
FileMaker® 14
SQL Reference

© 2013-2015 FileMaker, Inc. All Rights Reserved.
FileMaker, Inc.
5201 Patrick Henry Drive
Santa Clara, California 95054
FileMaker and FileMaker Go are trademarks of FileMaker, Inc. registered in the U.S. and other countries. The file folder logo
and FileMaker WebDirect are trademarks of FileMaker, Inc. All other trademarks are the property of their respective owners.
FileMaker documentation is copyrighted. You are not authorized to make additional copies or distribute this documentation
without written permission from FileMaker. You may use this documentation solely with a valid licensed copy of FileMaker
software.
All persons, companies, email addresses, and URLs listed in the examples are purely fictitious and any resemblance to
existing persons, companies, email addresses, or URLs is purely coincidental. Credits are listed in the Acknowledgements
documents provided with this software. Mention of third-party products and URLs is for informational purposes only and
constitutes neither an endorsement nor a recommendation. FileMaker, Inc. assumes no responsibility with regard to the
performance of these products.
For more information, visit our website at http://www.filemaker.com.
Edition: 01

Contents

Chapter 1
Introduction 5

About this reference 5
Where to find FileMaker documentation 5

About SQL 5
Using a FileMaker database as a data source 6
Using the ExecuteSQL function 6

Chapter 2
Supported standards 7

Support for Unicode characters 7
SQL statements 7

SELECT statement 8
SQL clauses 9
FROM clause 9
WHERE clause 10
GROUP BY clause 11
HAVING clause 11
UNION operator 12
ORDER BY clause 12
OFFSET and FETCH FIRST clauses 13
FOR UPDATE clause 14
DELETE statement 17
INSERT statement 17
UPDATE statement 19
CREATE TABLE statement 20
ALTER TABLE statement 21
CREATE INDEX statement 22
DROP INDEX statement 22

SQL expressions 23
Field names 23
Constants 23
Exponential/scientific notation 24
Numeric operators 24
Character operators 25
Date operators 25
Relational operators 25
Logical operators 27
Operator precedence 27

4

SQL functions 28
Aggregate functions 28
Functions that return character strings 29
Functions that return numbers 30
Functions that return dates 32
Conditional functions 32

Reserved SQL keywords 34

Index 37

Chapter 1
Introduction
As a database developer, you can use FileMaker Pro to create database solutions without any
knowledge of SQL. But if you have some knowledge of SQL, you can use a FileMaker database
file as an ODBC or JDBC data source, sharing your data with other applications using ODBC and
JDBC. You can also use the FileMaker Pro ExecuteSQL function to retrieve data from any table
occurrence within a FileMaker Pro database.
This reference describes the SQL statements and standards supported by FileMaker. The
FileMaker ODBC and JDBC client drivers support all of the SQL statements described in this
reference. The FileMaker Pro ExecuteSQL function supports only the SELECT statement.
About this reference

1 For information on using ODBC and JDBC with previous versions of FileMaker Pro, see

http://www.filemaker.com/documentation.
1 This reference assumes that you are familiar with the basics of using FileMaker Pro functions,

coding ODBC and JDBC applications, and constructing SQL queries. Refer to a third-party
book for more information on these topics.

1 This reference uses “FileMaker Pro” to refer to both FileMaker Pro and FileMaker Pro
Advanced, unless describing specific FileMaker Pro Advanced features.

Where to find FileMaker documentation
1 In FileMaker Pro, choose Help menu > Product Documentation.
1 In FileMaker Server Admin Console, choose Help menu > FileMaker Server Product

Documentation.
1 To learn about, view, or download additional FileMaker documentation, visit

http://www.filemaker.com/documentation.
About SQL

SQL, or Structured Query Language, is a programming language that was designed to query data
from a relational database. The primary statement used to query a database is the SELECT
statement.
In addition to language for querying a database, SQL provides statements for performing data
manipulation, which allow you to add, update, and delete data.
SQL also provides statements for performing data definition. These statements allow you to create
and modify tables and indexes.
The SQL statements and standards supported by FileMaker are described in chapter 2,
“Supported standards.”

http://www.filemaker.com/documentation
http://www.filemaker.com/documentation

Chapter 1 | Introduction 6
Using a FileMaker database as a data source

When you host a FileMaker database as an ODBC or JDBC data source, FileMaker data can be
shared with ODBC- and JDBC-compliant applications. The applications connect to the FileMaker
data source using the FileMaker client drivers, construct and execute the SQL queries using
ODBC or JDBC, and process the data retrieved from the FileMaker database solution.
See FileMaker ODBC and JDBC Guide for extensive information on how you can use FileMaker
software as a data source for ODBC and JDBC applications.
The FileMaker ODBC and JDBC client drivers support all of the SQL statements described in this
reference.
Using the ExecuteSQL function

The FileMaker Pro ExecuteSQL function lets you retrieve data from table occurrences named in
the relationships graph but independent of any defined relationships. You can retrieve data from
multiple tables without creating table joins or any relationship between the tables. In some cases,
you may be able to reduce the complexity of your relationships graph by using the ExecuteSQL
function.
The fields you query with the ExecuteSQL function do not have to be on any layout, so you can
use the ExecuteSQL function to retrieve data independent of any layout context. Because of this
context independence, using the ExecuteSQL function in scripts may improve the portability of the
scripts. You can use the ExecuteSQL function anywhere you can specify calculations, including
for charting and reporting.
The ExecuteSQL function supports only the SELECT statement, described in the section
“SELECT statement” on page 8.
Also, the ExecuteSQL function accepts only the SQL-92 syntax ISO date and time formats with
no braces ({}). The ExecuteSQL function does not accept the ODBC/JDBC format date, time, and
timestamp constants in braces.
For information about the syntax and use of the ExecuteSQL function, see FileMaker Pro Help.

Chapter 2
Supported standards
This reference describes the SQL statements and constructs supported by FileMaker. The
FileMaker ODBC and JDBC client drivers support all of the SQL statements described in this
chapter. The FileMaker Pro ExecuteSQL function supports only the SELECT statement.
Use the client drivers to access a FileMaker database solution from an ODBC- or JDBC-compliant
application. The FileMaker database solution can be hosted by either FileMaker Pro or
FileMaker Server.
1 The ODBC client driver supports ODBC 3.5 Level 1 with some features of Level 2.
1 The JDBC client driver provides partial support for the JDBC 3.0 specification.
1 The ODBC and JDBC client drivers both support SQL-92 entry-level conformance, with some

SQL-92 intermediate features.
Support for Unicode characters

The ODBC and JDBC client drivers support the Unicode API. However, if you’re creating a custom
application that uses the client drivers, use ASCII for field names, table names, and filenames (in
case a non-Unicode query tool or application is used).

Note To insert and retrieve Unicode data, use SQL_C_WCHAR.
SQL statements

The ODBC and JDBC client drivers provide support for the following SQL statements:
1 SELECT (page 8)
1 DELETE (page 17)
1 INSERT (page 17)
1 UPDATE (page 19)
1 CREATE TABLE (page 20)
1 ALTER TABLE (page 21)
1 CREATE INDEX (page 22)
1 DROP INDEX (page 22)

The client drivers also support FileMaker data type mapping to ODBC SQL and JDBC SQL data
types. See FileMaker ODBC and JDBC Guide for data type conversions. For more information on
constructing SQL queries, refer to a third-party book.

Note The ODBC and JDBC client drivers do not support FileMaker portals.

Chapter 2 | Supported standards 8
SELECT statement
Use the SELECT statement to specify which columns you're requesting. Follow the SELECT
statement with the column expressions (similar to field names) you want to retrieve (for example,
last_name). Expressions can include mathematical operations or string manipulation (for
example, SALARY * 1.05).

The SELECT statement can use a variety of clauses:

SELECT [DISTINCT] {* | column_expression [[AS] column_alias],...}
FROM table_name [table_alias], ...
[WHERE expr1 rel_operator expr2]
[GROUP BY {column_expression, ...}]
[HAVING expr1 rel_operator expr2]
[UNION [ALL] (SELECT...)]
[ORDER BY {sort_expression [DESC | ASC]}, ...]
[OFFSET n {ROWS | ROW}]
[FETCH FIRST [n [PERCENT]] { ROWS | ROW } {ONLY | WITH TIES }]
[FOR UPDATE [OF {column_expression, ...}]]

Items in brackets are optional.
column_alias can be used to give the column a more descriptive name, or to abbreviate a
longer column name. For example, to assign the alias department to the column dept:

SELECT dept AS department FROM emp

Field names can be prefixed with the table name or the table alias. For example, EMP.LAST_NAME
or E.LAST_NAME, where E is the alias for the table EMP.
The DISTINCT operator can precede the first column expression. This operator eliminates
duplicate rows from the result of a query. For example:

SELECT DISTINCT dept FROM emp

Chapter 2 | Supported standards 9
SQL clauses
The ODBC and JDBC client drivers provide support for the following SQL clauses.

Note If you attempt to retrieve data from a table with no columns, the SELECT statement returns
nothing.

FROM clause
The FROM clause indicates the tables that are used in the SELECT statement. The format is:

FROM table_name [table_alias] [, table_name [table_alias]]

table_name is the name of a table in the current database. The table name must begin with an
alphabetic character. If the table name begins with other than an alphabetic character, enclose it
in double quotation marks (quoted identifier).
table_alias can be used to give the table a more descriptive name, to abbreviate a longer table
name, or to include the same table in the query more than once (for example, in self-joins).
Field names begin with an alphabetic character. If the field name begins with other than an
alphabetic character, enclose it in double quotation marks (quoted identifier). For example, the
ExecuteSQL statement for the field named _LASTNAME is:

SELECT "_LASTNAME" from emp

Field names can be prefixed with the table name or the table alias. For example, given the table
specification FROM employee E, you can refer to the LAST_NAME field as E.LAST_NAME. Table
aliases must be used if the SELECT statement joins a table to itself. For example:

SELECT * FROM employee E, employee F WHERE E.manager_id =
F.employee_id

The equal sign (=) includes only matching rows in the results.

Use this SQL clause To
FROM (page 9) Indicate which tables are used in the SELECT statement.

WHERE (page 10) Specify the conditions that records must meet to be retrieved (like a FileMaker Pro find
request).

GROUP BY (page 11) Specify the names of one or more fields by which the returned values should be grouped.
This clause is used to return a set of aggregate values by returning one row for each group
(like a FileMaker Pro subsummary).

HAVING (page 11) Specify conditions for groups of records (for example, display only the departments that
have salaries totaling more than $200,000).

UNION (page 12) Combine the results of two or more SELECT statements into a single result.

ORDER BY (page 12) Indicate how the records are sorted.

OFFSET (page 13) State the number of rows to be skipped before starting to retrieve rows.

FETCH FIRST (page 13) Specify the number of rows to be retrieved. No more than the specified number of rows are
returned although fewer rows may be returned if the query yields less than the number of
rows specified.

FOR UPDATE (page 14) Perform Positioned Updates or Positioned Deletes via SQL cursors.

Chapter 2 | Supported standards 10
If you are joining more than one table, and you want to discard all rows that don’t have
corresponding rows in both source tables, you can use INNER JOIN. For example:

SELECT *
 FROM Salespeople INNER JOIN Sales_Data
 ON Salespeople.Salesperson_ID = Sales_Data.Salesperson_ID

If you are joining two tables, but you don’t want to discard rows of the first table (the “left” table),
you can use LEFT OUTER JOIN.

SELECT *
 FROM Salespeople LEFT OUTER JOIN Sales_Data
 ON Salespeople.Salesperson_ID = Sales_Data.Salesperson_ID

Every row from the “Salespeople” table will appear in the joined table.

Notes

1 RIGHT OUTER JOIN is not currently supported.
1 FULL OUTER JOIN is not currently supported.

WHERE clause
The WHERE clause specifies the conditions that records must meet to be retrieved. The WHERE
clause contains conditions in the form:

WHERE expr1 rel_operator expr2

expr1 and expr2 can be field names, constant values, or expressions.
rel_operator is the relational operator that links the two expressions. For example, the
following SELECT statement retrieves the names of employees who make $20,000 or more.

SELECT last_name,first_name FROM emp WHERE salary >= 20000

The WHERE clause can also use expressions such as these:

WHERE expr1 IS NULL
WHERE NOT expr2

Note If you use fully qualified names in the SELECT (projection) list, you must also use fully
qualified names in the related WHERE clause.

Chapter 2 | Supported standards 11
GROUP BY clause
The GROUP BY clause specifies the names of one or more fields by which the returned values
should be grouped. This clause is used to return a set of aggregate values. It has the following
format:

GROUP BY columns

columns must match the column expression used in the SELECT clause. A column expression
can be one or more field names of the database table separated by commas.

Example

The following example sums the salaries in each department.

SELECT dept_id, SUM (salary) FROM emp GROUP BY dept_id

This statement returns one row for each distinct department ID. Each row contains the department
ID and the sum of the salaries of the employees in the department.

HAVING clause
The HAVING clause enables you to specify conditions for groups of records (for example, display
only the departments that have salaries totaling more than $200,000). It has the following format:

HAVING expr1 rel_operator expr2

expr1 and expr2 can be field names, constant values, or expressions. These expressions do
not have to match a column expression in the SELECT clause.
rel_operator is the relational operator that links the two expressions.

Example

The following example returns only the departments whose sums of salaries are greater than
$200,000:

SELECT dept_id, SUM (salary) FROM emp
 GROUP BY dept_id HAVING SUM (salary) > 200000

Chapter 2 | Supported standards 12
UNION operator
The UNION operator combines the results of two or more SELECT statements into a single result.
The single result is all of the returned records from the SELECT statements. By default, duplicate
records are not returned. To return duplicate records, use the ALL keyword (UNION ALL). The
format is:

SELECT statement UNION [ALL] SELECT statement

When using the UNION operator, the select lists for each SELECT statement must have the same
number of column expressions, with the same data types, and must be specified in the same
order. For example:

SELECT last_name, salary, hire_date FROM emp UNION SELECT name, pay,
birth_date FROM person

This example has the same number of column expressions, and each column expression, in
order, has the same data type.
The following example is not valid because the data types of the column expressions are different
(SALARY from EMP has a different data type than LAST_NAME from RAISES). This example has
the same number of column expressions in each SELECT statement, but the expressions are not
in the same order by data type.

SELECT last_name, salary FROM emp UNION SELECT salary, last_name FROM
raises

ORDER BY clause
The ORDER BY clause indicates how the records are to be sorted. The format is:

ORDER BY {sort_expression [DESC | ASC]}, ...

sort_expression can be field names, expressions, or the positional number of the column
expression to use. The default is to perform an ascending (ASC) sort.
For example, to sort by last_name then by first_name, you could use either of the following
SELECT statements:

SELECT emp_id, last_name, first_name FROM emp ORDER BY last_name,
first_name

or

SELECT emp_id, last_name, first_name FROM emp ORDER BY 2,3

In the second example, last_name is the second column expression following SELECT, so
ORDER BY 2 sorts by last_name.

Note FileMaker SQL uses the Unicode binary sort order, which is different from the
FileMaker Pro sort order used with language sorting or with the default language-neutral sort
order.

Chapter 2 | Supported standards 13
OFFSET and FETCH FIRST clauses
The OFFSET and FETCH FIRST clauses are used to return a specified range of rows beginning
from a particular starting point in a result set. The ability to limit the rows retrieved from large result
sets allows you to “page” through the data and improves efficiency.
The OFFSET clause indicates the number of rows to skip before starting to return data. If the
OFFSET clause is not used in a SELECT statement, the starting row is 0. The FETCH FIRST clause
specifies the number of rows to be returned, either as an unsigned integer greater than or equal
to 1 or as a percentage, from the starting point indicated in the OFFSET clause. If both OFFSET
and FETCH FIRST are used in a SELECT statement, the OFFSET clause should come first.
The OFFSET and FETCH FIRST clauses are not supported in subqueries.

OFFSET format

The OFFSET format is:

OFFSET n {ROWS | ROW}]

n is an unsigned integer. If n is larger than the number of rows returned in the result set, then
nothing is returned and no error message appears.
ROWS is the same as ROW.

FETCH FIRST format

The FETCH FIRST format is:

FETCH FIRST [n [PERCENT]] { ROWS | ROW } {ONLY | WITH TIES }]

n is the number of rows to be returned. The default value is 1 if n is omitted.
n is an unsigned integer greater than or equal to 1 unless it is followed by PERCENT. If n is followed
by PERCENT, the value may be either a positive fractional value or an unsigned integer.
ROWS is the same as ROW.
WITH TIES must be used with the ORDER BY clause.
WITH TIES allows more rows to be returned than specified in the FETCH count value because
peer rows, those rows that are not distinct based on the ORDER BY clause, are also returned.

Examples

For example, to return information from the twenty-sixth row of the result set sorted by last_name
then by first_name, use the following SELECT statement:

SELECT emp_id, last_name, first_name FROM emp ORDER BY last_name,
first_name OFFSET 25 ROWS

To specify that you want to return only ten rows:

SELECT emp_id, last_name, first_name FROM emp ORDER BY last_name,
first_name OFFSET 25 ROWS FETCH FIRST 10 ROWS ONLY

Chapter 2 | Supported standards 14
To return the ten rows and their peer rows (rows that are not distinct based on the ORDER BY
clause):

SELECT emp_id, last_name, first_name FROM emp ORDER BY last_name,
first_name OFFSET 25 ROWS FETCH FIRST 10 ROWS WITH TIES

FOR UPDATE clause
The FOR UPDATE clause locks records for Positioned Updates or Positioned Deletes via SQL
cursors. The format is:

FOR UPDATE [OF column_expressions]

column_expressions is a list of field names in the database table that you intend to update,
separated by a comma. column_expressions is optional, and is ignored.

Example

The following example returns all records in the employee database that have a SALARY field
value of more than $20,000. When each record is fetched, it is locked. If the record is updated or
deleted, the lock is held until you commit the change. Otherwise, the lock is released when you
fetch the next record.

SELECT * FROM emp WHERE salary > 20000
 FOR UPDATE OF last_name, first_name, salary

Chapter 2 | Supported standards 15
Additional examples:

Notes from the examples

A column is a reference to a field in the FileMaker database file. (The field can contain many
distinct values.)
The asterisk (*) wildcard character is shorthand for “everything”. For the example SELECT *
FROM Salespeople, the result is all the columns in the Salespeople table. For the example
SELECT DISTINCT * FROM Salespeople, the result is all the unique rows in the
Salespeople table (no duplicates).
1 FileMaker does not store data for empty strings, so the following queries always return no

records:

SELECT * FROM test WHERE c =’’
SELECT * FROM test WHERE c <>’’

1 If you use SELECT with binary data, you must use the GetAs() function to specify the stream
to return. See the following section “Retrieving the contents of a container field: CAST() function
and GetAs() function,” for more information.

Using Sample SQL
text constant SELECT 'CatDog' FROM Salespeople

numeric constant SELECT 999 FROM Salespeople

date constant SELECT DATE '2015-06-05' FROM Salespeople

time constant SELECT TIME '02:49:03' FROM Salespeople

timestamp constant SELECT TIMESTAMP '2015-06-05 02:49:03' FROM Salespeople

text column SELECT Company_Name FROM Sales_Data

SELECT DISTINCT Company_Name FROM Sales_Data

numeric column SELECT Amount FROM Sales_Data

SELECT DISTINCT Amount FROM Sales_Data

date column SELECT Date_Sold FROM Sales_Data

SELECT DISTINCT Date_Sold FROM Sales_Data

time column SELECT Time_Sold FROM Sales_Data

SELECT DISTINCT Time_Sold FROM Sales_Data

timestamp column SELECT Timestamp_Sold FROM Sales_Data

SELECT DISTINCT Timestamp_Sold FROM Sales_Data

BLOBa column

a. A BLOB is a FileMaker database file container field.

SELECT Company_Brochures FROM Sales_Data

SELECT GETAS(Company_Logo, 'JPEG') FROM Sales_Data

Wildcard * SELECT * FROM Salespeople

SELECT DISTINCT * FROM Salespeople

Chapter 2 | Supported standards 16
Retrieving the contents of a container field: CAST() function and GetAs() function

You can retrieve binary data, file reference information, or data of a specific file type from a
container field.
If file data or JPEG binary data exists, the SELECT statement with GetAS(field name,
'JPEG') retrieves the data in binary form; otherwise, the SELECT statement with field name
returns NULL.
To retrieve file reference information from a container field, such as the file path to a file, picture,
or QuickTime movie, use the CAST() function with a SELECT statement. For example:

SELECT CAST(Company_Brochures AS VARCHAR) FROM Sales_Data

In this example, if you:
1 Inserted a file into the container field using FileMaker Pro but stored only a reference to the file,

the SELECT statement retrieves the file reference information as type SQL_VARCHAR.
1 Inserted the contents of a file into the container field using FileMaker Pro, the SELECT

statement retrieves the name of the file.
1 Imported a file into the container field from another application, the SELECT statement displays

'?' (the file displays as Untitled.dat in FileMaker Pro).

To retrieve data from a container field, use the GetAs() function. You may use the DEFAULT
option or specify the file type. The DEFAULT option retrieves the master stream for the container
without the need to explicitly define the stream type:

SELECT GetAs(Company_Brochures, DEFAULT) FROM Sales_Data

To retrieve an individual stream type from a container, use the GetAs() function with the file’s type
based on how the data was inserted into the container field in FileMaker Pro. For example:
1 If the data was inserted using the Insert > File command, specify 'FILE' in the GetAs()

function. For example:

SELECT GetAs(Company_Brochures, 'FILE') FROM Sales_Data

1 If the data was inserted using the Insert > Sound command (Standard sound — MAC OS X
raw format), specify 'snd' in the GetAs() function. For example:

SELECT GetAs(Company_Meeting, 'snd ') FROM Company_Newsletter

Chapter 2 | Supported standards 17
1 If the data was inserted using the Insert > Picture command, drag and drop, or paste from the
clipboard, specify one of the file types listed in the following table. For example:

SELECT GetAs(Company_Logo, 'JPEG') FROM Company_Icons

DELETE statement
Use the DELETE statement to delete records from a database table. The format of the DELETE
statement is:

DELETE FROM table_name [WHERE { conditions }]

Note The WHERE clause determines which records are to be deleted. If you don’t include the
WHERE keyword, all records in the table are deleted (but the table is left intact).

Example

An example of a DELETE statement on the Employee table is:

DELETE FROM emp WHERE emp_id = 'E10001'

Each DELETE statement removes every record that meets the conditions in the WHERE clause. In
this case, every record having the employee ID E10001 is deleted. Because employee IDs are
unique in the Employee table, only one record is deleted.

INSERT statement
Use the INSERT statement to create records in a database table. You can specify either:
1 A list of values to be inserted as a new record
1 A SELECT statement that copies data from another table to be inserted as a set of new records

The format of the INSERT statement is:

INSERT INTO table_name [(column_name, ...)] VALUES (expr, ...)

column_name is an optional list of column names that provides the name and order of the
columns whose values are specified in the VALUES clause. If you omit column_name, the value
expressions (expr) must provide values for all columns defined in the table and must be in the
same order that the columns are defined for the table. column_name may also specify a field
repetition, for example lastDates[4].

File type Description File type Description
'GIFf' Graphics Interchange Format 'PNTG' MacPaint

'JPEG' Photographic images '.SGI' Generic bitmap format

'JP2 ' JPEG 2000 'TIFF' Raster file format for digital images

'PDF ' Portable Document Format 'TPIC' Targa

'PNGf' Bitmap image format '8BPS' PhotoShop (PSD)

Chapter 2 | Supported standards 18
expr is the list of expressions giving the values for the columns of the new record. Usually the
expressions are constant values for the columns (but they can also be a subquery). You must
enclose character string values in pairs of single quotation marks ('). To include a single quotation
mark in a character string value enclosed by single quotation marks, use two single quotation
marks together (for example, 'Don''t').
Subqueries must be enclosed in parentheses.
The following example inserts a list of expressions:

INSERT INTO emp (last_name, first_name, emp_id, salary, hire_date)
 VALUES ('Smith', 'John', 'E22345', 27500, DATE '2015-06-05')

Each INSERT statement adds one record to the database table. In this case a record has been
added to the employee database table, EMP. Values are specified for five columns. The remaining
columns in the table are assigned a blank value, meaning Null.

Note In container fields, you can INSERT text only, unless you prepare a parameterized
statement and stream the data from your application. To use binary data, you may simply assign
the filename by enclosing it in single quotation marks or use the PutAs() function. When
specifying the filename, the file type is deduced from the file extension:

INSERT INTO table_name (container_name) VALUES(? AS 'filename.file
extension')

Unsupported file types will be inserted as type FILE.
When using the PutAs() function, specify the type: PutAs(col, 'type'), where the type
value is a supported file type as described in “Retrieving the contents of a container field: CAST()
function and GetAs() function” on page 16.
The SELECT statement is a query that returns values for each column_name value specified in
the column name list. Using a SELECT statement instead of a list of value expressions lets you
select a set of rows from one table and insert it into another table using a single INSERT
statement.
Here's an example of an INSERT statement that uses a SELECT statement:

INSERT INTO emp1 (first_name, last_name, emp_id, dept, salary)
 SELECT first_name, last_name, emp_id, dept, salary from emp
 WHERE dept = 'D050'

In this type of INSERT statement, the number of columns to be inserted must match the number
of columns in the SELECT statement. The list of columns to be inserted must correspond to the
columns in the SELECT statement just as it would to a list of value expressions in the other type
of INSERT statement. For example, the first column inserted corresponds to the first column
selected; the second inserted to the second, and so on.
The size and data type of these corresponding columns must be compatible. Each column in the
SELECT list should have a data type that the ODBC or JDBC client driver accepts on a regular
INSERT/UPDATE of the corresponding column in the INSERT list. Values are truncated when the
size of the value in the SELECT list column is greater than the size of the corresponding INSERT
list column.
The SELECT statement is evaluated before any values are inserted.

Chapter 2 | Supported standards 19
UPDATE statement
Use the UPDATE statement to change records in a database table. The format of the UPDATE
statement is:

UPDATE table_name SET column_name = expr, ... [WHERE { conditions }]

column_name is the name of a column whose value is to be changed. Several columns can be
changed in one statement.
expr is the new value for the column.
Usually the expressions are constant values for the columns (but they can also be a subquery).
You must enclose character string values in pairs of single quotation marks ('). To include a single
quotation mark in a character string value enclosed by single quotation marks, use two single
quotation marks together (for example, 'Don''t').
Subqueries must be enclosed in parentheses.
The WHERE clause is any valid clause. It determines which records are updated.

Examples

An example of an UPDATE statement on the Employee table is:

UPDATE emp SET salary=32000, exempt=1 WHERE emp_id = 'E10001'

The UPDATE statement changes every record that meets the conditions in the WHERE clause. In
this case the salary and exempt status are changed for all employees having the employee ID
E10001. Because employee IDs are unique in the Employee table, only one record is updated.
Here's an example using a subquery:

UPDATE emp SET salary = (SELECT avg(salary) from emp) WHERE emp_id =
'E10001'

In this case, the salary is changed to the average salary in the company for the employee having
employee ID E10001.

Note In container fields, you can UPDATE with text only, unless you prepare a parameterized
statement and stream the data from your application. To use binary data, you may simply assign
the filename by enclosing it in single quotation marks or use the PutAs() function. When
specifying the filename, the file type is deduced from the file extension:

UPDATE table_name SET (container_name) = ? AS 'filename.file
extension'

Unsupported file types will be inserted as type FILE.
When using the PutAs() function, specify the type: PutAs(col, 'type'), where the type
value is a supported file type as described in “Retrieving the contents of a container field: CAST()
function and GetAs() function” on page 16.

Chapter 2 | Supported standards 20
CREATE TABLE statement
Use the CREATE TABLE statement to create a table in a database file. The format of the CREATE
TABLE statement is:

CREATE TABLE table_name (table_element_list [,
table_element_list...])

Within the statement, you specify the name and data type of each column.
1 table_name is the name of the table. table_name has a 100 character limit. A table with the

same name must not already be defined. The table name must begin with an alphabetic
character. If the table name begins with other than an alphabetic character, enclose it in double
quotation marks (quoted identifier).

1 The format for table_element_list is:

field_name field_type [[repetitions]]
[DEFAULT expr] [UNIQUE | NOT NULL | PRIMARY KEY | GLOBAL]
[EXTERNAL relative_path_string [SECURE | OPEN calc_path_string]]

1 field_name is the name of the field. Field names must be unique. Field names begin with
an alphabetic character. If the field name begins with other than an alphabetic character,
enclose it in double quotation marks (quoted identifier). For example, the CREATE TABLE
statement for the field named _LASTNAME is:

CREATE TABLE "_EMPLOYEE" (ID INT PRIMARY KEY, "_FIRSTNAME"
VARCHAR(20), "_LASTNAME" VARCHAR(20))

1 For the CREATE TABLE statement repetitions, specify a field repetition by using a
number from 1 to 32000 in brackets after the field type. For example:

EMPLOYEE_ID INT[4]
LASTNAME VARCHAR(20)[4]

1 field_type may be any of the following: NUMERIC, DECIMAL, INT, DATE, TIME,
TIMESTAMP, VARCHAR, CHARACTER VARYING, BLOB, VARBINARY, LONGVARBINARY, or
BINARY VARYING. For NUMERIC and DECIMAL, you can specify the precision and scale.
For example: DECIMAL(10,0). For TIME and TIMESTAMP, you can specify the precision.
For example: TIMESTAMP(6). For VARCHAR and CHARACTER VARYING, you can specify
the length of the string. For example: VARCHAR(255).

1 The DEFAULT keyword allows you to set a default value for a column. For expr, you may
use a constant value or expression. Allowable expressions are USER, USERNAME,
CURRENT_USER, CURRENT_DATE, CURDATE, CURRENT_TIME, CURTIME,
CURRENT_TIMESTAMP, CURTIMESTAMP, and NULL.

1 Defining a column to be UNIQUE automatically selects the Unique Validation Option for the
corresponding field in the FileMaker database file.

1 Defining a column to be NOT NULL automatically selects the Not Empty Validation Option
for the corresponding field in the FileMaker database file. The field is flagged as a Required
Value in the Fields tab of the Manage Database dialog box in FileMaker Pro.

Chapter 2 | Supported standards 21
1 To define a column as a container field, use BLOB, VARBINARY, or BINARY VARYING for
the field_type.

1 To define a column as a container field that stores data externally, use the EXTERNAL
keyword. The relative_path_string defines the folder where the data is stored
externally, relative to the location of the FileMaker database. This path must be specified as
the base directory in the FileMaker Pro Manage Containers dialog box. You must specify
either SECURE for secure storage or OPEN for open storage. If you are using open storage,
the calc_path_string is the folder inside the relative_path_string folder where
container objects are to be stored. The path must use forward slashes (/) in the folder name.

Examples

ALTER TABLE statement
Use the ALTER TABLE statement to change the structure of an existing table in a database file.
You can modify only one column in each statement. The formats of the ALTER TABLE statement
are:

ALTER TABLE table_name ADD [COLUMN] column_definition

ALTER TABLE table_name DROP [COLUMN] unqualified_column_name

ALTER TABLE table_name ALTER [COLUMN] column_definition SET DEFAULT
expr

ALTER TABLE table_name ALTER [COLUMN] column_definition DROP DEFAULT

You must know the table’s structure and how you want to modify it before using the ALTER TABLE
statement.

Using Sample SQL
text column CREATE TABLE T1 (C1 VARCHAR, C2 VARCHAR (50), C3 VARCHAR (1001),

C4 VARCHAR (500276))

text column, NOT NULL CREATE TABLE T1NN (C1 VARCHAR NOT NULL, C2 VARCHAR (50) NOT NULL,
C3 VARCHAR (1001) NOT NULL, C4 VARCHAR (500276) NOT NULL)

numeric column CREATE TABLE T2 (C1 DECIMAL, C2 DECIMAL (10,0), C3 DECIMAL (7539,2),
C4 DECIMAL (497925,301))

date column CREATE TABLE T3 (C1 DATE, C2 DATE, C3 DATE, C4 DATE)

time column CREATE TABLE T4 (C1 TIME, C2 TIME, C3 TIME, C4 TIME)

timestamp column CREATE TABLE T5 (C1 TIMESTAMP, C2 TIMESTAMP, C3 TIMESTAMP,
C4 TIMESTAMP)

column for container field CREATE TABLE T6 (C1 BLOB, C2 BLOB, C3 BLOB, C4 BLOB)

column for external
storage container field

CREATE TABLE T7 (C1 BLOB EXTERNAL 'Files/MyDatabase/' SECURE)

CREATE TABLE T8 (C1 BLOB EXTERNAL 'Files/MyDatabase/'
OPEN 'Objects')

Chapter 2 | Supported standards 22
Examples

Note SET DEFAULT and DROP DEFAULT do not affect existing rows in the table, but change the
default value for rows that are subsequently added to the table.

CREATE INDEX statement
Use the CREATE INDEX statement to speed searches in your database file. The format of the
CREATE INDEX statement is:

CREATE INDEX ON table_name.column_name
CREATE INDEX ON table_name (column_name)

CREATE INDEX is supported for a single column (multi-column indexes are not supported). Indexes
are not allowed on columns that correspond to container field types, summary fields, fields that have
the global storage option, or unstored calculation fields in a FileMaker database file.
Creating an index for a text column automatically selects the Storage Option of Minimal in
Indexing for the corresponding field in the FileMaker database file. Creating an index for a non-
text column (or a column formatted as Japanese text) automatically selects the Storage Option of
All in Indexing for the corresponding field in the FileMaker database file.
Creating an index for any column automatically selects the Storage Option of Automatically
create indexes as needed in Indexing for the corresponding field in the FileMaker database file.
FileMaker automatically creates indexes as needed. Using CREATE INDEX causes the index to
be built immediately rather than on demand.

Example

CREATE INDEX ON Salespeople.Salesperson_ID

DROP INDEX statement
Use the DROP INDEX statement to remove an index from a database file. The format of the DROP
INDEX statement is:

DROP INDEX ON table_name.column_name
DROP INDEX ON table_name (column_name)

Remove an index when your database file is too large, or you don’t often use a field in queries.
If your queries are experiencing poor performance, and you’re working with an extremely large
FileMaker database file with many indexed text fields, consider dropping the indexes from some
fields. Also consider dropping the indexes from fields that you rarely use in SELECT statements.

To Sample SQL
add columns ALTER TABLE Salespeople ADD C1 VARCHAR

remove columns ALTER TABLE Salespeople DROP C1

set the default value for a
column

ALTER TABLE Salespeople ALTER Company SET DEFAULT 'FileMaker'

remove the default value
for a column

ALTER TABLE Salespeople ALTER Company DROP DEFAULT

Chapter 2 | Supported standards 23
Dropping an index for any column automatically selects the Storage Option of None and clears
Automatically create indexes as needed in Indexing for the corresponding field in the
FileMaker database file.
The PREVENT INDEX CREATION attribute is not supported.

Example

DROP INDEX ON Salespeople.Salesperson_ID
SQL expressions

Use expressions in WHERE, HAVING, and ORDER BY clauses of SELECT statements to form
detailed and sophisticated database queries. Valid expression elements are:
1 Field names
1 Constants
1 Exponential/scientific notation
1 Numeric operators
1 Character operators
1 Date operators
1 Relational operators
1 Logical operators
1 Functions

Field names
The most common expression is a simple field name, such as calc or
Sales_Data.Invoice_ID.

Constants
Constants are values that do not change. For example, in the expression PRICE * 1.05, the
value 1.05 is a constant. Or you might assign a value of 30 to the constant
Number_Of_Days_In_June.
You must enclose character constants in pairs of single quotation marks ('). To include a single
quotation mark in a character constant enclosed by single quotation marks, use two single
quotation marks together (for example, 'Don''t').

For ODBC and JDBC applications, FileMaker accepts the ODBC/JDBC format date, time, and
timestamp constants in braces ({}), for example:
1 {D '2015-06-05'}

1 {T '14:35:10'}

1 {TS '2015-06-05 14:35:10'}

FileMaker allows the type specifier (D, T, TS) to be in upper case or lower case. You may use any
number of spaces after the type specifier, or even omit the space.

Chapter 2 | Supported standards 24
FileMaker also accepts SQL-92 syntax ISO date and time formats with no braces:
1 DATE 'YYYY-MM-DD'

1 TIME 'HH:MM:SS'

1 TIMESTAMP 'YYYY-MM-DD HH:MM:SS'

The FileMaker Pro ExecuteSQL function accepts only the SQL-92 syntax ISO date and time
formats with no braces.

When entering date and time values, match the format of the database file locale. For example, if
the database was created on an Italian language system, use Italian date and time formats.

Exponential/scientific notation
Numbers can be expressed using scientific notation.

Example

SELECT column1 / 3.4E+7 FROM table1 WHERE calc < 3.4E-6 * column2

Numeric operators
You can include the following operators in number expressions: +, -, *, /, and ^ or **
(exponentiation).
You can precede numeric expressions with a unary plus (+) or minus (-).

Constant Acceptable syntax (examples)
Text 'Paris'

Number 1.05

Date DATE '2015-06-05'
{ D '2015-06-05' }

{06/05/2015}

{06/05/15}

Note The 2-digit year syntax is not supported for the ODBC/JDBC format or the SQL-92
format.

Time TIME '14:35:10'
{ T '14:35:10' }

{14:35:10}

Timestamp TIMESTAMP '2015-06-05 14:35:10'
{ TS '2015-06-05 14:35:10'}

{06/05/2015 14:35:10}

{06/05/15 14:35:10}

Make sure Strict data type: 4-Digit Year Date is not selected as a validation option in the
FileMaker database file for a field using this 2-digit year syntax.
Note The 2-digit year syntax is not supported for the ODBC/JDBC format or the SQL-92
format.

Chapter 2 | Supported standards 25
Character operators
You can concatenate characters.

Examples

In the following examples, last_name is 'JONES ' and first_name is 'ROBERT ':

Date operators
You can modify dates.

Examples

In the following examples, hire_date is DATE '2015-01-30'.

Additional examples:
SELECT Date_Sold, Date_Sold + 30 AS agg FROM Sales_Data
SELECT Date_Sold, Date_Sold - 30 AS agg FROM Sales_Data

Relational operators

Operator Concatenation Example Result
+ Keep trailing blank characters first_name + last_name 'ROBERT JONES '

- Move trailing blank characters to the end first_name - last_name 'ROBERTJONES '

Operator Effect on date Example Result
+ Add a number of days to a date hire_date + 5 DATE '2015-02-04'

- Find the number of days between two dates hire_date -
DATE '2015-01-01'

29

Subtract a number of days from a date hire_date - 10 DATE '2015-01-20'

Operator Meaning
= Equal

<> Not equal

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

LIKE Matching a pattern

NOT LIKE Not matching a pattern

IS NULL Equal to Null

IS NOT NULL Not equal to Null

BETWEEN Range of values between a lower and upper bound

IN A member of a set of specified values or a member of a subquery

Chapter 2 | Supported standards 26
Examples

SELECT Sales_Data.Invoice_ID FROM Sales_Data
 WHERE Sales_Data.Salesperson_ID = 'SP-1'

SELECT Sales_Data.Amount FROM Sales_Data WHERE Sales_Data.Invoice_ID
<> 125

SELECT Sales_Data.Amount FROM Sales_Data WHERE Sales_Data.Amount > 3000

SELECT Sales_Data.Time_Sold FROM Sales_Data
 WHERE Sales_Data.Time_Sold < '12:00:00'

SELECT Sales_Data.Company_Name FROM Sales_Data
 WHERE Sales_Data.Company_Name LIKE '%University'

SELECT Sales_Data.Company_Name FROM Sales_Data
 WHERE Sales_Data.Company_Name NOT LIKE '%University'

SELECT Sales_Data.Amount FROM Sales_Data WHERE Sales_Data.Amount IS NULL

SELECT Sales_Data.Amount FROM Sales_Data WHERE Sales_Data.Amount IS NOT
NULL

SELECT Sales_Data.Invoice_ID FROM Sales_Data
 WHERE Sales_Data.Invoice_ID BETWEEN 1 AND 10

SELECT COUNT(Sales_Data.Invoice_ID) AS agg
 FROM Sales_Data WHERE Sales_Data.INVOICE_ID IN (50,250,100)

SELECT COUNT(Sales_Data.Invoice_ID) AS agg
 FROM Sales_Data WHERE Sales_Data.INVOICE_ID NOT IN (50,250,100)

SELECT COUNT(Sales_Data.Invoice_ID) AS agg FROM Sales_Data
 WHERE Sales_Data.INVOICE_ID NOT IN (SELECT Sales_Data.Invoice_ID
 FROM Sales_Data WHERE Sales_Data.Salesperson_ID = 'SP-4')

SELECT *
 FROM Sales_Data WHERE EXISTS (SELECT Sales_Data.Amount
 FROM Sales_Data WHERE Sales_Data.Salesperson_ID IS NOT NULL)

NOT IN Not a member of a set of specified values or a member of a subquery

EXISTS ‘True’ if a subquery returned at least one record

ANY Compares a value to each value returned by a subquery (operator must be preceded by
=, <>, >, >=, <, or <=); =Any is equivalent to In

ALL Compares a value to each value returned by a subquery (operator must be preceded by
=, <>, >, >=, <, or <=)

Operator Meaning

Chapter 2 | Supported standards 27
SELECT *
 FROM Sales_Data WHERE Sales_Data.Amount = ANY (SELECT
Sales_Data.Amount
 FROM Sales_Data WHERE Sales_Data.Salesperson_ID = 'SP-1')

SELECT *
 FROM Sales_Data WHERE Sales_Data.Amount = ALL (SELECT
Sales_Data.Amount
 FROM Sales_Data WHERE Sales_Data.Salesperson_ID IS NULL)

Logical operators
You can combine two or more conditions. The conditions must be related by AND or OR, such as:

salary = 40000 AND exempt = 1

The logical NOT operator is used to reverse the meaning, such as:

NOT (salary = 40000 AND exempt = 1)

Examples

SELECT * FROM Sales_Data WHERE Sales_Data.Company_Name
 NOT LIKE '%University' AND Sales_Data.Amount > 3000

SELECT * FROM Sales_Data WHERE (Sales_Data.Company_Name
 LIKE '%University' OR Sales_Data.Amount > 3000)
 AND Sales_Data.Salesperson_ID = 'SP-1'

Operator precedence
As expressions become more complex, the order in which the expressions are evaluated
becomes important. This table shows the order in which the operators are evaluated. The
operators in the first line are evaluated first, and so on. Operators in the same line are evaluated
left to right in the expression.

Precedence Operator
1 Unary '-', Unary '+'

2 ^, **

3 *, /

4 +, -

5 =, <>, <, <=, >, >=, Like, Not Like, Is Null, Is Not Null, Between, In, Exists, Any, All

6 Not

7 AND

8 OR

Chapter 2 | Supported standards 28
The following example shows the importance of precedence:

WHERE salary > 40000 OR hire_date > (DATE '2008-01-30') AND dept =
'D101'

Because AND is evaluated first, this query retrieves employees in department D101 hired after
January 30, 2008, as well as every employee making more than $40,000, no matter what
department or hire date.
To force the clause to be evaluated in a different order, use parentheses to enclose the conditions
to be evaluated first. For example:

WHERE (salary > 40000 OR hire_date > DATE '2008-01-30') AND dept =
'D101'

retrieves employees in department D101 that either make more than $40,000 or were hired after
January 30, 2008.
SQL functions

FileMaker SQL supports many functions you can use in expressions. Some of the functions return
characters strings, some return numbers, some return dates, and some return values that depend
on conditions met by the function arguments.

Aggregate functions
Aggregate functions return a single value from a set of records. You can use an aggregate function
as part of a SELECT statement, with a field name (for example, AVG(SALARY)), or in combination
with a column expression (for example, AVG(SALARY * 1.07)).
You can precede the column expression with the DISTINCT operator to eliminate duplicate
values. For example:

COUNT (DISTINCT last_name)

In this example, only unique last name values are counted.

Aggregate function Returns
SUM The total of the values in a numeric field expression. For example, SUM(SALARY) returns

the sum of all salary field values.

AVG The average of the values in a numeric field expression. For example, AVG(SALARY)
returns the average of all salary field values.

COUNT The number of values in any field expression. For example, COUNT(NAME) returns the
number of name values. When using COUNT with a field name, COUNT returns the number
of non-null field values. A special example is COUNT(*), which returns the number of
records in the set, including records with null values.

MAX The maximum value in any field expression. For example, MAX(SALARY) returns the
maximum salary field value.

MIN The minimum value in any field expression. For example, MIN(SALARY) returns the
minimum salary field value.

Chapter 2 | Supported standards 29
Examples

SELECT SUM (Sales_Data.Amount) AS agg FROM Sales_Data

SELECT AVG (Sales_Data.Amount) AS agg FROM Sales_Data

SELECT COUNT (Sales_Data.Amount) AS agg FROM Sales_Data

SELECT MAX (Sales_Data.Amount) AS agg FROM Sales_Data
 WHERE Sales_Data.Amount < 3000

SELECT MIN (Sales_Data.Amount) AS agg FROM Sales_Data
 WHERE Sales_Data.Amount > 3000

Functions that return character strings

Note The TIME() function is deprecated. Use the SQL standard CURRENT_TIME instead.

Functions that
return character
strings Description Example
CHR Converts an ASCII code to a one-character

string
CHR(67) returns C

CURRENT_USER Returns the login ID specified at connect time

DAYNAME Returns the name of the day that corresponds to
a specified date

RTRIM Removes trailing blanks from a string RTRIM(' ABC ') returns ' ABC'

TRIM Removes leading and trailing blanks from a
string

TRIM(' ABC ') returns 'ABC'

LTRIM Removes leading blanks from a string LTRIM(' ABC') returns 'ABC'

UPPER Changes each letter of a string to uppercase UPPER('Allen') returns 'ALLEN'

LOWER Changes each letter of a string to lowercase LOWER('Allen') returns 'allen'

LEFT Returns leftmost characters of a string LEFT('Mattson',3) returns 'Mat'

MONTHNAME Returns the names of the calendar month

RIGHT Returns rightmost characters of a string RIGHT('Mattson',4) returns 'tson'

SUBSTR

SUBSTRING

Returns a substring of a string, with parameters
of the string, the first character to extract, and
the number of characters to extract (optional)

SUBSTR('Conrad',2,3) returns 'onr'
SUBSTR('Conrad',2) returns 'onrad'

SPACE Generates a string of blanks SPACE(5) returns ' '
STRVAL Converts a value of any type to a character

string
STRVAL('Woltman') returns 'Woltman'
STRVAL(5 * 3) returns '15'
STRVAL(4 = 5) returns 'False'
STRVAL(DATE '2008-12-25')
returns '2008-12-25'

TIME

TIMEVAL

Returns the time of day as a string At 9:49 PM, TIME() returns 21:49:00

USERNAME

USER

Returns the login ID specified at connect time

Chapter 2 | Supported standards 30
Examples

SELECT CHR(67) + SPACE(1) + CHR(70) FROM Salespeople

SELECT RTRIM(' ' + Salespeople.Salesperson_ID) AS agg FROM Salespeople

SELECT TRIM(SPACE(1) + Salespeople.Salesperson_ID) AS agg FROM
Salespeople

SELECT LTRIM(' ' + Salespeople.Salesperson_ID) AS agg FROM Salespeople

SELECT UPPER(Salespeople.Salesperson) AS agg FROM Salespeople

SELECT LOWER(Salespeople.Salesperson) AS agg FROM Salespeople

SELECT LEFT(Salespeople.Salesperson, 5) AS agg FROM Salespeople

SELECT RIGHT(Salespeople.Salesperson, 7) AS agg FROM Salespeople

SELECT SUBSTR(Salespeople.Salesperson_ID, 2, 2) +
SUBSTR(Salespeople.Salesperson_ID, 4, 2) AS agg FROM Salespeople

SELECT SUBSTR(Salespeople.Salesperson_ID, 2) +
SUBSTR(Salespeople.Salesperson_ID, 4) AS agg FROM Salespeople

SELECT SPACE(2) + Salespeople.Salesperson_ID AS Salesperson_ID FROM
Salespeople

SELECT STRVAL('60506') AS agg FROM Sales_Data WHERE Sales_Data.Invoice
= 1

Functions that return numbers

Functions that
return numbers Description Example
ABS Returns the absolute value of the numeric expression

ATAN Returns the arc tangent of the argument as an angle
expressed in radians

ATAN2 Returns the arc tangent of x and y coordinates as an
angle expressed in radians

CEIL

CEILING

Returns the smallest integer value that is greater than
or equal to the argument

DEG

DEGREES

Returns the number of degrees of the argument,
which is an angle expressed in radians

DAY Returns the day part of a date DAY(DATE '2015-01-30') returns
30

DAYOFWEEK Returns the day of week (1-7) of a date expression DAYOFWEEK(DATE '2004-05-01')
returns 7

MOD Divides two numbers and returns the remainder of the
division

MOD(10,3) returns 1

Chapter 2 | Supported standards 31
EXP Returns a value that is the base of the natural
logarithm (e) raised to a power specified by the
argument

FLOOR Returns the largest integer value that is less than or
equal to the argument

HOUR Returns the hour part of a value

INT Returns the integer part of a number INT(6.4321) returns 6

LENGTH Returns the length of a string LENGTH('ABC') returns 3

MONTH Returns the month part of a date MONTH(DATE '2015-01-30')
returns 1

LN Returns the natural logarithm of the argument

LOG Returns the common logarithm of the argument

MAX Returns the larger of two numbers MAX(66,89) returns 89

MIN Returns the smaller of two numbers MIN(66,89) returns 66

MINUTE Returns the minute part of a value

NUMVAL Converts a character string to a number. The function
fails If the character string is not a valid number.

NUMVAL('123') returns 123

PI Returns the constant value of the mathematical
constant pi

RADIANS Returns the number of radians for an argument that is
expressed in degrees

ROUND Rounds a number ROUND(123.456,0) returns 123
ROUND(123.456,2) returns 123.46
ROUND(123.456,-2) returns 100

SECOND Returns the seconds part of a value

SIGN An indicator of the sign of the argument: -1 for
negative, 0 for 0, and 1 for positive

SIN Returns the sine of the argument

SQRT Returns the square root of the argument

TAN Returns the tangent of the argument

YEAR Returns the year part of a date YEAR(DATE '2015-01-30') returns
2015

Functions that
return numbers Description Example

Chapter 2 | Supported standards 32
Functions that return dates

Note The DATE() function is deprecated. Use the SQL standard CURRENT_DATE instead.

Conditional functions

Functions that return
dates Description Example
CURDATE

CURRENT_DATE

Returns today’s date

CURTIME

CURRENT_TIME

Returns the current time

CURTIMESTAMP

CURRENT_TIMESTAMP

Returns the current timestamp value

TIMESTAMPVAL Converts a character string to a
timestamp

TIMESTAMPVAL('2015-01-30 14:00:00')
returns its timestamp value

DATE

TODAY

Returns today’s date If today is 11/21/2015, DATE() returns 2015-11-21

DATEVAL Converts a character string to a date DATEVAL('2015-01-30') returns 2015-01-30

Conditional
functions Description Example
CASE WHEN Simple CASE format

Compares the value of input_exp to the values
of value_exp arguments to determine the result.

CASE input_exp
{WHEN value_exp THEN result...} [ELSE
result]
END

SELECT

 Invoice_ID,

 CASE Company_Name

 WHEN 'Exports UK' THEN
'Exports UK Found'

 WHEN 'Home Furniture
Suppliers' THEN 'Home Furniture
Suppliers Found'

 ELSE 'Neither Exports UK
nor Home Furniture Suppliers'

 END,

 Salesperson_ID

FROM

 Sales_Data

Searched CASE format

Returns a result based on whether the condition
specified by a WHEN expression is true.

CASE

{WHEN boolean_exp THEN result...} [ELSE
result]
END

SELECT

 Invoice_ID,

 Amount,

 CASE

 WHEN Amount > 3000 THEN 'Above
3000'

 WHEN Amount < 1000 THEN 'Below
3000'

 ELSE 'Between 1000 and 3000'

 END,

 Salesperson_ID

FROM

 Sales_Data

Chapter 2 | Supported standards 33
COALESCE Returns the first value that is not NULL SELECT

 Salesperson_ID,

 COALESCE(Sales_Manager,
Salesperson)

FROM

 Salespeople

NULLIF Compares two values and returns NULL if the two
values are equal; otherwise, returns the first
value.

SELECT

 Invoice_ID,

 NULLIF(Amount, -1),

 Salesperson_ID

FROM

 Sales_Data

Conditional
functions Description Example

Chapter 2 | Supported standards 34
Reserved SQL keywords

This section lists reserved keywords that should not be used as names for columns, tables,
aliases, or other user-defined objects. If you are getting syntax errors, these errors may be due to
using one of these reserved words. If you want to use one of these keywords, you need to use
quotation marks to prevent the word from being treated as a keyword.
For example, the following CREATE TABLE statement shows how to use the DEC keyword as a
data element name.

create table t ("dec" numeric)

ABSOLUTE
ACTION
ADD
ALL
ALLOCATE
ALTER
AND
ANY
ARE
AS
ASC
ASSERTION
AT
AUTHORIZATION
AVG
BEGIN
BETWEEN
BINARY
BIT
BIT_LENGTH
BLOB
BOOLEAN
BOTH
BY
CASCADE
CASCADED
CASE
CAST
CATALOG

CHAR
CHARACTER
CHARACTER_LENGTH
CHAR_LENGTH
CHECK
CHR
CLOSE
COALESCE
COLLATE
COLLATION
COLUMN
COMMIT
CONNECT
CONNECTION
CONSTRAINT
CONSTRAINTS
CONTINUE
CONVERT
CORRESPONDING
COUNT
CREATE
CROSS
CURDATE
CURRENT
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_USER
CURSOR

CURTIME
CURTIMESTAMP
DATE
DATEVAL
DAY
DAYNAME
DAYOFWEEK
DEALLOCATE
DEC
DECIMAL
DECLARE
DEFAULT
DEFERRABLE
DEFERRED
DELETE
DESC
DESCRIBE
DESCRIPTOR
DIAGNOSTICS
DISCONNECT
DISTINCT
DOMAIN
DOUBLE
DROP
ELSE
END
END_EXEC
ESCAPE
EVERY

Chapter 2 | Supported standards 35
EXCEPT
EXCEPTION
EXEC
EXECUTE
EXISTS
EXTERNAL
EXTRACT
FALSE
FETCH
FIRST
FLOAT
FOR
FOREIGN
FOUND
FROM
FULL
GET
GLOBAL
GO
GOTO
GRANT
GROUP
HAVING
HOUR
IDENTITY
IMMEDIATE
IN
INDEX
INDICATOR
INITIALLY
INNER
INPUT
INSENSITIVE
NSERT
INT
INTEGER
INTERSECT
INTERVAL
INTO

IS
ISOLATION
JOIN
KEY
LANGUAGE
LAST
LEADING
LEFT
LENGTH
LEVEL
LIKE
LOCAL
LONGVARBINARY
LOWER
LTRIM
MATCH
MAX
MIN
MINUTE
MODULE
MONTH
MONTHNAME
NAMES
NATIONAL
NATURAL
NCHAR
NEXT
NO
NOT
NULL
NULLIF
NUMERIC
NUMVAL
OCTET_LENGTH
OF
OFFSET
ON
ONLY
OPEN

OPTION
OR
ORDER
OUTER
OUTPUT
OVERLAPS
PAD
PART
PARTIAL
PERCENT
POSITION
PRECISION
PREPARE
PRESERVE
PRIMARY
PRIOR
PRIVILEGES
PROCEDURE
PUBLIC
READ
REAL
REFERENCES
RELATIVE
RESTRICT
REVOKE
RIGHT
ROLLBACK
ROUND
ROW
ROWID
ROWS
RTRIM
SCHEMA
SCROLL
SECOND
SECTION
SELECT
SESSION
SESSION_USER

Chapter 2 | Supported standards 36
SET
SIZE
SMALLINT
SOME
SPACE
SQL
SQLCODE
SQLERROR
SQLSTATE
STRVAL
SUBSTRING
SUM
SYSTEM_USER
TABLE
TEMPORARY
THEN
TIES
TIME
TIMESTAMP
TIMESTAMPVAL
TIMEVAL
TIMEZONE_HOUR
TIMEZONE_MINUTE
TO
TODAY
TRAILING
TRANSACTION
TRANSLATE
TRANSLATION
TRIM
TRUE
UNION
UNIQUE
UNKNOWN
UPDATE
UPPER
USAGE
USER

USERNAME
USING
VALUE
VALUES
VARBINARY
VARCHAR
VARYING
VIEW
WHEN
WHENEVER
WHERE
WITH
WORK
WRITE
YEAR
ZONE

Index
A
ABS function 30
aggregate functions in SQL 28
ALL operator 26
ALTER TABLE (SQL statement) 21
AND operator 27
ANY operator 26
ATAN function 30
ATAN2 function 30

B
BETWEEN operator 25
binary data, use in SELECT 15
blank characters 25
blank value in columns 18
BLOB data type, use in SELECT 15

C
CASE WHEN function 32
CAST function 16
CEIL function 30
CEILING function 30
character operators in SQL expressions 25
CHR function 29
COALESCE function 33
column aliases 8
constants in SQL expressions 23
container field

stored externally 21
with CREATE TABLE statement 21
with GetAs function 16
with INSERT statement 18
with PutAs function 18
with SELECT statement 16
with UPDATE statement 19

CREATE INDEX (SQL statement) 22
CREATE TABLE (SQL statement) 20
CURDATE function 32
CURRENT USER function 29
CURRENT_DATE function 32
CURRENT_TIME function 32
CURRENT_TIMESTAMP function 32
CURRENT_USER function 29
cursors in ODBC 14
CURTIME function 32
CURTIMESTAMP function 32

D
date formats 23
DATE function 32
date operators in SQL expressions 25
DATEVAL function 32
DAY function 30
DAYNAME function 29
DAYOFWEEK function 30
DEFAULT (SQL clause) 20
DEG function 30
DEGREES function 30
DELETE (SQL statement) 17
DISTINCT operator 8
documentation 5
DROP INDEX (SQL statement) 22

E
empty string, use in SELECT 15
ExecuteSQL function 6, 7
EXISTS operator 26
EXP function 31
exponential notation in SQL expressions 24
expressions in SQL 23
EXTERNAL (SQL clause) 21

F
FETCH FIRST (SQL clause) 13
field names in SQL expressions 23
field repetitions 17, 20
FileMaker Server

documentation 5
files, use in container fields 16
FLOOR function 31
FOR UPDATE (SQL clause) 14
FROM (SQL clause) 9
FULL OUTER JOIN 10
functions in SQL expressions 28

G
GetAs function 16
GROUP BY (SQL clause) 11

H
HAVING (SQL clause) 11
HOUR function 31

I
IN operator 25
INNER JOIN 10
INSERT (SQL statement) 17
INT function 31
IS NOT NULL operator 25
IS NULL operator 25

38
J
JDBC client driver

portals 7
Unicode support 7

join 10

K
keywords, reserved SQL 34

L
LEFT function 29
LEFT OUTER JOIN 10
LENGTH function 31
LIKE operator 25
LN function 31
LOG function 31
logical operators in SQL expressions 27
LOWER function 29
LTRIM function 29

M
MAX function 31
MIN function 31
MINUTE function 31
MOD function 30
MONTH function 31
MONTHNAME function 29

N
NOT IN operator 26
NOT LIKE operator 25
NOT NULL (SQL clause) 20
NOT operator 27
null value 18
NULLIF function 33
numeric operators in SQL expressions 24
NUMVAL function 31

O
ODBC client driver

portals 7
Unicode support 7

ODBC standards compliance 7
OFFSET (SQL clause) 13
online documentation 5
operator precedence in SQL expressions 27
OR operator 27
ORDER BY (SQL clause) 12
OUTER JOIN 10

P
PDFs 5
peer rows 13, 14
PI function 31
portals 7
positioned updates and deletes 14
PREVENT INDEX CREATION 23
PutAs function 18, 19

R
RADIANS function 31
relational operators in SQL expressions 25
reserved SQL keywords 34
RIGHT function 29
RIGHT OUTER JOIN 10
ROUND function 31
RTRIM function 29

S
scientific notation in SQL expressions 24
SECOND function 31
SELECT (SQL statement) 8

binary data 15
BLOB data type 15
empty string 15

SIGN function 31
SIN function 31
sort order 12
SPACE function 29
SQL aggregate functions 28
SQL expressions 23

character operators 25
constants 23
date operators 25
exponential or scientific notation 24
field names 23
functions 28
logical operators 27
numeric operators 24
operator precedence 27
relational operators 25

SQL standards compliance 7
SQL statements

ALTER TABLE 21
CREATE INDEX 22
CREATE TABLE 20
DELETE 17
DROP INDEX 22
INSERT 17
reserved keywords 34
SELECT 8
supported by client drivers 7
UPDATE 19

SQL_C_WCHAR data type 7
SQL-92 7
SQRT function 31
standards compliance 7
string functions 29
STRVAL function 29
subqueries 18

39
SUBSTR function 29
SUBSTRING function 29
syntax errors 34

T
table aliases 8, 9
TAN function 31
time formats 23
TIME function 29
timestamp formats 23
TIMESTAMPVAL function 32
TIMEVAL function 29
TODAY function 32
TRIM function 29

U
Unicode support 7
UNION (SQL operator) 12
UNIQUE (SQL clause) 20
UPDATE (SQL statement) 19
UPPER function 29
USERNAME function 29

V
VALUES (SQL clause) 17

W
websites

FileMaker support pages 5
WHERE (SQL clause) 10
WITH TIES (SQL clause) 13

Y
YEAR function 31

	Contents
	Chapter 1 Introduction
	About this reference
	Where to find FileMaker documentation

	About SQL
	Using a FileMaker database as a data source
	Using the ExecuteSQL function

	Chapter 2 Supported standards
	Support for Unicode characters
	SQL statements
	SELECT statement
	SQL clauses
	FROM clause
	WHERE clause
	GROUP BY clause
	HAVING clause
	UNION operator
	ORDER BY clause
	OFFSET and FETCH FIRST clauses
	FOR UPDATE clause
	DELETE statement
	INSERT statement
	UPDATE statement
	CREATE TABLE statement
	ALTER TABLE statement
	CREATE INDEX statement
	DROP INDEX statement

	SQL expressions
	Field names
	Constants
	Exponential/scientific notation
	Numeric operators
	Character operators
	Date operators
	Relational operators
	Logical operators
	Operator precedence

	SQL functions
	Aggregate functions
	Functions that return character strings
	Functions that return numbers
	Functions that return dates
	Conditional functions

	Reserved SQL keywords

	Index

