
User Guide for PerfectScript™

?
ts

A
#&

2

z

%

92

@

+5
m !

“7
*

=6

W g }9;
0 3

Contents i

Contents

Introduction .1

Understanding macro concepts .3

Understanding macros . 3
Understanding macro statements . 4
Understanding macro syntax . 5
Understanding macro structure . 5

Using expressions in macro statements . 8
Understanding variables . 10
Understanding constants . 25
Understanding operators . 25
Understanding expression types. 40

Using command statements in macros . 47
Understanding command names . 49
Understanding parameters . 50
Understanding return values . 52

Using assignment statements in macros . 54
Using conditional statements in macros . 54
Using loop statements in macros . 57
Using calling statements in macros . 59

Understanding labels. 60
Understanding functions and procedures . 61
Understanding callbacks . 74
Creating calling statements from subroutines . 75

Using comment statements in macros . 77
Accessing external applications in macros . 77

Understanding OLE Automation . 77
Understanding Dynamic Data Exchange (DDE) . 80

Learning more about macros . 81
Using the WordPerfect Office Software Development Kit (SDK) 81
Using the Corel Web site . 82

ii Contents

Getting started with macros. .83

Using the PerfectScript utility. 83
Specifying PerfectScript settings . 85

Creating macros .89

Migrating legacy macros. 89
Recording macros . 92
Writing and editing macros . 93
Compiling macros. 96
Playing macros . 99
Making macros user-friendly. 100

Creating dialog boxes for macros. .101

Understanding dialog boxes . 101
Setting up dialog boxes for macros . 102
Setting up controls for dialog boxes . 108
Setting up callbacks for dialog boxes. 124
Testing dialog boxes . 131
Displaying dialog boxes . 131

Debugging macros .135

Getting started with the PerfectScript Debugger . 135
Using the Debugger to debug macros. 139
Getting more information while debugging macros . 143
Working with breakpoints while debugging macros . 150
Working with variables while debugging macros . 156
Navigating the code while debugging macros . 159
Troubleshooting the Debugger . 162

Glossary .167

Index .175

Introduction 1

Introduction

Welcome to the Corel® WordPerfect® Office User Guide for PerfectScript™!

PerfectScript™ is a command-based macro-programming language that you can use to
automate tasks in Corel® WordPerfect®, Corel® Quattro Pro®, and
Corel® Presentations™. This documentation contains basic information about creating
simple PerfectScript macros, as well as detailed, technical information about creating
more complex PerfectScript macros.

This documentation contains the following sections:
• “Understanding macro concepts” on page 3 explains the concepts that are

associated with macros, and shows how these concepts apply to PerfectScript
macros

• “Getting started with macros” on page 83 introduces you to the PerfectScript
utility, which you can use to create macros quickly and easily

• “Creating macros” on page 89 examines how to create macros, either by migrating
ones that already exist or by recording or writing new ones

• “Creating dialog boxes for macros” on page 101 describes how to use a dialog box
to create an interface between the application and the user

• “Debugging macros” on page 135 demonstrates how to find and correct any errors
in your macros

This documentation also contains a glossary.

2 Introduction

Please see the PerfectScript Help file (psh.chm) for the following additional
sections:

• “PerfectScript Command Reference” documents the syntax elements
and macro commands for PerfectScript

• “WordPerfect Command Reference” documents the system variables
and macro commands for WordPerfect

• “Quattro Pro Command Reference” documents the syntax elements
and macro commands for Quattro Pro, for both PerfectScript and the
native Quattro Pro macro-programming language

• “Presentations Command Reference” documents the macro commands
for Presentations

• “Gallery of sample macros” provides sample macros for PerfectScript
and WordPerfect

Understanding macro concepts 3

Understanding macro concepts
When performing repetitive or complex tasks in WordPerfect Office, you can save time
by using PerfectScript macros. In this section, you’ll learn the concepts that are
associated with macros, and you’ll learn how these concepts apply to PerfectScript
macros.

This section contains the following topics:
• Understanding macros
• Using expressions in macro statements
• Using command statements in macros
• Using assignment statements in macros
• Using conditional statements in macros
• Using loop statements in macros
• Using calling statements in macros
• Using comment statements in macros
• Accessing external applications in macros
• Learning more about macros

Understanding macros

A macro specifies a sequence of actions that you can quickly repeat later. For example, a
macro can automate a WordPerfect task such as setting the margins, selecting a font,
or creating a merge file.

To create macros for WordPerfect Office, you can use the PerfectScript macro-
programming language. PerfectScript is called a “command-based language” because it
uses macro commands to store the results of an action rather than storing the individual
steps that are used to carry out that action.

You can also create macros for Quattro Pro by using the native macro-
programming language for the application. For information, please see
“Understanding the native Quattro Pro macro language” in the Quattro Pro
Command Reference section of the PerfectScript Help file (psh.chm).

4 Understanding macro concepts

You can also use Microsoft® Visual Basic® for Applications (VBA) to create
macros for WordPerfect Office. For detailed information about VBA and VBA
macros, please see the Corel WordPerfect Office User Guide for VBA (vba_ug.pdf).

A macro consists of a set of instructions or statements. By using the various types of macro
statements, you can create PerfectScript macros that automate anything from a basic
task to a complex procedure. For more information about macro statements, see
“Understanding macro statements” on page 4.

Through the use of macro statements, PerfectScript lets you create macros that
access applications outside of WordPerfect Office. For more information, see
“Accessing external applications in macros” on page 77.

For even more information about macros, you can consult additional resources
for WordPerfect Office. For information, see “Learning more about macros” on
page 81.

The proper form of macro components is governed by a set of rules, or syntax. For more
information about macro syntax, see “Understanding macro syntax” on page 5.

If you structure your macros well, they will function well — and be much easier to edit.
For more information about macro structure, see “Understanding macro structure” on
page 5.

Understanding macro statements

If a macro represents a set of instructions, then a macro statement represents a single
step in those instructions. The simplest macro consists of only one statement, while the
most complex macro consists of multiple statements that are performed in sequence.

A group of related statements is called a “statement block.”

Some statements require an expression, which is a formula that represents a value. For
more information about expressions, see “Using expressions in macro statements” on
page 8.

By combining expressions with other macro components, you can create any of the
following types of statements:
• command statements — consist of a macro command, which represents a single

instruction (typically, an action). For more information, see “Using command
statements in macros” on page 47.

Understanding macro concepts 5

• assignment statements — assign a value to an expression. For more information, see
“Using assignment statements in macros” on page 54.

• conditional statements — execute a statement (or a group of statements) when a
specified condition is met. For more information, see “Using conditional statements
in macros” on page 54.

• loop statements — execute a statement (or a group of statements) a specified number
of times until (or while) an expression is true. For more information, see “Using
loop statements in macros” on page 57.

• calling statements — call a statement (or a group of statements). For more
information, see “Using calling statements in macros” on page 59.

• comment statements — contain notes that explain the purpose of a macro without
affecting its play. For more information, see “Using comment statements in
macros” on page 77.

Understanding macro syntax

The proper form of macro components is governed by a set of rules, or syntax. For a
macro to work properly, its code must use the correct syntax — that is, the code must
be “syntactically correct.”

For each macro component that is described in this documentation, details on proper
macro syntax are included.

Some macro statements are too lengthy to fit into a single line of macro code.
If your macro editor automatically inserts a hard return at the end of every line,
you must insert an underscore character (_) at the end of each line that wraps.
For information on specifying a macro editor, see “To specify settings for
editing macros” on page 86.

Understanding macro structure

If you structure your macros well, they will function well — and be much easier to
edit.

You can structure a macro in several ways. The basic function of a macro is to
accomplish a task by following a series of steps, so the ideal structure for a macro
depends on the task involved — and on the amount of code that is required to carry out
that task. For example, if a macro involves multiple tasks that require large amounts of

6 Understanding macro concepts

code, you can make the macro more manageable by breaking it into smaller pieces
(called subroutines — see “Understanding subroutines” on page 59).

From a structural standpoint, the two main types of macros are as follows:
• sequential macros — progress in steps from start to finish. For more information, see

“Understanding sequential macros” on page 6.
• procedural macros — progress in steps based on user intervention. For more

information, see “Understanding procedural macros” on page 7.

Understanding sequential macros

A sequential macro progresses in steps from start to finish. All steps are taken in the
required order, and the code is written to suit that purpose.

An example of a sequential macro follows:

HardReturn ()

HardReturn ()

GetString(var1; "Enter Name"; "Data Entry"; 100)

Type (Text: var1)

HardReturn ()

GetString(var2; "Enter Address"; "Data Entry"; 100)

Type(var2)

HardReturn ()

HardReturn ()

Type (Text: "Dear " + var1 + ":")

HardReturn ()

HardReturn ()

Type (Text: "Yaddah Yaddah Yaddah")

HardReturn ()

HardReturn ()

HardReturn ()

Type (Text: "Sincerely,")

HardReturn ()

HardReturn ()

HardReturn ()

HardReturn ()

Understanding macro concepts 7

Type (Text: "Paul McRussell")

HardReturn ()

Type (Text: "Manager, Eat-a-Chicken Burger, Anywhere, USA")

Understanding procedural macros

A procedural macro progresses in steps based on user intervention, through the use of
functions and procedures (see “Understanding functions and procedures” on page 61).
Using functions and procedures in a macro lets the programmer compartmentalize code
so it can be called from anywhere in the macro. Compartmentalization breaks logical
pieces of code into smaller segments, and these segments can be separated by use of the
Label, Function, and Procedure commands (see “Understanding subroutines” on
page 59). Smaller pieces of code are easier to work with, and they are also easier to
debug.

An example of a procedural macro follows:

HardReturn ()

HardReturn ()

//Call the function to get the name

sName = GetName()

Type (Text: sName)

HardReturn ()

//Call the function to get the address

sAddress = GetAddress()

Type (sAddress)

HardReturn ()

HardReturn ()

Type (Text: "Dear " + sName + ":")

HardReturn ()

HardReturn ()

Type (Text: "Yaddah Yaddah Yaddah")

HardReturn ()

HardReturn ()

HardReturn ()

Type (Text: "Sincerely,")

HardReturn ()

8 Understanding macro concepts

HardReturn ()

HardReturn ()

HardReturn ()

Type (Text: "Paul Russell")

HardReturn ()

Type (Text: "Manager, Eat-a-Burger, Anywhere, USA")

Function GetName()

GetString(sName; "Type in the name of the addressee"; _

"Enter Name"; 100)

RETURN(sName)

EndFunction

Function GetAddress()

GetString(sAddress; "Type in the address of the addressee"; _

"Enter Address"; 100)

RETURN(sAddress)

EndFunction

Using expressions in macro statements

Macros consist of statements. Some macro statements involve an action that must be
captured as an expression. An expression is a formula that represents a value.

To create expressions, you use the following macro components:
• variables — store a single value at a time, but this value can change during macro

play. For more information, see “Understanding variables” on page 10.
• constants — store a single value at a time, and this value cannot change during

macro play. For more information, see “Understanding constants” on page 25.
• operators — are symbols (such as +, -, *, and %) that combine variables and

constants to determine a value. For more information, see “Understanding
operators” on page 25.

Understanding expressions

Expressions are created by combining variables or constants (or both) with operators —
or by combining other expressions with operators.

The following examples contain expressions that involve variables and operators.

Understanding macro concepts 9

The following example contains expressions that involve variables, constants, and
operators. The value vCount is used as a variable, while the values 0, 4, and -1 are used
as constants. The operators - and = are used to create expressions from these values:
vCount - 1, vCount = 0, and vCount = 4.

Function BeepBeep(vCount)

Repeat

Beep

Wait(3)

vCount := vCount - 1

Example Result

x := "John Doe" The variable x equals the character string
John Doe.

vLeftMargin := 5i The variable vLeftMargin equals the
measurement 5i.

ResultOfOperation := 3 + 4 The variable ResultOfOperation equals
7 (that is, the result of the numeric
expression 3 + 4).

z := z + 1 The variable z equals the value of z + 1.
However, a variable can contain only one
value at a time, so the original value of z is
lost unless previously assigned to another
variable.

x := y > 1 The variable x equals the result of the
relational expression y > 1 (that is, x equals
True if y contains a value greater than 1, or
it equals False if y contains a value less
than or equal to 1).

If (y>1)

Beep

EndIf

The result of y>1 is evaluated without
assigning the result to a variable. The
computer beeps if the value of y is greater
than 1 (that is, if the result of the expression
y>1 equals True). The beep is skipped if the
value of y is less than or equal to 1 (that is, if
the result of the expression equals False).

10 Understanding macro concepts

Until(vCount = 0)

Return

EndFunc

ForEach(vCount; {1; 2; 3; 4; 5})

If(vCount = 4)

Break

EndIf

BeepBeep(vCount)

Wait(5)

EndFor

MessageBox(x; "BREAK"; "Variable vCount equals 4"; IconInformation!)

Quit

For more information about the types of expressions that you can create, see
“Understanding expression types” on page 40.

Understanding variables

A variable stores a single value at a time, but this value can change during macro play.

Variables must be “declared” before they can be used. Declaring a variable instructs
PerfectScript to set aside memory for the variable.

Assigning a value to — or “initializing” — a variable involves pointing that variable to
the memory cell where its desired value is stored. If desired, variables can be initialized
with a value at the time of declaration. Although the value of a variable can belong to
any data type, the most common data types for variables are numbers and character
strings.

For more information about declaring and initializing variables, see “Declaring and
initializing variables” on page 12.

Unlike other programming languages, PerfectScript does not force the
programmer to specify the type of data to be stored in a variable.

Understanding macro concepts 11

When a variable is declared, it is assigned to one of four types:
• local variables — pertain only to the current macro. By default, variables are

automatically declared local if no variable type is specified. For more information,
see “Working with local variables” on page 13.

• global variables — pertain to the current macro and to macros that are called by the
Run and Chain commands. For more information, see “Working with global
variables” on page 15.

• persistent variables — pertain to any PerfectScript macro, for as long as PerfectScript
is running. For more information, see “Working with persistent variables” on
page 16.

• constant variables — represent a value that cannot change during macro play. For
more information, see “Working with constant variables” on page 18.

Two additional kinds of variables require special attention:
• A system variable is a type of macro command that contains current

system information such as the current chart type or the default
directory. For example, the PerfectScript system variable ErrorNumber
contains the error value of a Cancel, Error, or Not Found condition
(as illustrated in line 44 of the annotated macro sample ASSERT.WCM
in the PerfectScript Help file [psh.chm]). Similarly, the WordPerfect
system variable ?PathMacros assigns the path and name of the default
folder for WordPerfect macros to a variable named vMacroPath, which
is updated to reflect any changes to the directory. For more information
about system variables, see “Understanding macro commands” on
page 47.

• An implicit variable is a variable that is defined by PerfectScript. For
example the MacroDialogResult variable contains the control value
of the button that releases a dialog box (see “Releasing dialog boxes by
using PerfectScript code” on page 132).

The type of a variable determines its visibility (or scope) and its duration in memory, so
it’s important to understand when to use each variable type. If you try to access a
variable from a line of code in which that variable is not visible, an “out-of-scope” error
is generated.

12 Understanding macro concepts

In addition to variable type, the following factors determine the scope of a
variable:

• where the variable is declared — for example, in the main body, in a
function, in a procedure, in another macro, or in a separate program
altogether

• which line of code is currently executing

You can check whether a variable exists. For more information, see “Determining
whether variables exist” on page 18.

When a variable is no longer required, you can discard it. For more information, see
“Discarding variables” on page 19.

If you want to assign a collection of data to a single variable name, you can use an array.
The rules for using arrays are the same as for using variables. For more information, see
“Working with arrays” on page 20.

Declaring and initializing variables

When you declare a macro, you specify a name for it.

For best results, it is highly recommended that you give your variables a descriptive
name. Variable names have the following standards:
• They must begin with a letter.
• They can include any other combination of letters or numbers.
• They must be 50 characters or fewer in length.
• They are not case-sensitive.

Optionally, you can initialize a variable at its time of declaration by using an assignment
operator (:= or =) to specify a value.

By following a few simple conventions for naming variables, you can make your macro
code easier to understand. For instance, variables that have a string value should have a
name that begins with a lowercase s, as in the following examples:

sFirstName := "Dave"

sAddress := "1625 East Nowhere St."

sBirthday := "6/12/69"

Similarly, variables that have a numeric value should have a name that begins with a
lowercase n, as in the following examples:

nAge := 25

nTotal := 145.97

Understanding macro concepts 13

In the preceding examples, all declared variables are local, by default, because
no variable type is specified.

Working with local variables

Local variables pertain only to the current macro. Local variables are the default variable
type and, as such, should be used in most situations. You can use the PerfectScript
programming commands Declare or Local to create local variables.

Variables that are declared in user-defined functions and user-defined
procedures are local to those subroutines. For more information about
subroutines, functions, and procedures, see “Understanding subroutines” on
page 59.

Local variables can be declared in the following way:

Declare (sQReport)

or

Local (sQReport)

Local variables can be declared and intitialized in the following way:

sQReport := "Q4"

Declare (sQReport := "Q4")

or

sQReport := "Q4"

Local (sQReport := "Q4")

If you want, you can use the Declare command or the Local command to declare and
initialize more than one local variable at a time. Variables are separated by a semicolon
(;), as in the following example:

Declare (sFilename := "c:\test.wpd"; sTemp; nCount; cMainCount:=10)

When a local variable is declared, it is assigned to the local-variable table. Variables in
the local-variable table are visible only until the end of the level of code in which they
are declared. The level of code usually refers to the main body or a subroutine (that is,
a function or procedure). Consider the following sample code:

FileNew

/* Declare sName as a local variable and initialize to the string
value "Dave" */

vName := "Dave"

14 Understanding macro concepts

/* Call the procedure */

TypeName ()

Quit

Procedure TypeName ()

/* This variable is out of scope. It has not been declared in the
procedure TypeName */

Type (vName)

HardReturn

EndProcedure

The preceding code assigns the string "Dave" to the variable. It then calls the procedure
which tries to type the contents of the variable. Because the variable is out of scope
within this procedure, the following error occurs when playing the macro:

Undefined variable ‘VNAME’ has been referenced. Check line 9 of macro
file ‘test.wcm.’

Consider the following sample code:

...

/* Variables declared in the main body are visible in the main body */

vNameMain := "Dave"

NewScope ()

/* When processing this Procedure vNameMain is not visible */

NewScope2 ()

/* When processing this Function vNameMain is not visible */

...

Quit

// Subroutines . . .

Procedure NewScope ()

/* Local variables declared in a procedure are visible only in that
procedure */

NameNewScope := "Fred"

...

EndProcedure

Function NewScope2 ()

Understanding macro concepts 15

/* Local variables declared in a function are visible only in that
function */

vNameNewScope2 := "John"

...

EndFunction

In the preceding code, all three variables (VNameMain, NameNewScope, and
VNameNewScope2) are named differently. However, these variables could have been
named the same and still have been completely unique variables — each one holding
different data — because they are each declared at a different level of the macro and
therefore each have their own scope.

Working with global variables

Global variables pertain to the current macro and to macros that are called by the Run
and Chain commands. Although a necessity in some cases, global variables should be
used with care. You can use the PerfectScript programming command Global to create
global variables.

Global variables can be declared in the following way:

Global (nCount)

Global variables can be declared and initialized in the following way:

Global (sFilename := "c:\Expense.wpd")

If you create two variables with the same name (for example, Declare x and
Global x), the following statement specifies that the global variable x is assigned the
value 5:

Global x:=5

If you want, you can use the Global command to declare and initialize more
than global variable at a time by separating variables with a semicolon (;).

When a variable is declared global, it is assigned to the global-variable table. Variables
assigned to the global-variable table are in scope anytime after they are declared, and
they exist until the end of the macro in which they are declared. If a global variable is
declared on the very first line of a macro, it is accessible in the main body, in subroutines,
and in other macros that are started with the commands Run or Chain. The following
is an example of a global variable in use:

...

/* The global variable is not yet declared and not yet accessible */

16 Understanding macro concepts

Global (sGlobalName := "Fred")

/* Any reference after this to the variable sGlobalName accesses the
global variable */

...

/* Call the function */

DoSomething ()

Type (sGlobalName)

...

/* sGlobalName ceases to exist when the macro ends */

Quit

Procedure DoSomething ()

/* Change the value of the global variable to "Dave" */

sGlobalName := "Dave"

...

EndProcedure

In the preceding example, the procedure is called after the global variable
sGlobalName is declared and initialized. Inside this procedure, the contents of the
variable are changed from "Fred" to "Dave". The commands DoSomething and
Procedure DoSomething allow you to start another macro from within the current
macro and, therefore, to access and change any variables that are declared global in the
current macro.

Working with persistent variables

Persistent variables pertain to any PerfectScript macro, for as long as PerfectScript is
running. Although a necessity in some cases, persistent variables should be used with
care. You can use the PerfectScript programming command Persist to create
persistent variables — in much the same way as you can use the Global command to
create global variables.

Persistent variables can be declared in the following way:

Persist (VariableName)

Persistent variables can be declared and initialized in the following way:

Persist (VariableName := Value)

PersistAll (On!)

...

Understanding macro concepts 17

/* All variables declared in the default manner are now persistent
instead of local*/

VariableName := Value

...

PersistAll (Off!)

The preceding example uses the PersistAll command to change the default variable-
declaration method from local to persistent and back again. All variables between
PersistAll (On!) and PersistAll (Off!) are declared as Persistent
variables. This technique is useful when you want an entire block of variables to be
persistent.

If you want, you can use the Persist command to declare and initialize more
than persistent variable at a time by separating variables with a semicolon (;).

When a variable is declared persistent, it is assigned to the persistent-variable table.
Variables in the persistent table remain in scope and exist until PerfectScript shuts
down.

PerfectScript does not shut down until all the applications that use
PerfectScript (WordPerfect, Quattro Pro, and Presentations) have shut down.

Persistent variables are visible during merges and, as such, provide an effective method
for passing values between macros and merges. If you need to use data during a merge,
use persistent variables. For best results, give persistent variables a descriptive name,
and denote their data type.

The following example of a persistent variable requires the use of two macros and
includes a test that determines whether the variable has been initialized.

The first macro in this example is as follows:

Persist (sAppName := "WordPerfect Suite 8")

MessageBox(retVal; sAppName; "Left margin equals: " + ?MarginLeft)

Run ("Macro2.wcm")

The second macro in this example is as follows:

MessageBox(retVal; sAppName; "Right margin equals: " + ?MarginRight)

The following example illustrates scope by using local and persistent variables:

Persist (x := "This is persistent variable x")

CreateOutline()

18 Understanding macro concepts

// Original variable value remains unchanged.

MessageBox (retVal ; "Information"; "The variable x = " + x)

Quit

Procedure CreateOutline ()

/* PerfectScript will look first at the local variable table. If a
variable exists in that table, that variable will be used before the
persistent variable. By creating a local variable inside the
function, we will force PerfectScript to find the local variable.
This local variable x will be destroyed when execution returns from
this subroutine. */

Local (x := 0)

ForNext (x; 1; 10)

// for loop creates a basic outline

 vCharacter := NTOC(96) + x

Tab()

Type ("(" + vCharacter + ")")

Indent()

HardReturn()

EndFor

EndProcedure

Working with constant variables

Constant variables — also called “constants” — represent a value that cannot change
during macro play. As such, constants must be initialized upon declaration, and their
assigned value cannot change. Constants should be used sparingly, if at all.

Expressions are formed by using operators (see “Understanding operators” on page 25)
to combine constants with other types of variables. For more information about
constants, see “Understanding constants” on page 25.

Determining whether variables exist

You can use the Exists command to determine whether a variable exists — that is,
whether it has been declared and initialized. The following sample code shows how to
use the Exists command:

// Declare and initialize a variable’s Name := "Fred"

// Use Exists to see if the variable still exists as a local variable

If (Exists (sName; Local!))

Understanding macro concepts 19

...

EndIf

...

Quit

The Exists command returns a value after checking the specified variable against the
variable tables. The variable tables are checked in the following order: local, then
global, then persistent.

If you specify a variable-table parameter for the Exists command, a value of True is
returned if that variable is found in the specified variable table. If the variable is not
found in the specified variable table, a value of False is returned. The following
example illustrates this scenario:

If(Exists (x ; Global!) = TRUE)

x := 147

Else

Global (x := 147)

EndIf

If you do not specify a variable-table parameter for the Exists command, one of the
following values is returned:
• NotFound! or 0 — indicates that the variable does not exist in any variable table
• Local! or 1 — indicates that the variable exists in the local-variable table
• Global! or 2 — indicates that the variable exists in the global-variable table
• Persistent! or 3 — indicates that the variable exists in the persistent-variable

table

The following example illustrates this scenario:

Persist(x := 3)

If (Exists(x) = Exists.Persistent!)

MessageBox (retVar; "Variable"; "This variable Exists in the _

Persist variable pool (" + Exists (x) + ")")

EndIf

Discarding variables

You can use the Discard command to remove a variable from memory by deleting it
from its associated variable table. The following sample code shows how to use the
Discard command:

20 Understanding macro concepts

// Declare and initialize a variable

sName := "Fred"

...

// Free the memory used by vName

Discard (sName)

// sName no longer exists and cannot be accessed

...

Quit

The Discard command searches the variable tables in the following order: local, then
global, then persistent. If variables with the same name exist in different variable tables,
you may need to use the Discard command multiple times, as in the following sample
code:

While(Exists(VariableName))

Discard(VariableName)

EndWhile

Working with arrays

If you want, you can assign a collection of data to a single variable name by creating an
“array.” The elements in a PerfectScript array can be declared and initialized in the same
ways as variables. Unlike other programming languages, however, PerfectScript lets you
assign the elements in an array to different data types. PerfectScript arrays therefore
provide a powerful way to control large amounts of data on one or more dimensions.

To use an array, you must first declare it and initialize its elements. When a macro is
played, a run-time error is incurred for each array element that is not both declared and
initialized.

The commands for declaring arrays are the same as for declaring variables: Declare,
Local, Global and Persist. At declaration, an array requires the following items:
• an alphanumeric (case-insensitive) name that begins with a letter and is limited to

50 characters
• a subscript, marked in brackets ([]), that specifies how many array elements to

create

The following commands declare a one-dimensional array that contains five elements:
• Declare(aMyArray[5]) — declares a one-dimensional, five-element local array
• Local(aMyArray[5]) — declares a one-dimensional, five-element local array

Understanding macro concepts 21

• Global(aGlobalArray[5]) — declares a one-dimensional, five-element global
array

• Persist(aPersistArray[5]) — declares a one-dimensional, five-element
persistent array

Every array contains a hidden element called 0. This element stores the total
number of elements in the array (not including itself), and an attempt to assign
any other value to this element generates an error message. In the previous
examples, the declared array actually includes six elements if you include
element 0.

The preceding examples declare an array but do not initialize its elements. Before you
can use an array, you must individually initialize each array element. To initialize an
array element, you must specify the array name; the subscript (or index) number of the
array element, enclosed in brackets ([]); and the desired value for the array element.
The following example illustrates how to initialize each element in an array after
declaring the array.

// Declare a 5-element array

Declare (aMyArray[5])

// Initialize each of the five elements

aMyArray[1] := "One"

aMyArray[2] := "Two"

aMyArray[3] := "Three"

aMyArray[4] := "Four"

aMyArray[5] := "Five"

You can simplify the process of initializing array elements after declaring an array by
using the following syntax:

Declare (aMyArray[5]; nCount := 0)

ForEach (x; {"One"; "Two"; "Three"; "Four"; "Five"})

nCount := nCount +1

aMyArray[nCount] := x

EndFor

22 Understanding macro concepts

If you want, you can initialize an array upon its declaration (in which case, the number
of elements need not be specified). The following commands declare and initialize a one-
dimensional array that contains five elements:
• Declare(aMyArray[]:={"One";"Two";"Three";"Four";"Five"}) —

declares and initiatlizes a one-dimensional, five-element local array
• Local(aMyArray[]:={"One";"Two";"Three";"Four";"Five"}) — declares

and initiatlizes a one-dimensional, five-element local array
• aMyArray[]:={"One";"Two";"Three";"Four";"Five"} — declares and

initiatlizes a one-dimensional, five-element local array
• Global(aGlobalArray[]:={"One";"Two";"Three";"Four";"Five"}) —

declares and initiatlizes a one-dimensional, five-element global array
• Persist(aPersistArray[]:={"One";"Two";"Three";"Four";"Five"}) —

declares and initiatlizes a one-dimensional, five-element persistent array

PerfectScript arrays can have up to ten dimensions. A two-dimensional array is like a
table with rows and columns: Each cell in the table is an individual element.

For declaring a multi-dimensional array, the syntax of the subscript operator ([]) is
as follows: The number of dimensions is followed by a semicolon (;), which is followed
by the number elements within each dimension. The following example shows how to
declare a three-dimensional array in which each dimension has five elements:

Declare (aMyArray[3;5])

Each dimension can have up to 32,767 elements (depending on available memory), and
each element can be individually accessed and initialized. For accessing and initializing
an element in a multi-dimensional array, the syntax of the subscript operator ([]) is
as follows: The dimension number of the element is followed by a semicolon (;), which
is followed by the subscript (or index) number of the element within that dimension.

The following syntax specifies the first element in the first dimension:

aMyArray[1;1] := "1-1"

The following syntax specifies the third element in the second dimension:

aMyArray[2;3] := "2-3"

The following stynax specifies the fifth element in the third dimension:

aMyArray[3;5] := "3-5"

Multi-dimensional arrays, like one-dimensional arrays, can be initialized at their time of
declaration. In this scenario, the number of elements in each dimension does not need
to be explicitly stated because it is implied by the actual initialization of those elements.

Understanding macro concepts 23

In addition, the dimensions are separated by a semicolon (;). The following example
illustrates this syntax:

aMyArray[] :=

{{"1-1"; "1-2"; "1-3"; "1-4"; "1-5"}; // First row

{"2-1"; "2-2"; "2-3"; "2-4"; "2-5"}; // Second row

{"3-1"; "3-2"; "3-3"; "3-4"; "3-5"} } // Third row

PerfectScript provides a special form of initialization for multi-dimensional arrays. This
form, called a slice (...), lets you initialize the elements on a single dimension by
repeating the last-initialized element throughout that dimension. When initializing
with a slice, you must fully initialize at least one row in each dimension to define the
extent of the slice. The following example illustrates the syntax for using a slice:

// Declares a three-dimensional array (3x3x6) initializing all
elements with a slice

aMyArray[] :=

{ { {1;1;1;1;1;1}; // First dimension, first row

{1; ... }; // First dimension, second row, replicated with value 1

{1; ... } }; // First dimension, third row

{{2;2;2;2;2;2}; // Second dimension, first row

{2; ... }; // Second dimension, second row

{2; ... } }; // Second dimension, third row

{{3;3;3;3;3;3}; // Third dimension, first row

{3; 4, ... }; // Third dimension, second row, replicated with value 4

{3; 1; ... } } } // Third dimension, third row, replicated with _
value 1

You can use the Dimensions command to return the following information about an
array:
• total number of dimensions in the array
• total number of elements in the array
• number of elements in each dimension
• index range

In some cases, you must declare an array dynamically and therefore cannot be sure how
many dimensions are contained in the array. The Dimensions command allows a macro
to act dynamically by querying the size of an array:

24 Understanding macro concepts

aFiles[] := GetFileList() // returns an array of random size

ForNext (x; 1; Dimensions(aFiles[]; 0))

// Dimensions queries the array for the size

FileOpen (aFiles[x])

FooterA(Create!)

Type ("McRae's Eat-a-Burger ")

SubStructureExit()

FileSave (aFiles[x]; WordPerfect_60!)

Close()

EndFor

Function GetFileList()

... // statement block that creates an array (sized) dynamically

Return (ArrayOfFiles[])

EndFunction

Please note that MacroArgs[] is a special PerfectScript array that contains values that
are passed to the macro by the commands Chain, Nest, or Run. The following example
illustrates the MacroArgs[] array.

// Macro: MAIN.WCM

// Include full path if macro not

// in default macros directory

Run("TSTMACRO"; {"x"; "y"; "z"})

// Macro: TSTMACRO.WCM

// Compile, then play MAIN.WCM

vElements = Dimensions (MacroArgs[]; 0)

If (vElements != 0)

ForNext (x; 1; vElements; 1)

MessageBox (z; "Element Values"; "MacroArgs[" + x + "] = " + _

MacroArgs[x])

EndFor

Else

Beep

Understanding macro concepts 25

MessageBox (z; "Error"; "No values passed"; IconExclamation!)

EndIf

// Result: x y z

Understanding constants

A constant — also called a constant variable — represents a value that cannot change
during macro play.

By contrast, most variables represent a value that can change during macro
play. For more information, see “Understanding variables” on page 10.

Constants must be initialized upon declaration, and their assigned value cannot change.
You can declare and initiatlize a constant in the following way:

Constant (WPCLASSNAME := "WordPerfect.8.32")

A compile-time error occurs if a constant is misused in one of the following ways:
• if the constant is not initialized upon declaration — for example, if the declaration

statement is missing an assignment operator (:=) or an assigned value (or both)
• if an attempt is made to assign a different value to a constant after it has been

declared and initialized

You can set constants apart from other variables by giving them a name that
appears entirely in capital letters. This naming convention is the generally
accepted practice in C/C++ and other programming languages.

Understanding operators

Operators are used to combine variables (see “Understanding variables” on page 10)
and constants (see “Understanding constants” on page 25) into expressions — and
even to combine expressions into other expressions. In PerfectScript, operators can be
either “unary” or “binary.”

Unary operators are symbols or words that represent an operation on only one operand
or expression. The following table lists the unary operators that are available in
PerfectScript.

26 Understanding macro concepts

Binary operators are symbols or words that represent an operation on two operands or
expressions. In the following example, the binary plus operator (+) adds the operands 3
and 4, and the assignment operator (:=) assigns the result of the arithmetic expression
3 + 4 to variable x.

x := 3 + 4

All PerfectScript operators can be classified into the following functional categories:
• assignment operators — symbols that assign the value of a right-operand expression

to a left-operand variable. For more information, see “Understanding assignment
operators” on page 27.

• arithmetic operators — symbols or words that represent a mathematical operation on
two operands. For more information, see “Understanding arithmetic operators” on
page 27.

• relational operators — symbols that represent a relational operation on two operands,
such that the operation result equals either true or false. For more information, see
“Understanding relational operators” on page 28.

• logical operators — words that represent a logical relationship between conditions, or
that invert a condition. For more information, see “Understanding logical
operators” on page 31.

• bitwise operators — symbols that represent a bitwise operation on two integer
operands. For more information, see “Understanding bitwise operators” on
page 35.

When used together to form an expression, operators are evaulated by PerfectScript
based on precedence level. For more information about operator precedence, see
“Understanding operator precedence” on page 38.

Operator Action Example and result

+ Multiplies an operand by +1 +5

Result: +5 (that is, 5 * +1)

- Multiplies an operand by -1 -10

Result: -10 (that is, 10 * -1)

NOT Inverts the result of relational
and logical expressions

See “Understanding logical
operators” on page 31.

~ Toggles a binary value (that is,
converts 1 to 0, and 0 to 1)

See “Understanding bitwise
operators” on page 35.

Understanding macro concepts 27

For detailed information on each operator, please see the “Operators” topic in
the PerfectScript Command Reference section of the PerfectScript Help file
(psh.chm).

Understanding assignment operators

Assignment operators are symbols that assign the value of a right-operand expression
to a left-operand variable.

The following table lists the assignment operators that are available in PerfectScript.

Understanding arithmetic operators

Arithmetic operators are symbols or words that represent a mathematical operation on
two operands.

All arithmetic operators are binary operators.

The following table lists the arithmetic operators that are available in PerfectScript.

Operator Action Example and result

:= or = Assignment of a value to a
variable

x := "John Doe"

Result: The variable x equals the
character string John Doe.

Operator Action Example and result

* Multiplication

/ Division

- Subtraction of numbers and
reduction of strings

vStr := "abcdefg" - "efg"

Result: vStr equals "abcd" (by
reduction of strings)

+ Addition of numbers and
concatenation of strings

vStr := "abcd" + "efg"

Result: vStr equals
"abcdefg" (by concatenation
of strings)

28 Understanding macro concepts

Understanding relational operators

Relational operators are symbols that represent a relational operation on two operands.
The operation result equals True or False.

All relational operators are binary operators.

The following table lists the relational operators that are available in PerfectScript.

% Floating point modulus division
— returns remainder of floating-
point division

x:=10.1 % 3

Result: x equals 1.1

x := 9 % 3

Result: x equals 0

MOD Integer modulus division —
returns remainder of integer
division

x := 10 MOD 3

Result: x equals 1

x := 10.1 MOD 3

Result: error (because MOD
cannot be used on real numbers)

DIV Integer division — returns
integer portion of integer division

x := 10 DIV 3

Result: x equals 3

x := 9 DIV 3

Result: x equals 3

x := 9.1 DIV 3.5

Result: error (because DIV
cannot be used on real numbers)

** Exponentiation — raises a
number to a power

vResult = 2**3

Result: vResult = 8 (that is,
2 to the power of 3)

vResult = 4**2

Result: vResult = 16 (that
is, 4 to the power of 2)

Operator Action Example and result

Understanding macro concepts 29

Operator Action Example and result

> Greater than x := 10

z := (x>5)

Result: z equals True (because
x is greater than 5)

>= Greater than or equal to x := 10

If (x>=10)

Beep

Else

Quit

EndIf

Result: The computer beeps
because the result of expression x
>= 10 equals True (that is, x
equals 10). The Else statement
is skipped, so the Quit
command does not end the
macro.

< Less than x := 10

z := (x<5)

Result: z equals False (becuase
x is not less than 5)

30 Understanding macro concepts

<= Less than or equal to x := 20

If (x<=10)

Beep

Else

Quit

EndIf

Result: The computer does not
beep because the result of
expression x <= 10 equals
False (that is, x is greater than
10). The Else statement is
played, so the Quit command
ends the macro.

= Equal to
Note: Whereas LIKE is True
regardless of whether the
compared strings are identical in
case, = is case-sensitive.

x := 10

z := (x=5)

Result: z equals False (because
x is not equal to 5)

x := 10

z := (x = 10)

Result: z equals True (becuase
x is equal to 10)

x := "Abc"

z := (x = "Abc")

Result: z equals True (because
x is equal to "Abc")

x := "Abc"

z := (x = "abc")

Result: z equals False (because
x must be the same as "Abc",
including case)

<> Not equal to

Operator Action Example and result

Understanding macro concepts 31

Understanding logical operators

Logical operators are words that either invert one condition or represent a logical
relationship between conditions. A condition is the result of a relational expression (see
“Understanding relational expressions” on page 45).

Most logical operators are binary operators. The exception is NOT.

The following table lists the logical operators that are available in PerfectScript.

!= Not equal to x := 10

z := (x!=5)

Result: z equals True (because
x is not equal to 5)

x := 12

z := (x !=12)

Result: z equals False (because
x is equal to 12)

IN Membership z := 3 IN {1; 2; 3}

Result: z equals True

z := 3 IN (1; 2; 4}

Result: z equals False

z := {1; 2; 3} IN {1; 2; 3}

Result: z equals True

z := {1; 2} IN {1; 2; 3}

Result: z equals True

z := {1; 2; 3} IN {1; 2; 4}

Result: z equals False

LIKE Case-insensitive string equality
Note: Whereas = is True only if
the compared strings are
identical in case, LIKE disregards
case altogether.

z := ("abc" LIKE "Abc")

Result: z equals True

Operator Action Example and result

32 Understanding macro concepts

Operator Action Example and result

NOT Inverts the result of a relational
expression

See also the detailed NOT examples
that follow this table.

x := 8

If ((x<10) AND NOT (x=5))

Beep

EndIf

Result: The result of the logical
expression equals True (because
x is less than 10, AND NOT x is
equal to 5, or x is not equal to 5).

AND Combines two relational
expressions. Each expression
must be True for the logical
expression to be True.

x := 1

y := 2

z := ((x = 1) AND (y = 2))

Result: z equals True. The
logical AND expression is True
because both the relational
expressions x = 1 and y = 2
are True.

Understanding macro concepts 33

Here are some more detailed examples of NOT.

XOR Combines two relational
expressions. Only one expression
can be True for the logical
expression to be True. If both
are true or both are False, the
logical expression is False. The
XOR function is also called
“exclusive OR.”

See also the detailed XOR example
that follows this table.

x := 1

y := 2

z := ((x = 0) XOR (y = 2))

Result: z equals True (because
only one relational expression is
True)

z := ((x = 1) XOR (y = 2))

Result: z equals False (because
both relational expressions are
True)

z := ((x = 0) XOR (y = 1))

Result: z equals False (because
both relational expressions are
False)

OR Combines two relational
expressions. Only one expression
needs to be True for the logical
expression to be True. The OR
function is also called “inclusive
OR.”

x := 1

y := 2

z := ((x = 1) OR (y = 5))

Result: z equals True. The
logical OR expression is True
because the relational expression
x = 1 is True.

NOT Example Result

x := 5

y := (x<10)

z := NOT(x<10)

If x is less than 10, True is assigned to y
and False (that is, the inverted result of the
expression x<10) to z.

Operator Action Example and result

34 Understanding macro concepts

Here is a more detailed example of XOR.

x := 5

z := (x<10)

If (NOT(z))

Beep

Else

Quit

EndIf

The result of the expression x<10 is assigned
to variable z. The Beep command causes
the computer to beep if the inverted value of
z equals True. However, the inverted value
of z equals False, so there is no beep; the
Else statement is played, and the Quit
command ends the macro.
NOTE: For more information about If
conditions, see “Understanding If
conditions” on page 55.

x := 5

If (NOT(x<10))

Beep

Else

Quit

EndIf

In this shorthand notation, the computer is
instructed to beep if the inverted result of
the expression x<10 equals True. However,
the result of NOT(x<10) equals False, so
there is no beep; the Else statement is
played, and the Quit command ends the
macro.

x := 5

If (x>10)

Beep

Else

Quit

EndIf

This example represents an alternative to
using the NOT operator. If the result of the
expression x>10 equals True, the computer
beeps. However, the result equals False
(because the value of x is less than 10), so
the Else statement is played and the Quit
command ends the macro.

XOR Example Result

x := 1

y := 2

If ((x = 0) XOR (y = 2))

Beep

EndIf

In this shorthand notation, the result of the
logical XOR expression equals True because
the relational expression x = 0 is False
and the relational expression y = 2 is True.

NOT Example Result

Understanding macro concepts 35

Understanding bitwise operators

Bitwise operators are symbols that represent a bitwise operation on two-integer
operands.

Most bitwise operators are binary operators. The exception is bitwise NOT (~).

The following table lists the bitwise operators that are available in PerfectScript.

Operator Action Example and result

~ Toggles a binary value (that is,
converts 1 to 0, and 0 to 1). Also
called “bitwise unary NOT” —
“unary” because it has a single
complement.

~-15

Note: The binary equivalent of
-15 is 1111111111110001.
Result: 14 (binary
0000000000001110)

& Results in 1 if both operand bits
are 1, 0 if one of the operand bits
is not 1, or 0 if both operands are
0. Also called “bitwise AND.”

x:=1000&31

Note: The binary equivalent of
1000 is 1111101000 and of 31
is 0000011111.
Result: x equals 8 (binary
0000001000)

x:=65535&535

Note: The binary equivalent of
65535 is 1111111111111111
and of 535 is
0000001000010111.
Result: x equals 535 (binary
0000001000010111)

36 Understanding macro concepts

| Results in 1 if either operand is 1.
Also called “bitwise inclusive
OR.”

x:=1000|27

Note: The binary equivalent of
1000 is 1111101000 and of 27
is 0000011011.
Result: x equals 1019 (binary
1111111011)

x:=65535|535

Note: The binary equivalent of
65535 is 1111111111111111
and of 535 is
0000001000010111.
Result: x equals 65535 (binary
1111111111111111)

^ Results in 0 if operands match, 1
otherwise. Also called “bitwise
exclusive OR (XOR)”.

x:=1000^40

Note: The binary equivalent of
1000 is 1111101000 and of 40
is 0000101000.
Result: x equals 960 (binary
1111000000)

x:=65535^535

Note: The binary equivalent of
65535 is 1111111111111111
and of 535 is
0000001000010111.
Result: x equals 65000 (binary
1111110111101000)

Operator Action Example and result

Understanding macro concepts 37

<< Shifts bits left by the specified
number of places. For example,
specifying 1 place shifts all bits
one place to the left (and inserts a
0 at the right end of the binary
number, effectively multiplying
the value by 2.

x:=500<<1

Note: The binary equivalent of
500 is 0111110100.
Result: x equals 1000 (binary
1111101000)

x:=65535<<1

Note: The binary equivalent of
65535 is 1111111111111111.
Result: x equals 131070 (binary
1111111111111110)

>> Shifts bits right by the specified
number of places. For example,
specifying 1 place shifts all bits
one place to the right (and inserts
a 0 at the left end of the binary
number, effectively dividing the
value by 2.

x:=1000>>1

Note: The binary equivalent of
1000 is 1111101000.
Result: x equals 500 (binary
0111110100)

x:=65535>>1

Note: The binary equivalent of
65535 is 111111111111111.
Result: x equals 32767 (binary
0111111111111111)

<<< Rotates bits left by the specified
number of places. For example,
specifying 1 rotates all bits one
place to the left.

x:=-2147450881<<<1

Note: The binary equivalent of
-2147450881 is
10000000000000000111111
111111111.
Result: x equals 65535 (binary
00000000000000001111111
111111111)

Operator Action Example and result

38 Understanding macro concepts

Understanding operator precedence

The following table explains operator precedence, which is used by PerfectScript to
evaluate expressions.

>>> Rotates bits right by the specified
number of places. For example,
specifying 1 rotates all bits one
place to the right.

x:=65535>>>1

Note: The binary equivalent of
65535 is
00000000000000001111111
111111111.
Result: x equals -2147450881
(binary
10000000000000000111111
111111111)

Precedence level Operators

1 •parentheses [()]
•unary minus (-)
•unary plus (+)
•bitwise not (~)
•logical not (NOT)

2 •exponentiation (**)

3 •multiplication (*)
•division (/)
•modulus division (% or MOD)
•integer division (DIV)

4 •addition (+)
•subtraction (-)

5 •left shift (<)
•right shift (>)
•left rotation (<)
•right rotation (>)

Operator Action Example and result

Understanding macro concepts 39

The following rules apply to operator precedence:
• Operators with the same precedence are evaluated from left to right.
• Operators inside parentheses are evaluated before operators outside parentheses.
• Operators inside nested parentheses are evaluated from the innermost parentheses

out.

Here are some examples that illustrate operator precedence.

6 •equality (=)
•inequality (!=)
•“less than” state (<)
•“less than” state or equality (<=)
•“greater than” state (>)
•“greater than” state or equality (>=)
•membership (IN)
•case-insensitive string equality (LIKE)

7 •bitwise and (&)
•bitwise or (|)
•bitwise XOR (^)

8 •logical and (AND)

9 •logical or (OR)
•logical xor (XOR)

10 •assignment (:= or =)

Example Result

x := ((50 * 5 + 50) * 3 + 100) x equals 1000:
•50 * 5 = 250
•250 + 50 = 300
•300 * 3 = 900
•900 + 100 = 1000

x := ((50 * (5 + 50)) * 3 + 100) x equals 8350:
•5 + 50 = 55
•55 * 50 = 2750
•2750 * 3 = 8250
•8250 + 100 = 8350

Precedence level Operators

40 Understanding macro concepts

Understanding expression types

By combining variables (see “Understanding variables” on page 10) and constants (see
“Understanding constants” on page 25) with operators (see “Understanding operators”
on page 25), you can form expressions for use in macro statements.

PerfectScript macros support the following expression types:
• numeric expressions — numeric variables or numeric constants, or a combination of

the two as joined by a numeric operator. For more information, see “Understanding
numeric expressions” on page 41.

• measurement expressions — variables or constants that contain a measurement value,
or a combination of the two as joined by a numeric operator. For more information,
see “Understanding measurement expressions” on page 41.

• radix expressions — values that combine a number with a character that identifies
the “radix” for that number (that is, the base of its number system). For more
information, see “Understanding radix expressions” on page 42.

• character expressions — variables or character constants (such as letters, digits, or
keyboard symbols), or a combination of the two as joined by the plus operator (+),
the minus operator (-), or a relational operator. For more information, see
“Understanding character expressions” on page 43.

• arithmetic expressions — statements that represent arithmetic operations, or
statements that contain two operands that are joined by an arithmetic operator. For
more information, see “Understanding arithmetic expressions” on page 45.

• relational expressions — statements that represent a relational operation, or
statements that contain two operands that are joined by a relational operator. For
more information, see “Understanding relational expressions” on page 45.

• logical expressions — statements that represent logical operations, or statements that
contain two relational expressions that are joined by a logical operator. For more
information, see “Understanding logical expressions” on page 46.

x := ((50 * 5 + 50) * (3 + 100)) x equals 30900:
•50 * 5 = 250
•250 + 50 = 300
•3 + 100 = 103
•300 * 103 = 30900

Example Result

Understanding macro concepts 41

• bitwise expressions — statements that represent bitwise operations, or statements
that contain two operands that are joined by a bitwise operator. For more
information, see “Understanding bitwise expressions” on page 46.

Command calls and function calls can be used in an expression if they return a
value. For more information, see “Using calling statements in macros” on
page 59.

Understanding numeric expressions

Numeric expressions are numeric variables or numeric constants — or a combination of
the two as joined by a numeric operator.

Given that x equals 3, the following examples are valid numeric expressions.

Understanding measurement expressions

Measurement expressions are variables or constants that contain a measurement value
— or a combination of the two as joined by a numeric operator. A measurement value
is created by combining a number (which represents the desired number of units) with
a character (which identifies the desired unit of measurement).

The available units of measurement, and their associated identifiers, are as follows.

Example Explanation

x Variable that contains a numeric value

5 Numeric constant

x * 5 Expression that multiplies x by 5
Note: This expression is also an arithmetic
expression.

+5 Unary plus constant

-(x + 10) Unary minus expression, which negates the
result of x plus 10

Unit of measurement Identifier

Inches " or i

Centimeters c

Millimeters m

42 Understanding macro concepts

You can add and subtract measurement expressions as you do numeric expressions (see
“Understanding numeric expressions” on page 41). When an operation is performed on
measurement expressions that have different units of measure, the right operand is
converted to the type of the left-measurement operand.

Combining numeric expressions with measurement expressions can produce
unexpected results.

You do not need to specify a unit of measure for command-measurement
expressions that follow DefaultUnits.

If you do not specify a unit of measure for a measurement expression, and
DefaultUnits has not been encountered, the default unit of measurement
WP units (1200 per inch) is used.

Given that z equals 4i (that is, 4 inches), the following examples are valid measurement
expressions.

Understanding radix expressions

The radix is the base of a number system. Radix expressions contain a radix value, which
is created by combining a number (which represents the number value) with a character
(which identifies the radix).

A radix value must begin with a number. For this reason, you must place a zero
before any hexadecimal numbers that begin with the letters A through F.

Points (72 per inch) p

WP units (1200 per inch) w

Example Explanation

5c Constant (5 centimeters)

z Variable that contains a measurement value
of 4 inches

z * 10i Expression that multiplies z by 10i (that is,
10 inches)

-z Unary minus, which yields -4i (that is,
negative 4 inches)

Unit of measurement Identifier

Understanding macro concepts 43

The available radix choices, and their associated identifiers, are as follows.

The following examples are valid radix expressions.

Understanding character expressions

Character expressions are character variables or character constants (such as letters,
digits, or keyboard symbols) — or a combination of the two as concatenated by the plus
operator (+), separated by the minus operator (-), or compared by a relational operator
(such as >).

A character constant that is enclosed in single quotation marks specifies an ASCII
numeric value, as in the following examples.

A character string must be enclosed in double quotation marks. If the string already
contains double quotation marks, it must use a second set of double quotation marks,
as in the following examples.

Radix Identifier

16 (hexadecimal system) x or h

8 (octal system) o

2 (binary system) b

Example Result

x := 1Ah x equals the hexidecimal value of 26

x := 0Ah x equals the hexidecimal value of 10
Note: A numeric value of Ah is not valid
because it does not begin with a number.
Instead, you must use 0Ah.

x := 1111b x equals the binary value of 15

x := 44o x equals the octal value of 36

Example Result

x := ‘A’ x equals 65

x := ‘A’ + ‘B’ x equals 131 (that is, 65 + 66)

44 Understanding macro concepts

The following examples are valid character expressions.

If you concatenate a character string and a number, the number is converted to a
character string. If you concatenate a numeric character and a number, the numeric
character is converted to a number and the two are added. For examples, see the table
that follows.

Example Result

x := "His name is "John"" Doe" x equals His name is "John" Doe

x := """John Doe""" x equals "John Doe"

Example Explanation

"John Doe" Character string

z := "Joe " + "Doe" Expression that is assigned to variable z
(such that z equals Joe Doe)

x := z + ", Jr." Expression that is assigned to variable x
(such that x equals Joe Doe, Jr.)

Example Result

x := "A" + 1 x equals A1 (which is a character string)

x := "1" + 1 x equals 2 (which is a number)

x := ("A" + (1 + 3)) x equals A4 (which is the result of a
mathematical operation [1+3=4] being
converted to a character string before being
concatenated to A)

x := ("A" + 1 + 3) x equals A13 (which is a character string
because the numbers converted and not
added, due to operator precedence)

x := (1 + 3 + "A") x equals 4A (which is a character string
because the numbers are added and then
converted to a character string, due to
operator precedence)

Understanding macro concepts 45

Understanding arithmetic expressions

Arithmetic expressions are statements that represent arithmetic operations, or
statements that contain two operands that are joined by an arithmetic operator. The
result of an arithmetic operation is a numeric value.

Understanding relational expressions

Relational expressions are statements that represent a relational operation, or
statements that contain two operands that are joined by a relational operator. The result
of a relational operation is either True or False.

Given that x equals 5, the following examples yield the described results.

Given that x equals "A", y equals "B", and z equals "a", the following expressions
return True or False in variable w.

Example Result

x := 1 + 2 x equals 3

x := 3 * 3 x equals 9

x := "2" * 3 * 4 x equals 24 (because 2 is converted to a
number then multiplied)

x := "A" * 2 Error (becuase letters and numbers cannot
be multiplied by each other)

Example Result

z := (x = 6) z equals False (because 5 is less than 6)

z := (x = 5) z equals True (because 5 equals 5)

z := ("Ab" > "Bb") z equals False (becuase Ab is less than, or
comes before, Bb)

z := ("Ab" != "Bb") z equals True (because Ab is not equal to
Bb)

Example Result

w := (x < y) w equals False (becuase uppercase A is less
than, or comes before, uppercase B)

46 Understanding macro concepts

Understanding logical expressions

Logical expressions are statements that represent logical operations, or statements that
contain two relational expressions that are joined by a logical operator. The result of a
logical operation equals True or False.

Given that x equals 10, y equals 5, and z equals 20, the following expressions return
True or False in variable w.

Understanding bitwise expressions

Bitwise expressions are statements that represent bitwise operations, or statements that
contain two operands that are joined by a bitwise operator. The result of a bitwise
operation is a numeric value.

Consider the following examples of bitwise expressions.

w := (x > z) w equals True (uppercase A is greater than,
or comes after, lowercase a).

Example Result

w := ((x <= y) AND (y <= z)) w equals True (because both relational
expressions are true)

w := ((x = y) AND (y <= z)) w equals False (because the first relational
expression is false)

w := NOT(y > z) w equals True (because 5 is not greater than
20)

w := ((x != 5) AND (y != 20) _

AND (z = 20))

w equals True (becuase all relational
expressions are true)

w := (((x = 5) AND (y = 20)) _

OR (z = 20))

w equals True (because the expression z =
20 is true)

w := (((x = 5) AND (y = 20)) _

OR _NOT (z = 20))

w equals False (because all relational
expressions are false)

Example Result

Understanding macro concepts 47

Using command statements in macros

A command statement consists of a macro command, which represents a single
instruction (typically, an action) in a macro.

Understanding macro commands

PerfectScript provides access to two main types of macro commands: product commands
and programming commands.

OLE object commands represent a third type of PerfectScript macro commands.
Also called “a method,” an OLE object command performs a task on an OLE

Bitwise operator Example and result

Bitwise NOT (~) x := ~(-15)

Result: x equals 14 (complement of 1)

x := ~(-15) + 1

Result: x equals 15 (complement of 2)

Bitwise AND (&) x := 65535 & 535

Result: x equals 535

Bitwise inclusive OR (|) x := 65535 | 535

Result: x equals 65535

Bitwise XOR (^) x := 65535 ^ 535

Result: x equals 65000

Bitwise shift left (<<) x := 65535 << 1

Result: x equals 131070

Bitwise shift right (>>) x := 65535 >> 1

Result: x equals 32767

Bitwise rotate left (<<<) x := -2147450881 <<< 1

Result: x equals 65535

Bitwise rotate right (>>>) x := 65535 >>> 1

Result: x equals -2147450881

48 Understanding macro concepts

object in a specific OLE Automation server. For more information, see
“Understanding OLE Automation” on page 77.

Product commands perform functions that let you use WordPerfect Office features in your
macros. Product commands can be specific to one WordPerfect Office application or
common to all of them. Many product commands require you to specify parameters
that determine settings for dialog boxes or other application features (such as the ruler).

Product commands that report information (that is, return a value) about the
state of an application or feature are sometimes called system variables. In
WordPerfect, system variables begin with a leading question mark (as in
?ColumnWidth). In Presentations, system variables begin with a leading Env
(as in EnvPaths).

Programming commands perform functions that let you direct the function of a macro by
controlling how application features act and interact. For example, you can use
programming commands to specify macro conditions (see “Using conditional
statements in macros” on page 54), specify that part of a macro run several times (see
“Using loop statements in macros” on page 57), invoke or jump to a specified
subroutine (see “Using calling statements in macros” on page 59), and so on.

You can use a product command by itself to create a basic macro that performs a simple
task within a WordPerfect Office application. For example, the following product
command displays the fourth slide in the current slideshow in Presentations:

ShowSlide(Slide: 4)

However, you must use product commands and programming commands together if
you want to create a more complex macro. For example, the following code uses the
product commands LineHeightDlg and LineSpacingDlg with the programming
commands If, Else, and Endif to determine which dialog box to display in
WordPerfect. (The Line Height dialog box is displayed if x equals the value "A", while
the Line Spacing dialog box is displayed if x has any other value.)

If (x = "A")

LineHeightDlg

Else

LineSpacingDlg

Endif

Understanding macro concepts 49

Understanding macro-command components

All macro commands have a name, and most macro commands have one or more
parameters (which are marked by separators). For a PerfectScript macro to work properly,
its macro commands must be spelled correctly and must include all required parameters
(and the necessary separators) in the correct order.

When you create a macro by recording it (see “Recording macros” on page 92),
the correct syntax is automtically applied to all macro commands. However,
when you create a macro by typing code (see “Writing and editing macros” on
page 93), you must manually apply the correct syntax to all macro commands.

In addition, some macro commands can be used to return data from various sources.
Such commands are said to have return values.

As previously mentioned, product commands that return a value about the
state of an application or feature are sometimes called system variables.

For more information about the components of a macro command, see the following
topics:
• Understanding command names
• Understanding parameters
• Understanding return values

Understanding command names

The name of a macro command (that is, the “command name”) indicates which feature
is activated by that command.

Sometimes, a name is all that is necessary to perform the complete action of a macro
command. For example, FileOpenDlg is a complete macro command because the
name itself contains enough information to complete the task of displaying the Open
File dialog box in WordPerfect.

Understanding command-name syntax

Command names are not case-sensitive. Although many commands appear in mixed
case, you can type them entirely in uppercase or lowercase if desired.

Most command names do not contain spaces. Exceptions include programming
commands that call a subroutine, such as Case Call or OnCancel Call.

50 Understanding macro concepts

For information about calling statements, see “Using calling statements in
macros” on page 59.

Understanding parameters

While a command name (see “Understanding command names” on page 49) specifies
a feature, some tasks require more information than this feature name alone can
provide. To capture the settings for a feature, some macro commands provide one or
more parameters, which are passed to the macro compiler (or between statement
blocks) to carry out the desired task. For example, the WordPerfect product command
Backup() is associated with the Automatic Document Backup feature, which can be
toggled by specifying a parameter, as in Backup(State:On!).

The type of information that is required by a parameter is represented by a data type.
Each parameter accepts a specific data type. The most common data type for
programming commands is Variable (see “Understanding variables” on page 10), while
the most common data types for a product command are String (which specifies
sequence of characters), Numeric (which specifies a numeric value), and Enumeration
(which specifies one fixed value from a list of possible values).

In the macro-command syntax, data types are displayed in italicized text.

Parameters of data type Enumeration provide a set list of enumerations from which to
choose. These enumerations are identified by a trailing exclamation point (!). For
example, the WordPerfect command BoxCaptionRotation provides the parameter
Rotation, which provides the following enumerations: Degrees90!, Degrees 180!,
Degrees 270!, and None!.

In the following example of a WordPerfect macro command, Advance is the command
name. Where is a parameter of data type Enumeration, and it is assigned the enumeration
AdvanceDown!. Amount is a parameter of type Numeric, and it is assigned a numeric
value of 1.0". The resulting macro command instructs WordPerfect to advance the
insertion point down by one inch.

Advance (Where: AdvanceDown!; Amount: 1.0")

Understanding parameter syntax

The parameters for a macro command must be enclosed in a set of parentheses [()].
Inserting a space between the command name and the left parenthesis is optional.
However, using both a left parenthesis and a right parenthesis is mandatory; omitting
either parenthesis is a common error than can prevent a macro from compiling.

Understanding macro concepts 51

Some programming commands and system variables have no parameters.
Their syntax is the command name alone. Examples include the PerfectScript
command Pause and the WordPerfect command ?FeatureBar.

Some product commands have no parameters. Their syntax is usually written
with empty parentheses. An example is the WordPerfect command
PosScreenUp ().

Using parentheses is mandatory for user-defined functions and procedures. For
more information about functions and procedures, see “Understanding
subroutines” on page 59.

A parameter is separated from its value by a colon (:). Inserting a space between colon
and value is optional.

Each parameter ends with a semicolon (;). When a macro command requires several
parameters, they must be placed in the order shown (and separated by their trailing
semicolons). Inserting a space after a semicolon is optional.

For macro commands that have a single parameter, using the trailing
semicolon is optional.

If you omit an optional parameter, you must include its semicolon in the syntax to keep
the parameters that follow in their correct positions. Consider the following
WordPerfect command:

AbbreviationExpand (AbbreviationName:; Template: PersonalLibrary!)

This command can be shortened as follows:

AbbreviationExpand (; PersonalLibrary!)

If a macro command accepts repeating parameters, the series must be enclosed in a set
of braces ({ }).

Let’s consider an example of parameter syntax in action. The MakeItFit command for
WordPerfect has two parameters: TargetPage and Adjust. These parameters must be
enclosed in a set of parentheses and separated by a semicolon. Adjust is a repeating
parameter, so its instances must be separated by a semicolon, and this series of Adjust
parameters must be enclosed in a set of braces. Here is an example of the proper syntax
for this macro command:

MakeItFit (TargetPage: 1; {Adjust: FitTopMargin!; _

Adjust: FitFontSize!;})

52 Understanding macro concepts

Some macro statements are too lengthy to fit into a single line of macro code.
If your macro editor automatically inserts a hard return at the end of every line,
you must insert an underscore character (_) at the end of each line that wraps.
For information on specifying a macro editor, see “To specify settings for
editing macros” on page 86.

One way to reduce the length of a macro command is to omit parameter names. For
example, the WordPerfect command InhibitInput (State: Off!) works the same
as InhibitInput (Off!). Similarly, consider the WordPerfect command
GraphicsLineLength (Length: Numeric), which can be written as follows:

GraphicsLineLength (Length: 2I)

or

GraphicsLineLength (2I)

Understanding return values

Some macro commands let you retrieve data from various sources. For example, such
commands can get the current date from the system, the current page number or
document filename from an application, or a specific value from the Windows®
registry. This information is usually returned as a return value. Many programming
commands provide return values, as do some product commands.

WordPerfect returns this type of information primarily with system variables.

Handling return values

To handle a return value, you must assign it to a variable (see “Understanding variables”
on page 10) or use it in an expression (see “Understanding expressions” on page 8). For
example, the expression vVariable := ?Name assigns the return value of ?Name
(which represents the filename of the current WordPerfect document) to the variable
vVariable.

The return value of a system variable is handled in the same manner as the
return value of a macro command.

To ignore a return value, don’t handle it. For instance, some macro commands both
change the state of an option and return the previous state of that option. If you want
to change the state of an option without returning its previous state, you can ignore the
return value.

Understanding macro concepts 53

Evaluating to return values

Macro commands that return values (and system variables) are said to “evaluate to”
their return value. For example, because (2+2) evaluates to 4, you can use (2+2) in an
expression rather that using 4. Similarly, because the WordPerfect system variable
?Name evaluates to the filename of the current document, you can use ?Name in an
expression rather than using the filename of the current document.

Consider a macro that opens a file, writes text to it, and then closes it. To close the file,
you can use the PerfectScript command CloseFile; however, this command also
returns True if the file closes successfully (and False otherwise). Because CloseFile
evaluates to its return value, you can use the following syntax to both close the file
(where xxxx is the ID number of the file) and check whether it closes successfully:

If (CloseFile (FileID: xxxx))

...(statements to execute if the file was successfully closed)...

Else

...(statements to execute if the file was not successfully closed)...

EndIf

Return values can be handled outside of the context of a command. However, for return
values of data type Enumeration, the returned enumeration has no meaning unless it is
associated with a command. For example, the enumeration On! has no meaning by
itself, but when used in the context of a command parameter, it indicates that that
parameter is turned on. For this reason, PerfectScript evaluates return values of type
Enumeration to the name of the command, followed by a period, followed by the
enumeration (that is, command name.enumeration!).

For example, the syntax for the programming command Cancel is as follows:

enumeration := Cancel (State: Enumeration)

The Cancel command determines how a macro responds to a Cancel condition. It also
returns the previous Cancel state (On! or Off!). The following example sets the
Cancel state to On!, stores the current state of the Cancel command in the variable
vVariable, and types Correct in the current WordPerfect document:

Cancel (State: On!)

vVariable := Cancel ()

If (vVariable = Cancel.On!)

Type ("Correct")

EndIf

54 Understanding macro concepts

If (vVariable = "Cancel.Off!")

Type ("Not Correct")

EndIf

If the optional parameter is omitted, the Cancel state can be returned without
changing it. In this scenario, the Type command is not executed because the expression
in the second If statement assumes that the enumeration returned by the Cancel
command is a string. (Although enumerations look like strings, they are not.)

Enumerations have numeric equivalents. In the preceding example, vVariable is also
equal to 1. If you were to follow the above example with the WordPerfect product
command Type(vVariable), the number 1 would be typed in the current document.
The numeric equivalents of enumerations can change, so as previously mentioned, you
must use the syntax command name.enumeration! to evaluate to return values.

Using assignment statements in macros

Assignment statements assign the value of an expression (see “Understanding
expressions” on page 8) to a variable (see “Understanding variables” on page 10). The
assignment operator (:= or =) assigns the value of a right-operand expression to a left-
operand variable.

For more information about assignment operators, see “Understanding
assignment operators” on page 27.

For example, the result of the following assignment statement is that x equals John
Doe:

x := "John Doe"

The result of the following assignment statement is that y equals 5:

y := 5

The result of the following assignment statement is that z equals the result of 3 + 4:

z := 3 + 4

Using conditional statements in macros

Conditional statements execute a statement (or statement block) when a specified
condition is met — that is, when an expression is true, or when a variable matches a

Understanding macro concepts 55

constant.

You can use a conditional statement to present the user with a list of options.

Conditional statements include Case, If, and Switch. For more information about
these conditions, see the following topics:
• Understanding Case conditions
• Understanding If conditions
• Understanding Switch conditions

Understanding Case conditions

A Case condition executes a Label statement when Test (that is, a user-defined
variable) matches a constant value.

In the following example, Label (Start) is called if Test matches 1. If Test matches
2, then Label (Next) is called. If there is no match, then Label (Other) is called.

Case (Test; {1; Start; 2; Next}; Other)

...(other statements)...

Label (Start)

...statement block...

Label (Next)

...statement block...

Label (Other)

...statement block...

Case Call is a similar condition to Case. A Case Call statement expects a
Return after a Label statement.

Understanding If conditions

An If condition uses an If-Else-Endif construction to execute a statement (or
statement block) when an expression is true.

In the following example, the first statement block is executed if the expression x = 5
is true (that is, if x equals 5). If the expression x = 5 is not true, the second statement
block is executed. Else is optional.

If (x = 5)

...statement block...

Else

56 Understanding macro concepts

...statement block...

Endif

In the following example, the statement block is executed if Expression is true. If
Expression is not true, the first statement after Endif is executed. (Note, then, that
for this example to work, Expression must evaluate to either true or false.)

If (Expression)

...statement block...

Endif

Understanding Switch conditions

A Switch condition uses a Switch-EndSwitch construction to execute a statement (or
statement block) when <Test> matches <Selector>.

In the following example, the statement block after Caseof <Selector> is executed
if <Test> matches <Selector>.

Switch (<Test>)

Caseof <Selector>:

...statement block...

Caseof <Selector>:

...statement block...

Caseof <Selector>:

...statement block...

Default:

...statement block...

EndSwitch

The statement block for a Switch conditon can call a subroutine (see
“Understanding subroutines” on page 59). If Continue follows a statement
block, the next statement block is automatically executed.

By using a Switch condition, you can alter the sequential play of macro commands. For
example, if the following pair of commands is used in a macro, the second command
overrides the first (because the Paint Brush width is set to 25 pixels and subsequently
changed to 75 pixels):

SetBrushWidth(BrushWidth: 25)

SetBrushWidth(BrushWidth: 75)

Understanding macro concepts 57

If you want the macro to choose between these SetBrushWidth commands, you can
use a Switch condition. In the following example, a Paint Brush width of 25 pixels is
set if variable Test equals 1. If Test equals 2, a Paint Brush width of 75 pixels is set.
Finally, if Test equals any value except 1 or 2, a Paint Brush width of 50 pixels is set.
(The value of Test can be determined by using a programming command such as Menu
or GetNumber.)

Switch (Test)

Caseof 1: SetBrushWidth(BrushWidth: 25)

Caseof 2: SetBrushWidth(BrushWidth: 75)

Default: SetBrushWidth(BrushWidth: 50)

Endswitch

The following example contains two CaseOf statements. If variable x equals 1, a
subroutine named Start is called. If x equals 2, a subroutine named Stop is called.

Switch (x)

CaseOf 1: CALL (Start)

CaseOf 2: CALL (Stop)

EndSwitch

Using loop statements in macros

Loop statements execute a statement (or statement block) a specified number of times
until (or while) an expression is true. When the loop ends, the macro continues to the
next statement.

You can indent lines to show levels of loop statements.

Loop statements include For, Repeat, and While. For more information about loop
statements, see the following sections:
• Understanding For loops
• Understanding Repeat loops
• Understanding While loops

Understanding For loops

A For loop uses a For-EndFor construction to execute a statement (or statement block)
a specified number of times.

58 Understanding macro concepts

In the following example, <InitialValue> initializes <ControlVariable>.
<TerminateExp> tests the value of <ControlVariable>. <IncrementExp>
increases the value of <ControlVariable> until <TerminateExp> is false and the
loop ends. (If <TerminateExp> is initially false, then the statements do not execute
because the test is checked at the start of the loop.)

For (<ControlVariable>; <InitialValue>; <TerminateExp>;
<IncrementExp>)

...statement block....

EndFor

In the following example, x is initialized to 1. The statement block executes while x is
less than 5, and x is incremented by 1 at the end of each loop.

For(x; 1; x < 5; x + 1)

...statement block...

EndFor

Similar loop statements to For are ForEach and ForNext.

Understanding Repeat loops

A Repeat loop uses a Repeat-Until construction to execute a statement (or statement
block) until an expression is true. All Repeat statements execute at least once because
the expression is checked at the end of the loop.

In the following example, the statement block is executed until the expression x = 10
is true (that is, until x is greater than or equal to 10).

Repeat

...statement block...

Until (x >= 10)

However, the loop in the previous example does not end until the value of x changes to
make the expression true. In the following example, the expression x := x + 1 is used
to increment x by 1 at the end of each loop so that the loop ends when x is greater than
or equal to 10.

Repeat

...statement block...

x := x + 1

Until (x >= 10)

Understanding macro concepts 59

Understanding While loops

A While loop uses a While-EndWhile construction to execute a statement (or
statement block) while an expression is true. A While statement cannot execute unless
the expression is true because the expression is checked at the start of the loop.

In the following example, the statement block is executed while the expression x<= 10
is true (that is, while x is less than or equal to 10). If x is greater than 10, the loop does
not execute.

While (x <= 10)

...statement block...

EndWhile

However, the loop in the previous example does not end until the value of x changes to
make the expression true. In the following example, the expression x := x + 1 is used
to increment x by 1 at the end of each loop so that the loop executes while x is less than
or equal to 10.

While (x<=10)

 ...statement block...

x := x + 1

EndWhile

Using calling statements in macros

Calling statements involve a subroutine, which is one or more statements that are
grouped as one item.

The larger a macro becomes, the more likely the need to create subroutines. Creating
subroutines makes it easier to reuse code, and makes the macro easier to read and
understand.

Understanding subroutines

A subroutine consists of a statement or a statement block that is played when called by
a macro. Subroutines are useful because their statements are accessible to any part of a
macro and can be called any number of times during play.

Consider the following example:

Call (SubExample)

...(other statements)...

60 Understanding macro concepts

Label (SubExample)

...statement block...

Return

In the preceding example, the calling statement Call (SubExample) calls (that is,
directs macro play to) the subroutine Label (SubExample). The Return command
directs macro play to the statement that follows Call (SubExample).

PerfectScript macros support the following types of subroutines:
• labels — act as a place holder, or marker, in a macro. For more information, see

“Understanding labels” on page 60.
• functions and procedures — contain one or more statements that execute when called.

Functions can be used to return a value, but procedures cannot. For more
information, see “Understanding functions and procedures” on page 61.

• callbacks — enable a macro to respond immediately, and in specific ways, to events.
For more information, see “Understanding callbacks” on page 74.

You can use subroutines to create calling statements. For more information, see
“Creating calling statements from subroutines” on page 75.

Understanding labels

A label is a subroutine that acts as a place holder, or marker, in a macro. A macro can
call the label when a certain function needs to be performed. After that function is
performed, the Return command redirects execution to the command that
immediately follows the call to the label.

Labels in the main body of a macro can execute without being called.

Labels cannot hide macro code or macro variables.

In general, macro labels are not used in structured programming unless they
are needed within a function or procedure.

Creating labels

A label is created by using the Label command, which has one parameter: the name of
the subroutine. The Label command takes no optional parameters.

Label names have the following conventions:
• They must begin with a character.
• They must consist of one or more letters or numbers.

Understanding macro concepts 61

• They are limited to 30 characters. (If a label name is longer than 30 characters,
only the first 30 characters are recognized.)

• They have an optional trailing @ sign.

Labels generally include one or more statements and are followed by the commands
Return or Quit.

Calling labels

Label statements execute in the same way as other macro statements and do not need
to be called. However, if desired, you can call a label by using any of the following
PerfectScript commands:
• Call
• Go
• Case
• Case Call
• OnCancel
• OnCancel Call
• OnError
• OnError Call
• OnNotFound
• OnNotFound Call
• OnDdeAdvise Call
• DdeExecuteExt

Structuring labels

The following is an example of a label:

Call(MyLabel@)

Quit

Label(MyLabel@)

MessageBox (nVar; ""; "The Label was called.")

Return

Understanding functions and procedures

Functions and procedures are subroutines that contain one or more statements that
execute when called. Most functions and procedures have parameters that receive
values from a calling statement. However, some functions and procedures have zero
parameters, in which case, they perform like a Label statement (see “Understanding
labels” on page 60) except that they cannot execute unless called by the macro.

62 Understanding macro concepts

The difference between functions and procedures is that functions can return a value
whereas procedures cannot.

Creating functions and procedures

Functions and procedures can be placed anywhere in a macro, or in a macro-library file
(see “Storing functions and procedures in macro libraries” on page 71). Functions begin
with the word FUNCTION and end with ENDFUNC, while procedures begin with the word
PROCEDURE and end with ENDPROC.

A function or procedure cannot be defined inside another subroutine.

When you create a function or a procedure, you must name it. Function names and
procedure names have the following conventions:
• They must begin with a character.
• They must consist of one or more letters or numbers.
• They are limited to 30 characters. (If a function name is longer than 30 characters,

only the first 30 characters are recognized.)
• They can (optionally) have a trailing @ sign.

Functions accept any of the following:
• a Return statement that has no parameters (return 0)
• a value contained in a variable that is the result of a function
• an enumerated type that asserts a Cancel, Error, or Not Found condition
• a value contained in a variable that is the result of a function operation

Procedures accept any of the following:
• a Return statement that has no parameters (which direct macro execution to the

statement that follows the caller of a procedure)
• a Return statement that has one parameter (which is an enumerated type that

asserts a Cancel, Error, or Not Found condition)

Functions and procedures can include Label statements that are not visible
outside the function. However, a Label statement inside a function must not
have the same name as a function or procedure.

Using variables in functions and procedures

Function variables and procedure variables are local (or “private”) to the function or
procedure. A variable with the same name as a function variable or procedure variable
can be used elsewhere in the macro without conflict.

Understanding macro concepts 63

Variables are discussed, in general, in the section “Understanding variables” on page 10.
However, the following details apply to using variables in funtions and procedures:
• By default, variables are created as local variables. Local variables are not visible to

subroutines unless declared as part of the subroutine. (In other words, local
variables created outside of a subroutine cannot be used by that subroutine.) The
reverse is also true: If a variable is declared inside a subroutine, that variable cannot
be used or accessed outside of that subroutine. (The exception to this rule occurs
when a local variable created inside a function is returned to the calling statement
by using the Return command, or when a parameter is passed by reference.)

• Global variables can be accessed anywhere in the macro for the life of the macro.
These variables can be accessed and modified within any function or procedure.
They are also visible to and can be modified by a macro that is started by the macro
that declared the global variable.

• Persistent variables, like global variables, can be accessed and modified at any time
during macro execution. The major difference between persistent variables and
global variables is that a persistent variable exists after the macro that declared it
finishes execution. For example, if macro A declares a persistent variable named
nTestVar and sets its initial value to 3, this variable is not discarded when macro A
completes execution; if you run macro B, and macro B attempts to use nTestVar,
the value of nTestVar is still 3.

To destroy a persistent variable, you must either use the Discard command or
close the Macro Facility. Merge variables are persistent variables, so they can
be used during macro execution and merge execution.

The scope of a variable refers to the portion of a macro in which a variable is accessible.
According to scope rules, variables can be created with the same name if they do not
hold the same scope. If the scope of same-named variables is the same, the contents of
the original variable are modified by the next instance of that variable.

To understand how scope affects a macro, examine the following code:

nHardReturn := NTOC(0f90ah)

Global sVariable1 := "I’m the first"

sVariable2 := "I’m the second"

sVariable3 := ""

sVariable4 :="I’m the fourth"

sVariable5 := CreateVariable(sVariable2; &sVariable3; sVariable4)

MessageBox (nretVal; "Variable Values";

64 Understanding macro concepts

"sVariable1: " + sVariable1 + nHardReturn +

"sVariable2: " + sVariable2 + nHardReturn +

"sVariable3: " + sVariable3 + nHardReturn +

"sVariable4: " + sVariable4 + nHardReturn +

"sVariable5: " + sVariable5)

Quit

Function CreateVariable(sVariable2; &sVariable3; sVariable4)

sVariable1 := "I'm Global, I changed"

sVariable2 := "I’m not going to change"

sVariable3 := "I finally got initialized"

sVariable4 := "I am not really the Fourth"

Return (sVariable4)

EndFunc

In the preceding example, the only modified values are sVariable1 and sVariable3.
sVariable1 is global and sVariable3 is passed to the function by address; they are
the only values that the function can “see.” The other variables were not modified
because they were not within the scope of the function.

In the preceding example, the variable sVariable4 may be in question. When
this variable is passed to the function, a copy of the variable is made inside the
function. This variable contains the same content and the same name as the
original sVariable4, but it can be seen only by the function. The content of
this second variable is modified and returned, and assigned, to a new variable
called sVariable5.

Now consider the following example:

Global (X)

X = "My name is John Doe"

DoCount()

MessageBox (retVal; "Variable"; X)

Quit

Procedure DoCount()

x = 1

ForNext (y; 1; 5)

Understanding macro concepts 65

x = x * 10

EndFor

EndProc

In the preceding example, variable X would be equal to "My name is John Doe." if
not declared global. The variable x declared inside the DoCount procedure would have
been local to that procedure and would not have modified the contents of the original
variable. Such problems become very apparent in large macros that include many
variables. (This example also illustrates the need to give variables names that are
meaningful.)

Use global or persistent variables only when necessary. When variables are
declared as global or persistent and are visible to all sections of a macro, they
may be changed or altered in ways that lead to unexpected behavior in your
macros.

Passing variables to functions and procedures

Sometimes, you must pass parameters to functions or procedures. There are two ways
to pass parameters to subroutines: passing variables by value and passing variables by
reference.

When a variable is passed by value as a parameter to a subroutine, a copy of the variable
is made in a different location in memory under a different name.

When a variable is passed by reference as a parameter to a subroutine, the address of
the variable is used to provide direct access to that variable. In this way, you can use the
original variable inside the subroutine that you call. Using this method lets you reduce
memory usage and use fewer global variables in your macro.

The & operator is used when passing a variable by address. This operator is called the
“Address Operator,” and it tells the function or procedure to create a reference for this
variable. The Address Operator is required both in the procedure call and in the
procedure parameter list.

Here is an example of passing the address of a variable to modify its value. Procedures,
unlike functions, cannot return values; however, in this case, the original value of the
variable is modified by passing the variable by address to the procedure.

nNumber := 10

ChangeNumber (&nNumber)

MessageBox (retVal; "New Value"; "The variable nNumber has been _

modified. The new value is " + nNumber +".")

66 Understanding macro concepts

Quit

Procedure ChangeNumber(&nNum)

nNum := nNum + 45

EndProc

If the preceding macro code were compiled and run, the MessageBox would display a
value of 55.

A function can return only one value. Sometimes, however, you need a function to
generate two values to be returned and used later in the macro. In the following
example, two values must be returned or changed: OriginalCount and vBMName. You
can return only one value by using the Return command, so the other value can be
modified by passing the other variable by address.

nOriginalCount := 0

MessageBox (retVal; "Original Value"; nOriginalCount)

ForEach (sString; {"One"; "Two"; "Three"; "Four"; "Five"})

//The line below passes nOriginalCount by address

sBookMarkName := CreateBookMarkName(sString; &nOriginalCount)

Prompt("BookMark Names"; "New bookmark name: " + sBookMarkName; _

NoButtons!)

Wait(5)

EndFor

EndPrompt

MessageBox (retVal; "New Value"; nOriginalCount)

Quit

Function CreateBookMarkName(sInputString ; &nCount)

nCount := nCount + 1

sBMName := sInputString + "_" + nCount

Return (sBMName)

EndFunc

By passing the variable OriginalCount by address to the CreateBookMarkName
function, we can manipulate the original value of the variable without having to return
the variable. When the function receives the variable, it does not make a copy but
references the original variable declared at the beginning of the code.

Understanding macro concepts 67

Passing arrays to functions and procedures

Like normal variables, arrays can be passed to subroutines. (For more information, see
“Working with arrays” on page 20.) If you are passing the entire array, you must assign
a value to each array element; any undefined element will be identified as an error at
run-time.

Arrays can be passed by address.

Consider the following example:

Declare aOldArray[10]

ForNext (x; 1; 10)

// initialize all elements

aOldArray[x] := x

EndFor

aNewArray[] := Test(aOldArray[])

// aNewArray[] is assigned the returned value

Type(aNewArray[10])

// aNewArray[10] equals 100

HardReturn()

Type(aOldArray[10])

// aOldArray[10] equal to 10

Quit

Function Test(aTestArray[])

ForNext(x; 1; 10)

// multiply all elements by 10

aTestArray[x] := x * 10

EndFor

Return(aTestArray[])

EndFunc

In the preceding example, if you precede the calling-statement parameter and the
corresponding function parameter with an ampersand (&), 100 is returned in
aOldArray[10], and all of the elements in aOldArray[] are modified to contain the
new values in aNewArray[]. The following code illustrates this change.

Declare aOldArray[10]

68 Understanding macro concepts

ForNext (x; 1; 10)

// initialize all elements

aOldArray[x] := x

EndFor

aNewArray[] = Test(&aOldArray[])

// aNewArray[] is assigned the returned value

Type(aNewArray[10])

// aNewArray[10] equals 100

HardReturn()

Type(aOldArray[10])

// aOldArray[10] equal to 100

Quit

Function Test(&aTestArray[])

ForNext(x; 1; 10)

// multiply all elements by 10

aTestArray[x] := x * 10

EndFor

Return(aTestArray[])

EndFunc

Calling functions and procedures

To create a calling statement from a function or procedure, you specify the name of the
function or procedure and one or more parameters that contain values passed to the
function or procedure. (If there are no parameters, empty parentheses must follow the
function name or procedure name.)

The following rules apply to calling functions and procedures:
• Functions and procedures do not execute unless they are called. They can be called

from within another subroutine, or they can be called recursively (that is, they can
call themselves).

• The number of parameters in a calling statement must match the number of
parameters in the function or procedure. When a function or procedure requires
multiple parameters, use semicolons (;) to separate those parameters.

Structuring functions

The basic structure of a function is as follows:

Understanding macro concepts 69

Function MyFunction()

. . . statement block

EndFunction

The Function keyword is followed by the actual function name. Statements are added
to the function, after which the function is ended by the EndFunc or EndFunction
keyword. A function can return a value by means of the Return command, as follows:

nOriginalValue := 6

nNewValue := AddNumbers(nOriginalValue)

MessageBox(nretVal; "New Value"; "The old value was " +
nOriginalValue + ". The new value is " + nNewValue + ".";
IconInformation!)

Quit

Function AddNumbers(nInputValue)

nTempValue := nInputValue + 13

Return (nTempValue)

EndFunc

In the preceding example, nOriginalValue is initialized with a value of 6. This value
is passed as a parameter to the AddNumbers function. The AddNumbers function adds
13 to nInputValue and stores the result in nTempValue. nTempValue is returned to
the calling statement as a parameter of the Return command. The return value is
assigned to nNewValue. The values of the nOriginalValue and nNewValue variables
are then displayed by using the MessageBox command.

In the preceding example, the value of nOriginalValue had to be passed as
a parameter to the function. If the AddNumbers macro function had attempted
to access nOriginalValue without passing the value to the function, an error
would have occurred. This is because nOriginalValue was out of scope of the
AddNumbers function.

Structuring procedures

The basic structure of a procedure is as follows:

Procedure MyProcedureName()

. . . statement block

EndProc

The Procedure command begins the block of code, with the actual name of the
procedure following. The end of the procedure is marked by the EndProc or

70 Understanding macro concepts

EndProcedure keyword. The contents of the subroutine are placed between the
Procedure and EndProcedure commands. If a procedure requires parameters, the
code is similar to the following:

Procedure MyProcedureName(value1; value2)

. . . statement block

EndProc

To call the preceding procedure, you would use the following code:

MyProcedureName(1; 2)

An example of a procedure call without parameters would resemble the following:

Procedure CreateFooter()

FooterA (Create!)

FontSize(10p)

InsertFilenameWithPath ()

Tab()

DateText ()

FlushRight ()

PageNumberDisplay ()

SubstructureExit ()

EndProc

In the preceding example, the CreateFooter procedure creates a footer in a document.
This footer contains the text for path and filename, the date, and a page number — all
formatted by using the specified formatting codes. The procedure does not receive any
parameters.

We could modify the CreateFooter procedure to accept a value for the font size:

CreateFooter (10)

// Calls the procedure CreateFooter with the FontSize of // 10

Quit

Procedure CreateFooter(nFontSize)

nFontSize := 16.6 * nFontSize

// This calculates the correct font size value in WP units

FooterA (Create!)

FontSize(nFontSize)

Understanding macro concepts 71

// Recalculated value used

InsertFilenameWithPath ()

Tab()

DateText ()

FlushRight ()

PageNumberDisplay ()

SubstructureExit ()

EndProc

In the preceding example, the call made by the CreateFooter command passes one
value, 10, to the procedure. This value is received into a procedure variable that is
named nFontSize. This variable can be used and manipulated only inside the
procedure. In the example, a calculation is made to determine the proper font height in
WordPerfect units, and then the variable is used by the FontSize command. After this
routine has ended, the variable is discarded by PerfectScript.

Storing functions and procedures in macro libraries

Macro libraries contain files that store functions or procedures (or both) that can be
called from another macro and must be compiled.

The following example contains two functions. Function Add receives a value in variable
x. 50 is added to x and returned to the caller of the function. Function Subtract
receives a value in another variable named x. 25 is subtracted from x and returned to
the caller of the function.

Function Add(x)

x := x + 50

Return (x)

EndFunc

Function Subtract(x)

x:= x - 25

Return (x)

EndFunc

The Use command lets you use functions and procedures that are stored in another
macro. This command usually precedes calling statements to a macro library.

If the preceding example were saved and compiled as LIBRARY.WCM, its Add and
Subtract functions could be called as in the following example. After function Add is

72 Understanding macro concepts

called, 100 is returned in variable z. After function Subtract is called, 75 is returned
in variable z. The computer then beeps because the expression z = 75 is true.

Application (WP; "WordPerfect"; Default; "EN")

Use ("C:\...\LIBRARY.WCM")

z := Add(50)

z := Subtract(z)

If (z = 75)

Beep // computer beeps because z equals 75

EndIf

The preceding example can be written in shortand notation, as follows:

Application (WP; "WordPerfect"; Default; "EN")

Use ("C:\...\LIBRARY.WCM")

z := Add(Subtract(50))

If (z = 75)

Beep // computer beeps because z equals 75

EndIf

Use is a non-executing statement that can occur anywhere in a macro. A macro that
makes a call to a function or procedure in another macro file must include a Use
statement that identifies the file.

A macro library that includes only function statements or procedure statements (or
both) must be compiled like any macro file. PerfectScript automatically compiles
uncompiled libraries. Macro execution stops if the macro library file will not compile.

Many programmers create library files that contain just functions and procedures that
may be used with other macros. These functions and procedures are generic enough to
be applicable to many different macros.

Here is an example of a macro that uses a function from another macro:

Macro1

Use("Library.wcm")

vDefDir := GetMyDefaultDirectory()

MessageBox (retVal; "Docs Directory";

vDefDir")

Quit

Understanding macro concepts 73

Library.wcm (macro library that contains the following code)

Function GetMyDefaultDirectory()

Return (?PathDocument)

EndFunc

If one macro “uses” another macro, the second macro becomes a dependent of the main
macro. If you want to deploy the main macro throughout your organization or send it
to a customer, You must include the second macro.

Macro files included by using multiple Use commands are searched from beginning to
the end of the macro. Thus, a parent macro always calls the first occurrence of a function
or procedure with the same name in different Use files. Consider the following example:

Macro1

Use("Library1.wcm")

Use("Library2.wcm")

vDefDir := GetMyDefaultDirectory()

MessageBox (retVal; "Docs Directory";

vDefDir")

Quit

Library1.wcm (contains)

Function GetMyDefaultDirectory()

Return (?PathDocument)

EndFunc

Library2.wcm (contains)

Function GetMyDefaultDirectory()

Return (?PathCurrent)

EndFunc

In the preceding example, the library function called by the macro is Library1.wcm
because it is the first macro library included by Macro1.

When a macro uses a subroutine in a macro library, playing that macro incurs an error
if the syntax of the call to the subroutine is incorrect. Using a function prototype or
procedure prototype forces the compiler to check the parameter count of a function or
procedure in a macro library; if the syntax is incorrect, a compiler error occurs.

74 Understanding macro concepts

The prototype directs the compiler to validate the syntax of a function or procedure.
Creating a prototype helps you keep track of the parameters of a function or procedure.
Place prototypes at the beginning of your macro, as in the following example:

Function Prototype Check(nBeep; HdReturn)

HdReturn := NTOC(0F90Ah)

x := 4

nBeep := 1

While(x = 4)

BEEP

x := Check(nBeep; HdReturn)

nBeep := nBeep + 1

EndWhile

MessageBox(retVal; "RETURN"; "The value of variable vStatus (" + x _

+ ") is returned to variable x, which ends the loop."; _

IconExclamation!)

Function Check(nBeep; HdReturn)

MESSAGEBOX(vStatus; "FUNCTION EXAMPLE"; "Beeps: " + nBeep + _

HdReturn + HdReturn + "Choose Retry to beep again." + HdReturn; _

IconInformation! | RetryCancel!)

RETURN(vStatus)

EndFunc

Understanding callbacks

Callbacks are special functions that enable a macro to respond immediately, and in
specific ways, to events. When a macro executes a callback routine, the macro system
automatically creates variables that are accessible to that callback. The callback can
access the parameter array for information about the callback event, and the callback
can place its return value (if any) in the return variable.

The parameters for a callback are placed into a global array variable that has
the same name as the callback label. Any return value for the callback routine
is placed in a (non-array) global variable that has the same name as the callback
label. For example, parameters would be passed to callback routine

Understanding macro concepts 75

'MsgHandler' in an array called 'MsgHandler[]', and any return value
would be placed into a variable called 'MsgHandler'.

PerfectScript currently supports three types of callbacks, all of which are discussed in
greater detail in the “Support for callback entries” topic in the PerfectScript Command
Reference section of the PerfectScript Help file (psh.chm):
• product-command callbacks
• dialog-box callbacks
• message-box callbacks

Perhaps the most useful of these callback types is the dialog-box callback, which lets the
macro gather information from an active dialog box (rather than waiting until the
dialog box is closed to gather that information). For more information on dialog-box
callbacks, see “Setting up callbacks for dialog boxes” on page 124.

Creating calling statements from subroutines

You can create calling statements by using PerfectScript commands, such as the
following:
• Call — calls the specified subroutine. For more information, see “Using the Call

command in calling statements” on page 75.
• Go — jumps to the specified subroutine. For more information, see “Using the Go

command in calling statements” on page 76.
• Case or Case Call — creates a conditional statement that tests for matching

expressions, and calls a label if a match is found. For more information, see
“Understanding Case conditions” on page 55.

For more information about these (and other) PerfectScript commands, please
see the PerfectScript Command Reference in the PerfectScript Help file
(psh.chm).

Using the Call command in calling statements

The Call command has one parameter, which is the name of a subroutine to call. The
Return command directs macro execution to the statement that follows Call.

In the following example, Call(ExSub) directs macro execution to Label(ExSub),
where the statement block is executed. Return directs macro execution to the first
statement after Call(ExSub).

Call (ExSub)

...other statements...

76 Understanding macro concepts

Label (ExSub)

...statement block...

Return

Using a subroutine name to form a calling statement performs the same action as
creating a Call statement that specifies that subroutine name as a parameter. For
example, a function or procedure that is named InitializeVariables can be called
as follows:

Call InitializeVariables (<Parameter>; <Parameter>)

or

InitializeVariables (<Parameter>;<Parameter>)

If the second example calls a function, you can assign a return value to a variable with
a statement such as the following:

x := InitializeVariables (<Parameter>;<Parameter>)

For information about return values, see “Understanding return values” on
page 52.

For information about variables, see “Understanding variables” on page 10.

Using the Go command in calling statements

The Go command has one parameter, which is the name of a subroutine to which to
jump. Macro execution continues from the point of the subroutine and does not return
(so statements between Go and the subroutine do not execute). Return ends a macro or
directs macro execution to the statement that follows a Run command.

In the following example, Go(ExSub) directs macro execution to Label(ExSub),
where the statement block is executed. Return ends the macro.

Go (ExSub)

...other statements...

Label (ExSub)

...statement block...

Return

Understanding macro concepts 77

Using comment statements in macros

Comment statements contain notes and other information that do not affect macro
play. You can use comment statements to explain the purpose of your macro, describe
its components, or to prevent a statement from playing.

A comment statement can consist of a single line of text or instead span several lines of
text. However, the syntax for a single-line comment statement is different from that of
a multi-line comment statement:
• single-line comment statement — begins with // and ends with a hard return
• multi-line comment statement — begins with /* and ends with */

Accessing external applications in macros

PerfectScript provides the following advanced features, which let macros access
applications outside of WordPerfect Office:
• OLE Automation — lets PerfectScript control applications that support OLE. For

more information, see “Understanding OLE Automation” on page 77.
• Dynamic Data Exchange (DDE) — lets PerfectScript control applications that

support DDE. For more information, see “Understanding Dynamic Data Exchange
(DDE)” on page 80.

Understanding OLE Automation

PerfectScript can send commands that control WordPerfect, Quattro Pro, and
Presentations. However, through a Windows-standard interface known as OLE
Automation, PerfectScript can send commands that control other OLE-enabled
applications, which are called OLE Automation servers. For this reason, PerfectScript is
called an OLE Automation controller.

OLE Automation servers define OLE Automation objects, which have names that are
registered with Windows. (For information about the OLE Automation objects that are
defined for an application, refer to the manufacturer’s documentation for that
application.)

OLE Automation objects can have methods and properties.

78 Understanding macro concepts

A method is a command or function that performs an action on an object. Many
methods, like product commands, have parameters and return values. Here is a sample
method for the OLE Automation object Excel.Application:

Worksheets ().Activate

A property is an object value that can be retrieved and set. Many properties have
parameters and return values. Unlike WordPerfect system variables, many properties
can be set by placing the property name on the left side of an assignment statement (see
“Using assignment statements in macros” on page 54). Properties can take parameters
when being retrieved (similarly to a method call) or when being set. Here is a sample
property for the OLE Automation object Excel.Application:

ActiveSheet.Name

IMPORTANT: You must set optional parameters when using OLE
Automation.

Working with OLE Automation objects

Before an OLE Automation object can be used in a PerfectScript macro, the Object
statement must be used. The Object statement is similar to the Application
statement for products: It defines an object-prefix variable that is used to call methods
and to retrieve and set object properties. The name of the object is also specified, along
with information about whether this prefix is to be used as the default object for non-
prefixed methods and properties.

The object-prefix variable that is specified in the Object statement identifies a variable
that contains an instance handle to the object at run-time. As a variable, this prefix can
be used in many places where most, but not all, other macro variables can be used. For
example, the macro language operators + and - cannot be used with object variables,
and automatic type conversions are not defined for object variables. Object variables can
be assigned to other object variables of the same type, and they can be passed as
parameters to user-defined macro routines.

As with other macro variables, object variables exist at run-time in a specific macro
variable pool. You can specify this pool by using Declare, Local, Global and Persist
statements (see “Understanding variables” on page 10). If the object variable is not
specified, it exists in the local variable pool (unless PersistAll is in effect, in which
case the object variable exists in the persistent variable pool).

Before making a call to the methods for an object, and before retrieving or setting the
properties for an object, an instance handle to a specific object must be obtained
through the CreateObject statement or the GetObject statement. These statements

Understanding macro concepts 79

return an instance handle to a specific instance of an object. Because many OLE
Automation servers support multiple instances of the objects they define, an instance
handle to a specific object must be obtained to distinguish instances of the same object.
Multiple object variables can be created, and multiple instances can be obtained if the
OLE Automation server supports multiple instances.

After getting an instance handle, an object variable is said to be connected to the OLE
Automation server. Like other variables, the Exists statement can be used on object
variables to determine whether an object variable exists and, if so, which variable pool
it exists in. Even if an object variable exists, it may not be currently connected to the
OLE Automation server, but this connection information can be obtained from the
ObjectInfo command.

When an instance of an OLE Automation object is no longer needed, the connection
can be terminated by using the Discard statement. Variables for OLE Automation
objects, like other variables, are automatically discarded when the macro terminates or
when the user-defined routine in which the variable is defined ends. This discarding
automatically disconnects the object from an OLE Automation server (if connected to
one).

After an object is connected to its OLE Automation server, the methods and properties
of that object can be accessed by prefixing the method name or property name with the
variable name for the OLE Automation object followed by a period (.). If the OLE
object variable is the default object variable (specified by Default! in the Object
statement, or specified in a With statement), the object-prefix variable can be replaced
by two leading periods (..). Leading periods are necessary to inform the macro compiler
that the method name being called is not the name of a user-defined macro routine but
the method name (or property name) of the current default OLE Automation object.

A macro can use more than one application product and OLE Automation
object. Commands to the non-default application or OLE Automation object
require a prefix, which is specified in a PerfectScript Application or Object
statement. In the example A1.AboutDlg (), the prefix A1. tells the compiler
to use the application or object that is assigned A1 in a PerfectScript
Application or Object statement.

To establish a new default object for a localized block of code, you can use a With-
EndWith compound statement. The object-prefix variable is specified in the With
statement; all statements to access methods, and properties preceded by two periods (..)
until the EndWith statement, are assumed to be references to that object.

80 Understanding macro concepts

The NewDefault statement can be used to establish a new default object-variable prefix
for the remainder of a macro (or until the macro encounters another NewDefault
statement).

For more information about PerfectScript support for OLE Automation, please
see the “Support for OLE Automation” topic in the PerfectScript Command
Reference section of the PerfectScript Help file (psh.chm).

Understanding Dynamic Data Exchange (DDE)

Dynamic Data Exchange (DDE) Execute is a Windows feature that enhances product
integration by allowing applications to instruct each other to perform specific tasks
(that is, to execute commands). For example, you can use the DDE Execute feature to
create macros in WordPerfect that send commands to control other Windows
applications that accept DDE Execute strings.

WordPerfect, Quattro Pro, and Presentations are DDE servers, and they provide
support to DDE clients through the PerfectScript language.

An instance of DDE-based communication between two applications is called a DDE
conversation. WordPerfect, Quattro Pro, and Presentations each handle DDE
conversations in their own way.

For more detailed information about using DDE, see the WordPerfect Office
Software Development Kit (SDK), which is included in the Professional
Edition of WordPerfect Office. For more information, see “Using the
WordPerfect Office Software Development Kit (SDK)” on page 81.

Understanding DDE conversations for WordPerfect

WordPerfect can act as a server for DDEExecute commands.

To access the PerfectScript-based product commands for WordPerfect, the DDE client
must initiate a DDE conversation by using WPWin15_Macros as the service name and
Commands as the topic name.

Understanding DDE conversations for Quattro Pro

Quattro Pro can act as a server for DDERequest commands.

To access request topics, application status, or properties from Quattro Pro, the DDE
client must initiate a DDE conversation by using QPW as the service name and System
as the topic name.

Understanding macro concepts 81

To read and write to spreadsheet cells, or to execute PerfectScript-based product
commands for Quattro Pro, the DDE client must initiate a DDE conversation by using
QPW as the service name and the path and file of an open notebook as the topic name.

Understanding DDE conversations for Presentations

Any eligible Windows application can use the DDE Execute feature to control
Presentations. To begin, the DDE client must initiate a DDE conversation by using
Presentations as the service name and Command as the topic name. Before
terminating the conversation, the client can send DDE Execute strings that include
PerfectScript-based product commands for Presentations (provided that those
commands do not contain variables or expressions).

Eligible Windows applications can also send commands to Presentations as a DDE
Request item. In this scenario, Presentations returns an ANSI® text string that
represents the return value of the command.

The DDE client must send DDE Execute strings and DDE Request items in ANSI text
format. If Presentations returns an error, the DDE client can determine what went
wrong by sending a DDE Request item for LastCmdError; Presentations then returns
an ANSI text string that contains a three-digit error code and a description of the error.

Learning more about macros

If you want to learn more about macros, you can consult the WordPerfect Office
Software Development Kit (SDK) or the Corel Web site.

This section contains the following topics:
• Using the WordPerfect Office Software Development Kit (SDK)
• Using the Corel Web site

Using the WordPerfect Office Software Development Kit (SDK)

The WordPerfect Office Software Development Kit (SDK) is a set of tools that lets you
customize WordPerfect Office applications for commercial or business use. The
WordPerfect Office SDK includes documentation, samples, and various tools and
utilities.

The WordPerfect Office SDK is included with certain editions of WordPerfect Office.

82 Understanding macro concepts

Using the Corel Web site

The Corel Web site provides additional information about WordPerfect Office and
about the products and services that are offered by Corel Corporation. Visit the Corel
Web site at www.corel.com, or access it directly from WordPerfect, Quattro Pro, or
Presentations by clicking Help Corel on the Web and then choosing a destination.

http://www.corel.com

Getting started with macros 83

Getting started with macros
Now that you understand the basics about PerfectScript, you are ready to get started
with macros by learning how to use the PerfectScript utility.

This section contains the following topics:
• Using the PerfectScript utility
• Specifying PerfectScript settings

Using the PerfectScript utility

To get started with PerfectScript macros for WordPerfect Office, you can use the
PerfectScript utility.

WordPerfect, Quattro Pro, and Presentations provide a Tools Macro menu,
which lets you work with macros from directly within the application.
(WordPerfect also provides a Tools Template macro menu, which lets you
work with template macros and QuickMacros from directly within
WordPerfect.) For information about working with macros from directly
within WordPerfect, Quattro Pro, or Presentations, please see the Help file for
the application.

The PerfectScript utility provides the following tools for creating PerfectScript macros:
• Command Browser — displays a list of all available programming commands for

PerfectScript, as well as all available product commands for WordPerfect,
Quattro Pro, and Presentations.

• Dialog Editor — lets you create dialog boxes for your macros.

The PerfectScript utility provides context-sensitive Help for many of its controls, as well
as Help for all of the macro commands in its Command Browser.

You can quit the PerfectScript utility when you have finished using it.

This section contains the following procedures:
• To start the PerfectScript utility
• To display the Command Browser
• To display the Dialog Editor

84 Getting started with macros

• To access context-sensitive Help for the PerfectScript utility
• To access Help for a macro command
• To quit the PerfectScript utility

To start the PerfectScript utility
• Click Start All programs WordPerfect Office nn Utilities

PerfectScript, where nn is the version number of the software.

To display the Command Browser
• In the PerfectScript utility, click Help Macro Command Browser.

For information about using the Command Browser to create macros, see
“Writing and editing macros” on page 93.

To display the Dialog Editor
• In the PerfectScript utility, click Tools Dialog Editor.

The Dialog Editor works only with macros that are in WordPerfect format. For
this reason, you can open the Dialog Editor from directly within WordPerfect
by clicking Dialog Editor on the Macro toolbar when editing a macro.

For information about using the Dialog Editor, see “Creating dialog boxes for
macros” on page 101.

To access context-sensitive Help for the PerfectScript utility

• Click (or press Shift + F1), and then click the desired control.

To access Help for a macro command
• In the Command Browser, right-click the desired command.

To quit the PerfectScript utility
• Click File Exit.

Getting started with macros 85

Specifying PerfectScript settings

From within the PerfectScript utility, you can specify various PerfectScript settings.

This section contains the following procedures:
• To specify general macro settings
• To specify settings for compiling macros
• To specify settings for debugging macros
• To specify settings for editing macros
• To specify settings for playing macros
• To specify settings for recording macros
• To specify settings for the PerfectScript toolbar

To specify general macro settings
1 Click Tools Settings, and then click the General tab.

2 Do any of the following:
• Specify a default macro folder.
• Enable the Use enhanced file dialogs check box if you want to view detailed

dialog-box information.
• Enable the Display icons in system tray check box if you want to display macro

icons in the Windows system tray.
• Enable the Check file associations on startup check box if you want to check

file associations at startup.

Click Reset all to defaults to return all settings to their original state.

To specify settings for compiling macros
1 Click Tools Settings, and then click the Compile tab.

2 Enable any of the following check boxes:
• Show progress
• Include debug information
• Warn when using unsupported features
• Generate listing file

To specify settings for debugging macros
1 Click Tools Settings, and then click the Debug tab.

86 Getting started with macros

2 Do any of the following:
• Enable the Invoke Debugger on macro start check box, if you want.
• Enable the Invoke Debugger on errors check box, if you want.
• Enable the Debugger event logging check box, if you want.
• In the Animate settings area, enable the desired ‘Run to’ option, and specify the

desired delay (in seconds).

Debug, a menu item for the Windows shell, appears on the context menu for
the desktop icon of any macro.

To specify settings for editing macros
1 Click Tools Settings, and then click the Edit tab.

2 Specify the path and filename of the macro editor that you want to use.

3 Specify a file format that is compatible with the macro editor that you’ve chosen.

You must specify a macro editor if you want to edit macros.

Some macro statements are too lengthy to fit into a single line of macro code.
If your macro editor automatically inserts a hard return at the end of every line,
you must insert an underscore character (_) at the end of each line that wraps.

Although you can use any ASCII-based text editor to edit macros, some editors
offer special features. For example,

• When you use Notepad, you can create a macro just by specifying its
filename.

• When you use WordPerfect, you can use the PerfectScript Command
Inserter (on the Macro toolbar) to insert macro commands into your
macros or to edit existing macro commands.

To specify settings for playing macros
1 Click Tools Settings, and then click the Play tab.

2 Do any of the following:
• Specify a value in the Play repeat count box.
• Enable the Security for JavaScript® check box, if you want.
• Enable the Show elapsed time check box, if you want.

Getting started with macros 87

To specify settings for recording macros
1 Click Tools Settings, and then click the Record tab.

2 Do any of the following:
• From the Script language list box, choose the script language that you want to

use.
• From the File format list box, choose the file format in which you want to save

macros. (This file format must be compatible with the macro editor that you
specify on the Edit page.)

• From the Parameters per line list box, choose One or Multiple to set the
number of parameters in each macro line.

• In the Maximum line length box, specify a maximum line length for macro
text.

• Enable the Named parameters required check box if you want to use only
named parameters in your macros.

• Enable the Record product prefixes on all commands if you want to insert
product prefixes in your macros.

To specify settings for the PerfectScript toolbar
1 Click Tools Settings, and then click the Toolbar tab.

2 Do any of the following:
• Enable the Use large icons on toolbar buttons check box, if you want.
• Enable the Show text on toolbar buttons check box, if you want.
• Assign macros to the available toolbar buttons, if you want. The macro buttons

on the PerfectScript toolbar can be configured to play any desired macro.

The PerfectScript toolbar appears as a flat toolbar, similarly to other toolbars
in WordPerfect Office.

88 Getting started with macros

Creating macros 89

Creating macros
Now that you know how to use the PerfectScript utility, you are ready to create
PerfectScript macros.

This section contains the following topics:
• Migrating legacy macros
• Recording macros
• Writing and editing macros
• Compiling macros
• Playing macros
• Making macros user-friendly

Migrating legacy macros

You can use the PerfectScript utility to migrate PerfectScript macros from previous
versions of WordPerfect Office to a later version of the software.

With each new version of WordPerfect Office, some commands are added,
some commands are changed, and some commands become obsolete and are
removed altogether. Because of such changes, macros from earlier versions of
WordPerfect Office might need minor corrections when migrated to a later
version of the software.

This section contains the following procedures:
• To migrate a legacy macro

Converting non-PerfectScript macros to PerfectScript format

You may also be able to use the migration process to convert a non-PerfectScript macro
to PerfectScript format. (For example, if you record a macro in a non-PerfectScript
language — JavaScript, Microsoft® Visual Basic®, Corel SCRIPT™, or
Borland® Delphi®, as explained in “To specify settings for recording macros” on
page 87 — you may subsequently want to convert that macro to PerfectScript format.)
However, you must be sure to take certain precautions when converting macros.

90 Creating macros

First, be sure to review each variable, label, procedure, and function name in your
existing macro, and change any names that have become reserved words. Each new
version of WordPerfect Office adds PerfectScript keywords, which are reserved words
that cannot be used as variable or label names in macros; in addition, the names of all
macro commands are considered reserved words because they cannot be used as variable
or label names. For more information on reserved words, please see the “Reserved
words” topic in the PerfectScript Command Reference section of the PerfectScript Help
file (psh.chm).

Next, be sure to review any arrays in your existing macro (see “Working with arrays”
on page 20). Please note the following:
• You can pass array slices to repeating parameter groups of commands. In early

versions of PerfectScript, you could pass only entire arrays. Empty slices can now be
specified, if the end index is less than the first index.

• Negative array indexes can be used in array slices. If negative, the index is
considered to be end-relative, not start-relative. An index of [-1] represents the
last element, [-2] represents the second-to-last element, and so on.

• You can assign non-arrays to arrays, and arrays to non-arrays. If an array is assigned
to a non-array variable, the assignment is actually made to the array variable with
the same name as the non-array variable, and the non-array variable is left
untouched. If a non-array is assigned to an array variable, the non-array value is
converted into a single element array with that value, and it is assigned to the array
variable.

• Non-array values and arrays can be combined by using the operators ^^ or \.
However, undefined array elements will be ignored and skipped over.

Creating macros 91

Non-array values and arrays can also be combined by using the following
operators (although undefined array elements will be ignored and skipped
over):

• unary operators — for information, see “Understanding operators” on
page 25.

• arithmetic operators — for information, see “Understanding
assignment operators” on page 27.

• relational (comparison) operators — for information, see
“Understanding relational operators” on page 28.

• logical operators — for information, see “Understanding logical
operators” on page 31.

• bitwise operators — for information, see “Understanding bitwise
operators” on page 35.

• JavaScript operators — for information on specifying JavaScript as the
macro-recording language, see “To specify settings for recording
macros” on page 87.

Finally, when converting a native QuattroPro macro to PerfectScript format, you may
want to know how to manually convert the syntax of each Quattro Pro command. For
more information, see “Understanding the native Quattro Pro macro language” in the
Quattro Pro Command Reference section of the PerfectScript Help file (psh.chm).

To migrate a legacy macro
1 In the PerfectScript utility for the later version of WordPerfect Office, click File

Play.

2 Select the legacy macro that you want to migrate.

3 Specify a path and filename for the migrated macro, and then click Play.
The macro is compiled for use with the later version of WordPerfect Office.

4 Make note of any errors that are encountered by the macro compiler, and make the
necessary fixes to the macro.

For tips on resolving macro-compilation errors, see “Troubleshooting macro-
compilation errors” on page 97.

92 Creating macros

Recording macros

You can create a basic PerfectScript macro by using the PerfectScript utility to record
keyboard actions in WordPerfect, Quattro Pro, or Presentations. Keyboard actions are
actions that you perform by using the keyboard — for example, typing text or saving a
file.

You cannot record mouse actions. However, you can use the keyboard to
position the cursor by pressing an arrow key or a navigation shortcut key.

You cannot record some actions at all. However, you may be able to manually
code such actions by using a macro editor (see “Writing and editing macros”
on page 93).

You can also record macros from directly within WordPerfect, Quattro Pro, or
Presentations. For information, please see the Help file for the application.

You can also record template macros and QuickMacros from directly within
WordPerfect. For information, please see the Help file for WordPerfect.

When you record a PerfectScript macro, you record the results of your actions rather
than your actual actions. For example, if you record a macro that changes the top
margin of a page to 2 inches in a WordPerfect document, PerfectScript records the
WordPerfect product command MarginTop(MarginWidth:2.0") rather than the
step-by-step method that you used to change the margin. The correct PerfectScript
syntax (see “Understanding macro commands” on page 47) is automatically applied to
all recorded product commands; for this reason, recording a macro helps you avoid
typos and similar errors that can occur when manually coding macros.

Only product commands can be recorded. If you want to include programming
commands (or complex functions such as assignments or loops) in a macro, you
must manually code them. For information, see “Writing and editing macros”
on page 93.

This section contains the following procedures:
• To record a macro

To record a macro
1 Open the desired WordPerfect Office application.

2 In the PerfectScript utility, click File Record.

Creating macros 93

3 Type a name for the macro, and then click Record.

4 Switch to the WordPerfect Office application, and then perform the keyboard
actions that you want to record.

Although you cannot record mouse actions, you can use the keyboard to position
the cursor by pressing an arrow key or a navigation shortcut key.

5 When you have finished recording the macro, click File Stop in the PerfectScript
utility.

When you record a macro, the PerfectScript utility automatically records the
Application command for the appropriate WordPerfect Office application.
This command indicates the application to which the macro belongs.

Some actions cannot be recorded. However, you may be able to manually code
these actions by using a macro editor (see “Writing and editing macros” on
page 93).

If you need to stop recording temporarily (for example, to locate a feature or to
experiment with the effect of a feature before you record the command), click
File Pause in the PerfectScript utility. Click Pause again to resume
recording the macro.

You can specify the settings to use when recording macros. For information,
see “To specify settings for recording macros” on page 87.

Writing and editing macros

If you prefer to write (rather than record) a PerfectScript macro, you can do so by using
a macro editor — or even by typing in a blank document. Manually coding a
PerfectScript macro requires an understanding of both the PerfectScript language and
the principles of computer programming.

A macro editor, as its name implies, lets you edit the code for an existing macro. You
can edit a macro if you want to change how that macro operates.

If you choose WordPerfect as your macro editor, you can easily insert PerfectScript
macro commands into your macro code by using the Command Inserter feature of the
Command Browser. The Command Inserter feature lets you choose macro commands
and parameters from the provided lists and then insert the resulting syntax into your
macro code. Using the Command Inserter saves you time and helps you avoid typos and
similar errors that can occur when manually coding macros.

94 Creating macros

If you choose WordPerfect as your macro editor, you must disable the
SmartQuotes feature. To disable SmartQuotes in WordPerfect, click Tools
QuickCorrect™, click the SmartQuotes tab, and then disable the Use
double quotation marks as you type check box.

If you do not choose WordPerfect as your macro editor, you must be sure to
apply the correct syntax to all the macro commands that you type. For
information about macro-command syntax, see “Understanding macro
commands” on page 47.

This section contains the following procedures:
• To write a macro
• To edit a macro
• To insert a macro command into macro code

Formatting macros

If you want to improve the readability of a macro, you can format it to include tabs,
spaces, and even font styles or other text-appearance changes. Formatting a macro does
not affect how it works.

For example, WordPerfect records the following macro in this default format:

PosDocBottom()

Type("Sincerely")

HardReturn()

HardReturn()

HardReturn()

HardReturn()

Type("Ms. Sharon Openshaw")

HardReturn()

Type("Vice President, Marketing")

However, you can type spaces between components and blank lines between tasks, as
follows:

PosDocBottom()

Type ("Sincerely")

HardReturn()

Creating macros 95

HardReturn()

HardReturn()

HardReturn()

Type ("Ms. Sharon Openshaw")

HardReturn()

Type ("Vice President, Marketing")

To write a macro
1 Type the macro code in a macro editor or in a blank document.

2 Save the macro as a file with a .wcm extension.

You can specify the settings to use when writing macros in a macro editor (see
“To specify settings for editing macros” on page 86).

To edit a macro
1 In the PerfectScript utility, click File Edit.

2 Select the macro that you want to edit, and then click Edit.
If necessary, click Convert to convert the macro for editing.

3 Make the desired changes to the macro, and close the macro editor.

In Windows, you can access the Edit command for a macro by right-clicking
that macro.

You can specify the settings to use when editing macros (see “To specify
settings for editing macros” on page 86).

To insert a macro command into macro code
1 In the macro code, click where you want to insert a macro command.

2 In the PerfectScript utility, click Help Macro Command Browser.

3 From the Command type list box, choose the type of command that you want to
insert.

4 In the Commands list, double-click the command that you want to insert.

96 Creating macros

5 In the Parameters list, double-click the parameter that you want to insert.

If the parameter has enumerations, double-click the desired enumeration to insert
both the parameter and its enumeration.

6 Repeat step 5 for each additional parameter.

7 Click Return values if you want to return value enumerations for commands that
have enumerations as return values.

8 If desired, manually edit the command in the Command edit list box.

9 Click Insert to copy the command from the Command edit box and insert it into
the macro code.

You can use the Command Inserter feature only when using WordPerfect as
your macro editor. For information about choosing a macro editor, see “To
specify settings for editing macros” on page 86.

For most macro commands, a default value is passed when an optional
enumeration parameter is omitted — and in some cases, omitting an optional
enumeration parameter performs a different function altogether. In the
Command Browser, any default enumeration values for a parameter are
displayed in bold text in the Parameters list.

For some macro commands, the default parameter value is a combination of
enumerations. In this scenario, several enumerations may be defined as
synonyms that have the same value; in the Command Browser, any such
enumerations are highlighted.

You can display Help for any macro command in the Command Browser by
right-clicking that command in the Commands list.

Compiling macros

To create a functioning macro from macro code, you must use a “compiler.”
PerfectScript macros are automatically compiled when they are recorded or played, but
they can be manually compiled at any time by using the PerfectScript utility.

You can also compile macros from directly within WordPerfect or
Presentations. For information, please see the Help file for the application.

Creating macros 97

This section contains the following procedures:
• To compile a macro

Understanding compilers

In machine (computer) language, every word is a binary numeral that consists of zeros
and ones. Consider the following examples:
• In binary notation, the first three letters of the alphabet are 1000001, 1000010,

and 1000011.
• The binary result of 4 + 5 is 1001.

Working with binary numerals can be awkward, so English-based programming
languages (such as Basic, Pascal, and C) were designed to simplify the process of writing
programs. A programming language is used to write program code in an editor or word
processor, and that program code is then saved as a source file. However, computers can
execute only object files, not source files. For this reason, a program compiler is required
to create an object file by making a copy of the source file and translating that copy into
machine language.

Macro languages are similar to programming languages. A macro language (such as
PerfectScript) is used to write macro code in an editor or word processor, and that macro
code is then saved as a source file. However, rather than create a separate object file from
the source file, a macro compiler creates an object and saves it in a hidden area of the
source file. This hidden object is destroyed when the source file is edited and regenerated
when the source file is recompiled.

A macro is therefore a compiled source file that contains instructions that are executed
when that macro is played. The PerfectScript macro compiler is used to compile or
“translate” PerfectScript macro code into a usable format for WordPerfect Office
applications.

Troubleshooting macro-compilation errors

The PerfectScript macro compiler is useful for troubleshooting problems with your
PerfectScript macros. When the compiler locates an error, it displays a dialog box that
contains general information about the problem. However, the compiler can make only
a best guess as to what a macro is intended to accomplish; as a result, the compiler may
direct you to a problem rather than specifically identify that problem.

If you receive an error message while compiling a macro, you can continue the macro-
compilation process if you want to check for additional errors, or you can cancel the
macro-compilation process altogether. In either case, the macro cannot be played until
you correct all errors and successfully compile the macro.

98 Creating macros

The following syntax errors can cause a macro-compilation error:
• A command name is misspelled
• A semicolon is missing between macro-command parameters
• A comma, instead of a semicolon, is used between macro-command parameters
• A parenthesis is missing
• A (double) quotation mark is missing
• A (double) quotation mark is inserted by using the SmartQuotes feature in

WordPerfect
• A macro command is missing from a conditional statement
• A macro command is missing from a loop statement
• A calling statement is undefined

In addition, the following conditions can cause a macro-compilation error:
• No “return” statement is found in the body of a user-defined function. In this case,

a return (0) statement is generated.
• A “return” statement with no return value is found in the body of a user-defined

function. In this case, a value of 0 is returned.
• The macro appears to be empty when compiled. This issue can occur when a

previously compiled macro has its source removed; compiling such a macro
destroys the existing (compiled) macro object.

• An obsolete or unsupported feature is found in a macro during compilation. These
warnings can be safely ignored to produce a successful macro — they serve as
reminders only. Warnings are displayed when an old EN English synonym is used
in the Application statement (US, UK, CE, OZ), or when an obsolete or
unsupported command, enumeration, or parameter is used.

When correcting macro-compilation errors, work through the macro code
from beginning to end, and focus on the errors for which the solution seems
most apparent. Leave the errors with less apparent solutions until later — some
of these errors may be corrected by resolving the more obvious errors.

To compile a macro
1 In the PerfectScript utility, click File Compile.

2 Select the macro that you want to compile, and then click Compile.

Creating macros 99

If you want to compile a legacy macro or a non-PerfectScript macro, you must
first convert it to the current PerfectScript format. For information, see
“Migrating legacy macros” on page 89.

When a macro is compiled, warnings are displayed for any labels or routines
that are not defined by that macro. However, the compiled macro will function
correctly if it calls another macro that defines those labels and routines.

In Windows, you can access the Compile command for a macro by right-
clicking that macro.

You can specify the settings to use when compiling macros. For information,
see “To specify settings for compiling macros” on page 85.

Playing macros

You can perform the operations that are specified in a PerfectScript macro by using the
PerfectScript utility to play that macro.

When you play a PerfectScript macro, the PerfectScript utility determines
which application is associated with that macro. The PerfectScript utility then
checks the registry for the path to the EXE file for the application. If that path
is not in the registry, you are prompted to specify the location of that EXE file.

You can also play macros from directly within WordPerfect, Quattro Pro, or
Presentations. For information, please see the Help file for the application.

You can also play template macros and QuickMacros from directly within
WordPerfect. For information, please see the Help file for WordPerfect.

This section contains the following procedures:
• To play a macro

You can also

Cancel the compilation of a macro In the Compile progress dialog box, do one
of the following:

•Click the Cancel button.
•Press Enter.

100 Creating macros

Troubleshooting macro run-time errors

A run-time error is a problem that occurs while a macro is playing.

When a run-time error is encountered, an error message displays the location of the
problem in the macro code. For this reason, the best way to troubleshoot a run-time
error is to consult its error message.

To play a macro
1 In the PerfectScript utility, click File Play.

2 Select the macro that you want to play, and then click Play.

Every time a macro is played, it is recompiled and then saved. If you do not
want to save over a macro when you play it, you can create a new version of it
by specifying a different path or filename in the Play macro dialog box.

In Windows, you can access the commands for playing, pausing, and stopping
a macro by right-clicking that macro.

You can specify the settings to use when playing macros. For information, see
“To specify settings for playing macros” on page 86.

Making macros user-friendly

From directly within WordPerfect, Quattro Pro, or Presentations, you can assign a
macro to a keystroke, menu, toolbar, or property bar. For information, see the Help file
for the application.

If you want to make a macro even more user-friendly, you can create a dialog box for it
by using the Dialog Editor feature of the PerfectScript utility. For information, see
“Creating dialog boxes for macros” on page 101.

You can also

Pause (or resume) a macro In the PerfectScript utility, click File
Pause.

Stop a macro In the PerfectScript utility, click File
Stop.

Creating dialog boxes for macros 101

Creating dialog boxes for macros
You can create dialog boxes for your macros if you want to provide an interface
between the application and the user.

This section contains the following topics:
• Understanding dialog boxes
• Setting up dialog boxes for macros
• Setting up controls for dialog boxes
• Setting up callbacks for dialog boxes
• Testing dialog boxes
• Displaying dialog boxes

Understanding dialog boxes

Dialog boxes provide an interface between the application and the user.

Dialog boxes come in two types:
• modal — A modal dialog box locks the application until the user acts on that dialog

box and closes it. The File | Open dialog box in WordPerfect is an example of a
modal dialog box because focus remains on this dialog box until it is released.

• modeless — A modeless dialog box does not lock the application, so the user can
move between the dialog box and the application as necessary. The Find and
Replace dialog box in WordPerfect is an example of a modeless dialog box because
you can continue working in a document while this dialog box is displayed.

Of the two dialog-box types, modal is the more common.

To use a modeless dialog box in your macro, you must enable the Display
property and disable the InhibitInput property.

As a macro programmer, you can take advantage of dialog boxes in PerfectScript if you
want to obtain information or data from a user. Dialog boxes that are created in a macro
can be used to ask questions or otherwise gather data — data that, in turn, can be used
to determine the flow and control of the macro.

102 Creating dialog boxes for macros

You can create a dialog box in one of two ways:
• by writing PerfectScript code — The PerfectScript language provides

programming commands for manually coding dialog boxes.
• by using the PerfectScript Dialog Editor — The PerfectScript Dialog Editor

provides a graphical development environment for designing dialog boxes quickly
and easily.

The Dialog Editor does not let you edit macros, only to define dialog boxes for
them.

The Dialog Editor works only with macros that are in WordPerfect format. For
this reason, you can open the Dialog Editor either from within the PerfectScript
utility or from within WordPerfect, as explained in “To display the Dialog
Editor” on page 84.

The first step in creating a dialog box is explained in “Setting up dialog boxes for
macros” on page 102.

The second step in creating a dialog box is explained in “Setting up controls for dialog
boxes” on page 108.

The third step in creating a dialog box is explained in “Setting up callbacks for dialog
boxes” on page 124.

The fourth step in creating a dialog box is explained in “Testing dialog boxes” on
page 131.

The fifth and final step in creating a dialog box is explained in “Displaying dialog boxes”
on page 131.

Setting up dialog boxes for macros

You can set up a dialog box for a macro, either by writing PerfectScript code or by
using the PerfectScript Dialog Editor.

Setting up dialog boxes by using PerfectScript code

You can use the PerfectScript programming command DialogDefine to set up a dialog
box.

The following code provides an example of a dialog box that is set up by using the
DialogDefine command.

Creating dialog boxes for macros 103

DialogDefine(Dialog: "MainDialog"; Left: 50; Top: 50; Width: 150; _

Height: 100; Style: OK! | Percent!; Caption: "Example Dialog Box")

Remember that because parameter names are optional, the following command is
equivalent to the preceding one:

DialogDefine (1000; 50; 50; 200; 125; OK! | Percent!; _

"Example Dialog Box")

You can use + or | in parameters where multiple values can be specified. In the
preceding example, the syntax OK! | Percent! applies both the OK!
enumeration and the Percent! enumeration to the Style parameter.

The following table describes the purpose of each parameter in the preceding example.

Parameter (or parameters) Description

Dialog Specifies the name of the dialog box, which is
used to refer to the dialog box throughout
the macro code. This name can consist of
letters or numbers (or both), and it must be
unique.
In the preceding example, the name
MainDialog is assigned to the dialog box.

Left and Top Work together to specify the position of the
top-left corner of the dialog box. Dialog
boxes are positioned in dialog-box units,
whereby a vertical unit equals 1/8 the font
height and a horizontal unit equals 1/4 the
font width.
In the preceding example, the Left and
Top parameters are assigned a value of 50
and are used with the Percent!
enumeration of the Style parameter. As a
result, the dialog box is centered on the
screen.

104 Creating dialog boxes for macros

For more information about the DialogDefine command, please see the
DialogDefine topic in the PerfectScript Command Reference section of the
PerfectScript Help file (psh.chm).

Setting up dialog boxes by using the Dialog Editor

You can use the Dialog Editor to add a dialog box to a macro. For information, see “To
add a dialog box to a macro by using the Dialog Editor” on page 105.

You can also use the Dialog Editor to set the properties for a dialog box. You can use
properties to specify the location and size of a dialog box, as well as its caption, Help
file, Help key, type (modal or modeless), frame type, and attributes. For more
information, see “To set the properties for a dialog box by using the Dialog Editor” on
page 107.

Width and Height Work together to determine the size of the
dialog box. Dialog boxes are sized in dialog-
box units, whereby a vertical unit equals 1/8
the font height and a horizontal unit equals
1/4 the font width.
In the preceding example, the Width and
Height parameters are assigned values of
150 and 100 (respectively).

Style Specifies one or more dialog-box styles.
These styles are used to determine the
appearance and function of the dialog box.
In the preceding example, the Style
parameter is assigned the enumerations OK!
and Percent!. The OK! enumeration adds
an OK button to the dialog box. The
Percent! enumeration sets the Left and
Top parameters to use the percentage of the
screen width or height minus the width or
height of the dialog box.

Caption Specifies the text to be displayed in the
caption (title) bar
In the preceding example, the text
"Example Dialog Box" is assigned to
the caption bar.

Parameter (or parameters) Description

Creating dialog boxes for macros 105

You can use the Dialog Editor to choose the typeface and point size for the text in a
dialog box. Changes in font size and style affect the size of the dialog box. For more
information, see “To set the font for a dialog box by using the Dialog Editor” on
page 107.

Finally, you can use the Dialog Editor to save a dialog box in the current macro. For
information, see “To save a dialog box in the current macro by using the Dialog Editor”
on page 108.

To add a dialog box to a macro by using the Dialog Editor
1 In the PerfectScript utility, click Tools Dialog Editor.

The Edit Macro Dialogs dialog box appears.

2 Select the desired macro, and then click OK.

The Dialog Editor for that macro appears.

3 Click File New, and then type a name for the new dialog box.

4 Set the properties for the dialog box. For information, see “To set the properties for
a dialog box by using the Dialog Editor” on page 107.

5 Select the dialog box, and then click File Open.

The dialog box is opened for editing in the Dialog Editor.

6 Do any of the following:
• Set the font for the dialog box. For information, see “To set the font for a dialog

box by using the Dialog Editor” on page 107.
• Add controls to the dialog box. For information, see “Setting up controls for

dialog boxes” on page 108.

7 Click File Save, and then click File Close. For more information, see “To save a
dialog box in the current macro by using the Dialog Editor” on page 108.

8 Test the dialog box. For information, see “Testing dialog boxes” on page 131.

9 Write macro code for opening and closing the dialog box. For information, see
“Displaying dialog boxes” on page 131.

Dialog-box names are case-sensitive. Be sure to correctly reference them in
your macros.

When you save a dialog box, its size and position are recorded. When you open
a saved dialog box, its size and position are loaded, applied, and maintained
during the current session of PerfectScript.

106 Creating dialog boxes for macros

You can also

Copy a dialog box by using the Dialog
Editor

In the PerfectScript utility, click Tools
Dialog Editor. Select the macro that
contains the dialog box, and then click OK.
Click Edit Copy. Open the macro file to
which you want to copy the dialog box, and
then click Edit Paste. Rename the pasted
dialog box, if desired.

Edit a dialog box by using the Dialog Editor In the PerfectScript utility, click Tools
Dialog Editor. Select the macro that
contains the dialog box, and then click OK.
Double-click the dialog box that you want
to edit, and then edit the dialog box as
desired. Click Edit Save to save the edited
dialog box in the current macro file.

Rename a dialog box by using the Dialog
Editor

In the PerfectScript utility, click Tools
Dialog Editor. Select the macro that
contains the dialog box, and then click OK.
Select the dialog box, and then click File
Rename. Type a new name for the dialog
box.
NOTES:

•Dialog-box names are case-sensitive. Be
sure to correctly reference them in your
macros.

•Renaming a dialog box gives it a new
name in the current macro file, but it does
not change the name that is displayed on
the caption bar.

•Remember to update the macro code with
new name of the dialog box.

Creating dialog boxes for macros 107

To set the properties for a dialog box by using the Dialog Editor
1 In the PerfectScript utility, click Tools Dialog Editor.

2 Select the macro that contains the dialog box, and then click OK.

3 Select the dialog box, and then click File Properties.

4 In the Dialog Properties dialog box that appears, specify any of the following
properties for the dialog box:
• location and size
• caption
• Help file
• Help key
• dialog-box type
• frame type
• attributes

You can choose between two dialog-box types: modal and modeless. A modal
dialog box locks the macro until the user acts on that dialog box and closes it.
A modeless dialog box does not lock the macro, so the user can move between
the dialog box and the macro as necessary.

To set the font for a dialog box by using the Dialog Editor
1 In the PerfectScript utility, click Tools Dialog Editor.

2 Select the macro that contains the dialog box, and then click OK.

3 Select the dialog box, and then click File Open.

4 Click Dialog Font.

Delete a dialog box by using the Dialog
Editor

In the PerfectScript utility, click Tools
Dialog Editor. Select the macro that
contains the dialog box, and then click OK.
Select the dialog box, and then click File
Delete. Click Yes to confirm that you want
to delete the dialog box.
NOTE: Remember to remove all references
to the deleted dialog box from the macro
code.

You can also

108 Creating dialog boxes for macros

5 In the Dialog Font dialog box that appears, specify any of the following font
attributes:
• style
• size

The font size that you choose affects the size of the dialog box — the larger the
font, the larger the dialog box.

The caption font remains constant for all dialog boxes.

To save a dialog box in the current macro by using the Dialog Editor
1 With the dialog box open for editing in the Dialog Editor, click File Save to save

the dialog box in the current macro file.

2 Click File Close to stop editing the dialog box and close its Dialog Editor.

Setting up controls for dialog boxes

You can set up controls for a dialog box, either by writing PerfectScript code or by
using the PerfectScript Dialog Editor. Controls are input or output windows where the
user interacts with a dialog box and its parent application. You can use any of the
following control types in your dialog boxes:
• bitmap — see “Using bitmaps in dialog boxes” on page 110
• button — see “Using buttons in dialog boxes” on page 111
• check box — see “Using check boxes in dialog boxes” on page 111
• color wheel — see “Using color wheels in dialog boxes” on page 112
• combo box — see “Using combo boxes in dialog boxes” on page 112
• counter — see “Using counters in dialog boxes” on page 113
• custom control — see “Using custom controls in dialog boxes” on page 113
• date control — see “Using date controls in dialog boxes” on page 113
• edit box — see “Using edit boxes in dialog boxes” on page 114
• filename box — see “Using filename boxes in dialog boxes” on page 115
• frame — see “Using frames in dialog boxes” on page 115
• group box — see “Using group boxes in dialog boxes” on page 115
• line — see “Using lines in dialog boxes” on page 116
• list control — see “Using list controls in dialog boxes” on page 116
• progress indicator — see “Using progress indicators in dialog boxes” on page 117

Creating dialog boxes for macros 109

• scroll bar — see “Using scroll bars in dialog boxes” on page 117
• static text — see “Using static text in dialog boxes” on page 118
• viewer — see “Using viewers in dialog boxes” on page 118

You can add controls to a dialog box by writing macro code. The PerfectScript language
provides a programming command for creating each control type — simply insert these
commands after the DialogDefine command (see “Setting up dialog boxes by using
PerfectScript code” on page 102) for the dialog box.

In the following example, the PerfectScript programming command DialogAddText
is used to add a static-text control (named Control1) to the dialog box named
MainDialog by using the specified parameters:

DialogAddText (Dialog: "MainDialog"; Control: "Control1"; _

Left: 10; Top: 10; Width: 50; Height: 9; Style: Left!; _

Text: "Edit control:")

In the following example, the PerfectScript programming command
DialogAddEditBox is used to add an edit-box control (named Control2) to the dialog
box named MainDialog by using the specified parameters:

DialogAddEditBox (Dialog: "MainDialog"; Control: "Control2"; _

Left: 10; Top: 25; Width: 125; Height: 25; Style: Left! | _

VScroll! | Multiline!; vReturn; 1000)

For information about the PerfectScript programming commands for creating
dialog-box controls, please see the PerfectScript Command Reference section
of the PerfectScript Help file (psh.chm).

Alternatively, you can use the Dialog Editor to set up controls in any of the following
ways:
• by adding controls to a dialog box. For information, see “To add a control to a

dialog box by using the Dialog Editor” on page 119.
• by setting the properties for the controls in a dialog box. The properties that are

available to a control depend on the control type. For information, see “To set the
properties for a control by using the Dialog Editor” on page 120.

• by positioning the controls in a dialog box, either at specified locations or in
relation to each other. For information, see “To position one or more controls by
using the Dialog Editor” on page 122.

• by assigning behaviors to the controls in a dialog box. For information, see “To
assign behaviors to one or more controls by using the Dialog Editor” on page 124.

110 Creating dialog boxes for macros

Some controls require the use of a hot spot — an invisible control that closes
the dialog box when the user clicks the defined area. (The response for a hot
spot can be redefined with a callback function.) The PerfectScript command for
creating a hot spot is DialogAddHotSpot. For information about this
command, please see the DialogAddHotSpot topic in the PerfectScript
Command Reference section of the PerfectScript Help file (psh.chm).

The PerfectScript language lets you create one type of control that is not
supported by the Dialog Editor: an icon control, which is represented by the
programming command DialogAddIcon. An icon control does not accept
input, unless it is used in a callback function with the PerfectScript command
DialogAddHotSpot. For information about the DialogAddIcon and
DialogAddHotSpot commands, please see the DialogAddIcon and
DialogAddHotSpot topics in the PerfectScript Command Reference section of
the PerfectScript Help file (psh.chm).

Variables that are associated with controls work the same way with dialog
boxes that are created by using PerfectScript code as they do with dialog boxes
that are created by using the Dialog Editor. If a variable exists, its value is set
into the controls when the dialog box is opened, and the value in the controls
is set into the variables when the dialog box is closed. For more information
about using PerfectScript code to open and close dialog boxes, see “Displaying
dialog boxes” on page 131.

Using bitmaps in dialog boxes

You can display a bitmap as a control. By default, the bitmap appears without a border
on the background of the dialog box; however, for visual clarity, you can give the bitmap
an outline. A bitmap control looks like this:

The PerfectScript command for creating a bitmap control is
DialogAddBitmap. For information about this command, please see the
DialogAddBitmap topic in the PerfectScript Command Reference section of
the PerfectScript Help file (psh.chm).

A bitmap control does not accept input, unless it is used in a callback function
with the PerfectScript command DialogAddHotSpot. For information about
this command, please see the DialogAddHotSpot topic in the PerfectScript
Command Reference section of the PerfectScript Help file (psh.chm).

Creating dialog boxes for macros 111

Using buttons in dialog boxes

You can add three kinds of buttons to a dialog box: pop-up buttons, push buttons, and
radio buttons.

A pop-up button displays a list of options when clicked. The button itself shows the
selected option.

A pop-up button looks like this when it is closed:

A pop-up button looks like this when it is clicked:

A push button activates a specific action — such as OK, Cancel, or Help — when
clicked. A push button looks like this:

Radio buttons are used in groups to represent options that are mutually exclusive.
Enabling one radio button disables another. A radio button looks like this:

The PerfectScript command for creating a push-button control is
DialogAddPushButton, and the command for creating a radio-button
control is DialogAddRadioButton. For information about these commands,
please see the DialogAddPushButton and DialogAddRadioButton topics in
the PerfectScript Command Reference section of the PerfectScript Help file
(psh.chm).

A radio-button control uses a callback function to activate user-defined
responses.

Using check boxes in dialog boxes

Check boxes are used in groups to represent options that are compatible. Clicking an
empty check box enables that option, while clicking a marked check box disables that
option. A check box looks like this:

112 Creating dialog boxes for macros

The PerfectScript command for creating a check-box control is
DialogAddCheckBox. For information about this command, please see the
DialogAddCheckBox topic in the PerfectScript Command Reference section of
the PerfectScript Help file (psh.chm).

A check-box control uses a callback function to activate user-defined responses.

You can define a check box as “Three State” if you want it to provide a state of
unavailability (that is, a state in which the box is checked and grayed) in
addition to an enabled state and a disabled state.

Using color wheels in dialog boxes

A color wheel lets the user select a color based on values of hue, lightness, and
saturation. A color wheel looks like this:

The PerfectScript command for creating a color-wheel control is
DialogAddColorWheel. For information about this command, please see the
DialogAddColorWheel topic in the PerfectScript Command Reference section
of the PerfectScript Help file (psh.chm).

In a color-wheel control, you can use the arrow keys to move the color
selection. Hold down Ctrl while using the arrow keys to change the value of
the color-saturation bar.

Using combo boxes in dialog boxes

A combo box combines an edit box (see “Using edit boxes in dialog boxes” on page 114)
with a list box (see “Using list controls in dialog boxes” on page 116). You can enter text
in the edit box, or you can double-click a list item to insert it.

A combo box looks like this when it is closed:

A combo box looks like this when it is clicked:

Creating dialog boxes for macros 113

The PerfectScript command for creating a combo-box control is
DialogAddComboBox. For information about this command, please see the
DialogAddComboBox topic in the PerfectScript Command Reference section
of the PerfectScript Help file (psh.chm).

Using counters in dialog boxes

A counter lets the user enter numeric data in an edit box (see “Using edit boxes in dialog
boxes” on page 114), either by typing in the edit box or by clicking the built-in
incrementor/decrementor control. A counter looks like this:

The PerfectScript command for creating a counter control is
DialogAddCounter. For information about this command, please see the
DialogAddCounter topic in the PerfectScript Command Reference section of
the PerfectScript Help file (psh.chm).

Using custom controls in dialog boxes

A custom control lets you, the macro programmer, create a control by specifying its
settings for text, class, and attributes. A custom control looks like this:

The PerfectScript command for creating a custom control is
DialogAddControl. For information about this command, please see the
DialogAddControl topic in the PerfectScript Command Reference section of
the PerfectScript Help file (psh.chm).

Using date controls in dialog boxes

A date control displays an edit box (see “Using edit boxes in dialog boxes” on page 114)
and a calendar icon. The user can enter a date by typing in the edit box or by clicking
the calendar icon and choosing a date from the calendar that appears. A date control
looks like this when the calendar icon is clicked:

114 Creating dialog boxes for macros

The PerfectScript command for creating a date control is DialogAddDate. For
information about this command, please see the DialogAddDate topic in the
PerfectScript Command Reference section of the PerfectScript Help file
(psh.chm).

In a date control, you can use the following keyboard shortcuts to change the
date more quickly:

• holding Ctrl while clicking an arrow icon — increases the tens column
• holding Alt while clicking an arrow icon — increases the hundreds

column
• pressing Alt + arrow key — changes the month by one month
• pressing Page Up or Page Down — changes the year
• pressing Alt — changes the year by one year
• pressing Alt + Ctrl — changes the year by 10 years
• pressing Alt + Shift — changes the year by 100 years

Using edit boxes in dialog boxes

An edit box lets the user type text, or it lets the macro type text on the user’s behalf. An
edit box can have one or more lines. An edit box looks like this:

The PerfectScript command for creating an edit-box control is
DialogAddEditBox. For information about this command, please see the
DialogAddEditBox topic in the PerfectScript Command Reference section of
the PerfectScript Help file (psh.chm).

Creating dialog boxes for macros 115

Using filename boxes in dialog boxes

A filename box displays an edit box (see “Using edit boxes in dialog boxes” on page 114)
and a folder button. The user can specify a file either by typing the filename (and its
path) or by clicking the folder button to display a Browse dialog box. A filename box
looks like this:

The PerfectScript command for creating a filename-box control is
DialogAddFileNameBox. For information about this command, please see the
DialogAddFileNameBox topic in the PerfectScript Command Reference
section of the PerfectScript Help file (psh.chm).

Using frames in dialog boxes

A frame can be used to visually group the items in a dialog box, or to act as a design
element. A frame looks like this:

The PerfectScript command for creating a frame control is DialogAddFrame.
For information about this command, please see the DialogAddFrame topic in
the PerfectScript Command Reference section of the PerfectScript Help file
(psh.chm).

A frame control does not accept input.

Using group boxes in dialog boxes

A group box visually groups controls by using a titled frame. A group box looks like
this:

116 Creating dialog boxes for macros

The PerfectScript command for creating a group-box control is
DialogAddGroupBox. For information about this command, please see the
DialogAddGroupBox topic in the PerfectScript Command Reference section of
the PerfectScript Help file (psh.chm).

A group-box control does not accept input.

A group box groups controls visually, but not functionally. To make the
controls in a group box function as a group, you can use the Control Order
and Control Groups features in the Dialog Editor, as explained in “To assign
behaviors to one or more controls by using the Dialog Editor” on page 124.

Using lines in dialog boxes

You can use a horizontal line or a vertical line to visually separate the items in a dialog
box.

A horizontal line looks like this:

A vertical line looks like this:

The PerfectScript command for creating a horizontal-line control is
DialogAddHLine, while the command for creating a vertical-line control is
DialogAddVLine. For information about these commands, please see the
DialogAddHLine and DialogAddVLine topics in the PerfectScript Command
Reference section of the PerfectScript Help file (psh.chm).

A line control does not accept input.

Using list controls in dialog boxes

A list control displays a series of options (or “list items”) from which to choose. A list
control takes one of the following forms:
• a pop-up list — presents the list items in a pop-up window
• a drop-down list — presents the list items in a window that extends outward from

the list control

Creating dialog boxes for macros 117

• a list box — presents the list items in a window that acts much like a viewer (see
“Using viewers in dialog boxes” on page 118)

A list box looks like this:

The PerfectScript command for creating a list-box control is
DialogAddListBox, while the command for creating a list item is
DialogAddListItem. For information about these commands, please see the
DialogAddListBox and DialogAddListItem topics in the PerfectScript
Command Reference section of the PerfectScript Help file (psh.chm).

Using progress indicators in dialog boxes

A progress indicator displays the progress of a process as it runs. A progress indicator
looks like this:

The PerfectScript command for creating a progress-indicator control is
DialogAddProgress. For information about this command, please see the
DialogAddProgress topic in the PerfectScript Command Reference section of
the PerfectScript Help file (psh.chm).

Using scroll bars in dialog boxes

A scroll bar lets the user scroll the viewable area. A horizontal scroll bar moves the
viewable area left and right, while a vertical scroll bar moves the viewable area up and
down.

A horizontal scroll bar looks like this:

A vertical scroll bar looks like this:

118 Creating dialog boxes for macros

The PerfectScript command for creating a scroll-bar control is
DialogAddScrollBar. For information about this command, please see the
DialogAddScrollBar topic in the PerfectScript Command Reference section of
the PerfectScript Help file (psh.chm).

A scroll-bar control can use a callback function to activate user-defined
responses.

Using static text in dialog boxes

Static text provides the user with one or more lines of read-only information, such as
instructions. Static text looks like this:

The PerfectScript command for creating a static-text control is
DialogAddText. For information about this command, please see the
DialogAddText topic in the PerfectScript Command Reference section of the
PerfectScript Help file (psh.chm).

A static-text control does not accept input.

You can copy static text from most dialog boxes that are part of a macro
system. However, you cannot copy static text from user-defined dialog boxes.

Using viewers in dialog boxes

A viewer displays a read-only, scrollable text file. A viewer looks like this:

The PerfectScript command for creating a viewer control is
DialogAddViewer. For information about this command, please see the
DialogAddViewer topic in the PerfectScript Command Reference section of the
PerfectScript Help file (psh.chm).

Creating dialog boxes for macros 119

To add a control to a dialog box by using the Dialog Editor
1 In the PerfectScript utility, click Tools Dialog Editor.

2 Select the macro that contains the dialog box, and then click OK.

The Dialog Editor for that macro appears.

3 Select the dialog box, and then click File Open.

The dialog box is opened for editing in the Dialog Editor.

4 Add the desired type of control by clicking its corresponding command on the
Control menu (or by clicking its corresponding toolbar icon):
• bitmap — Control Bitmap
• button, push — Control Buttons Push
• button, radio — Control Buttons Radio
• check box — Control Check Box
• color wheel — Control Color Wheel
• combo box — Control Combo Box
• counter — Control Counter
• custom control — Control Custom
• date control — Control Date
• edit box — Control Edit Box
• filename box — Control Filename Box
• frame — Control Frame
• group box — Control Group Box
• line, horizontal — Control Lines Horizontal
• line, vertical — Control Lines Vertical
• list control — Control List Box
• progress indicator — Control Progress Indicator
• scroll bar, horizontal — Control Scroll Bars Horizontal
• scroll bar, vertical — Control Scroll Bars Vertical
• static text — Control Static Text
• viewer — Control Viewer

5 Position the pointer where you want the top-left corner of the control to appear,
and then click.

You can also

Select a control in the Dialog Editor Click the control.

120 Creating dialog boxes for macros

To set the properties for a control by using the Dialog Editor
1 With the dialog box open for editing in the Dialog Editor, display the properties for

the control by doing one of the following:
• Double-click the control.
• Right-click the control, and then click Properties.

The Properties dialog box for the control appears.

2 Set the properties for the control. The properties that are available to a control
depend on the control type, as follows:

Select multiple controls in the Dialog Editor Hold down Shift, and click the controls. The
last control that you click is called the
“anchor control,” and it appears with black
squares around it

Move a control in the Dialog Editor Drag the control.
TIP: For information about precisely
positioning a control, see “To position one or
more controls by using the Dialog Editor”
on page 122.

Resize a control in the Dialog Editor Drag one of the handles for the control.

Copy a control in the Dialog Editor Right-click the control, and then click Copy.
Drag the copy to position it.
NOTE: The copy has all the properties of
the original control, but you can change
them if desired.
TIP: You can also copy a control by holding
down Ctrl while selecting it.

Edit a control in the Dialog Editor Double-click the control, and then set its
properties. For information, see “To set the
properties for a control by using the Dialog
Editor” on page 120.

Delete a control in the Dialog Editor Do one of the following:
•Right-click the control, and then click

Delete.
•Select the control, and then press Delete.

You can also

Creating dialog boxes for macros 121

• bitmap — location and size; named region; variable; filename; attributes
• button, push — location and size; named region; text; type
• button, radio — location and size; named region; variable; text; type; text

placement; initial state
• check box — location and size; named region; variable; text; type; text

placement; initial state
• color wheel — location and size; named region; variable; initial color values
• combo box — location and size; named region; variable; style; current item list;

type; attributes
• counter — location and size; named region; variable; values; attributes
• custom control — location and size; named region; text; class; styles
• date control — location and size; named region; variable; initial date; attributes
• edit box — location and size; named region; variable; style; text; type;

justification; capitalization; attributes; automatic scroll; scroll bar
• filename box — location and size; named region; variable; folder; template; type
• frame — location and size; named region; type; color
• group box — location and size; named region; text
• line, horizontal — location and size; named region
• line, vertical — location and size; named region
• list control — location and size; named region; variable; style; current item list;

attributes
• progress indicator — location and size; named region
• scroll bar, horizontal — location and size; named region; variable; values;

alignment and sizing
• scroll bar, vertical — location and size; named region; variable; values; alignment

and sizing
• static text — location and size; named region; variable; style; text; justification;

prefix; type
• viewer — location and size; named region; variable; filename

A control name is specified by the Named region property. Control names are
case-sensitive, so be sure to correctly reference them in your macros.

You can use the Properties dialog box to determine a precise location and a
precise size for a control. However, you can roughly position a control by
dragging it around the dialog box, and you can roughly size it by dragging one
of its handles. For more information about positioning controls, see “To
position one or more controls by using the Dialog Editor” on page 122.

122 Creating dialog boxes for macros

To position one or more controls by using the Dialog Editor
• With the dialog box open for editing in the Dialog Editor, position one or more

controls by using any of the methods in the following table.

You can also

Create or edit the item list for a combo box
or a list control

In the Properties dialog box for the control,
click Create/Edit List, and then do any of
the following:

•add an item — Type the name of the item
in the List item box, and then click Add.
The item is added to the list, in the List
box.

•select an item in the List box— Click the
item.

•edit an item — Select the item, type a new
value in the List item box, and then click
Replace.

•move an item up the list — Select the
item, and then click Move Up until the
item reaches the desired position.

•move an item down the list — Select the
item, and then click Move Down until
the item reaches the desired position.

•set the default list item — Select the item,
and then click Set Initial. The item
appears in the Initial line.

•delete an item — Select the item, and then
click Delete.

•sort the list alphabetically — Enable the
Sort List check box. NOTE: Enabling this
check box prevents you from manually
rearranging the list items.

To Do the following

Position a single control roughly Drag the control to the desired position in
the dialog box.
TIP: You can roughly size the control by
dragging one of its handles.

Creating dialog boxes for macros 123

Position a single control precisely Double-click the control to open its
Properties dialog box. In the Location and
size area, determine the position of the top-
left corner of the control by specifying values
in the Left and Top boxes.
TIP: You can precisely size the control by
specifying values in the Width and Height
boxes.

Position multiple controls roughly Select the controls, and then drag them to
the desired position in the dialog box.

Position multiple controls in relation to each
other

Select the controls, and then position them
in any of the following ways:

•aligned with one side of the anchor control
— Click Align, and then click Left,
Right, Top, or Bottom.

•centered in relation to the anchor control
— click Align Center, and then click
Vertical or Horizontal.

•spaced in relation to each other — click
Align Space Evenly, and then click
Vertical or Horizontal.

TIP: You can make the selected controls the
same size as the anchor control by clicking
Align Make Same Size and then clicking
Height, Width, or Both.

You can also

Use a grid to position controls Display the grid by clicking View Show
Grid, and click View Snap to Grid to
force controls to align with the points on
that grid.
TIP: If you want to specify the amount of
space between grid points on each axis, click
View Grid Options.

To Do the following

124 Creating dialog boxes for macros

To assign behaviors to one or more controls by using the Dialog Editor
• With the dialog box open for editing in the Dialog Editor, assign behaviors to one

or more controls by using any of the methods in the following table.

Setting up callbacks for dialog boxes

As previously discussed (see “Understanding callbacks” on page 74), you can create
callbacks for dialog boxes. Using a dialog-box callback lets the macro gather

To Do the following

Specify the control that has focus when the
dialog box opens

Click Dialog Initial Focus. In your dialog
box, click the desired control. Click OK in
the Initial Focus dialog box to apply your
changes.

Define related controls as a group Click Dialog Control Groups. In your
dialog box, click the desired controls. Click
OK in the Control Groups dialog box to
apply your changes.
NOTE: To create a functioning group of
controls, you must set their order. You must
also draw a group box around them (see
“Using group boxes in dialog boxes” on
page 115).

Specify the controls that you want the user
to be able to tab through

Click Dialog Tab Stops. In your dialog
box, click the desired controls. Click OK in
the Tab Stops dialog box to apply your
changes, and then click Dialog Control
Order. In your dialog box, click the controls
in the desired order. Click OK in the
Control Order dialog box to apply your
changes.

Specify the default button for a control,
which is activated when the user presses
Enter on that control

Click Dialog Default Button. In your
dialog box, click the desired control, and
then click the button that you want as the
default for that control. Click OK in the
Default Button dialog box to apply your
changes.

Creating dialog boxes for macros 125

information from an active dialog box, rather than waiting until the dialog box is
closed to gather that information. For example, you can use a dialog-box callback to
return the value of a control without having to close the dialog box, or to refresh the
contents of a control without having to destroy and reopen the dialog box.

Creating dialog-box callbacks

There are two requirements for creating a dialog-box callback.

The first requirement for creating a callback is to specify the name of the label to which
to send callback messages. This label name is specified in the third parameter of the
DialogShow command. If you need to watch for certain events, you must create
statements for those events inside this label. At the end of the routine, a mandatory
Return command ensures that the callback loop functions properly.

The name in the label parameter of the DialogShow command may refer to
either a label or a procedure. This parameter creates an implicit array of eleven
elements, which has the same name as that label or procedure. The messages
that are sent to the callback are accessed through these array elements.

The actual Label...Return structure can be placed anywhere in your macro.
It is better, however, to create a section in your macro just for labels, functions,
and procedures.

The second requirement for creating a callback is to create a callback-message loop,
which is necessary for trapping dialog-box events. The loop holds control of the macro
until the loop is terminated. You can create a callback-message loop either by using the
CallBackWait command or by using a While loop.

The following code segment shows a skeleton callback function:

DialogShow(1000; "WordPerfect"; Msgs)

CallbackWait

// This command initializes the loop.

Quit

Label(Msgs)

// This label identifies where dialog box events are watched.

... statements ...

Return

126 Creating dialog boxes for macros

When a dialog box is displayed and active, messages from events in the dialog
box are sent to the callback label. You can activate a callback loop in several
ways, such as the following:

• pressing Alt + F4
• double-clicking the system-menu box
• clicking a button, radio-button, check-box, hot-spot, or scroll-bar

control

Understanding callback loops

The following three examples illustrate different methods of creating callback loops.

These three examples watch for two events, or messages: the system closing, or the user
clicking OK. (Both messages are handled identically in these examples, but in a real-
world example, the actions could be quite different.) In these examples, either the dialog
box is destroyed and the CallBackResume is sent, or the Loop variable is set to False.
In either case, the callback loop ends, and the macro continues to the command that is
directly after the CallBackWait command or the While loop. (In these examples, that
next command is Quit, so the macro is ended.

The following example uses the CallBackWait and CallBackResume commands to
create a callback loop. The CallBackWait command creates the loop for the callback.
While this loop is active, the dialog box waits for an event to trigger the callback. Most
controls activate the callback, or send messages through the loop to the callback label.
Any messages are handled in the Label section of the code.

DialogShow ("Dialog1"; "WordPerfect"; Msg)

CallbackWait()

Quit

Label (Msg)

If (Msg[5] = 274)

DialogDestroy ("Dialog1")

CallbackResume()

Return

Endif

If (Msg[3] = "OKBttn")

DialogDestroy ("Dialog1")

Creating dialog boxes for macros 127

CallbackResume()

Return

Endif

Return

The following example uses a While loop to create a callback loop. This method is not
as efficient or easy as using the CallBackWait and CallBackResume commands.

DialogShow ("Dialog1"; "WordPerfect"; Msg)

Loop = TRUE

While (Loop)

EndWhile

Quit

Label (Msg)

If (Msg[5] = 274)

DialogDestroy ("Dialog1")

Loop = FALSE

Return

Endif

If (Msg[3] = "OKBttn")

DialogDestroy ("Dialog1")

Loop = FALSE

Return

Endif

Return

The following example uses a procedure to create a callback loop.

DialogShow("Dialog1"; "WordPerfect"; Msg; "OKBttn")

CallBackWait()

QUIT

Procedure Msg()

Switch (Msg[5])

CaseOf 274:

128 Creating dialog boxes for macros

// "Close" was selected.

DialogDestroy("Dialog1")

CallBackResume

CaseOf 273:

// The macro cannot get to callback array element 3 unless

// array element 5 is 273.

Switch (Msg[3])

// The user chooses a control on the dialog box.

CaseOf "OKBttn":

// "OK" was watched for.

DialogDestroy("Dialog1")

CallBackResume()

// ...Add additional CaseOf statements for additional controls.

EndSwitch

EndSwitch

Return

EndProcedure

Using region commands to specify and return dialog-box values

A “region” is the name of a dialog-box control. A region name is generally made up of
the name of the dialog box and of the control in question. Region names are case-
sensitive.

Consider the following lines of code:

DialogDefine ("MainDialog"; 50; 50; 200; 50; OK! | Cancel! _

| Percent!; "My Main Dialog")

DialogAddText ("MainDialog"; "TextControl1"; 10; 10; 180; 9; _

Left!; "Make a selection:")

DialogShow ("MainDialog"; "WordPerfect")

In the preceding code, the dialog box called MainDialog has been defined with only
one control — a text control. Both the dialog box and the text control have a region
name. The region name for the dialog box is "MainDialog", and the region name for
the control is "MainDialog.TextControl1".

Creating dialog boxes for macros 129

Note that the region name of the control (MainDialog.TextControl1) contains a
period (.). The period is used to narrow the region. Whenever you refer to a region
(that is, a dialog-box name and control name) in a dialog box, the period is used. The
only time the period is not used is when it is only the dialog box that is being referred
to, as in the following example:

RegionSetWindowText ("MainDialog"; "A New Dialog Title")

In the preceding example, the title text of the dialog box is changed to "A New Dialog
Title". We do not need a narrowed region.

The need for narrowed regions becomes apparent when a macro contains multiple
dialog boxes. Assume that a macro had two dialog boxes, Dialog1 and Dialog2, and
that each dialog box had a text control called "Text1". If we needed to change the text
for that control, we would use the RegionSetWindowText command. Consider the
following region command:

RegionSetWindowText ("Text1"; "New Control Text")

In the preceding region command, it is unclear which of the two controls is being
referred to. (In fact, as written, the preceding code would generate a run-time error
because the dialog box is not specified.) By prefacing the control name by the dialog box
name, we can narrow the region to specify which dialog box and which control needs to
be changed, as in the following corrected code:

RegionSetWindowText ("Dialog1.Text1"; "New Control Text")

The preceding region command would not generate an error. In this case, the text of
control "Text1" would be changed in "Dialog1".

When naming dialog boxes and dialog box controls, use names that are
descriptive. Descriptive names make it easier to remember what a control is
used for, and they make your macro code more understandable. This usefulness
of this guideline becomes especially clear if you want to expand your macro in
the future.

In a callback dialog box, region commands can be used to update, change, query, and
set values while that dialog box is active. The primary location to use region commands
is in the callback loop. For example, if a dialog box contains a list box, and you want to
trap the double-click event, you could write the following section of code:

DialogDefine ("MainDialog"; 50; 50; 100; 125; OK! | Cancel! |_

Percent!; "Selection Dialog")

DialogAddListBox ("MainDialog"; "ListBox1"; 10; 10; 80; 95; _

130 Creating dialog boxes for macros

Sorted!; lbVar)

DialogAddListItem ("MainDialog"; "ListBox1"; "Pear")

DialogAddListItem ("MainDialog"; "ListBox1"; "Apple")

DialogAddListItem ("MainDialog"; "ListBox1"; "Banana")

DialogAddListItem ("MainDialog"; "ListBox1"; "Orange")

DialogShow ("MainDialog"; "WordPerfect"; Msg)

CallBackWait ()

DialogDestroy ("MainDialog")

Quit

Label (Msg)

If (Msg[5] = 274 OR Msg[3] = "CancelBttn")

Quit()

EndIf

If (Msg[3] = "OKBttn")

vSelectedItem := RegionGetSelectedText("MainDialog.ListBox1")

Type (vSelectedItem)

CallBackResume()

EndIf

If (Msg[3] = "ListBox1" AND Msg[10] = 2)

vSelectedItem := RegionGetSelectedText("MainDialog.ListBox1")

MessageBox (vRetVar; "Selected Item"; vSelectedItem + " - was _

selected!")

EndIf

Return

As the preceding example demonstrates, you can use region commands to design
sophisticated macros. A programmer who understands the task that needs to be
performed can determine how many region commands are necessary.

Creating dialog boxes for macros 131

Testing dialog boxes

Before you start putting your dialog box to use within its macro, it’s a good idea to test
it. Testing a dialog box helps you ensure that it functions correctly.

If you created your dialog box by using PerfectScript code, you must test it by using the
PerfectScript Debugger. For information, see “Debugging macros” on page 135.

If you created your dialog box by using the PerfectScript Dialog Editor, you can test it
from directly within the Dialog Editor. For information, see “To test a dialog box by
using the Dialog Editor” on page 131.

To test a dialog box by using the Dialog Editor
1 With the dialog box open for editing in the Dialog Editor, click Dialog Test.

2 Use each control on the dialog box, and make note of any necessary changes.

3 Close the dialog box to return to the Dialog Editor.

4 Make the necessary changes to the dialog box.

5 Repeat steps 1 to 4 until the dialog box functions as desired, and then save the
dialog box.

Displaying dialog boxes

Regardless of whether you create a dialog box by manually coding it or by using the
Dialog Editor, you must manually code the procedure for displaying that dialog box in
your macro. The process of displaying a dialog box involves four steps:
• opening the dialog box
• releasing the dialog box
• closing the dialog box
• destroying the dialog box

For step-by-step information on displaying a dialog box in a macro, see “To display a
dialog box in a macro” on page 134.

Opening dialog boxes by using PerfectScript code

You can use the DialogShow command to open a dialog box in a macro.

Before a dialog box can be manipulated by using a Region command, that
dialog box must be loaded into memory. The DialogShow command both

132 Creating dialog boxes for macros

loads the dialog box into memory and opens it. (By contrast, the DialogLoad
command loads the dialog box into memory but does not open it.)

The following is an example of the DialogShow command:

DialogShow("DialogName";"WordPerfect";CallBack@)

The first parameter, Dialog, is required. This parameter specifies the name of the
dialog box to be opened. (In the preceding example, this name is DialogName).

The second parameter, Parent, is optional. This parameter specifies the named region
of the parent window for the macro dialog box. (In the preceding example, the
WordPerfect window is the parent window for the dialog box.) Named regions are
defined by the application. The region consists of the application name, followed by a
period (.), followed by additional words that narrow the named region to the
appropriate window. For example, the named region of the document window in
WordPerfect is WordPerfect.Document.

Names for dialog boxes and controls are case-sensitive, so be sure to correctly
reference them in your macros.

The third parameter, Callback, is optional. This parameter specifies a label that
identifies a callback function. If you do not specify a callback parameter in the
DialogShow command, the macro does not execute until you dismiss the dialog box. If
you use a callback, the macro executes while the dialog box is displayed. It is up to the
callback to prevent the macro from terminating prematurely and to shut down the
macro dialog box by using the DialogDismiss command.

A fourth parameter not shown in the preceding example, Focus, is optional. This
parameter can be used to specify the control that receives initial focus when the dialog
box is opened.

For more information about the DialogShow command, please see the DialogShow
topic in the PerfectScript Command Reference section of the PerfectScript Help file
(psh.chm).

Releasing dialog boxes by using PerfectScript code

You can release a dialog box by performing one of several actions. The action that you
perform is returned, as a value, to an implicit variable MacroDialogResult.

Clicking the OK button returns a value of 1, which instructs the macro to apply the
changes that you made to the dialog box.

Performing one of the following actions returns a value of 2, which instructs the macro
to ignore the changes that you made to the dialog box.

Creating dialog boxes for macros 133

• clicking the Cancel button
• clicking the Close button on the system-menu box
• double-clicking the system-menu box
• pressing Alt + F4

Clicking a user-defined button or a user-defined hot spot returns the value of the
Control parameter of that user-defined item.

For more information about the MacroDialogResult variable, please see the
MacroDialogResult topic in the PerfectScript Command Reference section of the
PerfectScript Help file (psh.chm).

Closing dialog boxes by using PerfectScript code

You can use the DialogDismiss command to close a dialog box in a macro (and clear
the value of the implicit variable MacroDialogResult.)

The following is an example of the DialogDismiss command:

DialogDismiss("DialogName";"OKBttn")

The first parameter, Dialog, is required. This parameter specifies the name of the
dialog box to be closed.

The second parameter, Control, is required. This parameter specifies the named region
of the control that is used to close the dialog box.

Names for dialog boxes and controls are case-sensitive, so be sure to correctly
reference them in your macros.

If your macro needs to refer to the value of the MacroDialogResult variable
for a dialog box, assign that value to another variable before executing the
DialogDismiss command.

If you need to reopen a dialog box, use the DialogShow command.

For more information about the DialogDismiss command, please see the
DialogDismiss topic in the PerfectScript Command Reference section of the
PerfectScript Help file (psh.chm).

Destroying dialog boxes by using PerfectScript code

You can use the DialogDestroy command to destroy a dialog box from memory.
Destroying any unused dialog boxes in your macro is a good way to free up memory.

 You cannot destroy dialog boxes that were created by using the Dialog Editor.

134 Creating dialog boxes for macros

The DialogDestroy command has one parameter, Dialog, which is required. This
parameter specifies the name of the dialog box to be destroyed.

For more information about the DialogDestroy command, please see the
DialogDestroy topic in the PerfectScript Command Reference section of the
PerfectScript Help file (psh.chm).

To display a dialog box in a macro
1 Open the macro for editing.

2 Type or insert the DialogShow command where you want the dialog box to open
in the macro, and specify the following parameters for that command:
• Dialog — to specify the name of the dialog box
• Parent (optional) — to specify the named region for the parent window of the

dialog box
• Callback (optional) — to specify a callback parameter, if you want the macro to

execute while the dialog box is open
• Focus (optional) — to specify the name of the dialog-box control to receive

initial focus

REMEMBER: Dialog-box names are case-sensitive.

3 Assign the value of the implicit variable MacroDialogResult to some other
variable if you want to capture the value that it receives when the dialog box is
released.

REMEMBER: If you close a dialog box by using a Cancel button, a control other
than a push-button, or a non-existent control, your changes to the dialog box do
not take effect. However, if you use a push-button other than a Cancel button, the
variable values are set and your changes take effect when you dismiss the dialog
box.

4 Type or insert the DialogDismiss command after a DialogShow command that
uses callback, and specify the following parameters for that command:
• Dialog — to specify the name of the dialog box
• Control — to specify the named region of the control that is used to close the

dialog box

REMEMBER: Dialog-box names and control names are case-sensitive.

5 Type or insert the DialogDestroy command if you want to free up memory by
destroying the dialog box.

REMEMBER: You cannot destroy dialog boxes that were created by using the
Dialog Editor.

Debugging macros 135

Debugging macros
To ensure that your macros work as expected, it’s important to debug them by using
the PerfectScript Debugger.

This section contains the following topics:
• Getting started with the PerfectScript Debugger
• Using the Debugger to debug macros
• Getting more information while debugging macros
• Working with breakpoints while debugging macros
• Working with variables while debugging macros
• Navigating the code while debugging macros
• Troubleshooting the Debugger

Getting started with the PerfectScript Debugger

When a macro is played or compiled, it is examined by the PerfectScript Debugger.
The Debugger is designed to help you find and correct errors and other problems in
your macros.

The Debugger workspace has the following features:
• a menu — provides access to all the commands for debugging macros. For more

information, see “Using the Debugger menu” on page 136.
• a toolbar — provides access to common features for debugging macros. For more

information, see “Using the Debugger toolbar” on page 136.
• the State line — indicates whether the Debugger is active and, if so, why. For more

information, see “Using the State line in the Debugger” on page 136.
• the Source list — displays the source of the macro being debugged. For more

information, see “Using the Source list in the Debugger” on page 137.
• the Call History list — displays, in reverse order, the user-defined subroutines that

are called by the macro. For more information, see “Using the Call History list in
the Debugger” on page 137.

136 Debugging macros

• the Variables list — displays the variables that are accessible to the macro at the
location indicated in the Call History list. For more information, see “Using the
Variables list in the Debugger” on page 138.

The Debugger also provides several information windows, which provide
details about the macros that you debug. For information, see “Getting more
information while debugging macros” on page 143.

For information about any control in the Debugger, click (or press Shift +
F1), and then click the control.

Using the Debugger menu

The Debugger menu gives you access to all the commands for debugging macros.

The Debugger menu is always displayed.

Using the Debugger toolbar

The Debugger toolbar gives you instant access to a wide range of features for debugging
macros.

You can display or hide the Debugger toolbar by clicking View Toolbar. A
check mark next to the Toolbar command indicates that the toolbar is
displayed.

You can customize the Debugger toolbar by right-clicking any blank area on
the toolbar. The Customize Toolbar dialog box is displayed, from which you
can remove, add, or reorder the toolbar buttons. The toolbar configuration that
you choose is applied when you debug all other macros.

Using the State line in the Debugger

The State line indicates whether the Debugger is active and, if so, why.

While the Debugger is active (for example, when a breakpoint is on the start of a macro
statement, or when an error is incurred) the execution of the macro is suspended. You
are therefore prevented from interacting with any displayed prompts, message boxes,
or dialog boxes.

When a macro is playing, the State line reads, “Macro is running,” and the Debugger
is inactive. Although you can use some Debugger features (for example, to set
breakpoints) while the Debugger is inactive, you cannot use any features that access
information about the state of the macro.

The State line is always displayed.

Debugging macros 137

Using the Source list in the Debugger

The Source list displays the source of the macro being debugged (as taken from the
listing file for the compiler).

You can display the source of another macro file (such as a Use file) by clicking
File Open. The last nine accessed macro files are listed in the File menu.

The left margin of the Source list displays the following items:
• a red arrow — indicates the next line that the macro will execute
• an indicator — shows which statements have breakpoints, and whether those

breakpoints are enabled or disabled

You can double-click any line that contains a macro statement to place a
breakpoint on that line.

You can also enable or disable any defined breakpoint.

When you point to a variable, label, token, or command in the Source list, a floating
tip displays details about that item. If the Debugger cannot identify the item — such
as a variable that has not yet been defined, or a label defined in a Use file that has not
yet been loaded — two question marks (??) are displayed.

The Source list is always displayed.

You can right-click the Source list to display a context-sensitive menu of
relevant commands.

You can adjust the size of the Source list by dragging its split bar.
Alternatively, you can select the split bar and use the arrow key to move it by
1 pixel; hold the Shift key to move the selected split bar by 5 pixels, or hold
the Ctrl key to move it by 10 pixels.

Using the Call History list in the Debugger

The Call History list displays the user-defined subroutines (labels, functions, and
procedures) that are called by the macro. The name of each subroutine is displayed,
along with the line number where execution within that subroutine was interrupted,
and the file in which the subroutine is contained. The subroutines are listed in reverse
order, so the current location is provided at the top of the list.

When you select an entry in the Call History list, the source for that macro is displayed
in the Source list, and the associated line is highlighted and indicated by a green
triangle in the left margin (unless the top entry is selected, in which case the red arrow

138 Debugging macros

is displayed). The variables accessible to the macro at that point are then displayed in
the Variables list below.

For more information about subroutines, see “Understanding subroutines” on page 59.

The Call History list is always displayed.

You can right-click the Call History list to display a context-sensitive menu of
relevant commands.

You can adjust the size of the Call History list by dragging its split bar.
Alternatively, you can select the split bar and use the arrow key to move it by
1 pixel; hold the Shift key to move the selected split bar by 5 pixels, or hold
the Ctrl key to move it by 10 pixels.

Using the Variables list in the Debugger

The Variables list displays, by name, the variables that are accessible to the macro at
the location indicated in the Call History list. Also displayed are the following:
• the pool type for each variable (Local, Global or Persistent)
• the type of value that each variable contains
• the current value of each variable

Arrays are a form of variables, and so they, too, are displayed in the Variables list —
along with their declared dimensions and a Contents type of array. You can expand
array variables to display the individual array elements in the list, or you can collapse
them to hide the individual elements; in this way, you can examine the individual
elements of the array as normal variables.

If a variable is an address (alias) parameter to a user-defined subroutine, its
Contents type is displayed as Alias, and it may be expanded and collapsed like
an array to show the actual variable to which it is mapped.

If an alias variable is mapped to a Global or Persistent variable, then the
variable-pool type is displayed appropriately. However, if it is a Local variable,
then the pool type is displayed as Local to Caller, to distinguish it from a
variable that is local to the current subroutine.

The current sort column and sort order are indicated by a greater than symbol (>) or a
less than symbol (<) before the name of the column.

If the Variables list is sorted by variable name or by pool, expanded array
elements are kept with their corresponding array. Sorting by the other columns

Debugging macros 139

may separate array elements from each other, depending on the contents of the
array element.

For more information about variables, see “Understanding variables” on page 10. For
more information about working with variables in the Debugger, see “Working with
variables while debugging macros” on page 156.

The Variables list is always displayed.

You can right-click the Variables list to display a context-sensitive menu of
relevant commands.

You can adjust the size of the Variables list by dragging its split bar.
Alternatively, you can select the split bar and use the arrow key to move it by
1 pixel; hold the Shift key to move the selected split bar by 5 pixels, or hold
the Ctrl key to move it by 10 pixels.

Using the Debugger to debug macros

You can use the PerfectScript Debugger to debug macros from within the PerfectScript
utility.

You can also debug macros from directly within WordPerfect, Quattro Pro, or
Presentations. For information, please see the Help file for the application.

Setting up the Debugger

Before you begin debugging macros, it’s a good idea to set up the Debugger.

You can decide whether to display source code for each macro that you debug.

You can remove the source from a macro, even if that macro was compiled
from an earlier version of PerfectScript. The act of removing the source from a
macro cannot be reversed.

You can also protect a macro from being accidentally edited in WordPerfect.
When a macro is protected, it can be compiled and played, but not opened, in
WordPerfect. (Any attempt to open a protected macro in WordPerfect
generates an “unknown file type” error.) The act of protecting a macro can be
reversed.

For more information about removing the source from a macro or protecting a
macro, please see the WordPerfect Help.

140 Debugging macros

You can also decide whether to generate a listing file for each macro that you debug. The
listing file makes a copy of each procedure in the macro and numbers each line of code,
allowing you to tell which part of the macro corresponds to each line number. Any error
messages and warnings that arose during compilation are provided at the bottom of the
listing file. By using a listing file, you can more easily find and correct the errors caught
by the Debugger.

The listing file has the same name as the original macro, but with a .wcl
extension.

If you want to see which macro lines correspond to which line numbers, you
can display the listing file in any ASCII-based text editor.

You can specify the settings for invoking the Debugger.

You can also specify whether create event logs while debugging macros.

For more information, see “Logging events for breakpoints” on page 152.

Finally, you can specify settings for animating macros. Animation lets you step through
macros line-by-line, automatically invoking the Debugger at each step so that you can
check the variables and other calls.

For more information, see “Animating macros” on page 160.

For more information about setting up the Debugger, see “To set up the Debugger” on
page 141.

Debugging macros

Before you can debug a macro, you must compile it — and any other macro files that
it “uses” or “runs” or “chains” to. Compiling a macro for debugging adds necessary
information to the macro. For information about using the PerfectScript utility to
compile macros, see “Compiling macros” on page 96.

A compiled macro can be debugged by playing it in the Debugger. For information
about this process, see “To debug a macro by using the Debugger” on page 142.

The Debugger uses configuration (DBG) files to store macro-related
information.

Debugging macros 141

The common configuration file for the Debugger is called startup.dbg. This
file stores information about the Debugger, such as the following details:

• which macro filenames are stored in the “most recently used” list
• which information windows are open (see “To display or hide an

information window” on page 148)
• which variable pools are displayed (see “To display variables while

debugging a macro” on page 157)

When you debug a macro, the Debugger loads the settings that are stored in
the startup.dbg file, and it checks the version number of the PerfectScript
system against the version number of the macro system. All of this information
is used to create a macro-specific configuration file, which is given a .dbg
extension and stored in the same folder as the macro.

To set up the Debugger
1 In the PerfectScript utility, click Tools Settings.

2 Click the Compile tab, and enable any of the following settings:
• Include debug information — displays source code for each macro that you

debug
• Generate listing file — generates a listing file for each macro that you debug

3 Click the Debug tab, and enable any of the following settings:
• Invoke debugger on macro start — opens the Debugger when a macro is

started
• Invoke debugger on errors — opens the Debugger when a macro error is

encountered
• Enable debugger event logging — allows the Debugger to log events while

debugging macros

4 In the Animate area of the Debug page, do the following:
• Enable the ‘RunTo’ does ‘Step Into’ option if you want to step through macros

one statement at a time, or enable the ‘RunTo’ does ‘Step Over’ option if you
want to step through macros one subroutine at a time. For more information
about these options, see “Stepping through macros” on page 160.

• In the Delay (seconds) box, specify the number of seconds for the macro to
pause after executing each step.

142 Debugging macros

To debug a macro by using the Debugger
1 In the PerfectScript utility, click File Debug Play.

2 Select the macro that you want to debug, and click Debug.

If you are prompted to specify the listing file for the macro, do one of the following:
• Specify the listing file. Select the listing file, and then click Open.
• Decline to specify the listing file. Click Close.

3 Do any of the following:
• Display any desired information windows. For information, see “Getting more

information while debugging macros” on page 143.
• Specify the breakpoint-related settings for the macro. For information, see

“Working with breakpoints while debugging macros” on page 150.
• Specify the variable-related settings for the macro. For information, see

“Working with variables while debugging macros” on page 156.

4 Click Debug Continue to play the macro through to the next stopping point, or
choose another option for navigating the macro code. For information, see
“Navigating the code while debugging macros” on page 159.

5 Use the specified macro editor to correct any errors.

For information about debugging macros that stop at error messages or that
contain faulty callbacks, see “Troubleshooting the Debugger” on page 162.

You can also

Compile a macro by using the Debugger In the PerfectScript utility, click File
Debug Compile. Select the macro that
you want to compile, and click Compile.

Pause the debugging of a macro Do one of the following:
•Click Debug Break.
•Press Ctrl + F5.

NOTE: This feature interrupts the macro
and activates the Debugger, giving you
access to various features in the Debugger.

Debugging macros 143

Getting more information while debugging macros

The Debugger provides several windows that you can use to display various types of
information about the current state of a macro. These windows are refreshed whenever
the Debugger becomes active. Most of the windows display information that is specific
to the current execution point in the macro, but by selecting a different entry in the
Call History list of the Debugger (see “Using the Call History list in the Debugger”
on page 137), you can display information that is specific to the selected entry.

Each information window has a context menu that lets you navigate among the other
information windows, the main Debugger window, and any matching macro source
line. By double-clicking an item in an information window, you can jump to the position
of that item in the macro (and highlight that item with a gray arrow in the left margin
of the Source list).

Restart the debugging of a macro Do one of the following:
•Click Debug Restart.
•Press Shift + F5.

NOTE: When a macro is restarted, all
variables created by the macro — except
persistent variables — are deleted. In
addition, the Debugger begins at the top of
the macro and resets all state information
about the macro to its original conditions.

Stop the debugging of a macro Do one of the following:
•Click Debug Stop Debugging.
•Press Alt + F5.

NOTE: When a macro is stopped, the
Debugger closes. All defined breakpoints,
watched variables, and opened macro files
are stored in a Debugger configuration file
for that macro. This file is given a .dbg
extension, stored in the same folder as the
macro, and loaded the next time you debug
that macro.

You can also

144 Debugging macros

The Debugger provides the following information windows:
• Label Table window — lists all labels that are defined at the execution point that

is selected in the Call History list. For more information, see “Using the Label
Table window in the Debugger” on page 144.

• Use File Table window — lists all Use files that are referenced in Use statements
by the macro file that is selected in the Call History list. For more information, see
“Using the Use File Table window in the Debugger” on page 145.

• Product Table window — lists all applications and products that have commands
in the macro file that is selected in the Call History list. For more information, see
“Using the Product Table window in the Debugger” on page 145.

• Dialog List window — lists all user-created macro dialog boxes that are currently
defined or that exist in the prefix packet of the macro file that is selected in the Call
History list. For more information, see “Using the Dialog List window in the
Debugger” on page 145.

• Condition Handlers window — lists all condition handlers that are defined for
the execution point that is selected in the Call History list. For more information,
see “Using the Condition Handlers window in the Debugger” on page 146.

• Macro Info List window — lists all data that can be obtained from the
MacroInfo command for a macro when an execution point is selected in the Call
History list. For more information, see “Using the Macro Info List window in the
Debugger” on page 147.

• Callback Queue window — lists all items in the callback queue and indicates
which callbacks are currently active and which are pending. For more information,
see “Using the Callback Queue window in the Debugger” on page 147.

• Macro Header window — displays the object-header information for the macro
file. For more information, see “Using the Macro Header window in the Debugger”
on page 147.

For information about using the information windows, see “To display or hide an
information window” on page 148.

Using the Label Table window in the Debugger

The Label Table window lists all labels that are defined at the execution point that is
selected in the Call History list.

For each label, the following items are displayed:
• the name of the label
• the type of the label — which is either Local or Global. Local labels are defined by

the Label statement in a macro, and they are visible only within the function or

Debugging macros 145

procedure where they are defined. Global labels are user-defined functions and
procedures, and they are visible anywhere in a macro file, as well as in other macro
files that have a Use statement of the file containing the function or procedure.

• the line number of the source line where the label (or function or procedure) is
defined

• the name of the file where the label (or function or procedure) is defined

The Label Table window is a modeless dialog box.

Using the Use File Table window in the Debugger

The Use File Table window lists all Use files that are referenced in Use statements by
the macro file that is selected in the Call History list.

If the labels for that Use file have been loaded (as happens the first time a function or
procedure is called from the Use file), then the Loaded column shows True.

The Use File Table window is a modeless dialog box.

Using the Product Table window in the Debugger

The Product Table window lists all applications and products that have commands in
the macro file that is selected in the Call History list.

If an Application statement for an application is in a macro, but the macro
does not actually contain any commands for that application, that application
is not displayed in this list.

Each application or product that is listed displays the version number of the PID
(product interface description) file that was used when this macro was compiled. This
version number is used to determine if a compiled macro has become out-of-date when
a new version of an application is installed and the macro is played.

The Product Table window is a modeless dialog box.

Using the Dialog List window in the Debugger

The Dialog List window lists all user-created macro dialog boxes that are currently
defined or that exist in the prefix packet of the macro file that is selected in the Call
History list.

For each dialog box, the following items are displayed:
• name
• state

146 Debugging macros

• type — which is either Text or Binary. Text dialog boxes are defined by using
DialogDefine and DialogAdd statements in a macro, while Binary dialog boxes
are created by using the Dialog Editor (see “Understanding dialog boxes” on
page 101) and are stored in the prefix packet area of a macro file.

• callback label — which is displayed if the dialog box is currently showing and a
callback label was specified

• position and size (at creation, not current)
• style — which is defined in the DialogDefine statement or in the Dialog Editor

The states that are available to a dialog box depend on its state, as follows:
• Defined (Text dialog boxes only) — means that the dialog box has

been defined by a DialogDefine statement but hasn’t been loaded or
shown yet

• In Prefix (Binary dialog boxes only) — means that the dialog box was
found in the prefix packet of the current macro file but hasn’t been
loaded or shown yet

• Loaded (Text and Binary dialog boxes) — means that the dialog box
has been loaded by a DialogLoad statement or by a Region command

• Showing (Text and Binary dialog boxes) — means that the dialog box
is currently showing by a DialogShow statement

In the lower half of the Dialog List window, the list of controls defined for the selected
dialog box are displayed. For each control, the following details are given:
• order
• name
• type
• position and size (at creation, not current)
• associated variable
• associated style
• associated data

The Dialog List window is a modeless dialog box.

Using the Condition Handlers window in the Debugger

The Condition Handlers window lists all condition handlers that are defined for the
execution point that is selected in the Call History list.

Debugging macros 147

For each condition handler, its action and data are displayed. The standard condition
handlers — such as Error, Cancel, and NotFound — are displayed in this list, as well
as handlers for callbacks such as OnDDEAdvise and callback dialog boxes.

The Action column provides information about whether the condition causes the macro
to abort or quit, or whether the condition causes a label to be called or jumped to. If the
handler has been disabled, the Ignore action is displayed, indicating that the abort, call,
or jump will be ignored.

The Condition Handlers window is a modeless dialog box.

Using the Macro Info List window in the Debugger

The Macro Info List window lists all data that can be obtained from the MacroInfo
command for a macro when an execution point is selected in the Call History list. This
data can include labels, line numbers, and filenames.

The Macro Info List window is a modeless dialog box.

See also the Help for the MacroInfo command in the PerfectScript Command
Reference section of the PerfectScript Help file (psh.chm).

Using the Callback Queue window in the Debugger

The Callback Queue window lists all items in the callback queue and indicates which
callbacks are currently active and which are pending.

It is possible for multiple callbacks to be active at the same time.

The callback queue contains entries for callback dialog boxes and for OnDDEAdvise
notifications. The label to be called by each callback is specified.

The Status column indicates whether this callback is for notification only, or whether
the callback can affect the action that is performed by the macro system when the
callback is complete. Callbacks are always for notification only.

The contents of the data array for the callback are also displayed, as is (where possible)
an interpretation of the specific array elements.

The Callback Queue window is a modeless dialog box.

Using the Macro Header window in the Debugger

The Macro Header window displays the object-header information for the macro file,
including the version number of the macro system that was used to compile this macro
file.

148 Debugging macros

The Macro Header window is a modal dialog box.

To display or hide an information window
• While debugging a macro, do any of the following:

To display or hide the following Do the following

Label Table window Click View Label Table (or press
Alt + 1). A checkmark next to the Label
Table command indicates that all labels that
are defined at the execution point are
displayed.
TIP: You can double-click a label to display
the macro file in the Source list and
highlight the line containing the definition
for that label.

Use File Table window Click View Use File Table (or press
Alt + 2). A checkmark next to the Use File
Table command indicates that all Use files
that are referenced in Use statements by the
macro file are displayed.
TIP: You can load a Use file into the Source
list by double-clicking it.

Product Table window Click View Product Table (or press
Alt + 3). A checkmark next to the Product
Table command indicates that all
applications and products that have
commands in the macro file are displayed.

Dialog List window Click View Dialog List (or press Alt + 4).
A checkmark next to the Dialog List
command indicates that all user-created
macro dialog boxes are displayed.
TIP: You can double-click a dialog box to
display, in the Source list, the macro file
where the callback label is defined, and to
highlight the source line that contains the
label definition.

Debugging macros 149

Condition Handlers window Click View Condition Handlers (or press
Alt + 5). A checkmark next to the
Condition Handlers command indicates
that all defined condition handlers are
displayed.
TIP: If a label is associated with a condition
handler, you can double-click the item to
display, in the Source list, the macro file
where that label is defined and to highlight
the source line that contains the label
definition.

Macro Info List window Click View Macro Info List (or press
Alt + 6). A checkmark next to the Macro
Info List command indicates that all data
that can be obtained from the MacroInfo
command is displayed.
TIP: You can double-click an item to
display, in the Source list, the macro file,
and to highlight the source line that contains
the label definition or line number.

Callback Queue window Click View Callback Queue (or press
Alt + 7). A checkmark next to the Callback
Queue command indicates that all pending
items in the callback queue are displayed.
NOTE: You can remove a selected callback
from the queue window by pressing Delete
or Backspace. However, a warning prompts
you to confirm the action because deleting a
callback can dramatically alter the behavior
of the macro.
TIP: You can double-click a line to display,
in the Source list, the macro file, and to
highlight the source line that contains the
label definition.

To display or hide the following Do the following

150 Debugging macros

Working with breakpoints while debugging macros

You can use breakpoints when debugging macros. When the Debugger encounters a
breakpoint in a macro, the execution of that macro is interrupted and suspended, and
the Debugger becomes active so that you can examine the state of the macro at that
breakpoint.

You can manage breakpoints by using the Breakpoints dialog box.

Macro Header window Click View Macro Header (or press
Alt + 8). A checkmark next to the Macro
Header command indicates that all object-
header information for the macro file is
displayed.
NOTE: The Macro Header window
displays data regardless of whether the
macro is protected or whether it contains
source code.

You can also

Jump to the associated source line from
within an information window

Press Space.

Activate the main Debugger window Press Ctrl + Home.

Activate the next information window Do one of the following:
•Click View First/Next window.
•Press Ctrl + F6.
•Press Ctrl + Down Arrow.

Activate the previous information window Do one of the following:
•Click View Last/Previous window.
•Press Ctrl + Shift + F6.
•Press Ctrl + Up Arrow.

Hide all information windows Click View Close All.

To display or hide the following Do the following

Debugging macros 151

Setting breakpoints

You can set breakpoints at any line, any DLL call, or any other place in a macro. The
Debugger becomes active when it encounters a breakpoint in the macro, during which
time you can check the macro code for labels, functions, procedures, variables, and so
on.

The Debugger automatically creates three breakpoints: Macro Start, Macro End, and
Error. These breakpoints, which are indicated by an exclamation mark (!), can be
removed if desired.

The Breakpoints dialog box has a context menu that lets you sort breakpoints by the
following columns: Type, Location, Macro, and Pass Count.

The Type column indicates the breakpoint type:
• DLL Call — breaks when the macro calls a DLL file
• Error — breaks when an error occurs while running the macro
• Label/Routine Call — breaks when a label or user-defined routine comes up in the

macro. Everything that is not specifically contained in a routine or label is in the
<main> routine.

• Label/Routine Return — breaks when a label or user-defined routine comes up in
the macro, but stops before executing the return from the label call

• Line Number — breaks when the macro reaches a specified line number. This is
the most common type of breakpoint: It suspends the execution of the macro and
activates the Debugger when the specified line number is reached.

• Product Call — breaks when the macro makes a call to an application or product
• Variable Access — breaks when the macro accesses a variable
• Variable Assign — breaks when the macro assigns a value to a variable

The Location column indicates the location of the breakpoint in the macro code.

The Macro column indicates the macro to which the breakpoint applies. By default, a
breakpoint applies to all the macro files that are used by the macro that you are
debugging; however, you can limit the breakpoint to a single macro file.

The Pass Count column indicates the passcount for the breakpoint, which represents
the number of times that the breakpoint conditions can occur before the breakpoint
actually takes effect. The passcount decrements each time that the conditions occur, and
the breakpoint triggers when the passcount reaches zero.

For more information about setting breakpoints, see “To set a breakpoint in a macro”
on page 153.

152 Debugging macros

Moving between breakpoints

You can move between the breakpoints in a macro.

For more information about moving between breakpoints, “To move between the
breakpoints in a macro” on page 154.

Disabling breakpoints

You can temporarily disable all breakpoints. In this scenario, no breakpoints are
recognized — even if their conditions occur — until all breakpoints are re-enabled, or
until the macro ends and the Debugger terminates.

For more information about disabling breakpoints, see “To disable all breakpoints in a
macro” on page 154.

Logging events for breakpoints

You can log events while debugging macros. The event log records an entry for each
event that occurs during debugging; these entries include standard messages (such as
“Debugger event logging enabled”) and custom messages for which you supply the
comment.

You can display the event log for a macro by clicking View Event Log or
pressing Alt + 9.

All breakpoints allow a message to be logged to the event log (if enabled) when that
breakpoint is triggered.

A breakpoint can be set to log a message, to cause a break in the macro, or
both. In the left margin of the Breakpoints list, a hand symbol is displayed. A
yellow hand indicates that a breakpoint that causes a break in the macro (and
may also log an event message), while a blue hand indicates a breakpoint that
logs an event message and does not cause a break in the macro.

For more information about creating event logs, see “To log events for the breakpoints
in a macro” on page 155.

Executing tokens at breakpoints

When a macro is stopped at a breakpoint, you can execute any PerfectScript command
(or “token”) in a very localized temporary environment. The Debugger displays the
commands along with their parameters and types, and it lets you select a command and
specify a value for each parameter. When you execute the selected command, its return
value is displayed (and assigned to a variable name, if one is specified).

Debugging macros 153

Be careful when executing tokens. Some PerfectScript commands cause the
internal state of the running macro to change and can therefore cause errors to
occur later in the macro. (Most of these commands do not appear in the
command list and cannot be selected.)

Values cannot be assigned to variables that have the same name as command
token names.

PerfectScript supports handler DLLs for third-party tokens. All tokens (not just
the PerfectScript ones) are passed to the ValidateToken entry point. If the
third-party DLL does not accept or approve the token, it can cause
PerfectScript to abort the macro. PerfectScript tokens are passed to the
HandleToken entry point in the third-party DLLs.

For more information about executing tokens, see “To execute a token at a breakpoint
in a macro” on page 155.

To set a breakpoint in a macro
1 While debugging a macro, do any of the following:

• Click Debug Breakpoints Edit.
• Right-click any line in the macro, and then click Edit Breakpoints.
• Press Ctrl + B.

2 Choose the type of breakpoint that you want to use from the Type list box, and
then click Add.

3 Specify any settings for the breakpoint, and then click Update.

You can also

Set a line-number breakpoint in a macro Do one of the following:
•Double-click the line in the macro.
•Select the line in the macro, and click

Debug Breakpoints Add.
•Select the line in the macro, and press

Insert.
•Right-click the macro, and click Add

Breakpoint.

154 Debugging macros

To move between the breakpoints in a macro
• While debugging a macro, do one of the following:

• Click Edit Find Next Breakpoint (or press Ctrl + N) to go to the next
breakpoint.

• Click Edit Find Previous Breakpoint (or press Ctrl + P) to go to the
previous breakpoint.

To disable all breakpoints in a macro
• While debugging a macro, click Debug Breakpoints Enable/Disable All

Breakpoints.

Remove a breakpoint from a macro Do one of the following:
•Double-click the breakpoint in the macro.
•Select the breakpoint in the macro, and

click Debug Breakpoints Remove.
•Select the breakpoint in the macro, and

press Delete.
•Right-click the breakpoint in the macro,

and click Remove Breakpoint.

You can also

Disable a single line-number breakpoint Do one of the following:
•Select the line that contains the

breakpoint, and then click Debug
Breakpoints Disable.

•Select the line that contains the
breakpoint, and then press Space.

•Right-click the line that contains the
breakpoint, and then click Disable
Breakpoint.

Enable all breakpoints Click Debug Breakpoints Enable/
Disable All Breakpoints.

You can also

Debugging macros 155

To log events for the breakpoints in a macro
1 While debugging a macro, do any of the following:

• Click Debug Breakpoints Edit.
• Right-click any line in the macro, and then click Edit Breakpoints.
• Press Ctrl + B.

2 Select a breakpoint, and on the Actions page, do any of the following:
• Enable the Break into debugger check box if you want that breakpoint to cause

a break in the macro.
• Enable the Log standard event message check box if you want that breakpoint

to log a standard event message.
• Enable the Log custom message check box, and specify the desired message, if

you want that breakpoint to log a custom message.

3 Repeat step 2, as desired.

4 Click Event Log.

5 Enable the Logging enabled check box.

6 Click Save, and then specify a path and filename for the event log.

By default, the event log is saved with a .log extension.

To execute a token at a breakpoint in a macro
1 While debugging a macro, do one of the following:

• Click View Execute Token.
• Press Alt + 0.

2 Select the PerfectScript token that you want to execute, and then specify any
parameter and return values that you want to use.

Enable a single line-number breakpoint Do one of the following:
•Select the line that contains the

breakpoint, and then click Debug
Breakpoints Enable.

•Select the line that contains the
breakpoint, and then press Space.

•Right-click the line that contains the
breakpoint, and then click Enable
Breakpoint.

You can also

156 Debugging macros

3 Click Execute to perform the command and display any return value.

Be careful when executing tokens. Some PerfectScript commands cause the
internal state of the running macro to change and can therefore cause errors to
occur later in the macro. (Most of these commands do not appear in the
command list and cannot be selected.)

Working with variables while debugging macros

As explained in “Understanding variables” on page 10, a variable stores a value that
can change during the operation of a macro.

When the Debugger stops at a breakpoint in a macro (see “Working with breakpoints
while debugging macros” on page 150), the Variables list is updated to display, by
name, the variables that are accessible to the macro at that location.

For each variable, the Variables list provides the pool type (Local, Global or
Persistent), value type, and contents. For more information, see “Using the
Variables list in the Debugger” on page 138.

While debugging a macro, you can use the Variables list to display, watch, and create
variables.

Displaying variables in macros

You can use the Variables list to display all variables, or to display a combination of
watched variables, local variables, global variables, and persistent variables.

The Variables list displays all variables that are defined at the current step in
the macro. As you click the entries in the Label, Function, Procedure list, the
variables in the list change to display the local variables that are defined in each
step.

Even though the Variables list may display multiple variables with the same
name, only the most locally scoped variable with that name is accessible to the
macro as it executes. For example, if there is both a local variable and a global
variable named B, only the local B can be accessed by the macro.

After a variable has been declared with the DECLARE, LOCAL, GLOBAL, or
PERSIST statement in a macro, that variable appears in the Variables list even
though its contents may be undefined.

Debugging macros 157

When a macro contains a large number of variables, the Variables list initially
displays only the first 100 variables. (In the case of an array, the Variables list
displays only the first 100 elements, and of those, the values of only the first 25
elements.) If you want, you can expand or collapse the list of variables.

For more information, see “Displaying variables in macros” on page 156.

Watching variables in macros

If you are interested only in certain macro variables, you can add those variables to the
Watch list. When the Watch list is displayed, it replaces the normal Variables list.

Only entire arrays or non-array variables can be watched. Individual array
elements cannot be watched separately from their corresponding parent array.

For more information, see “To watch a variable while debugging a macro” on page 158.

Creating variables in macros

You can add variables to the macro that you are debugging. You can create new
variables in any variable pool (Local, Global, or Persistent). Variables are created with
undefined contents, but you can supply the value at any time.

For more information, see “To create a variable while debugging a macro” on page 158.

To display variables while debugging a macro
• Click Variables View, and then click any of the following:

• All — displays all variables
• Watch List — displays only watched variables
• Locals — displays only local variables
• Globals — displays only global variables
• Persistents — displays only persistent variables.

A checkmark next to a command indicates that that type of variable is displayed.

You can also

Sort the Variables list Click a column heading, or click Variables
Sort By and choose a sorting method.
TIP: You can change the sort order of the
Variables list from ascending to descending
(or from descending to ascending) by
clicking the heading of the sorting column.

158 Debugging macros

To watch a variable while debugging a macro
• Do one of the following:

• Select the macro, and then click Variables Watch.
• Right-click the variable in the Variables list, and then click Watch.

After a variable is added to the Watch list, it is displayed until you remove it
from the list, even if the variable ceases to exist (for example, if it is removed in
the macro). When a variable ceases to exist, its pool type is displayed as “out of
scope.”

To create a variable while debugging a macro
1 When the Debugger stops at the desired breakpoint, click Variables New.

The Create New Variable dialog box appears.

2 Type a name for the variable, enable the option that corresponds to the desired
variable type, and then click Create.

Expand collapsed variables or a collapsed
array in the Variables list

Select the collapsed item, and then click
Variables Expand.
NOTE: Although you can expand the
contents of an array, doing so can consume a
great deal of time and memory, so a warning
prompts whether to expand all elements or
just the first 100 elements.
TIP: When only the first 100 elements of an
array are displayed, a 101st element
represents the remaining elements in the
array but without their values. You can
display the remaining elements by clicking
the […] icon next to the 101st element, or
by collapsing the array and expanding it
again (to display the warning that prompts
whether to expand all elements).

Collapse expanded variables or an expanded
array in the Variables list

Select the expanded item, and then click
Variables Collapse.

Refresh the Variables list Click Variables Refresh.

You can also

Debugging macros 159

You can create an array variable by specifying the dimensions of the array after
its name.

Navigating the code while debugging macros

While debugging a macro, you have several options for navigating the code.

As previously discussed (see “To debug a macro by using the Debugger” on page 142),
you can play through a macro during debugging. You can also pause, restart, or stop a
macro during debugging.

You can also

Edit a variable while debugging a macro Select the variable (or select the array that
contains the variable, and then select the
variable), change the contents of the variable
in the Contents box, and then press Enter.
NOTE: You cannot change the contents of
an alias variable, but you can change the
variable that is mapped to the alias.
NOTE: If you change the contents of an
array, the new value is placed in all of its
array elements. However, changing the
contents of an array element changes that
element only and does not affect the
contents of any other array elements.
TIP: You can cancel a change by pressing
Esc.

Remove a variable while debugging a macro Select the variable, click Variables Delete,
and then click the desired discard option.
(You can remove the variable from the
Variables list box, or you can remove the
contents of the variable but leave it in the
Variables list box.)
NOTE: Discarding an array variable first
resets the contents of all the array elements.
TIP: Be careful when discarding variables, in
case the macro requires the variable to be
defined.

160 Debugging macros

Also as previously discussed (see “Working with breakpoints while debugging macros”
on page 150), you can use breakpoints if you want to suspend debugging in places
where you want to examine the macro more closely.

However, if you prefer, you can navigate macros by stepping through the code, using
cursor position, enabling the animation feature.

You can also search the macro code if you want to locate a specific item.

Stepping through macros

You can go through a macro step-by-step. This process is called “stepping through the
macro.”

The Debugger provides three commands for stepping through a macro:
• Step Into — executes the next single statement. If the next statement is a label

call or a routine call, then execution steps into the specified label or routine (even if
that label or routine is in another macro file, such as a Use file).

• Step Over — executes the call of the label or routine without stopping until its
completion. The macro stops at the next statement in the current label or routine.

• Step Out — executes until the next return is encountered (if a label or routine is
entered)

For information about this procedure, see “To step through a macro in the Debugger”
on page 161.

Using cursor position in macros

The Debugger provides two commands for going through a macro by using cursor
position:
• Run to Cursor — continues execution down to the line under the mouse cursor in

the Source list
• Skip to Cursor — sets the next statement to be executed by the Debugger,

without executing any statements between the current point and the new line. This
feature lets you skip a series of statements without executing them, or allows for
statements to be repeated.

For information about this procedure, see “To use cursor position while debugging a
macro” on page 161.

Animating macros

The Debugger lets you animate macros. Animation allows you to step through macros
line-by-line, automatically activating the Debugger at each step so that you can check

Debugging macros 161

the variables and other calls. Between each command, the Debugger is displayed for the
amount of time specified in the Tools Settings dialog box.

For information about this procedure, see “To animate a macro in the Debugger” on
page 161.

Searching macros

The Debugger lets you search a macro for a specific line number or text string. The
Debugger also lets you locate the current line of code when a macro is interrupted.

For information about this procedure, see “To search macro code in the Debugger” on
page 162.

To step through a macro in the Debugger
• While debugging a macro, do any of the following:

• Click Debug Step Into to execute the next single statement.
• Click Debug Step Over to execute the call of the label or routine without

stopping until its completion.
• Click Debug Step Out to execute the macro until the next return is

encountered (if a label or routine is entered).

To use cursor position while debugging a macro
1 While debugging a macro, position the cursor by clicking in the Source list.

2 Do one of the following:
• Click Debug Run to Cursor to continue execution down to the line under the

mouse cursor in the Source list.
• Click Debug Skip to Cursor to set the next statement to be executed by the

Debugger, without executing any statements between the current point and the
new line.

You can use the Skip to Cursor command if you need to skip a series of
statements without executing them, or if some statements need to be repeated.
However, this feature must be used with extreme caution: Skipping to a line
that is not within the same label or routine can cause the internal macro
execution state to become invalid and result in execution failure.

To animate a macro in the Debugger
• In the Debugger, click Debug Animate to begin playing the macro by using the

162 Debugging macros

specified animation settings.

If the macro pauses, click Debug Animate to resume automatic play.

For information about specifying the Debugger settings for animation and
other debugging features, see “Setting up the Debugger” on page 139.

To search macro code in the Debugger
• While debugging a macro, do any of the following:

• To search for a specific line number, click Edit Find Line Number (or press
Ctrl + G), and then specify the line number.

• To search for specific text, click Edit Find Text (or press Ctrl + F), and then
specify the text and the search options in the Find Text in Source dialog box
that appears.

• To search for the next instance of text that is specified in the Find Text in
Source dialog box, click Find Next (or press F3).

• To search for the previous instance of text that is specified in the Find Text in
Source dialog box, click Find Previous (or press Shift + F3).

For information about searching for breakpoints, see “To move between the
breakpoints in a macro” on page 154.

Troubleshooting the Debugger

The techniques that you use to debug a macro depend on the type of failure that is
occurring. This section describes two such types of issues:
• macros that stop at error messages
• macros that contain faulty callbacks

Debugging macros that stop at error messages

One of the easiest problems to correct with the Debugger is when a macro terminates
due to an error.

You can also

Locate the current line of code when a macro
is interrupted

Click Edit Find Current Line.
The entire line of code is highlighted in the
Source list.

Debugging macros 163

To discover the cause of such an error, use the Debugger to play the macro as usual.
When the macro stops, click Debug on the displayed error-message box to invoke the
Debugger and load both the macro and the listing file for the macro compiler. The
Debugger displays the following:
• the problem line in the macro (see the Source list)
• in reverse order, the labels, functions, and procedures that were called to get the

macro to that point (see the Call History list)
• the contents of the variables in the macro (see the Variables list)

At this point, you can examine the source line to determine what the macro was doing
when the error occurred. You can also check the contents of the variables that are being
used at the current line to see if they contain incorrect, error-causing values.

If all the variables at this point in the macro appear to have the correct values, select a
previous line in the Call History list, and examine the source line and the contents of
the variables at that point. If you find a variable value that seems improper, examine the
source code that leads to the problem area. Locate a spot where the variable could have
been changed, and double-click the line to set a line-number breakpoint at that spot.

Now stop the Debugger by clicking Debug Stop Debugging. You cannot continue
executing the macro because an error has occurred.

Restart the macro by clicking File Debug Play in PerfectScript. This displays the
Debugger immediately before the macro starts.

Because you set a line-number breakpoint, click Continue and run the macro until it
encounters the line number that contains that breakpoint.

When the macro reaches the line with the breakpoint, the Debugger is displayed.
Examine the variable contents to verify that the macro is displaying the variable values
that you expect. If not, you may need to specify a breakpoint at an earlier location and
then restart the macro. You can also skip to the earlier location by clicking a line in the
macro source and then clicking Debug Skip to Cursor.

If everything appears to be working normally, click Step Into to execute the macro one
statement at a time. At each step, examine the variables between each statement until
something unexpected happens. For example, the contents of a variable may change
unexpectedly, or the macro may call the wrong label. At this point, you have probably
come to the line where the value of the variable causes the error.

If it appears that the error occurs because a variable has the wrong contents, set a
“variable assign” breakpoint for that variable by clicking Debug Breakpoints Edit
and then choosing Variable Assign from the Type list box. When the contents of that

164 Debugging macros

variable change, a breakpoint occurs and the Debugger is displayed. If the variable is
changed too often and too many breakpoints are occurring on the variable, disable the
Variable Assign breakpoint and set a line-number breakpoint after most of the variable
assignments are done but before the wrong contents are assigned. If the problem in the
macro appears to associated with calling a certain product token, set a Product Token
Call breakpoint for that product token, or for a related product token that may not be
setting the application in the proper state, or for both. If the problem is that the macro
is calling a specific label, function, or procedure too often, set a Label Call breakpoint
for that label to see when and where it is being called.

Debugging macros that contain faulty dialog-box callbacks

Debugging dialog-box callbacks is one of the most challenging types of debugging.
Many problems with dialog-box callbacks occur because the callback does not reference
the callback data closely enough to determine if the exact conditions have occurred
before performing the action; consequently, the action is performed at the wrong time
(or too many times).

A dialog-box callback label is called often, and most of the callbacks are usually not
associated with the event of interest. As soon as a callback dialog box is shown, at least
two or three callback events occur. These events are associated with the creation of the
dialog box, the initialization of the controls, and the initial input focus that is received
by the dialog box.

One of the difficulties that are associated with debugging callbacks is that when the
Debugger becomes active at a breakpoint, the Debugger receives focus over any
window that had focus while the macro was running. Therefore, the callback dialog box
in the macro also loses focus. When a callback dialog box loses or gains focus, a callback
event is generated.

If you set a breakpoint in a dialog-box callback label, a lose-focus callback event could
occur on the callback dialog box when the Debugger is displayed. Then, when you
continue macro execution in the Debugger, a gain-focus callback event could occur.
This scenario could cause the breakpoint to stop the Debugger (because the callback
label is called for the lose/gain focus of the dialog box), which would, in turn, cause more
lose/gain callback events, which could cause another breakpoint, which could cause
more lose/gain focus callback events, and so on.

The macro interpreter and the Debugger attempt to minimize this cyclic occurrence by
determining whether the dialog box is losing or gaining focus because of the Debugger.
If so, the focus callback events are not generated. Unfortunately, this explanation
cannot always be reliably determined.

Debugging macros 165

The best way to prevent error loops is to write the dialog-box callback label so that it
carefully examines the callback data array to determine the type of the callback event,
and to have it respond only to specific callback event types. (Callbacks usually respond
to events that are associated with manipulating a control, which are WM_COMMAND events
with element [5] = 273). Next, set a breakpoint on a line of code that does not respond
to losing or gaining focus. In this way, the breakpoint does not occur when the dialog
box loses or gains focus, circumventing the error cycle.

If a callback event occurs for a callback label that is different from any callback label
that is currently executing, then the callback event causes the current callback code to
be suspended, and the new callback code is called. By restricting this focus to different
callback labels from any currently active callback label, you can ensure that a callback
can be completed before another callback for that same callback label is allowed to
occur.

For more information, see “Setting up callbacks for dialog boxes” on page 124.

For more information about dialog boxes, see “Creating dialog boxes for
macros” on page 101.

166 Debugging macros

Glossary 167

Glossary
A

ANSI character set

The 256 characters of the American National Standards Institute

any data type

A data type that accepts more than one data type as input. For example, in the
AppActivate (Windows: Any) command, the Windows parameter accepts a window
title (string data type) or a window handle (numeric data type).

argument

A variable, constant, or expression required by a command or function

B

Boolean data type

A data type that accepts or returns a value of True or False

C

callback

A special function that enables a macro to respond immediately and in specific ways to
events, such as enabling a radio button or check box, without waiting until a dialog box
is dismissed

character expression

Also called a string, one or more characters enclosed in quotation marks. This syntax
identifies the characters as text, rather than as a variable.

Command Browser

Also called the Command Inserter, a dialog box that inserts product commands or
programming commands (or both) into a macro document

command name

A description of a command’s action, such as Font, MarginLeft, Advance, or
FootnoteOptions

168 Glossary

Command names can execute product features (“product commands”) or direct the
execution of the macro (“programming commands,” such as If, Else, or End If). The
Command Inserter lists programming commands and product commands separately,
but you can choose which list you want to display.

constant

A named item that keeps a constant value while a macro is being executed

control statement

A macro feature that alters the sequential execution of commands

D

data type

The set of values that a variable can store. A data type represents information that is
needed by a parameter or returned by a command (as a “return value”).

The available data types are Boolean, enumeration, label, measurement, numeric,
string, variant, and any.

In the command syntax, data types are displayed in italics. For example, the
enumerations for the Rotation parameter of BoxCaptionRotation are Degrees90!,
Degrees 180!, Degrees 270!, and None!. Only these enumerations can replace the
data type in the command syntax.

DLL (Dynamic Link Library) file

A library of functions and procedures that can be called from a macro

drop-down list

A type of list available to a Combo Box control. Also called a “list box.”

E

enumeration

An option provided by the program, such as a style, type, method, or state. Also called
an “enumerated type.”

Enumerations end with an exclamation point.

For example, the DisplayMode parameter accepts only Text!, Graphics!, or
FullPage! as an emueration. In WordPerfect, On!, Heading8Style!, and
DefFlushRight! are enumerations used by different commands.

Glossary 169

enumeration data type

A data type that accepts an enumeration

event

A noun that acts as something taking place in an object and that is triggered by an
action (such as a click, key press, or system timer)

event-driven programming

A form of programming, such as Visual Basic for Applications, in which code is
executed in response to events. By contrast, in traditional procedural programming, the
program starts at line 1 and executes line by line.

expression

An element that represents values. An expression can be arithmetic, numeric,
measurement, relational, logical, bitwise, or character (that is, a string).

L

label

A subroutine similar to a procedure or function. A label generally contains one or more
statements followed by Return or Quit.

label data type

A data type that accepts a label

M

Macro toolbar

A toolbar that contains tools for writing and editing macros. It features buttons for
saving, compiling, inserting macro commands, and so on.

measurement data type

A data type that accepts a measurement value in inches, millimeters, picas, WP units,
and so on. For example, 72P (points) is equal to 1I (inch) and to 2.54C (centimeters).

All measurement return values are returned in WordPerfect units. Necessary unit
conversions are done internally when comparing two measurement values. Recorded
macros use the units specified in the application preferences. When specifying a
measurement value in a product command parameter, WordPerfect units (w) are
assumed unless other units are specified in the parameter or with the DefaultUnits
command.

170 Glossary

measurement expression

A number followed by a unit of measure (", i, c, m, p, w)

N

numeric data type

A data type that accepts a numeric expression

numeric expression

Also called a “numeric,” a number (such as the number of seconds, a line number, or an
outline level) on which mathematical operations can be performed. Numeric
expressions are not enclosed in quotation marks.

O

object model

The hierarchy of objects within an application and their relationship to each other
within the paradigm. Each object within an object model is defined by a property,
method, or event — or by a combination of each. An object responds to an action
through the use of written code.

For example, the Document object represents the beginning of the object hierarchy in
WordPerfect. Starting with the Document object, you can drill down and navigate
through the object model until you find the desired object. To reference an object with
Visual Basic code, you can separate each level of the object hierarchy with the dot
operator (.).

object-oriented programming

A form of programming that emphasizes creating and using objects

OLE (Object Linking and Embedding)

A feature that copies information from one document to another, “embedding” it
through a “live” link. When the original document changes, the embedded copy reflects
the changes.

OLE object command

An item, also called a “method,” that performs tasks on an OLE object in a specific OLE
automation server.

OLE object commands are specific for each object, such as Excel.Application or
Excel.Workbooks. They perform various functions on that object.

Glossary 171

OLE object commands that return information about an object are called “properties.”
Many properties have parameters as well as return values. In addition, many properties
can be assigned a value by placing them on the left side of the assignment symbol (:=),
similarly to the name of a variable.

operator

A symbol or word that performs a function on one or more expressions. Operators
compare expressions, link words together, and perform mathematical functions.

P

parameter

An optional command element. For example, InhibitInput (State: Off!) works
just the same as InhibitInput (Off!).

Some product commands have no parameters; their syntax is usually written with
empty parameters, such as PosScreenUp(). Similarly, some programming commands
and WordPerfect system variables have no parameters; their syntax is the command
name alone, such as PAUSE and ?FeatureBar.

In this documentation, italics indicate parameter names or types to be replaced with
data. For example, the syntax of GraphicsLineLength is as follows:

GraphicsLineLength (Length: measurement)

After you replace measurement with a number, the command might be

GraphicsLineLength (Length: 2I)

or

GraphicsLineLength (2I)

Be sure to enclose parameters in parentheses. A missing parenthesis, either opening or
closing, is a common error that prevents macros from compiling.

Spaces between command names and the opening parenthesis of the parameter section
and after semicolons in parameters are optional.

You can separate multiple parameters with semicolons (;). If you omit an optional
parameter, be sure to include the semicolon in the syntax to keep following parameters
in their correct positions, as in this example:

AbbreviationExpand (AbbreviationName:; Template: PersonalLibrary!)

or

AbbreviationExpand (; PersonalLibrary!)

172 Glossary

You can enclose repeating parameters in braces, as in this example:

CASE (<Test>: Any; { <Case>: Any; <Label>: label; Case: Any; <Label>:
<Label>...}. When data is supplied, the command could be CASE
(vChoice; { 1; Exclaim; 2; Info; 3; Question; 4; Stop; 5; QuitMacro};
QuitMacro)

PerfectScript

An application used to record, play, compile, convert, and edit macros. PerfectScript is
used to build or edit dialog boxes for macros.

product command

A command name that is specific to each application (such as WordPerfect or
Presentations) and that performs various functions in that application

For example, product commands (such as InitialCodesStyleDlg) can display a
dialog box; specify settings such as styles (BorderBottomLine), user preferences
(PrefZoom), or attributes (Font); turn features on and off (InhibitInput or
TableCellIgnoreCalculation); perform actions such as inserting a file
(FileInsert) or code (PrinterCommand), renaming a bookmark (BookmarkRename),
converting comments to text (CommentConvert), or moving the insertion point
(PosColBottom); or play macros that are included with the application
(FontDnShippingMacro).

Product commands that report information about the state of an application or feature
(that is, provide a “return value”) are sometimes called “system variables.” In
WordPerfect, system variables begin with a question mark (for example,
?ColumnWidth). In Presentations, they begin with Env (for example, EnvPaths). Some
system variables in Presentations have parameters as well as return values.

The most common data types in product commands are string, enumeration, and
numeric.

product prefix

A two-character expression that specifies a product for a macro command

programming command

A command name that works across applications and that controls or returns
information about applications and feature functions.

Programming commands generally control macro functions, such as by specifying
conditions under which other macro commands or statements operate (CASE, IF ELSE
ENDIF, SWITCH ENDSWITCH); repeating macro commands or statements a specified

Glossary 173

number of times or until certain conditions are met (FOR ENFOR, REPEAT UNTIL,
WHILE ENDWHILE); or invoking or jumping to a specified subroutine (“statement
block”) with CALL or GO.

Programming commands are frequently variables.

prompt

A dialog box box that displays information for the user

R

relational expression

An expression that evaluates parameters with only two possible states: TRUE and FALSE

run-time

The period during which a macro is executed. Run-time errors occur during macro
execution. Run-time options are application start-up settings, such as the macro’s
default directory.

S

string

Also called a character expression, one or more characters enclosed in double quotation
marks. This syntax identifies the characters as text, rather than as a variable.

Strings can include numbers. Here is a sample string:

Type ("1") and MESSAGEBOX (vStatus; "VAR" + x; "Continue to next
variable?" ; IconQuestion! |YesNo!!)

string data type

A data type that accepts a string

The string data type represents text that you provide, such as a filename, a dialog box
control name, message box text, or a character sequence to insert into a document.

syntax

The grammar or sequence for assembling commands

T

toggle command

A command that switches between states

174 Glossary

For example, the WordPerfect Bold command can be On! or Off!. If On! or Off! is
not specified, Bold “toggles” between the two states each time it is called; if Bold is
Off!, it is turned On!, while if Bold is On!, it is turned Off!.

token ID

The name of a macro command (such as InvokeDialog)

U

user-defined dialog box

A custom dialog box created with Dialog programming commands that display
options for user input

V

value set member

A value in an enumeration list

variable

An item that can be created (or “declared”) for the purposes of storing data

A variable name must begin with a letter but is not case-sensitive. (All variables in this
documentation’s examples begin with v.) Variables can include any combination of
letters or numbers up to 50 characters. For example, you could “assign” the value
C:\COREL\WPO\ to variable vPath, and then substitute the variable for the path in the
rest of the macro.

You can change the value of a variable. If variable vNmbr equals 5, then the expression
vNmbr := vNmbr + 1 results in vNmbr equaling 6.

variant data type

The data type for all variables that are not declared as another type (such as Dim,
Private, Public, or Static). The variant data type has no type-declaration character.

W

window

The application area that contains a title bar, menu bar, and application bar, and that
may contain a property bar, scroll bar, toolbar, and ruler. The Equation Editor window
has separate editing and display areas called “panes.”

window handle

A unique identifier for a window or control

Index 175

Index

A
aligning dialog-box controls 123

animating macros 161
settings for . 141

applications
external, accessing in macros 77
with commands, listing 148

arithmetic expressions 45

arithmetic operators 27

arrays . 20
collapsing in Variables list 158
expanding in Variables list 158
passing to functions and procedures . . 67
precautions for 90

assignment operators 27

assignment statements 54

B
behaviors for dialog-box controls 124

bitmaps, in dialog boxes 110

bitwise expressions 46

bitwise operators . 35

breakpoints . 150
enabling and disabling 154
executing tokens 155
in event logs . 155
moving between 154
removing . 154
setting . 153

buttons, in dialog boxes 111

C
callback loops . 126

callbacks . 74

debugging .164
for dialog boxes124
listing pending queue items149

calling statements .59
Call command .75
creating from subroutines 75
Go command .76
subroutine name75
subroutines .59

Case conditions .55

character expressions43

check boxes, in dialog boxes111

closing dialog boxes133

code, macro
displaying dialog boxes131
navigating while debugging159
searching in Debugger162

coding macros manually93

color wheels, in dialog boxes 112

combination boxes, in dialog boxes112

combo boxes, in dialog boxes112

Command Browser
displaying from PerfectScript utility . .84
Help for macro commands 84
inserting macro commands 95

Command Inserter 93
using .95

command names .49
syntax .49

command statements47

comment statements 77

comments .77

compilers .97

176 Index

compiling macros .96
settings for .85
troubleshooting errors 97
using Debugger142

condition handlers, listing 149

conditional statements54

conditions
Case .55
If .55
Switch .56

constant variables .18

constants .25

controls for dialog boxes
adding .119
aligning .123
behaviors, assigning 124
copying .120
default button, specifying124
deleting .120
editing .120
grouping .124
initial focus, specifying124
lists, managing 122
moving .120
positioning .122
properties, setting 120
resizing .120
selecting multiple 120
selecting one .119
setting up .108
tabbing through 124

conversations, DDE 80

converting macros .89

copying
controls, in dialog boxes120
dialog boxes .106

Corel SCRIPT, recording macros in 87

Corel Web site .82

counters, in dialog boxes 113

cursor position, debugging with 161

custom controls, in dialog boxes 113

D
date controls, in dialog boxes 113

DDE .80
Presentations conversations81
Quattro Pro conversations 80
WordPerfect conversations80

debug information, including141

Debugger .135
breakpoints, working with 150
Call History list137
Callback Queue window 147
compiling macros with142
Condition Handlers window146
debugging macros with139
Dialog List window 145
getting started 135
information windows 143
Label Table window144
Macro Header window147
Macro Info List window147
menu .136
navigating macro code 159
Product Table window145
settings .141
Source list .137
State line .136
stopping with breakpoints 153
toolbar .136
troubleshooting162
Use File Table window 145
Variables list .138
variables, working with156

Index 177

debugging macros 135
breakpoints . 150
callbacks . 164
error messages 162
getting more information 143
getting started 135
navigating code 159
setting up for . 141
settings for . 85
troubleshooting 162
using Debugger 139
variables . 156

declaring variables . 12

Delphi, recording macros in 87

destroying dialog boxes 133

dialog boxes . 101
adding to macros 105
callbacks . 124
closing . 133
controls, setting up 108
copying . 106
deleting . 107
destroying . 133
displaying . 131
editing . 106
font, setting . 107
listing user-created 148
opening . 131
properties, setting 107
releasing . 132
renaming . 106
saving in macros 108
setting up . 102
testing . 131

Dialog Editor . 101
displaying from PerfectScript utility . . 84
setting up controls for dialog boxes . . 108
setting up dialog boxes with 104

testing dialog boxes131

discarding variables19
during debugging 159

dismissing dialog boxes133

displaying dialog boxes131

drop-down lists, in dialog boxes116

Dynamic Data Exchange (DDE)80

E
edit boxes, in dialog boxes114

editing macros .93
settings for .86

errors, troubleshooting
compiling macros 97
debugging macros162
playing macros 100

evaluating to return values53

event logs .152
breakpoints in 155

executing tokens while debugging155

execution points, listing labels148

expressions .8
constants in .25
operators in .25
types of .40
variables in .10

external applications, accessing 77

F
filename boxes, in dialog boxes 115

font, in dialog boxes 107

For loops .57

formatting macros .94

frames, in dialog boxes115

178 Index

functions .61
calling .68
creating .62
macro libraries .71
passing arrays to 67
passing variables to65
structuring .68
variables in .62

G
global variables .15

grid, positioning controls with 123

group boxes, in dialog boxes115

grouping dialog-box controls 124

H
handling return values52

Help
controls in PerfectScript utility 84
macro commands 84

horizontal lines, in dialog boxes 116

I
If conditions .55

information windows in Debugger 143
displaying or hiding 148

initializing variables 12

J
JavaScript, recording macros in 87

K
keywords, precautions for90

L
labels .60

calling .61

creating .60
listing at execution point 148
structuring .61

learning about macros81

legacy macros, migrating 89

line numbers, searching for 162

lines, in dialog boxes 116

list boxes, in dialog boxes116

list controls, in dialog boxes116

listing files .140
generating for macros141

local variables .13

logging events for breakpoints 155

logical expressions .46

logical operators .31

loop statements .57

loops
For .57
Repeat .58
While .59

M
macro commands .47

components .49
inserting .95
names .49
parameters .50
return values .52

macro compilers .97

macro libraries .71

macro resources .81

macro statements .4

macro structure .5

macro syntax .5

Index 179

macros . 3
accessing external applications 77
compiling . 96
converting to PerfectScript format . . . 89
creating . 89
debugging . 135
dialog boxes . 101
formatting . 94
getting started . 83
learning more about 81
making user-friendly 100
migrating legacy 89
playing . 99
recording . 92
settings, general 85
writing and editing 93

measurement expressions 41

migrating legacy macros 89

moving between breakpoints 154

moving dialog-box controls 120

moving through macro code 159

N
navigating macro code while debugging 159

numeric expressions 41

O
object-header information, displaying . . 150

objects
OLE Automation 78

OLE Automation . 77
objects . 78

opening dialog boxes 131

operators . 25
arithmetic . 27
assignment . 27

bitwise .35
logical .31
precedence of .38
relational .28

P
parameters .50

syntax .50

pausing macros .100
during debugging 142

PerfectScript .3
converting macros to89

PerfectScript utility 83
Command Browser, displaying84
Debugger .135
Dialog Editor .101
Dialog Editor, displaying84
Help for controls84
Help for macro commands 84
quitting .84
settings .85
starting .84
toolbar settings 87

persistent variables 16

playing macros .99
settings for .86
troubleshooting errors 100

pop-up buttons, in dialog boxes111

pop-up lists, in dialog boxes 116

positioning dialog-box controls122

Presentations
DDE conversations81

procedural macros .7

procedures .61
calling .68
creating .62

180 Index

macro libraries .71
passing arrays to 67
passing variables to65
structuring .69
variables in .62

products with commands, listing 148

progress indicators, in dialog boxes117

push buttons, in dialog boxes 111

Q
Quattro Pro

DDE conversations80

quitting PerfectScript utility84

R
radio buttons, in dialog boxes111

radix expressions .42

recording macros .92
settings for .87

region commands 128

relational expressions45

relational operators28

releasing dialog boxes132

renaming dialog boxes 106

Repeat loops .58

resizing dialog-box controls120

restarting macros during debugging143

resuming macros .100

return values .52
evaluating .53
handling .52

running macros
See playing macros

run-time errors .100

S
saving dialog boxes in macros108

scroll bars, in dialog boxes117

SDK .81

searching macro code162

selecting dialog-box controls
multiple .120
one .119

sequential macros .6

setting up
controls for dialog boxes108
dialog boxes for macros102

Software Development Kit (SDK) 81

sorting variables in Variables list157

starting PerfectScript utility84

statements, macro .4
assignment .54
calling .59
command .47
comment .77
conditional .54
expressions in .8
loop .57

static text, in dialog boxes 118

stepping through macros 161

stopping
Debugger with breakpoints 153
debugging of macros143
macros .100

structure, macro .5

subroutines .59
callbacks .74
creating calling statements from 75
functions .61
labels .60

Index 181

procedures . 61
using names in calling statements . . . 75

Switch conditions . 56

syntax
command names 49
macros . 5
parameters . 50

T
tabbing through dialog-box controls . . . 124

testing dialog boxes 131

text
searching macros for 162
using in dialog boxes 118

third-party tokens 152

tokens . 152
executing while debugging 155

toolbar, PerfectScript 87

troubleshooting
compilation errors 97
Debugger . 162
run-time errors 100

typing macros . 93

U
Use files, listing . 148

user-friendliness of macros 100

V
variables . 10

collapsing in Variables list 158
constant . 18
creating during debugging 158
debugging . 156
declaring and initializing 12
determining existence 18

discarding .19
displaying in macros157
editing during debugging159
expanding in Variables list158
global .15
local .13
passing to functions and procedures . .65
persistent .16
refreshing in Variables list 158
removing during debugging 159
sorting in Variables list157
using in functions and procedures . . .62
watching .158

vertical lines, in dialog boxes116

viewers, in dialog boxes118

Visual Basic, recording macros in87

W
watching variables158

WCL files .140

Web site, Corel .82

While loops .59

WordPerfect
DDE conversations80

writing macros .93

182 Index

Copyright © 2010 Corel Corporation. All rights reserved.

Corel® WordPerfect® Office X5 User Guide for PerfectScript™

Product specifications, pricing, packaging, technical support and information
(“specifications”) refer to the retail English version only. The specifications for all other
versions (including other language versions) may vary.

INFORMATION IS PROVIDED BY COREL ON AN “AS IS” BASIS, WITHOUT
ANY OTHER WARRANTIES OR CONDITIONS, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABLE
QUALITY, SATISFACTORY QUALITY, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE, OR THOSE ARISING BY LAW, STATUTE, USAGE
OF TRADE, COURSE OF DEALING OR OTHERWISE. THE ENTIRE RISK AS
TO THE RESULTS OF THE INFORMATION PROVIDED OR ITS USE IS
ASSUMED BY YOU. COREL SHALL HAVE NO LIABILITY TO YOU OR ANY
OTHER PERSON OR ENTITY FOR ANY INDIRECT, INCIDENTAL, SPECIAL,
OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING, BUT NOT
LIMITED TO, LOSS OF REVENUE OR PROFIT, LOST OR DAMAGED DATA OR
OTHER COMMERCIAL OR ECONOMIC LOSS, EVEN IF COREL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR THEY ARE
FORESEEABLE. COREL IS ALSO NOT LIABLE FOR ANY CLAIMS MADE BY
ANY THIRD PARTY. COREL’S MAXIMUM AGGREGATE LIABILITY TO YOU
SHALL NOT EXCEED THE COSTS PAID BY YOU TO PURCHASE THE
MATERIALS. SOME STATES/COUNTRIES DO NOT ALLOW EXCLUSIONS OR
LIMITATIONS OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Corel, the Corel logo, Corel SCRIPT, PerfectScript, Presentations, Quattro Pro,
QuickCorrect, and WordPerfect are trademarks or registered trademarks of Corel
Corporation and/or its subsidiaries in Canada, the U.S. and/or other countries. All other
product names and any registered and unregistered trademarks mentioned are used for
identification purposes only and remain the exclusive property of their respective
owners.

103030

	Introduction
	Understanding macro concepts
	Understanding macros
	Understanding macro statements
	Understanding macro syntax
	Understanding macro structure

	Using expressions in macro statements
	Understanding variables
	Understanding constants
	Understanding operators
	Understanding expression types

	Using command statements in macros
	Understanding command names
	Understanding parameters
	Understanding return values

	Using assignment statements in macros
	Using conditional statements in macros
	Using loop statements in macros
	Using calling statements in macros
	Understanding labels
	Understanding functions and procedures
	Understanding callbacks
	Creating calling statements from subroutines

	Using comment statements in macros
	Accessing external applications in macros
	Understanding OLE Automation
	Understanding Dynamic Data Exchange (DDE)

	Learning more about macros
	Using the WordPerfect Office Software Development Kit (SDK)
	Using the Corel Web site

	Getting started with macros
	Using the PerfectScript utility
	Specifying PerfectScript settings

	Creating macros
	Migrating legacy macros
	Recording macros
	Writing and editing macros
	Compiling macros
	Playing macros
	Making macros user-friendly

	Creating dialog boxes for macros
	Understanding dialog boxes
	Setting up dialog boxes for macros
	Setting up controls for dialog boxes
	Setting up callbacks for dialog boxes
	Testing dialog boxes
	Displaying dialog boxes

	Debugging macros
	Getting started with the PerfectScript Debugger
	Using the Debugger to debug macros
	Getting more information while debugging macros
	Working with breakpoints while debugging macros
	Working with variables while debugging macros
	Navigating the code while debugging macros
	Troubleshooting the Debugger

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Light GCR 280 UCR CMYK US Negative Proofing)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

