed, 01 Mar 2006 12:00:00 GMT

Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Content-Type: text/plain

Expect: 100-continue

woah

Sample Response

HTTP/1.1 100 Continue

HTTP/1.1 200 OK

x-amz-id-2: LriYPLdmOdAiIfgSm/F1YsViT1LW94/xUQxMsF7xiEb1a0wiIOIxl+zbwZ163pt7

x-amz-meta-family: Anderson

x-amz-request-id: 0A49CE4060975EAC

Date: Wed, 01 Mar 2006 12:00:00 GMT

ETag: "828ef3fdfa96f00ad9f27c383fc9ac7f"

Content-Length: 0

Connection: close

Server: AmazonS3

Request Headers

• Cache-Control:Can be used to specify caching behavior along the request/reply chain. See
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.

• Content-Type: A standard MIME type describing the format of the contents. If none is provided,
the default is binary/octet-stream. See
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17.

• Content-Length: The size of the object, in bytes. This is required. See
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.13.

• Content-MD5:

The base64 encoded 128-bit MD5 digest of the message (without the headers) according to RFC
1864. This header can be used as a message integrity check to verify that the data is the same data that
was originally sent. Although it is optional, we recommend using the Content-MD5 mechanism as an
end-to-end integrity check. For more information about REST request authentication, see

Amazon Simple Storage Service Developer Guide
PUT Object

API Version 2006-03-01
108

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.13

Authenticating REST Requests.

• Content-Disposition: Specifies presentational information for the object. See
http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html#sec19.5.1.

• Content-Encoding: Specifies what content codings have been applied to the object and thus what
decoding mechanisms must be applied in order to obtain the media-type referenced by the
Content-Type header field. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11.

• Expires: Gives the date/time after which the response is considered stale. See
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21.

• x-amz-meta-: Any header starting with this prefix is considered user metadata. It will be stored
with the object and returned when you retrieve the object. The total size of the HTTP request, not
including the body, must be less than 4 KB.

• x-amz-acl-: The canned ACL to apply to the object. Options include private, public-read,
public-read-write, and authenticated-read. For more information, see ???.

Request Body

The data to be stored in the object is sent in the request body.

Response Headers

• ETag: The entity tag is an MD5 hash of the object that you can use to do conditional GET operations
using the If-Modified request tag with the GET request operation.

Access Control

You must have WRITE access to the bucket to add an object.

GET Object

You fetch objects from Amazon S3 using the GET operation. This operation returns the object directly
from Amazon S3 using a client/server delivery mechanism. If you want to distribute big files to a large
number of people, you may find BitTorrent delivery to be preferable since it uses less bandwidth. For
more information, see Using BitTorrent™ with Amazon S3.

Example

Retrieve the "Nelson" object and its metadata from the "quotes" bucket:

Sample Request

GET /Nelson HTTP/1.1

Host: quotes.s3.amazonaws.com

Date: Wed, 01 Mar 2006 12:00:00 GMT

Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Sample Response

HTTP/1.1 200 OK

x-amz-id-2: j5ULAWpFbJQJpukUsZ4tfXVOjVZExLtEyNTvY5feC+hHIegsN5p578JLTVpkFrpL

Amazon Simple Storage Service Developer Guide
GET Object

API Version 2006-03-01
109

http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html#sec19.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21

x-amz-request-id: BE39A20848A0D52B

Date: Wed, 01 Mar 2006 12:00:00 GMT

x-amz-meta-family: Muntz

Last-Modified: Sun, 1 Jan 2006 12:00:00 GMT

ETag: "828ef3fdfa96f00ad9f27c383fc9ac7f"

Content-Type: text/plain

Content-Length: 5

Connection: close

Server: AmazonS3

HA-HA

Request Headers

The GET request method on objects supports several standard HTTP request headers. These are briefly
described below, for details see the HTTP spec, RFC 2616 (http://www.ietf.org/rfc/rfc2616.txt).

• If-Modified-Since: Return the object only if it has been modified since the specified time,
otherwise return a 304 (not modified).

• If-Unmodified-Since: Return the object only if it has not been modified since the specified time,
otherwise return a 412 (precondition failed).

• If-Match: Return the object only if its entity tag (ETag) is the same as the one specified, otherwise
return a 412 (precondition failed).

• If-None-Match: Return the object only if its entity tag (ETag) is different from the one specified,
otherwise return a 304 (not modified).

• Range: Return only the bytes of the object in the specified range.

Response Headers

• x-amz-meta-: If you supplied user metadata when you PUT the object, that metadata is returned in
one or more response headers prefixed with x-amz-meta- and with the suffix name that you provided
on storage. This metadata is simply returned verbatim; it is not interpreted by Amazon S3.

• Content-Type: This is set to the same value you specified in the corresponding header when the
data was PUT. The default content type is binary/octet-stream.

• Content-Disposition: This is set to the same value you specified in the corresponding header
when the data was PUT. Except in the case of a request for a BitTorrent torrent file (see section on
using BitTorrent with Amazon S3), if no Content-Disposition was specified at the time of PUT then
this header is not returned.

Amazon Simple Storage Service Developer Guide
GET Object

API Version 2006-03-01
110

http://www.ietf.org/rfc/rfc2616.txt

• Content-Range: This indicates the range of bytes returned in the event that you requested a subset
of the object by setting the Range request header.

• x-amz-missing-meta: This is set to the number of metadata entries not returned in x-amz-meta
headers. This can happen if you create metadata using an API like SOAP that supports more flexible
metadata than the REST API. For example, using SOAP, you can create metadata whose values are
not legal HTTP headers.

Access Control

The GET will succeed if you have been granted READ access to the object. If you make a request without
an authorization header, then you can read the object if READ access has been granted to the anonymous
user.

Chunked and Resumable Downloads

To provide GET flexibility, Amazon S3 supports chunked and resumable downloads.

Select from the following:

• For large object downloads, you might want to break them into smaller chunks. For more information,
see Range GETs.

• For GET operations that fail, you can design your application to download the remainder instead of the
entire file. For more information, see REST GET Error Recovery.

Range GETs

For some clients, you might want to break large downloads into smaller downloads. To break a
download into smaller units, use Range. For example, the following request downloads the first ten
megabytes from the bigfile object.

GET /bigfile HTTP/1.1

Host: bigbucket.s3.amazonaws.com

Date: Wed, 01 Mar 2006 12:00:00 GMT

Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Range:bytes=0-10485759

Amazon S3 returns the following response:

HTTP/1.1 206 Partial Content

x-amz-id-2: j5ULAWpFbJQJpukUsZ4tfXVOjVZExLtEyNTvY5feC+hHIegsN5p578JLTVpkFrpL

x-amz-request-id: BE39A20848A0D52B

Date: Wed, 01 Mar 2006 12:00:00 GMT

x-amz-meta-family: Muntz

Last-Modified: Sun, 1 Jan 2006 12:00:00 GMT

ETag: "828ef3fdfa96f00ad9f27c383fc9ac7f"

Content-Type: text/plain

Amazon Simple Storage Service Developer Guide
GET Object

API Version 2006-03-01
111

Content-Length: 10485760

Content-Range: 0-10485759/20232760

Connection: close

Server: AmazonS3

<first 10 megabytes of bigfile>

Amazon S3 returns the first ten megabytes of the file, the Etag of the file, and the total size of the file
(20232760 bytes) in the Content-Length field.

To ensure the file did not change since the previous portion was downloaded, specify the if-match
request header. Although the if-match request header is not required, it is recommended for content that
is likely to change.

The following request gets the remainder of the file, using the if-match request header:

GET /bigfile HTTP/1.1

Host: bigbucket.s3.amazonaws.com

Date: Wed, 01 Mar 2006 12:00:00 GMT

Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Range: 10485760-20232760

If-match:"828ef3fdfa96f00ad9f27c383fc9ac7f"

Amazon S3 returns the following response and the remainder of the file:

HTTP/1.1 206 Partial Content

x-amz-id-2: j5ULAWpFbJQJpukUsZ4tfXVOjVZExLtEyNTvY5feC+hHIegsN5p578JLTVpkFrpL

x-amz-request-id: BE39A20848A0D52B

Date: Wed, 01 Mar 2006 12:00:00 GMT

x-amz-meta-family: Muntz

Last-Modified: Sun, 1 Jan 2006 12:00:00 GMT

ETag: "828ef3fdfa96f00ad9f27c383fc9ac7f"

Content-Type: text/plain

Content-Length: 9747000

Content-Range: 10485760-20232760/20232760

Connection: close

Server: AmazonS3

<remainder of bigfile>

REST GET Error Recovery

Amazon Simple Storage Service Developer Guide
GET Object

API Version 2006-03-01
112

If an object GET fails, you can get the rest of the file by specifying the range to download. For example:

GET /bigfile HTTP/1.1

Host: bigbucket.s3.amazonaws.com

Date: Wed, 01 Mar 2006 12:00:00 GMT

Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Amazon S3 returns the following response, but a client connection issue causes the GET to fail in the
middle of the operation:

HTTP/1.1 200 OK

x-amz-id-2: j5ULAWpFbJQJpukUsZ4tfXVOjVZExLtEyNTvY5feC+hHIegsN5p578JLTVpkFrpL

x-amz-request-id: BE39A20848A0D52B

Date: Wed, 01 Mar 2006 12:00:00 GMT

x-amz-meta-family: Muntz

Last-Modified: Sun, 1 Jan 2006 12:00:00 GMT

ETag: "828ef3fdfa96f00ad9f27c383fc9ac7f"

Content-Type: text/plain

Content-Length: 20232760

Connection: close

Server: AmazonS3

<part of bigfile>

The client code determines the amount of data downloaded and gets the rest.

GET /bigfile HTTP/1.1

Host: bigbucket.s3.amazonaws.com

Date: Wed, 01 Mar 2006 12:00:00 GMT

Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Range:bytes=132499-20232760

If-match:"828ef3fdfa96f00ad9f27c383fc9ac7f"

Amazon S3 returns the following response and the remainder of the file:

HTTP/1.1 206 Partial Content

x-amz-id-2: j5ULAWpFbJQJpukUsZ4tfXVOjVZExLtEyNTvY5feC+hHIegsN5p578JLTVpkFrpL

x-amz-request-id: BE39A20848A0D52B

Date: Wed, 01 Mar 2006 12:00:00 GMT

x-amz-meta-family: Muntz

Amazon Simple Storage Service Developer Guide
GET Object

API Version 2006-03-01
113

Last-Modified: Sun, 1 Jan 2006 12:00:00 GMT

ETag: "828ef3fdfa96f00ad9f27c383fc9ac7f"

Content-Type: text/plain

Content-Length: 20100261

Content-Range: 132499-20232760/20232760

Connection: close

Server: AmazonS3

<remainder of bigfile>

Related Topics

GET Operation

HEAD Object

The HEAD operation is used to retrieve information about a specific object, without actually fetching the
object itself. This is useful if you're only interested in the object metadata, and don't want to waste
bandwidth on the object data. A HEAD request has the same options as a GET operation on an object. The
response is identical to the GET response, except that there is no response body. For more information,
see GET Object.

Example

Retrieve only the metadata for the "Nelson" object in the "quotes" bucket:

Sample Request

HEAD /Nelson HTTP/1.0
Host: quotes.s3.amazonaws.com
Date: Wed, 01 Mar 2006 12:00:00 GMT
Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Sample Response

HTTP/1.1 200 OK
x-amz-id-2: KZ7XUBI18rqFH91yZmYpWSRPg0/aeqwJXVzNgnk9Pa9GcHUuN2cxfsKk7V3NSUKg
x-amz-request-id: F7B5DF3AB381F03F
Date: Wed, 01 Mar 2006 12:00:00 GMT
x-amz-meta-family: Muntz
Last-Modified: Sun, 1 Jan 2006 12:00:00 GMT
ETag: "828ef3fdfa96f00ad9f27c383fc9ac7f"
Content-Type: text/plain
Content-Length: 5
Connection: close
Server: AmazonS3

DELETE Object

The DELETE request operation removes the specified object from Amazon S3. Once deleted, there is no

Amazon Simple Storage Service Developer Guide
HEAD Object

API Version 2006-03-01
114

method to restore or undelete an object.

Note

If you delete an object that does not exist, Amazon S3 will return a success (not an error
message).

Example

Delete the "Nelson" object from the "quotes" bucket:

Sample Request

DELETE /Nelson HTTP/1.0
Host: quotes.s3.amazonaws.com
Date: Wed, 01 Mar 2006 12:00:00 GMT
Authorization: AWS 15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Sample Response

HTTP/1.1 204 No Content
x-amz-id-2: 4NJT5+xl9kKL1w8YnhfDTbMPvBEIbl8Ek/kuX55i+4FTSINVbcRDVnhi4TZGcj1y
x-amz-request-id: 7FA15BA5170D44B0
Date: Wed, 01 Mar 2006 12:00:00 GMT
Connection: close
Server: AmazonS3

Access Control

You can delete an object only if you have WRITE access to the bucket, regardless of who owns the object
or what rights are granted to it.

Amazon Simple Storage Service Developer Guide
DELETE Object

API Version 2006-03-01
115

Using the SOAP API

Topics

• Common SOAP API Elements

• The SOAP Error Response

• Authenticating SOAP Requests

• Setting Access Policy with SOAP

• Operations on the Service

• Operations on Buckets

• Operations on Objects

This section contains information specific to the Amazon S3 SOAP API.

Common SOAP API Elements
You can interact with Amazon S3 using SOAP 1.1 over HTTP. The Amazon S3 WSDL, which
describes the Amazon S3 API in a machine-readable way, is available at:
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl. The Amazon S3 schema is available at
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.xsd.

Most users will interact with Amazon S3 using a SOAP toolkit tailored for their language and
development environment. Different toolkits will expose the Amazon S3 API in different ways. Please
refer to your specific toolkit documentation to understand how to use it. This section illustrates the
Amazon S3 SOAP operations in a toolkit-independent way by exhibiting the XML requests and
responses as they appear "on the wire."

SOAP Endpoint

You can send Amazon S3 SOAP messages to either a SSL secured or un-secured endpoint. Note that
authenticated SOAP requests are only accepted over SSL. The available Amazon S3 SOAP endpoints
are http://s3.amazonaws.com/soap and https://s3.amazonaws.com/soap (SSL).

Common Elements

Amazon Simple Storage Service Developer Guide
Common SOAP API Elements

API Version 2006-03-01
116

http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.xsd

You can include the following authorization-related elements with any SOAP request:

• AWSAccessKeyId: The AWS Access Key ID of the requestor.

• Timestamp: The current time on your system.

• Signature: The signature for the request.

The SOAP Error Response
In SOAP, an error result is returned to the client as a SOAP fault, with the HTTP response code 500. If
you do not receive a SOAP fault, then your request was successful. The Amazon S3 SOAP fault code is
comprised of a standard SOAP 1.1 fault code (either "Server" or "Client") concatenated with the
Amazon S3-specific error code. For example: "Server.InternalError" or "Client.NoSuchBucket". The
SOAP fault string element contains a generic, human readable error message in English. Finally, the
SOAP fault detail element contains miscellaneous information relevant to the error.

For example, if you attempt to delete the object "Fred", which does not exist, the body of the SOAP
response contains a "NoSuchKey" SOAP fault, which looks like:

Example

<soapenv:Body>
<soapenv:Fault>

<Faultcode>soapenv:Client.NoSuchKey</Faultcode>
<Faultstring>The specified key does not exist.</Faultstring>
<Detail>
<Key>Fred</Key>

</Detail>
</soapenv:Fault>

</soapenv:Body>

For more information about the errors, see Working with Errors.

Authenticating SOAP Requests
Every non-anonymous request must contain authentication information to establish the identity of the
principal making the request. In SOAP, the authentication information is put into the following elements
of the SOAP request:

• AWSAccessKeyId: Your AWS Access Key ID

• Timestamp: This must be a dateTime (http://www.w3.org/TR/xmlschema-2/#dateTime) in the
Coordinated Universal Time (Greenwich Mean Time) time zone, such as
2006-01-01T12:00:00.000Z. Authorization will fail if this timestamp is more than 15 minutes
away from the clock on Amazon S3 servers.

• Signature: The RFC 2104 HMAC-SHA1 digest (http://www.ietf.org/rfc/rfc2104.txt) of the
concatenation of "AmazonS3" + OPERATION + Timestamp, using your AWS Secret Access Key as
the key. For example, in the following CreateBucket sample request, the signature element would
contain the HMAC-SHA1 digest of the value "AmazonS3CreateBucket2006-01-01T12:00:00.000Z":

For example, in the following CreateBucket sample request, the signature element would contain the
HMAC-SHA1 digest of the value "AmazonS3CreateBucket2006-01-01T12:00:00.000Z":

Amazon Simple Storage Service Developer Guide
The SOAP Error Response

API Version 2006-03-01
117

http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.ietf.org/rfc/rfc2104.txt

Example

<CreateBucket xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>quotes</Bucket>
<Acl>private</Acl>
<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
<Timestamp>2006-01-01T12:00:00.000Z</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</CreateBucket>

Note

Authenticated SOAP requests must be sent to Amazon S3 over SSL. Only anonymous
requests are allowed over non-SSL connections.

Important

Due to different interpretations regarding how extra time precision should be dropped,
.NET users should take care not to send Amazon S3 overly specific time stamps. This can
be accomplished by manually constructing DateTime objects with only millisecond
precision.

For more information, see the sample .NET SOAP libraries for an example of how to do
this.

Setting Access Policy with SOAP
Access control can be set at the time a bucket or object is written by including the "AccessControlList"
element with the request to CreateBucket, PutObjectInline, or PutObject. The
AccessControlList element is described in Authentication and Access Control. If no access control list is
specified with these operations, the resource is created with a default access policy that gives the
requestor FULL_CONTROL access (this is the case even if the request is a PutObjectInline or
PutObject request for an object that already exists).

The following sample request writes data to an object, makes the object readable by anonymous
principals, and gives the specified user FULL_CONTROL rights to the bucket (Most developers will
want to give themselves FULL_CONTROL access to their own bucket):

Example

The following sample request writes data to an object and makes the object readable by anonymous
principals:

Sample Request

<PutObjectInline xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>quotes</Bucket>
<Key>Nelson</Key>
<Metadata>

<Name>Content-Type</Name>
<Value>text/plain</Value>

</Metadata>
<Data>aGEtaGE=</Data>

Amazon Simple Storage Service Developer Guide
Setting Access Policy with SOAP

API Version 2006-03-01
118

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=129&categoryID=47

<ContentLength>5</ContentLength>
<AccessControlList>

<Grant>
<Grantee xsi:type="CanonicalUser">

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
<DisplayName>chriscustomer</DisplayName>

</Grantee>
<Permission>FULL_CONTROL</Permission>

</Grant>
<Grant>
<Grantee xsi:type="Group">

<URI>http://acs.amazonaws.com/groups/global/AllUsers<URI>
</Grantee>
<Permission>READ</Permission>

</Grant>
</AccessControlList>
<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</PutObjectInline>

Sample Response

<PutObjectInlineResponse xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<PutObjectInlineResponse>

<ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>
<LastModified>2006-01-01T12:00:00.000Z</LastModified>

</PutObjectInlineResponse>
</PutObjectInlineResponse>

The access control policy can be read or set for an existing bucket or object using the
GetBucketAccessControlPolicy, GetObjectAccessControlPolicy,
SetBucketAccessControlPolicy, and SetObjectAccessControlPolicy methods. See the
detailed explanation of these methods for more information.

Operations on the Service
Topics

• ListAllMyBuckets

This section describes operations you can perform on the Amazon S3 service.

ListAllMyBuckets

The ListAllMyBuckets operation returns a list of all buckets owned by the sender of the request.

Example

Sample Request

<ListAllMyBuckets xmlns="http://doc.s3.amazonaws.com/2006-03-01">

<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>

<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>

Amazon Simple Storage Service Developer Guide
Operations on the Service

API Version 2006-03-01
119

<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</ListAllMyBuckets>

Sample Response

<ListAllMyBucketsResult xmlns="http://doc.s3.amazonaws.com/2006-03-01">

<Owner>

<ID>bcaf1ffd86f41caff1a493dc2ad8c2c281e37522a640e161ca5fb16fd081034f</ID>

<DisplayName>webfile</DisplayName>

</Owner>

<Buckets>

<Bucket>

<Name>quotes;/Name>

<CreationDate>2006-02-03T16:45:09.000Z</CreationDate>

</Bucket>

<Bucket>

<Name>samples</Name>

<CreationDate>2006-02-03T16:41:58.000Z</CreationDate>

</Bucket>

</Buckets>

</ListAllMyBucketsResult>

Response Body

• Owner: This provides information that Amazon S3 uses to represent your identity for purposes of
authentication and access control. ID is a unique and permanent identifier for the developer who made
the request. DisplayName is a human-readable name representing the developer who made the
request. It is not unique, and may change over time.

• Name: The name of a bucket. Note that if one of your buckets was recently deleted, the name of the
deleted bucket may still be present in this list for a period of time.

• CreationDate: The time that the bucket was created.

Access Control

You must authenticate with a valid AWS Access Key ID. Anonymous requests are never allowed to list
buckets, and you can only list buckets for which you are the owner.

Operations on Buckets
Topics

Amazon Simple Storage Service Developer Guide
Operations on Buckets

API Version 2006-03-01
120

• CreateBucket

• DeleteBucket

• ListBucket

• GetBucketAccessControlPolicy

• SetBucketAccessControlPolicy

• SetBucketLoggingStatus

• GetBucketLoggingStatus

This section describes operations you can perform on Amazon S3 buckets.

CreateBucket

The CreateBucket operation creates a bucket. Not every string is an acceptable bucket name. For
information on bucket naming restrictions, see Working with Amazon S3 Buckets.

Example

Create a bucket named "quotes":

Sample Request

<CreateBucket xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>quotes</Bucket>
<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</CreateBucket>

Sample Response

<CreateBucketResponse xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<CreateBucketResponse>

<Bucket>quotes</Bucket>
</CreateBucketResponse>

</CreateBucketResponse>

Elements

• Bucket: The name of the bucket you are trying to create.

• AccessControlList: The access control list for the new bucket. This element is optional. If not
provided, the bucket is created with an access policy that give the requestor FULL_CONTROL
access.

Access Control

You must authenticate with a valid AWS Access Key ID. Anonymous requests are never allowed to
create buckets.

DeleteBucket

Amazon Simple Storage Service Developer Guide
CreateBucket

API Version 2006-03-01
121

The DeleteBucket operation deletes a bucket. All objects in the bucket must be deleted before the
bucket itself can be deleted.

Example

Delete the "quotes" bucket:

Sample Request

<DeleteBucket xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>quotes</Bucket>
<AWSAccessKeyId> 1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</DeleteBucket>

Sample Response

<DeleteBucketResponse xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<DeleteBucketResponse>

<Code>204</Code>
<Description>No Content</Description>

</DeleteBucketResponse>
</DeleteBucketResponse>

Elements

• Bucket: The name of the bucket you want to delete.

Access Control

Only the owner of a bucket is allowed to delete it, regardless the access control policy on the bucket.

ListBucket

The ListBucket operation returns information about some of the items in the bucket.

For a general introduction to the list operation, see the Listing Keys section.

Example

List up to 40 keys in the "quotes" bucket that have the prefix "N" and occur lexographically after "Ned":

Sample Request

<ListBucket xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>quotes</Bucket>
<Prefix>N</Prefix>
<Marker>Ned</Marker>
<MaxKeys>40</MaxKeys>
<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</ListBucket>

Amazon Simple Storage Service Developer Guide
ListBucket

API Version 2006-03-01
122

Sample Response

<ListBucketResult xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Name>quotes</Name>
<Prefix>N</Prefix>
<Marker>Ned</Marker>
<MaxKeys>40</MaxKeys>
<IsTruncated>false</IsTruncated>
<Contents>

<Key>Nelson</Key>
<LastModified>2006-01-01T12:00:00.000Z</LastModified>
<ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>
<Size>5</Size>
<StorageClass>STANDARD</StorageClass>
<Owner>

<ID>bcaf1ffd86f41caff1a493dc2ad8c2c281e37522a640e161ca5fb16fd081034f</ID>
<DisplayName>webfile</DisplayName>
</Owner>

</Contents>
<Contents>

<Key>Neo</Key>
<LastModified>2006-01-01T12:00:00.000Z</LastModified>
<ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>
<Size>4</Size>
<StorageClass>STANDARD</StorageClass>
<Owner>

<ID>bcaf1ffd86f41caff1a493dc2ad8c2c281e37522a640e161ca5fb16fd081034f</ID>
<DisplayName>webfile</DisplayName>

</Owner>
</Contents>

</ListBucketResult>

Elements

For comprehensive information about the list request parameters, see Common List Request Parameters.

• Prefix: Limits the response to keys that begin with the indicated prefix. You can use prefixes to
separate a bucket into different sets of keys in a way similar to how a file system uses folders. This is
an optional argument.

• Marker: Indicates where in the bucket to begin listing. The list includes only keys that occur
alphabetically after marker. This is convenient for pagination: To get the next page of results use the
last key of the current page as the marker.The most keys you'd like to see in the response body. The
server may return less than this number of keys, but will not return more. This is an optional
argument.

• Delimiter: Causes keys that contain the same string between the prefix and the first occurrence of
the delimiter to be rolled up into a single result element in the CommonPrefixes collection. These
rolled-up keys are not returned elsewhere in the response.

• MaxKeys: This optional argument limits the number of results returned in response to your query.
Amazon S3 will return at most this number of results, but possibly less. For the purpose of counting
MaxKeys, a 'result' is either a key in the 'Contents' collection, or a delimited prefix in the
'PrefixRollup' collection.

Response Body

For information about the list response, see Common List Response Elements.

Amazon Simple Storage Service Developer Guide
ListBucket

API Version 2006-03-01
123

Access Control

To list the keys of a bucket you need to have been granted READ access on the bucket.

GetBucketAccessControlPolicy

The GetBucketAccessControlPolicy operation fetches the access control policy for a bucket.

Example

Retrieve the access control policy for the "quotes" bucket:

Sample Request

<GetBucketAccessControlPolicy xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>quotes</Bucket>
<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</GetBucketAccessControlPolicy>

Sample Response

<AccessControlPolicy>
<Owner>

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
<DisplayName>chriscustomer</DisplayName>

</Owner>
<AccessControlList>

<Grant>
<Grantee xsi:type="CanonicalUser">

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
<DisplayName>chriscustomer</DisplayName>

</Grantee>
<Permission>FULL_CONTROL</Permission>

</Grant>
<Grant>
<Grantee xsi:type="Group">

<URI>http://acs.amazonaws.com/groups/global/AllUsers<URI>
</Grantee>
<Permission>READ</Permission>

</Grant>
</AccessControlList>

<AccessControlPolicy>

Response Body

The response contains the access control policy for the bucket. For an explanation of this response, see
Using Amazon S3.

Access Control

You must have READ_ACP rights to the bucket in order to retrieve the access control policy for a bucket.

SetBucketAccessControlPolicy

The SetBucketAccessControlPolicy operation sets the Access Control Policy for an existing

Amazon Simple Storage Service Developer Guide
GetBucketAccessControlPolicy

API Version 2006-03-01
124

bucket. If successful, the previous Access Control Policy for the bucket is entirely replaced with the
specified Access Control Policy.

Example

Give the specified user (usually the owner) FULL_CONTROL access to the "quotes" bucket.

Sample Request

<SetBucketAccessControlPolicy xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>quotes</Bucket>
<AccessControlList>

<Grant>
<Grantee xsi:type="CanonicalUser">

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
<DisplayName>chriscustomer</DisplayName>

</Grantee>
<Permission>FULL_CONTROL</Permission>

</Grant>
</AccessControlList>
<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</SetBucketAccessControlPolicy >

Sample Response

<GetBucketAccessControlPolicyResponse xm
lns="http://doc.s3.amazonaws.com/2006-03-01">

<GetBucketAccessControlPolicyResponse>
<Code>200</Code>
<Description>OK</Description>

</GetBucketAccessControlPolicyResponse>
</GetBucketAccessControlPolicyResponse>

Access Control

You must have WRITE_ACP rights to the bucket in order to set the access control policy for a bucket.

GetBucketLoggingStatus

Important

This document describes Beta functionality that is subject to change in future releases.

The GetBucketLoggingStatus retrieves the logging status for an existing bucket.

For a general introduction to this feature, see Server Access Logging. For information about the
response document, see Server Access Logging Configuration API.

Example

Sample Request

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xm

Amazon Simple Storage Service Developer Guide
GetBucketLoggingStatus

API Version 2006-03-01
125

lns:xsi="http://www.w3.org/2001/XMLSchema-instance" xm
lns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>
<GetBucketLoggingStatus xm

lns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>mybucket</Bucket>
<AWSAccessKeyId>YOUR_AWS_ACCESS_KEY_ID</AWSAccessKeyId>
<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
<Signature>YOUR_SIGNATURE_HERE</Signature>

</GetBucketLoggingStatus>
</soap:Body>

</soap:Envelope>

Sample Response

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope xm

lns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xm
lns:xsd="http://www.w3.org/2001/XMLSchema" xm
lns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

<soapenv:Header>
</soapenv:Header>
<soapenv:Body>

<GetBucketLoggingStatusResponse xm
lns="http://doc.s3.amazonaws.com/2006-03-01">

<GetBucketLoggingStatusResponse>
<LoggingEnabled>

<TargetBucket>mylogs</TargetBucket>
<TargetPrefix>mybucket-access_log-</TargetPrefix>

</LoggingEnabled>
</GetBucketLoggingStatusResponse>

</GetBucketLoggingStatusResponse>
</soapenv:Body>

</soapenv:Envelope>

Access Control

Only the owner of a bucket is permitted to invoke this operation.

SetBucketLoggingStatus

Important

This document describes Beta functionality that is subject to change in future releases.

The SetBucketLoggingStatus operation updates the logging status for an existing bucket.

For a general introduction to this feature, see Server Access Logging. For information about the
response document, see Server Access Logging Configuration API.

Example

This sample request enables server access logging for the 'mybucket' bucket, and configures the logs to
be delivered to 'mylogs' under prefix 'access_log-'

Sample Request

Amazon Simple Storage Service Developer Guide
SetBucketLoggingStatus

API Version 2006-03-01
126

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xm

lns:xsi="http://www.w3.org/2001/XMLSchema-instance" xm
lns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>
<SetBucketLoggingStatus xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>myBucket</Bucket>
<AWSAccessKeyId>YOUR_AWS_ACCESS_KEY_ID</AWSAccessKeyId>
<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
<Signature>YOUR_SIGNATURE_HERE</Signature>
<BucketLoggingStatus>

<LoggingEnabled>
<TargetBucket>mylogs</TargetBucket>
<TargetPrefix>mybucket-access_log-</TargetPrefix>

</LoggingEnabled>
</BucketLoggingStatus>

</SetBucketLoggingStatus>
</soap:Body>
:</soap:Envelope>

Sample Response

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope xm

lns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xm
lns:xsd="http://www.w3.org/2001/XMLSchema" xm
lns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

<soapenv:Header>
</soapenv:Header>
<soapenv:Body>

<SetBucketLoggingStatusResponse xm
lns="http://doc.s3.amazonaws.com/2006-03-01"/>

</soapenv:Body>
</soapenv:Envelope>

Access Control

Only the owner of a bucket is permitted to invoke this operation.

Operations on Objects
Topics

• PutObjectInline

• PutObject

• GetObject

• GetObjectExtended

• DeleteObject

• GetObjectAccessControlPolicy

• SetObjectAccessControlPolicy

This section describes operations you can perform on Amazon S3 objects.

PutObjectInline

Amazon Simple Storage Service Developer Guide
Operations on Objects

API Version 2006-03-01
127

The PutObjectInline operation adds an object to a bucket. The data for the object is provided in the
body of the SOAP message.

If the object already exists in the bucket, the new object overwrites the existing object. Amazon S3
orders all of the requests that it receives. It is possible that if you send two requests nearly
simultaneously, we will receive them in a different order than they were sent. The last request received
is the one which is stored in Amazon S3. Note that this means if multiple parties are simultaneously
writing to the same object, they may all get a successful response even though only one of them wins in
the end. This is because Amazon S3 is a distributed system and it may take a few seconds for one part of
the system to realize that another part has received an object update. In this release of Amazon S3, there
is no ability to lock an object for writing -- such functionality, if required, should be provided at the
application layer.

PutObjectInline is not suitable for use with large objects. The system limits this operation to working
with objects 1MB or smaller. PutObjectInline will fail with the InlineDataTooLargeError status
code if the Data parameter encodes an object larger than 1MB. To upload large objects, consider using
the non-inline PutObject API, or the REST API instead.

Example

Write some text and metadata into the "Nelson" object in the "quotes" bucket, give a user (usually the
owner) FULL_CONTROL access to the object, and make the object readable by anonymous parties:

Sample Request

<PutObjectInline xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>quotes</Bucket>
<Key>Nelson</Key>
<Metadata>

<Name>Content-Type</Name>
<Value>text/plain</Value>

</Metadata>
<Metadata>

<Name>family</Name>
<Value>Muntz</Value>

</Metadata>
<Data>aGEtaGE=</Data>
<ContentLength>5</ContentLength>
<AccessControlList>

<Grant>
<Grantee xsi:type="CanonicalUser">

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
<DisplayName>chriscustomer</DisplayName>

</Grantee>
<Permission>FULL_CONTROL</Permission>

</Grant>
<Grant>
<Grantee xsi:type="Group">

<URI>http://acs.amazonaws.com/groups/global/AllUsers<URI>
</Grantee>
<Permission>READ</Permission>

</Grant>
</AccessControlList>
<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</PutObjectInline>

Sample Response

<PutObjectInlineResponse xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<PutObjectInlineResponse>

<ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>

Amazon Simple Storage Service Developer Guide
PutObjectInline

API Version 2006-03-01
128

<LastModified>2006-01-01T12:00:00.000Z</lastModified>
</PutObjectInlineResponse>

</PutObjectInlineResponse>

Elements

• Bucket: The bucket in which to add the object.

• Key: The key to assign to the object.

• Metadata: You can provide name-value metadata pairs in the metadata element. These will be
stored with the object.

• Data: The base 64 encoded form of the data.

• ContentLength: The length of the data in bytes.

• AccessControlList: An Access Control List for the resource. This element is optional. If omitted,
the requestor is given FULL_CONTROL access to the object. If the object already exists, the
pre-existing access control policy is replaced.

Response

• ETag: The entity tag is an MD5 hash of the object that you can use to do conditional fetches of the
object using GetObjectExtended.

• LastModified: The Amazon S3 timestamp for the saved object.

Access Control

You must have WRITE access to the bucket in order to put objects into the bucket.

PutObject

The PutObject operation adds an object to a bucket. The data for the object is attached as a DIME
attachment.

If the object already exists in the bucket, the new object overwrites the existing object. Amazon S3
orders all of the requests that it receives. It is possible that if you send two requests nearly
simultaneously, we will receive them in a different order than they were sent. The last request received
is the one which is stored in Amazon S3. Note that this means if multiple parties are simultaneously
writing to the same object, they may all get a successful response even though only one of them wins in
the end. This is because Amazon S3 is a distributed system and it may take a few seconds for one part of
the system to realize that another part has received an object update. In this release of Amazon S3, there
is no ability to lock an object for writing -- such functionality, if required, should be provided at the
application layer.

Example

Put some data and metadata in the "Nelson" object of the "quotes" bucket, give a user (usually the

Amazon Simple Storage Service Developer Guide
PutObject

API Version 2006-03-01
129

owner) FULL_CONTROL access to the object, and make the object readable by anonymous parties. In this
sample, the actual attachment is not shown:

Sample Request

<PutObject xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>quotes</Bucket>
<Key>Nelson</Key>
<Metadata>

<Name>Content-Type</Name>
<Value>text/plain</Value>

</Metadata>
<Metadata>

<Name>family</Name>
<Value>Muntz</Value>

</Metadata>
<ContentLength>5</ContentLength>
<AccessControlList>

<Grant>
<Grantee xsi:type="CanonicalUser">

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
<DisplayName>chriscustomer</DisplayName>

</Grantee>
<Permission>FULL_CONTROL</Permission>

</Grant>
<Grant>
<Grantee xsi:type="Group">

<URI>http://acs.amazonaws.com/groups/global/AllUsers<URI>
</Grantee>
<Permission>READ</Permission>

</Grant>
</AccessControlList>
<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
<Timestamp>2007-05-11T12:00:00.183Z</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</PutObject>

Sample Response

<PutObjectResponse xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<PutObjectResponse>

<ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>
<LastModified>2006-03-01T12:00:00.183Z</LastModified>

</PutObjectResponse>
</PutObjectResponse>

Elements

• Bucket: The bucket in which to add the object.

• Key: The key to assign to the object.

• Metadata: You can provide name-value metadata pairs in the metadata element. These will be
stored with the object.

• ContentLength: The length of the data in bytes.

• AccessControlList: An Access Control List for the resource. This element is optional. If omitted,
the requestor is given FULL_CONTROL access to the object. If the object already exists, the
pre-existing Access Control Policy is replaced.

Amazon Simple Storage Service Developer Guide
PutObject

API Version 2006-03-01
130

Response

• ETag: The entity tag is an MD5 hash of the object that you can use to do conditional fetches of the
object using GetObjectExtended.

• LastModified: The Amazon S3 timestamp for the saved object.

Access Control

To put objects into a bucket, you must have WRITE access to the bucket.

GetObject

GetObject is the basic operation for retrieving an object stored in Amazon S3. For more options, use
the GetObjectExtended operation.

Example

Get the "Nelson" object from the "quotes" bucket:

Sample Request

<GetObject xmlns="http://doc.s3.amazonaws.com/2006-03-01">

<Bucket>quotes</Bucket>

<Key>Nelson</Key>

<GetMetadata>true</GetMetadata>

<GetData>true</GetData>

<InlineData>true</InlineData>

<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>

<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>

<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</GetObject>

Sample Response

<GetObjectResponse xmlns="http://doc.s3.amazonaws.com/2006-03-01">

<GetObjectResponse>

<Status>

<Code>200</Code>

<Description>OK</Description>

</Status>

<Metadata>

<Name>Content-Type</Name>

<Value>text/plain</Value>

Amazon Simple Storage Service Developer Guide
GetObject

API Version 2006-03-01
131

</Metadata>

<Metadata>

<Name>family</Name>

<Value>Muntz</Value>

</Metadata>

<Data>aGEtaGE=</Data>

<LastModified>2006-01-01T12:00:00.000Z</LastModified>

<ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>

</GetObjectResponse>

</GetObjectResponse>

Elements

• Bucket: The bucket from which to retrieve the object.

• Key: The key that identifies the object.

• GetMetadata: The metadata is returned with the object if this is true.

• GetData: The object data is returned if this is true.

• InlineData: If this is true, then the data is returned, base 64-encoded, as part of the SOAP body of
the response. If false, then the data is returned as a SOAP attachment.

The InlineData option is not suitable for use with large objects. The system limits this operation to
working with 1MB of data or less. A GetObject request with the InlineData flag set will fail with the
InlineDataTooLargeError status code if the resulting Data parameter would have encoded more
than 1MB. To download large objects, consider calling GetObject without setting the InlineData flag,
or use the REST API instead.

Returned Elements

• Metadata: The name-value paired metadata stored with the object.

• Data: If InlineData was true in the request, this contains the base 64 encoded object data.

• LastModified: The time that the object was stored in Amazon S3.

• ETag: The object's entity tag. This is a hash of the object that can be used to do conditional gets.

Access Control

You can read an object only if you have been granted READ access to the object.

Amazon Simple Storage Service Developer Guide
GetObject

API Version 2006-03-01
132

Chunked and Resumable Downloads

To provide GET flexibility, Amazon S3 supports chunked and resumable downloads.

Select from the following:

• For large object downloads, you might want to break them into smaller chunks. For more information,
see Range GETs.

• For GET operations that fail, you can design your application to download the remainder instead of the
entire file. For more information, see REST GET Error Recovery.

Range GETs

For some clients, you might want to break large downloads into smaller downloads. To break a GET
into smaller units, use Range.

Before you can break a GET into smaller units, you must determine its size. For example, the following
request gets the size of the bigfile object.

<ListBucket xmlns="http://doc.s3.amazonaws.com/2006-03-01">

<Bucket>bigbucket</Bucket>

<Prefix>bigfile</Prefix>

<MaxKeys>1</MaxKeys>

<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>

<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>

<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</ListBucket>

Amazon S3 returns the following response:

<ListBucketResult xmlns="http://doc.s3.amazonaws.com/2006-03-01">

<Name>quotes</Name>

<Prefix>N</Prefix>

<MaxKeys>1</MaxKeys>

<IsTruncated>false</IsTruncated>

<Contents>

<Key>bigfile</Key>

<LastModified>2006-01-01T12:00:00.000Z</LastModified>

<ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>

<Size>2023276</Size>

<StorageClass>STANDARD</StorageClass>

<Owner>

Amazon Simple Storage Service Developer Guide
GetObject

API Version 2006-03-01
133

<ID>bcaf1ffd86f41caff1a493dc2ad8c2c281e37522a640e161ca5fb16fd081034f</ID>

<DisplayName>bigfile</DisplayName>

</Owner>

</Contents>

</ListBucketResult>

The following request downloads the first megabyte from the bigfile object.

<GetObject xmlns="http://doc.s3.amazonaws.com/2006-03-01">

<Bucket>bigbucket</Bucket>

<Key>bigfile</Key>

<GetMetadata>true</GetMetadata>

<GetData>true</GetData>

<InlineData>true</InlineData>

<ByteRangeStart>0</ByteRangeStart>

<ByteRangeEnd>1048576</ByteRangeEnd>

<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>

<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>

<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</GetObject>

Amazon S3 returns the first megabyte of the file and the Etag of the file.

<GetObjectResponse xmlns="http://s3.amazonaws.com/doc/2006-03-01">

<GetObjectResponse>

<Status>

<Code>200</Code>

<Description>OK</Description>

</Status>

<Metadata>

<Name>Content-Type</Name>

<Value>text/plain</Value>

</Metadata>

<Metadata>

<Name>family</Name>

<Valu>>Muntz</Value>

</Metadata>

Amazon Simple Storage Service Developer Guide
GetObject

API Version 2006-03-01
134

<Data>--first megabyte of bigfile--</Data>

<LastModified>2006-01-01T12:00:00.000Z</LastModified>

<ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>

</GetObjectResponse>

</GetObjectResponse>

To ensure the file did not change since the previous portion was downloaded, specify the IfMatch
element. Although the IfMatch element is not required, it is recommended for content that is likely to
change.

The following request gets the remainder of the file, using the IfMatch request header:

<GetObject xmlns="http://doc.s3.amazonaws.com/2006-03-01">

<Bucket>bigbucket</Bucket>

<Key>bigfile</Key>

<GetMetadata>true</GetMetadata>

<GetData>true</GetData>

<InlineData>true</InlineData>

<ByteRangeStart>10485761</ByteRangeStart>

<ByteRangeEnd>2023276</ByteRangeEnd>

<IfMatch>"828ef3fdfa96f00ad9f27c383fc9ac7f"</IfMatch>

<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>

<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>

<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</GetObject>

Amazon S3 returns the following response and the remainder of the file:

<GetObjectResponse xmlns="http://s3.amazonaws.com/doc/2006-03-01">

<GetObjectResponse>

<Status>

<Code>200</Code>

<Description>OK</Description>

</Status>

<Metadata>

<Name>Content-Type</Name>

<Value>text/plain</Value>

</Metadata>

Amazon Simple Storage Service Developer Guide
GetObject

API Version 2006-03-01
135

<Metadata>

<Name>family</Name>

<Value>>Muntz</Value>

</Metadata>

<Data>--remainder of bigfile--</Data>

<LastModified>2006-01-01T12:00:00.000Z</LastModified>

<ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>

</GetObjectResponse>

</GetObjectResponse>

REST GET Error Recovery

If an object GET fails, you can get the rest of the file by specifying the range to download. To do so, you
must get the size of the object using ListBucket and perform a range GET on the remainder of the file.
For more information, see GetObjectExtended.

Related Topics

Operations on Objects

GetObjectExtended

GetObjectExtended is exactly like GetObject, except that it supports the following additional
elements that can be used to accomplish much of the same functionality provided by HTTP GET
headers (http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html).

GetObjectExtended supports the following elements in addition to those supported by GetObject:

• ByteRangeStart, ByteRangeEnd: These elements specify that only a portion of the object data
should be retrieved. They follow the behavior of the HTTP byte ranges
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35).

• IfModifiedSince: Return the object only if the object's timestamp is later than the specified
timestamp. (http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25)

• IfUnmodifiedSince: Return the object only if the object's timestamp is earlier than or equal to the
specified timestamp. (http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.28)

• IfMatch: Return the object only if its ETag matches the supplied tag(s).
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24)

• IfNoneMatch: Return the object only if its ETag does not match the supplied tag(s).
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26)

• ReturnCompleteObjectOnConditionFailure:ReturnCompleteObjectOnConditionFailure: If
true, then if the request includes a range element and one or both of IfUnmodifiedSince/IfMatch
elements, and the condition fails, return the entire object rather than a fault. This enables the If-Range
functionality described here: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.27

DeleteObject

The DeleteObject operation removes the specified object from Amazon S3. Once deleted, there is no
method to restore or undelete an object.

Amazon Simple Storage Service Developer Guide
GetObjectExtended

API Version 2006-03-01
136

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.28
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.27

Note

If you delete an object that does not exist, Amazon S3 will return a success (not an error
message).

Example

Delete the "Nelson" object from the "quotes" bucket:

Sample Request

<DeleteObject xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>quotes</Bucket>
<Key>Nelson</Key>
<AWSAccessKeyId> 1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</DeleteObject>

Sample Response

<DeleteObjectResponse xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<DeleteObjectResponse>

<Code>200</Code>
<Description>OK</Description>

</DeleteObjectResponse>
</DeleteObjectResponse>

Elements

• Bucket: The bucket that holds the object.

• Key: The key that identifies the object.

Access Control

You can delete an object only if you have WRITE access to the bucket, regardless of who owns the object
or what rights are granted to it.

GetObjectAccessControlPolicy

The GetObjectAccessControlPolicy operation fetches the access control policy for an object.

Example

Retrieve the access control policy for the "Nelson" object from the "quotes" bucket:

Sample Request

<GetObjectAccessControlPolicy xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>quotes</Bucket>

Amazon Simple Storage Service Developer Guide
GetObjectAccessControlPolicy

API Version 2006-03-01
137

<Key>Nelson</Key>
<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</GetObjectAccessControlPolicy>

Sample Response

<AccessControlPolicy>
<Owner>

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
<DisplayName>chriscustomer</DisplayName>

</Owner>
<AccessControlList>

<Grant>
<Grantee xsi:type="CanonicalUser">

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
<DisplayName>chriscustomer</DisplayName>

</Grantee>
<Permission>FULL_CONTROL</Permission>

</Grant>
<Grant>
<Grantee xsi:type="Group">

<URI>http://acs.amazonaws.com/groups/global/AllUsers<URI>
</Grantee>
<Permission>READ</Permission>

</Grant>
</AccessControlList>

</AccessControlPolicy>

Response Body

The response contains the access control policy for the bucket. For an explanation of this response,
Using Amazon S3.

Access Control

You must have READ_ACP rights to the object in order to retrieve the access control policy for an object.

SetObjectAccessControlPolicy

The SetObjectAccessControlPolicy operation sets the access control policy for an existing object.
If successful, the previous access control policy for the object is entirely replaced with the specified
access control policy.

Example

Give the specified user (usually the owner) FULL_CONTROL access to the "Nelson" object from the
"quotes" bucket:

Sample Request

<SetObjectAccessControlPolicy xmlns="http://doc.s3.amazonaws.com/2006-03-01">
<Bucket>quotes</Bucket>
<Key>Nelson</Key>
<AccessControlList>

<Grant>
<Grantee xsi:type="CanonicalUser">

<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
<DisplayName>chriscustomer</DisplayName>

Amazon Simple Storage Service Developer Guide
SetObjectAccessControlPolicy

API Version 2006-03-01
138

</Grantee>
<Permission>FULL_CONTROL</Permission>

</Grant>
</AccessControlList>
<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>

</SetObjectAccessControlPolicy>

Sample Response

<SetObjectAccessControlPolicyResponse xm
lns="http://doc.s3.amazonaws.com/2006-03-01">

<SetObjectAccessControlPolicyResponse>
<Code>200</Code>
<Description>OK</Description>

</SetObjectAccessControlPolicyResponse>
</SetObjectAccessControlPolicyResponse>

Access Control

You must have WRITE_ACP rights to the object in order to set the access control policy for a bucket.

Amazon Simple Storage Service Developer Guide
SetObjectAccessControlPolicy

API Version 2006-03-01
139

Using BitTorrent™ with Amazon S3

Topics

• How You are Charged for BitTorrent Delivery

• Using BitTorrent to Retrieve Objects Stored in Amazon S3

• Publishing Content Using Amazon S3 and BitTorrent

BitTorrent™ is an open, peer-to-peer protocol for distributing files, invented by Bram Cohen. You can
use the BitTorrent protocol to retrieve any publicly-accessible object in Amazon S3. This section
describes why you might want to use BitTorrent to distribute your data out of Amazon S3 and how to do
so.

Amazon S3 supports the BitTorrent protocol so that developers can save costs when distributing content
at high scale. Amazon S3 is useful for simple, reliable storage of any data. The default distribution
mechanism for Amazon S3 data is via client/server download. In client/server distribution, the entire
object is transferred point-to-point from Amazon S3 to every authorized user who requests that object.
While client/server delivery is appropriate for a wide variety of use cases, it is not optimal for
everybody. Specifically, the costs of client/server distribution increase linearly as the number of
downloaders increases. This can make it expensive to distribute popular objects. BitTorrent addresses
this problem by recruiting the very clients that are downloading the object as distributors themselves:
Each client downloads some pieces of the object from Amazon S3 and some from other clients, while
simultaneously uploading pieces of the same object to other interested "peers." The benefit for
publishers is that for large, popular files the amount of data actually supplied by Amazon S3 can be
substantially lower than what it would have been serving the same clients via client/server download.
Less data transferred means lower costs for the publisher of the object.

How You are Charged for BitTorrent Delivery
There is no extra charge for use of BitTorrent with Amazon S3. Data transfer via the BitTorrent protocol
is metered at the same rate as client/server delivery. To be precise, whenever a downloading BitTorrent
client requests a "piece" of an object from the Amazon S3 "seeder," charges accrue just as if an
anonymous request for that piece had been made using the REST or SOAP protocol. These charges will
appear on your Amazon S3 bill and usage reports in the same way. The difference is that if a lot of
clients are requesting the same object simultaneously via BitTorrent, then the amount of data
Amazon S3 must serve to satisfy those clients will be lower than with client/server delivery. This is
because the BitTorrent clients are simultaneously uploading and downloading amongst themselves.

Amazon Simple Storage Service Developer Guide
How You are Charged for BitTorrent Delivery

API Version 2006-03-01
140

The data transfer savings achieved from use of BitTorrent can vary widely depending on how popular
your object is. Less popular objects require heavier use of the "seeder" to serve clients, and thus the
difference between BitTorrent distribution costs and client/server distribution costs may be small for
such objects. In particular, if only one client is ever downloading a particular object at a time, the cost of
BitTorrent delivery will be the same as direct download.

Using BitTorrent to Retrieve Objects Stored in
Amazon S3

Any object in Amazon S3 that can be read anonymously can also be downloaded via BitTorrent. Doing
so requires use of a BitTorrent client application. Amazon does not distribute a BitTorrent client
application, but there are many free clients available. The Amazon S3BitTorrent implementation has
been tested to work with the official BitTorrent client, available at http://www.bittorrent.com/.

The starting point for a BitTorrent download is a .torrent file. This small file describes for BitTorrent
clients both the data to be downloaded and where to get started finding that data. A .torrent file is a small
fraction of the size of the actual object to be downloaded. Once you feed your BitTorrent client
application an Amazon S3 generated .torrent file, it should start downloading immediately from
Amazon S3 and from any "peer" BitTorrent clients.

Retrieving a .torrent file for any publicly available object is easy. Simply add a "?torrent" query string
parameter at the end of the REST GET request for the object. No authentication is required. Once you
have a BitTorrent client installed, downloading an object using BitTorrent download may be as easy as
opening this URL in your web browser.

There is no mechanism to fetch the .torrent for an Amazon S3 object using the SOAP API.

Example

Retrieve the Torrent file for the "Nelson" object in the "quotes" bucket:

Sample Request

GET /quotes/Nelson?torrent HTTP/1.0
Date: Wed, 01 Mar 2006 12:00:00 GMT

Sample Response

HTTP/1.1 200 OK
x-amz-request-id: 7CD745EBB7AB5ED9
Date: Wed, 01 Mar 2006 12:00:00 GMT
Content-Disposition: attachment; filename=Nelson.torrent;
Content-Type: application/x-bittorrent
Content-Length: 537
Server: AmazonS3

<body: a Bencoded dictionary as defined by the BitTorrent specification>

Publishing Content Using Amazon S3 and
BitTorrent

Every anonymously readable object stored in Amazon S3 is automatically available for download using

Amazon Simple Storage Service Developer Guide
Using BitTorrent to Retrieve Objects Stored in Amazon S3

API Version 2006-03-01
141

http://www.bittorrent.com/

BitTorrent. The process for changing the ACL on an object to allow anonymous READ operations is
described in Authentication and Access Control.

You can direct your clients to your BitTorrent accessible objects by giving them the .torrent file directly
or by publishing a link to the ?torrent URL of your object. One important thing to note is that the .torrent
file describing an Amazon S3 object is generated on-demand, the first time it is requested (via the REST
?torrent resource). Generating the .torrent for an object takes time proportional to the size of that object.
For large objects, this time can be significant. Therefore, before publishing a ?torrent link, we suggest
making the first request for it yourself. Amazon S3 may take several minutes to respond to this first
request, as it generates the .torrent file. Unless you update the object in question, subsequent requests for
the .torrent will be fast. Following this procedure before distributing a ?torrent link will ensure a smooth
BitTorrent downloading experience for your customers.

To stop distributing a file using BitTorrent, simply remove anonymous access to it. This can be
accomplished by either deleting the file from Amazon S3, or modifying your access control policy to
prohibit anonymous reads. After doing so, Amazon S3 will no longer act as a "seeder" in the BitTorrent
network for your file, and will no longer serve the .torrent file via the ?torrent REST API. However,
once a .torrent for your file has been published, this action may not be sufficient to stop public
downloads of your object that happen exclusively using the BitTorrent peer to peer network.

Amazon Simple Storage Service Developer Guide
Publishing Content Using Amazon S3 and BitTorrent

API Version 2006-03-01
142

Glossary

account AWS account associated with a particular developer.

bucket A container for objects stored in Amazon S3. Every object is
contained within a bucket. For example, if the object named
photos/puppy.jpg is stored in the johnsmith bucket, then it is
addressable using the URL
http://johnsmith.s3.amazonaws.com/photos/puppy.jpg

consistency model The method through which Amazon S3 achieves high availability,
which involves replicating data across multiple servers within
Amazon's data centers. After a "success" is returned, your data is
safely stored. However, information about the changes might not be
immediately replicated across Amazon S3.

key The unique identifier for an object within a bucket. Every object in a
bucket has exactly one key. Since a bucket and key together
uniquely identify each object, Amazon S3 can be thought of as a
basic data map between "bucket + key" and the object itself. Every
object in Amazon S3 can be uniquely addressed through the
combination of the Service endpoint, bucket name, and key, as in
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl, where
"doc" is the name of the bucket, and "2006-03-01/AmazonS3.wsdl"
is the key.

metadata The metadata is a set of name-value pairs that describe the object.
These include default metadata such as the date last modified and
standard HTTP metadata such as Content-Type. The developer can
also specify custom metadata at the time the Object is stored.

object The fundamental entities stored in Amazon S3. Objects consist of
object data and metadata. The data portion is opaque to Amazon S3.

service endpoint The host and port with which you are trying to communicate within
the destination URL. For virtual hosted-style requests, this is
mybucket.s3.amazonaws.com. For path-style requests, this is
s3.amazonaws.com

Amazon Simple Storage Service Developer Guide

API Version 2006-03-01
143

Document Conventions

This section lists the common typographical and symbol use conventions for AWS technical
publications.

Typographical Conventions
This section describes common typographical use conventions.

Convention Description/Example

Call-outs A call-out is a number in the body text to give you a visual reference. The
reference point is for further discussion elsewhere.

You can use this resource regularly.

Code in text Inline code samples (including XML) and commands are identified with a
special font.

You can use the command java -version.

Code blocks Blocks of sample code are set apart from the body and marked accordingly.

ls -l /var/www/html/index.html

-rw-rw-r-- 1 root root 1872 Jun 21 09:33 /
var/www/html/index.html

date

Wed Jun 21 09:33:42 EDT 2006

Emphasis Unusual or important words and phrases are marked with a special font.

You must sign up for an account before you can use the service.

Internal cross
references

References to a section in the same document are marked.

See Document Conventions.

Logical values, A special font is used for expressions that are important to identify, but are

Amazon Simple Storage Service Developer Guide
Typographical Conventions

API Version 2006-03-01
144

Convention Description/Example

constants, and regular
expressions, abstracta

not code.

If the value is null, the returned response will be false.

Product and feature
names

Named AWS products and features are identified on first use.

Create an Amazon Machine Image (AMI).

Operations In-text references to operations.

Use the GetHITResponse operation.

Parameters In-text references to parameters.

The operation accepts the parameter AccountID.

Response elements In-text references to responses.

A container for one CollectionParent and one or more
CollectionItems.

Technical publication
references

References to other AWS publications. If the reference is hyperlinked, it is
also underscored.

For detailed conceptual information, see the Amazon Mechanical Turk
Developer Guide.

User entered values A special font marks text that the user types.

At the password prompt, type MyPassword.

User interface controls
and labels

Denotes named items on the UI for easy identification.

On the File menu, click Properties.

Variables When you see this style, you must change the value of the content when you
copy the text of a sample to a command line.

% ec2-register <your-s3-bucket>/image.manifest

See also the symbol convention below.

Amazon Simple Storage Service Developer Guide
Typographical Conventions

API Version 2006-03-01
145

Symbol Conventions
This section describes the common use of symbols.

Convention Symbol Description/Example

Mutually
exclusive
parameters

(Parentheses | and |
vertical | bars)

Within a code description, bar separators denote options from
which one must be chosen.

% data = hdfread (start | stride | edge)

Optional
parameters

XML variable
text

[square brackets] Within a code description, square brackets denote completely
optional commands or parameters.

% sed [-n, -quiet]

Use square brackets in XML examples to differentiate them
from tags.

<CustomerId>[ID]</CustomerId>

Variables <arrow brackets> Within a code sample, arrow brackets denote a variable that
must be replaced with a valid value.

% ec2-register <your-s3-bucket>/image.manifest

Amazon Simple Storage Service Developer Guide
Symbol Conventions

API Version 2006-03-01
146

Index

Symbols
100-continue, 75

A
access control, 21
access logs, 49
access policy

REST, 70
SOAP, 118

Adobe Flash, 77
Amazon DevPay, 37
API, 8

REST, 9, 57
SOAP, 9, 116

audience, 3
authentication, 21

debugging, 68
REST, 60
SOAP, 117

authentication header, 61

B
billing, 10
BitTorrent, 140

charges, 140
publishing, 141
retrieving objects, 141

browser uploads, 77
bucket location, get

get, 100
buckets, 7, 11

access control, 14
billing, 14
configuration, 13
creating, 121
location selection, 13
putting, 97
REST operations, 96
restrictions, 12
SOAP operations, 120
virtual hosting, 71

C
CanonicalizedAmzHeaders element, 63
changes, 1
charges, 10
chunked downloads, 21
components, 7
concepts, 7

API, 8
buckets, 7
components, 7

keys, 8
objects, 8
operations, 8
REST API, 9
SOAP API, 9

configuring logging, 47
consistency model, 9
costs, 10
CreateBucket

SOAP, 121
creating buckets

SOAP, 121

D
data model, 9
DELETE

REST, 100, 114
SOAP, 121

DeleteObject
SOAP, 136

deleting objects
REST, 114
SOAP, 136

delimiter, 16, 19
DevPay, 37
DNS, 36
DNS routing, 31, 33, 35
downloads, chunked and resumable, 21

E
elements

REST, 58
SOAP, 116

errors, 41
details, 42
isolation, 41
list, 42
messages, 42
response, 41
responses, 40
REST response, 59
SlowDown, 41
SOAP response, 117

F
features, 6
file size, maximum, 6
Flash, Adobe, 77

G
GET

object, REST, 109
REST, 98, 100

get bucket location
REST, 100

GET policy

Amazon Simple Storage Service Developer Guide

API Version 2006-03-01
147

REST, 95
GetBucketAccessControlPolicy

SOAP, 124
GetBucketLoggingStatus

SOAP, 125
GetObject

SOAP, 131
GetObjectAccessControlPolicy

SOAP, 137
GetObjectExtended

SOAP, 136
glossary, 143
guide organization, 4

H
HEAD object

REST, 114
HTTP user agents, 75

I
introduction, 6
IsTruncated, 16

J
Java, 36
JVM cache, 36

K
keys, 8

listing, 15
listing hierarchically, 19
multi-page results, 18
request parameters, 16
responses, 16
using, 15

L
ListAllMyBuckets

SOAP, 119
ListBucket

SOAP, 122
listing keys, hierarchically, 19
location constraints, 13
logs, 46

best effort delivery, 50
changing settings, 49
configuration, 47
delivery, 49
format, 50
setting up, 53

M
marker, 16
MaxKeys, 16
metadata, using, 19

model, 9

N
NextMarker, 16

O
object size, maximum, 6
objects, 8

getting, 20
REST operations, 107
SOAP operations, 127
using, 14

operations, 8
organization of guide, 4
overview, 6

P
pagination, 18
paying, 10
performance optimization, 36
PHP virtual machine, 36
POST, 77, 101
prefix, 16, 19
PUT

REST, 97
PUT, REST, 107
PutObject

SOAP, 129
PutObjectInline

SOAP, 127
putting buckets

REST, 97

R
redirection, 74

permanent, 35
request, 31
temporary, 33

referer, 50
request redirection, 31

access policy, 74
request routing, 31
resources, related, 4
REST

access policy, 70
API, 57
authentication, 60

examples, 64
header, 61

bucket operations, 96
debugging authentication, 68
DELETE, 100
DELETE objects, 114
elements, 58
GET, 95, 98, 100
GET object, 109

Amazon Simple Storage Service Developer Guide

API Version 2006-03-01
148

HEAD object, 114
object operations, 107
POST, 77, 101
PUT, 97
PUT object, 107
service operations, 95
StringToSign, 63
time stamp, 63

restrictions, 12
resumable downloads, 21
routing, 31

DNS, 31

S
server access logs, 46, 49
service

REST operations, 95
SOAP operations, 119

SetBucketAccessControlPolicy
SOAP, 124

SetBucketLoggingStatus
SOAP, 126

SetObjectAccessControlPolicy
SOAP, 138, 140

size, object, 6
SOAP

access policy, 118
API, 116
authentication, 117
bucket operations, 120
CreateBucket, 121
DELETE, 121
DELETE objects, 136
elements, 116
error response, 117
GetBucketAccessControlPolicy, 124
GetBucketLoggingStatus, 125
GetObject, 131
GetObjectAccessControlPolicy, 137
GetObjectExtended, 136
ListAllMyBuckets, 119
ListBucket, 122
object operations, 127
PutObject, 129
PutObjectInline, 127
SetBucketAccessControlPolicy, 124
SetBucketLoggingStatus, 126
SetObjectAccessControlPolicy, 138

SOPA
service operations, 119

storage limit, 6
StringToSign, 63
system metadata, 19

T
TCP optimization, 36
time stamp, 63

TTLs, clients, 36

U
uploads, browser, 77
user metadata, 19
using Amazon S3, 11

V
virtual hosted buckets, 71
virtual machines, 36

Amazon Simple Storage Service Developer Guide

API Version 2006-03-01
149

	Amazon Simple Storage Service
	What's New
	Welcome to Amazon S3
	Audience
	Required Knowledge and Skills

	How This Guide Is Organized
	Related Resources

	Introduction to Amazon S3
	Overview of Amazon S3
	Service Features

	Core Concepts
	Components of Amazon S3
	Buckets
	Objects
	Keys

	Operations
	Amazon S3 Application Programming Interfaces (API)
	REST Interface
	SOAP Interface

	Amazon S3 Data Consistency Model
	Paying for Amazon S3

	Using Amazon S3
	Working with Amazon S3 Components
	Working with Amazon S3 Buckets
	Bucket Restrictions and Limitations
	Bucket Configuration Options
	Location Selection
	Bucket Access
	Redirection

	Buckets and Access Control
	Billing and Reporting of Buckets

	Working with Amazon S3 Objects
	Keys
	Listing Keys
	List Implementation Efficiency

	Common List Request Parameters
	Access Control

	Common List Response Elements
	Access Control

	Iterating Through Multi-Page Results
	Listing Keys Hierarchically using Prefix and Delimiter

	Metadata
	Metadata Size
	Metadata Interoperability

	Getting Objects
	Standard Downloads
	Chunked and Resumable Downloads

	Authentication and Access Control
	Authentication
	Viewing Your Credentials
	Using HMAC-SHA1 Signatures
	Detailed Authentication Information

	Using Base64 Encoding

	Access Control Lists
	Grantees
	Owner
	User by Email
	User by Canonical Representation
	AWS User Group
	AllUsers Group

	Permissions
	Using ACLs

	Query String Authentication

	Request Routing
	Request Redirection and the REST API
	Overview
	DNS Routing
	Temporary Request Redirection
	Permanent Request Redirection
	Examples

	DNS Considerations

	Performance Optimization
	TCP Window Scaling
	TCP Selective Acknowledgement

	Using Amazon DevPay with Amazon S3
	Amazon S3 Customer Data Isolation
	Example

	Amazon DevPay Token Mechanism
	Amazon S3 and Amazon DevPay Authentication
	Amazon S3 Bucket Limitation
	Amazon S3 and Amazon DevPay Process
	Additional Information

	Working with Errors
	Amazon S3 Error Best Practices
	Retry InternalErrors
	Tune Application for Repeated SlowDown errors
	Isolate Errors

	Error Response
	Error Code
	Error Message
	Further Details
	List of Error Codes

	Server Access Logging
	Server Access Logging Configuration API
	BucketLoggingStatus Changes Take Effect Over Time

	Delivery of Server Access Logs
	Access Control Interaction
	Best Effort Server Log Delivery
	Usage Report Consistency

	Server Access Log Format
	Custom Access Log Information
	Extensible Server Access Log Format

	Setting Up Server Access Logging
	Preparing the Target Bucket
	Enabling Server Access Logging on the Source Bucket
	Disabling Server Logging for a Bucket

	Using the REST API
	Common REST API Elements
	Common Request Headers

	The REST Error Response
	Response Headers

	Authenticating REST Requests
	Constructing the Authentication Header
	Request Canonicalization for Signing
	Constructing the CanonicalizedResource Element
	Constructing the CanonicalizedAmzHeaders Element
	Positional versus Named HTTP Header StringToSign Elements
	Time Stamp Requirement
	Examples
	Debugging REST Request Signing Problems
	Query String Request Authentication Alternative

	Setting Access Policy with REST
	Setting the ACL on an Existing Bucket or Object
	Canned Access Policies

	Virtual Hosting of Buckets
	Using the HTTP Host Header to Specify the Bucket
	Examples
	Custom Amazon S3 URLs using CNAMEs
	Limitations
	Backwards Compatibility

	Request Redirection and the REST API
	Redirects and HTTP User-Agents
	Redirects and 100-Continue
	Example

	Browser-Based Uploads Using POST
	Introduction
	HTML Forms
	HTML Form Encoding
	HTML Form Declaration
	HTML Form Fields
	Policy Construction
	Expiration
	Conditions
	Condition Matching
	Character Escaping

	Signature Construction
	Redirection
	General Redirection
	Pre-Upload Redirection

	Examples
	File Upload
	Constructing the Policy and Form
	Sample Request
	Sample Response

	Text Area Upload
	Constructing the Policy and Form
	Sample Request
	Sample Response

	POST with Adobe Flash
	Adobe Flash Player Security
	Other Adobe Flash Considerations

	Operations on the Service
	GET Operation
	Response Body
	Access Control

	Operations on Buckets
	PUT Bucket
	Access Control

	GET Bucket
	Request Parameters
	Response Body
	Access Control

	GET Bucket Location
	Request Parameters
	Access Control

	DELETE Bucket
	Access Control

	POST Object
	Request Headers
	Form Data
	POST Response Body

	Request Body
	Response Headers
	Access Control

	Operations on Objects
	PUT Object
	Request Headers
	Request Body
	Response Headers
	Access Control

	GET Object
	Request Headers
	Response Headers
	Access Control
	Chunked and Resumable Downloads
	Range GETs
	REST GET Error Recovery
	Related Topics

	HEAD Object
	DELETE Object
	Access Control

	Using the SOAP API
	Common SOAP API Elements
	SOAP Endpoint
	Common Elements

	The SOAP Error Response
	Authenticating SOAP Requests
	Setting Access Policy with SOAP
	Operations on the Service
	ListAllMyBuckets
	Response Body
	Access Control

	Operations on Buckets
	CreateBucket
	Elements
	Access Control

	DeleteBucket
	Elements
	Access Control

	ListBucket
	Elements
	Response Body
	Access Control

	GetBucketAccessControlPolicy
	Response Body
	Access Control

	SetBucketAccessControlPolicy
	Access Control

	GetBucketLoggingStatus
	Access Control

	SetBucketLoggingStatus
	Access Control

	Operations on Objects
	PutObjectInline
	Elements
	Response
	Access Control

	PutObject
	Elements
	Response
	Access Control

	GetObject
	Elements
	Returned Elements
	Access Control
	Chunked and Resumable Downloads
	Range GETs
	REST GET Error Recovery
	Related Topics

	GetObjectExtended
	DeleteObject
	Elements
	Access Control

	GetObjectAccessControlPolicy
	Response Body
	Access Control

	SetObjectAccessControlPolicy
	Access Control

	Using BitTorrent™ with Amazon S3
	How You are Charged for BitTorrent Delivery
	Using BitTorrent to Retrieve Objects Stored in Amazon S3
	Publishing Content Using Amazon S3 and BitTorrent

	Glossary
	

	Document Conventions
	Typographical Conventions
	Symbol Conventions

	Index

