

Omnibus GitLab documentation

Omnibus is a way to package different services and tools required to run GitLab, so that

most users can install it without laborious configuration.

Package information

 Checking the versions of bundled software

 Package defaults

 Deprecated Operating Systems

 Signed Packages

 Deprecation Policy

Installation
Prerequisites

 Installation Requirements

 If you want to access your GitLab instance via a domain name, like

mygitlabinstance.com, make sure the domain correctly points to the IP of the server

where GitLab is being installed. You can check this using the command host

mygitlabinstance.com

 If you want to use HTTPS on your GitLab instance, make sure you have the SSL

certificates for the domain ready. (Note that certain components like Container Registry

which can have their own subdomains requires certificates for those subdomains also)

 If you want to send notification emails, install and configure a mail server (MTA) like

sendmail. Alternatively, you can use other third party SMTP servers, which is described

below.

Installation and Configuration using omnibus package

Note: This section describes the commonly used configuration settings.

Check configuration section of the documentation for complete configuration settings.

 Installing GitLab

o Manually downloading and installing a GitLab package

 Setting up a domain name/URL for the GitLab Instance so that it can be accessed easily

 Enabling HTTPS

https://docs.gitlab.com/omnibus/package-information/README.html#checking-the-versions-of-bundled-software
https://docs.gitlab.com/omnibus/package-information/defaults.html
https://docs.gitlab.com/omnibus/package-information/deprecated_os.html
https://docs.gitlab.com/omnibus/package-information/signed_packages.html
https://docs.gitlab.com/omnibus/package-information/deprecation_policy.html
https://docs.gitlab.com/ce/install/requirements.html
https://docs.gitlab.com/omnibus/README.html#configuring
https://about.gitlab.com/installation/
https://docs.gitlab.com/omnibus/manual_install.html
https://docs.gitlab.com/omnibus/settings/configuration.html#configuring-the-external-url-for-gitlab
https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https

 Enabling notification EMails

 Enabling replying via email

o Installing and configuring postfix

 Enabling container registry on GitLab

o You will require SSL certificates for the domain used for container registry

 Enabling GitLab Pages

o If you want HTTPS enabled, you will have to get wildcard certificates

 Enabling ElasticSearch

 GitLab Mattermost Set up the Mattermost messaging app that ships with Omnibus

GitLab package.

 GitLab Prometheus Set up the Prometheus monitoring included in the Omnibus GitLab

package.

 GitLab High Availability Roles

Using docker image

You can also use the docker images provided by GitLab to install and configure a GitLab

instance. Check the documentation to know more.

Maintenance

 Get service status

 Starting and stopping

 Invoking Rake tasks

 Starting a Rails console session

Configuring

 Configuring the external url

 Configuring a relative URL for Gitlab (experimental)

 Storing git data in an alternative directory

 Changing the name of the git user group

 Specify numeric user and group identifiers

 Only start omnibus-gitlab services after a given filesystem is mounted

 Disable user and group account management

 Disable storage directory management

 Configuring Rack attack

 SMTP

 NGINX

 LDAP

 Unicorn

https://docs.gitlab.com/omnibus/settings/smtp.html#smtp-settings
https://docs.gitlab.com/ce/administration/reply_by_email.html#set-it-up
https://docs.gitlab.com/ce/administration/reply_by_email_postfix_setup.html
https://docs.gitlab.com/ce/administration/container_registry.html#container-registry-domain-configuration
https://docs.gitlab.com/ce/administration/pages/
https://docs.gitlab.com/ee/integration/elasticsearch.html
https://docs.gitlab.com/omnibus/gitlab-mattermost/README.html
https://docs.gitlab.com/ce/administration/monitoring/performance/prometheus.html
https://docs.gitlab.com/omnibus/roles/README.html
https://docs.gitlab.com/omnibus/docker/README.html
https://docs.gitlab.com/omnibus/maintenance/README.html#get-service-status
https://docs.gitlab.com/omnibus/maintenance/README.html#starting-and-stopping
https://docs.gitlab.com/omnibus/maintenance/README.html#invoking-rake-tasks
https://docs.gitlab.com/omnibus/maintenance/README.html#starting-a-rails-console-session
https://docs.gitlab.com/omnibus/settings/configuration.html#configuring-the-external-url-for-gitlab
https://docs.gitlab.com/omnibus/settings/configuration.html#configuring-a-relative-url-for-gitlab
https://docs.gitlab.com/omnibus/settings/configuration.html#storing-git-data-in-an-alternative-directory
https://docs.gitlab.com/omnibus/settings/configuration.html#changing-the-name-of-the-git-user-group
https://docs.gitlab.com/omnibus/settings/configuration.html#specify-numeric-user-and-group-identifiers
https://docs.gitlab.com/omnibus/settings/configuration.html#only-start-omnibus-gitlab-services-after-a-given-filesystem-is-mounted
https://docs.gitlab.com/omnibus/settings/configuration.html#disable-user-and-group-account-management
https://docs.gitlab.com/omnibus/settings/configuration.html#disable-storage-directories-management
https://docs.gitlab.com/omnibus/settings/configuration.html#configuring-rack-attack
https://docs.gitlab.com/omnibus/settings/smtp.html
https://docs.gitlab.com/omnibus/settings/nginx.html
https://docs.gitlab.com/omnibus/settings/ldap.html
https://docs.gitlab.com/omnibus/settings/unicorn.html

 Redis

 Logs

 Database

 Reply by email

 Environment variables

 gitlab.yml

 Backups

 Pages

 SSL

Updating

 Upgrade from Community Edition to Enterprise Edition

 Updating to the latest version

 Downgrading to an earlier version

 Upgrading from a non-Omnibus installation to an Omnibus installation using a backup

 Upgrading from non-Omnibus PostgreSQL to an Omnibus installation in-place

 Upgrading from non-Omnibus MySQL to an Omnibus installation (version 6.8+)

 RPM error: 'package is already installed'

 Note about updating from GitLab 6.6 and higher to 7.10 or newer

 Updating from GitLab 6.6.0.pre1 to 6.6.4

 Updating from GitLab CI version prior to 5.4.0 to the latest version

Troubleshooting

 Hash Sum mismatch when installing packages

 Apt error: 'The requested URL returned error: 403'.

 GitLab is unreachable in my browser.

 Emails are not being delivered.

 Reconfigure freezes at ruby_block[supervise_redis_sleep] action run.

 TCP ports for GitLab services are already taken.

 Git SSH access stops working on SELinux-enabled systems.

 Postgres error 'FATAL: could not create shared memory segment: Cannot allocate

memory'.

 Reconfigure complains about the GLIBC version.

 Reconfigure fails to create the git user.

 Failed to modify kernel parameters with sysctl.

 I am unable to install omnibus-gitlab without root access.

 gitlab-rake assets:precompile fails with 'Permission denied'.

 'Short read or OOM loading DB' error.

 'pg_dump: aborting because of server version mismatch'

https://docs.gitlab.com/omnibus/settings/redis.html
https://docs.gitlab.com/omnibus/settings/logs.html
https://docs.gitlab.com/omnibus/settings/database.html
https://docs.gitlab.com/ce/incoming_email/README.html
https://docs.gitlab.com/omnibus/settings/environment-variables.html
https://docs.gitlab.com/omnibus/settings/gitlab.yml.html
https://docs.gitlab.com/omnibus/settings/backups.html
https://docs.gitlab.com/ce/pages/administration.html
https://docs.gitlab.com/omnibus/settings/ssl.html
https://docs.gitlab.com/omnibus/update/README.html#from-community-edition-to-enterprise-edition
https://docs.gitlab.com/omnibus/update/README.html#updating-from-gitlab-66-and-higher-to-the-latest-version
https://docs.gitlab.com/omnibus/update/README.html#reverting-to-gitlab-66x-or-later
https://docs.gitlab.com/omnibus/update/README.html#upgrading-from-non-omnibus-postgresql-to-an-omnibus-installation-in-place
https://docs.gitlab.com/omnibus/update/README.html#upgrading-from-non-omnibus-postgresql-to-an-omnibus-installation-in-place
https://docs.gitlab.com/omnibus/update/README.html#upgrading-from-non-omnibus-mysql-to-an-omnibus-installation-version-68
https://docs.gitlab.com/omnibus/update/README.html#rpm-package-is-already-installed-error
https://docs.gitlab.com/omnibus/update/README.html#updating-from-gitlab-66-and-higher-to-710-or-newer
https://docs.gitlab.com/omnibus/update/README.html#updating-from-gitlab-660pre1-to-664
https://docs.gitlab.com/omnibus/update/README.html#updating-from-gitlab-ci-version-prior-to-540-to-the-latest-version
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#hash-sum-mismatch-when-installing-packages
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#apt-error-the-requested-url-returned-error-403
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#gitlab-is-unreachable-in-my-browser
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#emails-are-not-being-delivered
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#reconfigure-freezes-at-ruby_blocksupervise_redis_sleep-action-run
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#tcp-ports-for-gitlab-services-are-already-taken
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#git-ssh-access-stops-working-on-selinux-enabled-systems
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#postgres-error-fatal-could-not-create-shared-memory-segment-cannot-allocate-memory
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#postgres-error-fatal-could-not-create-shared-memory-segment-cannot-allocate-memory
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#reconfigure-complains-about-the-glibc-version
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#reconfigure-fails-to-create-the-git-user
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#failed-to-modify-kernel-parameters-with-sysctl
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#i-am-unable-to-install-omnibus-gitlab-without-root-access
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#gitlab-rake-assetsprecompile-fails-with-permission-denied
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#short-read-or-oom-loading-db-error
https://docs.gitlab.com/omnibus/settings/database.html#using-a-non-packaged-postgresql-database-management-server

 'Errno::ENOMEM: Cannot allocate memory' during backup or upgrade

 NGINX error: 'could not build server_names_hash'

 Reconfigure fails due to "'root' cannot chown" with NFS root_squash

Omnibus GitLab developer documentation

 Development Setup

 Omnibus GitLab Architecture

 Adding a new Service to Omnibus GitLab

 Creating patches

 Release process

 Building your own package

 Building a package from a custom branch

https://docs.gitlab.com/omnibus/common_installation_problems/README.html#errnoenomem-cannot-allocate-memory-during-backup-or-upgrade
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#nginx-error-could-not-build-server_names_hash-you-should-increase-server_names_hash_bucket_size
https://docs.gitlab.com/omnibus/common_installation_problems/README.html#reconfigure-fails-due-to-root-cannot-chown-with-nfs-root_squash
https://docs.gitlab.com/omnibus/development/README.html
https://docs.gitlab.com/omnibus/architecture/README.html
https://docs.gitlab.com/omnibus/development/new-services.html
https://docs.gitlab.com/omnibus/development/creating-patches.html
https://docs.gitlab.com/omnibus/release/README.html
https://docs.gitlab.com/omnibus/build/README.html
https://docs.gitlab.com/omnibus/build/README.html#building-a-package-from-a-custom-branch

1. Install and configure the necessary dependencies

On CentOS, the commands below will also open HTTP and SSH access in
the system firewall.

sudo apt-get install -y curl openssh-server ca-certificates

Next, install Postfix to send notification emails. If you want to use another
solution to send emails please skip this step and configure an external
SMTP server after GitLab has been installed.

sudo apt-get install -y postfix

During Postfix installation a configuration screen may appear. Select
'Internet Site' and press enter. Use your server's external DNS for 'mail
name' and press enter. If additional screens appear, continue to press
enter to accept the defaults.

2. Add the GitLab package repository and install the package

Add the GitLab package repository.

curl https://packages.gitlab.com/install/repositories/gitlab/gitlab-ee/script.

deb.sh | sudo bash

Next, install the GitLab package.

sudo apt-get install gitlab-ee

3. Configure and start GitLab

sudo gitlab-ctl reconfigure

Reconfiguring GitLab will take a couple of minutes, as components are set
up and started. A log is displayed of all actions, which will include green
and grey lines.

4. Browse to the hostname and login

Browse to the hostname in a web browser. On your first visit, you'll be
redirected to a password reset screen to provide the password for the initial

https://docs.gitlab.com/omnibus/settings/smtp.html
https://docs.gitlab.com/omnibus/settings/smtp.html

administrator account. Enter your desired password and you'll be
redirected back to the login screen.

The default account's username is root. Provide the password you created
earlier and login. After login you can change the username if you wish.

Manually Downloading and
Installing a GitLab Package

If you do not want to use the official GitLab package repository, you can download and

install a Omnibus Gitlab package manually.

Downloading a GitLab Package

All GitLab packages are posted to our package server and can be downloaded. We

maintain five repos:

 GitLab EE: for official Enterprise Edition releases

 GitLab CE: for official Community Edition releases

 Unstable: for release candidates and other unstable versions

 Nighty Builds: for nightly builds

 Raspberry Pi 2: for Raspberry Pi 2 packages

Browse to the repository for the type of package you would like, in order to see the list of

packages that are available. There are multiple packages for a single version, one for

each supported distribution type. Next to the filename is a label indicating the

distribution, as the file names may be the same.

https://about.gitlab.com/installation
https://packages.gitlab.com/gitlab/
https://packages.gitlab.com/gitlab/gitlab-ee
https://packages.gitlab.com/gitlab/gitlab-ce
https://packages.gitlab.com/gitlab/unstable
https://packages.gitlab.com/gitlab/nightly-builds
https://packages.gitlab.com/gitlab/raspberry-pi2
https://www.raspberrypi.org/

Locate the desired package for the version and distribution you want to use, and click on

the filename to download.

Installing the GitLab Package

With the desired package downloaded, use your systems package management tool to

install it. For example:

 DEB based (Ubuntu, Debian, Raspberry Pi): sudo dpkg -i gitlab-ee-9.5.2-

ee.0_amd64.deb

 RPM based (CentOS, RHEL, Oracle, Scientific, openSUSE, SLES): sudo rpm -i

gitlab-ee-9.5.2-ee.0.el7.x86_64.rpm

Installation may take a few minutes to complete. Once installed, GitLab should now be

configured.

Configuring GitLab

https://docs.gitlab.com/omnibus/img/package_list.png

With GitLab installed, the next step is to configure it and start the services. The settings

for GitLab are contained in /etc/gitlab/gitlab.rb. There are a variety of settings

which can be configured, but the most important is setting the external URL.

Note: Enabling HTTPS will require additional configuration to specify the certificates.

To configure the external URL:

1. Edit /etc/gitlab/gitlab.rb in your favorite text editor

2. Find the line near the top for external_url

3. Change the URL to be the URL of your GitLab server

4. Save the file and exit your text editor.

With the required settings configured, GitLab can now be started. To do this run:

sudo gitlab-ctl reconfigure

This command will read the settings and apply them to the GitLab installation, then start

all services. This will take a few minutes to complete, and you will see lines of white and

green text appear.

Once finished, your GitLab server is now ready to be accessed by the URL you

configured.

https://docs.gitlab.com/omnibus/settings/configuration.html
https://docs.gitlab.com/omnibus/settings/configuration.html#configuring-the-external-url-for-gitlab
https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https

Configuring omnibus settings

 Configuration options

 SMTP

 NGINX

 LDAP

 Unicorn

 Environment variables.

 gitlab.yml

 Redis

 Database

 Logs

 Backups

https://docs.gitlab.com/omnibus/settings/configuration.html
https://docs.gitlab.com/omnibus/settings/smtp.html
https://docs.gitlab.com/omnibus/settings/nginx.html
https://docs.gitlab.com/omnibus/settings/ldap.html
https://docs.gitlab.com/omnibus/settings/unicorn.html
https://docs.gitlab.com/omnibus/settings/environment-variables.html
https://docs.gitlab.com/omnibus/settings/gitlab.yml.html
https://docs.gitlab.com/omnibus/settings/redis.html
https://docs.gitlab.com/omnibus/settings/database.html
https://docs.gitlab.com/omnibus/settings/logs.html
https://docs.gitlab.com/omnibus/settings/backups.html

Configuration options

GitLab is configured by setting the relevant options in /etc/gitlab/gitlab.rb.

See package defaults for a list of default settings and visit thegitlab.rb.template for a

complete list of available options. New installations starting from GitLab 7.6, will have all

the options of the template as of installation listed in /etc/gitlab/gitlab.rb by default.

Configuring the external URL for GitLab

In order for GitLab to display correct repository clone links to your users it needs to know

the URL under which it is reached by your users, e.g.http://gitlab.example.com. Add or

edit the following line in /etc/gitlab/gitlab.rb:

external_url "http://gitlab.example.com"

Run sudo gitlab-ctl reconfigure for the change to take effect.

Configuring a relative URL for Gitlab

Note: Relative URL support in Omnibus GitLab is experimental and was introduced in

version 8.5. For source installations there is a separate document.

While it is recommended to install GitLab in its own (sub)domain, sometimes this is not

possible due to a variety of reasons. In that case, GitLab can also be installed under a

relative URL, for example https://example.com/gitlab.

Note that by changing the URL, all remote URLS will change, so you'll have to manually

edit them in any local repository that points to your GitLab instance.

Relative URL requirements

Starting with 8.17 packages, there is no need to recompile assets.

The Omnibus GitLab package is shipped with pre-compiled assets (CSS, JavaScript,

fonts, etc.). If you are running a package prior to 8.17 and you configure Omnibus with a

relative URL, the assets will need to be recompiled, which is a task which consumes a

lot of CPU and memory resources. To avoid out-of-memory errors, you should have at

https://docs.gitlab.com/omnibus/package-information/defaults.html
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/merge_requests/590
https://docs.gitlab.com/ce/install/relative_url.html

least 2GB of RAM available on your system, while we recommend 4GB RAM, and 4 or 8

CPU cores.

Enable relative URL in GitLab

Follow the steps below to enable relative URL in GitLab:

1. (Optional) If you run short on resources, you can temporarily free up some memory by

shutting down Unicorn and Sidekiq with the following command:

2. sudo gitlab-ctl stop unicorn

3. sudo gitlab-ctl stop sidekiq

4. Set the external_url in /etc/gitlab/gitlab.rb:

5. external_url "https://example.com/gitlab"

In this example, the relative URL under which GitLab will be served will be /gitlab.

Change it to your liking.

6. Reconfigure GitLab for the changes to take effect:

7. sudo gitlab-ctl reconfigure

8. Restart the services so that Unicorn and Sidekiq picks up the changes

9. sudo gitlab-ctl restart

If you stumble upon any issues, see the troubleshooting section.

Disable relative URL in GitLab

To disable the relative URL, follow the same steps as above and set up

the external_url to a one that doesn't contain a relative path. You may need to explicitly

restart Unicorn after the reconfigure task is done:

sudo gitlab-ctl restart unicorn

If you stumble upon any issues, see the troubleshooting section.

Relative URL troubleshooting

If you notice any issues with gitlab assets appearing broken after moving to a relative url

configuration (like missing images or unresponsive components) please raise an issue

in GitLab CE with the Frontend label.

https://docs.gitlab.com/omnibus/settings/configuration.html#relative-url-troubleshooting
https://docs.gitlab.com/omnibus/settings/configuration.html#relative-url-troubleshooting
https://gitlab.com/gitlab-org/gitlab-ce

If you are running a version prior to 8.17 and for some reason the asset compilation step

fails (i.e. the server runs out of memory), you can execute the task manually after you

addressed the issue (e.g. add swap):

sudo NO_PRIVILEGE_DROP=true USE_DB=false gitlab-rake assets:clean
assets:precompile

sudo chown -R git:git /var/opt/gitlab/gitlab-rails/tmp/cache

User and path might be different if you changed the defaults

of user['username'], user['group'] and gitlab_rails['dir'] in gitlab.rb. In that case,

make sure that the chown command above is run with the right username and group.

Loading external configuration file from non-

root user

Omnibus-gitlab package loads all configuration from /etc/gitlab/gitlab.rb file. This file

has strict file permissions and is owned by the root user. The reason for strict

permissions and ownership is that /etc/gitlab/gitlab.rb is being executed as Ruby

code by the root user during gitlab-ctl reconfigure. This means that users who have

write access to /etc/gitlab/gitlab.rb can add configuration that will be executed as

code by root.

In certain organizations it is allowed to have access to the configuration files but not as

the root user. You can include an external configuration file

inside /etc/gitlab/gitlab.rb by specifying the path to the file:

from_file "/home/admin/external_gitlab.rb"

Please note that code you include into /etc/gitlab/gitlab.rb using from_file will run

with root privileges when you run sudo gitlab-ctl reconfigure. Any configuration that is

set in /etc/gitlab/gitlab.rb after from_file is included will take precedence over the

configuration from the included file.

Storing Git data in an alternative directory

By default, omnibus-gitlab stores the Git repository data under /var/opt/gitlab/git-

data. The repositories are stored in a subfolder repositories. You can change the

location of the git-data parent directory by adding the following line

to /etc/gitlab/gitlab.rb.

git_data_dirs({ "default" => { "path" => "/mnt/nas/git-data" } })

You can also add more than one git data directory by adding the following lines

to /etc/gitlab/gitlab.rb instead.

git_data_dirs({

 "default" => { "path" => "/var/opt/gitlab/git-data" },

 "alternative" => { "path" => "/mnt/nas/git-data" }

})

Note that the target directories and any of its subpaths must not be a symlink.

Run sudo gitlab-ctl reconfigure for the changes to take effect.

If you already have existing Git repositories in /var/opt/gitlab/git-data you can move

them to the new location as follows:

Prevent users from writing to the repositories while you move them.

sudo gitlab-ctl stop

Note there is _no_ slash behind 'repositories', but there _is_ a

slash behind 'git-data'.

sudo rsync -av /var/opt/gitlab/git-data/repositories /mnt/nas/git-data/

Start the necessary processes and run reconfigure to fix permissions

if necessary

sudo gitlab-ctl upgrade

Double-check directory layout in /mnt/nas/git-data. Expected output:

repositories

sudo ls /mnt/nas/git-data/

Done! Start GitLab and verify that you can browse through the repositories in

the web interface.

sudo gitlab-ctl start

Changing the name of the Git user / group

By default, omnibus-gitLab uses the user name git for Git gitlab-shell login, ownership

of the Git data itself, and SSH URL generation on the web interface. Similarly, git group

is used for group ownership of the Git data.

We do not recommend changing the user/group of an existing installation because it can

cause unpredictable side-effects. If you still want to do change the user and group, you

can do so by adding the following lines to /etc/gitlab/gitlab.rb.

user['username'] = "gitlab"

user['group'] = "gitlab"

Run sudo gitlab-ctl reconfigure for the change to take effect.

Note that if you are changing the username of an existing installation, the reconfigure

run won't change the ownership of the nested directories so you will have to do that

manually. Make sure that the new user can access repositories as well as

the uploads directory.

Specify numeric user and group identifiers

omnibus-gitlab creates users for GitLab, PostgreSQL, Redis and NGINX. You can

specify the numeric identifiers for these users in /etc/gitlab/gitlab.rbas follows.

user['uid'] = 1234

user['gid'] = 1234

postgresql['uid'] = 1235

postgresql['gid'] = 1235

redis['uid'] = 1236

redis['gid'] = 1236

web_server['uid'] = 1237

web_server['gid'] = 1237

Run sudo gitlab-ctl reconfigure for the changes to take effect.

Disable user and group account

management

By default, omnibus-gitlab takes care of creating system user and group accounts as

well as keeping the information updated. These system accounts run various

components of the package. Most users do not need to change this behaviour.

However, if your system accounts are managed by other software, eg. LDAP, you might

need to disable account management done by the package.

In order to disable user and group accounts management, in /etc/gitlab/gitlab.rb set:

manage_accounts['enable'] = false

Warning Omnibus-gitlab still expects users and groups to exist on the system where

omnibus-gitlab package is installed.

By default, omnibus-gitlab package expects that following users exist:

GitLab user (required)

git

Web server user (required)

gitlab-www

Redis user for GitLab (only when using packaged Redis)

gitlab-redis

Postgresql user (only when using packaged Postgresql)

gitlab-psql

Prometheus user for prometheus monitoring and various exporters

gitlab-prometheus

GitLab Mattermost user (only when using GitLab Mattermost)

mattermost

GitLab Registry user (only when using GitLab Registry)

registry

GitLab Consul user (only when using GitLab Consul)

gitlab-consul

By default, omnibus-gitlab package expects that following groups exist:

GitLab group (required)

git

Web server group (required)

gitlab-www

Redis group for GitLab (only when using packaged Redis)

gitlab-redis

Postgresql group (only when using packaged Postgresql)

gitlab-psql

Prometheus user for prometheus monitoring and various exporters

gitlab-prometheus

GitLab Mattermost group (only when using GitLab Mattermost)

mattermost

GitLab Registry group (only when using GitLab Registry)

registry

GitLab Consul group (only when using GitLab Consul)

gitlab-consul

You can also use different user/group names but then you must specify user/group

details in /etc/gitlab/gitlab.rb, eg.

Do not manage user/group accounts

manage_accounts['enable'] = false

GitLab

user['username'] = "custom-gitlab"

user['group'] = "custom-gitlab"

user['shell'] = "/bin/sh"

user['home'] = "/var/opt/custom-gitlab"

Web server

web_server['username'] = 'webserver-gitlab'

web_server['group'] = 'webserver-gitlab'

web_server['shell'] = '/bin/false'

web_server['home'] = '/var/opt/gitlab/webserver'

Postgresql (not needed when using external Postgresql)

postgresql['username'] = "postgres-gitlab"

postgresql['shell'] = "/bin/sh"

postgresql['home'] = "/var/opt/postgres-gitlab"

Redis (not needed when using external Redis)

redis['username'] = "redis-gitlab"

redis['shell'] = "/bin/false"

redis['home'] = "/var/opt/redis-gitlab"

And so on for users/groups for GitLab Mattermost

Disable storage directories management

The omnibus-gitlab package takes care of creating all the necessary directories with the

correct ownership and permissions, as well as keeping this updated.

Some of these directories will hold large amount of data so in certain setups, these

directories will most likely be mounted on a NFS (or some other) share.

Some types of mounts won't allow automatic creation of directories by root user (default

user for initial setup), eg. NFS with root_squash enabled on the share. To work around

this the omnibus-gitlab package will attempt to create these directories using the

directory's owner user.

If you have the /etc/gitlab directory mounted, you can turn off management of that

directory.

In /etc/gitlab/gitlab.rb set:

manage_storage_directories['manage_etc'] = false

If you are mounting all GitLab's storage directories, each on a seperate mount, you

should completely disable the management of storage directories.

In order to disable management of these directories, in /etc/gitlab/gitlab.rb set:

manage_storage_directories['enable'] = false

Warning The omnibus-gitlab package still expects these directories to exist on the

filesystem. It is up to the administrator to create and set correct permissions if this

setting is set.

Enabling this setting will prevent the creation of the following directories:

Default location Permissions Ownership Purpose

/var/opt/gitlab/git-data 0700 git:root Holds repositories directory

/var/opt/gitlab/git-data/repositories 2770 git:git Holds git repositories

/var/opt/gitlab/gitlab-rails/shared 0751 git:gitlab-www Holds large object directories

/var/opt/gitlab/gitlab-rails/shared/artifacts 0700 git:root Holds CI artifacts

/var/opt/gitlab/gitlab-rails/shared/lfs-objects 0700 git:root Holds LFS objects

/var/opt/gitlab/gitlab-rails/uploads 0700 git:root Holds user attachments

/var/opt/gitlab/gitlab-rails/shared/pages 0750 git:gitlab-www Holds user pages

/var/opt/gitlab/gitlab-ci/builds 0700 git:root Holds CI build logs

/var/opt/gitlab/.ssh 0700 git:git Holds authorized keys

Only start Omnibus-GitLab services after a

given filesystem is mounted

If you want to prevent omnibus-gitlab services (NGINX, Redis, Unicorn etc.) from starting

before a given filesystem is mounted, add the following to/etc/gitlab/gitlab.rb:

wait for /var/opt/gitlab to be mounted

high_availability['mountpoint'] = '/var/opt/gitlab'

Run sudo gitlab-ctl reconfigure for the change to take effect.

Configuring runtime directory

When Prometheus monitoring is enabled, GitLab-monitor will conduct measurements of

each Unicorn process (Rails metrics). Every Unicorn process will need to write a metrics

file to a temporary location for each controller request. Prometheus will then collect all

these files and process their values.

In order to avoid creating disk I/O, the omnibus-gitlab package will use a runtime

directory.

During reconfigure, package will check if /run is a tmpfs mount. If it is not, warning will

be printed:

Runtime directory '/run' is not a tmpfs mount.

and Rails metrics will be disabled.

To enable Rails metrics again, create a tmpfs mount and specify it

in /etc/gitlab/gitlab.rb:

runtime_dir '/path/to/tmpfs'

Please note that there is no = in the configuration.

Run sudo gitlab-ctl reconfigure for the settings to take effect.

Configuring Rack Attack

To prevent abusive clients doing damage GitLab uses rack-attack gem. Check this

page for more information.

File config/initializers/rack_attack.rb is managed by omnibus-gitlab and must be

configured in /etc/gitlab/gitlab.rb.

Disabling automatic cache cleaning during

installation

https://gitlab.com/help/security/rack_attack.md
https://gitlab.com/help/security/rack_attack.md

If you have large gitlab installation, you might not want to run rake cache:clean task. As

it can take long time to finish. By default, cache clear task will run automatically during

reconfigure.

Edit /etc/gitlab/gitlab.rb:

This is advanced feature used by large gitlab deployments where loading

whole RAILS env takes a lot of time.

gitlab_rails['rake_cache_clear'] = false

Don't forget to remove the # comment characters at the beginning of this line.

Enabling/Disabling Rack Attack and setting up basic

auth throttling

Next configuration settings control Rack Attack:

gitlab_rails['rack_attack_git_basic_auth'] = {

 'enabled' => true, # Enable/Disable Rack Attack

 'ip_whitelist' => ["127.0.0.1"], # Whitelisted urls

 'maxretry' => 10, # Limit the number of Git HTTP authentication attempts per IP

 'findtime' => 60, # Reset the auth attempt counter per IP after 60 seconds

 'bantime' => 3600 # Ban an IP for one hour (3600s) after too many auth attempts

}

Setting up paths to be protected by Rack Attack

If you want to change default protected paths

set gitlab_rails['rack_attack_protected_paths'] in config file.

Warning This action will overwrite list provided by omnibus-gitlab:

gitlab_rails['rack_attack_protected_paths'] = [

 '/users/password',

 '/users/sign_in',

 '/api/#{API::API.version}/session.json',

 '/api/#{API::API.version}/session',

 '/users',

 '/users/confirmation',

 '/unsubscribes/',

 '/import/github/personal_access_token'

]

Note: All paths are relative to the gitlab url. Do not include relative URL if you set it up.

Warning If path contains variables which need to be interpolated by

rails(ex. #{API::API.version}) then you need to escape curly brackets or use single

quoted string. For

example "/api/#\{API::API.version\}/session.json" or '/api/#{API::API.version}/ses

sion.json'

Setting up throttling for 'paths to be protected'

Use next options to control throttling 'limit' and 'period':

gitlab_rails['rate_limit_requests_per_period'] = 10

gitlab_rails['rate_limit_period'] = 60

Run sudo gitlab-ctl reconfigure for the change to take effect.

Setting up LDAP sign-in

See doc/settings/ldap.md.

Enable HTTPS

See doc/settings/nginx.md.

Redirect HTTP requests to HTTPS.

See doc/settings/nginx.md.

https://docs.gitlab.com/omnibus/settings/configuration.html#configuring-a-relative-url-for-gitlab
https://docs.gitlab.com/omnibus/settings/ldap.html
https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https
https://docs.gitlab.com/omnibus/settings/nginx.html#redirect-http-requests-to-https

Change the default port and the ssl certificate locations.

See doc/settings/nginx.md.

Use non-packaged web-server

For using an existing Nginx, Passenger, or Apache webserver

see doc/settings/nginx.md.

Using a non-packaged PostgreSQL

database management server

To connect to an external PostgreSQL or MySQL DBMS

see doc/settings/database.md (MySQL support in the Omnibus Packages is Enterprise

Only).

Using a non-packaged Redis instance

See doc/settings/redis.md.

Adding ENV Vars to the GitLab Runtime

Environment

See doc/settings/environment-variables.md.

Changing GitLab.yml settings

See doc/settings/gitlab.yml.md.

Sending application email via SMTP

See doc/settings/smtp.md.

Omniauth (Google, Twitter, GitHub login)

https://docs.gitlab.com/omnibus/settings/nginx.html#change-the-default-port-and-the-ssl-certificate-locations
https://docs.gitlab.com/omnibus/settings/nginx.html#using-a-non-bundled-web-server
https://docs.gitlab.com/omnibus/settings/database.html
https://docs.gitlab.com/omnibus/settings/redis.html
https://docs.gitlab.com/omnibus/settings/environment-variables.html
https://docs.gitlab.com/omnibus/settings/gitlab.yml.html
https://docs.gitlab.com/omnibus/settings/smtp.html

Omniauth configuration is documented in docs.gitlab.com.

Adjusting Unicorn settings

See doc/settings/unicorn.md.

Setting the NGINX listen address or

addresses

See doc/settings/nginx.md.

Inserting custom NGINX settings into the

GitLab server block

See doc/settings/nginx.md.

Inserting custom settings into the NGINX

config

See doc/settings/nginx.md.

Enable nginx_status

See doc/settings/nginx.md.

https://docs.gitlab.com/ce/integration/omniauth.html
https://docs.gitlab.com/omnibus/settings/unicorn.html
https://docs.gitlab.com/omnibus/settings/nginx.html
https://docs.gitlab.com/omnibus/settings/nginx.html
https://docs.gitlab.com/omnibus/settings/nginx.html
https://docs.gitlab.com/omnibus/settings/nginx.html

SMTP settings

If you would rather send application email via an SMTP server instead of via Sendmail,

add the following configuration information to/etc/gitlab/gitlab.rb and run gitlab-ctl

reconfigure.

Warning: Your smtp_password should not contain any String delimiters used in Ruby or

YAML (f.e. ') to avoid unexpected behavior during the processing of config settings.

There are example configurations at the end of this page.

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.server"

gitlab_rails['smtp_port'] = 465

gitlab_rails['smtp_user_name'] = "smtp user"

gitlab_rails['smtp_password'] = "smtp password"

gitlab_rails['smtp_domain'] = "example.com"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_openssl_verify_mode'] = 'peer'

If your SMTP server does not like the default 'From: gitlab@localhost' you

can change the 'From' with this setting.

gitlab_rails['gitlab_email_from'] = 'gitlab@example.com'

gitlab_rails['gitlab_email_reply_to'] = 'noreply@example.com'

Example configuration

https://docs.gitlab.com/omnibus/settings/smtp.html#examples

SMTP on localhost

This configuration, which simply enables SMTP and otherwise uses the default settings,

can be used for an MTA running on localhost that does not provide a sendmail interface

or that provides a sendmail interface that is incompatible with GitLab, such as Exim.

gitlab_rails['smtp_enable'] = true

Gmail

Note: Gmail has strict sending limits that can impair functionality as your organization

grows. We strongly recommend using a transactional service

like SendGrid or Mailgun for teams using SMTP configuration.

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.gmail.com"

gitlab_rails['smtp_port'] = 587

gitlab_rails['smtp_user_name'] = "my.email@gmail.com"

gitlab_rails['smtp_password'] = "my-gmail-password"

gitlab_rails['smtp_domain'] = "smtp.gmail.com"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_tls'] = false

gitlab_rails['smtp_openssl_verify_mode'] = 'peer' # Can be: 'none', 'peer',
'client_once', 'fail_if_no_peer_cert', see
http://api.rubyonrails.org/classes/ActionMailer/Base.html

Don't forget to change my.email@gmail.com to your email address and my-gmail-

password to your own password.

If you encounter authentication errors, ensure you have allowed less secure apps to

access the account or try turning on 2-step validation and using an application

password.

https://support.google.com/a/answer/166852
https://sendgrid.com/
https://www.mailgun.com/
mailto:my.email@gmail.com
https://support.google.com/accounts/answer/6010255
https://support.google.com/accounts/answer/6010255
https://support.google.com/accounts/answer/185839
https://support.google.com/mail/answer/185833
https://support.google.com/mail/answer/185833

Mailgun

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.mailgun.org"

gitlab_rails['smtp_port'] = 587

gitlab_rails['smtp_authentication'] = "plain"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_user_name'] = "postmaster@mg.gitlab.com"

gitlab_rails['smtp_password'] = "8b6ffrmle180"

gitlab_rails['smtp_domain'] = "mg.gitlab.com"

Amazon SES

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "email-smtp.region-1.amazonaws.com"

gitlab_rails['smtp_port'] = 587

gitlab_rails['smtp_user_name'] = "IAMmailerKey"

gitlab_rails['smtp_password'] = "IAMmailerSecret"

gitlab_rails['smtp_domain'] = "yourdomain.com"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

Mandrill

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.mandrillapp.com"

gitlab_rails['smtp_port'] = 587

gitlab_rails['smtp_user_name'] = "MandrillUsername"

gitlab_rails['smtp_password'] = "MandrillApiKey" #
https://mandrillapp.com/settings

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

SparkPost

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.sparkpostmail.com"

gitlab_rails['smtp_port'] = 587

gitlab_rails['smtp_user_name'] = "SMTP_Injection"

gitlab_rails['smtp_password'] = "SparkPost_API_KEY" #
https://app.sparkpost.com/account/credentials

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

Gandi

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "mail.gandi.net"

gitlab_rails['smtp_port'] = 587

gitlab_rails['smtp_authentication'] = "plain"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_user_name'] = "your.email@domain.com"

gitlab_rails['smtp_password'] = "your.password"

gitlab_rails['smtp_domain'] = "domain.com"

Zoho Mail

This configuration was tested on Zoho Mail with a custom domain.

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.zoho.com"

gitlab_rails['smtp_port'] = 587

gitlab_rails['smtp_authentication'] = "plain"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_user_name'] = "gitlab@mydomain.com"

gitlab_rails['smtp_password'] = "mypassword"

gitlab_rails['smtp_domain'] = "smtp.zoho.com"

gitlab_rails['gitlab_email_from'] = 'gitlab@example.com'

gitlab_rails['gitlab_email_reply_to'] = 'noreply@example.com'

OVH

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "ssl0.ovh.net"

gitlab_rails['smtp_port'] = 465

gitlab_rails['smtp_user_name'] = "username@domain.com"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_domain'] = "ssl0.ovh.net"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_tls'] = true

gitlab_rails['smtp_openssl_verify_mode'] = 'none'

Outlook

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp-mail.outlook.com"

gitlab_rails['smtp_port'] = 587

gitlab_rails['smtp_user_name'] = "username@outlook.com"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_domain'] = "smtp-mail.outlook.com"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_openssl_verify_mode'] = 'peer'

Online.net

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtpauth.online.net"

gitlab_rails['smtp_port'] = 465

gitlab_rails['smtp_user_name'] = "username@domain.com"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_domain'] = "online.net"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_tls'] = true

gitlab_rails['smtp_openssl_verify_mode'] = 'none'

Amen.fr / Securemail.pro

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp-fr.securemail.pro"

gitlab_rails['smtp_port'] = 465

gitlab_rails['smtp_user_name'] = "username@domain.com"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_tls'] = true

1&1

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.1and1.com"

gitlab_rails['smtp_port'] = 587

gitlab_rails['smtp_user_name'] = "my.email@domain.com"

gitlab_rails['smtp_password'] = "1and1-email-password"

gitlab_rails['smtp_domain'] = "domain.com"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

yahoo

gitlab_rails['gitlab_email_from'] = 'user@yahoo.com'

gitlab_rails['gitlab_email_from'] = 'user@yahoo.com'

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.mail.yahoo.com"

gitlab_rails['smtp_port'] = 465

gitlab_rails['smtp_user_name'] = "user@yahoo.com"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_tls'] = true

gitlab_rails['smtp_openssl_verify_mode'] = 'peer'

QQ exmail (腾讯企业邮箱)

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.exmail.qq.com"

gitlab_rails['smtp_port'] = 465

gitlab_rails['smtp_user_name'] = "xxxx@xx.com"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_tls'] = true

gitlab_rails['gitlab_email_from'] = 'xxxx@xx.com'

Sendgrid

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.sendgrid.net"

gitlab_rails['smtp_port'] = 587

gitlab_rails['smtp_user_name'] = "a_sendgrid_crendential"

gitlab_rails['smtp_password'] = "a_sendgrid_password"

gitlab_rails['smtp_domain'] = "smtp.sendgrid.net"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_tls'] = false

Yandex

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.yandex.ru"

gitlab_rails['smtp_port'] = 465

gitlab_rails['smtp_user_name'] = "login"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_domain'] = "yourdomain_or_yandex.ru"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_openssl_verify_mode'] = 'peer'

UD Media

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "mail.udXX.udmedia.de" # Replace XX, see smtp
server information: https://www.udmedia.de/login/mail/

gitlab_rails['smtp_port'] = 587

gitlab_rails['smtp_user_name'] = "login"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_openssl_verify_mode'] = 'peer'

Microsoft Exchange (No authentication)

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "example.com"

gitlab_rails['smtp_port'] = 25

gitlab_rails['smtp_domain'] = "example.com"

gitlab_rails['smtp_authentication'] = false

gitlab_rails['smtp_enable_starttls_auto'] = true

Strato.de

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.strato.de"

gitlab_rails['smtp_port'] = 465

gitlab_rails['smtp_user_name'] = "username@stratodomain.de"

gitlab_rails['smtp_password'] = "strato_email_password"

gitlab_rails['smtp_domain'] = "strato.de"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_tls'] = true

gitlab_rails['smtp_openssl_verify_mode'] = 'none'

Rackspace

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "secure.emailsrvr.com"

gitlab_rails['smtp_port'] = 465

gitlab_rails['smtp_user_name'] = "username@domain.com"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_domain'] = "domain.com"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_tls'] = true

gitlab_rails['smtp_openssl_verify_mode'] = 'peer'

gitlab_rails['gitlab_email_from'] = 'username@domain.com'

gitlab_rails['gitlab_email_reply_to'] = 'username@domain.com'

DomainFactory (df.eu)

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "sslout.df.eu"

gitlab_rails['smtp_port'] = 465

gitlab_rails['smtp_user_name'] = "username@domain.com"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_domain'] = "domain.com"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_tls'] = true

gitlab_rails['smtp_openssl_verify_mode'] = 'none'

Infomaniak (infomaniak.com)

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "mail.infomaniak.com"

gitlab_rails['smtp_port'] = 587

gitlab_rails['smtp_user_name'] = "username"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_domain'] = "mail.infomaniak.com"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_tls'] = false

gitlab_rails['smtp_openssl_verify_mode'] = 'none'

GoDaddy (No TLS)

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtpout.secureserver.net"

gitlab_rails['smtp_port'] = 80

gitlab_rails['smtp_user_name'] = "username@domain.com"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_domain'] = "domain.com"

gitlab_rails['smtp_authentication'] = "plain"

gitlab_rails['smtp_enable_starttls_auto'] = false

gitlab_rails['smtp_tls'] = false

OpenSRS (hostedemail.com)

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "mail.hostedemail.com"

gitlab_rails['smtp_port'] = 465

gitlab_rails['smtp_user_name'] = "username@domain.com"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_domain'] = "domain.com"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_tls'] = true

gitlab_rails['smtp_enable_starttls_auto'] = false

gitlab_rails['smtp_openssl_verify_mode'] = 'peer'

gitlab_rails['gitlab_email_from'] = 'username@domain.com'

gitlab_rails['gitlab_email_reply_to'] = 'username@domain.com'

Aruba (aruba.it)

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtps.aruba.it"

gitlab_rails['smtp_port'] = 465

gitlab_rails['smtp_user_name'] = "user@yourdomain.com"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_domain'] = "yourdomain.com"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_ssl'] = true

Aliyun Direct Mail(阿里云邮件推送)

gitlab_rails['gitlab_email_from'] = 'username@your domain'

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtpdm.aliyun.com"

gitlab_rails['smtp_port'] = 80

gitlab_rails['smtp_user_name'] = "username@your domain"

gitlab_rails['smtp_password'] = "password"

gitlab_rails['smtp_domain'] = "your domain"

gitlab_rails['smtp_authentication'] = "login"

FastMail

FastMail requires an App Password even when two-step verification is not enabled.

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.fastmail.com"

gitlab_rails['smtp_port'] = 465

gitlab_rails['smtp_user_name'] = "account@fastmail.com"

gitlab_rails['smtp_password'] = "app-specific-password"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_tls'] = true

gitlab_rails['smtp_openssl_verify_mode'] = 'peer'

Dinahosting

gitlab_rails['gitlab_email_from'] = 'username@example.com'

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "example-com.correoseguro.dinaserver.com"

gitlab_rails['smtp_port'] = 587

https://www.fastmail.com/help/clients/apppassword.html?u=ca68414c.oui-14827457

gitlab_rails['smtp_user_name'] = "username-example-com"

gitlab_rails['smtp_password'] = "mypassword"

gitlab_rails['smtp_domain'] = "example-com.correoseguro.dinaserver.com"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = false

gitlab_rails['smtp_tls'] = false

gitlab_rails['smtp_openssl_verify_mode'] = 'peer'

Office 365

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "smtp.office365.com"

gitlab_rails['smtp_port'] = 25

gitlab_rails['smtp_user_name'] = "user.name@company.com"

gitlab_rails['smtp_password'] = "secret"

gitlab_rails['smtp_domain'] = "company.com"

gitlab_rails['smtp_authentication'] = "login"

gitlab_rails['smtp_enable_starttls_auto'] = true

gitlab_rails['smtp_tls'] = false

More examples are welcome

If you have figured out an example configuration yourself please send a Merge Request

to save other people time.

Testing the SMTP configuration

You can verify GitLab's ability to send emails properly using the Rails console. On the

GitLab server, execute gitlab-rails console to enter the console. Then, you can enter

the following command at the console prompt to cause GitLab to send a test email:

irb(main):003:0> Notify.test_email('destination_email@address.com', 'Message Subje
ct', 'Message Body').deliver_now

NGINX settings

Enable HTTPS

Warning

The Nginx config will tell browsers and clients to only communicate with your GitLab

instance over a secure connection for the next 24 months. By enabling HTTPS you'll

need to provide a secure connection to your instance for at least the next 24 months.

By default, omnibus-gitlab does not use HTTPS. If you want to enable HTTPS for

gitlab.example.com, add the following statement to /etc/gitlab/gitlab.rb:

note the 'https' below

external_url "https://gitlab.example.com"

Because the hostname in our example is 'gitlab.example.com', omnibus-gitlab will look

for key and certificate files

called/etc/gitlab/ssl/gitlab.example.com.key and /etc/gitlab/ssl/gitlab.example.co

m.crt, respectively. Create the /etc/gitlab/ssl directory and copy your key and

certificate there.

sudo mkdir -p /etc/gitlab/ssl

sudo chmod 700 /etc/gitlab/ssl

sudo cp gitlab.example.com.key gitlab.example.com.crt /etc/gitlab/ssl/

Now run sudo gitlab-ctl reconfigure. When the reconfigure finishes your GitLab

instance should be reachable at https://gitlab.example.com.

If you are using a firewall you may have to open port 443 to allow inbound HTTPS traffic.

UFW example (Debian, Ubuntu)

sudo ufw allow https

lokkit example (RedHat, CentOS 6)

sudo lokkit -s https

firewall-cmd (RedHat, Centos 7)

sudo firewall-cmd --permanent --add-service=https

sudo systemctl reload firewalld

Redirect HTTP requests to HTTPS

By default, when you specify an external_url starting with 'https', Nginx will no longer

listen for unencrypted HTTP traffic on port 80. If you want to redirect all HTTP traffic to

HTTPS you can use the redirect_http_to_https setting.

external_url "https://gitlab.example.com"

nginx['redirect_http_to_https'] = true

Change the default port and the SSL

certificate locations

If you need to use an HTTPS port other than the default (443), just specify it as part of

the external_url.

external_url "https://gitlab.example.com:2443"

To set the location of ssl certificates create /etc/gitlab/ssl directory, place

the .crt and .key files in the directory and specify the following configuration:

For GitLab

nginx['ssl_certificate'] = "/etc/gitlab/ssl/gitlab.example.com.crt"

nginx['ssl_certificate_key'] = "/etc/gitlab/ssl/gitlab.example.com.key"

Run sudo gitlab-ctl reconfigure for the change to take effect.

Change the default proxy headers

By default, when you specify external_url omnibus-gitlab will set a few NGINX proxy

headers that are assumed to be sane in most environments.

For example, omnibus-gitlab will set:

 "X-Forwarded-Proto" => "https",

 "X-Forwarded-Ssl" => "on"

if you have specified https schema in the external_url.

However, if you have a situation where your GitLab is in a more complex setup like

behind a reverse proxy, you will need to tweak the proxy headers in order to avoid errors

like The change you wanted was rejected or Can't verify CSRF token authenticity

Completed 422 Unprocessable.

This can be achieved by overriding the default headers, eg. specify

in /etc/gitlab/gitlab.rb:

 nginx['proxy_set_headers'] = {

 "X-Forwarded-Proto" => "http",

 "CUSTOM_HEADER" => "VALUE"

 }

Save the file and reconfigure GitLab for the changes to take effect.

This way you can specify any header supported by NGINX you require.

Configuring GitLab trusted_proxies and the

NGINX real_ip module

By default, NGINX and GitLab will log the IP address of the connected client.

If your GitLab is behind a reverse proxy, you may not want the IP address of the proxy to

show up as the client address.

You can have NGINX look for a different address to use by adding your reverse proxy to

the real_ip_trusted_addresses list:

Each address is added to the the NGINX config as 'set_real_ip_from <address>;'

nginx['real_ip_trusted_addresses'] = ['192.168.1.0/24', '192.168.2.1',
'2001:0db8::/32']

other real_ip config options

nginx['real_ip_header'] = 'X-Real-IP'

https://docs.gitlab.com/ce/administration/restart_gitlab.html#omnibus-gitlab-reconfigure

nginx['real_ip_recursive'] = 'on'

Description of the options:

 http://nginx.org/en/docs/http/ngx_http_realip_module.html

By default, omnibus-gitlab will use the IP addresses in real_ip_trusted_addresses as

GitLab's trusted proxies, which will keep users from being listed as signed in from those

IPs.

Save the file and reconfigure GitLab for the changes to take effect.

Configuring HTTP2 protocol

By default, when you specify that your Gitlab instance should be reachable through

HTTPS by specifying external_url "https://gitlab.example.com",http2 protocol is also

enabled.

The omnibus-gitlab package sets required ssl_ciphers that are compatible with http2

protocol.

If you are specifying custom ssl_ciphers in your configuration and a cipher is in http2

cipher blacklist, once you try to reach your GitLab instance you will be presented

with INADEQUATE_SECURITY error in your browser.

Consider removing the offending ciphers from the cipher list. Changing ciphers is only

necessary if you have a very specific custom setup.

For more info on why you would want to have http2 protocol enabled, check out

the http2 whitepaper.

If changing the ciphers is not an option you can disable http2 support by specifying

in /etc/gitlab/gitlab.rb:

nginx['http2_enabled'] = false

Save the file and reconfigure GitLab for the changes to take effect.

Using a non-bundled web-server

By default, omnibus-gitlab installs GitLab with bundled Nginx. Omnibus-gitlab allows

webserver access through user gitlab-www which resides in the group with the same

http://nginx.org/en/docs/http/ngx_http_realip_module.html
https://docs.gitlab.com/ce/administration/restart_gitlab.html#omnibus-gitlab-reconfigure
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540#appendix-A
https://tools.ietf.org/html/rfc7540#appendix-A
https://assets.wp.nginx.com/wp-content/uploads/2015/09/NGINX_HTTP2_White_Paper_v4.pdf?_ga=1.127086286.212780517.1454411744
https://docs.gitlab.com/ce/administration/restart_gitlab.html#omnibus-gitlab-reconfigure

name. To allow an external webserver access to GitLab, external webserver user needs

to be added gitlab-www group.

To use another web server like Apache or an existing Nginx installation you will have to

perform the following steps:

1. Disable bundled Nginx

In /etc/gitlab/gitlab.rb set:

nginx['enable'] = false

2. Set the username of the non-bundled web-server user

By default, omnibus-gitlab has no default setting for the external webserver user, you

have to specify it in the configuration. For Debian/Ubuntu the default user is www-data for

both Apache/Nginx whereas for RHEL/CentOS the Nginx user is nginx.

Note: Make sure you have first installed Apache/Nginx so the webserver user is created,

otherwise omnibus will fail while reconfiguring.

Let's say for example that the webserver user is www-data. In /etc/gitlab/gitlab.rb set:

web_server['external_users'] = ['www-data']

Note: This setting is an array so you can specify more than one user to be added to

gitlab-www group.

Run sudo gitlab-ctl reconfigure for the change to take effect.

Note: if you are using SELinux and your web server runs under a restricted SELinux

profile you may have to loosen the restrictions on your web server.

*Note: make sure that the webserver user has the correct permissions on all directories

used by external web-server, otherwise you will receive failed (XX: Permission denied)

while reading upstream errors.

3. Add the non-bundled web-server to the list of trusted proxies

Normally, omnibus-gitlab defaults the list of trusted proxies to the what was configured in

the real_ip module for the bundled NGINX.

For non-bundled web-servers the list needs to be configured directly, and should include

the IP address of your web-server if it not on the same machine as GitLab. Otherwise

users will be shown as being signed in from your web-server's IP address.

gitlab_rails['trusted_proxies'] = ['192.168.1.0/24', '192.168.2.1',
'2001:0db8::/32']

4. (Optional) Set the right gitlab-workhorse settings if using Apache

Note: The values below were added in GitLab 8.2, make sure you have the latest

version installed.

Apache cannot connect to a UNIX socket but instead needs to connect to a TCP Port.

To allow gitlab-workhorse to listen on TCP (by default port 8181)

edit /etc/gitlab/gitlab.rb:

gitlab_workhorse['listen_network'] = "tcp"

https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache#selinux-modifications

gitlab_workhorse['listen_addr'] = "127.0.0.1:8181"

Run sudo gitlab-ctl reconfigure for the change to take effect.

5. Download the right web server configs

Go to GitLab recipes repository and look for the omnibus configs in the webserver

directory of your choice. Make sure you pick the right configuration file depending

whether you choose to serve GitLab with SSL or not. The only thing you need to change

is YOUR_SERVER_FQDN with your own FQDN and if you use SSL, the location where your

SSL keys currently reside. You also might need to change the location of your log files.

Setting the NGINX listen address or

addresses

By default NGINX will accept incoming connections on all local IPv4 addresses. You can

change the list of addresses in /etc/gitlab/gitlab.rb.

nginx['listen_addresses'] = ["0.0.0.0", "[::]"] # listen on all IPv4 and IPv6
addresses

Setting the NGINX listen port

By default NGINX will listen on the port specified in external_url or implicitly use the

right port (80 for HTTP, 443 for HTTPS). If you are running GitLab behind a reverse

proxy, you may want to override the listen port to something else. For example, to use

port 8081:

nginx['listen_port'] = 8081

Supporting proxied SSL

By default NGINX will auto-detect whether to use SSL if external_url contains https://.

If you are running GitLab behind a reverse proxy, you may wish to terminate SSL at

another proxy server or load balancer. To do this, be sure

the external_url contains https:// and apply the following configuration to gitlab.rb:

nginx['listen_port'] = 80

nginx['listen_https'] = false

nginx['proxy_set_headers'] = {

 "X-Forwarded-Proto" => "https",

https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server

 "X-Forwarded-Ssl" => "on"

}

Note that you may need to configure your reverse proxy or load balancer to forward

certain headers (e.g. Host, X-Forwarded-Ssl, X-Forwarded-For,X-Forwarded-Port) to

GitLab (and Mattermost if you use one). You may see improper redirections or errors

(e.g. "422 Unprocessable Entity", "Can't verify CSRF token authenticity") if you forget

this step. For more information, see:

 http://stackoverflow.com/questions/16042647/whats-the-de-facto-standard-for-a-reverse-

proxy-to-tell-the-backend-ssl-is-used

 https://wiki.apache.org/couchdb/Nginx_As_a_Reverse_Proxy

Setting HTTP Strict Transport Security

By default GitLab enables Strict Transport Security which informs browsers that they

should only contact the website using HTTPS. When browser visits GitLab instance

even once it will remember to no longer attempt insecure connections even when user is

explicitly entering http:// url. Such url will be automatically redirected by the browser

to https:// variant.

nginx['hsts_max_age'] = 31536000

nginx['hsts_include_subdomains'] = false

By default max_age is set for one year, this is how long browser will remember to only

connect through HTTPS. Setting max_age to 0 will disable this feature. For more

information see:

 https://www.nginx.com/blog/http-strict-transport-security-hsts-and-nginx/

Using custom SSL ciphers

By default GitLab is using SSL ciphers that are combination of testing on gitlab.com and

various best practices contributed by the GitLab community.

However, you can change the ssl ciphers by adding to gitlab.rb:

 nginx['ssl_ciphers'] = "CIPHER:CIPHER1"

and running reconfigure.

http://stackoverflow.com/questions/16042647/whats-the-de-facto-standard-for-a-reverse-proxy-to-tell-the-backend-ssl-is-used
http://stackoverflow.com/questions/16042647/whats-the-de-facto-standard-for-a-reverse-proxy-to-tell-the-backend-ssl-is-used
https://wiki.apache.org/couchdb/Nginx_As_a_Reverse_Proxy
https://www.nginx.com/blog/http-strict-transport-security-hsts-and-nginx/

You can also enable ssl_dhparam directive.

First, generate dhparams.pem with openssl dhparam -out dhparams.pem 2048. Then,

in gitlab.rb add a path to the generated file, for example:

 nginx['ssl_dhparam'] = "/etc/gitlab/ssl/dhparams.pem"

After the change run sudo gitlab-ctl reconfigure.

Enable 2-way SSL Client Authentication

To require web clients to authenticate with a trusted certificate, you can enable 2-way

SSL by adding to gitlab.rb:

 nginx['ssl_verify_client'] = "on"

and running reconfigure.

These additional options NGINX supports for configuring SSL client authentication can

also be configured:

 nginx['ssl_client_certificate'] = "/etc/pki/tls/certs/root-certs.pem"

 nginx['ssl_verify_depth'] = "2"

After making the changes run sudo gitlab-ctl reconfigure.

Inserting custom NGINX settings into the

GitLab server block

Please keep in mind that these custom settings may create conflicts if the same settings

are defined in your gitlab.rb file.

If you need to add custom settings into the NGINX server block for GitLab for some

reason you can use the following setting.

Example: block raw file downloads from a specific repository

nginx['custom_gitlab_server_config'] = "location ^~ /foo-namespace/bar-
project/raw/ {\n deny all;\n}\n"

Run gitlab-ctl reconfigure to rewrite the NGINX configuration and restart NGINX.

This inserts the defined string into the end of the server block

of /var/opt/gitlab/nginx/conf/gitlab-http.conf.

Notes:

 If you're adding a new location, you might need to include

 proxy_cache off;

 proxy_pass http://gitlab-workhorse;

in the string or in the included nginx config. Without these, any sub-location will return a

404. See gitlab-ce#30619.

 You cannot add the root / location or the /assets location as those already exist

in gitlab-http.conf.

Inserting custom settings into the NGINX

config

If you need to add custom settings into the NGINX config, for example to include existing

server blocks, you can use the following setting.

Example: include a directory to scan for additional config files

nginx['custom_nginx_config'] = "include /etc/nginx/conf.d/*.conf;"

Run gitlab-ctl reconfigure to rewrite the NGINX configuration and restart NGINX.

This inserts the defined string into the end of the http block

of /var/opt/gitlab/nginx/conf/nginx.conf.

Custom error pages

You can use custom_error_pages to modify text on the default GitLab error page. This

can be used for any valid HTTP error code; e.g 404, 502.

As an example the following would modify the default 404 error page.

nginx['custom_error_pages'] = {

 '404' => {

 'title' => 'Example title',

https://gitlab.com/gitlab-org/gitlab-ce/issues/30619

 'header' => 'Example header',

 'message' => 'Example message'

 }

}

This would result in the 404 error page below.

Run gitlab-ctl reconfigure to rewrite the NGINX configuration and restart NGINX.

Using an existing Passenger/Nginx

installation

In some cases you may want to host GitLab using an existing Passenger/Nginx

installation but still have the convenience of updating and installing using the omnibus

packages.

Configuration

First, you'll need to setup your /etc/gitlab/gitlab.rb to disable the built-in Nginx and

Unicorn:

Define the external url

https://docs.gitlab.com/omnibus/settings/img/error_page_example.png

external_url 'http://git.example.com'

Disable the built-in nginx

nginx['enable'] = false

Disable the built-in unicorn

unicorn['enable'] = false

Set the internal API URL

gitlab_rails['internal_api_url'] = 'http://git.example.com'

Define the web server process user (ubuntu/nginx)

web_server['external_users'] = ['www-data']

Make sure you run sudo gitlab-ctl reconfigure for the changes to take effect.

Note: If you are running a version older than 8.16.0, you will have to manually remove

the unicorn service file (/opt/gitlab/service/unicorn), if exists, for reconfigure to

succeed.

Vhost (server block)

Then, in your custom Passenger/Nginx installation, create the following site configuration

file:

upstream gitlab-workhorse {

 server unix://var/opt/gitlab/gitlab-workhorse/socket fail_timeout=0;

}

server {

 listen *:80;

 server_name git.example.com;

 server_tokens off;

 root /opt/gitlab/embedded/service/gitlab-rails/public;

 client_max_body_size 250m;

 access_log /var/log/gitlab/nginx/gitlab_access.log;

 error_log /var/log/gitlab/nginx/gitlab_error.log;

 # Ensure Passenger uses the bundled Ruby version

 passenger_ruby /opt/gitlab/embedded/bin/ruby;

 # Correct the $PATH variable to included packaged executables

 passenger_env_var PATH
"/opt/gitlab/bin:/opt/gitlab/embedded/bin:/usr/local/bin:/usr/bin:/bin";

 # Make sure Passenger runs as the correct user and group to

 # prevent permission issues

 passenger_user git;

 passenger_group git;

 # Enable Passenger & keep at least one instance running at all times

 passenger_enabled on;

 passenger_min_instances 1;

 location ~ ^/[\w\.-]+/[\w\.-]+/(info/refs|git-upload-pack|git-receive-pack)$ {

 # 'Error' 418 is a hack to re-use the @gitlab-workhorse block

 error_page 418 = @gitlab-workhorse;

 return 418;

 }

 location ~ ^/[\w\.-]+/[\w\.-]+/repository/archive {

 # 'Error' 418 is a hack to re-use the @gitlab-workhorse block

 error_page 418 = @gitlab-workhorse;

 return 418;

 }

 location ~ ^/api/v3/projects/.*/repository/archive {

 # 'Error' 418 is a hack to re-use the @gitlab-workhorse block

 error_page 418 = @gitlab-workhorse;

 return 418;

 }

 # Build artifacts should be submitted to this location

 location ~ ^/[\w\.-]+/[\w\.-]+/builds/download {

 client_max_body_size 0;

 # 'Error' 418 is a hack to re-use the @gitlab-workhorse block

 error_page 418 = @gitlab-workhorse;

 return 418;

 }

 # Build artifacts should be submitted to this location

 location ~ /ci/api/v1/builds/[0-9]+/artifacts {

 client_max_body_size 0;

 # 'Error' 418 is a hack to re-use the @gitlab-workhorse block

 error_page 418 = @gitlab-workhorse;

 return 418;

 }

 # Build artifacts should be submitted to this location

 location ~ /api/v4/jobs/[0-9]+/artifacts {

 client_max_body_size 0;

 # 'Error' 418 is a hack to re-use the @gitlab-workhorse block

 error_page 418 = @gitlab-workhorse;

 return 418;

 }

 # For protocol upgrades from HTTP/1.0 to HTTP/1.1 we need to provide Host header
if its missing

 if ($http_host = "") {

 # use one of values defined in server_name

 set $http_host_with_default "git.example.com";

 }

 if ($http_host != "") {

 set $http_host_with_default $http_host;

 }

 location @gitlab-workhorse {

 ## https://github.com/gitlabhq/gitlabhq/issues/694

 ## Some requests take more than 30 seconds.

 proxy_read_timeout 3600;

 proxy_connect_timeout 300;

 proxy_redirect off;

 # Do not buffer Git HTTP responses

 proxy_buffering off;

 proxy_set_header Host $http_host_with_default;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass http://gitlab-workhorse;

 ## The following settings only work with NGINX 1.7.11 or newer

 #

 ## Pass chunked request bodies to gitlab-workhorse as-is

 # proxy_request_buffering off;

 # proxy_http_version 1.1;

 }

 ## Enable gzip compression as per rails guide:

 ## http://guides.rubyonrails.org/asset_pipeline.html#gzip-compression

 ## WARNING: If you are using relative urls remove the block below

 ## See config/application.rb under "Relative url support" for the list of

 ## other files that need to be changed for relative url support

 location ~ ^/(assets)/ {

 root /opt/gitlab/embedded/service/gitlab-rails/public;

 gzip_static on; # to serve pre-gzipped version

 expires max;

 add_header Cache-Control public;

 }

 error_page 502 /502.html;

}

Don't forget to update 'git.example.com' in the above example to be your server url.

Note: If you wind up with a 403 forbidden, it's possible that you haven't enabled

passenger in /etc/nginx/nginx.conf, to do so simply uncomment:

include /etc/nginx/passenger.conf;

then, 'sudo service nginx reload'

Enabling/Disabling nginx_status

By default you will have an nginx health-check endpoint configured at

127.0.0.1:8060/nginx_status to monitor your Nginx server status.

The following information will be displayed:

Active connections: 1

server accepts handled requests

 18 18 36

Reading: 0 Writing: 1 Waiting: 0

 Active connections – Open connections in total.

 3 figures are shown.

o All accepted connections.

o All handled connections.

o Total number of handled requests.

 Reading: Nginx reads request headers

 Writing: Nginx reads request bodies, processes requests, or writes responses to a client

 Waiting: Keep-alive connections. This number depends on the keepalive-timeout.

Configuration

Edit /etc/gitlab/gitlab.rb:

nginx['status'] = {

 "listen_addresses" => ["127.0.0.1"],

 "fqdn" => "dev.example.com",

 "port" => 9999,

 "options" => {

 "stub_status" => "on", # Turn on stats

 "access_log" => "on", # Disable logs for stats

 "allow" => "127.0.0.1", # Only allow access from localhost

 "deny" => "all" # Deny access to anyone else

 }

}

If you don't find this service useful for your current infrastructure you can disable it with:

nginx['status'] = {

 'enable' => false

}

Make sure you run sudo gitlab-ctl reconfigure for the changes to take effect.

Warning

To ensure that user uploads are accessible your Nginx user (usually www-data) should be

added to the gitlab-www group. This can be done using the following command:

sudo usermod -aG gitlab-www www-data

Templates

Other than the Passenger configuration in place of Unicorn and the lack of HTTPS

(although this could be enabled) these files are mostly identical to :

 bundled Gitlab Nginx configuration

Don't forget to restart Nginx to load the new configuration (on Debian-based

systems sudo service nginx restart).

Troubleshooting

400 Bad Request: too many Host headers

Make sure you don't have the proxy_set_header configuration

in nginx['custom_gitlab_server_config'] settings and instead use

the'proxy_set_headers' configuration in your gitlab.rb file.

javax.net.ssl.SSLHandshakeException: Received fatal alert: handshake_failure

Starting with GitLab 10, the omnibus-gitlab package no longer supports TLSv1 protocol

by default. This can cause connection issues with some older Java based IDE clients

when interacting with your GitLab instance. We strongly urge you to upgrade ciphers on

your server, similar to what was mentioned in this user comment.

If it is not possible to make this server change, you can default back to the old behavour

by changing the values in your /etc/gitlab/gitlab.rb:

nginx['ssl_protocols'] = "TLSv1 TLSv1.1 TLSv1.2"

https://gitlab.com/gitlab-org/omnibus-gitlab/tree/master/files/gitlab-cookbooks/gitlab/templates/default/nginx-gitlab-http.conf.erb
https://docs.gitlab.com/omnibus/settings/nginx.html#supporting-proxied-ssl
https://gitlab.com/gitlab-org/gitlab-ce/issues/624#note_299061

Setting custom environment
variables

If necessary you can set custom environment variables to be used by Unicorn, Sidekiq,

Rails and Rake via /etc/gitlab/gitlab.rb. This can be useful in situations where you

need to use a proxy to access the internet and you will be wanting to clone externally

hosted repositories directly into gitlab. In/etc/gitlab/gitlab.rb supply

a gitlab_rails['env'] with a hash value. For example:

gitlab_rails['env'] = {"http_proxy" => "my_proxy", "https_proxy" => "my_proxy"}

Applying the changes

Any change made to the environment variables requires a hard restart after

reconfigure for it to take effect.

Note: During a hard restart, your GitLab instance will be down until the services are back

up.

So, after editing gitlab.rb file, run the following commands

sudo gitlab-ctl reconfigure

sudo gitlab-ctl restart

Changing gitlab.yml and
application.yml settings

Some of GitLab's features can be customized through gitlab.yml. If you want to change

a gitlab.yml setting with omnibus-gitlab, you need to do so via /etc/gitlab/gitlab.rb.

The translation works as follows. For a complete list of available options, visit

the gitlab.rb.template. New installations starting from GitLab 7.6, will have all the options

of the template listed in /etc/gitlab/gitlab.rb by default.

In gitlab.yml, you will find structure like this:

production: &base

 gitlab:

 default_theme: 2

In gitlab.rb, this translates to:

gitlab_rails['gitlab_default_theme'] = 2

What happens here is that we forget about production: &base, and

join gitlab: with default_theme: into gitlab_default_theme. Note that not

all gitlab.yml settings can be changed via gitlab.rb yet; see the gitlab.yml ERB

template. If you think an attribute is missing please create a merge request on the

omnibus-gitlab repository.

Run sudo gitlab-ctl reconfigure for changes in gitlab.rb to take effect.

Do not edit the generated file in /var/opt/gitlab/gitlab-rails/etc/gitlab.yml since it

will be overwritten on the next gitlab-ctl reconfigurerun.

Adding a new setting to gitlab.yml

Don't forget to update the following 3 files when adding a new setting:

 the gitlab.rb.template file to expose the setting to the end user via /etc/gitlab/gitlab.rb

 the default.rb file to provide a sane default for the new setting

 the gitlab.yml.example file to actually use the setting's value from gitlab.rb

https://gitlab.com/gitlab-org/gitlab-ce/blob/master/config/gitlab.yml.example
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-cookbooks/gitlab/templates/default/gitlab.yml.erb
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-cookbooks/gitlab/templates/default/gitlab.yml.erb
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-cookbooks/gitlab/attributes/default.rb
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/config/gitlab.yml.example

Redis settings

Using a non-packaged Redis instance

If you want to use your own Redis instance instead of the bundled Redis, you can use

the gitlab.rb settings below. Run gitlab-ctl reconfigure for the settings to take effect.

redis['enable'] = false

Redis via TCP

gitlab_rails['redis_host'] = 'redis.example.com'

gitlab_rails['redis_port'] = 6380

OR Redis via Unix domain sockets

gitlab_rails['redis_socket'] = '/tmp/redis.sock' # defaults to
/var/opt/gitlab/redis/redis.socket

Making a bundled Redis instance reachable

via TCP

Use the following settings if you want to make one of the Redis instances managed by

omnibus-gitlab reachable via TCP.

redis['port'] = 6379

redis['bind'] = '127.0.0.1'

Setting up a Redis-only server

If you'd like to setup a seperate Redis server (e.g. in the case of scaling issues) for use

with GitLab you can do so using GitLab Omnibus.

Note: Redis does not require authentication by default. See Redis

Security documentation for more information. We recommend using a combination of a

Redis password and tight firewall rules to secure your Redis service.

http://redis.io/topics/security
http://redis.io/topics/security

1. Download/install GitLab Omnibus using steps 1 and 2 from GitLab downloads. Do not

complete other steps on the download page.

2. Create/edit /etc/gitlab/gitlab.rb and use the following configuration. Be sure to

change the external_url to match your eventual GitLab front-end URL:

3. external_url 'https://gitlab.example.com'

4.

5. # Disable all services except Redis

6. redis_master_role['enable'] = true

7.

8. # Redis configuration

9. redis['port'] = 6379

10. redis['bind'] = '0.0.0.0'

11.

12. # If you wish to use Redis authentication (recommended)

13. redis['password'] = 'Redis Password'

14. gitlab_rails['redis_password'] = 'Redis Password'

15.

16. # Disable automatic database migrations

17. # Only the primary GitLab application server should handle migrations

18. gitlab_rails['auto_migrate'] = false

Note: The redis_master_role['enable'] option is only available as of GitLab 8.14,

see gitlab_rails.rb to understand which services are automatically disabled via that

option.

19. Run sudo gitlab-ctl reconfigure to install and configure Redis.

Increasing the number of Redis connections

beyond the default

By default Redis will only accept 10,000 client connections. If you need more that 10,000

connections set the 'maxclients' attribute to suite your needs. Be advised that adjusting

the maxclients attribute means that you will also need to take into account your systems

settings for fs.file-max (i.e. "sysctl -w fs.file-max=20000")

redis['maxclients'] = 20000

Tuning the TCP stack for Redis

https://about.gitlab.com/downloads
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-cookbooks/gitlab/libraries/gitlab_rails.rb

The following settings are to enable a more performant Redis server instance.

'tcp_timeout' is a value set in seconds that the Redis server waits before terminating an

IDLE TCP connection. The 'tcp_keepalive' is a tunable setting in seconds to TCP ACKs

to clients in absence of communication.

redis['tcp_timeout'] = "60"

redis['tcp_keepalive'] = "300"

Using a Redis HA setup

See https://docs.gitlab.com/ce/administration/high_availability/redis.html.

https://docs.gitlab.com/ce/administration/high_availability/redis.html

Database settings

Note: Omnibus GitLab has a bundled PostgreSQL server and PostgreSQL is the

preferred database for GitLab.

GitLab supports the following database management systems:

 PostgreSQL

 MySQL/MariaDB

Thus you have three options for database servers to use with Omnibus GitLab:

 Use the packaged PostgreSQL server included with GitLab Omnibus (no configuration

required, recommended)

 Use an external PostgreSQL server

 Use an external MySQL server with Enterprise Edition package (deprecated)

If you are planning to use MySQL/MariaDB, make sure to read the introductory

paragraph before proceeding, as it contains some useful information.

Enabling PostgreSQL WAL (Write Ahead

Log) Archiving

By default WAL archiving of the packaged PostgreSQL is not enabled. Please consider

the following when seeking to enable WAL archiving:

 The WAL level needs to be 'replica' or higher (9.6+ options are minimal, replica,

or logical)

 Increasing the WAL level will increase the amount of storage consumed in regular

operations

To enable WAL Archiving:

1. Edit /etc/gitlab/gitlab.rb:

2. # Replication settings

3. postgresql['sql_replication_user'] = "gitlab_replicator"

4. postgresql['wal_level'] = "replica"

5. ...

6. ...

https://docs.gitlab.com/omnibus/settings/database.html#using-a-non-packaged-postgresql-database-management-server
https://docs.gitlab.com/omnibus/settings/database.html#using-a-mysql-database-management-server-enterprise-edition-only
https://docs.gitlab.com/omnibus/settings/database.html#using-a-mysql-database-management-server-enterprise-edition-only
https://docs.gitlab.com/omnibus/settings/database.html#using-a-mysql-database-management-server-enterprise-edition-only

7. # Backup/Archive settings

8. postgresql['archive_mode'] = "on"

9. postgresql['archive_command'] = "/your/wal/archiver/here"

10. postgresql['archive_timeout'] = "60"

11. Reconfigure GitLab for the changes to take effect. This will result in a database restart.

Using a non-packaged PostgreSQL

database management server

By default, GitLab is configured to use the PostgreSQL server that is included in

Omnibus GitLab. You can also reconfigure it to use an external instance of PostgreSQL.

WARNING If you are using non-packaged PostgreSQL server, you need to make sure

that PostgreSQL is set up according to the database requirements document.

1. Edit /etc/gitlab/gitlab.rb:

2. # Disable the built-in Postgres

3. postgresql['enable'] = false

4.

5. # Fill in the connection details for database.yml

6. gitlab_rails['db_adapter'] = 'postgresql'

7. gitlab_rails['db_encoding'] = 'utf8'

8. gitlab_rails['db_host'] = '127.0.0.1'

9. gitlab_rails['db_port'] = '5432'

10. gitlab_rails['db_username'] = 'USERNAME'

11. gitlab_rails['db_password'] = 'PASSWORD'

Don't forget to remove the # comment characters at the beginning of these lines.

Note:

o /etc/gitlab/gitlab.rb should have file permissions 0600 because it contains plain-text

passwords.

o Postgresql allows to listen on multiple adresses. See Postgresql Connection

Config#listen_addresses

If you use multiple addresses in gitlab_rails['db_host'], comma-separated, the first

address in the list will be used for connection.

12. Reconfigure GitLab for the changes to take effect.

13. Seed the database.

https://docs.gitlab.com/ce/administration/restart_gitlab.html#omnibus-gitlab-reconfigure
https://docs.gitlab.com/ce/install/requirements.html#database
https://www.postgresql.org/docs/9.5/static/runtime-config-connection.html#listen_addresses
https://www.postgresql.org/docs/9.5/static/runtime-config-connection.html#listen_addresses
https://docs.gitlab.com/ce/administration/restart_gitlab.html#omnibus-gitlab-reconfigure
https://docs.gitlab.com/omnibus/settings/database.html#seed-the-database-fresh-installs-only

Backup and restore a non-packaged PostgreSQL

database

When using the rake backup create and restore task, GitLab will attempt to use the

packaged pg_dump command to create a database backup file and the

packaged psql command to restore a backup. This will only work if they are the correct

versions. Check the versions of the packaged pg_dump and psql:

/opt/gitlab/embedded/bin/pg_dump --version

/opt/gitlab/embedded/bin/psql --version

If these versions are different from your non-packaged external PostgreSQL (most likely

they are different), you need to add symbolic links to your non-packaged PostgreSQL:

1. Check the location of the non-packaged executables:

2. which pg_dump psql

This will output something like:

/usr/bin/pg_dump

/usr/bin/psql

3. Add symbolic links to the non-packaged versions:

4. ln -s /usr/bin/pg_dump /usr/bin/psql /opt/gitlab/bin/

5. Check the versions:

6. /opt/gitlab/bin/pg_dump --version

7. /opt/gitlab/bin/psql --version

They should now be the same as your non-packaged external PostgreSQL.

After this is done, ensure that the backup and restore tasks are using the correct

executables by running both the backup and restore tasks.

Using a MySQL database management

server (Enterprise Edition only)

Note: Using MySQL with the Omnibus GitLab package is considered deprecated.

Although GitLab Enterprise Edition will still work when MySQL is used, there will be

some limitations as outlined in the database requirements document.

https://docs.gitlab.com/ce/raketasks/backup_restore.html#create-a-backup-of-the-gitlab-system
https://docs.gitlab.com/ce/raketasks/backup_restore.html#create-a-backup-of-the-gitlab-system
https://docs.gitlab.com/ce/raketasks/backup_restore.html#restore-a-previously-created-backup
https://docs.gitlab.com/ce/install/requirements.html#database

MySQL in Omnibus GitLab package is only supported in GitLab Enterprise Edition

Starter and Premium. The MySQL server itself is not shipped with Omnibus, you will

have to install it on your own or use an existing one. Omnibus ships only the MySQL

client.

Make sure that GitLab's MySQL database collation is UTF-8, otherwise you could

hit collation issues. See 'Set MySQL collation to UTF-8' to fix any relevant errors.

The following guide assumes that you want to use MySQL or MariaDB and are using

the GitLab Enterprise Edition packages.

Important note: If you are connecting Omnibus GitLab to an existing GitLab database

you should create a backup before attempting this procedure.

1. First, set up your database server according to the upstream GitLab instructions. If you

want to keep using an existing GitLab database you can skip this step.

2. Next, add the following settings to /etc/gitlab/gitlab.rb:

3. # Disable the built-in Postgres

4. postgresql['enable'] = false

5.

6. # Fill in the values for database.yml

7. gitlab_rails['db_adapter'] = 'mysql2'

8. gitlab_rails['db_encoding'] = 'utf8'

9. gitlab_rails['db_host'] = '127.0.0.1'

10. gitlab_rails['db_port'] = '3306'

11. gitlab_rails['db_username'] = 'USERNAME'

12. gitlab_rails['db_password'] = 'PASSWORD'

db_adapter and db_encoding should be like the example above. Change all other settings

according to your MySQL setup.

Note: /etc/gitlab/gitlab.rb should have file permissions 0600 because it contains

plain-text passwords.

13. Reconfigure GitLab for the changes to take effect.

14. (Optionally) Seed the database.

Seed the database (fresh installs only)

This is a destructive command; do not run it on an existing database!

https://gitlab.com/gitlab-org/gitlab-ee/issues/245
https://docs.gitlab.com/omnibus/settings/database.html#set-mysql-collation-to-utf-8
https://docs.gitlab.com/ce/raketasks/backup_restore.html#create-a-backup-of-the-gitlab-system
https://docs.gitlab.com/ce/install/database_mysql.html
https://docs.gitlab.com/ce/administration/restart_gitlab.html#omnibus-gitlab-reconfigure
https://docs.gitlab.com/omnibus/settings/database.html#seed-the-database-fresh-installs-only

Omnibus GitLab will not automatically seed your external database. Run the following

command to import the schema and create the first admin user:

Remove 'sudo' if you are the 'git' user

sudo gitlab-rake gitlab:setup

If you want to specify a password for the default root user, specify

the initial_root_password setting in /etc/gitlab/gitlab.rb before running

thegitlab:setup command above:

gitlab_rails['initial_root_password'] = 'nonstandardpassword'

If you want to specify the initial registration token for shared GitLab Runners, specify

the initial_shared_runners_registration_token setting in /etc/gitlab/gitlab.rb before

running the gitlab:setup command:

gitlab_rails['initial_shared_runners_registration_token'] = 'token'

Disabling automatic database migration

If you have multiple GitLab servers sharing a database, you will want to limit the number

of nodes that are performing the migration steps during reconfiguration.

Edit /etc/gitlab/gitlab.rb:

Enable or disable automatic database migrations

gitlab_rails['auto_migrate'] = false

Don't forget to remove the # comment characters at the beginning of this line.

Note: /etc/gitlab/gitlab.rb should have file permissions 0600 because it contains

plain-text passwords.

The next time a reconfigure is triggered, the migration steps will not be performed.

Upgrade packaged PostgreSQL server

As of GitLab 10.0, PostgreSQL 9.6.X is the only database version in GitLab.

If you're still running on the bundled PostgreSQL 9.2.18 when you upgrade to GitLab

10.0, it will fail and remain on your current version. To ensure you're running the latest

version of the bundled PostgreSQL, first upgrade GitLab to the latest 9.5.X release.

If you had previously avoided the upgrade by touching /etc/gitlab/skip-auto-

migrations this will no longer work.

If you want to manually upgrade without upgrading GitLab, you can follow these

instructions:

Note:

 Please fully read this section before running any commands.

 Please plan ahead as upgrade involves downtime.

 If you encounter any problems during upgrade, please raise an issue with a full

description at omnibus-gitlab issue tracker.

Before upgrading, please check the following:

 You're currently running the latest version of GitLab and it is working.

 If you recently upgraded, make sure that sudo gitlab-ctl reconfigure ran successfully

before you proceed.

 You're using the bundled version of PostgreSQL. Look for postgresql['enable'] to

be true, commented out, or absent from /etc/gitlab/gitlab.rb.

 You haven't already upgraded. Running sudo gitlab-psql --version should print psql

(PostgreSQL) 9.2.18.

 You will need to have sufficient disk space for two copies of your database. Do not

attempt to upgrade unless you have enough free space available.Check your

database size using sudo du -sh /var/opt/gitlab/postgresql/data (or update to your

database path) and space available using sudo df -h. If the partition where the database

resides does not have enough space, you can pass the argument --tmp-dir $DIR to the

command.

Please note:

This upgrade requires downtime as the database must be down while the upgrade

is being performed. The length of time depends on the size of your database. If

you would rather avoid downtime, it is possible to upgrade to a new database

using Slony. Please see our guide on how to perform the upgrade.

Once you have confirmed that the the above checklist is satisfied, you can proceed. To

perform the upgrade, run the command:

https://gitlab.com/gitlab-org/omnibus-gitlab
http://www.slony.info/
http://docs.gitlab.com/ce/update/upgrading_postgresql_using_slony.html

sudo gitlab-ctl pg-upgrade

This command performs the following steps:

1. Checks to ensure the database is in a known good state

2. Shuts down the existing database, any unnecessary services, and enables the gitlab

deploy page.

3. Changes the symlinks in /opt/gitlab/embedded/bin/ for PostgreSQL to point to the

newer version of the database

4. Creates a new directory containing a new, empty database with a locale matching the

existing database

5. Uses the pg_upgrade tool to copy the data from the old database to the new database

6. Moves the old database out of the way

7. Moves the new database to the expected location

8. Calls sudo gitlab-ctl reconfigure to do the required configuration changes, and start

the new database server.

9. Start the remaining services, and remove the deploy page.

10. If any errors are detected during this process, it should immediately revert to the old

version of the database.

Once this step is complete, verify everything is working as expected.

Once you have verified that your GitLab instance is running correctly, you can

remove the old database with:

sudo rm -rf /var/opt/gitlab/postgresql/data.9.2.18

Upgrading a GitLab HA cluster

If you have setup your GitLab instance per the GitLab HA documentation, upgrade the

database server last. It should not be necessary to perform any other extra steps.

You do not need to run pg-upgrade on any node besides the database node, but they

should be updated to the latest version of GitLab before the database is updated.

Troubleshooting upgrades in an HA cluster

 If at some point, the bundled PostgreSQL had been running on a node before upgrading

to an HA setup, the old data directory may remain. This will cause gitlab-ctl

reconfigure to downgrade the version of the PostgreSQL utilities it uses on that node.

Move (or remove) the directory to prevent this:

o mv /var/opt/gitlab/postgresql/data/ /var/opt/gitlab/postgresql/data.$(date +%s)

https://docs.gitlab.com/ee/administration/high_availability/database.html

Downgrade packaged PostgreSQL server

As of GitLab 10.0, the default version of PostgreSQL is 9.6.1, and 9.2.18 is no longer

shipped in the package.

If you need to run an older version of PostgreSQL, you must downgrade GitLab to an

older version.

Troubleshooting

Set MySQL collation to UTF-8

If you are hit by an error similar as described in this issue (Mysql2::Error: Incorrect string

value (`st_diffs` field)), you can change the collation of the faulty table with:

ALTER TABLE merge_request_diffs default character set = utf8 collate =
utf8_unicode_ci;

ALTER TABLE merge_request_diffs convert to character set utf8 collate
utf8_unicode_ci;

In the above example the affected table is called merge_request_diffs.

Connecting to the bundled PostgreSQL database

If you need to connect to the bundled PostgreSQL database and are using the default

Omnibus GitLab database configuration, you can connect as the application user:

sudo gitlab-rails dbconsole

or as a Postgres superuser:

sudo gitlab-psql -d gitlabhq_production

https://gitlab.com/gitlab-org/gitlab-ee/issues/245

Logs

Tail logs in a console on the server

If you want to 'tail', i.e. view live log updates of GitLab logs you can use gitlab-ctl tail.

Tail all logs; press Ctrl-C to exit

sudo gitlab-ctl tail

Drill down to a sub-directory of /var/log/gitlab

sudo gitlab-ctl tail gitlab-rails

Drill down to an individual file

sudo gitlab-ctl tail nginx/gitlab_error.log

Configure default log directories

In your /etc/gitlab/gitlab.rb file, there are many log_directory keys for the various

types of logs. Uncomment and update the values for all the logs you want to place

elsewhere:

For example:

gitlab_rails['log_directory'] = "/var/log/gitlab/gitlab-rails"

unicorn['log_directory'] = "/var/log/gitlab/unicorn"

registry['log_directory'] = "/var/log/gitlab/registry"

...

Run sudo gitlab-ctl reconfigure to configure your instance with these settings.

Runit logs

The Runit-managed services in omnibus-gitlab generate log data using [svlogd][svlogd].

See the [svlogd documentation][svlogd] for more information about the files it generates.

You can modify svlogd settings via /etc/gitlab/gitlab.rb with the following settings:

Below are the default values

logging['svlogd_size'] = 200 * 1024 * 1024 # rotate after 200 MB of log data

logging['svlogd_num'] = 30 # keep 30 rotated log files

logging['svlogd_timeout'] = 24 * 60 * 60 # rotate after 24 hours

logging['svlogd_filter'] = "gzip" # compress logs with gzip

logging['svlogd_udp'] = nil # transmit log messages via UDP

logging['svlogd_prefix'] = nil # custom prefix for log messages

Optionally, you can override the prefix for e.g. Nginx

nginx['svlogd_prefix'] = "nginx"

Logrotate

Starting with omnibus-gitlab 7.4 there is a built-in logrotate service in omnibus-gitlab.

This service will rotate, compress and eventually delete the log data that is not captured

by Runit, such as gitlab-rails/production.log and nginx/gitlab_access.log. You can

configure logrotate via/etc/gitlab/gitlab.rb.

Below are some of the default settings

logging['logrotate_frequency'] = "daily" # rotate logs daily

logging['logrotate_size'] = nil # do not rotate by size by default

logging['logrotate_rotate'] = 30 # keep 30 rotated logs

logging['logrotate_compress'] = "compress" # see 'man logrotate'

logging['logrotate_method'] = "copytruncate" # see 'man logrotate'

logging['logrotate_postrotate'] = nil # no postrotate command by default

logging['logrotate_dateformat'] = nil # use date extensions for rotated files
rather than numbers e.g. a value of "-%Y-%m-%d" would give rotated files like
production.log-2016-03-09.gz

You can add overrides per service

nginx['logrotate_frequency'] = nil

nginx['logrotate_size'] = "200M"

You can also disable the built-in logrotate service if you want

logrotate['enable'] = false

UDP log forwarding

In case you have a central server where all your infra logs are gathered, you can

configure Omnibus GitLab to send syslog-ish log messages via UDP:

logging['udp_log_shipping_host'] = '1.2.3.4' # Your syslog server

logging['udp_log_shipping_port'] = 1514 # Optional, defaults to 514 (syslog)

Example log messages:

Jun 26 06:33:46 ubuntu1204-test production.log: Started GET "/root/my-
project/import" for 127.0.0.1 at 2014-06-26 06:33:46 -0700

Jun 26 06:33:46 ubuntu1204-test production.log: Processing by
ProjectsController#import as HTML

Jun 26 06:33:46 ubuntu1204-test production.log: Parameters: {"id"=>"root/my-
project"}

Jun 26 06:33:46 ubuntu1204-test production.log: Completed 200 OK in 122ms (Views:
71.9ms | ActiveRecord: 12.2ms)

Jun 26 06:33:46 ubuntu1204-test gitlab_access.log: 172.16.228.1 - -
[26/Jun/2014:06:33:46 -0700] "GET /root/my-project/import HTTP/1.1" 200 5775
"https://172.16.228.169/root/my-project/import" "Mozilla/5.0 (Macintosh; Intel Mac
OS X 10_9_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153
Safari/537.36"

2014-06-26_13:33:46.49866 ubuntu1204-test sidekiq: 2014-06-26T13:33:46Z 18107 TID-
7nbj0 Sidekiq::Extensions::DelayedMailer JID-bbfb118dd1db20f6c39f5b50 INFO: start

2014-06-26_13:33:46.52608 ubuntu1204-test sidekiq: 2014-06-26T13:33:46Z 18107 TID-
7muoc RepositoryImportWorker JID-57ee926c3655fcfa062338ae INFO: start

Using a custom NGINX log format

By default the NGINX access logs will use a version of the 'combined' NGINX format,

designed to hide potentially sensitive information embedded in query strings. If you want

to use a custom log format string you can specify it in /etc/gitlab/gitlab.rb - see the

NGINX documentation for format details.

nginx['log_format'] = 'my format string $foo $bar'

mattermost_nginx['log_format'] = 'my format string $foo $bar'

http://nginx.org/en/docs/http/ngx_http_log_module.html#log_format
http://nginx.org/en/docs/http/ngx_http_log_module.html#log_format

Backups

Backup and restore Omnibus GitLab

configuration

It is recommended to keep a copy of /etc/gitlab, or at least of /etc/gitlab/gitlab-

secrets.json, in a safe place. If you ever need to restore a GitLab application backup

you need to also restore gitlab-secrets.json. If you do not, GitLab users who are using

two-factor authentication will lose access to your GitLab server and 'secure variables'

stored in GitLab CI will be lost.

It is not recommended to store your configuration backup in the same place as your

application data backup, see below.

All configuration for omnibus-gitlab is stored in /etc/gitlab. To backup your

configuration, just backup this directory.

Example backup command for /etc/gitlab:

Create a time-stamped .tar file in the current directory.

The .tar file will be readable only to root.

sudo sh -c 'umask 0077; tar -cf $(date "+etc-gitlab-%s.tar") -C / etc/gitlab'

To create a daily application backup, edit the cron table for user root:

sudo crontab -e -u root

The cron table will appear in an editor.

Enter the command to create a compressed tar file containing the contents

of /etc/gitlab/. For example, schedule the backup to run every morning after a

weekday, Tuesday (day 2) through Saturday (day 6):

15 04 * * 2-6 umask 0077; tar cfz /secret/gitlab/backups/$(date "+etc-gitlab-
\%s.tgz") -C / etc/gitlab

cron is rather particular about the cron table. Note:

http://www.pantz.org/software/cron/croninfo.html

 The empty line after the command

 The escaped percent character: \%

You can extract the .tar file as follows.

Rename the existing /etc/gitlab, if any

sudo mv /etc/gitlab /etc/gitlab.$(date +%s)

Change the example timestamp below for your configuration backup

sudo tar -xf etc-gitlab-1399948539.tar -C /

Remember to run sudo gitlab-ctl reconfigure after restoring a configuration backup.

Your machines SSH host keys are stored in a separate location at /etc/ssh/. Be sure to

also backup and restore those keys to avoid man-in-the-middle attack warnings if you

have to perform a full machine restore.

Separate configuration backups from application data

Do not store your GitLab application backups (Git repositories, SQL data) in the same

place as your configuration backup (/etc/gitlab). The gitlab-secrets.json file (and

possibly also the gitlab.rb file) contain database encryption keys to protect sensitive

data in the SQL database:

 GitLab two-factor authentication (2FA) user secrets ('QR codes')

 GitLab CI 'secure variables'

If you separate your configuration backup from your application data backup, you reduce

the chance that your encrypted application data will be lost/leaked/stolen together with

the keys needed to decrypt it.

Creating an application backup

To create a backup of your repositories and GitLab metadata, follow the backup create

documentation.

Backup create will store a tar file in /var/opt/gitlab/backups.

If you want to store your GitLab backups in a different directory, add the following setting

to /etc/gitlab/gitlab.rb and run sudo gitlab-ctl reconfigure:

https://superuser.com/questions/532040/copy-ssh-keys-from-one-server-to-another-server/532079#532079
https://docs.gitlab.com/ce/raketasks/backup_restore.html#creating-a-backup-of-the-gitlab-system
https://docs.gitlab.com/ce/raketasks/backup_restore.html#creating-a-backup-of-the-gitlab-system

gitlab_rails['backup_path'] = '/mnt/backups'

Creating backups for GitLab instances in

Docker containers

Backups can scheduled on the host by prepending docker exec -t <your container

name> to the commands.

Backup application:

docker exec -t <your container name> gitlab-rake gitlab:backup:create

Backup configuration and secrets:

docker exec -t <your container name> /bin/sh -c 'umask 0077; tar cfz
/secret/gitlab/backups/$(date "+etc-gitlab-\%s.tgz") -C / etc/gitlab'

Note: You need to have volumes mounted

at /secret/gitlab/backups and /var/opt/gitlab in order to have these backups

persisted outside the container.

Restoring an application backup

See backup restore documentation.

Backup and restore using non-packaged

database

If you are using non-packaged database see documentation on using non-packaged

database.

Upload backups to remote (cloud) storage

For details check backup restore document of GitLab CE.

Manually manage backup directory

Omnibus-gitlab creates the backup directory set with gitlab_rails['backup_path']. The

directory is owned by the user that is running GitLab and it has strict permissions set to

https://docs.gitlab.com/ce/raketasks/backup_restore.html#restore-for-omnibus-installations
https://docs.gitlab.com/omnibus/settings/database.html#using-a-non-packaged-postgresql-database-management-server
https://docs.gitlab.com/omnibus/settings/database.html#using-a-non-packaged-postgresql-database-management-server
https://docs.gitlab.com/ce/raketasks/backup_restore.html#uploading-backups-to-a-remote-cloud-storage

be accessible to only that user. That directory will hold backup archives and they contain

sensitive information. In some organizations permissions need to be different because

of, for example, shipping the backup archives offsite.

To disable backup directory management, in /etc/gitlab/gitlab.rb set:

gitlab_rails['manage_backup_path'] = false

Warning If you set this configuration option, it is up to you to create the directory

specified in gitlab_rails['backup_path'] and to set permissions which will allow user

specified in user['username'] to have correct access. Failing to do so will prevent GitLab

from creating the backup archive.

Issues

The GitLab Issue Tracker is an advanced and complete tool for tracking the evolution of

a new idea or the process of solving a problem.

It allows you, your team, and your collaborators to share and discuss proposals before

and while implementing them.

GitLab Issues and the GitLab Issue Tracker are available in all GitLab Products as part

of the GitLab Workflow.

Use cases

Issues can have endless applications. Just to exemplify, these are some cases for which

creating issues are most used:

 Discussing the implementation of a new idea

 Submitting feature proposals

 Asking questions

 Reporting bugs and malfunction

 Obtaining support

 Elaborating new code implementations

See also the blog post "Always start a discussion with an issue".

Keep private things private

For instance, let's assume you have a public project but want to start a discussion on

something you don't want to be public. With Confidential Issues, you can discuss private

matters among the project members, and still keep your project public, open to

collaboration.

Streamline collaboration

With Multiple Assignees for Issues, available in GitLab Enterprise Edition Starter you can

streamline collaboration and allow shared responsibilities to be clearly displayed. All

assignees are shown across your workflows and receive notifications (as they would as

single assignees), simplifying communication and ownership.

https://about.gitlab.com/products/
https://about.gitlab.com/2016/10/25/gitlab-workflow-an-overview/
https://about.gitlab.com/2016/03/03/start-with-an-issue/
https://docs.gitlab.com/ce/user/project/issues/index.html#confidential-issues
https://docs.gitlab.com/ee/user/project/issues/multiple_assignees_for_issues.html
https://about.gitlab.com/gitlab-ee/

Consistent collaboration

Create issue templates to make collaboration consistent and containing all information

you need. For example, you can create a template for feature proposals and another

one for bug reports.

Issue Tracker

The Issue Tracker is the collection of opened and closed issues created in a project. It is

available for all projects, from the moment the project is created.

Find the issue tracker by navigating to your Project's homepage > Issues.

Issues per project

When you access your project's issues, GitLab will present them in a list, and you can

use the tabs available to quickly filter by open and closed issues.

You can also search and filter the results more deeply with GitLab's search capacities.

Issues per group

View all the issues in a group (that is, all the issues across all projects in that group) by

navigating to Group > Issues. This view also has the open and closed issue tabs.

https://docs.gitlab.com/ce/user/project/issues/index.html#issue-templates
https://docs.gitlab.com/ce/user/search/index.html#issues-and-merge-requests-per-project
https://docs.gitlab.com/ce/user/project/issues/img/project_issues_list_view.png

GitLab Issues Functionalities

The image bellow illustrates how an issue looks like:

https://docs.gitlab.com/ce/user/project/issues/img/group_issues_list_view.png

Learn more about it on the GitLab Issues Functionalities documentation.

New issue

Read through the documentation on creating issues.

Closing issues

Learn distinct ways to close issues in GitLab.

Moving issues

https://docs.gitlab.com/ce/user/project/issues/issues_functionalities.html
https://docs.gitlab.com/ce/user/project/issues/create_new_issue.html
https://docs.gitlab.com/ce/user/project/issues/closing_issues.html
https://docs.gitlab.com/ce/user/project/issues/img/issues_main_view.png

Read through the documentation on moving issues.

Deleting issues

Read through the documentation on deleting issues

Create a merge request from an issue

Learn more about it on the GitLab Issues Functionalities documentation.

Search for an issue

Learn how to find an issue by searching for and filtering them.

Advanced features

Confidential Issues

Whenever you want to keep the discussion presented in a issue within your team only,

you can make that issue confidential. Even if your project is public, that issue will be

preserved. The browser will respond with a 404 error whenever someone who is not a

project member with at least Reporter level tries to access that issue's URL.

Learn more about them on the confidential issues documentation.

Issue templates

Create templates for every new issue. They will be available from the dropdown

menu Choose a template when you create a new issue:

https://docs.gitlab.com/ce/user/project/issues/moving_issues.html
https://docs.gitlab.com/ce/user/project/issues/deleting_issues.html
https://docs.gitlab.com/ce/user/project/issues/issues_functionalities.html#18-new-merge-request
https://docs.gitlab.com/ce/user/search/index.html
https://docs.gitlab.com/ce/user/project/issues/confidential_issues.html
https://docs.gitlab.com/ce/user/permissions.html#project
https://docs.gitlab.com/ce/user/project/issues/confidential_issues.html

Learn more about them on the issue templates documentation.

Crosslinking issues

Learn more about crosslinking issues and merge requests.

Issue Board

The GitLab Issue Board is a way to enhance your workflow by organizing and prioritizing

issues in GitLab.

Find GitLab Issue Boards by navigating to your Project's

Dashboard > Issues > Board.

Read through the documentation for Issue Boards to find out more about this feature.

https://docs.gitlab.com/ce/user/project/description_templates.html#creating-issue-templates
https://docs.gitlab.com/ce/user/project/issues/crosslinking_issues.html
https://about.gitlab.com/features/issueboard/
https://docs.gitlab.com/ce/user/project/issue_board.html
https://docs.gitlab.com/ce/user/project/issues/img/issue_template.png
https://docs.gitlab.com/ce/user/project/issues/img/issue_board.png

With GitLab Enterprise Edition Starter, you can also create various boards per project

with Multiple Issue Boards.

External Issue Tracker

Alternatively to GitLab's built-in Issue Tracker, you can also use an external tracker such

as Jira, Redmine, or Bugzilla.

Issue's API

Read through the API documentation.

https://about.gitlab.com/gitlab-ee/
https://docs.gitlab.com/ee/user/project/issue_board.html#multiple-issue-boards
https://docs.gitlab.com/ce/integration/external-issue-tracker.html
https://docs.gitlab.com/ce/api/issues.html

Milestones

Milestones allow you to organize issues and merge requests into a cohesive group,

optionally setting a due date. A common use is keeping track of an upcoming software

version. Milestones can be created per-project or per-group.

Creating a project milestone

Note: You need Master permissions in order to create a milestone.

You can find the milestones page under your project's Issues ➔ Milestones. To create

a new milestone, simply click the New milestone button when in the milestones page. A

milestone can have a title, a description and start/due dates. Once you fill in all the

details, hit the Create milestone button.

Creating a group milestone

Note: You need Master permissions in order to create a milestone.

You can create a milestone for a group that will be shared across group projects. On the

group's Issues ➔ Milestones page, you will be able to see the state of that milestone

and the issues/merge requests count that it shares across the group projects. To create

a new milestone click the New milestone button. The form is the same as when creating

a milestone for a specific project which you can find in the previous item.

In addition to that you will be able to filter issues or merge requests by group milestones

in all projects that belongs to the milestone group.

https://docs.gitlab.com/ce/user/permissions.html
https://docs.gitlab.com/ce/user/permissions.html
https://docs.gitlab.com/ce/user/project/milestones/img/milestone_create.png

Milestone promotion

You will be able to promote a project milestone to a group milestone in the future.

Special milestone filters

In addition to the milestones that exist in the project or group, there are some special

options available when filtering by milestone:

 No Milestone - only show issues or merge requests without a milestone.

 Upcoming - show issues or merge request that belong to the next open milestone with a

due date, by project. (For example: if project A has milestone v1 due in three days, and

project B has milestone v2 due in a week, then this will show issues or merge requests

from milestone v1 in project A and milestone v2 in project B.)

 Started - show issues or merge requests from any milestone with a start date less than

today. Note that this can return results from several milestones in the same project.

Milestone progress statistics

Milestone statistics can be viewed in the milestone sidebar. The milestone percentage

statistic is calculated as; closed and merged merge requests plus all closed issues

divided by total merge requests and issues.

https://gitlab.com/gitlab-org/gitlab-ce/issues/35833

Quick actions

Quick actions are available for assigning and removing project and group milestones.

https://docs.gitlab.com/ce/user/project/quick_actions.html
https://docs.gitlab.com/ce/user/project/milestones/img/progress.png

Description templates

Introduced in GitLab 8.11.

Description templates allow you to define context-specific templates for issue and merge

request description fields for your project.

Overview

By using the description templates, users that create a new issue or merge request can

select a description template to help them communicate with other contributors

effectively.

Every GitLab project can define its own set of description templates as they are added to

the root directory of a GitLab project's repository.

Description templates must be written in Markdown and stored in your project's

repository under a directory named .gitlab. Only the templates of the default branch will

be taken into account.

Creating issue templates

Create a new Markdown (.md) file inside the .gitlab/issue_templates/ directory in your

repository. Commit and push to your default branch.

Creating merge request templates

Similarly to issue templates, create a new Markdown (.md) file inside

the .gitlab/merge_request_templates/ directory in your repository. Commit and push to

your default branch.

Using the templates

Let's take for example that you've created the file .gitlab/issue_templates/Bug.md. This

will enable the Bug dropdown option when creating or editing issues. When Bug is

selected, the content from the Bug.md template file will be copied to the issue description

field. The 'Reset template' button will discard any changes you made after picking the

template and return it to its initial status.

https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/4981
https://docs.gitlab.com/ce/user/markdown.html

Description template example

We make use of Description Templates for Issues and Merge Requests within the

GitLab Community Edition project. Please refer to the .gitlab folder for some examples.

Tip: It is possible to use quick actions within description templates to quickly add labels,

assignees, and milestones. The quick actions will only be executed if the user submitting

the Issue or Merge Request has the permissions perform the relevant actions.

Here is an example for a Bug report template:

Summary

(Summarize the bug encountered concisely)

Steps to reproduce

https://gitlab.com/gitlab-org/gitlab-ce/tree/master/.gitlab
https://docs.gitlab.com/ce/user/project/quick_actions.html
https://docs.gitlab.com/ce/user/project/img/description_templates.png

(How one can reproduce the issue - this is very important)

Example Project

(If possible, please create an example project here on GitLab.com that exhibits
the problematic behaviour, and link to it here in the bug report)

(If you are using an older version of GitLab, this will also determine whether the
bug has been fixed in a more recent version)

What is the current bug behavior?

(What actually happens)

What is the expected correct behavior?

(What you should see instead)

Relevant logs and/or screenshots

(Paste any relevant logs - please use code blocks (```) to format console output,

logs, and code as it's very hard to read otherwise.)

Possible fixes

(If you can, link to the line of code that might be responsible for the problem)

/label ~bug ~reproduced ~needs-investigation

/cc @project-manager

/assign @qa-tester

GitLab Pages from A to Z: Part 1

Article Type: user guide || Level: beginner || Author: Marcia Ramos || Publication

date: 2017/02/22

 Part 1: Static sites and GitLab Pages domains

 Part 2: Quick start guide - Setting up GitLab Pages

 Part 3: Setting Up Custom Domains - DNS Records and SSL/TLS Certificates

 Part 4: Creating and tweaking .gitlab-ci.yml for GitLab Pages

GitLab Pages from A to Z

This is a comprehensive guide, made for those who want to publish a website with

GitLab Pages but aren't familiar with the entire process involved.

This first part of this series will present you to the concepts of static sites, and go over

how the default Pages domains work.

The second part covers how to get started with GitLab Pages: deploy a website from a

forked project or create a new one from scratch.

The third part will show you how to set up a custom domain or subdomain to your site

already deployed.

The fourth part will show you how to create and tweak GitLab CI for GitLab Pages.

To enable GitLab Pages for GitLab CE (Community Edition) and GitLab EE (Enterprise

Edition), please read the admin documentation, and/or watch this video tutorial.

Note: For this guide, we assume you already have GitLab Pages server up and running

for your GitLab instance.

What you need to know before getting

started

Before we begin, let's understand a few concepts first.

Static sites

https://docs.gitlab.com/ce/development/writing_documentation.html#types-of-technical-articles
https://gitlab.com/marcia
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_two.html
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_three.html
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_four.html
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_one.html#what-you-need-to-know-before-getting-started
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_two.html
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_three.html
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_four.html
https://docs.gitlab.com/ce/administration/pages/index.html
https://youtu.be/dD8c7WNcc6s

GitLab Pages only supports static websites, meaning, your output files must be HTML,

CSS, and JavaScript only.

To create your static site, you can either hardcode in HTML, CSS, and JS, or use

a Static Site Generator (SSG) to simplify your code and build the static site for you,

which is highly recommendable and much faster than hardcoding.

Further reading

 Read through this technical overview on Static versus Dynamic Websites

 Understand how modern Static Site Generators work and what you can add to your

static site

 You can use any SSG with GitLab Pages

 Fork an example project to build your website based upon

GitLab Pages domain

If you set up a GitLab Pages project on GitLab.com, it will automatically be accessible

under a subdomain of namespace.pages.io. The namespace is defined by your username

on GitLab.com, or the group name you created this project under.

Note: If you use your own GitLab instance to deploy your site with GitLab Pages, check

with your sysadmin what's your Pages wildcard domain. This guide is valid for any

GitLab instance, you just need to replace Pages wildcard domain on GitLab.com

(*.gitlab.io) with your own.

Learn more about namespaces.

Practical examples

Project Websites

 You created a project called blog under your username john, therefore your project URL

is https://gitlab.com/john/blog/. Once you enable GitLab Pages for this project, and

build your site, it will be available under https://john.gitlab.io/blog/.

 You created a group for all your websites called websites, and a project within this group

is called blog. Your project URL is https://gitlab.com/websites/blog/. Once you enable

GitLab Pages for this project, the site will live underhttps://websites.gitlab.io/blog/.

User and Group Websites

https://www.staticgen.com/
https://about.gitlab.com/2016/06/03/ssg-overview-gitlab-pages-part-1-dynamic-x-static/
https://about.gitlab.com/2016/06/10/ssg-overview-gitlab-pages-part-2/
https://about.gitlab.com/2016/06/17/ssg-overview-gitlab-pages-part-3-examples-ci/
https://gitlab.com/pages
https://docs.gitlab.com/ce/user/project/pages/introduction.html#gitlab-pages-on-gitlab-com
https://docs.gitlab.com/ce/user/group/index.html#namespaces

 Under your username, john, you created a project called john.gitlab.io. Your project

URL will be https://gitlab.com/john/john.gitlab.io. Once you enable GitLab Pages

for your project, your website will be published under https://john.gitlab.io.

 Under your group websites, you created a project called websites.gitlab.io. your

project's URL will be https://gitlab.com/websites/websites.gitlab.io. Once you

enable GitLab Pages for your project, your website will be published

under https://websites.gitlab.io.

Note: GitLab Pages does not support subgroups. You can only create the highest level

group website.

General example:

 On GitLab.com, a project site will always be available

under https://namespace.gitlab.io/project-name

 On GitLab.com, a user or group website will be available

under https://namespace.gitlab.io/

 On your GitLab instance, replace gitlab.io above with your Pages server domain. Ask

your sysadmin for this information.

https://docs.gitlab.com/ce/user/group/subgroups/index.html#limitations

GitLab Pages from A to Z: Part 2

Article Type: user guide || Level: beginner || Author: Marcia Ramos || Publication

date: 2017/02/22

 Part 1: Static sites and GitLab Pages domains

 Part 2: Quick start guide - Setting up GitLab Pages

 Part 3: Setting Up Custom Domains - DNS Records and SSL/TLS Certificates

 Part 4: Creating and tweaking .gitlab-ci.yml for GitLab Pages

Setting up GitLab Pages

For a complete step-by-step tutorial, please read the blog post Hosting on GitLab.com

with GitLab Pages. The following sections will explain what do you need and why do you

need them.

What you need to get started

1. A project

2. A configuration file (.gitlab-ci.yml) to deploy your site

3. A specific job called pages in the configuration file that will make GitLab aware that you

are deploying a GitLab Pages website

Optional Features:

1. A custom domain or subdomain

2. A DNS pointing your (sub)domain to your Pages site

1. Optional: an SSL/TLS certificate so your custom domain is accessible under HTTPS.

The optional settings, custom domain, DNS records, and SSL/TLS certificates, are

described in Part 3).

Project

Your GitLab Pages project is a regular project created the same way you do for the

other ones. To get started with GitLab Pages, you have two ways:

 Fork one of the templates from Page Examples, or

 Create a new project from scratch

https://docs.gitlab.com/ce/development/writing_documentation.html#types-of-technical-articles
https://gitlab.com/marcia
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_one.html
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_three.html
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_four.html
https://about.gitlab.com/2016/04/07/gitlab-pages-setup/
https://about.gitlab.com/2016/04/07/gitlab-pages-setup/
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_three.html

Let's go over both options.

Fork a project to get started from

To make things easy for you, we've created this group of default projects containing the

most popular SSGs templates.

Watch the video tutorial we've created for the steps below.

1. Choose your SSG template

2. Fork a project from the Pages group

3. Remove the fork relationship by navigating to your Project's Settings > Edit Project

4. Enable Shared Runners for your fork: navigate to your Project's Settings > Pipelines

5. Trigger a build (push a change to any file)

6. As soon as the build passes, your website will have been deployed with GitLab Pages.

Your website URL will be available under your Project's Settings > Pages

To turn a project website forked from the Pages group into a user/group website, you'll

need to:

 Rename it to namespace.gitlab.io: navigate to Project's Settings > Edit

Project > Rename repository

 Adjust your SSG's base URL to from "project-name" to "". This setting will be at a

different place for each SSG, as each of them have their own structure and file tree.

Most likelly, it will be in the SSG's config file.

Notes:

1. Why do I need to remove the fork relationship?

Unless you want to contribute to the original project, you won't need it connected

to the upstream. A fork is useful for submitting merge requests to the upstream.

2. Why do I need to enable Shared Runners?

Shared Runners will run the script set by your GitLab CI configuration file. They're

enabled by default to new projects, but not to forks.

https://gitlab.com/pages
https://youtu.be/TWqh9MtT4Bg
https://gitlab.com/pages
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_two.html#urls-and-baseurls
https://about.gitlab.com/2016/12/01/how-to-keep-your-fork-up-to-date-with-its-origin/#fork
https://docs.gitlab.com/ce/user/project/pages/img/remove_fork_relashionship.png

Create a project from scratch

1. From your Project's Dashboard, click New project, and name it considering

the practical examples.

2. Clone it to your local computer, add your website files to your project, add, commit and

push to GitLab.

3. From the your Project's page, click Set up CI:

4. Choose one of the templates from the dropbox menu. Pick up the template

corresponding to the SSG you're using (or plain HTML).

Once you have both site files and .gitlab-ci.yml in your project's root, GitLab CI will

build your site and deploy it with Pages. Once the first build passes, you see your site is

live by navigating to your Project's Settings > Pages, where you'll find its default URL.

Notes:

 GitLab Pages supports any SSG, but, if you don't find yours among the

templates, you'll need to configure your own .gitlab-ci.yml. Do do that, please

read through the article Creating and Tweaking .gitlab-ci.yml for GitLab Pages.

New SSGs are very welcome among the example projects. If you set up a new

one, please contribute to our examples.

 The second step "Clone it to your local computer", can be done differently,

achieving the same results: instead of cloning the bare repository to you local

computer and moving your site files into it, you can run git init in your local

website directory, add the remote URL: git remote add origin

git@gitlab.com:namespace/project-name.git, then add, commit, and push.

https://gitlab.com/dashboard/projects
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_one.html#practical-examples
https://about.gitlab.com/2016/06/17/ssg-overview-gitlab-pages-part-3-examples-ci/
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_four.html
https://gitlab.com/pages
https://gitlab.com/pages/pages.gitlab.io/blob/master/CONTRIBUTING.md
https://docs.gitlab.com/ce/user/project/pages/img/setup_ci.png
https://docs.gitlab.com/ce/user/project/pages/img/choose_ci_template.png

URLs and Baseurls

Every Static Site Generator (SSG) default configuration expects to find your website

under a (sub)domain (example.com), not in a subdirectory of that domain

(example.com/subdir). Therefore, whenever you publish a project website

(namespace.gitlab.io/project-name), you'll have to look for this configuration (base URL)

on your SSG's documentation and set it up to reflect this pattern.

For example, for a Jekyll site, the baseurl is defined in the Jekyll configuration

file, _config.yml. If your website URL ishttps://john.gitlab.io/blog/, you need to add

this line to _config.yml:

baseurl: "/blog"

On the contrary, if you deploy your website after forking one of our default examples, the

baseurl will already be configured this way, as all examples there are project websites. If

you decide to make yours a user or group website, you'll have to remove this

configuration from your project. For the Jekyll example we've just mentioned, you'd have

to change Jekyll's _config.yml to:

baseurl: ""

Custom Domains

GitLab Pages supports custom domains and subdomains, served under HTTPS or

HTTPS. Please check the next part of this series for an overview.

https://gitlab.com/pages
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_three.html

GitLab Pages from A to Z: Part 3

Article Type: user guide || Level: beginner || Author: Marcia Ramos || Publication

date: 2017-02-22 || Last updated: 2017-09-28

 Part 1: Static sites and GitLab Pages domains

 Part 2: Quick start guide - Setting up GitLab Pages

 Part 3: Setting Up Custom Domains - DNS Records and SSL/TLS Certificates

 Part 4: Creating and tweaking .gitlab-ci.yml for GitLab Pages

Setting Up Custom Domains - DNS Records

and SSL/TLS Certificates

As described in the previous part of this series, setting up GitLab Pages with custom

domains, and adding SSL/TLS certificates to them, are optional features of GitLab

Pages.

These steps assume you've already set your site up and and it's served under the

default Pages domain namespace.gitlab.io, or namespace.gitlab.io/project-name.

Adding your custom domain to GitLab Pages

To use one or more custom domain with your Pages site, there are two things you

should consider first, which we'll cover in this guide:

1. Either if you're adding a root domain or a subdomain, for which you'll need to set

up DNS records

2. Whether you want to add an SSL/TLS certificate or not

To finish the association, you need to add your domain to your project's Pages settings.

Let's start from the beginning with DNS records. If you already know how they work and

want to skip the introduction to DNS, you may be interested in skipping it until

the TL;DR section below.

https://docs.gitlab.com/ce/development/writing_documentation.html#types-of-technical-articles
https://gitlab.com/marcia
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_one.html
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_two.html
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_four.html
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_two.html
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_three.html#dns-records
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_three.html#ssl-tls-certificates
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_three.html#add-your-custom-domain-to-gitlab-pages-settings
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_three.html#dns-records
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_three.html#tl-dr

DNS Records

A Domain Name System (DNS) web service routes visitors to websites by translating

domain names (such as www.example.com) into the numeric IP addresses (such

as 192.0.2.1) that computers use to connect to each other.

A DNS record is created to point a (sub)domain to a certain location, which can be an IP

address or another domain. In case you want to use GitLab Pages with your own

(sub)domain, you need to access your domain's registrar control panel to add a DNS

record pointing it back to your GitLab Pages site.

Note that how to add DNS records depends on which server your domain is hosted on.

Every control panel has its own place to do it. If you are not an admin of your domain,

and don't have access to your registrar, you'll need to ask for the technical support of

your hosting service to do it for you.

To help you out, we've gathered some instructions on how to do that for the most

popular hosting services:

 Amazon

 Bluehost

 CloudFlare

 cPanel

 DreamHost

 Go Daddy

 Hostgator

 Inmotion hosting

 Media Temple

 Microsoft

If your hosting service is not listed above, you can just try to search the web for "how to

add dns record on ".

DNS A record

In case you want to point a root domain (example.com) to your GitLab Pages site,

deployed to namespace.gitlab.io, you need to log into your domain's admin control

panel and add a DNS A record pointing your domain to Pages' server IP address. For

projects on GitLab.com, this IP is 52.167.214.135. For projects leaving in other GitLab

instances (CE or EE), please contact your sysadmin asking for this information (which IP

address is Pages server running on your instance).

http://docs.aws.amazon.com/gettingstarted/latest/swh/getting-started-configure-route53.html
https://my.bluehost.com/cgi/help/559
https://support.cloudflare.com/hc/en-us/articles/200169096-How-do-I-add-A-records-
https://documentation.cpanel.net/display/ALD/Edit+DNS+Zone
https://help.dreamhost.com/hc/en-us/articles/215414867-How-do-I-add-custom-DNS-records-
https://www.godaddy.com/help/add-an-a-record-19238
http://support.hostgator.com/articles/changing-dns-records
https://my.bluehost.com/cgi/help/559
https://mediatemple.net/community/products/dv/204403794/how-can-i-change-the-dns-records-for-my-domain
https://msdn.microsoft.com/en-us/library/bb727018.aspx

Practical Example:

DNS CNAME record

In case you want to point a subdomain (hello-world.example.com) to your GitLab Pages

site initially deployed to namespace.gitlab.io, you need to log into your domain's admin

control panel and add a DNS CNAME record pointing your subdomain to your website URL

(namespace.gitlab.io) address.

Notice that, despite it's a user or project website, the CNAME should point to your Pages

domain (namespace.gitlab.io), without any /project-name.

Practical Example:

TL;DR

From DNS Record To

domain.com A 52.167.214.135

subdomain.domain.com CNAME namespace.gitlab.io

Notes:

 Do not use a CNAME record if you want to point your domain.com to your GitLab

Pages site. Use an A record instead.

 Do not add any special chars after the default Pages domain. E.g., do not point

your subdomain.domain.com to namespace.gitlab.io. or namespace.gitlab.io/.

 GitLab Pages IP on GitLab.com has been

changed from 104.208.235.32 to 52.167.214.135.

https://about.gitlab.com/2017/03/06/we-are-changing-the-ip-of-gitlab-pages-on-gitlab-com/
https://about.gitlab.com/2017/03/06/we-are-changing-the-ip-of-gitlab-pages-on-gitlab-com/
https://docs.gitlab.com/ce/user/project/pages/img/dns_add_new_a_record_example_updated.png
https://docs.gitlab.com/ce/user/project/pages/img/dns_cname_record_example.png

Add your custom domain to GitLab Pages settings

Once you've set the DNS record, you'll need navigate to your project's Setting >

Pages and click + New domain to add your custom domain to GitLab Pages. You can

choose whether to add an SSL/TLS certificate to make your website accessible under

HTTPS or leave it blank. If don't add a certificate, your site will be accessible only via

HTTP:

You can add more than one alias (custom domains and subdomains) to the same

project. An alias can be understood as having many doors leading to the same room.

All the aliases you've set to your site will be listed on Setting > Pages. From that page,

you can view, add, and remove them.

Note that DNS propagation may take some time (up to 24h), although it's usually a

matter of minutes to complete. Until it does, visit attempts to your domain will respond

with a 404.

Read through the general documentation on GitLab Pages to learn more about adding

custom domains to GitLab Pages sites.

SSL/TLS Certificates

Every GitLab Pages project on GitLab.com will be available under HTTPS for the default

Pages domain (*.gitlab.io). Once you set up your Pages project with your custom

(sub)domain, if you want it secured by HTTPS, you will have to issue a certificate for that

(sub)domain and install it on your project.

Note: Certificates are NOT required to add to your custom (sub)domain on your GitLab

Pages project, though they are highly recommendable.

https://docs.gitlab.com/ce/user/project/pages/getting_started_part_three.html#ssl-tls-certificates
http://www.inmotionhosting.com/support/domain-names/dns-nameserver-changes/domain-names-dns-changes
https://docs.gitlab.com/ce/user/project/pages/introduction.html#add-a-custom-domain-to-your-pages-website
https://docs.gitlab.com/ce/user/project/pages/img/add_certificate_to_pages.png

The importance of having any website securely served under HTTPS is explained on the

introductory section of the blog post Secure GitLab Pages with StartSSL.

The reason why certificates are so important is that they encrypt the connection between

the client (you, me, your visitors) and the server (where you site lives), through a

keychain of authentications and validations.

Issuing Certificates

GitLab Pages accepts PEM certificates issued by Certificate Authorities (CA) and self-

signed certificates. Of course, you'd rather issue a certificate than generate a self-

signed, for security reasons and for having browsers trusting your site's certificate.

There are several different kinds of certificates, each one with certain security level. A

static personal website will not require the same security level as an online banking web

app, for instance. There are a couple Certificate Authorities that offer free certificates,

aiming to make the internet more secure to everyone. The most popular is Let's Encrypt,

which issues certificates trusted by most of browsers, it's open source, and free to use.

Please read through this tutorial to understand how to secure your GitLab Pages

website with Let's Encrypt.

With the same popularity, there are certificates issued by CloudFlare, which also offers

a free CDN service. Their certs are valid up to 15 years. Read through the tutorial

on how to add a CloudFlare Certificate to your GitLab Pages website.

Adding certificates to your project

Regardless the CA you choose, the steps to add your certificate to your Pages project

are the same.

What do you need

1. A PEM certificate

2. An intermediate certificate

3. A public key

https://about.gitlab.com/2016/06/24/secure-gitlab-pages-with-startssl/#https-a-quick-overview
https://support.quovadisglobal.com/kb/a37/what-is-pem-format.aspx
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Self-signed_certificate
https://en.wikipedia.org/wiki/Self-signed_certificate
https://letsencrypt.org/
https://about.gitlab.com/2016/04/11/tutorial-securing-your-gitlab-pages-with-tls-and-letsencrypt/
https://about.gitlab.com/2016/04/11/tutorial-securing-your-gitlab-pages-with-tls-and-letsencrypt/
https://www.cloudflare.com/ssl/
https://blog.cloudflare.com/cloudflares-free-cdn-and-you/
https://about.gitlab.com/2017/02/07/setting-up-gitlab-pages-with-cloudflare-certificates/

These fields are found under your Project's Settings > Pages > New Domain.

What's what?

 A PEM certificate is the certificate generated by the CA, which needs to be added to the

field Certificate (PEM).

 An intermediate certificate (aka "root certificate") is the part of the encryption keychain

that identifies the CA. Usually it's combined with the PEM certificate, but there are some

cases in which you need to add them manually. CloudFlare certs are one of these

cases.

 A public key is an encrypted key which validates your PEM against your domain.

Now what?

Now that you hopefully understand why you need all of this, it's simple:

 Your PEM certificate needs to be added to the first field

 If your certificate is missing its intermediate, copy and paste the root certificate (usually

available from your CA website) and paste it in the same field as your PEM certificate,

just jumping a line between them.

 Copy your public key and paste it in the last field

Note: Do not open certificates or encryption keys in regular text editors. Always use

code editors (such as Sublime Text, Atom, Dreamweaver, Brackets, etc).

https://en.wikipedia.org/wiki/Intermediate_certificate_authority
https://about.gitlab.com/2017/02/07/setting-up-gitlab-pages-with-cloudflare-certificates/
https://about.gitlab.com/2017/02/07/setting-up-gitlab-pages-with-cloudflare-certificates/
https://docs.gitlab.com/ce/user/project/pages/img/add_certificate_to_pages.png

GitLab Pages from A to Z: Part 4

Article Type: user guide || Level: intermediate || Author: Marcia Ramos || Publication

date: 2017/02/22

 Part 1: Static sites and GitLab Pages domains

 Part 2: Quick start guide - Setting up GitLab Pages

 Part 3: Setting Up Custom Domains - DNS Records and SSL/TLS Certificates

 Part 4: Creating and tweaking .gitlab-ci.yml for GitLab Pages

Creating and Tweaking .gitlab-ci.yml for

GitLab Pages

GitLab CI serves numerous purposes, to build, test, and deploy your app from GitLab

through Continuous Integration, Continuous Delivery, and Continuous

Deployment methods. You will need it to build your website with GitLab Pages, and

deploy it to the Pages server.

What this file actually does is telling the GitLab Runner to run scripts as you would do

from the command line. The Runner acts as your terminal. GitLab CI tells the Runner

which commands to run. Both are built-in in GitLab, and you don't need to set up

anything for them to work.

Explaining every detail of GitLab CI and GitLab Runner is out of the scope of this guide,

but we'll need to understand just a few things to be able to write our own .gitlab-

ci.yml or tweak an existing one. It's an Yaml file, with its own syntax. You can always

check your CI syntax with the GitLab CI Lint Tool.

Practical Example:

Let's consider you have a Jekyll site. To build it locally, you would open your terminal,

and run jekyll build. Of course, before building it, you had to install Jekyll in your

computer. For that, you had to open your terminal and run gem install jekyll. Right?

GitLab CI + GitLab Runner do the same thing. But you need to write in the .gitlab-

ci.yml the script you want to run so GitLab Runner will do it for you. It looks more

complicated then it is. What you need to tell the Runner:

$ gem install jekyll

$ jekyll build

https://docs.gitlab.com/ce/development/writing_documentation.html#types-of-technical-articles
https://gitlab.com/marcia
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_one.html
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_two.html
https://docs.gitlab.com/ce/user/project/pages/getting_started_part_three.html
https://about.gitlab.com/gitlab-ci/
https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/
https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/
https://docs.gitlab.com/runner/
https://docs.gitlab.com/ce/ci/yaml/README.html
http://docs.ansible.com/ansible/YAMLSyntax.html
https://gitlab.com/ci/lint
https://jekyllrb.com/

Script

To transpose this script to Yaml, it would be like this:

script:

 - gem install jekyll

 - jekyll build

Job

So far so good. Now, each script, in GitLab is organized by a job, which is a bunch of

scripts and settings you want to apply to that specific task.

job:

 script:

 - gem install jekyll

 - jekyll build

For GitLab Pages, this job has a specific name, called pages, which tells the Runner you

want that task to deploy your website with GitLab Pages:

pages:

 script:

 - gem install jekyll

 - jekyll build

The public directory

We also need to tell Jekyll where do you want the website to build, and GitLab Pages

will only consider files in a directory called public. To do that with Jekyll, we need to add

a flag specifying the destination (-d) of the built website: jekyll build -d public. Of

course, we need to tell this to our Runner:

pages:

 script:

https://jekyllrb.com/docs/usage/

 - gem install jekyll

 - jekyll build -d public

Artifacts

We also need to tell the Runner that this job generates artifacts, which is the site built by

Jekyll. Where are these artifacts stored? In the public directory:

pages:

 script:

 - gem install jekyll

 - jekyll build -d public

 artifacts:

 paths:

 - public

The script above would be enough to build your Jekyll site with GitLab Pages. But, from

Jekyll 3.4.0 on, its default template originated by jekyll new project requires Bundler to

install Jekyll dependencies and the default theme. To adjust our script to meet these

new requirements, we only need to install and build Jekyll with Bundler:

pages:

 script:

 - bundle install

 - bundle exec jekyll build -d public

 artifacts:

 paths:

 - public

That's it! A .gitlab-ci.yml with the content above would deploy your Jekyll 3.4.0 site

with GitLab Pages. This is the minimum configuration for our example. On the steps

below, we'll refine the script by adding extra options to our GitLab CI.

http://bundler.io/

Artifacts will be automatically deleted once GitLab Pages got deployed. You can

preserve artifacts for limited time by specifying the expiry time.

Image

At this point, you probably ask yourself: "okay, but to install Jekyll I need Ruby. Where is

Ruby on that script?". The answer is simple: the first thing GitLab Runner will look for in

your .gitlab-ci.yml is a Docker image specifying what do you need in your container to

run that script:

image: ruby:2.3

pages:

 script:

 - bundle install

 - bundle exec jekyll build -d public

 artifacts:

 paths:

 - public

In this case, you're telling the Runner to pull this image, which contains Ruby 2.3 as part

of its file system. When you don't specify this image in your configuration, the Runner

will use a default image, which is Ruby 2.1.

If your SSG needs NodeJS to build, you'll need to specify which image you want to use,

and this image should contain NodeJS as part of its file system. E.g., for a Hexo site,

you can use image: node:4.2.2.

Note: We're not trying to explain what a Docker image is, we just need to introduce the

concept with a minimum viable explanation. To know more about Docker images, please

visit their website or take a look at a summarized explanation here.

Let's go a little further.

https://www.docker.com/
https://nodejs.org/
https://gitlab.com/pages/hexo
http://paislee.io/how-to-automate-docker-deployments/

Branching

If you use GitLab as a version control platform, you will have your branching strategy to

work on your project. Meaning, you will have other branches in your project, but you'll

want only pushes to the default branch (usually master) to be deployed to your website.

To do that, we need to add another line to our CI, telling the Runner to only perform

that job called pages on the master branch only:

image: ruby:2.3

pages:

 script:

 - bundle install

 - bundle exec jekyll build -d public

 artifacts:

 paths:

 - public

 only:

 - master

Stages

Another interesting concept to keep in mind are build stages. Your web app can pass

through a lot of tests and other tasks until it's deployed to staging or production

environments. There are three default stages on GitLab CI: build, test, and deploy. To

specify which stage your job is running, simply add another line to your CI:

image: ruby:2.3

pages:

 stage: deploy

 script:

 - bundle install

 - bundle exec jekyll build -d public

 artifacts:

 paths:

 - public

 only:

 - master

You might ask yourself: "why should I bother with stages at all?" Well, let's say you want

to be able to test your script and check the built site before deploying your site to

production. You want to run the test exactly as your script will do when you push

to master. It's simple, let's add another task (job) to our CI, telling it to test every push to

other branches, except the master branch:

image: ruby:2.3

pages:

 stage: deploy

 script:

 - bundle install

 - bundle exec jekyll build -d public

 artifacts:

 paths:

 - public

 only:

 - master

test:

 stage: test

 script:

 - bundle install

 - bundle exec jekyll build -d test

 artifacts:

 paths:

 - test

 except:

 - master

The test job is running on the stage test, Jekyll will build the site in a directory

called test, and this job will affect all the branches except master.

The best benefit of applying stages to different jobs is that every job in the same stage

builds in parallel. So, if your web app needs more than one test before being deployed,

you can run all your test at the same time, it's not necessary to wait one test to finish to

run the other. Of course, this is just a brief introduction of GitLab CI and GitLab Runner,

which are tools much more powerful than that. This is what you need to be able to

create and tweak your builds for your GitLab Pages site.

Before Script

To avoid running the same script multiple times across your jobs, you can add the

parameter before_script, in which you specify which commands you want to run for

every single job. In our example, notice that we run bundle install for both

jobs, pages and test. We don't need to repeat it:

image: ruby:2.3

before_script:

 - bundle install

pages:

 stage: deploy

 script:

 - bundle exec jekyll build -d public

 artifacts:

 paths:

 - public

 only:

 - master

test:

 stage: test

 script:

 - bundle exec jekyll build -d test

 artifacts:

 paths:

 - test

 except:

 - master

Caching Dependencies

If you want to cache the installation files for your projects dependencies, for building

faster, you can use the parameter cache. For this example, we'll cache Jekyll

dependencies in a vendor directory when we run bundle install:

image: ruby:2.3

cache:

 paths:

 - vendor/

before_script:

 - bundle install --path vendor

pages:

 stage: deploy

 script:

 - bundle exec jekyll build -d public

 artifacts:

 paths:

 - public

 only:

 - master

test:

 stage: test

 script:

 - bundle exec jekyll build -d test

 artifacts:

 paths:

 - test

 except:

 - master

For this specific case, we need to exclude /vendor from Jekyll _config.yml file, otherwise

Jekyll will understand it as a regular directory to build together with the site:

exclude:

 - vendor

There we go! Now our GitLab CI not only builds our website, but also continuously

test pushes to feature-branches, caches dependencies installed with Bundler,

and continuously deploy every push to the master branch.

Advanced GitLab CI for GitLab Pages

What you can do with GitLab CI is pretty much up to your creativity. Once you get used

to it, you start creating awesome scripts that automate most of tasks you'd do manually

in the past. Read through the documentation of GitLab CI to understand how to go even

further on your scripts.

 On this blog post, understand the concept of using GitLab CI environments to deploy

your web app to staging and production.

 On this post, learn how to run jobs sequentially, in parallel, or build a custom pipeline

 On this blog post, we go through the process of pulling specific directories from different

projects to deploy this website you're looking at, docs.gitlab.com.

 On this blog post, we teach you how to use GitLab Pages to produce a code coverage

report.

https://docs.gitlab.com/ce/ci/yaml/README.html
https://about.gitlab.com/2016/08/26/ci-deployment-and-environments/
https://about.gitlab.com/2016/08/26/ci-deployment-and-environments/
https://about.gitlab.com/2016/07/29/the-basics-of-gitlab-ci/
https://about.gitlab.com/2016/12/07/building-a-new-gitlab-docs-site-with-nanoc-gitlab-ci-and-gitlab-pages/
https://about.gitlab.com/2016/12/07/building-a-new-gitlab-docs-site-with-nanoc-gitlab-ci-and-gitlab-pages/
https://about.gitlab.com/2016/11/03/publish-code-coverage-report-with-gitlab-pages/
https://about.gitlab.com/2016/11/03/publish-code-coverage-report-with-gitlab-pages/

GitLab API

Automate GitLab via a simple and powerful API. All definitions can be found

under /lib/api.

Resources

Documentation for various API resources can be found separately in the following

locations:

 Award Emoji

 Branches

 Broadcast Messages

 Project-level Variables

 Group-level Variables

 Commits

 Custom Attributes

 Deployments

 Deploy Keys

 Environments

 Events

 Feature flags

 Gitignores templates

 GitLab CI Config templates

 Groups

 Group Access Requests

 Group Members

 Issues

 Issue Boards

 Jobs

 Keys

 Labels

 Merge Requests

 Project milestones

 Group milestones

 Namespaces

 Notes (comments)

 Notification settings

 Open source license templates

 Pipelines

https://gitlab.com/gitlab-org/gitlab-ce/tree/master/lib/api
https://docs.gitlab.com/ce/api/award_emoji.html
https://docs.gitlab.com/ce/api/branches.html
https://docs.gitlab.com/ce/api/broadcast_messages.html
https://docs.gitlab.com/ce/api/project_level_variables.html
https://docs.gitlab.com/ce/api/group_level_variables.html
https://docs.gitlab.com/ce/api/commits.html
https://docs.gitlab.com/ce/api/custom_attributes.html
https://docs.gitlab.com/ce/api/deployments.html
https://docs.gitlab.com/ce/api/deploy_keys.html
https://docs.gitlab.com/ce/api/environments.html
https://docs.gitlab.com/ce/api/events.html
https://docs.gitlab.com/ce/api/features.html
https://docs.gitlab.com/ce/api/templates/gitignores.html
https://docs.gitlab.com/ce/api/templates/gitlab_ci_ymls.html
https://docs.gitlab.com/ce/api/groups.html
https://docs.gitlab.com/ce/api/access_requests.html
https://docs.gitlab.com/ce/api/members.html
https://docs.gitlab.com/ce/api/issues.html
https://docs.gitlab.com/ce/api/boards.html
https://docs.gitlab.com/ce/api/jobs.html
https://docs.gitlab.com/ce/api/keys.html
https://docs.gitlab.com/ce/api/labels.html
https://docs.gitlab.com/ce/api/merge_requests.html
https://docs.gitlab.com/ce/api/milestones.html
https://docs.gitlab.com/ce/api/group_milestones.html
https://docs.gitlab.com/ce/api/namespaces.html
https://docs.gitlab.com/ce/api/notes.html
https://docs.gitlab.com/ce/api/notification_settings.html
https://docs.gitlab.com/ce/api/templates/licenses.html
https://docs.gitlab.com/ce/api/pipelines.html

 Pipeline Triggers

 Pipeline Schedules

 Projects including setting Webhooks

 Project Access Requests

 Project Members

 Project Snippets

 Protected Branches

 Repositories

 Repository Files

 Runners

 Services

 Session

 Settings

 Sidekiq metrics

 System Hooks

 Tags

 Todos

 Users

 Validate CI configuration

 V3 to V4

 Version

 Wikis

Road to GraphQL

We have changed our plans to move to GraphQL. After reviewing the GraphQL license,

anything related to the Facebook BSD plus patent license will not be allowed at GitLab.

Basic usage

API requests should be prefixed with api and the API version. The API version is defined

in lib/api.rb. For example, the root of the v4 API is at /api/v4.

For endpoints that require authentication, you need to pass a private_token parameter

via query string or header. If passed as a header, the header name must be PRIVATE-

TOKEN (uppercase and with a dash instead of an underscore).

Example of a valid API request:

GET /projects?private_token=9koXpg98eAheJpvBs5tK

https://docs.gitlab.com/ce/api/pipeline_triggers.html
https://docs.gitlab.com/ce/api/pipeline_schedules.html
https://docs.gitlab.com/ce/api/projects.html
https://docs.gitlab.com/ce/api/access_requests.html
https://docs.gitlab.com/ce/api/members.html
https://docs.gitlab.com/ce/api/project_snippets.html
https://docs.gitlab.com/ce/api/protected_branches.html
https://docs.gitlab.com/ce/api/repositories.html
https://docs.gitlab.com/ce/api/repository_files.html
https://docs.gitlab.com/ce/api/runners.html
https://docs.gitlab.com/ce/api/services.html
https://docs.gitlab.com/ce/api/session.html
https://docs.gitlab.com/ce/api/settings.html
https://docs.gitlab.com/ce/api/sidekiq_metrics.html
https://docs.gitlab.com/ce/api/system_hooks.html
https://docs.gitlab.com/ce/api/tags.html
https://docs.gitlab.com/ce/api/todos.html
https://docs.gitlab.com/ce/api/users.html
https://docs.gitlab.com/ce/api/lint.html
https://docs.gitlab.com/ce/api/v3_to_v4.html
https://docs.gitlab.com/ce/api/version.html
https://docs.gitlab.com/ce/api/wikis.html
https://gitlab.com/gitlab-org/gitlab-ce/tree/master/lib/api/api.rb
https://docs.gitlab.com/ce/api/README.html#authentication

Example of a valid API request using cURL and authentication via header:

curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK"
"https://gitlab.example.com/api/v4/projects"

Example of a valid API request using cURL and authentication via a query string:

curl
"https://gitlab.example.com/api/v4/projects?private_token=9koXpg98eAheJpvBs5tK"

The API uses JSON to serialize data. You don't need to specify .json at the end of an

API URL.

Authentication

Most API requests require authentication via a session cookie or token. For those cases

where it is not required, this will be mentioned in the documentation for each individual

endpoint. For example, the /projects/:id endpoint.

There are three types of access tokens available:

1. OAuth2 tokens

2. Private tokens

3. Personal access tokens

If authentication information is invalid or omitted, an error message will be returned with

status code 401:

{

 "message": "401 Unauthorized"

}

Session cookie

When signing in to GitLab as an ordinary user, a _gitlab_session cookie is set. The API

will use this cookie for authentication if it is present, but using the API to generate a new

session cookie is currently not supported.

https://docs.gitlab.com/ce/api/projects.html
https://docs.gitlab.com/ce/api/README.html#oauth2-tokens
https://docs.gitlab.com/ce/api/README.html#private-tokens
https://docs.gitlab.com/ce/api/README.html#personal-access-tokens

OAuth2 tokens

You can use an OAuth 2 token to authenticate with the API by passing it either in

the access_token parameter or in the Authorization header.

Example of using the OAuth2 token in the header:

curl --header "Authorization: Bearer OAUTH-TOKEN"
https://gitlab.example.com/api/v4/projects

Read more about GitLab as an OAuth2 client.

Private tokens

Private tokens provide full access to the GitLab API. Anyone with access to them can

interact with GitLab as if they were you. You can find or reset your private token in your

account page (/profile/account).

For examples of usage, read the basic usage section.

Personal access tokens

Instead of using your private token which grants full access to your account, personal

access tokens could be a better fit because of their granular permissions.

Once you have your token, pass it to the API using either the private_token parameter

or the PRIVATE-TOKEN header. For examples of usage, read the basic usage section.

Read more about personal access tokens.

Impersonation tokens

Introduced in GitLab 9.0. Needs admin permissions.

Impersonation tokens are a type of personal access token that can only be created by

an admin for a specific user.

They are a better alternative to using the user's password/private token or using

the Sudo feature which also requires the admin's password or private token, since the

password/token can change over time. Impersonation tokens are a great fit if you want

to build applications or tools which authenticate with the API as a specific user.

https://docs.gitlab.com/ce/api/oauth2.html
https://docs.gitlab.com/ce/api/README.html#basic-usage
https://docs.gitlab.com/ce/api/README.html#basic-usage
https://docs.gitlab.com/ce/user/profile/personal_access_tokens.html
https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/9099
https://docs.gitlab.com/ce/user/profile/personal_access_tokens.html
https://docs.gitlab.com/ce/api/README.html#sudo

For more information, refer to the users API docs.

For examples of usage, read the basic usage section.

Sudo

Needs admin permissions.

All API requests support performing an API call as if you were another user, provided

your private token is from an administrator account. You need to pass

the sudo parameter either via query string or a header with an ID/username of the user

you want to perform the operation as. If passed as a header, the header name must

be SUDO (uppercase).

If a non administrative private_token is provided, then an error message will be returned

with status code 403:

{

 "message": "403 Forbidden - Must be admin to use sudo"

}

If the sudo user ID or username cannot be found, an error message will be returned with

status code 404:

{

 "message": "404 Not Found: No user id or username for: <id/username>"

}

Example of a valid API call and a request using cURL with sudo request, providing a

username:

GET /projects?private_token=9koXpg98eAheJpvBs5tK&sudo=username

curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --header "SUDO: username"
"https://gitlab.example.com/api/v4/projects"

Example of a valid API call and a request using cURL with sudo request, providing an

ID:

GET /projects?private_token=9koXpg98eAheJpvBs5tK&sudo=23

https://docs.gitlab.com/ce/api/users.html#retrieve-user-impersonation-tokens
https://docs.gitlab.com/ce/api/README.html#basic-usage

curl --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" --header "SUDO: 23"
"https://gitlab.example.com/api/v4/projects"

Status codes

The API is designed to return different status codes according to context and action.

This way, if a request results in an error, the caller is able to get insight into what went

wrong.

The following table gives an overview of how the API functions generally behave.

Request

type
Description

GET Access one or more resources and return the result as JSON.

POST
Return 201 Created if the resource is successfully created and return the

newly created resource as JSON.

GET / PUT
Return 200 OK if the resource is accessed or modified successfully. The

(modified) result is returned as JSON.

DELETE Returns 204 No Content if the resuource was deleted successfully.

The following table shows the possible return codes for API requests.

Return values Description

200 OK
The GET, PUT or DELETE request was successful, the resource(s) itself

is returned as JSON.

204 No Content
The server has successfully fulfilled the request and that there is no

additional content to send in the response payload body.

201 Created
The POST request was successful and the resource is returned as

JSON.

304 Not Indicates that the resource has not been modified since the last

Return values Description

Modified request.

400 Bad Request
A required attribute of the API request is missing, e.g., the title of an

issue is not given.

401

Unauthorized
The user is not authenticated, a valid user token is necessary.

403 Forbidden
The request is not allowed, e.g., the user is not allowed to delete a

project.

404 Not Found
A resource could not be accessed, e.g., an ID for a resource could

not be found.

405 Method Not

Allowed
The request is not supported.

409 Conflict
A conflicting resource already exists, e.g., creating a project with a

name that already exists.

412

Indicates the request was denied. May happen if the If-Unmodified-

Since header is provided when trying to delete a resource, which

was modified in between.

422

Unprocessable
The entity could not be processed.

500 Server

Error
While handling the request something went wrong server-side.

Pagination

Sometimes the returned result will span across many pages. When listing resources you

can pass the following parameters:

https://docs.gitlab.com/ce/api/README.html#authentication

Parameter Description

page Page number (default: 1)

per_page Number of items to list per page (default: 20, max: 100)

In the example below, we list 50 namespaces per page.

curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK"
"https://gitlab.example.com/api/v4/namespaces?per_page=50

Pagination Link header

Link headers are sent back with each response. They have rel set to prev/next/first/last

and contain the relevant URL. Please use these links instead of generating your own

URLs.

In the cURL example below, we limit the output to 3 items per page (per_page=3) and we

request the second page (page=2) of comments of the issue with ID 8 which belongs to

the project with ID 8:

curl --head --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK"
https://gitlab.example.com/api/v4/projects/8/issues/8/notes?per_page=3&page=2

The response will then be:

HTTP/1.1 200 OK

Cache-Control: no-cache

Content-Length: 1103

Content-Type: application/json

Date: Mon, 18 Jan 2016 09:43:18 GMT

Link:
<https://gitlab.example.com/api/v4/projects/8/issues/8/notes?page=1&per_page=3>;
rel="prev",
<https://gitlab.example.com/api/v4/projects/8/issues/8/notes?page=3&per_page=3>;
rel="next",
<https://gitlab.example.com/api/v4/projects/8/issues/8/notes?page=1&per_page=3>;
rel="first",
<https://gitlab.example.com/api/v4/projects/8/issues/8/notes?page=3&per_page=3>;
rel="last"

https://docs.gitlab.com/ce/api/namespaces.html
http://www.w3.org/wiki/LinkHeader
https://docs.gitlab.com/ce/api/notes.html

Status: 200 OK

Vary: Origin

X-Next-Page: 3

X-Page: 2

X-Per-Page: 3

X-Prev-Page: 1

X-Request-Id: 732ad4ee-9870-4866-a199-a9db0cde3c86

X-Runtime: 0.108688

X-Total: 8

X-Total-Pages: 3

Other pagination headers

Additional pagination headers are also sent back.

Header Description

X-Total The total number of items

X-Total-Pages The total number of pages

X-Per-Page The number of items per page

X-Page The index of the current page (starting at 1)

X-Next-Page The index of the next page

X-Prev-Page The index of the previous page

Namespaced path encoding

If using namespaced API calls, make sure that the NAMESPACE/PROJECT_NAME is URL-

encoded.

For example, / is represented by %2F:

GET /api/v4/projects/diaspora%2Fdiaspora

Branches & tags name encoding

If your branch or tag contains a /, make sure the branch/tag name is URL-encoded.

For example, / is represented by %2F:

GET /api/v4/projects/1/branches/my%2Fbranch/commits

id vs iid

When you work with the API, you may notice two similar fields in API entities: id and iid.

The main difference between them is scope.

For example, an issue might have id: 46 and iid: 5.

Parameter Description

id Is unique across all issues and is used for any API call

iid Is unique only in scope of a single project. When you browse issues or merge requests with the Web UI, you see the iid

That means that if you want to get an issue via the API you should use the id:

GET /projects/42/issues/:id

On the other hand, if you want to create a link to a web page you should use the iid:

GET /projects/42/issues/:iid

Data validation and error reporting

When working with the API you may encounter validation errors, in which case the API

will answer with an HTTP 400 status.

Such errors appear in two cases:

 A required attribute of the API request is missing, e.g., the title of an issue is not given

 An attribute did not pass the validation, e.g., user bio is too long

When an attribute is missing, you will get something like:

HTTP/1.1 400 Bad Request

Content-Type: application/json

{

 "message":"400 (Bad request) \"title\" not given"

}

When a validation error occurs, error messages will be different. They will hold all details

of validation errors:

HTTP/1.1 400 Bad Request

Content-Type: application/json

{

 "message": {

 "bio": [

 "is too long (maximum is 255 characters)"

]

 }

}

This makes error messages more machine-readable. The format can be described as

follows:

{

 "message": {

 "<property-name>": [

 "<error-message>",

 "<error-message>",

 ...

],

 "<embed-entity>": {

 "<property-name>": [

 "<error-message>",

 "<error-message>",

 ...

],

 }

 }

}

Unknown route

When you try to access an API URL that does not exist you will receive 404 Not Found.

HTTP/1.1 404 Not Found

Content-Type: application/json

{

 "error": "404 Not Found"

}

Clients

There are many unofficial GitLab API Clients for most of the popular programming

languages. Visit the GitLab website for a complete list.

https://about.gitlab.com/applications/#api-clients

