
Ghent University, Belgium

University of Sassari, Italy

European Synchrotron Radiation Facility,
Grenoble, France

Diamond Light Source,
Didcot, United Kingdom

XMI-MSIM

The definitive manual

Version 8.0

Tom Schoonjans

February 7, 2020

Contents
1 Introduction 3

2 Installation instructions 3
2.1 Compiling from source . 3

2.1.1 Compilation stages . 4
2.1.2 Preparing the precompiled dataset 5
2.1.3 Note on the random number generators 5

2.2 Linux . 5
2.2.1 Fedora, Centos and Scientific Linux 6
2.2.2 Debian and Ubuntu 6

2.3 Windows . 7
2.4 macOS . 8

3 User guide 8
3.1 Launching XMI-MSIM . 8
3.2 Creating an input-file . 10

3.2.1 General . 10
3.2.2 Composition . 10
3.2.3 Geometry . 16
3.2.4 Excitation . 20
3.2.5 Beam and detection absorbers 21
3.2.6 Detector settings . 22

3.3 Saving an input-file . 24
3.4 Starting a simulation . 24

3.4.1 Control panel . 24
3.4.2 Executable . 25
3.4.3 Options . 26
3.4.4 Export results . 27
3.4.5 During a simulation 27

3.5 Visualizing the results . 29
3.5.1 Plot canvas . 29
3.5.2 Net-line intensities . 29
3.5.3 Exporting the plot canvas 30

3.6 Global preferences . 31
3.6.1 Simulation defaults . 31
3.6.2 Updates . 32
3.6.3 User-defined layers . 32
3.6.4 Advanced . 32

3.7 Checking for updates . 32
3.8 Command line interface . 32
3.9 Example files . 33

1

4 Advanced usage 34
4.1 X-ray sources . 34

4.1.1 X-ray tube spectrum generator 34
4.1.2 Radionuclides . 36
4.1.3 Custom sources . 37

4.2 Batch simulations . 39
4.2.1 Batch simulations: simulate a number of unrelated

input-files . 39
4.2.2 Batch simulations: vary one or two parameters in a

single input-file . 40
4.3 Generate XRMC input-files 43
4.4 Using the XMI-MSIM API from Python 44
4.5 Custom detector response functions 47

4.5.1 Building modules on macOS 49
4.5.2 Building modules on Linux 50
4.5.3 Building modules on Windows 50

5 The XMI-MSIM API: list of functions 51

6 References and addtional resources 52
6.1 Papers by Laszlo Vincze et al. 52
6.2 Papers by Tom Schoonjans et al. 52
6.3 Posters by Tom Schoonjans et al. 53
6.4 Oral presentations by Tom Schoonjans et al. 53

2

1 Introduction
XMI-MSIM is an open source tool designed for predicting the spectral
response of energy-dispersive X-ray fluorescence spectrometers using Monte
Carlo simulations. It comes with a fully functional graphical user interface
in order to make it as user friendly as possible. Considerable effort has been
taken to ensure easy installation on all major platforms.
Development of this package was part of my PhD thesis. The algorithms were
inspired by the work of my promotor Prof. Laszlo Vincze of Ghent University.
Links to his and my own publications can be found in this manual.
A manuscript has been published in Spectrochimica Acta Part B that covers
the algorithms that power XMI-MSIM. Please include a reference to this
publication in your own work if you decide to use XMI-MSIM for academic
purposes.
A second manuscript was published that covers our XMI-MSIM based quan-
tification plug-in for PyMca.
XMI-MSIM is released under the terms of the GPLv3.

2 Installation instructions

2.1 Compiling from source

XMI-MSIM has been successfully built on Linux (Debian/Ubuntu and
RHEL/CentOS/Fedora), macOS (High Sierra and up) and Windows 7 (with
the 64-bit MinGW-w64 compilers installed using MSYS2). Obtain the
source code from our download repository, kindly hosted by the X-ray
Microspectroscopy and Imaging research group of Ghent University.
The following dependencies are required to build XMI-MSIM:

• fortran 2003 compiler (gfortran >= 4.4, Intel Fortran are known to
work)

• C compiler with OpenMP support (gcc and clang). The native Mac
OS X version requires that the compiler supports Objective-C as well.
When compiling the GUI, a C++ compiler becomes an additional
requirement.

• HDF5
• libxml2
• libxslt
• Fortran GSL bindings (FGSL) or easyRNG
• xraylib 4.0.0+ (including Fortran bindings)
• glib2
• GTKMM3, Gtkmm-PLplot and libpeas (1.22.0+) for the graphical

user interface (optional though highly recommended)
• optional for the GUI: json-glib, libsoup (Linux only)

3

http://dx.doi.org/10.1016/j.sab.2012.03.011
http://dx.doi.org/10.1016/j.sab.2012.12.011
http://pymca.sourceforge.net
http://www.gnu.org/copyleft/gpl.html
http://lvserver.ugent.be/xmi-msim

• MPI (OpenMPI or Intel MPI): optional. Recommended for those that
want to perform brute-force simulations with a very high number of
simulated photons

All dependencies should be easy to obtain, with the exception of those
projects I manage personally:
Windows users will have to compile most of these dependencies themselves,
which will require them to install a bash shell with all basic UNIX utilities.
Our 64-bit version was built with MSYS2 and its GCC packages.
It is absolutely critical that all Fortran packages are compiled with the exact
same compiler, and this same compiler also needs to be used when building
XMI-MSIM.

2.1.1 Compilation stages

Unpack the tarball:

tar xvfz xmimsim-x.y.tar.gz
cd xmimsim-x.y

Configure the source tree by examining the capabilities of the host system:

./configure

The configure command has a long list of options. You can have a look at
them by executing:

./configure --help

A commonly used option is to change the installation destination: this can
be accomplished by using the --prefix option. If your Fortran compiler
does not have a standard name, you may have to specify it as an option to
configure such as FC=gfortran-9. Packages that are not installed in default
locations, may not be detected by the configure script and could result in the
configure script aborting prematurely. This is particularly likely for packages
like xraylib and/or fgsl that are installed in /usr/local. Such a problem
can be avoided by setting the PKG_CONFIG_PATH environment variable
manually:

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig

If the configure script terminates without error, try building the code by
running:

make

4

It is not recommended to invoke make with the -j option, as it may confuse
the fortran compiler.
After compilation, install the program using:

make install

This may have to be executed with root privileges.

2.1.2 Preparing the precompiled dataset

XMI-MSIM loads, before running a simulation, datasets of precomputed
physical data into memory, depending on the exact parameters in the input
file. These datasets are mostly inverse cumulative distribution functions of
scattering cross-sections, which would be very computationally expensive to
calculate during the simulation itself based on the corresponding probability
density functions.
This file is generated using the xmimsim-db executable, which produces a file
called xmimsimdata.h5 in the current working directory. After this file is
created, which can take up to half an hour on slower machines, copy it to the
data folder of your XMI-MSIM installation. Assuming the default installation
destination was not altered, this would be /usr/local/share/xmimsim.

2.1.3 Note on the random number generators

XMI-MSIMs random number generators are seeded on Mac OS X and Linux
using high quality noise produced by /dev/urandom. The seeds can be
collected in two ways:

1. The user launches the xmimsim-harvester daemon, which will collect
seeds at frequent intervals and pass them along to XMI-MSIM when
requested. The daemon is ideally started at boottime (using some initd
script), or on Mac OS X, by copying the be.ugent.xmi.harvester.plist
file from its installation location (prefix/Library/LaunchDaemons) to
/Library/LaunchDaemons and subsequently invoking sudo launchctl
load /Library/LaunchDaemons/be.ugent.xmi.harvester.plist. It
should be noted that the daemon is buggy, and it is generally not rec-
ommended to use this solution.

2. If the daemon is not running, then a separate thread is launched in
XMI-MSIM at runtime which takes care of harvesting the seeds (a bit
slower, but reliable).

2.2 Linux

Keep in mind that we only provide packages for distributions that are
currently officially supported!

5

2.2.1 Fedora, Centos and Scientific Linux

To facilitate the installation on RPM based Linux distributions, the package
includes a spec file which can be used to produce RPM packages for linux
distributions that support them (Fedora, Red Hat etc). The developers
have built 64-bit RPM packages of XMI-MSIM for the officially supported
Fedora and Redhat EL/CentOS/Scientific Linux 7/8 distributions. These
can be downloaded from the RPM repository that is hosted by the X-ray
Microspectroscopy and Imaging research group of Ghent University. Access
to this repository can be obtained as follows for Fedora distros:

su -c 'rpm -Uvh http://lvserver.ugent.be/yum/xmi-repo-key-fedora.noarch.rpm'

for Red Hat EL 7 based distributions:

su -c 'rpm -Uvh http://lvserver.ugent.be/yum/xmi-repo-key-7.0-1.el7.noarch.rpm'

and for Red Hat EL 8 based distributions:

su -c 'rpm -Uvh http://lvserver.ugent.be/yum/xmi-repo-key-8.0-1.el8.noarch.rpm'

The XMI-MSIM packages themselves can then be downloaded using yum:

su -c 'yum install xmimsim'

Updates can be installed in a similar way:

su -c 'yum update xmimsim'

The OpenCL plugin can be installed using:

su -c 'yum install xmimsim-opencl'

For this to work you will need to install OpenCL drivers that match your
videocard.

2.2.2 Debian and Ubuntu

Packages were created for Debian and Ubuntu. Currently the following
flavors are supported: Debian Stretch and several Ubuntu versions.
In order to access these packages using your favorite package manager,
execute the following command to import our public key:

curl http://lvserver.ugent.be/apt/xmi.packages.key | sudo
apt-key add -

6

Next, add the package download location corresponding to your distribution
to the /etc/apt/sources.list file (as root):
Debian Buster:

deb http://lvserver.ugent.be/apt/debian buster stable
deb-src http://lvserver.ugent.be/apt/debian buster stable

Ubuntu Bionic 18.04:

deb [arch=amd64] http://xmi-apt.tomschoonjans.eu/ubuntu bionic stable
deb-src http://xmi-apt.tomschoonjans.eu/ubuntu bionic stable

Ubuntu Eoan 19.10:

deb [arch=amd64] http://xmi-apt.tomschoonjans.eu/ubuntu eoan stable
deb-src http://xmi-apt.tomschoonjans.eu/ubuntu eoan stable

When the sources.list file contains the correct download locations, update
the apt cache by running:

sudo apt-get update

After this, one can install XMI-MSIM by executing the following command:

sudo apt-get install xmimsim

The OpenCL plugin can be installed using:

sudo apt-get install libxmimsim-ocl

For this to work you will need to install OpenCL drivers that match your
videocard.

2.3 Windows

Installers containing the 64-bit binaries of XMI-MSIM for the Windows
platform can be found in the Downloads section. It will download and
install xraylib if necessary.
The Windows releases ship with the OpenCL plug-in for XMI-MSIM. In
order for this plug-in to function, you need 1) to have a videocard that
supports OpenCL 1.1 and 2) have the OpenCL drivers installed as provided
by your videocard’s manufacturer. To confirm that this is indeed the case,
try running XMI-MSIM with GPU support enabled: if it fails, an error
message will be shown in the log box in red, followed by a fallback to the
default Fortran implementation.
Nightly builds for Windows can be downloaded here. These installers will
download the main HDF5 data file, which may take quite some time, de-
pending on the connection speed. Keep in mind that these are development
snapshots, and that they should not be considered ’stable’. If you run into
bugs or unexpected behavior while using these nightly builds, I would be
grateful if you could let me know.

7

http://lvserver.ugent.be/xmi-msim
https://xmi-msim.tomschoonjans.eu/index.html

2.4 macOS

A dmg file has been created containing an application bundle which integrates
nicely within Mac OS X, through the use of some dedicated API’s. The
provided app will run on macOS Yosemite and newer (all 64-bit Intel only).
After downloading, mount the dmg file and drag the XMI-MSIM app to the
Applications folder.
Homebrew can also be used to install a more UNIX-like version of XMI-MSIM,
allowing you to run the GUI and other executables from the command-line,
and is required when installing XRMC with its XMI-MSIM plug-in.
In order to install XMI-MSIM using Homebrew type in a terminal:

brew install tschoonj/tap/xmi-msim

To install XRMC with XMI-MSIM support (in this case the previous com-
mand does not have to be executed since XMI-MSIM will be installed first
as a dependency):

brew install tschoonj/tap/xrmc --with-xmi-msim

3 User guide
In this section a short manual is presented that should allow users to get
started with XMI-MSIM. Although the screenshots were obtained on a Mac,
they should be representative for Windows and Linux as well. Significant
differences will be indicated. The following guide assumes that the user has
already installed XMI-MSIM, according to the Installation instructions.

3.1 Launching XMI-MSIM

For macOS users: assuming you dragged the app into the Applications folder,
use Finder or Spotlight to launch XMI-MSIM. If you get a dialog complaining
about XMI-MSIM being untrusted, you will need to right-click the app icon
and click ’Open’ where there will be an option to open the app anyway.
Afterwards, you will not have to do this again. The warning is due to me
not signing the app with an Apple issued certificate, for which I would need
to pay $100 US a year...
For Windows users: an entry should have been added to the Start menu.
Navigate towards it in Programs and click on XMI-MSIM.
For Linux users: an entry should have been added to the Education section
of your Start menu. Since this may very considerably depending on the Linux
flavor that is being used, this may not be obvious at first. Alternatively, fire
up a terminal and type:

xmimsim-gui

8

http://lvserver.ugent.be/xmi-msim
http://brew.sh
http://github.com/golosio/xrmc

Your desktop should now be embellished with a window resembling the one
in the following screenshot.

Figure 1: XMI-MSIM on startup

XMI-MSIM may also be started on most platforms by double clicking XMI-
MSIM input-files (.xmsi extension) and output-files (.xmso extension) in
your platform’s file manager, thereby loading the file’s contents.
The main window of the XMI-MSIM GUI consists of three pages that each
serve a well-defined purpose. The first page is used to generate inputfiles,
based on a number of parameters that are defined by the user. The second
page allows for the execution of these files, while the third and last page
is designed to visualise the results and help in their interpretation. The
purpose of the following sections is to provide an in-depth guide on how to
operate these pages.
When starting XMI-MSIM without providing a file to open, a new file will

9

be started with default settings. The same situation can be obtained at any
moment by clicking on New in the toolbar.

3.2 Creating an input-file

The first page consists of a number of frames, each designed to manipulate a
particular part of the parameters that govern a simulation.

3.2.1 General

The General section contains 4 parameters:

• Outputfile: clicking the Save button will pop up a file chooser dialog,
allowing you to select the name of the outputfile that will contain the
results of the simulation

• Number of photons per discrete line: the excitation spectrum as it
is used by the simulation may consist of a number of discrete com-
ponents with each a given energy and intensity (see Excitation for
more information). This parameter will determine how many photons
are to be simulated per discrete line. The calculation time is directly
proportional to this value

• Number of photons per interval: the excitation spectrum as it is used
by the simulation may consist of a number of continuous interval
components defined by the given energies and intensity densities at
the beginning and the end of the intervals (see Excitation for more
information). This parameter will determine how many photons are to
be simulated per interval. The calculation time is directly proportional
to this value

• Number of interactions per trajectory: this parameter will determine
the maximum number of interactions a photon can experience during
its trajectory. It is not recommended to set this value to higher than 4,
since the contribution of increasingly higher order interactions to the
spectrum decreases fast. The calculation time is directly proportional
to this value

• Comments: use this textbox to write down some notes you think are
useful.

3.2.2 Composition

This interface allows you to define the system that will make up your sample
and possibly its environment. XMI-MSIM assumes that the system is defined
as a stack of parallel layers, each defined by its composition, thickness
(measured along the Sample orientation vector) and density. Adding layers
can be accomplished by simply clicking the Add button. A dialog will pop
up as seen in the following screenshot:

10

Figure 2: Defining a new layer

The different elements that make up the layer are added by clicking on the
Add button. A small dialog will emerge, enabling you to define a compound
or a single element, with its corresponding weight fraction. In the following
screenshot, I used CuSO4 with a weight fraction of 50 % to start with.
You may wonder at exactly which chemical formulas are accepted by the
interface. Well the answer is: anything that is accepted by xraylib’s Com-
poundParser function. This includes formulas with (nested) brackets such as:
Ca10(PO4)3OH (apatite). Invalid formulas will lead to the Ok button being
greyed out and the Compound text box gaining a red background.
After clicking ok, you should see something resembling the following screen-
shot:
You will notice that the compound has been parsed and separated into its
constituent elements, with weight fractions according to the mass fractions
of the elements. In this example I added an additional 50 % of U3O8 to the

11

https://github.com/tschoonj/xraylib/wiki/The-xraylib-API-list-of-all-functions#compound-parser
https://github.com/tschoonj/xraylib/wiki/The-xraylib-API-list-of-all-functions#compound-parser

Figure 3: Adding a compound

composition and picked the values 2.5 g/cm3 and 1 cm for density and thick-
ness, respectively, leading to a weights sum of 100 %. It is considered good
practice to have the weights sum equal to 100 %. This can be accomplished
by either adding/editing/removing compounds and elements from the list,
or by clicking the Normalize button, which will scale all weight fractions in
order to have their sum equal to 100 %. Your dialog should match with this
screenshot:
Alternatively you may consider looking into the builtin catalog (press Load
from catalog): a pop-up window will allow you to select a compound from
one of two lists. The first list is generated using xraylib’s GetCompound-
DataNISTList function, which provides access to NISTs compound database
of compositions and densities. The second one however, provides access to
layers that you defined yourself: when a valid layer (i.e. composition, density
and thickness) is showing in the layer dialog, click Add to catalog and choose

12

https://github.com/tschoonj/xraylib/wiki/The-xraylib-API-list-of-all-functions#nist-compound-catalog
https://github.com/tschoonj/xraylib/wiki/The-xraylib-API-list-of-all-functions#nist-compound-catalog

Figure 4: Adding a compound

a name for the layer: this layer will show up in the catalog list next time it
is opened. Keep in mind that existing layers in the list will be overwritten
without warning! If you would like to delete previously defined layers from
the list, use the Preferences interface.
When satisfied with the layer characteristics, press Ok.
X-ray fluorescence experiments are quite often performed under atmospheric
conditions. If so, it is of crucial importance to add the atmosphere to the
system for several reasons:

1. The atmosphere attenuates the beam and the X-ray fluorescence
2. The intensity of the Rayleigh and Compton scatter peaks is greatly

influenced by the atmosphere
3. The photons from the beam as well as the fluorescence and the scattered

photons will lead to the production of Ar-K fluorescence, a common

13

Figure 5: Adding another compound

artefact in X-ray fluorescence spectra. In some rare cases, one may
even detect Xe fluorescence.

To add such a layer, click again on Add button. In the Modify layer dialog,
add the composition, density and thickness of the air layer. This is shown in
the next screenshot:
Alternatively, click on Load from catalog and select Air, Dry (near sea level)
from the NIST compositions list. Clicking the Ok button should produce
the following situation in the Composition section:
However, the ordering of the layers in the table is wrong: XMI-MSIM
assumes that the layers are ordered according to distance from the
X-ray source. This means that the first layer is closest to the source and
all subsequent layers are positioned at increasingly greater distances from
the source. This can be easily remedied by selecting a layer and then moving

14

Figure 6: Adding air layer

it around using the Top, Up, Down and Bottom buttons. The following
screenshot shows the corrected order of the layers:
An important parameter in this table is the Reference layer. Using the toggle
button, you select which layer corresponds to the one that is considered to
be the first layer of the actual sample. In most cases, this will indicate the
first non-atmospheric layer. The Reference layer is also the layer that is used
to calculate the Sample-source distance in the Geometry section.
Layers can be removed by selecting them and then clicking the Remove
button. Existing layers may be modified by either double-clicking the layer
of interest or by selecting the layer, followed by clicking the Edit button.
Keep in mind that the number of elements influences the computational time
greatly, especially when dealing with high Z-elements that may produce L-
and M-lines.

15

Figure 7: Wrong layer order

3.2.3 Geometry

Scrolling down a little on the Input parameters page reveals the Geometry
section as shown in the next screenshot:
This sections covers the position and orientation of the system of layers,
detector and slits. In order to fully appreciate the geometry parameters, it
is important that I first describe the coordinate system that these position
coordinates and directions are connected to:

• The coordinate system is right-handed Cartesian
• The origin of the coordinate system corresponds to the position of the

source
• The z-axis is aligned with the beam direction and points from the

source towards the sample
• The y-axis defines, along with the z-axis, the horizontal plane

16

Figure 8: Correct layer order

• The x-axis emerges out from the plane formed by the y- and z-axes

This is demonstrated in the following figure:
Now with this covered, let us have a look at the different Geometry parame-
ters:

• Sample-source distance: the distance between the source and the
Reference layer in the system of layers as defined in the Composition
section

• Sample orientation vector: the normal vector that determines the orien-
tation of the stack of layers that define the sample and its environment.
The z component must be strictly positive

• Detector window position: the position of the detector window. This
is seen as the point where the photons are actually detected and termi-
nated by the detector. Keep this in mind when defining a collimator

17

Figure 9: Geometry, excitation and beam absorbers

• Detector window normal vector: the normal vector of the detector
window. Should be directed towards the sample (unless you have a
very good reason not to do so)

• Active detector area: this corresponds to the area of the detector
window that is capable of letting through detectable photons. Should
be provided by the manufacturer of your detector

• Collimator height: XMI-MSIM allows for the definition of a conical
detector-collimator whose properties are determined by this parameter
and the Collimator diameter. Setting either to zero corresponds to
a situation without collimator. This height parameter is seen as the
height of the cone, measured from the detector window to the opening
of the collimator, along the detector window normal vector

• Collimator diameter: diameter of the opening of the conical detector

18

Figure 10: Schematic representation of the geometry

collimator. The base of the collimator corresponds to the Active
detector area

• Source-slits distance: XMI-MSIM defines a set of virtual slits, whose
purpose is to define the size of the beam at a given point, based on the
distance between these slits and the X-ray source, as well as the Slits
size, defined by the next parameter. I recommend to have the Source-
slits distance correspond to the Sample-source distance, since this way
the beam, upon hitting the Reference layer, will have exactly the
dimensions specified by Slits size (if using a point source!). These slits
should not be thought of as physical slits, as they are often encountered
in many experimental setups: XMI-MSIM’s virtual slits do not reduce
the beam intensity (flux) at all! They do impact the flux density which
increases when decreasing the Slits size parameters, and vice versa.

• Slits size: see previous parameter. Refers to the dimensions of the
beam at the Source-slits distance. This parameter will be ignored when
dealing with a Gaussian source (see Excitation section)

In order to visualize these different parameters, click the Show geometry help
button: a new window will pop up showing the aforementioned coordinate
system. Hovering the mouse over the different components in the new window
will have the corresponding widgets light up in green in the main window.

19

This works both ways: hover the mouse over the geometry widgets in the
main window and little boxes will appear in the coordinate system window.

3.2.4 Excitation

Next, there is the Excitation section, which is used to define the X-ray beam
that irradiates the sample. The corresponding excitation spectrum may
consist of a number of discrete components, each with a horizontally and
vertically polarized intensity, as well as a number of parameters that define
the type and the aperture of the source. Furthermore, one can also insert a
number of continuous interval components, defined through a list of intensity
densities, each with their horizontally and vertically polarized components.
In this case, one has two insert at least two intensity densities in order to
have at least one interval.
At runtime, the code will use the Number of photons per discrete line and
Number of photons per interval parameters to determine how many photons
will be simulated per discrete component and continuous energy interval
component. Adding, editing and removing components is handled through
the buttons in the Excitation section. For example, we can change the
settings of the default value by clicking the Edit button. The dialog contains
the fields necessary to define a particular component:

• Energy: the energy of this particular part of the excitation spectrum,
expressed in keV

• Horizontally and vertically polarized intensities: the number of photons
that are polarized in the horizontal and vertical planes, respectively.
A completely unpolarized beam has identical horizontal and vertical
intensities (such as those produced by X-ray tubes), while synchrotron
beams will have very, very low vertically polarized intensities. For
information on how to convert the total number of photons given the
degree of polarization to the horizontal and vertical polarized intenties,
consult Part 5 in our series of papers on Monte-Carlo simulations

• Source size x and y: if both these values are equal to zero, then the
source is assumed to be a point source, and the divergence of the beam
is completely determined by the Source-slits distance and Slits size
parameters of the Geometry section. Otherwise the source is considered
a Gaussian source, in which case the photon starting position is chosen
according to Gaussian distributions in the x and y planes, determined
by the Source size x and Source size y parameters

• Source divergence x and y: if these values are non-zero, AND the
source is Gaussian, then the Source-slits distance takes on a new role
as it becomes the distance between the actual focus and the source
position. In this way a convergent beam can be defined, emitted by
a Gaussian source at the origin. For the specific case of focusing on

20

the sample the Sample-source distance should be set to the Source-slits
distance.

• Energy distribution type: additionally for the discrete components,
it is possible to set the Energy distribution type, which may assume
the values Monochromatic, Gaussian and Lorentzian. The first case
assumes that the discrete energy is purely monochromatic and that
only the selected energy will be used in the simulation. The two other
cases corrspond to a scenario in which the simulation will sample from
a Gaussian or Lorentzian distribution respectively. If either of these
two cases is selected, the user is expected to provide respectively the
standard deviation and the scale parameter.

In this particular case, I have changed the energy to 20.0 keV, and made the
beam unpolarized by equalizing both intensities, as shown in the following
screen shot. The source remains a point source.
The discrete energies and continuous energies widgets each contain six but-
tons:

• Add: add a new component.
• Edit: edit a previously defined component.
• Remove: delete previously components.
• Import: import a list of discrete lines or continuous energy intensity

densities from an ASCII file. These files must consist of either two,
three or seven columns, with the first column containing the energies,
the second the total intensity (if only two columns are found), or
the second and third the resp. horizontally and vertically polarized
intensities or intensity densities. If seven columns are encountered, the
last four columns are assumed to contain source sizes and divergencies.
It is possible through the interface to start reading only at a certain
linenumber and also to read only a set number of lines.

• Clear : delete all previously defined components.
• Scale: multiply the intensities or intensity densities with a positive real

number.

The excitation spectrum can also be defined using the X-ray sources dialog.

3.2.5 Beam and detection absorbers

The two following sections deal with absorbers, first absorbers that are
optionally placed in the excitation path (for example a sheet of Al or Cu),
and next the absorbers that are optionally placed in the detector path. This
means that the former will reduce the intensity of the incoming beam, while
the latter will reduce the intensity of the photons that hits the detector.
It is important to realize that these absorbers are only used here for their
attenuating properties, they are not considered as objects in the simulations

21

Figure 11: Modifying the energy

so they cannot contribute fluorescence lines to the eventual spectrum! Adding,
editing and removing absorbers is performed through an interface identical
to the one seen in the Composition section, but without the Reference layer
toggle button. New inputfiles will always have a Be detector absorber added,
corresponding to the detector window commonly found in ED-XRF detectors.

3.2.6 Detector settings

The last section deals with the settings of the detector and its associated
electronics, as can be seein in the following screenshot:

• Detector type: every detector comes with its own detector response
function, which can be influenced by several detector and electronics
parameters. XMI-MSIM offers some predefined detector response

22

Figure 12: Detector settings

functions that its authors have found to be reasonably well for two
detector types: Si(Li) and Si Drift Detectors. Generally speaking, our
policy is to encourage users to implement their own detector response
functions in the form as a plug-in and load it in the Simulation options

• Number of spectrum channels: the number of channels in the produced
spectrum

• Live time: the actual measurement time of the simulated experiment,
taking into account dead time

• Detector gain: the width of one channel of the spectrum, expressed in
keV/channel

• Detector zero: the energy of the first channel in the spectrum (channel
number zero)

• Detector Fano factor: measure of the dispersion of a probability dis-

23

tribution of the fluctuation of an electric charge in the detector. Very
much detector type dependent

• Detector electronic noise: the result of random fluctuations in thermally
generated leakage currents within the detector itself and in the early
stages of the amplifier components. Contributes to the Gaussian
broadening

• Pulse width: the time that is necessary for the electronics to process
one incoming photon. This value will be used only if the user enables
the pulse pile-up simulation in the Simulation controls. Although this
parameter is connected to several detector and electronics parameters,
typically the value is obtained after trial and error

• Crystal composition: the composition of the detector crystal. Adding,
editing and removing absorbers is performed through an interface
identical to the one seen in the Composition section, but without the
Reference layer toggle button. Will be used to calculate the detector
transmission and the escape peak ratios

3.3 Saving an input-file

Once an acceptable inputfile is detected by the application, the Save and
Save As buttons will become activated. If the file has not been saved before,
clicking either of these buttons will launch a dialog allowing you to choose a
filename for the input-file.
If the file was saved before, then clicking Save will result in the file contents
will be overwritten with the new file contents.
Keep in mind that XMI-MSIM input-files have the xmsi extension (blue
logo), while the output-files the xmso extension (red logo).

3.4 Starting a simulation

In order to start a simulation, the Input parameters page must contain a
valid input-file description. This can be obtained by either preparing a new
input-file based on the instructions in a previous section (and saving it!), or
by opening an existing input-file by double clicking an XMI-MSIM input-file
in your file manager or opening an input-file through the Open interface of
XMI-MSIM.
Either way, the Simulation controls page should look as shown in the following
screenshot:

3.4.1 Control panel

The top of the page contains the actual control panel that is used to start,
stop and pause the simulation, as well as a slider that allows the user to
select the number of threads that will be used by the simulation. To the
right of the slider, there are three progress bars that indicate different stages

24

Figure 13: Simulation controls

of the Monte Carlo program: the calculation of the solid angle grid for the
variance reduction, the simulation of the photon--matter interactions and
the calculation of the escape peak ratios. More information about the status
of the Monte Carlo program is presented in the adjacent log window.

3.4.2 Executable

Underneath these controls is a section that contains the name of the exe-
cutable that will be used to launch the simulation. Most likely, you will
never have to change this value, but it could be interesting to power users,
who have customized versions of the simulation program.

25

3.4.3 Options

This section is followed by a number of options that change the behaviour of
the Monte Carlo program:

• Simulate M-lines: If disabled, then the code will ignore M-lines that
may be produced based on the elemental composition of the sample. In
such a case, the code will probably run faster. I strongly recommend
to simulate M-lines

• Simulate the radiative and non-radiative cascade effect: the cascade
effect is composed of two components, a radiative and a non-radiative
one. Although these will always occur simultaneously in reality, the
code allows to deactivate one or both of them. This could be interesting
to those that want to investigate the contribution of both components.
Otherwise, it is recommended to keep both enabled

• Enable variance reduction techniques: disabling this option will trig-
ger the brute-force mode, disabling all variance reduction techniques,
thereby greatly reducing the precision of the estimated spectrum and
net-line intensities for a given Number of photons per discrete line.
This reduced precision may be improved upon by greatly increasing
the Number of photons per discrete line, but this will result in a much
longer runtime of the Monte-Carlo program. Expert use only. Consider
building XMI-MSIM with MPI support and running it on a cluster

• Enable pulse pile-up simulation: this option activates the simulation of
the so-called sum peaks in a spectrum due to the pulse pile-up effect
which occurs when more photons are entering the detector than it can
process. The magnitude of this effect can controlled through the Pulse
width parameter

• Enable Poisson noise generation: enabling this option will result in
every channel of the detector convoluted spectrum being subjected to
Poisson noise, controlled by Poisson distributions with lambda equal
to the number of counts in a channel

• Enable escape peaks support: enable this option to activate the support
for escape peaks in the detector response function. Typically you will
want to leave this on

• Enable advanced Compton scattering simulation: this option activates
an alternative algorithm for the simulation of the Compton profiles
based on the work of Fernandez and Scot, which takes into account the
fact that not all orbitals are completely populated, leading to a more
accurate reproduction of the profiles. The downside of this approach is
that it’s slower than the default implementation. Recommended only
for advanced users. In order to fully understand the importance of an
improved Compton profile simulation, the reader is advised to read the
aforementioned manuscript of Fernandez and Scot

26

http://dx.doi.org/10.1016/j.nimb.2007.04.203

• Enable default seeds support: instead of using randomly chosen seeds
for the random number generators, use default values, which should
result in reproducible results, at least when using a single thread. This
option should normally not be used.

• Enable GPU : this option invokes XMI-MSIMs GPU plug-in which, if
the platform comes with a videocard chipset that supports it, will use
the GPU to perform the solid angle calculation, which could lead to
a tremendous speed increase. Keep in mind that when this option is
used during the solid angle calculation stage, the screen may have a
noticeably lower refresh rate and may lose its responsiveness briefly.
This option is only available when an OpenCL (all platforms) or Metal
(macOS only) framework was found at compile-time

• Custom detector response: through this option, one can load a plug-in
that exports a routine that will override the default detector response
functions of XMI-MSIM. Click here more information on how to write
and build such plug-ins

3.4.4 Export results

The page ends with a section that allows the user to export the output of
the Monte-Carlo program at run-time to several fileformats in addition to
the default XMSO fileformat.

• SPE file: the well known ASCII format, readable by PyMca and AXIL.
Produces one file per additional interaction. When using the file dialog
to choose the filename, make sure not to add a file extension: the Monte-
Carlo program will append an underscore, the number of interactions
and the .spe extension automatically

• Comma Separated Values (CSV) file: produces a CSV file containing
several columns. The first column contains the channel number, the
second one contains the corresponding channel energy and the following
columns contain the intensities for increasing number of interactions

• Report HTML file: produces an html file that can be opened with
most Internet Browsers (Internet Explorer being a notable exception),
featuring an interactive overview of the results of the Monte-Carlo
simulation, simular to the ones shown on the Results page

It is possible to generate these files afterwards based on the XMSO file, by
clicking in the menubar on Tools -> Convert XMSO file to.

3.4.5 During a simulation

When all required options are set up correctly, the simulation can be started
by clicking the Play button. After this, you will notice a lot of output being

27

generated in the log window, as well as some activity in the progress bars,
as shown in the next screenshot:

Figure 14: Running the simulation

The first and the third progress bars will in many cases display a message
that the Solid angle grid and the Escape peak ratios were loaded from file:
this indicates that a simulation with similar parameters was performed before
and that the relevant data was written to a file, leading to a huge increase
in speed. It is possible that some red text appears during a run, particularly
with reference to Solid angle and Escape ratio HDF5 files being outdated.
This only happens when you are running a new version of XMI-MSIM that
introduced a new format for these files: the old files are deleted and new
ones will be created and used from then onwards.
After the simulation, assuming everything went fine, the XMSO outputfile
as defined in the General section will be loaded and its contents displayed

28

on the Results page.

3.5 Visualizing the results

The results of a simulation are stored in an XMSO file (red logo): you should
be able to open these files directly by double clicking them from your file
manager. Alternatively, you can also load these files from within XMI-MSIM
by clicking the Open button, and subsequently setting the filetype filter to
XMI-MSIM outputfiles. On Linux and Windows, you can also open these
files from the command-line:

xmimsim-gui file.xmso

XMSO files created after a successful simulation are automatically loaded in
the Results page, where the spectra and net-line intensities are represented.

3.5.1 Plot canvas

If a simulation was performed according to the inputfile that was defined
earlier, you should get a result similar to the one in the following screenshot:
The plot canvas shows by default the different spectra obtained after an
increasing number of interactions. Individual spectra may be hidden and
shown by toggling the boxes to the right of the plotting window. Their
properties of a spectrum may be modified by clicking on the Properties
button connected to it, which launches a dialog allowing the user to change
the line width, line type and line color of the spectrum. The Properties button
above the coordinate entries opens a dialog with the option to switch between
linear and logarithmic display of the spectra, as well as the opportunity to
change the axes titles. More options will be added in future releases allowing
the user to customize this further.
Zooming in on the plot canvas by dragging a rectangle with the mouse while
keeping the left button clicked in. Zooming out can be accomplished by
double-clicking anywhere in the canvas. While moving the mouse cursor
in the plot canvas, one can track the current Energy, Channel number and
Intensity in the textboxes to the right. The size of the canvas can be changed
by grabbing and moving the handle that separates the upper part from the
lower part of the page.

3.5.2 Net-line intensities

The lower part of the page contains a list of all the intensities of all the X-ray
fluorescence lines of all elements, as shown in the following screenshot:
By clicking the arrows on the left side of the list, it is possible to expand the
sections belonging to a particular element, line, and for different number of
interactions, thereby revealing the individual contributions to a particular

29

Figure 15: Visualizing the results

intensity. The lines can be shown on the plot canvas by activating the Show
line flag for the appropriate line or element.

3.5.3 Exporting the plot canvas

The plot canvas can be exported to several filetypes using the Export plot
button to the right of the plot canvas. This will result in an exact copy of
the current state of the canvas being stored to file: it will take into account
all the changes that were made to the spectra properties, as well as any
lines that were activated using the Show line togglebuttons of the Net-line
intensities section. Supported filetypes are PNG, EPS, PDF and SVG.

30

Figure 16: Selecting XRF lines

3.6 Global preferences

Clicking the Preferences button in the toolbar will launch a dialog allowing
the user to set some preferences that will be preserved across sessions off
XMI-MSIM. Make sure to press apply after making any changes.

3.6.1 Simulation defaults

The first page of the preferences window contains the same settings that
are available on the Simulation controls page. The values that are selected
here will be activated in the Simulation controls page the next time that
XMI-MSIM is started.

31

3.6.2 Updates

If XMI-MSIM was compiled with support for automatic updates then this
page will contain two widgets: firstly a checkbox that will determine if the
program will check for updates at startup, and secondly a list of locations
that will be used to download updates from.

3.6.3 User-defined layers

Select layers and hit backspace to remove them from the list of user-defined
layers (which are defined in the layer dialogs). The layers are deleted when
the Apply button is clicked.

3.6.4 Advanced

The first two options revolve around the deleting of the XMI-MSIM HDF5
files that contain the solid angle grids and the escape peak ratios, respectively.
It is recommended to remove these files manually when a complete uninstall
of XMI-MSIM is considered necessary (before running the uninstaller or
removing the application manually), or if these files somehow got corrupted.
The following two options allow the user to import solid angle grids and
escape peak ratios from external files into his own. This may be interesting
if another user already has a huge collection of these and it may save a lot
of time using someone elses. In the file dialog only those files will be shown
that are valid HDF5 files of the required kind and minimum version.
The last option is Enable notifications, which when supported at compile-time
and a suitable notifications server is found, will generate messages whenever
a calculation finishes. On a Mac OS X native version of XMI-MSIM this will
only work on Mountain Lion and newer.

3.7 Checking for updates

For packages of XMI-MSIM that were compiled with support for automatic
updates, checking for new versions will occur by default when launching the
program. This can be disabled in the Preferences window. If you would like
to check explicity, then click on Check for Updates in the toolbar menu. When
updates are available, a dialog will pop up, inviting the user to download
the package through the interface. When the download is completed, quit
XMI-MSIM and install the new version. It is highly recommended to always
use the latest version of XMI-MSIM.

3.8 Command line interface

XMI-MSIM ships with a number of command line utilities that may be useful
for some users. An overview:

32

• xmimsim-gui: This executable corresponds to the graphical user inter-
face of XMI-MSIM, as described in this user guide. This will mostly be
useful for Linux users or Mac OS X users that compiled from source
without gtk-mac-integration support.

• xmimsim: The executable that actually does the hard simulation work.
It is usually launched from within the graphical user interface with
the Play, Pause and Stop buttons from the control panel, but in some
circumstances it may be useful from the command-line as well. It has
a lot of options: consult them by running xmimsim --help. Windows
users will have to use xmimsim-cli.exe since xmimsim.exe is compiled
as a graphical user interface executable in order to avoid a console
window from popping up during the simulation in XMI-MSIM.

• xmimsim-db: Used to generate the xmimsimdata.h5 file that contains
the tables of physical data (mostly inverse cumulative distribution
functions) that will be used during the simulation to speed things
up drastically. This executable is intended for those that compile
XMI-MSIM from source.

• xmimsim-conv: A recently added executable that allows to extract
the unconvoluted spectra from an XMSO file and apply the detector
response function to it with different settings that were used initially
to generate the XMSO file.

• xmimsim-harvester: a daemon that collects seeds for the random
number generators. Read the note on the random number generators
in the installation instructions for more information.

• xmso2xmsi, xmso2spe, xmso2csv, xmso2htm: utilities that allow for
the conversion of XMSO files to the corresponding XMSI, SPE, CSV
and HTML counterparts, providing the same functionality as obtained
through Tools -> Convert -> XMSO file -> ...

• xmsa2xmso: utility that allows for the extraction of XMSO files from
an XMSA file, providing the same functionality as obtained through
Tools -> Convert -> XMSA file -> to XMSO.

• xmsi2xrmc: Utility to convert an XMSI file to the corresponding XRMC
input-files. Read here for more information. Also available through
Tools -> Convert -> XMSI file -> to XRMC input-files.

• xmimsim-pymca: The quantification plug-in that is used by PyMca.

Most of these executables have quite a few options. Consult them by passing
the --help option to the executable.

3.9 Example files

The example input-file that was created throughout the Creating an input-file
section can be downloaded at test.xmsi. The corresponding output-file can
be found at test.xmso.

33

http://github.com/tschoonj/xmimsim/wiki/test.xmsi
http://github.com/tschoonj/xmimsim/wiki/test.xmso

4 Advanced usage
In this section, we will describe some more advanced features of XMI-MSIM,
which may useful for some users with specific needs.

4.1 X-ray sources

In the Excitation section, we have shown how one can introduce the necessary
components of the X-ray excitation spectrum, through a number of discrete
energies and intervals of continuous energies. XMI-MSIM tries to facilitate
the process of defining the excitation spectrum through its X-ray sources
dialog, which can be invoked by clicking the corresponding button (with the
radiation warning symbol) in the toolbar. Currently two types of sources
can be defined this way: X-ray tubes and radionuclides. Switching between
both types can be accomplished easily by clicking on the desired tab in the
dialog. It is possible to add user-defined sources to this dialog by writing
custom plug-ins. Documentation on how to do this will be added soon.
After adjusting the required parameters of the selected source, click Update
spectrum to obtain a new excitation spectrum in the plot window. Using
Export spectrum, it is possible to save the generated spectrum to an ASCII
file, while Save image will allow the user to save the plot window to an image
file. Clicking About will display some information regarding the origins of
the model or dataset. Using the Ok button one can close the window while
replacing the contents of the Excitation section with the newly generated
spectrum.

4.1.1 X-ray tube spectrum generator

In many cases, one will perform X-ray experiments using an X-ray tube
generator as source, which corresponds to a combination of discrete part (the
anode element specific XRF lines) and a continuous part (the Bremsstrahlung
generated through electron-nucleus interactions). Such excitation spectra
are typically quite difficult to obtain experimentally and instead one relies
quite often on theoretical calculations to obtain (an approximation) of the
spectrum. One popular model is the one derived by Horst Ebel in his
manuscripts X-ray Spectrometry 28 (1999), 255-266 and X-ray Spectrometry
32 (2003), 46-51. XMI-MSIM’s implementation of this model is based on
the similar dialog in PyMca. The X-ray tube dialog should be similar to
the following screenshot (click the X-ray tube tab if the Radionuclide panel
showing):
By changing the different parameters to values appropriate for the X-ray
tube that the user would like to simulate, one obtains an approximate
model for the corresponding X-ray tube excitation spectrum. The following
parameters can be changed:

34

http://dx.doi.org/10.1002/(SICI)1097-4539(199907%2F08)28%3A4%3C255%3A%3AAID-XRS347%3E3.0.CO%3B2-Y
http://dx.doi.org/10.1002/xrs.610
http://dx.doi.org/10.1002/xrs.610

Figure 17: Introducing the X-ray tube parameters

• Tube voltage: the voltage in kV at which the X-ray tube is supposed
to operate. This will determine the extent of the Bremsstrahlung
contribution and through this which XRF lines (discrete energies) that
will be present in the spectrum.

• Tube current: the current in mA at which the X-ray tube is supposed
to operate. The this value is directly proportional to the intensity of
the spectrum components.

• Tube solid angle: the solid angle in sr (steradian) under which the beam
emerges from the X-ray tube. The default value here is determined by
the Source-slits distance and the Slits size, taken from the [Geometry
section].

• Electron incidence angle and X-ray tube take-off angle: X-ray tube
geometry parameters

• Interval width: the width of the continuous energy intervals of Bremsstahlung
part of the spectrum. Decreasing this value will lead to a better simu-
lation, but will increase the computational time.

• Anode: the material that the tube anode is made of. The density and
the thickness become sensitive when Transmission tube is activated.

• Window and Filter : tube filtration materials. Set the thickness and/or
the density to zero to ignore.

• Transmission tube: activating this option effectively places the tube
exit-window on the opposite side of the anode with respect to the

35

cathode, thereby operating in transmission mode.
• Transmission efficiency file: it is possible to load a two column ASCII

file (first column energies and second column efficiencies between 0
and 1), with at least 10 lines that will be used to multiply the gener-
ated intensities and intensity densities with using interpolation of the
supplied efficiencies.

4.1.2 Radionuclides

A second type of X-ray sources offered by XMI-MSIM concerns radionuclides.
Through xraylib’s radionuclide API, one can gain access to the excitation
profiles (X- and gamma-rays) of several radionuclides that are commonly
used as X-ray sources. After clicking on the Radionuclide tab, the following
dialog should be visible:

Figure 18: Introducing the radionuclide parameters

The following parameters will determine the excitation spectrum:

• Radionuclide: select the desired radionuclide
• Activity: set the activity (disintegrations per second) of the radionuclide,

as well as its unit (mCi, Ci, Bq, GBq)

Clicking the Ok button will produce a dialog asking whether to add the
radionuclide to the excitation spectrum or to replace it entirely. Clicking Add

36

https://github.com/tschoonj/xraylib/wiki/The-xraylib-API-list-of-all-functions#radionuclides

allows the user ultimately to define a source composed of several radionuclides,
which may be useful when the different sources are positioned on a ring,
positioned perpendicular to the detector axis.

4.1.3 Custom sources

The two aforementioned sources are implemented as libpeas plugins, written
in C, and are derived from the abstract base class [XmiMsimGuiSourceAbstract](https://github.com/tschoonj/xmimsim/blob/master/bin/xmimsim-gui-source-abstract.h).
While it is certainly possible to write new plug-ins in C or C++ that extend
this class, this is certainly not trivial. Interested parties may want to have a
look at the source code of the X-ray tube, radionuclide plug-ins, as well as
the random spectrum example.
I recommend instead to write plugins in Python 3, which is made possible
through GObject-Introspection and PyGobject. Large parts of the exposed
libxmimsim and libxmimsim-gui API can be called directly from Python,
in a manner that will feel familiar to Python coders.
An example (which is part of the examples folder of the installation) follows:

from gi.repository import XmiMsimGui, XmiMsim, Gtk, GLib
import sys
import numpy as np

class TestSource(XmiMsimGui.SourceAbstract):
Optional, will not affect GUI in any way if left out...
__gtype_name__ = "TestSourcePython"

initialize parent first, and add GUI elements
def __init__(self):

XmiMsimGui.SourceAbstract.__init__(self)
print("Calling __init__")
button = Gtk.Button.new_with_label("Click me!")
self.add(button)
self.counter = 1000

source name: this will end up in the tab label
def do_get_source_name(self):

return "Python Source"

the about text: will be shown in the Source About Dialog
def do_get_about_text(self):

return "This could very well be some clever text about this source"

this method is executed whenever "Update Spectrum" is clicked

37

https://wiki.gnome.org/Projects/Libpeas
https://github.com/tschoonj/xmimsim/blob/master/bin/xmimsim-gui-source-tube-ebel.c
https://github.com/tschoonj/xmimsim/blob/master/bin/xmimsim-gui-source-radionuclide.c
https://github.com/tschoonj/xmimsim/blob/master/bin/xmimsim-gui-source-random.c
https://gi.readthedocs.io/en/latest/
https://pygobject.readthedocs.io/en/latest/
https://github.com/tschoonj/xmimsim/blob/master/examples/test-source.py

def do_generate(self):
print("Calling do_generate")
if something goes wrong: initialize a new GLib.Error instance and send it along with the after-generate signal
error = GLib.Error.new_literal(XmiMsimGui.SourceAbstractError.quark(), "Error message from Python!", XmiMsimGui.SourceAbstractError.INVALID_FILENAME)
self.emit("after-generate", error)
return
x = np.linspace(1.0, 50.0, num=2000, dtype=np.double)
y = self.counter * np.exp(-1.0 * (x - 20.0) * (x - 20.0) / 2.0) / np.sqrt(2.0 * np.pi)
y[y < 1.0] = 1.0
self.counter += 100

excitation = XmiMsim.Excitation.new(discrete=[XmiMsim.EnergyDiscrete.new(20.0, 1E9, 1E9, 0.0, 0.0, 0.0, 0.0, XmiMsim.EnergyDiscreteDistribution.MONOCHROMATIC, 0.0)])

this updates the source internal data: raw, plot_x, and plot_y
self.set_data(excitation, x.tolist(), y.tolist())

afterwards emit after-generate with None argument to update the plot window
self.emit("after-generate", None)

As shown in this example, the class you define (TestSource here...), must
extend XmiMsimGui.SourceAbstract. The class must implement 4 methods:

1. __init__: the constructor, which should be used to define the GUI
elements that will be added to the GUI, as well as initialize any mem-
ber variables you may need. XmiMsimGui.SourceAbstracts extends
[Gtk.Box], so you will need to use its API to add new widgets to it.

2. do_get_source_name: This method must return a string containing a
short name of the source, and will be used to populate the tab label.

3. do_get_about_text: This method must return a string with a (long)
description of the source. It will be displayed when in the dialog that
is shown after clicking the About button.

4. do_generate: This method gets called whenever the Update spectrum
button is clicked, and is meant to extract the currently introduced
information from the widgets that were added by the constructor.
Based on this data, if valid (write code to check!), create a new
XmiMsim.Excitation object, as well as two Python lists of doubles
that will contain the X- and Y-values that will be plotted. Ensure that
the Y-values are greater than zero, as they may be plotted logarith-
mically. Afterwards, call the set_data method on the source object,
followed by an emission of the after-generate signal to trigger an
update the plot window. If the data is invalid, a GLib.Error object
should be instantiated, followed by the error object being added to an
after-generate signal emission.

I strongly recommend that people with no experience in coding Gtk based

38

https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Box.html

apps in Python, to have a look at this tutorial.
When you have written a source plug-in, make sure to copy to it to Documents\XMI-MSIM\sources
in your home directory, which will be searched at run-time for usable source
plug-ins. It is not sufficient to merely copy the Python source file, you will
also need to write a short .plugin file that will contain the following:

[Plugin]
Module=test-source
Name=Test source
Loader=python3

Important here is that the name of the Python source file, without its .py
extension is assigned to Module.

4.2 Batch simulations

XMI-MSIM version 3.0 introduced the possibility to perform batch simula-
tions. Activate this feature by clicking the Batch mode button in the toolbar.
This will produce a wizard as shown here:
Clicking Next will move the wizard to a filechooser dialog:
At this point it becomes very important to distinguish between two different
possible outcomes that depend on whether the user selects either one or
multiple files.

4.2.1 Batch simulations: simulate a number of unrelated input-
files

If the user has selected multiple files, then these files will be used as input-files
for a round of successive unrelated simulations. After the file selection, the
user will be presented with a question regarding whether the options should
be set for each input-file separately. The options refer to the same options
that can be seen in the Control panel of the main interface window. Either
way, after setting the options, one will end up with the Batch simulation
controls window:
Similar to the Control panel of the main interface window, this widget
features Play, Stop and Pause to control the execution. The number of
threads that will be used for the simulations may be set using the CPUs
slider. During execution, all output will be shown in the central area. The
verbosity level can be changed from the default Verbose to Very verbose for
even more information about the runs. While running the simulations, it is
possible to save all output that is placed on the screen to a file that will be
continuously updated. Click the Save As button to choose a filename.

39

https://python-gtk-3-tutorial.readthedocs.io/en/latest/

Figure 19: Wizard welcome page

4.2.2 Batch simulations: vary one or two parameters in a single
input-file

A considerably more interesting feature of the batch simulation is its second
operational mode: if the user selects a single file from the filechooser page,
and selecting the desired options, he will be presented with a new page in
which he is asked to select one or two parameters that will be varied during
a series of simulations based on the initially selected input-file, as is seen in
the following screenshot:
After expanding the different components of the tree structure representing
the initial input-file contents, rows describing the input-file contents will
emerge: only the clickable components are eligible as variable parameters!
Furthermore, it should be noted that within a layer, one can only select an
element’s weight_fraction if there are at least two elements available: this

40

Figure 20: Select one or more files to enter the batch simulation mode

is necessary because at any given moment, the sum of the weight fractions
needs to be equal to 100% after rescaling. If two weight fractions within the
same layer need to te varied, then at least three elements need to be present
in that layer for the same reason.
Clicking _Nextafter selecting the required parameter(s), will move the wizard
to to a page that will allow users to define the range and the number of
steps that will be used to determine the parameter(s) values in the different
input-files that will be produced and later on, simulated. In bold, above the
Start, End and #Steps entries, are the name(s) of the selected parameter
expressed in its XPath notation, which corresponds to an internal description
of the parameter’s location in the XMI-MSIM input-file. This page also
contains a Save As button that will launch a file chooser dialog, which will
ask the user to determine the XMI-MSIM archive that will eventually be
produced containing all results from the simulation. This is shown (for a

41

Figure 21: Batch simulation controls

case with one selected variable parameter) in the following screenshot:
After confirming the introduced values by clicking Next, a Batch simulation
controls page will appear, as was already described and shown in the preceding
section. Clicking the Play button will launch the simulations. After all
simulations have been successfully performed, click the Next button to
proceed to the final page, which can be closed. In the meantime, a window
should have popped up that allows the user to analyze the results of the
batch simulation.
In this window, one can analyze the results of the batch simulation by
selecting specific elements, lines, regions of interest etc for individual or
cumulative interaction contributions. It is possible to save the plot as an
image file using Save image, while the data that makes up the currently
shown plot can be exported in a CSV file. Change the axes titles to a more
appropriate description if deemed necessary. The following screenshot shows

42

Figure 22: Select one or two parameters to be varied

a case where two variable parameters were chosen:
All information that was produced in the batch simulation has been stored
in an XMI-MSIM archive file (.xmsa extension). If one would like to inspect
its contents again with the Batch mode plot window, just double-click such a
file from your favorite file manager, or open it from within XMI-MSIM by
clicking Open in the toolbar or menubar and setting the filter to XMI-MSIM
archives, and then selecting the desired file.

4.3 Generate XRMC input-files

Using the Convert XMSI file to XRMC option from the Tools menu, one
can produce input-files for the XRMC software package, a Monte Carlo
simulation tool for X-ray imaging and spectroscopy experiments. This should
be of particular interest to those users that are interested in a simulation

43

http://github.com/golosio/xrmc/wiki

Figure 23: Set the range of the variable parameter(s) and the name of the
XMI-MSIM archive file

that includes scattering and XRF that is generated by the collimator, which
is being ignored by XMI-MSIM. Keep in mind though that simulations with
XRMC typically will take considerably longer compared to XMI-MSIM for
a result with equivalent statistical variance. In order to use the produced
input-files, install XRMC including its XMI-MSIM plug-in, which will be
used for the detector response function. One can also generate the XRMC
input-files using the command-line utility xmsi2xrmc.

4.4 Using the XMI-MSIM API from Python

The section on custom X-ray sources mentioned that large parts of the
libxmimsim and libxmimsim-gui libraries may be called from Python.
Apart from creating these custom sources, it is also an interesting feature

44

Figure 24: Batch mode plot window for one variable parameter

to exploit in regular Python scripts. Consider the following example, which
sets up a batch simulation that varies the atomic number in a layer across
he periodic table, saves the results to an XMSA archive, and opens it into
an XmiMsimGui.XmsaViewerWindow instance:

import xraylib as xrl
import sys
import os
import math
import logging
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.DEBUG)

import gi
gi.require_version('XmiMsim', '1.0')
gi.require_version('XmiMsimGui', '1.0')
from gi.repository import XmiMsim, XmiMsimGui, GLib, Gio, Gtk

OUTPUTFILE = 'mendeljev.xmsa'

XmiMsim.xmlLoadCatalog()

main_loop = GLib.MainLoop.new(None, False)
input = XmiMsim.Input.init_empty()
general = input.general.copy()
general.n_photons_line = 100000 # 1M photons

45

https://github.com/tschoonj/xmimsim/blob/master/examples/mendeljev.py

Figure 25: Batch mode plot window for two variable parameters

input.set_general(general)
options = XmiMsim.MainOptions.new()

single_data = [XmiMsim.BatchSingleData.new("/xmimsim/composition/layer[1]/element[1]/atomic_number", 1, 92, 91)]
xmsi_data = list()

for Z in range(1, 93):
input_copy = input.copy()
layer = XmiMsim.Layer.new([Z], [1.0], 1.0, 1.0)
composition = XmiMsim.Composition.new([layer], reference_layer=1)
input_copy.set_composition(composition)
xmsi_data.append(input_copy)

batch = XmiMsim.BatchSingle.new(xmsi_data, single_data, options)

assert batch.is_valid_object() == True

def _test_succeed_finished_cb(batch, result, buffer):
logging.debug("message: {}".format(buffer))
assert result == True
main_loop.quit()

def _print_stdout(batch, string):
logging.debug("stdout: {}".format(string))

46

def _print_stderr(batch, string):
logging.debug("stderr: {}".format(string))

batch.connect('finished-event', _test_succeed_finished_cb)
batch.connect('stdout-event', _print_stdout)
batch.connect('stderr-event', _print_stderr)

batch.start()

main_loop.run()

assert batch.was_successful() == True

batch.write_archive(OUTPUTFILE)

XmiMsimGui.init()

archive = batch.props.archive

win = XmiMsimGui.XmsaViewerWindow.new(archive)
win.set_position(Gtk.WindowPosition.CENTER)
win.connect("destroy", Gtk.main_quit)
win.show_all()
Gtk.main()

To use this functionality on Windows, launch an XMI-MSIM prompt from
the Start Menu: the terminal will give you access to a Python3 interpreter
(python3.exe) as well as launching the GUI (xmimsim-gui.exe). The Python
installation contains xraylib, numpy, scipy and matplotlib, and should be
enough to get you started. If not sufficient, use pip in this shell to install
additional Python packages from PyPI (at your own risk!).
To do this on macOS, you will need to install XMI-MSIM using Homebrew
(or from source!), and use it entirely from the command line. The app bundle
and the Homebrew installation may be installed simultaneously, they won’t
conflict.
Linux users can do this using their terminals. You may need to install
PyGobject first with your package manager though.

4.5 Custom detector response functions

As already mentioned in simulation options, it has become possible to use
custom detector response functions in XMI-MSIM, thereby replacing its
built-in routines with your own alternatives. Basically, you will have to
write your own routine called xmi_detector_convolute_all_custom and

47

compile this function into a plug-in (dynamically loadable module). This
routine should follow the prototype:

void xmi_detector_convolute_all_custom(xmi_inputFPtr inputFPtr, double **channels_noconv, double **channels_conv, double *brute_history, double *var_red_history, xmi_main_options, xmi_escape_ratios *escape_ratios, int n_interactions_all, int zero_interaction);

or in Fortran:

INTERFACE
SUBROUTINE xmi_detector_convolute_all_custom(&

inputFPtr,&
channels_noconvPtr,&
channels_convPtr,&
brute_historyPtr,&
var_red_historyPtr,&
options,&
escape_ratiosCPtr,&
n_interactions_all,&
zero_inter) &
BIND(C,NAME='xmi_detector_convolute_all')
IMPLICIT NONE
TYPE (C_PTR), INTENT(IN), VALUE :: inputFPtr
TYPE (C_PTR), INTENT(IN), VALUE :: channels_noconvPtr
TYPE (C_PTR), INTENT(IN), VALUE :: channels_convPtr
TYPE (C_PTR), INTENT(IN), VALUE :: var_red_historyPtr
TYPE (C_PTR), INTENT(IN), VALUE :: brute_historyPtr
TYPE (xmi_escape_ratiosC), INTENT(IN) :: escape_ratiosCPtr
TYPE (xmi_main_options), VALUE, INTENT(IN) :: options
INTEGER (C_INT), VALUE, INTENT(IN) :: n_interactions_all, zero_inter

ENDSUBROUTINE
ENDINTERFACE

Clearly for this to work you will have to make use of the datatypes exposed in
the headers and the fortran module files. I recommend also to make as much
as possible of the functions that are already contained within XMI-MSIM (a
fully documented API will follow at some point...). For now, the best source
of information would be the code itself, along with the two examples that
are included in the distribution (Fortran and C).
Probably it will be easiest to write such a plug-in in Fortran: you will be
able to easily reuse a lot of the existing code with minimal effort. However,
if you’re willing to write some simple wrappers in Fortran first, you can
also use all Fortran functions from C. When writing a plug-in in C, you will
probably want to use the following function:

void xmi_input_F2C(xmi_inputFPtr Ptr, struct xmi_input **xmi_inputC);

48

https://github.com/tschoonj/xmimsim/blob/master/custom-detector-response/detector-response1.F90
https://github.com/tschoonj/xmimsim/blob/master/custom-detector-response/detector-response2.c

This function extracts from the Fortran datatype TYPE (xmi_input) (which
is useless in C), the corresponding C datatype struct xmi_input, which
contains all the easily accessable information from the simulation.
It should also be possible to write plug-ins in C++, just make sure the
exported function gets the extern "C" attribute.
Here are some instructions on how to compile these modules on the three
supported platforms. The resulting module.so (Mac OS X and Linux) or
module.dll (Windows) should be loadable by XMI-MSIM. I recommend
to make use of OpenMP as shown in the Fortran example (but possible in
the C example too). If not desired, then remove the -fopenmp flags. You
are of course free to make use of any other libraries that are necessary to
implement your detector response functions. In this case however, do not
forget to add the required header and linker flags.

4.5.1 Building modules on macOS

The following instructions apply to the XMI-MSIM app bundle only, and
assume it is installed in /Applications. If compiled from source, follow the
instructions for Linux instead.

Fortran The latest release of XMI-MSIM (8.0) has been compiled with
gfortran 9, installed using Homebrew. Do not attempt to try a different
fortran compiler, or even a different version of gfortran: it won’t work! What
should work (though I haven’t tested this), is a gfortran 9 compiler installed
with MacPorts or Fink.
Compile your source files (to be executed for each source file separately):

gfortran-9 -I/Applications/XMI-MSIM.app/Contents/Resources/include/xmimsim -fopenmp -ffree-line-length-none -c -fno-common -o object1.o source1.f90

Link the objects together:

gfortran-9 -fopenmp -Wl,-undefined -Wl,dynamic_lookup -o module.so -bundle object1.o object2.o ...

C Feel free to use any C compiler you want for this: the default clang,
or any C compiler offered by Homebrew. Keep in mind though that the
macOS system clang currently doesn’t support OpenMP. clang as provided
by Homebrew and MacPorts does support OpenMP.
Compile your source files (to be executed for each source file separately):

clang -I/Applications/XMI-MSIM.app/Contents/Resources/include/xmimsim -c -fno-common -o object1.o source1.c

Link the objects together:

clang -Wl,-undefined -Wl,dynamic_lookup -o module.so -bundle object1.o object2.o ...

49

4.5.2 Building modules on Linux

The following instructions assume that XMI-MSIM was installed using
binary packages for selected Debian/Ubuntu and Redhat family distributions,
include the development packages!. If compiled from source, you may have
to set the PKG_CONFIG_PATH variable for the following instructions to work.

Fortran Compile your source files (to be executed for each source file
separately):

gfortran `pkg-config --cflags libxmimsim` -fopenmp -ffree-line-length-none -c -fPIC -o object1.o source1.f90

Link the objects together:

gfortran -fopenmp -shared -fPIC -Wl,-soname -Wl,module.so -o module.so object1.o object2.o ...

C Compile your source files (to be executed for each source file separately):

gcc `pkg-config --cflags libxmimsim` -c -fPIC -DPIC -o object1.o source1.c

Link the objects together:

gcc -fopenmp -shared -fPIC -Wl,-soname -Wl,module.so -o module.so object1.o object2.o

4.5.3 Building modules on Windows

For any of the following to work, ensure you selected the SDK
when asked which components to install when running the in-
staller!! Assuming you didn’t change the default installation path during
installation, XMI-MSIM should be installed in C:\Program Files\XMI-MSIM
64-bit
For the sake of convenience, let’s call this installation folder xmi_msim. If
for some reason you picked another installation directory, assume xmi_msim
represents this one.
XMI-MSIM for Windows has been compiled with MinGW-w64 compilers
offered through MSYS2. In order for this to work, you will have to install
the exact same compilers on your system: download MSYS2 and install the
gcc compiler suite
After installation, fire up a MinGW/MSYS2 shell from the Start Menu
entries that were just created and cd to the directory that contains your
source. Depending on what language was written, follow either the Fortran
or C instructions, keeping in mind that xmi_msim refers to the full path to
the XMI-MSIM installation folder!!!

50

https://www.msys2.org
http://www.msys2.org
http://www.msys2.org

Fortran Fortran does not have a standardized way of exporting a function
from a dll. The following should work for both gfortran and Intel Fortran: in-
clude these lines just after the definition of the xmi_detector_convolute_all_custom
function.

#ifdef __GFORTRAN__
!GCC$ ATTRIBUTES DLLEXPORT:: xmi_detector_convolute_all_custom
#elif defined(__INTEL_COMPILER)
!DEC$ ATTRIBUTES DLLEXPORT:: xmi_detector_convolute_all_custom
#endif?

Compile your source files (to be executed for each source file separately):

gfortran -I"xmi_msim\SDK\Include" -fopenmp -ffree-line-length-none -DDLL_EXPORT -c -o object1.o source1.f90

Link the objects together:

gfortran -shared -fopenmp -Wl,--enable-auto-image-base -o module.dll object1.o object2.o ... -L"xmi_msim\SDK\Lib" -lxmimsim

C Exporting the xmi_detector_convolute_all_custom requires that the
definition is proceded by __declspec(dllexport), as shown in the C exam-
ple where this is accomplished using conditional compilation.
Compile your source files (to be executed for each source file separately):

gcc -mms-bitfields -I"xmi_msim\SDK\Include" -fopenmp -DDLL_EXPORT -c -o object1.o source1.c

Link the objects together:

gcc -mms-bitfields -shared -fopenmp -Wl,--enable-auto-image-base -o module.dll object1.o object2.o ... -L"xmi_msim\SDK\Lib" -lxmimsim

In theory you should also be able to compile a module from C source code
using Visual Studio, but I have not tried this yet. For this, you will need
the import library libxmimsim-0.lib, which is located in the SDK\Lib
subdirectory of your XMI-MSIM installation.

5 The XMI-MSIM API: list of functions
(under construction)
XMI-MSIM exposes a large number of its internal functions for use in other
programs. This has been used for example in the XMI-MSIM plug-in of
the XRMC software package for X-ray imaging and spectroscopy,
giving it access to the detector convolution routines, thereby enabling the
simulation of ED-XRF spectrometers.
In order to access the XMI-MSIM functionality, you will need to include its
headers and link against its library. On Linux and Mac OS X (when compiled
from source!), this can be most easily accomplished using our pkg-config file:

51

https://github.com/golosio/xrmc

gcc $(pkg-config --cflags libxmimsim) myprogram.c $(pkg-config
--libs libxmimsim)

We intend to include a static library that includes all exported symbols in our
next Windows release, allowing you to start development on this platform as
well.
Make sure you include the following header in your code:
#include <xmi_msim.h>
The following sections show a list of all exported functions, per header. It is
not recommended to include these headers directly.

6 References and addtional resources
XMI-MSIM is the successor to the msim program of Prof. Laszlo Vincze
of Ghent University. Together we have published six papers over a course
of 20 years that cover our work on Monte Carlo simulations of ED-XRF
spectrometers.

6.1 Papers by Laszlo Vincze et al.

• AGeneral Monte-Carlo Simulation of Energy-Dispersive X-ray-Fluorescence
Spectrometers Part 1. Unpolarized Radiation, Homogeneous Samples.
Laszlo Vincze, Koen Janssens and Freddy Adams. Spectrochimica Acta
Part B, 48(4), 553-573, 1993. DOI

• AGeneral Monte-Carlo Simulation of Energy-Dispersive X-ray-Fluorescence
Spectrometers Part 2. Polarized monochromatic radiation, homege-
neous samples. Laszlo Vincze, Koen Janssens, Fred Adams, M.L. Rivers
and K.W. Jones. Spectrochimica Acta Part B, 50(2), 127-147, 1995.
DOI

• AGeneral Monte-Carlo Simulation of Energy-Dispersive X-ray-Fluorescence
Spectrometers Part 3. Polarized polychromatic radiation, homogeneous
samples. Laszlo Vincze, Koen Janssens, Fred Adams and K.W. Jones.
Spectrochimica Acta Part B, 50(12), 1481-1500, 1995. DOI

• AGeneral Monte-Carlo Simulation of Energy-Dispersive X-ray-Fluorescence
Spectrometers Part 4. Photon scattering at high X-ray energies. Laszlo
Vincze, Koen Janssens, Bart Vekemans and Fred Adams. Spectrochim-
ica Acta Part B, 54(12), 1711-1722, 1999. DOI

6.2 Papers by Tom Schoonjans et al.

• AGeneral Monte-Carlo Simulation of Energy-Dispersive X-ray-Fluorescence
Spectrometers Part 5. Polarized radiation, stratified samples, cascade
effects, M-lines. Tom Schoonjans, Laszlo Vincze, Vicente Armando
Solé, Manuel Sanchez del Rio, Philip Brondeel, Geert Silversmit, Karen

52

http://dx.doi.org/10.1016/0584-8547%2893%2980060-8
http://dx.doi.org/10.1016/0584-8547%2894%2900124-E
http://dx.doi.org/10.1016/0584-8547%2895%2901361-X
http://dx.doi.org/10.1016/S0584-8547%2899%2900094-4

Appel, Claudio Ferrero. Spectrochimica Acta Part B, 70, 10-23, 2012.
DOI

• AGeneral Monte-Carlo Simulation of Energy-Dispersive X-ray-Fluorescence
Spectrometers Part 6. Quantification through iterative simulations.
Tom Schoonjans, Laszlo Vincze, Vicente Armando Solé, Manuel Sanchez
del Rio, Karen Appel, Claudio Ferrero. Spectrochimica Acta Part B,
82, 36-41, 2013. DOI

6.3 Posters by Tom Schoonjans et al.

• A general Monte Carlo simulation of ED-XRF spectrometers. New
developments. Tom Schoonjans, V. Armando Solé, Manuel Sanchez
del Rio, Claudio Ferrero and Laszlo Vincze. ICXOM 2011 conference,
Campinas, Brazil. 5-8 September 2011.

• XMI-MSIM: A general Monte Carlo simulation of ED-XRF spectrom-
eters. Tom Schoonjans, Laszlo Vincze, V. Armando Solé, Manuel
Sanchez del Rio and Claudio Ferrero. European Conference on X-Ray
Spectrometry, Alma Mater Studiorum Università di Bologna, Italy,
15-20 June 2014

• XMI-MSIM: A general Monte Carlo simulation of ED-XRF spectrom-
eters. Tom Schoonjans, Laszlo Vincze, V. Armando Solé, Manuel
Sanchez del Rio and Claudio Ferrero. European Conference on X-Ray
Spectrometry, University of Gothenburg, Sweden, 19-24 June 2016
PDF

6.4 Oral presentations by Tom Schoonjans et al.

• Quantification of ED-XRF datasets through iterative Monte Carlo
simulations: new developments. Tom Schoonjans, Claudio Ferrero,
V.Armando Solé, Manuel Sanchez del Rio, Geert Silversmit, Karen
Appel and Laszlo Vincze. EXRS 2012 conference, Vienna, Austria.
18-22 June 2012.

• A general Monte Carlo simulation of energy-dispersive X-ray fluores-
cence spectrometers. Tom Schoonjans. Monte Carlo simulation tools
for X-ray imaging and fluorescence workshop, ESRF, Grenoble, France,
24-25 February 2014. PDF

• An introduction to Monte Carlo Methods in XRF analysis and a
tutorial on Monte Carlo methods in XRF analysis. Tom Schoonjans.
Joint ICTP-IAEA School on Novel Experimental Methodologies for
Synchrotron Radiation Applications in Nano-science and Environmental
Monitoring, Trieste, Italy, 17-28 November 2014. Slides talk and slides
tutorial

• A general Monte Carlo simulation of energy-dispersive X-ray fluores-
cence spectrometers. Tom Schoonjans. EXSA Workshop on Quantita-

53

http://dx.doi.org/10.1016/j.sab.2012.03.011
http://dx.doi.org/10.1016/j.sab.2012.12.011
http://icxom21.lnls.br
http://exrs2014.ing.unibo.it
http://exrs2014.ing.unibo.it
http://www.exrs2016.se
http://www.exrs2016.se
http://lvserver.ugent.be/xmi-msim/poster_EXRS2016.pdf
http://www.ati.ac.at/EXRS2012/
http://lvserver.ugent.be/xmi-msim/xmi-msim-tutorial.pdf
http://indico.ictp.it/event/a13226/
http://indico.ictp.it/event/a13226/
http://indico.ictp.it/event/a13226/
http://indico.ictp.it/event/a13226/session/6/contribution/32
http://indico.ictp.it/event/a13226/session/6/contribution/35
http://indico.ictp.it/event/a13226/session/6/contribution/35

tive methods in X-Ray Spectrometry, Berlin, Germany, 11-12 October
2017.

54

	Introduction
	Installation instructions
	Compiling from source
	Compilation stages
	Preparing the precompiled dataset
	Note on the random number generators

	Linux
	Fedora, Centos and Scientific Linux
	Debian and Ubuntu

	Windows
	macOS

	User guide
	Launching XMI-MSIM
	Creating an input-file
	General
	Composition
	Geometry
	Excitation
	Beam and detection absorbers
	Detector settings

	Saving an input-file
	Starting a simulation
	Control panel
	Executable
	Options
	Export results
	During a simulation

	Visualizing the results
	Plot canvas
	Net-line intensities
	Exporting the plot canvas

	Global preferences
	Simulation defaults
	Updates
	User-defined layers
	Advanced

	Checking for updates
	Command line interface
	Example files

	Advanced usage
	X-ray sources
	X-ray tube spectrum generator
	Radionuclides
	Custom sources

	Batch simulations
	Batch simulations: simulate a number of unrelated input-files
	Batch simulations: vary one or two parameters in a single input-file

	Generate XRMC input-files
	Using the XMI-MSIM API from Python
	Custom detector response functions
	Building modules on macOS
	Building modules on Linux
	Building modules on Windows

	The XMI-MSIM API: list of functions
	References and addtional resources
	Papers by Laszlo Vincze et al.
	Papers by Tom Schoonjans et al.
	Posters by Tom Schoonjans et al.
	Oral presentations by Tom Schoonjans et al.

