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Description
Missing data arise frequently. Various procedures have been suggested in the literature over the

last several decades to deal with missing data (for example, Anderson [1957]; Hartley and Hocking
[1971]; Rubin [1972, 1987]; and Dempster, Laird, and Rubin [1977]). The technique of multiple
imputation, which originated in early 1970 in application to survey nonresponse (Rubin 1976), has
gained popularity increasingly over the years as indicated by literature (for example, Rubin [1976,
1987, 1996]; Little [1992]; Meng [1994]; Schafer [1997]; van Buuren, Boshuizen, and Knook [1999];
Little and Rubin [2002]; Carlin et al. [2003]; Royston [2004, 2005a, 2005b, 2007, 2009]; Reiter and
Raghunathan [2007]; Carlin, Galati, and Royston [2008]; Royston, Carlin, and White [2009]; White,
Royston, and Wood [2011]; and Carpenter and Kenward [2013]).

This entry presents a general introduction to multiple imputation and describes relevant statistical
terminology used throughout the manual. The discussion here, as well as other statistical entries in
this manual, is based on the concepts developed in Rubin (1987) and Schafer (1997).

Remarks and examples
Remarks are presented under the following headings:

Motivating example
What is multiple imputation?
Theory underlying multiple imputation
How large should M be?
Assumptions about missing data
Patterns of missing data
Proper imputation methods
Analysis of multiply imputed data
A brief introduction to MI using Stata
Summary

We will use the following definitions and notation.

An imputation represents one set of plausible values for missing data, and so multiple imputations
represent multiple sets of plausible values. With a slight abuse of the terminology, we will use the
term imputation to mean the data where missing values are replaced with one set of plausible values.

We use M to refer to the number of imputations and m to refer to each individual imputation;
that is, m = 1 means the first imputation, m = 2 means the second imputation, and so on.

Motivating example

Consider a fictional case–control study examining a relationship between smoking and heart attacks.

1



2 intro substantive — Introduction to multiple-imputation analysis

. use http://www.stata-press.com/data/r14/mheart0
(Fictional heart attack data; bmi missing)

. describe

Contains data from http://www.stata-press.com/data/r14/mheart0.dta
obs: 154 Fictional heart attack data;

bmi missing
vars: 9 19 Jun 2014 10:50
size: 2,310

storage display value
variable name type format label variable label

attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body Mass Index, kg/m^2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate
marstatus byte %9.0g mar Marital status: single, married,

divorced
alcohol byte %24.0g alc Alcohol consumption: none, <2

drinks/day, >=2 drinks/day
hightar byte %9.0g Smokes high tar cigarettes

Sorted by:

In addition to the primary variables attack and smokes, the dataset contains information about
subjects’ ages, body mass indexes (BMIs), genders, educational statuses, marital statuses, alcohol
consumptions, and the types of cigarettes smoked (low/high tar).

We will use logistic regression to study the relationship between attack, recording heart attacks,
and smokes:

. logit attack smokes age bmi hsgrad female

Iteration 0: log likelihood = -91.359017
Iteration 1: log likelihood = -79.374749
Iteration 2: log likelihood = -79.342218
Iteration 3: log likelihood = -79.34221

Logistic regression Number of obs = 132
LR chi2(5) = 24.03
Prob > chi2 = 0.0002

Log likelihood = -79.34221 Pseudo R2 = 0.1315

attack Coef. Std. Err. z P>|z| [95% Conf. Interval]

smokes 1.544053 .3998329 3.86 0.000 .7603945 2.327711
age .026112 .017042 1.53 0.125 -.0072898 .0595137
bmi .1129938 .0500061 2.26 0.024 .0149837 .211004

hsgrad .4048251 .4446019 0.91 0.363 -.4665786 1.276229
female .2255301 .4527558 0.50 0.618 -.6618549 1.112915
_cons -5.408398 1.810603 -2.99 0.003 -8.957115 -1.85968

The above analysis used 132 observations out of the available 154 because some of the covariates
contain missing values. Let’s examine the data for missing values, something we could have done
first:
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. misstable summarize
Obs<.

Unique
Variable Obs=. Obs>. Obs<. values Min Max

bmi 22 132 132 17.22643 38.24214

We discover that bmi is missing in 22 observations. Our analysis ignored the information about the
other covariates in these 22 observations. Can we somehow preserve this information in the analysis?
The answer is yes, and one solution is to use multiple imputation.

What is multiple imputation?

Multiple imputation (MI) is a flexible, simulation-based statistical technique for handling missing
data. Multiple imputation consists of three steps:

1. Imputation step. M imputations (completed datasets) are generated under some chosen
imputation model.

2. Completed-data analysis (estimation) step. The desired analysis is performed separately on
each imputation m = 1, . . . , M . This is called completed-data analysis and is the primary
analysis to be performed once missing data have been imputed.

3. Pooling step. The results obtained from M completed-data analyses are combined into a
single multiple-imputation result.

The completed-data analysis step and the pooling step can be combined and thought of generally
as the analysis step.

MI as a missing-data technique has two appealing main features: 1) the ability to perform a
wide variety of completed-data analyses using existing statistical methods; and 2) separation of the
imputation step from the analysis step. We discuss these two features in more detail in what follows.

Among other commonly used missing-data techniques that allow a variety of completed-data
analyses are complete-case analysis or listwise (casewise) deletion, available-case analysis, and single-
imputation methods. Although these procedures share one of MI’s appealing properties, they lack
some of MI’s statistical properties.

For example, listwise deletion discards all observations with missing values and thus all information
contained in the nonmissing values of these observations. With a large number of missing observations,
this may lead to results that will be less efficient (larger standard errors, wider confidence intervals,
less power) than MI results. In situations when the remaining complete cases are not representative
of the population of interest, listwise deletion may also lead to biased parameter estimates.

In our opening logistic analysis of heart attacks, we used listwise deletion. The effect of age
was not statistically significant based on the reduced sample. The MI analysis of these data (see A
brief introduction to MI using Stata below) will reveal the statistical significance of age by using all
available observations after imputing missing values for BMI.

Unlike listwise deletion, single-imputation methods do not discard missing values. They treat the
imputed values as known in the analysis. This underestimates the variance of the estimates and so
overstates precision and results in confidence intervals and significance tests that are too optimistic.
MI rectifies this problem by creating multiple imputations and taking into account the sampling
variability due to the missing data (between-imputation variability). See Little and Rubin (2002) and
Allison (2001), among others, for a more detailed comparison of the methods.
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The independence of the imputation step from the analysis step is the property MI shares with
other imputation methods. The imputation step fills in missing values. The analysis step provides
inference about multiply imputed results and does not require any information about the missing-data
aspect of the problem.

The separation of the two steps allows different individuals, a data collector/imputer and a
data analyst, to perform these steps independently of one another. The advantage is that the data
collector/imputer usually has access to more information about the data than may be disclosed to the
data analyst and thus can create more accurate imputations. The data analyst can use the imputed
data released by the data collector in a number of different analyses. Of course, it is crucial that the
imputer make the imputation model as general as possible to accommodate a wide variety of analyses
that the data analyst might choose to perform; see Proper imputation methods below for details.

In our heart attack example, the imputer would create multiple imputations of missing values of
BMI using, for example, a linear regression method, and then release the resulting data to the analyst.
The analyst could then analyze these multiply imputed data using an ordinary logistic regression.
That is, no adjustment is needed to the analysis model itself to account for missing BMI—the pooling
portion of the analysis will account for the increased variability because of imputed missing data.

Theory underlying multiple imputation

MI was derived using the Bayesian paradigm yet was proved to be statistically valid from the
frequentist (randomization-based) perspective. We use the definition from Rubin (1996) of statistical
validity that implies approximately unbiased point estimates and implies confidence intervals achieving
their nominal coverages when averaged over the randomization distributions induced by the known
sampling and the posited missing-data mechanisms.

To explain the role the Bayesian and frequentist concepts play in MI, we need to consider the MI
procedure in more detail. MI requires specification of two models—the imputation model and the
analysis model. The imputation model is the model used to create imputations in the imputation step.
The analysis model is the completed-data model used during the analysis step to obtain completed-data
estimates, Q̂, of parameters of interest, Q, and the estimate, U , of sampling variability associated
with Q̂. During the pooling step, the individual completed-data estimates (Q̂, U) are combined into
(Q̂MI, T ) to form one repeated-imputation inference. The statistical validity of the repeated-imputation
inference is of interest.

Consider the case when both the imputation model and the analysis model are the same Bayesian
models. Then the repeated imputations (multiple imputations) are repeated draws from the posterior
predictive distribution of the missing data under a posited Bayesian model. The combined parameter
estimates, Q̂MI, and their associated sampling variance estimate, T = W +B, are the approximations
to the posterior mean and variance of Q. Here W represents the within-imputation variability (average
of the completed-data variance estimates, U ), and B represents the between-imputation variability
(variance estimate of Q̂MI over repeated imputations). Provided that the posterior mean and variance
are adequate summaries of the posterior distribution, the repeated-imputation inference based on
these combined estimates can be justified either from a purely Bayesian standpoint or from a purely
frequentist standpoint. Thus a Bayesian apparatus is used to create imputations and also underlies the
rules for combining parameter estimates.

In reality, the analysis model is rarely the same as the imputation model, and neither of them is an
explicit Bayesian model. Repeated-imputation inference is still statistically valid in those cases. The
rigorous justification is given in chapters 3 and 4 of Rubin (1987) from the frequentist perspective.
Below we briefly summarize the conditions under which the repeated-imputation inference from the
pooling step is statistically valid; also see Rubin (1987, 117–119) for more detail.
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The repeated-imputation inference is statistically valid if 1) the multiple imputations from the
imputation step are proper (see Proper imputation methods below) and 2) the completed-data inference
based on (Q̂, U) from the analysis step is randomization valid. Completed-data inference based on
(Q̂, U) is randomization valid if Q̂ ∼ N{Q,Var(Q̂)} and U is a consistent estimate of Var(Q̂)
over the distribution of the sampling mechanism.

The randomization validity of MI was derived under the assumption of an infinite number of
imputations. In practice, however, the number of imputations tends to be small and so the finite-
M properties of the MI estimators must be explored. Rubin (1987) derives the fundamental result
underlying the MI inference based on a finite M . We restate it below for a scalar Q:

T
−1/2
M (Q− Q̂M ) ∼ tνM

where Q̂M is the average of M completed-data estimates of Q, TM = W + (1 + 1/M)B, and tνM
is a Student’s t distribution with degrees of freedom νM that depend on the number of imputations
and rates of missing information (or the fraction of information missing because of nonresponse that
measures the influence of the missing data on parameter estimates). Later, Li, Raghunathan, and
Rubin (1991b) derived an improved procedure for multiple testing, and Barnard and Rubin (1999)
and Reiter (2007) extended the MI inference to account for small samples. For computation details,
see Methods and formulas in [MI] mi estimate.

How large should M be?

The theory underlying the validity of MI relies on an infinite number of imputations, M . The
procedure is also known to have good statistical properties with finite M , but what values of M
should we use in practice? Rubin (1987, 114) answers this question: the asymptotic relative efficiency
(RE) of the MI procedure with finite M compared with infinite M is roughly 90% with only two
imputations for a missing-information rate as high as 50%.

Most literature (for example, Rubin [1987] and van Buuren, Boshuizen, and Knook [1999]) suggests
that M = 5 (corresponding to RE of 95% for 50% of information missing) should be sufficient to
obtain valid inference. In general, however, the actual number of imputations necessary for MI to
perform satisfactorily depends not only on the amount of information missing due to nonresponse but
also on the analysis model and the data. Some analyses may require M to be 50 or more to obtain
stable results (Kenward and Carpenter 2007; Horton and Lipsitz 2001).

Literature with formal recommendations on how to choose M is very sparse. Royston (2004),
Royston, Carlin, and White (2009), and White, Royston, and Wood (2011) discuss the impact of the
number of imputations on the precision of estimates and suggest ways of determining the required
number of imputations by evaluating the sampling error of the MI estimates.

Because it is computationally feasible to obtain more imputations, we recommend using at least
20 imputations to reduce the sampling error due to imputations.

Assumptions about missing data

The theory underlying MI methodology makes no assumption about the missing-data mechanism.
However, many imputation methods (including those provided by Stata) require that the missing-
data mechanism be ignorable. Before we discuss the ignorability conditions, consider the following
definitions.
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Missing data are said to be missing completely at random (MCAR) if the probability that data are
missing does not depend on observed or unobserved data. Under MCAR, the missing-data values are a
simple random sample of all data values, and so any analysis that discards the missing values remains
consistent, albeit perhaps inefficient.

Consider a hypothetical longitudinal study comparing different blood-pressure treatments. Suppose
that the follow-up blood-pressure measurements were not collected from some subjects because they
moved to a different area. These missing blood-pressure measurements can be viewed as MCAR as
long as subjects’ decisions to move were unrelated to any item in the study.

Missing data are said to be missing at random (MAR) if the probability that data are missing does
not depend on unobserved data but may depend on observed data. Under MAR, the missing-data values
do not contain any additional information given observed data about the missing-data mechanism.
Note that MCAR can be viewed as a particular case of MAR. When missing data are MAR, listwise
deletion may lead to biased results.

Suppose that some subjects decided to leave the study because of severe side effects from the
assigned treatment of a high dosage of a medicine. Here it is unlikely that missing blood-pressure
measurements are MCAR because the subjects who received a higher dosage of the medicine are more
likely to suffer severe side effects than those who received a lower dosage and thus are more likely
to drop out of the study. Missing blood-pressure measurements depend on the dosage of the received
treatment and therefore are MAR.

On the other hand, if the subjects are withdrawn from the study for ethical reasons because
of extremely high blood pressures, missing blood-pressure measurements would not be MAR. The
measurements for the subjects with very high blood pressures will be missing and thus the reason
for drop out will depend on the missing blood pressures. This type of missing-data mechanism is
called missing not at random (MNAR). For such missing data, the reasons for its missingness must be
accounted for in the model to obtain valid results.

Model parameters are said to be distinct from a Bayesian standpoint if their joint prior distribution
can be factorized into independent marginal prior distributions.

The missing-data mechanism is said to be ignorable if missing data are MAR and the parameters
of the data model and the parameters of the missing-data mechanism are distinct (Rubin 1976).

The ignorability assumption makes it possible to ignore the process that causes missing data in the
imputation model—something not possible with MNAR—which simplifies the imputation step while
still ensuring correct inference. The provided imputation methods assume that missing data are MAR.

In practice, it is difficult to test the ignorability assumption formally because the MAR mechanism
can be distinguished from the MNAR mechanism only through the missing data that are not observed.
Thus careful consideration is necessary before accepting this assumption. If in doubt, sensitivity
analysis—analysis repeated under various missing-data models—needs to be performed to verify the
stability of inference. In the context of MI, sensitivity analysis can be performed by modifying the
imputation step to accommodate the nonignorable missing-data mechanism (for example, Kenward
and Carpenter [2007] and van Buuren, Boshuizen, and Knook [1999]).

Patterns of missing data

Another issue we need to consider related to missing data is a pattern of missingness (or missing-data
pattern).

Consider an N × p data matrix Y = (Y1, Y2, . . . , Yp)
′ with p variables and N observations.

Consider a permutation of column indices (i1, i2, . . . , ip) such that Yi1 is at least as observed as Yi2 ,
which is at least as observed as Yi3 , and so on. In other words, Yi2 has missing values in the same
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observations (and possibly more) as Yi1 , Yi3 has missing values (and possibly more) in the same
observations as Yi2 , and so on. If such a permutation exists, then the pattern of missingness in Y is
said to be monotone. If the pattern of missingness is not monotone, it is assumed to be arbitrary.

For example, consider the following indicator matrix recording the missing pattern in Y :

R1 =


1 1 1
0 0 1
0 1 1
0 1 1


where Rij1 is 1 if variable Yj is observed (complete) in observation i and 0 otherwise. We can see
that Y has a monotone-missing pattern if we interchange the first and the third columns of R1. In
fact, if we also rearrange the rows such that

R1 =


1 1 1
1 1 0
1 1 0
1 0 0


then the monotonicity of missing values becomes even more evident. An example of a nonmonotone
missing-value pattern is

R2 =


1 1 1
1 1 0
0 1 0
1 0 0


There is no ordering of the first two columns of R2 such that the missing values in one column imply
missing values in the other column.

Why is it important to consider the monotone missing-value pattern? A monotone-missing pattern
greatly simplifies the imputation task. Under a monotone-missing pattern, a multivariate imputation
task can be formulated as a sequence of independent univariate (conditional) imputation tasks, which
allows the creation of a flexible imputation model; see [MI] mi impute monotone for details, and
see Rubin (1987, 174) for more technical conditions under which such a formulation is applicable.

Proper imputation methods

As we mentioned earlier, a key concept underlying the randomization-based evaluations of the
repeated-imputation inference is proper multiple imputation.

A multiple-imputation method is said to be proper if it produces proper multiple imputations,
which we are about to define. Rubin (1987, 118–119) gives a full technical definition for proper
multiple imputations. Ignoring the more technical definition, Rubin (1996) states the following main
conditions. The multiple imputations are said to be proper if

1. MI estimates Q̂MI are asymptotically normal with mean Q̂ and a consistent variance–
covariance estimate B.

2. The within-imputation variance estimateW is a consistent estimate of the variance–covariance
estimate U with variability of a lower order than Var(Q̂MI).

The above statements assume a large number of imputations and the randomization distribution
induced by the missing-data mechanism.
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In general, it is difficult to determine if an imputation method is proper using the above definition.
Rubin (1987, sec. 4.3) and Binder and Sun (1996) describe several examples of proper and improper
imputation methods. Rubin (1987, 125–127) recommends drawing imputations from a Bayesian
posterior predictive distribution (or an appropriate approximation to it) of missing values under the
chosen model for the data and the missing-data mechanism. The chosen imputation model must also
be appropriate for the completed-data statistics likely to be used at the analysis stage. Schafer (1997,
145) points out that from a practical standpoint, it is more important that the chosen imputation model
performs well over the repeated samples than that it be technically proper. This can be checked via
simulation.

With the exception of predictive mean matching and chained equations, the imputation methods
available in Stata obtain imputations by simulating from a Bayesian posterior predictive distribution
of the missing data (or its approximation) under the conventional (or chosen) prior distribution; see
Imputation methods in [MI] mi impute for details. To ensure that the multiple imputations are proper,
you must choose an appropriate imputation model, which we briefly discuss next.

The imputation model must include all predictors relevant to the missing-data mechanism, and it
must preserve all data characteristics likely to be explored at the analysis stage. For example, if the
analysis model explores a correlation between two variables, then omitting either of those variables
from the imputation model will lead to estimates of the correlation biased toward zero. Another
common mistake that may lead to biased estimates is when an outcome variable of the analysis model
is not used in the imputation model. In the survey context, all structural variables such as sampling
weights, strata, and cluster identifiers (or at least main strata and main clusters) need to be included
in the imputation model.

In general, any predictors involved in the definition of the completed-data estimators and the
sampling design should be included in the imputation model. If you intend to use the multiply
imputed data in an analysis involving a wide range of completed-data estimators, you should include
as many variables as possible.

Using our heart attack data, if we were to release the multiply imputed version of it for general
analyses, we would have included all available covariates as predictors in the regression model used
to impute BMI and not only the subset of covariates (heart attacks, smoking status, age, gender, and
educational status) used in our specific data analysis.

The severity of the effect of a misspecified imputation model will typically depend on the amount of
imputed data relative to the observed data—a small number of observations with improperly imputed
values may not affect the inference greatly if there is a large number of observations with complete
data.

For more details about imputation modeling, see Rubin (1996), Schafer (1997, 139–144), Schafer
and Olsen (1998), Allison (2001), Schafer and Graham (2002), Kenward and Carpenter (2007),
Graham (2009), and White, Royston, and Wood (2011), among others. For imputation modeling of
large surveys, see, for example, Schafer, Khare, and Ezzati-Rice (1993) and Ezzati-Rice et al. (1995).

Analysis of multiply imputed data

Once we have multiply imputed data, we perform our primary analysis on each completed dataset
and then use Rubin’s combination rules to form one set of results. Assuming that the underlying
imputation model is properly specified (see, for example, Abayomi, Gelman, and Levy [2008] and
Gelman et al. [2005] for multiple-imputation diagnostics), we can choose from a variety of statistical
methods. For example, the methods can include maximum likelihood methods, survey methods,
nonparametric methods, and any other method appropriate for the type of data we have.
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Each of the methods have certain concepts associated with them. For example, maximum likelihood
methods use a likelihood function, whereas a deviance is associated with generalized linear models.
While these concepts are well defined within each individual completed-data analysis, they may not
have a clear interpretation when the individual analyses are combined in the pooling step. (Only in
the special case when the imputation and analysis models are compatible Bayesian models can the
estimated parameters be viewed as approximations to the mode of the posterior distribution.)

As a result, various statistical (postestimation) procedures based on these concepts, such as
likelihood-ratio tests, goodness-of-fit tests, etc., are not directly applicable to MI results. Instead,
their “MI” versions are being studied in the literature (Li et al. 1991a; Meng and Rubin 1992).
Another concept that is not uniquely defined within MI is that of prediction; see Carlin, Galati, and
Royston (2008) and White, Royston, and Wood (2011) for one definition.

� �
Donald Bruce Rubin (1943– ) was born in Washington, DC. He entered Princeton intending
to become a physicist but ended up majoring in psychology. He entered Harvard intending
to continue as a psychologist, but in the event, gained further degrees in computer science
and statistics. After periods at the Educational Testing Service and the University of Chicago,
Rubin returned to Harvard in 1984. He has had many visiting appointments and has carried out
extensive consultancy work. Rubin has long been a leader in research on causal inference in
experiments and observational studies, and problems of nonresponse and missing data. Among
many major contributions is his formalization of the expectation-maximization algorithm with
Arthur Dempster and Nan Laird. Rubin’s work ranges over a wide variety of sciences and is
often Bayesian in style. Rubin was elected a member of the National Academy of Sciences in
2010.� �

A brief introduction to MI using Stata

Stata offers full support for MI analysis from the imputation step to the pooling step.

The imputation step can be performed for one variable or multiple variables. A number of
imputation methods, including flexible methods accommodating variables of different types and an
iterative Markov chain Monte Carlo method based on multivariate normal, are available; see [MI] mi
impute for details.

The analysis and pooling steps are combined into one step and performed by mi estimate;
see [MI] mi estimate. You can fit many commonly used models and obtain combined estimates
of coefficients (or transformed coefficients) (see [MI] estimation for a list of supported estimation
commands), or you can create your own estimation command and use it with the mi estimate prefix.

In addition to the conventional estimation steps, Stata facilitates many data-manipulation routines
for managing your multiply imputed data and verifying its integrity over the imputations; see [MI] intro
for a full list of commands.

As a short demonstration of mi, let’s analyze the heart attack data introduced earlier using MI; see
[MI] workflow for more thorough guidelines.

The goals are 1) to fill in missing values of bmi using, for example, a linear regression imputation
method (mi impute regress) to obtain multiply imputed data and 2) to analyze the multiply imputed
data using logistic regression, which we will do using mi estimate. Before we can accomplish these
two steps, we need to prepare the data so they can be used with mi. First, we declare the data to be
mi data:
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. use http://www.stata-press.com/data/r14/mheart0
(Fictional heart attack data; bmi missing)

. mi set mlong

We choose to use the data in the marginal long style (mlong) because it is a memory-efficient style;
see [MI] styles for details.

To use mi impute, we must first register imputation variables. In general, we recommend that you
register all variables relevant to the analysis as imputed, passive, or regular with mi register
(see [MI] mi set), especially if you plan on doing any data management of your multiply imputed
data.

. mi register imputed bmi
(22 m=0 obs. now marked as incomplete)

. mi register regular attack smokes age hsgrad female

We are now ready to use mi impute. To lessen the simulation (Monte Carlo) error, we arbi-
trarily choose to create 20 imputations (add(20) option). We also specify the rseed() option for
reproducibility:

. mi impute regress bmi attack smokes age hsgrad female, add(20) rseed(2232)

Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

From the output, we see that all 22 incomplete values of bmi were successfully imputed. You may
want to examine your imputations to verify that nothing abnormal occurred during imputation. For
example, as a quick check, we can compare main descriptive statistics from some imputations (say,
the first and the last one) to those from the observed data. We use mi xeq (see [MI] mi xeq) to
execute Stata’s summarize command on the original data (m = 0), the first imputation (m = 1),
and the last imputation (m = 20):

. mi xeq 0 1 20: summarize bmi

m=0 data:
-> summarize bmi

Variable Obs Mean Std. Dev. Min Max

bmi 132 25.24136 4.027137 17.22643 38.24214

m=1 data:
-> summarize bmi

Variable Obs Mean Std. Dev. Min Max

bmi 154 25.28134 3.969649 17.22643 38.24214

m=20 data:
-> summarize bmi

Variable Obs Mean Std. Dev. Min Max

bmi 154 25.30992 4.05665 16.44644 38.24214

The summary statistics of the imputed datasets look reasonable.
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We now fit the logistic regression using the mi estimate prefix command:

. mi estimate, dots: logit attack smokes age bmi hsgrad female

Imputations (20):
.........10.........20 done

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154

Average RVI = 0.0611
Largest FMI = 0.2518

DF adjustment: Large sample DF: min = 311.30
avg = 116,139.89
max = 252,553.06

Model F test: Equal FMI F( 5,19590.7) = 3.52
Within VCE type: OIM Prob > F = 0.0035

attack Coef. Std. Err. t P>|t| [95% Conf. Interval]

smokes 1.222431 .3608138 3.39 0.001 .5152409 1.92962
age .0358403 .0154631 2.32 0.020 .0055329 .0661476
bmi .1094125 .0518803 2.11 0.036 .0073322 .2114929

hsgrad .1740094 .4055789 0.43 0.668 -.6209156 .9689344
female -.0985455 .4191946 -0.24 0.814 -.9201594 .7230684
_cons -5.625926 1.782136 -3.16 0.002 -9.124984 -2.126867

Compared with the earlier logit analysis (using listwise deletion), we detect the significance of age,
whose effect was apparently disguised by the missing data. See [MI] mi estimate for details.

We will be using variations of these data throughout the mi documentation.

Summary

• MI is a simulation-based procedure. Its purpose is not to re-create the individual missing
values as close as possible to the true ones but to handle missing data in a way resulting in
valid statistical inference (Rubin 1987, 1996).

• MI yields valid inference if 1) the imputation method is proper with respect to the posited
missing-data mechanism (see Proper imputation methods above) and 2) completed-data
analysis is valid in the absence of missing data.

• A small number of imputations (5 to 20) may be sufficient when fractions of missing data
are low. High fractions of missing data as well as particular data structures may require up
to 100 (or more) imputations. Whenever feasible to do so, we recommend that you vary the
number of imputations to see if this affects your results.

• With a small number of imputations, the reference distribution for the MI inference is
Student’s t (or F in multiple-hypothesis testing). The residual degrees of freedom depend
on M and the rates of missing information and thus are different for each parameter of
interest.

• With a large number of imputations, the reference distribution for MI inference is approximately
normal (or χ2 in multiple-hypothesis testing).

• When the imputer’s model is more restrictive than the analyst’s model, the MI inference can
be invalid if the imputer’s assumptions are not true. On the other hand, when the analyst’s
model is more restrictive than the imputer’s model, the MI results will be valid but somewhat
conservative if the analyst’s assumptions are true. If the analyst’s assumptions are false, the
results can be biased; see, for example, Schafer (1997) for details.
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• MI is relatively robust to departures from the correct specification of the imputation model,
provided the rates of missing information are low and the correct completed-data model is
used in the analysis.

• Certain concepts, for example, likelihood and deviance, do not have clear interpretation
within the MI framework. As such, various statistical (postestimation) procedures based on
these concepts (for example, likelihood-ratio tests, goodness-of-fit tests) are not directly
applicable to MI results.
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Description

� �
The mi suite of commands deals with multiple-imputation data, abbreviated as mi data. To
become familiar with mi as quickly as possible, do the following:

1. See A simple example under Remarks and examples below.

2. If you have data that require imputing, see [MI] mi set and [MI] mi impute.

3. Alternatively, if you have already imputed data, see [MI] mi import.
4. To fit your model, see [MI] mi estimate.� �

To create mi data from original data

mi set declare data to be mi data
mi register register imputed, passive, or regular variables
mi unregister unregister previously registered variables
mi unset return data to unset status (rarely used)

See Summary below for a summary of mi data and these commands.
See [MI] Glossary for a definition of terms.

To import data that already have imputations for the missing values (do not mi set the data)

mi import import mi data
mi export export mi data to non-Stata application

Once data are mi set or mi imported

mi query query whether and how mi set

mi describe describe mi data
mi varying identify variables that vary over m
mi misstable tabulate missing values
mi passive create passive variable and register it

15
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To perform estimation on mi data

mi impute impute missing values
mi estimate perform and combine estimation on m > 0
mi ptrace check stability of MCMC
mi test perform tests on coefficients
mi testtransform perform tests on transformed coefficients
mi predict obtain linear predictions
mi predictnl obtain nonlinear predictions

To stset, svyset, tsset, or xtset any mi data that were not set at the time they were mi set

mi fvset fvset for mi data
mi svyset svyset for mi data
mi xtset xtset for mi data
mi tsset tsset for mi data
mi stset stset for mi data
mi streset streset for mi data
mi st st for mi data

To perform data management on mi data

mi rename rename variable
mi append append for mi data
mi merge merge for mi data
mi expand expand for mi data
mi reshape reshape for mi data
mi stsplit stsplit for mi data
mi stjoin stjoin for mi data
mi add add imputations from one mi dataset to another

To perform data management for which no mi prefix command exists

mi extract extract m = 0 data
. . . perform data management the usual way
mi replace0 replace m = 0 data in mi data
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To perform the same data management or data-reporting command(s) on m = 0, m = 1, . . .

mi xeq: . . . execute commands on m = 0, m = 1, m = 2, . . . , m = M
mi xeq #: . . . execute commands on m = #
mi xeq # # . . .: . . . execute commands on specified values of m

Useful utility commands

mi convert convert mi data from one style to another

mi extract # extract m = # from mi data
mi select # programmer’s command similar to mi extract

mi copy copy mi data
mi erase erase files containing mi data

mi update verify/make mi data consistent
mi reset reset imputed or passive variable

For programmers interested in extending mi

[MI] technical Detail for programmers

Summary of styles

There are four styles or formats in which mi data are stored: flongsep, flong, mlong, and wide.

1. Flongsep: m = 0, m = 1, . . . , m = M are each separate .dta datasets. If m = 0 data are
stored in pat.dta, then m = 1 data are stored in 1 pat.dta, m = 2 in 2 pat.dta,
and so on. Flongsep stands for full long and separate.

2. Flong: m = 0, m = 1, . . . , m = M are stored in one dataset with N = N + M × N
observations, where N is the number of observations in m = 0. Flong stands for full long.

3. Mlong: m = 0, m = 1, . . . , m = M are stored in one dataset with N = N + M × n
observations, where n is the number of incomplete observations in m = 0. Mlong stands
for marginal long.

4. Wide: m = 0, m = 1, . . . , m = M are stored in one dataset with N = N observations.
Each imputed and passive variable has M additional variables associated with it. If variable
bp contains the values in m = 0, then values for m = 1 are contained in variable 1 bp,
values for m = 2 in 2 bp, and so on. Wide stands for wide.

See style in [MI] Glossary and see [MI] styles for examples. See [MI] technical for programmer’s
details.
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Summary

1. mi data may be stored in one of four formats—flongsep, flong, mlong, and wide—known
as styles. Descriptions are provided in Summary of styles directly above.

2. mi data contain M imputations numbered m = 1, 2, . . . , M , and contain m = 0, the
original data with missing values.

3. Each variable in mi data is registered as imputed, passive, or regular, or it is unregistered.

a. Unregistered variables are mostly treated like regular variables.

b. Regular variables usually do not contain missing, or if they do, the missing values
are not imputed in m > 0.

c. Imputed variables contain missing in m = 0, and those values are imputed, or are
to be imputed, in m > 0.

d. Passive variables are algebraic combinations of imputed, regular, or other passive
variables.

4. If an imputed variable contains a value greater than . in m = 0—it contains .a, .b, . . . ,
.z—then that value is considered a hard missing and the missing value persists in m > 0.

See [MI] Glossary for a more thorough description of terms used throughout this manual.

Remarks and examples
Remarks are presented under the following headings:

A simple example
Suggested reading order
What’s new

A simple example

We are about to type six commands:

. use http://www.stata-press.com/data/r14/mheart5 (1)

. mi set mlong (2)

. mi register imputed age bmi (3)

. set seed 29390 (4)

. mi impute mvn age bmi = attack smokes hsgrad female, add(10) (5)

. mi estimate: logistic attack smokes age bmi hsgrad female (6)

The story is that we want to fit

. logistic attack smokes age bmi hsgrad female

but the age and bmi variables contain missing values. Fitting the model by typing logistic . . .
would ignore some of the information in our data. Multiple imputation (MI) attempts to recover that
information. The method imputes M values to fill in each of the missing values. After that, statistics
are performed on the M imputed datasets separately and the results combined. The goal is to obtain
better estimates of parameters and their standard errors.
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In the solution shown above,

1. We load the data.

2. We set our data for use with mi.

3. We inform mi which variables contain missing values for which we want to impute values.

4. We impute values in command 5; we prefer that our results be reproducible, so we set the
random-number seed in command 4. This step is optional.

5. We create M = 10 imputations for each missing value in the variables we registered in
command 3.

6. We fit the desired model separately on each of the 10 imputed datasets and combine the
results.

The results of running the six-command solution are

. webuse mheart5
(Fictional heart attack data)

. mi set mlong

. mi register imputed age bmi
(28 m=0 obs. now marked as incomplete)

. set seed 29390

. mi impute mvn age bmi = attack smokes hsgrad female, add(10)

Performing EM optimization:
note: 12 observations omitted from EM estimation because of all imputation

variables missing
observed log likelihood = -651.75868 at iteration 7

Performing MCMC data augmentation ...

Multivariate imputation Imputations = 10
Multivariate normal regression added = 10
Imputed: m=1 through m=10 updated = 0

Prior: uniform Iterations = 1000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)
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. mi estimate: logistic attack smokes age bmi hsgrad female

Multiple-imputation estimates Imputations = 10
Logistic regression Number of obs = 154

Average RVI = 0.0835
Largest FMI = 0.2642

DF adjustment: Large sample DF: min = 139.75
avg = 19,591.87
max = 67,578.07

Model F test: Equal FMI F( 5, 4836.6) = 3.32
Within VCE type: OIM Prob > F = 0.0054

attack Coef. Std. Err. t P>|t| [95% Conf. Interval]

smokes 1.187152 .3623514 3.28 0.001 .4768502 1.897453
age .0315179 .0163884 1.92 0.055 -.0006696 .0637055
bmi .1090419 .0516554 2.11 0.037 .0069434 .2111404

hsgrad .1712372 .4054594 0.42 0.673 -.623472 .9659464
female -.065744 .4156809 -0.16 0.874 -.8804781 .7489901
_cons -5.369962 1.863821 -2.88 0.005 -9.054895 -1.685029

Note that the output from the last command,

. mi estimate: logistic attack smokes age bmi hsgrad female

reported coefficients rather than odds ratios, which logistic would usually report. That is because
the estimation command is not logistic, it is mi estimate, and mi estimate happened to use
logistic to obtain results that mi estimate combined into its own estimation results.

mi estimate by default displays coefficients. If we now wanted to see odds ratios, we could type

. mi estimate, or
(output showing odds ratios would appear)

Note carefully: We replay results by typing mi estimate, not by typing logistic. If we had
wanted to see the odds ratios from the outset, we would have typed

. mi estimate, or: logistic attack smokes age bmi hsgrad female

Suggested reading order

The order of suggested reading of this manual is

[MI] intro substantive
[MI] intro
[MI] Glossary
[MI] workflow

[MI] mi set
[MI] mi import
[MI] mi describe
[MI] mi misstable

[MI] mi impute
[MI] mi estimate
[MI] mi estimate postestimation

[MI] styles
[MI] mi convert
[MI] mi update
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[MI] mi rename
[MI] mi copy
[MI] mi erase
[MI] mi XXXset

[MI] mi extract
[MI] mi replace0

[MI] mi append
[MI] mi add
[MI] mi merge
[MI] mi reshape
[MI] mi stsplit
[MI] mi varying

Programmers will want to see [MI] technical.

What’s new
For a complete list of all the new features in Stata 14, see [U] 1.3 What’s new.
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Title

estimation — Estimation commands for use with mi estimate

Description Also see

Description
Multiple-imputation data analysis in Stata is similar to standard data analysis. The standard syntax

applies, but you need to remember the following for MI data analysis:

1. The data must be declared as mi data.

If you already have multiply imputed data (saved in Stata format), use mi import to import
it into mi; see [MI] mi import.
If you do not have multiply imputed data, use mi set (see [MI] mi set) to declare your
original data to be mi data and use mi impute (see [MI] mi impute) to fill in missing values.

2. After you have declared mi data, commands such as svyset, stset, and xtset cannot be
used. Instead use mi svyset to declare survey data, use mi stset to declare survival data,
and use mi xtset to declare panel data. See [MI] mi XXXset.

3. Prefix the estimation commands with mi estimate: (see [MI] mi estimate).

The following estimation commands support the mi estimate prefix.

Command Entry Description

Linear regression models

regress [R] regress Linear regression
cnsreg [R] cnsreg Constrained linear regression
mvreg [MV] mvreg Multivariate regression

Binary-response regression models

logistic [R] logistic Logistic regression, reporting odds ratios
logit [R] logit Logistic regression, reporting coefficients
probit [R] probit Probit regression
cloglog [R] cloglog Complementary log-log regression
binreg [R] binreg GLM for the binomial family

Count-response regression models

poisson [R] poisson Poisson regression
nbreg [R] nbreg Negative binomial regression
gnbreg [R] nbreg Generalized negative binomial regression

Ordinal-response regression models

ologit [R] ologit Ordered logistic regression
oprobit [R] oprobit Ordered probit regression

Categorical-response regression models

mlogit [R] mlogit Multinomial (polytomous) logistic regression
mprobit [R] mprobit Multinomial probit regression
clogit [R] clogit Conditional (fixed-effects) logistic regression

22
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Fractional-response regression models

fracreg [R] fracreg Fractional response regression

Quantile regression models

qreg [R] qreg Quantile regression
iqreg [R] qreg Interquantile range regression
sqreg [R] qreg Simultaneous-quantile regression
bsqreg [R] qreg Bootstrapped quantile regression

Survival regression models

stcox [ST] stcox Cox proportional hazards model
streg [ST] streg Parametric survival models
stcrreg [ST] stcrreg Competing-risks regression

Other regression models

glm [R] glm Generalized linear models
areg [R] areg Linear regression with a large dummy-variable set
rreg [R] rreg Robust regression
cpoisson [R] cpoisson Censored Poisson regression
truncreg [R] truncreg Truncated regression

Descriptive statistics

mean [R] mean Estimate means
proportion [R] proportion Estimate proportions
ratio [R] ratio Estimate ratios
total [R] total Estimate totals

Panel-data models

xtreg [XT] xtreg Fixed-, between- and random-effects, and
population-averaged linear models

xtrc [XT] xtrc Random-coefficients regression
xtlogit [XT] xtlogit Fixed-effects, random-effects, and population-averaged

logit models
xtprobit [XT] xtprobit Random-effects and population-averaged probit models
xtcloglog [XT] xtcloglog Random-effects and population-averaged cloglog models
xtpoisson [XT] xtpoisson Fixed-effects, random-effects, and population-averaged

Poisson models
xtnbreg [XT] xtnbreg Fixed-effects, random-effects, and population-averaged

negative binomial models
xtgee [XT] xtgee Fit population-averaged panel-data models by using GEE

Multilevel mixed-effects models

meqrlogit [ME] meqrlogit Multilevel mixed-effects logistic regression
(QR decomposition)

meqrpoisson [ME] meqrpoisson Multilevel mixed-effects Poisson regression
(QR decomposition)

mixed [ME] mixed Multilevel mixed-effects linear regression

Survey regression models

svy: [SVY] svy Estimation commands for survey data (excluding
commands that are not listed above)
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Also see
[MI] mi estimate — Estimation using multiple imputations

[MI] mi estimate postestimation — Postestimation tools for mi estimate

[MI] mi import — Import data into mi

[MI] mi impute — Impute missing values

[MI] mi set — Declare multiple-imputation data

[MI] workflow — Suggested workflow

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

[MI] Glossary



Title

mi add — Add imputations from another mi dataset

Description Menu Syntax Options
Remarks and examples Stored results Also see

Description
mi add adds the imputations from the using dataset on disk to the end of the master dataset in

memory.

Menu
Statistics > Multiple imputation

Syntax
mi add varlist using filename

[
, options

]
options Description

assert(master) assert all observations found in master
assert(match) assert all observations found in master and in using
noupdate see [MI] noupdate option

Notes:

1. Jargon:
match variables = varlist, variables on which match performed

master = data in memory
using = data on disk (filename)

2. Master must be mi set.

3. Using must be mi set.

4. filename must be enclosed in double quotes if filename contains blanks or other special
characters.

Options

assert(results) specifies how observations are expected to match. If results are not as you expect,
an error message will be issued and the master data left unchanged.

assert(master) specifies that you expect a match for every observation in the master, although
there may be extra observations in the using that mi add is to ignore.

assert(match) specifies that you expect every observation in the master to match an observation
in the using and vice versa.

25
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The default is that the master may have observations that are missing from the using and vice
versa. Only observations in common are used by mi add.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks and examples
Think of the result produced by mi add as being

Result Source
m = 0 m = 0 from master
m = 1 m = 1 from master
m = 2 m = 2 from master

. .

. .
m = Mmaster m = Mmaster from master
m = Mmaster + 1 m = 1 from using
m = Mmaster + 2 m = 2 from using

. .

. .
m = Mmaster +Musing m = Musing from using

That is, the original data in the master remain unchanged. All that happens is the imputed data from
the using are added to the end of the master as additional imputations.

For instance, say you discover that you and a coworker have been working on the same data. You
have added M = 20 imputations to your data. Your coworker has separately added M = 17. To
combine the data, type something like

. use mydata

. mi add patientid using karensdata
(17 imputations added; M=37)

The only thing changed in your data is M . If your coworker’s data have additional variables, they
are ignored. If your coworker has variables registered differently from how you have them registered,
that is ignored. If your coworker has not yet registered as imputed a variable that you have registered
as imputed, that is noted in the output. You might see

. use mydata

. mi add patientid using karensdata
(17 imputations added; M=37)
(imputed variable grade not found in using data;

added imputations contain m=0 values for that variable)
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Stored results
mi add stores the following in r():

Scalars
r(m) number of added imputations
r(unmatched m) number of unmatched master observations
r(unmatched u) number of unmatched using observations

Macros
r(imputed f) variables for which imputed found
r(imputed nf) variables for which imputed not found

Also see
[MI] intro — Introduction to mi

[MI] mi append — Append mi data

[MI] mi merge — Merge mi data



Title

mi append — Append mi data

Description Menu Syntax Options
Remarks and examples Stored results Also see

Description
mi append is append for mi data; see [D] append for a description of appending datasets.

Menu
Statistics > Multiple imputation

Syntax
mi append using filename

[
, options

]
options Description

generate(newvar) create newvar; 0 = master, 1 = using
nolabel do not copy value labels from using
nonotes do not copy notes from using
force string ↔ numeric not type mismatch error

noupdate see [MI] noupdate option

Notes:

1. Jargon:
master = data in memory
using = data on disk (filename)

2. Master must be mi set; using may be mi set.

3. mi append is logically equivalent to append; see [D] append. The resulting data have
M = max(Mmaster,Musing), not their sum. See [MI] mi add to append imputations
holding m = 0 constant.

4. mi append syntactically differs from append in that multiple using files may not be specified
and the keep(varlist) option is not allowed.

5. filename must be enclosed in double quotes if filename contains blanks or other special
characters.

Options

generate(newvar) specifies that new variable newvar be created containing 0 for observations from
the master and 1 for observations from the using.

28
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nolabel prevents copying the value-label definitions from the using data to the master. Even if you
do not specify this option, label definitions from the using never replace those of the master.

nonotes prevents any notes in the using from being incorporated into the master; see [D] notes.

force allows string variables to be appended to numeric variables and vice versa. The results of
such type mismatches are, of course, missing values. Default behavior is to issue an error message
rather than append datasets with such violently differing types.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks and examples
Use mi append when you would use append if the data were not mi.

Remarks are presented under the following headings:

Adding new observations
Adding new observations and imputations
Adding new observations and imputations, M unequal
Treatment of registered variables

Adding new observations

Assume that file mymi.dta contains data on three-quarters of the patients in the ICU. The data
are mi set and M = 5. File remaining.dta arrives containing the remaining patients. The data
are not mi set. To combine the datasets, you type

. use mymi, clear

. mi append using remaining

The original mi data had M = 5 imputations, and so do the resulting data. If the new data contain
no missing values of the imputed variables, you are ready to go. Otherwise, you will need to impute
values for the new data.

Adding new observations and imputations

Assume that file westwing.dta contains data on patients in the west wing of the ICU. File
eastwing.dta contains data on patients in the east wing of the ICU. Both datasets are mi set with
M = 5. You originally intended to analyze the datasets separately, but you now wish to combine
them. You type

. use westwing, clear

. mi append using eastwing

The original data had M = 5 imputations, and so do the resulting data.

The data for m = 0 are the result of running an ordinary append on the two m = 0 datasets.

The data for m = 1 are also the result of running an ordinary append, this time on the two m = 1
datasets. Thus the result is a combination of observations of westwing.dta and eastwing.dta
in the same way that m = 0 is. Imputations for observations that previously existed are obtained
from westwing.dta, and imputations for the newly appended observations are obtained from
eastwing.dta.
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Adding new observations and imputations, M unequal

Consider the same situation as above, but this time assume M = 5 in westwing.dta and M = 4
in eastwing.dta. The combined result will still have M = 5. Imputed values in m = 5 will be
missing for imputed variables from observations in westwing.dta.

Treatment of registered variables

It is possible that the two datasets will have variables registered inconsistently.

Variables registered as imputed in either dataset will be registered as imputed in the final result
regardless of how they were registered (or unregistered) in the other dataset.

Barring that, variables registered as passive in either dataset will be registered as passive in the
final result.

Barring that, variables registered as regular in either dataset will be registered as regular in the
final result.

Stored results
mi append stores the following in r():

Scalars
r(N master) number of observations in m=0 in master
r(N using) number of observations in m=0 in using
r(M master) number of imputations (M) in master
r(M using) number of imputations (M) in using

Macros
r(newvars) new variables added

Thus values in the resulting data are

N = # of observations in m = 0
= r(N master) + r(N using)

k = # of variables
= k master + ‘:word count ‘r(newvars)’’

M = # of imputations
= max(r(M master), r(M using))

Also see
[MI] intro — Introduction to mi

[D] append — Append datasets

[MI] mi add — Add imputations from another mi dataset

[MI] mi merge — Merge mi data



Title

mi convert — Change style of mi data

Description Menu Syntax Options
Remarks and examples Also see

Description
mi convert converts mi data from one style to another.

Menu
Statistics > Multiple imputation

Syntax

mi convert wide
[
, options

]
mi convert mlong

[
, options

]
mi convert flong

[
, options

]
mi convert flongsep name

[
, options

]
options Description

clear okay to convert if data not saved
noupdate see [MI] noupdate option

Options

clear specifies that it is okay to convert the data even if the data have not been saved to disk since
they were last changed.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks and examples
Remarks are presented under the following headings:

Using mi convert as a convenience tool
Converting from flongsep
Converting to flongsep

31
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Using mi convert as a convenience tool

Some tasks are easier in one style than another. mi convert allows you to switch to the more
convenient style. It would not be unreasonable for a snippet of a session to read

. mi convert wide

. drop if sex=="male"

. mi convert mlong, clear

. replace age2 = age^2

This user is obviously exploiting his or her knowledge of [MI] styles. The official way to do the
above would be

. drop if sex=="male"

. mi update

. mi passive: replace age2 = age^2

It does not matter which approach you choose.

Converting from flongsep

If you have flongsep data, it is worth finding out whether you can convert it to one of the other
styles. The other styles are more convenient than flongsep, and mi commands run faster on them.
With your flongsep data in memory, type

. mi convert mlong

The result will be either success or an insufficient-memory error.

If you wish, you can make a crude guess as to how much memory is required as follows:

1. Use your flongsep data. Type mi describe. Write down M , the number of imputations,
and write down the number of complete observations, which we will call N , and the number
of incomplete observations, which we will call n.

2. With your flongsep data still in memory, type memory. Write down the sum of the numbers
reported as “data” and “overhead” under the “used” column. We will call this sum S for
size.

3. Calculate T = S + M×S×(n/N). T is an approximation of the memory your mi data
would consume in the mlong style. To that, we need to add a bit to account for extra memory
used by Stata commands and for variables or observations you might want to add. How
much to add is always debatable. For large datasets, add 10% or 5 MB, whichever is smaller.

For instance, you might have

M = 30
N = 10,000
n = 1,500
S = 8,040,000 = 8 MB

and thus we would calculate T = 8 + 30×8× (1500/10000) = 44 MB, to which we would
add another 4 or 5 MB, to obtain 48 or 49 MB.
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Converting to flongsep

Note that mi convert’s syntax for converting to flongsep is

mi convert flongsep name

You must specify a name, and that name will become the basis for the names of the datasets
that comprise the collection of flongsep data. Data for m = 0 will be stored in name.dta; data for
m = 1, in 1 name.dta; data for m = 2, in 2 name.dta; and so on. The files will be stored in
the current directory; see the pwd command in [D] cd.

If you are going to use flongsep data, see Advice for using flongsep in [MI] styles. Also see
[MI] mi copy and [MI] mi erase.

Also see
[MI] intro — Introduction to mi

[MI] styles — Dataset styles



Title

mi copy — Copy mi flongsep data

Description Menu Syntax Option
Remarks and examples Also see

Description
mi copy newname copies flongsep data in memory to newname and sets it so that you are working

with that copy. newname may not be specified with the .dta suffix.

In detail, mi copy newname 1) completes saving the flongsep data to its current name if
that is necessary; 2) copies the data to newname.dta, 1 newname.dta, 2 newname.dta, . . . ,
M newname.dta; and 3) tells mi that you are now working with newname.dta in memory.

mi copy can also be used with wide, mlong, or flong data, although there is no reason you would
want to do so. The data are not saved to the original filename as flongsep data would be, but otherwise
actions are the same: the data in memory are copied to newname.dta, and newname.dta is loaded
into memory.

Menu
Statistics > Multiple imputation

Syntax
mi copy newname

[
, replace

]
Option

replace specifies that it is okay to overwrite newname.dta, 1 newname.dta, 2 newname.dta,
. . . , if they already exist.

Remarks and examples
In Stata, one usually works with a copy of the data in memory. Changes you make to the data

are not saved in the underlying disk file until and unless you explicitly save your data. That is not
true when working with flongsep data.

Flongsep data are a matched set of datasets, one containing m = 0, another containing m = 1,
and so on. You work with one of them in memory, namely, m = 0, but as you work, the other
datasets are automatically updated; as you make changes, the datasets on disk change.

Therefore, it is best to work with a copy of your flongsep data and then periodically save the data
to the real files, thus mimicking how you work with ordinary Stata datasets. mi copy is for just that
purpose. After loading your flongsep data, type, for example,

. use myflongsep
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and immediately make a copy,

. mi copy newname

You are now working with the same data but under a new name. Your original data are safe.

When you reach a point where you would ordinarily save your data, whether under the original
name or a different one, type

. mi copy original_name_or_different_name, replace

. use newname

Later, when you are done with newname, you can erase it by typing

. mi erase newname

Concerning erasure, you will discover that mi erase will not let you erase the files when you
have one of the files to be erased in memory. Then you will have to type

. mi erase newname, clear

See [MI] mi erase for more information.

For more information on flongsep data, see Advice for using flongsep in [MI] styles.

Also see
[MI] intro — Introduction to mi

[MI] mi erase — Erase mi datasets

[MI] styles — Dataset styles



Title

mi describe — Describe mi data

Description Menu Syntax Options
Remarks and examples Stored results Also see

Description
mi query reports whether the data in memory are mi data and, if they are, reports the style in

which they are set.

mi describe provides a more detailed report on mi data.

Menu
Statistics > Multiple imputation

Syntax
mi query

mi describe
[
, describe options

]
describe options Description

detail show missing-value counts for m = 1, m = 2, . . .
noupdate see [MI] noupdate option

Options

detail reports the number of missing values in m = 1, m = 2, . . . , m = M in the imputed and
passive variables, along with the number of missing values in m = 0.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks and examples
Remarks are presented under the following headings:

mi query
mi describe

36
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mi query

mi query without mi data in memory reports

. mi query
(data not mi set)

With mi data in memory, you see something like

. mi query
data mi set wide, M = 15
last mi update 03nov2014 15:30:20, approximately 5 minutes ago

mi query does not burden you with unnecessary information. It mentions when mi update was
last run because you should run it periodically; see [MI] mi update.

mi describe
mi describe more fully describes mi data:

. mi describe

Style: mlong
last mi update 03nov2014 15:30:20, approximately 2 minutes ago

Obs.: complete 90
incomplete 10 (M = 20 imputations)

total 100

Vars.: imputed: 2; smokes(10) age(5)

passive: 1; agesq(5)

regular: 0

system: 3; _mi_m _mi_id _mi_miss

(there are 3 unregistered variables; gender race chd)

mi describe lists the style of the data, the number of complete and incomplete observations, M
(the number of imputations), the registered variables, and the number of missing values in m = 0 of
the imputed and passive variables. In the output, the line

Vars.: imputed: 2; smokes(10) age(5)

means that the smokes variable contains 10 missing values in m = 0 and that age contains 5. Those
values are soft missings and thus eligible to be imputed. If one of smokes’ missing values in m = 0
were hard, the line would read

Vars.: imputed: 2; smokes(9+1) age(5)

mi describe reports information about m = 0. To obtain information about all m’s, use mi
describe, detail:
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. mi describe, detail

Style: mlong
last mi update 03nov2014 15:30:20, approximately 3 minutes ago

Obs.: complete 90
incomplete 10 (M = 20 imputations)

total 100

Vars.: imputed: 2; smokes(10; 20*0) age(5; 20*0)

passive: 1; agesq(5; 20*0)

regular: 0

system: 3; _mi_m _mi_id _mi_miss

(there are 3 unregistered variables; gender race chd)

In this example, all imputed values are nonmissing. We can see that from

Vars.: imputed: 2; smokes(10; 20*0) age(5; 20*0)

Note the 20*0 after the semicolons. That is the number of missing values in m = 1, m = 2, . . . ,
m = 20. In the smokes variable, there are 10 missing values in m = 0, then 0 in m = 1, then 0 in
m = 2, and so on. If m = 17 had two missing imputed values, the line would read

Vars.: imputed: 2; smokes(10; 16*0, 2, 3*0) age(5; 20*0)

16*0, 2, 3*0 means that for m = 1, m = 2, . . . , m = 20, the first 16 have 0 missing values, the
next has 2, and the last 3 have 0.

If smokes had 9 + 1 missing values rather than 10—that is, 9 soft missing values plus 1 hard
missing rather than all 10 being soft missing—and all 9 soft missings were filled in, the line would
read

Vars.: imputed: 2; smokes(9+1; 20*0) age(5; 20*0)

The 20 imputations are shown as having no soft missing values. It goes without saying that they
have 1 hard missing. Think of 20*0 as meaning 20*(0+1).

If smokes had 9 + 1 missing values and two of the soft missings in m = 18 were still missing,
the line would read

Vars.: imputed: 2; smokes(9+1; 16*0, 2, 3*0) age(5; 20*0)

Stored results
mi query stores the following in r():

Scalars
r(update) seconds since last mi update
r(m) m if r(style)=="flongsep"
r(M) M if r(style)!="flongsep"

Macros
r(style) style
r(name) name if r(style)=="flongsep"

Note that mi query issues a return code of 0 even if the data are not mi. In that case, r(style) is
“ ”.
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mi describe stores the following in r():

Scalars
r(update) seconds since last mi update
r(N) number of observations in m=0

r(N incomplete) number of incomplete observations in m=0

r(N complete) number of complete observations in m=0

r(M) M

Macros
r(style) style
r(ivars) names of imputed variables
r( 0 miss ivars) #=. in each r(ivars) in m=0

r( 0 hard ivars) #>. in each r(ivars) in m=0

r(pvars) names of passive variables
r( 0 miss pvars) #≥. in each r(pvars) in m=0

r(rvars) names of regular variables

If the detail option is specified, for each m, m = 1, 2, . . . , M , also stored are

Macros
r( m miss ivars) #=. in each r(ivars) in m

r( m miss pvars) #≥. in each r(pvars) in m

Also see
[MI] intro — Introduction to mi



Title

mi erase — Erase mi datasets

Description Menu Syntax Option
Remarks and examples Also see

Description
mi erase erases mi .dta datasets.

Menu
Statistics > Multiple imputation

Syntax
mi erase name

[
, clear

]
Option

clear specifies that it is okay to erase the files even if one of the files is currently in memory. If
clear is specified, the data are dropped from memory and the files are erased.

Remarks and examples
Stata’s ordinary erase (see [D] erase) is not sufficient for erasing mi datasets because an mi

dataset might be flongsep, in which case the single name would refer to a collection of files, one
containing m = 0, another containing m = 1, and so on. mi erase deletes all the files associated
with mi dataset name.dta, which is to say, it erases name.dta, 1 name.dta, 2 name.dta, and
so on:

. mi erase mysep
(files mysep.dta, _1_mysep.dta _2_mysep.dta _3_mysep.dta erased)

Also see
[MI] intro — Introduction to mi

[MI] mi copy — Copy mi flongsep data

[MI] styles — Dataset styles
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Title

mi estimate — Estimation using multiple imputations

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas Acknowledgments
References Also see

Description

mi estimate: estimation command runs estimation command on the imputed mi data, and adjusts
coefficients and standard errors for the variability between imputations according to the combination
rules by Rubin (1987).

Menu
Statistics > Multiple imputation

Syntax
Compute MI estimates of coefficients by fitting estimation command to mi data

mi estimate
[
, options

]
: estimation command . . .

Compute MI estimates of transformed coefficients by fitting estimation command to mi data

mi estimate
[

spec
] [

, options
]
: estimation command . . .

where spec may be one or more terms of the form (
[

name:
]

exp). exp is any function of the
parameter estimates allowed by nlcom; see [R] nlcom.
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options Description

Options

nimputations(#) specify number of imputations to use; default is to use all
existing imputations

imputations(numlist) specify which imputations to use
mcerror compute Monte Carlo error estimates
ufmitest perform unrestricted FMI model test
nosmall do not apply small-sample correction to degrees of freedom
saving(miestfile

[
, replace

]
) save individual estimation results to miestfile.ster

Tables[
no
]
citable suppress/display standard estimation table containing

parameter-specific confidence intervals; default is citable

dftable display degrees-of-freedom table; dftable implies nocitable

vartable display variance information about estimates; vartable
implies citable

table options control table output
display options control columns and column formats, row spacing, display of

omitted variables and base and empty cells, and factor-variable
labeling

Reporting

level(#) set confidence level; default is level(95)

dots display dots as estimations are performed
noisily display any output from estimation command (and from nlcom

if transformations specified)
trace trace estimation command (and nlcom if transformations

specified); implies noisily

nogroup suppress summary about groups displayed for xt commands
me options control output from mixed-effects commands

Advanced

esample(newvar) store estimation sample in variable newvar; available only in the
flong and flongsep styles

errorok allow estimation even when estimation command (or nlcom)
errors out; such imputations are discarded from the analysis

esampvaryok allow estimation when estimation sample varies across imputations
cmdok allow estimation when estimation command is not one of the

supported estimation commands

coeflegend display legend instead of statistics
nowarning suppress the warning about varying estimation samples
eform option display coefficient table in exponentiated form
post post estimated coefficients and VCE to e(b) and e(V)

noupdate do not perform mi update; see [MI] noupdate option

You must mi set your data before using mi estimate; see [MI] mi set.
coeflegend, nowarning, eform option, post, and noupdate do not appear in the dialog box.
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table options Description

noheader suppress table header(s)
notable suppress table(s)
nocoef suppress table output related to coefficients
nocmdlegend suppress command legend that appears in the presence of transformed

coefficients when nocoef is used
notrcoef suppress table output related to transformed coefficients
nolegend suppress table legend(s)
nocnsreport do not display constraints

See [MI] mi estimate postestimation for features available after estimation. mi estimate is its
own estimation command. The postestimation features for mi estimate do not include by default
the postestimation features for estimation command. To replay results, type mi estimate without
arguments.

Options

� � �
Options �

nimputations(#) specifies that the first # imputations be used; # must be Mmin ≤ # ≤M , where
Mmin = 3 if mcerror is specified and Mmin = 2, otherwise. The default is to use all imputations,
M . Only one of nimputations() or imputations() may be specified.

imputations(numlist) specifies which imputations to use. The default is to use all of them. numlist
must contain at least two numbers. If mcerror is specified, numlist must contain at least three
numbers. Only one of nimputations() or imputations() may be specified.

mcerror specifies to compute Monte Carlo error (MCE) estimates for the results displayed in the
estimation, degrees-of-freedom, and variance-information tables. MCE estimates reflect variability
of MI results across repeated uses of the same imputation procedure and are useful for determining
an adequate number of imputations to obtain stable MI results; see White, Royston, and Wood (2011)
for details and guidelines.

MCE estimates are obtained by applying the jackknife procedure to multiple-imputation results.
That is, the jackknife pseudovalues of MI results are obtained by omitting one imputation at a
time; see [R] jackknife for details about the jackknife procedure. As such, the MCE computation
requires at least three imputations.

If level() is specified during estimation, MCE estimates are obtained for confidence intervals
using the specified confidence level instead of using the default 95% confidence level. If any of
the options described in [R] eform option is specified during estimation, MCE estimates for the
coefficients, standard errors, and confidence intervals in the exponentiated form are also computed.
mcerror can also be used upon replay to display MCE estimates. Otherwise, MCE estimates are
not reported upon replay even if they were previously computed.

ufmitest specifies that the unrestricted fraction missing information (FMI) model test be used. The
default test performed assumes equal fractions of information missing due to nonresponse for all
coefficients. This is equivalent to the assumption that the between-imputation and within-imputation
variances are proportional. The unrestricted test may be preferable when this assumption is suspect
provided the number of imputations is large relative to the number of estimated coefficients.
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nosmall specifies that no small-sample correction be made to the degrees of freedom. The small-
sample correction is made by default to estimation commands that account for small samples. If
the command stores residual degrees of freedom in e(df r), individual tests of coefficients (and
transformed coefficients) use the small-sample correction of Barnard and Rubin (1999) and the
overall model test uses the small-sample correction of Reiter (2007). If the command does not
store residual degrees of freedom, the large-sample test is used and the nosmall option has no
effect.

saving(miestfile
[
, replace

]
) saves estimation results from each model fit in miestfile.ster. The

replace suboption specifies to overwrite miestfile.ster if it exists. miestfile.ster can later be
used by mi estimate using (see [MI] mi estimate using) to obtain MI estimates of coefficients
or of transformed coefficients without refitting the completed-data models. This file is written in
the format used by estimates use; see [R] estimates save.

� � �
Tables �

All table options below may be specified at estimation time or when redisplaying previously estimated
results. Table options must be specified as options to mi estimate, not to estimation command.

citable and nocitable specify whether the standard estimation table containing parameter-specific
confidence intervals is displayed. The default is citable. nocitable can be used with vartable
to suppress the confidence interval table.

dftable displays a table containing parameter-specific degrees of freedom and percentages of increase
in standard errors due to nonresponse. dftable implies nocitable.

vartable displays a table reporting variance information about MI estimates. The table contains
estimates of within-imputation variances, between-imputation variances, total variances, relative
increases in variance due to nonresponse, fractions of information about parameter estimates missing
due to nonresponse, and relative efficiencies for using finite M rather than a hypothetically infinite
number of imputations. vartable implies citable.

table options control the appearance of all displayed table output:

noheader suppresses all header information from the output. The table output is still displayed.

notable suppresses all tables from the output. The header information is still displayed.

nocoef suppresses the display of tables containing coefficient estimates. This option affects the
table output produced by citable, dftable, and vartable.

nocmdlegend suppresses the table legend showing the specified command line, estima-
tion command, from the output. This legend appears above the tables containing transformed
coefficients (or above the variance-information table if vartable is used) when nocoef is
specified.

notrcoef suppresses the display of tables containing estimates of transformed coefficients (if
specified). This option affects the table output produced by citable, dftable, and vartable.

nolegend suppresses all table legends from the output.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
and sformat(% fmt); see [R] estimation options.
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� � �
Reporting �

Reporting options must be specified as options to mi estimate and not as options to estima-
tion command.

level(#); see [R] estimation options.

dots specifies that dots be displayed as estimations are successfully completed. An x is displayed
if the estimation command returns an error, if the model fails to converge, or if nlcom fails to
estimate one of the transformed coefficients specified in spec.

noisily specifies that any output from estimation command and nlcom, used to obtain the estimates
of transformed coefficients if transformations are specified, be displayed.

trace traces the execution of estimation command and traces nlcom if transformations are specified.
trace implies noisily.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) as well as other command-specific information displayed for xt
commands; see the list of commands under Panel-data models in [MI] estimation.

me options: stddeviations, variance, noretable, nofetable, and estmetric. These options
are relevant only with the mixed-effects commands meqrlogit (see [ME] meqrlogit), meqrpoisson
(see [ME] meqrpoisson), and mixed (see [ME] mixed). See the corresponding mixed-effects
commands for more information. The stddeviations option is the default with mi estimate.
The estmetric option is implied when vartable or dftable is used.

� � �
Advanced �

esample(newvar) creates newvar containing e(sample). This option is useful to identify which
observations were used in the estimation, especially when the estimation sample varies across
imputations (see Potential problems that can arise when using mi estimate for details). newvar is
zero in the original data (m = 0) and in any imputations (m > 0) in which the estimation failed
or that were not used in the computation. esample() may be specified only if the data are flong
or flongsep; see [MI] mi convert to convert to one of those styles. The variable created will be
super varying and therefore must not be registered; see [MI] mi varying for more explanation.
The saved estimation sample newvar may be used later with mi extract (see [MI] mi extract)
to set the estimation sample.

errorok specifies that estimations that fail be skipped and the combined results be based on the
successful individual estimation results. The default is that mi estimate stops if an individual
estimation fails. If errorok is specified with saving(), all estimation results, including failed,
are saved to a file.

esampvaryok allows estimation to continue even if the estimation sample varies across imputations.
mi estimate stops if the estimation sample varies. If esampvaryok is specified, results from all
imputations are used to compute MI estimates and a warning message is displayed at the bottom
of the table. Also see the esample() option. See Potential problems that can arise when using
mi estimate for more information.

cmdok allows unsupported estimation commands to be used with mi estimate; see [MI] estimation
for a list of supported estimation commands. Alternatively, if you want mi estimate to work
with your estimation command, add the property mi to the program properties; see [P] program
properties.

The following options are available with mi estimate but are not shown in the dialog box:

coeflegend; see [R] estimation options. coeflegend implies nocitable and cannot be combined
with citable or dftable.
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nowarning suppresses the warning message at the bottom of table output that occurs if the estimation
sample varies and esampvaryok is specified. See Potential problems that can arise when using
mi estimate for details.

eform option; see [R] eform option. Regardless of the estimation command specified, mi estimate
reports results in the coefficient metric under which the combination rules are applied. You may
use the appropriate eform option to redisplay results in exponentiated form, if desired. If dftable
is also specified, the reported degrees of freedom and percentage increases in standard errors are
not adjusted and correspond to the original coefficient metric.

post requests that MI estimates of coefficients and their respective VCEs be posted in the usual way.
This allows the use of estimation command-specific postestimation tools with MI estimates. There
are issues; see Using the command-specific postestimation tools in [MI] mi estimate postestimation.
post may be specified at estimation time or when redisplaying previously estimated results.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option. This option is seldom used.

Remarks and examples
mi estimate requires that imputations be already formed; see [MI] mi impute. To import existing

multiply imputed data, see [MI] mi import.
Remarks are presented under the following headings:

Using mi estimate
Example 1: Completed-data logistic analysis
Example 2: Completed-data linear regression analysis
Example 3: Completed-data survival analysis
Example 4: Panel data and multilevel models
Example 5: Estimating transformations
Example 6: Monte Carlo error estimates
Potential problems that can arise when using mi estimate

Using mi estimate

mi estimate estimates model parameters from multiply imputed data and adjusts coefficients and
standard errors for the variability between imputations. It runs the specified estimation command on
each of the M imputed datasets to obtain the M completed-data estimates of coefficients and their
VCEs. It then computes MI estimates of coefficients and standard errors by applying combination rules
(Rubin 1987, 77) to the M completed-data estimates. See [MI] intro substantive for a discussion of
MI analysis and see Methods and formulas for computational details.

To use mi estimate, your data must contain at least two imputations. The basic syntax of mi
estimate is

. mi estimate: estimation_command . . .

estimation command is any estimation command from the list of supported estimation commands;
see [MI] estimation.

If you wish to estimate on survey data, type

. mi estimate: svy: estimation_command . . .

If you want to vary the number of imputations or select which imputations to use in the computations,
use the nimputations() or the imputations() option, respectively.

. mi estimate, nimputations(9): estimation_command . . .
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Doing so is useful to evaluate the stability of MI results. MCE estimates of the parameters are also
useful for determining the stability of MI results. You can use the mcerror option to obtain these
estimates. Your data must contain at least three imputations to use mcerror.

You can obtain more-detailed information about imputation results by specifying the dftable and
vartable options.

You can additionally obtain estimates of transformed coefficients by specifying expressions with
mi estimate; see Example 5: Estimating transformations for details.

When using mi estimate, keep in mind that

1. mi estimate is its own estimation command.

2. mi estimate uses different degrees of freedom for each estimated parameter when computing
its significance level and confidence interval.

3. mi estimate reports results in the coefficient metric under which combination rules are
applied regardless of the default reporting metric of the specified estimation command. Use
eform option with mi estimate to report results in the exponentiated metric, if you wish.
For example, mi estimate: logistic reports coefficients and not odds ratios as logistic.
To obtain odds ratios, you must specify the or option with mi estimate:

. mi estimate, or: logistic . . .

4. mi estimate has its own reporting options and does not respect command-specific reporting
options. The reporting options specified with estimation command affect only the output of
the command that is displayed when mi estimate’s noisily option is specified. Specify
mi estimate’s options immediately after the mi estimate command:

. mi estimate, options: estimation_command . . .

Example 1: Completed-data logistic analysis

Recall the logistic analysis of the heart attack data from [MI] intro substantive. The goal of the
analysis was to explore the relationship between heart attacks and smoking adjusted for other factors
such as age, body mass index (BMI), gender, and educational status. The original data contain missing
values of BMI. The listwise-deletion analysis on the original data determined that smoking and BMI
have significant impact on a heart attack. After imputing missing values of BMI, age was determined
to be a significant factor as well. See A brief introduction to MI using Stata in [MI] intro substantive
for details. The data we used are stored in mheart1s20.dta.

Below we refit the logistic model using the imputed data. We also specify the dots option so that
dots will be displayed as estimations are completed.
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. use http://www.stata-press.com/data/r14/mheart1s20
(Fictional heart attack data; bmi missing)

. mi estimate, dots: logit attack smokes age bmi hsgrad female

Imputations (20):
.........10.........20 done

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154

Average RVI = 0.0312
Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1,060.38
avg = 223,362.56
max = 493,335.88

Model F test: Equal FMI F( 5,71379.3) = 3.59
Within VCE type: OIM Prob > F = 0.0030

attack Coef. Std. Err. t P>|t| [95% Conf. Interval]

smokes 1.198595 .3578195 3.35 0.001 .4972789 1.899911
age .0360159 .0154399 2.33 0.020 .0057541 .0662776
bmi .1039416 .0476136 2.18 0.029 .010514 .1973692

hsgrad .1578992 .4049257 0.39 0.697 -.6357464 .9515449
female -.1067433 .4164735 -0.26 0.798 -.9230191 .7095326
_cons -5.478143 1.685075 -3.25 0.001 -8.782394 -2.173892

The left header column reports information about the fitted MI model. The right header column
reports the number of imputations and the number of observations used, the average relative variance
increase (RVI) due to nonresponse, the largest fraction of missing information (FMI), a summary about
parameter-specific degrees of freedom (DF), and the overall model test that all coefficients, excluding
the constant, are equal to zero.

Notice first that mi estimate reports Student’s t and F statistics for inference although logit
would usually report Z and χ2 statistics.

mi estimate: logit is not logit. mi estimate uses Rubin’s combination rules to obtain the
estimates from multiply imputed data. The variability of the MI estimates consists of two components:
variability within imputations and variability between imputations. Therefore, the precision of the MI
estimates is governed not only by the number of observations in the sample but also by the number
of imputations. As such, even if the number of observations is large, if the number of imputations
is small and the FMI are not low, the reference distribution used for inference will deviate from the
normal distribution. Because in practice the number of imputations tends to be small, mi estimate
uses a reference t distribution.

Returning to the output, average RVI reports the average relative increase (averaged over all
coefficients) in variance of the estimates because of the missing bmi values. A relative variance
increase is an increase in the variance of the estimate because of the loss of information about the
parameter due to nonresponse relative to the variance of the estimate with no information lost. The
closer this number is to zero, the less effect missing data have on the variance of the estimate. Note
that the reported RVI will be zero if you use mi estimate with the complete data or with missing
data that have not been imputed. In our case, average RVI is small: 0.0312.

Largest FMI reports the largest of all the FMI about coefficient estimates due to nonresponse.
This number can be used to get an idea of whether the specified number of imputations is sufficient
for the analysis. A rule of thumb is that M ≥ 100× FMI provides an adequate level of reproducibility
of MI analysis. In our example, the largest FMI is 0.14 and the number of imputations, 20, exceeds
the required number of imputations: 14 (= 100× 0.14) according to this rule.
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The coefficient-specific degrees of freedom (DF) averaging 223,363 are large. They are large
because the MI degrees of freedom depends not only on the number of imputations but also on the
RVI due to nonresponse. Specifically, the degrees of freedom is inversely related to RVI. The closer
RVI is to zero, the larger the degrees of freedom regardless of the number of imputations.

To the left of the DF, we see that the degrees of freedom is obtained under a large-sample assumption.
The alternative is to use a small-sample adjustment. Whether the small-sample adjustment is applied
is determined by the type of the reference distribution used for inference by the specified estimation
command. For the commands that use a large-sample (normal) approximation for inference, a large-
sample approximation is used when computing the MI degrees of freedom. For the commands that
use a small-sample (Student’s t) approximation for inference, a small-sample approximation is used
when computing the MI degrees of freedom. See Methods and formulas for details. As we already
mentioned, logit assumes large samples for inference, and thus the MI degrees of freedom is
computed assuming a large sample.

The model F test rejects the hypothesis that all coefficients are equal to zero and thus rules out a
constant-only model for heart attacks. By default, the model test uses the assumption that the fractions
of missing information of all coefficients are equal (as noted by Equal FMI to the left). Although this
assumption may not be supported by the data, it is used to circumvent the difficulties arising with
the estimation of the between-imputation variance matrix based on a small number of imputations.
See Methods and formulas and [MI] mi test for details.

mi estimate also reports the type of variance estimation used by the estimation command to
compute variance estimates in the individual completed-data analysis. These completed-data variance
estimates are then used to compute the within-imputation variance. In our example, the observed-
information-matrix (OIM) method, the default variance-estimation method used by maximum likelihood
estimation, is used to compute completed-data VCEs. This is labeled as Within VCE type: OIM in
the output.

Finally, mi estimate reports a coefficient table containing the combined estimates. Unlike all
other Stata estimation commands, the reported significance levels and confidence intervals in this table
are based on degrees of freedom that is specific to each coefficient. Remember that the degrees of
freedom depends on the relative variance increases and thus on how much information is lost about
the estimated parameter because of missing data. How much information is lost is specific to each
parameter and so is the degrees of freedom.

As we already saw, a summary of the coefficient-specific degrees of freedom (minimum, average,
and maximum) was reported in the header. We can obtain a table containing coefficient-specific
degrees of freedom by replaying the results with the dftable option:
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. mi estimate, dftable

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154

Average RVI = 0.0312
Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1,060.38
avg = 223,362.56
max = 493,335.88

Model F test: Equal FMI F( 5,71379.3) = 3.59
Within VCE type: OIM Prob > F = 0.0030

% Increase
attack Coef. Std. Err. t P>|t| DF Std. Err.

smokes 1.198595 .3578195 3.35 0.001 320019.4 0.39
age .0360159 .0154399 2.33 0.020 493335.9 0.31
bmi .1039416 .0476136 2.18 0.029 1060.4 7.45

hsgrad .1578992 .4049257 0.39 0.697 165126.7 0.54
female -.1067433 .4164735 -0.26 0.798 358078.3 0.37
_cons -5.478143 1.685075 -3.25 0.001 2554.8 4.61

Notice that we type mi estimate to replay the results, not logit.

The header information remains the same. In particular, degrees of freedom ranges from 1,060
to 493,336 and averages 223,363. In the table output, the columns for the confidence intervals are
replaced with the DF and % Increase Std. Err. columns. We now see that the smallest degrees of
freedom corresponds to the coefficient for bmi. We should have anticipated this because bmi is the
only variable containing missing values in this example. The largest degrees of freedom is observed
for the coefficient for age, which suggests that the loss of information due to nonresponse is the
smallest for the estimation of this coefficient.

The last column displays as a percentage the increase in standard errors of the parameters due to
nonresponse. We observe a 7% increase in the standard error for the coefficient of bmi and a 5%
increase in the standard error for the constant. Increases in standard errors of other coefficients are
negligible.

In this example, we displayed a degrees-of-freedom table on replay by specifying the dftable
option. We could also obtain this table if we specified this option at estimation time. Alternatively,
if desired, we could display both tables by specifying the citable and dftable options together.

We can obtain more detail about imputation results by specifying the vartable option. We specify
this option on replay and also use the nocitable option to suppress the default confidence interval
table:

. mi estimate, vartable nocitable

Multiple-imputation estimates Imputations = 20
Logistic regression

Variance information

Imputation variance Relative
Within Between Total RVI FMI efficiency

smokes .127048 .00094 .128035 .007765 .007711 .999615
age .000237 1.4e-06 .000238 .006245 .00621 .99969
bmi .001964 .000289 .002267 .154545 .135487 .993271

hsgrad .162206 .001675 .163965 .010843 .010739 .999463
female .172187 .001203 .17345 .007338 .00729 .999636
_cons 2.5946 .233211 2.83948 .094377 .086953 .995671
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The first three columns of the table provide the variance information specific to each parameter. As
we already discussed, MI variance contains two sources of variation: within imputation and between
imputation. The first two columns provide estimates for the within-imputation and between-imputation
variances. The third column is a total variance that is the sum of the two variances plus an adjustment
for using a finite number of imputations. The next two columns are individual RVIs and fractions of
missing information (FMIs) due to nonresponse. The last column records relative efficiencies for using
a finite number of imputations (20 in our example) versus the theoretically optimal infinite number
of imputations.

We notice that the coefficient for age has the smallest within-imputation and between-imputation
variances. The between-imputation variability is very small relative to the within-imputation variability,
which is why age had such a large estimate of the degrees of freedom we observed earlier.
Correspondingly, this coefficient has the smallest values for RVI and FMI. As expected, the coefficient
for bmi has the highest RVI and FMI.

The reported relative efficiencies are high for all coefficient estimates, with the smallest relative
efficiency, again, corresponding to bmi. These estimates, however, are only approximations and thus
should not be used exclusively to determine the required number of imputations. See Royston, Carlin,
and White (2009) and White, Royston, and Wood (2011) for other ways of determining a suitable
number of imputations.

Example 2: Completed-data linear regression analysis

Recall the data on house resale prices from example 3 of [MI] mi impute mvn. We use the imputed
data stored in mhouses1993s30.dta to examine the relationship of various predictors on price via
linear regression:

. use http://www.stata-press.com/data/r14/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi estimate, ni(5): regress price tax sqft age nfeatures ne custom corner

Multiple-imputation estimates Imputations = 5
Linear regression Number of obs = 117

Average RVI = 0.0685
Largest FMI = 0.2075
Complete DF = 109

DF adjustment: Small sample DF: min = 48.59
avg = 85.22
max = 104.79

Model F test: Equal FMI F( 7, 103.9) = 67.50
Within VCE type: OLS Prob > F = 0.0000

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

tax .6631356 .122443 5.42 0.000 .4195447 .9067265
sqft .2185884 .0670182 3.26 0.002 .0856051 .3515718
age -.0395402 1.613185 -0.02 0.981 -3.28205 3.202969

nfeatures 8.735622 13.42251 0.65 0.517 -18.01198 35.48323
ne 4.069381 36.94491 0.11 0.913 -69.4355 77.57426

custom 130.4925 42.93286 3.04 0.003 45.36257 215.6225
corner -71.25406 40.06697 -1.78 0.078 -150.7152 8.207084
_cons 130.2002 70.38012 1.85 0.068 -9.624642 270.025

By default, mi estimate uses all available imputations in the analysis. For the purpose of illustration,
we use only the first 5 imputations out of the available 30 by specifying the nimputations(5)
option, which we abbreviated as ni(5).



52 mi estimate — Estimation using multiple imputations

Compared with the output from the previous example, an additional result, Complete DF, is
reported. Also notice that the adjustment for the degrees of freedom is now labeled as Small sample.
Remember that mi estimate determines what adjustment to use based on the reference distribution
used for inference by the specified estimation command.

regress uses a reference t distribution with 117− 8 = 109 residual degrees of freedom. Thus a
small-sample adjustment is used by mi estimate for the MI degrees of freedom.

Complete DF contains the degrees of freedom used for inference with complete data. It corresponds
to the completed-data residual degrees of freedom stored by the command in e(df r). In most
applications, the completed-data residual degrees of freedom will be the same, and so Complete DF
will correspond to the complete degrees of freedom, the degrees of freedom that would have been
used for inference if the data were complete. In the case when the completed-data residual degrees of
freedom varies across imputations (as may happen when the estimation sample varies; see Potential
problems that can arise when using mi estimate), Complete DF reports the smallest of them.

In our example, all completed-data residual degrees of freedom are equal, and Complete DF is
equal to 109, the completed-data residual degrees of freedom obtained from regress. mi estimate
uses the complete degrees of freedom to adjust the MI degrees of freedom for a small sample (Barnard
and Rubin 1999).

Example 3: Completed-data survival analysis

Consider survival data on 48 participants in a cancer drug trial. The dataset contains information
about participants’ ages, treatments received (drug or placebo), times to death measured in months,
and a censoring indicator. The data are described in more detail in Cox regression with censored data
of [ST] stcox. We consider a version of these data containing missing values for age. The imputed
data are saved in mdrugtrs25.dta:

. use http://www.stata-press.com/data/r14/mdrugtrs25
(Patient Survival in Drug Trial)

. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 40
incomplete 8 (M = 25 imputations)

total 48

Vars.: imputed: 1; age(8)

passive: 0

regular: 3; studytime died drug

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

The dataset contains 25 imputations for 8 missing values of age. Missing values were imputed
following guidelines in White and Royston (2009).

We analyze these data using stcox with mi estimate. These data have not yet been stset,
so we use mi stset (see [MI] mi XXXset) to set them and then perform the analysis using mi
estimate: stcox:
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. mi stset studytime, failure(died)

failure event: died != 0 & died < .
obs. time interval: (0, studytime]
exit on or before: failure

48 total observations
0 exclusions

48 observations remaining, representing
31 failures in single-record/single-failure data

744 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 39

. mi estimate, dots: stcox drug age

Imputations (25):
.........10.........20..... done

Multiple-imputation estimates Imputations = 25
Cox regression: Breslow method for ties Number of obs = 48

Average RVI = 0.1059
Largest FMI = 0.1567

DF adjustment: Large sample DF: min = 998.63
avg = 11,621.53
max = 22,244.42

Model F test: Equal FMI F( 2, 4448.6) = 13.43
Within VCE type: OIM Prob > F = 0.0000

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

drug -2.204572 .4589047 -4.80 0.000 -3.104057 -1.305086
age .1242711 .040261 3.09 0.002 .0452652 .2032771

Notice that mi estimate displays the results in the coefficient metric and not in the hazard-ratio
metric. By default, mi estimate reports results in the metric under which the combination rules
were applied. To obtain the results as hazard ratios, we can use the hr option with mi estimate:

. mi estimate, hr

Multiple-imputation estimates Imputations = 25
Cox regression: Breslow method for ties Number of obs = 48

Average RVI = 0.1059
Largest FMI = 0.1567

DF adjustment: Large sample DF: min = 998.63
avg = 11,621.53
max = 22,244.42

Model F test: Equal FMI F( 2, 4448.6) = 13.43
Within VCE type: OIM Prob > F = 0.0000

_t Haz. Ratio Std. Err. t P>|t| [95% Conf. Interval]

drug .1102977 .0506161 -4.80 0.000 .0448668 .2711491
age 1.132323 .0455885 3.09 0.002 1.046305 1.225412

We obtain results similar to those from the corresponding example in [ST] stcox.

We specified the hr option above on replay. We can also specify it at estimation time:

. mi estimate, hr: stcox drug age
(output omitted )
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Notice that the hr option must be specified with mi estimate to obtain hazard ratios. Specifying it
with the command itself,

. mi estimate: stcox drug age, hr
(output omitted )

will not affect the output from mi estimate but only that of the command, stcox. You see stcox’s
output only if you specify mi estimate’s noisily option.

See Cleves et al. (2010, sec. 9.6) for more information on Cox regression with multiply imputed
data.

Example 4: Panel data and multilevel models

We have data on the math scores of students in their third and fifth years of education. There are
887 students from 48 schools in inner London; see Mortimore et al. (1988) for more information
on the study. We would like to fit a random-effects model to the fifth-year score, math5, on the
third-year score, math3, using a random effect at the school level.

We created a version of the data that contains missing values for math3 and then performed
imputation following guidelines from the Stata FAQ “How can I account for clustering when creating
imputations with mi impute?”; see http://www.stata.com/support/faqs/stat/impute cluster.html. The
resulting imputed data are saved in mjsps5.dta:

. use http://www.stata-press.com/data/r14/mjsps5, clear
(LEA Junior School Project data (Mortimore et al., 1988) with missing values)

. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 705
incomplete 182 (M = 5 imputations)

total 887

Vars.: imputed: 1; math3(182)

passive: 0

regular: 2; school math5

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

There are five imputations for 182 missing values of the third-year score, math3. Variable math3
is an imputed variable, whereas variable math5 and variable school, recording school identifiers,
are complete and are registered as regular.

Our random-effects model includes only a random intercept, the school effect, so we can use the
xtreg command, or more specifically mi estimate: xtreg, for our primary analysis.

Without imputed data, to use xtreg or any other panel-data command, we must first declare data
to be panel (xt) data by using xtset. With imputed data, we should use the mi xtset command
instead. We declare school as our panel variable:

. mi xtset school
panel variable: school (unbalanced)

http://www.stata.com/support/faqs/stat/impute_cluster.html
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Next we use mi estimate: xtreg to regress the fifth-year math score on the third-year score.

. mi estimate: xtreg math5 math3

Multiple-imputation estimates Imputations = 5
Random-effects GLS regression Number of obs = 887

Group variable: school Number of groups = 48
Obs per group:

min = 5
avg = 18.5
max = 62

Average RVI = 0.0595
Largest FMI = 0.1071

DF adjustment: Large sample DF: min = 381.40
avg = 85,771.71
max = 171,162.01

Model F test: Equal FMI F( 1, 381.4) = 305.71
Within VCE type: Conventional Prob > F = 0.0000

math5 Coef. Std. Err. t P>|t| [95% Conf. Interval]

math3 .6101277 .0348951 17.48 0.000 .5415168 .6787385
_cons 30.48295 .3576417 85.23 0.000 29.78198 31.18392

sigma_u 2.0684286
sigma_e 5.3206673

rho .13128791 (fraction of variance due to u_i)

Note: sigma_u and sigma_e are combined in the original metric.

Third-year math scores are positively associated with fifth-year math scores. Because we use a
random-effects model, the coefficient on math3 is for comparison of students from the same school
or from different schools.

In the above results, multiple-imputation estimates of variance components sigma u and sigma e
are obtained by applying Rubin’s combination rules to the completed-data estimates in the original,
standard deviation metric.

Alternatively, we can use the mixed command to fit our two-level random-effects model and to
obtain variance-component estimates of the school effect. mixed can be used to fit more complicated
multilevel models; see [ME] mixed for details.

We fit a two-level linear model with mi estimate: mixed and specify school as our second-level
variable. mixed does not require prior declaration of the data, so we do not need to use mi xtset
with mi estimate: mixed:
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. mi estimate: mixed math5 math3 || school: , reml

Multiple-imputation estimates Imputations = 5
Mixed-effects REML regression Number of obs = 887

Group variable: school Number of groups = 48
Obs per group:

min = 5
avg = 18.5
max = 62

Average RVI = 0.0574
Largest FMI = 0.1079

DF adjustment: Large sample DF: min = 376.05
avg = 44,112.02
max = 167,428.86

Model F test: Equal FMI F( 1, 376.0) = 305.41
Prob > F = 0.0000

math5 Coef. Std. Err. t P>|t| [95% Conf. Interval]

math3 .6100335 .0349069 17.48 0.000 .5413963 .6786708
_cons 30.48217 .3536049 86.20 0.000 29.78911 31.17522

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

school: Identity
sd(_cons) 2.033826 .3069989 1.512894 2.734129

sd(Residual) 5.321503 .1355669 5.061821 5.594508

The estimated coefficients, random-effects standard deviations, and other statistics are similar to those
from mi estimate: xtreg. Unlike mi estimate: xtreg, the mi estimate: mixed command
combines variance components in the estimation metric described in [ME] mixed and then back-
transforms the estimates to display results in the original metric. In our example, the reported standard
deviations are exponentiated multiple-imputation estimates of the log standard-deviations.



mi estimate — Estimation using multiple imputations 57

The random-effects parameters are displayed as standard deviations. We can display variances
instead by replaying the mi estimate command with the variance option:

. mi estimate, variance

Multiple-imputation estimates Imputations = 5
Mixed-effects REML regression Number of obs = 887

Group variable: school Number of groups = 48
Obs per group:

min = 5
avg = 18.5
max = 62

Average RVI = 0.0574
Largest FMI = 0.1079

DF adjustment: Large sample DF: min = 376.05
avg = 44,112.02
max = 167,428.86

Model F test: Equal FMI F( 1, 376.0) = 305.41
Prob > F = 0.0000

math5 Coef. Std. Err. t P>|t| [95% Conf. Interval]

math3 .6100335 .0349069 17.48 0.000 .5413963 .6786708
_cons 30.48217 .3536049 86.20 0.000 29.78911 31.17522

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

school: Identity
var(_cons) 4.136447 1.248765 2.288848 7.475462

var(Residual) 28.3184 1.442839 25.62204 31.29852

Although the random-effects parameters are now displayed as variances, they are still combined and
stored in the log–standard-deviation metric.

Example 5: Estimating transformations

Stata estimation commands usually support lincom and nlcom (see [R] lincom and [R] nlcom) to
obtain estimates of the transformed coefficients after estimation by using the delta method. Because
MI estimates based on a small number of imputations may not yield a valid VCE, this approach is not
generally viable. Also, transformations applied to the combined coefficients are only asymptotically
equivalent to the combined transformed coefficients. With a small number of imputations, these two
ways of obtaining transformed coefficients can differ significantly.

Thus mi estimate provides its own way of combining transformed coefficients. You need to use
mi estimate’s method for both linear and nonlinear combinations of coefficients. We are about to
demonstrate how to use the method using the ratio of coefficients as an example, but what we are
about to do would be equally necessary if we wanted to obtain the difference in two coefficients.

For the purpose of illustration, suppose that we want to estimate the ratio of the coefficients, say,
age and sqft from example 2. We can do this by typing
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. use http://www.stata-press.com/data/r14/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi estimate (ratio: _b[age]/_b[sqft]):
> regress price tax sqft age nfeatures ne custom corner

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117

Average RVI = 0.0648
Largest FMI = 0.2533
Complete DF = 109

DF adjustment: Small sample DF: min = 69.12
avg = 94.02
max = 105.51

Model F test: Equal FMI F( 7, 106.5) = 67.18
Within VCE type: OLS Prob > F = 0.0000

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253
sqft .2118129 .069177 3.06 0.003 .0745091 .3491168
age .2471445 1.653669 0.15 0.882 -3.051732 3.546021

nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623
ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818
corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972
_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

Transformations Average RVI = 0.2899
Largest FMI = 0.2316
Complete DF = 109

DF adjustment: Small sample DF: min = 72.51
avg = 72.51

Within VCE type: OLS max = 72.51

ratio: _b[age]/_b[sqft]

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

ratio 1.44401 8.217266 0.18 0.861 -14.93485 17.82287

We use the nlcom syntax to specify the transformation: (ratio: b[age]/ b[sqft]) defines the
transformation and its name is ratio. All transformations must be specified following mi estimate
and before the colon, and must be bound in parentheses.

A separate table containing the estimate of the ratio is displayed following the estimates of
coefficients. If desired, we can suppress the table containing the estimates of coefficients by specifying
the nocoef option. The header reports the average RVI due to nonresponse, the largest FMI, and the
summaries of the degrees of freedom specific to the estimated transformations. Because we specified
only one transformation, the minimum, average, and maximum degrees of freedom are the same.
They correspond to the individual degrees of freedom for ratio.

See [MI] mi test for an example of linear transformation.
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Example 6: Monte Carlo error estimates

Multiple imputation is a stochastic procedure. Each time we reimpute our data, we get different
sets of imputations because of the randomness of the imputation step, and therefore we get different
multiple-imputation estimates. However, we want to be able to reproduce MI results. Of course, we
can always set the random-number seed to ensure reproducibility by obtaining the same imputed
values. However, what if we use a different seed? Would we not want our results to be similar
regardless of what seed we use? This leads us to a notion we call statistical reproducibility—we
want results to be similar across repeated uses of the same imputation procedure; that is, we want to
minimize the simulation error associated with our results.

To assess the level of simulation error, White, Royston, and Wood (2011) propose to use a Monte
Carlo error of the MI results, defined as the standard deviation of the results across repeated runs
of the same imputation procedure using the same data. The authors suggest evaluating Monte Carlo
error estimates not only for parameter estimates but also for other statistics, including p-values and
confidence intervals, as well as MI statistics including RVI and FMI.

Clearly, as the number of imputations increases, the simulation error decreases. Consider the total
MI variance T = U+B+B/M of a single parameter, where U is the within-imputation variance and
B is the between-imputation variance; see Methods and formulas for details. The term B/M reflects
the increase in variance due to using a finite number of imputations, and its square root defines the
Monte Carlo error associated with a single parameter. In general, Monte Carlo error estimates are
obtained by applying a jackknife procedure to MI results. That is, an MCE estimate of an MI statistic
is the standard error of the mean of the pseudovalues for that statistic, computed by omitting one
imputation at a time; see [R] jackknife for technical details.

Consider our heart attack data analysis from example 1. Let’s compute Monte Carlo error estimates
of MI results. To obtain MCE estimates, we specify the mcerror option during estimation:
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. use http://www.stata-press.com/data/r14/mheart1s20
(Fictional heart attack data; bmi missing)

. mi estimate, dots mcerror: logit attack smokes age bmi hsgrad female

Imputations (20):
.........10.........20 done

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154

Average RVI = 0.0312
Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1,060.38
avg = 223,362.56
max = 493,335.88

Model F test: Equal FMI F( 5,71379.3) = 3.59
Within VCE type: OIM Prob > F = 0.0030

attack Coef. Std. Err. t P>|t| [95% Conf. Interval]

smokes 1.198595 .3578195 3.35 0.001 .4972789 1.899911
.0068541 .0008562 0.01 0.000 .0056572 .0082212

age .0360159 .0154399 2.33 0.020 .0057541 .0662776
.0002654 .0000351 0.01 0.001 .0002319 .0003108

bmi .1039416 .0476136 2.18 0.029 .010514 .1973692
.0038014 .0008904 0.09 0.006 .0039928 .0044049

hsgrad .1578992 .4049257 0.39 0.697 -.6357464 .9515449
.0091517 .0010209 0.02 0.016 .0086215 .0100602

female -.1067433 .4164735 -0.26 0.798 -.9230191 .7095326
.0077566 .0009279 0.02 0.015 .006985 .0088408

_cons -5.478143 1.685075 -3.25 0.001 -8.782394 -2.173892
.1079841 .0248274 0.07 0.000 .1310618 .1050817

Note: Values displayed beneath estimates are Monte Carlo error estimates.

As the note describes, MCE estimates are displayed beneath parameter estimates. Following practical
guidelines from White, Royston, and Wood (2011), MCE estimates of coefficients should be less than
10% of the standard errors of the coefficients; MCE estimates of test statistics should be approximately
0.1; and MCE estimates of p-values should be approximately 0.01 when the true p-value is 0.05 and
0.02 when the true p-value is 0.1. Our results based on 20 imputations satisfy these conditions, so
we can be reasonably sure about the statistical reproducibility of our results.

We can also see Monte Carlo error estimates for other MI statistics reported by the vartable
option. To redisplay Monte Carlo error estimates, we use the mcerror option upon replay. We also
suppress the coefficient table by using the nocitable option.



mi estimate — Estimation using multiple imputations 61

. mi estimate, vartable mcerror nocitable

Multiple-imputation estimates Imputations = 20
Logistic regression

Variance information

Imputation variance Relative
Within Between Total RVI FMI efficiency

smokes .127048 .00094 .128035 .007765 .007711 .999615
.000559 .000211 .000613 .001744 .00172 .00009

age .000237 1.4e-06 .000238 .006245 .00621 .99969
8.6e-07 4.6e-07 1.1e-06 .002054 .002033 .000107

bmi .001964 .000289 .002267 .154545 .135487 .993271
.000026 .000077 .000085 .04134 .031986 .00166

hsgrad .162206 .001675 .163965 .010843 .010739 .999463
.000521 .000552 .000827 .003579 .003516 .000185

female .172187 .001203 .17345 .007338 .00729 .999636
.000614 .000297 .000773 .001811 .001788 .000094

_cons 2.5946 .233211 2.83948 .094377 .086953 .995671
.029651 .070081 .083436 .028332 .024216 .001263

Note: Values displayed beneath estimates are Monte Carlo error estimates.

MCE estimates of all statistics are small.

What if we want to see MCE estimates of odds ratios? We know that we can use the or option on
replay to redisplay results as odds ratios. However, using this option in combination with mcerror
upon replay will not display MCE estimates of odds ratios:

. mi estimate, or mcerror

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154

Average RVI = 0.0312
Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1,060.38
avg = 223,362.56
max = 493,335.88

Model F test: Equal FMI F( 5,71379.3) = 3.59
Within VCE type: OIM Prob > F = 0.0030

attack Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]

smokes 3.315455 1.186334 3.35 0.001 1.644241 6.685298
age 1.036672 .0160061 2.33 0.020 1.005771 1.068523
bmi 1.109536 .052829 2.18 0.029 1.010569 1.218194

hsgrad 1.171048 .4741875 0.39 0.697 .5295401 2.589707
female .8987564 .3743082 -0.26 0.798 .3973177 2.033041
_cons .0041771 .0070387 -3.25 0.001 .0001534 .1137342

Note: Monte Carlo error estimates are not available for exponentiated
coefficients.

The same applies to a combination of the level() and mcerror options specified on replay to
try to display MCE estimates of confidence intervals for a confidence level other than the one used
during estimation.
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To compute MCE estimates for odds ratios in addition to coefficients, you need to specify the
or option in combination with mcerror during estimation. Similarly, to compute MCE estimates for
confidence intervals with a specific confidence level, you need to specify the level() option in
combination with mcerror during estimation. Otherwise, MCE estimates of 95% confidence intervals
are computed.

. mi estimate, mcerror or level(90): logit attack smokes age bmi hsgrad female

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154

Average RVI = 0.0312
Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1,060.38
avg = 223,362.56
max = 493,335.88

Model F test: Equal FMI F( 5,71379.3) = 3.59
Within VCE type: OIM Prob > F = 0.0030

attack Odds Ratio Std. Err. t P>|t| [90% Conf. Interval]

smokes 3.315455 1.186334 3.35 0.001 1.840491 5.97245
.0227267 .0104806 0.01 0.000 .0107398 .0477351

age 1.036672 .0160061 2.33 0.020 1.010676 1.063337
.0002752 .000039 0.01 0.001 .0002388 .0003221

bmi 1.109536 .052829 2.18 0.029 1.025885 1.200007
.0042178 .001033 0.09 0.006 .0040064 .0051089

hsgrad 1.171048 .4741875 0.39 0.697 .6016087 2.279478
.0107188 .0049031 0.02 0.016 .0052248 .02254

female .8987564 .3743082 -0.26 0.798 .4530363 1.782998
.0069686 .00341 0.02 0.015 .0032087 .0154128

_cons .0041771 .0070387 -3.25 0.001 .000261 .0668412
.0004519 .0007338 0.07 0.000 .0000336 .0068716

Note: Values displayed beneath estimates are Monte Carlo error estimates.

Similarly to the MCE estimates for coefficients, the MCE estimates for odds ratios are within acceptable
limits.

If you wish to obtain Monte Carlo error estimates of confidence intervals for a number of different
confidence levels, a more computationally efficient way of doing so is to use mi estimate using
(see [MI] mi estimate using).

First, use mi estimate to save individual estimation results from a model to an estimation file:

. mi estimate, saving(miest): . . .

Then use mi estimate using to obtain MCE estimates for different confidence intervals,

. mi estimate using miest, mcerror level(90) . . .

. mi estimate using miest, mcerror level(80) . . .

or for odds ratios,

. mi estimate using miest, mcerror or . . .

without refitting the model.
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Potential problems that can arise when using mi estimate

There are two problems that can arise when using mi estimate:

1. The estimation sample varies across imputations.

2. Different covariates are omitted across the imputations.

mi estimate watches for and issues an error message if either of these problems occur. Below we
explain how each can arise and what to do about it. If you see one of these messages, be glad
that mi estimate mentioned the problem, because otherwise, it might have gone undetected. A
varying-estimation sample may result in biased or inefficient estimates. Different covariates being
omitted always results in the combined results being biased.

If the first problem arises, mi estimate issues the error message “estimation sample varies between
m = # and m = # ”. mi estimate expects that when it runs the estimation command on the first
imputation, on the second, and so on, the estimation command will use the same observations in each
imputation. mi estimate does not just count, it watches which observations are used.

Perhaps the difference is due to a past mistake, such as not having imputed all the missing values.
Perhaps you even corrupted your mi data so that the imputed variable is missing in some imputations
and not in others.

Another reason the error can arise is because you specified an if condition based on imputed or
passive variables. mi estimate considers this a mistake but, if this is your intent, you can reissue
the mi estimate command and include the esampvaryok option.

Finally, it is possible that the varying observations are merely a characteristic of the estimator
when combined with the two different imputed datasets. In this case, just as in the previous one, you
can reissue mi estimate with the esampvaryok option.

The easy way to diagnose why you got this error is to use mi xeq (see [MI] mi xeq) to run the
estimation command separately on the two imputations mentioned in the error message. Alternatively,
you can rerun the mi estimate command immediately with the esampvaryok option and with the
esample(varname) option, which will create in new variable varname the e(sample) from each of
the individual estimations. If you use the second approach, you must first mi convert your data to
flong or flongsep if they are not recorded in that style already; see [MI] mi convert for details.

The second problem we mentioned concerns omitted variables as opposed to omitted observations.
mi estimate reports that “omitted variables vary” and goes on to mention the two imputations
between which the variation was detected.

This can be caused when you include factor variables but did not specify base categories. It was
the base categories that differed in the two imputations. That could happen if you specified i.group.
By default, Stata chooses to omit the most frequent category. If group were imputed or passive, then
the most frequent category could vary between two imputations. The solution is to specify the base
category for yourself by typing, for instance, b2.group; see [U] 11.4.3 Factor variables.

There are other possible causes. Varying omitted variables 1) includes different variables being
omitted in the two imputations and 2) includes no variables being omitted in one imputation and, in
the other, one or more variables being omitted.

When different variables are being omitted, it is usually caused by collinearity, and one of the
variables needs to be dropped from the model. Variables x1 and x2 are collinear; sometimes the
estimation command is choosing to omit x1 and other times, x2. The solution is that you choose
which to omit by removing it from your model.

If no variables were omitted in one of the imputations, the problem is more difficult to explain.
Say that you included i.group in your model, the base category remained the same for the two
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imputations, but in one of the imputations, no one is observed in group 3, and thus no coefficient for
group 3 could be estimated. You choices are to accept that you cannot estimate a group 3 coefficient
and combine group 3 with, say, group 4, or to drop all imputations in which there is no one in group
3. If you want to drop imputations 3, 9, and 12, you type mi set m -= (3,9,12); see [MI] mi set.

Technical note

As we already mentioned, mi estimate obtains MI estimates by using the combination rules to
pool results from the specified command executed separately on each imputation. As such, certain
concepts (for example, likelihood function) and most postestimation tools specific to the command
may not be applicable to the MI estimates; see Analysis of multiply imputed data in [MI] intro
substantive. MI estimates may not even have a valid variance–covariance matrix associated with
them when the number of imputations is smaller than the number of estimated parameters. For these
reasons, the system matrices e(b) and e(V) are not set by mi estimate. If desired, you can save
the MI estimates and their variance–covariance estimates in e(b) and e(V) by specifying the post
option. See [MI] mi estimate postestimation for postestimation tools available after mi estimate.

Stored results
mi estimate stores the following in e():

Scalars
e(df avg[ Q] mi) average degrees of freedom
e(df c mi) complete degrees of freedom (if originally stored by estimation command in e(df r))
e(df max[ Q] mi) maximum degrees of freedom
e(df min[ Q] mi) minimum degrees of freedom
e(df m mi) MI model test denominator (residual) degrees of freedom
e(df r mi) MI model test numerator (model) degrees of freedom
e(esampvary mi) varying-estimation sample flag (0 or 1)
e(F mi) model test F statistic
e(k exp mi) number of expressions (transformed coefficients)
e(M mi) number of imputations
e(N mi) number of observations (minimum, if varies)
e(N min mi) minimum number of observations
e(N max mi) maximum number of observations
e(N g mi) number of groups
e(g min mi) smallest group size
e(g avg mi) average group size
e(g max mi) largest group size
e(p mi) MI model test p-value
e(cilevel mi) confidence level used to compute Monte Carlo error estimates of confidence intervals
e(fmi max[ Q] mi) largest FMI
e(rvi avg[ Q] mi) average RVI
e(rvi avg F mi) average RVI associated with the residual degrees of freedom for model test
e(ufmi mi) 1 if unrestricted FMI model test is performed, 0 if equal FMI model test is performed
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Macros
e(mi) mi
e(cmdline mi) command as typed
e(prefix mi) mi estimate
e(cmd mi) name of estimation command
e(cmd) mi estimate (equals e(cmd mi) when post is used)
e(title mi) “Multiple-imputation estimates”
e(wvce mi) title used to label within-imputation variance in the table header
e(modeltest mi) title used to label the model test in the table header
e(dfadjust mi) title used to label the degrees-of-freedom adjustment in the table header
e(expnames mi) names of expressions specified in spec
e(exp# mi) expressions of the transformed coefficients specified in spec
e(rc mi) return codes for each imputation
e(m mi) specified imputation numbers
e(m est mi) imputation numbers used in the computation
e(names vvl mi) command-specific e() macro names that contents varied across imputations
e(names vvm mi) command-specific e() matrix names that values varied across imputations

(excluding b, V, and Cns)
e(names vvs mi) command-specific e() scalar names that values varied across imputations

Matrices
e(b) MI estimates of coefficients (equals e(b mi), stored only if post is used)
e(V) variance–covariance matrix (equals e(V mi), stored only if post is used)
e(Cns) constraint matrix (for constrained estimation only; equals e(Cns mi),

stored only if post is used)
e(N g mi) group counts
e(g min mi) group-size minimums
e(g avg mi) group-size averages
e(g max mi) group-size maximums
e(b[ Q] mi) MI estimates of coefficients (or transformed coefficients)
e(V[ Q] mi) variance–covariance matrix (total variance)
e(Cns mi) constraint matrix (for constrained estimation only)
e(W[ Q] mi) within-imputation variance matrix
e(B[ Q] mi) between-imputation variance matrix
e(re[ Q] mi) parameter-specific relative efficiencies
e(rvi[ Q] mi) parameter-specific RVIs
e(fmi[ Q] mi) parameter-specific FMIs
e(df[ Q] mi) parameter-specific degrees of freedom
e(pise[ Q] mi) parameter-specific percentages increase in standard errors
e(vs names vs mi) values of command-specific e() scalar vs names that varied across imputations

vs names include (but are not restricted to) df r, N, N strata, N psu, N pop, N sub, N postrata,
N stdize, N subpop, N over, and converged.

Results N g mi, g min mi, g avg mi, and g max mi are stored for panel-data models only. The
results are stored as matrices for mixed-effects models and as scalars for other panel-data models.

If transformations are specified, the corresponding estimation results are stored with the Q mi suffix,
as described above.

Command-specific e() results that remain constant across imputations are also stored. Command-
specific results that vary from imputation to imputation are posted as missing, and their
names are stored in the corresponding macros e(names vvl mi), e(names vvm mi), and
e(names vvs mi). For some command-specific e() scalars (see vs names above), their values
from each imputation are stored in a corresponding matrix with the vs mi suffix.

Methods and formulas
Let q define a column vector of parameters of interest. For example, q may be a vector of

coefficients (or functions of coefficients) from a regression model. Let {(q̂i, Ûi) : i= 1, 2, . . . ,M}
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be the completed-data estimates of q and the respective variance–covariance estimates from M
imputed datasets.

The MI estimate of q is

qM =
1

M

M∑
i=1

q̂i

The variance–covariance estimate (VCE) of qM (total variance) is

T = U + (1 +
1

M
)B

where U =
∑M
i=1 Ûi/M is the within-imputation variance–covariance matrix and B =

∑M
i=1(qi−

qM )(qi − qM )′/(M − 1) is the between-imputation variance–covariance matrix.

Methods and formulas are presented under the following headings:

Univariate case
Multivariate case

Univariate case

Let Q, QM , B, U , and T correspond to the scalar analogues of the above formulas. Univariate
inferences are based on the approximation

T−1/2(Q−QM ) ∼ tν (1)

where tν denotes a Student’s t distribution with ν degrees of freedom, which depends on the number of
imputations, M , and the increase in variance of estimates due to missing data. Under the large-sample
assumption with respect to complete data, the degrees of freedom is

νlarge = (M − 1)

(
1 +

1

r

)2

(2)

where

r =
(1 +M−1)B

U
(3)

is an RVI due to missing data. Under the small-sample assumption, the degrees of freedom is

νsmall =

(
1

νlarge
+

1

ν̂obs

)−1
(4)

where ν̂obs = νc(νc + 1)(1− γ)/(νc + 3), γ = (1 + 1/M)B/T , and νc are the complete degrees of
freedom, the degrees of freedom used for inference when data are complete (Barnard and Rubin 1999).

The small-sample adjustment (4) is applied to the degrees of freedom ν when the specified command
stores the residual degrees of freedom in e(df r). This number of degrees of freedom is used as
the complete degrees of freedom, νc, in the computation. (If e(df r) varies across imputations, the
smallest is used in the computation, resulting in conservative inference.) If e(df r) is not set by the
specified command or if the nosmall option is specified, then (2) is used to compute the degrees of
freedom, ν.
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Parameter-specific significance levels, confidence intervals, and degrees of freedom as reported by
mi estimate are computed using the formulas above.

The percentage of standard-error increase due to missing data, as reported by mi estimate,

dftable, is computed as {(T/U)
1/2 − 1} × 100%.

The FMIs due to missing data and relative efficiencies reported by mi estimate, vartable are
computed as follows.

In the large-sample case, the fraction of information about Q missing due to nonresponse (Ru-
bin 1987, 77) is

λ =
r + 2/(νlarge + 3)

r + 1

where the RVI, r, is defined in (3). In the small-sample case, the fraction of information about Q
missing due to nonresponse (Barnard and Rubin 1999, 953) is

λ = 1− λ(νsmall)

λ(νc)

U

T

where λ(u) = (u+ 1)/(u+ 3).

The relative (variance) efficiency of using M imputations versus the infinite number of imputations
is RE = (1 + λ/M)−1 (Rubin 1987, 114).

Also see Rubin (1987, 76–77) and Schafer (1997, 109–111) for details.

Multivariate case

The approximation (1) can be generalized to the multivariate case:

(q− qM )T−1(q− qM )′/k ∼ Fk,ν (5)

where Fk,ν denotes an F distribution with k = rank(T ) numerator degrees of freedom and ν
denominator degrees of freedom defined as in (2), where the RVI, r, is replaced with the average RVI,
rave:

rave = (1 + 1/M)tr(BU
−1

)/k

The approximation (5) is inadequate with a small number of imputations because the between-
imputation variance, B, cannot be estimated reliably based on small M . Moreover, when M is smaller
than the number of estimated parameters, B does not have a full rank. As such, the total variance,
T, may not be a valid variance–covariance matrix for qM .

One solution is to assume that the between-imputation and within-imputation matrices are pro-
portional, that is B = λ×U (Rubin 1987, 78). This assumption implies that FMIs of all estimated
parameters are equal. Under this assumption, approximation (5) becomes

(1 + rave)
−1(q− qM )U

−1
(q− qM )′/k ∼ Fk,ν? (6)

where k = rank(U) and ν? is computed as described in Li et al. (1991, 1067).

Also see Rubin (1987, 77–78) and Schafer (1997, 112–114) for details.

We refer to (6) as an equal FMI test and to (5) as the unrestricted FMI test. By default, mi
estimate uses the approximation (6) for the model test. If the ufmitest option is specified, it uses
the approximation (5) for the model test.
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Similar to the univariate case, the degrees of freedom ν? and ν are adjusted for small samples
when the command stores the completed-data residual degrees of freedom in e(df r).

In the small-sample case, the degrees of freedom ν? is computed as described in Reiter (2007)
(in the rare case, when k(M − 1) ≤ 4, ν? = (k + 1)ν1/2, where ν1 is the degrees of freedom
from Barnard and Rubin [1999]). In the small-sample case, the degrees of freedom ν is computed as
described in Barnard and Rubin (1999) and Marchenko and Reiter (2009).
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Also see
[MI] mi estimate postestimation — Postestimation tools for mi estimate

[MI] mi estimate using — Estimation using previously saved estimation results

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

[MI] Glossary



Title

mi estimate using — Estimation using previously saved estimation results

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

mi estimate using miestfile is for use after mi estimate, saving(miestfile): . . . . It allows
obtaining multiple-imputation (MI) estimates, including standard errors and confidence intervals, for
transformed coefficients or the original coefficients, this time calculated on a subset of the imputations.
The transformation can be linear or nonlinear.

Menu
Statistics > Multiple imputation

Syntax
Compute MI estimates of coefficients using previously saved estimation results

mi estimate using miestfile
[
, options

]
Compute MI estimates of transformed coefficients using previously saved estimation results

mi estimate
[

spec
]
using miestfile

[
, options

]
where spec may be one or more terms of the form (

[
name:

]
exp). exp is any function of the

parameter estimates allowed by nlcom; see [R] nlcom.

miestfile.ster contains estimation results previously saved by mi estimate, saving(miestfile);
see [MI] mi estimate.

70
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options Description

Options

nimputations(#) specify number of imputations to use; default is to use all existing
imputations

imputations(numlist) specify which imputations to use
estimations(numlist) specify which estimation results to use
mcerror compute Monte Carlo error estimates
ufmitest perform unrestricted FMI model test
nosmall do not apply small-sample correction to degrees of freedom

Tables[
no
]
citable suppress/display standard estimation table containing

parameter-specific confidence intervals; default is citable

dftable display degrees-of-freedom table; dftable implies nocitable

vartable display variance information about estimates; vartable implies citable

table options control table output
display options control columns and column formats, row spacing, display of

omitted variables and base and empty cells, and factor-variable
labeling

Reporting

level(#) set confidence level; default is level(95)

dots display dots as estimations are performed
noisily display any output from nlcom if transformations are specified
trace trace nlcom if transformations are specified; implies noisily

replay replay command-specific results from each individual estimation in
miestfile.ster; implies noisily

cmdlegend display the command legend
nogroup suppress summary about groups displayed for xt commands
me options control output from mixed-effects commands

Advanced

errorok allow estimation even when nlcom errors out in some imputations;
such imputations are discarded from the analysis

coeflegend display legend instead of statistics
nowarning suppress the warning about varying estimation samples
noerrnotes suppress error notes associated with failed estimation results in

miestfile.ster
showimputations show imputations saved in miestfile.ster
eform option display coefficient table in exponentiated form
post post estimated coefficients and VCE to e(b) and e(V)

coeflegend, nowarning, noerrnotes, showimputations, eform option, and post do not appear in the dialog
box.
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table options Description

noheader suppress table header(s)
notable suppress table(s)
nocoef suppress table output related to coefficients
nocmdlegend suppress command legend that appears in the presence of

transformed coefficients when nocoef is used
notrcoef suppress table output related to transformed coefficients
nolegend suppress table legend(s)
nocnsreport do not display constraints

See [MI] mi estimate postestimation for features available after estimation. To replay results, type
mi estimate without arguments.

Options

� � �
Options �

nimputations(#) specifies that the first # imputations be used; # must be Mmin ≤ # ≤M , where
Mmin = 3 if mcerror is specified and Mmin = 2, otherwise. The default is to use all imputations,
M . Only one of nimputations(), imputations(), or estimations() may be specified.

imputations(numlist) specifies which imputations to use. The default is to use all of them. numlist
must contain at least two numbers corresponding to the imputations saved in miestfile.ster.
If mcerror is specified, numlist must contain at least three numbers. You can use the show-
imputations option to display imputations currently saved in miestfile.ster. Only one of
nimputations(), imputations(), or estimations() may be specified.

estimations(numlist) does the same thing as imputations(numlist), but this time the imputations
are numbered differently. Say that miestfile.ster was created by mi estimate and mi estimate
was told to limit itself to imputations 1, 3, 5, and 9. With imputations(), the imputations are
still numbered 1, 3, 5, and 9. With estimations(), they are numbered 1, 2, 3, and 4. Usually,
one does not specify a subset of imputations when using mi estimate, and so usually, the
imputations() and estimations() options are identical. The specified numlist must contain
at least two numbers. If mcerror is specified, numlist must contain at least three numbers. Only
one of nimputations(), imputations(), or estimations() may be specified.

mcerror specifies to compute Monte Carlo error (MCE) estimates for the results displayed in the
estimation, degrees-of-freedom, and variance-information tables. MCE estimates reflect variability
of MI results across repeated uses of the same imputation procedure and are useful for determining
an adequate number of imputations to obtain stable MI results; see White, Royston, and Wood (2011)
for details and guidelines.

MCE estimates are obtained by applying the jackknife procedure to multiple-imputation results.
That is, the jackknife pseudovalues of MI results are obtained by omitting one imputation at a
time; see [R] jackknife for details about the jackknife procedure. As such, the Monte Carlo error
computation requires at least three imputations.

If level() is specified during estimation, MCE estimates are obtained for confidence intervals
with the specified confidence level instead of using the default 95% confidence level. If any of
the options described in [R] eform option is specified during estimation, MCE estimates for the
coefficients, standard errors, and confidence intervals in the exponentiated form are also computed.
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mcerror can also be used upon replay to display MCE estimates. Otherwise, MCE estimates are
not reported upon replay even if they were previously computed.

ufmitest specifies that the unrestricted fraction missing information (FMI) model test be used. The
default test performed assumes equal fractions of information missing due to nonresponse for all
coefficients. This is equivalent to the assumption that the between-imputation and within-imputation
variances are proportional. The unrestricted test may be preferable when this assumption is suspect
provided the number of imputations is large relative to the number of estimated coefficients.

nosmall specifies that no small-sample correction be made to the degrees of freedom. By default,
individual tests of coefficients (and transformed coefficients) use the small-sample correction
of Barnard and Rubin (1999), and the overall model test uses the small-sample correction of
Reiter (2007).

� � �
Tables �

All table options below may be specified at estimation time or when redisplaying previously estimated
results.

citable and nocitable specify whether the standard estimation table containing parameter-specific
confidence intervals is displayed. The default is citable. nocitable can be used with vartable
to suppress the confidence interval table.

dftable displays a table containing parameter-specific degrees of freedom and percentages of increase
in standard errors due to nonresponse. dftable implies nocitable.

vartable displays a table reporting variance information about MI estimates. The table contains
estimates of within-imputation variances, between-imputation variances, total variances, relative
increases in variance due to nonresponse, fractions of information about parameter estimates missing
due to nonresponse, and relative efficiencies for using finite M rather than a hypothetically infinite
number of imputations. vartable implies citable.

table options control the appearance of all displayed table output:

noheader suppresses all header information from the output. The table output is still displayed.

notable suppresses all tables from the output. The header information is still displayed.

nocoef suppresses the display of tables containing coefficient estimates. This option affects the
table output produced by citable, dftable, and vartable.

nocmdlegend suppresses the table legend showing the command line, used to produce results in
miestfile.ster, from the output. This legend appears above the tables containing transformed
coefficients (or above the variance-information table if vartable is used) when nocoef is
specified.

notrcoef suppresses the display of tables containing estimates of transformed coefficients (if
specified). This option affects the table output produced by citable, dftable, and vartable.

nolegend suppresses all table legends from the output.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
and sformat(% fmt); see [R] estimation options.

� � �
Reporting �

level(#); see [R] estimation options.
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dots specifies that dots be displayed as estimations of transformed coefficients are successfully
completed. An x is displayed if nlcom fails to estimate one of the transformed coefficients
specified in spec. This option is relevant only if transformations are specified.

noisily specifies that any output from nlcom, used to obtain the estimates of transformed coefficients,
be displayed. This option is relevant only if transformations are specified.

trace traces the execution of nlcom. trace implies noisily and is relevant only if transformations
are specified.

replay replays estimation results from miestfile.ster, previously saved by mi estimate, sav-
ing(miestfile). This option implies noisily.

cmdlegend requests that the command line corresponding to the estimation command used to produce
the estimation results saved in miestfile.ster be displayed. cmdlegend may be specified at run
time or when redisplaying results.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) as well as other command-specific information displayed for xt
commands.

me options: stddeviations, variance, noretable, nofetable, and estmetric. These options
are relevant only with the mixed-effects commands meqrlogit (see [ME] meqrlogit), meqrpoisson
(see [ME] meqrpoisson), and mixed (see [ME] mixed). See the corresponding mixed-effects
commands for more information. The stddeviations option is the default with mi estimate
using. The estmetric option is implied when vartable or dftable is used.

� � �
Advanced �

errorok specifies that estimations of transformed coefficients that fail be skipped and the combined
results be based on the successful estimation results. The default is that mi estimate stops if an
individual estimation fails. If the miestfile.ster file contains failed estimation results, mi estimate
using does not error out; it issues notes about which estimation results failed and discards these
estimation results in the computation. You can use the noerrnotes option to suppress the display
of the notes.

The following options are available with mi estimate using but are not shown in the dialog box:

coeflegend; see [R] estimation options. coeflegend implies nocitable and cannot be combined
with citable or dftable.

nowarning suppresses the warning message at the bottom of table output that occurs if the estimation
sample varies and esampvaryok is specified. See Potential problems that can arise when using
mi estimate in [MI] mi estimate for details.

noerrnotes suppresses notes about failed estimation results. These notes appear when miestfile.ster
contains estimation results, previously saved by mi estimate, saving(miestfile), from imputations
for which the estimation command used with mi estimate failed to estimate parameters.

showimputations displays imputation numbers corresponding to the estimation results saved in
miestfile.ster. showimputations may be specified at run time or when redisplaying results.

eform option; see [R] eform option. mi estimate using reports results in the coefficient metric
under which the combination rules are applied. You may use the appropriate eform option to
redisplay results in exponentiated form, if desired. If dftable is also specified, the reported
degrees of freedom and percentage increases in standard errors are not adjusted and correspond to
the original coefficient metric.
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post requests that MI estimates of coefficients and their respective VCEs be posted in the usual way.
This allows the use of estimation command-specific postestimation tools with MI estimates. There
are issues; see Using the command-specific postestimation tools in [MI] mi estimate postestimation.
post may be specified at estimation time or when redisplaying previously estimated results.

Remarks and examples
mi estimate using is convenient when refitting models using mi estimate would be tedious or

time consuming. In such cases, you can perform estimation once and save the uncombined, individual
results by specifying mi estimate’s saving(miestfile) option. After that, you can repeatedly use
mi estimate using miestfile to estimate linear and nonlinear transformations of coefficients or to
obtain MI estimates using a subset of saved imputations.

mi estimate using performs the pooling step of the MI procedure; see [MI] intro substantive.
That is, it combines completed-data estimates from the miestfile.ster file by applying Rubin’s
combination rules (Rubin 1987, 77).

Example 1

Recall the analysis of house resale prices from Example 2: Completed-data linear regression
analysis in [MI] mi estimate:

. use http://www.stata-press.com/data/r14/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi estimate, saving(miest): regress price tax sqft age nfeatures ne custom
> corner

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117

Average RVI = 0.0648
Largest FMI = 0.2533
Complete DF = 109

DF adjustment: Small sample DF: min = 69.12
avg = 94.02
max = 105.51

Model F test: Equal FMI F( 7, 106.5) = 67.18
Within VCE type: OLS Prob > F = 0.0000

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253
sqft .2118129 .069177 3.06 0.003 .0745091 .3491168
age .2471445 1.653669 0.15 0.882 -3.051732 3.546021

nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623
ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818
corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972
_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

In the above, we use the saving() option to save the individual completed-data estimates from a
regression analysis in Stata estimation file miest.ster. We can now use mi estimate using to
recombine the first 5 imputations, and ignore the remaining 25, without reestimation:
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. mi estimate using miest, ni(5)

Multiple-imputation estimates Imputations = 5
Linear regression Number of obs = 117

Average RVI = 0.0685
Largest FMI = 0.2075
Complete DF = 109

DF adjustment: Small sample DF: min = 48.59
avg = 85.22
max = 104.79

Model F test: Equal FMI F( 7, 103.9) = 67.50
Within VCE type: OLS Prob > F = 0.0000

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

tax .6631356 .122443 5.42 0.000 .4195447 .9067265
sqft .2185884 .0670182 3.26 0.002 .0856051 .3515718
age -.0395402 1.613185 -0.02 0.981 -3.28205 3.202969

nfeatures 8.735622 13.42251 0.65 0.517 -18.01198 35.48323
ne 4.069381 36.94491 0.11 0.913 -69.4355 77.57426

custom 130.4925 42.93286 3.04 0.003 45.36257 215.6225
corner -71.25406 40.06697 -1.78 0.078 -150.7152 8.207084
_cons 130.2002 70.38012 1.85 0.068 -9.624642 270.025

We obtain results identical to those shown in the example in [MI] mi estimate.

We can also obtain estimates of transformed coefficients without refitting the models to the imputed
dataset. Recall the example from Example 5: Estimating transformations in [MI] mi estimate, where
we estimated the ratio of the coefficients for age and sqft. We can obtain the same results by using
the following:
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. mi estimate (ratio: _b[age]/_b[sqft]) using miest

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117

Average RVI = 0.0648
Largest FMI = 0.2533
Complete DF = 109

DF adjustment: Small sample DF: min = 69.12
avg = 94.02
max = 105.51

Model F test: Equal FMI F( 7, 106.5) = 67.18
Within VCE type: OLS Prob > F = 0.0000

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253
sqft .2118129 .069177 3.06 0.003 .0745091 .3491168
age .2471445 1.653669 0.15 0.882 -3.051732 3.546021

nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623
ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818
corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972
_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

Transformations Average RVI = 0.2899
Largest FMI = 0.2316
Complete DF = 109

DF adjustment: Small sample DF: min = 72.51
avg = 72.51

Within VCE type: OLS max = 72.51

ratio: _b[age]/_b[sqft]

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

ratio 1.44401 8.217266 0.18 0.861 -14.93485 17.82287

The results are the same as in the example in [MI] mi estimate.

For more examples, see [MI] mi test.

Stored results
See Stored results in [MI] mi estimate.

Methods and formulas
See Methods and formulas in [MI] mi estimate.
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[MI] mi estimate — Estimation using multiple imputations

[MI] mi estimate postestimation — Postestimation tools for mi estimate

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

[MI] Glossary



Title

mi estimate postestimation — Postestimation tools for mi estimate

Postestimation commands Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after mi estimate and mi estimate using:

Command Description

mi test perform tests on coefficients
mi testtransform perform tests on transformed coefficients
mi predict obtain linear predictions
mi predictnl obtain nonlinear predictions

See [MI] mi test and [MI] mi predict.

Remarks and examples
After estimation by mi estimate: estimation command, in general, you may not use the standard

postestimation commands such as test, testnl, or predict; nor may you use estimation command-
specific postestimation commands such as estat. As we have mentioned often, mi estimate is its
own estimation command, and the postestimation commands available after mi estimate (and mi
estimate using) are listed in the table above.

Using the command-specific postestimation tools

After mi estimate: estimation command, you may not use estimation command’s postestimation
features. More correctly, you may not use them unless you specify mi estimate’s post option:

. mi estimate, post: estimation_command ...

Specifying post causes many statistical issues, so do not be casual about specifying it.

First, the MI estimate of the VCE is poor unless the number of imputations, M , is sufficiently large.
How large is uncertain, but you should not be thinking M = 20 rather than M = 5; you should be
thinking of M in the hundreds. What is statistically true is that, asymptotically in M (and in the
number of observations, N ), the MI estimated coefficients approach normality and the VCE becomes
well estimated.

Second, there are substantive issues about what is meant by estimation command’s prediction
after MI estimation that you are going to have to resolve for yourself. There is no one estimation
sample. There are M of them, and as we have just argued, M is large. Do not expect postestimation
commands that depend on predicted values such as margins, lroc, and the like, to produce correct
results, if they produce results at all.

Which brings us to the third point. Even when you specify mi estimate’s post option, mi
estimate still does not post everything the estimation command expects to see. It does not post
likelihood values, for instance, because there is no counterpart after MI estimation. Thus, you should
be prepared to see unexpected and inelegant error messages if you use a postestimation command
that depends on an unestimated and unposted result.

79



80 mi estimate postestimation — Postestimation tools for mi estimate

All of which is to say that if you specify the post option, you have a responsibility beyond the
usual to ensure the validity of any statistical results.

Also see
[MI] mi predict — Obtain multiple-imputation predictions

[MI] mi test — Test hypotheses after mi estimate

[MI] mi estimate — Estimation using multiple imputations

[MI] mi estimate using — Estimation using previously saved estimation results

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

[MI] Glossary



Title

mi expand — Expand mi data

Description Syntax Menu Options
Remarks and examples Also see

Description
mi expand is expand (see [D] expand) for mi data. The syntax is identical to expand except

that in range is not allowed and the noupdate option is allowed.

mi expand exp replaces each observation in the dataset with n copies of the observation, where
n is equal to the required expression rounded to the nearest integer. If the expression is less than 1
or equal to missing, it is interpreted as if it were 1, meaning that the observation is retained but not
duplicated.

Syntax
mi expand

[
=
]
exp

[
if
] [

, options
]

options Description

generate(newvar) create newvar; 0 = original, 1 = expanded
noupdate see [MI] noupdate option

Menu
Statistics > Multiple imputation

Options
generate(newvar) creates new variable newvar containing 0 if the observation originally appeared

in the dataset and 1 if the observation is a duplication.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks and examples
mi expand amounts to performing expand on m = 0, then duplicating the result on m = 1,

m = 2, . . . , m = M , and then combining the result back into mi format. Thus if the requested
expansion specified by exp is a function of an imputed, passive, varying, or super-varying variable,
then it is the values of the variable in m = 0 that will be used to produce the result for m = 1,
m = 2, . . . , m = M , too.
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Also see
[MI] intro — Introduction to mi

[D] expand — Duplicate observations



Title

mi export — Export mi data

Description Syntax Remarks and examples References Also see

Description
Use mi export nhanes1 to export data in the format used by the National Health and Nutrition

Examination Survey.

Use mi export ice to export data in the format used by ice (Royston 2004, 2005a, 2005b, 2007,
2009).

If and when other standards develop for recording multiple-imputation data, other mi export
subcommands will be added.

Syntax

mi export nhanes1 . . .

mi export ice . . .

See [MI] mi export nhanes1 and [MI] mi export ice.

Remarks and examples
If you wish to send data to other Stata users, ignore mi export and just send them your mi

dataset(s).

To send data to users of other packages, however, you will have to negotiate the format you will
use. The easiest way to send data to non–Stata users is probably to mi convert (see [MI] mi convert)
your data to flongsep and then use outfile (see [D] outfile), export delimited (see [D] import
delimited), or a transfer program such as Stat/Transfer. Also see [U] 21 Entering and importing
data.

References
Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227–241.

. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188–201.

. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527–536.

. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445–464.

. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466–477.
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Also see
[MI] intro — Introduction to mi

[MI] mi export nhanes1 — Export mi data to NHANES format

[MI] mi export ice — Export mi data to ice format



Title

mi export ice — Export mi data to ice format

Description Menu Syntax Option
Remarks and examples References Also see

Description
mi export ice converts the mi data in memory to ice format. See Royston (2004, 2005a, 2005b,

2007, 2009) for a description of ice.

Menu
Statistics > Multiple imputation

Syntax
mi export ice

[
, clear

]
Option

clear specifies that it is okay to replace the data in memory even if they have changed since they
were last saved to disk.

Remarks and examples

mi export ice is the inverse of mi import ice (see [MI] mi import ice). Below we use mi
export ice to convert miproto.dta to ice format. miproto.dta happens to be in wide form, but
that is irrelevant.

. use http://www.stata-press.com/data/r14/miproto
(mi prototype)

. mi describe

Style: wide
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)

total 2

Vars.: imputed: 1; b(1)

passive: 1; c(1)

regular: 1; a

system: 1; _mi_miss

(there are no unregistered variables)

. list

a b c _1_b _2_b _1_c _2_c _mi_miss

1. 1 2 3 2 2 3 3 0
2. 4 . . 4.5 5.5 8.5 9.5 1
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. mi export ice

. list, separator(2)

a b c _mj _mi

1. 1 2 3 0 1
2. 4 . . 0 2

3. 1 2 3 1 1
4. 4 4.5 8.5 1 2

5. 1 2 3 2 1
6. 4 5.5 9.5 2 2

References
Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227–241.

. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188–201.

. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527–536.

. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445–464.

. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466–477.

Also see
[MI] intro — Introduction to mi

[MI] mi export — Export mi data

[MI] mi import ice — Import ice-format data into mi
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mi export nhanes1 — Export mi data to NHANES format

Description Menu Syntax Options
Remarks and examples Also see

Description
mi export nhanes1 writes the mi data in memory to disk files in nhanes1 format. The files will

be named filenamestub.dta, filenamestub1.dta, filenamestub2.dta, and so on. In addition to the
variables in the original mi data, new variable seqn will be added to record the sequence number.
After using mi export nhanes1, you can use outfile (see [D] outfile) or export delimited (see
[D] import delimited) or a transfer program such as Stat/Transfer to convert the resulting .dta files
into a format suitable for sending to a non-Stata user. Also see [U] 21 Entering and importing data.

mi export nhanes1 leaves the data in memory unchanged.

Menu
Statistics > Multiple imputation

Syntax

mi export nhanes1 filenamestub
[
, options odd options

]
options Description

replace okay to replace existing files
uppercase uppercase prefix and suffix
passiveok include passive variables

odd options Description

nacode(#) not applicable code; default is 0

obscode(#) observed code; default is 1

impcode(#) imputed code; default is 2

impprefix("string" "string") variable prefix; default is "" ""

impsuffix("string" "string") variable suffix; default is "if" "mi"

Note: The odd options are not specified unless you want to create results that are nhanes1-like but not really nhanes1
format.

Options

replace indicates that it is okay to overwrite existing files.
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uppercase specifies that the new sequence variable SEQN and the variable suffixes IF and MI be in
uppercase. The default is lowercase. (More correctly, when generalizing beyond nhanes1 format,
the uppercase option specifies that SEQN be created in uppercase along with all prefixes and
suffixes.)

passiveok specifies that passive variables are to be written as if they were imputed variables. The
default is to issue an error if passive variables exist in the original data.

nacode(#), obscode(#), and impcode(#) are optional and are never specified when reading true
nhanes1 data. The default nacode(0) obscode(1) impcode(2) corresponds to the nhanes1
definition. These options allow changing the codes for not applicable, observed, and imputed.

impprefix("string" "string") and impsuffix("string" "string") are optional and are never spec-
ified when reading true nhanes1 data. The default impprefix("" "") impsuffix("if" "mi")
corresponds to the nhanes1 definition. These options allow setting different prefixes and suffixes.

Remarks and examples
mi export nhanes1 is the inverse of mi import nhanes1; see [MI] mi import nhanes1 for a

description of the nhanes1 format.

Below we use mi export nhanes1 to convert miproto.dta to nhanes1 format. miproto.dta
happens to be in wide form, but that is irrelevant.

. use http://www.stata-press.com/data/r14/miproto
(mi prototype)

. mi describe

Style: wide
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)

total 2

Vars.: imputed: 1; b(1)

passive: 1; c(1)

regular: 1; a

system: 1; _mi_miss

(there are no unregistered variables)

. list

a b c _1_b _2_b _1_c _2_c _mi_miss

1. 1 2 3 2 2 3 3 0
2. 4 . . 4.5 5.5 8.5 9.5 1

. mi export nhanes1 mynh, passiveok replace
files mynh.dta mynh1.dta mynh2.dta created
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. use mynh
(mi prototype)

. list

seqn a bif cif

1. 1 1 1 1
2. 2 4 2 2

. use mynh1
(mi prototype)

. list

seqn a bmi cmi

1. 1 1 2 3
2. 2 4 4.5 8.5

. use mynh2
(mi prototype)

. list

seqn a bmi cmi

1. 1 1 2 3
2. 2 4 5.5 9.5

Also see
[MI] intro — Introduction to mi

[MI] mi export — Export mi data

[MI] mi import nhanes1 — Import NHANES-format data into mi



Title

mi extract — Extract original or imputed data from mi data

Description Menu Syntax Options
Remarks and examples Also see

Description
mi extract # replaces the data in memory with the data for m = #. The data are not mi set.

Menu
Statistics > Multiple imputation

Syntax
mi extract #

[
, options

]
where 0 ≤ # ≤M

options Description

clear okay to replace unsaved data in memory

esample(. . .) rarely specified option
esample(varname) . . . syntax when # > 0
esample(varname #e) . . . syntax when # = 0; 1 ≤ #e ≤M

Options

clear specifies that it is okay to replace the data in memory even if the current data have not been
saved to disk.

esample(varname
[

#e
]
) is rarely specified. It is for use after mi estimate (see [MI] mi estimate)

when the esample(newvar) option was specified to store in newvar the e(sample) for m = 1,
m = 2, . . . , m = M . It is now desired to extract the data for one m and for e(sample) set
correspondingly.

mi extract #, esample(varname), # > 0, is the usual case in this unlikely event. One extracts
one of the imputation datasets and redefines e(sample) based on the e(sample) previously
stored for m = #.

The odd case is mi extract 0, esample(varname #e), where #e > 0. One extracts the original
data but defines e(sample) based on the e(sample) previously stored for m = #e.

Specifying the esample() option changes the sort order of the data.
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Remarks and examples
If you wanted to give up on mi and just get your original data back, you could type

. mi extract 0

You might do this if you wanted to send your original data to a coworker or you wanted to try a
different approach to dealing with the missing values in these data. Whatever the reason, the result
is that the original data replace the data in memory. The data are not mi set. Your original mi data
remain unchanged.

If you suspected there was something odd about the imputations in m = 3, you could type

. mi extract 3

You would then have a dataset in memory that looked just like your original, except the missing
values of the imputed and passive variables would be replaced with the imputed and passive values
from m = 3. The data are not mi set. Your original data remain unchanged.

Also see
[MI] intro — Introduction to mi

[MI] mi replace0 — Replace original data
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mi import — Import data into mi

Description Syntax Remarks and examples References Also see

Description
mi import imports into mi data that contain original data and imputed values.

Syntax
mi import nhanes1 . . .

mi import ice . . .

mi import flong . . .

mi import flongsep . . .

mi import wide . . .

See [MI] mi import nhanes1, [MI] mi import ice, [MI] mi import flong, [MI] mi import flongsep,
and [MI] mi import wide.

Remarks and examples
Remarks are presented under the following headings:

When to use which mi import command
Import data into Stata before importing into mi
Using mi import nhanes1, ice, flong, and flongsep

When to use which mi import command

mi import nhanes1 imports data recorded in the format used by the National Health and Nutrition
Examination Survey (NHANES) produced by the National Center for Health Statistics of the U.S.
Centers for Disease Control and Prevention (CDC); see http://www.cdc.gov/nchs/nhanes.htm.

mi import ice imports data recorded in the format used by ice (Royston 2004, 2005a, 2005b,
2007, 2009).

mi import flong and mi import flongsep import data that are in flong- and flongsep-like
format, which is to say, the data are repeated for m = 0, m = 1, . . . , and m = M . mi import
flong imports data in which the information is contained in one file. mi import flongsep imports
data in which the information is recorded in a collection of files.

mi import wide imports data that are in wide-like format, where additional variables are used to
record the imputed values.

92

http://www.cdc.gov/nchs/nhanes.htm


mi import — Import data into mi 93

Import data into Stata before importing into mi

With the exception of mi import ice, you must import the data into Stata before you can use
mi import to import the data into mi. mi import ice is the exception only because the data are
already in Stata format. That is, mi import requires that the data be stored in Stata-format .dta
datasets. You perform the initial import into Stata by using any method described in [D] import or
a transfer program such as Stat/Transfer.

Using mi import nhanes1, ice, flong, and flongsep

Import commands mi import nhanes1 and mi import flongsep produce an flongsep result; mi
import ice and mi import flong produce an flong result. You can use mi convert (see [MI] mi
convert) afterward to convert the result to another style, and we usually recommend that. Before
doing that, however, you need to examine the freshly imported data and verify that all imputed and
passive variables are registered correctly. If they are not registered correctly, you risk losing imputed
values.

To perform this verification, use the mi describe (see [MI] mi describe) and mi varying (see
[MI] mi varying) commands immediately after mi import:

. mi import ...

. mi describe

. mi varying

mi describe will list the registration status of the variables. mi varying will report the varying
and super-varying variables. Verify that all varying variables are registered as imputed or passive. If
one or more is not, register them now:

. mi register imputed forgottenvar

. mi register passive another_forgottenvar

There is no statistical distinction between imputed and passive variables, so you may register
variables about which you are unsure either way. If an unregistered variable is found to be varying
and you are convinced that is an error, register the variable as regular:

. mi register regular variable_in_error

Next, if mi varying reports that your data contain any super-varying variables, determine whether
the variables are due to errors in the source data or really are intended to be super varying. If they
are errors, register the variables as imputed, passive, or regular, as appropriate. Leave any intended
super-varying variables unregistered, however, and make a note to yourself: never convert these data
to the wide or mlong styles. Data with super-varying variables can be stored only in the flong and
flongsep styles.

Now run mi describe and mi varying again:

. mi describe

. mi varying

Ensure that you have registered variables correctly, and, if necessary, repeat the steps above to fix
any remaining problems.

After that, you may use mi convert to switch the data to a more convenient style. We generally
start with style wide:

. mi convert wide
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Do not switch to wide, however, if you have any super-varying variables. Try flong instead:

. mi convert flong

Whichever style you choose, if you get an insufficient-memory error, you will have to either
increase the amount of memory dedicated to Stata or use these data in the more inconvenient, but
perfectly workable, flongsep style. Concerning increasing memory, see Converting from flongsep in
[MI] mi convert. Concerning the workability of flongsep, see Advice for using flongsep in [MI] styles.

We said to perform the checks above before using mi convert. It is, however, safe to convert the
just-imported flongsep data to flong, perform the checks, and then convert to the desired form. The
checks will run more quickly if you convert to flong first.

You can vary how you perform the checks. The logic underlying our recommendations is as
follows:

• It is possible that you did not specify all the imputed and passive variables when you
imported the data, perhaps due to errors in the data’s documentation. It is also possible that
there are errors in the data that you imported. It is worth checking.

• As long as the imported data are recorded in the flongsep or flong style, unregistered variables
will appear exactly as they appeared in the original source. It is only when the data are
converted to the wide or mlong style that assumptions about the structure of the data are
exploited to save memory. Thus you need to perform checks before converting the data to
the more convenient wide or mlong style.

• If you find errors, you could go back and reimport the data correctly, but it is easier to use
mi register after the fact. When you type mi register you are not only informing mi
about how to deal with the variable but also asking mi register to examine the variable
and fix any problems given its new registration status.
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Title

mi import flong — Import flong-like data into mi

Description Menu Syntax Options
Remarks and examples Also see

Description
mi import flong imports flong-like data, that is, data in which m = 0, m = 1, . . . , m = M

are all recorded in one .dta dataset.

mi import flong converts the data to mi flong style. The data are mi set.

Menu
Statistics > Multiple imputation

Syntax
mi import flong, required options

[
true options

]
required options Description

m(varname) name of variable containing m
id(varlist) identifying variable(s)

true options Description

imputed(varlist) imputed variables to be registered
passive(varlist) passive variables to be registered
clear okay to replace unsaved data in memory

Options

m(varname) and id(varlist) are required. m(varname) specifies the variable that takes on values 0,
1, . . . , M , the variable that identifies observations corresponding to m = 0, m = 1, . . . , m = M .
varname = 0 identifies the original data, varname = 1 identifies m = 1, and so on.

id(varlist) specifies the variable or variables that uniquely identify observations within m().

imputed(varlist) and passive(varlist) are truly optional options, although it would be unusual if
imputed() were not specified.

imputed(varlist) specifies the names of the imputed variables.

passive(varlist) specifies the names of the passive variables, if any.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were saved to disk. Remember, mi import flong starts with flong-like data in memory and ends
with mi flong data in memory.
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Remarks and examples
The procedure to convert flong-like data to mi flong is this:

1. use the unset data.

2. Issue the mi import flong command.

3. Perform the checks outlined in Using mi import nhanes1, ice, flong, and flongsep of [MI] mi
import.

4. Use mi convert (see [MI] mi convert) to convert the data to a more convenient style, such
as wide or mlong.

For instance, you have the following unset data:

. use http://www.stata-press.com/data/r14/ourunsetdata
(mi prototype)

. list, separator(2)

m subject a b c

1. 0 101 1 2 3
2. 0 102 4 . .

3. 1 101 1 2 3
4. 1 102 4 4.5 8.5

5. 2 101 1 2 3
6. 2 102 4 5.5 9.5

You are told that these data contain the original data (m = 0) and two imputations (m = 1 and
m = 2), that variable b is imputed, and that variable c is passive and in fact equal to a + b. These
are the same data discussed in [MI] styles but in unset form.

The fact that these data are nicely sorted is irrelevant. To import these data, type

. mi import flong, m(m) id(subject) imputed(b) passive(c)

These data are short enough that we can list the result:

. list, separator(2)

m subject a b c _mi_m _mi_id _mi_miss

1. 0 101 1 2 3 0 1 0
2. 0 102 4 . . 0 2 1

3. 1 101 1 2 3 1 1 .
4. 1 102 4 4.5 8.5 1 2 .

5. 2 101 1 2 3 2 1 .
6. 2 102 4 5.5 9.5 2 2 .

We will now perform the checks outlined in Using mi import nhanes1, ice, flong, and flongsep
of [MI] mi import, which are to run mi describe and mi varying to verify that variables are
registered correctly:
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. mi describe

Style: flong
last mi update 14nov2014 14:43:59, 0 seconds ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)

total 2

Vars.: imputed: 1; b(1)

passive: 1; c(1)

regular: 0

system: 3; _mi_m _mi_id _mi_miss

(there are 3 unregistered variables; m subject a)

. mi varying

Possible problem variable names

imputed nonvarying: (none)
passive nonvarying: (none)

unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: m

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

We discover that unregistered variable m is super varying (see [MI] Glossary). Here we no longer
need m, so we will drop the variable and rerun mi varying. We will find that there are no remaining
problems, so we will convert our data to our preferred wide style:

. drop m

. mi varying

Possible problem variable names

imputed nonvarying: (none)
passive nonvarying: (none)

unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: (none)

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

. mi convert wide, clear

. list

subject a b c _mi_miss _1_b _1_c _2_b _2_c

1. 101 1 2 3 0 2 3 2 3
2. 102 4 . . 1 4.5 8.5 5.5 9.5

Also see
[MI] intro — Introduction to mi

[MI] mi import — Import data into mi



Title

mi import flongsep — Import flongsep-like data into mi

Description Menu Syntax Options
Remarks and examples Also see

Description

mi import flongsep imports flongsep-like data, that is, data in which m = 0, m = 1, . . . ,
m = M are each recorded in separate .dta datasets.

mi import flongsep converts the data to mi flongsep and mi sets the data.

Menu
Statistics > Multiple imputation

Syntax

mi import flongsep name, required options
[

true options
]

where name is the name of the flongsep data to be created.

required options Description

using(filenamelist) input filenames for m = 1, m = 2, . . .
id(varlist) identifying variable(s)

Note: use the input file for m=0 before issuing mi import flongsep.

true options Description

imputed(varlist) imputed variables to be registered
passive(varlist) passive variables to be registered
clear okay to replace unsaved data in memory

Options

using(filenamelist) is required; it specifies the names of the .dta datasets containing m = 1,
m = 2, . . . , m = M . The dataset corresponding to m = 0 is not specified; it is to be in memory
at the time the mi import flongsep command is given.

The filenames might be specified as

using(ds1 ds2 ds3 ds4 ds5)
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which states that m = 1 is in file ds1.dta, m = 2 is in file ds2.dta, . . . , and m = 5 is in file
ds5.dta. Also, {#-#} is understood, so the above could just as well be specified as

using(ds{1-5})

The braced numeric range may appear anywhere in the name, and thus

using(ds{1-5}imp)

would mean that ds1imp.dta, ds2imp.dta, . . . , ds5imp.dta contain m = 1, m = 2, . . . ,
m = 5.

Alternatively, a comma-separated list can appear inside the braces. Filenames dsfirstm.dta,
dssecondm.dta, . . . , dsfifthm.dta can be specified as

using(ds{first,second,third,fourth,fifth}m)

Filenames can be specified with or without the .dta suffix and may be enclosed in quotes if they
contain special characters.

id(varlist) is required; it specifies the variable or variables that uniquely identify the observations
in each dataset. The coding must be the same across datasets.

imputed(varlist) and passive(varlist) are truly optional options, although it would be unusual if
imputed() were not specified.

imputed(varlist) specifies the names of the imputed variables.

passive(varlist) specifies the names of the passive variables.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were saved to disk.

Remarks and examples

The procedure to convert flongsep-like data to mi flongsep is this:

1. use the dataset corresponding to m = 0.

2. Issue the mi import flongsep name command, where name is the name of the mi flongsep
data to be created.

3. Perform the checks outlined in Using mi import nhanes1, ice, flong, and flongsep of [MI] mi
import.

4. Use mi convert (see [MI] mi convert) to convert the data to a more convenient style such
as wide, mlong, or flong.

For instance, you have been given the unset datasets imorig.dta, im1.dta, and im2.dta. You
are told that these datasets contain the original data and two imputations, that variable b is imputed,
and that variable c is passive and in fact equal to a + b. Here are the datasets:

. use http://www.stata-press.com/data/r14/imorig

. list

subject a b c

1. 101 1 2 3
2. 102 4 . .
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. use http://www.stata-press.com/data/r14/im1

. list

subject a b c

1. 101 1 2 3
2. 102 4 4.5 8.5

. save im1
file im1.dta saved

. use http://www.stata-press.com/data/r14/im2

. list

subject a b c

1. 101 1 2 3
2. 102 4 5.5 9.5

These are the same data discussed in [MI] styles but in unset form.

The fact that these datasets are nicely sorted is irrelevant. To import these datasets, you type

. use http://www.stata-press.com/data/r14/imorig

. mi import flongsep mymi, using(im1 im2) id(subject) imputed(b) passive(c)

We will now perform the checks outlined in Using mi import nhanes1, ice, flong, and flongsep
of [MI] mi import, which are to run mi describe and mi varying to verify that variables are
registered correctly:

. mi describe

Style: flongsep mymi
last mi update 14nov2014 14:43:59, 0 seconds ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)

total 2

Vars.: imputed: 1; b(1)

passive: 1; c(1)

regular: 0

system: 2; _mi_id _mi_miss

(there are 2 unregistered variables; subject a)

. mi varying

Possible problem variable names

imputed nonvarying: (none)
passive nonvarying: (none)

unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: (none)

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.
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mi varying reported no problems. We finally convert to our preferred wide style:

. mi convert wide, clear

. list

subject a b c _mi_miss _1_b _1_c _2_b _2_c

1. 101 1 2 3 0 2 3 2 3
2. 102 4 . . 1 4.5 8.5 5.5 9.5

We are done with the converted data in flongsep format, so we will erase the files:

. mi erase mymi
(files mymi.dta _1_mymi.dta _2_mymi.dta erased)

Also see
[MI] intro — Introduction to mi

[MI] mi import — Import data into mi



Title

mi import ice — Import ice-format data into mi

Description Menu Syntax Options
Remarks and examples References Also see

Description
mi import ice converts the data in memory to mi data, assuming the data in memory are in ice

format. See Royston (2004, 2005a, 2005b, 2007, 2009) for a description of ice.

mi import ice converts the data to mi style flong. The data are mi set.

Menu
Statistics > Multiple imputation

Syntax
mi import ice

[
, options

]
options Description

automatic register variables automatically
imputed(varlist) imputed variables to be registered
passive(varlist) passive variables to be registered
clear okay to replace unsaved data

Options

automatic determines the identity of the imputed variables automatically. Use of this option is
recommended.

imputed(varlist) specifies the names of the imputed variables. This option may be used with
automatic, in which case automatic is taken to mean automatically determine the identity of
imputed variables in addition to the imputed() variables specified. It is difficult to imagine why
one would want to do this.

passive(varlist) specifies the names of the passive variables. This option may be used with auto-
matic and usefully so. automatic cannot distinguish imputed variables from passive variables,
so it assumes all variables that vary are imputed. passive() allows you to specify the subset of
varying variables that are passive.

Concerning the above options: If none are specified, all variables are left unregistered in the result.
You can then use mi varying to determine the varying variables and use mi register to register
them appropriately; see [MI] mi varying and [MI] mi set. If you follow this approach, remember to
register imputed variables before registering passive variables.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were last saved to disk. Remember, mi import ice starts with ice data in memory and ends
with mi data in memory.
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Remarks and examples
The procedure to convert ice data to mi flong is

1. use the ice data.

2. Issue the mi import ice command, preferably with the automatic option and perhaps
with the passive() option, too, although it really does not matter if passive variables are
registered as imputed, so long as they are registered.

3. Perform the checks outlined in Using mi import nhanes1, ice, flong, and flongsep of [MI] mi
import.

4. Use mi convert (see [MI] mi convert) to convert the data to a more convenient style such
as wide or mlong.

For instance, you have the following ice data:

. use http://www.stata-press.com/data/r14/icedata

. list, separator(2)

_mj _mi a b c

1. 0 1 1 2 3
2. 0 2 4 . .

3. 1 1 1 2 3
4. 1 2 4 4.5 8.5

5. 2 1 1 2 3
6. 2 2 4 5.5 9.5

mj and mi are ice system variables. These data contain the original data and two imputations.
Variable b is imputed, and variable c is passive and in fact equal to a + b. These are the same data
discussed in [MI] styles but in ice format.

The fact that these data are nicely sorted is irrelevant. To import these data, you type

. mi import ice, automatic
(1 m=0 obs. now marked as incomplete)

although it would be even better if you typed

. mi import ice, automatic passive(c)
(1 m=0 obs. now marked as incomplete)

With the first command, both b and c will be registered as imputed. With the second, c will
instead be registered as passive. Whether c is registered as imputed or passive makes no difference
statistically.
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These data are short enough that we can list the result:

. list, separator(2)

a b c _mi_m _mi_id _mi_miss

1. 1 2 3 0 1 0
2. 4 . . 0 2 1

3. 1 2 3 1 1 .
4. 4 4.5 8.5 1 2 .

5. 1 2 3 2 1 .
6. 4 5.5 9.5 2 2 .

We will now perform the checks outlined in Using mi import nhanes1, ice, flong, and flongsep
of [MI] mi import, which are to run mi describe and mi varying to verify that variables are
registered correctly:

. mi describe

Style: flong
last mi update 14nov2014 14:44:00, 0 seconds ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)

total 2

Vars.: imputed: 1; b(1)

passive: 1; c(1)

regular: 0

system: 3; _mi_m _mi_id _mi_miss

(there is one unregistered variable; a)

. mi varying

Possible problem variable names

imputed nonvarying: (none)
passive nonvarying: (none)

unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: (none)

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

We find that there are no remaining problems, so we convert our data to our preferred wide style:

. mi convert wide, clear

. list

a b c _mi_miss _1_b _1_c _2_b _2_c

1. 1 2 3 0 2 3 2 3
2. 4 . . 1 4.5 8.5 5.5 9.5
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Title

mi import nhanes1 — Import NHANES-format data into mi

Description Menu Syntax Options
Remarks and examples Also see

Description
mi import nhanes1 imports data recorded in the format used by the National Health and Nutrition

Examination Survey (NHANES) produced by the National Center for Health Statistics (NCHS) of the U.S.
Centers for Disease Control and Prevention (CDC); see http://www.cdc.gov/nchs/nhanes/nh3data.htm.

Menu
Statistics > Multiple imputation

Syntax
mi import nhanes1 name, required options

[
true options odd options

]
where name is the name of the flongsep data to be created.

required options Description

using(filenamelist) input filenames for m = 1, m = 2, . . .
id(varlist) identifying variable(s)

Note: use the input file for m=0 before issuing mi import nhanes1.

true options Description

uppercase prefix and suffix in uppercase
clear okay to replace unsaved data in memory

odd options Description

nacode(#) not applicable code; default is 0

obscode(#) observed code; default is 1

impcode(#) imputed code; default is 2

impprefix("string" "string") variable prefix; default is "" ""

impsuffix("string" "string") variable suffix; default is "if" "mi"

Note: The odd options are not specified unless you need to import data that are nhanes1-like but not really nhanes1
format.
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Options

using(filenamelist) is required; it specifies the names of the .dta datasets containing m = 1,
m = 2, . . . , m = M . The dataset corresponding to m = 0 is not specified; it is to be in memory
at the time the mi import nhanes1 command is given.

The filenames might be specified as

using(nh1 nh2 nh3 nh4 nh5)

which states that m = 1 is in file nh1.dta, m = 2 is in file nh2.dta, . . . , and m = 5 is in file
nh5.dta. Also, {#-#} is understood, so the files could just as well be specified as

using(nh{1-5})

The braced numeric range may appear anywhere in the name, and thus

using(nh{1-5}imp)

would mean that nh1imp.dta, nh2imp.dta, . . . , nh5imp.dta contain m = 1, m = 2, . . . ,
m = 5.

Alternatively, a comma-separated list can appear inside the braces. Filenames nhfirstm.dta,
nhsecondm.dta, . . . , nhfifthm.dta can be specified as

using(nh{first,second,third,fourth,fifth}m)

Filenames can be specified with or without the .dta suffix and must be enclosed in quotes if they
contain special characters.

id(varlist) is required and is usually specified as id(seqn) or id(SEQN) depending on whether
your variable names are in lowercase or uppercase. id() specifies the variable or variables that
uniquely identify the observations in each dataset. Per the nhanes1 standard, the variable should
be named seqn or SEQN.

uppercase is optional; it specifies that the variable suffixes IF and MI of the nhanes1 standard are in
uppercase. The default is lowercase. (More correctly, when generalizing beyond nhanes1 format,
the uppercase option specifies that all prefixes and suffixes are in uppercase.)

nacode(#), obscode(#), and impcode(#) are optional and are never specified when reading true
nhanes1 data. The defaults nacode(0), obscode(1), and impcode(2) correspond to the nhanes1
definition. These options allow changing the codes for not applicable, observed, and imputed.

impprefix("string" "string") and impsuffix("string" "string") are optional and are never spec-
ified when reading true nhanes1 data. The defaults impprefix("" "") and impsuffix("if"
"mi") correspond to the nhanes1 definition. These options allow setting different prefixes and
suffixes.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were saved to disk. Remember, mi import nhanes1 starts with the first of the NHANES data in
memory and ends with mi data in memory.

Remarks and examples
Remarks are presented under the following headings:

Description of the nhanes1 format
Importing nhanes1 data
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Description of the nhanes1 format

Nhanes1 is not really an official format; it is the format used for a particular dataset distributed
by NCHS. Because there currently are no official or even informal standards for multiple-imputation
data, perhaps the method used by the NCHS for NHANES will catch on, so we named it nhanes1. We
included the 1 on the end of the name in case the format is modified.

Data in nhanes1 format consist of a collection of M + 1 separate files. The first file contains the
original data. The remaining M files contain the imputed values for m = 1, m = 2, . . . , m = M .

The first file contains a variable named seqn containing a sequence number. The file also contains
other variables that comprise the nonimputed variables. Imputed variables, however, have their names
suffixed with IF, standing for imputation flag, and those variables contain 1s, 2s, and 0s. 1 means that
the value of the variable in that observation was observed, 2 means that the value was missing, and
0 means not applicable. Think of 0 as being equivalent to hard missing. The value is not observed
for good reason and therefore was not imputed.

The remainingM files contain seqn and the imputed variables themselves. In these files, unobserved
values are imputed. This time, imputed variable names are suffixed with MI.

Here is an example:

. use http://www.stata-press.com/data/r14/nhorig

. list

seqn a bIF cIF

1. 1 11 1 1
2. 2 14 2 2

The above is the first of the M + 1 datasets. The seqn variable is the sequence number. The
a variable is a regular variable; we know that because the name does not end in IF. The b and c
variables are imputed, and this dataset contains their imputation flags. Both variables are observed in
the first observation and unobserved in the second.

Here is the corresponding dataset for m = 1:

. use http://www.stata-press.com/data/r14/nh1

. list

seqn bMI cMI

1. 1 2 3
2. 2 4.5 8.5

. save nh1
file nh1.dta saved

This dataset states that in m = 1, b is equal to 2 and 4.5 and c is equal to 3 and 8.5.

We are about to show you the dataset for m = 2. Even before looking at it, however, we know
that 1) it will have two observations; 2) it will have the seqn variable containing 1 and 2; 3) it will
have two more variables named bMI and cMI; and 4) bMI will be equal to 2 and cMI will be equal
to 3 in observations corresponding to seqn = 1. We know the last because in the first dataset, we
learned that b and c were observed in seqn = 1.
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. use http://www.stata-press.com/data/r14/nh2

. list

seqn a bMI cMI

1. 1 11 2 3
2. 2 14 5.5 9.5

. save nh2
file nh2.dta saved

Importing nhanes1 data

The procedure to import nhanes1 data is this:

1. use the dataset corresponding to m = 0; see [D] use.

2. Issue mi import nhanes1 name . . . , where name is the name of the mi flongsep dataset
to be created.

3. Perform the checks outlined in Using mi import nhanes1, ice, flong, and flongsep of [MI] mi
import.

4. Use mi convert (see [MI] mi convert) to convert the data to a more convenient style such
as wide, mlong, or flong.

To import the nhorig.dta, nh1.dta, and nh2.dta datasets described in the section above, we
will specify mi import nhanes1’s uppercase option because the suffixes were in uppercase. We
type

. use http://www.stata-press.com/data/r14/nhorig

. mi import nhanes1 mymi, using(nh1 nh2) id(seqn) uppercase

The lack of any error message means that we have successfully converted nhanes1-format
files nhorig.dta, nh1.dta, and nh2.dta to mi flongsep files mymi.dta, 1 mymi.dta, and
2 mymi.dta.

We will now perform the checks outlined in Using mi import nhanes1, ice, flong, and flongsep of
[MI] mi import, which are to run mi describe and mi varying (see [MI] mi describe and [MI] mi
varying) to verify that variables are registered correctly:

. mi describe

Style: flongsep mymi
last mi update 14nov2014 14:44:00, 0 seconds ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)

total 2

Vars.: imputed: 2; b(1) c(1)

passive: 0

regular: 0

system: 2; _mi_id _mi_miss

(there are 2 unregistered variables; seqn a)
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. mi varying

Possible problem variable names

imputed nonvarying: (none)
passive nonvarying: (none)

unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: (none)

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

mi varying reported no problems.

We finally convert to style flong, although in real life we would choose styles mlong or wide. We
are choosing flong because it is more readable:

. mi convert flong, clear

. list, separator(2)

seqn a b c _mi_id _mi_miss _mi_m

1. 1 11 2 3 1 0 0
2. 2 14 . . 2 1 0

3. 1 11 2 3 1 . 1
4. 2 14 4.5 8.5 2 . 1

5. 1 11 2 3 1 . 2
6. 2 14 5.5 9.5 2 . 2

The flong data are in memory. We are done with the converted data in flongsep format, so we
erase the files:

. mi erase mymi
(files mymi.dta _1_mymi.dta _2_mymi.dta erased)

Also see
[MI] intro — Introduction to mi

[MI] mi import — Import data into mi



Title

mi import wide — Import wide-like data into mi

Description Menu Syntax Options
Remarks and examples Also see

Description
mi import wide imports wide-like data, that is, data in which m = 0, m = 1, . . . , m = M

values of imputed and passive variables are recorded in separate variables.

mi import wide converts the data to mi wide style and mi sets the data.

Menu
Statistics > Multiple imputation

Syntax
mi import wide

[
, options

]
options Description

imputed(mvlist) imputed variables
passive(mvlist) passive variables
dupsok allow variable to be posted repeatedly
drop drop imputed and passive after posting
clear okay to replace unsaved data in memory

See description of options below for definition of mvlist.

Options
imputed(mvlist) and passive(mvlist) specify the imputed and passive variables.

For instance, if the data had two imputed variables, x and y; x and y contained the m = 0 values;
the corresponding m = 1, m = 2, and m = 3 values of x were in x1, x2, and x3; and the
corresponding values of y were in y1, y2, and y3, then the imputed() option would be specified
as

imputed(x=x1 x2 x3 y=y1 y2 y3)

If variable y2 were missing from the data, you would specify

imputed(x=x1 x2 x3 y=y1 . y3)

The same number of imputations must be specified for each variable.

dupsok specifies that it is okay if you specify the same variable name for two different imputations.
This would be an odd thing to do, but if you specify dupsok, then you can specify

imputed(x=x1 x1 x3 y=y1 y2 y3)

Without the dupsok option, the above would be treated as an error.

111
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drop specifies that the original variables containing values for m = 1, m = 2, . . . , m = M are to be
dropped from the data once mi import wide has recorded the values. This option is recommended.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were last saved to disk.

Remarks and examples

The procedure to convert wide-like data to mi wide style is this:

1. use the unset data; see [D] use.

2. Issue the mi import wide command.

3. Use mi describe (see [MI] mi describe) and mi varying (see [MI] mi varying) to verify
that the result is as you anticipated.

4. Optionally, use mi convert (see [MI] mi convert) to convert the data to what you consider
a more convenient style.

For instance, you have been given unset dataset wi.dta and have been told that it contains variables
a, b, and c; that variable b is imputed and contains m = 0 values; that variables b1 and b2 contain
the m = 1 and m = 2 values; that variable c is passive (equal to a+ b) and contains m = 0 values;
and that variables c1 and c2 contain the corresponding m = 1 and m = 2 values. Here are the data:

. use http://www.stata-press.com/data/r14/wi
(mi prototype)

. list

a b c b1 b2 c1 c2

1. 1 2 3 2 2 3 3
2. 4 . . 4.5 5.5 8.5 9.5

These are the same data discussed in [MI] styles. To import these data, type

. mi import wide, imputed(b=b1 b2 c=c1 c2) drop

These data are short enough that we can list the result:

. list

a b c _mi_miss _1_b _2_b _1_c _2_c

1. 1 2 3 0 2 2 3 3
2. 4 . . 1 4.5 5.5 8.5 9.5
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Returning to the procedure, we run mi describe and mi varying on the result:

. mi describe

Style: wide
last mi update 14nov2014 14:44:00, 0 seconds ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)

total 2

Vars.: imputed: 2; b(1) c(1)

passive: 0

regular: 0

system: 1; _mi_miss

(there is one unregistered variable; a)

. mi varying

Possible problem variable names

imputed nonvarying: (none)
passive nonvarying: (none)

Perhaps you would prefer seeing these data in flong style:

. mi convert flong, clear

. list, separator(2)

a b c _mi_miss _mi_m _mi_id

1. 1 2 3 0 0 1
2. 4 . . 1 0 2

3. 1 2 3 . 1 1
4. 4 4.5 8.5 . 1 2

5. 1 2 3 . 2 1
6. 4 5.5 9.5 . 2 2

Also see
[MI] intro — Introduction to mi

[MI] mi import — Import data into mi



Title

mi impute — Impute missing values

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

mi impute fills in missing values (.) of a single variable or of multiple variables using the
specified method. The available methods (by variable type and missing-data pattern) are summarized
in the tables below.

Single imputation variable (univariate imputation)

Pattern Type Imputation method

continuous regress, pmm,
truncreg, intreg

always monotone binary logit

categorical ologit, mlogit
count poisson, nbreg

Multiple imputation variables (multivariate imputation)

Pattern Type Imputation method

monotone missing mixture monotone

arbitrary missing mixture chained

arbitrary missing continuous mvn

The suggested reading order of mi impute’s subentries is

[MI] mi impute regress
[MI] mi impute pmm
[MI] mi impute truncreg
[MI] mi impute intreg
[MI] mi impute logit
[MI] mi impute ologit
[MI] mi impute mlogit
[MI] mi impute poisson
[MI] mi impute nbreg

[MI] mi impute monotone
[MI] mi impute chained
[MI] mi impute mvn
[MI] mi impute usermethod

114
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Menu
Statistics > Multiple imputation

Syntax
mi impute method . . .

[
, impute options . . .

]
method Description

Univariate

regress linear regression for a continuous variable
pmm predictive mean matching for a continuous variable
truncreg truncated regression for a continuous variable with a restricted range
intreg interval regression for a continuous partially observed (censored) variable
logit logistic regression for a binary variable
ologit ordered logistic regression for an ordinal variable
mlogit multinomial logistic regression for a nominal variable
poisson Poisson regression for a count variable
nbreg negative binomial regression for an overdispersed count variable

Multivariate

monotone sequential imputation using a monotone-missing pattern
chained sequential imputation using chained equations
mvn multivariate normal regression

User-defined

usermethod user-defined imputation methods

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist (not allowed with

usermethod)

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update (not allowed with usermethod); see
[MI] noupdate option
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∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.
You must mi set your data before using mi impute; see [MI] mi set.

Options

� � �
Main �

add(#) specifies the number of imputations to add to the mi data. This option is required if there
are no imputations in the data. If imputations exist, then add() is optional. The total number of
imputations cannot exceed 1,000.

replace specifies to replace existing imputed values with new ones. One of replace or add() must
be specified when mi data already have imputations.

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is
equivalent to typing set seed # prior to calling mi impute; see [R] set seed.

double specifies that the imputed values be stored as doubles. By default, they are stored as floats.
mi impute makes this distinction only when necessary. For example, if the logit method is used,
the imputed values are stored as bytes.

by(varlist
[
, byopts

]
) specifies that imputation be performed separately for each by-group. By-

groups are identified by equal values of the variables in varlist in the original data (m = 0).
Missing categories in varlist are omitted, unless the missing suboption is specified within by().
Imputed and passive variables may not be specified within by(). This option is not allowed with
user-defined imputation methods, usermethod.

byopts are missing, noreport, nolegend, and nostop.

missing specifies that missing categories in varlist are not omitted.

noreport suppresses reporting of intermediate information about each group.

nolegend suppresses the display of group legends that appear before the imputation table
when long group descriptions are encountered.

nostop specifies to proceed with imputation when imputation fails in some groups. By default,
mi impute terminates with error when this happens.

� � �
Reporting �

dots specifies to display dots as imputations are successfully completed. An x is displayed if any of
the specified imputation variables still have missing values.

noisily specifies that intermediate output from mi impute be displayed.

nolegend suppresses the display of all legends that appear before the imputation table.

� � �
Advanced �

force specifies to proceed with imputation even when missing imputed values are encountered. By
default, mi impute terminates with error if missing imputed values are encountered.

The following option is available with mi impute but is not shown in the dialog box:

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option. This option is rarely used and is not allowed with user-defined imputation
methods, usermethod.
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Remarks and examples
Remarks are presented under the following headings:

Imputation methods
Imputation modeling

Model building
Outcome variables
Transformations
Categorical variables
The issue of perfect prediction during imputation of categorical data
Convergence of iterative methods
Imputation diagnostics

Using mi impute
Univariate imputation
Multivariate imputation
Imputing on subsamples
Conditional imputation
Imputation and estimation samples
Imputing transformations of incomplete variables

Imputation methods

mi impute supports both univariate and multivariate imputation under the missing at random
assumption (see Assumptions about missing data under Remarks and examples in [MI] intro sub-
stantive).

Univariate imputation is used to impute a single variable. It can be used repeatedly to impute
multiple variables only when the variables are independent and will be used in separate analyses. To
impute a single variable, you can choose from the following methods: regress, pmm, truncreg,
intreg, logit, ologit, mlogit, poisson, and nbreg; see [MI] mi impute regress, [MI] mi impute
pmm, [MI] mi impute truncreg, [MI] mi impute intreg, [MI] mi impute logit, [MI] mi impute ologit,
[MI] mi impute mlogit, [MI] mi impute poisson, and [MI] mi impute nbreg.

For a continuous variable, either regress or pmm can be used (for example, Rubin [1987] and
Schenker and Taylor [1996]). For a continuous variable with a restricted range, a truncated variable,
either pmm or truncreg (Raghunathan et al. 2001) can be used. For a continuous partially observed
or censored variable, intreg can be used (Royston 2007). For a binary variable, logit can be
used (Rubin 1987). For a categorical variable, ologit can be used to impute missing categories
if they are ordered, and mlogit can be used to impute missing categories if they are unordered
(Raghunathan et al. 2001). For a count variable, either poisson (Raghunathan et al. 2001) or nbreg
(Royston 2009), in the presence of overdispersion, is often suggested. Also see van Buuren (2007)
for a detailed list of univariate imputation methods.

Theory dictates that multiple variables usually must be imputed simultaneously, and that requires
using a multivariate imputation method. The choice of an imputation method in this case also depends
on the pattern of missing values.

If variables follow a monotone-missing pattern (see Patterns of missing data under Remarks and
examples in [MI] intro substantive), they can be imputed sequentially using univariate conditional
distributions, which is implemented in the monotone method (see [MI] mi impute monotone). A
separate univariate imputation model can be specified for each imputation variable, which allows
simultaneous imputation of variables of different types (Rubin 1987).

When a pattern of missing values is arbitrary, iterative methods are used to fill in missing values.
The mvn method (see [MI] mi impute mvn) uses multivariate normal data augmentation to impute
missing values of continuous imputation variables (Schafer 1997). Allison (2001), for example, also
discusses how to use this method to impute binary and categorical variables.
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Another multivariate imputation method that accommodates arbitrary missing-value patterns is mul-
tivariate imputation using chained equations (MICE), also known as imputation using fully conditional
specifications (van Buuren, Boshuizen, and Knook 1999) and as sequential regression multivariate im-
putation (Raghunathan et al. 2001) in the literature. The MICE method is implemented in the chained
method (see [MI] mi impute chained) and uses a Gibbs-like algorithm to impute multiple variables
sequentially using univariate fully conditional specifications. Despite a lack of rigorous theoretical
justification, the flexibility of MICE has made it one of the most popular choices used in practice.

For a recent comparison of MICE and multivariate normal imputation, see Lee and Carlin (2010).

Imputation modeling

As discussed in [MI] intro substantive, imputation modeling is important to obtain proper im-
putations. Imputation modeling is not confined to the specification of an imputation method and an
imputation model. It also requires careful consideration of how to handle complex data structures,
such as survey or longitudinal data, and how to preserve existing relationships in the data during
the imputation step. Rubin (1987), Meng (1994), Schafer (1997), Allison (2001), Royston (2007),
Graham (2009), White, Royston, and Wood (2011), and others provide guidelines about imputation
modeling. We summarize some of them below.

As with any statistical procedure, choosing an appropriate imputation approach is an art, and the
choice should ultimately be determined by your data and research objectives. Regardless of which
imputation approach you decide to pursue, it is good practice to check that your imputations are
sensible before performing primary data analysis (see Imputation diagnostics) and to perform sensitivity
analysis (for example, Kenward and Carpenter [2007]).

Model building

Perhaps the most important component of imputation modeling is the construction of an imputation
model that preserves all the main characteristics of the observed data. This includes the following:

1. Use as many predictors as possible in the model to avoid making incorrect assumptions
about the relationships between the variables. Omitting key predictors from the imputation
model may lead to biased estimates for these predictors in the analysis. On the other hand,
including insignificant predictors will result in less efficient yet still statistically valid results.

2. Include design variables representing the structure of the data in your imputation model. For
example, sampling weights, strata and cluster identifiers of survey data, repeated-measures
identifiers of longitudinal data must be included in the imputation model.

3. Specify the correct functional form of an imputation model. For example, include interactions
of variables (or impute missing values separately using different subsamples; see Imputing
on subsamples) to preserve higher-order dependencies.

The imputation model must be compatible with any model that can be used for the analysis. If
variable X is to be included in the analysis model, it should also be used in the imputation model.
If the analysis model estimates a correlation of X1 and X2, then both variables should be present in
the imputation model. Accordingly, the outcome variable should always be present in the imputation
model. Also, in addition to all the variables that may be used in the analysis model, you should
include any auxiliary variables that may contain information about missing data. This will make
the MAR assumption more plausible and will improve the quality of the imputed values. For more
information about congeniality between the imputation and complete-data models, see Meng (1994).



mi impute — Impute missing values 119

As we mentioned above, it is important to specify the correct functional form of an imputation
model to obtain proper imputations. The failure to accommodate such model features as interactions
and nonlinearities during imputation may lead to severely biased results. There is no definitive
recommendation for the best way to incorporate various functional forms into the imputation model.
Currently, two main approaches are the joint modeling of all functional terms and modeling using
passive variables (variables derived from imputation variables) also known as passive imputation. The
joint modeling approach simply treats all functional terms as separate variables and imputes them
together with the underlying imputation variables using a multivariate model, often a multivariate
normal model. On the other hand, passive imputation—available within the MICE framework—fills in
only the underlying imputation variables and computes the respective functional terms from the imputed
variables, maintaining functional dependencies between the imputed and derived variables. The joint
modeling approach imposes a rather stringent assumption of multivariate normality for possibly
highly nonlinear terms and does not recognize functional dependencies between the imputed and
derived variables. The naı́ve application of passive imputation, however, may omit certain functional
relationships and thus lead to biased results. So, careful consideration for the specification of each
conditional model is important. See White, Royston, and Wood (2011) for more details and some
guidelines.

Outcome variables

Imputing outcome variables receive special attention in the literature because of the controversy
about whether they should be imputed. As we already mentioned, it is important to include the outcome
variable in the imputation model to obtain valid results. But what if the outcome variable itself has
missing values? Should it be imputed? Should missing values be discarded from the analysis? There
is no definitive answer to this question. The answer ultimately comes down to whether the specified
imputation model describes the missing data adequately. When the percentage of missing values is
low, using an incorrect imputation model may have little effect on the resulting repeated-imputation
inference. With a large fraction of missing observations, a misspecified imputation model may distort
the observed relationship between the outcome and predictor variables. In general, with large fractions
of missing observations on any variable, the imputed values have more influence on the results, and
thus more careful consideration of the imputation probability model is needed.

Transformations

Although the choice of an imputation method may not have significant impact on the results with
low fractions of missing data, it may with larger fractions. A number of different imputation methods
are available to model various types of imputation variables: continuous, categorical, count, and so
on. However, in practice, these methods in no way cover all possible distributions that imputation
variables may have. Often, the imputation variables can be transformed to the scale appropriate for an
imputation method. For example, a log transformation (or, more generally, a Box–Cox transformation)
can be used for highly skewed continuous variables to make them suitable for imputation using the
linear regression method. If desired, the imputed values can be transformed back after the imputation.
Transformations are useful when a variable has a restricted range. For instance, a preimputation
logit transformation and a postimputation inverse-logit transformation can be used to ensure that the
imputed values are between 0 and 1.

It is important to remember that although the choice of a transformation is often determined based
on the variable of interest alone, it is the conditional distribution of that variable given other predictors
that is being modeled, and so the transformation must be suitable for it.
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Categorical variables

To impute one categorical variable, you can use one of the categorical imputation methods: logistic,
ordered logistic, or multinomial logistic regressions (see [MI] mi impute logit, [MI] mi impute ologit,
or [MI] mi impute mlogit). These methods can also be used to impute multiple categorical variables
with a monotone missing-data pattern using monotone imputation (see [MI] mi impute monotone) and
with an arbitrary missing-data pattern using MICE (see [MI] mi impute chained). Also, for multiple
categorical variables with only two categories (binary or dummy variables), a multivariate normal
approach (see [MI] mi impute mvn) can be used to impute missing values and then, if needed, the
imputed values can be rounded to 0 if the value is smaller than 0.5, or 1 otherwise. For categorical
variables with more than two categories, Allison (2001) describes how to use the normal model to
impute missing values.

The issue of perfect prediction during imputation of categorical data

Perfect prediction (or separation—for example, see Albert and Anderson [1984]) occurs often in
the analysis of categorical data. The issue of perfect prediction is inherent to the discrete nature of
categorical data and arises in the presence of covariate patterns for which outcomes of a categorical
variable can be predicted almost perfectly. Perfect prediction usually leads to infinite coefficients
with infinite standard errors and often causes numerical instability during estimation. This issue is
often resolved by discarding the observations corresponding to offending covariate patterns as well as
the independent variables perfectly predicting outcomes during estimation; see, for example, Model
identification in [R] logit.

Perfect prediction is even more likely to arise during imputation because imputation models, per
imputation modeling guidelines, tend to include many variables and thus may include many categorical
variables. Perfect prediction may arise when variables are imputed using one of these imputation
methods: logit, ologit, or mlogit.

Let’s discuss how perfect prediction affects imputation. Recall that to obtain proper imputations
(Proper imputation methods in [MI] intro substantive), imputed values must be simulated from
the posterior predictive distribution of missing data given observed data. The categorical imputation
methods achieve this by first drawing a new set of regression coefficients from a normal distribution (a
large-sample approximation to their posterior distribution) with mean and variance determined by the
maximum likelihood estimates of the coefficients from the observed data and their variance–covariance
matrix. The imputed values are then obtained using the new set of coefficients; see Methods and
formulas in the method-specific manual entries for details.

In the presence of perfect prediction, very large estimates of coefficients and their standard errors
arise during estimation. As a result, new coefficients, drawn from the corresponding asymptotic normal
distribution, will either be large and positive or large and negative. As such, missing values—say,
of a binary imputation variable—may all be imputed as ones in some imputations and may all be
imputed as zeros in other imputations. This will clearly bias the multiple-imputation estimate of the
proportion of ones (or zeros) in the sample of perfectly predicted cases.

To eliminate the issue of perfect prediction during imputation, we cannot, unfortunately, drop
observations and variables when estimating model parameters as is normally done during estimation
using, for example, the logit command. Doing so would violate one of the main requirements of
imputation modeling: all variables and cases that may be used during primary, completed-data analysis
must be included in the imputation model. So, what can you do?
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When perfect prediction is detected, mi impute issues an error message:

. mi impute logit x1 z1 z2 . . . , . . .
mi impute logit: perfect predictor(s) detected

Variables that perfectly predict an outcome were detected when logit
executed on the observed data. First, specify mi impute’s option noisily
to identify the problem covariates. Then either remove perfect predictors
from the model or specify mi impute logit’s option augment to perform
augmented regression; see The issue of perfect prediction during imputation
of categorical data in [MI] mi impute for details.

r(498);

You have two alternatives at this point.

You can fit the specified imputation model to the observed data using the corresponding command
(in our example, logit) to identify the observations and variables causing perfect prediction in your
data. Depending on the research objective and specifics of the data collection process, it may be
reasonable to omit the offending covariate patterns and perfect predictors from your analysis. If you
do so, you must carefully document which observations and variables were removed and adjust your
inferential conclusions accordingly. Once offending instances are removed, you can proceed with
imputation followed by your primary data analysis. Make sure that the instances you removed from
the imputation model are not used in your further analysis.

The above approach may be difficult to pursue when imputing a large number of variables, among
which are many categorical variables. Another option is to handle perfect prediction directly during
imputation via the augment option, which is available for all categorical imputation methods: logit,
ologit, and mlogit.

mi impute . . . , augment . . . implements an augmented-regression approach, an ad hoc but
computationally convenient approach suggested by White, Daniel, and Royston (2010). According to
this approach, a few extra observations with small weights are added to the data during estimation of
model parameters in a way that prevents perfect prediction. See White, Daniel, and Royston (2010)
for simulation results and computational details.

Convergence of iterative methods

When the missing-value pattern is arbitrary, iterative Markov chain Monte Carlo (MCMC-like)
imputation methods are used to simulate imputed values from the posterior predictive distribution of
the missing data given the observed data; also see Multivariate imputation. In this case, the resulting
sequences (chains) of simulated parameters or imputed values should be examined to verify the
convergence of the algorithm. The modeling task may be influenced by the convergence process of
the algorithm given the data. For example, a different prior distribution for the model parameters may
be needed with mi impute mvn when some aspects of the model cannot be estimated because of the
sparseness of the missing data.

Markov chain simulation is often done in one of two ways: subsampling a single chain or running
multiple independent chains. Subsampling a chain involves running a single chain for a prespecified
number of iterations T , discarding the first b iterations until the chain reaches stationarity (the
burn-in period), and sampling the chain each kth iteration to produce a final sequence of independent
draws

{
X(b),X(b+k),X(b+2k), . . .

}
from the target distribution. The number of between iterations

k is chosen such that draws X(t) and X(t+k) are approximately independent. Alternatively, one
can obtain independent draws by running multiple independent chains using different starting values
{X(i,t) : t = 0, 1, . . .}, i = 1, 2, . . ., and discarding the first b iterations of each to obtain a final
sample

{
X(1,b),X(2,b),X(3,b), . . .

}
from the target distribution.



122 mi impute — Impute missing values

mi impute mvn subsamples the chain, whereas mi impute chained runs multiple independent
chains; see [MI] mi impute mvn and [MI] mi impute chained for details on how to monitor convergence
of each method.

Imputation diagnostics

After imputation, it is important to examine the sensibility of the obtained imputed values. If any
abnormalities are detected, the imputation model must be revised. Diagnostics for imputations is still
an ongoing research topic, but two general recommendations are to check model fit of the specified
imputation model to the observed data and to compare distributions of the imputed and observed
data. To check model fit of an imputation model to the observed data, you can use any standard
postestimation tools usually used with that type of model. Also see, for example, [R] mfp to help
determine an appropriate functional form of the imputation model. The differences (if any) between
the distributions of the observed and of the imputed data should be plausible within the context of
your study. For more information, see for example, Gelman et al. (2005), Abayomi, Gelman, and
Levy (2008), Eddings and Marchenko (2012), and Marchenko and Eddings (2011) for how to perform
multiple-imputation diagnostics in Stata.

Using mi impute

To use mi impute, you first mi set your data; see [MI] mi set. Next you register all variables
whose missing values are to be imputed; see mi register in [MI] mi set.

mi impute has two main options: add() and replace. If you do not have imputations, use add()
to create them. If you already have imputations, you have three choices:

1. Add new imputations to the existing ones by specifying the add() option.

2. Add new imputations and also replace the existing ones by specifying both the add() and
the replace options.

3. Replace existing imputed values by specifying the replace option.

add() is required if no imputations exist in the mi data, and either add() or replace must be
specified if imputations exist. See Univariate imputation for examples. Note that with replace, only
imputed values of the specified imputation variables within the specified subsample will be updated.

For reproducibility, use the rseed() option to set the random-number seed, or equivalently, set
the seed by using set seed immediately before calling mi impute. If you forget and still have mi
impute’s stored results in memory, you can retrieve the seed from the stored result r(rngstate);
see Stored results below.

By default, mi impute stores the imputed values using float precision. If you need more accuracy,
you can specify the double option. Depending on the mi data style, the type of the imputed variable
may change in the original data, m = 0. For example, if your data are in the mlong (or flong) style
and you are imputing a binary variable using the regression method, the type of the variable will
become float. If you are using the logistic method, the type of the variable may become byte even
if originally your variable was declared as float or int. mi impute will never demote a variable
if that would result in loss of precision.

Use the by(varlist) option to perform imputation separately on each group formed by varlist.
Specifying by() is equivalent to the repeated use of an if condition with mi impute to restrict
the imputation sample to each of the categories formed by varlist. Use the missing option within
by() to prevent mi impute from omitting missing categories in varlist. By default, mi impute
terminates with error if imputation fails in any of the groups; use by()’s nostop option to proceed
with imputation. You may not specify imputation and passive variables within by().
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mi impute terminates with error if the imputation procedure results in missing imputed values.
This may happen if you include variables containing missing values as predictors in your imputation
model. If desired, you can override this behavior with the force option.

mi impute may change the sort order of the data.

Univariate imputation

Univariate imputation by itself has limited application in practice. The situations in which only one
variable needs to be imputed or in which multiple incomplete variables can be imputed independently
are rare in real-data applications. Univariate imputation is most useful when it is used as a building
block of sequential multivariate imputation methods; see Multivariate imputation. It is thus beneficial
to first become familiar with univariate imputation.

Consider the heart attack data in which bmi contains missing values, as described in A brief
introduction to MI using Stata of [MI] intro substantive. Here we use the already mi set version of
the data with a subset of covariates of interest:

. use http://www.stata-press.com/data/r14/mheart1s0
(Fictional heart attack data; bmi missing)

. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 132
incomplete 22 (M = 0 imputations)

total 154

Vars.: imputed: 1; bmi(22)

passive: 0

regular: 5; attack smokes age female hsgrad

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

According to mi describe, the mi data style is mlong, and the dataset contains no imputations and
22 incomplete observations. The only registered imputed variable is bmi containing the 22 missing
values. The other variables are registered as regular. See [MI] mi describe for details.

In the example in [MI] intro substantive, we used mi impute regress to impute missing values
of bmi. Let’s concentrate on the imputation step in more detail here:

. mi impute regress bmi attack smokes age female hsgrad, add(20)

Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)
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The above output is common to all imputation methods of mi impute. In the left column, mi
impute reports information about which imputation method was used and which imputations were
created or updated. The right column contains the total number of imputations, and how many of
them are new and how many are updated. The table contains the number of complete, incomplete, and
imputed observations, and the total number of observations in the imputation sample, per imputation
for each variable (see Imputation and estimation samples below). As indicated by the note, complete
and incomplete observations sum to the total number of observations. The imputed column reports
how many incomplete observations were actually imputed. This number represents the minimum
across all imputations used (m = 1 through m = 20 in our example).

In the above example, we used add(20) to create 20 new imputations. Suppose that we decided
that 20 is not enough and we want to add 30 more:

. mi impute regress bmi attack smokes age female hsgrad, add(30)

Univariate imputation Imputations = 50
Linear regression added = 30
Imputed: m=21 through m=50 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The table output is unchanged, but the header reports that total number of imputations is now 50.
Thirty new imputations (from m = 21 to m = 50) were added, and the existing 20 imputations were
left unchanged.

Suppose that we decide we want to impute bmi using the predictive mean matching (PMM)
imputation method instead of the regression method. We use mi impute pmm with five nearest
neighbors and specify the replace option to update all existing imputations with new ones:

. mi impute pmm bmi attack smokes age female hsgrad, replace knn(5)

Univariate imputation Imputations = 50
Predictive mean matching added = 0
Imputed: m=1 through m=50 updated = 50

Nearest neighbors = 5

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The header reports that all 50 existing imputations, from m = 1 to m = 50, are replaced with
new ones.

Later we decide to use more nearest neighbors with mi impute pmm and also add 15 more
imputations. We can do the latter by combining replace and add(). We specify replace to update
the existing imputations with imputations from PMM with ten nearest neighbors (knn(10)) and use
add(15) to add 15 more imputations.
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. mi impute pmm bmi attack smokes age female hsgrad, add(15) replace knn(10) dots

Imputing m=1 through m=65:
.........10.........20.........30.........40.........50.........60..... done

Univariate imputation Imputations = 65
Predictive mean matching added = 15
Imputed: m=1 through m=65 updated = 50

Nearest neighbors = 10

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The header reports a total of 65 imputations, among which 15 are new and 50 are updated. In this
example, we also used the dots option to see the imputation progress. This option is useful with
larger datasets to monitor the imputation process.

See Imputing on subsamples for other usage of add() and replace.

Multivariate imputation

When imputing multiple variables, their missing-data pattern must first be considered. As we
briefly mentioned in Patterns of missing data in [MI] intro substantive, when a missing-data pattern
is monotone distinct, multiple variables can be imputed sequentially without iteration using univariate
conditional models (or monotone imputation). That is, a complicated multivariate imputation task can
be replaced with a sequence of simpler univariate imputation tasks; see [MI] mi impute monotone.

Monotone missing-data patterns rarely arise naturally in practice. As such, it is important to be able
to handle arbitrary missing-data patterns during imputation. Before we describe imputation methods
accommodating arbitrary missing-data patterns, we will first discuss the difficulties arising with such
patterns during imputation.

Monotone imputation is possible because variables can be ordered such that the complete observations
of a variable being imputed are also complete in all prior imputed variables used to predict it. This
means that the estimates of the parameters, which are obtained from complete data, do not depend
on any previously imputed values (see Rubin [1987] for details). With an arbitrary pattern of missing
data, such an ordering may not be possible because some variables may contain incomplete values in
observations for which other variables are complete (and vice versa), resulting in estimated parameters
being dependent on imputed values. The simultaneous imputation of multiple variables becomes more
challenging when missingness is nonmonotone.

Consider the following example. Variable X1 is complete in observation 1 and missing in ob-
servation 2, and variable X2 is missing in observation 1 and complete in observation 2. We need
to impute the two variables simultaneously. Suppose that we impute variable X2 using previously
imputed variable X1. Observation 1, which contains an imputed value of X1, is used to estimate the
model parameters for X2. As a result, the model parameters are obtained by treating the imputed
value of X1 as if it were true, thus ignoring the imputation variability in X1. To account for the
uncertainty in the imputed values during estimation, we need to iterate between the estimation step
and the imputation step until the estimates of the model parameters depend only on the observed data.

Two main approaches for multivariate imputation with arbitrary missing-data patterns are joint
modeling (JM) and fully conditional specification (FCS).
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The JM approach assumes a genuine multivariate distribution for all imputation variables and
imputes missing values as draws from the resulting posterior predictive distribution of the missing
data given the observed data. The predictive distribution is often difficult to draw from directly, so the
imputed values are often obtained by approximating this distribution using one of the MCMC methods.
One such JM approach for continuous data is based on the multivariate normal distribution, the MVN
method (Schafer 1997). The MVN method is implemented in [MI] mi impute mvn and uses the data
augmentation MCMC method.

The FCS approach does not assume an explicit multivariate distribution for all imputation variables.
Instead, it provides a set of chained equations, that is, univariate conditional distributions of each
variable with fully conditional specifications of prediction equations. This approach is also known
as MICE (van Buuren, Boshuizen, and Knook 1999) or sequential regression multivariate imputation
(SRMI; Raghunathan et al. 2001). We will be using the terms MICE, FCS, and SRMI interchangeably
throughout the documentation. MICE is similar in spirit to the Gibbs sampler, a popular MCMC method
for simulating data from complicated multivariate distributions. Unlike the Gibbs sampler, however,
conditional specifications within the MICE method are not guaranteed to correspond to a genuine
multivariate distribution because MICE does not start from an explicit multivariate density. Regardless,
MICE remains one of the popular imputation methods in practice. The MICE method is implemented
in [MI] mi impute chained.

Currently, there is no definitive recommendation in the literature as to which approach, JM or FCS,
is preferable. The JM approach ensures that imputed values are drawn from a genuine multivariate
distribution, and it thus may be more attractive from a theoretical standpoint. However, except for
simpler cases such as a multivariate normal model for continuous data, it may not be feasible to
formulate a joint model for general data structures. In this regard, the FCS approach is more appealing
because it not only can accommodate mixtures of different types of variables, but also can preserve
some important characteristics often observed in real data, such as restrictions to subpopulations for
certain variables and range restrictions. The tradeoff for such flexibility is a current lack of theoretical
justification. See Lee and Carlin (2010) and references therein for more discussion about the two
approaches.

Consider the heart attack data in which both bmi and age contain missing values. Again we will
use data that have already been mi set.

. use http://www.stata-press.com/data/r14/mheart5s0, clear
(Fictional heart attack data)

. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 126
incomplete 28 (M = 0 imputations)

total 154

Vars.: imputed: 2; bmi(28) age(12)

passive: 0

regular: 4; attack smokes female hsgrad

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

There are 28 incomplete observations in the dataset. The bmi variable contains 28 missing values
and the age variable contains 12 missing values. Both bmi and age are registered as imputed. If
we assume that age and BMI are independent, we can impute each of them separately by using the
previously described univariate imputation methods. It is likely, however, that these variables are
related, and so we use multivariate imputation.
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First, we examine missing-value patterns of the data.

. mi misstable patterns

Missing-value patterns
(1 means complete)

Pattern
Percent 1 2

82% 1 1

10 1 0
8 0 0

100%

Variables are (1) age (2) bmi

From the output, 82% of observations are complete, 10% of observations contain missing values
for bmi, and 8% of observations have both bmi and age missing. We can see that the dataset has
a monotone-missing pattern (see [MI] intro substantive), that is, missing values of age are nested
within missing values of bmi. Another way to see if the pattern of missingness is monotone is to use
mi misstable nested ([MI] mi misstable):

. mi misstable nested

1. age(12) -> bmi(28)

Because the missing-data pattern is monotone, we can use mi impute monotone to impute missing
values of bmi and age simultaneously:

. mi impute monotone (regress) age bmi = attack smokes hsgrad female, add(10)

Conditional models:
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0

age: linear regression
bmi: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Without going into detail, mi impute monotone imputes missing values of multiple variables
by performing a sequence of independent univariate conditional imputations. In the above example,
the regression method is used to impute missing values of both variables. age is imputed first from
the observed variables attack, smokes, hsgrad, and female. Then bmi is imputed using the
imputed age variable in addition to other observed variables. The output is consistent with that of
the univariate imputation methods described earlier, with some additional information. See [MI] mi
impute monotone for details.
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We can also impute missing values of bmi and age simultaneously using either mi impute mvn

. mi impute mvn age bmi = attack smokes hsgrad female, replace nolog

Multivariate imputation Imputations = 10
Multivariate normal regression added = 0
Imputed: m=1 through m=10 updated = 10

Prior: uniform Iterations = 1000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

or mi impute chained

. mi impute chained (regress) age bmi = attack smokes hsgrad female, replace
note: missing-value pattern is monotone; no iteration performed

Conditional models (monotone):
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Performing chained iterations ...

Multivariate imputation Imputations = 10
Chained equations added = 0
Imputed: m=1 through m=10 updated = 10

Initialization: monotone Iterations = 0
burn-in = 0

age: linear regression
bmi: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Neither mi impute mvn nor mi impute chained requires the missing-data pattern to be monotone.
mi impute mvn iterates to produce imputations. When the data are monotone missing, however, no
iteration is required, and because mi impute monotone executes more quickly, it is preferred. mi
impute chained also iterates to produce imputations, unless the missing-data pattern is monotone.
However, mi impute monotone is still faster because it performs estimation only once on the original
data, whereas mi impute chained performs estimation on each imputation. Use mi impute mvn
and mi impute chained when there is an arbitrary missing-data pattern. See [MI] mi impute mvn
and [MI] mi impute chained for details.
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Imputing on subsamples

Consider the earlier example of the univariate imputation of bmi. Suppose that we want to perform
imputation separately for females and males. Imputation on subsamples is useful when the imputation
model must accommodate the interaction effects (see, for example, Allison [2001]). For example, if
we want the effect of bmi on attack to vary by gender, we can perform imputation of bmi separately
for females and males.

We first show how to do it manually using if and the add() and replace options:

. use http://www.stata-press.com/data/r14/mheart1s0, clear
(Fictional heart attack data; bmi missing)

. mi impute regress bmi attack smokes age hsgrad if female==1, add(20)

Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 33 5 5 38

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

. mi impute regress bmi attack smokes age hsgrad if female==0, replace

Univariate imputation Imputations = 20
Linear regression added = 0
Imputed: m=1 through m=20 updated = 20

Observations per m

Variable Complete Incomplete Imputed Total

bmi 99 17 17 116

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

First, we created 20 imputations and filled in the missing values of bmi for females by using
the corresponding subset of observations. Then we filled in the remaining missing values of bmi for
males in the existing imputations by using the subset of male observations. We will now be able to
include the interaction between bmi and female in our logistic model.
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A much easier way to do the above is to use by():

. use http://www.stata-press.com/data/r14/mheart1s0
(Fictional heart attack data; bmi missing)

. mi impute regress bmi attack smokes age hsgrad, add(20) by(female)

Performing setup for each by() group:

-> female = 0

-> female = 1

Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m
by()

Variable Complete Incomplete Imputed Total

female = 0
bmi 99 17 17 116

female = 1
bmi 33 5 5 38

Overall
bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Conditional imputation

Often in practice, some variables are defined only within what we call a conditional sample, a
subset of observations satisfying certain restrictions (Raghunathan et al. 2001, Royston 2009). For
example, the number of cigarettes smoked is relevant to smokers only, the number of pregnancies is
relevant to females only, etc. Outside the conditional sample, such variables are assumed to contain
soft missing values and a nonmissing constant value, further referred to as a conditional constant,
which represents a known value or an inadmissible value. We will refer to conditional imputation as
imputation of such variables. So, the task of conditional imputation is to impute missing values of a
variable within a conditional sample using only observations from that sample and to replace missing
values outside the conditional sample with a conditional constant.

In the previous section, we learned that we can specify an if condition with mi impute to restrict
imputation of variables to a subset of observations. Is this sufficient to accommodate conditional
imputation? To answer this question, let’s consider several examples.

We use our heart attack data as an example. Suppose that our only variable containing missing
values is hightar, the indicator for smoking high-tar cigarettes. We want to impute missing values
in hightar and use it among other predictors in the logistic analysis of heart attacks. Because
hightar is relevant to smokers only, we want to impute hightar using the subset of observations
with smokes==1.

Thus to impute hightar, we restrict our imputation sample to smokers:

. mi impute logit hightar attack age bmi . . . if smokes==1, . . .
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Are we now ready to proceed with our primary logistic analysis of heart attacks? Not quite.
Recall that we wish to use all observations of hightar in our analysis. If hightar contains missing
values only in the conditional sample, smokes==1, we are finished. Otherwise, we need to replace
all remaining missing values outside the conditional sample, for smokes==0, with the conditional
constant, the nonmissing value of hightar in observations with smokes==0. In our example, this
value is zero, so our final step is

. mi xeq: replace hightar = 0 if smokes==0

What if we have several imputation variables? Suppose now that age and bmi also contain missing
values. Without making any assumptions about a missing-data pattern, we use mi impute chained
to impute variables of different types: age, bmi, and hightar. We need to impute hightar for
smokes==1 but use the unrestricted sample to impute age and bmi. Can we still accomplish this by
specifying an if condition? The answer is yes, but we need to replace missing values of hightar for
smokes==0 before imputation to ensure that age and bmi are imputed properly, using all observations,
when hightar is used in their prediction equations:

. mi xeq: replace hightar = 0 if smokes==0

. mi impute chained (regress) bmi age (logit if smokes==1) hightar = . . . , . . .

It seems that we can get away with using if to perform conditional imputation. What is the catch?
So far, we assumed that smokes does not contain any missing values. Let’s see what happens if it
does.

Because hightar depends on smokes, we must first impute missing values of smokes before
we can impute missing values of hightar. As such, the set of observations for which smokes==1
will vary from imputation to imputation and, in the case of mi impute chained, from iteration to
iteration. The replacement of missing values of hightar outside the conditional sample should be
performed each time a new set of imputed values is obtained for smokes, and thus must be directly
incorporated into the imputation procedure.

The answer to our earlier question about using an if condition to perform conditional imputation
is no, in general. To perform conditional imputation, use the conditional() option:

. mi imp chained (reg) bmi age (logit) smokes (logit, conditional(if smokes==1))
> hightar . . .

Every univariate imputation method supports option conditional(). This option is most useful
within specifications of univariate methods when multiple variables are being imputed using mi
impute monotone or mi impute chained, as we showed above. Although in some cases, as we
saw earlier, specifying an if condition in combination with manual replacement of missing values
outside the conditional sample may produce equivalent results, such use should generally be avoided
and conditional() should be used instead.

When you specify option conditional(), mi impute performs checks necessary for proper
conditional imputation. For example, the imputed variable is verified to be constant outside the
conditional sample and an error message is issued if it is not:

. mi impute logit hightar age bmi . . . , conditional(if smokes==1)
conditional(): imputation variable not constant outside conditional sample;

hightar is not constant outside the subset identified by (smokes==1)
within the imputation sample. This may happen when missing values of
conditioning variables are not nested within missing values of hightar.

r(459);
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mi impute also requires that missing values of all variables involved in conditional specifications
(restrictions)—that is, conditioning variables—be nested within missing values of the conditional
variable being imputed. If this does not hold true, mi impute issues an error message:

. mi impute logit hightar age bmi . . . , conditional(if smokes==1)
conditional(): conditioning variables not nested;

conditioning variable smokes is not nested within hightar
r(459);

Because missing values of all conditioning variables are assumed to be nested within missing
values of a conditional variable, that conditional variable is not included in the prediction equations
of the corresponding conditioning variables.

As an example, let’s continue with our heart attack data, in which variables hightar and smokes
contain missing values, as do age and bmi:

. use http://www.stata-press.com/data/r14/mheart7s0, clear
(Fictional heart attack data; bmi, age, hightar, and smokes missing)

. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 124
incomplete 30 (M = 0 imputations)

total 154

Vars.: imputed: 4; bmi(24) age(30) hightar(8) smokes(5)

passive: 0

regular: 3; attack female hsgrad

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

. mi misstable nested

1. smokes(5) -> hightar(8) -> bmi(24) -> age(30)

Our data are already mi set, so we proceed with imputation. According to mi misstable nested,
all imputation variables are monotone missing, so we use mi impute monotone for imputation. For
the purpose of illustration, we create only two imputations:
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. mi impute monotone (regress) bmi age
> (logit, conditional(if smokes==1)) hightar
> (logit) smokes
> = attack hsgrad female, add(2)

Conditional models:
smokes: logit smokes attack hsgrad female
hightar: logit hightar i.smokes attack hsgrad female ,

conditional(if smokes==1)
bmi: regress bmi i.hightar i.smokes attack hsgrad female
age: regress age bmi i.hightar i.smokes attack hsgrad female

note: 1.smokes omitted because of collinearity

Multivariate imputation Imputations = 2
Monotone method added = 2
Imputed: m=1 through m=2 updated = 0

Conditional imputation:
hightar: incomplete out-of-sample obs. replaced with value 0

bmi: linear regression
age: linear regression

hightar: logistic regression
smokes: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 130 24 24 154
age 124 30 30 154

hightar 146 8 8 154
smokes 149 5 5 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

For each variable that was imputed conditionally, mi impute reports the conditional value used to
replace all missing observations outside the conditional sample in a legend about conditional imputation.
In our example, all missing values of hightar outside smokes==1 are replaced with zero. The reported
numbers of complete, incomplete, and imputed observations for hightar correspond to the entire
imputation sample (see Imputation and estimation samples) and not only to the conditional sample.
For example, there are 146 complete and 8 incomplete observations of hightar in the combined
sample of smokers and nonsmokers. The minimum number of imputed values across imputations is 8,
so all incomplete observations of hightar were filled in—either imputed directly or replaced with a
conditional value—in both imputations. Because smokes is being imputed, the numbers of incomplete
and imputed observations of hightar for smokers and nonsmokers will vary across imputations.

You can accommodate more complicated restrictions or skip patterns, which often arise with
questionnaire data, by specifying more elaborate restrictions within conditional() or by specifying
the conditional() option with other variables. For example, suppose that the information about
cigarette tar level (hightar) was collected only for heavy smokers, identified by an indicator variable
heavysmoker. The heavysmoker variable contains missing values and needs to be imputed before
hightar can be imputed. To impute heavysmoker, we need to restrict our sample to smokers only.
Then to impute hightar, we need to use only heavy smokers among all smokers. We can do so as
follows:

. mi impute chained (logit) smokes ///
(logit, conditional(if smokes==1)) heavysmoker ///
(logit, conditional(if smokes==1 & heavysmoker==1)) ///

hightar . . .
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Imputation and estimation samples

Rubin (1987, 160–166) describes the imputation process as three tasks: modeling, estimation,
and imputation. We concentrate on the latter two tasks here. The posterior distribution of the model
parameters is estimated during the estimation task. This posterior distribution is used in the imputation
task to simulate the parameters of the posterior predictive distribution of the missing data from which an
imputed value is drawn. Accordingly, mi impute distinguishes between two main samples: imputation
and estimation.

The imputation sample is determined by the imputation variables used in the imputation task. It
is comprised of all observations for which the imputation variables contain no hard missing values
(or no extended missing values). In other words, the imputation sample consists of the complete and
incomplete observations as identified by the specified imputation variables. The estimation sample is
comprised of all observations used by the model fit to the observed data during the estimation task.

For example,

. use http://www.stata-press.com/data/r14/mheart1s0, clear
(Fictional heart attack data; bmi missing)

. mi impute regress bmi attack smokes age hsgrad female, add(1) noisily

Running regress on observed data:

Source SS df MS Number of obs = 132
F(5, 126) = 1.24

Model 99.5998228 5 19.9199646 Prob > F = 0.2946
Residual 2024.93667 126 16.070926 R-squared = 0.0469

Adj R-squared = 0.0091
Total 2124.5365 131 16.2178358 Root MSE = 4.0089

bmi Coef. Std. Err. t P>|t| [95% Conf. Interval]

attack 1.71356 .7515229 2.28 0.024 .2263179 3.200801
smokes -.5153181 .761685 -0.68 0.500 -2.02267 .9920341

age -.033553 .0305745 -1.10 0.275 -.0940591 .026953
hsgrad -.4674308 .8112327 -0.58 0.566 -2.072836 1.137975
female -.3072767 .8074763 -0.38 0.704 -1.905249 1.290695
_cons 26.96559 1.884309 14.31 0.000 23.2366 30.69458

Univariate imputation Imputations = 1
Linear regression added = 1
Imputed: m=1 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The imputation sample contains 154 observations and the estimation sample contains 132 observations
(from the regression output). The estimation task of mi impute regress consists of fitting a linear
regression of bmi on other variables to the observed data. We specified the noisily option to see
results from the estimation task. Usually, the number of complete observations in the imputation
sample (132 in this example) will be equal to the number of observations used in the estimation.
Sometimes, however, observations may be dropped from the estimation—for example, if independent
variables contain missing values. In this case, the number of complete observations in the imputation
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sample and the number of observations used in the estimation will be different, and the following
note will appear following the table output:

Note: Right-hand-side variables (or weights) have missing values;
model parameters estimated using listwise deletion.

You should evaluate such cases to verify that results are as expected.

In general, missing values in independent variables (or in a weighting variable) do not affect
the imputation sample but they may lead to missing imputed values. In the above example, if age
contained missing values in incomplete observations of bmi, the linear prediction for those observations
would have been missing and thus the resulting imputed values would have been missing, too.

Imputing on subsamples, or in other words, using an if condition with mi impute, restricts
both imputation and estimation samples to include only observations satisfying the if condition.
Conditional imputation (the conditional() option), on the other hand, affects only the estimation
sample. All values, within and outside of a conditional sample, except extended missing values, are
included in the imputation sample. With conditional imputation, the reported number of complete
observations will almost always be different from the number of observations in the estimation sample,
unless the conditional sample coincides with the imputation sample. In the case of observations being
dropped from a conditional sample during estimation, a note as shown above will appear following
the table output.

Imputing transformations of incomplete variables

Continuing with the univariate example above, say that we discover that the distribution of bmi
is skewed to the right, and thus we decide to impute bmi on the logarithmic scale instead of the
original one. We can do this by creating a new variable, lnbmi, and imputing it instead of bmi.

What we will do is create lnbmi, register it as imputed, impute it, and then create bmi as a passive
variable based on the formula bmi = exp(lnbmi).

We need to be careful when we create lnbmi to get its missing values right. mi respects two kinds
of missing values, called soft and hard missing. Soft missing values are missing values eligible for
imputation. Hard missing values are missing values that are to remain missing even in the imputed
data. Soft missing are recorded as ordinary missing (.), and hard missing are recorded as any of
extended missing (.a–.z).

The issue here is that missing values could arise because of our application of the transform
lnbmi = ln(bmi). In the case of the ln() transform, missing values will be created whenever
bmi ≤ 0. (In general, transformations leading to undefined values should be avoided so that all
available observed data are used during imputation.) Body mass index does not contain such values,
but let’s pretend it did. Here is what we would do:

1. Create lnbmi = ln(bmi).

2. Replace lnbmi to contain .z in observations for which lnbmi contains missing but bmi
does not.

3. Register lnbmi as an imputed variable and impute it.

4. Create passive variable newbmi = exp(lnbmi).

5. Replace newbmi equal to bmi in observations for which newbmi is missing and bmi is not.

Alternatively, to avoid creating hard missing values in step 2, we could consider a different
transformation; see, for example, [R] lnskew0.
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As we said, for lnbmi = ln(bmi) we need not perform all the steps above because bmi > 0. In
the bmi case, all we need to do is

1. Create lnbmi = ln(bmi).

2. Register lnbmi as an imputed variable and impute it.

3. Create passive variable newbmi = exp(lnbmi).

If all we wanted to do was impute lnbmi = ln(bmi) and, from that point on, just work with
lnbmi, we would perform only the first two steps of the three-step procedure.

All that said, we are going to perform the five-step procedure because it will always work. We
will continue from where we left off in the last example, so we will discard our previous imputation
efforts by typing mi set M = 0. (Instead of typing mi set M = 0, we could just as easily begin by
typing use http://www.stata-press.com/data/r14/mheart1s0.)

. mi set M = 0 // start again

. mi unregister bmi // we do not impute bmi

. generate lnbmi = ln(bmi) // create lnbmi

. replace lnbmi = .z if lnbmi==. & bmi!=.

. mi register imputed lnbmi

. mi impute regress lnbmi attack smokes age hsgrad female, add(5)

. mi passive: generate newbmi = exp(lnbmi)

. mi passive: replace newbmi = bmi if bmi!=.

The important thing about the above is the mechanical definition of an imputed variable. An
imputed variable is a variable we actually impute, not a variable we desire to impute. In this case, we
imputed lnbmi and derived bmi from it. Thus the variable we desired to impute became, mechanically,
a passive variable.

Stored results
mi impute stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method
r(ivars) names of imputation variables
r(rngstate) random-number state used
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group (per variable)
r(N complete) number of complete observations in imputation sample in each group (per variable)
r(N incomplete) number of incomplete observations in imputation sample in each group (per variable)
r(N imputed) number of imputed observations in imputation sample in each group (per variable)

Also see Stored results in the method-specific manual entries for additional stored results.
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Methods and formulas
All imputation methods (except predictive mean matching) are based on simulating from a Bayesian

(approximate) posterior predictive distribution of missing data. Univariate imputation methods and the
sequential monotone method use noniterative techniques for simulating from the posterior predictive
distribution of missing data. The imputation method based on multivariate normal regression uses an
iterative MCMC technique to simulate from the posterior predictive distribution of missing data. The
MICE method uses a Gibbs-like algorithm to obtain imputed values.

See Methods and formulas in the method-specific manual entries for details.

� �
Herman Otto Hartley (1912–1980) was born in Germany as Herman Otto Hirschfeld and
immigrated to England in 1934 after completing his PhD in mathematics at Berlin University. He
completed a second PhD in mathematical statistics under John Wishart at Cambridge in 1940 and
went on to hold positions at Harper Adams Agricultural College, Scientific Computing Services
(London), University College (London), Iowa State College, Texas A&M University, and Duke
University. Among other awards he received and distinguished titles he held, Professor Hartley
served as the president of the American Statistical Association in 1979. Known affectionately
as HOH by almost all who knew him, he founded the Institute of Statistics, later to become the
Department of Statistics, at Texas A&M University. His contributions to statistical computing
are particularly notable considering the available equipment at the time. Professor Hartley is
best known for his two-volume Biometrika Tables for Statisticians (jointly written with Egon
Pearson) and for his fundamental contributions to sampling theory, missing-data methodology,
variance-component estimation, and computational statistics.� �
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Description

mi impute chained fills in missing values in multiple variables iteratively by using chained
equations, a sequence of univariate imputation methods with fully conditional specification (FCS)
of prediction equations. It accommodates arbitrary missing-value patterns. You can perform separate
imputations on different subsets of the data by specifying the by() option. You can also account for
frequency, analytic (with continuous variables only), importance, and sampling weights.

Menu
Statistics > Multiple imputation

Syntax
Default specification of prediction equations, basic syntax

mi impute chained (uvmethod) ivars
[
= indepvars

] [
if
] [

weight
] [

, impute options options
]

Default specification of prediction equations, full syntax

mi impute chained lhs
[
= indepvars

] [
if
] [

weight
] [

, impute options options
]

Custom specification of prediction equations

mi impute chained lhsc
[
= indepvars

] [
if
] [

weight
] [

, impute options options
]

where lhs is lhs spec
[

lhs spec
[
. . .
] ]

and lhs spec is

(uvmethod
[

if
] [

, uvspec options
]
) ivars

lhsc is lhsc spec
[

lhsc spec
[
. . .
] ]

and lhsc spec is

(uvmethod
[

if
] [

, include(xspec) omit(varlist) noimputed uvspec options
]
) ivars

ivars (or newivar if uvmethod is intreg) are the names of the imputation variables.

uvspec options are ascontinuous, noisily, and the method-specific options as described in the
manual entry for each univariate imputation method.

The include(), omit(), and noimputed options allow you to customize the default prediction
equations.

139
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uvmethod Description

regress linear regression for a continuous variable; [MI] mi impute regress
pmm predictive mean matching for a continuous variable;

[MI] mi impute pmm
truncreg truncated regression for a continuous variable with a restricted range;

[MI] mi impute truncreg
intreg interval regression for a continuous partially observed (censored) variable;

[MI] mi impute intreg
logit logistic regression for a binary variable; [MI] mi impute logit
ologit ordered logistic regression for an ordinal variable; [MI] mi impute ologit
mlogit multinomial logistic regression for a nominal variable;

[MI] mi impute mlogit
poisson Poisson regression for a count variable; [MI] mi impute poisson
nbreg negative binomial regression for an overdispersed count variable;

[MI] mi impute nbreg

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option
∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.
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options Description

MICE options

burnin(#) specify number of iterations for the burn-in period;
default is burnin(10)

chainonly perform chained iterations for the length of the burn-in period
without creating imputations in the data

augment perform augmented regression in the presence of perfect prediction for
all categorical imputation variables

noimputed do not include imputation variables in any prediction equation
bootstrap estimate model parameters using sampling with replacement
savetrace(. . .) save summaries of imputed values from each iteration in filename.dta

Reporting

dryrun show conditional specifications without imputing data
report show report about each conditional specification
chaindots display dots as chained iterations are performed
showevery(#) display intermediate results from every #th iteration
showiter(numlist) display intermediate results from every iteration in numlist

Advanced

orderasis impute variables in the specified order
nomonotone impute using chained equations even when variables follow a

monotone-missing pattern; default is to use monotone method
nomonotonechk do not check whether variables follow a monotone-missing pattern

You must mi set your data before using mi impute chained; see [MI] mi set.
You must mi register ivars as imputed before using mi impute chained; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
fweights, aweights (regress, pmm, truncreg, and intreg only), iweights, and pweights are allowed; see

[U] 11.1.6 weight.

Options

� � �
Main �

add(), replace, rseed(), double, by(); see [MI] mi impute.

The following options appear on a Specification dialog that appears when you click on the Create ...
button on the Main tab. The include(), omit(), and noimputed options allow you to customize
the default prediction equations.

include(xspec) specifies that xspec be included in prediction equations of all imputation variables
corresponding to the current left-hand-side specification lhsc spec. xspec includes complete vari-
ables and expressions of imputation variables bound in parentheses. If the noimputed option is
specified within lhsc spec or with mi impute chained, then xspec may also include imputation
variables. xspec may contain factor variables; see [U] 11.4.3 Factor variables.

omit(varlist) specifies that varlist be omitted from the prediction equations of all imputation variables
corresponding to the current left-hand-side specification lhsc spec. varlist may include complete
variables or imputation variables. varlist may contain factor variables; see [U] 11.4.3 Factor
variables. In omit(), you should list variables to be omitted exactly as they appear in the
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prediction equation (abbreviations are allowed). For example, if variable x1 is listed as a factor
variable, use omit(i.x1) to omit it from the prediction equation.

noimputed specifies that no imputation variables automatically be included in prediction equations
of imputation variables corresponding to the current uvmethod.

uvspec options are options specified within each univariate imputation method, uvmethod.
uvspec options include ascontinuous, noisily, and the method-specific options as described
in the manual entry for each univariate imputation method.

ascontinuous specifies that categorical imputation variables corresponding to the current uvmethod
be included as continuous in all prediction equations. This option is only allowed when uvmethod
is logit, ologit, or mlogit.

noisily specifies that the output from the current univariate model fit to the observed data be
displayed. This option is useful in combination with the showevery(#) or showiter(numlist)
option to display results from a particular univariate imputation model for specific iterations.

� � �
MICE options �

burnin(#) specifies the number of iterations for the burn-in period for each chain (one chain per
imputation). The default is burnin(10). This option specifies the number of iterations necessary
for a chain to reach approximate stationarity or, equivalently, to converge to a stationary distribution.
The required length of the burn-in period will depend on the starting values used and the missing-
data patterns observed in the data. It is important to examine the chain for convergence to determine
an adequate length of the burn-in period prior to obtaining imputations; see Convergence of MICE.
The provided default is what current literature recommends. However, you are responsible for
determining that sufficient iterations are performed.

chainonly specifies that mi impute chained perform chained iterations for the length of the burn-in
period and then stop. This option is useful in combination with savetrace() to examine the
convergence of the method prior to imputation. No imputations are created when chainonly is
specified, so add() or replace is not required with mi impute chained, chainonly and they
are ignored if specified.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,
an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks and examples in [MI] mi impute for more information. augment is not allowed with
importance weights. This option is equivalent to specifying augment within univariate specifications
of all categorical imputation methods: logit, ologit, and mlogit.

noimputed specifies that no imputation variables automatically be included in any of the prediction
equations. This option is seldom used. This option is convenient if you wish to use different sets
of imputation variables in all prediction equations. It is equivalent to specifying noimputed within
all univariate specifications.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect. This option is equivalent to specifying bootstrap within all
univariate specifications.

savetrace( filename
[
, traceopts

]
) specifies to save the means and standard deviations of imputed

values from each iteration to a Stata dataset called filename.dta. If the file already exists, the
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replace suboption specifies to overwrite the existing file. savetrace() is useful for monitoring
convergence of the chained algorithm. This option cannot be combined with by().

traceopts are replace, double, and detail.

replace indicates that filename.dta be overwritten if it exists.

double specifies that the variables be stored as doubles, meaning 8-byte reals. By default,
they are stored as floats, meaning 4-byte reals. See [D] data types.

detail specifies that additional summaries of imputed values including the smallest and the
largest values and the 25th, 50th, and 75th percentiles are saved in filename.dta.

� � �
Reporting �

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from all univariate
conditional models fit to the observed data be displayed. nolegend suppresses all imputation table
legends that include a legend with the titles of the univariate imputation methods used, a legend
about conditional imputation when conditional() is used within univariate specifications, and
group legends when by() is specified.

dryrun specifies to show the conditional specifications that would be used to impute each vari-
able without actually imputing data. This option is recommended for checking specifications of
conditional models prior to imputation.

report specifies to show a report about each univariate conditional specification. This option, in
combination with dryrun, is recommended for checking specifications of conditional models prior
to imputation.

chaindots specifies that all chained iterations be displayed as dots. An x is displayed for every
failed iteration.

showevery(#) specifies that intermediate regression output be displayed for every #th iteration.
This option requires noisily. If noisily is specified with mi impute chained, then the output
from the specified iterations is displayed for all univariate conditional models. If noisily is used
within a univariate specification, then the output from the corresponding univariate model from
the specified iterations is displayed.

showiter(numlist) specifies that intermediate regression output be displayed for each iteration in
numlist. This option requires noisily. If noisily is specified with mi impute chained, then the
output from the specified iterations is displayed for all univariate conditional models. If noisily
is used within a univariate specification, then the output from the corresponding univariate model
from the specified iterations is displayed.

� � �
Advanced �

force; see [MI] mi impute.

orderasis requests that the variables be imputed in the specified order. By default, variables are
imputed in order from the most observed to the least observed.

nomonotone, a rarely used option, specifies not to use monotone imputation and to proceed with
chained iterations even when imputation variables follow a monotone-missing pattern. mi impute
chained checks whether imputation variables have a monotone missing-data pattern and, if they
do, imputes them using the monotone method (without iteration). If nomonotone is used, mi
impute chained imputes variables iteratively even if variables are monotone-missing.

nomonotonechk specifies not to check whether imputation variables follow a monotone-missing
pattern. By default, mi impute chained checks whether imputation variables have a monotone
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missing-data pattern and, if they do, imputes them using the monotone method (without iteration).
If nomonotonechk is used, mi impute chained does not check the missing-data pattern and
imputes variables iteratively even if variables are monotone-missing. Once imputation variables are
established to have an arbitrary missing-data pattern, this option may be used to avoid potentially
time-consuming checks; the monotonicity check may be time consuming when a large number of
variables is being imputed.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples

Remarks are presented under the following headings:

Multivariate imputation using chained equations
Compatibility of conditionals
Convergence of MICE
First use
Using mi impute chained
Default prediction equations
Custom prediction equations
Link between mi impute chained and mi impute monotone
Examples

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute options. Also see [MI] workflow for general advice on working with mi.

Multivariate imputation using chained equations

When a missing-data structure is monotone distinct, multiple variables can be imputed sequentially
without iteration by using univariate conditional models (see [MI] mi impute monotone). Such
monotone imputation is impossible with arbitrary missing-data patterns, and simultaneous imputation
of multiple variables in such cases requires iteration. We described the impact of an arbitrary missing-
data pattern on multivariate imputation and two common imputation approaches used in such cases, the
multivariate normal method and multivariate imputation using chained equations (MICE), in Multivariate
imputation in [MI] mi impute. In this entry, we describe MICE, also known as imputation using FCS
(van Buuren, Boshuizen, and Knook 1999) or sequential regression multivariate imputation (SRMI;
Raghunathan et al. 2001), in more detail. We use the terms MICE, FCS, and SRMI interchangeably
throughout the documentation.

MICE is similar to monotone imputation in the sense that it is also based on a series of univariate
imputation models. Unlike monotone imputation, MICE uses FCSs of prediction equations (chained
equations) and requires iteration. Iteration is needed to account for possible dependence of the estimated
model parameters on the imputed data when a missing-data structure is not monotone distinct.

The general idea behind MICE is to impute multiple variables iteratively via a sequence of univariate
imputation models, one for each imputation variable, with fully conditional specifications of prediction
equations: all variables except the one being imputed are included in a prediction equation. Formally,
for imputation variables X1, X2, . . . , Xp and complete predictors (independent variables) Z, this
procedure can be described as follows. Imputed values are drawn from
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X
(t+1)
1 ∼ g1(X1|X(t)

2 , . . . , X(t)
p ,Z,φ1)

X
(t+1)
2 ∼ g2(X2|X(t+1)

1 , X
(t)
3 , . . . , X(t)

p ,Z,φ2)

. . .

X(t+1)
p ∼ gp(Xp|X(t+1)

1 , X
(t+1)
2 , . . . , X

(t+1)
p−1 ,Z,φp)

(1)

for iterations t = 0, 1, . . . , T until convergence at t = T , where φj are the corresponding model
parameters with a uniform prior. The univariate imputation models, gj(·), can each be of a different
type (normal, logistic, etc.), as is appropriate for imputing Xj .

Fully conditional specifications (1) are similar to the Gibbs sampling algorithm (Geman and
Geman 1984; Gelfand and Smith 1990), one of the MCMC methods for simulating from complicated
multivariate distributions. In fact, in certain cases these specifications do correspond to a genuine Gibbs
sampler. For example, when all Xj’s are continuous and all gj(·)’s are normal linear regressions with
constant variances, then (1) corresponds to a Gibbs sampler based on a multivariate normal distribution
with a uniform prior for model parameters. Such correspondence does not hold in general because
unlike the Gibbs sampler, the conditional densities {gj(·), j = 1, 2, . . . , p} may not correspond
to any multivariate joint conditional distribution of X1, X2, . . . , Xp given Z (Arnold, Castillo, and
Sarabia 2001). This issue is known as incompatibility of conditionals (for example, Arnold, Castillo,
and Sarabia [1999]). When conditionals are not compatible, the MICE procedure may not converge
to any stationary distribution, which can raise concerns about its validity as a principled statistical
method; see Compatibility of conditionals and Convergence of MICE for more details.

Despite the lack of a general theoretical justification, MICE is very popular in practice. Its popularity
is mainly due to the tremendous flexibility it offers for imputing various types of data arising in
observational studies. Similarly to monotone imputation, the variable-by-variable specification of MICE
allows practitioners to simultaneously impute variables of different types by choosing from several
univariate imputation methods appropriate for each variable. Being able to specify a separate model
for each variable provides an imputer with great flexibility in incorporating certain characteristics
specific to each variable. For example, we can use predictive mean matching ([MI] mi impute pmm)
or truncated regression ([MI] mi impute truncreg) to impute a variable with a restricted range. We
can impute variables defined on a subsample using only observations in that subsample while using the
entire sample to impute other variables; see Conditional imputation in [MI] mi impute for details. For
more information about multivariate imputation using chained equations, see van Buuren, Boshuizen,
and Knook (1999); Raghunathan et al. (2001); van Buuren et al. (2006); van Buuren (2007); White,
Royston, and Wood (2011); and Royston (2004, 2005a, 2005b, 2007, 2009), among others.

The specification of a conditional imputation model gj(·) includes an imputation method and a
prediction equation relating an imputation variable to other explanatory variables. In what follows,
we distinguish between the default specification (of prediction equations) in which the identities
of the complete explanatory variables are the same across all prediction equations, and the custom
specification in which the identities are allowed to differ.

Under the default specification, prediction equations of each imputation variable include all complete
independent variables and all imputation variables except the one being imputed. Under the custom
specification, each prediction equation may include a subset of the predictors that would be used under
the default specification. The custom specification also allows expressions of imputation variables in
prediction equations.

Model (1) corresponds to the default specification. For example, consider imputation variables
X1, X2, and X3 and complete predictors Z1 and Z2. Under the default specification, the individual
prediction equations are determined as follows. The most observed variable—say, X1—is predicted
from X2, X3, Z1, and Z2. The next most observed variable—say, X2—is predicted from X3, Z1,
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Z2, and previously imputed X1. The least observed variable, X3, is predicted from Z1, Z2, and
previously imputed X1 and X2. (A constant is included in all prediction equations, by default.) We
use the following notation to refer to the above sequence of prediction equations (imputation sequence):
X1|X−1, Z1, Z2 → X2|X−2, Z1, Z2 → X3|X−3, Z1, Z2, where X−j denotes all imputed or to-
be-imputed variables except Xj .

A sequence such as X1|X−1, Z1 → X2|X−2, Z1, Z2 → X3|X−3, Z2 would correspond to a
custom specification. Here X1 is assumed to be conditionally independent of Z2 given X−1 and Z1,
and X3 is assumed to be conditionally independent of Z1 given X−3 and Z2.

Compatibility of conditionals

A concern with MICE is its lack of a formal theoretical justification. Its theoretical weakness is
possible incompatibility of fully conditional specifications (1). As we briefly mentioned earlier, it is
possible to specify a set of full conditionals with MICE for which no multivariate distribution exists
(for example, van Buuren et al. [2006] and van Buuren [2007]). In such a case, the validity of MICE
as a statistical procedure is questionable.

The impact of incompatibility of conditional specifications in practice is still under investigation.
For example, van Buuren et al. (2006) performed several simulations to investigate the consequences
of strongly incompatible specifications on multiple-imputation (MI) results in a simple setting and
found very little impact of it on estimated parameters. The effect of incompatible conditionals on the
quality of imputations and final MI inference in general is not yet known. Of course, if a joint model
is of main scientific interest, then incompatibility of conditionals poses a problem. In the discussion
of Arnold, Castillo, and Sarabia (2001), Andrew Gelman and Trivellore Raghunathan mention that
the existence of an underlying joint distribution may be less important within the imputation context
than the ability to incorporate the unique features of the data.

For more information about the compatibility of conditional specifications, see Arnold, Castillo,
and Sarabia (2001); van Buuren (2007); and Arnold, Castillo, and Sarabia (1999) and references
therein.

Convergence of MICE

MICE is an iterative method and is similar in spirit to the Gibbs sampler, an MCMC method.
Similarly to MCMC methods, MICE builds a sequence of draws {X(t)

m : t = 1, 2, . . .}, a chain, and
iterates until this chain reaches a stationary distribution. So as with any MCMC method, monitoring
convergence is important with MICE.

MICE performs simulation by running multiple independent chains (see Convergence of iterative
methods in [MI] mi impute). To assess convergence of multiple chains, we need to examine the
stationarity of each chain by the end of the specified burn-in period b. In practice, convergence
of MICE is often examined visually. Trace plots—plots of summaries of the distribution (means,
standard deviations, quantiles, etc.) of imputed values against iteration numbers—are used to examine
stationarity of the chain. Long-term trends in trace plots are indicative of slow convergence to
stationarity. A suitable value for the burn-in period b can be inferred from a trace plot as the earliest
iteration after which each chain does not exhibit a visible trend and the fluctuations in values become
more regular. When the initial values are close to the mode of the target posterior distribution (when
one exists), b will generally be small. When the initial values are far off in the tails of the posterior
distribution, the initial number of iterations b will generally be larger.
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The number of iterations necessary for MICE to converge depends on, among other things, the
fractions of missing information and initial values. The higher the fractions of missing information and
the farther the initial values are from the mode of the posterior predictive distribution of missing data,
the slower the convergence, and thus the larger the number of iterations required. Current literature
suggests that in many practical applications a low number of burn-in iterations, somewhere between
5 and 20 iterations, is usually sufficient for convergence (for example, van Buuren [2007]). In any
case, examination of the data and missing-data patterns is highly recommended when investigating
convergence of MICE.

The convergence of MICE may not be achieved when specified conditional models are incompatible,
as described in Compatibility of conditionals. The simulation draws will depend on the order in which
variables are imputed and on the chosen length of the burn-in period. It is important to evaluate the
quality of imputations (see Imputation diagnostics in [MI] mi impute) to determine the impact of
incompatibility on MI analysis.

First use
Before we describe various uses of mi impute chained, let’s look at a simple example first.

Consider the heart attack data example examining the relationship between heart attacks and
smoking from Multivariate imputation of [MI] mi impute, where the age and bmi variables contain
missing values. In another version of the dataset, bmi and age have a nonmonotone missing-data
pattern, and thus monotone imputation is not possible:

. use http://www.stata-press.com/data/r14/mheart8s0
(Fictional heart attack data; arbitrary pattern)

. mi misstable patterns, frequency

Missing-value patterns
(1 means complete)

Pattern
Frequency 1 2

118 1 1

24 1 0
8 0 1
4 0 0

154

Variables are (1) age (2) bmi

mi impute chained does not require missing data to be monotone, so we can use it to impute
missing values of age and bmi in this dataset. We use the same model specification as before:
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. mi impute chained (regress) bmi age = attack smokes hsgrad female, add(10)

Conditional models:
age: regress age bmi attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Performing chained iterations ...

Multivariate imputation Imputations = 10
Chained equations added = 10
Imputed: m=1 through m=10 updated = 0

Initialization: monotone Iterations = 100
burn-in = 10

bmi: linear regression
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

As before, 10 imputations are created (the add(10) option). The linear regression imputation method
(regress) is used to impute both continuous variables. The attack, smokes, hsgrad, and female
variables are used as complete predictors (independent variables).

mi impute chained reports the conditional specifications used to impute each variable and the
order in which they were imputed. By default, mi impute chained imputes variables in order from
the most observed to the least observed. In our example, age has the least number of missing values
and so is imputed first, even though we listed bmi before age in the command specification.

With the default specification, mi impute chained builds appropriate FCSs automatically using
the supplied imputation variables and complete predictors, specified as right-hand-side variables. The
default prediction equation for age includes bmi and all the complete predictors, and the default
prediction equation for bmi includes age and all the complete predictors.

The main header and table output were described in detail in [MI] mi impute. The information
specific to mi impute chained includes the type of initialization, the burn-in period, and the number
of iterations. By default, mi impute chained uses 10 burn-in iterations (also referred to as cycles in
the literature) before drawing imputed values. The total number of iterations performed by mi impute
chained to obtain 10 imputations is 100. Also, similarly to mi impute monotone, the additional
information above the table includes the legend describing what univariate imputation method was
used to impute each variable. (If desired, this legend may be suppressed by specifying the nolegend
option.)

Using mi impute chained

Below we summarize general capabilities of mi impute chained.

1. mi impute chained offers two main syntaxes—one using the default prediction equations
and the other allowing customization of prediction equations. We will refer to the two
syntaxes as default and custom, respectively. We describe the two syntaxes in detail in the
next two sections.
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2. mi impute chained allows specification of a global (outer) if condition,

. mi impute chained . . . if exp . . .

and equation-specific (inner) if conditions,

. mi impute chained . . . (. . . if exp . . . ) . . .

A global if is applied to all equations. You may combine global and equation-specific if
conditions:

. mi impute chained . . . (. . . if exp . . . ) . . . if exp . . .

3. mi impute chained allows specification of global weights, which are applied to all equations:

. mi impute chained . . . [weight] . . .

4. mi impute chained uses fully specified prediction equations by default. Customize prediction
equations by including or omitting desired terms:

. mi imp chain (. . . , include(z3) . . . ) (. . . , omit(z1) . . . ) . . .

5. mi impute chained automatically includes appropriate imputation variables in prediction
equations. Use a global noimputed option to prevent inclusion of imputation variables in
all prediction equations:

. mi impute chained . . . , noimputed . . .

Or use an equation-specific noimputed option to prevent inclusion of imputation variables
in only some prediction equations:

. mi impute chained . . . (. . . , noimputed . . . ) . . .

As we mentioned earlier, mi impute chained is an iterative imputation method. By default, it
performs 10 burn-in iterations for each imputation before drawing the final set of imputed values.
The number of iterations is determined by the length of the burn-in period after which a random
sequence (chain) is assumed to converge to its stationary distribution. The provided default may not
be applicable to all situations, so you can use the burnin() option to modify it.

Use the chainonly and savetrace() options to determine the appropriate burn-in period. For
example,

. mi impute chained . . . , burnin(100) chainonly savetrace(impstats) . . .

saves summaries of imputed values from 100 iterations for each of the imputation variables to
impstats.dta without proceeding to impute data. You can apply techniques from Convergence of
MICE to the data in impstats.dta to determine an adequate burn-in period.

Use a combination of the dryrun and report options to check the specification of each univariate
imputation model prior to imputing data.

In the next two sections, we describe the use of mi impute chained first using hypothetical
situations and then using real examples.

Default prediction equations

We showed in First use an example of mi impute chained with default prediction equations
using the heart attack data. Here we provide more details about this default specification.
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By default, mi impute chained imputes missing values by using the default prediction equations.
It builds the corresponding univariate imputation models based on the supplied information: uvmethod,
the imputation method; ivars, the imputation variables; and indepvars, the complete predictors or
independent variables.

Suppose that continuous variables x1, x2, and x3 contain missing values and are ordered from the
most observed to the least observed. We want to impute these variables, and we decide to use the
same univariate imputation method, say, linear regression, for all. We can do this by typing

. mi impute chained (regress) x1 x2 x3 . . .

The above command corresponds to the first syntax diagram of mi impute chained: uvmethod
is regress and ivars is x1 x2 x3. Relating the above to the model notation used in (1), g1, g2,
g3 represent linear regression imputation models and the prediction sequence is X1|X2, X3 →
X2|X1, X3 → X3|X1, X2.

By default, mi impute chained imputes variables in order from the most observed to the least
observed, regardless of the order in which variables were specified. For example, we can list imputation
variables in the reverse order,

. mi impute chained (regress) x3 x2 x1 . . .

and mi impute chained will still impute x1 first, x2 second, and x3 last. You can use the orderasis
option to instruct mi impute chained to perform imputation of variables in the specified order.

If we have additional covariates containing no missing values (say, z1 and z2) that we want to
include in the imputation model, we can do so by typing

. mi impute chained (regress) x1 x2 x3 = z1 z2 . . .

Now indepvars is z1 z2 and the prediction sequence is X1|X2, X3, Z1, Z2 → X2|X1, X3, Z1, Z2 →
X3|X1, X2, Z1, Z2. Independent variables are included in the prediction equations of all univariate
models.

Suppose that we want to use a different imputation method for one of the variables—we want to
impute x3 using predictive mean matching. We can do this by typing

. mi impute chained (regress) x1 x2 (pmm, knn(5)) x3 = z1 z2 . . .

The above corresponds to the second syntax diagram of mi impute chained, a generalization of
the first that accommodates differing imputation methods. The right-hand side of the equation is
unchanged. z1 and z2 are included in all three prediction equations. The left-hand side now has
two specifications: (regress) x1 x2 and (pmm, knn(5)) x3. In previous examples, we had only
one left-hand-side specification, lhs spec—(regress) x1 x2 x3. (The number of left-hand-side
specifications does not necessarily correspond to the number of univariate models; the latter is
determined by the number of imputation variables.) In this example, x1 and x2 are imputed using
linear regression, and x3 is imputed using predictive mean matching with five nearest neighbors
specified in pmm’s option knn(). All method-specific options must be specified within the parentheses
surrounding the method.

Suppose now we want to restrict the imputation sample for x2 to observations where z1 is one;
also see Imputing on subsamples of [MI] mi impute. The corresponding syntax is

. mi impute chained (regress) x1 (regress if z1==1) x2 (pmm, knn(5))
> x3 = z1 z2 . . .

If, in addition to the above, we want to impute all variables using an overall subsample where z3
is one, we can specify the global if z3==1 condition:

. mi impute chained (regress) x1 (regress if z1==1) x2 (pmm, knn(5))
> x3 = z1 z2 if z3==1 . . .
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In the above, restrictions included only complete variables. When restrictions include imputation
variables, you should use the conditional() option instead of an if condition; see Conditional
imputation in [MI] mi impute. Suppose that we need to impute x2 using only observations for which
x1 is positive, provided that missing values of x1 are nested within missing values of x2. We can do
this by typing

. mi impute chained (regress) x1 (regress, cond(if x1>0)) x2 (pmm, knn(5)) x3
> = z1 z2 . . .

When any imputation variable is imputed using a categorical method, mi impute chained
automatically includes it as a factor variable in the prediction equations of other imputation variables.
Suppose that x1 is a categorical variable and is imputed using the multinomial logistic method:

. mi impute chained (mlogit) x1 (regress) x2 x3 . . .

The above will result in the prediction sequence X1|X2, X3 → X2|i.X1, X3 → X3|i.X1, X2

where i.X1 denotes the factors of X1.

If you wish to include a factor variable as continuous in prediction equations, you can use the
ascontinuous option within the specification of the univariate imputation method for that variable:

. mi impute chained (mlogit, ascontinuous) x1 (regress) x2 x3 . . .

As we discussed in The issue of perfect prediction during imputation of categorical data of [MI] mi
impute, perfect prediction often occurs during imputation of categorical variables. One way of dealing
with it is to use the augmented-regression approach (White, Daniel, and Royston 2010), available
through the augment option. For example, if perfect prediction occurs during imputation of x1 in
the above, you can specify augment within the method specification of x1 to perform augmented
regression:

. mi impute chained (mlogit, augment) x1 (regress) x2 x3 . . .

Alternatively, you can use the augment option with mi impute chained to perform augmented
regression for all categorical variables for which the issue of perfect prediction arises:

. mi impute chained (mlogit) x1 (logit) x2 (regress) x3 . . . , augment . . .

The above is equivalent to specifying augment within each specification of a univariate categorical
imputation method:

. mi impute chained (mlogit, augment) x1 (logit, augment) x2 (regress) x3 . . .

Custom prediction equations

In the previous section, we considered various uses of mi impute chained with default prediction
equations. Often, however, you may want to use different prediction equations for some or even all
imputation variables. We can easily modify the above specifications to accommodate this.

Let’s consider situations in which we want to use different sets of complete variables for some
imputation variables first. Recall our following hypothetical example:

. mi impute chained (regress) x1 x2 x3 = z1 z2 . . . (M1)

Suppose that we want to omit z2 from the prediction equation for x3. To accommodate this, we
need to include two separate specifications: one for x1 and x2 and one for x3:

. mi impute chained (regress) x1 x2 (regress, omit(z2)) x3 = z1 z2 . . .
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The above corresponds to the custom specification, the third syntax diagram, of mi impute
chained. As before, we list all the complete variables indepvars to be included in all prediction
equations to the right of the = sign. So, indepvars is still z1 z2. The prediction equation for x3,
however, omits variable z2, specified within the omit() option. The prediction sequence for the
above specification is X1|X2, X3, Z1, Z2 → X2|X1, X3, Z1, Z2 → X3|X1, X2, Z1.

Alternatively, we could have achieved the above by including variable z1 in all prediction equations,
as a right-hand-side specification indepvars, and using the include() option to add variable z2 to
the prediction equations of x1 and x2:

. mi impute chained (regress, include(z2)) x1 x2 (regress) x3 = z1 . . .

You may also want to modify the sets of imputation variables to be included in prediction equations.
By default, mi impute chained automatically includes the appropriate fully conditional specifications
of imputation variables in all prediction equations.

Suppose that in addition to different sets of complete predictors, we assume that X1 and X2 are
conditionally independent given X3, which implies that prediction equations for x1 and x2 include
only x3 and not each other. We can accommodate this with the command

. mi impute chained (regress, include(x3 z2) noimputed) x1 x2 (regress) ///
x3 = z1 . . .

which corresponds to the prediction sequence X1|X3, Z1, Z2 → X2|X3, Z1, Z2 → X3|X1, X2, Z1.

The above is also equivalent to the command

. mi impute chained (regress, omit(x1 x2)) x1 x2 (regress, omit(z2)) ///
x3 = z1 z2 . . .

There are other equivalent ways of achieving the above custom specifications by using various
combinations of include(), omit(), and noimputed. The most convenient specification will depend
on your particular structure of the prediction equations. You can also combine these options within
the same univariate specification.

It is important to realize that equivalent syntaxes may produce different (yet equivalent with
stable imputation models) sequences of imputed values when they have different ordering of variables
in prediction equations. mi impute chained builds prediction equations as follows. Appropriate
imputation variables are included first, unless the noimputed option is specified. By default, imputation
variables are included in order from the most observed to the least observed. If the orderasis option
is used, the variables are included in the specified order. Next, terms specified in the include()
option are included in the listed order. Then right-hand-side variables (indepvars) are included in the
listed order. Finally, variables listed in the omit() option are removed from the prediction equation.
When you specify omit(), it is important to specify variables as they are included in the prediction
equation; if x1 is included as a factor variable, omit(i.x1) should be used.

You can also include functions of imputation variables in prediction equations with the custom
specification of mi impute chained. As we discussed in Model building in [MI] mi impute, there
are two ways to do that. You can include functions of imputation variables as separate imputation
variables directly in your imputation model or you can impute them passively using mi impute
chained.
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For example, using model (M1), suppose that we would like to include the interaction between
x1 and x2 in the conditional model for x3:

. mi impute chained (regress) x1 x2 ///
(regress, include((x1*x2))) x3 ///

= z1 z2 . . .

The expression x1*x2, specified in the include() option, is enclosed in parentheses.

We also could have typed

. mi impute chained (regress, include((x1*x2))) x1 x2 x3 = z1 z2 . . .

and mi impute chained would appropriately include the interaction term X1X2 only in the prediction
equation of X3.

You can include any other expressions of imputation variables in include() within any of the
left-hand-side specifications. Just remember to enclose such expressions in parentheses.

All the examples we considered in Default prediction equations are also applicable to mi impute
chained with custom prediction equations. For example, to restrict imputation of x2 to observations
where z1==1 in one of our earlier examples, we can type

. mi impute chained (reg) x1 (reg if z1==1) x2 (reg, omit(z2)) x3 = z1 z2 . . .

Link between mi impute chained and mi impute monotone

Similarly to mi impute monotone (see [MI] mi impute monotone), mi impute chained uses a
sequence of univariate imputation models to impute variables. So the use of mi impute chained is
very similar to that of mi impute monotone except:

1. mi impute chained does not require that the specified imputation variables follow a
monotone-missing pattern.

2. mi impute chained requires iteration to accommodate arbitrary missing-data patterns.

3. mi impute chained, by default, uses FCSs of the prediction equations where all specified
complete variables and all imputation variables except the one being imputed are included
in prediction equations.

4. mi impute chained provides an alternative way of specifying custom prediction equations
to accommodate FCS of imputation variables.

When a missing-value pattern is monotone, mi impute chained defaults to the monotone method
(unless nomonotone is specified) and produces the same results as mi impute monotone. However,
using mi impute monotone in this case is faster because it performs the estimation step only once,
on the original data, whereas mi impute chained performs estimation on every chained iteration.

The best approach to follow is

1. Check the missing-data pattern using misstable nested (or mi misstable nested if the
data are already mi set; see [R] misstable or [MI] mi misstable) first.

2. If the missing-data pattern is monotone, use mi impute monotone to impute variables. If
the missing-data pattern is not monotone, use mi impute chained to impute variables.

It is worth mentioning the difference between the documented custom syntaxes of mi impute
chained and mi impute monotone.
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With monotone imputation, variables are imputed in a particular, monotone-missing order and
prediction equations are built in a particular way: previously imputed variables are added sequentially to
the prediction equations of other imputation variables. So when building custom prediction equations,
it is easier to construct one equation at a time in the order of the monotone missing pattern. As such,
the custom syntax of mi impute monotone, as documented in [MI] mi impute monotone, requires
full specification of a separate conditional model for each imputation variable in the monotone-missing
order.

Imputation using chained equations does not require specific ordering in which variables must be
imputed, although imputing variables in order from the most observed to the least observed usually
leads to faster convergence. Also, because all imputation variables except the one being imputed are
included in prediction equations, it does not matter in what order prediction equations are specified.
The custom syntax of mi impute chained reflects this.

Examples

For the purpose of illustration, we use five imputations in our examples.

Example 1: Different imputation methods

Recall the heart attack example from First use. If we wanted to impute bmi using predictive mean
matching with, say, three nearest neighbors instead of linear regression, we could type

. use http://www.stata-press.com/data/r14/mheart8s0
(Fictional heart attack data; arbitrary pattern)

. mi impute chained (pmm, knn(3)) bmi (reg) age = attack smokes hsgrad female,
> add(5)

Conditional models:
age: regress age bmi attack smokes hsgrad female
bmi: pmm bmi age attack smokes hsgrad female , knn(3)

Performing chained iterations ...

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0

Initialization: monotone Iterations = 50
burn-in = 10

bmi: predictive mean matching
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

As shown previously, mi impute chained imputed age first and bmi second, because age is the
variable with the fewest missing values.
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Example 2: Convergence of MICE

In Convergence of MICE, we described ways to assess convergence of the MICE algorithm.
Continuing our previous example, let’s investigate the trends in the summaries of imputed values of
age and bmi over iterations.

Following the recommendation from Using mi impute chained, we use a combination of chainonly
and savetrace() to perform chained iterations without creating imputations in the data and save
summaries of imputed values to the new dataset impstats.dta. We perform 100 iterations and
specify a random-number seed for reproducibility:

. use http://www.stata-press.com/data/r14/mheart8s0, clear
(Fictional heart attack data; arbitrary pattern)

. mi impute chained (pmm, knn(3)) bmi (reg) age = attack smokes hsgrad female,
> chainonly burnin(100) savetrace(impstats) rseed(1359)

Conditional models:
age: regress age bmi attack smokes hsgrad female
bmi: pmm bmi age attack smokes hsgrad female , knn(3)

Performing chained iterations ...

Note: No imputation performed.

By default, means and standard deviations of imputed values for each imputation variable are
saved along with iteration and imputation numbers (imputation number is always 0 when chainonly
is used):

. use impstats
(Summaries of imputed values from -mi impute chained-)

. describe

Contains data from impstats.dta
obs: 101 Summaries of imputed values

from -mi impute chained-
vars: 6 14 Nov 2014 14:44
size: 1,818

storage display value
variable name type format label variable label

iter byte %12.0g Iteration numbers
m byte %12.0g Imputation numbers
age_mean float %9.0g Mean of age
age_sd float %9.0g Std. Dev. of age
bmi_mean float %9.0g Mean of bmi
bmi_sd float %9.0g Std. Dev. of bmi

Sorted by:

We use the time-series command tsline (see [TS] tsline) to plot summaries of imputed values
with respect to the iteration number. We first use tsset to set iter as the “time” variable and then
use tsline to obtain trace plots. We create trace plots for all variables and combine them in one
graph using graph combine:

. tsset iter
time variable: iter, 0 to 100

delta: 1 unit

. tsline bmi_mean, name(gr1) nodraw

. tsline bmi_sd, name(gr2) nodraw

. tsline age_mean, name(gr3) nodraw

. tsline age_sd, name(gr4) nodraw
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. graph combine gr1 gr2 gr3 gr4, title(Trace plots of summaries of imputed values)
> rows(2)
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Trace plots of summaries of imputed values

The trace plots show no apparent trends in the summaries of the imputed values, so the default
number of burn-in iterations, 10, seems adequate. Although a low number of burn-in iterations may
be sufficient in some applications, there are situations when larger numbers are required (for example,
van Buuren [2007]).

It is also useful to look at several chains, each obtained using a different set of initial values, to
check convergence and stability of the algorithm.

Let’s look at three separate chains. The easiest way to do this is to use the add() option instead of
chainonly to create three imputations. Remember that mi impute chained starts a new chain for
each imputation, so a different set of initial values is used for each imputation. When savetrace()
is specified, mi impute chained saves summaries of imputed values for each imputation.

. use http://www.stata-press.com/data/r14/mheart8s0
(Fictional heart attack data; arbitrary pattern)

. quietly mi impute chained (pmm, knn(3)) bmi (reg) age = attack smokes hsgrad
> female, add(3) burnin(100) savetrace(impstats, replace) rseed(1359)

The results are saved in a long form. If we want to overlay separate chains in one graph, we need
to convert our data to a wide form first—one variable per chain. We use the reshape command for
this (see [D] reshape):

. use impstats, clear
(Summaries of imputed values from -mi impute chained-)

. reshape wide *mean *sd, i(iter) j(m)
(note: j = 1 2 3)

Data long -> wide

Number of obs. 303 -> 101
Number of variables 6 -> 13
j variable (3 values) m -> (dropped)
xij variables:

age_mean -> age_mean1 age_mean2 age_mean3
bmi_mean -> bmi_mean1 bmi_mean2 bmi_mean3

age_sd -> age_sd1 age_sd2 age_sd3
bmi_sd -> bmi_sd1 bmi_sd2 bmi_sd3
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We can now plot the three chains for, say, the mean of bmi using tsline:

. tsset iter
time variable: iter, 0 to 100

delta: 1 unit

. tsline bmi_mean1 bmi_mean2 bmi_mean3, ytitle(Mean of bmi) yline(25.24)
> legend(rows(1) label(1 "Chain 1") label(2 "Chain 2") label(3 "Chain 3"))
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There are no apparent trends in any of the chains. All three chains seem to oscillate around the
observed mean estimate of bmi of 25.24, providing some evidence of convergence of the algorithm.
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Example 3: Custom prediction equations

Continuing example 1, we believe that there is no association between bmi and hsgrad conditional
on other predictors, so we want to use hsgrad to model only age and omit it from the model for
bmi:

. use http://www.stata-press.com/data/r14/mheart8s0
(Fictional heart attack data; arbitrary pattern)

. mi impute chained
> (pmm, knn(3) omit(hsgrad)) bmi
> (regress) age
> = attack smokes hsgrad female, add(5)

Conditional models:
age: regress age bmi attack smokes hsgrad female
bmi: pmm bmi age attack smokes female , knn(3)

Performing chained iterations ...

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0

Initialization: monotone Iterations = 50
burn-in = 10

bmi: predictive mean matching
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

All right-hand-side complete predictors (attack, smokes, and female) are used in both prediction
equations. The prediction equation for age additionally includes the hsgrad variable.

Example 4: Imputing variables of different types

We now consider an mi set version of the heart attack data containing an indicator for smoking
high-tar cigarettes (variable hightar):
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. use http://www.stata-press.com/data/r14/mheart9s0, clear
(Fictional heart attack data; bmi, age, and hightar missing; arbitrary pattern)

. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 98
incomplete 56 (M = 0 imputations)

total 154

Vars.: imputed: 3; bmi(24) age(30) hightar(12)

passive: 0

regular: 4; attack smokes female hsgrad

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

. mi misstable nested

1. hightar(12)
2. bmi(24)
3. age(30)

According to mi describe, there are no imputations, three registered imputed variables (age, bmi,
and hightar), and four registered regular variables. mi misstable nested reports that missing
values of the three imputation variables are not nested.

The hightar variable is a binary variable, so we choose the logistic method to impute its values
(see [MI] mi impute logit). Because hightar records whether a subject smokes high-tar cigarettes,
we use only those who smoke to impute its missing values. As such, including smokes as a predictor
of hightar is redundant, so we omit this variable from the prediction equation for hightar:

. mi impute chained
> (pmm, knn(3) omit(hsgrad)) bmi
> (regress) age
> (logit if smokes==1, omit(smokes)) hightar
> = attack smokes hsgrad female, add(5)

Conditional models:
hightar: logit hightar bmi age attack hsgrad female if smokes==1

bmi: pmm bmi i.hightar age attack smokes female , knn(3)
age: regress age i.hightar bmi attack smokes hsgrad female

Performing chained iterations ...

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0

Initialization: monotone Iterations = 50
burn-in = 10

bmi: predictive mean matching
age: linear regression

hightar: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 130 24 24 154
age 124 30 30 154

hightar 52 12 12 64

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)
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From the output, we see that all incomplete values of each of the variables are imputed in all
imputations. Because we restricted the imputation sample of hightar to smokers, the total number
of observations reported for hightar is 64 and not 154. mi impute chained also automatically
included the binary variable hightar as a factor variable in prediction equations for age and bmi
because we used logit to impute it.

As we described in Conditional imputation, you should be careful when using an if statement
for imputing variables conditionally on other variables. It was safe to use if here, because smokes
did not contain missing values and there were no missing values of hightar for the subjects who
do not smoke.

Example 5: Conditional imputation

Continuing example 4, suppose now that the smokes variable also contains missing values:

. use http://www.stata-press.com/data/r14/mheart10s0, clear
(Fict. heart attack data; bmi, age, hightar, & smokes missing; arbitrary pattern)

. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 92
incomplete 62 (M = 0 imputations)

total 154

Vars.: imputed: 4; bmi(24) age(30) hightar(19) smokes(14)

passive: 0

regular: 3; attack female hsgrad

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

. mi misstable nested

1. smokes(14) -> hightar(19)
2. bmi(24)
3. age(30)

The smokes variable is now registered as imputed and the three regular variables are now attack,
female, and hsgrad. mi misstable nested reports that although the missing-data pattern with
respect to all four imputation variables is not monotone, the missing-data pattern with respect to
smokes and hightar is monotone. Recall from Conditional imputation that one of the requirements
of conditional imputation is that missing values of all conditioning variables (smokes) are nested
within missing values of the conditional variable (hightar). So this requirement is satisfied in our
data.

Because smokes contains missing values, we cannot use an if condition to restrict the imputation
sample of hightar to those who smoke. We must use the conditional() option. We use the
logistic method (see [MI] mi impute logit) to fill in missing values of smokes.
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. mi impute chained
> (pmm, knn(3) omit(hsgrad)) bmi
> (regress) age
> (logit, cond(if smokes==1) omit(i.smokes)) hightar
> (logit) smokes
> = attack hsgrad female, add(5)

Conditional models:
smokes: logit smokes bmi age attack hsgrad female
hightar: logit hightar bmi age attack hsgrad female ,

cond(if smokes==1)
bmi: pmm bmi i.smokes i.hightar age attack female , knn(3)
age: regress age i.smokes i.hightar bmi attack hsgrad female

Performing chained iterations ...

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0

Initialization: monotone Iterations = 50
burn-in = 10

Conditional imputation:
hightar: incomplete out-of-sample obs. replaced with value 0

bmi: predictive mean matching
age: linear regression

hightar: logistic regression
smokes: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 130 24 24 154
age 124 30 30 154

hightar 135 19 19 154
smokes 140 14 14 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

With conditional imputation, a legend appears before the imputation table, reporting the conditional
constant, the value that was used to replace all incomplete values of an imputation variable outside
the conditional sample. The missing values of hightar in that sample were replaced with 0.

The smokes variable is imputed using logit and thus is included in prediction equations as a factor
variable, i.smokes. As such, we specified omit(i.smokes) to omit smokes from the prediction
equation for hightar.

Also notice that compared with imputation on a restricted subsample using an if condition,
the reported total number of observations in the imputation sample for hightar is still 154. All
incomplete observations, within and outside the conditional sample, are included in the imputation
sample during conditional imputation. So the reported numbers of complete, incomplete, and imputed
observations correspond with observations within and outside the conditional sample.

Example 6: Including expressions of imputation variables

In Model building of [MI] mi impute, we described two ways of accommodating functional
relationships during imputation. Here we demonstrate a passive imputation approach that includes
expressions of imputation variables directly into the imputation model.
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Continuing example 5, suppose we assume that the conditional distribution of bmi exhibits some
curvature with respect to age. We want to include age^2 in the prediction equation for bmi. If the
relationship between bmi and age is indeed curvilinear, it would be unreasonable to assume that
the conditional distribution of age given bmi is linear. One possibility is to determine what the
relationship is between age and bmi given other predictors in the observed data (see, for example,
[R] mfp) and include the appropriate functional terms of bmi in the prediction equation for age.
Following White, Royston, and Wood (2011) to relax the linearity assumption, we use predictive
mean matching with, say, five nearest neighbors instead of linear regression to impute age:

. mi impute chained
> (pmm, knn(3) omit(hsgrad) incl((age^2))) bmi
> (pmm, knn(5)) age
> (logit, cond(if smokes==1) omit(i.smokes)) hightar
> (logit) smokes
> = attack hsgrad female, replace

Conditional models:
smokes: logit smokes bmi age attack hsgrad female
hightar: logit hightar bmi age attack hsgrad female ,

cond(if smokes==1)
bmi: pmm bmi i.smokes i.hightar age (age^2)

attack female , knn(3)
age: pmm age i.smokes i.hightar bmi attack hsgrad

female, knn(5)

Performing chained iterations ...

Multivariate imputation Imputations = 5
Chained equations added = 0
Imputed: m=1 through m=5 updated = 5

Initialization: monotone Iterations = 50
burn-in = 10

Conditional imputation:
hightar: incomplete out-of-sample obs. replaced with value 0

bmi: predictive mean matching
age: predictive mean matching

hightar: logistic regression
smokes: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 130 24 24 154
age 124 30 30 154

hightar 135 19 19 154
smokes 140 14 14 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

We included the expression term in parentheses in the include() option in the prediction equation
for bmi.

Example 7: Imputing on subsamples
Suppose that in our primary logistic analysis of heart attacks, we are planning to investigate

various interaction effects with respect to gender. The female variable is complete, so the best way
to accommodate such interactions is to use the by() option to perform imputation separately for
females and males.
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We continue example 3. Before imputing missing values, let’s review our conditional specifications
for each group. We can use the dryrun option to see univariate conditional models that will be used
during imputation without actually imputing data:

. use http://www.stata-press.com/data/r14/mheart8s0, clear
(Fictional heart attack data; arbitrary pattern)

. mi impute chained
> (pmm, knn(3) omit(hsgrad)) bmi
> (regress) age
> = attack smokes hsgrad, by(female) dryrun

Performing setup for each by() group:

-> female = 0
Conditional models:

age: regress age bmi attack smokes hsgrad
bmi: pmm bmi age attack smokes , knn(3)

-> female = 1
Conditional models:

age: regress age bmi attack smokes hsgrad
bmi: pmm bmi age attack smokes , knn(3)

Conditional specifications are as we expected, so we can proceed to imputation.
. mi impute chained
> (pmm, knn(3) omit(hsgrad)) bmi
> (regress) age
> = attack smokes hsgrad
> , add(5) by(female, noreport) dots

-> female = 0
Performing chained iterations:

imputing m=1 through m=5 ..... done

-> female = 1
Performing chained iterations:

imputing m=1 through m=5 ..... done

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0

Initialization: monotone Iterations = 50
burn-in = 10

bmi: predictive mean matching
age: linear regression

Observations per m
by()

Variable Complete Incomplete Imputed Total

female = 0
bmi 95 21 21 116
age 106 10 10 116

female = 1
bmi 31 7 7 38
age 36 2 2 38

Overall
bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)
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To avoid longer output, we specified the noreport option within by() to suppress information
about the setup and imputation steps that otherwise would have been reported for each group.

Stored results
mi impute chained stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables
r(burnin) number of burn-in iterations
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method (chained)
r(ivars) names of imputation variables
r(uvmethods) names of univariate imputation methods
r(init) type of initialization
r(rngstate) random-number state used
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group (per variable)
r(N complete) number of complete observations in imputation sample in each group (per variable)
r(N incomplete) number of incomplete observations in imputation sample in each group (per variable)
r(N imputed) number of imputed observations in imputation sample in each group (per variable)

Methods and formulas
Let X1, X2, . . . , Xp denote imputation variables ordered from the most observed to the least

observed and let Z denote the set of complete independent variables. (IfX1, X2, . . . , Xp are monotone-
missing and neither nomonotone nor nomonotonechk is used, then mi impute chained uses
monotone imputation; see Methods and formulas of [MI] mi impute monotone for details.)

With the default specification of prediction equations, the chained-equation algorithm proceeds as
follows. First, at iteration t = 0, missing values are initialized using monotone imputation. That is,
missing values of X(0)

i , i = 1, . . . , p, are simulated from conditional densities of the form

fi(Xi|X(0)
1 , X

(0)
2 , . . . , X

(0)
i−1,Z, θi) (2)

where the conditional density fi(·) is determined according to the chosen univariate imputation method
and θi is its corresponding set of parameters with uniform prior; see Methods and formulas of chosen
univariate imputation methods for details.

At iteration t, missing values of Xi for all i = 1, . . . , p are simulated from full conditionals,
conditional densities of the form:

gi(Xi|X(t)
1 , X

(t)
2 , . . . , X

(t)
i−1, X

(t−1)
i+1 , . . . , X(t−1)

p ,Z,φi) (3)

where again the conditional density gi(·) is determined according to the chosen univariate imputation
method and φi is its corresponding set of parameters with uniform prior.
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The algorithm iterates for a prespecified number of iterations b, t = 1, . . . , b, and a final set of
imputed values is obtained from the last iteration. At each iteration, the imputation process consists
of steps 1–3 described in Methods and formulas of each respective univariate imputation method’s
manual entry.

Each imputation is obtained independently by repeating (2) and (3).

Conditional specifications in (2) and (3) correspond to the default specification of prediction
equations. With the custom specification, the sets of complete predictors Z = Zi and imputation
variables may differ across univariate specifications, and prediction equations may additionally include
functions of imputation variables.

In summary, mi impute chained follows the steps below to fill in missing values in X1, . . . , Xp:

1. mi impute chained first builds appropriate univariate imputation models using the supplied
information about imputation methods, imputation variables X, and complete predictors
Z. By default, fully conditional specification of prediction equations is used. The order in
which imputation variables are listed is ignored unless the orderasis option is used. By
default, mi impute chained imputes variables in order from the most observed to the least
observed.

2. Initialize missing values at t = 0 using monotone imputation (2).

3. Perform the iterative procedure (3) for t = 1, . . . , b, for the length of the burn-in period, to
obtain imputed values. At each iteration t,

3.1. Fit a univariate model for Xi to the observed data to obtain the estimates of φi. See
step 1 in Methods and formulas of each respective univariate imputation method’s
manual entry for details.

3.2. Fill in missing values of Xi according to the specified imputation model. See
step 2 and step 3 in Methods and formulas of each respective univariate imputation
method’s manual entry for details.

3.3. Repeat steps 3.1 and 3.2 for each imputation variable Xi, i = 1, . . . , p.

4. Repeat steps 2 and 3 to obtain M multiple imputations.

The iterative procedure (3) may not always correspond to a genuine simulation of imputed values from
their predictive distribution f(Xm|Xo,Z) because the set of full conditionals {gi : i = 1, 2, . . . , p}
may not correspond to this distribution or, in fact, to any proper multivariate distribution. The extent
to which this is a problem in practical applications is still an open research problem. Some limited
simulation studies reported only minimal effect of such incompatibility on final MI estimates (for
example, van Buuren et al. [2006]).
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mi impute intreg — Impute using interval regression

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference
Also see

Description

mi impute intreg fills in missing values of a continuous partially observed (censored) variable
using an interval regression imputation method. You can perform separate imputations on different
subsets of the data by using the by() option. You can also account for analytic, frequency, importance,
and sampling weights.

Menu
Statistics > Multiple imputation

Syntax

mi impute intreg newivar
[

indepvars
] [

if
] [

weight
] [

, impute options options
]

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option
∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

167
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options Description

Main

noconstant suppress constant term
∗ll(varname) lower limit for interval censoring
∗ul(varname) upper limit for interval censoring
offset(varnameo) include varnameo in model with coefficient constrained to 1
conditional(if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement

Maximization

maximize options control the maximization process; seldom used
∗ll() and ul() are required.
You must mi set your data before using mi impute intreg; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

noconstant; see [R] estimation options.

ll(varname) and ul(varname) specify variables containing the lower and upper limits for interval
censoring. You must specify both. Nonmissing observations with equal values in ll() and ul()
are fully observed observations with missing values in both ll() and ul() are unobserved
(missing), and the remaining observations are partially observed (censored). Partially observed
cases are left-censored when ll() contains missing, right-censored when ul() contains missing,
and interval-censored when ll()< ul(). Fully observed cases are also known as point data; also
see Description in [R] intreg. In addition to newivar, mi impute intreg fills in unobserved
(missing) values of variables supplied in ll() and ul(); censored values remain unchanged.

add(), replace, rseed(), double, by(); see [MI] mi impute.

offset(varnameo); see [R] estimation options.

conditional(if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks and examples in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.
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� � �
Reporting �

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the interval
regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when
the conditional() option is specified and group legends that may appear when the by() option
is specified.

� � �
Maximization �

maximize options; see [R] intreg. These options are seldom used.

� � �
Advanced �

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples
Remarks are presented under the following headings:

Univariate imputation using interval regression
Using mi impute intreg
Example

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using interval regression

The interval regression imputation method can be used to fill in missing values of a continuous
partially observed (censored) variable (Royston 2007). It is a parametric method that assumes an
underlying normal model for the partially observed imputed variable (given other predictors). This
method is based on the asymptotic approximation of the posterior predictive distribution of the missing
data.

Partially observed data arise when instead of observing an actual value, we observe the range
where that value can lie. Such data include interval-censored, left-censored, and right-censored data;
see [R] intreg for a more detailed discussion of censored data.

Do not confuse censoring with truncation. Truncated data are observed and are known to be in
a certain range. Censored data come from a mixture of a continuous distribution and point masses
at censoring limits. Truncated data come from a continuous truncated distribution. See the technical
note in Remarks and examples of [R] truncreg for details. Use mi impute truncreg (see [MI] mi
impute truncreg) to impute truncated data.

The imputation of censored data has certain unique characteristics. First, censored data are recorded
in two variables containing the lower and the upper interval-censoring limits. So technically, there are
two imputation variables. Second, in addition to complete observations (point data) and incomplete
observations (“truly” missing data), there are partially complete (censored) observations for which
only the lower and upper limits are known, not the values themselves. We can treat partially observed
cases as “missing” and impute them along with other completely unobserved data, provided we respect
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their observed limits during imputation. As a result, we will end up with a single imputed variable
where missing and partially observed cases are replaced with plausible values consistent with the
observed censoring limits. See Methods and formulas for technical details.

In what follows, when referring to missing data (or missing observations) we will mean completely
unobserved, truly missing data and when referring to incomplete data (or incomplete observations)
we will mean both censored and truly missing data.

Using mi impute intreg

To accommodate the above characteristics, mi impute intreg requires modifications to the
standard syntax of univariate imputation methods. First, mi impute intreg requires that variables
containing interval-censoring limits be specified in the ll() and ul() options; see the description of
ll() and ul() in Options. Second, mi impute intreg requires you to specify a new variable name
newivar to store the resulting imputed values. mi impute intreg creates a new variable, newivar,
and registers it as imputed.

The values of newivar are determined by ll() and ul(). Observations of newivar for which
ll() and ul() are different or for which both contain soft missing are set to soft missing (.) and
considered incomplete. Observations for which either ll() or ul() contains hard missing are set to
the extended missing value .a and, as usual, are omitted from imputation. The remaining observations,
corresponding to the observed point data, are complete.

After imputation, mi impute intreg stores imputed values in newivar. It also registers variables
in ll() and ul() as passive (see mi register in [MI] mi set), if they are not already registered
as passive, and replaces observations for which ll() and ul() both contain soft missing with the
corresponding imputed values. That is, only missing data are replaced in these variables; censored
data are not changed.

Later, you may decide to add more imputations or to revise your imputation model and replace
existing imputations with new ones. In such cases, you do not need to provide a new variable name.
You can reuse the name of the variable created previously by mi impute intreg. mi impute intreg
will check that the variable is registered as imputed and that it is consistent in the observed data
with the variables supplied in ll() and ul(). That is, the variable must have the same values as
ll() and ul() in the observations where ll() and ul() are equal, and soft missing values in the
remaining observations. If ll() or ul() contain hard missing values, the variable must contain hard
missing values in the corresponding observations as well.

Example

We continue the example of imputing missing values of variable bmi from [MI] mi impute pmm.
The primary analysis of interest is the logistic model investigating the effect of smoking adjusted for
other predictors (including bmi) on heart attacks; see [MI] intro substantive for details.
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The bmi variable is not censored in the original data. For the purpose of illustration, we use a
version of the dataset in which the first three observations are censored:

. use http://www.stata-press.com/data/r14/mheartintreg
(Fictional heart attack data; BMI censored and missing)

. list lbmi ubmi in 1/10

lbmi ubmi

1. . 22
2. 20 .
3. 30 31
4. 24.62917 24.62917
5. 22.52744 22.52744

6. 21.87975 21.87975
7. 17.77057 17.77057
8. . .
9. 23.47249 23.47249

10. 24.48916 24.48916

Rather than a single bmi variable, we have lbmi and ubmi variables containing lower and upper
interval-censoring limits of BMI. The first observation is left-censored with an upper limit of 22, the
second observation is right-censored with a lower limit of 20, and the third observation is interval-
censored with the range [30, 31]. Observation 8, for which both lbmi and ubmi are missing, is
missing.

Let’s impute censored BMI values:

. mi set mlong

. mi impute intreg newbmi attack smokes age hsgrad female, add(20)
> ll(lbmi) ul(ubmi)

Univariate imputation Imputations = 20
Interval regression added = 20
Imputed: m=1 through m=20 updated = 0

Limit: lower = lbmi Number missing = 22
upper = ubmi Number censored = 3

interval = 1
left = 1

right = 1

Observations per m

Variable Complete Incomplete Imputed Total

newbmi 129 25 25 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Following mi impute intreg, we provided a new variable name, newbmi, to contain imputed values.
Because newbmi did not exist we did not need to register it before using mi impute intreg. We
also specified the lower and upper interval-censoring limits in the ll() and ul() options. These
options are required with mi impute intreg.

mi impute intreg reported that 25 incomplete BMI values were imputed. Among these incomplete
observations, there are 22 missing observations and 3 censored observations (one interval-censored,
one left-censored, and one right-censored).
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Let’s describe our mi data:

. mi describe, detail

Style: mlong
last mi update 14nov2014 14:44:21, 0 seconds ago

Obs.: complete 129
incomplete 25 (M = 20 imputations)

total 154

Vars.: imputed: 1; newbmi(25; 20*0)

passive: 2; lbmi(23; 20*1) ubmi(23; 20*1)

regular: 0

system: 3; _mi_m _mi_id _mi_miss

(there are 5 unregistered variables)

We used the detail option to also see missing-value counts in the imputed data.

According to mi describe, the new variable newbmi is registered as imputed and contains 25
incomplete observations in the original data. It does not contain incomplete values in any of the 20
imputations. lbmi and ubmi are registered as passive. Each of lbmi and ubmi contains 23 incomplete
values in the original data and one incomplete value in each imputation. The 22 missing values for
lbmi and ubmi are imputed. The incomplete value for each of these variables that is not imputed
corresponds to a censored observation (left-censored observation 1 for lbmi and right-censored
observation 2 for ubmi). mi impute intreg replaces only missing observations of lbmi and ubmi
with imputed data and leaves censored observations unchanged.

As described in Methods and formulas, missing observations are simulated from an unrestricted
normal distribution. So, the 22 imputed values may contain any value on the whole real line. This
may not be desirable because the BMI measure is positive and, in fact, has a limited range.

To restrict imputed values to a certain range, we may replace lbmi and ubmi with lower and
upper limits in observations for which these variables are missing. For example, let’s restrict imputed
values to be between 17 and 39, consistent with the observed range of BMI.

. use http://www.stata-press.com/data/r14/mheartintreg, clear
(Fictional heart attack data; BMI censored and missing)

. replace lbmi = 17 if lbmi==.
(23 real changes made)

. replace ubmi = 39 if ubmi==.
(23 real changes made)

. list lbmi ubmi in 1/10

lbmi ubmi

1. 17 22
2. 20 39
3. 30 31
4. 24.62917 24.62917
5. 22.52744 22.52744

6. 21.87975 21.87975
7. 17.77057 17.77057
8. 17 39
9. 23.47249 23.47249

10. 24.48916 24.48916
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We replace missing lower limits with 17 and missing upper limits with 39 and proceed with imputation:

. mi set mlong

. mi impute intreg newbmi attack smokes age hsgrad female, add(20)
> ll(lbmi) ul(ubmi)

Univariate imputation Imputations = 20
Interval regression added = 20
Imputed: m=1 through m=20 updated = 0

Limit: lower = lbmi Number missing = 0
upper = ubmi Number censored = 25

interval = 25
left = 0

right = 0

Observations per m

Variable Complete Incomplete Imputed Total

newbmi 129 25 25 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

All the incomplete observations are now interval-censored on [17, 39].

We can analyze these multiply imputed data using logistic regression with mi estimate:

. mi estimate: logit attack smokes age newbmi female hsgrad
(output omitted )

In [MI] mi impute truncreg, we used mi impute truncreg to accommodate a restricted range
of BMI during imputation. In the code above, we showed how to use mi impute intreg to ensure
that imputed values are within a specified range. Which one should be used?

The answer to this question depends on our belief about the distribution of the imputation variable.
If we believe that the underlying distribution of BMI is a normal distribution and we happened to only
observe values within a certain range, then mi impute intreg should be used to impute BMI. We
know, however, that BMI is positive and has an upper limit. As such, the assumption of a truncated
distribution for BMI is more plausible, in which case mi impute truncreg should be used to impute
its missing values.
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Stored results
mi impute intreg stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(N miss) number of missing observations
r(N cens) number of censored observations
r(N lcens) number of left-censored observations
r(N rcens) number of right-censored observations
r(N intcens) number of interval-censored observations
r(k ivars) number of imputed variables (always 1)
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method (intreg)
r(ivars) names of imputation variables
r(llname) name of variable containing lower interval-censoring limits
r(ulname) name of variable containing upper interval-censoring limits
r(rngstate) random-number state used
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group
r(N complete) number of complete observations in imputation sample in each group
r(N incomplete) number of incomplete observations in imputation sample in each group
r(N imputed) number of imputed observations in imputation sample in each group

Methods and formulas
Consider a latent univariate variable xu = (xu1 , x

u
2 , . . . , x

u
n)′ that follows a normal linear regression

xui |zi ∼ N(z′iβ, σ
2) (1)

where zi = (zi1, zi2, . . . , ziq)
′ records values of predictors of xu for observation i, β is the q × 1

vector of unknown regression coefficients, and σ2 is the unknown scalar variance. (When a constant
is included in the model—the default—zi1 = 1, i = 1, . . . , n.)

Instead of xu, we observe (xll,xul), where xllj = xulj = xuj for point (observed) data j ∈ C;
xllj = −∞ and xulj < +∞ for left-censored data j ∈ L; xllj > −∞ and xulj = +∞ for right-censored
data j ∈ R; xllj = −∞ and xulj = +∞ for missing data j ∈ M. Observations from subset C are
considered complete and the remaining observations are considered incomplete.

Let x = xu for observations in subset C, and let x contain missing values in the remaining
observations. We want to fill in missing values in x. Consider the partition of x = (xo

′,xm
′) into

n0 × 1 and n1 × 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Zo,Zm) into n0 × q and n1 × q submatrices.

mi impute intreg follows the steps below to fill in xm:

1. Fit an interval regression to the interval-censored data (xll,xul) to obtain the maximum

likelihood estimates of parameters in (1), θ̂ = (β̂
′
, lnσ̂)′, and their asymptotic sampling

variance, Û. See [R] intreg for details.

2. Simulate new parameters, θ?, from the large-sample normal approximation, N(θ̂, Û), to its
posterior distribution, assuming the noninformative prior Pr(θ) ∝ const.
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3. Let µ?i = z′iβ?. Obtain one set of imputed values, x1
m, by simulating from a truncated

normal model with the density

f(xll
i
,xul
i
)(x|zi) =

1

σ?
φ

(
x− µ?i
σ?

)
×
{

Φ

(
xuli − µ?i

σ?

)
− Φ

(
xlli − µ?i

σ?

)}1

,

xlli < x < xuli

for every incomplete observation i /∈ C. For missing observations i ∈M, when xlli = −∞
and xuli = +∞, the above density reduces to a normal density. Thus missing observations
are simulated from the corresponding unrestricted normal distribution.

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x1
m,x

2
m, . . . ,x

M
m .

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data, Pr(xm|xo,Zo), because θ? is drawn from the asymptotic approximation to its
posterior distribution.

If weights are specified, a weighted regression model is fit to the observed data in step 1 (see
[R] intreg for details). Also, in the case of aweights, σ? is replaced with σ?w

−1/2
i in step 3, where

wi is the analytic weight for observation i.

Reference
Royston, P. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.

Stata Journal 7: 445–464.

Also see
[MI] mi impute — Impute missing values

[MI] mi impute pmm — Impute using predictive mean matching

[MI] mi impute regress — Impute using linear regression

[MI] mi impute truncreg — Impute using truncated regression

[MI] mi estimate — Estimation using multiple imputations

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3


Title

mi impute logit — Impute using logistic regression

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

mi impute logit fills in missing values of a binary variable by using a logistic regression imputation
method. You can perform separate imputations on different subsets of the data by specifying the by()
option. You can also account for frequency, importance, and sampling weights.

Menu
Statistics > Multiple imputation

Syntax

mi impute logit ivar
[

indepvars
] [

if
] [

weight
] [

, impute options options
]

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option
∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

176
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options Description

Main

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
augment perform augmented regression in the presence of perfect prediction
conditional(if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement

Maximization

maximize options control the maximization process; seldom used

You must mi set your data before using mi impute logit; see [MI] mi set.
You must mi register ivar as imputed before using mi impute logit; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

noconstant; see [R] estimation options.

add(), replace, rseed(), double, by(); see [MI] mi impute.

offset(varname); see [R] estimation options.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,
an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks and examples in [MI] mi impute for more information. augment is not allowed with
importance weights.

conditional(if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks and examples in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

� � �
Reporting �

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the logistic
regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when
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the conditional() option is specified and group legends that may appear when the by() option
is specified.

� � �
Maximization �

maximize options; see [R] logit. These options are seldom used. difficult, technique(), gra-
dient, showstep, hessian, and showtolerance are not allowed when the augment option is
used.

� � �
Advanced �

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples
Remarks are presented under the following headings:

Univariate imputation using logistic regression
Using mi impute logit
Video example

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using logistic regression

The logistic regression imputation method can be used to fill in missing values of a binary variable
(for example, Rubin [1987]; Raghunathan et al. [2001]; and van Buuren [2007]). It is a parametric
method that assumes an underlying logistic model for the imputed variable (given other predictors).

Unlike the linear regression method, the logistic imputation method is based on the asymptotic ap-
proximation of the posterior predictive distribution of the missing data. The actual posterior distribution
of the logistic model parameters, β, does not have a simple form under the common noninformative
prior distribution. Thus a large-sample normal approximation to the posterior distribution of β is used
instead. Rubin (1987, 169) points out that although the actual posterior distribution may be far from
normal (for example, when the number of observed cases is small or when the fraction of ones in the
observed data is close to zero or one), the use of the normal approximation is common in practice.

Using mi impute logit

Continuing our heart attack example from [MI] intro substantive and [MI] mi impute, suppose that
hsgrad, a binary variable recording whether subjects graduated from high school, contains missing
values:
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. use http://www.stata-press.com/data/r14/mheart2
(Fictional heart attack data; hsgrad missing)

. mi set mlong

. mi misstable summarize
Obs<.

Unique
Variable Obs=. Obs>. Obs<. values Min Max

hsgrad 18 136 2 0 1

Thus we want to impute missing values of hsgrad, because hsgrad was one of the predictors in
our logistic model (logit attack smokes age bmi female hsgrad). From our previous analysis
of the heart attack data, we recall that hsgrad was not a significant predictor. So, we could have
omitted hsgrad from the logistic model in the casewise-deletion analysis to avoid the reduction in
sample size, and then imputing hsgrad would not have been needed. In general, the imputer rarely
has such knowledge, and omitting hsgrad from the imputation model would prevent this predictor
from being used in later analysis by the analyst (see, for example, Imputation modeling in [MI] mi
impute). Thus we proceed with imputation.

We use mi impute logit to create 10 imputations of hsgrad:

. mi register imputed hsgrad
(18 m=0 obs. now marked as incomplete)

. mi impute logit hsgrad attack smokes age bmi female, add(10)

Univariate imputation Imputations = 10
Logistic regression added = 10
Imputed: m=1 through m=10 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

hsgrad 136 18 18 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

We can now use the imputed hsgrad in our analysis, for example,

. mi estimate: logit attack smokes age bmi female hsgrad
(output omitted )

Video example

Multiple imputation, part 3: Imputing a single binary variable with logistic regression

http://www.youtube.com/watch?v=QVvTpPx2LyU
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Stored results
mi impute logit stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables (always 1)
r(pp) 1 if perfect prediction detected, 0 otherwise
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method (logit)
r(ivars) names of imputation variables
r(rngstate) random-number state used
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group
r(N complete) number of complete observations in imputation sample in each group
r(N incomplete) number of incomplete observations in imputation sample in each group
r(N imputed) number of imputed observations in imputation sample in each group

Methods and formulas
Consider a univariate variable x = (x1, x2, . . . , xn)′ that follows a logistic model

Pr(xi 6= 0|zi) =
exp(z′iβ)

1 + exp(z′iβ)
(1)

where zi = (zi1, zi2, . . . , ziq)
′ records values of predictors of x for observation i and β is the

q × 1 vector of unknown regression coefficients. (When a constant is included in the model—the
default—zi1 = 1, i = 1, . . . , n.)

x contains missing values that are to be filled in. Consider the partition of x = (x′o,x
′
m) into

n0 × 1 and n1 × 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Zo,Zm) into n0 × q and n1 × q submatrices.

mi impute logit follows the steps below to fill in xm:

1. Fit a logistic model (1) to the observed data (xo,Zo) to obtain the maximum likelihood
estimates, β̂, and their asymptotic sampling variance, Û.

2. Simulate new parameters, β?, from the large-sample normal approximation, N(β̂, Û), to its
posterior distribution assuming the noninformative prior Pr(β) ∝ const.

3. Obtain one set of imputed values, x1
m, by simulating from the logistic distribution:

Pr(xim = 1) = exp(z′imβ?)/
{

1 + exp(z′imβ?)
}

for every missing observation im.

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x1
m,x

2
m, . . . ,x

M
m .

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data Pr(xm|xo,Zo) because β? is drawn from the asymptotic approximation to its
posterior distribution.
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If weights are specified, a weighted logistic regression model is fit to the observed data in step 1
(see [R] logit for details).

References
Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply

imputing missing values using a sequence of regression models. Survey Methodology 27: 85–95.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219–242.

Also see
[MI] mi impute — Impute missing values

[MI] mi estimate — Estimation using multiple imputations

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis
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Description

mi impute mlogit fills in missing values of a nominal variable by using the multinomial
(polytomous) logistic regression imputation method. You can perform separate imputations on different
subsets of the data by specifying the by() option. You can also account for frequency, importance,
and sampling weights.

Menu
Statistics > Multiple imputation

Syntax

mi impute mlogit ivar
[

indepvars
] [

if
] [

weight
] [

, impute options options
]

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option
∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

182
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options Description

Main

noconstant suppress constant term
baseoutcome(#) specify value of ivar that will be the base outcome
augment perform augmented regression in the presence of perfect prediction
conditional(if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement

Maximization

maximize options control the maximization process; seldom used

You must mi set your data before using mi impute mlogit; see [MI] mi set.
You must mi register ivar as imputed before using mi impute mlogit; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

noconstant; see [R] estimation options.

add(), replace, rseed(), double, by(); see [MI] mi impute.

baseoutcome(#) specifies the value of ivar to be treated as the base outcome. The default is to
choose the most frequent outcome.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,
an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks and examples in [MI] mi impute for more information. augment is not allowed with
importance weights.

conditional(if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks and examples in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

� � �
Reporting �

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the multino-
mial logistic regression fit to the observed data be displayed. nolegend suppresses all legends that
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appear before the imputation table. Such legends include a legend about conditional imputation
that appears when the conditional() option is specified and group legends that may appear
when the by() option is specified.

� � �
Maximization �

maximize options; see [R] mlogit. These options are seldom used. difficult, technique(), gra-
dient, showstep, hessian, and showtolerance are not allowed when the augment option is
used.

� � �
Advanced �

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples
Remarks are presented under the following headings:

Univariate imputation using multinomial logistic regression
Using mi impute mlogit

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using multinomial logistic regression

The multinomial logistic regression imputation method can be used to fill in missing values of a
nomial variable (for example, Raghunathan et al. [2001] and van Buuren [2007]). It is a parametric
method that assumes an underlying multinomial logistic model for the imputed variable (given other
predictors). Similarly to the logistic imputation method, this method is based on the asymptotic
approximation of the posterior predictive distribution of the missing data.

Using mi impute mlogit

Consider the heart attack data introduced in [MI] intro substantive and discussed in [MI] mi impute.
Suppose that we want our logistic model of interest to also include information about marital status
(categorical variable marstatus)—logit attack smokes age bmi female hsgrad i.marstatus.
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We first tabulate values of marstatus:

. use http://www.stata-press.com/data/r14/mheart3
(Fictional heart attack data; marstatus missing)

. tabulate marstatus, missing

Marital
status:
single,

married,
divorced Freq. Percent Cum.

Single 53 34.42 34.42
Married 48 31.17 65.58

Divorced 46 29.87 95.45
. 7 4.55 100.00

Total 154 100.00

From the output, the marstatus variable has three unique categories and seven missing observations.
Because marstatus is a categorical variable, we use the multinomial logistic imputation method to
fill in its missing values.

We mi set the data, register marstatus as an imputed variable, and then create 10 imputations
by specifying the add(10) option with mi impute mlogit:

. mi set mlong

. mi register imputed marstatus
(7 m=0 obs. now marked as incomplete)

. mi impute mlogit marstatus attack smokes age bmi female hsgrad, add(10)

Univariate imputation Imputations = 10
Multinomial logistic regression added = 10
Imputed: m=1 through m=10 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

marstatus 147 7 7 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

We can now analyze these multiply imputed data using logistic regression via mi estimate:

. mi estimate: logit attack smokes age bmi female hsgrad i.marstatus
(output omitted )
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Stored results
mi impute mlogit stores the following in r():
Scalars

r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables (always 1)
r(pp) 1 if perfect prediction detected, 0 otherwise
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method (mlogit)
r(ivars) names of imputation variables
r(rngstate) random-number state used
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group
r(N complete) number of complete observations in imputation sample in each group
r(N incomplete) number of incomplete observations in imputation sample in each group
r(N imputed) number of imputed observations in imputation sample in each group

Methods and formulas
Consider a univariate variable x = (x1, x2, . . . , xn)′ that contains K categories (without loss of

generality, let k = 1 be the base outcome) and follows a multinomial logistic model

Pr(xi = k|zi) =


1

1 +
∑K
l=2 exp(z′iβl)

, if k = 1

exp(z′iβk)

1 +
∑K
l=2 exp(z′iβl)

, if k > 1

(1)

where zi = (zi1, zi2, . . . , ziq)
′ records values of predictors of x for observation i and βl is the q× 1

vector of unknown regression coefficients for outcome l = 2, . . . ,K. (When a constant is included
in the model—the default—zi1 = 1, i = 1, . . . , n.)

x contains missing values that are to be filled in. Consider the partition of x = (x′o,x
′
m) into

n0 × 1 and n1 × 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Zo,Zm) into n0 × q and n1 × q submatrices.

mi impute mlogit follows the steps below to fill in xm:

1. Fit a multinomial logistic model (1) to the observed data (xo,Zo) to obtain the maximum

likelihood estimates, β̂ = (β̂
′
2, . . . , β̂

′
K)′, and their asymptotic sampling variance, Û.

2. Simulate new parameters, β?, from the large-sample normal approximation, N(β̂, Û), to its
posterior distribution assuming the noninformative prior Pr(β) ∝ const.

3. Obtain one set of imputed values, x1
m, by simulating from the multinomial logistic distribution:

one of K categories is randomly assigned to a missing category, im, using the cumulative
probabilities computed from (1) with βl = β?l and zi = zim .

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x1
m,x

2
m, . . . ,x

M
m .

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data Pr(xm|xo,Zo) because β? is drawn from the asymptotic approximation to its
posterior distribution.
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If weights are specified, a weighted multinomial logistic regression model is fit to the observed
data in step 1 (see [R] mlogit for details).

References
Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply

imputing missing values using a sequence of regression models. Survey Methodology 27: 85–95.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219–242.

Also see
[MI] mi impute — Impute missing values

[MI] mi impute ologit — Impute using ordered logistic regression

[MI] mi estimate — Estimation using multiple imputations

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis
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Description

mi impute monotone fills in missing values in multiple variables by using a sequence of
independent univariate conditional imputation methods. Variables to be imputed, ivars, must follow
a monotone-missing pattern (see [MI] intro substantive). You can perform separate imputations on
different subsets of the data by specifying the by() option. You can also account for frequency,
analytic (with continuous variables only), importance, and sampling weights.

Menu
Statistics > Multiple imputation

Syntax
Default specification of prediction equations, basic syntax

mi impute monotone (uvmethod) ivars
[
= indepvars

] [
if
] [

weight
] [

, impute options options
]

Default specification of prediction equations, full syntax

mi impute monotone lhs
[
= indepvars

] [
if
] [

weight
] [

, impute options options
]

Custom specification of prediction equations

mi impute monotone cmodels
[

if
] [

weight
]
, custom

[
impute options options

]
where lhs is lhs spec

[
lhs spec

[
. . .
] ]

and lhs spec is

(uvmethod
[

if
] [

, uvspec options
]
) ivars

cmodels is (cond spec)
[
(cond spec)

[
. . .
] ]

and a conditional specification, cond spec, is

uvmethod ivar
[

rhs spec
] [

if
] [

, uvspec options
]

rhs spec includes varlist and expressions of imputation variables bound in parentheses.

ivar(s) (or newivar if uvmethod is intreg) is the name(s) of the imputation variable(s).

uvspec options are ascontinuous, noisily, and the method-specific options as described in the
manual entry for each univariate imputation method.

188
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uvmethod Description

regress linear regression for a continuous variable; [MI] mi impute regress
pmm predictive mean matching for a continuous variable;

[MI] mi impute pmm
truncreg truncated regression for a continuous variable with a restricted range;

[MI] mi impute truncreg
intreg interval regression for a continuous partially observed (censored) variable;

[MI] mi impute intreg
logit logistic regression for a binary variable; [MI] mi impute logit
ologit ordered logistic regression for an ordinal variable; [MI] mi impute ologit
mlogit multinomial logistic regression for a nominal variable;

[MI] mi impute mlogit
poisson Poisson regression for a count variable; [MI] mi impute poisson
nbreg negative binomial regression for an overdispersed count variable;

[MI] mi impute nbreg

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option
∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.
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options Description

Main
∗custom customize prediction equations of conditional specifications
augment perform augmented regression in the presence of perfect prediction for

all categorical imputation variables
bootstrap estimate model parameters using sampling with replacement

Reporting

dryrun show conditional specifications without imputing data
verbose show conditional specifications and impute data; implied when custom

prediction equations are not specified
report show report about each conditional specification

Advanced

nomonotonechk do not check whether variables follow a monotone-missing pattern
∗custom is required when specifying customized prediction equations.
You must mi set your data before using mi impute monotone; see [MI] mi set.
You must mi register ivars as imputed before using mi impute monotone; see [MI] mi set.
indepvars and rhs spec may contain factor variables; see [U] 11.4.3 Factor variables.
fweights, aweights (regress, pmm, truncreg, and intreg only), iweights, and pweights are allowed; see

[U] 11.1.6 weight.

Options

� � �
Main �

custom is required to build customized prediction equations within the univariate conditional speci-
fications. Otherwise, the default specification of prediction equations is assumed.

add(), replace, rseed(), double, by(); see [MI] mi impute.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,
an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks and examples in [MI] mi impute for more information. augment is not allowed with
importance weights. This option is equivalent to specifying augment within univariate specifications
of all categorical imputation methods.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect. This option is equivalent to specifying bootstrap within all
univariate specifications.

The following options appear on a Specification dialog that appears when you click on the Create...
button on the Main tab.

uvspec options are options specified within each univariate imputation method, uvmethod.
uvspec options include ascontinuous, noisily, and the method-specific options as described
in the manual entry for each univariate imputation method.
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ascontinuous specifies that categorical imputation variables corresponding to the current uvmethod
be included as continuous in all prediction equations. This option is only allowed when uvmethod
is logit, ologit, or mlogit.

noisily specifies that the output from the current univariate model fit to the observed data be
displayed.

� � �
Reporting �

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from all univariate
conditional models fit to the observed data be displayed. nolegend suppresses all imputation table
legends which include a legend with the titles of the univariate imputation methods used, a legend
about conditional imputation when conditional() is used within univariate specifications, and
group legends when by() is specified.

dryrun specifies to show the conditional specifications that would be used to impute each vari-
able without actually imputing data. This option is recommended for checking specifications of
conditional models prior to imputation.

verbose specifies to show conditional specifications and impute data. verbose is implied when
custom prediction equations are not specified.

report specifies to show a report about each univariate conditional specification. This option, in
combination with dryrun, is recommended for checking specifications of conditional models prior
to imputation.

� � �
Advanced �

force; see [MI] mi impute.

nomonotonechk specifies not to check that imputation variables follow a monotone-missing pattern.
This option may be used to avoid potentially time-consuming checks. The monotonicity check may
be time consuming when a large number of variables is being imputed. If you use nomonotonechk
with a custom specification, make sure that you list the univariate conditional specifications in the
order of monotonicity or you might obtain incorrect results.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples
Remarks are presented under the following headings:

Multivariate imputation when a missing-data pattern is monotone
First use
Using mi impute monotone
Default syntax of mi impute monotone
The alternative syntax of mi impute monotone—custom prediction equations
Examples of using default prediction equations
Examples of using custom prediction equations

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute options. Also see [MI] workflow for general advice on working with mi.
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Multivariate imputation when a missing-data pattern is monotone

When a pattern of missingness in multiple variables is monotone (or, more rigorously, when the
missingness-modeling structure is monotone distinct), a multivariate imputation can be replaced with
a set of conditional univariate imputations (Rubin 1987, 170–178). Let X1, X2, . . . , Xp be ordered
such that if X1j is missing, then X2j is also missing, although X2 may also be missing in other
observations; if X2j is missing, then X3j is missing, although X3 may also be missing in other
observations; and so on. Then a simultaneous imputation of variables X1, X2, . . . , Xp according to
a model, fX(·), and complete predictors (independent variables), Z, is equivalent to the sequential
conditional imputation

X?
1 ∼ f1(X1|Z)

X?
2 ∼ f2(X2|X?

1 ,Z)

. . .

X?
p ∼ fp(Xp|X?

1 , X
?
2 , . . . , X

?
p−1,Z)

(1)

where for brevity we omit conditioning on the model parameters. The univariate conditional imputation
models fj(·) can each be of a different type (normal, logistic, etc.), as is appropriate for imputing
Xj .

The specification of a conditional imputation model fj(·) includes an imputation method and a
prediction equation relating an imputation variable to other explanatory variables. In what follows,
we distinguish between the default specification in which the identities of the complete explanatory
variables are the same for all imputed variables, and the custom specification in which the identities
are allowed to differ.

Under the default specification, prediction equations of each imputation variable include all complete
independent variables and all preceding imputation variables that have already been imputed. Under
the custom specification, each prediction equation may include a subset of the predictors that would
be used under the default specification. The custom specification implies nothing more than the
assumption of conditional independence between certain imputation variables and certain sets of
predictors.

Model (1) corresponds to the default specification. For example, consider imputation variables X1,
X2, and X3, ordered from the most observed to the least observed, and complete predictors Z1 and
Z2. Under the default specification, the individual prediction equations are determined as follows.
The most observed variable, X1, is predicted from Z1 and Z2. The next most observed variable, X2,
is predicted from Z1, Z2, and previously imputed X1. The least observed variable, X3, is predicted
from Z1, Z2, and previously imputed X1 and X2. (A constant is included in all prediction equations,
by default.) We use the following notation to refer to the above sequence of prediction equations
(imputation sequence): X1|Z1, Z2 → X2|X1, Z1, Z2 → X3|X1, X2, Z1, Z2.

A sequence such as X1|Z1 → X2|X1, Z1, Z2 → X3|X1, Z2 would correspond to a custom
specification. Here X1 is assumed to be independent of Z2 given Z1, and X3 is assumed to be
independent of Z1 and X2 given X1 and Z2.

The monotone-distinct structure offers much flexibility in building a multivariate imputation model.
It simplifies the often intractable multivariate imputation task to a set of simpler univariate imputation
tasks. In addition, it accommodates imputation of a mixture of types of variables. So, what’s the catch?
The catch is that the pattern of missingness is rarely monotone in practice. There are types of data for
which a monotone-missing data pattern can occur naturally (for example, follow-up measurements).
Usually, however, this happens only by chance.
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There are several ways to proceed if your data are not monotone missing. You can discard
the observations that violate the monotone-missing pattern, especially if there are very few such
observations. You can assume independence among the sets of variables to create independent
monotone patterns. For example, the missingness pattern for X1, X2, X3, X4, X5 may not be
monotone, but it may be for X1, X3 and for X2, X4, X5. If it is reasonable to assume independence
between these two sets of variables, you can then impute each set separately by using monotone
imputation. Other alternatives are to use certain techniques to complete the missing-data pattern to
monotone (see, for example, Schafer 1997), to use an iterative sequential (fully conditional) imputation
(see [MI] mi impute chained; Royston 2005, 2007, 2009; van Buuren, Boshuizen, and Knook 1999;
Raghunathan et al. 2001), or to assume an explicit multivariate parametric model for the imputation
variables (see [MI] mi impute mvn; Schafer 1997). Also see Multivariate imputation of [MI] mi
impute for a general discussion of multivariate imputation.

Throughout this entry, we will assume that the considered imputation variables are monotone
missing.

First use
Before we describe various uses of mi impute monotone, let’s look at an example.

Consider the heart attack data examining the relationship between heart attack and smoking. The age
and bmi variables contain missing values and follow a monotone-missing pattern. Recall multivariate
imputation of bmi and age using mi impute monotone described in Multivariate imputation of
[MI] mi impute:

. use http://www.stata-press.com/data/r14/mheart5s0
(Fictional heart attack data)

. mi impute monotone (regress) bmi age = attack smokes hsgrad female, add(10)

Conditional models:
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0

bmi: linear regression
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The age and bmi variables have monotone missingness, and so mi impute monotone is used to
fill in missing values. Ten imputations are created (add(10) option). The linear regression imputation
method (regress) is used to impute both continuous variables. The attack, smokes, hsgrad, and
female variables are used as complete predictors (independent variables).

The conditional models legend shows that age (having the least number of missing values) is
imputed first using the regress method, even though we specified bmi before age on the mi impute
command. After that, bmi is imputed using the regress method and the previously imputed variable
age and the other predictors.
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The header and table output were described in detail in [MI] mi impute. The additional information
above the imputation table is the legend describing what univariate imputation method was used to
impute each variable. (If desired, this legend may be suppressed by specifying the nolegend option.)

Using mi impute monotone

Below we summarize general capabilities of mi impute monotone.

1. mi impute monotone requires that the specified imputation variables follow a monotone-
missing pattern. If they do not, it will stop with an error:

. mi impute monotone x1 x2 . . .
(1 m=0 obs. now marked as incomplete)
x1 x2: not monotone;

imputation variables must have a monotone-missing
structure; see mi misstable nested

r(459);

As indicated by the error message, we can use mi misstable nested to verify for ourselves
that the imputation variables are not monotone missing. We could also use other features of
mi misstable to investigate the pattern.

2. mi impute monotone offers two main syntaxes—one using the default prediction equations,

. mi impute monotone . . .

and the other allowing customization of prediction equations,

. mi impute monotone . . . , custom . . .

We will refer to the two syntaxes as default and custom, respectively.

3. mi impute monotone allows specification of a global (outer) if condition,

. mi impute monotone . . . if exp . . .

and equation-specific (inner) if conditions,

. mi impute monotone . . . (. . . if exp . . . ) . . .

A global if is applied to all equations (conditional specifications). You may combine global
and equation-specific if conditions:

. mi impute monotone . . . (. . . if exp . . . ) . . . if exp . . .

4. mi impute monotone allows specification of global weights, which are applied to all
equations,

. mi impute monotone . . . [weight] . . .

Use a combination of options dryrun and report to check the specification of each univariate
imputation model prior to imputing data.

In the next two sections, we describe the use of mi impute monotone first using hypothetical
situations and then using real examples.
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Default syntax of mi impute monotone

We showed in First use an example of mi impute monotone with default prediction equations
using the heart attack data. Here we provide more details about this default specification.

By default, mi impute monotone imputes missing values by using the full specification of
prediction equations. It builds the corresponding univariate conditional imputation models based on
the supplied information: uvmethod, the imputation method; ivars, the imputation variables; and
indepvars, the complete predictors or independent variables.

Suppose that continuous variables x1, x2, and x3 contain missing values with a monotone-missing
pattern. We want to impute these variables, and we decide to use the same univariate imputation
method, say, linear regression, for all. We can do this by typing

. mi impute monotone (regress) x1 x2 x3 . . .

The above corresponds to the first syntax diagram of mi impute monotone: uvmethod is regress
and ivars is x1 x2 x3. Relating the above to the model notation used in (1), f1, f2, and f3 represent
linear regression imputation models and the prediction sequence is X1 → X2|X1 → X3|X2, X1.

If we have additional covariates containing no missing values (say, z1 and z2) that we want to
include in the imputation model, we can do it by typing

. mi impute monotone (regress) x1 x2 x3 = z1 z2 . . .

Now indepvars is z1 z2 and the prediction sequence is X1|Z1, Z2 → X2|X1, Z1, Z2 →
X3|X2, X1, Z1, Z2. Independent variables are included in the prediction equations of all condi-
tional models.

Suppose that we want to use a different imputation method for one of the variables—we want to
impute x3 using predictive mean matching. We can do this by typing

. mi impute monotone (regress) x1 x2 (pmm, knn(5)) x3 = z1 z2 . . .

The above corresponds to the second syntax diagram of mi impute monotone, a generalization
of the first that accommodates differing imputation methods. The right-hand side of the equation is
unchanged. z1 and z2 are included in all three prediction equations. The left-hand side now has two
specifications: (regress) x1 x2 and (pmm, knn(5)) x3. In previous examples, we had only one
left-hand-side specification, lhs spec—(regress) x1 x2 x3. (Note that the number of left-hand-side
specifications does not necessarily correspond to the number of conditional models; the latter is
determined by the number of imputation variables.) In this example, x1 and x2 are imputed using
linear regression, and x3 is imputed using predictive mean matching with five nearest neighbors
specified in pmm’s option knn(). All method-specific options must be specified within the parentheses
surrounding the method:

. mi impute monotone (regress) x1 x2 (pmm, knn(5)) x3 = z1 z2 . . .

Under the default specification, you can list imputation variables in any order and mi impute
monotone will determine the correct ordering that follows the monotone-missing pattern.

Suppose now we want to restrict the imputation sample for x2 to observations where z1 is one;
also see Imputing on subsamples of [MI] mi impute. The corresponding syntax is

. mi impute monotone (regress) x1 (regress if z1==1) x2 (pmm, knn(5))
> x3 = z1 z2 . . .

If, in addition to the above, we want to impute all variables using an overall subsample where z3
is one, we can specify the global if z3==1 condition:

. mi impute monotone (regress) x1 (regress if z1==1) x2 (pmm, knn(5))
> x3 = z1 z2 if z3==1 . . .
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When any imputation variable is imputed using a categorical method, mi impute monotone
automatically includes it as a factor variable in the prediction equations of other imputation variables.
Suppose that x1 is a categorical variable and is imputed using the multinomial logistic method:

. mi impute monotone (mlogit) x1 (regress) x2 x3 . . .

The above will result in the prediction sequence X1 → X2|i.X1 → X3|X2, i.X1 where i.X1

denotes the factors of X1.

If you wish to include factor variables as continuous in prediction equations, you can use the
ascontinuous option within a specification of the univariate imputation method for that variable:

. mi impute monotone (mlogit, ascontinuous) x1 (regress) x2 x3 . . .

As we discussed in The issue of perfect prediction during imputation of categorical data of [MI] mi
impute, perfect prediction often occurs during imputation of categorical variables. One way of dealing
with it is to use the augmented-regression approach (White, Daniel, and Royston 2010), available
through the augment option. For example, if perfect prediction occurs during imputation of x1 in
the above, you can specify augment within the method specification of x1 to perform augmented
regression:

. mi impute monotone (mlogit, augment) x1 (regress) x2 x3 . . .

Alternatively, you can use the augment option with mi impute monotone to perform augmented
regression for all categorical variables for which the issue of perfect prediction arises:

. mi impute monotone (mlogit) x1 (logit) x2 (regress) x3 . . . , augment . . .

The above command is equivalent to specifying augment within each specification of a univariate
categorical imputation method:

. mi impute monotone (mlogit, augment) x1 (logit, augment) x2 (regress) x3 . . .

Also see Default prediction equations in [MI] mi impute chained for other uses of the default
syntax.

The alternative syntax of mi impute monotone—custom prediction equations

Consider the prediction sequence X1 → X2|X1 → X3|X2, X1. Suppose that we want to predict
X3 from X1 rather than from X1 and X2. This could be achieved by simply imputing X1 and X2

and then X3 given X1 separately because of the implied assumption that X3 and X2 are independent
given X1. However, with a larger number of variables and more complicated prediction rules, separate
imputations may not be appealing. So customization of the prediction equations is a good alternative.

You customize prediction equations using the custom syntax (the third syntax) of mi impute
monotone. You must specify the custom option to notify mi impute monotone that you are
specifying custom prediction equations.

Under the custom syntax, you specify a separate conditional imputation model for each imputation
variable. The specification of a conditional model is the same as that for the chosen univariate
imputation method, but the entire model must be bound in parentheses, for example,

. mi impute monotone (regress x1)
(regress x2 x1)
(regress x3 x1)

, custom . . .
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Here we have three conditional specifications: (regress x1), (regress x2 x1), and (regress x3
x1). The corresponding prediction sequence is X1 → X2|X1 → X3|X1. Prediction equations have
the syntax ivar

[
rhs spec

]
.

When specifying custom prediction equations, you are required to list the conditional models in
the correct order of missing monotonicity. mi impute monotone will issue an error if you are wrong:

mi impute monotone: incorrect equation order
equations must be listed in the monotone-missing order of the imputation
variables (from most observed to least observed); x2(2) -> x1(5) -> x3(10)

r(198);

If we have additional covariates z1 and z2 containing no missing values, we can include them in
the imputation model:

. mi impute monotone (regress x1 z1 z2)
(regress x2 x1 z1 z2)
(regress x3 x1 z1 z2), custom . . .

To use the predictive mean matching method for x3, we simply change the method from regress
to pmm and specify, say, five nearest neighbors in pmm’s required option knn() in the last conditional
specification:

. mi impute monotone (regress x1 z1 z2)
(regress x2 x1 z1 z2)
(pmm x3 x1 z1 z2, knn(5)), custom . . .

Under the custom syntax, you can also include expressions of previously imputed variables in
prediction equations. For example, if you want to model x3 using main and squared effects of x1
(ignoring predictors z1 and z2), you can type

. mi impute monotone (regress x1)
(regress x2 x1)
(pmm x3 x1 (x1^2), knn(5)), custom . . .

Note that we bound the expression x1^2 in parentheses. Any expression may appear inside the
parentheses.

Similar to the default specification, we can include equation-specific ifs,

. mi impute monotone (regress x1)
(regress x2 x1 if z1==1)
(pmm x3 x1, knn(5)), custom . . .

and we can specify a global if,

. mi impute monotone (regress x1 z1 z2)
(regress x2 x1 z2 if z1==1)
(pmm x3 x1 z1 z2, knn(5))

if z3==1, custom . . .

Suppose that one of the imputed variables is categorical. We can use the multinomial logistic
method to impute its values:

. mi impute monotone (mlogit x1)
(regress x2 i.x1)
(regress x3 i.x1)

, custom . . .

Also see Link between mi impute chained and mi impute monotone in [MI] mi impute chained
for a discussion of custom syntaxes.
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Examples of using default prediction equations

Example 1: Different imputation methods

Recall the heart attack example from First use. If we wanted to impute age using predictive mean
matching instead of linear regression, we could type

. use http://www.stata-press.com/data/r14/mheart5s0, clear
(Fictional heart attack data)

. mi impute monotone (regress) bmi (pmm, knn(3)) age = attack smokes hsgrad
> female, add(10)

Conditional models:
age: pmm age attack smokes hsgrad female, knn(3)
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0

bmi: linear regression
age: predictive mean matching

Observations per m

Variable Complete Incomplete Imputed Total

bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

As previously, we listed age and bmi in the reverse order here, and mi impute monotone determined
the correct order of missing monotonicity.

Example 2: Imputing a variable on a subsample

Consider an mi set version of the heart attack data containing the indicator for smoking high-tar
cigarettes (variable hightar):

. use http://www.stata-press.com/data/r14/mheart6s0, clear
(Fictional heart attack data; bmi, age, and hightar missing)

. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 124
incomplete 30 (M = 0 imputations)

total 154

Vars.: imputed: 3; bmi(24) age(30) hightar(8)

passive: 0

regular: 4; attack smokes female hsgrad

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)
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mi describe reports that there are no imputations, three registered imputed variables (hightar is
one of them), and four registered regular variables.

Next we use mi misstable nested to examine missing-data patterns in the data.

. mi misstable nested

1. hightar(8) -> bmi(24) -> age(30)

There is one monotone-missing pattern in the data. According to the output, missing values of
hightar are nested within bmi, whose missing values are nested within age. So hightar, bmi, and
age follow a monotone-missing pattern.

As before, to impute missing values of age and bmi, we use the regression method. The hightar
variable is a binary variable, so we choose the logistic method to fill in its values (see [MI] mi impute
logit). Because hightar records whether a subject smokes high-tar cigarettes, we use only those who
smoke to impute its missing values. (If there were any missing values of hightar for the subjects
who do not smoke, we would have replaced them with zeros.)

. mi impute monotone (reg) age bmi (logit if smokes) hightar
> = attack smokes hsgrad female, add(10)

Conditional models:
hightar: logit hightar attack smokes hsgrad female if smokes

bmi: regress bmi i.hightar attack smokes hsgrad female
age: regress age bmi i.hightar attack smokes hsgrad female

note: smokes omitted because of collinearity

Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0

age: linear regression
bmi: linear regression

hightar: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total

age 124 30 30 154
bmi 130 24 24 154

hightar 56 8 8 64

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

mi impute monotone reports which univariate conditional model was used to impute each variable.
Because hightar has the least number of missing observations, it is imputed first using the specified
complete predictors and using only observations for smokers. From the output, all incomplete values
of each of the variables are imputed in all 10 imputations. Notice that because we restricted the
imputation sample of hightar to smokers, the total number of observations reported for hightar
is 64 and not 154.

It is safe to use the if restriction in the above because smokes does not contain any missing values
and hightar does not contain any missing values in observations with smokes==0. Otherwise, the
conditional() option should be used instead; see Conditional imputation of [MI] mi impute for
details.
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Examples of using custom prediction equations

Example 3: Using different sets of predictors within individual conditional models

Let’s take a closer look at the conditional model for hightar used in the above example:

hightar: logit hightar attack smokes hsgrad female if (smokes)

Notice that predictor smokes is redundant in this model because it is collinear with the constant
(included in the model by default) on the restricted sample of smokers. In fact, if we specify the
noisily option (noi for short) within the logit specification to see the estimation results, we will
notice that, as expected, smokes was omitted from the estimation model for hightar; that is, its
coefficient is zero.

. mi impute monotone (reg) age bmi (logit if smokes, noi) hightar
> = attack smokes hsgrad female, replace

Conditional models:
hightar: logit hightar attack smokes hsgrad female if smokes, noisily

bmi: regress bmi i.hightar attack smokes hsgrad female
age: regress age bmi i.hightar attack smokes hsgrad female

Running logit on observed data:

note: smokes omitted because of collinearity
Iteration 0: log likelihood = -38.673263
Iteration 1: log likelihood = -38.455029
Iteration 2: log likelihood = -38.454991
Iteration 3: log likelihood = -38.454991

Logistic regression Number of obs = 56
LR chi2(3) = 0.44
Prob > chi2 = 0.9326

Log likelihood = -38.454991 Pseudo R2 = 0.0056

hightar Coef. Std. Err. z P>|z| [95% Conf. Interval]

attack .0773715 .5630513 0.14 0.891 -1.026189 1.180932
smokes 0 (omitted)
hsgrad -.1663937 .5977995 -0.28 0.781 -1.338059 1.005272
female -.3331926 .617736 -0.54 0.590 -1.543933 .8775477
_cons .0138334 .6263152 0.02 0.982 -1.213722 1.241389

Multivariate imputation Imputations = 10
Monotone method added = 0
Imputed: m=1 through m=10 updated = 10

age: linear regression
bmi: linear regression

hightar: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total

age 124 30 30 154
bmi 130 24 24 154

hightar 56 8 8 64

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)



mi impute monotone — Impute missing values in monotone data 201

Although mi impute handles collinearity problems for us automatically, we can eliminate redun-
dancy manually by removing smokes from the prediction equation for hightar. To do that, we need
to specify custom prediction equations.

As discussed in Using mi impute monotone, custom prediction equations are available with
mi impute monotone when the custom option is used. We also know that within this custom
specification, we must fully specify prediction equations within each conditional model and must
specify the conditional models in the monotone-missing order of the imputation variables.

Building such conditional models from scratch could be a tedious task except that we can use
mi impute monotone, dryrun to display the conditional models with default prediction equations
without performing the corresponding imputation:

. mi impute monotone (reg) age bmi (logit if smokes) hightar
> = attack smokes hsgrad female, dryrun

Conditional models:
hightar: logit hightar attack smokes hsgrad female if smokes

bmi: regress bmi i.hightar attack smokes hsgrad female
age: regress age bmi i.hightar attack smokes hsgrad female

We can use these default conditional specifications as the basis for writing our own customized
specifications. We will remove smokes from the predictor list for hightar:

. mi impute monotone (logit hightar attack hsgrad female if smokes)
> (regress bmi hightar attack smokes hsgrad female)
> (regress age bmi hightar attack smokes hsgrad female)
> , custom replace

Multivariate imputation Imputations = 10
Monotone method added = 0
Imputed: m=1 through m=10 updated = 10

hightar: logistic regression
bmi: linear regression
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

hightar 56 8 8 64
bmi 130 24 24 154
age 124 30 30 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Example 4: Including expressions of imputation variables in prediction equations

The distribution of bmi is slightly skewed. To take this into account, we can either use predictive
mean matching to impute bmi or impute bmi on a logarithmic scale. We choose to impute the log
of bmi here.

Following the steps described in Imputing transformations of incomplete variables of [MI] mi
impute, we create a new variable, lnbmi, containing the log of bmi and register it as imputed. Here
we also reset the number of imputations to zero.

. mi set M = 0
(10 imputations dropped; M = 0)
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. mi unregister bmi

. generate lnbmi = ln(bmi)
(24 missing values generated)

. mi register imputed lnbmi

We are now ready to impute lnbmi. However, although we are imputing the log of bmi, we want
to use bmi in the original scale when imputing age. To do that, we include exp(lnbmi) in the
prediction equation for age. When including expressions in a custom specification, the expressions
must appear in parentheses:

. mi impute monotone (logit hightar attack hsgrad female if smokes)
> (regress lnbmi hightar attack smokes hsgrad female)
> (regress age (exp(lnbmi))
> hightar attack smokes hsgrad female)
> , custom add(10)

Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0

hightar: logistic regression
lnbmi: linear regression

age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

hightar 56 8 8 64
lnbmi 130 24 24 154

age 124 30 30 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

If we also wanted to include a squared term for bmi in the conditional imputation model for age,
we would type

. mi impute monotone
> (logit hightar attack hsgrad female if smokes)
> (regress lnbmi hightar attack smokes hsgrad female)
> (regress age (exp(lnbmi)) (exp(lnbmi)^2) hightar attack smokes hsgrad female)
> , custom replace

(output omitted )
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Stored results
mi impute monotone stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method (monotone)
r(ivars) names of imputation variables
r(rngstate) random-number state used
r(uvmethods) names of univariate conditional imputation methods
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group (per variable)
r(N complete) number of complete observations in imputation sample in each group (per variable)
r(N incomplete) number of incomplete observations in imputation sample in each group (per variable)
r(N imputed) number of imputed observations in imputation sample in each group (per variable)

Methods and formulas
Let x(i) = (xi1, xi2, . . . , xip) be the ith observation containing values of the imputation vari-

ables ordered from the most observed to the least observed to form a monotone-missing data
pattern. Let z(i) = (zi1, zi2, . . . , ziq) be the corresponding set of predictors of x(i). Then, if the
missingness-modeling structure is monotone distinct (imputation variables have monotone missingness
and parameters of the conditional models are distinct as defined in Rubin [1987, 174]), the following
decomposition holds:

fX(x(i)|z(i), θ) = f1(xi1|z(i), θ1)f2(xi2|z(i), xi1, θ2) · · · fp(xip|z(i), xi1, xi2, . . . , xi,p−1, θp)

where the unknown parameters θ1, . . . , θp are distinct, that is, Pr(θ) =
∏p
j=1 Pr(θj). The monotone-

distinct structure ensures that the univariate conditional models fj do not depend on any unobserved
values of variable xj and the posterior distributions of θj do not involve the imputed values of the
previously filled-in variables x1, . . . ,xj−1. See Rubin (1987, 174–178) for a rigorous justification of
the above decomposition.

The above allows substituting the imputation of X using the probability model fX(·) with a
sequence of univariate conditional imputations of xj using the probability models fj(·). Note that
fj can be any proper imputation model (for example, linear regression or logistic regression).

mi impute monotone follows the steps below to fill in missing values in x1, . . . ,xp:

1. If the custom option is not used, mi impute monotone first builds univariate conditional
models containing the default prediction equations using the supplied information about
imputation methods, imputation variables X, and complete predictors Z. The order in
which imputation variables are listed is irrelevant. The prediction equations are constructed
as follows. Complete predictors indepvars are included first. The imputation variables are
included next with each previously imputed variable added to the beginning of the prediction
equation previously used.

If the custom option is used, mi impute monotone uses the specified conditional models
in the order supplied. The conditional models must be listed in the monotone-missing order
of the corresponding imputation variables.
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2. Fit univariate conditional models for each xj to the observed data to obtain the estimates
of θj , j = 1, . . . , p. See step 1 in Methods and formulas of each respective univariate
imputation method’s manual entry for details.

3. Sequentially fill in missing values of x1,x2, . . . ,xp according to the specified imputation
model. See step 2 and step 3 in Methods and formulas of each respective univariate imputation
method’s manual entry for details.

4. Repeat step 3 to obtain M multiple imputations.
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Description

mi impute mvn fills in missing values of one or more continuous variables using multivariate normal
regression. It accommodates arbitrary missing-value patterns. You can perform separate imputations
on different subsets of the data by specifying the by() option. mi impute mvn uses an iterative
Markov chain Monte Carlo (MCMC) method to impute missing values. See Remarks and examples
for details.

Menu
Statistics > Multiple imputation

Syntax
mi impute mvn ivars

[
= indepvars

] [
if
] [

, impute options options
]

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option
∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

205
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options Description

Main

noconstant suppress constant term

MCMC options

burnin(#) specify number of iterations for the burn-in period;
default is burnin(100)

burnbetween(#) specify number of iterations between imputations;
default is burnbetween(100)

prior(prior spec) specify a prior distribution; default is prior(uniform)

mcmconly perform MCMC for the length of the burn-in period without imputing
missing values

initmcmc(init mcmc) specify initial values for the MCMC procedure; default is
initmcmc(em) using the EM estimates for initial values

wlfwgt(matname) specify weights for the worst linear function
savewlf(filename

[
, . . .

]
) save the worst linear function from each iteration in filename.dta

saveptrace(fname
[
, . . .

]
) save MCMC parameter estimates from each iteration in

fname.stptrace; see [MI] mi ptrace

Reporting

emlog display iteration log from EM
emoutput display intermediate output from EM estimation
mcmcdots display dots as MCMC iterations are performed
alldots display dots as intermediate iterations are performed
nolog do not display information about the EM or MCMC procedures

Advanced

emonly
[
(em options)

]
perform EM estimation only

You must mi set your data before using mi impute mvn; see [MI] mi set.

You must mi register ivars as imputed before using mi impute mvn; see [MI] mi set.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

prior spec Description

uniform use the uniform prior distribution; the default
jeffreys use the Jeffreys noninformative prior distribution
ridge, df(#) use a ridge prior distribution with degrees of freedom #

init mcmc Description

em
[
, em options

]
use EM to obtain starting values for MCMC; the default

initmatlist supply matrices containing initial values for MCMC
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em options Description

iterate(#) specify the maximum number of iterations; default is iterate(100)

tolerance(#) specify tolerance for the changes in parameter estimates;
default is tolerance(1e-5)

init(init em) specify initial values for the EM algorithm; default is init(ac)

nolog do not show EM iteration log
saveptrace(fname

[
, . . .

]
) save EM parameter estimates from each iteration in

fname.stptrace; see [MI] mi ptrace

init em Description

ac use all available cases to obtain initial values for EM; the default
cc use only complete cases to obtain initial values for EM
initmatlist supply matrices containing initial values for EM

initmatlist is of the form initmat
[

initmat
[
. . .
] ]

initmat Description

betas(# |matname) specify coefficient vector; default is betas(0)

sds(# |matname) specify standard deviation vector; default is sds(1)

vars(# |matname) specify variance vector; default is vars(1)

corr(# |matname) specify correlation matrix; default is corr(0)

cov(matname) specify covariance matrix

In the above, # is understood to mean a vector containing all elements equal to #.

Options

� � �
Main �

noconstant; see [R] estimation options.

add(), replace, rseed(), double, by(); see [MI] mi impute.

� � �
MCMC options �

burnin(#) specifies the number of iterations for the initial burn-in period. The default is burnin(100).
This option specifies the number of iterations necessary for the MCMC to reach approximate
stationarity or, equivalently, to converge to a stationary distribution. The required length of the
burn-in period will depend on the starting values used and the missing-data patterns observed in
the data. It is important to examine the chain for convergence to determine an adequate length
of the burn-in period prior to obtaining imputations; see Convergence of the MCMC method and
examples 2 and 4. The provided default may be sufficient in many cases, but you are responsible
for determining that sufficient iterations are performed.

burnbetween(#) specifies a number of iterations of the MCMC to perform between imputations,
the purpose being to reduce correlation between sets of imputed values. The default is burnbe-
tween(100). As with burnin(), you are responsible for determining that sufficient iterations are
performed. See Convergence of the MCMC method and examples 2 and 4.
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prior(prior spec) specifies a prior distribution to be used by the MCMC procedure. The default is
prior(uniform). The alternative prior distributions are useful when the default estimation of the
parameters using maximum likelihood becomes unstable (for example, estimates on the boundary
of the parameter space) and introducing some prior information about parameters stabilizes the
estimation.

prior spec is

uniform | jeffreys | ridge, df(#)

uniform specifies the uniform (flat) prior distribution. Under this prior distribution, the posterior
distribution is proportional to the likelihood function and thus the estimate of the posterior
mode is the same as the maximum likelihood (ML) estimate.

jeffreys specifies the Jeffreys, noninformative prior distribution. This prior distribution can
be used when there is no strong prior knowledge about the model parameters.

ridge, df(#) specifies a ridge, informative prior distribution with the degrees of freedom
#. This prior introduces some information about the covariance matrix by smoothing the
off-diagonal elements (correlations) toward zero. The degrees of freedom, df(), which
may be noninteger, regulates the amount of smoothness—the larger this number, the closer
the correlations are to zero. A ridge prior is useful to stabilize inferences about the mean
parameters when the covariance matrix is poorly estimated, for example, when there are
insufficient observations to estimate correlations between some variables reliably because of
missing data, causing the estimated covariance matrix to become non–positive definite (see
Schafer [1997, 155–157] for details).

mcmconly specifies that mi impute mvn run the MCMC for the length of the burn-in period and
then stop. This option is useful in combination with savewlf() or saveptrace() to examine
the convergence of the MCMC prior to imputation. No imputation is performed when mcmconly
is specified, so add() or replace is not required with mi impute mvn, mcmconly, and they are
ignored if specified. The mcmconly option is not allowed with emonly.

initmcmc() may be specified as initmcmc(em
[
, em options

]
) or initmcmc(initmatlist).

initmcmc() specifies initial values for the regression coefficients and covariance matrix of the
multivariate normal distribution to be used by the MCMC procedure. By default, initial values are
obtained from the EM algorithm, initmcmc(em).

initmcmc(em
[
, em options

]
) specifies that the initial values for the MCMC procedure be obtained

from EM. You can control the EM estimation by specifying em options. If the uniform prior is
used, the initial estimates correspond to the ML estimates computed using EM. Otherwise, the
initial values are the estimates of the posterior mode computed using EM.

em options are

iterate(#) specifies the maximum number of EM iterations to perform. The default is
iterate(100).

tolerance(#) specifies the convergence tolerance for the EM algorithm. The default is
tolerance(1e-5). Convergence is declared once the maximum of the relative changes
between two successive estimates of all model parameters is less than #.

init() may be specified as init(ac), init(cc), or init(matlist)

init() specifies initial values for the regression coefficients and covariance matrix of the
multivariate normal distribution to be used by the EM algorithm. init(ac) is the default.

init(ac) specifies that initial estimates be obtained using all available cases. The initial
values for regression coefficients are obtained from separate univariate regressions of
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each imputation variable on the independent variables. The corresponding estimates of
the residual mean-squared error are used as the initial values for the diagonal entries of
the covariance matrix (variances). The off-diagonal entries (correlations) are set to zero.

init(cc) specifies that initial estimates be obtained using only complete cases. The initial
values for regression coefficients and the covariance matrix are obtained from a multivariate
regression fit to the complete cases only.

init(initmatlist) specifies to use manually supplied initial values for the EM procedure
and syntactically is identical to mcmcinit(initmatlist), described below, except that you
specify init(initmatlist).

nolog suppresses the EM iteration log when emonly or emoutput is used.

saveptrace(fname
[
, replace

]
) specifies to save the parameter trace log from the EM

algorithm to a file called fname.stptrace. If the file already exists, the replace suboption
specifies to overwrite the existing file. See [MI] mi ptrace for details about the saved file
and how to read it into Stata.

initmcmc(initmatlist), where initmatlist is

initmat
[

initmat
[
. . .
] ]

specifies manually supplied initial values for the MCMC procedure.

initmat is

betas(# |matname) specifies initial values for the regression coefficients. The default is
betas(0), implying a value of zero for all regression coefficients. If you specify betas(#),
then # will be used as the initial value for all regression coefficients. Alternatively, you
can specify the name of a Stata matrix, matname, containing values for each regression
coefficient. matname must be conformable with the dimensionality of the specified model.
That is, it can be one of the following dimensions: p× q, q × p, 1× pq, or pq × 1, where
p is the number of imputation variables and q is the number of independent variables.

sds(# |matname) specifies initial values for the standard deviations (square roots of the
diagonal elements of the covariance matrix). The default is sds(1), which sets all standard
deviations and thus variances to one. If you specify sds(#), then the squared # will be
used as the initial value for all variances. Alternatively, you can specify the name of a
Stata matrix, matname, containing individual values. matname must be conformable with the
dimensionality of the specified model. That is, it can be one of the following dimensions:
1×p or p×1, where p is the number of imputation variables. This option cannot be combined
with cov() or vars(). The sds() option can be used in combination with corr() to
provide initial values for the covariance matrix.

vars(# |matname) specifies initial values for variances (diagonal elements of the covariance
matrix). The default is vars(1), which sets all variances to one. If you specify vars(#),
then # will be used as the initial value for all variances. Alternatively, you can specify the name
of a Stata matrix, matname, containing individual values. matname must be conformable
with the dimensionality of the specified model. That is, it can be one of the following
dimensions: 1 × p or p × 1, where p is the number of imputation variables. This option
cannot be combined with cov() or sds(). The vars() option can be used in combination
with corr() to provide initial values for the covariance matrix.

corr(# |matname) specifies initial values for the correlations (off-diagonal elements of the
correlation matrix). The default is corr(0), which sets all correlations and, thus, covariances
to zero. If you specify corr(#), then all correlation coefficients will be set to #. Alternatively,
you can specify the name of a Stata matrix, matname, containing individual values. matname
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can be a square p × p matrix with diagonal elements equal to one or it can contain the
corresponding lower (upper) triangular matrix in a vector of dimension p(p+ 1)/2, where
p is the number of imputation variables. This option cannot be combined with cov(). The
corr() option can be used in combination with sds() or vars() to provide initial values
for the covariance matrix.

cov(matname) specifies initial values for the covariance matrix. matname must contain the
name of a Stata matrix. matname can be a square p × p matrix or it can contain the
corresponding lower (upper) triangular matrix in a vector of dimension p(p+ 1)/2, where
p is the number of imputation variables. This option cannot be combined with corr(),
sds(), or vars().

wlfwgt(matname) specifies the weights (coefficients) to use when computing the worst linear function
(WLF). The coefficients must be saved in a Stata matrix, matname, of dimension 1 × d, where
d = pq+ p(p+ 1)/2, p is the number of imputation variables, and q is the number of predictors.
This option is useful when initial values from the EM estimation are supplied to data augmentation
(DA) as matrices. This option can also be used to obtain the estimates of linear functions other
than the default WLF. This option cannot be combined with by().

savewlf(filename
[
, replace

]
) specifies to save the estimates of the WLF from each iteration of

MCMC to a Stata dataset called filename.dta. If the file already exists, the replace suboption
specifies to overwrite the existing file. This option is useful for monitoring convergence of the
MCMC. savewlf() is allowed with initmcmc(em), when the initial values are obtained using the
EM estimation, or with wlfwgt(). This option cannot be combined with by().

saveptrace(fname
[
, replace

]
) specifies to save the parameter trace log from the MCMC to a file

called fname.stptrace. If the file already exists, the replace suboption specifies to overwrite
the existing file. See [MI] mi ptrace for details about the saved file and how to read it into Stata.
This option is useful for monitoring convergence of the MCMC. This option cannot be combined
with by().

� � �
Reporting �

dots, noisily, nolegend; see [MI] mi impute. Also, noisily is a synonym for emoutput.
nolegend suppresses group legends that may appear when the by() option is used. It is a
synonym for by(, nolegend).

emlog specifies that the EM iteration log be shown. The EM iteration log is not displayed unless
emonly or emoutput is specified.

emoutput specifies that the EM output be shown. This option is implied with emonly.

mcmcdots specifies to display all MCMC iterations as dots.

alldots specifies to display all intermediate iterations as dots in addition to the imputation dots.
These iterations include the EM iterations and the MCMC burn-in iterations. This option implies
mcmcdots.

nolog suppresses all output from EM or MCMC that is usually displayed by default.

� � �
Advanced �

force; see [MI] mi impute.

emonly
[
(em options)

]
specifies that mi impute mvn perform EM estimation and then stop. You can

control the EM process by specifying em options. This option is useful at the preliminary stage to
obtain insight about the length of the burn-in period as well as to choose a prior specification. No
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imputation is performed, so add() or replace is not required with mi impute mvn, emonly,
and they are ignored if specified. The emonly option is not allowed with mcmconly.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples

Remarks are presented under the following headings:

Incomplete continuous data with arbitrary pattern of missing values
Multivariate imputation using data augmentation
Convergence of the MCMC method
Using mi impute mvn
Examples

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute options. Also see [MI] workflow for general advice on working with mi.

Incomplete continuous data with arbitrary pattern of missing values

As we described in detail in Multivariate imputation in [MI] mi impute, imputation of multiple
variables with an arbitrary pattern of missing values is more challenging than when the missing-data
pattern is monotone.

One approach for dealing with an arbitrary missing-value pattern is to assume an explicit tractable
parametric model for the data and draw imputed values from the resulting distribution of the missing
data given observed data. One of the more popular parametric models is the Gaussian normal model; see
Rubin (1987) for other recommendations. Although a multivariate normal model is straightforward,
difficulty arises in the simulation from the corresponding, more complicated, distribution of the
missing data. One solution is to use one of the Bayesian iterative Markov chain Monte Carlo (MCMC)
procedures to approximate the distribution of missing data.

Multivariate imputation using data augmentation

mi impute mvn uses data augmentation (DA) —an iterative MCMC procedure—to generate imputed
values assuming an underlying multivariate normal model. For details about DA as a general MCMC
procedure, see Gelman et al. (2014), Tanner and Wong (1987), and Li (1988), among others. For
applications of DA to incomplete multivariate normal data, see, for example, Little and Rubin (2002)
and Schafer (1997). Below we briefly describe the idea behind DA; see Methods and formulas for
details.

Consider multivariate data X = (Xo,Xm), decomposed into the observed part Xo and the missing
part Xm, from a normal distribution Pr(X|θ) = N(β,Σ), where θ denotes the unknown model
parameters (regression coefficients β and unique elements of the covariance matrix Σ). The goal is
to replace missing values in Xm with draws from the distribution (or the predictive distribution in
Bayesian terminology) of the missing data given observed data, Pr(Xm|Xo). The actual predictive
distribution Pr(Xm|Xo) is difficult to draw from directly because of an underlying dependence on
the posterior distribution of the unknown parameters θ, Pr(θ|Xo).
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Originally, DA was used to approximate the posterior distribution of the model parameters, Pr(θ|Xo),
in Bayesian applications with incomplete data. The idea of DA is to augment the observed data, Xo,
with the latent (unobserved) data, Xm, such that the conditional posterior distribution Pr(θ|Xo,Xm)
becomes more tractable and easier to simulate from. Then the procedure becomes as follows. For a
current θ(t), draw X

(t+1)
m from its conditional predictive distribution given the observed data and θ,

Pr(Xm|Xo, θ
(t)). Next draw θ(t+1) from its conditional posterior distribution given the augmented

data, Pr(θ|Xo,X
(t+1)
m ). Continue to iterate until the sequence {(X(t)

m , θ(t)) : t = 1, 2, . . .}, an
MCMC sequence, converges to a stationary distribution Pr(θ,Xm|Xo). This way a complicated task
of simulating from Pr(θ|Xo) is replaced by a sequence of simpler simulation tasks of iteratively
sampling from Pr(θ|Xo,Xm) and Pr(Xm|Xo, θ). How is this procedure related to imputation?
The sequence {X(t)

m : t = 1, 2, . . .} contains draws from an approximate predictive distribution
Pr(Xm|Xo), and thus X

(t)
m ’s are, in fact, imputations. The convergence of this procedure was

studied by Li (1988).

The functional forms of the conditional distributions Pr(θ|Xo,Xm) and Pr(Xm|Xo, θ) are
determined from the assumed distribution of the data, X, and a prior distribution for the model
parameters, θ, Pr(θ). mi impute mvn assumes a normal distribution for the data and supports three
prior distributions: uniform, Jeffreys, and ridge.

The prior distributions are categorized into noninformative (or also vague, diffuse, flat, reference)
and informative prior distributions. The noninformative priors provide no extra information about
model parameters beyond that already contained in the data. These priors are recommended when
no strong prior knowledge is available about the parameters. Informative prior distributions are used
when there is some a priori knowledge about the distribution of the parameters. For example, prior
information about cancer mortality rates in a Poisson model can be assigned based on the available
worldwide estimate. The uniform and Jeffreys priors are noninformative priors. The ridge prior is an
informative prior.

The uniform prior assumes that all values of the parameters are equally probable. Under this prior
specification, the posterior distribution of the parameters is equivalent to the likelihood function,
and so the Bayesian and frequentist methods coincide. The Jeffreys prior is another widely used
noninformative prior distribution, and with small samples, it may be preferable to the uniform prior. A
ridge prior is often used when the estimated covariance matrix becomes singular (or nearly singular),
as may occur with sparse missing data if there are not enough observations to estimate reliably all
aspects of the covariance matrix. A ridge prior smooths the estimate of the covariance matrix toward
a diagonal structure depending on the chosen degrees of freedom; the larger the degrees of freedom,
the closer is the estimated covariance matrix to the diagonal matrix (see Schafer [1997, 155–157] for
details).

Convergence of the MCMC method

For a brief overview of convergence of MCMC, see Convergence of iterative methods in [MI] mi
impute.

The MCMC procedure DA is iterated until an MCMC sequence {(X(t)
m , θ(t)) : t = 1, 2, . . .} converges

to a stationary distribution. Unlike maximum likelihood, EM, or other optimization-based procedures,
the DA procedure does not have a simple stopping rule that guarantees the convergence of the chain
to a stationary distribution. Thus the question of how long to iterate to achieve convergence arises. In
addition to determining convergence of MCMC, we must also investigate the serial dependence known
to exist among the MCMC draws to obtain independent imputations.
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Suppose that after an initial burn-in period, b, the sequence {(X(b+t)
m ) : t = 1, 2, . . .} (imputations)

can be regarded as an approximate sample from Pr(Xm|Xo). In general, this sample will not contain
independent observations because the successive iterates of the MCMC tend to be correlated. To achieve
independence among imputations, we can sample the chain. To do that, we need to determine the
number of iterations, k, such that X(t)

m and X
(t+k)
m are approximately independent. Then imputations

can be obtained as the chain values of Xm from iterations b, b + k, b + 2k, . . . , b + mk, where m
is the required number of imputations. In our definition, b is the number of iterations necessary for
the chain to achieve stationarity and k is the number of iterations between imputations necessary to
achieve independent values of the chain.

Before we proceed, we notice that from the properties of MCMC, the convergence of the chain
{(X(t)

m , θ(t)) : t = 1, 2, . . .} to Pr(θ,Xm|Xo) is equivalent to the convergence of {(θ(t)) : t =

1, 2, . . .} to Pr(θ|Xo) or, alternatively, of {(X(t)
m ) : t = 1, 2, . . .} to Pr(Xm|Xo). Because the

parameter series are usually of lower dimension, we examine convergence using the series of
parameter estimates rather than the series of imputations.

How to determine convergence and, in particular, to choose values for b and k, has received much
attention in the MCMC literature. In practice, convergence is often examined visually from the trace and
autocorrelation plots of the estimated parameters. Trace plots are plots of estimated parameters against
iteration numbers. Long-term trends in trace plots and high serial dependence in autocorrelation plots
are indicative of a slow convergence to stationarity. A value of b can be inferred from a trace plot as
the earliest iteration after which the chain does not exhibit a visible trend and the parameter series
stabilize, which is to say the fluctuations in values become more regular. A value of k can be chosen
from autocorrelation plots as the lag k for which autocorrelations of all parameters decrease to zero.
When the initial values are close to the posterior mode, the initial number of iterations, b, and number
of iterations between imputations, k, will be similar. When the initial values are far off in the tails
of the posterior distribution, the initial number of iterations will generally be larger.

In practice, when the number of parameters in the model is large, it may not be feasible to monitor
the convergence of all the individual series. One solution is to find a function of the parameters that
would be the slowest to converge to stationarity. The convergence of the series for this function will
then be indicative of the convergence of other functions and, in particular, individual parameter series.
Schafer (1997, 129–131) suggests the worst linear function (WLF), the function corresponding to the
linear combination of the parameter estimates where the coefficients are chosen such that this function
has the highest asymptotic rate of missing information; see Methods and formulas for computational
details. He found that when the observed-data posterior distribution is nearly normal, this function
is among the slowest to approach stationarity. Thus we can determine b and k by monitoring the
convergence of the WLF. When the observed-data posterior is not normal and some aspects of the
model are poorly estimated, the WLF may not be the slowest to converge. In such cases, we recommend
exploring convergence of other functions or of individual parameter series.

The number of iterations necessary for DA to converge depends on the rate of convergence of DA.
The rate of convergence of DA mainly depends on the fractions of missing information and initial
values. The higher the fractions of missing information and the farther the initial values are from the
posterior mode, the slower the convergence, and thus the larger the number of iterations required.
Initial values for the DA procedure can be obtained from the EM algorithm for incomplete data (for
example, Dempster, Laird, and Rubin [1977]). In addition, the number of iterations necessary for the
DA procedure to converge can be inferred based on the number of iterations that the EM algorithm
took to converge (Schafer 1997).

The convergence of the chain and the required number of iterations can be also inferred by running
multiple independent MCMC sequences using overdispersed initial values, that is, initial values from
a distribution with greater variability than that of the posterior distribution (Gelman and Rubin 1992;
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Schafer 1997, 126–128). Then the number of iterations can be taken to be the largest iteration number
for which the series in all the chains stabilize.

Although the graphical summaries described above are useful in checking convergence, they must
be used with caution. They can be deceptive in cases when the observed-data posterior has an odd
shape or has multiple modes, which may happen with small sample sizes or sparse missing data.
Examination of the data and missing-data patterns, as well as the behavior of the EM algorithm, are
highly recommended when investigating the MCMC convergence. How one checks for convergence
will be shown in examples 2 and 4.

Using mi impute mvn

mi impute mvn imputes missing data using DA, an iterative MCMC method, assuming the multivariate
normal distribution for the data. For the discussion of options, such as add() and replace, common
to all imputation methods, see [MI] mi impute. Here we focus on the options and functionality specific
to mi impute mvn.

The two main options are burnin() (which specifies the number of iterations necessary for
the MCMC to converge, b) and burnbetween() (which specifies the number of iterations between
imputations, k). We discussed how to choose these values in the previous section. By default, these
values are arbitrarily set to be 100 each.

You can choose from the three prior specifications. You can use prior(uniform) (the default) to
specify the uniform prior, prior(jeffreys) to specify the Jeffreys prior, or prior(ridge, df())
to specify a ridge prior. You must also choose the degrees of freedom with a ridge prior.

For initial values, mi impute mvn uses the estimates from the EM algorithm for incomplete data
(initmcmc(em)). When the uniform prior distribution is used, the estimates obtained from EM are
MLEs. Under other prior specifications, the estimates from EM correspond to the posterior mode of
the respective posterior distribution of the model parameters. Using the estimates from EM as initial
values in general accelerates the convergence of MCMC. To determine convergence, it may also be
useful to try different sets of initial values. You can do this by creating Stata matrices containing the
initial values and supplying them in the respective initmcmc() suboptions betas(), cov(), etc.

You can save the estimates of the WLF and parameter series from MCMC iterations by using the
savewlf() and saveptrace() options. These options are useful when examining convergence of
MCMC, as we will demonstrate in examples 2 and 4. You can use mi impute mvn to run the MCMC
without imputing the data if you specify the mcmconly option. This option is useful in combination
with savewlf() or saveptrace() when examining convergence of MCMC. When mcmconly is
specified, the DA procedure is performed for the number of iterations as specified in burnin() and
no imputations are performed.

You can also perform the EM estimation without MCMC iterations if you specify the emonly()
option. This option is useful for detecting convergence problems prior to running MCMC. The number
of iterations EM takes to converge can be used as an approximation for the burn-in period. Also, slow
convergence of the EM algorithm can reveal problems with estimability of certain model parameters.
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Examples

Example 1: Monotone-missing data

Recall the heart attack example from Multivariate imputation in [MI] mi impute, where we used
mi impute mvn to impute missing values for age and bmi that follow a monotone-missing pattern:

. use http://www.stata-press.com/data/r14/mheart5s0
(Fictional heart attack data)

. mi impute mvn age bmi = attack smokes hsgrad female, add(10)

Performing EM optimization:
note: 12 observations omitted from EM estimation because of all imputation

variables missing
observed log likelihood = -651.75868 at iteration 7

Performing MCMC data augmentation ...

Multivariate imputation Imputations = 10
Multivariate normal regression added = 10
Imputed: m=1 through m=10 updated = 0

Prior: uniform Iterations = 1000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

In the above, we omitted the nolog option that was present in the example in [MI] mi impute.

In addition to the output reported by all imputation methods, mi impute mvn also provides some
specific information.

As we previously explained, mi impute mvn uses an iterative MCMC technique to impute missing
values. The two phases of mi impute mvn are 1) obtaining initial values (unless supplied directly)
and 2) performing the MCMC procedure from which imputations are obtained. These two phases are
noted in the output header.

In this example, the initial values are obtained using the EM method (the default). We see from the
output that EM converged in seven iterations. A note displayed thereafter reports that 12 observations
contain missing values for both bmi and age and were omitted. The note is just explanatory and
should not cause you concern. Those 12 observations would contribute nothing to the likelihood
function even if they were included, although the algorithm would take longer to converge.

The estimates from EM are used as initial values for DA. The first part of the table header, containing
the information about the method used and the number of imputations, was described in detail in
[MI] mi impute. The second part of the table header is specific to mi impute mvn. From the output,
a total of 1,000 iterations of MCMC are performed. The first 100 iterations (the default) are used for
the burn-in period (burn-in = 100), the first imputation calculated from the last iteration; thereafter,
each subsequent imputation is calculated after performing another 100 iterations. The default uniform
prior is used for both the EM estimation and the MCMC procedure. Under this prior, the parameter
estimates obtained are MLEs.
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Example 2: Checking convergence of MCMC

In example 1, the monotone missingness of age and bmi as well as the quick convergence of
EM suggest that the MCMC must converge rapidly. In fact, we know that under a monotone-missing
pattern, no iterations are needed to obtain imputed values (see [MI] mi impute monotone). Let’s
examine the convergence of the MCMC procedure for the above heart attack data, the point being to
see what quick convergence looks like.

As we discussed earlier, convergence is often assessed from the trace plots of the MCMC parameter
estimates. Because of a possibly large number of estimated parameters, this approach may be tedious.
Alternatively, we can plot the WLF for which the convergence is generally the slowest.

We use the savewlf(wlf) option to save estimates of the WLF to a Stata dataset called wlf.dta.
To examine the convergence of MCMC, we do not need imputation, and so we use the mcmconly option
to perform the MCMC procedure without subsequent imputation. We use a total of 1000 = 10× 100
iterations (burnin(1000) option), corresponding to the length of the MCMC to obtain 10 imputations:

. mi impute mvn age bmi = attack smokes hsgrad female, mcmconly burnin(1000)
> rseed(2232) savewlf(wlf)

Performing EM optimization:
note: 12 observations omitted from EM estimation because of all imputation

variables missing
observed log likelihood = -651.75868 at iteration 7

Performing MCMC data augmentation ...

Note: No imputation performed.

We also specified the rseed(2232) option so that we can reproduce our results.

The created dataset contains three variables: iter, m, and wlf. The iter variable records iterations
(the burn-in iterations are recorded as negative integers). The m variable records imputation numbers
to which the iteration sequence corresponds (m contains 0 if mcmconly is used). The wlf variable
records the WLF estimates.

. use wlf, clear

. describe

Contains data from wlf.dta
obs: 1,000

vars: 3 14 Nov 2014 14:44
size: 16,000

storage display value
variable name type format label variable label

iter long %12.0g
m long %12.0g
wlf double %10.0g

Sorted by:

We use the time-series commands tsline and ac (see [TS] tsline and [TS] corrgram) to plot the
estimates and autocorrelations of wlf with respect to the iteration number. We first use tsset to set
iter as the “time” variable and then use tsline to obtain a trace plot:
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. tsset iter
time variable: iter, -999 to 0

delta: 1 unit

. tsline wlf, ytitle(Worst linear function) xtitle(Burn-in period)
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The graph shows no visible trend in the estimates of the WLF, just as we expected. Convergence of
MCMC by the 100th iteration should be assured. In fact, taking into account the declared convergence
of the EM algorithm in only seven iterations, we would be comfortable with using a much smaller
burn-in period of, say, 10 iterations.

We next examine the autocorrelation in the WLF to obtain an idea of how many iterations to use
between imputations to ensure their approximate independence:

. ac wlf, title(Worst linear function) ytitle(Autocorrelations)
> ciopts(astyle(none)) note("")
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From the graphical output, the autocorrelations die off quickly. This suggests that we can use a smaller
number, say, 10 or 20, rather than the default 100 iterations for the burn-between period.
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We considered an example with a monotone-missing pattern. mi impute mvn is designed to
accommodate arbitrary missing-data patterns, so let’s consider an example with them.

Example 3: Arbitrary missing-data pattern

Consider data on house resale prices provided by the Albuquerque Board of Realtors and
distributed by the Data and Story Library. You can find a detailed description of the data at
http://lib.stat.cmu.edu/DASL/Stories/homeprice.html.

. use http://www.stata-press.com/data/r14/mhouses1993
(Albuquerque Home Prices Feb15-Apr30, 1993)

. describe

Contains data from http://www.stata-press.com/data/r14/mhouses1993.dta
obs: 117 Albuquerque Home Prices

Feb15-Apr30, 1993
vars: 8 19 Jun 2014 10:50
size: 1,287 (_dta has notes)

storage display value
variable name type format label variable label

price int %8.0g Sale price (hundreds)
sqft int %8.0g Square footage of living space
age byte %10.0g Home age (years)
nfeatures byte %8.0g Number of certain features
ne byte %8.0g Located in northeast (largest

residential) sector of the city
custom byte %8.0g Custom build
corner byte %8.0g Corner location
tax int %10.0g Tax amount (dollars)

Sorted by:

The dataset includes eight variables. The primary variable of interest is price, and other variables
are used as its predictors.

We investigate the missing-data patterns of these data using misstable:
. misstable pattern

Missing-value patterns
(1 means complete)

Pattern
Percent 1 2

56% 1 1

35 1 0
7 0 0
2 0 1

100%

Variables are (1) tax (2) age

. misstable nested

1. tax(10)
2. age(49)

We see from the output only 56% of observations are complete; the remaining 44% contain missing
values of age or tax. The tax variable contains 10 missing values, and the age variable contains
49 missing values. misstable nested reports that missing values of age and tax are not nested
because there are two statements describing the missing-value pattern; see [R] misstable for details.

http://lib.stat.cmu.edu/DASL/Stories/homeprice.html
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Let’s use mi impute mvn to impute missing values of age and tax. Before we do that, a quick
examination of the data revealed that the distribution for age and tax are somewhat skewed. As
such, we choose to impute the variables on a log-transformed scale.

Following the steps as described in Imputing transformations of incomplete variables of [MI] mi
impute, we create new variables containing the log values,

. generate lnage = ln(age)
(49 missing values generated)

. generate lntax = ln(tax)
(10 missing values generated)

and register them as imputed variables,

. mi set mlong

. mi register imputed lnage lntax
(51 m=0 obs. now marked as incomplete)

. mi register regular price sqft nfeatures ne custom corner

We mi set our data as mlong and register the complete variables as regular. For the purpose of this
analysis, we leave passive variables age and tax unregistered. (Note that all missing values of the
created lnage and lntax variables are eligible for imputation; see [MI] mi impute for details.)

We now use mi impute mvn to impute values of lnage and lntax:

. mi impute mvn lnage lntax = price sqft nfeatures ne custom corner, add(20)

Performing EM optimization:
note: 8 observations omitted from EM estimation because of all imputation

variables missing
observed log likelihood = 112.1464 at iteration 48

Performing MCMC data augmentation ...

Multivariate imputation Imputations = 20
Multivariate normal regression added = 20
Imputed: m=1 through m=20 updated = 0

Prior: uniform Iterations = 2000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total

lnage 68 49 49 117
lntax 107 10 10 117

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Example 4: Checking convergence of MCMC

In the above example, we arbitrarily created 20 imputations. The output is similar to that of the
earlier example. Here the EM algorithm converges by the 48th iteration. This suggests that, again,
the default 100 iterations for the burn-in period should be sufficient for the convergence of MCMC.
Nevertheless, we choose to confirm this visually by repeating the steps from example 2.
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We run the MCMC for a total of 2,000 iterations (as would be necessary to obtain 20 imputations)
without imputing data and set the seed for reproducibility. We overwrite the existing wlf.dta file to
contain the new estimates of the WLF by specifying replace within savelwf():

. mi impute mvn lnage lntax = price sqft nfeatures ne custom corner,
> mcmconly burnin(2000) rseed(23) savewlf(wlf, replace)

Performing EM optimization:
note: 8 observations omitted from EM estimation because of all imputation

variables missing
observed log likelihood = 112.1464 at iteration 48

Performing MCMC data augmentation ...

Note: No imputation performed.

We generate the same graphs as in example 2, this time using the new estimates of the WLF:

. use wlf, clear

. tsset iter
time variable: iter, -1999 to 0

delta: 1 unit

. tsline wlf, ytitle(Worst linear function) xtitle(Burn-in period)
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. ac wlf, title(Worst linear function) ytitle(Autocorrelations)
> ciopts(astyle(none)) note("")
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Compared with the earlier graphs, the time-series graphs do not reveal any apparent trend, but
the autocorrelation dies out more slowly. The default values of 100 for the initial burn-in and
between-imputation iterations should be sufficient.

Example 5: Alternative prior distribution

Consider some hypothetical data:

. use http://www.stata-press.com/data/r14/mvnexample0
(Fictional data for -mi impute mvn-)

. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 3
incomplete 17 (M = 0 imputations)

total 20

Vars.: imputed: 3; x1(16) x2(5) x3(17)

passive: 0

regular: 0

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

Continuous normally distributed variables x1, x2, and x3 contain missing values. For illustration
purposes, we consider an extreme case when some variables (x1 and x3 here) contain only a few
complete observations.

We use mi impute mvn to impute missing values and create 30 imputations. Notice that in this
example, we do not have complete predictors, and so the right-hand-side specification is empty:
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. mi imp mvn x1-x3, add(30) rseed(332247)

Performing EM optimization:
note: 4 observations omitted from EM estimation because of all

imputation variables missing
observed log likelihood = 6.5368927 at iteration 100
(EM did not converge)

Performing MCMC data augmentation ...
Iteration 145: variance-covariance matrix (Sigma) became not
positive definite posterior distribution is not proper
error occurred during imputation of x1 x2 x3 on m = 2
r(498);

mi impute mvn terminates with an error reporting that the estimated variance–covariance matrix
became non–positive definite. mi impute mvn terminated because the posterior predictive distribution
of missing data is not proper, but notice also that EM did not converge after the default 100 iterations.

There are two issues here. First, because EM did not converge after 100 iterations, we suspect that
the default 100 iterations used for the burn-in period may not be large enough for MCMC to converge.
Second, the observed missing-data pattern presents difficulties with estimating the covariance matrix
reliably, which leads to a non–positive-definite estimate during the MCMC iteration.

The first issue may be resolved by increasing the maximum number of iterations for EM by using
EM’s iterate() suboption. Convergence of EM, however, does not guarantee convergence of the
MCMC by the same number of iterations. For one, the convergence of EM is relative to the specified
tolerance, and more stringent conditions may lead to a nonconvergent result. As such, we recommend
that you always examine the obtained MCMC results.

The second issue is not surprising. Recall that x1 and x3 have very few complete observations. So
the aspects of the covariance structure involving those variables (for example, the covariance between
x1 and x2) are difficult to estimate reliably based on the information from the observed data only.
The default uniform prior may not be viable here.

One solution is to introduce prior information to stabilize the estimation of the covariance matrix.
We can do this by specifying a ridge prior using the prior() option. We introduce only a small
amount of information by using a degrees of freedom value of 0.1:

. mi imp mvn x1-x3, add(30) prior(ridge, df(0.1)) rseed(332247)

Performing EM optimization:
note: 4 observations omitted from EM estimation because of all imputation

variables missing
observed log posterior = -1.13422 at iteration 100
(EM did not converge)

Performing MCMC data augmentation ...

Multivariate imputation Imputations = 30
Multivariate normal regression added = 30
Imputed: m=1 through m=30 updated = 0

Prior: ridge, df=.1 Iterations = 3000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total

x1 4 16 16 20
x2 15 5 5 20
x3 3 17 17 20

(complete + incomplete = total; imputed is the minimum across m
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of the number of filled-in observations.)

This appears to be enough to alleviate the problem of a non–positive-definite estimate of the covariance
matrix. Still, EM did not converge.

We will fix that and examine the resulting MCMC sequence. We will use the same random-number
seed and this time save the WLF. Rather than imputing the data as before, we will simply run the
MCMC for the same number of iterations it takes to obtain 30 imputations using the default settings,
namely, 30× 100 = 3000.

. mi imp mvn x1-x3, mcmconly prior(ridge, df(0.1))
> initmcmc(em, iter(200) nolog) burnin(3000) savewlf(wlf, replace)
> rseed(332242)

Performing EM optimization:
note: 4 observations omitted from EM estimation because of all

imputation variables missing
observed log posterior = -1.1341806 at iteration 152

Performing MCMC data augmentation ...

Note: No imputation performed.

We increased the maximum number of iterations for the EM algorithm to 200; it converged in iteration
152.

We use the results from wlf.dta to obtain the trace and autocorrelation plots as we did in the
earlier examples:

0
.0

00
2

.0
00

4
.0

00
6

.0
00

8
W

or
st

 li
ne

ar
 fu

nc
tio

n

−3000 −2000 −1000 0
Burn−in period



224 mi impute mvn — Impute using multivariate normal regression

−
0.

20
0.

00
0.

20
0.

40
0.

60
0.

80
A

ut
oc

or
re

la
tio

ns

0 10 20 30 40
Lag

Worst linear function

The serial correlation decreases slowly. There is no obvious trend in the WLF estimates, but we notice
high variability and several spikes, some distinctive. The high variability and spikes are not surprising
considering that certain model parameters could not be estimated reliably from the observed data and
considering that we did not introduce enough prior information to obtain less variable estimates; we
introduced only enough to achieve nonsingularity.

We could decrease the variability of the estimates by obtaining more data or introducing stronger
prior information. For example, we could increase the number of degrees of freedom with a ridge
prior to constrain the covariance matrix toward a diagonal structure:

. mi imp mvn x1-x3, replace prior(ridge, df(10)) burnin(300) rseed(332247)
(output omitted )

If we create and examine the trace plots and autocorrelations of the WLF under the new prior
specification, we find that variability of the estimates and serial dependence decrease greatly at a cost
of bias if the prior assumptions are false.

Example 6: Saving all parameter series

The examples above used the WLF to monitor convergence of MCMC because in most applications
it is sufficient. Although the WLF series often behave as the worst-case scenario, exceptions exist in
practice. Sometimes, examining individual parameter series may be necessary.

We can save all parameter series from MCMC by using the saveptrace() option. These parameter
series are saved in a parameter-trace file, a special file with extension .stptrace. Although the
resulting file is not a Stata dataset, it can easily be loaded into Stata using mi ptrace use; see
[MI] mi ptrace for details.

Let’s look at several parameter series from the above example.

. use http://www.stata-press.com/data/r14/mvnexample0, clear

. mi imp mvn x1-x3, mcmconly prior(ridge, df(0.1)) initmcmc(em, iter(200) nolog)
> burnin(3000) rseed(332247) saveptrace(parms)

(output omitted )

We save all parameter series to a file called parms by using stptrace(parms).



mi impute mvn — Impute using multivariate normal regression 225

We first describe the contents of the parms file and then read it into Stata:

. mi ptrace describe parms

file parms.stptrace created on 14 Nov 2014 14:44 contains 3,000 records
(obs.) on

m 1 variable
iter 1 variable
b[y, x] 3 variables (3 x 1)
v[y, y] 6 variables (3 x 3, symmetric)

where y and x are
y: (1) x1 (2) x2 (3) x3
x: (1) _cons

. mi ptrace use parms, clear

The output from mi ptrace describe reports that the file contains imputation numbers, iteration
numbers, estimates of three regression coefficients (b[x1, cons], b[x2, cons], and b[x3, cons],
which are effectively the means of x1, x2, and x3), and estimates of six covariances (v[x1,x1],
v[x2,x1], v[x2,x2], and so on).

Because x1 and x3 contain the least number of complete observations, we examine the series
containing their variance and covariance estimates. We generate graphs separately for each series and
then combine them in one graph by using graph combine; see [G-2] graph combine.

. tsset iter
time variable: iter, -2999 to 0

delta: 1 unit

. tsline v_y1y1, name(gr1) nodraw ytitle(Var(x1)) xtitle("") ylabel(#4)

. tsline v_y3y1, name(gr2) nodraw ytitle(Cov(x3,x1)) xtitle("") ylabel(#4)

. tsline v_y3y3, name(gr3) nodraw ytitle(Var(x3)) xtitle("") ylabel(#4)

. graph combine gr1 gr2 gr3, xcommon cols(1) b1title(Iteration)
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We repeat the same for the autocorrelation graphs:

. ac v_y1y1, ytitle(Var(x1)) xtitle("") ciopts(astyle(none)) note("")
> name(gr1, replace) nodraw ylabel(#4)

. ac v_y3y1, ytitle(Cov(x3,x1)) xtitle("") ciopts(astyle(none)) note("")
> name(gr2, replace) nodraw ylabel(#4)

. ac v_y3y3, ytitle(Var(x3)) xtitle("") ciopts(astyle(none)) note("")
> name(gr3, replace) nodraw ylabel(#4)
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. graph combine gr1 gr2 gr3, xcommon cols(1) title(Autocorrelations) b1title(Lag)
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We can see that the trace plot and autocorrelations corresponding to the variance of x1 resemble
the patterns of the earlier WLF estimates. We also notice that all series have high serial dependence
within the first 20 iterations.

Again, if we switch to using a ridge prior with 10 degrees of freedom and repeat the steps above,
the obtained trace plots will be more precise and more regular. The serial dependence in the series
will be lower.

Stored results
mi impute mvn stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables
r(burnin) number of burn-in iterations
r(burnbetween) number of burn-between iterations
r(df prior) prior degrees of freedom (stored only with prior(ridge))
r(N em) number of observations used by EM (including omitted missing observations)
r(N e em) number of observations used by EM in estimation (excluding omitted missing observations)
r(N mis em) number of incomplete observations within the EM estimation sample
r(N S em) number of unique missing-value patterns
r(niter em) number of iterations EM takes to converge
r(llobs em) observed log likelihood (stored with prior(uniform))
r(lpobs em) observed log posterior (stored with priors other than uniform)
r(converged em) convergence flag for EM
r(emonly) 1 if performed EM estimation only, 0 otherwise
r(mcmconly) 1 if performed MCMC only without imputing data, 0 otherwise
r(N g) number of imputed groups (1 if by() is not specified)
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Macros
r(method) name of imputation method (mvn)
r(ivars) names of imputation variables
r(rngstate) random-number state used
r(prior) prior distribution
r(init mcmc) type of initial values (em or user)
r(ivarsorder) names of imputation variables in the order used in the computation
r(init em) type of initial values used by EM (ac, cc, or user)
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group (per variable)
r(N complete) number of complete observations in imputation sample in each group (per variable)
r(N incomplete) number of incomplete observations in imputation sample in each group (per variable)
r(N imputed) number of imputed observations in imputation sample in each group (per variable)
r(Beta0) initial values for regression coefficients used by DA
r(Sigma0) initial variance–covariance matrix used by DA
r(wlf wgt) coefficients for the WLF (stored with initmcmc(em) or if wlfwgt() is used)
r(Beta em) estimated regression coefficients from EM
r(Sigma em) estimated variance–covariance matrix from EM
r(Beta0 em) initial values for regression coefficients used by EM
r(Sigma0 em) initial variance–covariance matrix used by EM
r(N pat) minimum, average, and maximum numbers of observations per missing-value pattern

r(N pat) and results with the em suffix are stored only when the EM algorithm is used (with
emonly or initmcmc(em)).

Methods and formulas
Let x1,x2, . . . ,xN be a random sample from a p-variate normal distribution recording values of

p imputation variables. Consider a multivariate normal regression

xi = Θ′zi + εi, i = 1, . . . , N

where zi is a q × 1 vector of independent (complete) variables from observation i, Θ is a q × p
matrix of regression coefficients, and εi is a p× 1 vector of random errors from a p-variate normal
distribution with a zero mean vector and a p× p positive-definite covariance matrix Σ. We refer to
Θ and Σ as model parameters. Consider the partition xi = (xi(m),xi(o)) corresponding to missing
and observed values of imputation variables in observation i for i = 1, . . . , N .

Methods and formulas are presented under the following headings:

Data augmentation
Prior distribution
Initial values: EM algorithm
Worst linear function

Data augmentation

mi impute mvn uses data augmentation (DA) to fill in missing values in xi independently for each
observation i = 1, . . . , N . Data augmentation consists of two steps, an I step (imputation step) and
a P step (posterior step), performed at each iteration t = 0, 1, . . . , T . At iteration t of the I step,
missing values in xi are replaced with draws from the conditional posterior distribution of xi(m) given
observed data and current values of model parameters independently for each i = 1, . . . , N . During
the P step, new values of model parameters are drawn from their conditional posterior distribution
given the observed data and the data imputed in the previous I step. Mathematically, this process can
be described as follows:
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I step:

x
(t+1)
i(m) ∼ P

(
xi(m)|zi,xi(o),Θ(t),Σ(t)

)
, i = 1, . . . , N (1)

P step:

Σ(t+1) ∼ P
(
Σ|zi,xi(o),x

(t+1)
i(m)

)
Θ(t+1) ∼ P

(
Θ|zi,xi(o),x

(t+1)
i(m) ,Σ

(t+1)
) (2)

The above two steps are repeated until the specified number of iterations, T , is reached. The total
number of iterations, T , is determined by the length of the initial burn-in period, b, and the number of
iterations between imputations, k. Specifically, T = b+Mnew×k, where Mnew contains the number
of added and updated imputations. mi impute mvn saves imputed values x

(t1)
i(m),x

(t2)
i(m), . . . ,x

(tMnew )

i(m)

as final imputations, where iteration ti = b+ (i− 1)k.

By default, mi impute mvn uses default values of 100 for b and k. These values may be adequate in
some applications and may be too low in others. In general, b and k must be determined based on the

properties of the observed Markov chain
(
X

(1)
m ,Θ(1),Σ(1)

)
,
(
X

(2)
m ,Θ(2),Σ(2)

)
, . . ., where X

(t)
m

denotes all values imputed at iteration t. b must be large enough so that the above chain converges
to the stationary distribution P (Xm,Θ,Σ|Z,Xo) by iteration t = b. k must be large enough so
that random draws (imputations) x(t1)

i(m),x
(t2)
i(m), . . . are approximately independent. See Convergence

of the MCMC method for more details.

The functional form of the conditional posterior distributions (1) and (2) depends on the distribution
of the data and a prior distribution of the model parameters. mi impute mvn assumes an improper
uniform prior distribution for Θ and an inverted Wishart distribution (Mardia, Kent, and Bibby 1979,
85) W−1p (Λ, λ) for Σ under which the prior joint density function is

f(Θ,Σ) ∝ |Σ|−(
λ+p+1

2 ) exp
(
−1

2
trΛ−1Σ−1

)
Under the multivariate normal model and the above prior distribution, the I and P steps become

(Schafer 2008; Schafer 1997, 181–185) the following:

I step: x
(t+1)
i(m) ∼ Npi

(
µ
(t)
m·o,Σ

(t)
mm·o

)
, i = 1, . . . , N

P step: Σ(t+1) ∼W−1(Λ
(t+1)
? , λ?)

vec
(
Θ(t+1)

)
∼ Npq

{
vec
(
Θ̂

(t+1)
)
,Σ(t+1) ⊗ (Z′Z)−1

}
where pi is the number of imputation variables containing missing values in observation i and ⊗ is
the Kronecker product. Submatrices µ

(t)
m·o and Σ

(t)
mm·o are the mean and variance of the conditional

normal distribution of xi(m) given xi(o) based on (xi(m),xi(o)|zi) ∼ Np

(
Θ(t)′zi,Σ

(t)
)

. See, for
example, Mardia, Kent, and Bibby (1979, 63) for the corresponding formulas of the conditional mean

and variance of the multivariate normal distribution. The matrix Θ̂
(t+1)

= (Z′Z)−1Z′X(t+1) is the
OLS estimate of the regression coefficients based on the augmented data X(t+1) = (Xo,X

(t+1)
m )

from iteration t. The posterior cross-product matrix Λ
(t+1)
? and the posterior degrees of freedom λ?

are defined as follows:
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Λ
(t+1)
? =

{
Λ−1 + (X(t+1) − ZΘ̂

(t+1)
)′(X(t+1) − ZΘ̂

(t+1)
)
}−1

and
λ? = λ+N − q

Prior distribution
As we already mentioned, mi impute mvn assumes an improper uniform prior distribution for Θ

and an inverted Wishart distribution for Σ under which the prior joint density function is

f(Θ,Σ) ∝ |Σ|−(
λ+p+1

2 ) exp
(
−1

2
trΛ−1Σ−1

)
Parameters of the inverted Wishart prior distribution, the prior cross-product matrix Λ, and the prior
degrees of freedom λ are determined based on the requested prior distribution.

By default, mi impute mvn uses the uniform prior distribution under which λ = −(p + 1) and
Λ−1 = 0p×p. Under the uniform prior, the log-likelihood and log-posterior functions are equivalent,
and so the ML estimates of the parameters are equal to the posterior mode.

Under the noninformative Jeffreys prior distribution, λ = 0 and Λ−1 = 0p×p.

Under a ridge prior distribution, λ is equal to the user-specified value, and Λ−1 = λΣ?, where the
diagonal matrix Σ? contains the diagonal elements of the estimate of the covariance matrix using all
available cases. The variances (diagonal estimates) are the estimates of the mean squared error from
regression of each imputation variable on the complete predictors. See Schafer (1997, 155–157) for
details. With λ = 0, this prior specification reduces to the Jeffreys prior.

Initial values: EM algorithm

Initial values Θ(0) and Σ(0) for DA are obtained from the EM algorithm for the incomplete
multivariate normal data (for example, Dempster, Laird, and Rubin [1977], Little and Rubin [2002],
Schafer [1997]). The EM algorithm iterates between the expectation step (E step) and the maximization
step (M step) to maximize the log-likelihood (or log-posterior) function.

The observed-data log likelihood is

ll(Θ,Σ|Xo) =

S∑
s=1

∑
i∈I(s)

{
−0.5 ln(|Σs|)− 0.5(xi(o) −Θ′szi)

′Σ−1s (xi(o) −Θ′szi)
}

where S is the number of unique missing-value patterns, I(s) is the set of observations from the
same missing-value pattern s, and Θs and Σs are the submatrices of Θ and Σ that correspond to the
imputation variables, which are observed in pattern s.

The observed-data log posterior is

lp(Θ,Σ|Xo) = ll(Θ,Σ|Xo) + ln{f(Θ,Σ)} = ll(Θ,Σ|Xo)−
λ+ p+ 1

2
ln(|Σ|)− tr(Λ−1Σ−1)

The E step and M step of the EM algorithm are defined as follows (see Schafer [2008; 1997,
163–175] for details).
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Let T1 =
∑N
i=1 zix

′
i and T2 =

∑N
i=1 xix

′
i denote the sufficient statistics for the multivariate

normal model. Consider the submatrices Θi(o) and Θi(m) of Θ, and the submatrices Σi(mm), Σi(mo),
and Σi(oo) of Σ corresponding to the observed and missing columns of xi. Let O(s) and M(s)
correspond to the column indexes of the observed and missing parts of xi for each missing-values
pattern s.

During the E step, the expectations E(T1) and E(T2) are computed with respect to the conditional
distribution Pr(Xm|Xo,Θ

(t),Σ(t)) using the following relations:

E(xij |Xo,Θ
(t),Σ(t)) =

{
xij , for j ∈ O(s)

x?ij , for j ∈M(s)

and

E(xijxil|Xo,Θ
(t),Σ(t)) =


xijxil, for j, l ∈ O(s)

x?ijxil, for j ∈M(s), l ∈ O(s)

cij + x?ijx
?
il, for j, l ∈M(s)

where x?ij is the jth element of the vector Θ′i(m)zi +Σi(mo)Σ
−1
i(oo)

(
xi(o) −Θ′i(o)zi

)
, and cij is the

element of the matrix Σi(mm) − Σi(mo)Σ
−1
i(oo)Σ

′
i(mo).

During the M step, the model parameters are updated using the computed expectations of the
sufficient statistics:

Θ(t+1) = (Z′Z)−1E(T1)

Σ(t+1) =
1

N + λ+ p+ 1

{
E(T2)− E(T1)′(Z′Z)−1E(T1) + Λ−1

}
EM iterates between the E step and the M step until the maximum relative difference between the

two successive values of all parameters is less than the default tolerance of 1e–5 (or the specified
tolerance()).

Worst linear function

The worst linear function (WLF) is defined as follows (Schafer 1997, 129–131):

ξ(θ) = v̂′1(θ − θ̂)

where θ and θ̂ are column vectors of the unique model parameters and their respective EM estimates;
v̂1 = θ(t) − θ(t−1), where θ(t) = θ̂ and θ(t−1) are the estimates from the last and one before the
last iterations of the EM algorithm. This function is regarded to be the WLF because it has the highest
asymptotic rate of missing information among all linear functions. This function is derived based on
the convergence properties of the EM algorithm (see Schafer [1997, 55–59] for details).



mi impute mvn — Impute using multivariate normal regression 231

References
Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society, Series B 39: 1–38.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis.
3rd ed. Boca Raton, FL: Chapman & Hall/CRC.

Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science
7: 457–472.

Li, K.-H. 1988. Imputation using Markov chains. Journal of Statistical Computation and Simulation 30: 57–79.

Little, R. J. A., and D. B. Rubin. 2002. Statistical Analysis with Missing Data. 2nd ed. Hoboken, NJ: Wiley.

Mardia, K. V., J. T. Kent, and J. M. Bibby. 1979. Multivariate Analysis. London: Academic Press.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall/CRC.

. 2008. NORM: Analysis of incomplete multivariate data under a normal model, Version 3. Software package
for R. University Park, PA: The Methodology Center, Pennsylvania State University.

Tanner, M. A., and W. H. Wong. 1987. The calculation of posterior distributions by data augmentation (with discussion).
Journal of the American Statistical Association 82: 528–550.

Also see
[MI] mi impute — Impute missing values

[MI] mi impute chained — Impute missing values using chained equations

[MI] mi impute monotone — Impute missing values in monotone data

[MI] mi estimate — Estimation using multiple imputations

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

[MI] Glossary



Title

mi impute nbreg — Impute using negative binomial regression

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference
Also see

Description

mi impute nbreg fills in missing values of an overdispersed count variable using a negative
binomial regression imputation method. You can perform separate imputations on different subsets of
the data by specifying the by() option. You can also account for frequency, importance, and sampling
weights.

Menu
Statistics > Multiple imputation

Syntax

mi impute nbreg ivar
[

indepvars
] [

if
] [

weight
] [

, impute options options
]

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option
∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.
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options Description

Main

noconstant suppress constant term
dispersion(mean) parameterization of dispersion; the default
dispersion(constant) constant dispersion for all observations
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
conditional(if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement

Maximization

maximize options control the maximization process; seldom used

You must mi set your data before using mi impute nbreg; see [MI] mi set.
You must mi register ivar as imputed before using mi impute nbreg; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

noconstant; see [R] estimation options.

add(), replace, rseed(), double, by(); see [MI] mi impute.

dispersion(mean | constant); see [R] nbreg.

exposure(varnamee), offset(varnameo); see [R] estimation options.

conditional(if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks and examples in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

� � �
Reporting �

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the negative
binomial regression fit to the observed data be displayed. nolegend suppresses all legends that
appear before the imputation table. Such legends include a legend about conditional imputation
that appears when the conditional() option is specified and group legends that may appear
when the by() option is specified.
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� � �
Maximization �

maximize options; see [R] nbreg. These options are seldom used.

� � �
Advanced �

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples
Remarks are presented under the following headings:

Univariate imputation using negative binomial regression
Using mi impute nbreg

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using negative binomial regression

The negative binomial regression imputation method can be used to fill in missing values of an
overdispersed count variable (Royston 2009). It is a parametric method that assumes an underlying
negative binomial model (see [R] nbreg) for the imputed variable (given other predictors). This method
is based on the asymptotic approximation of the posterior predictive distribution of the missing data.

Using mi impute nbreg

In [MI] mi impute poisson, we considered a version of the heart attack data containing a count
variable, npreg, which records the number of pregnancies and is the only variable containing missing
values. We imputed its missing values using mi impute poisson.

A Poisson model assumes that the mean and the variance are the same. In the presence of
overdispersion, when the variance exceeds the mean, a negative binomial model is more appropriate.
We can fit a negative binomial model for npreg to the observed data to see if there is any indication
of overdispersion in the data.
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. use http://www.stata-press.com/data/r14/mheartpois
(Fictional heart attack data; npreg missing)

. nbreg npreg attack smokes age bmi hsgrad if female==1, nolog

Negative binomial regression Number of obs = 35
LR chi2(5) = 1.69

Dispersion = mean Prob > chi2 = 0.8903
Log likelihood = -54.638875 Pseudo R2 = 0.0152

npreg Coef. Std. Err. z P>|z| [95% Conf. Interval]

attack .0551929 .4214484 0.13 0.896 -.7708309 .8812166
smokes .0521987 .4182004 0.12 0.901 -.7674591 .8718565

age -.0105877 .0174661 -0.61 0.544 -.0448206 .0236452
bmi .0194787 .0489883 0.40 0.691 -.0765367 .115494

hsgrad .5338139 .4972872 1.07 0.283 -.4408511 1.508479
_cons -.0736959 1.551417 -0.05 0.962 -3.114417 2.967025

/lnalpha -.7956602 .7987311 -2.361144 .769824

alpha .4512832 .3604539 .0943122 2.159386

LR test of alpha=0: chibar2(01) = 3.00 Prob >= chibar2 = 0.042

The estimate of the overdispersion parameter alpha is 0.45 with a 95% confidence interval of [0.094,
2.16]. The confidence interval does not include a value of 0 (no overdispersion), so there is slight
overdispersion in the conditional distribution of nbreg in the observed data.

We now impute npreg using mi impute nbreg:

. mi set mlong

. mi register imputed npreg
(10 m=0 obs. now marked as incomplete)

. mi impute nbreg npreg attack smokes age bmi hsgrad, add(20)
> conditional(if female==1)

Univariate imputation Imputations = 20
Negative binomial regression added = 20
Imputed: m=1 through m=20 updated = 0

Dispersion: mean

Conditional imputation:
npreg: incomplete out-of-sample obs. replaced with value 0

Observations per m

Variable Complete Incomplete Imputed Total

npreg 144 10 10 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

We specify the conditional() option to restrict imputation of npreg only to females; see Conditional
imputation in [MI] mi impute for details.

We can analyze these multiply imputed data using logistic regression with mi estimate:

. mi estimate: logit attack smokes age bmi female hsgrad npreg
(output omitted )
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Stored results
mi impute nbreg stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables (always 1)
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method (nbreg)
r(ivars) names of imputation variables
r(rngstate) random-number state used
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group
r(N complete) number of complete observations in imputation sample in each group
r(N incomplete) number of incomplete observations in imputation sample in each group
r(N imputed) number of imputed observations in imputation sample in each group

Methods and formulas
Consider a univariate variable x = (x1, x2, . . . , xn)′ that follows a negative binomial model

Pr(xi = x|zi) =
Γ(mi + x)

Γ(x+ 1)Γ(mi)
pmii (1− pi)x, x = 0, 1, 2, . . . (1)

where mi = m = 1/α, pi = 1/(1 + αµi) under mean-dispersion model and mi = µi/δ, pi = p =
1/(1 + δ) under constant-dispersion model, µi = exp(z′iβ + offseti), and α > 0 and δ > 0 are
unknown dispersion parameters; see [R] nbreg for details. zi = (zi1, zi2, . . . , ziq)

′ records values of
predictors of x for observation i and β is the q× 1 vector of unknown regression coefficients. (When
a constant is included in the model—the default—zi1 = 1, i = 1, . . . , n.)

x contains missing values that are to be filled in. Consider the partition of x = (x′o,x
′
m) into

n0 × 1 and n1 × 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Zo,Zm) into n0 × q and n1 × q submatrices.

mi impute nbreg follows the steps below to fill in xm:

1. Fit a negative binomial regression model (1) to the observed data (xo,Zo) to obtain

the maximum likelihood estimates, θ̂ = (β̂
′
, lnα̂)′ under a mean-dispersion model or

θ̂ = (β̂
′
, lnδ̂)′ under a constant-dispersion model, and their asymptotic sampling variance,

Û.

2. Simulate new parameters, θ?, from the large-sample normal approximation, N(θ̂, Û), to its
posterior distribution, assuming the noninformative prior Pr(θ) ∝ const.

3. Obtain one set of imputed values, x1
m, by simulating from a negative binomial distribution

(1) with parameters set to their simulated values from step 2.

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x1
m,x

2
m, . . . ,x

M
m .

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data, Pr(xm|xo,Zo), because θ? is drawn from the asymptotic approximation to its
posterior distribution.
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If weights are specified, a weighted negative binomial regression model is fit to the observed data
in step 1 (see [R] nbreg for details).

Reference
Royston, P. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical

variables. Stata Journal 9: 466–477.

Also see
[MI] mi impute — Impute missing values

[MI] mi impute poisson — Impute using Poisson regression

[MI] mi estimate — Estimation using multiple imputations

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis
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Title

mi impute ologit — Impute using ordered logistic regression

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

mi impute ologit fills in missing values of an ordinal variable using an ordered logistic regression
imputation method. You can perform separate imputations on different subsets of the data by specifying
the by() option. You can also account for frequency, importance, and sampling weights.

Menu
Statistics > Multiple imputation

Syntax

mi impute ologit ivar
[

indepvars
] [

if
] [

weight
] [

, impute options options
]

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option
∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.
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options Description

Main

offset(varname) include varname in model with coefficient constrained to 1
augment perform augmented regression in the presence of perfect prediction
conditional(if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement

Maximization

maximize options control the maximization process; seldom used

You must mi set your data before using mi impute ologit; see [MI] mi set.
You must mi register ivar as imputed before using mi impute ologit; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

add(), replace, rseed(), double, by(); see [MI] mi impute.

offset(varname); see [R] estimation options.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,
an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks and examples in [MI] mi impute for more information. augment is not allowed with
importance weights.

conditional(if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks and examples in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

� � �
Reporting �

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the ordered
logistic regression fit to the observed data be displayed. nolegend suppresses all legends that
appear before the imputation table. Such legends include a legend about conditional imputation
that appears when the conditional() option is specified and group legends that may appear
when the by() option is specified.
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� � �
Maximization �

maximize options; see [R] ologit. These options are seldom used. difficult, technique(), gra-
dient, showstep, hessian, and showtolerance are not allowed when the augment option is
used.

� � �
Advanced �

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples
Remarks are presented under the following headings:

Univariate imputation using ordered logistic regression
Using mi impute ologit

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using ordered logistic regression

The ordered logistic regression imputation method can be used to fill in missing values of an
ordinal variable (for example, Raghunathan et al. [2001] and van Buuren [2007]). It is a parametric
method that assumes an underlying logistic model for the imputed variable (given other predictors).
Similarly to the logistic imputation method, this method is based on the asymptotic approximation of
the posterior predictive distribution of the missing data.

Using mi impute ologit

Following the example from [MI] mi impute mlogit, we consider the heart attack data (for example,
[MI] intro substantive, [MI] mi impute), where a logistic model of interest now includes information
about alcohol consumption, variable alcohol—logit attack smokes age bmi female hsgrad
i.alcohol.

. use http://www.stata-press.com/data/r14/mheart4
(Fictional heart attack data; alcohol missing)

. tabulate alcohol, missing

Alcohol consumption:
none, <2 drinks/day, >=2

drinks/day Freq. Percent Cum.

Do not drink 18 11.69 11.69
Less than 3 drinks/day 83 53.90 65.58

Three or more drinks/day 44 28.57 94.16
. 9 5.84 100.00

Total 154 100.00

From the output, the alcohol variable has three unique ordered categories and nine missing
observations. We use the ordered logistic imputation method to impute missing values of alcohol.
We create 10 imputations by specifying the add(10) option:
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. mi set mlong

. mi register imputed alcohol
(9 m=0 obs. now marked as incomplete)

. mi impute ologit alcohol attack smokes age bmi female hsgrad, add(10)

Univariate imputation Imputations = 10
Ordered logistic regression added = 10
Imputed: m=1 through m=10 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

alcohol 145 9 9 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

We can now analyze these multiply imputed data with logistic regression via mi estimate:

. mi estimate: logit attack smokes age bmi female hsgrad i.alcohol
(output omitted )

Stored results
mi impute ologit stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables (always 1)
r(pp) 1 if perfect prediction detected, 0 otherwise
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method (ologit)
r(ivars) names of imputation variables
r(rngstate) random-number state used
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group
r(N complete) number of complete observations in imputation sample in each group
r(N incomplete) number of incomplete observations in imputation sample in each group
r(N imputed) number of imputed observations in imputation sample in each group

Methods and formulas
Consider a univariate variable x = (x1, x2, . . . , xn)′ that contains K ordered categories and

follows an ordered logistic model

Pr(xi = k|zi) = Pr(γk−1 < z′iβ + u ≤ γk)

=
1

1 + exp(−γk + z′iβ)
− 1

1 + exp(−γk−1 + z′iβ)

(1)



242 mi impute ologit — Impute using ordered logistic regression

where zi = (zi1, zi2, . . . , ziq)
′ records values of predictors of x for observation i, β is the q × 1

vector of unknown regression coefficients, and γ = (γ1, . . . , γK−1)′ are the unknown cutpoints with
γ0 = −∞ and γK =∞. (There is no constant in this model because its effect is absorbed into the
cutpoints; see [R] ologit for details.)

x contains missing values that are to be filled in. Consider the partition of x = (x′o,x
′
m) into

n0 × 1 and n1 × 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Zo,Zm) into n0 × q and n1 × q submatrices.

mi impute ologit follows the steps below to fill in xm:

1. Fit an ordered logistic model (1) to the observed data (xo,Zo) to obtain the maximum
likelihood estimates, θ̂ = (β̂ ′, γ̂ ′)′, and their asymptotic sampling variance, Û.

2. Simulate new parameters, θ?, from the large-sample normal approximation, N(θ̂, Û), to its
posterior distribution assuming the noninformative prior Pr(θ) ∝ const.

3. Obtain one set of imputed values, x1
m, by simulating from an ordered logistic distribution as

defined by (1): one of K categories is randomly assigned to a missing category, im, using
the cumulative probabilities computed from (1) with β = β?, γ = γ?, and zi = zim .

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x1
m,x

2
m, . . . ,x

M
m .

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data, Pr(xm|xo,Zo), because θ? is drawn from the asymptotic approximation to its
posterior distribution.

If weights are specified, a weighted ordered logistic regression model is fit to the observed data
in step 1 (see [R] ologit for details).

References
Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply

imputing missing values using a sequence of regression models. Survey Methodology 27: 85–95.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219–242.

Also see
[MI] mi impute — Impute missing values

[MI] mi impute mlogit — Impute using multinomial logistic regression

[MI] mi estimate — Estimation using multiple imputations

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis
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mi impute pmm — Impute using predictive mean matching

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

mi impute pmm fills in missing values of a continuous variable by using the predictive mean
matching imputation method. You can perform separate imputations on different subsets of the data by
specifying the by() option. You can also account for analytic, frequency, importance, and sampling
weights.

Menu
Statistics > Multiple imputation

Syntax

mi impute pmm ivar
[

indepvars
] [

if
] [

weight
]
, knn(#)

[
impute options options

]
impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option
∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.
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options Description

Main

noconstant suppress constant term
∗knn(#) specify # of closest observations (nearest neighbors) to draw from
conditional(if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement
∗knn(#) is required.
You must mi set your data before using mi impute pmm; see [MI] mi set.
You must mi register ivar as imputed before using mi impute pmm; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

noconstant; see [R] estimation options.

add(), replace, rseed(), double, by(); see [MI] mi impute.

knn(#) specifies the number of closest observations (nearest neighbors) from which to draw imputed
values. This option is required. The closeness is determined based on the absolute difference
between the linear prediction for the missing value and that for the complete values. The closest
observation is the observation with the smallest difference. This option regulates the correlation
among multiple imputations that affects the bias and the variability of the resulting multiple-
imputation point estimates; see Remarks and examples for details.

conditional(if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks and examples in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

� � �
Reporting �

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the linear
regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when
the conditional() option is specified and group legends that may appear when the by() option
is specified.
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� � �
Advanced �

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples

Remarks are presented under the following headings:

Univariate imputation using predictive mean matching
Using mi impute pmm
Video example

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using predictive mean matching

Either predictive mean matching (pmm) or normal linear regression (regress) imputation methods
can be used to fill in missing values of a continuous variable (Rubin 1987; Schenker and Taylor 1996).
Predictive mean matching may be preferable to linear regression when the normality of the underlying
model is suspect.

Predictive mean matching (PMM) is a partially parametric method that matches the missing value
to the observed value with the closest predicted mean (or linear prediction). It was introduced by
Little (1988) based on Rubin’s (1986) ideas applied to statistical file matching. PMM combines the
standard linear regression and the nearest-neighbor imputation approaches. It uses the normal linear
regression to obtain linear predictions. It then uses the linear prediction as a distance measure to
form the set of nearest neighbors (possible donors) consisting of the complete values. Finally, it
randomly draws an imputed value from this set. By drawing from the observed data, PMM preserves
the distribution of the observed values in the missing part of the data, which makes it more robust
than the fully parametric linear regression approach.

With PMM, you need to decide how many nearest neighbors to include in the set of possible donors.
The number of nearest neighbors must be specified in mi impute pmm’s option knn(). The number
of nearest neighbors affects the correlation among imputations—the smaller the number, the higher
the correlation. High correlation in turn increases the variability of the MI point estimates. Including
too many possible donors may result in increased bias of the MI point estimates. Thus the number
of nearest neighbors regulates the tradeoff between the bias and the variance of the point estimators
in repeated sampling. The literature does not provide a definitive recommendation on how to choose
this number in practice; see Schenker and Taylor (1996) and Morris, White, and Royston (2014) for
some insight into this issue.

Using mi impute pmm

Recall the heart attack data from Univariate imputation in [MI] mi impute. We wish to fit a logistic
regression of attack on some predictors, one of which, bmi, has missing values. To avoid losing
information contained in complete observations of the other predictors, we impute bmi.
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We showed one way of imputing bmi in [MI] mi impute regress. Suppose, however, that we
want to restrict the imputed values of bmi to be within the range observed for bmi. We can use the
PMM imputation method to restrict the values. This method may also be preferable to the regression
imputation of bmi because the distribution of bmi is slightly skewed.

. use http://www.stata-press.com/data/r14/mheart0
(Fictional heart attack data; bmi missing)

. mi set mlong

. mi register imputed bmi
(22 m=0 obs. now marked as incomplete)

. mi impute pmm bmi attack smokes age hsgrad female, add(20) knn(1)

Univariate imputation Imputations = 20
Predictive mean matching added = 20
Imputed: m=1 through m=20 updated = 0

Nearest neighbors = 1

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

In the above, mi impute pmm used one nearest neighbor to draw from. That is, it replaced missing
values with an observed value whose linear prediction was the closest to that of the missing value.
Using only one nearest neighbor will typically result in high variability of the MI estimates. You can
increase the number of nearest neighbors from which the imputed value is drawn. For example, we
use 5 below:

. mi impute pmm bmi attack smokes age hsgrad female, replace knn(5)

Univariate imputation Imputations = 20
Predictive mean matching added = 0
Imputed: m=1 through m=20 updated = 20

Nearest neighbors = 5

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

See Morris, White, and Royston (2014) for recommendations on choosing the number of nearest
neighbors with predictive mean matching.

You can now refit the logistic model and examine the effect of using more neighbors:

. mi estimate: logit attack smokes age bmi hsgrad female
(output omitted )

See [MI] mi impute, [MI] mi impute regress, and [MI] mi estimate for more details.
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Video example

Multiple imputation, part 2: Imputing a single continuous variable with predictive mean matching

Stored results
mi impute pmm stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(knn) number of k nearest neighbors
r(k ivars) number of imputed variables (always 1)
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method (pmm)
r(ivars) names of imputation variables
r(rngstate) random-number state used
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group
r(N complete) number of complete observations in imputation sample in each group
r(N incomplete) number of incomplete observations in imputation sample in each group
r(N imputed) number of imputed observations in imputation sample in each group

Methods and formulas
mi impute pmm follows the steps as described in Methods and formulas of [MI] mi impute regress

with the exception of step 3.

Consider a univariate variable x = (x1, x2, . . . , xn)′ that follows a normal linear regression model

xi|zi ∼ N(z′iβ, σ
2) (1)

where zi = (zi1, zi2, . . . , ziq)
′ records values of predictors of x for observation i, β is the q × 1

vector of unknown regression coefficients, and σ2 is the unknown scalar variance. (Note that when
a constant is included in the model—the default—zi1 = 1, i = 1, . . . , n.)

x contains missing values that are to be filled in. Consider the partition of x = (x′o,x
′
m) into

n0 × 1 and n1 × 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Zo,Zm) into n0 × q and n1 × q submatrices.

mi impute pmm follows the steps below to fill in xm (for simplicity, we omit the conditioning on
the observed data in what follows):

1. Fit a regression model (1) to the observed data (xo,Zo) to obtain estimates β̂ and σ̂2 of
the model parameters.

2. Simulate new parameters β? and σ2
? from their joint posterior distribution under the con-

ventional noninformative improper prior Pr(β, σ2) ∝ 1/σ2. This is done in two steps:

σ2
? ∼ σ̂2(n0 − q)/χ2

n0−q

β?|σ2
? ∼ N

{
β̂, σ2

?(Z′oZo)
−1
}

http://www.youtube.com/watch?v=c75E2LBGoBQ
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3. Generate the imputed values, x1
m, as follows. Let x̂i be the linear prediction of x based

on predictors Z for observation i. Then for any missing observation i of x, xi = xjmin ,
where jmin is randomly drawn from the set of indices {i1, i2, . . . , ik} corresponding to
the first k minimums determined based on the absolute differences between the linear
prediction for incomplete observation i and linear predictions for all complete observations,
|x̂i − x̂j |, j ∈ obs. For example, if k = 1 (the default), jmin is determined based on
|x̂i − x̂jmin

| = minj∈obs|x̂i − x̂j |.
4. Repeat steps 2 and 3 to obtain M sets of imputed values, x1

m,x
2
m, . . . ,x

M
m .

If weights are specified, a weighted linear regression model is fit to the observed data in step 1
(see [R] regress for details).
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Also see
[MI] mi impute — Impute missing values

[MI] mi impute intreg — Impute using interval regression

[MI] mi impute regress — Impute using linear regression

[MI] mi impute truncreg — Impute using truncated regression

[MI] mi estimate — Estimation using multiple imputations

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis
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mi impute poisson — Impute using Poisson regression

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

mi impute poisson fills in missing values of a count variable using a Poisson regression imputation
method. You can perform separate imputations on different subsets of the data by specifying the by()
option. You can also account for frequency, importance, and sampling weights.

Menu
Statistics > Multiple imputation

Syntax
mi impute poisson ivar

[
indepvars

] [
if
] [

weight
] [

, impute options options
]

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option
∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

249
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options Description

Main

noconstant suppress constant term
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
conditional(if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement

Maximization

maximize options control the maximization process; seldom used

You must mi set your data before using mi impute poisson; see [MI] mi set.
You must mi register ivar as imputed before using mi impute poisson; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

noconstant; see [R] estimation options.

add(), replace, rseed(), double, by(); see [MI] mi impute.

exposure(varnamee), offset(varnameo); see [R] estimation options.

conditional(if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks and examples in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

� � �
Reporting �

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the Poisson
regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when
the conditional() option is specified and group legends that may appear when the by() option
is specified.

� � �
Maximization �

maximize options; see [R] poisson. These options are seldom used.
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� � �
Advanced �

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples
Remarks are presented under the following headings:

Univariate imputation using Poisson regression
Using mi impute poisson

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using Poisson regression

The Poisson regression imputation method can be used to fill in missing values of a count
variable (for example, Raghunathan et al. [2001] and van Buuren [2007]). It is a parametric method
that assumes an underlying Poisson model for the imputed variable (given other predictors). For
imputation of overdispersed count variables, see [MI] mi impute nbreg. The Poisson method is based
on the asymptotic approximation of the posterior predictive distribution of the missing data.

Using mi impute poisson

To illustrate the use of mi impute poisson, we continue with our heart attack data analysis
example in [MI] intro substantive and consider an additional predictor, npreg, which records the
number of pregnancies:

. use http://www.stata-press.com/data/r14/mheartpois
(Fictional heart attack data; npreg missing)

. misstable summarize
Obs<.

Unique
Variable Obs=. Obs>. Obs<. values Min Max

npreg 10 144 6 0 5

. tab female if npreg==.

Gender Freq. Percent Cum.

Male 7 70.00 70.00
Female 3 30.00 100.00

Total 10 100.00

According to misstable summarize, npreg is the only variable containing missing values, and it
has 10 out of 154 observations missing. The tabulation of missing values of npreg by gender reveals
that most missing values (7) correspond to males.
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In this example, we could replace missing npreg for males with 0 and proceed with complete-data
analysis, disregarding the remaining three missing observations. Instead, as an illustration, we use mi
impute poisson to impute missing values of npreg. Our dataset is not declared yet, so we use mi
set to declare it. We also use mi register to register npreg as the imputed variable before using
mi impute poisson:

. mi set mlong

. mi register imputed npreg
(10 m=0 obs. now marked as incomplete)

. mi impute poisson npreg attack smokes age bmi hsgrad, add(20)
> conditional(if female==1)

Univariate imputation Imputations = 20
Poisson regression added = 20
Imputed: m=1 through m=20 updated = 0

Conditional imputation:
npreg: incomplete out-of-sample obs. replaced with value 0

Observations per m

Variable Complete Incomplete Imputed Total

npreg 144 10 10 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The npreg variable is relevant to females only, so we used the conditional() option to restrict
imputation to observations with female==1; see Conditional imputation in [MI] mi impute.

We can analyze these multiply imputed data using logistic regression with mi estimate:

. mi estimate: logit attack smokes age bmi female hsgrad npreg
(output omitted )

Stored results
mi impute poisson stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables (always 1)
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method (poisson)
r(ivars) names of imputation variables
r(rngstate) random-number state used
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group
r(N complete) number of complete observations in imputation sample in each group
r(N incomplete) number of incomplete observations in imputation sample in each group
r(N imputed) number of imputed observations in imputation sample in each group
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Methods and formulas
Consider a univariate variable x = (x1, x2, . . . , xn)′ that follows a Poisson model

Pr(xi = x|zi) =
e−λiλxi
x!

, x = 0, 1, 2, . . . (1)

where λi = exp(z′iβ+offseti) (see [R] poisson), zi = (zi1, zi2, . . . , ziq)
′ records values of predictors

of x for observation i and β is the q× 1 vector of unknown regression coefficients. (When a constant
is included in the model—the default—zi1 = 1, i = 1, . . . , n.)

x contains missing values that are to be filled in. Consider the partition of x = (x′o,x
′
m) into

n0 × 1 and n1 × 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Zo,Zm) into n0 × q and n1 × q submatrices.

mi impute poisson follows the steps below to fill in xm:

1. Fit a Poisson regression model (1) to the observed data (xo,Zo) to obtain the maximum
likelihood estimates, β̂, and their asymptotic sampling variance, Û.

2. Simulate new parameters, β?, from the large-sample normal approximation, N(β̂, Û), to its
posterior distribution assuming the noninformative prior Pr(β) ∝ const.

3. Obtain one set of imputed values, x1
m, by simulating from a Poisson distribution (1) with

λi = λim = exp(z′imβ? + offsetim).

4. Repeat steps 2 and 3 to obtain M sets of imputed values x1
m,x

2
m, . . . ,x

M
m .

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data, Pr(xm|xo,Zo), because β? is drawn from the asymptotic approximation to its
posterior distribution.

If weights are specified, a weighted Poisson regression model is fit to the observed data in step 1
(see [R] poisson for details).

References
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Also see
[MI] mi impute — Impute missing values

[MI] mi impute nbreg — Impute using negative binomial regression

[MI] mi estimate — Estimation using multiple imputations

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis
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Description

mi impute regress fills in missing values of a continuous variable using the Gaussian normal
regression imputation method. You can perform separate imputations on different subsets of the data
by specifying the by() option. You can also account for analytic, frequency, importance, and sampling
weights.

Menu
Statistics > Multiple imputation

Syntax
mi impute regress ivar

[
indepvars

] [
if
] [

weight
] [

, impute options options
]

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option
∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.
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options Description

Main

noconstant suppress constant term
conditional(if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement

You must mi set your data before using mi impute regress; see [MI] mi set.
You must mi register ivar as imputed before using mi impute regress; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

noconstant; see [R] estimation options.

add(), replace, rseed(), double, by(); see [MI] mi impute.

conditional(if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks and examples in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

� � �
Reporting �

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from a linear
regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when
the conditional() option is specified and group legends that may appear when the by() option
is specified.

� � �
Advanced �

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.
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Remarks and examples
Remarks are presented under the following headings:

Univariate imputation using linear regression
Using mi impute regress
Video example

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using linear regression

When a continuous variable contains missing values, a linear regression imputation method (or
predictive mean matching; see [MI] mi impute pmm) can be used to fill in missing values (Rubin 1987;
Schenker and Taylor 1996). The linear regression method is a fully parametric imputation method
that relies on the normality of the model. Thus the imputation variable may need to be transformed
from the original scale to meet the normality assumption prior to using mi impute regress.

The linear regression method is perhaps the most popular method for imputing quantitative variables.
It is superior to other imputation methods when the underlying normal model holds. However, it can
be more sensitive to violations of this assumption than other nonparametric and partially parametric
imputation methods, such as predictive mean matching. For example, Schenker and Taylor (1996)
studied the sensitivity of the regression method to the misspecification of the regression function and
error distribution. They found that this method still performs well in the presence of heteroskedasticity
and when the error distribution is heavier-tailed than the normal. However, it resulted in increased
bias and variances under a misspecified regression function.

Using mi impute regress

Recall the heart attack data from Univariate imputation of [MI] mi impute. We wish to fit a logistic
regression of attack on some predictors, one of which (bmi) has missing values. To avoid losing
information contained in complete observations of the other predictors, we impute bmi.

The distribution of BMI is slightly skewed to the right, so we choose to fill in missing values of
BMI on a log-transformed scale here. To do that, we need to create a new variable, lnbmi, containing
the log of bmi and impute it:

. use http://www.stata-press.com/data/r14/mheart0
(Fictional heart attack data; bmi missing)

. generate lnbmi = ln(bmi)
(22 missing values generated)

. mi set mlong

. mi register imputed lnbmi
(22 m=0 obs. now marked as incomplete)

Following the steps in Imputing transformations of incomplete variables of [MI] mi impute, we create
the imputed variable lnbmi containing the log of bmi and register it as imputed. We omitted the step
of eliminating possible ineligible missing values in lnbmi because bmi ranges from 17 to 38 and we
do not anticipate any extra (algebraic) missing from the operation ln(bmi).

We now use mi impute to impute missing values of lnbmi. We create 20 imputations and specify
a random-number seed for reproducibility:
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. mi impute regress lnbmi attack smokes age hsgrad female, add(20) rseed(2232)

Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

lnbmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

From the output, all 22 incomplete values of lnbmi are imputed.

We want to use BMI in its original scale in the analysis. To do that, we need to replace bmi with
exponentiated lnbmi. Because bmi now is a function of the imputed variable, it becomes a passive
variable:

. mi register passive bmi

. quietly mi passive: replace bmi = exp(lnbmi)

Finally, we fit the logistic regression:

. mi estimate, dots: logit attack smokes age bmi hsgrad female

Imputations (20):
.........10.........20 done

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154

Average RVI = 0.0636
Largest FMI = 0.2619

DF adjustment: Large sample DF: min = 288.05
avg = 121496.74
max = 215505.49

Model F test: Equal FMI F( 5,18140.5) = 3.51
Within VCE type: OIM Prob > F = 0.0036

attack Coef. Std. Err. t P>|t| [95% Conf. Interval]

smokes 1.222696 .3606843 3.39 0.001 .5157605 1.929631
age .0358906 .0154728 2.32 0.020 .0055643 .0662169
bmi .1092684 .0522189 2.09 0.037 .0064894 .2120473

hsgrad .1733616 .405482 0.43 0.669 -.621373 .9680961
female -.0987609 .4186695 -0.24 0.814 -.9193435 .7218218
_cons -5.625106 1.791905 -3.14 0.002 -9.143989 -2.106223

We obtain results comparable with those from [MI] intro substantive.

Video example

Multiple imputation, part 1: How to impute a single continuous variable with mi impute regress

http://www.youtube.com/watch?v=i6SOlq0mjuc
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Stored results
mi impute regress stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables (always 1)
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method (regress)
r(ivars) names of imputation variables
r(rngstate) random-number state used
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group
r(N complete) number of complete observations in imputation sample in each group
r(N incomplete) number of incomplete observations in imputation sample in each group
r(N imputed) number of imputed observations in imputation sample in each group

Methods and formulas
Consider a univariate variable x = (x1, x2, . . . , xn)′ that follows a normal linear regression model

xi|zi ∼ N(z′iβ, σ
2) (1)

where zi = (zi1, zi2, . . . , ziq)
′ records values of predictors of x for observation i, β is the q × 1

vector of unknown regression coefficients, and σ2 is the unknown scalar variance. (Note that when
a constant is included in the model—the default—zi1 = 1, i = 1, . . . , n.)

x contains missing values that are to be filled in. Consider the partition of x = (x′o,x
′
m) into

n0 × 1 and n1 × 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Zo,Zm) into n0 × q and n1 × q submatrices.

mi impute regress follows the steps below to fill in xm (for simplicity, we omit the conditioning
on the observed data in what follows):

1. Fit a regression model (1) to the observed data (xo,Zo) to obtain estimates β̂ and σ̂2 of
the model parameters.

2. Simulate new parameters β? and σ2
? from their joint posterior distribution under the con-

ventional noninformative improper prior Pr(β, σ2) ∝ 1/σ2. This is done in two steps:

σ2
? ∼ σ̂2(n0 − q)/χ2

n0−q

β?|σ2
? ∼ N

{
β̂, σ2

?(Z′oZo)
−1
}

3. Obtain one set of imputed values, x1
m, by simulating from N(Zmβ?, σ

2
?In1×n1).

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x1
m,x

2
m, . . . ,x

M
m .

Steps 2 and 3 above correspond to simulating from the posterior predictive distribution of the
missing data Pr(xm|xo,Zo) (for example, see Gelman et al. [2014, 354–357]).
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If weights are specified, a weighted linear regression model is fit to the observed data in step 1
(see [R] regress for details). Also, in the case of aweights, σ2

?In1×n1 is replaced with σ2
?W

−1
n1×n1

in step 3, where W = diag(wi) and wi is the analytic weight for observation i.
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mi impute truncreg — Impute using truncated regression

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

mi impute truncreg fills in missing values of a continuous variable with a restricted range using
a truncated regression imputation method. You can perform separate imputations on different subsets
of the data by specifying the by() option. You can also account for analytic, frequency, importance,
and sampling weights.

Menu
Statistics > Multiple imputation

Syntax
mi impute truncreg ivar

[
indepvars

] [
if
] [

weight
] [

, impute options options
]

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option
∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

260



mi impute truncreg — Impute using truncated regression 261

options Description

Main

noconstant suppress constant term
ll(varname | #) lower limit for left-truncation
ul(varname | #) upper limit for right-truncation
offset(varnameo) include varnameo in model with coefficient constrained to 1
conditional(if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement

Maximization

maximize options control the maximization process; seldom used

You must mi set your data before using mi impute truncreg; see [MI] mi set.
You must mi register ivar as imputed before using mi impute truncreg; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

noconstant; see [R] estimation options.

add(), replace, rseed(), double, by(); see [MI] mi impute.

ll(varname | #) and ul(varname | #) indicate the lower and upper limits for truncation, respectively.
You may specify one or both. Observations with ivar≤ ll() are left-truncated, observations with
ivar≥ ul() are right-truncated, and the remaining observations are not truncated.

offset(varnameo); see [R] estimation options.

conditional(if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks and examples in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

� � �
Reporting �

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the truncated
regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when
the conditional() option is specified and group legends that may appear when the by() option
is specified.



262 mi impute truncreg — Impute using truncated regression

� � �
Maximization �

maximize options; see [R] truncreg. These options are seldom used.

� � �
Advanced �

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples
Remarks are presented under the following headings:

Univariate imputation using truncated regression
Using mi impute truncreg

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using truncated regression

The truncated regression imputation method can be used to fill in missing values of a continuous
variable with a restricted range (for example, Raghunathan et al. [2001] and Schafer [1997, 203]). It
is a parametric method that assumes an underlying truncated normal model for the imputed variable
(given other predictors). This method is based on the asymptotic approximation of the posterior
predictive distribution of the missing data.

Similar to estimation, it is important to distinguish between truncation and censoring when imputing
continuous variables with a limited range. Truncation arises when the distribution of a variable of
interest is restricted to a certain range—a truncated distribution. The probability that the variable takes
on values outside that range is zero. Truncated data may arise naturally (for example, SAT section
scores may not exceed 800) or may be the result of a particular study design (for example, only
subjects with income below a certain threshold are of interest in the study). See [R] truncreg for
more details.

Use mi impute intreg (see [MI] mi impute intreg) to impute continuous partially observed
(censored) variables.

Using mi impute truncreg

In [MI] mi impute pmm, we used predictive mean matching to impute missing values of bmi
(used as a predictor in the logistic analysis of heart attacks as described in [MI] intro substantive),
restricting imputed values to be within the observed range of bmi.

mi impute pmm imputes missing values of bmi, replacing them only with values already observed
in the data. Suppose that, instead, we want to allow imputed bmi values to take on any value within
a certain range. We can achieve this by using mi impute truncreg.
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. use http://www.stata-press.com/data/r14/mheart0
(Fictional heart attack data; bmi missing)

. summarize bmi

Variable Obs Mean Std. Dev. Min Max

bmi 132 25.24136 4.027137 17.22643 38.24214

The observed range of bmi in our data is between roughly 17 and 39.

We impute bmi from a normal distribution truncated at (17, 39):

. mi set mlong

. mi register imputed bmi
(22 m=0 obs. now marked as incomplete)

. mi impute truncreg bmi attack smokes age hsgrad female, add(20) ll(17) ul(39)

Univariate imputation Imputations = 20
Truncated regression added = 20
Imputed: m=1 through m=20 updated = 0

Limit: lower = 17 Number truncated = 0
upper = 39 left = 0

right = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

mi impute truncreg reports in the output header the truncation limits used (17 and 39 in our
example). If the ll() and ul() options are not specified, the truncation limits are displayed as -inf
and +inf, respectively, and the imputation model becomes equivalent to that using (unrestricted)
normal linear regression.

mi impute truncreg also reports numbers of truncated observations. In our example, all values
of bmi lie between 17 and 39, so there are no truncated observations. Truncated observations are not
used during estimation; see [R] truncreg.

Rather than restricting bmi to the observed range during imputation, it may be reasonable to
assume a wider range that is still consistent with the observed dataset. It may also be reasonable to
use different ranges for males and females. For example, considering the observed ages, suppose that
we assume a normal distribution for bmi truncated at (14, 55) for females and at (17, 50) for males.

To accommodate varying ranges, we first create variables containing gender-specific truncation
limits:

. quietly mi xeq: generate lbmi = cond(female==1, 14, 17)

. quietly mi xeq: generate ubmi = cond(female==1, 55, 50)

The declared style of our mi data is mlong, so it is not necessary to use the mi xeq prefix for
generating new variables. It is good practice, however, to use mi-specific commands so that your data
manipulation is appropriate no matter what the mi style is; see [MI] mi xeq and [MI] styles for details.
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We now replace the existing imputations with new ones, which account for varying ranges of bmi
among males and females:

. mi impute truncreg bmi attack smokes age hsgrad female, replace ll(lbmi)
> ul(ubmi)

Univariate imputation Imputations = 20
Truncated regression added = 0
Imputed: m=1 through m=20 updated = 20

Limit: lower = lbmi Number truncated = 0
upper = ubmi left = 0

right = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

We can analyze these multiply imputed data using logistic regression with mi estimate:

. mi estimate: logit attack smokes age bmi female hsgrad
(output omitted )

Stored results
mi impute truncreg stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables (always 1)
r(N trunc) number of truncated observations
r(N ltrunc) number of left-truncated observations
r(N rtrunc) number of right-truncated observations
r(ll) lower truncation limit (if ll(#) is specified)
r(ul) upper truncation limit (if ul(#) is specified)
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method (truncreg)
r(ivars) names of imputation variables
r(llopt) contents of ll(), if specified
r(ulopt) contents of ul(), if specified
r(rngstate) random-number state used
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group
r(N complete) number of complete observations in imputation sample in each group
r(N incomplete) number of incomplete observations in imputation sample in each group
r(N imputed) number of imputed observations in imputation sample in each group

Methods and formulas
Consider a univariate variable x = (x1, x2, . . . , xn)′ that follows a truncated normal model with

the density
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f(a,b)(x|zi) =
1
σφ
(
x−µi
σ

)
Φ
(
b−µi
σ

)
− Φ

(
a−µi
σ

) , a < x < b (1)

where φ(·) and Φ(·) are the standard normal density and cumulative distribution functions, respectively,
µi = z′iβ, zi = (zi1, zi2, . . . , ziq)

′ records values of predictors of x for observation i, β is the
q× 1 vector of unknown regression coefficients, σ2 is the unknown scalar variance, and a and b are
the respective known lower and upper truncation limits; also see [R] truncreg. (When a constant is
included in the model—the default—zi1 = 1, i = 1, . . . , n.)

x contains missing values that are to be filled in. Consider the partition of x = (x′o,x
′
m) into

n0 × 1 and n1 × 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Zo,Zm) into n0 × q and n1 × q submatrices.

mi impute truncreg follows the steps below to fill in xm:

1. Fit a truncated regression (1) to the observed data (xo,Zo) to obtain the maximum likelihood

estimates, θ̂ = (β̂
′
, lnσ̂)′, and their asymptotic sampling variance, Û.

2. Simulate new parameters, θ?, from the large-sample normal approximation, N(θ̂, Û), to its
posterior distribution assuming the noninformative prior Pr(θ) ∝ const.

3. Obtain one set of imputed values, x1
m, by simulating from a truncated normal model (1)

with parameters set to their simulated values from step 2: β = β? and σ = σ?.

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x1
m,x

2
m, . . . ,x

M
m .

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data, Pr(xm|xo,Zo), because θ? is drawn from the asymptotic approximation to its
posterior distribution.

If weights are specified, a weighted regression model is fit to the observed data in step 1 (see
[R] truncreg for details). Also, in the case of aweights, σ? is replaced with σ?w

−1/2
i in step 3,

where wi is the analytic weight for observation i.
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mi impute usermethod — User-defined imputation methods

Description Syntax Options Remarks and examples
Stored results Acknowledgment Also see

Description
This entry describes how to add your own imputation methods to the mi impute command.

Syntax
mi impute usermethod userspec

[
, options

]
usermethod is the name of the method you would like to add to the mi impute command. When

naming an mi impute method, you should follow the same convention as for naming the programs
you add to Stata—do not pick “nice” names that may later be used by Stata’s official methods.

userspec is a specification of an imputation model as supported by the user-defined method usermethod.
It must include imputation variables ivars. It may also include independent variables indepvars,
weights, and an if qualifier if those things are also supported by usermethod. The actual syntax of
userspec will be specific to usermethod. We encourage users who are adding their own methods to
mi impute to follow mi impute’s syntax or Stata’s general syntax when designing their methods.

options Description

impute options any option of mi impute except noupdate and by()

orderasis impute variables in the specified order
user options additional options supported by usermethod

You must mi set your data before using mi impute usermethod; see [MI] mi set.
You must mi register imputation variables as imputed before using mi impute usermethod; see [MI] mi set.

Options
impute options include add(), replace, rseed(), double, dots, noisily, nolegend, force;

see [MI] mi impute for details.

orderasis requests that the variables be imputed in the specified order. By default, variables are
imputed in order from the most observed to the least observed.

user options specify any additional options supported by usermethod.

Remarks and examples
Adding your own methods to mi impute is rather straightforward. Suppose that you want to add

a method called mymethod to mi impute.

266
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1. Write an ado-file that contains a program called mi impute cmd mymethod parse to parse
your imputation model.

2. Write an ado-file that contains a program called mi impute cmd mymethod, which will perform
a single imputation on all of your imputation variables.

3. Place the ado-files where Stata can find them.

You are done. You can now use mymethod within mi impute like any other official mi impute
method. mi impute will take care of performing your imputation step multiple times and will do it
properly for any mi style.

Remarks are presented under the following headings:

Toy example: Naive regression imputation
Steps for adding a new method to mi impute

Writing an imputation parser
Writing an initializer
Writing an imputer
Storing additional results
Writing a cleanup program

Examples
Naive regression imputation
Univariate regression imputation
Multivariate monotone imputation

Global macros

Toy example: Naive regression imputation

As a quick example, let’s write a method called naivereg to perform a naive regression imputation,
also known as stochastic regression imputation, of a single variable ivar based on independent variables
xvars.

First, let’s describe our imputation procedure.

1. Regress ivar on xvars using the observed data.

2. Obtain the linear predictor, xb.

3. Replace missing values in ivar with xb plus a random error generated from N(0, sigma mle),
where sigma mle is the estimated error standard deviation.

Let’s now write our imputation program. We create an ado-file called
mi impute cmd naivereg.ado that contains the following Stata program:

// imputer
program mi_impute_cmd_naivereg

version 14.1
/* step 1: run regression on observed data */
quietly regress $MI_IMPUTE_user_ivar $MI_IMPUTE_user_xvars
/* step 2: compute linear prediction */
tempvar xb
quietly predict double ‘xb’, xb
/* step 3: replace missing values */
quietly replace $MI_IMPUTE_user_ivar = ‘xb’ + rnormal(0,e(rmse)) ///

if $MI_IMPUTE_user_miss==1
end

Global macros MI IMPUTE user ivar and MI IMPUTE user xvars contain the names of the
imputation and independent variables, respectively, and MI IMPUTE user miss contains the indicator
for missing values in the imputation variable. ereturn scalar e(rmse) contains the estimated error
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standard deviation from the regress command used in step 1. The rnormal() function is used to
generate values from a normal distribution.

In addition to the imputer, we also need to write a parser program that passes the imputation model
specification to mi impute. We create an ado-file called mi impute cmd naivereg parse.ado
that contains the following simple program:

// parser
program mi_impute_cmd_naivereg_parse

version 14.1
syntax anything [, * ]
gettoken ivar xvars : anything
u_mi_impute_user_setup, ivars(‘ivar’) xvars(‘xvars’) ‘options’

end

The parser retrieves the information about imputation and independent variables to be supplied by
the user and passes it to mi impute via the utility program u mi impute user setup, which will
be discussed later.

We can now use naivereg with mi impute. For demonstration purposes only, let’s use our new
method to impute missing values of variable rep78 from the auto dataset. We will use complete
variables mpg and weight as predictors.

We load the data, declare the mi style, and register rep78 as an imputation variable.

. sysuse auto, clear
(1978 Automobile Data)

. mi set wide

. mi register imputed rep78

We now use our new method naivereg within mi impute.

. mi impute naivereg rep78 mpg weight, add(2)

Multiple imputation Imputations = 2
User method naivereg added = 2
Imputed: m=1 through m=2 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

rep78 69 5 5 74

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

We created two imputations using mi impute’s option add() and obtained the standard output
from mi impute. We imputed all five missing values of variable rep78 using the new naivereg
method.

This is just a simple example. Your imputation model can be as complicated as you would like.
See Examples for more complicated imputation models.

Steps for adding a new method to mi impute

Suppose you want to add your own method, usermethod, to the mi impute command. Here is an
outline of the steps to follow:
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1. Create a parser, a program called mi impute cmd usermethod parse and defined by the
ado-file mi impute cmd usermethod parse.ado that parses the imputation model and checks
the syntax of user-specific options, user options. See Writing an imputation parser.

2. Optionally, create an initializer, a program called mi impute cmd usermethod init and defined
by the ado-file mi impute cmd usermethod init.ado that performs certain tasks to be executed
once on the observed data. For example, during monotone imputation, the estimation of model
parameters can be done just once using the observed data. See Writing an initializer.

3. Create an imputer, a program called mi impute cmd usermethod and defined by the ado-file
mi impute cmd usermethod.ado that performs one round of imputation for all imputation
variables. See Writing an imputer.

4. Optionally, create a program for storing additional r() results called
mi impute cmd usermethod return and defined by the ado-file
mi impute cmd usermethod return.ado. See Storing additional results.

5. Optionally, create a cleanup program (or garbage collector), a program called
mi impute cmd usermethod cleanup and defined by the ado-file
mi impute cmd usermethod cleanup.ado that removes all the intermediate variables, global
macros, etc., you created during parsing, initialization, or imputation. See Writing a cleanup
program.

6. Place all of your programs where Stata can find them.

You can now use your usermethod with mi impute,
. mi impute usermethod . . .

and access any of mi impute’s options (except by() and noupdate).

Writing an imputation parser

A parser is a program that parses the imputation model specification userspec, passes the necessary
information to mi impute, and checks user-specified options. It must be defined within an ado file
with the name mi impute cmd usermethod parse.ado. You can use any of Stata’s parsing utilities
such as the syntax command to write your parser. It may be more convenient for users if you follow
the syntax of mi impute when designing your imputation methods.

At a minimum, your parser must supply information about the imputation variables to mi impute.
This is done via the ivars() option of the utility command u mi impute user setup:

u_mi_impute_user_setup, ivars(varlist) . . .

You may supply other information such as independent variables (complete predictors) in option
xvars(), weights, an if qualifier, and so on.

A simple univariate parser may look as follows.
program mi_impute_cmd_usermethod_parse

version . . .
syntax anything [if] [fw iw] [, * ]
gettoken ivar xvars : anything
u_mi_impute_user_setup ‘if’ [‘weight’‘exp’], ///

ivars(‘ivar’) xvars(‘xvars’) ‘options’
end

The above parser corresponds to the following userspec,

ivar
[

indepvars
] [

if
] [

weight
]

where only fweights and iweights are allowed.
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A simple multivariate parser may look as follows.

program mi_impute_cmd_usermethod_parse
version . . .
syntax anything(equalok) [if] [fw iw] [, * ]
gettoken ivars xvars : anything, parse("=")
gettoken eq xvars : xvars, parse("=")
u_mi_impute_user_setup ‘if’ [‘weight’‘exp’], ///

ivars(‘ivars’) xvars(‘xvars’) ‘options’
end

This parser corresponds to the following userspec,

ivars
[
= indepvars

] [
if
] [

weight
]

where only fweights and iweights are allowed.

You may also supply complete predictors, if qualifiers, and weights specific to each imputation
variable or control the order in which variables are imputed. Here is the full syntax of the utility
program.

u mi impute user setup
[

if
] [

weight
] [

, setup options
]

setup options Description

Main
∗ ivars(varlist) specify imputation variables
xvars(varlist) specify complete predictors for all imputation variables
xvars#(varlist) specify complete predictors for the #th imputation variable; overrides

xvars()

if#(if) specify an if qualifier for the #th imputation variable (in addition to the
global if )

weight#(weight) specify weights for the #th imputation variable; overrides global weights
orderasis impute variables in the specified order[
no
]
fillmissing do not replace current imputed data with missing values

title1(string) specify the main title
title2(string) specify the secondary title

∗ ivars(varlist) is required.

ivars(varlist) specifies the names of the imputation variables. This option is required.

xvars(varlist) specifies the names of the independent variables (complete predictors) for all imputation
variables. You may use xvars#() to override the complete predictors for the #th imputation variable.

xvars#(varlist) specifies the names of the independent variables for the #th imputation variable.
This option overrides the xvars() option for that variable. If xvars#() is not specified, then
xvars() (if specified) is assumed for that variable.

if#(if) specifies an if qualifier for the #th imputation variable. This option is used in conjunction
with the global if qualifier specified with the program to define an imputation sample for that
variable.

weight#(weight) specifies weights for the #th imputation variable. This option overrides the global
weight specified with the program. If weight#() is not specified, then the global weight (if
specified) is used for that variable.

orderasis requests that the variables be imputed in the specified order. By default, variables are
imputed in order from the most observed to the least observed.
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fillmissing or nofillmissing requests that the imputed data be filled in or not filled in with
missing values prior to the imputation. The default is fillmissing. This option is rarely used.

title1(string) specifies the main title. The default is “Multiple imputation”.

title2(string) specifies the secondary title. The default is “User method: usermethod”.

u mi impute user setup sets certain global macros used by mi impute; see Global macros
for details.

Writing an initializer

An initializer (in the context of mi impute) is a program that is executed once on the observed
data, m = 0, before imputation. This program is optional. If you choose to write an initializer, it must
be defined within an ado-file with the name mi impute cmd usermethod init.ado. This program
is useful if you have an estimation task that needs to be performed only once on the observed data.

For example, a univariate regression imputation requires that the regression be performed on the
observed data prior to imputation. A simple initializer for such imputation may look as follows.

program mi_impute_cmd_usermethod_init
version ...
quietly regress $MI_IMPUTE_user_ivar $MI_IMPUTE_user_xvars ///

if $MI_IMPUTE_user_touse
end

Writing an imputer

An imputer is a program that imputes missing values of all specified imputation vari-
ables once. This program is required and must be defined within an ado-file with the name
mi impute cmd usermethod.ado. mi impute will execute this program multiple times to pro-
duce multiply imputed datasets.

A simple univariate imputer may look as follows.

program mi_impute_cmd_usermethod
version ...
quietly replace $MI_IMPUTE_user_ivar = ... ///

if $MI_IMPUTE_user_miss
end

Storing additional results

To store results in addition to those provided by mi impute (see Stored results), you need to
create a r-class program called mi impute cmd usermethod return. Here is an example.

program mi_impute_cmd_ usermethod_return, rclass
version ...
syntax [, myopt(real 0) * ]
return scalar myopt = ‘myopt’

end
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Writing a cleanup program

A “cleanup” program or garbage collector is a program that is called at the end of the imputation
process to remove any intermediate results you created in your parser, initializer, or imputer that will
not be removed automatically upon program completion. For example, such results may include new
variables (except temporary variables), global macros, global names for estimation results, and so on.
This program is optional but highly recommended when you have intermediate results that need to
be cleared manually.

Examples

Naive regression imputation

Recall our introductory example from Toy example: Naive regression imputation of a naive (or
stochastic) regression imputation.

Initializer. We can make our imputer more computationally efficient by separating the estimation and
imputation tasks. Currently, regression is performed in each imputation. We can move this step into
the initializer.

// initializer (naivereg)
program mi_impute_cmd_naivereg_init

version 14.1
/* step 1: run regression on observed data */
quietly regress $MI_IMPUTE_user_ivar $MI_IMPUTE_user_xvars

end

Here is the updated imputer.

// imputer (naivereg)
program mi_impute_cmd_naivereg

version 14.1
/* step 2: compute linear prediction */
tempvar xb
quietly predict double ‘xb’, xb
/* step 3: replace missing values */
quietly replace $MI_IMPUTE_user_ivar = ‘xb’+rnormal(0,e(rmse)) ///

if $MI_IMPUTE_user_miss==1
end

If we now run mi impute naivereg, the regress command will be run only once, on the
observed data m = 0.

If qualifier and weights. We can also extend our method to allow the specification of an if qualifier
and, say, frequency weights.

// parser (naivereg, if and weights)
program mi_impute_cmd_naivereg_parse

version 14.1
syntax anything [if] [fw] [, * ]
gettoken ivar xvars : anything
u_mi_impute_user_setup ‘if’ [‘weight’‘exp’] , ///

ivars(‘ivar’) xvars(‘xvars’) ‘options’
end
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We updated the syntax statement to allow if and frequency weights and passed that information
to the utility program u mi impute user setup.

// initializer (naivereg, if and weights)
program mi_impute_cmd_naivereg_init

version 14.1
step 1: run regression on observed data */
quietly regress $MI_IMPUTE_user_ivar $MI_IMPUTE_user_xvars ///

$MI_IMPUTE_user_weight if $MI_IMPUTE_user_touse
end

We included the global macros containing the information about weights and the imputation sample
in our regress command.

// imputer (naivereg, if and weights)
program mi_impute_cmd_naivereg

version 14.1
/* step 2: compute linear prediction */
tempvar xb
quietly predict double ‘xb’ if $MI_IMPUTE_user_touse, xb
/* step 3: replace missing values */
quietly replace $MI_IMPUTE_user_ivar = ‘xb’+rnormal(0,e(rmse)) ///

if $MI_IMPUTE_user_miss==1
end

We restricted the computation of the linear predictor for the sample determined by the specified if
qualifier. A more efficient approach would be to also restrict the computation of the linear predictor for
missing values only. This can be done by replacing if $MI IMPUTE user touse in the predict
line above with if $MI IMPUTE user miss.

For example, we can now impute rep78 separately for foreign and domestic cars and incorporate
frequency weights. For the purpose of demonstration, we will use turn as a frequency weight.

. sysuse auto, clear
(1978 Automobile Data)

. mi set wide

. mi register imputed rep78

. mi impute naivereg rep78 mpg weight [fweight=turn] if foreign==1, add(2)

Multiple imputation Imputations = 2
User method naivereg added = 2
Imputed: m=1 through m=2 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

rep78 741 38 38 779

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)
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. mi impute naivereg rep78 mpg weight [fweight=turn] if foreign==0, replace

Multiple imputation Imputations = 2
User method naivereg added = 0
Imputed: m=1 through m=2 updated = 2

Observations per m

Variable Complete Incomplete Imputed Total

rep78 2005 150 150 2155

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Univariate regression imputation

In Naive regression imputation, we added a new method, naivereg. The reason we called this
imputation method naive is that it did not incorporate the uncertainty about the estimates of coefficients
and error standard deviation when computing the linear predictor and simulating the imputed values.

Let’s add a new method, myregress, that improves the naivereg method. The parser and the
initializer stay the same (except they need to be renamed to mi impute cmd myregress parse
and mi impute cmd myregress init, respectively). The imputer, however, changes substantially.
Before we move on to the programming task, let’s revisit the imputation procedure described in Toy
example: Naive regression imputation.

The linear predictor from step 2 is computed using the maximum likelihood estimates of regression
coefficients, beta mle, from step 1. Also, the random normal variates are generated using the maximum
likelihood estimate of the error standard deviation, sigma mle. The proper regression imputation
simulates a new set of parameters, beta and sigma, from their respective posterior distributions and
uses them to compute results in steps 2 and 3. Let’s update our imputation procedure.

1. Regress ivar on xvars using the observed data.

2. Simulate new regression coefficients beta and error standard deviation sigma from their respective
posterior distributions, which are based on their maximum likelihood estimates, beta mle and
sigma mle.

3. Obtain the linear predictor, xb, using the new regression coefficients beta.

4. Replace missing values in ivar with xb plus a random error generated from N(0, sigma).

Let’s now update our imputer.

// imputer (myregress)
program mi_impute_cmd_myregress, eclass

version 14.1
/* step 2: simulate new beta and sigma */
tempname sigma beta sigma_mle beta_mle vce_chol rnorm
matrix ‘beta_mle’ = e(b)
scalar ‘sigma_mle’ = e(rmse)
matrix ‘vce_chol’ = cholesky(e(V))/‘sigma_mle’
local ncols = colsof(‘beta_mle’)
/* draw beta and sigma from the posterior distribution */
scalar ‘sigma’ = ‘sigma_mle’*sqrt(e(df_r)/rchi2(e(df_r)))
mata: st_matrix("‘rnorm’", rnormal(‘ncols’,1,0,1))
matrix ‘beta’ = ‘beta_mle’+(‘sigma’*(‘vce_chol’*‘rnorm’))’
/* step 3: compute linear prediction */
ereturn repost b = ‘beta’ // repost new beta
tempvar xb
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quietly predict double ‘xb’ if $MI_IMPUTE_user_miss, xb
ereturn repost b = ‘beta_mle’ // repost back beta_mle
/* step 4: replace missing values */
quietly replace $MI_IMPUTE_user_ivar = ‘xb’+‘sigma’*rnormal() ///

if $MI_IMPUTE_user_miss==1
end

Our new imputer is much more involved. In step 2, we generate a new (temporary) matrix
of coefficients, ‘beta’, and a temporary scalar containing new error standard deviation. The new
parameters are simulated from their posterior distribution. In step 3, we repost new coefficients to
e() results to obtain the proper linear predictor, and we repost the old coefficients back to be used
in the next imputation. In step 4, we use a new ‘sigma’ to generate random errors.

We can check that we obtain the same imputed values as Stata’s official mi impute regress
command, provided that we use the same random-number seed. For example,

. sysuse auto, clear
(1978 Automobile Data)

. mi set wide

. mi register imputed rep78

. mi impute myregress rep78 mpg weight, add(1) rseed(234)

Multiple imputation Imputations = 1
User method myregress added = 1
Imputed: m=1 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

rep78 69 5 5 74

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

. mi impute regress rep78 mpg weight, add(1) rseed(234)

Univariate imputation Imputations = 2
Linear regression added = 1
Imputed: m=2 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

rep78 69 5 5 74

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

. mi xeq 1 2: summarize rep78

m=1 data:
-> summarize rep78

Variable Obs Mean Std. Dev. Min Max

rep78 74 3.37852 .9965215 1 5

m=2 data:
-> summarize rep78

Variable Obs Mean Std. Dev. Min Max

rep78 74 3.37852 .9965215 1 5
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Multivariate monotone imputation

Our previous examples demonstrated univariate imputation—imputation of a single variable. Here
we demonstrate an example of multivariate imputation for variables with a monotone missing-value
pattern. For simplicity, we will consider imputation of two variables using a new method, mymonreg.

We start with a parser.

// imputer (mymonreg)
program mi_impute_cmd_mymonreg_parse

version 14.1
syntax anything(equalok) [if] [, * ]
gettoken ivars xvars : anything, parse("=")
gettoken eq xvars : xvars, parse("=")
u_mi_impute_user_setup ‘if’, ivars(‘ivars’) xvars(‘xvars’) ‘options’

end

We separate multiple-imputation variables from the complete predictors with the equality (=) sign.
The same set of complete predictors will be used to impute all imputation variables.

// initializer (mymonreg)
program mi_impute_cmd_mymonreg_init

version 14.1
/* run regression on observed data for each imputation variable and

store estimation results */
quietly regress $MI_IMPUTE_user_ivar1 ///

$MI_IMPUTE_user_xvars1 if $MI_IMPUTE_user_touse1
quietly estimates store myreg1
quietly regress $MI_IMPUTE_user_ivar2 ///

$MI_IMPUTE_user_ivar1 $MI_IMPUTE_user_xvars2 ///
if $MI_IMPUTE_user_touse2

quietly estimates store myreg2
end

With multiple imputation variables, mi impute automatically orders them from the least missing to
the most missing. In our example, MI IMPUTE user ivar1 will contain the name of the imputation
variable with the least number of missing values, and MI IMPUTE user ivar2 with the most number.
You can use the orderasis option to prevent mi impute from ordering the variables. Notice that
during monotone imputation, the previously imputed variables are used as predictors of the subsequent
imputation variables in addition to the complete predictors. So we used MI IMPUTE user ivar1
as an additional predictor of MI IMPUTE user ivar2.

To avoid refitting models on each imputed dataset, we store estimation results as myreg1 and
myreg2. It is our responsibility to drop these estimation results from memory at the end of the
imputation.

During imputation, we will need to apply the steps of the regression imputation described in
Univariate regression imputation to each imputation variable. To simplify this task, we can create a
subprogram within our imputer that performs these steps, ImputeIvar. Then, our imputer may look
like this.
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// imputer (mymonreg)
program mi_impute_cmd_mymonreg

version 14.1
ImputeIvar 1 myreg1
ImputeIvar 2 myreg2

end

// subprogram defined within mi_impute_cmd_mymonreg.ado
program ImputeIvar, eclass

args index estres
/* load the appropriate estimation results */
quietly estimates restore ‘estres’
/* step 2: simulate new beta and sigma */
tempname sigma beta sigma_mle beta_mle vce_chol rnorm
matrix ‘beta_mle’ = e(b)
scalar ‘sigma_mle’ = e(rmse)
matrix ‘vce_chol’ = cholesky(e(V))/‘sigma_mle’
local ncols = colsof(‘beta_mle’)
/* draw beta and sigma from the posterior distribution */
scalar ‘sigma’ = ‘sigma_mle’*sqrt(e(df_r)/rchi2(e(df_r)))
mata: st_matrix("‘rnorm’", rnormal(‘ncols’,1,0,1))
matrix ‘beta’ = ‘beta_mle’+(‘sigma’*(‘vce_chol’*‘rnorm’))’
/* step 3: compute linear prediction */
ereturn repost b = ‘beta’ // repost new beta
tempvar xb
quietly predict double ‘xb’ if ${MI_IMPUTE_user_miss‘index’}, xb
ereturn repost b = ‘beta_mle’ // repost back beta_mle
/* step 4: replace missing values */
quietly replace ${MI_IMPUTE_user_ivar‘index’} = ‘xb’ + ///

rnormal(0,‘sigma’) if ${c -(}MI_IMPUTE_user_miss‘index’{c )-}==1
end

The ImputeIvar subprogram is almost the same as the imputer from the univariate regression
imputation, except we replaced global macros with their analogs specific to each imputation variable.
For example, we replaced MI IMPUTE user ivar with MI IMPUTE user ivar‘index’, where
local macro ‘index’ will contain a value of 1 or 2. We also passed to the subprogram the corresponding
names of the estimation results.

Finally, we write a cleanup program to drop the estimation results we created during initialization
from memory.

// cleanup program (mymonreg)
program mi_impute_cmd_mymonreg_cleanup

version 14.1
capture estimates drop myreg1 myreg2

end
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Returning to our auto example, we can replace missing values in rep78 and mpg.

. sysuse auto, clear
(1978 Automobile Data)

. quietly replace mpg = . in 3

. mi set wide

. mi register imputed rep78 mpg

. mi impute mymonreg rep78 mpg = weight, add(1)

Multiple imputation Imputations = 1
User method mymonreg added = 1
Imputed: m=1 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

rep78 69 5 5 74
mpg 73 1 1 74

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Global macros

mi impute usermethod stores global macros that can be consumed by the programmers of
imputation methods. The global macros are MI IMPUTE user name, where name is defined below.
Global macro MI IMPUTE user is set to 1 for all user-defined imputation methods and to 0 for all
official imputation methods.
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name Description

method name of the imputation method
user options method-specific options
k ivars total number of specified imputation variables (complete and incomplete)
allivars names of all specified imputation variables (complete and incomplete)
k ivarsinc number of incomplete imputation variables
ivarsinc names of incomplete imputation variables in the original order
ivars synonym for ivarsinc
ivarscomplete names of complete imputation variables in the original order
ivarsincord names of incomplete imputation variables ordered from the least missing

to the most missing
ordind indices of ordered imputation variables
incordind indices for ordered incomplete imputation variables
pattern monotone or nonmonotone pattern among all specified imputation vari-

ables with respect to the global imputation sample
ivar# name of the #th incomplete imputation variable
ivar synonym for ivar1; stored only with one imputation variable
xvars names of complete predictors for all incomplete imputation variables
xvars# names of the complete predictors for the #th incomplete imputation variable
weight global weight expression
weight# weight expression for the #th imputation variable
touse indicator for the global imputation sample
touse# indicator for the imputation sample for the #th imputation variable
tousevars names of all imputation-sample indicators
miss# missing-value indicator for the #th imputation variable
miss synonym for miss1; stored only with one imputation variable
missvars names of all missing-value indicators
m current imputation number
quietly contains quietly unless mi impute’s option noisily was specified
opt add content of option add()
opt replace content of option replace
opt rseed content of option rseed()
opt double content of option double
opt dots content of option dots
opt noisily content of option noisily
opt nolegend content of option nolegend
opt force content of option force
opt orderasis content of option orderasis

You may need to define your own global macros. In that case, you need to use the prefix
MI IMPUTE userdef for all of your global macros to avoid collision with mi impute’s internal
global macros.
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Stored results
mi impute usermethod stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables
r(N g) number of imputed groups

Macros
r(method) name of imputation method (usermethod)
r(ivars) names of imputation variables
r(rngstate) random-number state used

Matrices
r(N) number of observations in imputation sample
r(N complete) number of complete observations in imputation sample
r(N incomplete) number of incomplete observations in imputation sample
r(N imputed) number of imputed observations in imputation sample

You may also store your own results; see Storing additional results for details.

Acknowledgment
The development of this functionality was partially supported by the World Bank.

Also see
[MI] mi impute — Impute missing values

[MI] mi estimate — Estimation using multiple imputations
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[MI] intro substantive — Introduction to multiple-imputation analysis



Title

mi merge — Merge mi data

Description Menu Syntax Options
Remarks and examples Stored results Also see

Description
mi merge is merge for mi data; see [D] merge for a description of merging datasets.

It is recommended that the match variables (varlist in the syntax diagram) not include imputed
or passive variables, or any varying or super-varying variables. If they do, the values of the match
variables in m = 0 will be used to control the merge even in m = 1, m = 2, . . . , m = M . Thus
m = 0, m = 1, . . . , m = M will all be merged identically, and there will continue to be a one-to-one
correspondence between the observations in m = 0 with the observations in each of m > 0.

Menu
Statistics > Multiple imputation

Syntax
mi merge 1:1 varlist using filename

[
, options

]
mi merge m:1 varlist using filename

[
, options

]
mi merge 1:m varlist using filename

[
, options

]
mi merge m:m varlist using filename

[
, options

]
options Description

Options

generate(newvar) create newvar recording how observations matched
nolabel do not copy value-label definitions from using
nonotes do not copy notes from using
noreport do not display result summary table
force allow string/numeric variable type mismatch without error

Results

assert(results) require observations to match as specified
keep(results) results to keep

noupdate see [MI] noupdate option
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Notes:

1. Jargon:
match variables = varlist, variables on which match performed

master = data in memory
using = data on disk (filename)

2. Master must be mi set; using may be mi set.

3. mi merge is syntactically and logically equivalent to merge (see [D] merge).

4. mi merge syntactically differs from merge in that the nogenerate, sorted, keepusing(),
update, and replace options are not allowed. Also, no merge variable is created unless
the generate() option is specified.

5. filename must be enclosed in double quotes if filename contains blanks or other special
characters.

Options

� � �
Options �

generate(newvar) creates new variable newvar containing the match status of each observation in
the resulting data. The codes are 1, 2, and 3 from the table below.

nolabel prevents copying the value-label definitions from the using data to the master. Even if you
do not specify this option, label definitions from the using never replace those of the master.

nonotes prevents any notes in the using from being incorporated into the master; see [D] notes.

noreport suppresses the report that mi merge ordinarily presents.

force allows string/numeric variable type mismatches, resulting in missing values from the using
dataset. If omitted, mi merge issues an error message; if specified, mi merge issues a warning
message.

� � �
Results �

assert(results) specifies how observations should match. If results are not as you expect, an error
message will be issued and the master data left unchanged.

Code Word Description

1 master observation appeared in master only
2 using observation appeared in using only
3 match observation appeared in both

(Numeric codes and words are equivalent; you may use either.)

assert(match) specifies that all observations in both the master and the using are expected to
match, and if that is not so, an error message is to be issued. assert(match master) means
that all observations match or originally appeared only in the master. See [D] merge for more
information.

keep(results) specifies which observations are to be kept from the merged dataset. keep(match)
would specify that only matches are to be kept.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.
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Remarks and examples

Use mi merge when you would use merge if the data were not mi.

Remarks are presented under the following headings:

Merging with non-mi data
Merging with mi data
Merging with mi data containing overlapping variables

Merging with non-mi data

Assume that file ipats.dta contains data on the patients in the ICU of a local hospital. The data
are mi set, M = 5, and missing values have been imputed. File nurses.dta contains information
on nurses and is not mi data. You wish to add the relevant nurse information to each patient. Type

. use ipats, clear

. mi merge m:1 nurseid using nurses, keep(master)

The resulting data are still mi set with M = 5. The new variables are unregistered.

Merging with mi data

Now assume the same situation as above except this time nurses.dta is mi data. Some of the
nurse variables have missing values, and those values have been imputed. M is 6. To combine the
datasets, you type the same as you would have typed before:

. use ipats, clear

. mi merge m:1 nurseid using nurses, keep(master)

Remember, M = 5 in ipats.dta and M = 6 in nurses.dta. The resulting data have M = 6,
the larger value. There are missing values in the patient variables in m = 6, so we need to either
impute them or drop the extra imputation by typing mi set M = 5.

Merging with mi data containing overlapping variables

Now assume the situation as directly above but this time nurses.dta contains variables other
than nurseid that also appear in ipats.dta. Such variables—variables in common that are not used
as matching variables—are called overlapping variables. Assume seniornurse is such a variable.
Let’s imagine that seniornurse has no missing values and is unregistered in ipats.dta, but does
have missing values and is registered as imputed in nurses.dta.

You will want seniornurse registered as imputed if merging nurses.dta adds new observations
that have seniornurse equal to missing. On the other hand, if none of the added observations has
seniornurse equal to missing, then you will want the variable left unregistered. And that is exactly
what mi merge does. That is,

• Variables unique to the master will be registered according to how they were registered in
the master.

• Variables unique to the using will be registered according to how they were registered in
the using.

• Variables that overlap will be registered according to how they were in the master if there
are no unmatched using observations in the final result.
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• If there are such unmatched using observations in the final result, then the unique variables that
do not contain missing in the unmatched-and-kept observations will be registered according
to how they were registered in the master. So will all variables registered as imputed in the
master.

• Variables that do contain missing in the unmatched-and-kept observations will be registered
as imputed if they were registered as imputed in the using data or as passive if they were
registered as passive in the using data.

Thus variables might be registered differently if we typed

. mi merge m:1 nurseid using nurses, keep(master)

rather than

. mi merge m:1 nurseid using nurses, gen(howmatch)

. keep if howmatch==3

If you want to keep the matched observations, it is better to specify merge’s keep() option.

Stored results
mi merge stores the following in r():

Scalars
r(N master) number of observations in m=0 in master
r(N using) number of observations in m=0 in using
r(N result) number of observations in m=0 in result
r(M master) number of imputations (M) in master
r(M using) number of imputations (M) in using
r(M result) number of imputations (M) in result

Macros
r(newvars) new variables added

Thus values in the resulting data are

N = # of observations in m = 0
= r(N result)

k = # of variables
= k master + ‘:word count ‘r(newvars)’’

M = # of imputations
= max(r(M master), r(M using))
= r(M result)

Also see
[MI] intro — Introduction to mi

[D] merge — Merge datasets

[MI] mi append — Append mi data



Title

mi misstable — Tabulate pattern of missing values

Description Menu Syntax Options
Remarks and examples Stored results Also see

Description
mi misstable runs misstable onm = 0 or onm = # if the m(#) option is specified. misstable

makes tables to help in understanding the pattern of missing values in your data; see [R] misstable.

Menu
Statistics > Multiple imputation

Syntax
mi misstable summarize

[
varlist

] [
if
] [

, options
]

mi misstable patterns
[

varlist
] [

if
] [

, options
]

mi misstable tree
[

varlist
] [

if
] [

, options
]

mi misstable nested
[

varlist
] [

if
] [

, options
]

options Description

Main

exmiss treat .a, .b, . . . , .z as missing
m(#) run misstable on m = #; default is m = 0
other options see [R] misstable (generate() is not allowed; exok is assumed)

nopreserve programmer’s option; see [P] nopreserve option

Options� � �
Main �

exmiss specifies that the extended missing values, .a, .b, . . . , .z, are to be treated as missing.
misstable treats them as missing by default and has the exok option to treat them as nonmissing.
mi misstable turns that around and has the exmiss option.

In the mi system, extended missing values that are recorded in imputed variables indicate values
not to be imputed and thus are, in a sense, not missing, or more accurately, missing for a good
and valid reason.

The exmiss option is intended for use with the patterns, tree, and nested subcommands.
You may specify exmiss with the summarize subcommand, but the option is ignored because
summarize reports both extended and system missing in separate columns.
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m(#) specifies the imputation dataset on which misstable is to be run. The default is m = 0, the
original data.

other options are allowed; see [R] misstable.

Remarks and examples
See [R] misstable.

Stored results
See [R] misstable.

Also see
[MI] intro — Introduction to mi

[R] misstable — Tabulate missing values

[MI] mi varying — Identify variables that vary across imputations
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mi passive — Generate/replace and register passive variables

Description Menu Syntax Options
Remarks and examples Also see

Description
mi passive creates and registers passive variables or replaces the contents of existing passive

variables.

More precisely, mi passive executes the specified generate, egen, or replace command on
each of m = 0, m = 1, . . . , m = M ; see [D] generate and [D] egen. If the command is generate
or egen, then mi passive registers the new variable as passive. If the command is replace, then
mi passive verifies that the variable is already registered as passive.

Menu
Statistics > Multiple imputation

Syntax
mi passive: { generate | egen | replace } . . .

mi passive: by varlist: { generate | egen | replace } . . .

The full syntax is

mi passive
[
, options

]
:
[
by varlist

[
(varlist)

]
:
]
{ generate | egen | replace } . . .

options Description

noupdate see [MI] noupdate option
nopreserve do not first preserve

Also see [D] generate and [D] egen.

Options
noupdate in some cases suppresses the automatic mi update this command might perform; see

[MI] noupdate option.

nopreserve is a programmer’s option. It specifies that mi passive is not to preserve the data
if it ordinarily would. This is used by programmers who have already preserved the data before
calling mi passive.

287



288 mi passive — Generate/replace and register passive variables

Remarks and examples
Remarks are presented under the following headings:

mi passive basics
mi passive works with the by prefix
mi passive works fastest with the wide style
mi passive and super-varying variables
Renaming passive variables
Dropping passive variables
Update passive variables when imputed values change
Alternatives to mi passive

mi passive basics

A passive variable is a variable that is a function of imputed variables or of other passive variables.
For instance, if variable age were imputed and you created lnage from it, the lnage variable would
be passive. The right way to create lnage is to type

. mi passive: generate lnage = ln(age)

Simply typing

. generate lnage = ln(age)

is not sufficient because that would create lnage in the m = 0 data, and age, being imputed, varies
across m. There are situations where omitting the mi passive prefix would be almost sufficient,
namely, when the data are mlong or flong style, but even then you would need to follow up by typing
mi register passive lnage.

To create passive variables or to change the values of existing passive variables, use mi passive.
Passive variables cannot be super-varying; see mi passive and super-varying variables.

mi passive works with the by prefix

You can use mi passive with the by prefix. For instance, you can type

. mi passive: by person: generate totaltodate = sum(amount)

You do not need to sort the data before issuing either of these commands, nor are you required
to specify by’s sort option. mi passive handles sorting issues for you.

Use by’s parenthetical syntax to specify the order within by, if that is necessary. For instance,

. mi passive: by person (time): generate lastamount = amount[_n-1]

Do not omit the parenthetical time and instead attempt to sort the data yourself:

. sort person time

. mi passive: by person: generate lastamount = amount[_n-1]

Sorting the data yourself will work if your data happen to be wide style; it will not work in general.
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mi passive works fastest with the wide style

mi passive works with any style, but it works fastest when the data are wide style. If you are
going to issue multiple mi passive commands, you can usually speed execution by first converting
your data to the wide style; see [MI] mi convert.

mi passive and super-varying variables

You should be careful not to mistakenly use mi passive to create super-varying variables. Super-
varying variables cannot be passive variables because the values of a super-varying variable differ not
only in the incomplete observations but also in the complete observations across imputations.

As noted in [MI] mi set, super-varying variables should never be registered. If a super-varying
variable is registered as passive, it will be converted to a varying variable. All complete observations
of the super-varying variable in each imputation will be replaced with their values from m = 0.

mi passive registers the created variable as passive. Even if the command you use with mi
passive creates a super-varying variable, mi passive will convert it to varying, as described above.

You can use mi passive with any function that produces values that solely depend on values
within the observation. In general, you cannot use mi passive with functions that produce values
that depend on groups of observations.

For example, most egen functions result in super-varying variables. In such cases, you should
use mi xeq: egen to create them and leave them unregistered; see [MI] mi xeq. You might thus
conclude that you should never use mi passive with egen. That is not true, but it is nearly true.
You may use mi passive with egen’s rowmean() function, for instance, because it produces values
that depend only on one observation at a time.

Renaming passive variables

Use mi rename (see [MI] mi rename) to rename all variables, not just passive variables:

. mi rename oldname newname

rename (see [D] rename) is insufficient for renaming passive variables regardless of the style of
your data.

Dropping passive variables

Use drop (see [D] drop) to drop variables (or observations), but run mi update (see [MI] mi
update) afterward.

. drop var_or_vars

. mi update

This advice applies for all variables, not just passive ones.
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Update passive variables when imputed values change

Passive variables are not automatically updated when the values of the underlying imputed variables
change.

If imputed values change or if you add more imputations, you must update or re-create the passive
variables. If you have several passive variables, we suggest you make a do-file to create them. You
can run the do-file again whenever necessary. A do-file to create lnage and totaltodate might
read

begin cr_passive.do
use mydata, clear

capture drop lnage
capture drop totaltodate
mi update

mi passive: generate lnage = ln(age)
mi passive: by person (time): generate totaltodate = sum(amount)

end cr_passive.do

Alternatives to mi passive

mi passive can run any generate, replace, or egen command. If that is not sufficient to create
the variable you need, you will have to create the variable for yourself. Here is how you do that:

1. If your data are wide or mlong, use mi convert (see [MI] mi convert) to convert them to
one of the fully long styles, flong or flongsep, and then continue with the appropriate step
below.

2. If your data are flong, mi system variable mi m records m. Create your new variable
by using standard Stata commands, but do that by mi m. After creating the variable, mi
register it as passive; see [MI] mi set.

3. If your data are flongsep, create the new variable in each of the m = 0, m = 1, . . . ,
m = M datasets, and then register the result. Start by working with a copy of your data:

. mi copy newname

The data in memory at this point correspond to m = 0. Create the new variable and then
save the data:

. (create new_variable)

. save newname, replace

Now use the m = 1 data and repeat the process:

. use _1_newname

. (create new_variable)

. save _1_newname, replace

Repeat for m = 2, m = 3, . . . , m = M .

At this point, the new variable is created but not yet registered. Reload the original m = 0
data, register the new variable as passive, and run mi update (see [MI] mi update):

. use newname

. register passive new_variable

. mi update
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Finally, copy the result back to your original flongsep data,

. mi copy name, replace

or if you started with mlong, flong, or wide data, then convert the data back to your preferred
style:

. mi convert original_style

Either way, erase the newname flongsep dataset collection:

. mi erase newname

The third procedure can be tedious and error-prone if M is large. We suggest that you make a
do-file to create the variable and then run it on each of the m = 0, m = 1, . . . , m = M datasets:

. mi copy newname

. do mydofile

. save newname, replace

. forvalues m=1(1)20 { // we assume M=20
> use _‘m’_newname
> do mydofile
> save _‘m’_newname, replace
> }

. use newname

. register passive new_variable

. mi update

Also see
[MI] intro — Introduction to mi

[MI] mi reset — Reset imputed or passive variables

[MI] mi xeq — Execute command(s) on individual imputations
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mi predict — Obtain multiple-imputation predictions

Description Menu Syntax Options
Remarks and examples Methods and formulas References Also see

Description
mi predict using miestfile is for use after mi estimate, saving(miestfile): . . . to obtain

multiple-imputation (MI) linear predictions or their standard errors.

mi predictnl using miestfile is for use after mi estimate, saving(miestfile): . . . to obtain MI
(possibly) nonlinear predictions, their standard errors, and other statistics, including statistics specific
to MI.

MI predictions, their standard errors, and other statistics are obtained by applying Rubin’s combina-
tion rules observationwise to the completed-data predictions, predictions computed for each imputation
(White, Royston, and Wood 2011). The results are stored in the original data (m = 0). See [R] predict
and [R] predictnl for details about the computation of the completed-data predictions.

mi predict and mi predictnl may change the sort order of the data.

Menu
Statistics > Multiple imputation

Syntax
Obtain multiple-imputation linear predictions

mi predict
[

type
]

newvar
[

if
]
using miestfile

[
, predict options options

]
Obtain multiple-imputation nonlinear predictions

mi predictnl
[

type
]

newvar = pnl exp
[

if
]
using miestfile

[
, pnl options options

]
miestfile.ster contains estimation results previously saved by mi estimate, saving(miestfile);

see [MI] mi estimate.

pnl exp is any valid Stata expression and may also contain calls to two special functions unique to
predictnl: predict() and xb(); see [R] predictnl for details.

predict options Description

Predict options

xb calculate linear prediction; the default
stdp calculate standard error of the prediction
nooffset ignore any offset() or exposure() variable
equation(eqno) specify equations after multiple-equation commands

292
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pnl options Description

Predict options

se(newvar) create newvar containing standard errors
variance(newvar) create newvar containing variances
wald(newvar) create newvar containing the Wald test statistic
p(newvar) create newvar containing the significance level (p-value) of the

Wald test
ci(newvars) create newvars containing lower and upper confidence intervals
level(#) set confidence level; default is level(95)

bvariance(newvar) create newvar containing between-imputation variances
wvariance(newvar) create newvar containing within-imputation variances
df(newvar) create newvar containing MI degrees of freedom
nosmall do not apply small-sample correction to degrees of freedom
rvi(newvar) create newvar containing relative variance increases
fmi(newvar) create newvar containing fractions of missing information
re(newvar) create newvar containing relative efficiencies

Advanced

iterate(#) maximum iterations for finding optimal step size to compute
completed-data numerical derivatives of pnl exp; default is 100

force calculate completed-data standard errors, etc., even when possibly
inappropriate

options Description

MI options

nimputations(#) specify number of imputations to use in computation; default is
to use all existing imputations

imputations(numlist) specify which imputations to use in computation
estimations(numlist) specify which estimation results to use in computation
esample(varname) restrict the prediction to the estimation subsample

identified by a binary variable varname
storecompleted store completed-data predictions in the imputed data; available only

in the flong and flongsep styles

Reporting

replay replay command-specific results from each individual estimation in
miestfile.ster

cmdlegend display the command legend

noupdate do not perform mi update; see [MI] noupdate option
noerrnotes suppress error notes associated with failed estimation results in

miestfile.ster
showimputations show imputations saved in miestfile.ster

noupdate, noerrnotes, and showimputations do not appear in the dialog box.
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Options

� � �
Predict options �

xb, stdp, nooffset, equation(eqno); see [R] predict.

se(newvar), variance(newvar), wald(newvar), p(newvar), ci(newvars), level(#); see [R] pre-
dictnl. These options store the specified MI statistics in variable newvar in the original data (m = 0).
level() is relevant in combination with ci() only. If storecompleted is specified, then newvar
contains the respective completed-data estimates in the imputed data (m > 0). Otherwise, newvar
is missing in the imputed data.

bvariance(newvar) adds newvar of storage type type, where for each i in the prediction sample,
newvar[i] contains the estimated between-imputation variance of pnl exp[i]. storecompleted
has no effect on bvariance().

wvariance(newvar) adds newvar of storage type type, where for each i in the prediction sample,
newvar[i] contains the estimated within-imputation variance of pnl exp[i]. storecompleted
has no effect on wvariance().

df(newvar) adds newvar of storage type type, where for each i in the prediction sample, newvar[i]
contains the estimated MI degrees of freedom of pnl exp[i]. If storecompleted is specified,
then newvar in the imputed data will contain the complete-data degrees of freedom as saved by mi
estimate. In the absence of the complete-data degrees of freedom or if nosmall is used, then
newvar is missing in the imputed data, even if storecompleted is specified.

nosmall specifies that no small-sample correction be made to the degrees of freedom. By default,
the small-sample correction of Barnard and Rubin (1999) is used. This option has an effect on the
results stored by p(), ci(), df(), fmi(), and re().

rvi(newvar) adds newvar of storage type type, where for each i in the prediction sample, newvar[i]
contains the estimated relative variance increase of pnl exp[i]. storecompleted has no effect
on rvi().

fmi(newvar) adds newvar of storage type type, where for each i in the prediction sample, newvar[i]
contains the estimated fraction of missing information of pnl exp[i]. storecompleted has no
effect on fmi().

re(newvar) adds newvar of storage type type, where for each i in the prediction sample, newvar[i]
contains the estimated relative efficiency of pnl exp[i]. storecompleted has no effect on re().

� � �
MI options �

nimputations(#) specifies that the first # imputations be used; # must be 2 ≤ # ≤M . The default
is to use all imputations, M . Only one of nimputations(), imputations(), or estimations()
may be specified.

imputations(numlist) specifies which imputations to use. The default is to use all of them. numlist
must contain at least two numbers corresponding to the imputations saved in miestfile.ster. You
can use the showimputations option to display imputations currently saved in miestfile.ster.
Only one of nimputations(), imputations(), or estimations() may be specified.

estimations(numlist) does the same thing as imputations(numlist), but this time the imputations
are numbered differently. Say that miestfile.ster was created by mi estimate and mi estimate
was told to limit itself to imputations 1, 3, 5, and 9. With imputations(), the imputations are
still numbered 1, 3, 5, and 9. With estimations(), they are numbered 1, 2, 3, and 4. Usually,
one does not specify a subset of imputations when using mi estimate, and so usually, the
imputations() and estimations() options are identical. The specified numlist must contain
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at least two numbers. Only one of nimputations(), imputations(), or estimations() may
be specified.

esample(varname) restricts the prediction to the estimation sample identified by a binary variable
varname. By default, predictions are obtained for all observations in the original data. Variable
varname cannot be registered as imputed or passive and cannot vary across imputations.

storecompleted stores completed-data predictions in the newly created variables in each imputation.
By default, the imputed data contain missing values in the newly created variables. The store-
completed option may be specified only if the data are flong or flongsep; see [MI] mi convert
to convert to one of those styles.

� � �
Reporting �

replay replays estimation results from miestfile.ster, previously saved by mi estimate, sav-
ing(miestfile).

cmdlegend requests that the command line corresponding to the estimation command used to produce
the estimation results saved in miestfile.ster be displayed.

� � �
Advanced �

iterate(#), force; see [R] predictnl.

The following options are available with mi predict and mi predictnl but are not shown in the
dialog box:

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option. This option is rarely used.

noerrnotes suppresses notes about failed estimation results. These notes appear when miestfile.ster
contains estimation results, previously saved by mi estimate, saving(miestfile), from imputations
for which the estimation command used with mi estimate failed to estimate parameters.

showimputations displays imputation numbers corresponding to the estimation results saved in
miestfile.ster.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using mi predict and mi predictnl
Example 1: Obtain MI linear predictions and other statistics
Example 2: Obtain MI linear predictions for the estimation sample
Example 3: Obtain MI estimates of probabilities
Example 4: Obtain other MI predictions
Example 5: Obtain MI predictions after multiple-equation commands

Introduction

Various predictions are often of interest after estimation. Within the MI framework, one must first
decide what prediction means. There is no single dataset with respect to which prediction is made.
Rather, there are multiple datasets in which values of imputed predictors vary from one dataset to
another.
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One definition is simply to consider an observation-specific prediction to be a parameter of interest
and apply Rubin’s combination rules to it as to any other estimand (White, Royston, and Wood 2011).
The next thing to decide is what types of predictions are appropriate for pooling. For any parameter,
the applicability of combination rules is subject to a number of conditions that the parameter must
satisfy. One of them is asymptotic normality of the completed-data estimates of the parameter; see,
for example, Theory underlying multiple imputation under Remarks and examples of [MI] intro
substantive for a full set of conditions.

It is safe to apply combination rules to the linear predictor, as computed by mi predict. It
is also safe to apply combination rules to functions, possibly nonlinear, of the linear predictor,
provided the sampling distribution of that function is asymptotically normal. This can be done by
using mi predictnl. mi predictnl also provides, with the predict() specification, a way of
obtaining MI estimates for various types of predictions specific to each estimation command used with
mi estimate. Care should be taken when using this functionality. Some predictions may require
preliminary transformation to a scale that improves normality, which is more appropriate for pooling.
The obtained MI estimates of predictions may then be back-transformed to obtain final predictions in
the original metric. For example, one can obtain MI estimates of probabilities of a positive outcome
after logistic estimation by pooling the completed-data estimates of the actual probabilities. A better
approach is to pool the completed-data estimates of the linear predictor and then apply an inverse-logit
transformation to obtain the probability of a positive outcome. Other available predictions, such as
standard errors, may not even be applicable for pooling.

The MI predictions should be treated as a final result; they should not be used as intermediate
results in computations. For example, MI estimates of the linear predictor cannot be used to compute
residuals as is done in non-MI analysis. Instead, completed-data residuals should be calculated for
each imputed dataset, and these can be obtained by using the mi xeq: command. For example,

. mi xeq: regress . . . ; predict resid, r

Because completed-data predictions are super varying, they should only be computed in the flong or
flongsep styles.

Using mi predict and mi predictnl

mi predict and mi predictnl require that completed-data estimation results saved by mi
estimate, saving() are supplied with the using specification and that the mi data used to obtain
these results are in memory. Apart from this, the use of these commands is similar to that of their
non-mi counterparts, predict and predictnl (see [R] predict and [R] predictnl).

By default, mi predict computes MI linear predictions. If the stdp option is specified, mi
predict computes standard errors of the MI linear predictions. As with predict, the equation()
option can be used with mi predict after multiple-equation commands to obtain linear predictions
or their standard errors from a specific equation.

Similarly to predictnl, a number of statistics associated with predictions can be obtained with mi
predictnl, such as confidence intervals and p-values. Additionally, a number of MI statistics, such
as relative variance increases and fractions of missing information, are available with mi predictnl.
As we mentioned in Introduction, the predict() function of mi predictnl offers a variety of
predictions. However, you should carefully consider whether the requested prediction is applicable
for pooling or, perhaps, needs a preliminary transformation to improve normality.

Unlike predict, mi predict always defaults to the linear prediction. It supports only the
linear prediction or its standard error and does not support any other command-specific predictions.
Command-specific predictions appropriate for pooling may be obtained with the predict() function
of mi predictnl. Also unlike predict after some multiple-equation commands, mi predict does
not allow specification of multiple new variables to store predictions from all equations. For each
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equation eqno, you should use mi predict, equation(eqno) to obtain predictions from equation
eqno.

To obtain estimation-sample predictions, the if e(sample) restriction is usually used with predict
and predictnl. This restriction is not allowed with mi predict and mi predictnl. mi estimate
does not set an estimation sample. There is no single estimation sample within the MI framework;
there are M of them, and they may vary across imputed datasets. To obtain estimation-sample
predictions with mi predict and mi predictnl, you must first store the estimation sample in
a variable and then specify this variable in the esample() option. For example, you may use mi
estimate’s esample(newvar) option to store the estimation sample in newvar. To use mi estimate,
esample(), you must be in flong or flongsep style; use [MI] mi convert to convert to one of these
styles.

mi predict and mi predictnl store MI predictions and statistics associated with them in the
original data (m = 0). If your data are flong or flongsep, you may additionally store the corresponding
completed-data estimates in the imputed data (m > 0) by specifying the storecompleted option.
This option only affects results for which completed-data counterparts are available, such as predictions,
standard errors, and confidence intervals. It has no effect on statistics specific to MI, such as relative
variance increases and fractions of missing information.

When you restrict predictions to a subsample, mi predict and mi predictnl verify that the
prediction samples are the same across imputed datasets. If varying prediction samples are detected,
the commands terminate with an error. If such a situation occurs, you may consider modifying your
restriction to define a sample common to all imputations. If there are a few imputations violating the
consistency of the prediction sample, you may obtain MI predictions over a selected set of imputations
using, for example, the imputations() option.

Example 1: Obtain MI linear predictions and other statistics

Recall the analysis of house resale prices from Example 2: Completed-data linear regression
analysis in [MI] mi estimate:

. use http://www.stata-press.com/data/r14/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi estimate, saving(miest): regress price tax sqft age nfeatures ne custom
> corner

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117

Average RVI = 0.0648
Largest FMI = 0.2533
Complete DF = 109

DF adjustment: Small sample DF: min = 69.12
avg = 94.02
max = 105.51

Model F test: Equal FMI F( 7, 106.5) = 67.18
Within VCE type: OLS Prob > F = 0.0000

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253
sqft .2118129 .069177 3.06 0.003 .0745091 .3491168
age .2471445 1.653669 0.15 0.882 -3.051732 3.546021

nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623
ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818
corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972
_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229
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We saved complete-data estimation results to miest.ster using mi estimate’s saving() option.

We store MI linear predictions in variable xb mi:

. mi predict xb_mi using miest
(option xb assumed; linear prediction)

. mi xeq 0: summarize price xb_mi

m=0 data:
-> summarize price xb_mi

Variable Obs Mean Std. Dev. Min Max

price 117 1062.735 380.437 540 2150
xb_mi 117 1062.735 344.2862 523.0295 2042.396

MI predictions are stored in the original data (m = 0). The predictions of price seem reasonable.

We compute standard errors of MI linear predictions by using the stdp option:

. mi predict stdp_mi using miest, stdp

To obtain other statistics, such as confidence intervals and Wald test statistics, we can use mi
predictnl. For example, we compute linear predictions, 95% confidence intervals, and fractions of
missing information of the linear predictions as follows:

. mi predictnl xb1_mi = predict(xb) using miest, ci(cil_mi ciu_mi) fmi(fmi)

Unlike confidence intervals produced by predictnl, confidence intervals from mi predictnl are
based on observation-specific degrees of freedom. Recall from [MI] mi estimate that the degrees of
freedom used for MI inference is inversely related to relative variance increases due to missing data,
which are parameter-specific. The prediction for each observation is viewed as a separate parameter,
so it has its own degrees of freedom. If desired, you may obtain observation-specific MI degrees of
freedom by specifying the df() option with mi predictnl.

Example 2: Obtain MI linear predictions for the estimation sample

To obtain MI linear predictions for the estimation sample, we must first store the estimation sample
in a variable. To store the estimation sample with mi estimate, the mi data must be flong or flongsep.

Continuing our house resale prices example, the data are mlong:

. use http://www.stata-press.com/data/r14/mhouses1993s30, clear
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi query
data mi set mlong, M = 30
last mi update 03nov2014 12:01:25, 4 days ago

We switch to the flong style by using the mi convert command (see [MI] mi convert) and store
the estimation sample in variable touse by using mi estimate, esample():
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. mi convert flong

. mi estimate, esample(touse): regress price tax sqft age nfeatures ne custom
> corner

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117

Average RVI = 0.0648
Largest FMI = 0.2533
Complete DF = 109

DF adjustment: Small sample DF: min = 69.12
avg = 94.02
max = 105.51

Model F test: Equal FMI F( 7, 106.5) = 67.18
Within VCE type: OLS Prob > F = 0.0000

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253
sqft .2118129 .069177 3.06 0.003 .0745091 .3491168
age .2471445 1.653669 0.15 0.882 -3.051732 3.546021

nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623
ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818
corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972
_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

Because we use the same regression model, we do not need to resave estimation results and we
can use the previously saved miest.ster from Example 1: Obtain MI linear predictions and other
statistics with mi predict.

To restrict the linear prediction to the estimation sample identified by the touse variable, we use
esample(touse) with mi predict:

. mi predict xb_mi using miest, esample(touse)
(option xb assumed; linear prediction)

. mi xeq 0: summarize xb_mi

m=0 data:
-> summarize xb_mi

Variable Obs Mean Std. Dev. Min Max

xb_mi 117 1062.735 344.2862 523.0295 2042.396

The estimation sample includes all observations, so we obtain the same predictions as we did in
example 1.

We could simply use an if restriction instead of the esample() option to obtain the same results:

. mi predict xb_mi if touse using miest
(output omitted )

But if you use the esample() option, mi predict and mi predictnl perform additional checks to
verify that the supplied variable is a proper estimation-sample variable.

By default, the MI linear prediction is only stored in the original data (m = 0) and the imputed data
contain missing values in the corresponding variable. In the flong and flongsep styles, we can also
store completed-data predictions in the imputed data (m > 0) by specifying the storecompleted
option:
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. mi predict xb_mi_all using miest, esample(touse) storecompleted
(option xb assumed; linear prediction)

. mi xeq 0 1 2: summarize xb_mi_all

m=0 data:
-> summarize xb_mi_all

Variable Obs Mean Std. Dev. Min Max

xb_mi_all 117 1062.735 344.2862 523.0295 2042.396

m=1 data:
-> summarize xb_mi_all

Variable Obs Mean Std. Dev. Min Max

xb_mi_all 117 1062.735 346.1095 529.5227 2042.942

m=2 data:
-> summarize xb_mi_all

Variable Obs Mean Std. Dev. Min Max

xb_mi_all 117 1062.735 344.8446 515.5598 2040.374

Variable xb mi all contains MI linear predictions in m = 0; completed-data linear predictions from
imputation 1 in m = 1; completed-data linear predictions from imputation 2 in m = 2; and so on.

Example 3: Obtain MI estimates of probabilities

Recall the analysis of heart attacks from Example 1: Completed-data logistic analysis in [MI] mi
estimate:

. use http://www.stata-press.com/data/r14/mheart1s20, clear
(Fictional heart attack data; bmi missing)

. mi estimate, saving(miest, replace): logit attack smokes age bmi hsgrad female

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154

Average RVI = 0.0312
Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1,060.38
avg = 223,362.56
max = 493,335.88

Model F test: Equal FMI F( 5,71379.3) = 3.59
Within VCE type: OIM Prob > F = 0.0030

attack Coef. Std. Err. t P>|t| [95% Conf. Interval]

smokes 1.198595 .3578195 3.35 0.001 .4972789 1.899911
age .0360159 .0154399 2.33 0.020 .0057541 .0662776
bmi .1039416 .0476136 2.18 0.029 .010514 .1973692

hsgrad .1578992 .4049257 0.39 0.697 -.6357464 .9515449
female -.1067433 .4164735 -0.26 0.798 -.9230191 .7095326
_cons -5.478143 1.685075 -3.25 0.001 -8.782394 -2.173892

We could have used a different estimation file to store the completed-data estimation results from
logit. Instead, we replaced the existing estimation file miest.ster with new results by specifying
saving()’s replace option.

Following the discussion in Introduction, we first obtain MI estimates of the probabilities of
a positive outcome by using the transformation-based approach. We obtain MI estimates of linear
predictions and apply the inverse-logit transformation to obtain the probabilities:
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. mi predict xb_mi using miest
(option xb assumed; linear prediction)

. quietly mi xeq: generate phat = invlogit(xb_mi)

Unlike predict after logit, mi predict after mi estimate: logit defaults to the linear prediction
and not to the probability of a positive outcome. mi predict always assumes the linear prediction.

Alternatively, we can apply Rubin’s combination rules directly to probabilities. Unlike predict,
mi predict does not allow the pr option. You can obtain only linear predictions or standard errors
using mi predict. We can use the predict() function of mi predictnl to obtain MI estimates of
the probabilities by directly pooling completed-data probabilities:

. mi predictnl phat_mi = predict(pr) using miest

. mi xeq 0: summarize phat phat_mi

m=0 data:
-> summarize phat phat_mi

Variable Obs Mean Std. Dev. Min Max

phat 154 .4478198 .1820425 .1410432 .8923041
phat_mi 154 .4480519 .1812098 .141361 .8912111

Although the first approach is preferable, we can see that we obtain similar estimates of the probabilities
of a positive outcome with both approaches.

Example 4: Obtain other MI predictions

Consider the cancer data from Example 3: Completed-data survival analysis in [MI] mi estimate:

. use http://www.stata-press.com/data/r14/mdrugtrs25, clear
(Patient Survival in Drug Trial)

. mi stset studytime, failure(died)

failure event: died != 0 & died < .
obs. time interval: (0, studytime]
exit on or before: failure

48 total observations
0 exclusions

48 observations remaining, representing
31 failures in single-record/single-failure data

744 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 39

In this example, we fit a parametric Weibull regression to the survival data and as before replace
the estimation results in miest.ster with new ones from mi estimate: streg:
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. mi estimate, saving(miest, replace): streg drug age, dist(weibull)

Multiple-imputation estimates Imputations = 25
Weibull regression: Log relative-hazard form Number of obs = 48

Average RVI = 0.0927
Largest FMI = 0.1847

DF adjustment: Large sample DF: min = 721.15
avg = 6,014.48
max = 11,383.09

Model F test: Equal FMI F( 2, 2910.0) = 14.94
Within VCE type: OIM Prob > F = 0.0000

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

drug -2.093333 .4091925 -5.12 0.000 -2.895422 -1.291243
age .126931 .0403526 3.15 0.002 .0477084 .2061536

_cons -11.14588 2.584909 -4.31 0.000 -16.22013 -6.071634

/ln_p .5524239 .1434973 3.85 0.000 .2711445 .8337033

p 1.737459 .2493207 1.311465 2.301827
1/p .575553 .0825903 .4344374 .7625063

Suppose that we want to estimate median survival time. After streg, median survival time can be
obtained by using predict, median time. mi predict does not support these options, but we can
use the predict(median time) function with mi predictnl to obtain MI estimates of the median
survival time.

To improve normality, we perform pooling in a log scale and then exponentiate results back to
the original scale:

. mi predictnl p50_lntime_mi = ln(predict(median time)) using miest

. quietly mi xeq: generate p50_time_mi = exp(p50_lntime_mi)

Above, we demonstrated the use of expressions with the predict() function by computing
median log-survival time by using ln(predict(median time)). Alternatively, we can compute
median log-survival time directly with predict(median lntime):

. mi predictnl p50_lntime1_mi = predict(median lntime) using miest

. quietly mi xeq: generate p50_time1_mi = exp(p50_lntime1_mi)

We verify that we obtain identical results:

. mi xeq 0: summarize p50_time_mi p50_time1_mi

m=0 data:
-> summarize p50_time_mi p50_time1_mi

Variable Obs Mean Std. Dev. Min Max

p50_time_mi 48 21.74607 14.60662 3.707896 53.10997
p50_time1_mi 48 21.74607 14.60662 3.707896 53.10997

Example 5: Obtain MI predictions after multiple-equation commands

For illustrative purposes, let’s use mlogit instead of logit to analyze the heart-attack data from
Example 3: Obtain MI estimates of probabilities:
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. use http://www.stata-press.com/data/r14/mheart1s20, clear
(Fictional heart attack data; bmi missing)

. mi estimate, saving(miest, replace): mlogit attack smokes age bmi hsgrad female

Multiple-imputation estimates Imputations = 20
Multinomial logistic regression Number of obs = 154

Average RVI = 0.0312
Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1,060.38
avg = 223,362.56
max = 493,335.88

Model F test: Equal FMI F( 5,71379.3) = 3.59
Within VCE type: OIM Prob > F = 0.0030

attack Coef. Std. Err. t P>|t| [95% Conf. Interval]

0 (base outcome)

1
smokes 1.198595 .3578195 3.35 0.001 .4972789 1.899911

age .0360159 .0154399 2.33 0.020 .0057541 .0662776
bmi .1039416 .0476136 2.18 0.029 .010514 .1973692

hsgrad .1578992 .4049257 0.39 0.697 -.6357464 .9515449
female -.1067433 .4164735 -0.26 0.798 -.9230191 .7095326
_cons -5.478143 1.685075 -3.25 0.001 -8.782394 -2.173892

We obtain the same results as with mi estimate: logit.

To obtain predictions after multiple-equation commands such as mlogit, we need to use the
equation() option of mi predict or mi predictnl to obtain a prediction from a specific equation.
By default, the first equation is assumed:

. mi predict xb_0_mi using miest
(option xb assumed; linear prediction)

. mi xeq 0: summarize xb_0_mi

m=0 data:
-> summarize xb_0_mi

Variable Obs Mean Std. Dev. Min Max

xb_0_mi 154 0 0 0 0

In our example, the first equation corresponds to the base category, so the linear prediction is zero
for this equation.

To obtain the linear prediction from the second equation, we specify the equation(eqno) option.
eqno can refer to the equation number, #2, or to the equation name, 1. For example,

. mi predict xb_1_mi using miest, equation(#2)
(option xb assumed; linear prediction)

Suppose we want to compute observation-specific odds of a heart attack. Knowing that the odds
of a disease is the exponentiated linear predictor, we can compute the odds simply as

. quietly mi xeq: generate odds_mi = exp(xb_1_mi)

Instead, to illustrate a more advanced syntax of mi predictnl, we compute the odds using their
definition as the ratio of a probability of a heart attack (attack==1) to the probability of no heart
attack (attack==0). Log odds are asymptotically normally distributed, so we apply combination rules
to log odds and then exponentiate the result to obtain odds:
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. mi predictnl lnodds_mi = ln(predict(pr equation(1))/predict(pr equation(0)))
> using miest

. quietly mi xeq: generate odds_mi = exp(lnodds_mi)

In the above, we used the names of the equations, 0 and 1, within equation() to obtain probabilities
of no heart attack and a heart attack, respectively.

We can see, for example, that for older subjects or subjects who smoke, the odds of having a heart
attack are noticeably higher:

. quietly mi xeq: generate byte atrisk = smokes==1 | age>50

. mi xeq 0: by atrisk, sort: summ odds_mi

m=0 data:
-> by atrisk, sort: summ odds_mi

-> atrisk = 0

Variable Obs Mean Std. Dev. Min Max

odds_mi 30 .3472545 .1451144 .1642029 .818259

-> atrisk = 1

Variable Obs Mean Std. Dev. Min Max

odds_mi 124 1.327598 1.228176 .2198672 8.285403

Methods and formulas
Multiple-imputation predictions are obtained by considering an observation-specific prediction as

an estimand and by applying Rubin’s combination rules to it (White, Royston, and Wood 2011).

Let ηi(·) be a prediction of interest for subject i and η̂i,m(·) be a completed-data estimate of the
prediction for subject i, i = 1, . . . , N , from imputation m, m = 1, . . . ,M . In what follows, we omit
the functional argument of ηi(·) for brevity.

The MI estimate of prediction ηi is

ηi,M =
1

M

M∑
m=1

η̂i,m, i = 1, . . . , N

Let V̂ar(η̂i,m) be the completed-data variance of the completed-data prediction η̂i,m for subject i
from imputation m. The standard error of the MI prediction ηi,M is the square root of the total MI
variance Tηi,M ,

Tηi,M = U i +

(
1 +

1

M

)
Bi, i = 1, . . . , N

where U i =
∑M
m=1 V̂ar(η̂i,m)/M is the within-imputation variance and

Bi =
∑M
m=1(η̂i,m − ηi,M )2/(M − 1) is the between-imputation variance.

Other statistics such as test statistics, confidence intervals, and relative variance increases are
obtained by applying to ηi the same formulas as described in Univariate case under Methods and
formulas of [MI] mi estimate for parameter Q. Also see Rubin (1987, 76–77).
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As for any other parameter, the validity of applying Rubin’s combination rules to ηi is subject to
ηi satisfying a set of conditions as described, for example, in Theory underlying multiple imputation
under Remarks and examples of [MI] intro substantive. In particular, the combination rules should
be applied to ηi in the metric for which the sampling distribution is closer to the normal distribution.
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Title

mi ptrace — Load parameter-trace file into Stata

Description Syntax Options Remarks and examples
Stored results Also see

Description

Parameter-trace files, files with suffix .stptrace, are created by the saveptrace() option of
mi impute mvn; see [MI] mi impute mvn. These are not Stata datasets, but they can be loaded as if
they were by using mi ptrace use. Their contents can be described without loading them by using
mi ptrace describe.

Syntax
mi ptrace describe

[
using

]
filename

mi ptrace use filename
[
, use options

]
use options Description

clear okay to replace existing data in memory
double load variables as doubles (default is floats)
select(selections) what to load (default is all)

where selections is a space-separated list of individual selections. Individual selections are of the form

b[yname, xname]
v[yname, yname]

where ynames and xnames are displayed by mi ptrace describe. You may also specify

b[# y, # x]
v[# y, # y]

where # y and # x are the variable numbers associated with yname and xname, and those too are
shown by mi ptrace describe.

For b, you may also specify * to mean all possible index elements. For instance,

b[*,*] all elements of b
b[yname,*] row corresponding to yname
b[*,xname] column corresponding to xname
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Similarly, b[# y,*] and b[*,# x] are allowed. The same is allowed for v, and also, the second
element can be specified as <, <=, =, >=, or >. For instance,

v[yname,=] variance of yname
v[*,=] all variances (diagonal elements)
v[*,<] lower triangle
v[*,<=] lower triangle and diagonal
v[*,>=] upper triangle and diagonal
v[*,>] upper triangle

In mi ptrace describe and in mi ptrace use, filename must be specified in quotes if it contains
special characters or blanks. filename is assumed to be filename.stptrace if the suffix is not specified.

Options
clear specifies that it is okay to clear the dataset in memory, even if it has not been saved to disk

since it was last changed.

double specifies that elements of b and v are to be loaded as doubles; they are loaded as floats by
default.

select(selections) allows you to load subsets of b and v. If the option is not specified, all of b and
v are loaded. That result is equivalent to specifying select(b[*,*] v[*,<=]). The <= specifies
that just the diagonal and lower triangle of symmetric matrix v be loaded.

Specifying select(b[*,*]) would load just b.

Specifying select(v[*,<=]) would load just v.

Specifying select(b[*,*] v[*,=]) would load b and the diagonal elements of v.

Remarks and examples
Say that we impute the values of y1 and y2 assuming that they are multivariate normal distributed,

with their means determined by a linear combination of x1, x2, and x3, and their variance constant.
Writing this more concisely, y = (y1, y2)′ is distributed MVN(XB,V), where B: 2×3 and V: 2×2.
If we use MCMC or EM procedures to produce values of B and V to be used to generate values for y,
we must ensure that we use sufficient iterations so that the iterative procedure stabilizes. mi impute
mvn (see [MI] mi impute mvn) provides the worst linear combination (WLC) of the elements of B and
V. If we want to perform other checks, we can specify mi impute mvn’s saveptrace(filename)
option. mi impute then produces a file containing m (imputation number), iter (overall iteration
number), and the corresponding B and V. The last iter for each m is the B and V that mi impute
mvn used to impute the missing values.
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When we used mi impute mvn, we specified burn-in and burn-between numbers, say, burnin(300)
and burnbetween(100). If we also specified saveptrace(), the file produced is organized as follows:

record # m iter B V

1 1 -299 ... ...
2 1 -298 ... ...
. . . . .
. . . . .

299 1 -1 ... ...
300 1 0 ... ... <- used to impute m=1
301 2 1 . .
302 2 2 . .

. . . . .

. . . . .
399. 1 99 ... ...
400. 1 100 ... ... <- used to impute m=2
401. 2 101 ... ...

. . . . .

. . . . .

The file is not a Stata dataset, but mi ptrace use can load the file and convert it into Stata format,
and then it will look just like the above except for the following:

• The record number will become the Stata observation number.

• B will become variables b y1x1, b y1x2, and b y1x3; and b y2x1, b y2x2, and b y2x3.
(Remember, we had 2 y variables and 3 x variables.)

• V will become variables v y1y1, v y2y1, and v y2y2. (This is the diagonal and lower
triangle of V; variable v y1y2 is not created because it would be equal to v y2y1.)

• Variable labels will be filled in with the underlying names of the variables. For instance, the
variable label for b y1x1 might be “experience, age”, and that would remind us that b y1x1
contains the coefficient on age used to predict experience. v y2y1 might be “education,
experience”, and that would remind us that v y2y1 contains the covariance between education
and experience.

Stored results
mi ptrace describe stores the following in r():

Scalars
r(tc) %tc date-and-time file created
r(nx) number of x variables (columns of B)
r(ny) number of y variables (rows of B)

Macros
r(x) space-separated [op.]varname of x
r(y) space-separated [op.]varname of y
r(id) name of file creator

Also see
[MI] intro — Introduction to mi

[MI] mi impute mvn — Impute using multivariate normal regression



Title

mi rename — Rename variable

Description Menu Syntax Option
Remarks and examples Also see

Description
mi rename renames variables.

Menu
Statistics > Multiple imputation

Syntax
mi rename oldname newname

[
, noupdate

]
Option

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks and examples
Remarks are presented under the following headings:

Specifying the noupdate option
What to do if you accidentally use rename
What to do if you accidentally use rename on wide data
What to do if you accidentally use rename on mlong data
What to do if you accidentally use rename on flong data
What to do if you accidentally use rename on flongsep data

Specifying the noupdate option

If you are renaming more than one variable, you can speed execution with no loss of safety by
specifying the noupdate option after the first mi rename:

. mi rename ageyears age

. mi rename timeinstudy studytime, noupdate

. mi rename personid id, noupdate

The above is generally good advice. When giving one mi command after another, you may specify
noupdate after the first command to speed execution.
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What to do if you accidentally use rename

Assume that you just typed

. rename ageyears age

rather than typing

. mi rename ageyears age

as you should have. No damage has been done yet, but if you give another mi command and it
runs mi update (see [MI] mi update), real damage will be done. We will discuss that and what to
do about it in the sections that follow, but first, if you have given no additional mi commands, use
rename (not mi rename) to rename the variable back to how it was:

. rename age ageyears

Then use mi rename as you should have in the first place:

. mi rename ageyears age

The sections below handle the case where mi update has run. You will know that mi update has
run because since the rename, you gave some mi command—perhaps even mi update itself—and
you saw a message like one of these:

(variable ageyears dropped in m > 0)

(imputed variable ageyears unregistered because not in m = 0)

(passive variable ageyears unregistered because not in m = 0)

(regular variable ageyears unregistered because not in m = 0)

What to do if you accidentally use rename on wide data

If ageyears was unregistered, no damage was done, and no additional action needs to be taken.

If ageyears was registered as regular, no damage was done. However, your renamed variable is
no longer registered. Reregister the variable under its new name by typing mi register regular
age; see [MI] mi set.

If ageyears was registered as imputed or passive, you just lost all values for m > 0. Passive
variables are usually not too difficult to re-create; see [MI] mi passive. If the variable was imputed,
well, hope that you will have saved your data recently when you make this error and, before that,
learn good computing habits.

What to do if you accidentally use rename on mlong data

If ageyears was unregistered, no damage was done, and no additional action needs to be taken.

If ageyears was registered as regular, no damage was done. However, your renamed variable is
no longer registered. Reregister the variable under its new name by typing mi register regular
age; see [MI] mi set.

If ageyears was registered as imputed or passive, you just lost all values for m > 0. We offer the
same advice as we offered when the data were wide: Passive variables are usually not too difficult
to re-create—see [MI] mi passive—and otherwise hope that you will have saved your data recently
when you make this error. It is always a good idea to save your data periodically.
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What to do if you accidentally use rename on flong data

The news is better in this case; no matter how your variables were registered, you have not lost
data.

If ageyears was unregistered, no further action is required.

If ageyears was registered as regular, you need to reregister the variable under its new name by
typing mi register regular age; see [MI] mi set.

If ageyears was registered as passive or imputed, you need to reregister the variable under its
new name by typing mi register passive age or mi register imputed age.

What to do if you accidentally use rename on flongsep data

The news is not as good in this case.

If ageyears was unregistered, no damage was done. When mi update ran, it noticed that old
variable ageyears no longer appeared in m > 0 and that new variable age now appeared in m = 0,
so mi update dropped the first and added the second to m > 0, thus undoing any damage. There is
nothing more that needs to be done.

If ageyears was registered as regular, no damage was done, but you need to reregister the variable
by typing mi register regular age; see [MI] mi set.

If ageyears was registered as passive or imputed, you have lost the values in m > 0. Now would
probably be a good time for us to mention how you should work with a copy of your flongsep data;
see [MI] mi copy.

Also see
[MI] intro — Introduction to mi
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mi replace0 — Replace original data

Description Menu Syntax Option
Remarks and examples Also see

Description
mi replace0 provides a mechanism for using standard data management commands on an mi

dataset. The process involves three steps:

1. Use mi extract to extract m = 0 data into a standard dataset.

2. Modify the extracted dataset using standard data management commands.

3. Use mi replace0 to replace m = 0 with the modified dataset and make all imputations consistent
with the changes.

Menu
Statistics > Multiple imputation

Syntax
mi replace0 using filename, id(varlist)

Typical use is

. mi extract 0

. (perform data management commands)

. mi replace0 using origfile, id(idvar)

Option
id(varlist) is required; it specifies the variable or variables to use to match the observations in m = 0

of the mi data to the observations of the non-mi dataset. The ID variables must uniquely identify
the observations in each dataset, and equal values across datasets must indicate corresponding
observations, but one or both datasets can have observations found (or not found) in the other.

Remarks and examples
It is often easier to perform data management on m = 0 and then let mi replace0 duplicate

the results for m = 1, m = 2, . . . , m = M rather than perform the data management on all m’s
simultaneously. It is easier because m = 0 by itself is a non-mi dataset, so you can use any of the
general Stata commands (that is, non-mi commands) with it.

You use mi extract to extract m = 0; see [MI] mi extract. The extracted dataset is just a regular
Stata dataset; it is not mi set, nor does it have any secret complexities.
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You use mi replace0 to recombine the datasets after you have modified the m = 0 data. mi
replace0 can deal with the following changes to m = 0:

• changes to the values of existing variables,

• removal of variables,

• addition of new variables,

• dropped observations, and

• added observations.

For instance, you could use mi extract and mi replace0 to do the following:

. use my_midata, clear

. mi extract 0

. replace age = 26 if age==6

. replace age = 32 if pid==2088

. merge 1:1 pid using newvars, keep(match) nogen

. by location: egen avgrate = mean(rate)

. drop proxyrate

. mi replace0 using my_midata, id(pid)

In the above,

1. we extract m = 0;

2. we update existing variable age (we fix a typo and the age of pid 2088);

3. we merge m = 0 with newvars.dta to obtain some new variables and, in the process,
keep only the observations that were found in both m = 0 and newvars.dta;

4. we create new variable avgrate equal to the mean rate by location; and

5. we drop previously existing variable proxyrate.

We then take that result and use it to replace m = 0 in our original mi dataset. We leave it to mi
replace0 to carry out the changes to m = 1, m = 2, . . . , m = M to account for what we did to
m = 0.

By the way, it turns out that age in my midata.dta is registered as imputed. We changed one
nonmissing value to another nonmissing value and changed one missing value to a nonmissing value.
mi replace0 will deal with the implications of that. It would even deal with us having changed a
nonmissing value to a missing value.

There is no easier way to do data management than by using mi extract and mi replace0.

Also see
[MI] intro — Introduction to mi

[MI] mi extract — Extract original or imputed data from mi data
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mi reset — Reset imputed or passive variables

Description Menu Syntax Options
Remarks and examples Also see

Description
mi reset resets the imputed or passive variables specified. Values are reset to the values in m = 0,

which are typically missing, but if you specify = exp, they are reset to the value specified.

Menu
Statistics > Multiple imputation

Syntax
mi reset varlist

[
= exp

] [
if
] [

, options
]

options Description

Main

m(numlist) m to reset; default all

noupdate see [MI] noupdate option

Options

� � �
Main �

m(numlist) specifies the values of m that are to be reset; the default is to update all values of m. If
M were equal to 3, the default would be equivalent to specifying m(1/3) or m(1 2 3). If you
wished to update the specified variable(s) in just m = 2, you could specify m(2).

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks and examples
Remarks are presented under the following headings:

Using mi reset
Technical notes and relation to mi update
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Using mi reset

Resetting an imputed or passive variable means setting its values in m > 0 equal to the values
recorded in m = 0. For instance, if variable inc were imputed, typing

. mi reset inc
(15 values reset)

would reset its incomplete values back to missing in all m. In the sample output shown, we happen
to have M = 5 and reset back to missing the three previously imputed values in each imputation.

It is rare that you would want to reset an imputed variable, but one can imagine cases. Your
coworker Joe sent you the data and just buzzed you on the telephone. “There is one value wrong in
the data I sent you,” he says. “There is an imputed value for inc that is 15,000, which is obviously
absurd. Just reset it back to missing until I find out what happened.” So you type

. mi reset inc if inc==15000
(1 value reset)

Later Joe calls back. “It is a long and very stupid story,” he begins, and you can hear him settling
into his chair to tell it. As you finish your second cup of coffee, he is wrapping up. “So the value
of inc for pid 1433 should be 0.725.” You type

. mi reset inc = .725 if pid=1433
(1 value reset)

It is common to need to reset passive variables if imputed values change. For instance, you have
variables age and lnage in your data. You imputed lnage; age is passive. You recently updated
the imputed values for lnage. One way to update the values for age would be to type

. mi passive: replace age = exp(lnage)
m=0:
m=1:
(10 real changes made)
m=2:
(10 real changes made)
m=3:
(8 real changes made)

Alternatively, you could type

. mi reset age = exp(lnage)
(28 values reset)

Technical notes and relation to mi update

mi reset, used with an imputed variable, changes only the values for which the variable contains
hard missing (.) in m = 0. The other values are, by definition, already equal to their m = 0 values.

mi reset, used with a passive variable, changes only the values in incomplete observations,
observations in which any imputed variable contains hard missing. The other values of the passive
variable are, by definition, already equal to their m = 0 values.

mi update can be used to ensure that values that are supposed to be equal to their m = 0 values
in fact are equal to them; see [MI] mi update.
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Also see
[MI] intro — Introduction to mi

[MI] mi update — Ensure that mi data are consistent



Title

mi reshape — Reshape mi data

Description Menu Syntax Options
Remarks and examples Also see

Description
mi reshape is Stata’s reshape for mi data; see [D] reshape.

Menu
Statistics > Multiple imputation

Syntax

Overview

(The words long and wide in what follows have nothing to do with mi styles mlong, flong, flongsep,
and wide; they have to do with reshape’s concepts.)

long wide
i j stub i stub1 stub2
1 1 4.1 reshape 1 4.1 4.5
1 2 4.5 ←−−−−−−→ 2 3.3 3.0
2 1 3.3
2 2 3.0

To go from long to wide:

j existing variable
/

mi reshape wide stub, i(i) j(j)

To go from wide to long:

mi reshape long stub, i(i) j(j)
\

j new variable

Basic syntax

Convert mi data from long form to wide form

mi reshape wide stubnames, i(varlist) j(varname)
[

options
]

Convert mi data from wide form to long form

mi reshape long stubnames, i(varlist) j(varname)
[

options
]
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318 mi reshape — Reshape mi data

options Description

i(varlist) i variable(s)

j(varname
[

values
]
) long→wide: j, existing variable

wide→long: j, new variable
optionally specify values to subset j

string j is string variable (default is numeric)

where values is #
[
-#
] [

. . .
]

if j is numeric (the default)
"string"

[
"string" . . .

]
if j is string

and where stubnames are variable names (long→wide), or stubs of variable names (wide→long).
Unlike reshape (see [D] reshape), stubnames may not contain @ to denote where j appears in the
name; all stubnames must follow the style stub#.

Options
See [D] reshape for descriptions of the other options.

Remarks and examples
The reshape command you specify is carried out on the m = 0 data, and then the result is

duplicated in m = 1, m = 2, . . . , m = M .

In mi reshape, all variables corresponding to the same stubnames must be registered of the same
mi type: imputed, passive, or regular.

Also see
[MI] intro — Introduction to mi

[MI] mi replace0 — Replace original data

[D] reshape — Convert data from wide to long form and vice versa



Title

mi select — Programmer’s alternative to mi extract

Description Syntax Option Remarks and examples
Stored results Also see

Description

mi select is a programmer’s command. It is a faster, more dangerous version of mi extract;
see [MI] mi extract. Before using mi select, the mi data must be preserved; see [P] preserve.

mi select init initializes mi select # and must be used before the first call to mi select #.

mi select # replaces the data in memory with a copy of the data for m = #. The data are not
mi set.

Syntax

mi select init
[
, fast

]
mi select #

where 0 ≤ # ≤M , and where typical usage is

quietly mi query
local M = r(M)

preserve
mi select init
local priorcmd "‘r(priorcmd)’"

forvalues m=1(1)‘M’ {
mi select ‘m’
...
‘priorcmd’

}

restore

Option

fast, specified with mi select init, specifies that the data delivered by mi select # commands
not be changed except for sort order. Then mi select can operate more quickly. fast is allowed
with all styles but currently affects the performance with the wide style only.

If fast is not specified, the data delivered by mi select # may be modified freely before the
next mi select # call. However, the data may not be dropped. mi select uses characteristics
(see [P] char) stored in dta[] to know its state.
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Remarks and examples
The two mi select commands work in tandem. mi select init initializes mi select #.

mi select init returns macro r(priorcmd), which you are to issue as a command between each
mi select # call. r(priorcmd) is not required to be issued before the first call to mi select #,
although you may issue it if that is convenient. mi select # calls can be made in any order, and
the same m may be selected repeatedly.

The data delivered by mi select # differ from those delivered by mi extract in that there
may be extra variables in the dataset. One of the extra variables, mi id, is a unique observation
identifier.

If you want to post changes made in the selected data back to the mi data, you can write a file
containing mi id and the updated variables and then use mi id to match that to the mi data after
your final restore. By default, changes to the selected data will not be posted back to the underlying
mi data.

In the case of wide data, the mi data have no mi id variable. mi id in the selected data is
reflected in the current order of the mi data.

Stored results
mi select init returns the following in r():

Macros
r(priorcmd) command to be issued prior to calling mi select #; this command will be either restore,

preserve or nothing

Also see
[MI] intro — Introduction to mi

[MI] mi extract — Extract original or imputed data from mi data

[MI] technical — Details for programmers



Title

mi set — Declare multiple-imputation data

Description Menu Syntax Remarks and examples Also see

Description
mi set is used to set a regular Stata dataset to be an mi dataset. mi set is also used to modify

the attributes of an already set dataset. An mi set dataset has the following attributes:

• The data are recorded in a style: wide, mlong, flong, or flongsep; see [MI] styles.

• Variables are registered as imputed, passive, or regular, or they are left unregistered.

• In addition to m = 0, the data with missing values, the data include M ≥ 0 imputations of
the imputed variables.

mi set style begins the setting process by setting the desired style. mi set style sets all variables
as unregistered and sets M = 0.

mi register registers variables as imputed, passive, or regular. Variables can be registered
one at a time or in groups and can be registered and reregistered.

mi unregister unregisters registered variables, which is useful if you make a mistake. Exercise
caution. Unregistering an imputed or passive variable can cause loss of the filled-in missing values
in m > 0 if your data are recorded in the wide or mlong styles. In such cases, just mi register
the variable correctly without mi unregistering it first.

mi set M modifies M , the total number of imputations. M may be increased or decreased. M
may be set before or after imputed variables are registered.

mi set m drops selected imputations from the data.

mi unset is a rarely used command to unset the data. Better alternatives include mi extract and
mi export (see [MI] mi extract and [MI] mi export, respectively).

Menu
Statistics > Multiple imputation
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322 mi set — Declare multiple-imputation data

Syntax
mi set style

where style is wide
mlong
flong
flongsep name

mi register { imputed | passive | regular } varlist

mi unregister varlist

mi set M { = | += | -= } #

mi set m -= (numlist)

mi unset
[
, asis

]
Remarks and examples

Data must be mi set before they can be used with the other mi commands. There are two ways
data can become mi set: direct use of mi set style or use of mi import (see [MI] mi import).

The mi register, mi set M, and mi set m commands are for use with already set data and are
useful even with imported data.

Remarks are presented under the following headings:
mi set style
mi register and mi unregister
mi set M and mi set m
mi unset

mi set style

mi set style begins the setting process. mi set style has the following forms:

mi set wide
mi set mlong
mi set flong
mi set flongsep name

It does not matter which style you choose because you can always use mi convert (see [MI] mi
convert) to change the style later. We typically choose wide to begin.

If your data are large, you may have to use flongsep. mi set flongsep requires you to specify
a name for the flongsep dataset collection. See Advice for using flongsep in [MI] styles.

If you intend to have super-varying variables, you need to choose either flong or flongsep, or
you will need to mi convert to flong or flongsep style later.

The current style of the data is shown by the mi query and mi describe commands; see [MI] mi
describe.
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mi register and mi unregister

mi register has three forms:

mi register imputed varlist
mi register passive varlist
mi register regular varlist

See [MI] Glossary for a definition of imputed, passive, and regular variables.

You are required to register imputed variables. If you intend to use mi impute (see [MI] mi
impute) to impute missing values, you must still register the variables first.

Concerning passive variables, we recommend that you register them, and if your data are style
wide, you are required to register them. If you create passive variables by using mi passive (see
[MI] mi passive), that command automatically registers them for you.

Whether you register regular variables is up to you. Registering them is safer in all styles except
wide, where it does not matter. We say registering is safer because regular variables should not vary
across m, and in the long styles, you can unintentionally create variables that vary. If variables are
registered, mi will detect and fix mistakes for you.

The names of imputation and passive variables may not exceed 29 characters. In the wide style,
the names of these variables may be restricted to less than 29 characters depending on the number
of imputations. In the flongsep style, the names of regular variables in addition to the names of
imputation and passive variables also may not exceed 29 characters.

Super-varying variables—see [MI] Glossary—rarely occur, but if you have them, be aware that
they can be stored only in flong and flongsep data and that they never should be registered.

The registration status of variables is listed by mi describe (see [MI] mi describe).

Use mi unregister if you accidentally register a variable incorrectly, with one exception: if you
mistakenly register a variable as imputed but intended to register it as passive, or vice versa, use
mi register directly to reregister the variable. The mere act of unregistering a passive or imputed
variable can cause values in m > 0 to be replaced with those from m = 0 if the data are wide or
mlong.

That exception aside, you first mi unregister variables before reregistering them.

mi set M and mi set m

mi set M is seldom used, and mi set m is sometimes used.

mi set M sets M , the total number of imputations. The syntax is

mi set M = #
mi set M += #
mi set M -= #

mi set M = # sets M = #. Imputations are added or deleted as necessary. If imputations are
added, the new imputations obtain their values of imputed and passive variables from m = 0, which
means that the missing values are not yet replaced in the new imputations. It is not necessary to
increase M if you intend to use mi impute to impute values; see [MI] mi impute.

mi set M += # increments M by #.

mi set M -= # decrements M by #.
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mi set m -= (numlist) deletes the specified imputations. For instance, if you had M = 5
imputations and wanted to delete imputation 2, leaving you with M = 4, you would type mi set m
-= (2).

mi unset

If you wish to unset your data, your best choices are mi extract and mi export; see [MI] mi
extract and [MI] mi export. The mi extract 0 command replaces the data in memory with the data
from m = 0, unset. The mi export command replaces the data in memory with unset data in a form
that can be sent to a non–Stata user.

mi unset is included for completeness, and if it has any use at all, it would be by programmers.

Also see
[MI] intro — Introduction to mi

[MI] mi convert — Change style of mi data

[MI] mi describe — Describe mi data

[MI] mi export — Export mi data

[MI] mi extract — Extract original or imputed data from mi data

[MI] mi import — Import data into mi

[MI] mi XXXset — Declare mi data to be svy, st, ts, xt, etc.

[MI] styles — Dataset styles



Title

mi stsplit — Stsplit and stjoin mi data

Description Menu Syntax Options
Remarks and examples Also see

Description
mi stsplit and mi stjoin are stsplit and stjoin for mi data; see [ST] stsplit. Except for

the addition of the noupdate option, the syntax is identical. Except for generalization across m, the
results are identical.

Your mi data must be stset to use these commands. If your data are not already stset, use mi
stset rather than the standard stset; see [MI] mi XXXset.

Menu
Statistics > Multiple imputation
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Syntax
To split at designated times

mi stsplit newvar
[

if
]
, { at(numlist) | every(#) }

[
options

]
options Description

Main
∗at(numlist) split at specified analysis times
∗every(#) split when analysis time is a multiple of #

after(spec) use time since spec instead of analysis time for at() or every()
trim exclude observations outside of range
noupdate see [MI] noupdate option

nopreserve programmer’s option

∗ at() or every() is required.
nopreserve is not included in the dialog box.

To split at failure times

mi stsplit
[

if
]
, at(failures)

[
options

]
options Description

Main
∗at(failures) split at times of observed failures

strata(varlist) perform splitting by failures within stratum, strata defined by varlist
riskset(newvar) create risk-set ID variable
noupdate see [MI] noupdate option

nopreserve programmer’s option

∗ at() is required.
nopreserve is not included in the dialog box.

To join episodes

mi stjoin
[
, options

]
options Description

Main

censored(numlist) values of failure that indicate no event
noupdate see [MI] noupdate option
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Options

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

See [ST] stsplit for documentation on the remaining options.

Remarks and examples
One should never use any heavyweight data management commands with mi data. Heavyweight

commands are commands that make sweeping changes to the data rather than simply deleting some
observations, adding or dropping some variables, or changing some values of existing variables.
stsplit and stjoin are examples of heavyweight commands (see [ST] stsplit).

Also see
[MI] intro — Introduction to mi

[ST] stsplit — Split and join time-span records

[MI] mi XXXset — Declare mi data to be svy, st, ts, xt, etc.



Title

mi test — Test hypotheses after mi estimate

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

mi test performs joint tests of coefficients.

mi testtransform performs joint tests of transformed coefficients as specified with mi estimate
or mi estimate using (see [MI] mi estimate or [MI] mi estimate using).

Menu
Statistics > Multiple imputation
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Syntax
Test that coefficients are zero

mi test coeflist

Test that coefficients within a single equation are zero

mi test
[

eqno
] [

: coeflist
]

Test that subsets of coefficients are zero (full syntax)

mi test (spec)
[
(spec) . . .

] [
, test options

]
Test that subsets of transformed coefficients are zero

mi testtransform name
[
(name) . . .

] [
, transform options

]
test options Description

Test

ufmitest perform unrestricted FMI model test
nosmall do not apply small-sample correction to degrees of freedom
constant include the constant in coefficients to be tested

transform options Description

Test

ufmitest perform unrestricted FMI model test
nosmall do not apply small-sample correction to degrees of freedom
nolegend suppress transformation legend

coeflist may contain factor variables and time-series operators; see [U] 11.4.3 Factor variables and
[U] 11.4.4 Time-series varlists.

coeflist is
coef

[
coef . . .

]
[eqno]coef

[
[eqno]coef . . .

]
[eqno] b[coef]

[
[eqno] b[coef]. . .

]
eqno is

# #
eqname

spec is
coeflist
[eqno]

[
: coeflist

]
coef identifies a coefficient in the model; see the description in [R] test for details. eqname is an
equation name.
name is an expression name as specified with mi estimate or mi estimate using (see [MI] mi

estimate or [MI] mi estimate using).
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Options

� � �
Test �

ufmitest specifies that the unrestricted fraction missing information (FMI) model test be used. The
default test performed assumes equal fractions of information missing due to nonresponse for all
coefficients. This is equivalent to the assumption that the between-imputation and within-imputation
variances are proportional. The unrestricted test may be preferable when this assumption is suspect
provided that the number of imputations is large relative to the number of estimated coefficients.

nosmall specifies that no small-sample adjustment be made to the degrees of freedom. By default,
individual tests of coefficients (and transformed coefficients) use the small-sample adjustment
of Barnard and Rubin (1999), and the overall model test uses the small-sample adjustment of
Reiter (2007).

constant specifies that cons be included in the list of coefficients to be tested when using the
[eqno] form of spec with mi test. The default is to not include cons.

nolegend, specified with mi testtransform, suppresses the transformation legend.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Overview
Example 1: Testing subsets of coefficients equal to zero
Example 2: Testing linear hypotheses
Example 3: Testing nonlinear hypotheses

Introduction

The major issue arising when performing tests after MI estimation is the validity of the variance–
covariance estimator (VCE) of the MI estimates. MI variance consists of two sources of variation:
within-imputation variation and between-imputation variation. With a small number of imputations,
the estimate of the between-imputation variance–covariance matrix is imprecise. In fact, when the
number of imputations is less than or equal to the number of estimated parameters, the between-
imputation matrix does not even have a full rank. As such, the estimated VCE may not be a valid
variance–covariance matrix and thus not suitable for joint inference.

One solution to this problem was proposed by Rubin (1987) and Li et al. (1991). The idea is
to assume that the between-imputation variance is proportional to the within-imputation variance.
This assumption implies equal FMIs for all jointly tested parameters. Li et al. (1991) found that the
procedure performs well in terms of power and maintaining the significance level even with moderately
variable FMIs. mi test and mi testtransform, by default, perform tests using this procedure.

When the number of imputations is large enough relative to the number of tested parameters so
that the corresponding VCE is trustworthy, you can request the unrestricted FMI test by specifying the
ufmitest option. The unrestricted FMI test is the conventional test described by Rubin (1987, 77).

For testing nonlinear hypotheses, direct application of the conventional delta method to the estimated
coefficients may not be feasible when the number of imputations is small enough that the VCE of
the MI estimates cannot be used for inference. To test these hypotheses, one can first obtain MI
estimates of the transformed coefficients by applying Rubin’s combination rules to the transformed
completed-data estimates and then apply the above MI-specific hypotheses tests to the combined
transformed estimates. The first step can be done by specifying expressions with mi estimate (or
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mi estimate using). The second step is performed with mi testtransform. mi testtransform
uses the same method to test transformed coefficients as mi test uses to test coefficients.

Overview

Use mi test to perform joint tests that coefficients are equal to zero:

. mi estimate: regress y x1 x2 x3 x4

. mi test x2 x3 x4

Use mi testtransform, however, to perform tests of more general linear hypotheses, such
as b[x1]= b[x2], or b[x1]= b[x2] and b[x1]= b[x3]. Testing general linear hypotheses
requires estimation of between and within variances corresponding to the specific hypotheses and
requires recombining the imputation-specific estimation results. One way you could do that would
be to refit the model and include the additional parameters during the estimation step. To test
b[x1]= b[x2], you could type

. mi estimate (diff: b[x1]- b[x2]): regress y x1 x2 x3 x4

. mi testtransform diff

A better approach, however, is to save each of the imputation-specific results at the time the original
model is fit and then later recombine results using mi estimate using. To save the imputation-specific
results, specify mi estimate’s saving() option when the model is originally fit:

. mi estimate, saving(myresults): regress y x1 x2 x3 x4

To test b[x1]= b[x2], you type

. mi estimate (diff: b[x1]- b[x2]) using myresults

. mi testtransform diff

The advantage of this approach is that you can test additional hypotheses without refitting the
model. For instance, if we now wanted to test b[x1]= b[x2] and b[x1]= b[x3], we could type

. mi estimate (diff1: b[x1]- b[x2]) (diff2: b[x1]= b[x3]) using myresults

. mi testtransform diff1 diff2

To test nonlinear hypotheses, such as b[x1]/ b[x2]= b[x3]/ b[x4], we could then type

. mi estimate (diff: b[x1]/ b[x2]- b[x3]/ b[x4]) using myresults

. mi testtransform diff

Example 1: Testing subsets of coefficients equal to zero

We are going to test that tax, sqft, age, nfeatures, ne, custom, and corner are in the
regression analysis of house resale prices we performed in Example 1: Completed-data logistic
analysis of [MI] mi estimate. Following the advice above, when we fit the model, we are going to
save the imputation-specific results even though we will not need them in this example; we will need
them in the following examples.
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. use http://www.stata-press.com/data/r14/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi estimate, saving(miest): regress price tax sqft age nfeatures ne custom
> corner

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117

Average RVI = 0.0648
Largest FMI = 0.2533
Complete DF = 109

DF adjustment: Small sample DF: min = 69.12
avg = 94.02
max = 105.51

Model F test: Equal FMI F( 7, 106.5) = 67.18
Within VCE type: OLS Prob > F = 0.0000

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253
sqft .2118129 .069177 3.06 0.003 .0745091 .3491168
age .2471445 1.653669 0.15 0.882 -3.051732 3.546021

nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623
ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818
corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972
_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

In the above mi estimate command, we use the saving() option to create a Stata estimation file
called miest.ster, which contains imputation-specific estimation results.

mi estimate reports the joint test of all coefficients equal to zero in the header. We can reproduce
this test with mi test by typing

. mi test tax sqft age nfeatures ne custom corner
note: assuming equal fractions of missing information

( 1) tax = 0
( 2) sqft = 0
( 3) age = 0
( 4) nfeatures = 0
( 5) ne = 0
( 6) custom = 0
( 7) corner = 0

F( 7, 106.5) = 67.18
Prob > F = 0.0000

We obtain results identical to those from mi estimate.

We can test that a subset of coefficients, say, sqft and tax, are equal to zero by typing

. mi test sqft tax
note: assuming equal fractions of missing information

( 1) sqft = 0
( 2) tax = 0

F( 2, 105.7) = 114.75
Prob > F = 0.0000
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Example 2: Testing linear hypotheses

Now we want to test the equality of the coefficients for sqft and tax. Following our earlier
suggestion, we use mi estimate using to estimate the difference between coefficients (and avoid
refitting the models) and then use mi testtransform to test that the difference is zero:

. mi estimate (diff: _b[tax]-_b[sqft]) using miest, nocoef

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117

Average RVI = 0.1200
Largest FMI = 0.1100
Complete DF = 109

DF adjustment: Small sample DF: min = 92.10
avg = 92.10

Within VCE type: OLS max = 92.10

command: regress price tax sqft age nfeatures ne custom corner
diff: _b[tax]-_b[sqft]

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

diff .4649885 .1863919 2.49 0.014 .0948037 .8351733

. mi testtransform diff
note: assuming equal fractions of missing information

diff: _b[tax]-_b[sqft]

( 1) diff = 0

F( 1, 92.1) = 6.22
Prob > F = 0.0144

We suppress the display of the coefficient table by specifying the nocoef option with mi estimate
using. We obtain the same results from the F test as those of the t test reported in the transformation
table.
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Similarly, we can test whether three coefficients are jointly equal:

. mi estimate (diff1: _b[tax]-_b[sqft]) (diff2: _b[custom]-_b[tax]) using miest,
> nocoef

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117

Average RVI = 0.0748
Largest FMI = 0.1100
Complete DF = 109

DF adjustment: Small sample DF: min = 92.10
avg = 97.95

Within VCE type: OLS max = 103.80

command: regress price tax sqft age nfeatures ne custom corner
diff1: _b[tax]-_b[sqft]
diff2: _b[custom]-_b[tax]

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

diff1 .4649885 .1863919 2.49 0.014 .0948037 .8351733
diff2 133.5425 43.30262 3.08 0.003 47.66984 219.4151

. mi testtr diff1 diff2
note: assuming equal fractions of missing information

diff1: _b[tax]-_b[sqft]
diff2: _b[custom]-_b[tax]

( 1) diff1 = 0
( 2) diff2 = 0

F( 2, 105.6) = 7.34
Prob > F = 0.0010

We estimate two differences, b[tax]- b[sqft] and b[custom]- b[tax], using mi estimate
using and test whether they are jointly equal to zero by using mi testtransform.

We can perform tests of other hypotheses similarly by reformulating the hypotheses of interest
such that we are testing equality to zero.

Example 3: Testing nonlinear hypotheses

In the examples above, we tested linear hypotheses. Testing nonlinear hypotheses is no different.
We simply replace the specification of linear expressions in mi estimate using with the nonlinear
expressions corresponding to the tests of interest.

For example, let’s test that the ratio of the coefficients for tax and sqft is one, an equivalent
but less efficient way of testing whether the two coefficients are the same. Similarly to the earlier
example, we specify the corresponding nonlinear expression with mi estimate using and then use
mi testtransform to test that the ratio is one:
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. mi estimate (rdiff: _b[tax]/_b[sqft] - 1) using miest, nocoef

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117

Average RVI = 0.0951
Largest FMI = 0.0892
Complete DF = 109

DF adjustment: Small sample DF: min = 95.33
avg = 95.33

Within VCE type: OLS max = 95.33

command: regress price tax sqft age nfeatures ne custom corner
rdiff: _b[tax]/_b[sqft] - 1

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

rdiff 2.2359 1.624546 1.38 0.172 -.9890876 5.460888

. mi testtr rdiff
note: assuming equal fractions of missing information

rdiff: _b[tax]/_b[sqft] - 1

( 1) rdiff = 0

F( 1, 95.3) = 1.89
Prob > F = 0.1719

We do not need to use mi testtransform (or mi test) to test one transformation (or coefficient)
because the corresponding test is provided in the output from mi estimate using.

Stored results
mi test and mi testtransform store the following in r():

Scalars
r(df) test constraints degrees of freedom
r(df r) residual degrees of freedom
r(p) two-sided p-value
r(F) F statistic
r(drop) 1 if constraints were dropped, 0 otherwise
r(dropped i) index of ith constraint dropped

Methods and formulas
mi test and mi testtransform use the methodology described in Multivariate case under

Methods and formulas of [MI] mi estimate, where we replace q with Rq − r and q0 = 0 for the
test H0: Rq = r.

References
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Also see
[MI] mi estimate postestimation — Postestimation tools for mi estimate

[MI] mi estimate — Estimation using multiple imputations

[MI] mi estimate using — Estimation using previously saved estimation results

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

[MI] Glossary



Title

mi update — Ensure that mi data are consistent

Description Menu Syntax Remarks and examples Also see

Description
mi update verifies that mi data are consistent. If the data are not consistent, mi update reports

the inconsistencies and makes the necessary changes to make the data consistent.

mi update can change the sort order of the data.

Menu
Statistics > Multiple imputation

Syntax
mi update

Remarks and examples
Remarks are presented under the following headings:

Purpose of mi update
What mi update does
mi update is run automatically

Purpose of mi update

mi update allows you to

• change the values of existing variables, whether imputed, passive, regular, or unregistered;

• add or remove missing values from imputed variables (or from any variables);

• drop variables;

• create new variables;

• drop observations; and

• duplicate observations (but not add observations in other ways).

You can make any of or all the above changes and then type

. mi update

and mi update will handle making whatever additional changes are required to keep the data consistent.
For instance,

. drop if sex==1
(75 observations deleted)

. mi update
(375 m>0 obs. dropped due to dropped obs. in m=0)

In this example, we happen to have five imputations and are working with flongsep data. We
dropped 75 observations in m = 0, and that still left 5 × 75 = 375 observations to be dropped in
m > 0.
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The messages mi update produces vary according to the style of the data because the changes
required to make the data consistent are determined by the style. Had we been working with flong
data, we might have seen

. drop if sex==1
(450 observations deleted)

. mi update
(system variable _mi_id updated due to change in number of obs.)

With flong data in memory, when we dropped if sex==1, we dropped all 75 + 5 × 75 = 450
observations, so no more observations needed to be dropped; but here mi update needed to update
one of its system variables because of the change we made.

Had we been working with mlong data, we might have seen

. drop if sex==1
(90 observations deleted)

. mi update
(system variable _mi_id updated due to change in number of obs.)

The story here is very much like the story in the flong case. In mlong data, dropping if sex==1
drops the 75 observations in m = 0 and also drops the incomplete observations among the 75 in
m = 1, m = 2, . . . , m = 5. In this example, there are three such observations, so a total of
75 + 5× 3 = 90 were dropped, and because of the change, mi update needed to update its system
variable.

Had we been using wide data, we might have seen

. drop if sex==1
(75 observations deleted)

. mi update

mi update’s silence indicates that mi update did nothing, because after dropping observations
in wide data, nothing more needs to be done. We could have skipped typing mi update here, but
do not think that way because changing values, dropping variables, creating new variables, dropping
observations, or creating new observations can have unanticipated consequences.

For instance, in our data is variable farmincome, and it seems obvious that farmincome should
be 0 if the person does not have a farm, so we type

. replace farmincome = 0 if !farm
(15 real changes made)

After changing values, you should type mi update even if you do not suspect that it is necessary.
Here is what happens when we do that with these data:

. mi update
(12 m=0 obs. now marked as complete)

Typing mi update was indeed necessary! We forgot that the farmincome variable was imputed,
and it turns out that the variable contained missing in 12 nonfarm observations; mi needed to deal
with that.

Running mi update is so important that mi itself is constantly running it just in case you forget.
For instance, let’s “forget” to type mi update and then convert our data to wide:

. replace farmincome = 0 if !farm
(15 real changes made)

. mi convert wide, clear
(12 m=0 obs. now marked as complete)
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The parenthetical message was produced because mi convert ran mi update for us. For more
information on this, see [MI] noupdate option.

What mi update does

• mi update checks whether you have changed N , the number of observations in m = 0,
and resets N if necessary.

• mi update checks whether you have changed M , the number of imputations, and adjusts
the data if necessary.

• mi update checks whether you have added, dropped, registered, or unregistered any variables
and takes the appropriate action.

• mi update checks whether you have added or deleted any observations. If you have, it then
checks whether you carried out the operation consistently for m = 0, m = 1, . . . , m = M .
If you have not carried it out consistently, mi update carries it out consistently for you.

• In the mlong, flong, and flongsep styles, mi update checks system variable mi id, which
links observations across m, and reconstructs the variable if necessary.

• mi update checks that the system variable mi miss, which marks the incomplete ob-
servations, is correct and, if not, updates it and makes any other changes required by the
change.

• mi update verifies that the values recorded in imputed variables in m > 0 are equal to the
values in m = 0 when they are nonmissing and updates any that differ.

• mi update verifies that the values recorded in passive variables in m > 0 are equal to the
values recorded in m = 0’s complete observations and updates any that differ.

• mi update verifies that the values recorded in regular variables in m > 0 equal the values
in m = 0 and updates any that differ.

• mi update adds any new variables in m = 0 to m > 0.

• mi update drops any variables from m > 0 that do not appear in m = 0.

mi update is run automatically

As we mentioned before, running mi update is so important that many mi commands simply run
it as a matter of course. This is discussed in [MI] noupdate option. In a nutshell, the mi commands
that run mi update automatically have a noupdate option, so you can identify them, and you can
specify the option to skip running the update and so speed execution, but only with the adrenaline
rush caused by a small amount of danger.

Whether you specify noupdate or not, we advise you to run mi update periodically and to
always run mi update after dropping or adding variables or observations, or changing values.

Also see
[MI] intro — Introduction to mi

[MI] noupdate option — The noupdate option



Title

mi varying — Identify variables that vary across imputations

Description Menu Syntax Options
Remarks and examples Stored results Also see

Description
mi varying lists the names of variables that are unexpectedly varying and super varying; see

[MI] Glossary for a definition of varying and super-varying variables.

Menu
Statistics > Multiple imputation

Syntax
mi varying

[
varlist

] [
, noupdate

]
mi varying, unregistered

[
noupdate

]
Options

unregistered specifies that the listing be made only for unregistered variables. Specifying this
option saves time, especially when the data are flongsep.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks and examples
A variable is said to be varying if it varies over m in the complete observations. A variable is

said to be super varying if it varies over m in the incomplete observations.

Remarks are presented under the following headings:

Detecting problems
Fixing problems

Detecting problems

mi varying looks for five potential problems:

1. Imputed nonvarying. Variables that are registered as imputed and are nonvarying either

a. do not have their missing values in m > 0 filled in yet, in which case you should
use mi impute (see [MI] mi impute) to impute them, or
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b. have no missing values in m = 0, in which case you should mi unregister the
variables and perhaps use mi register to register the variables as regular (see
[MI] mi set).

2. Passive nonvarying. Variables that are registered as passive and are nonvarying either

a. have missing values in the incomplete observations in m > 0, in which case after
you have filled in the missing values of your imputed variables, you should use mi
passive (see [MI] mi passive) to update the values of these variables, or

b. have no missing values in m = 0, in which case you should mi unregister the
variables and perhaps use mi register to register the variables as regular (see
[MI] mi set).

3. Unregistered varying.

a. It is most likely that such variables should be registered as imputed or as passive.

b. If the variables are varying but should not be, use mi register to register them
as regular. That will fix the problem; values from m = 0 will be copied to m > 0.

c. It is possible that this is just like potential problem 5, below, and it just randomly
turned out that the only observations in which variation occurred were the incomplete
observations. In that case, leave the variable unregistered.

4. Unregistered super/varying. These are variables that are super varying but would have been
categorized as varying if they were registered as imputed. This is to say that while they
have varying values in the complete observations as complete is defined this instant—which
is based on the variables currently registered as imputed—these variables merely vary in
observations for which they themselves contain missing in m = 0, and thus they could be
registered as imputed without loss of information. Such variables should be registered as
imputed.

5. Unregistered super varying. These variables really do super vary and could not be registered
as imputed without loss of information. These variables either contain true errors or they are
passive variables that are functions of groups of observations. Fix the errors by registering
the variables as regular and leave unregistered those intended to be super varying. If you
intentionally have super-varying variables in your data, remember never to convert to the
wide or mlong styles. Super-varying variables can appear only in the flong and flongsep
styles.

mi varying output looks like this:

Possible problem Variable names

imputed nonvarying: (none)
passive nonvarying: (none)

unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: (none)

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

If there are possible problems, variable names are listed in the table.

Super-varying variables can arise only in flong and flongsep data, so the last two categories are
omitted when mi varying is run on wide or mlong data. If there are no imputed variables, or no
passive variables, or no unregistered variables, the corresponding categories are omitted from the
table.
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Fixing problems

If mi varying detects problems, register all imputed variables before registering passive variables.
Rerun mi varying as you register new imputed variables. Registering new variables as imputed can
change which observations are classified as complete and incomplete, and that classification in turn
can change the categories to which the other variables are assigned. After registering a variable as
imputed, another variable previously listed as super varying might now be merely varying.

Stored results
mi varying stores the following in r():

Macros
r(ivars) nonvarying imputed variables
r(pvars) nonvarying passive variables
r(uvars v) varying unregistered variables
r(uvars s v) (super) varying unregistered variables
r(uvars s s) super-varying unregistered variables

Also see
[MI] intro — Introduction to mi

[MI] mi misstable — Tabulate pattern of missing values



Title

mi xeq — Execute command(s) on individual imputations

Description Syntax Remarks and examples Stored results Also see

Description
mi xeq: XXX executes XXX on m = 0, m = 1, . . . , m = M .

mi xeq numlist: XXX executes XXX on m = numlist.

XXX can be any single command or it can be multiple commands separated by a semicolon. If
specifying multiple commands, the delimiter must not be set to semicolon; see [P] #delimit.

Syntax
mi xeq

[
numlist

]
: command

[
; command

[
; . . .

] ]
Remarks and examples

Remarks are presented under the following headings:
Using mi xeq with reporting commands
Using mi xeq with data-modification commands
Using mi xeq with data-modification commands on flongsep data

Using mi xeq with reporting commands

By reporting commands, we mean any general Stata command that reports results but leaves the
data unchanged. summarize (see [R] summarize) is an example. mi xeq is especially useful with
such commands. If you wanted to see the summary statistics for variables outcome and age among
the females in your mi data, you could type

. mi xeq: summarize outcome age if sex=="female"

m=0 data:
-> summarize outcome age if sex=="female"

(output omitted )
m=1 data:
-> summarize outcome age if sex=="female"

(output omitted )
m=2 data:
-> summarize outcome age if sex=="female"

(output omitted )

M = 2 in the data above.

If you wanted to see a particular regression run on the m = 2 data, you could type
. mi xeq 2: regress outcome age bp

m=2 data:
-> regress outcome age bp

(output omitted )

In both cases, once the command executes, the entire mi dataset is brought back into memory.
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Using mi xeq with data-modification commands

You can use data-modification commands with mi xeq but doing that is not especially useful
unless you are using flongsep data.

If variable lnage were registered as passive and you wanted to update its values, you could type

. mi xeq: replace lnage = ln(age)
(output omitted )

That would work regardless of style, although it is just as easy to update the variable using mi
passive (see [MI] mi passive):

. mi passive: replace lnage = ln(age)
(output omitted )

If what you are doing depends on the sort order of the data, include the sort command among
the commands to be executed; do not assume that the individual datasets will be sorted the way the
data in memory are sorted. For instance, if you have passive variable totalx, do not type

. sort id time

. mi xeq: by id: replace totalx = sum(x)

That will not work. Instead, type

. mi xeq: sort id time; by id: replace totalx = sum(x)

m=0 data:
-> sort id time
-> by id: replace total x = sum(x)
(8 changes made)

m=1 data:
-> sort id time
-> by id: replace total x = sum(x)
(8 changes made)

m=2 data:
-> sort id time
-> by id: replace total x = sum(x)
(8 changes made)

Again we note that it would be just as easy to update this variable with mi passive:

. mi passive: by id (time): replace totalx = sum(x)
m=0:
(8 changes made)
m=1:
(8 changes made)
m=2:
(8 changes made)

With the wide, mlong, and flong styles, there is always another way to proceed, and often the
other way is easier.

Using mi xeq with data-modification commands on flongsep data

With flongsep data, mi xeq is especially useful. Consider the case where you want to add new
variable lnage = ln(age) to your data, and age is just a regular or unregistered variable. With
flong, mlong, or wide data, you would just type

. generate lnage = ln(age)

and be done with it.
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With flongsep data, you have multiple datasets to update. Of course, you could mi convert (see
[MI] mi convert) your data to one of the other styles, but we will assume that if you had sufficient
memory to do that, you would have done that long ago and so would not be using flongsep data.

The easy way to create lnage with flongsep data is by typing

. mi xeq: generate lnage = ln(age)
(output omitted )

You could use the mi xeq approach with any of the styles, but with flong, mlong, or wide data,
it is not necessary. With flongsep, it is.

Stored results
mi xeq stores in r() whatever the last command run on the last imputation or specified imputation

returns. For instance,

. mi xeq: tabulate g ; summarize x

returns the stored results for summarize x run on m = M .

. mi xeq 1 2: tabulate g ; summarize x

returns the stored results for summarize x run on m = 2.

. mi xeq 0: summarize x

returns the stored results for summarize x run on m = 0.

Also see
[MI] intro — Introduction to mi

[MI] mi passive — Generate/replace and register passive variables



Title

mi XXXset — Declare mi data to be svy, st, ts, xt, etc.

Description Syntax Remarks and examples Also see

Description
Using some features of Stata requires setting your data. The commands listed below allow you to

do that with mi data. The mi variants have the same syntax and work the same way as the original
commands.

Syntax

mi fvset . . . see [R] fvset

mi svyset . . . see [SVY] svyset

mi stset . . . see [ST] stset
mi streset . . .

mi st . . .

mi tsset . . . see [TS] tsset
mi xtset . . . see [XT] xtset

Remarks and examples
If you have set your data with any of the above commands before you mi set them, there is no

problem; the settings were automatically imported. Once you mi set your data, however, you will
discover that Stata’s other set commands no longer work. For instance, here is the result of typing
stset on an mi set dataset:

. stset ...
no; data are mi set

Use mi stset to set or query these data; mi stset has the same
syntax as stset.

Perhaps you did not type stset. Some commands call stset to obtain
information about the settings. In that case, that command is not appropriate
for running directly on mi data. Use mi extract to select the data on which
you want to run the command, which is probably m=0.

r(119);

Also, you might sometimes see an error like the one above when you give a command that depends
on the data being set by one of Stata’s other set commands. In general, it is odd that you would be
running such a command directly on mi data because what you will get will depend on the mi style
of data. Perhaps, however, you are using mi wide data, where the structure of the data more or less
corresponds to the structure of non-mi data, or perhaps you have smartly specified the appropriate
if statement to account for the mi style of data you are using. In any case, the result might be
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. some_other_command
no; data are mi set

Use mi XXXset to set or query these data; mi XXXset has the same syntax as
XXXset.

Perhaps you did not type stset. Some commands call stset to obtain
information about the settings. In that case, that command is not appropriate
for running directly on mi data. Use mi extract to select the data on which
you want to run the command, which is probably m=0.

r(119);

Substitute one of the set commands listed above for XXXset, and then understand what just
happened. You correctly used mi XXXset to set your data, you thought your data were set, yet when
you tried to use a command that depended on the data being XXXset, you received this error.

If this happens to you, the solution is to use mi extract (see [MI] mi extract) to obtain the data
on which you want to run the command—which is probably m = 0, so you would type mi extract
0—and then run the command.

Also see
[MI] intro — Introduction to mi
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noupdate option — The noupdate option

Description Syntax Option Remarks and examples Also see

Description

Many mi commands allow the noupdate option. This entry describes the purpose of that option.

Syntax

mi . . .
[
, . . . noupdate . . .

]

Option
noupdate specifies that the mi command in question need not perform an mi update because you

are certain that there are no inconsistencies that need fixing; see [MI] mi update. noupdate is
taken as a suggestion; mi update will still be performed if the command sees evidence that it
needs to be. Not specifying the option does not mean that an mi update will be performed.

Remarks and examples
Some mi commands perform modifications to the data, and those modifications will go very

poorly—even to the point of corrupting your data—if certain assumptions about your data are not
true. Usually, those assumptions are true, but to be safe, the commands check the assumptions. They
do this by calling mi update; see [MI] mi update. mi update checks the assumptions and, if they
are not true, corrects the data so that the assumptions are true. mi update always reports the data
corrections it makes.

All of this reflects an abundance of caution, with the result that some commands spend more time
running mi update than they spend performing their intended task.

Commands that use mi update to verify assumptions have a noupdate option. When you specify
that option, the command skips checking the assumptions, which is to say it skips calling mi update.
More correctly, the command skips calling mi update if the command sees no obvious evidence that
mi update needs to be called.

You can make commands run faster by specifying noupdate. Should you? Unless you are noticing
poor performance, we would say no. It is, however, absolutely safe to specify noupdate if the only
commands executed since the last mi update are mi commands. The following would be perfectly
safe:

. mi update

. mi passive, noupdate: generate agesq = age*age

. mi rename age age_at_admission, noupdate

. mi ...
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The following would be safe, too:

. mi update

. mi passive, noupdate: generate agesq = age*age

. summarize agesq

. mi rename age age_at_admission, noupdate

. mi ...

It would be safe because summarize is a reporting command that does not change the data; see
[R] summarize.

The problem mi has is that it is not in control of your session and data. Between mi commands,
mi does not know what you have done to the data. The following would not be recommended and
has the potential to go very poorly:

. mi update

. mi passive, noupdate: generate agesq = age*age

. drop if female

. drop agesq

. mi ..., noupdate // do not do this

By the rules for using mi, you should perform an mi update yourself after a drop command, or
any other command that changes the data, but it usually does not matter whether you follow that rule
because mi will check eventually, when it matters. That is, mi will check if you do not specify the
noupdate option.

The noupdate option is recommended for use by programmers in programs that code a sequence
of mi commands.

Also see
[MI] intro — Introduction to mi

[MI] mi update — Ensure that mi data are consistent



Title

styles — Dataset styles

Description Syntax Remarks and examples Also see

Description
The purpose of this entry is to familiarize you with the four styles in which mi data can be stored.

Syntax
There are four dataset styles available for storing mi data:

wide

mlong

flong

flongsep

Remarks and examples
Remarks are presented under the following headings:

The four styles
Style wide
Style flong
Style mlong
Style flongsep
How we constructed this example

Using mi system variables
Advice for using flongsep

The four styles

We have highly artificial data, which we will first describe verbally and then show to you in each
of the styles. The original data have two observations on two variables:

a b

1 2
4 .

Variable b has a missing value. We have two imputed values for b, namely, 4.5 and 5.5. There
will also be a third variable, c, in our dataset, where c = a + b.
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Thus, in the jargon of mi, we have M = 2 imputations, and the datasets m = 0, m = 1, and
m = 2 are

m=0: a b c

1 2 3
4 . .

m=1: a b c

1 2 3
4 4.5 8.5

m=2: a b c

1 2 3
4 5.5 9.5

Continuing with jargon, a is a regular variable, b is an imputed variable, and c is a passive variable.

Style wide

The above data have been stored in miproto.dta in the wide style.

. use http://www.stata-press.com/data/r14/miproto
(mi prototype)

. list

a b c _1_b _2_b _1_c _2_c _mi_miss

1. 1 2 3 2 2 3 3 0
2. 4 . . 4.5 5.5 8.5 9.5 1

There is no significance to the order in which the variables appear.

On the left, under variables a, b, and c, you can see the original data.

The imputed values for b appear under the variables named 1 b and 2 b; m = 1 appears under
1 b, and m = 2 appears under 2 b. Note that in the first observation, the observed value of b is

simply repeated in 1 b and 2 b. In the second observation, however, 1 b and 2 b show the
replacement values for the missing value of b.

The passive values for c appear under the variables named 1 c and 2 c in the same way that
the imputed values appeared under the variables named 1 b and 2 b.

Finally, one extra variable appears: mi miss. This is an example of an mi system variable. You
are never to change mi system variables; they take care of themselves. The wide style has only one
system variable. mi miss contains 0 for complete observations and 1 for incomplete observations.
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Style flong

Let’s convert this dataset to style flong:

. mi convert flong, clear

. list, separator(2)

a b c _mi_miss _mi_m _mi_id

1. 1 2 3 0 0 1
2. 4 . . 1 0 2

3. 1 2 3 . 1 1
4. 4 4.5 8.5 . 1 2

5. 1 2 3 . 2 1
6. 4 5.5 9.5 . 2 2

We listed these data with a separator line after every two rows so that they would be easier to
understand. Ignore the mi system variables and focus on variables a, b, and c. Observations 1 and 2
contain m = 0; observations 3 and 4 contain m = 1; observations 5 and 6 contain m = 2.

We will now explain the system variables, but you do not need to remember this.

1. We again see mi miss, just as we did in the wide style. It marks the incomplete observations
in m = 0. It contains missing in m > 0.

2. mi m records m. The first two observations are m = 0; the next two, m = 1; and the last
two, m = 2.

3. mi id records an arbitrarily coded observation-identification variable. It is 1 and 2 in
m = 0, and then repeats in m = 1 and m = 2. Observations mi id = 1 correspond to
each other for all m. The same applies to mi id = 2.

Warning: Do not use mi id as your own ID variable. You might look one time, see that a
particular observation has mi id = 8, and look a little later, and see that the observation
has changed from mi id = 8 to mi id = 5. mi id belongs to mi. If you want your
own ID variable, make your own. All that is true of mi id is that, at any instant, it uniquely
identifies, and ties together, the observations.

There is no significance to the order of the variables or, for that matter, to the order of the
observations.

Style mlong

Let’s convert this dataset to the mlong style:

. mi convert mlong, clear

. list

a b c _mi_miss _mi_m _mi_id

1. 1 2 3 0 0 1
2. 4 . . 1 0 2
3. 4 4.5 8.5 . 1 2
4. 4 5.5 9.5 . 2 2
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This listing will be easier to read if we add some carefully chosen blank lines:

a b c _mi_miss _mi_m _mi_id

1. 1 2 3 0 0 1
2. 4 . . 1 0 2

3. 4 4.5 8.5 . 1 2

4. 4 5.5 9.5 . 2 2

The mlong style is just like flong except that the complete observations—observations for which
mi miss = 0 in m = 0—are omitted in m > 0.

Observations 1 and 2 are the original, m = 0 data.

Observation 3 is the m = 1 replacement observation for observation 2.

Observation 4 is the m = 2 replacement observation for observation 2.

Style flongsep

Let’s look at these data in the flongsep style:

. mi convert flongsep example, clear
(files example.dta _1_example.dta _2_example.dta created)

. list

a b c _mi_miss _mi_id

1. 1 2 3 0 1
2. 4 . . 1 2

The flongsep style stores m = 0, m = 1, and m = 2 in separate files. When we converted to the
flongsep style, we had to specify a name for these files, and we chose example. This resulted in
m = 0 being stored in example.dta, m = 1 being stored in 1 example.dta, and m = 2 being
stored in 2 example.dta.

In the listing above, we see the original, m = 0 data.

After conversion, m = 0 (example.dta) was left in memory. When working with flongsep data,
you always work with m = 0 in memory. Nothing can stop us, however, from taking a brief peek:

. save example, replace
file example.dta saved

. use _1_example, clear
(mi prototype)

. list

a b c _mi_id

1. 1 2 3 1
2. 4 4.5 8.5 2

There are the data for m = 1. As previously, system variable mi id ties together observations. In
the m = 1 data, however, mi miss is not repeated.
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Let’s now look at 2 example.dta:

. use _2_example, clear
(mi prototype)

. list

a b c _mi_id

1. 1 2 3 1
2. 4 5.5 9.5 2

And there are the data for m = 2.

We have an aside, but an important one. Review the commands we just gave, stripped of their
output:

. mi convert flongsep example, clear

. list

. save example, replace

. use _1_example, clear

. list

. use _2_example, clear

. list

What we want you to notice is the line save example, replace. After converting to flongsep, for
some reason we felt obligated to save the dataset. We will explain below. Now look farther down the
history. After using 1 example.dta, we did not feel obligated to resave that dataset before using
2 example.dta. We will explain that below, too.

The flongsep style data are a matched set of datasets. You work with the m = 0 dataset in memory.
It is your responsibility to save that dataset. Sometimes mi will have already saved the dataset for
you. That was true here after mi convert, but it is impossible for you to know that in general, and
it is your responsibility to save the dataset just as you would save any other dataset.

The m > 0 datasets, # name.dta, are mi’s responsibility. We do not have to concern ourselves
with saving them. Obviously, it was not necessary to save them here because we had just used the
data and made no changes. The point is that, in general, the m > 0 datasets are not our responsibility.
The m = 0 dataset, however, is our responsibility.

We are done with the demonstration:

. drop _all

. mi erase example
(files example.dta _1_example.dta _2_example.dta erased)

How we constructed this example

You might be curious as to how we constructed miproto.dta. Here is what we did:

. drop _all

. input a b

a b
1. 1 2
2. 4 .
3. end

. mi set wide

. mi set M = 2
(2 imputations added; M = 2)
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. mi register regular a

. mi register imputed b

. replace _1_b = 4.5 in 2
(1 real change made)

. replace _2_b = 5.5 in 2
(1 real change made)

. mi passive: generate c = a + b
m=0:
(1 missing value generated)
m=1:
m=2:

. order a b c _1_b _2_b _1_c _2_c _mi_miss

Using mi system variables

You can use mi’s system variables to make some tasks easier. For instance, if you wanted to know
the overall number of complete and incomplete observations, you could type

. tabulate _mi_miss

because in all styles, the mi miss variable is created in m = 0 containing 0 if complete and 1 if
incomplete.

If you wanted to know the summary statistics for weight in m = 1, the general solution is

. mi xeq 1: summarize weight

If you were using wide data, however, you could instead type

. summarize _1_weight

If you were using flong data, you could type

. summarize weight if _mi_m==1

If you were using mlong data, you could type

. summarize weight if (_mi_m==0 & !_mi_miss) | _mi_m==1

Well, that last is not so convenient.

What is convenient to do directly depends on the style you are using. Remember, however, you
can always switch between styles by using mi convert (see [MI] mi convert). If you were using
mlong data and wanted to compare summary statistics of the weight variable in the original data
and in all imputations, you could type

. mi convert wide

. summarize *weight

Advice for using flongsep

Use the flongsep style when your data are too big to fit into any of the other styles. If you already
have flongsep data, you can try to convert it to another style. If you get the error “no room to add
more observations” or “no room to add more variables”, then you need to increase the amount of
memory Stata is allowed to use (see [D] memory) or resign yourself to using the flongsep style.
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There is nothing wrong with the flongsep style except that you need to learn some new habits.
Usually, in Stata, you work with a copy of the data in memory, and the changes you make are not
reflected in the underlying disk file until and unless you explicitly save the data. If you want to
change the name of the data, you merely save them in a file of a different name. None of that is
true when working with flongsep data. Flongsep data are a collection of datasets; you work with the
one corresponding to m = 0 in memory, and mi handles keeping the others in sync. As you make
changes, the datasets on disk change.

Think of the collection of datasets as having one name. That name is established when the flongsep
data are created. There are three ways that can happen. You might start with a non-mi dataset in
memory and mi set it; you might import a dataset into Stata and the result be flongsep; or you
might convert another mi dataset to flongsep. Here are all the corresponding commands:

. mi set flongsep name (1)

. mi import flongsep name (2)

. mi import nhanes1 name

. mi convert flongsep name (3)

In each command, you specify a name and that name becomes the name of the flongsep dataset
collection. In particular, name.dta becomes m = 0, 1 name.dta becomes m = 1, 2 name.dta
becomes m = 2, and so on. You use flongsep data by typing use name, just as you would any other
dataset. As we said, you work with m = 0 in memory and mi handles the rest.

Flongsep data are stored in the current (working) directory. Learn about pwd to find out where
you are and about cd to change that; see [D] cd.

As you work with flongsep data, it is your responsibility to save name.dta almost as it would
be with any Stata dataset. The difference is that mi might and probably has saved name.dta along
the way without mentioning the fact, and mi has doubtlessly updated the # name.dta datasets,
too. Nevertheless, it is still your responsibility to save name.dta when you are done because you
do not know whether mi has saved name.dta recently enough. It is not your responsibility to worry
about # name.dta.

It is a wonderful feature of Stata that you can usually work with a dataset in memory without
modifying the original copy on disk except when you intend to update it. It is a unpleasant feature
of flongsep that the same is not true. We therefore recommend working with a copy of the data, and
mi provides an mi copy command (see [MI] mi copy) for just that purpose:

. mi copy newname

With flongsep data in memory, when you type mi copy newname, the current flongsep files are
saved in their existing name (this is one case where you are not responsible for saving name.dta),
and then the files are copied to newname, meaning that m = 0 is copied to newname.dta, m = 1
is copied to 1 newname.dta, and so on. You are now working with the same data, but with the
new name newname.

As you work, you may reach a point where you would like to save the data collection under name
and continue working with newname. Do the following:

. mi copy name, replace

. use newname

When you are done for the day, if you want your data saved, do not forget to save them by using
mi copy. It is also a good idea to erase the flongsep newname dataset collection:

. mi copy name, replace

. mi erase newname
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By the way, name.dta, 1 name.dta, . . . are just ordinary Stata datasets. By using general
(non-mi) Stata commands, you can look at them and even make changes to them. Be careful about
doing the latter; see [MI] technical.

See [MI] mi copy to learn more about mi copy.

Also see
[MI] intro — Introduction to mi

[MI] mi copy — Copy mi flongsep data

[MI] mi erase — Erase mi datasets

[MI] technical — Details for programmers
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technical — Details for programmers

Description Remarks and examples Also see

Description
Technical information for programmers who wish to extend mi is provided below.

Remarks and examples
Remarks are presented under the following headings:

Notation
Definition of styles

Style all
Style wide
Style mlong
Style flong
Style flongsep
Style flongsep sub

Adding new commands to mi
Outline for new commands
Utility routines

u mi assert set
u mi certify data
u mi no sys vars and u mi no wide vars
u mi zap chars
u mi xeq on tmp flongsep
u mi get flongsep tmpname
mata: u mi flongsep erase()
u mi sortback
u mi save and u mi use
mata: u mi wide swapvars()
u mi fixchars
mata: u mi cpchars get() and mata: u mi cpchars put()
mata: u mi get mata instanced var()
mata: u mi ptrace *()

How to write other set commands to work with mi

Notation

M = # of imputations

m = imputation number
0. original data with missing values
1. first imputation dataset

.

.
M . last imputation dataset

N = number of observations in m = 0
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Definition of styles

Style describes how the mi data are stored. There are four styles: wide, mlong, flong, and flongsep.

Style all
Characteristics:

dta[ mi marker] “ mi ds 1”

Description: dta[ mi marker] is set with all styles, including flongsep sub. The definitions
below apply only if "‘ dta[ mi marker]’" = " mi ds 1".

Style wide
Characteristics:

dta[ mi style] “wide”
dta[ mi M] M
dta[ mi ivars] imputed variables; variable list
dta[ mi pvars] passive variables; variable list
dta[ mi rvars] regular variables; variable list
dta[ mi update] time last updated; %tc value/1000

Variables:
mi miss whether incomplete; 0 or 1
# varname varname for m = #, defined for each

‘ dta[ mi ivars]’ and ‘ dta[ mi pvars]’

Description: m = 0, m = 1, . . . , m = M are stored in one dataset with N = N observations. Each
imputed and passive variable has M additional variables associated with it. If variable bp contains
the values in m = 0, then values for m = 1 are contained in variable 1 bp, values for m = 2 in
2 bp, and so on. wide stands for wide.

Style mlong
Characteristics:

dta[ mi style] “mlong”
dta[ mi M] M
dta[ mi N] N
dta[ mi n] # of observations in marginal
dta[ mi ivars] imputed variables; variable list
dta[ mi pvars] passive variables; variable list
dta[ mi rvars] regular variables; variable list
dta[ mi update] time last updated; %tc value/1000

Variables:
mi m m; 0, 1, . . . , M
mi id ID; 1, . . . , N
mi miss whether incomplete; 0 or 1 if mi m = 0, else .

Description: m = 0, m = 1, . . . , m = M are stored in one dataset with N = N + M × n
observations, where n is the number of incomplete observations in m = 0. mlong stands for marginal
long.
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Style flong
Characteristics:

dta[ mi style] “flong”
dta[ mi M] M
dta[ mi N] N
dta[ mi ivars] imputed variables; variable list
dta[ mi pvars] passive variables; variable list
dta[ mi rvars] regular variables; variable list
dta[ mi update] time last updated; %tc value/1000

Variables:
mi m m; 0, 1, . . . , M
mi id ID; 1, . . . , N
mi miss whether incomplete; 0 or 1 if mi m = 0, else .

Description: m = 0, m = 1, . . . , m = M are stored in one dataset with N = N + M × N
observations, where N is the number of observations in m = 0. flong stands for full long.

Style flongsep
Characteristics:

dta[ mi style] “flongsep”
dta[ mi name] name
dta[ mi M] M
dta[ mi N] N
dta[ mi ivars] imputed variables; variable list
dta[ mi pvars] passive variables; variable list
dta[ mi rvars] regular variables; variable list
dta[ mi update] time last updated; %tc value/1000

Variables:
mi id ID; 1, . . . , N
mi miss whether incomplete; 0 or 1

Description: m = 0, m = 1, . . . , m = M are each separate .dta datasets. If m = 0 data are stored
in pat.dta, then m = 1 data are stored in 1 pat.dta, m = 2 in 2 pat.dta, and so on.

The definitions above apply only to m = 0, the dataset named ‘ dta[ mi name]’.dta. See
Style flongsep sub directly below for m > 0. flongsep stands for full long and separate.

Style flongsep sub
Characteristics:

dta[ mi style] “flongsep sub”
dta[ mi name] name
dta[ mi m] m; 0, 1, . . . , M

Variables:
mi id ID; 1, . . . , N

Description: The description above applies to the ‘ dta[ mi m]’ ‘ dta[ mi name]’.dta
datasets. There are M such datasets recording m = 1, . . . , M used by the flongsep style
directly above.
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Adding new commands to mi

New commands are written in ado. Name the new command mi cmd newcmd and store it in
mi cmd newcmd.ado. When the user types mi newcmd . . . , mi cmd newcmd.ado will be executed.

See Writing programs for use with mi of [P] program properties for details on how to write
estimation commands for use with the mi estimate prefix.

Outline for new commands
program mi_cmd_newcmd, rclass (1)

version 14.1
u_mi_assert_set (2)
syntax ... [, ... noUPdate ...] (3)
...
u_mi_certify_data, acceptable (4)
...
if ("‘update’"=="") {

u_mi_certify_data, proper (5)
}
...

end

Notes:

1. The command may be rclass; that is not required. It may be eclass instead if you wish.

2. u mi assert set verifies that the data are mi data; see u mi assert set below.

3. If you intend for your command to use mi update to update the data before performing
its intended task, include a noupdate option; see [MI] noupdate option. Some commands
instead or in addition run mi update to perform cleanup after performing their task. Such
use does not require a noupdate option.

4. u mi certify data is the internal routine that performs mi update. An update is divided
into two parts, called acceptable and proper. All commands should verify that the data are
acceptable; see u mi certify data below.

5. u mi certify data, proper performs the second step of mi update; it verifies that
acceptable data are proper. Whether you verify properness is up to you, but if you do, you
are supposed to include a noupdate option to skip running the check.

Utility routines

The only information you absolutely need to know is that already revealed. Using the utility
routines described below, however, will simplify your programming task and make your code appear
more professional to the end user.

As you read what follows, remember that you may review the source code for the routines by
using viewsource; see [P] viewsource. If you wanted to see the source for u mi assert set, you
would type viewsource u mi assert set.ado. If you do this, you will sometimes see that the
routines allow options not documented below. Ignore those options; they may not appear in future
releases.

Using viewsource, you may also review examples of the utility commands being used by
viewing the source of the mi commands we have written. Each mi command appears in the file
mi cmd command.ado. Also remember that other mi commands make useful utility routines. For
instance, if your new command makes passive variables, use mi register to register them. Always
call existing mi commands through mi; code mi passive and not mi cmd passive.
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u mi assert set

u mi assert set
[

desired style
]

This utility verifies that data are mi and optionally of the desired style; it issues the appropriate
error message and stops execution if not. The optional argument desired style can be wide, mlong,
flong, or flongsep, but is seldom specified. When not specified, any style is allowed.

u mi certify data

u mi certify data
[
, acceptable proper noupdate sortok

]
This command performs mi update. mi update is equivalent to u mi certify data, ac-

ceptable proper sortok.

Specify one or both of acceptable and proper. If the noupdate option is specified, then proper
is specified. The sortok option specifies that u mi certify data need not spend extra time to
preserve and restore the original sort order of the data.

An update is divided into two parts. In the first part, called acceptable, m = 0 and the dta[ mi *]
characteristics are certified. Your program will use the information recorded in those characteristics,
and before that information can be trusted, the data must be certified as acceptable. Do not trust any
dta[ mi *] characteristics until you have run u mi certify data, acceptable.

u mi certify data, proper verifies that data known to be acceptable are proper. In practice,
this means that in addition to trusting m = 0, you can trust m > 0.

Running u mi certify data, acceptable might actually result in the data being certified as
proper, although you cannot depend on that. When you run u mi certify data, acceptable and
certain problems are observed in m = 0, they are fixed in all m, which can lead to other problems
being detected, and by the time the whole process is through, the data are proper.

u mi no sys vars and u mi no wide vars

u mi no sys vars "variable list"
[
"word"

]
u mi no wide vars "variable list"

[
"word"

]
These routines are for use in parsing user input.

u mi no sys vars verifies that the specified list of variable names does not include any mi
system variables such as mi m, mi id, mi miss, etc.

u mi no wide vars verifies that the specified list of variable names does not include any style
wide m > 0 variables of the form # varname. u mi no wide vars may be called with any style
of data but does nothing if the style is not wide.

Both functions issue appropriate error messages if problems are found. If word is specified, the
error message will be “word may not include . . . ”. Otherwise, the error message is “may not specify
. . . ”.

u mi zap chars

u mi zap chars

u mi zap chars deletes all dta[ mi *] characteristics from the data in memory.
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u mi xeq on tmp flongsep

u mi xeq on tmp flongsep
[
, nopreserve

]
: command

u mi xeq on tmp flongsep executes command on the data in memory, said data converted to
style flongsep, and then converts the flongsep result back to the original style. If the data already are
flongsep, a temporary copy is made and, at the end, posted back to the original. Either way, command
is run on a temporary copy of the data. If anything goes wrong, the user’s original data are restored;
that is, they are restored unless nopreserve is specified. If command completes without error, the
flongsep data in memory are converted back to the original style and the original data are discarded.

It is not uncommon to write commands that can deal only with flongsep data, and yet these seem to
users as if they work with all styles. That is because the routines use u mi xeq on tmp flongsep.
They start by allowing any style, but the guts of the routine are written assuming flongsep. mi
stjoin is implemented in this way. There are two parts to mi stjoin: mi cmd stjoin.ado and
mi sub stjoin flongsep.ado. mi cmd stjoin.ado ends with

u_mi_xeq_on_tmp_flongsep: mi_sub_stjoin_flongsep ‘if’, ‘options’

mi sub stjoin flongsep does all the work, while u mi xeq on tmp flongsep handles the
issue of converting to flongsep and back again. The mi sub stjoin flongsep subroutine must
appear in its own ado-file because u mi xeq on tmp flongsep is itself implemented as an ado-file.
u mi xeq on tmp flongsep would be unable to find the subroutine otherwise.

u mi get flongsep tmpname

u mi get flongsep tmpname macname : basename

u mi get flongsep tmpname creates a temporary flongsep name based on basename and stores
it in the local macro macname. u mi xeq on tmp flongsep, for your information, obtains the
temporary name it uses from this routine.

u mi get flongsep tmpname is seldom used directly because u mi xeq on tmp flongsep
works well for shifting temporarily into flongsep mode, and u mi xeq on tmp flongsep does
a lot more than just getting a name under which the data should be temporarily stored. There are
instances, however, when one needs to be more involved in the conversion. For examples, see the
source mi cmd append.ado and mi cmd merge.ado. The issue these two routines face is that they
need to shift two input datasets to flongsep, then they create a third from them, and that is the only
one that needs to be shifted back to the original style. So these two commands handle the conversions
themselves using u mi get flongsep tmpname and mi convert (see [MI] mi convert).

For instance, they start with something like

u_mi_get_flongsep_tmpname master : __mimaster

That creates a temporary name suitable for use with mi convert and stores it in ‘master’. The
suggested name is mimaster, but if that name is in use, then u mi get flongsep tmpname
will form from it mimaster1, or mimaster2, etc. We recommend that you specify a basename
that begins with mi, which is to say, two underscores followed by mi.

Next you must appreciate that it is your responsibility to eliminate the temporary files. You do
that by coding something like
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...
local origstyle "‘_dta[_mi_style]’"
if ("‘origstyle’"=="flongsep") {

local origstyle "‘origstyle’ ‘_dta[_mi_name]’"
}
u_mi_get_flongsep_tmpname master : __mimaster
capture {

quietly mi convert flongsep ‘master’
...
...
quietly mi convert ‘origstyle’, clear replace

{
nobreak {

local rc = _rc
mata: u_mi_flongsep_erase("‘master’", 0, 0)
if (‘rc’) {

exit ‘rc’
}

}

The other thing to note above is our use of mi convert ‘master’ to convert our data to flongsep
under the name ‘master’. What, you might wonder, happens if our data already is flongsep? A nice
feature of mi convert is that when run on data that are already flongsep, it performs an mi copy;
see [MI] mi copy.

mata: u mi flongsep erase()

mata: u mi flongsep erase("name", from
[
, output

]
)

where

name string; flongsep name

from #; where to begin erasing

output 0|1; whether to produce output

mata: u mi flongsep erase() is the internal version of mi erase (see [MI] mi erase); use
whichever is more convenient.

Input from is usually specified as 0 and then mata: u mi flongsep erase() erases name.dta,
1 name.dta, 2 name.dta, and so on. from may be specified as a number greater than zero, how-

ever, and then erased are <from> name.dta, <from+1> name.dta, <from+2> name.dta,
. . . .

If output is 0, no output is produced; otherwise, the erased files are also listed. If output is not
specified, files are listed.

See viewsource u mi.mata for the source code for this routine.

u mi sortback

u mi sortback varlist

u mi sortback removes dropped variables from varlist and sorts the data on the remaining
variables. The routine is for dealing with sort-preserve problems when program name, sortpreserve
is not adequate, such as when the data might be subjected to substantial editing between the preserving
of the sort order and the restoring of it. To use u mi sortback, first record the order of the data:
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local sortedby : sortedby
tempvar recnum
gen long ‘recnum’ = _n
quietly compress ‘recnum’

Later, when you want to restore the sort order, you code

u_mi_sortback ‘sortedby’ ‘recnum’

u mi save and u mi use

u mi save macname : filename
[
, save options

]
u mi use ‘"‘macname’"’ filename

[
, clear nolabel

]
save options are as described in [D] save. clear and nolabel are as described in [D] use. In

both commands, filename must be specified in quotes if it contains any special characters or blanks.

It is sometimes necessary to save data in a temporary file and reload them later. In such cases,
when the data are reloaded, you would like to have the original c(filename), c(filedate),
and c(changed) restored. u mi save saves that information in macname. u mi use restores the
information from the information saved in macname. Note the use of compound quotes around
‘macname’ in u mi use; they are not optional.

mata: u mi wide swapvars()

mata: u mi wide swapvars(m, tmpvarname)

where

m #; 1 ≤ # ≤M
tmpvarname string; name from tempvar

This utility is for use with wide data only. For each variable name contained in dta[ mi ivars]
and dta[ mi pvars], mata: u mi wide swapvars() swaps the contents of varname with

m varname. Argument tmpvarname must be the name of a temporary variable obtained from
command tempvar, and the variable must not exist. mata: u mi wide swapvars() will use this
variable while swapping. See [P] macro for more information on tempvar.

This function is its own inverse, assuming dta[ mi ivars] and dta[ mi pvars] have not
changed.

See viewsource u mi.mata for the source code for this routine.

u mi fixchars

u mi fixchars
[
, acceptable proper

]
u mi fixchars makes the data and variable characteristics the same in m = 1, m = 2, . . . ,

m = M as they are in m = 0. The options specify what is already known to be true about the
data, that the data are known to be acceptable or known to be proper. If neither is specified, you are
stating that you do not know whether the data are even acceptable. That is okay. u mi fixchars
handles performing whatever certification is required. Specifying the options makes u mi fixchars
run faster.
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This stabilizing of the characteristics is not about mi’s characteristics; that is handled by
u mi certify data. Other commands of Stata set and use characteristics, while u mi fixchars
ensures that those characteristics are the same across all m.

mata: u mi cpchars get() and mata: u mi cpchars put()

mata: u mi cpchars get(matavar)

mata: u mi cpchars put(matavar, {0 | 1 | 2})
where matavar is a Mata transmorphic variable. Obtain matavar from
u mi get mata instanced var() when using these functions from Stata.

These routines replace the characteristics in one dataset with those of another. They are used to
implement u mi fixchars.

mata: u mi cpchars get(matavar) stores in matavar the characteristics of the data in memory.
The data in memory remain unchanged.

mata: u mi cpchars put(matavar, #) replaces the characteristics of the data in memory with
those previously recorded in matavar. The second argument specifies the treatment of dta[ mi *]
characteristics:

0 delete them in the destination data
1 copy them from the source just like any other characteristic
2 retain them as-is from the destination data.

mata: u mi get mata instanced var()

mata: u mi get mata instanced var("macname", "basename"
[
, i value

]
)

where

macname name of local macro

basename suggested name for instanced variable

i value initial value for instanced variable

mata: u mi get mata instanced var() creates a new Mata global variable, initializes it with
i value or as a 0× 0 real, and places its name in local macro macname. Typical usage is

local var
capture noisily {

mata: u_mi_get_mata_instanced_var("var", "myvar")
...
... use ‘var’ however you wish ...
...

}
nobreak {

local rc = _rc
capture mata: mata drop ‘var’
if (‘rc’) {

exit ‘rc’
}

}
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mata: u mi ptrace *()

h = u mi ptrace open("filename", {"r" | "w"}
[
, {0 | 1}

]
)

u mi ptrace write stripes(h, id, ynames, xnames)

u mi ptrace write iter(h, m, iter, B, V)

u mi ptrace close(h)

u mi ptrace safeclose(h)

The above are Mata functions, where

h, if it is declared, should be declared transmorphic
id is a string scalar
ynames and xnames are string scalars
m and iter are real scalars
B and V are real matrices; V must be symmetric

These routines write parameter-trace files; see [MI] mi ptrace. The procedure is 1) open the file;
2) write the stripes; 3) repeatedly write iteration information; and 4) close the file.

1. Open the file: filename may be specified with or without a file suffix. Specify the second
argument as "w". The third argument should be 1 if the file may be replaced when it exists,
and 0 otherwise.

2. Write the stripes: Specify id as the name of your routine or as ""; mi ptrace describe
will show this string as the creator of the file if the string is not "". ynames and xnames
are both string scalars containing space-separated names or, possibly, op.names.

3. Repeatedly write iteration information: Written are m, the imputation number; iter, the
iteration number; B, the matrix of coefficients; and V , the variance matrix. B must be
ny×nx and V must be ny×ny and symmetric, where nx = length(tokens(xnames))
and ny = length(tokens(ynames)).

4. Close the file: In Mata, use u mi ptrace close(h). It is highly recommended
that, before step 1, h be obtained from inside Stata (not Mata) using mata:
u mi get mata instanced var("h", "myvar"). If you follow this advice, include
a mata: u mi ptrace safeclose(‘h’) in the ado-file cleanup code. This will ensure
that open files are closed if the user presses Break or something else causes your routine
to exit before the file is closed. A correctly written program will have two closes, one
in Mata and another in the ado-file, although you could omit the one in Mata. See mata:
u mi get mata instanced var() directly above.

Also included in u mi ptrace *() are routines to read parameter-trace files. You should not
need these routines because users will use Stata command mi ptrace use to load the file you have
written. If you are interested, however, then type viewsource u mi ptrace.mata.
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How to write other set commands to work with mi

This section concerns the writing of other set commands such as [ST] stset or [XT] xtset—set
commands having nothing to do with mi—so that they properly work with mi.

The definition of a set command is any command that creates characteristics in the data, and
possibly creates variables in the data, that other commands in the suite will subsequently access.
Making such set commands work with mi is mostly mi’s responsibility, but there is a little you need
to do to assist mi. Before dealing with that, however, write and debug your set command ignoring
mi. Once that is done, go back and add a few lines to your code. We will pretend your set command
is named mynewset and your original code looks something like this:

program mynewset
...
syntax ... [, ... ]
...

end

Our goal is to make it so that mynewset will not run on mi data while simultaneously making
it so that mi can call it (the user types mi mynewset). When the user types mi mynewset, mi will
1) give mynewset a clean, m = 0 dataset on which it can run and 2) duplicate whatever mynewset
does to m = 0 on m = 1, m = 2, . . . , m = M .

To achieve this, modify your code to look like this:

program mynewset
...
syntax ... [, ... MI] (1)
if ("‘mi’"=="") { (2)

u_mi_not_mi_set "mynewset"
local checkvars "*" (3)

}
else {

local checkvars "u_mi_check_setvars settime" (3)
}
...
‘checkvars’ ‘varlist’ (4)
...

end

That is,

1. Add the mi option to any options you already have.

2. If the mi option is not specified, execute u mi not mi set, passing to it the name of your
set command. If the data are not mi, then u mi not mi set will do nothing. If the data
are mi, then u mi not mi set will issue an error telling the user to run mi mynewset.

3. Set new local macro checkvars to * if the mi option is not specified, and otherwise to
u mi check setvars. We should mention that the mi option will be specified when mi
mynewset calls mynewset.

4. Run ‘checkvars’ on any input variables mynewset uses that must not vary across m. mi
does not care about other variables or even about new variables mynewset might create; it
cares only about existing variables that should not vary across m.

Let’s understand what “‘checkvars’ varlist” does. If the mi option was not specified, the
line expands to “* varlist”, which is a comment, and does nothing. If the mi option was
specified, the line expands to “u mi check setvars settime varlist”. We are calling mi
routine u mi check setvars, telling it that we are calling at set time, and passing along
varlist. u mi check setvars will verify that varlist does not contain mi system variables
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or variables that vary across m. Within mynewset, you may call ‘checkvars’ repeatedly
if that is convenient.

You have completed the changes to mynewset. You finally need to write one short program that
reads

program mi_cmd_mynewset
version 14.1
mi_cmd_genericset ‘"mynewset ‘0’"’ "_mynewset_x _mynewset_y"

end

In the above, we assume that mynewset might add one or two variables to the data named mynewset x
and mynewset y. List in the second argument all variables mynewset might create. If mynewset
never creates new variables, then the program should read

program mi_cmd_mynewset
version 14.1
mi_cmd_genericset ‘"mynewset ‘0’"’

end

You are done.

Also see
[MI] intro — Introduction to mi



Title

workflow — Suggested workflow

Description Remarks and examples Also see

Description
Provided below are suggested workflows for working with original data and for working with data

that already have imputations.

Remarks and examples
Remarks are presented under the following headings:

Suggested workflow for original data
Suggested workflow for data that already have imputations
Example

Suggested workflow for original data

By original data, we mean data with missing values for which you do not already have imputations.
Your task is to identify the missing values, impute values for them, and perform estimation.

mi does not have a fixed order in which you must perform tasks except that you must mi set the
data first.

1. mi set your data; see [MI] mi set.
Set the data to be wide, mlong, flong, or flongsep. Choose flongsep only if your data are
bumping up against the constraints of memory. Choose flong or flongsep if you will need
super-varying variables.

Memory is not usually a problem, and super-varying variables are seldom necessary, so we
generally start with the data as wide:

. use originaldata

. mi set wide

If you need to use flongsep, you also need to specify a name for the flongsep dataset
collection. Choose a name different from the current name of the dataset:

. use originaldata

. mi set flongsep newname

If the original dataset is chd.dta, you might choose chdm for newname. newname does
not include the .dta suffix. If you choose chdm, the data will then be stored in chdm.dta,
1 chdm.dta, and so on. It is important that you choose a name different from originaldata

because you do not want your mi data to overwrite the original. Stata users are used to
working with a copy of the data in memory, meaning that the changes made to the data are
not reflected in the .dta dataset until the user saves them. With flongsep data, however,
changes are made to the mi .dta dataset collection as you work. See Advice for using
flongsep in [MI] styles.

370
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2. Use mi describe often; see [MI] mi describe.

mi describe will not tell you anything useful yet, but as you set more about the data, mi
describe will be more informative.

. mi describe

3. Use mi misstable to identify missing values; see [MI] mi misstable.

mi misstable is the standard misstable (see [R] misstable) but tailored for mi data.
Several Stata commands have mi variants—become familiar with them. If there is no mi
variant, then it is generally safe to use the standard command directly, although it may not
be appropriate. For instance, typing misstable rather than mi misstable would produce
appropriate results right now, but it would not produce appropriate results later. If mi datasets
m = 0, m = 1, . . . , m = M exist and you run misstable, you might end up running
the command on a strange combination of the m’s. We recommend the wide style because
general Stata commands will do what you expect. The same is true for the flongsep style.
It is your responsibility to get this right.

So what is the difference between mi misstable and misstable? mi misstable amounts
to mi xeq 0: misstable, exok, which is to say it runs on m = 0 and specifies the exok
option so that extended missing values are treated as hard missings.

In general, you need to become familiar with all the mi commands, use the mi variant
of regular Stata commands whenever one exists, and think twice before using a command
without an mi prefix. Doing the right thing will become automatic once you gain familiarity
with the styles; see [MI] styles.

To learn about the missing values in your data, type

. mi misstable summarize

4. Use mi register imputed to register the variables you wish to impute; see [MI] mi set.

The only variables that mi will impute are those registered as imputed. You can register
variables one at a time or all at once. If you register a variable mistakenly, use mi unregister
to unregister it.

. mi register imputed varname [ varname ... ]

5. Use mi impute to impute (fill in) the missing values; see [MI] mi impute.

There is a lot to be said here. For instance, in a dataset where variables age and bmi contain
missing, you might type

. mi register imputed age bmi

. mi impute mvn age bmi = attack smokes hsgrad, add(10)

mi impute’s add(#) option specifies the number of imputations to be added. We currently
have 0 imputations, so after imputation, we will have 10. We usually start with a small
number of imputations and add more later.

6. Use mi describe to verify that all missing values are filled in; see [MI] mi describe.

. mi describe

You might also want to use mi xeq (see [MI] mi xeq) to look at summary statistics in each
of the imputation datasets:

. mi xeq: summarize
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7. Generate passive variables; see [MI] mi passive.

Passive variables are variables that are functions of imputed variables, such as lnage when
some values of age are imputed. The values of passive variables differ across m just as the
values of imputed variables do. The official way to generate imputed values is by using mi
passive:

. mi passive: generate lnage = ln(age)

Rather than use the official way, however, we often switch our data to mlong and just
generate the passive variables directly:

. mi convert mlong

. generate lnage = ln(age)

. mi register passive lnage

If you work as we do, remember to register any passive variables you create. When you are
done, you may mi convert your data back to wide, but there is no reason to do that.

8. Use mi estimate (see [MI] mi estimate) to fit models:

. mi estimate: logistic attack smokes age bmi hsgrad

You fit your model just as you would ordinarily except that you add mi estimate: in front
of the command.

To see an example of the advice applied to a simple dataset, see Example below.

In theory, you should get your data cleaning and data management out of the way before mi
setting your data. In practice that will not happen, so you will want to become familiar with the
other mi commands. Among the data management commands available are mi append (see [MI] mi
append), mi merge (see [MI] mi merge), mi expand (see [MI] mi expand), and mi reshape (see
[MI] mi reshape). If you are working with survival-time data, also see [MI] mi stsplit. To stset
your data, or svyset, or xtset, see [MI] mi set and [MI] mi XXXset.

Suggested workflow for data that already have imputations

Data sometimes come with imputations included. The data might be made by another researcher
for you or the data might come from an official source. Either way, we will assume that the data are
not in Stata format, because if they were, you would just use the data and would type mi describe.

mi can import officially produced datasets created by the National Health and Nutrition Examination
Survey (NHANES) with the mi import nhanes1 command, and mi can import more informally created
datasets that are wide-, flong-, or flongsep-like with mi import wide, mi import flong, or mi
import flongsep; see [MI] mi import.

The required workflow is hardly different from Suggested workflow for original data, presented
above. The differences are that you will use mi import rather than mi set and you will skip using
mi impute to generate the imputations. In this sense, your job is easier.

On the other hand, you need to verify that you have imported your data correctly, and we have a
lot to say about that. Basically, after importing, you need to be careful about which mi commands
you use until you have verified that you have the variables registered correctly. That is discussed in
[MI] mi import.



workflow — Suggested workflow 373

Example

We are going to repeat A simple example from [MI] intro, but this time we are going to follow
the advice given above in Suggested workflow for original data.

We have fictional data on 154 patients and want to examine the relationship between binary
outcome attack, recording heart attacks, and variables smokes, age, bmi, hsgrad, and female. We
will use logistic regression. Below we load our original data and show you a little about it using the
standard commands describe and summarize. We emphasize that mheart5.dta is just a standard
Stata dataset; it has not been mi set.

. use http://www.stata-press.com/data/r14/mheart5
(Fictional heart attack data)

. describe

Contains data from http://www.stata-press.com/data/r14/mheart5.dta
obs: 154 Fictional heart attack data

vars: 6 19 Jun 2014 10:50
size: 1,848

storage display value
variable name type format label variable label

attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body Mass Index, kg/m^2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate

Sorted by:

. summarize

Variable Obs Mean Std. Dev. Min Max

attack 154 .4480519 .4989166 0 1
smokes 154 .4155844 .4944304 0 1

age 142 56.43324 11.59131 20.73613 83.78423
bmi 126 25.23523 4.029325 17.22643 38.24214

female 154 .2467532 .4325285 0 1

hsgrad 154 .7532468 .4325285 0 1

The first guideline is

1. mi set your data; see [MI] mi set.
We will set the data to be flong even though in A simple example we set the data to be mlong. mi

provides four styles—flong, mlong, wide, and flongsep—and at this point it does not matter which
we choose. mi commands work the same way regardless of style. Four styles are provided because,
should we decide to step outside of mi and attack the data with standard Stata commands, we will
find different styles more convenient depending on what we want to do. It is easy to switch styles.

Below we type mi set flong and then, to show you what that command did to the data, we
show you the output from a standard describe:
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. mi set flong

. describe

Contains data from http://www.stata-press.com/data/r14/mheart5.dta
obs: 154 Fictional heart attack data

vars: 9 19 Jun 2014 10:50
size: 2,618

storage display value
variable name type format label variable label

attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body Mass Index, kg/m^2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate
_mi_miss byte %8.0g
_mi_m int %8.0g
_mi_id int %8.0g

Sorted by:

Typing mi set flong added three variables to our data: mi miss, mi m, and mi id. Those
variables belong to mi. If you are curious about them, see [MI] styles. Advanced users can even use
them. No matter how advanced you are, however, you must never change their contents.

Except for the three added variables, the data are unchanged, and we would see that if we typed
summarize. The three added variables are due to the style we chose. When you mi set your data,
different styles will change the data differently, but the changes will be just around the edges.

The second guideline is

2. Use mi describe often; see [MI] mi describe.

The guideline is to use mi describe, not describe as we just did. Here is the result:

. mi describe

Style: flong
last mi update 14nov2014 14:56:41, 0 seconds ago

Obs.: complete 154
incomplete 0 (M = 0 imputations)

total 154

Vars.: imputed: 0

passive: 0

regular: 0

system: 3; _mi_m _mi_id _mi_miss

(there are 6 unregistered variables)

As the guideline warned us, “mi describe will not tell you anything useful yet.”
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The third guideline is

3. Use mi misstable to identify missing values; see [MI] mi misstable.

Below we type mi misstable summarize and mi misstable nested:

. mi misstable summarize
Obs<.

Unique
Variable Obs=. Obs>. Obs<. values Min Max

age 12 142 142 20.73613 83.78423
bmi 28 126 126 17.22643 38.24214

. mi misstable nested

1. age(12) -> bmi(28)

mi misstable summarize reports the variables containing missing values. Those variables in
our data are age and bmi. Notice that mi misstable summarize draws a distinction between, as it
puts it, “Obs=.” and “Obs>.”, which is to say between standard missing (.) and extended missing
(.a, .b, . . . , .z). That is because mi has a concept of soft and hard missing, and it associates soft
missing with system missing and hard missing with extended missing. Hard missing values—extended
missings—are taken to mean missing values that are not to be imputed. Our data have no missing
values like that.

After typing mi misstable summarize, we typed mi misstable nested because we were
curious whether the missing values were nested or, to use the jargon, monotone. We discovered that
they were. That is, age has 12 missing values in the data, and in every observation in which age
is missing, so is bmi, although bmi has another 16 missing values scattered around the data. That
means we can use a monotone imputation method, and that is good news because monotone methods
are more flexible and faster. We will discuss the implications of that shortly. There is a mechanical
detail we must handle first.

The fourth guideline is

4. Use mi register imputed to register the variables you wish to impute; see [MI] mi set.

We know that age and bmi have missing values, and before we can impute replacements for those
missing values, we must register the variables as to-be-imputed, which we do by typing

. mi register imputed age bmi
(28 m=0 obs. now marked as incomplete)

Guideline 2 suggested that we type mi describe often. Perhaps now would be a good time:

. mi describe

Style: flong
last mi update 14nov2014 14:56:41, 0 seconds ago

Obs.: complete 126
incomplete 28 (M = 0 imputations)

total 154

Vars.: imputed: 2; age(12) bmi(28)

passive: 0

regular: 0

system: 3; _mi_m _mi_id _mi_miss

(there are 4 unregistered variables; attack smokes female hsgrad)
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The output has indeed changed. mi knows just as it did before that we have 154 observations, and
it now knows that 126 of them are complete and 28 of them are incomplete. It also knows that age
and bmi are to be imputed. The numbers in parentheses are the number of missing values.

The fifth guideline is

5. Use mi impute to impute (fill in) the missing values; see [MI] mi impute.

In A simple example from [MI] intro, we imputed values for age and bmi by typing

. mi impute mvn age bmi = attack smokes hsgrad female, add(10)

This time, we will impute values by typing

. mi impute monotone (regress) age bmi = attack smokes hsgrad female, add(20)

We changed add(10) to add(20) for no other reason than to show that we could, although we admit
to a preference for more imputations whenever possible. add() specifies the number of imputations
to be added to the data. For every missing value, we will impute 20 nonmissing replacements.

We switched from mi impute mvn to mi impute monotone because our data are monotone. Here
mi impute monotone will be faster than mi impute mvn but will offer no statistical advantage. In
other cases, there might be statistical advantages. All of which is to say that when you get to the
imputation step, you have important decisions to make and you need to become knowledgeable about
the subject. You can start by reading [MI] mi impute.

. set seed 20039

. mi impute monotone (regress) age bmi = attack smokes hsgrad female,
> add(20)

Conditional models:
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 20
Monotone method added = 20
Imputed: m=1 through m=20 updated = 0

age: linear regression
bmi: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Note that we typed set seed 20039 before issuing the mi impute command. Doing that made
our results reproducible. We could have specified mi impute’s rseed(20039) option instead. Or
we could have skipped setting the random-number seed altogether, and then we would not be able
to reproduce our results.

The sixth guideline is

6. Use mi describe to verify that all missing values are filled in; see [MI] mi describe.
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. mi describe, detail

Style: flong
last mi update 14nov2014 14:56:42, 0 seconds ago

Obs.: complete 126
incomplete 28 (M = 20 imputations)

total 154

Vars.: imputed: 2; age(12; 20*0) bmi(28; 20*0)

passive: 0

regular: 0

system: 3; _mi_m _mi_id _mi_miss

(there are 4 unregistered variables; attack smokes female hsgrad)

This time, we specified mi describe’s detail option, although you have to look closely at the
output to see the effect. When you do not specify detail, mi describe reports results for the
original, unimputed data only, what we call m = 0 throughout this documentation. When you specify
detail, mi describe also includes information about the imputation data, what we call m > 0 and
is m = 1, m = 2, . . . , m = 20 here. Previously, mi describe reported “age(12)”, meaning that
age in m = 0 has 12 missing values. This time, it reports “age(12; 20*0)”, meaning that age still
has 12 missing values in m = 0, and it has 0 missing values in the 20 imputations. bmi also has 0
missing values in the imputations. Success!

Let’s take a detour to see how our data really look. Let’s type Stata’s standard describe command.
The last time we looked, our data had three extra variables.

. describe

Contains data from http://www.stata-press.com/data/r14/mheart5.dta
obs: 3,234 Fictional heart attack data

vars: 9 14 Nov 2014 14:56
size: 54,978

storage display value
variable name type format label variable label

attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body Mass Index, kg/m^2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate
_mi_id int %8.0g
_mi_miss byte %8.0g
_mi_m int %8.0g

Sorted by: _mi_m _mi_id
Note: Dataset has changed since last saved.

Nothing has changed as far as variables are concerned, but notice the number of observations.
Previously, we had 154 observations. Now we have 3,234! That works out to 21*154. Stored is our
original data plus 20 imputations. The flong style makes extra copies of the data.

We chose style flong only because it is so easy to explain. In A simple example from [MI] intro
using this same data, we choose style mlong. It is not too late:

. mi convert mlong

All that is required to change styles is typing mi convert. The style of the data changes, but not
the contents. Let’s see what describe has to report:
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. describe

Contains data from http://www.stata-press.com/data/r14/mheart5.dta
obs: 714 Fictional heart attack data

vars: 9 14 Nov 2014 14:56
size: 12,138

storage display value
variable name type format label variable label

attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body Mass Index, kg/m^2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate
_mi_id int %8.0g
_mi_miss byte %8.0g
_mi_m int %8.0g

Sorted by: _mi_m _mi_id
Note: Dataset has changed since last saved.

The data look much like they did when they were flong, except that the number of observations
has fallen from 3,234 to 714! Style mlong is an efficient style in that rather than storing the full
data for every imputation, it stores only the changes. Back when the data were flong, mi describe
reported that we had 28 incomplete observations. We get 714 from the 154 original observations plus
20× 28 replacement observations for the incomplete observations.

We recommend style mlong. Style wide is also recommended. Below we type mi convert to
convert our mlong data to wide, and then we run the standard describe command:

. mi convert wide, clear

. describe

Contains data from http://www.stata-press.com/data/r14/mheart5.dta
obs: 154 Fictional heart attack data

vars: 47 14 Nov 2014 14:56
size: 26,642

storage display value
variable name type format label variable label

attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body Mass Index, kg/m^2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate
_mi_miss byte %8.0g
_1_age float %9.0g Age, in years
_1_bmi float %9.0g Body Mass Index, kg/m^2
_2_age float %9.0g Age, in years
_2_bmi float %9.0g Body Mass Index, kg/m^2
_3_age float %9.0g Age, in years
_3_bmi float %9.0g Body Mass Index, kg/m^2
_4_age float %9.0g Age, in years
_4_bmi float %9.0g Body Mass Index, kg/m^2
_5_age float %9.0g Age, in years
_5_bmi float %9.0g Body Mass Index, kg/m^2
_6_age float %9.0g Age, in years
_6_bmi float %9.0g Body Mass Index, kg/m^2
_7_age float %9.0g Age, in years
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_7_bmi float %9.0g Body Mass Index, kg/m^2
_8_age float %9.0g Age, in years
_8_bmi float %9.0g Body Mass Index, kg/m^2
_9_age float %9.0g Age, in years
_9_bmi float %9.0g Body Mass Index, kg/m^2
_10_age float %9.0g Age, in years
_10_bmi float %9.0g Body Mass Index, kg/m^2
_11_age float %9.0g Age, in years
_11_bmi float %9.0g Body Mass Index, kg/m^2
_12_age float %9.0g Age, in years
_12_bmi float %9.0g Body Mass Index, kg/m^2
_13_age float %9.0g Age, in years
_13_bmi float %9.0g Body Mass Index, kg/m^2
_14_age float %9.0g Age, in years
_14_bmi float %9.0g Body Mass Index, kg/m^2
_15_age float %9.0g Age, in years
_15_bmi float %9.0g Body Mass Index, kg/m^2
_16_age float %9.0g Age, in years
_16_bmi float %9.0g Body Mass Index, kg/m^2
_17_age float %9.0g Age, in years
_17_bmi float %9.0g Body Mass Index, kg/m^2
_18_age float %9.0g Age, in years
_18_bmi float %9.0g Body Mass Index, kg/m^2
_19_age float %9.0g Age, in years
_19_bmi float %9.0g Body Mass Index, kg/m^2
_20_age float %9.0g Age, in years
_20_bmi float %9.0g Body Mass Index, kg/m^2

Sorted by:
Note: Dataset has changed since last saved.

In the wide style, our data are back to having 154 observations, but now we have 47 variables!
Variable 1 age contains age for m = 1, 1 bmi contains bmi for m = 1, 2 age contains age
for m = 2, and so on.

Guideline 7 is

7. Generate passive variables.

Passive variables are variables derived from imputed variables. For instance, if we needed lnage =
ln(age), variable lnage would be passive. Passive variables are easy to create; see [MI] mi passive.
We are not going to need any passive variables in this example.
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Guideline 8 is

8. Use mi estimate to fit models; see [MI] mi estimate.

Our data are wide right now, but that does not matter. We fit our model:

. mi estimate: logistic attack smokes age bmi hsgrad female

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154

Average RVI = 0.1104
Largest FMI = 0.3267

DF adjustment: Large sample DF: min = 186.13
avg = 67,625.01
max = 220,747.20

Model F test: Equal FMI F( 5, 6512.5) = 3.08
Within VCE type: OIM Prob > F = 0.0089

attack Coef. Std. Err. t P>|t| [95% Conf. Interval]

smokes 1.171797 .3573997 3.28 0.001 .4712929 1.8723
age .028737 .0165865 1.73 0.083 -.0038133 .0612873
bmi .1017045 .0535639 1.90 0.059 -.003966 .2073749

hsgrad .1501389 .4038092 0.37 0.710 -.6413206 .9415985
female -.1022359 .4138162 -0.25 0.805 -.9133052 .7088334
_cons -4.979444 1.829307 -2.72 0.007 -8.580825 -1.378062

Those familiar with the logistic command will be surprised that mi estimate: logistic
reported coefficients rather than odds ratios. That is because the estimation command is not logistic
using mi estimate, it is mi estimate using logistic. If we wanted to see odds ratios at estimation
time, we could have typed

. mi estimate, or: logistic ...

By the same token, if we wanted to replay results, we would not type logistic, we would type
mi estimate:

. mi estimate
(output omitted )

If we wanted to replay results with odds ratios, we would type

. mi estimate, or

And that concludes the guidelines.

Also see
[MI] intro — Introduction to mi

[MI] Glossary
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arbitrary missing pattern. Any missing-value pattern. Some imputation methods are suitable only
when the pattern of missing values is special, such as a monotone-missing pattern. An imputation
method suitable for use with an arbitrary missing pattern may be used regardless of the pattern.

augmented regression. Regression performed on the augmented data, the data with a few extra
observations with small weights. The data are augmented in a way that prevents perfect prediction,
which may arise during estimation of categorical data. See The issue of perfect prediction during
imputation of categorical data under Remarks and examples of [MI] mi impute.

burn-between period. The number of iterations between two draws of an MCMC sequence such that
these draws may be regarded as independent.

burn-in period. The number of iterations it takes for an MCMC sequence to reach stationarity.

casewise deletion. See listwise deletion.

chained equations. See fully conditional specification.

complete and incomplete observations. An observation in the m = 0 data is said to be complete
if no imputed variable in the observation contains soft missing (.). Observations that are not
complete are said to be incomplete.

complete data. Data that do not contain any missing values.

complete degrees of freedom. The degrees of freedom that would have been used for inference if
the data were complete.

complete DF. See complete degrees of freedom.

complete-cases analysis. See listwise deletion.

complete-data analysis. The analysis or estimation performed on the complete data, the data for
which all values are observed. This term does not refer to analysis or estimation performed on the
subset of complete observations. Do not confuse this with completed-data analysis.

completed data. See imputed data.

completed-data analysis. The analysis or estimation performed on the made-to-be completed (imputed)
data. This term does not refer to analysis or estimation performed on the subset of complete
observations.

conditional imputation. Imputation performed using a conditional sample, a restricted part of the
sample. Missing values outside the conditional sample are replaced with a conditional constant,
the constant value of the imputed variable in the nonmissing observations outside the conditional
sample. See Conditional imputation under Remarks and examples of [MI] mi impute.

DA. See data augmentation.

data augmentation. An MCMC method used for the imputation of missing data.

EM. See expectation-maximization algorithm.

expectation-maximization algorithm. In the context of MI, an iterative procedure for obtaining
maximum likelihood or posterior-mode estimates in the presence of missing data.

FCS. See fully conditional specification.

flong data. See style.
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flongsep data. See style.

FMI. See fraction of missing information.

fraction of missing information. The ratio of information lost due to the missing data to the total
information that would be present if there were no missing data.

An equal FMI test is a test under the assumption that FMIs are equal across parameters.

An unrestricted FMI test is a test without the equal FMI assumption.

fully conditional specification. Consider imputation variables X1, X2, . . . , Xp. Fully conditional
specification of the prediction equation for Xj includes all variables except Xj ; that is, variables
X−j = (X1, X2, . . . , Xj−1, Xj+1, . . . , Xp).

hard missing and soft missing. A hard missing value is a value of .a, .b, . . . , .z in m = 0 in an
imputed variable. Hard missing values are not replaced in m > 0.

A soft missing value is a value of . in m = 0 in an imputed variable. If an imputed variable
contains soft missing, then that value is eligible to be imputed, and perhaps is imputed, in m > 0.

Although you can use the terms hard missing and soft missing for passive, regular, and unregistered
variables, it has no special significance in terms of how the missing values are treated.

ignorable missing-data mechanism. The missing-data mechanism is said to be ignorable if missing
data are missing at random and the parameters of the data model and the parameters of the
missing-data mechanism are distinct; that is, the joint distribution of the model and the missing-
data parameters can be factorized into two independent marginal distributions of model parameters
and of missing-data parameters.

imputed, passive, and regular variables. An imputed variable is a variable that has missing values
and for which you have or will have imputations.

A passive variable is a varying variable that is a function of imputed variables or of other passive
variables. A passive variable will have missing values in m = 0 and varying values for observations
in m > 0.

A regular variable is a variable that is neither imputed nor passive and that has the same values,
whether missing or not, in all m.

Imputed, passive, and regular variables can be registered using the mi register command;
see [MI] mi set. You are required to register imputed variables, and we recommend that you
register passive variables. Regular variables can also be registered. See registered and unregistered
variables.

The names of imputation and passive variables may not exceed 29 characters. In the wide style,
the names of these variables may be restricted to less than 29 characters depending on the number
of imputations. In the flongsep style, the names of regular variables in addition to the names of
imputation and passive variables also may not exceed 29 characters.

imputed data. Data in which all missing values are imputed.

incomplete observations. See complete and incomplete observations.

ineligible missing value. An ineligible missing value is a missing value in a to-be-imputed variable
that is due to inability to calculate a result rather than an underlying value being unobserved. For
instance, assume that variable income had some missing values and so you wish to impute it.
Because income is skewed, you decide to impute the log of income, and you begin by typing

. generate lnincome = log(income)
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If income contained any zero values, the corresponding missing values in lnincome would be
ineligible missing values. To ensure that values are subsequently imputed correctly, it is of vital
importance that any ineligible missing values be recorded as hard missing. You would do that by
typing

. replace lnincome = .a if lnincome==. & income!=.

As an aside, if after imputing lnincome using mi impute (see [MI] mi impute), you wanted to
fill in income, income surprisingly would be a passive variable because lnincome is the imputed
variable and income would be derived from it. You would type

. mi register passive income

. mi passive: replace income = cond(lnincome==.a, 0, exp(lnincome))

In general, you should avoid using transformations that produce ineligible missing values to avoid
the loss of information contained in other variables in the corresponding observations. For example,
in the above, for zero values of income we could have assigned the log of income, lnincome,
to be the smallest value that can be stored as double, because the logarithm of zero is negative
infinity:

. generate lnincome = cond(income==0, mindouble(), log(income))

This way, all observations for which income==0 will be used in the imputation model for lnincome.

jackknifed standard error. See Monte Carlo error.

listwise deletion, casewise deletion. Omitting from analysis observations containing missing values.

M, m. M is the number of imputations. m refers to a particular imputation, m = 1, 2, . . . ,M . In
mi, m = 0 is used to refer to the original data, the data containing the missing values. Thus mi
data in effect contain M + 1 datasets, corresponding to m = 0, m = 1, . . . , and m = M .

MAR. See missing at random.

Markov chain Monte Carlo. A class of methods for simulating random draws from otherwise
intractable multivariate distributions. The Markov chain has the desired distribution as its equilibrium
distribution.

MCAR. See missing completely at random.

MCE. See Monte Carlo error.

MCMC. See Markov chain Monte Carlo.

mi data. Any data that have been mi set (see [MI] mi set), whether directly by mi set or indirectly
by mi import (see [MI] mi import). The mi data might have no imputations (have M = 0) and
no imputed variables, at least yet, or they might have M > 0 and no imputed variables, or vice
versa. An mi dataset might have M > 0 and imputed variables, but the missing values have not
yet been replaced with imputed values. Or mi data might have M > 0 and imputed variables and
the missing values of the imputed variables filled in with imputed values.

missing at random. Missing data are said to be missing at random (MAR) if the probability that data
are missing does not depend on unobserved data but may depend on observed data. Under MAR,
the missing-data values do not contain any additional information given observed data about the
missing-data mechanism. Thus the process that causes missing data can be ignored.

missing completely at random. Missing data are said to be missing completely at random (MCAR)
if the probability that data are missing does not depend on observed or unobserved data. Under
MCAR, the missing data values are a simple random sample of all data values, so any analysis that
discards the missing values remains consistent, albeit perhaps inefficient.
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missing not at random. Missing data are missing not at random (MNAR) if the probability that data
are missing depends on unobserved data. Under MNAR, a missing-data mechanism (the process
that causes missing data) must be modeled to obtain valid results.

mlong data. See style.

MNAR. See missing not at random.

monotone-missing pattern, monotone missingness. A special pattern of missing values in which if
the variables are ordered from least to most missing, then all observations of a variable contain
missing in the observations in which the prior variable contains missing.

Monte Carlo error. Within the multiple-imputation context, a Monte Carlo error is defined as the
standard deviation of the multiple-imputation results across repeated runs of the same imputation
procedure using the same data. The Monte Carlo error is useful for evaluating the statistical
reproducibility of multiple-imputation results. See Example 6: Monte Carlo error estimates under
Remarks and examples of [MI] mi estimate.

original data. Original data are the data as originally collected, with missing values in place. In mi
data, the original data are stored in m = 0. The original data can be extracted from mi data by
using mi extract; see [MI] mi extract.

passive variable. See imputed, passive, and regular variables.

registered and unregistered variables. Variables in mi data can be registered as imputed, passive,
or regular by using the mi register command; see [MI] mi set.

You are required to register imputed variables.

You should register passive variables; if your data are style wide, you are required to register them.
The mi passive command (see [MI] mi passive) makes creating passive variables easy, and it
automatically registers them for you.

Whether you register regular variables is up to you. Registering them is safer in all styles except
wide, where it does not matter. By definition, regular variables should be the same across m. In
the long styles, you can unintentionally create variables that vary. If the variable is registered, mi
will detect and fix your mistakes.

Super-varying variables, which rarely occur and can be stored only in flong and flongsep data,
should never be registered.

The registration status of variables is listed by the mi describe command; see [MI] mi describe.

regular variable. See imputed, passive, and regular variables.

relative efficiency. Ratio of variance of a parameter given estimation with finite M to the variance
if M were infinite.

relative variance increase. The increase in variance of a parameter estimate due to nonresponse.

RVI. See relative variance increase.

style. Style refers to the format in which the mi data are stored. There are four styles: flongsep,
flong, mlong, and wide. You can ignore styles, except for making an original selection, because
all mi commands work regardless of style. You will be able to work more efficiently, however,
if you understand the details of the style you are using; see [MI] styles. Some tasks are easier in
one style than another. You can switch between styles by using the mi convert command; see
[MI] mi convert.

The flongsep style is best avoided unless your data are too big to fit into one of the other styles.
In flongsep style, a separate .dta set is created for m = 0, for m = 1, . . . , and for m = M .
Flongsep is best avoided because mi commands work more slowly with it.
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In all the other styles, the M + 1 datasets are stored in one .dta file. The other styles are both
more convenient and more efficient.

The most easily described of these .dta styles is flong; however, flong is also best avoided because
mlong style is every bit as convenient as flong, and mlong is memorywise more efficient. In flong,
each observation in the original data is repeated M times in the .dta dataset, once for m = 1,
again for m = 2, and so on. Variable mi m records m and takes on values 0, 1, 2, . . . , M .
Within each value of m, variable mi id takes on values 1, 2, . . . , N and thus connects imputed
with original observations.

The mlong style is recommended. It is efficient and easy to use. Mlong is much like flong except
that complete observations are not repeated.

Equally recommended is the wide style. In wide, each imputed and passive variable has an
additional M variables associated with it, one for the variable’s value in m = 1, another for its
value in m = 2, and so on. If an imputed or passive variable is named vn, then the values of vn
in m = 1 are stored in variable 1 vn; the values for m = 2, in 2 vn; and so on.

What makes mlong and wide so convenient? In mlong, there is a one-to-one correspondence of
your idea of a variable and Stata’s idea of a variable—variable vn refers to vn for all values
of m. In wide, there is a one-to-one correspondence of your idea of an observation and Stata’s
idea—physical observation 5 is observation 5 in all datasets.

Choose the style that matches the problem at hand. If you want to create new variables or modify
existing ones, choose mlong. If you want to drop observations or create new ones, choose wide.
You can switch styles with the mi convert command; see [MI] mi convert.

For instance, if you want to create new variable ageXexp equal to age*exp and your data are
mlong, you can just type generate ageXexp = age*exp, and that will work even if age and exp
are imputed, passive, or a mix. Theoretically, the right way to do that is to type mi passive:
generate agexExp = age*exp, but concerning variables, if your data are mlong, you can work
the usual Stata way.

If you want to drop observation 20 or drop if sex==2, if your data are wide, you can just type
drop in 20 or drop if sex==2. Here the “right” way to do the problem is to type the drop
command and then remember to type mi update so that mi can perform whatever machinations
are required to carry out the change throughout m > 0; however, in the wide form, there are no
machinations required.

super-varying variables. See varying and super-varying variables.

unregistered variables. See registered and unregistered variables.

varying and super-varying variables. A variable is said to be varying if its values in the incomplete
observations differ across m. Imputed and passive variables are varying. Regular variables are
nonvarying. Unregistered variables can be either.

Imputed variables are supposed to vary because their incomplete values are filled in with different
imputed values, although an imputed variable can be temporarily nonvarying if you have not
imputed its values yet. Similarly, passive variables should vary because they are or will be filled
in based on values of varying imputed variables.

A variable is said to be super varying if its values in the complete observations differ across m.
The existence of super-varying variables is usually an indication of error. It makes no sense for
a variable to have different values in, say, m = 0 and m = 2 in the complete observations—in
observations that contain no missing values. That is, it makes no sense unless the values of the
variable is a function of the values of other variables across multiple observations. If variable sumx
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is the sum of x across observations, and if x is imputed, then sumx will differ across m in all
observations after the first observation in which x is imputed.

The mi varying command will identify varying and super-varying variables, as well as nonvarying
imputed and passive variables. [MI] mi varying explains how to fix problems when they are due
to error.

Some problems that theoretically could arise cannot arise because mi will not let them. For instance,
an imputed variable could be super varying and that would obviously be a serious error. Or a
regular variable could be varying and that, too, would be a serious error. When you register a
variable, mi fixes any such problems and, from that point on, watches for problems and fixes them
as they arise.

Use mi register to register variables; see [MI] mi set. You can perform the checks and fixes at
any time by running mi update; see [MI] mi update. Among other things, mi update replaces
values of regular variables in m > 0 with their values from m = 0; it replaces values of imputed
variables in m > 0 with their nonmissing values from m = 0; and it replaces values of passive
variables in incomplete observations of m > 0 with their m = 0 values. mi update follows a
hands-off policy with respect to unregistered variables.

If you need super-varying variables, use flong or flongsep style and do not register the variable.
You must use one of the flong styles because in the wide and mlong styles, there is simply no
place to store super-varying values.

wide data. See style.

WLF. See worst linear function.

worst linear function. A linear combination of all parameters being estimated by an iterative procedure
that is thought to converge slowly.

Also see
[MI] intro — Introduction to mi
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