
MACRO PROGRAMMING GUIDE

Contents

Corel DESIGNER Technical Suite X5 Macro Programming Guide i

Introduction . 1
About this documentation . 1
About additional resources . 3
About Corel . 4

Understanding automation . 5
What is automation? . 5
Which automation environments are supported? . 6

What is VBA?. .7
What is VSTA? .10

What are the main elements of automation? . 11
What is an object model? .11
What is a class? .12
What is a collection? .12
What is a property?. .13
What is a method? .13
What is an event? .13
What is an enumeration? .13
What is a constant?. .14

How is automation coding structured? . 14
How are variables declared? .14
How are functions and subroutines built?. .16
How are lines ended? .16
How are comments included?. .17
How are memory pointers used, and how is memory allocated? .17
How is scope defined? .18
How are Boolean comparisons and assignments used? .18
How are logical and bitwise operators used? .19
How are message boxes and input boxes provided? .19
How are objects referenced?. .20
How are collections referenced? .20
How are object shortcuts used? .22
How are event handlers provided? .23

Getting started with macros . 26
Setting up the automation feature . 26

To install the VBA and VSTA features .26
To specify VBA options .27

Using the Macros toolbars . 27
Using the Macro Manager docker . 28
Using the Add-in Manager . 29

Contents ii

Using the Macro Editor . 30
Using the Project Explorer .31
Using the Code window .32
Using the Properties window .36
Using the Macro Editor toolbars .36
Using the Object Browser .37

Using the VSTA Editor . 42

Creating macros . 44
Creating macro projects . 44

To create a macro project .45
To add a dialog box to a macro project. .46
To add a code module to a macro project. .46
To add a class module to a macro project .47

Writing macros . 47
To add a macro to a macro project .47
To edit a VBA macro .48
To delete a VBA macro .48

Recording macros . 48
To record and save a macro .49
To record a temporary macro .50

Running macros . 51
To run a saved macro .51
To run a temporary macro .52

Debugging macros . 52

Making macros user-friendly . 56
Providing toolbars for macros . 56

To create a macro toolbar .57
To add buttons to a macro toolbar .57
To associate an image or icon with a macro .57
To set a caption for a macro .57
To set a tooltip for a macro. .58

Providing dialog boxes for macros . 58
Setting up dialog boxes. .59
Coding dialog boxes .62

Providing user interaction for macros . 65
Capturing mouse clicks .65
Capturing mouse drags. .66
Capturing coordinates. .67

Providing documentation for macros . 68

Organizing and deploying macros . 69
Organizing macros . 69
Deploying macros . 69

To export a GMS file .70
To import a GMS file .70
To export workspace features .70
To import workspace features. .71

Contents iii

Understanding the Corel DESIGNER and CorelDRAW object models. 72
Working with documents . 73

Creating documents .82
Opening documents .82
Activating documents .83
Setting document properties. .84
Displaying documents .84
Modifying documents .86
Creating command groups for documents .87
Saving documents. .87
Exporting files from documents .88
Publishing documents to PDF .90
Printing documents. .91
Closing documents .92

Working with pages . 93
Creating pages .95
Activating pages .96
Reordering pages .96
Sizing pages .97
Modifying pages .98
Deleting pages .98

Working with layers . 99
Creating layers .100
Activating layers .101
Locking and hiding layers .101
Reordering layers. .101
Renaming layers .102
Importing files into layers .102
Deleting layers. .103

Working with shapes . 103
Creating shapes. .114
Determining shape type .126
Selecting shapes .126
Duplicating shapes .129
Transforming shapes .130
Coloring shapes. .134
Applying effects to shapes .139
Projecting shapes .141
Searching for shapes .143
Deleting shapes. .143

Working with import filters and export filters . 143
Working with import filters .144
Working with export filters .146

Glossary. 148

Index . 153

Corel DESIGNER Technical Suite X5 Macro Programming Guide 1

Introduction
Welcome to the Macro Programming Guide!

This resource can help you explore the macro-related features and functions of Corel DESIGNER®,
CorelDRAW®, and Corel® PHOTO-PAINT™. An understanding of these features and functions can help you
automate tasks or develop commercial solutions that integrate with the software.

This section contains the following topics:
• “About this documentation” on page 1
• “About additional resources” on page 3
• “About Corel” on page 4

Additional sections in this guide cover the following topics:
• “Understanding automation” on page 5 — introduces you to the concepts of automation and macros, and to

the macro-programming formats that are supported by the software
• “Getting started with macros” on page 26 — provides an overview of the macro-related tools and features of

the software
• “Creating macros” on page 44 — describes how to write, record, run, and debug macros
• “Making macros user-friendly” on page 56 — demonstrates how to enhance the usability of macros through

dialog boxes, toolbar buttons, user interaction, and documentation
• “Organizing and deploying macros” on page 69 — shows you how to organize and deploy the macros you

create
• “Understanding the Corel DESIGNER and CorelDRAW object models” on page 72 — explains the most

important features and functions of the Corel DESIGNER and CorelDRAW object models

Also included is a glossary (see page 148), which defines many of the key terms used in this documentation.

Most of the code examples provided in this documentation are written in VBA.

About this documentation

This documentation assumes that the reader has experience with at least one procedural programming language,
such as BASIC, Microsoft® Visual Basic® (VB), C, C++, Java™, Pascal, Cobol, or Fortran.

This documentation does not describe the basics of procedural programming (such as functions, conditional
branching, and looping). Therefore, before using this documentation, non-programmers are strongly advised to
learn basic programming in a language such as Microsoft® Visual Basic® for Applications (VBA).

Most of the code examples provided in this documentation are written in VBA.

Introduction 2

For more detailed instruction on the VB programming environment and on VBA, see Microsoft Visual
Basic Help, which is available from the Help menu in the Macro Editor.

For a more basic introduction to macros, please see the topic “Working with macros” in the main Help
file for the application. You can access the main Help from within an application by clicking Help Help
topics.

The documentation conventions followed in this guide are explained in the following table.

For more information about macros

This software provides additional resources that contain helpful information about macros. These additional
resources, which are located in the Data folder for the installed software, are described in the following table.

Wherever you see this You’ll find

A note — describes required conditions for performing a
procedure or presents other essential information

A tip — describes helpful information such as shortcuts,
alternate methods, or benefits that are related to a
procedure

bold text The name of a control or other element on the user
interface

<text in italics and between angle brackets> A placeholder for user-specified information, such as a path
or filename

monospace text A reference to coding

Resource Description and filename

Macro Help for Corel DESIGNER Provides comprehensive information about the
Corel DESIGNER object model and the macro-related
features and functions of the application

des_om.chm

Macro Help for CorelDRAW Provides comprehensive information about the
CorelDRAW object model and the macro-related features
and functions of the application

draw_om.chm

Macro Help for Corel PHOTO-PAINT Provides comprehensive information about the
Corel PHOTO-PAINT object model and the macro-
related features and functions of the application

pp_om.chm

Introduction 3

For a more basic introduction to macros, please see the topic “Working with macros” in the main Help
file for the application. You can access the main Help from within an application by clicking Help Help
topics.

About additional resources

A variety of additional resources for the software are also available to you.

For comprehensive information about the features in the software, you can consult its installed documentation.
The program group for the software (on the Windows® Start menu) includes a Documentation folder, which
provides easy access to several of these installed resources. In addition, each application offers an in-product Help
system, which you can display by clicking Help Help topics.

For even more information about the software, see the following Web-based resources.

Object-model diagram for Corel DESIGNER Provides a hierarchical representation of the
Corel DESIGNER object model

Corel DESIGNER Object Model Diagram.pdf

Object-model diagram for CorelDRAW Provides a hierarchical representation of the CorelDRAW
object model

CorelDRAW Object Model Diagram.pdf

Object-model diagram for Corel PHOTO-PAINT Provides a hierarchical representation of the
Corel PHOTO-PAINT object model

Corel PHOTO-PAINT Object Model Diagram.pdf

Resource Description and URL

Corel DESIGNER website Provides the latest news, tips and tricks, and upgrade information

www.corel.com/designer

CorelDRAW website Provides the latest news, tips and tricks, and information about
upgrades

www.corel.com/coreldraw

Corel® Support Services website Provides prompt and accurate information about product
features, specifications, pricing, availability, services, and
technical support

www.corel.com/support

Corel® Knowledge Base™ Provides a repository of articles written by the Corel Technical
Support Services team in response to questions by users

www.corel.com/knowledgebase

Resource Description and filename

http://www.corel.com/knowledgebase
http://www.corel.com/support
http://www.corel.com/coreldraw
http://www.corel.com/designer

Introduction 4

You can submit any comments or suggestions about the software by using the contact information provided at
www.corel.com/contact.

About Corel

Corel is one of the world’s top software companies, with more than 100 million active users in over 75 countries.
We develop software that helps people express their ideas and share their stories in more exciting, creative, and
persuasive ways. Through the years, we’ve built a reputation for delivering innovative, trusted products that are
easy to learn and use, helping people achieve new levels of productivity. The industry has responded with
hundreds of awards for software innovation, design, and value.

Our award-winning product portfolio includes some of the world’s most widely recognized and popular software
brands, including CorelDRAW® Graphics Suite, Corel® Painter™, Corel DESIGNER® Technical Suite,
Corel® PaintShop Photo® Pro, Corel® VideoStudio®, Corel® WinDVD®, Corel® WordPerfect® Office,
WinZip®, and the recently released Corel® Digital Studio™ 2010. Our global headquarters are in Ottawa,
Canada, with major offices in the United States, United Kingdom, Germany, China, Taiwan, and Japan.

CorelDRAW (and Corel DESIGNER) online
community

Provides interaction with other users through sharing
experiences, asking questions, and receiving help and suggestions

www.coreldraw.com

Resource Description and URL

http://www.coreldraw.com
http://www.corel.com/contact

Corel DESIGNER Technical Suite X5 Macro Programming Guide 5

Understanding automation
Before you begin to work with macros, you need to understand the concept of automation. This section provides
basic information about automation and about the macro-programming formats that are supported by the
software.

This section answers the following questions:
• What is automation? (see page 5)
• Which automation environments are supported? (see page 6)
• What are the main elements of automation? (see page 11)
• How is automation coding structured? (see page 14)

What is automation?

Many actions that you perform in the software can be combined with other, related actions into a single
automated solution. Automating repetitive tasks saves time, reduces effort, and lets you perform operations that
are too complex to perform manually.

Automation can be used by programmers and nonprogrammers alike.

This documentation does not teach programming skills to nonprogrammers; rather, it helps experienced
programmers develop useful solutions within the software. If you are not a programmer, you may want
to refer to other programming-related resources before continuing to read this documentation.

What is a macro?

Most macros are created to automate a series of tasks within an application. The simplest meaning of the term
“macro” is the recording of a group of related actions that can be played back automatically, in sequence,
whenever you need to perform them. Macros consist of instructions that are written in a programming language,
and some programming languages provide access to additional, more advanced, actions that cannot be recorded.

For the purposes of this documentation, a macro refers to a coded solution that performs tasks in the
application by automating functions and subroutines (see “How are functions and subroutines built?” on
page 16).

Although you can record a sequence of actions in the software, the real power of automation is that you can add
conditions and looping mechanisms to a recording. As an example, let’s consider a simple macro that applies a
red fill and a 1-point outline to a selected shape. By adding a condition and a looping mechanism to the code,
you can produce a macro that seeks out each selected shape and applies only the fill to text shapes and only the
outline to all other shape types.

Understanding automation 6

After you create a macro, you can ensure that it has the desired outcome by setpping through its code one line a
a time, or “debugging” it. When you are happy with the macro, you can keep it for future use and even share it
with others.

Which sample macros are available?

The software includes sample VBA macros, which supply additional functionality, demonstrate automation in
the suite, and provide sample code.

The following sample VBA macros are included for Corel DESIGNER:
• File converter (FileConverter.gms) — converts a vector or bitmap to a specified vector or bitmap format.

You can choose export parameters by using dialog boxes associated with particular filters. You can also save
each page as a separate file and set various page properties, such as size, orientation, and background color.
The following file formats are supported: AI, BMP, CDR, CGM, CMX, CPT, DES, DSF, DXF, EPS, GIF,
JPEG, PCT, PNG, PPF, SVG, SWF, TIF, WMF, and WPG.

The following sample VBA macros are included for CorelDRAW:
• File converter (FileConverter.gms) — converts a vector or bitmap to a specified vector or bitmap format.

You can choose export parameters by using dialog boxes associated with particular filters. You can also save
each page as a separate file and set various page properties, such as size, orientation, and background color.
The following file formats are supported: AI, BMP, CDR, CGM, CMX, CPT, DSF, DXF, EPS, GIF, JPEG,
PCT, PNG, PPF, SVG, SWF, TIF, WMF, and WPG.

• Calendar wizard (CalendarWizard.gms) — generates customized calendars. You can choose the date range,
layout, font, color, language, and many other options. You can also add holidays and moon phases.

The following sample VBA macro is included for Corel PHOTO-PAINT:
• HTML slide show creator (Slideshow.gms) — generates an HTML slide show from the images you specify.

Open files can be added, ordered, and published as a series of HTML files, each of which displays one image
and provides navigation buttons. You can create a title, alternate text, and a name for each slide. You can also
choose a location and a name for the delineation folder; select the image folder; and specify notes, a caption, a
URL, and more.

Which automation environments are supported?

For CorelDRAW versions 6 through 9, the only method of automating tasks was using the Corel SCRIPT™
language. Solution developers used Corel SCRIPT to create intelligent mini-applications for drawing shapes,
repositioning and resizing shapes, opening and closing documents, and setting styles within CorelDRAW.

Although the Corel SCRIPT language was useful for automating basic tasks, a more flexible and powerful
solution became necessary. For version 10, CorelDRAW was enhanced with support for the
Microsoft Visual Basic for Applications (VBA) engine, which handled behind-the-scenes automation. The
addition of VBA made CorelDRAW immediately accessible to millions of VBA and Microsoft Visual Basic (VB)
developers around the world. Since then, VBA has been supported by every version of the CorelDRAW software
suite.

More recently, the software suite added support for Microsoft® Visual Studio® Tools for Applications (VSTA),
the successor to VBA.

Currently, the software suite supports VBA version 6.4 and VSTA version 2.0.

Understanding automation 7

Although CorelDRAW no longer includes the Corel SCRIPT editor, it does include the Corel SCRIPT
run-time engine. Therefore, you can easily migrate scripts that were written for earlier versions of
CorelDRAW to later versions of the software. For information on using Corel SCRIPT with CorelDRAW,
see “Working with scripts” in the main Help file for CorelDRAW (draw.chm).

In Corel PHOTO-PAINT, you can automate tasks by using VBA or VSTA to create a macro, or by using
Corel SCRIPT to create a script. A macro is the better choice if you want to write the code that is required
to carry out the task (by using VBA or VSTA), while a script is the better choice if you want to record
the steps that are required to carry out the task (by using Corel SCRIPT). For information on using
Corel SCRIPT with Corel PHOTO-PAINT, see “Working with scripts” in the main Help file for
Corel PHOTO-PAINT (corelpp.chm).

By supporting VBA and VSTA, the software suite offers a platform for the following:
• developing powerful corporate graphical solutions — such as automated ticket generators, customized

calendars, and batch file-processors
• streamlining workflows — such as with on-the-fly page-layout mechanisms
• customizing default software features — such as the creation, alignment, or transformation of objects
• ...and much more!

VBA and VSTA each provide their own fully integrated development environment (IDE), with contextual pop-
up lists, syntax highlighting, line-by-line debugging, and visual designer windows. These features are
particularly helpful to inexperienced developers.

For more information on VBA and VSTA, see the following topics:
• “What is VBA?” on page 7
• “What is VSTA?” on page 10

What is VBA?

Microsoft Visual Basic for Applications (VBA) is a built-in programming environment that can be used to
automate repetitive functions and create intelligent solutions in the software that supports it. VBA is a subset of
the Microsoft Visual Basic (VB) object-driven programming environment. Usually, VBA is integrated into
another application to customize functionality within that application.

VBA is both a language and an editor. The VBA language cannot be used without its editor, and the VBA editor
is the only utility in which VBA code can be edited or VBA programs can be run.

The VBA language is an event-driven programming language. In other words, it is used to write code that
produces a response to an action, such as clicking a button or choosing an option from a list box. When the
action occurs, the appropriate event is called, and the code for that event is executed. Events can be simple or
complex. For instance, you can code a single line that displays a message box or write an entire procedure that
interacts with a database.

With traditional procedural programming (or “object-driven programming”), the program starts at the
first line and executes one line at a time. VB provides an example of an object-driven programming
environment.

Most of the code examples provided in this documentation are written in VBA.

Understanding automation 8

The VBA editor — called the “Macro Editor” (formerly the “Visual Basic Editor”) in Corel DESIGNER,
CorelDRAW, and Corel PHOTO-PAINT — is an integrated development environment (IDE) that lets you
manipulate the objects that are exposed by the object model of the application. To help you code macros, the
Macro Editor provides context-sensitive Help for all the object-model elements that are available to you.

VBA is an in-process automation controller. In other words, VBA can be used to control software features that
can be automated, and VBA runs efficiently by bypassing the interprocess synchronization mechanisms.
However, the automation that the in-process VBA can access can also be accessed by the following:
• external out-of-process automation controllers (OLE clients)
• applications that are developed in programming languages (such as VB, Visual C++,

Windows® Script Host, and C++) that can be used to develop OLE clients
• the VBA engines of other applications

VBA provides a set of tools for customizing the graphical user interface of the software. These tools let you
process and present data efficiently and effectively. Advantages of using VBA include the following:
• familiarity of the VB language
• rapid application development (RAD) IDE
• fast run-time performance of the resulting integrated solutions
• extensible forms package that supports ActiveX® controls for creating user interfaces
• access to the full Windows application programming interface (API) and the underlying file system
• connectivity to corporate data
• integration with other software that is based on component object models (COMs)

VBA lets you customize an application to suit your needs, or even integrate it with another VBA-enabled
application by referencing the object-model components of the second application. Although VBA was
developed by Microsoft and is built into almost all its desktop applications (including Microsoft Office),
Microsoft licenses the technology to other companies (including Corel Corporation; Autodesk, Inc., in
AutoCAD®; and IntelliCAD Technology Consortium, in IntelliCAD®). Software products that support VBA
can typically be used to control each other, and they can even be used to control some software products that do
not support VBA. Consequently, you can use VBA to build solutions in Corel DESIGNER, CorelDRAW, and
Corel PHOTO-PAINT that access a wide variety of other software products: databases, word processors, XML
editors, and more.

For a complete list of applications that support VBA, see the Microsoft website.

Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT includes VBA version 6.4.

How does VBA differ from VB and VBScript?

The VB programming system is an advanced set of programming tools that provides advanced functionality and
components for the Windows operating system and other Windows-based programs. For example, unlike VBA
or VBScript, VB lets you create application extensions (DLL files) and stand-alone executable programs (EXE
files). (The programs that you create with VBA must run inside the host application.)

VB is a “visual”version of the BASIC programming language — that is, it provides visual cues within the editor.
As a result, VB is an easy language to learn. In addition, Microsoft has greatly enhanced the original BASIC
language, so that VB is both powerful and fast (although not as powerful as Java or C++, nor as fast as C).

Understanding automation 9

VBA is a subset of the VB programming language, and it uses the programming structure of VB to manipulate
the object-model elements that are exposed by an application. The manipulation of these objects results in small
packets of code procedures within the application. These code procedures and resulting projects are called “add-
ins.”

VBScript (sometimes referred to as Microsoft Visual Basic, Scripting Edition) is also a subset of the VB
programming language. VBScript is a Web-based HTML document scripting language.

How does VBA differ from Java and JavaScript?

VBA is similar to Java and JavaScript® in that it is a high-level, procedural programming language with full
garbage collection and very little memory-pointer support. (For more information, see “How are memory
pointers used, and how is memory allocated?” on page 17.) In addition, code that is developed in VBA, much
like code developed in Java and JavaScript, supports on-demand compilation and can be executed without being
compiled.

VBA is also similar to JavaScript in that it cannot be executed as a stand-alone application. JavaScript is
embedded within Web pages as a mechanism for manipulating the document object model (DOM) of the Web
browser. Likewise, VBA programs are executed inside a host environment (such as Corel DESIGNER,
CorelDRAW, or Corel PHOTO-PAINT) to manipulate the object model of the host.

Most VBA applications can be compiled to p-code to make them run more quickly, although the difference is
hardly noticeable because of the sophistication of today’s computer hardware. Similar compilation is possible
with Java, but not with JavaScript.

Finally, whereas VBA uses a single equals sign (=) for both comparison and assignment, Java and JavaScript use
a single equals sign (=) for assignment and two equals signs (==) for Boolean comparison. (For more
information, see “How are Boolean comparisons and assignments used?” on page 18.)

How does VBA differ from C and C++?

Like C and C++, VB uses functions. In VB, functions can be used to return a value, but subroutines cannot be
used in that way. However, functions are used in C and C++, regardless of whether you want to return a value.
(For more information, see “How are functions and subroutines built?” on page 16.)

VBA allocates and frees memory transparently. In C and C++, however, the developer is responsible for most
memory management. As a result, using strings in VBA is even simpler than using the CString class in C++.

Finally, whereas VBA uses a single equals sign (=) for both comparison and assignment, C and C++ use a
single equals sign (=) for assignment and two equals signs (==) for Boolean comparison. (For more
information,see “How are Boolean comparisons and assignments used?” on page 18.)

How does VBA differ from WSH?

Windows Script Host (WSH) is an out-of-process automation controller that lets you do occasional scripting and
automation of Windows tasks and can be used to control software. Although WSH is a useful addition to the
Windows operating system, WSH scripts tend to be slow because they must run out of process, and they cannot
be compiled (and must be interpreted as they are executed).

WSH is a host for a number of scripting languages, each of which has its own syntax. However, the standard
language that WSH uses is a macro language that resembles VB, so for standard scripts, the syntax is the same
as in VBA.

Understanding automation 10

What is VSTA?

The successor to VBA, Microsoft Visual Studio Tools for Applications (VSTA) is based on
Microsoft Visual Studio 2008. In Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT, the VSTA
feature supports the .NET framework and enables development in two programming languages:
Visual Basic .NET and Visual C#.

Most of the code examples provided in this documentation are written in VBA.

The VSTA Editor in Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT is an integrated development
environment (IDE) that lets you create VSTA solutions for the software.

Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT includes VSTA version 2.0.

How does VSTA compare with VBA?

Both VSTA and VBA allow you to create powerful macro solutions. With VSTA, you use the VSTA Editor as an
IDE, and you use Visual Basic .NET or Visual C# as a programming language. With VBA, you use the
Macro Editor as an IDE, and you use VBA as a programming language.

If you want to perform any of the following tasks, you can use either VSTA or VBA:
• customize or extend the features of the software
• interact with other applications that use Visual Basic 6 — or with other compatible components that are

external to the software
• interact with Web-based services
• customize the IDE with add-ins
• create macro projects — with multi-threading support, if desired
• access macro projects programmatically
• generate macro code dynamically
• store macro code in a pre-compiled format
• hide macro code from other macro authors
• debug macro projects
• create customized user interfaces for macro projects

However, if you want to perform any of the following tasks, you must use VSTA:
• access the .NET framework natively — to support using Managed Add-in Framework (MAF), referencing

.NET assemblies directly, running customized code on the Common Language Runtime (CLR), enforcing

.NET security policies, or creating user interfaces by using .NET WinForms
• fully customize the IDE
• create macro projects that are certified to run on Windows Vista
• create macro projects that support 64-bit processors
• create macro projects that support server-side customizations
• create macro projects that support all data types, including BigDecimal and Int64
• create macro projects and macro assemblies that persist without the use of structured storage
• open and modify macro projects in Visual Studio
• compile macro projects to DLL assemblies

Understanding automation 11

• run macro projects out of process
• run macro projects without causing the host application to stop execution at errors or breakpoints
• isolate macro projects from one another; run macro projects independently, and stop them during runtime

without affecting other running projects
• author macros within managed code
• prevent servers from running customized user interfaces for macro projects

What are the main elements of automation?

If you’ve ever developed object-oriented code in C++, Borland Delphi, or Java, you’re already familiar with
programming-related concepts such as “objects,” “classes,” “properties,” and “methods.” However, let’s
reexamine these terms as they apply to automating Corel DESIGNER, CorelDRAW, and Corel PHOTO-
PAINT.

This section answers the following questions:
• What is an object model? (see page 11)
• What is a class? (see page 12)
• What is a collection? (see page 12)
• What is a property? (see page 13)
• What is a method? (see page 13)
• What is an event? (see page 13)
• What is an enumeration? (see page 13)
• What is a constant? (see page 14)

What is an object model?

An object model represents the hierarchy of items (or “objects”) that make up an application and defines the
interrelationships of the objects within that hierarchy. In an object model, each object is a child of another object,
which is a child of yet another object, and so on. Furthermore, each object in an object model is defined by a
property, a method, or an event, or a combination of these items.

Besides providing a high level of structure, an object model also lets you use object types (or “classes”) in various
ways. For example, a Shape object of type “group” is used to contain other Shape objects, each of which is from
type “group” or some other type, such as “rectangle,” “curve,” or “text.”

This high level of organization makes the object model easy to use, yet powerful.

How is an object model used in automation?

Automating Corel DESIGNER, CorelDRAW, or Corel PHOTO-PAINT is accomplished by using the object
model of the application to access the various objects in a document and make changes to those objects.

In Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT, the Application object represents the top of
the object hierarchy: the program itself. All objects are children or grandchildren (or great-grandchildren, and so
on) of the application.

Understanding automation 12

Starting with the Application object, you can “drill down” through the layers of hierarchy in the object model
until you find the desired, and usually the more specific, object. To reference the desired object, you must use a
standard notation to separate each level of the object hierarchy. As in many object-oriented languages, the
automation environment requires the use of a period or “dot operator” (.) to indicate that the object on the
right is a member (or child) of the object on the left.

Application.Documents(1).Pages(1).Layers(1).Shapes(1).Name = "ABC"

An object requires its full hierarchical (or “fully qualified”) reference unless a shortcut is available to it (or unless
it has an implicit or implied meaning). An object shortcut is merely a syntactic replacement for the long-hand
version of an object. For example, the shortcut object ActiveLayer replaces the long-hand version
Application.ActiveDocument.ActivePage.ActiveLayer, while the object shortcut ActiveSelection
replaces the long-hand version Application.ActiveDocument.Selection.

For more information on object shortcuts, see “How are object shortcuts used?” on page 22.

What is a class?

A class is the definition or description of an object. A class outlines the properties, methods, and events that
apply to a type of object in an application; it acts as a template for all objects of that type class. To use a
metaphor, the class “car” is a small vehicle with an engine and four wheels.

An object is an instance of a class. To extend the car metaphor, the actual, physical car purchased for the purposes
of driving is an object (that is, an instance of the class “car”).

In the context of Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT, each open document is an
instance of the Document class, each page in the document is an instance of the Page class, and each layer (and
each shape on each layer) are more instances of more classes. For example, Document represents the Document
class in the software program. However, ActiveDocument represents an object within that class because it
makes specific reference to one object.

As previously discussed, objects are often made up of other smaller objects. For example, a car contains four
objects of the class “wheel,” two objects of the class “headlight,” and so on. Each of these child objects has the
same properties and methods of its class-type. This parent/child relationship of objects is an important one to
recognize, particularly when referencing an individual object.

Some classes “inherit” features from their parents. For example, in the context of Corel DESIGNER,
CorelDRAW, and Corel PHOTO-PAINT, the Shape type has many subtypes (or “inherited types”), including
Rectangle, Ellipse, Curve, and Text. All these subtypes can make use of the basic members of the Shape type,
including methods for moving and transforming the shape and for setting its color. However, the subtypes also
have their own specialist members; for example, a Rectangle can have corner radii, whereas Text has an
associated Font property.

What is a collection?

A collection is similar to an array of objects; it is an object that contains a group of objects that are similar in
type. These objects share the same properties, methods, and events, and they are uniquely identified within the
collection by their index number or their name. Collection objects act in the same manner and are always plural.

Understanding automation 13

For example, Documents represent the Documents collection class in the software program. However,
Documents.Item (1) references the first Document object in that collection.

What is a property?

A property is like an adjective in that it represents an attribute or characteristic quality of an object. Properties
can be returned or set, or they can be read-only.

Most classes have properties. As an illustration, the properties of the class “car” are that it is small, it has an
engine, and it has four wheels. Every instance of the class “car” (that is, every object in that class) also has
properties such as color, speed, and number of seats. Read-only properties are fixed by the design of the class; for
example, the number of wheels or seats does not (usually) vary from car to car. However, other properties can be
changed after the object has been created; for example, the speed of the car can go up and down, and, with a bit
of help, its color can be changed.

In the context of Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT, Document objects have a name,
a resolution, and horizontal and vertical ruler units; individual shapes have outline properties and fill properties,
as well as a position and a rotation factor; and text objects have text properties, which may include the text itself.
For example, ActiveDocument.Name represents the Name property of a Document object; it specifies the
name of the active document.

What is a method?

A method is like a verb in that it represents an action that can be performed by or on an object. In the example
of a class “car,” the car can be made to go faster and slower, so two methods for the class are “accelerate” and
“decelerate.”

In the context of Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT, documents have methods for
creating new pages, layers have methods for creating new shapes, and shapes have methods for applying
transformations and effects. For example, ActiveDocument.Close represents the Close method of a
Document object; it closes the active document.

What is an event?

An event is like a noun in that it represents an action that takes place within an object. An event is triggered by
an action, such as a mouse click, a key press, or a system timer. An event can be coded to trigger appropriate
response in its object.

For example, the ActiveDocument.AfterSave event triggers an action in the Document object after it has
been saved.

What is an enumeration?

An enumeration (also called an “enumerated type”) represents a fixed value in the procedures and functions of
the coding for a macro. Whereas a variable temporarily stores a changing data value, the value of an
enumeration does not change.

Understanding automation 14

What is a constant?

A constant is an instance of an enumeration, and an enumeration groups similar constants together.

For example, AddinFilter is an enumeration, yet it contains several constants, including AddinFilterNone
and AddinFilterNew.

How is automation coding structured?

Your programming knowledge should help you learn to automate the software, regardless of your level of
experience with Microsoft Visual Basic for Applications (VBA) or Microsoft Visual Studio Tools for Applications
(VSTA).

This section answers the following questions on the structure and syntax of the VBA language:
• How are variables declared? (see page 14)
• How are functions and subroutines built? (see page 16)
• How are lines ended? (see page 16)
• How are comments included? (see page 17)
• How are memory pointers used, and how is memory allocated? (see page 17)
• How is scope defined? (see page 18)
• How are Boolean comparisons and assignments used? (see page 18)
• How are logical and bitwise operators used? (see page 19)
• How are message boxes and input boxes provided? (see page 19)
• How are objects referenced? (see page 20)
• How are collections referenced? (see page 20)
• How are object shortcuts used? (see page 22)
• How are event handlers provided? (see page 23)

The Macro Editor formats all VBA coding for you (see “Formatting code automatically” on page 33). The
only way to customize the formatting is to change the size of the indentations.

VBA can be used to create object-oriented classes. However, this function is a feature of the programming
language and is therefore not discussed in detail in this documentation.

How are variables declared?

In VBA, the construction for declaring variables is as follows:

Dim foobar As Integer

The built-in data types are Byte, Boolean, Integer, Long, Single, Double, String, Variant, and several
other less-used types including Date, Decimal, and Object.

Variables can be declared anywhere within the body of a function, or at the top of the current module. However,
it is generally a good idea to declare a variable before it is used; otherwise, the compiler interprets it as a
Variant, and inefficiencies can be incurred at run time.

Understanding automation 15

Booleans take False to be 0 and True to be any other value, although converting from a Boolean to a
Long results in True being converted to a value of –1.

To get more information about one of the built-in data types, type it in the Code window of the
Macro Editor, select it, and then press F1.

Data structures can be built by using the following VBA syntax:

Public Type fooType

 item1 As Integer

 item2 As String

End Type

Dim myTypedItem As fooType

The items within a variable declared as type fooType are accessed by using dot notation:

myTypedItem.item1 = 5

How are strings declared?

Using strings is much simpler in VBA than in C. In VBA, strings can be added together, truncated, searched
forwards and backwards, and passed as simple arguments to functions.

To add two strings together in VBA, simply use the concatenation operator (&) or the addition operator (+):

Dim string1 As String, string2 As String

string2 = string1 & " more text" + " even more text"

In VBA, there are many functions for manipulating strings, including InStr(), Left(), Mid(), Right(),
Len(), and Trim().

How are enumerations declared?

To declare an enumeration in VBA, use the following construction:

Public Enum fooEnum

 ItemOne

 ItemTwo

 ItemThree

End Enum

By default, the first item in an enumerated type is assigned a value of 0.

How are arrays declared?

To declare an array in VBA, use parentheses — that is, the (and) symbols:

Dim barArray (4) As Integer

The value defines the index of the last item in the array. Because array indexes are zero-based by default, there
are five elements in the preceding sample array (that is, elements 0 thru 4, inclusive).

Understanding automation 16

Arrays can be resized by using ReDim. For example, the following VBA code adds an extra element to barArray
but preserves the existing contents of the original five elements:

ReDim Preserve barArray (6)

Upper and lower bounds for an array can be determined at run time by using the functions UBound() and
LBound().

Multidimensional arrays can be declared by separating the dimension indexes with commas, as in the following
VBA example:

Dim barArray (4, 3)

How are functions and subroutines built?

VBA uses both functions and subroutines (or “subs”). Functions can be used to return a value, but subs cannot.

In VBA, functions and subs do not need to be declared before they are used, nor before they are defined. In fact,
functions and subs need to be declared only if they actually exist in external system DLLs.

Typical functions in a language such as Java or C++ can be structured as follows:

void foo(string stringItem) {

 // The body of the function goes here

}

double bar(int numItem) { return 23.2; }

In VBA, however, functions are structured as in the following example:

Public Sub foo (stringItem As String)

 ' The body of the subroutine goes here

End Sub

Public Function bar (numItem As Integer) As Double bar = 23.2

End Function

To force a function or sub to exit immediately, you can use Exit Function or Exit Sub (respectively).

How are lines ended?

In VBA, each statement must exist on its own line, but no special character is required to denote the end of each
line. (In contrast, many other programming languages use a semicolon to separate individual statements.)

To break a long VBA statement over two or more lines, each of the lines (other than the last line) must end with
an underscore (_) preceded by at least one space:

newString = fooFunction ("This is a string", _

 5, 10, 2)

You can combine several statements in a single VBA line by separating them with colons:

a = 1 : b = 2 : c = a + b

Understanding automation 17

A VBA line cannot end with a colon. VBA lines that end with a colon are labels that are used by the Goto
statement.

How are comments included?

Comments in VBA — similarly to in ANSI, C++, and Java — can be created only at the end of a line.
Comments begin with an apostrophe (') and terminate at the end of the line.

Each line of a multi-line comment must begin with its own apostrophe in VBA:

a = b ' This is a really interesting piece of code that

 ' requires so much explanation that I needed to break

 ' the comment over multiple lines.

To comment out large sections of VBA code, use the following syntax (similarly to in C or C++):

#If 0 Then ' That's a zero, not the letter 'oh'.

 ' All this code will be ignored by

 ' the compiler at run time!

#End If

How are memory pointers used, and how is memory allocated?

VBA does not support C-style memory pointers. Memory allocation and garbage collection are automatic and
transparent, just as in Java and JavaScript (and some C++ code).

How are arguments passed?

Most languages, including C++ and Java, pass an argument to a procedure as a copy of the original. If the
original must be passed, then one of two things can happen:
• a memory pointer is passed that directs the procedure to the original argument in memory
• a reference to the original argument is passed

Microsoft Visual Basic (VB) has the same requirements for passing arguments. In VB, passing a copy of the
original argument is called “passing by value” and passing a reference to the original is called “passing by
reference.”

By default, function and subroutine parameters are passed by reference. A reference to the original variable is
passed in the argument of the procedure; changing the value of that argument, in effect, changes the value of the
original variable value as well. In this way, more than one value can be returned from a function or subroutine. To
explicitly annotate the code to indicate that an argument is being passed by reference, you can prefix the
argument with ByRef.

If you want to prevent a procedure from changing the value of the original variable, you can force the copying of
an argument. To do this in VBA, prefix the argument with ByVal, as shown in the example that follows. The
functionality of ByRef and ByVal is similar to the ability of C and C++ to pass a copy of a variable, or to pass a
pointer to the original variable.

Understanding automation 18

Private Sub fooFunc (ByVal int1 As Integer, _

 ByRef long1 As Long, _

 long2 As Long) ' Passed ByRef by default

In the preceding VBA example, arguments long1 and long2 are both, by default, passed by reference.
Modifying either argument within the body of the function modifies the original variable; however, modifying
int1 does not modify the original because it is a copy of the original.

How is scope defined?

You can define the scope of a data type or procedure (or even an object). Data types, functions, and subroutines
(and members of classes) that are declared as private are visible only within that module (or file). By contrast,
functions that are declared as public are visible throughout all the modules; however, you may need to use fully
qualified referencing if the modules are almost out of scope — for example, if you are referencing a function in a
different project.

Unlike C, VBA does not use braces — that is, the { and } symbols — to define local scope. Local scope in VBA
is defined by an opening function or subroutine definition statement (that is, Function or Sub) and a matching
End statement (that is, End Function or End Sub). Any variables declared within the function are available
only within the scope of the function itself.

How are Boolean comparisons and assignments used?

In Microsoft Visual Basic (VB), Boolean comparison and Boolean assignment are both performed by using a
single equals sign (=):

If a = b Then c = d

By contrast, many other languages use a double equals sign for Boolean comparison and a single equals sign for
Boolean assignment:

if(a == b) c = d;

The following code, which is valid in C, C++, Java, and JavaScript, is invalid in VBA:

if((result = fooBar()) == true)

The preceding example would be written in VBA as the following:

result = fooBar()

If result = True Then

For other Boolean comparisons, VBA uses the same operators as other languages (except for the operators for “is
equal to” and “is not equal to”). All the Boolean-comparison operators are provided in the following table.

Comparison VBA operator C-style operator

Is equal to = ==

Is not equal to <> !=

Is greater than > >

Is less than < <

Understanding automation 19

The result of using a Boolean operator is always either True or False.

How are logical and bitwise operators used?

In VBA, logical operations are performed by using the keywords And, Not, Or, Xor, Imp, and Eqv, which perform
the logical operations AND, NOT, OR, Exclusive-OR, logical implication, and logical equivalence (respectively).
These operators also perform Boolean comparisons.

The following code shows a comparison written in C or a similar language:

if((a && b) || (c && d))

This example would be written as follows in VBA:

If (a And b) Or (c And d) Then

Alternatively, the preceding VBA code could be written in the following full long-hand form:

If (a And b = True) Or (c And d = True) = True Then

The following table provides a comparison of the four common VBA logical and bitwise operators, and the C-
style logical and bitwise operators that are used by C, C++, Java, and JavaScript.

How are message boxes and input boxes provided?

In VBA, you can present simple messages to the user by using the MsgBox function:

Dim retval As Long

retval = MsgBox("Click OK if you agree.", _

 vbOKCancel, "Easy Message")

If retval = vbOK Then

 MsgBox "You clicked OK.", vbOK, "Affirmative"

End If

Is greater than or equal to >= >=

Is less than or equal to <= <=

VBA operator C-style bitwise operator C-style Boolean operator

And & &&

Not ~ !

Or | ||

Xor ^

Comparison VBA operator C-style operator

Understanding automation 20

You can also get strings from the user by using InputBox function:

Dim inText As String

inText = InputBox("Input some text:", "type here")

If Len(inText) > 0 Then

 MsgBox "You typed the following: " & inText & "."

End If

If the user clicks Cancel, the length of the string returned in inText is zero.

For information on creating more complex user interfaces, see “Making macros user-friendly” on page 56.

How are objects referenced?

If you want to create a reference to an object so that you can treat that reference like a variable (sh, in the
following VBA example for Corel DESIGNER and CorelDRAW), you can use the Set keyword.

Dim sh As Shape

Set sh = ActiveSelection.Shapes.Item(1)

After you create this reference, you can treat it as though it were the object itself.

sh.Outline.Color.GrayAssign 35

If the selection is changed while sh is still in scope, sh references the original shape from the old selection and is
unaffected by the new selection. You cannot simply assign the object to the variable as in the following example:

Dim sh As Shape

sh = ActiveSelection.Shapes.Item(1)

To release an object, you must set its reference value to Nothing.

Set sh = Nothing

You can also test whether a variable references a valid object by using the Nothing keyword.

If sh Is Nothing Then MsgBox "sh is de-referenced."

Objects do not need to be explicitly released. In most cases, VB releases the object upon disposal of the variable
when you exit the function or subroutine.

How are collections referenced?

Many objects are members of collections. A collection is similar to an array, except that it contains objects rather
than values. However, members of collections can be accessed in the same way as arrays. For example, a
collection that is used frequently in Corel DESIGNER and CorelDRAW is the collection of shapes on a layer:
The object ActiveLayer references either the current layer or the layer that is selected in the Object Manager
docker.

Corel DESIGNER and CorelDRAW contains many collections: A document contains pages, a page contains
layers, a layer contains shapes, a curve contains subpaths, a subpath contains segments and nodes, a text range
contains lines and words, a group contains shapes, and the application contains windows. All these collections are
handled by VBA in the same way.

Understanding automation 21

How are the items in a collection referenced?

To reference the shapes on a layer, the collection of shapes for that layer is used: ActiveLayer.Shapes. To
reference the individual shapes in the collection, the Item() property is used. Here is a VBA example for
Corel DESIGNER and CorelDRAW:

Dim sh As Shape

Set sh = ActiveLayer.Shapes.Item(1)

Most elements of a collection start at 1 and increase. For the collection ActiveLayer.Shapes, Item(1) is the
item at the “top” or “front” of the layer — in other words, it is the item that is in front of all other shapes.
Furthermore, because each item in the ActiveLayer collection is an object of type Shape, you can reference any
item in VBA merely by appending the appropriate dot-notated member:

ActiveLayer.Shapes.Item(1).Outline.ConvertToObject

Sometimes, individual items have names. If the item you are looking for has an associated name (and you know
what the name is and which collection the item is in), you can use that name to reference the item directly, as in
the following VBA example for Corel DESIGNER and CorelDRAW:

Dim sh1 As Shape, sh2 As Shape

Set sh1 = ActiveLayer.CreateRectangle(0, 5, 7, 0)

sh1.Name = "myShape"

Set sh2 = ActiveLayer.Shapes.Item("myShape")

Also, because an item is usually the implied or default member of a collection, it is not strictly required. For this
reason, the last line of the preceding VBA code can be rewritten as follows:

Set sh2 = ActiveLayer.Shapes("myShape")

How are the items in a collection counted?

All collections have a property called Count. This read-only property gives the number of members in the
collection, as in the following VBA example for Corel DESIGNER and CorelDRAW:

Dim count As Long

count = ActiveLayer.Shapes.Count

The returned value is not only the number of items in the collection: Because the collection starts from 1, it is
also the index of the last item.

How are the items in a collection parsed?

It is often necessary to parse through the members of a collection to check or change the properties of each item.

By using the Item() and Count members, it is straightforward to step through a collection of items. With each
iteration, it is possible to test the properties of the current item, or to call its methods.

Understanding automation 22

The following VBA code for Corel DESIGNER and CorelDRAW restricts all shapes on the layer to no wider
than ten units:

Dim I As Long, count As Long

count = ActiveLayer.Shapes.Count

For I = 1 to count

 If ActiveLayer.Shapes.Item(i).SizeWidth > 10 Then

 ActiveLayer.Shapes.Item(i).SizeWidth = 10

 End If

Next I

There is, however, a more convenient way of parsing a collection in VBA. Instead of using the Count property
and a For-Next loop, this technique uses a For-Each-In loop:

Dim sh As Shape

For Each sh In ActiveLayer.Shapes

 If sh.SizeWidth > 10 Then

 sh.SizeWidth = 10

 End If

Next sh

If you want to copy the selection and then parse it later when it is no longer selected, copy the selection into a
ShapeRange object:

Dim sr As ShapeRange

Dim sh As Shape

Set sr = ActiveSelectionRange

For Each sh In sr

 ' Do something with each shape

Next sh

How are object shortcuts used?

Shortcuts are provided for some frequently accessed objects. Using shortcuts requires less typing, so shortcuts are
easier to use than their longhand versions. (Also, using shortcuts can improve run-time performance because the
compiler does not need to determine every object in a long dot-separated reference.)

For Corel DESIGNER and CorelDRAW, a shortcut can be used on its own as a property of the Application
object. The following table provides these shortcuts and their long forms. (For a description of any item, see the
“Object Model Reference” section of the Macros Help file for Corel DESIGNER [des_om.chm] or CorelDRAW
[draw_om.chm].)

Shortcut Long form

ActiveLayer ActivePage.ActiveLayer

ActivePage ActiveDocument.ActivePage

Understanding automation 23

For Corel PHOTO-PAINT, a shortcut can be used on its own as a property of the Corel PHOTO-PAINT
Application object. The following table provides these shortcuts and their long forms. (For a description of any
item, see the “Object Model Reference” section of the Corel PHOTO-PAINT Macros Help file [pp_om.chm].)

For Corel DESIGNER and CorelDRAW, the following shortcuts can also be used as members of a given
Document object:
• ActiveLayer
• ActivePage
• ActiveShape
• ActiveWindow

For Corel PHOTO-PAINT, the following shortcuts can also be used as members of a given Document object:
• ActiveLayer
• ActiveWindow

For Corel DESIGNER and CorelDRAW, the Document object also has the properties Selection and
SelectionRange, which let you get the selection or selection range (respectively) from a specified document
regardless of whether that document is active.

How are event handlers provided?

While running, Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT raise various events to which
macros can respond through the use of event handlers — subroutines with specific, defined names. Each macro
project defines its event handlers in one of the following code modules:
• ThisMacroStorage — for macro projects that are stored in Global Macro Storage (GMS) files
• ThisDocument — for macro projects that are stored in documents

The GlobalMacroStorage object is a virtual object that represents each and all open documents. The
GlobalMacroStorage object has several events that are raised at the time of any event, such as opening,
printing, saving, or closing a document (although the range of events is actually greater than this because each
one has a “before” and “after” event).

ActiveSelection ActiveDocument.Selection

ActiveSelectionRange ActiveDocument.SelectionRange

ActiveShape ActiveDocument.Selection.Shapes(1)

ActiveView ActiveWindow.ActiveView

ActiveWindow ActiveDocument.ActiveWindow

Shortcut Long form

ActiveLayer ActivePage.ActiveLayer

ActiveWindow ActiveDocument.ActiveWindow

Shortcut Long form

Understanding automation 24

To respond to an event, you must provide an event handler — a subroutine in any ThisMacroStorage module
with a specific name for which the application is pre-programmed to search. However, the application does check
all ThisMacroStorage modules in all installed projects; for this reason, you can create an event-driven solution
and distribute it as a single project file just as you would provide any other solution. Each project can have only
one ThisMacroStorage module, and it is automatically created when the project is first created.

In VBA, you can add event handlers to a ThisMacroStorage module by using the Macro Editor. For example, a
Corel DESIGNER or CorelDRAW macro solution may need to respond to the closing of a document by logging
the closure in a file as part of a workflow-management system. To respond to the opening of a document, the
solution must respond to the OpenDocument event for the GlobalMacroStorage class. To create this event
handler in VBA, do the following:
• Open a ThisMacroStorage module for editing in the Macro Editor.
• Next, choose GlobalMacroStorage from the Object list box at the top of the Code window, and then choose

DocumentOpen from the Procedure list box.

The Macro Editor creates a new, empty subroutine called GlobalMacroStorage_DocumentOpen()— or, if that
subroutine already exists, the Macro Editor places the cursor into it. To then add the name of the opened file to
the log, you need only write some code. To reduce the size of the ThisMacroStorage module, you can assign this
event-logging task to a public subroutine in another module. This technique lets the run-time interpreter more
easily parse all the ThisMacroStorage modules each time an event is raised. The following VBA code illustrates
this example for Corel DESIGNER and CorelDRAW:

Private Sub GlobalMacroStorage_OpenDocument(ByVal Doc As Document, _

ByVal FileName As String)

Call LogFileOpen(FileName)

End Sub

Here is a small sample of the events available in Corel DESIGNER and CorelDRAW:

Event Description

Start Raised when the user starts the application

DocumentNew Raised when a document is created; passes a reference to
the document

DocumentOpen Raised when a document is opened; passes a reference to
the document

DocumentBeforeSave Raised before a document is saved; passes the file name of
the document as a parameter

DocumentAfterSave Raised after a document is saved; passes the file name of
the document as a parameter

DocumentBeforePrint Raised before the Print dialog box is displayed

DocumentAfterPrint Raised after a document is printed

SelectionChange Raised when a selection changes

DocumentClose Raised before a document is closed

Understanding automation 25

Event handlers for frequent events — such as events related to the Shape class — should be as efficient
as possible, to keep the application running as quickly as possible.

Quit Raised when the user quits the application

Event Description

Corel DESIGNER Technical Suite X5 Macro Programming Guide 26

Getting started with macros
Now that you understand a bit about automation, you’re ready to get started with macros. This section
provides an overview of the macro-related tools and features of Corel DESIGNER, CorelDRAW, and
Corel PHOTO-PAINT.

This section contains the following topics:
• “Setting up the automation feature” on page 26
• “Using the Macros toolbars” on page 27
• “Using the Macro Manager docker” on page 28
• “Using the Add-in Manager” on page 29
• “Using the Macro Editor” on page 30
• “Using the VSTA Editor” on page 42

Setting up the automation feature

Before you can develop and run macros in the software, you may need to set up the automation features for VBA
and VSTA.

When you perform a “typical installation” of the software, the VBA and VSTA features are installed by default.
However, you can manually install them if necessary. You can also specify various options for VBA.

For details on setting up the automation feature, see the following procedures:
• “To install the VBA and VSTA features” on page 26
• “To specify VBA options” on page 27

To install the VBA and VSTA features

1 Insert the installation disc into your computer.

If the installation wizard does not start automatically, locate and run the Setup.exe file on the installation
disc.

2 Follow the on-screen instructions for modifying the software.

3 On the Features page of the setup, enable the following check boxes in the Utilities list box:
• Visual Basic for Applications 6.4
• Visual Studio Tools for Applications

Getting started with macros 27

To specify VBA options

1 Click Tools Options.

2 In the Workspace list of categories, click VBA.

3 In the Security area, specify how to control the risk of running malicious macros by clicking Security
options.

If you want to bypass this security feature, enable the Trust all installed GMS modules check box, and then
proceed to step 6.

4 On the Security level page of the Security dialog box, enable one of the following options:
• Very high — allows only macros installed in trusted locations to run. All other signed and unsigned

macros are disabled.
• High — allows only signed macros from trusted sources to run. Unsigned macros are automatically

disabled.
• Medium — lets you choose which macros run, even if they are potentially harmful.
• Low (not recommended) — allows all potentially unsafe macros to run. Enable this setting if you have

virus-scanning software installed, or if you check the safety of all documents that you open.

5 On the Trusted publishers page of the Security dialog box, review which macro publishers are trusted.
Click View to display details on the selected macro publisher, or click Remove to delete the selected macro
publisher from the list.

 If desired, you can enable or disable the Trust access to Visual Basic project check box for the selected
macro publisher.

6 Disable the Delay load VBA check box if you want to load the VBA feature at start-up.

Using the Macros toolbars

Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT feature a Macros toolbar that provides easy access
to several macro-related featues, such as the Macro Editor.

The Macros toolbar in Corel DESIGNER and CorelDRAW

The Macros toolbar in Corel PHOTO-PAINT

Using the Macros toolbar in Corel DESIGNER and CorelDRAW

In Corel DESIGNER and CorelDRAW, the Macros toolbar features the following buttons:

• Macro Manager button — opens the Macro Manager docker

• Run Macro button — runs a macro

• Macro Editor button — opens the Macro Editor

Getting started with macros 28

• Disable application events button — switches the Macro Editor between its modes for designing and
running macros

• Start Recording button — records a macro

• Pause Recording button — pauses the recording of a macro

• Stop Recording button — stops the recording of a macro

To display the Macros toolbar in Corel DESIGNER and CorelDRAW, click Window Toolbars Macros. A
check mark next to the command indicates that the toolbar is displayed.

Using the Macros toolbar in Corel PHOTO-PAINT

In Corel PHOTO-PAINT, the Macros toolbar features the following buttons:

• Macro Manager button — opens the Macro Manager docker

• Run Macro button — runs a macro

• Macro Editor button — opens the Macro Editor

• Disable application events button — switches the Macro Editor between its modes for designing and
running macros

To display the Macros toolbar in Corel PHOTO-PAINT, click Window Toolbars Macros. A check mark
next to the command indicates that the toolbar is displayed.

Using the Macro Manager docker

In Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT, macros are stored in code modules, which are
stored in macro projects. The Macro Manager docker provides a list of all existing VBA macro projects, plus the
code modules and macros that are stored in them. You can use the Macro Manager docker to perform various
tasks related to macro projects, code modules, and macros (see “Creating macros” on page 44).

The Macro Manager docker in Corel DESIGNER and CorelDRAW, with a macro selected

Getting started with macros 29

The Macro Manager docker in Corel PHOTO-PAINT, with a macro selected

To display the Macro Manager docker, do one of the following:
• Click Tools Macros Macro Manager.

• Click the Macro Manager button on the Macros toolbar.

Using the Add-in Manager

An add-in is a separate module that extends the functionality of an application. The Add-in Manager for
Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT displays a list of all registered add-ins for the
application.

The Add-in Manager

To open the Add-in Manager, click Tools Macros Add-in Manager. You can then use the Add-in Manager
to perform various tasks related to add-ins.

To Do the following

Display the description for an add-in Select the add-in

Load an add-in Select the add-in, enable the Loaded/Unloaded check
box, and then click OK

Getting started with macros 30

You can use a registered add-in by clicking Tools Macros Add-ins and then choosing the add-in.

Using the Macro Editor

Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT provide an integrated development environment
(IDE) for creating VBA macro projects. Called the Macro Editor, this IDE is similar to the one included with the
full version of Visual Basic. You can use the Macro Editor to perform various tasks related to VBA macros, such
as the following:
• browsing the contents of a VBA macro project
• developing and debugging VBA macro code
• setting object properties for VBA macros
• creating dialog boxes or “forms” for VBA macros

You cannot use the Macro Editor to compile executable (EXE) program files.

The Macro Editor features three main areas:
• Project Explorer — lets you browse macro projects and their contents. For more information, see “Using the

Project Explorer” on page 31.
• Code window — lets you work with macro code. For more information, see “Using the Code window” on

page 32.
• Properties window — lists all editable properties for the selected object. For more information, see “Using

the Properties window” on page 36.

The Macro Editor also features four main toolbars:
• Standard toolbar — is the default toolbar
• Debug toolbar — contains buttons for common debugging tasks
• Edit toolbar — contains buttons for common code-editing tasks
• UserForm toolbar — contains buttons specific to designing dialog boxes

For more information on these toolbars, see “Using the Macro Editor toolbars” on page 36.

Load an add-in each time the application is started Select the add-in, enable the Load on startup check box,
and then click OK

Unload an add-in Select the add-in, disable the Loaded/Unloaded check
box, and then click OK

To Do the following

Getting started with macros 31

The Macro Editor features the following: 1) Project Explorer; 2) Code window; 3) Properties
window; 4) Standard toolbar; 5) Debug toolbar; 6) Edit toolbar; 7) UserForm toolbar

The Macro Editor also lets you access the Object Browser, which displays the entire object model of each
referenced component and of the host application. For more information, see “Using the Object Browser” on
page 37.

Although the Macro Editor opens in a separate window from its host application, it runs within the process of
that application. To display the Macro Editor, do any of the following:
• Click Tools Macros Macro Editor on the main menu in the application.

• Click the Macro Editor button on the Macros toolbar.
• Right-click Visual Basic for Applications in the Macro Manager docker, and then click Show IDE.
• Press Alt + F11.

To switch between the Macro Editor and the application, use the Windows taskbar, or press Alt + F11
or Alt + Tab.

For more detailed information on constructing code procedures and setting properties, please see the
Microsoft Visual Basic for Applications Help file, which is available from the Help menu in the Macro Editor.

Using the Project Explorer

The Project Explorer is essential for navigating macro projects and their contents: documents and objects, forms,
modules, and class modules (or “classes”).

1

3

6

7

2

4

5

Getting started with macros 32

Each type of component in the Project Explorer has an icon assigned to it:

To display or hide the Project Explorer, do any of the following:
• Click View Project Explorer.

• Click the Project Explorer button on the Standard toolbar.
• Press Ctrl + R.

Using the Code window

The Code window is where you spend most of your time when working on macros. A standard code editor in the
style of Microsoft Visual Studio, the Code window lets you do the following:
• format code automatically

Icon Item

macro project

folder

document or object
(Corel DESIGNER)

document or object
(CorelDRAW)

document or object
(Corel PHOTO-PAINT)

form

module

class module (or “class”)

Getting started with macros 33

• color syntax automatically
• check syntax automatically
• jump to definitions
• use contextual pop-up lists and automatic completion

If you are already familiar with any of the Microsoft Visual Studio editors, the Code window will be entirely
familiar to you.

The Code window

To display the Code window, do one of the following:
• Click View Code.
• Press F7.

Formatting code automatically

The Macro Editor formats code automatically for you. Even the capitalization of keywords, functions,
subroutines, and variables is taken care of by the Macro Editor, irrespective of what you type. You cannot
custom-format code, although you can set the indentation for each line, as well as the placing of custom line
breaks.

If you use the returned value when calling a function, the parentheses around the parameters are mandatory (just
as in most modern programming languages):

a = fooFunc (b, c)

However, if the returned value from a function call is being discarded, or if you are calling a subroutine, the
parentheses must be left out (unlike in most other languages):

barFunc d, e

fooBarSub f

Getting started with macros 34

If you prefer always to see the parentheses, use the Call keyword before the function call or subroutine call:

Call barFunc (d, e)

Call fooBarSub (f)

Coloring syntax automatically

As you develop code in the Code window, the Macro Editor colors each word according to its classification.

The Code window also uses the following colorization techniques:

These syntax-colorization techniques make the code much easier to read.

Syntax coloring and highlighting

Breakpoints and bookmarks are lost when you quit the application.

The Macro Editor lets you modify the default colors for syntax highlighting. Click Tools Options, and
choose your settings on the Editor Format page.

Word color Classification

Blue Automation keyword or programming statement

Green Comment

Black All other text

Colorization technique Classification

Red text Line of code containing errors

White text on blue background Selected text

Text highlighted in yellow Line where execution is paused for debugging

White text on red background and red dot in the left
margin

Breakpoint set for debugging purposes

For more information, see “Setting breakpoints” on
page 54.

Blue dot in the left margin Bookmark set in the code

Getting started with macros 35

Checking syntax automatically

Every time you move the cursor out of a line of code, the Macro Editor checks the syntax of the code in that line;
if an error is found, the line is colored red and a pop-up warning is displayed. This real-time checking is useful
(particularly when you are learning to program macros) because it indicates many possible errors in the code
without having you run the code.

The Macro Editor lets you disable pop-up warnings. Click Tools Options, click the Editor tab, and
then disable the Auto Syntax Check check box. Although the Macro Editor still checks the syntax and
colors erroneous lines red, it stops displaying a warning when you paste text from another line of code.

Jumping to definitions

The Macro Editor lets you jump directly to the definition of a variable, function, or object.

To return to where you requested the definition, right-click anywhere in the Code window, and then
click Last Position.

Using contextual pop-up lists for automatic completion

The Macro Editor adds the functions you write and the variables you define to an internal list that contains all
built-in keywords and enumerated values. As you type, the Macro Editor displays a contextual list of words that
are valid candidates for insertion at the current position. This auto-completion feature makes code development
quicker and more convenient.

An auto-completion pop-up list

Desired definition Procedure Destination

Variable Right-click the variable in the Code
window, and then click Definition.

The definition of the variable in the
code

Function Right-click the function in the Code
window, and then click Definition.

The definition of the function in the
code

Object Right-click the object in the Code
window, and then click Definition.

The definition of the object in the
Object Browser

Getting started with macros 36

If you type the first few characters of the word you want to use, the pop-up list advances to the nearest candidate
that matches those characters. Select the desired word, and then do one of the following:
• type the character to follow the word (typically a space, line feed, parenthesis, period, or comma)
• enter only the word by pressing Tab or Ctrl + Enter

To force the pop-up menu display, press Ctrl + Spacebar; the menu scrolls to the word that most closely
matches the characters that you have typed so far. This technique is particularly useful for filling
parameter lists when calling a function or subroutine. If there is only one exact match, the Macro Editor
inserts the word without popping up the list; to display the pop-up list for the selected keyword at any
time without auto-filling it, press Ctrl + J.

Using the Properties window

The Properties window lists all editable properties for the selected object. Many macro objects — including
projects, modules, and forms and their controls — have property sheets that can be modified.

The Properties window, with the properties of a form displayed

The Properties window is automatically updated when you select an object, or when you change the properties
of the selected object by using other methods (for example, by using the mouse to move and resize form
controls).

To display or hide the Properties window, do any of the following:
• Click View Properties Window.

• Click the Properties Window button on the Standard toolbar.
• Press F4.

Using the Macro Editor toolbars

The Macro Editor features four toolbars — Standard, Debug, Edit, and UserForm — that you can use to
perform macro-related tasks.

The Standard toolbar is the default toolbar.

The Standard toolbar

Getting started with macros 37

The Debug toolbar contains buttons for common debugging tasks (see “Debugging macros” on page 52).

The Debug toolbar

The Edit toolbar contains buttons for common code-editing tasks.

The Edit toolbar

The UserForm toolbar contains buttons specific to designing dialog boxes (see “Designing dialog boxes” on
page 60).

The UserForm toolbar

To display or hide a toolbar, click View Toolbars, and then click the corresponding command. A check mark
next to a command indicates that its toolbar is currently displayed.

You can “float” a toolbar by dragging it from the menu bar.

You can dock a toolbar by dragging it to the menu bar.

Using the Object Browser

The Object Browser is one of the most useful tools that is provided by the Macro Editor. In an easy-to-use,
structured format, the Object Browser displays the entire object model of each referenced component and, most
importantly, of Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT.

Referenced components include all ActiveX or Object Linking and Embedding (OLE) objects that are
used by the project.

The Object Browser window features the following items:
• Project/Library list box — lists all referenced components (projects and libraries). Choosing a project or

library from this list updates the Object Browser to display only the items for that project or library.
Generally, displaying only one project or library at a time makes it easier to use the Object Browser.

• navigation buttons — let you cycle through your selections from the Object Browser
• Copy to Clipboard button — copies the current selection to the Clipboard
• View Definition button — displays where the current selection is defined in the Code window
• Help button — displays a Help topic for the current selection. You can also access this Help topic by pressing

F1.
• search controls — let you search the selected project or library for a given string. For more information, see

“Using the search controls” on page 42.
• Search Results window — displays the results of a search. For more information, see “Using the search

controls” on page 42.
• Class list — displays all class-related items for the selected project or library. For more information, see

“Using the Class list” on page 38.

Getting started with macros 38

• Member list — displays the members of the selected class. For more information, see “Using the Member
list” on page 39.

• Information window — displays information about the selected class or class member. For more information,
see “Using the Information window” on page 41.

The Object Browser window

To open the Object Browser from within the Macro Editor, do any of the following:
• Click View Object Browser.

• Click the Object Browser button on the Standard toolbar.
• Press F2.

To reference the object model of another application, click Tools References. Referenced components
can be accessed by the macro code.

Using the Class list

Every project and library has an object model that contains the following class-related items, which are displayed
in the Class list:
• global values
• classes
• modules
• types
• enumerations

Global values apply to an entire project or library, and they include individual members from enumerations (such
as text-paragraph alignments, shape types, and import/export filters).

Classes contain properties, methods, and events. For more information, see “What is a class?” on page 12.

Project/
Library
list box

search
controls

Class list

Member
list

Information
window

navigation
buttons

Copy to
Clipboard

button

View
Definition

button

Help
button

Search
Results
window

Getting started with macros 39

For documentation on all classes available to Corel DESIGNER, CorelDRAW, or Corel PHOTO-
PAINT, see the “Object Model Reference | Classes” section of the Macros Help file for the application.

Modules contain macro code.

For documentation on all modules available to Corel DESIGNER or CorelDRAW, see the “Object Model
Reference | Modules” section of the Macros Help file for the application.

Types are customized data types that supplement the built-in data types that are provided by the automation
environment (see “How are variables declared?” on page 14).

For documentation on all types available to Corel DESIGNER or CorelDRAW, see the “Object Model
Reference | Types” section of the Macros Help file for the application.

Enumerations represent fixed values in the procedures and functions of the coding for a macro. For more
information, see “What is an enumeration?” on page 13.

For documentation on all enumerations available to Corel DESIGNER, CorelDRAW, or Corel PHOTO-
PAINT, see the “Object Model Reference | Enumerations” section of the Macros Help file for the
application.

Each type of item in the Class list has an icon assigned to it:

To access the Help topic for a selected item, click the Help button, or press F1.

Using the Member list

When you choose an item from the Class list, the members of that item appear in the Member list. Class
members include the following:
• properties
• methods
• events

Icon Item

global value

class

module

type

enumeration

Getting started with macros 40

• constants

A property can be a simple type (such as a Boolean, integer, or string), or it can be a class or enumeration from
the Class list. A property that is based on a class from the Class list inherits all members of that class.

Many classes have a default property. The default property is implied if no property name is given when getting
or setting the value of the parent object. For example, collection types have the default property Item, which can
be indexed; in such instances, it is not necessary to specify the Item property. Here,

ActiveSelection.Shapes.Item(1).Selected = False

is the same as the shorter

ActiveSelection.Shapes(1).Selected = False

because Item is the default or implied property of a collection of shapes.

For documentation on all properties available to Corel DESIGNER, CorelDRAW, or Corel PHOTO-
PAINT, see the “Object Model Reference | Properties” section of the Macros Help file for the application.

Methods are commonly known as “member functions” — functions that a class can perform on itself. A good
example is the Move method of the Shape class in Corel DESIGNER and CorelDRAW, which moves a shape by
using an [x, y] vector. The following code moves the selected shapes 2 measurement units to the right and 3
measurement units upwards:

ActiveSelection.Move 2, 3

If the return value of a function is not used, the function call does not take parentheses around the argument list
unless the Call keyword is used.

For documentation on all methods available to Corel DESIGNER, CorelDRAW, or Corel PHOTO-
PAINT, see the “Object Model Reference | Methods” section of the Macros Help file for the application.

Events are associated with some classes. You can set up an event handler that is called when that event occurs in
the application; this functionality lets you develop sophisticated applications that respond automatically to what
is happening within the application. Commonly handled events include the BeforePrint, BeforeSave,
PageActivate, SelectionChange, and ShapeMove events of the Document class in Corel DESIGNER and
CorelDRAW.

For documentation on all events available to Corel DESIGNER, CorelDRAW, or Corel PHOTO-
PAINT, see the “Object Model Reference | Events” section of the Macros Help file for the application.

The constants displayed in the Member list are members of enumerations or are defined as public in a module.
Enumerations group related items from a closed list — such as Corel DESIGNER and CorelDRAW shape types,
import/export filters, and alignments — for use anywhere an integer value is required.

In Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT, many constants begin with cdr (for example,
cdrEPS and cdrLeftAlignment), while others begin with clr, cui, pdf, pnt, or prn. Visual Basic also has its
own constants, including ones (such as vbKeyEnter) for keystrokes and ones (such as vbOK) for dialog-box
buttons.

Getting started with macros 41

For documentation on all constants available to Corel DESIGNER, CorelDRAW, or Corel PHOTO-
PAINT, see the “Object Model Reference | Constants” section of the Macros Help file for the application.

Each type of item in the Member list has an icon assigned to it:

To access the Help topic for a selected item, click the Help button, or press F1.

Using the Information window

The Information window provides information about the selected class or class member. This information
includes the following:
• a prototype of the item
• an indication of whether the item is a read-only property
• the parent of the item
• a short description of the item

The Information window for the Document.Application property in Corel PHOTO-
PAINT

The Information window provides hyperlinks to all referenced types and classes that are defined within the
current object model. For example, the information for the Document.Application property in Corel PHOTO-
PAINT (see the preceding figure) includes the following hyperlinks:
• Application — accesses the Application class, because Application is both the type of the

Document.Application property and a class in the PHOTOPAINT library
• PHOTOPAINT — accesses the class for the PHOTOPAINT library, which contains all classes in the

Corel PHOTO-PAINT object model
• Document — accesses the Document class, which is the parent of the Application property

Icon Item

property

default property

method

event

constant

Getting started with macros 42

When the Information window is not tall enough to reveal its complete contents, a scroll bar is provided.
To increase the height of the Information window, drag the top border of the window upwards.

Using the search controls

The search controls let you search the selected project or library for a given string. Searching is useful when you
can only partly remember the name of a class or class member, or when you want to find classes and members
that have similar names (such as those containing the word “open”).

Searching an object model

To search the classes and members of the selected object model, type a string into the Search box, and then click
the Search button . The Search Results window displays, in alphabetical order, all matches. Clicking a
match advances the Class list and Member list to that item and displays the Information window for that item.

Matching class names have a blank Member column in the Search Results window.

To hide the Search Results window, click the Hide Search Results button .

Using the VSTA Editor

Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT provide an integrated development environment
(IDE) for creating VSTA macro projects. Called the VSTA Editor, this IDE is similar to the Macro Editor (which
is the IDE for VBA macro projects in Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT). You can use
the VSTA Editor to perform various tasks related to VSTA macros.

Getting started with macros 43

By default, the software creates VSTA folders at the following location:
• for Corel DESIGNER: My Documents\Corel\VSTA\Corel DESIGNER
• for CorelDRAW: My Documents\Corel\VSTA\CorelDRAW
• for Corel PHOTO-PAINT: My Documents\Corel\VSTA\Corel PHOTO-PAINT

Be sure to load VSTA add-ins from the following location:
• for Corel DESIGNER: My Documents\Corel\VSTA\Corel DESIGNER\Addins
• for CorelDRAW: My Documents\Corel\VSTA\CorelDRAW\Addins
• for Corel PHOTO-PAINT: My Documents\Corel\VSTA\Corel PHOTO-PAINT\Addins

You can open the VSTA Editor from within Corel DESIGNER, CorelDRAW, or Corel PHOTO-PAINT.
Although the VSTA Editor opens in a separate window, it runs within the process of its host application. To open
the VSTA Editor, do any of the following:
• Click Tools Macros VSTA Editor on the main menu in the application.
• Press Alt + Shift + F12.

To switch between the VSTA Editor and the application, use the Windows taskbar, or press
Alt + Shift F12 or Alt + Tab.

For more detailed information on VSTA and its programming environment, please consult the Help menu in the
VSTA Editor.

Corel DESIGNER Technical Suite X5 Macro Programming Guide 44

Creating macros
Now that you are familiar with the concept of automation and with the macro-related tools and features of
Corel DESIGNER, CorelDRAW, and Corel PHOTO-PAINT, you are ready to create macros.

This section contains the following topics:
• “Creating macro projects” on page 44
• “Writing macros” on page 47
• “Recording macros” on page 48
• “Running macros” on page 51
• “Debugging macros” on page 52

Creating macro projects

The process of creating a macro begins with creating a macro project. A macro project can be created in one of
two ways:
• as a Global Macro Storage (GMS), or “project,” file
• in a document

For best results in storing and distributing a macro project, it is highly recommended that you use a GMS file.
GMS files are stored in the GMS folder for the application, which is installed at the following locations:
• for macro projects that ship with the software: X:\Program Files\Corel\<folder>\<application> (where

X: is the drive and Program Files\Corel\<folder> is the path where the software is installed, and where
<application> is the application subfolder)

• for user-created macro projects on Windows 7 and Windows Vista®:
X:\Users\<user name>\AppData\Roaming\Corel\<folder>\<application> (where X: is the drive where
the software is installed, <user name> is the name of the user, <folder> is the folder where the software is
installed, and <application> is the application subfolder)

• for user-created macro projects on Windows XP:
X:\Documents and Settings\<user name>\Application Data\Corel\<folder>\<application> (where
X: is the drive where the software is installed, <user name> is the name of the user, <folder> is the folder
where the software is installed, and <application> is the application subfolder)

The Macro Manager docker provides basic tools for working with macro projects. For access to more advanced
tools, you can use the Macro Editor (for VBA macro projects) or the VSTA Editor (for VSTA macro projects).

Creating macros 45

In the Macro Editor, a VBA macro project is broken into four types of components, which are displayed as the
following folders in the Project Explorer (see “Using the Project Explorer” on page 31):
• <application> Objects — contains a single item that is used mostly for event handling: ThisMacroStorage

for GMS-based macro projects, or ThisDocument for document-based macro projects. For normal code, this
module is not used.

• Forms — contains customized dialog boxes and user interfaces, plus the code to control them
• Modules — contains code modules, for storing general code and macros
• Class Modules — contains object-oriented Visual Basic class modules (which are not discussed in this

documentation)

In the Macro Editor, you cannot move a component from one folder to another within the same project.
However, you can drag a component to another project to make a copy of it there.

For details on creating macro projects, see the following procedures:
• “To create a macro project” on page 45
• “To add a dialog box to a macro project” on page 46
• “To add a code module to a macro project” on page 46
• “To add a class module to a macro project” on page 47

To create a macro project

• In the Macro Manager docker, do one of the following:

• Click Visual Basic for Applications in the list, click New, and then click New macro project.
• Right-click Visual Basic for Applications in the list, and then click New macro project.

Project names must follow normal variable-naming conventions: They must begin with an alphabetic
character, and they must not contain spaces nor special characters other than underscores (_).

You can also

Load a macro project Do one of the following:
•Click Visual Basic for Applications in the list, click

Load, and then choose the project.
•Right-click Visual Basic for Applications in the list,

click Load macro project, and then choose the project.

Rename a macro project Right-click the project in the list, and then click Rename.

You can also rename a macro project from within the
Macro Editor. Click the project in the Project Explorer, and
then edit the (Name) value in the Properties window.
Press Enter to commit your changes.

Creating macros 46

Some macro projects are locked and cannot be modified.

To add a dialog box to a macro project

1 In the Project Explorer of the Macro Editor, right-click the project.

2 Click Insert UserForm.

A form is added to the Forms folder for the project.

Some macro projects are locked and cannot be modified.

For more information, see “Providing dialog boxes for macros” on page 58.

To add a code module to a macro project

• Do one of the following:

• In the Macro Manager docker, click the project in the list, click New, and then click New module.
• In the Macro Manager docker, right-click the project in the list, and then click New module.
• In the Project Explorer of the Macro Editor, right-click the project, and then click Insert Module.

Copy a GMS-based macro project Right-click the project in the list, click Copy to, and then
choose the target location for the copy.

NOTE: You cannot copy a document-based macro project.
Such projects are stored within a document and cannot be
managed separately from that document.

Unload a GMS-based macro project Right-click the macro project in the list, and then click
Unload macro project.

NOTE: You can close a document-based macro project
only by closing the document in which it is stored.

You can also

Display or hide all code modules in the Macro Manager
docker

In the Macro Manager docker, click the Simple mode

button .

Edit a code module In the Macro Manager docker, do one of the following:
•Click the module in the list, and then click the Edit

button .
•Right-click the module in the list, and then click Edit.

The code module opens in the Macro Editor.

Rename a code module In the Macro Manager docker, right-click the module in
the list, and then click Rename.

You can also

Creating macros 47

Some macro projects are locked and cannot be modified.

To add a class module to a macro project

1 In the Project Explorer of the Macro Editor, right-click the project.

2 Click Insert Class Module.

A new class module is added to the Class Modules folder for the project.

Some macro projects are locked and cannot be modified.

Detailed documentation on creating class modules is beyond the scope of this documentation.

Writing macros

You can manually code a macro by writing it in the Macro Editor or the VSTA Editor. (Alternatively, in
Corel DESIGNER and CorelDRAW, you can create a VBA macro by recording it. For information, see
“Recording macros” on page 48.) Macros that are developed in the Macro Editor or the VSTA Editor can take
advantage of full programming control, including conditional execution, looping, and branching. In effect, you
can write macros that are programs in their own right.

In this documentation, all macro code is referred to as a macro. In some contexts, however, a macro is
just those parts of the code that can be run by Corel DESIGNER, CorelDRAW, or Corel PHOTO-
PAINT.

To write a macro, you must first add it to a code module for the desired macro project. You can edit, rename, or
even delete macros.

For details on writing macros, see the following procedures:
• “To add a macro to a macro project” on page 47
• “To edit a VBA macro” on page 48
• “To delete a VBA macro” on page 48

To add a macro to a macro project

• In the Macro Manager docker, do one of the following:

• Click the desired container module in the macro project, click New, and then click New macro.
• Right-click the desired container module in the macro project, and then click New macro.

Delete a code module In the Macro Manager docker, do one of the following:
•Click the module in the list, and then click the Delete

button .
•Right-click the module in the list, and then click Delete.

You can also

Creating macros 48

Some macro projects are locked and cannot be modified.

To edit a VBA macro

• In the Macro Manager docker, do one of the following:

• Click the macro in the list, and then click the Edit button .
• Right-click the macro in the list, and then click Edit.
The macro opens in the Macro Editor.

Some macro projects are locked and cannot be modified.

For detailed information on manually coding macros, see “How is automation coding structured?” on
page 14.

To delete a VBA macro

• In the Macro Manager docker, do one of the following:

• Click the macro in the list, and then click the Delete button .
• Right-click the macro in the list, and then click Delete.

Some macro projects are locked and cannot be modified.

Recording macros

Corel DESIGNER and CorelDRAW offers a recording feature that lets you create a macro without needing to
manually code it. For many simple and repetitive tasks, recorded macros are a quick, efficient solution: They
store the sequence of keys that you press and the mouse actions that you perform within the application. You
may prefer to create macros by recording them if you are not familiar with the object model for the application,
or if you are not sure which objects and methods to use.

In Corel PHOTO-PAINT, actions can be recorded as Corel SCRIPT scripts but not as VBA or VSTA
macros. For information on recording scripts, see “Working with scripts” in the main Help file for
Corel PHOTO-PAINT (corelpp.chm).

If you want to store a recorded macro for future use, you can save it by using the Record Macro dialog box.
Saving a recorded macro is particularly useful if you want to extend or customize its functionality by editing it in
the Macro Editor.

Creating macros 49

The Record Macro dialog box

However, if you want to use a recorded macro during the current session only, you can record a temporary macro.

For details on recording macros, see the following procedures:
• “To record and save a macro” on page 49
• “To record a temporary macro” on page 50

To record and save a macro

1 Do one of the following:

• Click Tools Macros Start recording, or click the Start recording button on the Macros toolbar,
to store the macro in the default macro project for recordings.

• In the Macro Manager docker, click the project in which to store the macro, and then click the Record
button .

The Record Macro dialog box appears.

2 In the Macro name box, type a name for the macro.

Macro names can contain numerals, but they must begin with a letter. Macro names cannot contain spaces or
non-alphanumeric characters other than underscores (_).

3 Type a description of the macro in the Description box, and then click OK.

4 Perform the actions that you want to record.

The application begins recording your actions. If you want to pause recording, do one of the following:

• Click Tools Macros Pause recording. Repeat this step to resume recording.

• Click the Pause recording button on the Macros toolbar or in the Macro Manager docker. Repeat
this step to resume recording.

5 To stop recording, do one of the following:
• Click Tools Macros Stop recording.

Creating macros 50

• Click the Stop recording button on the Macros toolbar or in the Macro Manager docker.
• Press Ctrl + Shift + O.

You cannot record a macro if all available macro projects are locked..

Not all actions can be recorded — some because of their complexity (although many such actions can be
manually coded in the Macro Editor). When an action cannot be recorded, a comment is placed in the
macro code (“The recording of this command is not supported.”), but the recording process
continues until you stop it. You can view any comments in the code by opening the macro in the
Macro Editor.

You can specify the default macro project for recordings by right-clicking the project in the Macro
Manager docker, and then clicking Set as recording project. However, you cannot specify a locked
macro project.

You can cancel recording a macro, and discard any commands recorded thus far, by clicking Tools
Macros Cancel recording.

To record a temporary macro

1 Do one of the following:
• Click Tools Macros Record temporary macro.
• Press Ctrl + Shift + R.

2 Perform the actions that you want to record.

The application begins recording your actions. If you want to pause recording, do one of the following:

• Click Tools Macros Pause recording. Repeat this step to resume recording.

• Click the Pause recording button on the Macros toolbar or in the Macro Manager docker. Repeat
this step to resume recording.

3 To stop recording, do one of the following:
• Click Tools Macros Stop recording.

• Click the Stop recording button on the Macros toolbar or in the Macro Manager docker.
• Press Ctrl + Shift + O.

The macro is temporarily saved to the default recording project. When the current session is ended, the macro
is deleted from that project.

You cannot record a temporary macro if all available macro projects are locked.

Not all actions can be recorded.

You can also

Save the actions in the Undo list as a VBA macro Click Tools Undo, perform the actions that you want to
record, and then click the Save list to a VBA macro

button in the Undo docker.

Creating macros 51

You can specify the default recording project by right-clicking the project in the Macro Manager docker,
and then clicking Set as recording project. (You cannot specify a locked macro project.) If you want,
you can create multiple temporary recordings by assigning each one to its own macro project.

You can cancel recording a macro, and discard any commands recorded thus far, by clicking Tools
Macros Cancel recording.

Running macros

You can run saved macros in one of two ways:
• from directly within Corel DESIGNER, CorelDRAW, or Corel PHOTO-PAINT
• from within the Macro Editor

The Run Macro dialog box

You can also run any temporary macro recorded in Corel DESIGNER or CorelDRAW.

For details on running macros, see the following procedures:
• “To run a saved macro” on page 51
• “To run a temporary macro” on page 52

To run a saved macro

• Do one of the following:

• Click Tools Macros Run macro, or click the Run macro button on the Macros toolbar. From the
Macros in list box, choose the project or file in which the macro is stored. From the Macro name list,
choose the macro. Click Run.

• In the Macro Manager docker, double-click the macro in the list.

• In the Macro Manager docker, click the macro in the list, and then click the Run button .
• In the Macro Manager docker, right-click the macro in the list, and then click Run.
• In the Macro Editor, click anywhere in the subroutine that forms the macro, and then click Run Run

macro.

Creating macros 52

To run a temporary macro

• Do one of the following:

• Click Tools Macros Run temporary macro.
• Press Ctrl + Shift + P.

This option is enabled only after you record a temporary macro.

If you have created multiple temporary macros, you must specify which macro project contains the one
that you want to run. Right-click the project in the Macro Manager docker, and then click Set as
recording project.

Debugging macros

To ensure that your macros run as expected, it’s important to debug them.

The Macro Editor provides four windows for debugging VBA code. The Macro Editor also provides two strong
debugging facilities that are common to language editors: setting breakpoints, and stepping through code.

The Macro Editor also supports two advanced debugging techniques that are not discussed in this
documentation: Making changes to the code while it is running, and watching and changing variables.

Using the debugging windows

The Macro Editor provides four windows for debugging VBA code: the Call Stack window, the Immediate
window, the Locals window, and the Watches window. All of these windows provide important information
about the state of functions and variables while an application is running.

The Call Stack window is a modal dialog box that lists which function calls which function. In long, complicated
applications, this information is useful for tracing the steps to a particular function being called. To visit a
function listed in the window, select the function name and then click Show, or else close the window.

To display the Call Stack window, click View Call Stack.

The Call Stack window

Creating macros 53

The Immediate window lets you type in and run arbitrary lines of code while a macro is paused. This
functionality is useful for getting or setting the property of an object in the document, or for setting the value of
a variable in the code. To run a piece of code, type it in the Immediate window, and then press Enter; the code
is executed immediately.

To display the Immediate window, click View Immediate window.

The Immediate window

The Locals window displays all variables and objects that exist within the current scope. The type and value for
each variable are listed in the columns next to the name of the variable. Some variables and objects have several
children, which can be displayed by clicking the button next to the parent. Many variables let you edit their
value by clicking it.

To display the Locals window, click View Locals window.

The Locals window

The Watches window is used to watch specific variables or object properties. This functionality is useful for
watching just one or two values rather than searching for them among all the values in the Locals window.

To display the Watches window, click View Watch window.

Creating macros 54

The Watches window

To add a value to the Watches window, do one of the following:
• Select the variable or object and its property, and then drag the selection onto the Watches window.
• Click the item, and then click Debug Quick watch.

The Add Watch dialog appears.

The Add Watch dialog box

Select the item that you want to watch, select any conditions for this watch, and then click OK. If the condition
becomes true, the application pauses to let you examine the code.

Setting breakpoints

A breakpoint is a marker in a line of code that causes execution to pause. To continue, you must either restart the
execution or step through the subsequent lines of code.

To set or clear a breakpoint, click the line, and then click Debug Toggle breakpoint. By default, the line is
highlighted in dark red, and a red dot is placed in the margin.

To restart the code after it pauses at a breakpoint, click Run Continue. To pause the execution of the code
(immediately exiting from all functions and discarding all return values), click Run Reset.

You can also “run to cursor” — that is, execute the code until it reaches the line that the cursor is on, and then
pause at that line. To do this, click the line where you want execution to pause, and then click Debug Run to
cursor.

Creating macros 55

To clear all breakpoints, click Debug Clear all breakpoints.

If the line with the breakpoint (or the cursor, when “running to cursor”) is not executed because it is in a
conditional (if-then-else) block, the code does not stop at that line.

Breakpoints are not saved. They are lost when you close the Macro Editor.

Stepping through the code

When execution pauses at a breakpoint, you can continue through the code one line at a time. This functionality,
called “stepping through the code,” lets you do the following:
• examine the values of individual variables after each line
• determine how the code affects the values
• determine how the values affect the code

To step through the code, click Debug Step into. The execution advances to every line in all called functions
and subroutines.

To step through each line of the current function or subroutine but not through the lines of each called function
or subroutine, click Debug Step over. The called functions and subroutines are executed, but not line-by-line.

To execute the rest of the current function or subroutine but pause when the function or subroutine returns to
the point where it was called, click Debug Step out. This technique is a quick way of returning to the point of
entry of a function, to continue stepping through the code of the calling function.

Corel DESIGNER Technical Suite X5 Macro Programming Guide 56

Making macros user-friendly
An important part of many macro solutions is the user interface. A well-designed interface improves the ease-of-
use, power, and acceptance of a macro solution. Simple user interfaces can be created with toolbars, while more
complex interfaces can be created with dialog boxes or dockers — and can even allow the user to interact with
the mouse.

However, for some macro solutions, a user interface alone is not enough. To make a macro solution as user-
friendly as possible, you can provide documentation for it.

This section contains the following topics:
• “Providing toolbars for macros” on page 56
• “Providing dialog boxes for macros” on page 58
• “Providing user interaction for macros” on page 65
• “Providing documentation for macros” on page 68

Providing toolbars for macros

A toolbar provides a basic interface that enhances the user’s experience with your macro solution. Toolbars are
useful because their buttons are memorable even if small, and because those buttons can be set to display
meaningful captions and helpful tooltips.

Designing toolbars for macros

When creating toolbars, you should plan carefully. Having multiple small toolbars containing a few related
buttons is better than having one big toolbar containing all of the buttons for all of your macros. By breaking
your buttons into small groups, it is much easier to deploy them with the projects to which they belong.

For more information, see the following procedures:
• “To create a macro toolbar” on page 57
• “To add buttons to a macro toolbar” on page 57

Associating images or icons with macros

Macro commands can have an image or icon associated with them. This image or icon can be displayed or hidden
on toolbars and menus, and it can be sized as small (16 × 16 pixels), medium (32 × 32 pixels), or large
(48 × 48 pixels).

For more information, see the following procedure:
• “To associate an image or icon with a macro” on page 57

Making macros user-friendly 57

Setting captions and tooltips for macros

Each macro can have both a caption and a tooltip. The caption is displayed whenever the menu command is used
and can be displayed as part of a button, while the tooltip appears when the pointer hovers over the button or
menu item.

For more information, see the following procedures:
• “To set a caption for a macro” on page 57
• “To set a tooltip for a macro” on page 58

To create a macro toolbar

1 Click Tools Options.

2 Click Workspace Customization Command bars.

3 Click New.

4 Type a name for the toolbar.

5 Enable the check box next to the name of the toolbar.

To add buttons to a macro toolbar

1 Click Workspace Customization Commands.

2 Choose Macros from the Commands list box.

The list displays the fully qualified names of all of the public, parameter-free subroutines from all of the
installed project (GMS) files.

3 Drag a macro from the list to the toolbar.

The macro appears on the toolbar with the default macro icon.

To associate an image or icon with a macro

1 Click Workspace Customization Commands.

2 Choose Macros from the Commands list box.

The list displays the fully qualified names of all of the public, parameter-free subroutines from all of the
installed project (GMS) files.

3 Select a macro in the Command list.

4 Click the Appearance tab, and then do one of the following:
• To apply a Windows bitmap (BMP) image to the macro, click Import, navigate to where the image is

stored, and select it. The colors in the image are mapped to their closest available matches.
• To create a customized icon for the macro, edit the pixels displayed in the Image area.

To set a caption for a macro

1 Click Workspace Customization Commands.

2 Choose Macros from the Commands list box.

The list displays the fully qualified names of all of the public, parameter-free subroutines from all of the
installed project (GMS) files.

Making macros user-friendly 58

3 Select a macro in the Command list.

4 Click the Appearance tab, and then type the caption in the Caption box.

To specify a character in the caption as an accelerator that can be activated in combination with the Alt key,
type an ampersand (&) in front of that character. This accelerator key applies only to menu commands,
which display accelerator characters with an underscore (_).

To set a tooltip for a macro

1 Click Workspace Customization Commands.

2 Choose Macros from the Commands list box.

The list displays the fully qualified names of all of the public, parameter-free subroutines from all of the
installed project (GMS) files.

3 Select a macro in the Command list.

4 Click the General tab, and then type the tooltip in the Tooltip help box.

Providing dialog boxes for macros

A dialog box provides a user-friendly interface for more complex macro solutions.

For best results, all dialog boxes must provide the following:
• a meaningful title
• an obvious function for cancelling or closing the dialog box
• an easy-to-use layout
• a Help button from which users can access how-to documentation
• a tooltip (that is, a ControlTipText string) for every control

There are two types dialog boxes: modal and modeless.

Understanding modal dialog boxes

A modal dialog box locks the application until the user acts on and then closes the dialog box. Most built-in
dialog boxes for macro solutions are modal, and most modal dialog boxes provide the following buttons:
• OK — performs an action and then closes the dialog box. This button is the default.
• Cancel — closes the dialog box without performing an action. This button provides the same functionality as

the Close button in the upper-right corner of a dialog box.

In addition, some modal dialog boxes provide the following button:
• Apply — performs an action that can be commited by clicking the OK button or cancelled by clicking the

Cancel button

Finally, most wizard-style dialog boxes provide the following buttons:
• Previous — returns to the previous page. This button can be disabled on the first page of the dialog box.
• Next — advances to the next page. This button can be replaced by a Finish button on the last page of the

dialog box.
• Finish — performs the action for the dialog box and then closes the dialog box

Making macros user-friendly 59

Understanding modeless dialog boxes

A modeless dialog box does not lock the application, so the user can leave the dialog box open and continue
working in the application. In this way, modeless dialog boxes behave like dockers. Most modeless dialog boxes
provide the following buttons:
• Apply or Create — performs an action (and can, in fact, be specially labeled to describe that action). This

button is typically the default.
• Close –– closes the dialog box. This button is used after the action is applied.

Choosing between modal and modeless dialog boxes

Before you can create a dialog box for your macro solution, you must decide whether to make it modal or
modeless by considering what you want the dialog box to achieve.

For example, let’s say that you are creating a “one-shot” end-to-end solution such as a customized Print dialog
box or Save dialog box. In this case, you would provide a modal dialog box because it is unlikely that the user
would want to apply the specified settings repeatedly.

On the other hand, let’s say that you are creating a solution for setting up an effect to apply to a selection of
shapes. To let the user specify the desired settings and then apply them repeatedly, you would provide a modeless
dialog box.

After choosing which type of dialog box to provide, you are ready to set it up. For information, see “Setting up
dialog boxes” on page 59.

After setting up a dialog box, you are ready to code it. For information, see “Coding dialog boxes” on page 62.

Setting up dialog boxes

The Form Designer in the Macro Editor provides easy access to the tools for setting up a dialog box.

You can access the Form Designer by creating a new, blank dialog box. In the Project Explorer, right-click the
project to which you want to add a dialog box, and then click Insert UserForm.

A blank form in the Form Designer

Making macros user-friendly 60

The Form Designer provides two main features for designing dialog boxes:
• the Form Designer toolbox
• The UserForm toolbar

The Form Designer also provides functions for naming and testing dialog boxes.

Designing dialog boxes

The Form Designer toolbox is the main utility for designing dialog boxes. It lets you add controls to a dialog
box by dragging them from the toolbox.

The Form Designer toolbox

The Form Designer toolbox lets you add the following controls to a dialog box:

Icon Control name Function

Label Provides static text, such as instructions or captions

TextBox Provides an area for typing text. For information on coding this control,
see “Providing text boxes in dialog boxes” on page 62.

ComboBox Provides a list from which a single item can be selected; optionally, also
provides an area for typing text. For information on coding this control,
see “Providing combination boxes and list boxes in dialog boxes” on
page 63.

ListBox Provides a list from which multiple items can be selected. For
information on coding this control, see “Providing combination boxes
and list boxes in dialog boxes” on page 63.

CheckBox Provides a check box that can be enabled (by clicking to display a check
mark), disabled (by clicking to remove the check mark), or grayed (that
is, made unavailable)

OptionButton Provides a “radio button” that is linked to other radio buttons with the
same GroupName property, such that only one of the buttons can be
enabled at a time

Making macros user-friendly 61

The Form Designer toolbox also features a Pick tool , which lets you select and move the controls
on a dialog box.

To display a Help topic containing information about a selected dialog-box control in the Form Designer,
press F1.

The Form Designer also provides access to the UserForm toolbar, which you can use when designing a dialog
box. For information on this toolbar, see “Using the Macro Editor toolbars” on page 36.

Naming dialog boxes

After you have finished designing your dialog box, you may want to change its title. Click the dialog box to
select it, and then in the Properties window, change the Caption property.

For clarity, you can give each dialog box a unique, descriptive name by using the Properties window.
However, remember to follow the standard programming conventions for naming variables.

Testing dialog boxes

At any time, you can test your dialog box by pressing F5 to run it.

After you finish setting up your dialog box, you can start coding it. For information, see “Coding dialog boxes”
on page 62.

ToggleButton Provides a button that can be toggled (to appear pressed or not pressed)

Frame Groups items together so that they move with the frame

CommandButton Provides a button that can be clicked to commit an assigned action. For
information on coding this control, see “Providing buttons in dialog
boxes” on page 63.

TabStrip Provides separate views of related controls

MultiPage Provides multiple pages of controls

ScrollBar Provides immediate access to a range of values by scrolling

SpinButton Enhances another control (such as a TextBox control) so that the value
for that control can be set more quickly

Image Provides an image. For information on coding this control, see “Providing
images in dialog boxes” on page 65.

Icon Control name Function

Making macros user-friendly 62

Coding dialog boxes

After setting up a dialog box, you can develop the VBA code for displaying it. You can also develop the code for
providing its text boxes, combination boxes and list boxes, buttons, and images.

Displaying dialog boxes

The Show method for a dialog box lets you determine how the dialog box is displayed.

For example, the following code uses the Show method to display the dialog box frmFooForm:

frmFooForm.Show

In addition, the Show method provides a Modal parameter, which lets you specify whether the dialog box is
modal or modeless. A value of vbModal (or 1) for this parameter creates a modal dialog box, while a value of
vbModeless (or 0) creates a modeless dialog box. The following VBA example creates a modeless dialog box:

frmFooForm.Show vbModeless

To open a dialog box from a macro that is available from within the application itself, you must create a public
subroutine within a code module. However, a subroutine cannot be made available from within the application if
the subroutine exists either within the code for a dialog box or within a class module. In addition, the subroutine
cannot take any parameters.

The following VBA example subroutine opens frmFooForm as a modeless dialog box:

Public Sub showFooForm()

 frmFooForm.Show vbModeless

End Sub

When a dialog box loads, it triggers its own UserForm_Initialize event. From this event handler, you
must initialize all the relevant controls on the dialog box. For more information, see “How are event
handlers provided?” on page 23.

Finally, you can also use the Show method to open additional dialog boxes from within the current one, as in the
following VBA example:

UserForm2.Show vbModal

However, control is not returned to you until all open dialog boxes are unloaded.

Providing text boxes in dialog boxes

Text boxes (that is, TextBox controls) are the mainstay of user input. They are simple to use and quick to
program, and they are suitable for a number of purposes.

To set the text in a text box when initializing it, set the Text (default or implicit) property for the TextBox
control, as in the following VBA example:

txtWidth.Text = "3"

txtHeight = "1"

To get the value of a TextBox control, get its Text property in the Properties window, as in the following VBA
example:

Call SetSize(txtWidth.Text, txtHeight.Text)

Making macros user-friendly 63

Providing combination boxes and list boxes in dialog boxes

In a combination box (that is, a ComboBox control), the user can either choose an item from the list or type a
value into the text box. You can prevent users from being able to type into a ComboBox control by setting its
Style property (in the Properties window) to fmStyleDropDownList.

In a list box (that is, a ListBox control), the user can choose one or more items (typically, from between three and
ten items) from the list.

To populate a list of any type, you must call the member function AddItem for the list. This function takes two
parameters: the string or numerical value, and the position in the list. The position parameter is optional, so
omitting it inserts the item at the last position in the list. For example, the following VBA code populates the list
ComboBox1 with four items:

ComboBox1.AddItem 1

ComboBox1.AddItem 2

ComboBox1.AddItem 3

ComboBox1.AddItem 0, 0

To test which item is selected when the OK button is clicked, test the ListIndex property for the list.

To get the value of the caption for a selected combination box or list box, test the Text property for the item, as
in the following VBA example:

Dim retList As String

retList = ComboBox1.Text

Providing buttons in dialog boxes

You can add a button to a dialog box by using the CommandButton control. Click the dialog box to add a
default-sized button, or drag to create a custom-sized one. Click the caption to edit it, or select the button and
edit its Caption property in the Properties window. You might also want to change the name of the button to
something more descriptive, such as buttonOK or buttonCancel.

Designing buttons in the Form Designer

Making macros user-friendly 64

Most dialog boxes have an OK button and a Cancel button. However, no button functions until its dialog box
has code for handling the click event for the button. (This is because dialog boxes in VBA and VSTA are event-
driven.)

For an OK button, you can set its Default property to True so that the event handler for the button is called
when the user presses Enter to activate the dialog box. That way, the click-event handler for the button performs
the functionality of the dialog box and then unloads that dialog box.

If the dialog box is used to set the size of the selected Corel DESIGNER or CorelDRAW shapes by setting their
width and height, then the click-event handler for the OK button could resemble the following VBA code
sample (which assumes you have already created two text boxes called txtWidth and txtHeight):

Private Sub buttonOK_Click()

 Me.Hide

 Call SetSize(txtWidth.Text, txtHeight.Text)

 Unload Me

End Sub

Similarly, the size-setting Corel DESIGNER or CorelDRAW subroutine could resemble the following:

Private Sub SetSize(width As String, height As String)

 ActiveDocument.Unit = cdrInch

 ActiveSelection.SetSize CDbl(width), CDbl(height)

End Sub

From inside the code module for the dialog box, the dialog-box object is implicit, so all the controls can be
simply accessed by name. From other modules, the controls must be accessed through their full name (as in
UserForm1.buttonOK).

The Cancel button is the simplest control: it must dismiss the form without doing anything else. To add a cancel
action to a Cancel button, double-click the button from within the Form Designer to display its code in the
Code window. This creates a new subroutine called cmdCancel_Click:

The Code window with code for a Cancel button

Making macros user-friendly 65

The following VBA code, if applied to a Cancel button, dismisses the dialog box when the button is clicked:

Private Sub cmdCancel_Click()

 Unload Me

End Sub

If you continue by setting the Cancel property for the dialog box to True, then when the user presses Escape,
the cmdCancel_Click event is triggered and the provided code unloads the form.

Providing images in dialog boxes

The Image control is used to place graphics on a dialog box. The image (a bitmap) is contained in the Picture
property, so you can either load an RGB image from a file (such as a GIF, JPEG, or Windows Bitmap BMP file)
or paste one into the property.

At run time, you can change the Picture property if you want to load a new image into the Image control. To
change the Picture property, use the function LoadPicture and provide a path to the new image file, as in the
following VBA example:

Image1.Picture = LoadPicture("C:\Images\NewImage.gif")

Providing user interaction for macros

One way to make your macro solutions more user-friendly is to optimize them for user interaction, such as mouse
input. A macro that captures mouse actions gives users real-time influence on the result of that macro.

The Corel DESIGNER and CorelDRAW object models provide three main ways to receive mouse input from
users, as explained in the following topics:
• “Capturing mouse clicks” on page 65
• “Capturing mouse drags” on page 66
• “Capturing coordinates” on page 67

Capturing mouse clicks

To get the position of a single mouse click, you can use the GetUserClick method of the Document class. This
method pauses the macro until the specified period of time elapses, or until the user clicks in the document or
presses Escape. Here is a VBA example that uses the Document.GetUserClick method:

Dim doc As Document, retval As Long

Dim x As Double, y As Double, shift As Long

Set doc = ActiveDocument

doc.Unit = cdrCentimeter

retval = doc.GetUserClick(x, y, shift, 10, True, cdrCursorPick)

The following parameters for the Document.GetUserClick method are coded into the preceding example:
• The variable x returns the horizontal position of the mouse click.
• The variable y returns the vertical position of the mouse click.

Making macros user-friendly 66

• The parameter shift returns the combination of the Shift, Ctrl, and Alt keys that is held down by the user
when clicking the mouse. The Shift, Ctrl, and Alt keys are assigned values of 1, 2, and 4 (respectively), the
sum of which is the returned value.

• The value 10 specifies the number of seconds for the user to click in the document.
• The value True specifies that the SnapToObjects parameter is enabled.
• The value cdrCursorPick specifies that the icon for the Pick tool is used for the cursor icon. (You cannot use

a custom icon.)

One of the following values is returned:
• 0 — The user successfully completes the click.
• 1 — The user cancels by pressing Escape.
• 2 — The operation times out.

The returned coordinates are relative to the origin of the page and, unless explicity specified, are in
document units.

To get the shapes under the returned click point, you can use the method SelectShapesAtPoint (which is a
member of Page), as in the following VBA example:

doc.ActivePage.SelectShapesAtPoint x, y, True

A value of True selects unfilled objects, while False does not select unfilled objects.

Capturing mouse drags

To get the position of a mouse drag (or an area or rectangle), you can use the GetUserArea method of the
Document class. This method pauses the macro until the specified period of time elapses, or until the user
clicks, drags, and releases in the document or presses Escape. Here is a VBA example that uses the
Document.GetUserArea method:

Dim doc As Document, retval As Long, shift As Long

Dim x1 As Double, y1 As Double, x2 As Double, y2 As Double

Set doc = ActiveDocument

doc.Unit = cdrCentimeter

retval = doc.GetUserArea(x1, y1, x2, y2, shift, 10, True, cdrCursorExtPick)

ActivePage.SelectShapesFromRectangle x1, y1, x2, y2, False

The following parameters for the Document.GetUserArea method are coded into the preceding example:
• The variables x1 and y1 return the horizontal and vertical positions (respectively) of the upper-left corner of

the area.
• The variables x2 and y2 return the horizontal and vertical positions (respectively) of the lower-right corner of

the area.
• The parameter shift returns the combination of the Shift, Ctrl, and Alt keys that is held down by the user

when dragging the mouse. The Shift, Ctrl, and Alt keys are assigned values of 1, 2, and 4 (respectively), the
sum of which is the returned value.

• The value 10 specifies the number of seconds for the user to click in the document.
• The value True specifies that the SnapToObjects parameter is enabled.

Making macros user-friendly 67

• The value cdrCursorExtPick specifies the icon to use for the cursor.

In the preceding example, the code ends by selecting the shapes that lie completely within the area by using the
Page.SelectShapesFromRectangle method.

One of the following values is returned:
• 0 — The user successfully completes the selection.
• 1 — The user cancels by pressing Escape.
• 2 — The operation times out.

This method returns two points that are interpreted as the corners of a rectangle. However, the two
points can also be used as the start point and end point of a mouse drag.

The returned coordinates are relative to the origin of the page and, unless explicity specified, are in
document units.

Capturing coordinates

When capturing mouse actions, or when developing a complex macro solution, you may want to convert
between screen coordinates and document coordinates. This conversion is done with the methods
ScreenToDocument and DocumentToScreen of the Window class.

The following VBA example converts a set of screen coordinates into a point in the document that is visible in
the active window:

Dim docX As Double, docY As Double

ActiveDocument.Unit = cdrMillimeter

ActiveWindow.ScreenToDocument 440, 500, docX, docY

The following VBA example returns the screen coordinates of a point in the document as it appears on the
screen:

Dim screenX As Long, screenY As Long

ActiveDocument.Unit = cdrMillimeter

ActiveWindow.DocumentToScreen 40, 60, screenX, screenY

In both examples, the converted coordinates are returned in the last two parameters.

Screen coordinates start from the upper-left corner of the screen, so positive y-values are down the screen,
whereas negative y-values are up the screen.

You can test whether a set of coordinates (that is, a point) is inside, outside, or on the outline of a curve by using
the Shape.IsOnShape method. For a set of document coordinates, this method returns one of the following:
• cdrInsideShape — if the coordinate is inside the shape
• cdrOutsideShape — if the coordinate is outside the shape
• cdrOnMarginOfShape — if the coordinate is on or near the outline of the shape

Making macros user-friendly 68

For example, the following VBA code tests where the point (4, 6) is in relation to the active shape:

Dim onShape As Long

ActiveDocument.Unit = cdrInch

onShape = ActiveShape.IsOnShape(4, 6)

Providing documentation for macros

To make a macro as user-friendly as possible, you can provide documentation for it.

One solution is to create a Readme file or a printed manual. Another solution is to incorporate the
documentation directly into the user interface for the macro, but this method uses up valuable on-screen “real
estate.” Yet another solution is to create an online Help system, but this method requires special tools and a fair
amount of additional work.

Perhaps the simplest way to provide macro documentation is in the form of a plain-text file. In fact, upon
installation, a macro project can create a registry value that points to the location of this file. In VBA, the
following function can be used to open a plain-text file (where the parameter file provides the full path to the
file, such as C:\ReadMe.txt):

Public Sub launchNotepad(file As String)

 Shell "Notepad.exe" & " " & file, vbNormalFocus

End Sub

A much more powerful solution is to provide documentation in HTML format. HTML provides numerous
benefits over plain-text, including support for graphics and for hypertext links (such as to specific locations in the
document — for example, index.html#middle). In VBA, the following function can be used to open an HTML
file (where the parameter url provides the full path to the file — such as C:\ReadMe.txt — or a URL for the
file):

' Put this Declare statement before all Subs and Functions!

Declare Function ShellExecute Lib "shell32.dll" _

 Alias "ShellExecuteA" (ByVal hwnd As Long, _

 ByVal lpOperation As String, ByVal lpFile As String, _

 ByVal lpParameters As String, ByVal lpDirectory As String, _

 ByVal nShowCmd As Long) As Long

Public Sub launchBrowser(url As String)

 ShellExecute 0, vbNullString, url, vbNullString, vbNullString, 5

End Sub

Corel DESIGNER Technical Suite X5 Macro Programming Guide 69

Organizing and deploying macros
When you’ve finished developing your macro solution, you can make it available to other users.

This section contains the following topics:
• “Organizing macros” on page 69
• “Deploying macros” on page 69

Organizing macros

To make your macro solutions easy to deploy, you can organize them. Here are some tips:
• To sort your macros, use a separate code module for each macro, and then group related macros into a single

GMS file.
• To help users find the entry point to a macro, place all public subroutines into a single code module so that the

macro can be called from within the application.

Deploying macros

You can deploy macro solutions to users for installation. You can deploy GMS files or workspaces, or both.

Deploying GMS files

Every document has an intrinsic GMS file. For this reason, you can explicitly distribute a macro as part of a
document because when that document is opened, the user has immediate access to its macros. This deployment
technique lets you, for example, set up a macro to track how much time the user has spent editing a document.

Alternatively, you can distribute the code module that contains the macro. However, this deployment method
requires users to manually integrate the code module into an existing project file.

The simplest and most reliable way to deploy a macro project is to use its GMS file. To begin, you must export
the GMS file from your computer. Then, each user must import the GMS file by using the Macro Manager
docker. For more information, see the following procedures:
• “To export a GMS file” on page 70
• “To import a GMS file” on page 70

Deploying workspaces

Some macro solutions include a customized workspace that contains relevant toolbars, menus, and shortcut keys.
You can deploy the features of a customized workspace to users by creating a Corel workspace (XSLT) file.

Organizing and deploying macros 70

You can export a subset of workspace features — such as individual menus, individual toolbars, or complete sets
of shortcut keys — if you want users to install only those features, or you can export the entire workspace if you
prefer. For more information, see “To export workspace features” on page 70.

Users can install customized workspace features by importing the XSLT files that you provide. For more
information, see “To import workspace features” on page 71.

In Corel DESIGNER and CorelDRAW, users can also import workspace features by using the
Application.ImportWorkspace method.

To export a GMS file

• Locate the GMS file on your computer, and make it available to your users.

User-created macro projects are typically stored at the following locations:

• on Windows 7 and Windows Vista:
X:\Users\<user name>\AppData\Roaming\Corel\<folder>\<application> (where X: is the drive
where the software is installed, <user name> is the name of the user, <folder> is the folder where the
software is installed, and <application> is the application subfolder)

• on Windows XP:
X:\Documents and Settings\<user name>\Application Data\Corel\<folder>\<application> (where
X: is the drive where the software is installed, <user name> is the name of the user, <folder> is the
folder where the software is installed, and <application> is the application subfolder)

To import a GMS file

1 Save the GMS file to your computer.

User-created macro projects are typically stored at the following locations:

• on Windows 7 and Windows Vista:
X:\Users\<user name>\AppData\Roaming\Corel\<folder>\<application> (where X: is the drive
where the software is installed, <user name> is the name of the user, <folder> is the folder where the
software is installed, and <application> is the application subfolder)

• on Windows XP:
X:\Documents and Settings\<user name>\Application Data\Corel\<folder>\<application> (where
X: is the drive where the software is installed, <user name> is the name of the user, <folder> is the
folder where the software is installed, and <application> is the application subfolder)

2 In the Macro Manager docker, do one of the following:
• Click Visual Basic for Applications in the list, click Load, and then choose the project.
• Right-click Visual Basic for Applications in the list, and then click Load macro project.

To export workspace features

1 Right-click the menu bar, and click Customize Workspace Export Workspaces.

2 In the list, enable the check boxes next to the workspace features that you want to export:
• Dockers — includes the sizes and positions of dockers
• Menus — lets you choose which menus to include

Organizing and deploying macros 71

• Shortcut Keys — includes all available shortcut keys
• Status Bar — includes the status bar
• Toolbars — lets you choose which toolbars to include

Enable all check boxes if you want to export the entire workspace.

3 Click Save.

4 In the File name box, type a filename.

The specified workspace features are saved to a single Corel workspace (XSLT) file with the specified filename.

If you want, you can export each workspace feature to a separate file. Simply export one item at a time
to create a series of XSLT files.

When you export shortcut keys, you export all shortcut keys. If you want to distribute only a few keys,
create a new workspace, remove all shortcut keys from it, and then add only the desired keys.

To import workspace features

1 Right-click the toolbar, and click Customize Workspace Import Workspaces.

2 Click Browse.

3 Select the desired Corel workspace (XSLT) file, and then click Next.

4 In the list, enable the check boxes next to the workspace features that you want to import:
• Dockers — includes the sizes and positions of dockers
• Menus — lets you choose which menus to include
• Shortcut Keys — includes all available shortcut keys
• Status Bar — includes the status bar
• Toolbars — lets you choose which toolbars to include

Enable all check boxes if you want to import the entire workspace.

5 Click Next.

6 Choose a destination for the workspace features by doing one of the following:
• Enable the Current workspace option to import the specified workspace features into the current

workspace, and then click Next.
• Enable the New workspace option to import the specified workspace features into a new workspace. Click

Next, and provide details about the workspace. Click Next.

7 Confirm the details of the import, and then click Finish.

The specified workspace features are imported into the specified workspace.

If the name of an incoming toolbar is the same as an existing toolbar, the incoming toolbar is renamed.

If an imported command calls an uninstalled macro, it does not function.

Corel DESIGNER Technical Suite X5 Macro Programming Guide 72

Understanding the Corel DESIGNER
and CorelDRAW object models
In Corel DESIGNER and CorelDRAW, the Application object is the root of all other objects and is used if no
other root object is specified. You can use the application’s Application object to reference the application’s
object model from an out-of-process controller.

Here’s a Visual Basic example for Corel DESIGNER:

Dim des As CorelDESIGNER.Application

Set des = CreateObject("CorelDESIGNER.Application")

Here’s a Visual Basic example for CorelDRAW:

Dim cdr As CorelDRAW.Application

Set cdr = CreateObject("CorelDRAW.Application")

If desired, you can avoid using the CreateObject keyword in the preceding example by importing the
target type library and using the data types directly.

The Application object contains a Documents collection of all open Document objects (or “documents”) in the
application. When a Corel DESIGNER or CorelDRAW document is created or opened, a corresponding
Document object is added to the Documents collection for the Application object. Each Document object
contains a Pages collection of all the Page objects (or “pages”) in that document. Each Page object contains a
Layers collection of all the Layer objects (or “layers”) on that page. Finally, each Layer object contains a Shapes
collection of all the Shape objects (or “shapes”) on that layer.

In addition, the object model contains a set of filter objects, which provide support for files from other technical-
graphics applications. Import filters are governed by the Layer class, while export filters are governed by the
Document class.

Documents, pages, layers, shapes, and filters are among the most important objects in the Corel DESIGNER
and CorelDRAW object models. Understanding these objects — and their relationships to one another — is the
key to understanding the Corel DESIGNER and CorelDRAW object models.

This section contains the following topics:
• “Working with documents” on page 73
• “Working with pages” on page 93
• “Working with layers” on page 99
• “Working with shapes” on page 103
• “Working with import filters and export filters” on page 143

All code examples in this section are written in VBA.

Understanding the Corel DESIGNER and CorelDRAW object models 73

For a visual representation of the application’s entire object model, please see the object-model diagram
at X:\Program Files\Corel\<folder>\Data (where X: is the drive and <folder> is the folder where the
software is installed):

• for Corel DESIGNER: Corel DESIGNER Object Model Diagram.pdf
• for CorelDRAW: CorelDRAW Object Model Diagram.pdf

Working with documents

Each open document, or Document object, is a member of the Application.Documents collection. The
documents in that collection appear in the order in which they were created or opened.

Corel DESIGNER and CorelDRAW provide a number of properties, methods, and events for working with
documents, the most useful of which are listed in the following table.

Class Member Description

ActiveView OriginX property
and
OriginY property

Combine to specify the origin of the
active view

For more information, see “Panning”
on page 86.

ActiveView SetViewPoint method Specifies the origin of the active view

For more information, see “Panning”
on page 86.

ActiveView Zoom property Specifies the zoom factor of the active
view

For more information, see “Zooming”
on page 85.

AddInHook New event Is triggered when a document is
created

For more information, see “Creating
documents” on page 82.

Application ActiveDocument property Provides direct access to the active
document

For more information, see “Activating
documents” on page 83.

Application CreateDocument method
or
CreateDocumentFromTemplate method

Create a document

For more information, see “Creating
documents” on page 82.

Understanding the Corel DESIGNER and CorelDRAW object models 74

Application DocumentAfterExport event Is triggered when a document is
exported (that is, when the Export
dialog box closes)

For more information, see “Exporting
files from documents” on page 88.

Application DocumentAfterPrint event Is triggered when a document is
printed (that is, when the Print dialog
box closes)

For more information, see “Printing
documents” on page 91.

Application DocumentAfterSave event Is triggered when a document is saved
(that is, when the Save dialog box
closes)

For more information, see “Saving
documents” on page 87.

Application DocumentBeforeExport event Is triggered when the Export dialog
box opens

For more information, see “Exporting
files from documents” on page 88.

Application DocumentBeforePrint event Is triggered when the Print dialog box
opens

For more information, see “Printing
documents” on page 91.

Application DocumentBeforeSave event Is triggered when the Save dialog box
opens

For more information, see “Saving
documents” on page 87.

Application DocumentClose event Is triggered when a document is closed

For more information, see “Closing
documents” on page 92.

Application DocumentNew event Is triggered when a document is
created

For more information, see “Creating
documents” on page 82.

Application DocumentOpen event Is triggered when a document is
opened

For more information, see “Opening
documents” on page 82.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 75

Application Documents property Contains the collection of open
documents

For more information, see “Activating
documents” on page 83.

Application OpenDocument method Opens a document

For more information, see “Opening
documents” on page 82.

Application QueryDocumentClose event Is triggered when the user responds to
a request to close a document

For more information, see “Closing
documents” on page 92.

Application QueryDocumentExport event Is triggered when the user responds to
a request to export a document

For more information, see “Exporting
files from documents” on page 88.

Application QueryDocumentPrint event Is triggered when the user responds to
a request to print a document

For more information, see “Printing
documents” on page 91.

Application QueryDocumentSave event Is triggered when the user responds to
a request to save a document

For more information, see “Saving
documents” on page 87.

Application WindowActivate event Is triggered when a window is activated

For more information, see “Activating
documents” on page 83.

Application WindowDeactivate event Is triggered when a window is
deactivated

For more information, see “Activating
documents” on page 83.

Document Activate method Activates a document

For more information, see “Activating
documents” on page 83.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 76

Document ActiveWindow property Provides direct access to the active
window for a document

For more information, see “Working
with windows” on page 84.

Document AfterExport event Is triggered when a document is
exported (that is, when the Export
dialog box closes)

For more information, see “Exporting
files from documents” on page 88.

Document AfterPrint event Is triggered when a document is
printed (that is, when the Print dialog
box closes)

For more information, see “Printing
documents” on page 91.

Document AfterSave event Is triggered when a document is saved
(that is, when the Save dialog box
closes)

For more information, see “Saving
documents” on page 87.

Document BeforeExport event Is triggered when the Export dialog
box opens

For more information, see “Exporting
files from documents” on page 88.

Document BeforePrint event Is triggered when the Print dialog box
opens

For more information, see “Printing
documents” on page 91.

Document BeforeSave event Is triggered when the Save dialog box
opens

For more information, see “Saving
documents” on page 87.

Document BeginCommandGroup method
and
EndCommandGroup method

Combine to create a “command group”
that reduces a series of programmed,
document-related actions to a single,
undoable step

For more information, see “Creating
command groups for documents” on
page 87.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 77

Document Close event Is triggered when a document is closed

For more information, see “Closing
documents” on page 92.

Document Close method Closes a document

For more information, see “Closing
documents” on page 92.

Document CreateView method Creates a document view

For more information, see “Working
with views” on page 85.

Document Export method,
ExportEx method,
or
ExportBitmap method

Exports a file from a document

For more information, see “Exporting
files from documents” on page 88.

Document FilePath property,
FileName property,
or
FullFileName property

Specifies the file path or filename (or
both) of a saved document

For more information, see “Activating
documents” on page 83.

Document GetUserArea method Returns information about a document
area that the user drags with the mouse

For more information, see “Capturing
mouse drags” on page 66.

Document GetUserClick method Returns information about a document
position that the user clicks with the
mouse

For more information, see “Capturing
mouse clicks” on page 65.

Document Open event Is triggered when a document is
opened

For more information, see “Opening
documents” on page 82.

Document PrintOut method
and
PrintSettings property

Combine to print a document by using
the specified settings

For more information, see “Printing
documents” on page 91.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 78

Document PublishToPDF method
and
PDFSettings property

Combine to publish a document to
PDF by using the specified settings

For more information, see “Publishing
documents to PDF” on page 90.

Document QueryClose event Is triggered when the user responds to
a request to close a document

For more information, see “Closing
documents” on page 92.

Document QueryExport event Is triggered when the user responds to
a request to export a document

For more information, see “Exporting
files from documents” on page 88.

Document QueryPrint event Is triggered when the user responds to
a request to print a document

For more information, see “Printing
documents” on page 91.

Document QuerySave event Is triggered when the user responds to
a request to save a document

For more information, see “Saving
documents” on page 87.

Document ReferencePoint property Specifies the reference point for the
document

For more information, see “Setting
document properties” on page 84.

Document SaveAs method
or
Save method

Saves a document

For more information, see “Saving
documents” on page 87.

Document Unit property Specifies the unit of measurement for
the document

For more information, see “Setting
document properties” on page 84.

Document WorldScale property Specifies the drawing scale for the
document

For more information, see “Setting
document properties” on page 84.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 79

Document Views property Contains the collection of views for a
document

For more information, see “Working
with views” on page 85.

GlobalMacroStor
age

DocumentAfterExport event Is triggered when a document is
exported (that is, when the Export
dialog box closes)

For more information, see “Exporting
files from documents” on page 88.

GlobalMacroStor
age

DocumentAfterPrint event Is triggered when a document is
printed (that is, when the Print dialog
box closes)

For more information, see “Printing
documents” on page 91.

GlobalMacroStor
age

DocumentAfterSave event Is triggered when a document is saved
(that is, when the Save dialog box
closes)

For more information, see “Saving
documents” on page 87.

GlobalMacroStor
age

DocumentBeforeExport event Is triggered when the Export dialog
box opens

For more information, see “Exporting
files from documents” on page 88.

GlobalMacroStor
age

DocumentBeforePrint event Is triggered when the Print dialog box
opens

For more information, see “Printing
documents” on page 91.

GlobalMacroStor
age

DocumentBeforeSave event Is triggered when the Save dialog box
opens

For more information, see “Saving
documents” on page 87.

GlobalMacroStor
age

DocumentClose event Is triggered when a document is closed

For more information, see “Closing
documents” on page 92.

GlobalMacroStor
age

DocumentNew event Is triggered when a document is
created

For more information, see “Creating
documents” on page 82.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 80

GlobalMacroStor
age

DocumentOpen event Is triggered when a document is
opened

For more information, see “Opening
documents” on page 82.

GlobalMacroStor
age

QueryDocumentClose event Is triggered when the user responds to
a request to close a document

For more information, see “Closing
documents” on page 92.

GlobalMacroStor
age

QueryDocumentExport event Is triggered when the user responds to
a request to export a document

For more information, see “Exporting
files from documents” on page 88.

GlobalMacroStor
age

QueryDocumentPrint event Is triggered when the user responds to
a request to print a document

For more information, see “Printing
documents” on page 91.

GlobalMacroStor
age

QueryDocumentSave event Is triggered when the user responds to
a request to save a document

For more information, see “Saving
documents” on page 87.

GlobalMacroStor
age

WindowActivate event Is triggered when a window is activated

For more information, see “Activating
documents” on page 83.

GlobalMacroStor
age

WindowDeactivate event Is triggered when a window is
deactivated

For more information, see “Activating
documents” on page 83.

View Activate method Applies a saved view to the document
window

For more information, see “Working
with views” on page 85.

Window Activate method Activates a document window

For more information, see “Working
with windows” on page 84.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 81

For detailed information on any property, method, or event, see “Object Model Reference” section in the
Macros Help file for the application.

For more information on document-related activities, see the following topics:
• “Creating documents” on page 82
• “Opening documents” on page 82
• “Activating documents” on page 83
• “Setting document properties” on page 84
• “Displaying documents” on page 84
• “Modifying documents” on page 86
• “Creating command groups for documents” on page 87
• “Saving documents” on page 87
• “Exporting files from documents” on page 88
• “Publishing documents to PDF” on page 90
• “Printing documents” on page 91
• “Closing documents” on page 92

Window ActiveView property Provides direct access to the active view
for a document window

For more information, see “Working
with views” on page 85.

Window Close method Closes a document window

For more information, see “Working
with windows” on page 84.

Window NewWindow method Creates a document window

For more information, see “Working
with windows” on page 84.

Window Next property Accesses the next window for a
document

For more information, see “Working
with windows” on page 84.

Window Previous property Accesses the previous window for a
document

For more information, see “Working
with windows” on page 84.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 82

Files of all supported formats can be imported. Imported files are placed on document layers, so
information on importing files is provided in the section on working with layers (see “Importing files into
layers” on page 102) rather than in this section on working with documents.

Creating documents

The Application object has two methods for creating documents: CreateDocument and
CreateDocumentFromTemplate.

The Application.CreateDocument method creates an empty document based on the default page size,
orientation, and styles:

Application.CreateDocument() As Document

The Application.CreateDocumentFromTemplate method creates an untitled document from a specified
template (CDT) file:

Application.CreateDocumentFromTemplate(Template As String, _

 [IncludeGraphics As Boolean = True])As Document

Both of these functions return a reference to the new document, so they are typically used in the following
manner:

Dim newDoc as Document

Set newDoc = CreateDocument

The new document becomes active immediately and can be referenced by using the
Application.ActiveDocument property. For more information on this property, see “Activating documents” on
page 83.

If you want, you can use event handlers to respond to events that are triggered by creating a document:
• AddinHook.New
• Application.DocumentNew
• GlobalMacroStorage.DocumentNew

Opening documents

To open a document, you can use the Application.OpenDocument method.

VBA example for Corel DESIGNER:

Dim doc As Document

Set doc = OpenDocument("C:\graphic1.des")

VBA example for CorelDRAW:

Dim doc As Document

Set doc = OpenDocument("C:\graphic1.cdr")

Understanding the Corel DESIGNER and CorelDRAW object models 83

If you want, you can use event handlers to respond to events that are triggered by opening a document:
• Application.DocumentOpen
• Document.Open
• GlobalMacroStorage.DocumentOpen

Activating documents

Each open document is a member of the Application.Documents collection. The documents in that collection
appear in the order in which they were created or opened.

To reflect the actual stacking order of the documents, you must use the Application.Windows
collection.

The Application.ActiveDocument property provides direct access to the active document — that is, the
document that is in front of all the other documents in the application window. ActiveDocument is an object of
type Document and, therefore, has the same members — properties, methods, and objects — as the
Document class.

If no documents are open, ActiveDocument returns nothing. You can check for open documents by using the
following VBA code:

If Documents.Count = 0 Then

 MsgBox "There aren't any open documents.", vbOK, "No Docs"

 Exit Sub

End If

The Document.Activate method activates a document so that it can be referenced by ActiveDocument. The
following VBA code activates the third open document (if three or more documents are open):

Documents(3).Activate

Using the Document.Activate method on the Application.ActiveDocument property has no effect.

If you want, you can specify which open document to activate by referencing the one of the following properties:
• Document.FilePath — checks only the file path (for example, C:\MyFiles)
• Document.FileName — checks only the filename (for example, Test.cdr)
• Document.FullFileName — checks both the file path and the filename (for example, C:\MyFiles\Test.cdr)

You can check the filename of each open document by using the following VBA code:

Public Function findDocument(filename As String) As Document

 Dim doc As Document

 For Each doc In Documents

 If doc.FileName = filename Then Exit For

 Set doc = Nothing

 Next doc

 Set findDocument = doc

End Function

Understanding the Corel DESIGNER and CorelDRAW object models 84

You can then activate the returned document by using the Document.Activate method.

Setting document properties

You can specify the reference point, unit of measurement, and drawing scale for a document by using the
corresponding properties of the Document class.

The Document.ReferencePoint property specifies the reference point for a document. This point is referenced
when positioning the objects in that document.

The Document.Unit property specifies the unit of measurement for a document. This unit is used to position
and size the objects in that document.

The Document.WorldScale property specifies the drawing scale for a document. The drawing scale lets you
make the distances in a drawing proportionate to real-world distances; for example, you can specify that 1 inch
in the drawing corresponds to 1 meter in the physical world.

These properties affect all elements in your document, such as the objects that you draw. For optimal
results, choose the settings that best fit your macro solution.

Displaying documents

You can simultaneously display multiple windows for a single document. For example, a large document can be
displayed with one window zoomed in to the upper-right corner of the document and another zoomed in to the
lower-right corner. Although the individual windows can be zoomed and panned independently, turning the
page in one window affects all windows.

By using the View Manager, you can create views that have individual display settings. Choosing a saved view
displays the page according to the settings for that view.

In VBA, the Window object provides access to the windows that contain each View object for (or view
of) a given document. The Window object represents a frame, while the View object displays the
document inside that frame.

Besides letting you work with windows and views, the application lets you display documents by zooming and
panning.

Working with windows

Each Document object has a Windows collection for displaying that document. To switch between windows,
use the Window.Activate method:

ActiveDocument.Windows(2).Activate

The Document.ActiveWindow property provides direct access to the active window — that is, the document
window that is in front of all other document windows.

The next window and previous window for the active document are referenced in the Window.Next and
Window.Previous properties:

ActiveWindow.Next.Activate

Understanding the Corel DESIGNER and CorelDRAW object models 85

To create a new window, use the Window.NewWindow method:

ActiveWindow.NewWindow

To close a window (and the document, if it has only one open window), use the Window.Close method:

ActiveWindow.Close

If you want, you can use event handlers to respond to events that are triggered by activating a window:
• Application.WindowActivate
• GlobalMacroStorage.WindowActivate

You can also use event handlers to respond to events that are triggered by deactivating a window:
• Application.WindowDeactivate
• GlobalMacroStorage.WindowDeactivate

Working with views

The Window.ActiveView property and the Document.Views property both represent document views. Each
Window object has one ActiveView object, which represents the current view of the document; saving the
display settings for an ActiveView object creates a view. In contrast, each Document object has a collection of
View objects in its Views property; choosing a View object activates the corresponding saved view, which
contains the display settings for the corresponding ActiveView object.

The only way to access an ActiveView object is from the Window.ActiveView property.

You can create a View object and add it to a Document.Views collection. The following VBA code adds the
current ActiveView settings to the Views collection:

ActiveDocument.Views.AddActiveView "New View"

You can also create a view with specific settings by using the Document.CreateView method. The following
VBA code creates a new View object that accesses the position (3, 4) in inches, uses a zoom factor of 95%, and
displays page 6:

ActiveDocument.Unit = cdrInch

ActiveDocument.CreateView "New View 2", 3, 4, 95, 6

To apply a saved view to the active window, call the View.Activate method:

ActiveDocument.Views("New View").Activate

Zooming

To zoom an ActiveView object by a set amount, set the ActiveView.Zoom property by specifying a double
value in percent. For example, the following VBA code sets the zoom factor to 200%:

ActiveWindow.ActiveView.Zoom = 200.0

Understanding the Corel DESIGNER and CorelDRAW object models 86

You can also zoom by using the following methods of the ActiveView class:
• SetActualSize
• ToFitAllObjects
• ToFitArea
• ToFitPage
• ToFitPageHeight
• ToFitPageWidth
• ToFitSelection
• ToFitShape
• ToFitShapeRange

Panning

To pan an ActiveView object, you can move its origin by modifying the ActiveView.OriginX and
ActiveView.OriginY properties. The following VBA code pans the document 5 inches to the left and 3 inches
up:

Dim av As ActiveView

ActiveDocument.Unit = cdrInch

Set av = ActiveWindow.ActiveView

av.OriginX = av.OriginX - 5

av.OriginY = av.OriginY + 3

Alternatively, you can use the ActiveView.SetViewPoint method:

Dim av As ActiveView

ActiveDocument.Unit = cdrInch

Set av = ActiveWindow.ActiveView

av.SetViewPoint av.OriginX - 5, av.OriginY + 3

Modifying documents

You can modify a document regardless of whether it is active.

Modifying an inactive document does not activate that document. To activate a document, you must use
its Activate method (see “Activating documents” on page 83).

The following VBA code adds a layer named “fooLayer” to the third open document:

Dim doc As Document

Set doc = Documents(3)

doc.ActivePage.CreateLayer "fooLayer"

Understanding the Corel DESIGNER and CorelDRAW object models 87

The following VBA code uses the findDocument() function to add a layer named “fooLayer” to the inactive
document named barDoc.cdr:

Dim doc As Document

Set doc = findDocument("barDoc.cdr")

If Not doc Is Nothing Then doc.ActivePage.CreateLayer "fooLayer"

Creating command groups for documents

Two very useful methods of the Document class combine to create a “command group,” which can reduce a
series of programmed, document-related actions to a single, undoable step. These methods —
BeginCommandGroup and EndCommandGroup — are demonstrated in the following VBA example:

Dim sh As Shape

ActiveDocument.BeginCommandGroup "CreateCurveEllipse"

 Set sh = ActiveLayer.CreateEllipse(0, 1, 1, 0)

 sh.ConvertToCurves

ActiveDocument.EndCommandGroup

The preceding code sets the Undo string in the Edit menu as Undo CreateCurveEllipse. Clicking this
command undoes not only the ConvertToCurves operation but also the CreateEllipse operation.

A command group can contain many hundreds of commands, if required. Creating command groups can make
your macros appear to be fully integrated into the application.

Saving documents

Two methods can be used for saving documents: Document.SaveAs and Document.Save.

The Document.SaveAs method saves a document by using the specified file path and filename. You can use this
method to save a previously unsaved document or to save an existing document to a different file.

The Document.SaveAs method provides an optional parameter that lets you access the
StructSaveAsOptions class to specify additional settings.

The Document.Save method saves over an existing document file — that is, by using the existing file path and
filename for the document.

If you want, you can use event handlers to respond to events that are triggered by opening the Save dialog box:
• Application.DocumentBeforeSave
• Document.BeforeSave
• GlobalMacroStorage.DocumentBeforeSave

You can also use event handlers to respond to events that are triggered by saving a document and closing the
Save dialog box:
• Application.DocumentAfterSave
• Document.AfterSave
• GlobalMacroStorage.DocumentAfterSave

Understanding the Corel DESIGNER and CorelDRAW object models 88

Finally, you can also use event handlers to respond to events that are triggered when the user responds to a
request to save a document:
• Application.QueryDocumentSave
• Document.QuerySave
• GlobalMacroStorage.QueryDocumentSave

Exporting files from documents

Files of all supported formats can be exported.

Files are exported at the Document level because the range of exported objects can extend over multiple
layers and multiple pages. However, files are imported at the Layer level because each imported object
is assigned to a specified layer on a specified page (see “Importing files into layers” on page 102).

The Document class has three file-export methods — Export, ExportEx, and ExportBitmap — all of which
can export to the bitmap and vector formats.

The wide selection of supported file formats is due to the vast number of filters that are available to the
application. Each filter lets you work with the files from another graphics application. To learn more
about working with these filters, see “Working with import filters and export filters” on page 143.

If you want, you can use event handlers to respond to events that are triggered by opening the Export dialog
box:
• Application.DocumentBeforeExport
• Document.BeforeExport
• GlobalMacroStorage.DocumentBeforeExport

You can also use event handlers to respond to events that are triggered by exporting a document and closing the
Export dialog box:
• Application.DocumentAfterExport
• Document.AfterExport
• GlobalMacroStorage.DocumentAfterExport

Finally, you can also use event handlers to respond to events that are triggered when the user responds to a
request to export a document:
• Application.QueryDocumentExport
• Document.QueryExport
• GlobalMacroStorage.QueryDocumentExport

Understanding the Document.Export method

To export a page, you require only the Document.Export method, a filename, and a filter type. The following
VBA code exports the current page to a TIFF bitmap file:

ActiveDocument.Export "C:\ThisPage.eps", cdrTIFF

Understanding the Corel DESIGNER and CorelDRAW object models 89

However, the preceding code gives little control over the output of the image. More control is obtained by
including a StructExportOptions object, as in the following VBA code:

Dim expOpts As New StructExportOptions

expOpts.ImageType = cdrCMYKColorImage

expOpts.AntiAliasingType = cdrNormalAntiAliasing

expOpts.ResolutionX = 72

expOpts.ResolutionY = 72

expOpts.SizeX = 210

expOpts.SizeY = 297

ActiveDocument.Export "C:\ThisPage.eps", cdrTIFF, cdrCurrentPage, expOpts

A StructPaletteOptions object can also be included in the function call for palette-based image formats,
if you want to provide the settings for automatically generating the palette.

Understanding the Document.ExportEx method

The Document.ExportEx method is the same as the Document.Export method, except that ExportEx can
retreive the dialog-box settings for a filter and apply those settings to the export:

Dim eFilt As ExportFilter

Set eFilt = ActiveDocument.ExportEx("C:\ThisPage.eps", cdrEPS)

If eFilt.HasDialog = True Then

 If eFilt.ShowDialog = True Then

 eFilt.Finish

 End If

Else

 eFilt.Finish

End If

Understanding the Document.ExportBitmap method

The Document.ExportBitmap method is similar to the Document.ExportEx method in that it returns an
ExportFilter object that can be used to display the Export dialog box. However, the ExportBitmap method
simplifies the coding by taking the individual members of the StructExportOptions object as parameters:

Dim eFilt As ExportFilter

Set eFilt = ActiveDocument.ExportBitmap("C:\Selection.eps", _

 cdrTIFF, cdrSelection, cdrCMYKColorImage, _

 210, 297, 72, 72, cdrNormalAntiAliasing, _

 False, True, False, cdrCompressionLZW)

eFilt.Finish

Understanding the Corel DESIGNER and CorelDRAW object models 90

Publishing documents to PDF

Publishing documents to PDF is a two-step process. The first step is to specify the PDF settings (although this
step can be skipped by specifying those settings from the application or by using the default settings). The
second step is to export the file.

To specify the PDF settings, you can use the Document.PDFSettings property. This property is an object of
type PDFVBASettings and contains properties for all PDF settings that can be set in the Publish To PDF
dialog box.

The following VBA code for CorelDRAW exports pages 2, 3, and 5 to a PDF file named MyPDF.pdf:

Dim doc As Document

Set doc = ActiveDocument

With doc.PDFSettings

 .Author = "Corel Corporation"

 .Bookmarks = True

 .ColorMode = pdfRGB

 .ComplexFillsAsBitmaps = False

 .CompressText = True

 .DownsampleGray = True

 .EmbedBaseFonts = True

 .EmbedFonts = True

 .Hyperlinks = True

 .Keywords = "Test, Example, Corel, CorelDRAW, PublishToPDF"

 .Linearize = True

 .PageRange = "2-3, 5"

 .pdfVersion = pdfVersion13

 .PublishRange = pdfPageRange

 .TrueTypeToType1 = True

End With

doc.PublishToPDF "C:\MyPDF.pdf"

The following VBA example gives more control to the user by displaying the Publish to PDF Settings dialog
box:

Dim doc As Document

Set doc = ActiveDocument

If doc.PDFSettings.ShowDialog = True Then

 doc.PublishToPDF "C:\MyPDF.pdf"

End If

Profiles for PDF settings can be saved and loaded by using the PDFVBASettings.Save method and
PDFVBASettings.Load method (respectively).

Understanding the Corel DESIGNER and CorelDRAW object models 91

Printing documents

Using VBA to print documents is straightforward: almost all settings that are available in the Print dialog box
are available to the Document.PrintSettings property. When these properties are set, printing the document is
simply a matter of calling the Document.PrintOut method.

For example, the following VBA code prints three copies of pages 1, 3, and 4 to a level-3 PostScript® printer:

With ActiveDocument.PrintSettings

 .Copies = 3

 .PrintRange = prnPageRange

 .PageRange = "1, 3-4"

 .Options.PrintJobInfo = True

 With .PostScript

 .DownloadType1 = True

 .Level = prnPSLevel3

 End With

End With

ActiveDocument.PrintOut

Each page in the Print dialog box has a corresponding object-model class that contains all settings for that page.
The following table lists these classes.

You cannot set layout options in VBA. However, if necessary, you can open the Print dialog box by using
the PrintSettings.ShowDialog method.

You can print only the selected objects in a document by setting the PrintSettings.PrintRange property
to prnSelection.

You can use a specific printer in the Application.Printers collection by specifying it in the
PrintSettings.Printer property.

You can save a printing profile by using the PrintSettings.Save method.

You can access a saved printing profile by using the PrintSettings.Load method, but be sure to specify
the full path to the profile.

Page in Print dialog box Class in object model

General PrintSettings

Layout PrintSettings and PrintLayout

Separations PrintSeparations and PrintTrapping

Prepress PrintPrepress

PostScript PrintPostScript

Misc PrintOptions

Understanding the Corel DESIGNER and CorelDRAW object models 92

You can reset the print settings by using the PrintSettings.Reset method.

If you want, you can use event handlers to respond to events that are triggered by opening the Print dialog box:
• Application.DocumentBeforePrint
• Document.BeforePrint
• GlobalMacroStorage.DocumentBeforePrint

You can also use event handlers to respond to events that are triggered by printing a document and closing the
Print dialog box:
• Application.DocumentAfterPrint
• Document.AfterPrint
• GlobalMacroStorage.DocumentAfterPrint

Finally, you can also use event handlers to respond to events that are triggered when the user responds to a
request to print a document:
• Application.QueryDocumentPrint
• Document.QueryPrint
• GlobalMacroStorage.QueryDocumentPrint

Closing documents

You can close a document by calling the Document.Close method.

The following VBA code closes the active document and activates the document behind it:

ActiveDocument.Close

If the code closes a document that is not active, the document referenced by the
Application.ActiveDocument property does not change.

You must explicitly test the Dirty property for a document and take appropriate action if that document
has been modified.

You can also close a document by using the Close method of the Document object itself (as in
doc.Close).

If you want, you can use event handlers to respond to events that are triggered by closing a document:
• Application.DocumentClose
• Document.Close
• GlobalMacroStorage.DocumentClose

You can also use event handlers to respond to events that are triggered when the user responds to a request to
close a document:
• Application.QueryDocumentClose
• Document.QueryClose
• GlobalMacroStorage.QueryDocumentClose

Understanding the Corel DESIGNER and CorelDRAW object models 93

Working with pages

Each page, or Page object, is a member of the Document.Pages collection for the document in which it appears.
The pages in a Document.Pages collection appear in the order in which they appear in that document — for
example, the fifth page in the active document is ActiveDocument.Pages.Item(5). If pages are added,
reordered, or deleted, the affected Pages collection is immediately updated to reflect the new page order of that
document.

Corel DESIGNER and CorelDRAW provide a number of properties, methods, and events for working with
pages, the most useful of which are listed in the following table.

Class Member Description

Application ActivePage property Provides direct access to the active page of the
active document

For more information, see “Activating pages” on
page 96.

Application PageSizes property Contains the collection of defined page sizes for
the application

For more information, see “Using defined page
sizes” on page 97.

Document ActivePage property Provides direct access to the active page of a
document

For more information, see “Activating pages” on
page 96.

Document AddPages method
or
AddPagesEx method

Adds blank pages to the end of a document

For more information, see “Creating pages” on
page 95.

Document InsertPages method
or
InsertPagesEx method

Inserts pages at the specified location in a
document

For more information, see “Creating pages” on
page 95.

Document MasterPage property Specifies the default page size

For more information, see “Specifying the default
page size” on page 97.

Document PageActivate event Is triggered when a page is activated

For more information, see “Activating pages” on
page 96.

Document PageChange event Is triggered when a page is deactivated

For more information, see “Activating pages” on
page 96.

Understanding the Corel DESIGNER and CorelDRAW object models 94

Document PageCreate event Is triggered when a page is created

For more information, see “Creating pages” on
page 95.

Document PageDelete event Is triggered when a page is deleted

For more information, see “Deleting pages” on
page 98.

Document Pages property Contains the collection of pages for a document

For more information, see “Activating pages” on
page 96.

Page Activate method Activates a page

For more information, see “Activating pages” on
page 96.

Page Delete method Deletes a page

For more information, see “Deleting pages” on
page 98.

Page MoveTo method Moves a page to the specified location in a
document

For more information, see “Reordering pages” on
page 96.

Page SetSize method Sets the size of a page

For more information, see “Specifying the size
and orientation of pages” on page 97.

PageSize BuiltIn property Returns True if a page size is built-in (rather than
user-defined)

For more information, see “Using defined page
sizes” on page 97.

PageSize Delete method Deletes a user-defined page size

For more information, see “Using defined page
sizes” on page 97.

PageSize Height property Specifies the height of a defined page size

For more information, see “Using defined page
sizes” on page 97.

PageSize Name property Specifies the name of a defined page size

For more information, see “Using defined page
sizes” on page 97.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 95

For detailed information on any property, method, or event, see “Object Model Reference” section in the
Macros Help file for the application.

For more information on page-related activities, see the following topics:
• “Creating pages” on page 95
• “Activating pages” on page 96
• “Reordering pages” on page 96
• “Sizing pages” on page 97
• “Modifying pages” on page 98
• “Deleting pages” on page 98

Creating pages

The methods for creating pages belong to the Document class.

Both the Document.AddPages method and the Document.AddPagesEx method add the specified number of
pages to the end of a document. The difference between these methods is that AddPages uses the default page
size, while AddPagesEx uses a specified size.

Similarly, both the Document.InsertPages method and the Document.InsertPagesEx method insert the
specified number of pages at the specified location in a document. The difference between these methods is that
InsertPages uses the default page size, while InsertPagesEx uses a specified size.

As an example, the following VBA code uses the AddPages method to add three default-sized pages to the end
of the document:

Public Function AddSomeSimplePages() as Page

 Set AddSomeSimplePages = ActiveDocument.AddPages(3)

End Function

The following VBA example uses the AddPagesEx method to add to the end of the document three pages that
are 8.5 inches wide by 11 inches high:

Public Function AddSomeSpecifiedPages() as Page

 Dim doc as Document

 Set doc = ActiveDocument

 doc.Unit = cdrInch

 Set AddSomeSpecifiedPages = doc.AddPagesEx(3, 8.5, 11)

End Function

PageSize Width property Specifies the width of a defined page size

For more information, see “Using defined page
sizes” on page 97.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 96

The preceding examples return the first page that was added; all other added pages follow this page. You can
therefore reference any of the added pages by incrementing the Index property of the returned page:

Dim firstNewPage As Page, secondNewPage As Page

Set firstNewPage = AddSomeSimplePages

Set secondNewPage = ActiveDocument.Pages(firstNewPage.Index + 1)

If you want, you can use event handlers to respond to events that are triggered by creating a page:
• Document.PageCreate

Activating pages

Each page is a member of the Document.Pages collection for the document in which it appears. The pages in a
Document.Pages collection appear in the order in which they appear in that document — for example, the fifth
page in the active document is ActiveDocument.Pages.Item(5). If pages are added, reordered, or deleted,
the affected Pages collection is immediately updated to reflect the new page order of that document.

You can access the active page of the active document by using the Application.ActivePage property (or
ActiveDocument.ActivePage, or simply ActivePage). A reference to the active page in the active document,
of type Page, is returned.

Dim pg As Page

Set pg = ActivePage

You can access the active page of a document, regardless of whether that document is active, by using
ActivePage property for that document:

Public Function getDocsActivePage(doc As Document) As Page

 Set getDocsActivePage = doc.ActivePage

End Function

You can switch pages by finding the desired page and then invoking its Activate method. The following VBA
code activates page 3 in a document:

ActiveDocument.Pages(3).Activate

If you want, you can use event handlers to respond to events that are triggered by activating a page:
• Document.PageActivate

You can also use event handlers to respond to events that are triggered by deactivating a page:
• Document.PageChange

Reordering pages

A page can be moved to another location in a document by using its MoveTo method. The following VBA code
moves page 2 to the position of page 4:

ActiveDocument.Pages(2).MoveTo 4

Activating a page in an inactive document does not activate that document. To activate a document, you
must use its Activate method (see “Activating documents” on page 83).

Understanding the Corel DESIGNER and CorelDRAW object models 97

Sizing pages

You can specify the size and orientation of pages, specifying the default page size, and use defined page sizes.

Specifying the size and orientation of pages

You can size a page by using its SetSize method, which applies two size values (width and height) to the page.

The following VBA code changes the size of the active page in the active document to A4:

ActiveDocument.Unit = cdrMillimeter

ActivePage.SetSize 210, 297

ActivePage.Orientation = cdrLandscape

For the SetSize method, the first number is always the page width and the second number is always the page
height. Reversing the two numbers switches the orientation of the page.

Specifying the default page size

The default page size for a document is determined by the value of the item that has an index of 0 in the
Document.Pages collection. You can specify the default page size by changing the value of this item:

Dim doc As Document

Set doc = ActiveDocument

doc.Unit = cdrMillimeter

doc.Pages(0).SetSize 297, 210

Alternatively, you can use the Document.MasterPage property to specify the default page size:

Dim doc As Document

Set doc = ActiveDocument

doc.Unit = cdrMillimeter

doc.MasterPage.SetSize 297, 210

Using defined page sizes

Page sizes can be defined by either the application or the user. All defined page sizes are stored in the
Application.PageSizes collection, and the name of each PageSize object in that collection is defined by its
Name property:

Dim pageSizeName As String

pageSizeName = Application.PageSizes(3).Name

Page sizes can be specified by name. For example, the following VBA code gets the PageSize object named
“Business Card”:

Dim thisSize As PageSize

Set thisSize = Application.PageSizes("Business Card")

Understanding the Corel DESIGNER and CorelDRAW object models 98

You can get the actual dimensions of a PageSize object by using its Width and Height properties. The following
VBA code retrieves the width and height (in millimeters) of the third PageSize object:

Dim pageWidth As Double, pageHeight As Double

Application.Unit = cdrMillimeter

pageWidth = Application.PageSizes(3).Width

pageHeight = Application.PageSizes(3).Height

Although each PageSize object provides a Delete method, this method can be used only on user-defined page
sizes. You can determine whether a PageSize object is user-defined by testing its BuiltIn Boolean property:

Public Sub deletePageSize(thisSize As PageSize)

 If Not thisSize.BuiltIn Then thisSize.Delete

End Sub

You can specify a particular unit of measurement for a page size by setting the units for the document
before getting its width and height.

Modifying pages

You can modify a page regardless of whether it is active.

Activating a page in an inactive document does not activate that document. To activate a document, you
must use its Activate method (see “Activating documents” on page 83).

By explicitly referencing the page that you want to modify, you can make those changes without activating the
page. The following VBA code deletes all shapes on page 3 of the active document without activating that page:

Public Sub DeleteShapesFromPage3()

 Dim doc As Document

 Set doc = ActiveDocument

 doc.Pages(3).Shapes.All.Delete

End Sub

Deleting pages

You can delete a page by using its Delete method, as in the following VBA example:

ActivePage.Delete

The Page.Delete method deletes all shapes on that page, deletes the page from the Pages collection for that
document, and then updates that collection to reflect the change.

If you want to delete more than one page, you must use the Delete method for each unwanted page. However,
you cannot delete all pages in a document. You can avoid trying to delete the last remaining page in a document
by using the following VBA code:

If ActiveDocument.Pages.Count > 1 Then ActivePage.Delete

Understanding the Corel DESIGNER and CorelDRAW object models 99

If you want, you can use event handlers to respond to events that are triggered by deleting a page:
• Document.PageDelete

Working with layers

Layers are invisible planes that let you organize the objects on a page. You can group related objects into layers,
and you can change the vertical order (or “stacking order”) of those layers to change the appearance of the page.
Master layers apply to all pages in a document, while local layers apply to a single page.

Each layer, or Layer object, is a member of the Page.Layers collection for the page on which it appears. The
layers in a Page.Layers collection appear in the order in which they appear on that page — the first layer is the
one at the top of the “stack,” and the last layer is the one at the bottom. If layers are added, reordered, or deleted,
the affected Page.Layers collection is immediately updated to reflect the new layer order of that page.

Corel DESIGNER and CorelDRAW provide a number of properties, methods, and events for working with
layers, the most useful of which are listed in the following table.

Class Member Description

Document ActiveLayer property Provides direct access to the active layer for a document

For more information, see “Activating layers” on page 101.

Document LayerActivate event Is triggered when a layer is activated

For more information, see “Activating layers” on page 101.

Document LayerChange event Is triggered when a layer is deactivated

For more information, see “Activating layers” on page 101.

Document LayerCreate event Is triggered when a layer is created

For more information, see “Creating layers” on page 100.

Document LayerDelete event Is triggered when a layer is deleted

For more information, see “Deleting layers” on page 103.

Layer Activate method Activates a layer

For more information, see “Activating layers” on page 101.

Layer Delete method Deletes a layer

For more information, see “Deleting layers” on page 103.

Layer Editable property Controls whether a layer is editable

For information, see “Locking and hiding layers” on page 101.

Layer Import method
or
ImportEx method

Imports a file into a layer

For information, see “Importing files into layers” on page 102.

Understanding the Corel DESIGNER and CorelDRAW object models 100

For detailed information on any property, method, or event, see “Object Model Reference” section in the
Macros Help file for the application.

For more information on layer-related activities, see the following topics:
• “Creating layers” on page 100
• “Activating layers” on page 101
• “Locking and hiding layers” on page 101
• “Reordering layers” on page 101
• “Renaming layers” on page 102
• “Importing files into layers” on page 102
• “Deleting layers” on page 103

Creating layers

You can create a layer by using the Page.CreateLayer method. Creating a layer inserts a new layer at the top of
the list of non-master layers.

The following VBA code creates a new layer called “My New Layer”:

ActivePage.CreateLayer "My New Layer"

If you want, you can use event handlers to respond to events that are triggered by activating a layer:
• Document.LayerCreate

Layer MoveAbove method
or
MoveBelow method

Moves a layer

For information, see “Reordering layers” on page 101.

Layer Name property Specifies the name of a layer

For information, see “Renaming layers” on page 102.

Layer Visible property Controls whether the contents of a layer are visible

For information, see “Locking and hiding layers” on page 101.

Page ActiveLayer property Provides direct access to the active layer for a page

For more information, see “Activating layers” on page 101.

Page CreateLayer method Inserts a new layer at the top of the list of non-master layers

For more information, see “Creating layers” on page 100.

Page Layers property Contains the collection of layers for a page

For more information, see “Activating layers” on page 101.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 101

Activating layers

Each layer is a member of the Page.Layers collection for the page on which it appears. The layers in a
Page.Layers collection appear in the order in which they appear on that page — the first layer is the one at the
top of the “stack,” and the last layer is the one at the bottom. If layers are added, reordered, or deleted, the
affected Page.Layers collection is immediately updated to reflect the new layer order of that page.

The Document.ActiveLayer property provides direct access to the active layer for a document, while the
Page.ActiveLayer property provides direct access to the active layer for a page.

You can activate a layer by using the Layer.Activate method:

ActivePage.Layers("Layer 1").Activate

Activating a locked layer does not unlock it. Similarly, activating a hidden layer does not make it visible.
For information on unlocking and displaying layers, see “Locking and hiding layers” on page 101.

If you want, you can use event handlers to respond to events that are triggered by activating a layer:
• Document.LayerActivate

You can also use event handlers to respond to events that are triggered by deactivating a layer:
• Document.LayerChange

Locking and hiding layers

Layer objects feature the properties Editable and Visible, which control (respectively) whether the layer is
editable and whether its contents are visible. Both properties are Boolean. By setting both the properties to
True, you unlock and display the layer for editing. By setting either property to False, however, you lock the
layer such that it cannot be edited.

The following sample VBA code locks, but displays, the layer on the active page:

ActivePage.Layers("Layer 1").Visible = True

ActivePage.Layers("Layer 1").Editable = False

The result of any changes to these properties is immediately displayed in the Object Manager.

The preceding example affects only the active page. You can access the layer settings for a given page by
specifying a page from the Document.Pages collection, or by referencing the Document.ActivePage property.
To make the changes to all pages in a document, use the Document.MasterPage property:

ActiveDocument.MasterPage.Layers("Layer 1").Visible = True

For more information on working with pages, see “Working with pages” on page 93.

Reordering layers

You can reorder layers by using the following two methods of the Layer class: MoveAbove and MoveBelow.
Both methods move the specified layer above or below the layer that is referenced as a parameter.

Understanding the Corel DESIGNER and CorelDRAW object models 102

The following VBA code moves the layer called “Layer 1” to immediately below the layer “Guides”:

Dim pageLayers As Layers

Set pageLayers = ActivePage.Layers

pageLayers("Layer 1").MoveBelow pageLayers("Guides")

The change is immediately reflected in the Object Manager (although it may be apparent only in the Layer
Manager).

Renaming layers

You can rename a layer by editing its Name property.

The following VBA code renames “Layer 1” as “Layer with a New Name”:

ActivePage.Layers("Layer 1").Name = "Layer with a New Name"

Importing files into layers

Files of all supported formats can be imported.

Files are imported at the Layer level because each imported object is assigned to a specified layer on a
specified page. However, files are exported at the Document level because the range of exported objects
can extend over multiple layers and multiple pages (see “Exporting files from documents” on page 88).

The Layer class has two file-import methods: Import and ImportEx.

The wide selection of supported file formats is due to the vast number of filters that are available to the
application. Each filter lets you work with the files from another graphics application. To learn more
about working with these filters, see “Working with import filters and export filters” on page 143.

Understanding the Layer.Import method

The Layer.Import method provides basic functionality for importing files.

The following VBA code imports the file C:\logotype.gif into the active layer at the center of the page:

ActiveLayer.Import "C:\logotype.gif"

Importing a file selects the contents of that file and deselects any other selected objects in the document. You can
therefore reposition or resize the imported objects by getting the document selection:

ActiveDocument.Unit = cdrInch

ActiveSelection.SetSize 3, 2

Some file formats can be imported by using one of several filters, so it is important to understand the benefits of
each available filter. For example, when importing an Encapsulated PostScript (EPS) file, you can choose between
the EPS filter and the PDF filter. The EPS filter lets you do the following:
• import an EPS file as a placeable object that can be printed but not modified
• interpret the PostScript portion of the file, so that you can import the original artwork from within the file

rather than its low-resolution header

Understanding the Corel DESIGNER and CorelDRAW object models 103

To specify which filter to use, you can include the optional parameter Filter, as in the following VBA example:

ActiveLayer.Import "C:\map.eps", cdrPSInterpreted

Understanding the Layer.ImportEx method

The Layer.ImportEx method provides much better control over the import filter through its optional use of a
StructImportOptions object. The following VBA code imports the specified file as a linked file:

Dim iFilt As ImportFilter

Dim importProps As New StructImportOptions

importProps.LinkBitmapExternally = True

Set iFilt = ActiveLayer.ImportEx("C:\world-map.epsf", cdrAutoSense, importProps)

iFilt.Finish

Deleting layers

As previously discussed, each layer is a member of the Page.Layers collection for the page on which it appears.

You can delete a layer by calling its Delete method. Deleting a layer removes that layer from the document,
taking with it all shapes on that layer on all pages in the document.

The following VBA code deletes the layer called “Layer 1”:

ActivePage.Layers("Layer 1").Delete

If you want, you can use event handlers to respond to events that are triggered by deleting a layer:
• Document.LayerDelete

Working with shapes

Every document is made up of shapes, or Shape objects, which are created by using the drawing tools. Any
changes that are made to the properties of a shape — such as by moving the shape, changing its size, or giving it
a new fill — are immediately visible to the object model.

The shapes on a document page are stored on layers. Each shape is a member of the Layer.Shapes collection for
the layer on which it appears. The shapes in a Layer.Shapes collection appear in the order in which they appear
on that layer — the first shape is the one at the top of the “stack,” and the last shape is the one at the bottom. If
shapes are added, reordered, or deleted, the affected Layer.Shapes collection is immediately updated to reflect
the new shape order of that layer.

In addition, each document page has a Shapes collection, which contains all Layer.Shapes collections for
that page. The first shape in a Page.Shapes collection is the one at the very top of that page, and the last
shape is the one at the very bottom.

Corel DESIGNER and CorelDRAW provide a number of properties, methods, and events for working with
shapes, the most useful of which are listed in the following table.

Understanding the Corel DESIGNER and CorelDRAW object models 104

Class Member Description

AddinHook ShapeCreated event Is triggered when a shape is created

For more information, see “Creating
shapes” on page 114.

Application CreateCurve method Creates a line or a curve “in
memory”

For more information, see “Creating
lines and curves” on page 117.

Application SelectionChange event Is triggered when a selection is
deactivated

For more information, see
“Deselecting shapes” on page 129.

Application SymbolLibraries property Contains the collection of all external
symbol libraries for the application

For more information, see “Creating
symbols” on page 123.

Color CopyAssign method Copies a color from one shape fill or
shape outline to another

For more information, see “Working
with color” on page 138.

Color Type method Specifies the color model for a shape
color

For more information, see “Working
with color” on page 138.

Curve CreateSubPath method Adds a subpath to a line or a curve

For more information, see “Creating
lines and curves” on page 117.

Document ClearSelection method Deselects all objects in a document

For more information, see
“Deselecting shapes” on page 129.

Document Selection method Returns, as a single Shape object, all
selected objects in a document

For more information, see “Accessing
selections directly” on page 127.

Understanding the Corel DESIGNER and CorelDRAW object models 105

Document SelectionChange event Is triggered when a selection is
deactivated

For more information, see
“Deselecting shapes” on page 129.

Document SelectionRange property Returns, as a ShapeRange object, all
selected objects in a document

For more information, see “Accessing
copies of selections” on page 128.

Document ShapeChange event Is triggered when a shape is
deselected

For more information, see
“Deselecting shapes” on page 129.

Document ShapeCreate event Is triggered when a shape is created

For more information, see “Creating
shapes” on page 114.

Document ShapeDelete event Is triggered when a shape is deleted

For more information, see “Deleting
shapes” on page 143.

Document ShapeDistort event Is triggered when a shape is distorted

For more information, see “Applying
distortions” on page 140.

Document ShapeMove event Is triggered when a shape is
positioned

For more information, see
“Positioning shapes” on page 133.

Document ShapeTransform event Is triggered when a shape is
transformed

For more information, see
“Transforming shapes” on page 130.

Document SymbolLibrary property Returns the internal symbol library
for a document

For more information, see “Creating
symbols” on page 123.

Fill ApplyFountainFill method Applies a fountain fill to a shape

For more information, see “Applying
fountain fills” on page 135.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 106

Fill ApplyHatchFill method Applies a hatch fill to a shape

For more information, see “Applying
hatch fills” on page 136.

Fill ApplyPatternFill method Applies a pattern fill to a shape

For more information, see “Applying
pattern fills” on page 136.

Fill ApplyPostScriptFill method Applies a PostScript fill to a shape

For more information, see “Applying
PostScript fills” on page 136.

Fill ApplyTextureFill method Applies a texture fill to a shape

For more information, see “Applying
texture fills” on page 136.

Fill ApplyUniformFill method Applies a uniform fill to a shape

For more information, see “Applying
uniform fills” on page 135.

Fill Fountain property Specifies the fountain-fill properties
for a shape

For more information, see “Applying
fountain fills” on page 135.

Fill Hatch property Specifies the hatch-fill properties for
a shape

For more information, see “Applying
hatch fills” on page 136.

Fill Pattern property Specifies the pattern-fill properties
for a shape

For more information, see “Applying
pattern fills” on page 136.

Fill PostScriptFill property Specifies the PostScript-fill properties
for a shape

For more information, see “Applying
PostScript fills” on page 136.

Fill Texture property Specifies the texture-fill properties
for a shape

For more information, see “Applying
texture fills” on page 136.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 107

Fill Type property Specifies the type of fill that is
applied to a shape

For more information, see “Coloring
shapes” on page 134.

Fill UniformColor property Specifies the uniform-fill properties
for a shape

For more information, see “Applying
uniform fills” on page 135.

FountainColor Move method Moves a color in the fountain fill for
a shape

For more information, see “Applying
fountain fills” on page 135.

FountainColors Add method Adds a color to the fountain fill for a
shape

For more information, see “Applying
fountain fills” on page 135.

FountainColors Count property Counts the number of colors
between the start color and end color
in the fountain fill for a shape

For more information, see “Applying
fountain fills” on page 135.

GlobalMacroStorage SelectionChange event Is triggered when a selection is
deactivated

For more information, see
“Deselecting shapes” on page 129.

Layer CreateAngularDimension method Creates an angular dimension object
on the specified layer
(Corel DESIGNER only)

For more information, see “Creating
dimension objects” on page 121.

Layer CreateArtisticText method
or
CreateArtisticTextWide method

Creates an artistic-text object on the
specified layer

For more information, see “Creating
text objects” on page 119.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 108

Layer CreateCurve method Creates, on the specified layer, a line
or a curve that is created “in
memory” by using the
Application.CreateCurve method

For more information, see “Creating
lines and curves” on page 117.

Layer CreateCurveSegment method
or
CreateCurveSegment2 method

Creates a basic curve on the specified
layer

For more information, see “Creating
lines and curves” on page 117.

Layer CreateEllipse method,
CreateEllipse2 method,
or
CreateEllipseRect method

Creates an ellipse on the specified
layer

For more information, see “Creating
ellipses” on page 116.

Layer CreateLinearDimension method Creates a linear dimension object on
the specified layer
(Corel DESIGNER only)

For more information, see “Creating
dimension objects” on page 121.

Layer CreateLineSegment method Creates a basic line on the specified
layer

For more information, see “Creating
lines and curves” on page 117.

Layer CreateParagraphText method
or
CreateParagraphTextWide method

Creates an paragraph-text object on
the specified layer

For more information, see “Creating
text objects” on page 119.

Layer CreateRectangle method,
CreateRectangle2 method,
or
CreateRectangleRect method

Creates a rectangle on the specified
layer

For more information, see “Creating
rectangles” on page 115.

Layer Shapes property Contains the collection of shapes for
a layer

For more information, see “Selecting
shapes” on page 126.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 109

Outline Color property Specifies the color of the outline for a
shape

For more information, see “Applying
outlines” on page 137.

Outline Style property Specifies the dash settings (that is,
style properties) for the outline of a
shape

For more information, see “Applying
outlines” on page 137.

Outline Type property Specifies whether an outline is
applied to a shape

For more information, see “Applying
outlines” on page 137.

Outline Width property Specifies, in document units, the
width of the outline for a shape

For more information, see “Applying
outlines” on page 137.

Segment AddNodeAt method Adds a node to a line segment or a
curve segment

For more information, see “Creating
lines and curves” on page 117.

Shape CreateBlend method Applies a blend effect to a shape

For more information, see “Applying
blends” on page 139.

Shape CreateContour method Applies a contour effect to a shape

For more information, see “Applying
contours” on page 140.

Shape CreateCustomDistortion method Applies a customized distortion
effect to a shape

For more information, see “Applying
distortions” on page 140.

Shape CreateCustomEffect method Applies a customized effect to a
shape

For more information, see “Applying
customized effects” on page 140.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 110

Shape CreateDropShadow method Applies a drop-shadow effect to a
shape

For more information, see “Applying
drop shadows” on page 141.

Shape CreateEnvelope method,
CreateEnvelopeFromCurve method,
or
CreateEnvelopeFromShape method

Applies an envelope effect to a shape

For more information, see “Applying
envelopes” on page 141.

Shape CreateExtrude method Applies an extrusion effect to a shape

For more information, see “Applying
extrusions” on page 141.

Shape CreateLens method Applies a lens effect to a shape

For more information, see “Applying
lenses” on page 141.

Shape CreatePerspective method Applies a perspective effect to a
shape

For more information, see “Applying
perspective” on page 141.

Shape CreatePushPullDistortion method Applies a Push-and-pull distortion
effect to a shape

For more information, see “Applying
distortions” on page 140.

Shape CreateSelection method Creates a selection from a single
shape

For more information, see “Selecting
shapes” on page 126.

Shape CreateTwisterDistortion method Applies a Twister distortion effect to
a shape

For more information, see “Applying
distortions” on page 140.

Shape CreateZipperDistortion method Applies a Zipper distortion effect to
a shape

For more information, see “Applying
distortions” on page 140.

Shape Duplicate method Duplicates a shape

For more information, see
“Duplicating shapes” on page 129.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 111

Shape Evaluate method Returns the result of a given
expression that evaluates the
properties of the current shape

For more information, see “Searching
for shapes” on page 143.

Shape GetBoundingBox method Returns the size of a shape based on
the size of its bounding box

For more information, see “Sizing
shapes” on page 130.

Shape GetPosition method Returns the horizontal and vertical
position of a shape

For more information, see
“Positioning shapes” on page 133.

Shape GetSize method Returns the size of a shape

For more information, see “Sizing
shapes” on page 130.

Shape PlaceTextInside method Places the selected text inside the
specified shape

For more information, see “Creating
text objects” on page 119.

Shape PositionX property Returns, or sets, the horizontal
position of a shape

For more information, see
“Positioning shapes” on page 133.

Shape PositionY property Returns, or sets, the vertical position
of a shape

For more information, see
“Positioning shapes” on page 133.

Shape Project method Projects a shape onto isometric
planes (Corel DESIGNER only)

For more information, see
“Projecting shapes” on page 141.

Shape Rotate method
or
RotateEx method

Rotates a shape

For more information, see “Rotating
shapes” on page 132.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 112

Shape Selected method Specifies whether a shape is selected

For more information, see “Selecting
shapes” on page 126.

Shape SetBoundingBox method Sets the size of a shape based on the
size of its bounding box

For more information, see “Sizing
shapes” on page 130.

Shape SetPosition method
or
SetPositionEx method

Sets the position of a shape

For more information, see
“Positioning shapes” on page 133.

Shape SetSize method
or
SetSizeEx method

Sets the size of a shape

For more information, see “Sizing
shapes” on page 130.

Shape SizeHeight property Returns, or sets, the height of a
shape

For more information, see “Sizing
shapes” on page 130.

Shape SizeWidth property Returns, or sets, the width of a shape

For more information, see “Sizing
shapes” on page 130.

Shape Skew method
or
SkewEx method

Skews a shape

For more information, see “Skewing
shapes” on page 132.

Shape Stretch method
or
StretchEx method

Stretches (or scales) a shape

For more information, see
“Stretching shapes” on page 132.

Shape Type property Returns the type for a shape

For more information, see
“Determining shape type” on
page 126.

ShapeRange CreateSelection method Creates a selection from a range of
shapes

For more information, see “Selecting
shapes” on page 126.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 113

ShapeRange Duplicate method Duplicates a range of shapes

For more information, see
“Duplicating shapes” on page 129.

ShapeRange Project method Projects a range of shapes onto
isometric planes (Corel DESIGNER
only)

For more information, see
“Projecting shapes” on page 141.

Shapes All method Returns all shapes from the specified
collection of shapes

For more information, see “Selecting
shapes” on page 126.

Shapes FindShape method Returns a single shape that has the
specified properties

For more information, see “Searching
for shapes” on page 143.

Shapes FindShapes method Returns, as a shape range, all shapes
that have the specified properties

For more information, see “Searching
for shapes” on page 143.

SubPath AppendCurveSegment method
or
AppendCurveSegment2 method

Adds a curve-type segment to a
subpath

For more information, see “Creating
lines and curves” on page 117.

SubPath AppendLineSegment method Adds a line-type segment to a
subpath

For more information, see “Creating
lines and curves” on page 117.

Symbol Definition property Returns the definition of a symbol

For more information, see “Creating
symbols” on page 123.

SymbolDefinition NestedSymbols property Contains the collection of all nested
symbols for a symbol definition

For more information, see “Creating
symbols” on page 123.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 114

For detailed information on any property, method, or event, see “Object Model Reference” section in the
Macros Help file for the application.

For more information on shape-related activities, see the following topics:
• “Creating shapes” on page 114
• “Determining shape type” on page 126
• “Selecting shapes” on page 126
• “Duplicating shapes” on page 129
• “Transforming shapes” on page 130
• “Coloring shapes” on page 134
• “Applying effects to shapes” on page 139
• “Projecting shapes” on page 141
• “Searching for shapes” on page 143
• “Deleting shapes” on page 143

Creating shapes

Every document is made up of shapes, or Shape objects, which are created by using the drawing tools. The
shapes on a document page are stored on layers, so the various shape-creation methods belong to the Layer class.

SymbolLibrary Symbols property Contains the collection of all symbol
definitions for a symbol library

For more information, see “Creating
symbols” on page 123.

Text FitTextToPath method Attaches the specified artistic text to
the outline of a shape

For more information, see “Creating
text objects” on page 119.

Text Frames property Represents a series of text frames (or
TextFrame objects), each of which
has its own text range (or
TextRange object)

For more information, see “Creating
text objects” on page 119.

Text Story property Represents a text range (or
TextRange object) that includes all
text in a series of text frames (or
TextFrame objects)

For more information, see “Creating
text objects” on page 119.

Class Member Description

Understanding the Corel DESIGNER and CorelDRAW object models 115

For information on creating specific types of shapes, see the following subtopics:
• “Creating rectangles” on page 115
• “Creating ellipses” on page 116
• “Creating lines and curves” on page 117
• “Creating text objects” on page 119
• “Creating dimension objects” on page 121
• “Creating symbols” on page 123

Supported shapes not discussed in this section include polygons (or Polygon objects) and customized
shapes (or CustomShape objects).

Customized shapes that are supported include callout shapes (or CalloutShape objects) and tables (or
TableShape objects).

Shapes are measured in document units. You can specify the unit of measurement for a document by
using the Document.Unit property (see “Setting document properties” on page 84).

If you want, you can use event handlers to respond to events that are triggered by creating a shape:
• AddinHook.ShapeCreated
• Document.ShapeCreate

Creating rectangles

You can add rectangles (or Rectangle objects) to your documents by using one of the following methods:
• Layer.CreateRectangle
• Layer.CreateRectangle2
• Layer.CreateRectangleRect

These methods return a reference to the new Shape object. They differ only in the parameters that they take, so
you can choose the method that best suits your macro solution.

You can also use these rectangle-creation methods to create squares.

The CreateRectangle method creates a rectangle by using four parameters that specify the following:
• the distance between the left, top, right, and bottom sides of the rectangle (in that order)
• the corresponding edges of the page frame

The following VBA example uses the CreateRectangle method to create a 2" × 1" rectangle that is positioned
6" up from the bottom of the page frame and 3" in from the left side of the page frame:

Dim sh As Shape

ActiveDocument.Unit = cdrInch

Set sh = ActiveLayer.CreateRectangle(3, 7, 6, 5)

The CreateRectangle2 method creates a rectangle based on the coordinates of its lower-left corner, its width,
and its height.

Understanding the Corel DESIGNER and CorelDRAW object models 116

The following VBA example uses the CreateRectangle2 method to create the same rectangle as the previous
example:

Dim sh As Shape

ActiveDocument.Unit = cdrInch

Set sh = ActiveLayer.CreateRectangle2(3, 6, 2, 1)

Finally, the CreateRectangleRect method creates a rectangle based on its bounding box (or Rect object).

These three rectangle-creation methods provide optional parameters for specifying corner roundness.

The CreateRectangle method specifies corner roundness by using parameters for the upper-left, upper-right,
lower-left, and lower-right corners (in that order). These parameters take integer values (which range from the
default 0 to 100) that define the radius of the four corners as a whole-number percentage of half of the length of
the shortest side.

The following VBA example re-creates the 2" × 1" rectangle from the previous examples. However, this time,
the four corner radii are set to 100%, 75%, 50%, and 0% of half of the length of the shortest side (that is, to
0.5", 0.375", 0.25", and a cusp):

Dim sh As Shape

ActiveDocument.Unit = cdrInch

Set sh = ActiveLayer.CreateRectangle(3, 7, 6, 5, 100, 75, 50, 0)

The CreateRectangle2 method and the CreateRectangleRect method define the corner radii in the same order
as the CreateRectangle method (that is, upper-left, upper-right, lower-left, and lower-right). However,
CreateRectangle2 and CreateRectangleRect take double (floating-point) values that measure the corner radii
in document units.

When using CreateRectangle2 or CreateRectangleRect, you must limit the size of the corner radii to
less than half of the length of the shortest side of the rectangle.

The following VBA example uses the CreateRectangle2 method to create the same round-cornered rectangle as
the previous example:

Dim sh As Shape

ActiveDocument.Unit = cdrInch

ActiveDocument.ReferencePoint = cdrBottomLeft

Set sh = ActiveLayer.CreateRectangle2(3, 6, 2, 1, 0.5, 0.375, 0.25, _

0)

Creating ellipses

You can add ellipses (or Ellipse objects) to your documents by using one of the following methods:
• Layer.CreateEllipse
• Layer.CreateEllipse2
• Layer.CreateEllipseRect

These methods return a reference to the new Shape object. They differ only in the parameters that they take, so
you can choose the method that best suits your macro solution.

Understanding the Corel DESIGNER and CorelDRAW object models 117

You can also use the ellipse-creation methods to create circles, arcs, and pie shapes.

The CreateEllipse method creates an ellipse by using four parameters that specify the following:
• the distance between the left, top, right, and bottom sides of the ellipse (in that order)
• the corresponding edges of the page frame

The following VBA example creates a 50-millimeter circle:

Dim sh As Shape

ActiveDocument.Unit = cdrMillimeter

Set sh = ActiveLayer.CreateEllipse(75, 150, 125, 100)

The CreateEllipse2 method creates an ellipse based on its center point, its horizontal radius, and its vertical
radius. (If only one radius is given, a circle is created.)

The following VBA example uses the CreateEllipse2 method to create an ellipse:

Dim sh As Shape

ActiveDocument.Unit = cdrMillimeter

Set sh = ActiveLayer.CreateEllipse2(100, 125, 50, 25)

The following VBA example uses the CreateEllipse2 method to create the same 50-millimeter circle as the
CreateEllipse example:

Dim sh As Shape

ActiveDocument.Unit = cdrMillimeter

Set sh = ActiveLayer.CreateEllipse2(100, 125, 25)

Finally, the CreateEllipseRect method creates an ellipse based on its bounding box (or Rect object).

These three ellipse-creation methods provide three optional parameters for creating an arc or a pie shape. The
StartAngle and EndAngle parameters — which are double values that are measured with zero being
horizontally right on the page and with positive values being degrees from zero and moving counterclockwise —
are used to define the start angle and end angle of the shape (respectively). In addition, the Pie parameter —
which is a Boolean value — defines whether the shape is an arc (False) or a pie shape (True).

The following VBA code uses the CreateEllipse method to create a “C” shape:

Dim sh As Shape

ActiveDocument.Unit = cdrMillimeter

Set sh = ActiveLayer.CreateEllipse(75, 150, 125, 100, 60, 290, False)

Creating lines and curves

You can add lines and curves (or Curve objects) to your documents. To create a line or a curve, you must first
create a Curve object “in memory” by using the Application.CreateCurve method.

Each Curve object has at least one subpath (or SubPath object). You can add a subpath to a line or a curve by
using the Curve.CreateSubPath method.

Understanding the Corel DESIGNER and CorelDRAW object models 118

Each SubPath object has at least one segment (or Segment object), which can be line-type or curve-type. You
can add a line-type segment to the end of a subpath by using the SubPath.AppendLineSegment method; you
can add a curve-type segment by using the SubPath.AppendCurveSegment method or the
SubPath.AppendCurveSegment2 method.

The SubPath.AppendLineSegment method requires one set of Cartesian coordinates, which defines the
end of the new segment.

The SubPath.AppendCurveSegment method requires one set of Cartesian coordinates, which defines
the end of the new segment. Optionally, you can specify two sets of polar coordinates if you want to define
the lengths and angles of the starting and ending control handles for the segment.

The SubPath.AppendCurveSegment2 method requires three sets of Cartesian coordinates: one to
define the end of the new segment, and two to define the positions of the starting and ending control
handles for the segment.

You can add a segment to the beginning of a subpath by setting the AppendAtBeginning parameter
for the segment-creation method to True.

Finally, each Segment object has at least one node (or Node object). You can add a node to a segment by using
the Segment.AddNodeAt method.

You can close a Curve object by setting its Closed property to True.

After creating a curve “in memory,” you can apply it to a layer by using the Layer.CreateCurve method. A
reference to the new Shape object is returned.

The following VBA code creates a D-shaped curve that is closed:

Dim sh As Shape, spath As SubPath, crv As Curve

ActiveDocument.Unit = cdrCentimeter

Set crv = Application.CreateCurve(ActiveDocument)

'Create Curve object

Set spath = crv.CreateSubPath(6, 6) ' Create a SubPath

spath.AppendLineSegment 6, 3 ' Add the short vertical segment

spath.AppendCurveSegment 3, 0, 2, 270, 2, 0 ' Lower curve

spath.AppendLineSegment 0, 0 ' Bottom straight edge

spath.AppendLineSegment 0, 9 ' Left straight edge

spath.AppendLineSegment 3, 9 ' Top straight edge

spath.AppendCurveSegment 6, 6, 2, 0, 2, 90 ' Upper curve

spath.Closed = True ' Close the curve

Set sh = ActiveLayer.CreateCurve(crv) ' Create curve shape

The Layer class provides three additional methods that act as shortcuts for creating a basic line or basic curve
that has a single segment on a single subpath:
• Layer.CreateLineSegment — creates a basic line based on the given starting point and ending point

Understanding the Corel DESIGNER and CorelDRAW object models 119

• Layer.CreateCurveSegment — creates a basic curve based on the given starting point and ending point and,
optionally, on the lengths and angles of the starting and ending control handles for the curve

• Layer.CreateCurveSegment2 — creates a basic curve based on the given starting point and ending point
and on the given positions of the starting and ending control handles for the curve

These three methods return a reference to the new Shape object.

Creating text objects

You can add text (or Text objects) to your documents. Two types of text are supported: artistic text and
paragraph text. An artistic-text object is a short line of text to which you can apply graphical effects. In contrast,
a paragraph-text object is a large block of text — stored in a rectangular container called a “frame” — to which
you can apply more complex formatting.

To create an artistic-text object, you can use one of the following methods:
• Layer.CreateArtisticText — creates basic artistic text
• Layer.CreateArtisticTextWide — creates artistic text that is in Unicode format

Both of these methods require you to specify the position and content of the artistic-text object.
Optionally, both of these methods let you set such text attributes as font style, font size, formatting, and
alignment. In addition, both of these methods return a reference to the new Shape object.

The following VBA code uses the CreateArtisticText method to create a basic artistic-text object that places the
words “Hello World” at the specified position:

Dim sh As Shape

ActiveDocument.Unit = cdrInch

Set sh = ActiveLayer.CreateArtisticText(1, 4, "Hello World")

You can fit artistic text to a path by using the Text.FitTextToPath method, which simply attaches the text to
the outline of a shape such that the text flows along the path of that shape.

The following VBA code creates a new artistic-text object and attaches it to the selected shape:

Dim sh As Shape, sPath As Shape

ActiveDocument.Unit = cdrInch

Set sPath = ActiveShape

Set sh = ActiveLayer.CreateArtisticText(1, 4, "Hello World")

sh.Text.FitToPath sPath

To create a paragraph-text object, you can use one of the following methods:
• Layer.CreateParagraphText — creates basic paragraph text
• Layer.CreateParagraphTextWide — creates paragraph text that is in Unicode format

Both of these methods require you to specify the size of the paragraph-text frame by setting its position
from the left, top, right, and bottom sides of the page frame (in that order). Optionally, both of these
methods let you specify the desired text and set such text attributes as font style, font size, formatting,
and alignment. In addition, both of these methods return a reference to the new Shape object.

Understanding the Corel DESIGNER and CorelDRAW object models 120

The following VBA code uses the CreateParagraphText method to create a basic paragraph-text object that
centers the words “Hi There” in a frame of the specified size:

Dim sh As Shape

ActiveDocument.Unit = cdrInch

Set sh = ActiveLayer.CreateParagraphText(1, 4, 5, 2, "Hi There", _

 Alignment := cdrCenterAlignment)

You can format existing paragraph text by using text ranges (or TextRange objects). Text ranges are handled in
two ways, both of which involve frames (or TextFrame objects):
• “frames” method — The Text.Frames property represents a series of text frames, each of which has its own

text range.
• “story” method — The Text.Story property represents a text range that includes all text in a series of text

frames.

A text range can be treated as a single block of text, such that any changes to text properties (such as font style
and font size) are applied to all text in that text range. Alternatively, a text range can be broken down into the
following smaller text ranges:
• columns (or TextColumns objects)
• paragraphs (or TextParagraphs objects)
• lines (or TextLines objects)
• words (or TextWords objects)
• characters (or TextCharacters objects)

The object model supports all paragraph-formatting options and character-formatting options that are
offered by the application.

The following VBA code formats the specified text range by using the Text.Story property. The first paragraph
of the story is changed to a heading style and the second and third paragraphs into a body-text style:

Dim txt As TextRange

' Format the first paragraph

 Set txt = ActiveShape.Text.Story.Paragraphs(1)

 txt.ChangeCase cdrTextUpperCase

 txt.Font = "Verdana"

 txt.Size = 18

 txt.Bold = True

' Format the second and third paragraphs

 Set txt = ActiveShape.Text.Story.Paragraphs(2, 2)

 txt.Font = "Times New Roman"

 txt.Size = 12

 txt.Style = cdrNormalFontStyle

You can place selected text inside closed shapes by using the Shape.PlaceTextInside method.

Understanding the Corel DESIGNER and CorelDRAW object models 121

The following VBA code creates a 5" × 2" ellipse and places the selected text inside it:

Dim txt As Shape, sh As Shape

ActiveDocument.Unit = cdrInch

Set txt = ActiveShape

Set sh = ActiveLayer.CreateEllipse(0, 2, 5, 0)

sh.PlaceTextInside txt

Creating dimension objects

You can add dimension objects (or Dimension objects) to your Corel DESIGNER documents. Dimension
objects let you display the size of a shape or the distance or angle between multiple shapes. Dimension objects are
widely used in both technical illustration and computer-aided design (CAD).

A dimension object consists of two parts:
• a line that demarcates the area — linear or angular — to be measured
• text that displays the measurement of the dimension line

Corel DESIGNER supports both linear dimension objects (or DimensionLinear objects) and angular dimension
objects (or DimensionAngular objects). You can create dimension objects by using the following methods:
• Layer.CreateLinearDimension — creates a linear dimension object
• Layer.CreateAngularDimension — creates an angular dimension object

The properties of a dimension object are set upon its creation. However, you can adjust those properties
at any time by accessing the various properties of the corresponding DimensionLinear object or
DimensionAngular object.

You can link a dimension object to its target shape, such that the dimension line and its measurement are
updated as the shape is manipulated. To create a linked dimension object, you must assign the end points of the
dimension line to the snap points of the target shape.

The following VBA example illustrates the concept of a linked dimension object. A linear dimension object and
an angular dimension object are created and then linked to the specified rectangle. If the rectangle is moved, the
dimension lines continue to “stick” to the snap points; if the rectangle is resized, the dimension measurements
change accordingly.

Sub Example1()

 Dim shp1 As Shape, shp2 As Shape, shp3 As Shape

 Dim Vertex As New SnapPoint

 ' Create a rectangle

 Application.Unit = cdrInch

 ActiveDocument.Unit = cdrInch

 Set shp1 = ActiveLayer.CreateRectangle2(0, 0, 5, 2.5)

 ' Create a linear dimension that is linked to snap points of the

 ' rectangle and get a reference to the Dimension object

 Set shp2 = _

 ActiveLayer.CreateLinearDimension(cdrDimensionVertical, _

Understanding the Corel DESIGNER and CorelDRAW object models 122

 shp1.SnapPoints(2), shp1.SnapPoints(3), TextX:=2)

 ' Modify the properties of the dimension object

 With shp2.Dimension

 'Set the dimension's units to inches and display them

 .Linear.Units = cdrInch

 .Linear.ShowUnits = True

 End With

 ' Create an angular dimension on the rectangle's other snap points

 ' and set its properties at creation time

 Vertex.PositionX = ActiveDocument.DrawingOriginX - 2

 Vertex.PositionY = ActiveDocument.DrawingOriginY

 Set shp3 = ActiveLayer.CreateAngularDimension(Vertex, _

 shp1.SnapPoints(2), shp1.SnapPoints(3), 0, 0, _

 Precision:=3, ShowUnits:=True, _

 Units:=cdrDimensionUnitDegrees, OutlineWidth:=0.014, _

 Arrows:=ArrowHeads(1), TextSize:=10)

End Sub

Alternatively, you can create a static dimension object that is not linked to any shape, such that the dimension
line and its measurement do not change as the shapes in the document are manipulated. To create a static
dimension object, you must create free snap points on the layer and then attach the dimension line to those snap
points.

The following VBA example illustrates the concept of a static dimension object. The dimension object is not
linked to any shape, so it measures a static distance. Only changing the location of the free snap points for the
dimension line modifies the measurement of the dimension object.

Sub Example2()

 Dim Shape1 As Shape

 Dim Snap1 As New SnapPoint, Snap2 As New SnapPoint

 'Initialize the snap points on the canvas

 Snap1.PositionX = 0

 Snap1.PositionY = 0

 Snap2.PositionX = 0

 Snap2.PositionY = 10

 'Create a linear dimension linked to the rectangle's snap points

 'and get a reference to the dimension object

 Set Shape1 = _

 ActiveLayer.CreateLinearDimension(cdrDimensionVertical, _

 Snap1, Snap2)

 ' Modify the dimension object's properties

Understanding the Corel DESIGNER and CorelDRAW object models 123

 With Shape1.Dimension

 'Set the dimension's units to inches and display them

 .Linear.Units = cdrInch

 .Linear.ShowUnits = True

 End With

End Sub

Creating symbols

A symbol (or Symbol object) is a reusable graphic element that is defined in a symbol library. Using symbols in
your documents provides the following benefits:
• lower file-size — Each symbol is defined only once, regardless of how many actual instances of that symbol

appear in the document.
• increased productivity — Any changes made to a symbol definition are automatically propagated to all

instances of that symbol in the document.
• improved workflow — Symbol libraries are a convenient way to store and reuse common graphic elements.

Symbol libraries come in two varieties: external and internal.

External symbol libraries use the filename extension CSL and contain symbol definitions that must be manually
added to the workspace at the application level. You cannot modify a symbol that is defined in an external library
unless you open the associated external library (CSL) file; simply importing the file as a library does not let you
modify its contents.

External symbol libraries must be published to a location that all users can access. A common mapped
drive is a good solution, but a corporate intranet is a better one. However, if the security of the symbols
is not important, the best solution is a corporate Internet site.

Internal symbol libraries exist at the document level. Defining a new symbol in a document — or adding an
instance of an external-library symbol to a document — automatically adds that symbol to the internal library
for that document. For this reason, each document has its own unique internal symbol library.

Inserting an instance of a symbol from an external symbol library creates a link to the definition for that
symbol in that external symbol library. If, at any point, the document cannot access the external symbol
library, the symbol definition in the internal symbol library for that document is used instead.

The Application.SymbolLibraries property contains the collection of all external symbol libraries (or
SymbolLibrary objects) that are available to the application; the Document.SymbolLibrary property returns
just the internal symbol library for that document. The SymbolLibrary.Symbols property contains the
collection of all symbol definitions (or SymbolDefinition objects) in that symbol library. A SymbolDefinition
object is also returned by the Symbol.Defintion property; therefore, you can modify the defintion of a symbol
by using the various properties and methods of the SymbolDefinition class.

To remove a symbol definition from the internal symbol library for a document, you must delete all
instances of the symbol from the document and then run the SymbolLibrary.PurgeUnusedSymbols
method. Simply removing all instances of a symbol from a document does not automatically remove its
symbol definition from the internal symbol library for that document.

Understanding the Corel DESIGNER and CorelDRAW object models 124

The following VBA code demonstrates the basics of using symbols:

Sub AddRemoveSymbols()

 Dim objSymLibSwitchA As SymbolLibrary

 Dim shpSymBreaker2 As Shape, shpSymBreaker2A As Shape

 ActiveDocument.Unit = cdrMillimeter

 'Add the switchesA external symbol library to the global

 'workspace.

 Set objSymLibSwitchA = SymbolLibraries.Add _

 ("C:\libs\switches\switchesA.csl")

 'Add the breaker2 symbol to the active layer.

 'NOTE: This automatically adds the symbol definition to the

 'internal symbol library for the document.

 Set shpSymBreaker2 = ActiveLayer.CreateSymbol(15, 20, _

 "breaker2", SymbolLibraries("switchesA"))

 'Add another instance of the breaker2 symbol, this time from the

 'internal symbol library. NOTE: We did not specify a library, so

 'the library for the local document is used by default.

 Set shpSymBreaker2A = ActiveLayer.CreateSymbol(30, 20, _

 "breaker2")

 'Remove the switchesA library from the global workspace.

 SymbolLibraries("switchesA").Delete

 'Delete the two breaker2 symbols.

 shpSymBreaker2.Delete

 shpSymBreaker2A.Delete

 'At this point, the internal symbol library for the document

 'still has the definition of breaker2 stored. To remove this

 'definition, we must purge the unused symbols from the library.

 'The definition is unused because there are no instances that

 'reference it.

 ActiveDocument.SymbolLibrary.PurgeUnusedSymbols

End Sub

A symbol can contain (or “nest”) other symbols. A top-level symbol can contain symbols, and each of those
symbols can contain a symbol, and so forth. In the object model, the SymbolDefinition.NestedSymbols
property returns (as a SymbolDefinitions object) the collection of nested symbols for a symbol definition. While
there is no restriction on how many nesting levels can be created, the symbol cannot be rendered without access
to its symbol definition (whether external or internal). In addition, even if the first and second nesting layers of a
symbol are rendered correctly, a symbol on the third nesting layer may not be rendered correctly without access
to its required symbol definition.

Understanding the Corel DESIGNER and CorelDRAW object models 125

Symbols and nested symbols

The following VBA code demonstrates the basics of using nested symbols:

Sub MakeNestedSymbol()

 Dim shp1 As Shape, shp2 As Shape, shp3 As Shape, shpSym As Shape

 Dim shpRng As New ShapeRange

 'Create a pair of rectangles and a circle.

 Set shp1 = ActiveLayer.CreateRectangle2(0, 0, 10, 20)

 Set shp2 = ActiveLayer.CreateRectangle2(50, 50, 20 ,10)

 Set shp3 = ActiveLayer.CreateEllipse(10, 10, 20)

 'Make a symbol out of the circle. NOTE: This circle is

 'automatically added to the internal symbol library for the

 'document.

 Set shpSym = shp3.ConvertToSymbol("circle")

 'Add the rectangles and the circle symbol to a shape range.

 shpRng.Add shp1

 shpRng.Add shp2

 shpRng.Add shpSym

 'Convert the shape range into a symbol. NOTE: This symbol is

 'added to the internal symbol library for the document. It is

 'also is a nested symbol because it contains the symbol circle.

 shpRng.ConvertToSymbol "shapes"

End Sub

Understanding the Corel DESIGNER and CorelDRAW object models 126

Determining shape type

Each Shape object has a read-only Type property, which returns the shape type (for example, rectangle, ellipse,
curve, text, or group). The properties and methods that are available to a shape vary with shape type; therefore,
it’s a good idea to determine the shape type before applying any properties or methods to that shape.

The following sample VBA code determines whether a shape is text. If the shape is text, the code determines
whether it is artistic text or paragraph text. If the shape is artistic text, it is rotated by 10 degrees.

Dim sh As Shape

Set sh = ActiveShape

If sh.Type = cdrTextShape Then

 If sh.Text.IsArtisticText = True Then

 sh.Rotate 10

 End If

End If

Selecting shapes

Each shape is a member of the Layer.Shapes collection for the layer on which it appears. The shapes in a
Layer.Shapes collection appear in the order in which they appear on that layer — the first shape is the one at the
top of the “stack,” and the last shape is the one at the bottom. If shapes are added, reordered, or deleted, the
affected Layer.Shapes collection is immediately updated to reflect the new shape order of that layer.

In addition, each document page has a Shapes collection, which contains all Layer.Shapes collections for
that page. The first shape in a Page.Shapes collection is the one at the very top of that page, and the last
shape is the one at the very bottom.

If you want to access individual shapes, you can select them. When you select shapes, you create a “selection”
that contains only those shapes.

The Shape.Selected property takes a Boolean value that indicates whether a shape is selected: True if the shape
is selected, False otherwise. You can select a shape by changing the value of its Selected property to True; this
technique adds the shape to the current selection — that is, rather than creating a new selection that contains
only that shape.

If you want to create a new selection from a shape — that is, by selecting a specified shape and deselecting any
other selected shapes — you can use the Shape.CreateSelection method, as in the following VBA example:

Dim sh As Shape

Set sh = ActivePage.Shapes(1)

If sh.Selected = False Then sh.CreateSelection

You can select multiple shapes by using the ShapeRange.CreateSelection method. The following VBA code
uses this method — in combination with the Shapes.All method — to select all shapes on the active page
(except those on locked or hidden layers):

ActivePage.Shapes.All.CreateSelection

Understanding the Corel DESIGNER and CorelDRAW object models 127

You can access a selection in one of two ways:
• Use the Document.Selection method to return a special Shape object that contains the actual selection.

This Shape object is automatically refreshed when the selection is updated.
• Use the Document.SelectionRange property to return a ShapeRange object that contains a copy of the

selection. This ShapeRange object represents a “snapshot” of the selection (at the time when the
ShapeRange object was created), so it is not automatically refreshed when the selection is updated.

To summarize, you can access a selection directly, or you can access a copy of that selection; alternatively, you can
access a subset of the shapes in a selection. You can also reorder the shapes in a selection. When you no longer
require a selection, you can deselect one or all of its shapes.

For more information on selecting shapes, see the following subtopics:
• “Accessing selections directly” on page 127
• “Accessing copies of selections” on page 128
• “Accessing the shapes in a selection” on page 128
• “Reordering the shapes in a selection” on page 129
• “Deselecting shapes” on page 129

Accessing selections directly

As previously discussed, you can use the Document.Selection method to access the contents of a selection
directly. A Shape object is returned, and this Shape object is updated to reflect any changes made to the
selection.

The following VBA code returns the selection for the active document:

Dim sel As Shape

Set sel = ActiveDocument.Selection

The shortcut for ActiveDocument.Selection is ActiveSelection, which returns a Shape object of subtype
cdrSelectionShape. The Shape subtype has a member collection called Shapes, which represents a collection of
all the selected shapes in the document. The shapes in the ActiveSelection.Shapes collection can be accessed
as in the following VBA example:

Dim sh As Shape, shs As Shapes

Set shs = ActiveSelection.Shapes

For Each sh In shs

 sh.Rotate 15 'Rotate each shape by 15 degrees counterclockwise

Next sh

After you use the ActiveSelection command to select shapes, you cannot subsequently use the
command to access those shapes. Instead, you must create a copy of the selection by using one of the
following methods:

• Recreate the selection as an array of Shape objects.
• Recreate the selection as a Shapes collection.
• Create a “snapshot” of the selection as a ShapeRange object (see “Accessing copies of selections”

on page 128).

Understanding the Corel DESIGNER and CorelDRAW object models 128

Accessing copies of selections

As previously discussed, you can use the Document.SelectionRange property to make a copy of the shapes in a
selection. However, the returned ShapeRange object is not refreshed when the selection is updated because it
represents a “snapshot” of the selection at the moment when that ShapeRange object was created.

The following VBA code returns a copy of the selection for the active document:

Dim selRange As ShapeRange

Set selRange = ActiveDocument.SelectionRange

The shortcut for the ActiveDocument.SelectionRange command is ActiveSelectionRange, which returns
a ShapeRange object. This object contains a collection of references to the shapes that were selected at the
moment when the property was invoked. The shapes in the ActiveSelectionRange collection can be accessed
as in the following VBA example:

Dim sh As Shape, shRange As ShapeRange

Set shRange = ActiveSelectionRange

For Each sh In shRange

 sh.Skew 15 ' Skew each shape thru 15° counterclockwise

Next sh

After you use the ActiveSelectionRange command to create a copy of the current document selection, you
can subsequently access the returned ShapeRange object to access any of its shapes. You can even add shapes to
or remove shapes from the returned ShapeRange object. You can then use the ShapeRange.CreateSelection
method if you want to replace the current selection with the modified ShapeRange object.

The following VBA code creates a ShapeRange object from the current document selection, removes the first
and second shapes from that shape range, and then replaces the original selection with this modified
ShapeRange object:

Dim shRange As ShapeRange

Set shRange = ActiveSelectionRange

shRange.Remove 1

shRange.Remove 2

shRange.CreateSelection

If you want to add a specified ShapeRange object to the current selection (rather than use it to replace
the current selection), you can use the ShapeRange.AddToSelection method.

Accessing the shapes in a selection

You can use a similar process for accessing the shapes in a selection as you can for accessing the shapes in a
selection range. Here is a a VBA code sample for accessing the shapes in a selection:

Dim shs As Shapes, sh As Shape

Set shs = ActiveSelection.Shapes

For Each sh In shs

 ' Do something with the shape, sh

Next sh

Understanding the Corel DESIGNER and CorelDRAW object models 129

Here is a VBA code sample for accessing the shapes in a selection range:

Dim sRange As ShapeRange, sh As Shape

Set sRange = ActiveSelectionRange

For Each sh In sRange

 ' Do something with the shape, sh

Next sh

Remember that the ActiveSelection.Shapes command provides direct access to the current
selection, while the ActiveSelectionRange command provides a copy of the current selection. Use
ActiveSelection.Shapes if you want to access the current selection; use ActiveSelectionRange if
you want to create a “snapshot” of the current selection that you can access later.

Reordering the shapes in a selection

The ActiveSelection.Shapes command and the ActiveSelectionRange command return shapes in the
reverse order from which they were selected: the first shape is the last one selected, and the last shape is the first
one selected. Please keep this fact in mind when reordering the shapes in a selection.

Deselecting shapes

You can deselect any shape by changing the value of its Shape.Selected property to False.

You can deselect all shapes by using the Document.ClearSelection method. The following VBA code uses the
ClearSelection method to deselect all shapes in the active document:

ActiveDocument.ClearSelection

If you want, you can use event handlers to respond to events that are triggered by deseleting a shape:
• Document.ShapeChange

You can also use event handlers to respond to events that are triggered by deactivating a selection:
• Application.SelectionChange
• Document.SelectionChange
• GlobalMacroStorage.SelectionChange

Duplicating shapes

You can use the Shape.Duplicate method to duplicate a shape, and you can use the ShapeRange.Duplicate
method to duplicate a range of shapes.

ActiveSelection.Duplicate

The Duplicate method provides two optional parameters, OffsetX and OffsetY, which offset the duplicate from
the original (horizontally and vertically, respectively). The following VBA code positions the duplicate two inches
to the right and one inch above the original:

ActiveDocument.Unit = cdrInch

ActiveSelection.Duplicate 2, 1

Understanding the Corel DESIGNER and CorelDRAW object models 130

Transforming shapes

You can transform shapes in various ways, as explained in the following topics:
• “Sizing shapes” on page 130
• “Stretching shapes” on page 132
• “Skewing shapes” on page 132
• “Rotating shapes” on page 132
• “Positioning shapes” on page 133

If you want, you can use event handlers to respond to events that are triggered by transforming a shape:
• Document.ShapeTransform

Sizing shapes

You can return the width and height of a shape (in document units) by using the Shape.SizeWidth and
Shape.SizeHeight properties, as in the following VBA example:

Dim width As Double, height As Double

ActiveDocument.Unit = cdrMillimeter

width = ActiveShape.SizeWidth

height = ActiveShape.SizeHeight

You can also use the Shape.SizeWidth and Shape.SizeHeight properties to resize an existing shape by
specifying new values for those properties. The following VBA example uses these properties to set the size of the
active shape to a width of 50 millimeters and a height of 70 millimeters:

ActiveDocument.Unit = cdrMillimeter

ActiveShape.SizeWidth = 50

ActiveShape.SizeHeight = 70

You can return both the width and the height of a shape (in document units) by using the Shape.GetSize
method, as in the following VBA example:

Dim width As Double, height As Double

ActiveDocument.Unit = cdrMillimeter

ActiveShape.GetSize width, height

You can resize a shape by using the Shape.SetSize method to specify a new width and new height for it, as in the
following VBA example:

ActiveDocument.Unit = cdrMillimeter

ActiveShape.SetSize 50, 70

You can also resize a shape by using the Shape.SetSizeEx method. Besides the new width and new height for the
shape, this method takes a reference point for the resize (instead of using the center point of the shape). The
following VBA code uses the SetSizeEx method to resize the current selection to 10 inches wide by 8 inches high
about the reference point (6, 5) in the document:

ActiveDocument.Unit = cdrInch

ActiveSelection.SetSizeEx 6, 5, 10, 8

Understanding the Corel DESIGNER and CorelDRAW object models 131

If you want to take the outline of a shape into account when returning the size of that shape, you must use the
Shape.GetBoundingBox method. The bounding box for a shape surrounds both the shape and its outline;
however, the actual dimensions of a shape specify its width and height irrespective of the size of its outline. The
following VBA example uses the GetBoundingBox method to return the size of the active shape:

Dim width As Double, height As Double

Dim posX As Double, posY As Double

ActiveDocument.Unit = cdrInch

ActiveDocument.ReferencePoint = cdrBottomLeft

ActiveShape.GetBoundingBox posX, posY, width, height, True

The Shape.GetBoundingBox method takes parameters that specify the position of the lower-left corner of the
shape, the width of the shape, and the height of the shape. The final parameter is a Boolean value that indicates
whether to include (True) or exclude (False) the outline of the shape. The Shape.SetBoundingBox method lets
you set the size of a shape by specifying the size of its bounding box; however, this method lacks the parameter
for specifying whether to include the outline in the new size. If you want to calculate the size and position of the
bounding box of a shape without including its outline, you can use the GetBoundingBox method twice (once
including the outline and once excluding it), as in the following VBA example:

Public Sub SetBoundingBoxEx(X As Double, Y As Double, _

 Width As Double, Height As Double)

 Dim sh As Shape

 Dim nowX As Double, nowY As Double

 Dim nowWidth As Double, nowHeight As Double

 Dim nowXol As Double, nowYol As Double

 Dim nowWidthol As Double, nowHeightol As Double

 Dim newX As Double, newY As Double

 Dim newWidth As Double, newHeight As Double

 Dim ratioWidth As Double, ratioHeight As Double

 Set sh = ActiveSelection

 sh.GetBoundingBox nowX, nowY, nowWidth, nowHeight, False

 sh.GetBoundingBox nowXol, nowYol, nowWidthol, nowHeightol, True

 ratioWidth = Width / nowWidthol

 ratioHeight = Height / nowHeightol

 newWidth = nowWidth * ratioWidth

 newHeight = nowHeight * ratioHeight

 newX = X + (nowX - nowXol)

 newY = Y + (nowY - nowYol)

 sh.SetBoundingBox newX, newY, newWidth, newHeight, False, _

 cdrBottomLeft

End Sub

Understanding the Corel DESIGNER and CorelDRAW object models 132

Stretching shapes

You can stretch a shape (or scale it by stretching is proportionately) by using the Shape.Stretch method or the
Shape.StretchEx method. Both methods take a decimal value for the stretch, where 1 is 100% (or no change);
you cannot use zero, so you must use a very small value instead.

The following VBA code uses the Shape.Stretch method to stretch the selection to half its current height and
twice its width, about the midpoint of the bottom edge of its bounding box:

ActiveDocument.ReferencePoint = cdrBottomMiddle

ActiveSelection.Stretch 2, 0.5

If you want to specify the reference point about which to perform a stretch, you can use the Shape.StretchEx
method. The following VBA code performs the same stretch as the previous code, but it performs that stretch
about the point (4, 5) on the page (in inches):

ActiveDocument.Unit = cdrInch

ActiveSelection.StretchEx 4, 5, 2, 0.5

The Shape.Stretch and Shape.StretchEx methods provide an optional Boolean parameter that
determines how to stretch paragraph text. A value of True stretches the characters, while False stretches
the bounding box and re-flows the text within it.

Skewing shapes

You can skew a shape by using the Shape.Skew method or the Shape.SkewEx method. These methods let you
specify the horizontal-skew angle (in degrees, where positive values move the top edge to the left and the bottom
edge to the right) and the vertical-skew angle (in degrees, where positive values move the right edge upwards
and the left edge downwards).

Skews of angles close to or greater than 90° are not allowed.

The horizontal skew is applied before the vertical skew.

The difference between the Shape.Skew and Shape.SkewEx methods is the point about which the skew is
performed: Skew uses the center of rotation for the shape, while SkewEx uses the specified reference point.

You can determine the center of rotation for a shape by returning the values of its
Shape.RotationCenterX and Shape.RotationCenterY properties. Changing these values moves the
center of rotation for that shape.

The following VBA code uses the Shape.Skew method to skew the selection (about its center of rotation) by 30°
horizontally and by 15° vertically:

ActiveSelection.Skew 30, 15

Rotating shapes

You can rotate a shape by using the Shape.Rotate method or the Shape.RotateEx method. These methods
rotate the shape by the given angle (in degrees). However, the difference between these methods is the point
about which they perform the rotation: Rotate uses the center of rotation for the shape, while RotateEx uses the
specified reference point.

Understanding the Corel DESIGNER and CorelDRAW object models 133

You can determine the center of rotation for a shape by returning the values of its
Shape.RotationCenterX and Shape.RotationCenterY properties. Changing these values moves the
center of rotation for that shape.

The following VBA code uses the Shape.Rotate method to rotate the selection (about its center of rotation) by
30°:

ActiveSelection.Rotate 30

The following VBA code uses the Shape.RotateEx method to rotate each selected shape by 15° clockwise about
its lower-right corner:

Dim sh As Shape

ActiveDocument.ReferencePoint = cdrBottomRight

For Each sh In ActiveSelection.Shapes

 sh.RotateEx -15, sh.PositionX, sh.PositionY

Next sh

Positioning shapes

You can return the horizontal and vertical position of a shape by using the Shape.PositionX and
Shape.PositionY properties (respectively). Alternatively, you can use the Shape.GetPosition method to return
both the horizontal position and the vertical position of a shape.

You can use the Shape.GetBoundingBox method if you want to return the position of a shape,
including its outline. For more information on this method, see “Sizing shapes” on page 130.

The following VBA code uses the Shape.GetPosition method to return the position of the selection relative to
the current reference point of the active document, which the code explicitly sets to the lower-left corner:

Dim posX As Double, posY As Double

ActiveDocument.ReferencePoint = cdrBottomLeft

ActiveSelection.GetPosition posX, posY

You can also use the Shape.PositionX and Shape.PositionY properties to set the horizontal and vertical
position of a shape (respectively), thereby moving that shape to the specified position. Alternatively, you can use
the Shape.SetPosition method to move a shape to specified horizontal and vertical position, or you can use the
Shape.SetPositionEx method to move the shape to a specified point.

You can also use the Shape.SetSizeEx and Shape.SetBoundingBox methods to set the position of a
shape. For more information on these methods, see “Sizing shapes” on page 130.

Understanding the Corel DESIGNER and CorelDRAW object models 134

The following VBA code uses the Shape.SetPosition method to set the position of the lower-right corner of each
selected shape in the active document to (3, 2) in inches:

Dim sh As Shape

ActiveDocument.Unit = cdrInch

ActiveDocument.ReferencePoint = cdrBottomRight

For Each sh In ActiveSelection.Shapes

 sh.SetPosition 3, 2

Next sh

If you want, you can use event handlers to respond to events that are triggered by positioning a shape:
• Document.ShapeMove

Coloring shapes

You can add color to a shape by applying a fill (or Fill object) to it. The fill type for a shape is recorded by the
Fill.Type property as one of the following constants for the cdrFillType enumeration:
• cdrUniformFill — uniform fill
• cdrFountainFill — fountain fill
• cdrPatternFill — pattern fill
• cdrTextureFill — texture fill
• cdrPostScriptFill — PostScript fill
• cdrHatchFill — hatch fill
• cdrNoFill — no fill

The following VBA code returns the type of fill that is applied to the active shape:

Dim fillType As cdrFillType

fillType = ActiveShape.Fill.Type

You cannot change the fill type for a shape by modifying its Fill.Type property. Instead, you must use
the appropriate Fill.Apply...Fill method, as described in the subsections that follow.

You can also add color to a shape by applying an outline (or Outline object) to it.

In addition, the object model provides a variety of properties and methods for working with the colors (or Color
objects) that you apply to shapes.

For information on applying fills and outlines and on working with colors, see the following subtopics:
• “Applying uniform fills” on page 135
• “Applying fountain fills” on page 135
• “Applying pattern fills” on page 136
• “Applying texture fills” on page 136
• “Applying PostScript fills” on page 136
• “Applying hatch fills” on page 136
• “Applying outlines” on page 137

Understanding the Corel DESIGNER and CorelDRAW object models 135

• “Working with color” on page 138

In your macros, you can include queries that search for shapes that have specific fill properties, outline
properties, or color properties. For information, see “Including queries in macros” in the Macros Help file
for the application.

Applying uniform fills

Uniform fills consist of a single, solid color. A uniform fill is represented by the Fill.UniformColor property as a
Color object.

You can apply a uniform fill to a shape by using the Fill.ApplyUniformFill method. The following VBA
example applies a red uniform fill to the active shape:

ActiveShape.Fill.ApplyUniformFill CreateRGBColor(255, 0, 0)

You can change the color of a uniform fill by modifying its Fill.UniformColor property. The following VBA
example changes the uniform fill of the active shape to deep navy blue:

ActiveShape.Fill.UniformColor.RGBAssign 0, 0, 102

You can remove the uniform fill from a shape by using the Fill.ApplyNoFill method.

Applying fountain fills

Fountain fills display a progression between two colors. A fountain fill is represented by the Fill.Fountain
property as a FountainFill object, which specifies the various properties for the fountain fill: start color, end
color, angle, blend type, and so on. The colors in a fountain fill are represented by a FountainColors collection.

You can apply a fountain fill to a shape by using the Fill.ApplyFountainFill method. This method provides
optional parameters for various fountain-fill settings, such as the midpoint and offset of the blend. The following
VBA example creates a simple linear fountain fill, from red to yellow, at 30 degrees to the horizontal:

Dim startCol As New Color, endCol As New Color

startCol.RGBAssign 255, 0, 0

endCol.RGBAssign 255, 255, 0

ActiveShape.Fill.ApplyFountainFill startCol, endCol, cdrLinearFountainFill, 30

You can add a color to a fountain fill by using the FountainColors.Add method. Color positions are integer
values in percent, where 0% is the start-color position and 100% is the end-color position. The following VBA
example adds a green color to the fountain fill at a position about one-third (33%) of the way from the existing
red color:

Dim fFill As FountainFill

Set fFill = ActiveShape.Fill.Fountain

fFill.Colors.Add CreateRGBColor(0, 102, 0), 33

You can move a color in a fountain fill by using the FountainColor.Move method. The following VBA code
moves the green color from the previous example to a position that is 60% of the way from the red (that is, more
towards the yellow):

ActiveShape.Fill.Fountain.Colors(1).Move 60

Understanding the Corel DESIGNER and CorelDRAW object models 136

You can use the FountainColors.Count property to determine the number of colors between the start color and
end color of a fountain fill. (For the preceding example, this value is 1.) The first color in the collection is that
start color, and its index number is 0; this color cannot be moved, but its color can be changed. The last color in
the collection is the end color, and its index number is (Count + 1); this color cannot be moved, but its color
can be changed. The following VBA code changes the end color from yellow to blue:

Dim cols As FountainColors

Set cols = ActiveShape.Fill.Fountain.Colors

cols(cols.Count + 1).Color.RGBAssign 0, 0, 102

You can remove the fountain fill from a shape by using the Fill.ApplyNoFill method.

Applying pattern fills

Pattern fills display a series of repeating vector objects or bitmap images. A pattern fill is represented by the
Fill.Pattern property as a PatternFill object, which specifies the various properties for the pattern fill:
foreground color, background color, tile offset, and so on.

The collection of available pattern fills is stored in the PatternCanvases collection.

You can apply a pattern fill to a shape by using the Fill.ApplyPatternFill method.

You can remove the pattern fill from a shape by using the Fill.ApplyNoFill method.

Applying texture fills

Texture fills are fractally generated and fill a shape with one image rather than a series of repeating images. A
texture fill is represented by the Fill.Texture property as a TextureFill object, which specifies the various
properties for the texture fill: origin, resolution, tile offset, and so on.

The properties for a texture fill are stored in a TextureFillProperties collection.

You can apply a texture fill to a shape by using the Fill.ApplyTextureFill method.

You can remove the texture fill from a shape by using the Fill.ApplyNoFill method.

Applying PostScript fills

PostScript fills are texture fills that are designed by using the PostScript language. A PostScript fill is represented
by the Fill.PostScript property as a PostScriptFill object, which specifies the various properties for the
PostScript fill.

You can apply a PostScript fill to a shape by using the Fill.ApplyPostScriptFill method.

You can remove the PostScript fill from a shape by using the Fill.ApplyNoFill method.

Applying hatch fills

Hatch fills are composed of vector-based lines and can be used to clearly distinguish the materials or object
relationships in a drawing. A hatch fill is represented by the Fill.Hatch property as a HatchFill object, which
specifies the various properties for the hatch fill.

Understanding the Corel DESIGNER and CorelDRAW object models 137

The collection of available hatch-fill patterns is stored in the HatchPatterns collection, and each
document stores its own library of hatch-fill patterns in a HatchLibraries collection.

You can apply a hatch fill to a shape by using the Fill.ApplyHatchFill method.

You can remove the hatch fill from a shape by using the Fill.ApplyNoFill method.

Applying outlines

You can use the various properties and methods of the Outline class to define the outline of a shape.

The Outline.Type property uses the following constants of the cdrOutlineType enumeration to record whether
the specified shape has an outline:
• cdrOutline — indicates that the shape has an outline
• cdrNoOutline — indicates that the shape does not have an outline

If a shape has no outline, setting its Outline.Type property to cdrOutline applies the document-default
outline style.

If a shape has an outline, setting its Outline.Type property to cdrNoOutline removes that outline.

The Outline.Width property for an outline sets its width in document units. In the following VBA example, the
outline of the selected shapes is set to 1 millimeter:

ActiveDocument.Unit = cdrMillimeter

ActiveSelection.Outline.Width = 1

If a shape does not have an outline, its Outline.Width value is 0. Changing this value applies an outline
and automatically changes the value for the Outline.Type property from cdrNoOutline to cdrOutline.

Similarly, if a shape has an outline, its Outline.Width value is greater than 0. Changing this value to 0
removes the outline and automatically changes the value for the Outline.Type property from cdrOutline
to cdrNoOutline.

The Outline.Color property for an outline defines its color, as in the following VBA example:

ActiveSelection.Outline.Color.GrayAssign 0 ' Set to black

Setting the color of an outline automatically sets the Outline.Type property of that outline to
cdrOutline and applies the default outline width.

The Outline.Style property for an outline specifies the dash settings of that outline. These dash settings are
defined by the following properties of the OutlineStyle class:
• DashCount — represents the number of pairs of dashes and gaps in an outline. This value ranges from 1 to

5.
• DashLength — represents the length of each dash in an outline. This value is calculated as a multiple of the

outline width, which is measured in document units. For example, if DashLength(1) is 5 and the outline is
0.2" wide, the length of the dash is 1"; however, if the width of the line is changed to 0.1", the length of the
dash becomes 0.5".

Understanding the Corel DESIGNER and CorelDRAW object models 138

• GapLength — represents the length ofeach gap in an outline. This value is calculated as a multiple of the
outline width, which is measured in document units.

• Index — represents the index number of a predefined outline style in the OutlineStyles collection for the
application. The OutlineStyles collection is customizable, so the index number that is associated with each
outline style in the collection may vary from user to user; however, the expression OutlineStyles.Item(0)
always specifies a solid line.

Outline objects have many other properties, including the following:
• StartArrow and EndArrow — specify the arrowhead on each end of an open curve
• LineCaps and LineJoin — respectively, specify the type of line caps (butt, round, or square) and

line joins (bevel, miter, or round)
• NibAngle and NibStretch — specify the shape of the nib used to draw the outline
• BehindFill and ScaleWithShape — respectively, draw the outline behind the fill and scale the

outline with the shape

Outline objects also have methods, including the following:
• ConvertToObject — converts the outline to an object
• SetProperties — sets most of the available outline properties in a single call

Working with color

The Color class defines the fill colors and outline colors that you apply to shapes. This class provides a number of
properties and methods for working with color.

You can determine the color model of a color by accessing its Color.Type property, as in the following VBA
example:

Dim colType As cdrColorType

colType = ActiveShape.Outline.Color.Type

The Color.Type property is defined by the cdrColorType enumeration, which provides the following constants
(among many others) for supported color models:
• cdrColorCMYK — specifies the CMYK color model
• cdrColorRGB — specifies the RGB color model
• cdrColorGray — specifies the grayscale color model

The color components for each supported color model are defined by additional properties of the Color
class, as demostrated by the following VBA examples:

• CMYK color model — is defined by the Color.CMYKCyan, Color.CMYKMagenta,
Color.CMYKYellow, and Color.CMYKBlack properties

• RGB color model — is defined by the Color.RGBRed, Color.RGBGreen, and Color.RGBBlue
properties

• grayscale color model — is defined by the Color.Gray property

The range of values that is supported by a color component depends on the color model for that
component.

To create a color, you can use the automation keyword New, as in Dim col As New Color.

Understanding the Corel DESIGNER and CorelDRAW object models 139

To assign a color model to a new color, you can use the desired ...Assign method (such as
Color.CMYKAssign, Color.RGBAssign, or Color.GrayAssign). Each of these methods provides one
parameter for each color component in its respective color model. For example,
col.RGBAssign 0, 0, 102 assigns a deep-blue RGB color to the new color that was created in the
previous tip.

To use the application’s color-management settings to change the color model that is assigned to a color,
you can use the desired ConvertTo... method (such as Color.ConvertToCMYK, Color.ConvertToRGB,
or Color.ConvertToGray). For example, ActiveShape.Fill.UniformColor.ConvertToRGB
converts the fill of the active shape to the RGB color model.

You can copy the properties of one color to another color by using the Color.CopyAssign method, as in the
following VBA example:

Dim sh As Shape

Set sh = ActiveShape

sh.Outline.Color.CopyAssign sh.Fill.UniformColor

The color “none” does not exist. To set a fill color or outline color to “none,” you must instead set the fill
type or outline type to “none.”

Applying effects to shapes

The object model provides a number of methods for applying effects to shapes. For information on these
methods, see the following subtopics:
• “Applying blends” on page 139
• “Applying contours” on page 140
• “Applying customized effects” on page 140
• “Applying distortions” on page 140
• “Applying drop shadows” on page 141
• “Applying envelopes” on page 141
• “Applying extrusions” on page 141
• “Applying lenses” on page 141
• “Applying perspective” on page 141

Applying an effect returns an Effect object, which lets you access various properties and methods for the
created effect. For example, you can use the Effect.Separate method to separate the shapes that are
generated by an effect from the shape to which that effect is applied. In addition, you can use the
Effect.Clear method to remove an effect from a shape.

Applying blends

The Shape.CreateBlend method creates a blend between the current shape and the shape that is specified as a
parameter. This method provides optional parameters for various blend settings, such as the acceleration of the
blend and the path along which the blend is created.

Understanding the Corel DESIGNER and CorelDRAW object models 140

The following VBA code creates a basic ten-step blend:

Dim sh As Shapes, eff As Effect

Set sh = ActiveSelection.Shapes

Set eff = sh(1).CreateBlend(sh(2), 10)

In the preceding example, the number of shapes in the blend is twelve: the start and end shapes, plus the
ten blend steps that are created.

The Shape.CreateBlend method returns an Effect object, the Effect.Blend property for which you can
use to modify the created blend.

Applying contours

The Shape.CreateContour method applies a contour to a shape. This method provides optional parameters for
various contour settings, such as the colors and acceleration of the contour.

The following VBA code creates a three-step contour at a five-millimeter spacing:

Dim eff As Effect

ActiveDocument.Unit = cdrMillimeter

Set eff = ActiveShape.CreateContour(cdrContourOutside, 5, 3)

The Shape.CreateContour method returns an Effect object, the Effect.Contour property for which you
can use to modify the created contour.

Applying customized effects

The Shape.CreateCustomEffect method applies a customized effect to a shape. This method provides
parameters for various effect settings.

The Shape.CreateCustomEffect method returns an Effect object, the Effect.Custom property for
which you can use to modify the created effect.

Applying distortions

The following methods apply a distortion to a shape:
• Shape.CreatePushPullDistortion — applies a Push-and-pull distortion
• Shape.CreateTwisterDistortion — applies a Twister distortion
• Shape.CreateZipperDistortion — applies a Zipper distortion
• Shape.CreateCustomDistortion — applies a customized distortion

These methods provide parameters for various distortion settings.

The distortion-creation methods return an Effect object, the Effect.Distortion property for which you
can use to modify the created distortion.

If you want, you can use event handlers to respond to events that are triggered by distorting a shape:
• Document.ShapeDistort

Understanding the Corel DESIGNER and CorelDRAW object models 141

Applying drop shadows

The Shape.CreateDropShadow method applies a drop shadow to a shape. This method provides optional
parameters for various drop-shadow settings, such as the feathering and offset of the drop shadow.

The Shape.CreateDropShadow method returns an Effect object, the Effect.DropShadow property for
which you can use to modify the created drop shadow.

Applying envelopes

The following methods apply an envelope to a shape:
• Shape.CreateEnvelope — applies a basic envelope
• Shape.CreateEnvelopeFromCurve — applies an envelope by using the specified curve as a template
• Shape.CreateEnvelopeFromShape — applies an envelope by using the specified shape as a template

These methods provide parameters for various envelope settings.

The envelope-creation methods return an Effect object, the Effect.Envelope property for which you can
use to modify the created envelope.

Applying extrusions

The Shape.CreateExtrude method applies an extrusion to a shape. This method provides optional parameters
for various extrusion settings, such as the angle and color of the extrusion.

The Shape.CreateExtrude method returns an Effect object, the Effect.Extrude property for which you
can use to modify the created extrusion.

Applying lenses

The Shape.CreateLens method applies a lens to a shape. This method provides optional parameters for various
lens settings, such as the color and magnitude of the lens.

The Shape.CreateLens method returns an Effect object, the Effect.Lens property for which you can use
to modify the created lens.

Applying perspective

The Shape.CreatePerspective method applies perspective to a shape. This method provides optional
parameters for specifying horizontal and vertical vanishing points.

The Shape.CreatePerspective method returns an Effect object, the Effect.Perspective property for
which you can use to modify the created perspective effect.

Projecting shapes

Isometric projections are two-dimensional objects that are converted into apparent three-dimensional objects. In
Corel DESIGNER, you can project a single shape by using the Shape.Project method, or you can project a range
of shapes by using the ShapeRange.Project method.

Understanding the Corel DESIGNER and CorelDRAW object models 142

Shapes in a range are projected parallel to each other, so they do not converge to a vanishing point.

You can project shapes onto three isometric planes:
• top
• front (default)
• right

You can also originate the projection from a specified reference point:
• top left
• top middle
• top right
• middle left
• center (default)
• middle right
• bottom left
• bottom middle
• bottom right

Finally, you can apply a projection to a duplicate of the specified object or to the original object.

The following VBA code sample illustrates how to create a projection:

Sub MakeProjection()

 Dim shp1 As Shape, shp2 As Shape, shp3 As Shape

 Dim shpRng As ShapeRange

'Create a pair of rectangles and a circle.

 ActiveDocument.Unit = cdrMillimeter

 Set shp1 = ActiveLayer.CreateRectangle2(0, 0, 10, 20)

 Set shp2 = ActiveLayer.CreateRectangle2(50, 50, 20, 10)

 Set shp3 = ActiveLayer.CreateEllipse(10, 10, 20, 20)

'Add the rectangles to a ShapeRange.

 Set shpRng = ActiveLayer.FindShapes(Type:=cdrRectangleShape)

'Project the shapes onto the top isometric plane,

'using the upper-right corner of the ShapeRange bounding box

'as the anchor point. Modify the original object.

 shpRng.Project cdrProjectTop, cdrTopRight

'Project a duplicate of the circle onto the right isometric plane,

'using the default reference point.

 shp3.Project Plane:=cdrProjectRight, ApplyToDuplicate:=True

End Sub

Understanding the Corel DESIGNER and CorelDRAW object models 143

Searching for shapes

In your macros, you can include queries that search for shapes that have specific shape properties, fill properties,
outline properties, or color properties. To do this, you use Corel Query Language (CQL) in conjunction with one
of the following methods:
• Shape.Evaluate — returns the result of a given expression that evaluates the properties of the current shape
• Shapes.FindShape — returns a single shape that has the specified properties
• Shapes.FindShapes — returns, as a shape range, all shapes that have the specified properties

You can specify the shape properties for which to search. For example, the expression
ActiveShape.Evaluate("@name") searches searches the Name property of all selected shapes.

Consider the following VBA code sample, in which the Type property and the Width property are used to select
all rectangles that are wider than two inches:

ActivePage.Shapes.FindShapes(Query := "@type = 'rectangle' and _

@width > {2 in}").CreateSelection

For comprehensive information on using CQL, see “Including queries in macros” in the Macros Help file for the
application.

Deleting shapes

If you want, you can use event handlers to respond to events that are triggered by deleting a shape:
• Document.ShapeDelete

Working with import filters and export filters

As previously discussed, methods are available for importing files (see “Importing files into layers” on page 102)
and exporting files (see “Exporting files from documents” on page 88).

These file-import and file-export methods can also be used for performing batch conversions or modifying
file repositories.

The wide selection of supported file formats is due to the vast number of filters that are available to the
application. Each filter lets you work with the files from another graphics application. To learn more about
working with these filters, see the following topics:
• “Working with import filters” on page 144
• “Working with export filters” on page 146

Understanding the Corel DESIGNER and CorelDRAW object models 144

Working with import filters

To ensure the portability of a file-import script, you must use the default ImportFilter object (rather than the
filter-specific object DSFImport), as in the following VBA example:

Sub OpenRectangle()

 Dim FilterObject As ImportFilter

 'Initialize FilterObject

 Set FilterObject = ActiveLayer.ImportEx("C:\devo\rect.dsf", _

cdrDSF)

 'Set the advanced features of the filter

 FilterObject.DefaultLinestyle = 1 'Dashed

 FilterObject.DeleteInvisibleObjects = True

 'Invoke the filter

 FilterObject.Finish

End Sub

For best results, use the filter-specific object DSFImport only to learn the specific interfaces that are supported
by a filter. For example, the following screenshot demonstrates that the ImportFilter object exposes only generic
interfaces in Microsoft® IntelliSense® because the ImportFilter interface is generic (and not filter-specific). The
ImportFilter object does not contain the DefaultLinestyle and DeleteInvisibleObjects properties; however,
you can still set these properties in the ImportFilter interface if they are supported by the specified import filter.

As previously discussed, using the ImportFilter object (rather than the filter-specific object DSFImport)
ensures that a file-import script can be used on any other workstation running the same version of the
application. To reference the properties, methods, and enumerations for a specific filter, locate that filter in the
Object Browser. For example, the following screenshot demonstrates that the line-style dsfDashed2 can be
specified by assigning a value of 7 to the DefaultLinestyle property.

Understanding the Corel DESIGNER and CorelDRAW object models 145

To access the object model for a filter, click Tools References from within the Macro Editor. In the
References dialog box that appears, click Browse, and navigate to the Filters folder of the installed software.
Select the dynamic-link library (DLL) file for the desired filter, and then click OK. When the References dialog
box reappears, enable the checkbox that corresponds to the desired filter, and then click OK. You can now access
the object model for the filter, as in the following VBA example:

Sub OpenRectangleDSF()

 Dim FilterObject As DSFImport

 Dim Style As DsfLinestyle

 'Initialize FilterObject

 Set FilterObject = ActiveLayer.ImportEx("C:\devo\rect.dsf", _

cdrDSF)

 'Set the advanced features of the filter

 Style = dsfDashed

 FilterObject.DefaultLinestyle = Style

 FilterObject.DeleteInvisibleObjects = True

 'Invoke the filter

 FilterObject.Finish

End Sub

Working with an import filter is made much easier by having the script access the object model for that filter;
however, as discussed, this technique reduces the portability of the script. When used at another workstation, the
script must first be updated with the correct location of the DLL file for the filter.

Understanding the Corel DESIGNER and CorelDRAW object models 146

Working with export filters

The following VBA example shows how to save a document as an AutoCAD DXF file by using an export filter:

Sub SaveRectangleDXF()

 Dim FilterObject As DXFExport

 Dim BitmapType As DxfBitmapType

 Dim TextAsCurves As Boolean

 Dim Units As DxfUnits

 Dim Version As DxfVersion

 'Initialize FilterObject

 Set FilterObject = ActiveDocument.ExportEx("C:\devo\rect.dxf", _

cdrDXF)

 'Set the advanced features of the filter

 BitmapType = dxfBitmapGIF

 FilterObject.BitmapType = BitmapType

 Units = dxfInches

 FilterObject.Units = Units

 TextAsCurves = False

 FilterObject.TextAsCurves = TextAsCurves

 Version = dxfVersion2000

 FilterObject.Version = Version

 'Invoke the filter

 FilterObject.Finish

End Sub

In the preceding example, a call is made to ActiveDocument.ExportEx method, and the interface for the
export filter (DXFExport) is invoked. However, you can use the generic export interface (ExportFilter):

Sub SaveRectangle()

 Dim FilterObject As ExportFilter

 'Initialize FilterObject

 Set FilterObject = ActiveDocument.ExportEx("C:\devo\rect.dxf", cdrDXF)

 'Set the advanced features of the filter

 FilterObject.BitmapType = 1 'GIF

 FilterObject.Units = 0 'Inches

 FilterObject.TextAsCurves = False

 FilterObject.Version = 1 'AutoCAD 2000

 'Invoke the filter

 FilterObject.Finish

End Sub

Understanding the Corel DESIGNER and CorelDRAW object models 147

The following VBA example demonstrates how to invoke the Export dialog box:

Sub ShowExportDialog()

 Dim FilterObject As ExportFilter

 Dim vntReturn As Variant

 'Initialize FilterObject

 Set FilterObject = ActiveDocument.ExportEx("C:\devo\rect.dxf", cdrDXF)

 'If FilterObject supports a dialog, invoke it

 If (FilterObject.HasDialog = True) Then

 vntReturn = FilterObject.ShowDialog

 'Verify that the user clicked "OK" and not "Cancel"

 If (vntReturn = True) Then

 'Invoke the filter

 FilterObject.Finish

 End If

 End If

End Sub

The preceding example requires you to check the return value of the dialog box, and to invoke the Finish
method for when the user clicks OK.

Corel DESIGNER Technical Suite X5 Macro Programming Guide 148

Glossary
argument

See “parameter.”

array

A set of sequentially indexed objects of the same data type (or “array elements”)

Each array element has the same data type (although elements can have different values), and the entire array is
stored contiguously in memory (with no gaps between elements). For example, you could have an array of integers
or an array of characters or an array of anything that has a defined data type.

By default, array indexes are zero-based.

Arrays can have more than one dimension. A one-dimensional array is called a “vector,” while a two-dimensional
array is called a “matrix.”

automation

The process of recording or scripting a macro

class

The definition of each property, method, and event that applies to a type of object in the application

class module

A type of module that contains the definition of an object-oriented Visual Basic class, including the definitions of
the properties and methods for that class

collection

A group of objects that have similar characteristics and similar actions but that are uniquely identified by index
names or index numbers

Collections are always plural. For example, Documents is a collection of Document objects.

constant

A value in an automation-programming structure that remains fixed while the macro is being executed

Unlike a variable, which temporarily stores a changing data value in a code procedure or code function, constant
values do not change.

A constant is an instance of an enumeration.

dithering

The process of simulating color by putting dots of another color very close together

Glossary 149

The Windows operating system uses dithering to display colors that the graphics adapter cannot display.

enumeration

Also called an “enumerated type,” a data type that lists all possible values for the variables that use it

Unlike a variable, which temporarily stores a changing data value, an enumeration stores fixed values.

A constant is an instance of an enumeration.

enumerated type

See “enumeration.”

event

An action that takes place in an object and that is recognized by a form or control

Each object within an object model is defined by a property, method, event, or a combination of each. An event
is triggered by an action — such as a click, key press, or system timer — and you can write code that causes an
object to respond to that event.

event-driven programming

A style of programming, unlike traditional procedural programming (in which the program starts at line 1 and
executes line by line), that executes code in response to events

Visual Basic for Applications is an event-driven programming language. Most of the code you create is written to
respond to an event.

Compare with “object-oriented programming.”

event handler

A subroutine that is programmed to cause the application to respond to a specific event

form

A type of module that is used for customized dialog boxes and user interfaces, and that includes the code to control
them

function

A procedure that performs a given task in a macro and that can be used to return a value

A function procedure begins with a Function statement and ends with an End Function statement. In VBA
and VSTA, functions do not need to be declared before being used, nor before being defined.

gap

A space between dashes in an outline style

global value

A value that applies to a given project in its entirety

GMS file

Also called a “project file” (and short for “Global Macro Storage file”), the location to which the Macro Editor
stores all modules for a project

Glossary 150

index number

A reference to an object in a collection that contains more than one object

An index number is used to identify each object in a collection. The index number can range from 1 to the number
of available objects within the collection.

macro

A recorded or scripted set of tasks that can be repeatedly invoked within an application

A macro is a symbol, name, or key that represents a list of commands.

method

An operation that an object can have performed on itself

modal dialog box

A dialog box thatlocks the application and must be acted upon (that is, either submitted or cancelled) before the
macro can be resumed

Most built-in dialog boxes that can be controlled by automation coding are modal.

modeless dialog box

A dialog box that does not lock the application and can be left open while the user continues working in the
application

Modeless dialog boxes behave like dockers.

module

A container that is used by a GMS file for storing project components

Generic modules are used for general code and for macros. Other types of modules include forms and class
modules.

object

When referring to an object model, an instance of a class

object model

A high-level structure of the relationship between the parent objects and child objects in an application

For example, the Application object represents the beginning of the object hierarchy. From the Application
object, you can “drill down” and navigate through the object model until you find the desired object. To reference
an object with Visual Basic code, you separate each level of the object hierarchy with the dot operator (.).

object-oriented programming

A style of programming that places emphasis on creating and using objects

Compare with “event-driven programming.”

parameter

Synonymous with “argument,” a value that is passed to a routine and that defines a characteristic of an object in
the Visual Basic programming environment

Glossary 151

Parameters are attributes that appear after a recorded command in the Recorder docker. For example, dialog-
box options are not recorded as separate commands in the Recorder docker; they are recorded as attributes of the
command that initially invoked the dialog box.

passing by reference

The act of passing an argument to a function or subroutine by using a reference to the original

By default, function parameters and subroutine parameters are passed by reference. To explicity indicate that you
want to pass an argument by reference, prefix the argument with ByRef.

passing by value

The act of passing an argument to a function or subroutine by using a copy of the original

To explicity indicate that you want to pass an argument by value, prefix the argument with ByVal.

property

A characteristic of a class

Properties can be returned or set. In addition, properties can be designated as read-only (to indicate that they are
fixed by the design of the class).

range

A series of similar objects

scope

The visibility of a data type, procedure, or object

shortcut object

A syntactic replacement for the longhand version of an object

String

A data type consisting of a sequence of contiguous characters that represent the characters themselves rather than
their numeric values

A string can include letters, numbers, spaces, and punctuation. The String data type can store fixed-length
strings ranging in length from 0 to approximately 63K characters and dynamic strings ranging in length from 0
to approximately 2 billion characters. The dollar sign ($) type-declaration character represents a string in
Visual Basic.

sub

See “subroutine.”

subroutine

Sometimes called a “sub,” a procedure that performs a given task in a macro but cannot be used to return a value

A subroutine procedure begins with a Sub statement and ends with an End Sub statement. In VBA and VSTA,
subroutines do not need to be declared before being used, nor before being defined.

variable

An item that can be created (or “declared”) for the purposes of storing data

Glossary 152

The built-in data types are Boolean, Double, Integer, Long, Single, String, Variant, and several other less-
used types including Date, Decimal, and Object. If a variable is not declared before being used, the compiler
interprets it as a Variant.

Variant

The data type for all variables that are not declared as another type, such as Dim, Private, Public, or Static

The Variant data type has no type-declaration character.

VBA

A built-in programming language that can automate repetitive functions and create intelligent solutions in a
software application

VBA is a subset of the Microsoft Visual Basic (VB) object-driven programming environment, but it is considered
“for applications” because it is most often integrated into another application to customize the functionality of
that application.

Visual Basic for Applications

See “VBA.”

Visual Studio Tools for Applications

See “VSTA.”

VSTA

The successor to VBA

VSTA is based on Microsoft Visual Studio 2008. The integrated development environment (IDE) for VSTA can
be used to support two additional programming languages (Visual Basic .NET and C#) and to take advantage of
the .NET framework natively.

Index

Corel DESIGNER Technical Suite X5 Macro Programming Guide 153

A

activating
documents . 83
layers . 101
pages . 96
shapes . 126

Add-in Manager . 29

add-ins . 29

allocating memory . 17

arcs . 116

arguments, passing . 17

arrays
declaring . 15

assignments, Boolean . 18

automation . 5
coding structure . 14
setting up . 26
supported environments . 6
use of object models in . 11

automation elements . 11

B

bitwise operators . 19

blends . 139

Boolean comparisons and assignments 18

breakpoints . 54

building functions and subroutines 16

buttons
adding to macro toolbars . 57
providing in dialog boxes . 63

C

C and C++
vs. VBA . 9

Call Stack window . 52

captions, macro . 57

checking syntax . 35

circles . 116

class modules
adding to macro projects . 47

classes
See also class modules
definition of . 12

closing
documents . 92
macro projects . 46

code
stepping through . 55
understanding structure of 14

code modules
adding macros . 47
adding to macro projects . 46
deleting . 47
displaying or hiding . 46
editing . 46
renaming . 46

Code window in Macro Editor 32

coding dialog boxes . 62

collections
counting items in . 21
definition of . 12
parsing items in . 21
referencing in macros . 20
referencing items in . 21

color components . 138

color models . 138
specifying color components 138
specifying for colors . 138

Index 154

coloring
shapes . 134
syntax . 34

colors . 138
converting color models for 138
copying properties . 138
creating . 138
specifying color models . 138

combination boxes
providing in dialog boxes . 63

command groups . 87

comments, in macro code . 17

comparisons, Boolean . 18

completion of code, automatic 35

constants
definition of . 14

contextual pop-up lists for coding 35

contours . 140

controls, dialog box
list of available . 60

converting color models . 138

coordinates, capturing . 67

copying
color properties . 138
macro projects . 46

Corel . 4

counting items in a collection 21

curves . 117

customized effects . 140

D

Debug toolbar . 36

debugging macros . 52
windows for . 52

declaring
arrays . 15
enumerations . 15
strings . 15
variables . 14

defining scope . 18

definitions, jumping to . 35

deploying
macros .69
workspaces .69

deselecting shapes .129

designing dialog boxes .60

dialog boxes
adding to macro projects .46
coding .62
designing .60
displaying .62
macro .58
naming .61
providing buttons .63
providing combination boxes63
providing images in .65
providing list boxes .63
providing text boxes .62
setting up .59
testing .61

dimension objects .121

displaying
documents .84
layers .101

distortions .140

documentation, macro .1
providing .68

documents .73
activating .83
closing .92
creating .82
creating command groups .87
displaying .84
exporting files .88
modifying .86
opening .82
printing .91
publishing to PDF .90
saving .87
setting properties .84

drawing scales .84

drop shadows .141

duplicating shapes .129

Index 155

E

Edit toolbar . 36

editing
code modules . 46
macros . 48

effects, shape . 139

elements, automation . 11

ellipses . 116

ending lines . 16

enumerated types
See enumerations

enumerations
declaring . 15
definition of . 13

envelopes . 141

event handlers . 23

events
definition of . 13

export filters . 143
working with . 146

exporting
documents to PDF . 90
files . 88
GMS files . 70
workspace features . 70

extrusions . 141

F

files
exporting . 88
importing . 102

fills
fountain . 135
hatch . 136
pattern . 136
PostScript . 136
texture . 136
uniform . 135

filters . 143

Form Designer . 59

formatting code . 33

forms
See dialog boxes

fountain fills .135

functions
building .16
jumping to definitions .35

G

getting started with macros .26

GMS files .44
exporting .70
importing .70

H

hatch fills .136

hiding layers .101

I

icons, macro .57

images
associating with macros .57
providing in dialog boxes .65

Immediate window .52

import filters .143
working with .144

importing
files .102
GMS files .70
workspace features .71

including comments in macros17

input boxes .19

inserting pages .95

installing VBA and VSTA .26

J

Java and JavaScript
vs. VBA .9

jumping to definitions .35

Index 156

L

layers . 99
activating . 101
creating . 100
deleting . 103
hiding and displaying . 101
importing files . 102
locking and unlocking . 101
renaming . 102
reordering . 101

lenses . 141

lines . 117
ending . 16

list boxes
providing in dialog boxes . 63

loading
add-ins . 29
add-ins at startup . 30

loading macro projects . 45

Locals window . 52

locking layers . 101

logical operators . 19

M

Macro Editor . 30
Code window . 32
debugging windows . 52
Object Browser . 37
Project Explorer . 31
Properties window . 36
toolbars . 36

Macro Manager docker . 28

macro projects . 44
adding class modules . 47
adding code modules . 46
adding dialog boxes . 46
adding macros . 47
copying . 46
creating . 45
loading . 45
renaming . 45
unloading . 46

macro resources . 1

macro toolbars
adding buttons .57
creating .57

macros .5
adding to macro projects .47
captions for .57
creating .44
debugging .52
deleting .48
deploying .69
editing .48
getting started with .26
images or icons for .57
options for .27
organizing .69
providing dialog boxes .58
providing documentation .68
providing event handlers in23
providing user interaction .65
recording .48
referencing collections .20
referencing objects .20
running .51
sample .6
toolbars for .56
tooltips for .58
using object shortcuts in .22
writing .47

Macros toolbar .27
Corel DESIGNER and CorelDRAW 27
Corel PHOTO-PAINT .28

memory pointers .17

memory, allocating .17

message boxes .19

methods
definition of .13

modal dialog boxes .58
vs. modeless .59

modeless dialog boxes .59
vs. modal .59

mouse
capturing clicks .65
capturing coordinates .67
capturing drags .66

Index 157

N

naming dialog boxes . 61

O

Object Browser in Macro Editor 37
Class list . 38
Information window . 41
Member list . 39
search controls . 42

object model
definition of . 11
overview of . 72

objects
definition of . 11
jumping to definitions . 35
referencing in macros . 20
using shortcuts in macros . 22

opening
documents . 82
macro projects . 45

operators
logical and bitwise . 19

organizing macros . 69

orientation, page . 97

outlines . 137

P

pages . 93
activating . 96
deleting . 98
inserting . 95
modifying . 98
reordering . 96
sizing . 97
specifying size and orientation 97

panning documents . 86

parsing items in a collection . 21

passing arguments . 17
by reference . 17
by value . 17

pattern fills . 136

PDF, publishing to . 90

perspective effects . 141

pie shapes .116

playing macros .51

pointers, memory .17

pop-up lists for coding .35

positioning shapes .133

PostScript fills .136

printing documents .91

Project Explorer in Macro Editor31

project files .44
exporting .70
importing .70

projecting shapes .141

projects, macro
See macro projects

properties
definition of .13

Properties window .36

properties, color
copying .138

publishing to PDF .90

R

recording macros .48
for future use .49
for temporary use .50

rectangles .115

reference points .84

reference, passing by .17

referencing
collections in macros .20
items in collections .21
objects in macros .20

renaming
code modules .46
layers .102
macro projects .45
projects .47

reordering
layers .101
pages .96
shapes in selections .129

Index 158

resources
for macros . 1
for software . 3

rotating shapes . 132

running macros . 51
saved . 51
temporary . 52

S

sample macros . 6

saving
documents . 87
recorded macros . 49

scales, drawing . 84

scaling shapes . 132

scope, defining . 18

searching for
shapes . 143

selecting shapes . 126

selections
accessing copies of . 128
accessing directly . 127
accessing shapes in . 128
reordering shapes in . 129

setting breakpoints . 54

shapes . 103
accessing in selections . 128
applying effects . 139
coloring . 134
creating . 114
deleting . 143
deselecting . 129
determining type . 126
duplicating . 129
positioning . 133
projecting . 141
reordering in selections . 129
rotating . 132
scaling . 132
searching for . 143
selecting . 126
sizing . 130
skewing . 132
stretching . 132
transforming . 130

shortcuts
using in macros .22

size, page .97
specifying default .97
using defined .97

sizing
pages .97
shapes .130

skewing shapes .132

software resources .3

squares .115

Standard toolbar .36

stepping through code .55

stretching shapes .132

strings
declaring .15

structuring code .14

subroutines, building .16

subs
See subroutines

supported automation environments6

symbols .123

syntax
checking automatically .35
coloring automatically .34

T

temporary macros
recording .50
running .52

testing dialog boxes .61

text boxes
providing in dialog boxes .62

text objects .119

texture fills .136

toolbars
Debug .36
Edit .36
Macros .27
Standard .36
UserForm .36

Index 159

toolbars, macro . 56
adding buttons . 57
creating . 57

tooltips, macro . 58

transforming shapes . 130

U

Undo string
setting for documents . 87

uniform fills . 135

units of measurement
setting for documents . 84

unloading
add-ins . 30

unloading macro projects . 46

unlocking layers . 101

user interaction, providing for macros 65

user interfaces, providing for macros 56

UserForm toolbar . 36

V

value, passing by . 17

variables
declaring . 14
jumping to definitions . 35

VB . 8

VBA . 7
installing . 26
options for . 27
vs. C and C++ . 9
vs. Java and JavaScript . 9
vs. VB . 8
vs. VBScript . 8
vs. Windows Script Host . 9

VBScript . 8

views . 85

Visual Basic
See VB

Visual Basic for Applications
See VBA

Visual Basic Script
See VBScript

Visual Studio Tools for Applications
See VSTA

VSTA .10
installing .26

VSTA Editor .42

W

Watches window .52

windows .84

Windows Script Host
vs. VBA .9

workspaces
deploying .69
exporting features .70
importing features .71

writing macros .47

Z

zooming in documents .85

Copyright 2010 Corel Corporation. All rights reserved.

Corel DESIGNER® Technical Suite X5 Macro Programming Guide

Product specifications, pricing, packaging, technical support and information (“specifications”) refer to the retail
English version only. The specifications for all other versions (including other language versions) may vary.

INFORMATION IS PROVIDED BY COREL ON AN "AS IS" BASIS, WITHOUT ANY OTHER
WARRANTIES OR CONDITIONS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABLE QUALITY, SATISFACTORY QUALITY, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE, OR THOSE ARISING BY LAW, STATUTE, USAGE OF
TRADE, COURSE OF DEALING OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS OF THE
INFORMATION PROVIDED OR ITS USE IS ASSUMED BY YOU. COREL SHALL HAVE NO LIABILITY
TO YOU OR ANY OTHER PERSON OR ENTITY FOR ANY INDIRECT, INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING, BUT NOT LIMITED TO, LOSS OF
REVENUE OR PROFIT, LOST OR DAMAGED DATA OR OTHER COMMERCIAL OR ECONOMIC LOSS,
EVEN IF COREL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR THEY ARE
FORESEEABLE. COREL IS ALSO NOT LIABLE FOR ANY CLAIMS MADE BY ANY THIRD PARTY.
COREL'S MAXIMUM AGGREGATE LIABILITY TO YOU SHALL NOT EXCEED THE COSTS PAID BY
YOU TO PURCHASE THE MATERIALS. SOME STATES/COUNTRIES DO NOT ALLOW EXCLUSIONS
OR LIMITATIONS OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, SO THE
ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Corel, the Corel logo, Corel DESIGNER, CorelDRAW, Corel SCRIPT, Digital Studio, Knowledge Base, Painter,
PaintShop Photo, PHOTO-PAINT, VideoStudio, WinDVD, WinZip, and WordPerfect are trademarks or
registered trademarks of Corel Corporation and/or its subsidiaries in Canada, the U.S., and/or other countries. All
other product names and any registered and unregistered trademarks mentioned are used for identification
purposes only and remain the exclusive property of their respective owners.

124090

	Introduction
	About this documentation
	About additional resources
	About Corel

	Understanding automation
	What is automation?
	Which automation environments are supported?
	What are the main elements of automation?
	How is automation coding structured?

	Getting started with macros
	Setting up the automation feature
	Using the Macros toolbars
	Using the Macro Manager docker
	Using the Add-in Manager
	Using the Macro Editor
	Using the VSTA Editor

	Creating macros
	Creating macro projects
	Writing macros
	Recording macros
	Running macros
	Debugging macros

	Making macros user-friendly
	Providing toolbars for macros
	Providing dialog boxes for macros
	Providing user interaction for macros
	Providing documentation for macros

	Organizing and deploying macros
	Organizing macros
	Deploying macros

	Understanding the Corel DESIGNER and CorelDRAW object models
	Working with documents
	Working with pages
	Working with layers
	Working with shapes
	Working with import filters and export filters

	Glossary
	Index

