

FileMaker Developer 7
Developer’s Guide

TM

© 1996-2004, FileMaker, Inc. All Rights Reserved.
FileMaker, Inc.
5201 Patrick Henry Drive
Santa Clara, California 95054
FileMaker is a trademark of FileMaker, Inc., registered in the U.S. and other countries, and
ScriptMaker and the file folder logo are trademarks of FileMaker, Inc.
FileMaker documentation is copyrighted. You are not authorized to make additional copies or
distribute this documentation without written permission from FileMaker. You may use this
documentation solely with a valid licensed copy of FileMaker software.
All persons and companies listed in the examples are purely fictitious and any resemblance to
existing persons and companies is purely coincidental.
Credits are listed in the Acknowledgements document provided with the software.
For more information, visit our web site at www.filemaker.com.

Edition: 01A

Contents
Chapter 1
Getting started

About FileMaker Developer 7

Using the FileMaker Developer documentation 7

Where to find PDF documentation 8

Registration and customer support 8

About the license key 9

Abiding by the license agreement 9

About the TechInfo database 9

Chapter 2
Using FileMaker Developer features

Creating Database Design Reports 11

Using the Script Debugger 12

Using the File Maintenance feature 14

Using custom functions 14

Creating custom functions 15

Editing custom functions 16

Deleting custom functions 16

Duplicating custom functions 16

Chapter 3
Using the Developer Utilities

Overview of preparing your solution files 17

Modifying database solution files 18

Creating an error log 20
Considerations for a runtime database solution 20

Checking file references 21

Binding files for both platforms 22

Binding databases into runtime database solutions 22

Choosing filenames for runtime database solutions 23

Assigning three-character filename extensions 23

Setting the binding key 25

Modifying bound runtime files 25

Saving and reusing Developer Utilities settings 25

Modifying a set of solution settings 26

Converting and upgrading solution files 26

Importing data into upgraded runtime solutions 26

Removing full access privileges from databases 27

Chapter 4
Distributing runtime database solutions

Organizing solution components 29

Mac OS X runtime application package 29

DLL files for Windows runtime solutions 30

Extensions folder for Windows solutions 30

Choosing a distribution method 30

Reducing solution size 30

Using a custom installation program 31

Using a compression utility program 31

Sharing solutions over a network 31

4

FileMaker Developer’s Guide

What your users need 31

Documenting the installation procedures 32

Starting runtime database solutions 32

Recovering damaged files 32

Providing user documentation 33

Creating an About layout 33

Creating a custom Help layout 34

Including printed documentation 35

Your responsibilities as a developer 35

Testing before and after creating your solution 36

Distributing updates to runtime database solutions 37

Chapter 5
Customizing database solutions

About Kiosk mode 39

Navigating in Kiosk mode 39

Closing Kiosk solutions 39

Creating Kiosk solutions 40

Using scripts to control your solution 40

Creating startup scripts 41

Centering database windows in Kiosk screens 41

Emulating menu commands and window controls 41

Creating dynamic buttons 42

Customizing About, Help, and Scripts menus 43

Adding custom scripts to the About menu command 43

Adding custom scripts to the Help menu command 45

Renaming the Scripts menu 46
Chapter 6
Creating custom layout themes

Modifying FileMaker Developer themes 47

Requirements for theme files 49

Minimum XML elements for themes 49

Removing elements from theme files 50

XML elements for layout parts 50

XML elements for text 51

XML elements and their theme attributes 51

Valid values for theme attributes 53

Specifying default values for themes 55

Using values for patterns and colors 55

Adding comments to theme files 56

Checking theme files for errors 56

Chapter 7
Developing third-party FileMaker plug-ins

About external functions 59

About the example plug-in 59

Installing, enabling, and configuring the example plug-in 60

Description of the FMExample plug-in’s external functions 61

Using the example plug-in 62

Customizing the plug-in example 63

Customizing the example resources 63

Customizing FMPluginExample.cpp 64

Customizing FMPluginFunctions.cpp 64

Contents

5

Requirements for writing external function plug-ins 64

API code files 64

Option string syntax 65

Table of option string characters 65

FileMaker messages sent to the plug-in 66

Initialization message 66

Shutdown message 66

Idle message 67

Preferences message 67

External Function message 67

GetString message 68

Avoiding potential Mac OS X resource conflicts 68

Providing documentation for your plug-in 68

Registering your plug-in 68

Revising a registered plug-in 69

Appendix A
Feature comparison of the runtime application

with FileMaker Pro

Application and document preferences 71

Toolbar comparison 73

Menu command comparison 73

Ignored script steps 76

Stored registry settings or preferences 76

Index 77

6 FileMaker Developer’s Guide

Chapter 1
Getting started
Welcome to FileMaker® Developer. FileMaker Developer is the
Developer edition of FileMaker Pro. It includes advanced features
for developers. You can use either FileMaker Pro or FileMaker
Developer to create and test your database solutions. You use
FileMaker Developer to transform your database solution into a
runtime or kiosk-mode application that you can distribute to your
users.

About FileMaker Developer
FileMaker Developer includes a number of productivity features
designed especially for database developers. They are the Script
Debugger, the Database Design Report feature, the File Maintenance
feature, and the Custom Functions feature. These features are
documented in “Using FileMaker Developer features” on page 11.

You can produce databases for distribution without leaving
FileMaker Developer. The Developer Utilities are an integrated
component of FileMaker Developer. Not only do the Utilities enable
you to produce runtime databases for distribution, they also allow
you to rename files while still maintaining links, to prevent users
from modifying the design of your databases, and to customize your
solutions. The Developer Utilities are documented in “Using the
Developer Utilities” on page 17.
Using the FileMaker Developer
documentation
This Developer’s Guide is one component in a comprehensive
documentation suite provided with FileMaker Developer. Some of
the documents are provided in print and in portable document format
(PDF), while others are available in PDF only. FileMaker Developer
also comes with a complete online Help system.

This guide assumes that you are familiar with FileMaker Pro or
FileMaker Developer, and that you have created a database solution
that you want to work on using the FileMaker Developer features.

Note Throughout the documentation, when a feature or procedure is
specific to a particular platform, you see instructions and illustrations
that are also specific to that platform. For features or procedures that
are similar on both platforms, you may see illustrations for either
Windows or the Mac OS.

The following manuals are included:

1 FileMaker Developer Developer’s Guide (this manual): describes
how to use the features available in FileMaker Developer

1 Installation and New Features Guide for FileMaker Pro and
FileMaker Developer: contains installation instructions and new
features information

8 FileMaker Developer’s Guide
1 FileMaker Pro User’s Guide: contains key concepts and basic
procedures

1 FileMaker Pro Tutorial: contains lessons that teach you how to use
the major features of FileMaker Pro

1 FileMaker Instant Web Publishing Guide: describes how to make
FileMaker Pro and FileMaker Developer databases accessible to
web browser users over an intranet or the Internet

1 Converting FileMaker Databases from Previous Versions:
contains information about converting databases from previous
versions to FileMaker Pro 7 and FileMaker Developer 7 format

1 Customizing the FileMaker Pro Templates: describes how to
customize the included database template files for your own needs

1 FileMaker Pro Security Guide: describes security concerns to keep
in mind when using FileMaker products

1 Installing FileMaker ODBC and JDBC Client Drivers: describes
how to install driver files for using FileMaker products with OBDC
and JDBC applications

1 FileMaker ODBC and JDBC Developer’s Guide: describes how to
use ODBC and JDBC with FileMaker products

Where to find PDF documentation
Most PDF manuals are located in the folder where you installed
FileMaker Developer. If you installed FileMaker Developer in the
default folder location, the PDF manuals are located here:

1 Windows: C:\Program files\FileMaker\FileMaker Developer 7\
English Extras\Electronic Documentation

1 Mac OS: Macintosh HD/Applications/FileMaker Developer 7/
English Extras/Electronic Documentation
To view the PDF files, you need a PDF reader. In Mac OS X, you can
use either the built-in Preview application or Adobe Reader.
Windows users need Adobe Reader. If you do not have Adobe
Reader, you can download it from the Adobe web site at
www.adobe.com.

Important You can download PDFs of FileMaker 7 documentation
from www.filemaker.com/downloads. Any updates to this document
are also available from the web site.

All of the PDF files use the tagged Adobe Portable Document format
(PDF). Tagged PDF files work with assistive technology such as the
screen readers JAWS for Windows and Window-Eyes. For more
information about tagged PDF files, see the Adobe web site at
www.adobe.com.

Registration and customer support
Please take the time to register your product during installation,
through the FileMaker web site at www.filemaker.com/register, or
by choosing Help menu > Register Now in FileMaker Developer.

For information about technical support and customer service, see:

www.filemaker.com (North American customers)

www.filemaker.com/int (customers outside North America)

or choose Help menu > FileMaker on the Web. At the web site, you will
find the service options available to North American customers, as
well as links to FileMaker worldwide sites, answers to frequently
asked questions, and access to the TechInfo Knowledge Base used
by Technical Support. If you do not have access to the Web, please
refer to the FileMaker Service Directory included in the software
box. North American customers can also call (800) 965-9090 to learn
about the service options available.

Getting started 9
About the license key
FileMaker software comes with a unique, 35-character-string license
key. Do not lose this license key; it cannot be replaced. We
recommend that you keep the license key in a safe place in case the
software ever needs to be reinstalled.

Important You must enter the license key during installation or the
software will not install.

The license key ensures adherence to the single user license
agreement, which generally allows for use of one (1) copy of the
Software on a single computer at a time (refer to your Software
License). If the license key is invalid or if another copy of the
application installed with that same license key is running on the
network, the FileMaker Pro application displays this error message:
“The maximum number of licensed users are currently using this
copy of FileMaker Developer. Please refer to the License Key
section of your software documentation for further instructions.”

If you receive this error message, you have entered a duplicate
license key. To install FileMaker Developer on multiple computers,
you must have a unique license key for each user, or obtain a volume
license. You must license one copy of FileMaker Developer for each
computer.
Abiding by the license agreement
The FileMaker Developer license agreement allows you royalty-free
distribution of an unlimited number of FileMaker Pro runtime
database solutions. However, there are several terms and conditions
in the license agreement you must abide by, including the following:

1 You must provide all of the end-user technical support.

1 You must provide an “About” layout that includes your name,
address, and the telephone number for your technical support. For
more information, see “Creating an About layout” on page 33.

Note You must read and agree to the terms and conditions of the
FileMaker Developer license agreement, available through the
FileMaker Developer installer, before using the FileMaker
Developer software.

About the TechInfo database
The TechInfo Knowledge Base is a great resource for technical
information about FileMaker, Inc. products. This FileMaker Pro
database serves as a front-line resource for the company’s Technical
Support staff as they field customer inquiries. It is a collection of
Q&As, tips, FAQs, issue reports, update notes, press releases, and a
host of other material valuable for the support professional.

The TechInfo Knowledge Base is available on the product support
pages of the FileMaker web site at www.filemaker.com.

10 FileMaker Developer’s Guide

Chapter 2
Using FileMaker Developer features
In addition to all of the features that are available with
FileMaker Pro, FileMaker Developer contains a number of advanced
development and deployment features to speed up and enhance the
development process. The FileMaker Developer features explained
in this chapter are:

1 the Database Design Report feature for publishing comprehensive
documentation on the schemas of databases

1 the Script Debugger for systematic testing and debugging of
FileMaker scripts

1 the File Maintenance features for compacting the size of database
files and improving their performance

1 the Custom Functions feature for creating custom functions for use
anywhere within a file

FileMaker Developer also includes the Developer Utilities for
creating, customizing, and deploying runtime database solutions.
See “Using the Developer Utilities” on page 17.

Creating Database Design Reports
Use the Database Design Report feature to document the schema of
your database and publish it to an HTML or XML file. You can
choose which elements and database tables in the database that you
want the report to cover. The HTML version of the report is
hyperlinked and can be viewed or printed in a web browser.
With the Database Design Report feature you can:

1 examine a textual representation of your database schema

1 gather statistics on the structure of your database

1 use the information in the report to recreate the structure of your
database if you lose the original database files

A Database Design Report in HTML format includes a Report
Overview that provides a snapshot of the elements in each database
file. The Report Overview contains hyperlinks to details about all
elements in each database file. A Database Design Report in XML
format contains the same information, ready to be transformed into
whatever format you require.

To create a Database Design Report:

1. Open all database files for which you want to produce a Database
Design Report.

You must have full access privileges for any file for which you want
to produce a Database Design Report and the file must be open in
FileMaker Developer. You can run a Database Design Report on
local or remote files.

2. Choose File menu > Database Design Report.

3. In the Available Files list, clear any files that you want to exclude
from the report by clearing the checkbox associated with the file.

12 FileMaker Developer’s Guide
4. If there are any files that contain tables that you want to exclude
from the report, select the file in the Available Files list.

The tables in the file appear in the Include fields from tables in selected
file list. You can then deselect any table in the list.

By default, all tables in all selected files are reported.

5. Clear elements that you want to exclude from the report.

By default, all elements in all selected files are reported. Each
selected element, if present, will be reported on for each selected file.

6. If you do not want the report to be published in the default HTML
format, select XML in the Report Format section.

7. If you do not want the report to automatically open when done,
clear the checkbox for this option in the File Handling section.

8. Click Create.

Database Design Report dialog box
Using the Script Debugger
Use the Script Debugger to troubleshoot scripts in FileMaker
databases. The Script Debugger enables you to execute your scripts
step-by-step to view issues that may arise as the script is performed.

You control how the Script Debugger steps through the script either
by using the buttons in the Script Debugger window or the
commands in the Debug menu. If you find a step that requires
modification, you can open ScriptMaker™ from a button in the Script
Debugger window.

Tip To enable the Script Debugger from the Define Scripts dialog
box, press Shift and click the Perform button. To disable the Script
Debugger, press Ctrl (Windows) or Command (Mac OS) and click
the Perform button. For more information on keyboard shortcuts, see
Help.

The Script Debugger recognizes the privileges attached to each
script. A script will only appear in the Script Debugger if you have
editing privileges for the script and the access privileges for the script
are set to Modifiable.

Script Debugger window

 Using FileMaker Developer features 13
If a script with access privileges set to Modifiable performs a script
with Executable Only access, the Executable Only script will
perform in its entirety without showing its steps in the Script
Debugger. If an Executable Only script performs a script with
privileges set to Modifiable, only the steps in the Modifiable script
will appear in the Script Debugger. For more information about
script privileges and running scripts with full access, see Help.

To run scripts in debug mode, select Scripts menu > Debug Scripts.

Choose To

Step Execute the script one step at a time.
If the script step is Perform Script, the Script Debugger
will execute the sub-script and proceed to the next line of
the calling script. The Script Debugger will execute all
sub-script steps until it encounters a breakpoint.

Step Into Execute the script one step at a time.
If the script step is Perform Script, the Script Debugger
will step to the first line of the sub-script and await user
input before proceeding to the next sub-script step.

Step Out Execute all script steps in the current script and, if the
script is a sub-script, return to the line after the Perform
Script step in the calling script.
If the script is not a sub-script, the Step Out command
will cause the Script Debugger to execute all script and
sub-script steps until it encounters a breakpoint.

Run Execute all script steps until a breakpoint is encountered.

Stop Execution Halt execution of a script and close Script Debugger.
Note In order to facilitate proper script debugging, the Script
Debugger overrides some script steps. The Allow User Abort script
step with the option set to off will not prevent you from stopping the
execution of a script. The Adjust Window script step with the options
of hide or minimize will not hide or minimize the window when
encountered through the Step or Step Into buttons.

Set Next Step Set the step execution pointer to the highlighted script
step.
This command passes control to the highlighted step but
does not perform the step. The highlighted step is
performed when script execution is resumed. Any script
steps between the last executed step and the assigned next
step are not executed. Click a step to highlight it, then
click the Set Next Step button.

Set/Clear
Breakpoint

Set or clear a breakpoint from the selected line.
Breakpoints can be set or cleared from the Script
Debugger or from ScriptMaker. Breakpoints are saved
with the file that contains the script. Breakpoints are
ignored by FileMaker Pro and when the Script Debugger
is not in use. Breakpoints allow the Script Debugger to
perform large sections of the script that do not need to be
looked at closely.

Remove
Breakpoints

Clear all the breakpoints from the current script.
The Remove Breakpoints command is only in the Debug
menu.

Go To ScriptMaker Halts script execution and opens ScriptMaker so you can
edit the script.
The command to open ScriptMaker does not appear in the
Debug menu.

Choose To

14 FileMaker Developer’s Guide
Using the File Maintenance feature
Use the File Maintenance feature to improve the performance of
your database files. The Compact File option removes free disk
space from a file, reducing the file size and streamlining data access.
The Optimize File option improves file access speed by moving
logically related data closer together. Both features reduce disk-head
movement. Improvements will be especially noticeable when you
are using large files and performing finds or sorts, or executing
scripts that operate on all records.

The Compact File option compresses the file by removing free space,
combining partially full disk pages and eliminating gaps in the data.
This feature is useful in reducing the size of a database file. If there
is going to be more data added to the file, you might not want to use
the Compact File feature, as it will increase the amount of
fragmentation occurring when new data is written to the database in
the future. If you do add data to a file that has been compacted, you
can defragment it with the Optimize File feature.

The Optimize File option defragments the file to make the physical
arrangement of data match the logical arrangement. This feature is
especially useful for increasing the speed at which finds and sorts are
performed on files with a large number of records. You can use the
Optimize File feature at any time, even on databases that will have
data added to them.

Both File Maintenance options work on the currently open database
file, without creating another copy. If you are hosting files,
networked clients will not have access to the file maintenance
features for those files.

You can use the options together or by themselves. You can cancel
the operation of the features at any time with the compression and
defragmentation that has been performed up to the point of
cancellation still retained.

1. Open a database file.

2. Choose File menu > File Maintenance.

3. Select one or both options, then click OK.
A File Maintenance Status dialog box shows you the progress of the
features. An alert dialog box tells you when file maintenance is
complete.

Using custom functions
Use the Custom Functions feature to create custom functions that can
be reused anywhere in the database file in which they are created.
Once formulas are written for the function, they don’t have to be
rewritten to be applied to other fields or used in other scripts.

You can maintain and edit custom functions and the formulas they
contain in one central location. Any change made to the custom
function will be copied to all instances where that custom function
has been used.

1 Any users of the database file that contains a custom function can
use the function if they have the proper permissions.

1 Custom functions will run in both FileMaker Pro and FileMaker
Developer, and across multiple platforms.

1 Newly defined functions appear under their own category in the
functions list of the Specify Calculation and Define Custom
Functions dialog boxes.

1 If you do not wish to reveal your custom functions, you can disable
the display of them in these dialog boxes.

File Maintenance dialog box

 Using FileMaker Developer features 15
1 If you do not have full access privileges and attempt to edit a
scripting or field calculation that uses a custom function that is
restricted to full access accounts, you will see the string <Private
Function> instead of the custom function. You cannot change the
calculation when <Private Function> appears in the formula.

Creating custom functions
You must have Full Access privileges to the currently active
database to use the Custom Functions feature.

To create a custom function:

1. Choose File menu > Define > Custom Functions.

2. In the Define Custom Functions dialog box, click New.

3. In the Edit Custom Function dialog box, for Function Name, type
a name.

Custom function names have the following qualifications:

1 The name must be unique

1 The name cannot contain spaces

1 Names cannot exceed 100 characters in length.
1 Names cannot contain spaces; be sure to replace spaces with
underscores or running the parts of the name together.

4. Build a formula.

For more information about building formulas, see Help.

5. If the formula requires parameters, type the parameter name in
Function Parameters and click the Plus button.

You can edit or delete a parameter name by selecting it in the list and
clicking the Edit or Delete buttons.

6. Click where you want an item to appear in the formula box.

7. Perform one of the following actions.

To add a Do this

Reference to a
parameter

In the parameters list, double-click a parameter name.

Mathematical or
text operator

In the keypad, click an operator.

Comparison or
logical operator

For Operators, choose an operator from the list.
Edit Custom Function dialog box
Function list
Formula box
Parameters list
Your custom parameters
appear in this space
View menu (opened)

16 FileMaker Developer’s Guide
You can also type parameter names, operators, and functions in the
Edit Custom Functions dialog box instead of using the lists or
keypad.

8. All accounts is the default option for Availability and allows all
users of the current database to see and use the custom function.

9. If you want the custom function to be available only to those with
full access privileges, select Only accounts assigned full access
privileges.

10. Click OK.

Editing custom functions
The changes you make to a custom function are applied to that
function wherever it is used.

To edit a custom function:

1. Choose File menu > Define > Custom Functions.

2. In the list of custom functions, select the function to be edited
then click Edit.

3. In the Edit Custom Functions dialog box, make the needed
changes, then click OK.

To change the way functions are sorted in the Define Custom
Functions dialog box, choose a category from the View list.

1. In the Edit Custom Function dialog box, make the required
changes.

2. Click OK.

Constant value Type the value.

Function In the functions list, double-click a function. In the
formula box, replace the example parameter with a value
or expression.

To add a Do this
 3. Continue working with custom functions or click OK to close the
Define Custom Functions dialog box.

Deleting custom functions
When you delete a custom function, it is no longer available for use.

If you have full access privileges to a database and are editing a
calculation that uses a custom function that has been deleted, the
name of the function is replaced with the string <Function Missing>.

To delete a custom function:

1. Choose File menu > Define > Custom Functions.

2. In the list of custom functions, select the function to be deleted
and click Delete.

3. Continue working with custom functions or click OK.

Duplicating custom functions
You can make a copy of a custom function and then edit the copy to
perform a similar operation.

To duplicate a custom function:

1. Choose File menu > Define > Custom Functions.

2. In the list of custom functions, select the function to be duplicated
and click Duplicate.

The copy of the function appears in the list of custom function with
“Copy” appended to its name.

3. Continue working with custom functions or click OK.

Chapter 3
Using the Developer Utilities
FileMaker Developer provides Developer Utilities that let you:

1 bind your database files into a stand-alone runtime database
solution that does not require FileMaker Pro or FileMaker Developer
in order to be used on a computer

1 rename all of your database files and automatically update the
internal links to related files and scripts

1 display your database files in Kiosk mode

1 add a script to the Help menu that displays a custom Help layout
or file from any layout in the database solution

1 add a custom script to an About menu command so you can display
a special layout screen about your solution

1 change the name of the Scripts menu

1 remove administrative access from all accounts and prevent users
from modifying most design or structural elements of your databases

1 add the FileMaker Pro filename extension to your files

1 add your own logo or graphic to the closing splash screen of your
stand-alone runtime database solution

Before you begin to build your database solution, you need to decide
how users will interact with it. Your database solution might have
any of the following components:

1 a primary database file that connects all of the auxiliary files

1 scripts and buttons to open and close auxiliary files, return to the
primary file, display a splash screen layout at startup, or quit a
runtime application

1 common elements and a consistent appearance for cross-platform
solutions

1 a custom layout theme used for every file in the solution
1 an About layout to introduce your solution

1 a custom Help system that provides usage tips for your solution

1 multiple privilege sets that can specify levels of access to layouts,
menus, specific tables, record, fields, and so on

1 password-protected accounts assigned to privilege sets that
determine the level of access of account users

Note FileMaker Pro and FileMaker Developer now allow you to
include as many database tables as you need in a database file. This
capability eliminates one of the main reasons for using multiple files.
However, other elements, like scripts and access privileges, are
stored at the file level and so some complex solutions will still
benefit from using multiple files.

Overview of preparing your solution files
As you design, build, and test your database solution, keep in mind
how users will interact with it. This includes navigational scripts and
buttons, effective use of layouts and themes, and Help for the user.

The Developer Utilities are used to modify sets of database solution
files. This chapter describes three main stages in the process:

1. To modify database solution files without creating a runtime
database solution, see “Modifying database solution files” on
page 18.

2. To prepare files for a runtime database solution and ensure that
their file references will work in the solution, see “Considerations for
a runtime database solution” on page 20.

3. To create a runtime database solution, see “Binding databases
into runtime database solutions” on page 22.

18 FileMaker Developer’s Guide
Here are some general considerations for preparing solution files:

1 If desired, create a custom theme for all the layouts in your
database solution. See “Creating custom layout themes” on page 47
for information.

1 If you’re creating a solution that will have versions for Windows
and Mac OS X, test the different versions of the solution on their
respective platforms. For more information, see Help.

1 If you have used multiple files instead of multiple tables in a single
file, all files for your solution should be in the same folder before
being bound into a runtime solution. If it is not practical to keep all
files in one folder, be sure to include a file reference to each file that
is just the filename. See “Checking file references” on page 21.

1 Make sure to specify every file that’s related to the solution, so that
if you modify filenames all file references will be updated.

1 If you have used multiple database files, decide which file will be
the primary file that users open first. The primary file stores the
custom settings. Use this file for navigation buttons or scripts to
other auxiliary files, an About layout, a custom Help layout or file,
and to quit the application.

1 Create scripts and buttons for users to navigate from the primary
file to auxiliary files and layouts in the solution. See “Using scripts
to control your solution” on page 40.

1 Create documentation about your database solution. See
“Providing user documentation” on page 33.

1 Although the Developer Utilities use a copy of a file instead of the
original, it’s always a good idea to make a backup copy of your
original files before beginning.
Modifying database solution files
Use the Developer Utilities to produce a new set of database files, to
customize them, or to create a runtime database solution.

Note You must convert database files from versions of
FileMaker Pro earlier than 7.0 before you can use them with the
Developer Utilities. For more information, see the Converting
FileMaker Databases from Previous Versions guide.

To use the Developer Utilities:

1. Close all of your database files that you are going to customize.

2. Choose File menu > Developer Utilities.

3. If you have used the Developer Utilities on the same database
solution before and saved your settings, click Load Settings.

A Select a file dialog box opens so that you can browse to find your
settings file. See “Saving and reusing Developer Utilities settings”
on page 25.

4. Click Add to locate the files that you want to customize.

5. When you have added all the files that you want to customize, do
one or more of the following:

6. Under Project Folder, click Specify to choose the location in
which the copy of the database solution will be saved.

7. In the Choose a folder for this project’s files dialog box, select or
create a folder and click OK (Windows) or Choose (Mac OS X).

To Do this

Select the primary file Double-click the file in the list.

Rename a file Select the file in the list, type the new name in the
Rename file box, and click Change.

Note Do not type a filename extension. See “Choosing
filenames for runtime database solutions” on page 23.

Remove a file Select the file in the list and click Remove.

 Using the Developer Utilities 19
8. If you do not want the new files to overwrite earlier versions of
them, clear the Overwrite matching files within the Project Folder
checkbox.

Important If Overwrite matching files within the Project Folder is
selected, the Developer Utilities will overwrite files with the same
names as those in the list of files.

9. Do one of the following:

1 To customize your database files or bind the files to a runtime
solution, under Solution Options click Specify.

1 To create a copy of your database files with new names, skip to
step 12.

Specify Solution Options dialog box
10.In the Specify Solution Options dialog box, select one or more
options.

To Do this

Bind databases to
runtime
applications

Choose Create Runtime solution application(s)

See “Binding databases into runtime database solutions”
on page 22.

Note This option can be combined with all others, except
Databases must have a FileMaker file extension.

Permanently
prohibit any
administrative
access to your
solution

Choose Remove admin access from files permanently

See “Removing full access privileges from databases” on
page 27.

Important Once removed, administrative access cannot
be restored to the custom solution.

Force accounts
without full access
privileges to open
your solution in
Kiosk mode

Choose Enable Kiosk mode for non-admin accounts

See “About Kiosk mode” on page 39.

Give the Scripts
menu in your
solution a custom
name

Choose Custom Scripts Menu name

See “Customizing About, Help, and Scripts menus” on
page 43.

Run a specified
script from the Help
menu command

Choose Custom Script for Help menu item

See “Customizing About, Help, and Scripts menus” on
page 43.

Note This option is only available if there are scripts in
the primary file.

Run a specified
script from the
About menu
command

Choose Custom Script for About menu item

See “Customizing About, Help, and Scripts menus” on
page 43.

Note This option is only available if there are scripts in
the primary file.

20 FileMaker Developer’s Guide
11. Click OK.

12. To be able to quickly repeat the process, click Save Settings, and
choose a folder and location for your settings file.

See “Saving and reusing Developer Utilities settings” on page 25.

13. Click Create.

The Developer Utilities copy all the selected database files, with the
modifications made by the Utilities, to the Project Folder. If the
default option to overwrite the destination files has been left on, the
specified Project Folder will be used to store the files copied by the
Developer Utilities. If the default option to overwrite the files has
been cleared, the specified Project Folder will be used if it is empty
or a new one based on the name of the Project Folder will be created.

Creating an error log
Some errors do not trigger error messages. An error log will capture
more detail on any errors encountered during processing.

To create an error log:

1. In the Specify Solution Options dialog box, select the Create Error
log for any processing errors.

2. Click Specify.

If you don’t specify a filename and location for the error log, it will
be saved to the project folder with the filename Logfile.txt.

Add the FileMaker
extension to the
filenames of
database files

Choose Databases must have a FileMaker file extension

Note This option is not available if you select Create
Runtime solution application(s). You can use this feature to
add extensions to files that do not have extensions.

Create a log file to
record any errors
encountered during
processing

Choose Create Error log for any processing errors

See “Creating an error log” in the next section.

To Do this
 3. Use the Specify a file dialog box to select a location and provide
a filename for the error log.

If an error occurs during the processing of the options, the error is
logged in the error log. An error message may also indicate that an
error has been encountered.

Considerations for a runtime
database solution
You should address the following issues before binding the files to
the runtime application.

1 Do you want users to open and close auxiliary files?

In the runtime application, there are no menu options to open or close
files. If you want users to open and close auxiliary files, you must
provide scripts in your solution to perform these operations. In each
auxiliary file you must place a button or startup script that returns
users to the primary file.

1 Do you want users to be able to modify the database?

Unless your runtime database solution files are password protected,
users can open and modify the files in FileMaker Pro or FileMaker
Developer. You can also make your files permanently unmodifiable.
See “Removing full access privileges from databases” on page 27.

1 Will this be a runtime database solution used on both
platforms?

See “Binding files for both platforms” on page 22.

1 How will you provide updates for your users?

You can make it easier for users to update your runtime database
solution files by providing scripts in your primary file to export their
data and import it into the updated solution. See “Importing data into
upgraded runtime solutions” on page 26.

 Using the Developer Utilities 21
1 Will your users be printing reports or other information from
your runtime database solution?

It’s a good idea to set document margins if your runtime database
solution will be printed from a variety of printers. For more
information, see Help.

1 Do you want users to be able to perform spell checking on
records?

You can change the main spelling dictionary language for your
database solution by choosing one from the dictionaries supplied
with FileMaker Developer. Your users can add or modify a user-
defined dictionary to the runtime application. For more information,
see Help.

1 Are your original database solution files in more than one
folder?

See “Checking file references” in the next section.

Primary file of a sample runtime solution
Checking file references
A file reference stores the path or paths that the runtime application
searches to access an external table, script, or value list. Each file
reference can consist of one or more paths, separated by carriage
returns. File paths are searched in the order in which they appear.
The runtime application opens the first file it is able to locate. For
more information, see Help.

Tip You may want to put multiple tables in one file and so avoid any
potential difficulties with multiple files.

During the development of a database with multiple files, you may
want to have some of the files in separate folders. During the creation
of a runtime database solution, however, all files are moved into the
same folder as the runtime application. Your file references should
take this into consideration, whether your solution starts out in one
folder or not.

For this reason, every file reference must include a path that is just
the filename of the file being referenced. Although the runtime
application will check other file references, it will then be able to find
the file in the same folder in which it resides. You can still keep any
absolute or relative paths in the same file reference in case the files
are also used in FileMaker Pro or FileMaker Developer.

To check file references:

1. Choose File menu > Define > File References.

The Define File References dialog box lists all the files references in
the current database. Check to ensure that for each file named, there
is a reference in the File Path List that is to the filename only, without
any folders. The reference will look like this: file:MyFile.fp7.

2. If any file does not have a reference to the filename only, click
New in the Define File References dialog box.

3. In the File Path List, type the filename, including the extension.

4. For File Reference Name, type a name. This is the name that will
appear in all lists that display file references.

5. Click OK to save the file reference.

22 FileMaker Developer’s Guide
Binding files for both platforms
If your solution will be used in Windows, bind it using the Developer
Utilities for Windows. If your solution will be used on Mac OS X,
bind it using the Developer Utilities for Mac OS X. If you’re creating
a solution to be used on both Windows and the Mac OS X, create two
separate runtime solutions by binding the original solution files
twice: first using FileMaker Developer Utilities for Windows, and
then using FileMaker Developer Utilities for Mac OS X. Use the
same binding key on both platforms. Also, remember that binding
keys are case-sensitive.

Binding databases into runtime
database solutions
Use the Developer Utilities to produce a stand-alone runtime
database solution that users can access without running
FileMaker Pro or FileMaker Developer. The Developer Utilities
create a copy of your files, and bind the database file or files to a
runtime application with a name that you specify.

None of the commands on the Define submenu opened from the File
menu are available in the runtime application. See “Feature
comparison of the runtime application with FileMaker Pro” on page
71. The FileMaker Developer features are also stripped from the
runtime application.

A runtime database can, however, be opened in either FileMaker Pro
or FileMaker Developer. The full functionality of these applications
will be enabled, except if full access privileges have been removed.
See “Removing full access privileges from databases” on page 27.

Runtime database solutions cannot be published over a network, the
Internet, or an intranet unless you use FileMaker Pro or FileMaker
Developer instead of the runtime application. For a complete list of
the differences between the runtime application and FileMaker Pro,
see “Feature comparison of the runtime application
with FileMaker Pro” on page 71.
You may need to bind your database files several times before you
prepare them for delivery to your users. When you have completed
development and the final version is bound and ready to distribute,
you should thoroughly test your runtime solution to ensure that it
behaves as expected. See “Considerations for a runtime
database solution” on page 20.

For information about what users need to use your runtime database
solution, see Chapter 4, “Distributing runtime database solutions” on
page 29.

To bind database files into a runtime database solution:

1. Follow steps 1 to 9 in “Modifying database solution files” on
page 18.

2. In the Specify Solution Options dialog box, select Create Runtime
solution application(s).

3. For Runtime Name, type a name for your runtime application.

A startup script in the primary file displays this splash screen layout

 Using the Developer Utilities 23
The runtime name is used for the runtime application filename and
for the name of the folder that contains the runtime database solution
files. See “Choosing filenames for runtime database solutions” in the
next section.

4. For Extension, type a three-character filename extension.

The extension is used to associate the solution files with the runtime
applications. See “Assigning three-character filename extensions”
on page 23.

5. For Bindkey, type a key between 1 and 24 characters long.

The binding key links the runtime application to the database files
and ensures that the bound files will only open in the appropriate
runtime application. See “Setting the binding key” on page 25.

Important Binding installs system files pertaining to each platform.

6. To add a company logo or other custom image to the closing
splash screen, click Specify, select the closing image, and click
Select.

The image should be at least 382 x 175 pixels (72 dpi) or higher,
otherwise it will be distorted when displayed. The supported image
formats are JPEG and GIF.

7. For Delay, set the number of seconds that you want the splash
screen to display.

You can preview the effect that your custom splash screen will have
by clicking the Preview button.

8. Once you have specified options, click OK.

9. To be able to quickly repeat the process, click Save Settings, and
choose a folder and location for your settings file.

See “Saving and reusing Developer Utilities settings” on page 25.

10. Click Create.
The Developer Utilities copy all of the runtime files to a new folder,
created inside the Project Folder and named after the runtime
solution. For information on bundling the necessary files and
delivering your runtime database solution to your users, see
“Distributing runtime database solutions” on page 29.

Choosing filenames for runtime database solutions
When choosing filenames for runtime database solutions, consider
the platforms on which your runtime solution will be used so your
scripts and lookups will work properly. The operating system limits
the number of characters supported for filenames.

Windows filenames must not start with a space. For cross-platform
compatibility, do not use the following characters in filenames:
quotation mark ("), slash (/), backslash (\), angle brackets (<>),
asterisk (*), questions mark (?), colon (:), vertical bar (|).

Assigning three-character filename extensions
The three-character filename extension associates all of the runtime
solution files with the runtime application. If a user has more than
one runtime database solution on a machine, the filename extension
together with the binding key will ensure that the correct runtime
application is started when a solution file is double-clicked. Use an
extension that is unique to your users’ computer systems.

Platform Filename support

Mac OS X 255 characters

Windows 2000, XP 255 characters

24 FileMaker Developer’s Guide
The Developer Utilities automatically update all files to use the
three-character extension that you specify and append the extension
to the filenames. Internal file references used in relationships,
scripts, and external value lists are updated to interact with the new
filenames.

Note No matter what the filename extensions are, runtime database
files can still be opened in FileMaker Pro and FileMaker Developer.
To prevent users from modifying your runtime database solutions,
create passwords for specific access privileges or select the Remove
admin access from files permanently option in the Developer Utilities
before you bind the files into a runtime database solution. See
“Removing full access privileges from databases” on page 27.

Assigning the extension for Windows solutions

The three-character extension registers your runtime application
with the Windows operating system. The extension is used by
Windows to determine which application starts when you double-
click a solution file. The Developer Utilities append the extension to
all database filenames in the runtime database solution during the
binding process.

Assigning the extension for Mac OS X solutions

In the Mac OS X, the three-character extension becomes the creator
code for the runtime application. The creator code must be unique to
ensure that the Mac OS X Finder can determine which application
created each document. The creator code is stored in the solution
files and in the runtime application.

Because creator codes are four characters, the Developer Utilities
insert an uppercase “F” after the first character. For example, the
default three-character extension “USR” becomes the “UFSR”
creator code. Creator codes are case-sensitive.
Note Creator codes should be registered with Apple Computer, Inc.
to verify that the creator code you choose is unique. If the creator
code is not unique, solution files might not open with the appropriate
runtime application. You may use the USR three-character extension
because FileMaker has registered the UFSR creator code with Apple
Computer, Inc. Contact Apple Developer Support or visit their web
site at www.apple.com to register any other creator codes.

Conflicts with non-unique filename extensions in Windows

If the three-character extension is not unique, it might cause registry
conflicts in Windows. For example, if you use the .fp7 extension for
your runtime database solution and your users have FileMaker Pro
installed on their hard disks, all of their FileMaker Pro document
icons will change to the runtime icons. Additionally, FileMaker Pro
documents will no longer automatically open the FileMaker Pro
application.

To restore the document icons to the original FileMaker Pro
document icon:

1. Discard the runtime application.

2. Open a document in the FileMaker Pro application, then close it
and exit the application.

3. Restart your computer.

 Using the Developer Utilities 25
Setting the binding key
The runtime name that you specify in the Developer Utilities is used
for the name of the runtime application and can also be used for the
name of the new solution folder that contains the bound runtime
database solution files.

The binding key is a code that the Developer Utilities use during the
binding process to internally link the files with the runtime
application. If you need to add auxiliary files later to the existing
runtime database solution, rebind the files using the same key.

When developing a solution for both platforms, use the same key
when you bind the solution in Windows and in the Mac OS X. Also,
keep in mind that the binding key is case-sensitive on both Windows
and Mac OS X machines.

Note Use a binding key you’ll remember and record it in a safe
place. (You can do this by saving the Developer Utilities settings
file: see “Saving and reusing Developer Utilities settings” on
page 25.) If you forget your binding key and want to change a
runtime database solution, you’ll need to rebind all of the database
files using a new binding key and then redistribute the entire
solution, including a new runtime application.

The runtime name is used for the folder and application names in this solution
Modifying bound runtime files
You can open a bound runtime file in FileMaker Pro and
FileMaker Developer to make modifications to it. However, if you
selected the Remove admin access from files permanently option when
you bound the files, then you can’t regain access to the Define
Database, Define Value Lists, Define File References, Define
Accounts & Privileges, and Define Custom Functions dialog boxes,
or the Layout Mode and ScriptMaker menu commands. In this case,
you’ll have to open the original database files in order to make
design changes in FileMaker Developer and then rebind them using
the binding key that you assigned to that runtime database solution.

See “Distributing updates to runtime database solutions” on page 37.

Saving and reusing
Developer Utilities settings
You can save the settings you specify in the Developer Utilities
dialog box and reuse them again. The settings include the list of files
to be modified. After you have entered your specifications in the
Developer Utilities, click Save Settings. Choose a location and
filename for the settings file. The extension .sav is automatically
added and should not be changed. You can save as many settings
files as you want, using different locations and names.

Use the Developer Utilities settings file to repeat the same processes
on your database files with the Developer Utilities. When you open
the Developer Utilities, click Load Settings, locate the settings file,
and click Load.

26 FileMaker Developer’s Guide
Modifying a set of solution settings

To modify a settings file:

1. Open the Developer Utilities.

2. Click Load Settings.

3. Locate and select the settings file that you want to modify.

4. Click Load.

5. Specify options.

6. Click Save Settings, then click Save.

7. Click Yes to replace the file.

Your alterations are saved and may be reused again.

Converting and upgrading solution files
If you have developed a FileMaker Pro runtime database solution
using the Solutions Development Kit (SDK) for FileMaker Pro 3.0
or earlier, the Binder utility in the FileMaker Pro 4.0 Developer
Edition, or the Developer Tool in FileMaker Developer 5.x and 6.0,
you can upgrade your solution and provide your users with the
converted files. Files bound to a runtime application using the earlier
tools must be rebound using the Developer Utilities.

You must convert FileMaker Pro files created in earlier versions to
the new file format. You can convert a single file or convert multiple
files at once. For more information about converting files, see the
FileMaker Pro User’s Guide and the Converting FileMaker
Databases from Previous Versions guide.
Once you have converted the files, you can upgrade them to take
advantage of newer FileMaker Pro and FileMaker Developer
features. If necessary, create scripts to import users’ existing data
from the old runtime database solution into the new, upgraded
solution. Use the Developer Utilities to bind the solution files into a
new, upgraded runtime database solution. See “Binding databases
into runtime database solutions” on page 22.

Distribute the new upgraded runtime database solution and provide
instructions for how users can upgrade their files by converting the
old files in the new runtime application and importing their data.

Importing data into upgraded runtime solutions
You can include scripts in the new runtime database solution files
that allow users to import records from the old runtime files. The old
files must first be converted to the new file format.

Note When creating your upgraded runtime solution, use a different
extension than the one you used for your old runtime solution.

To prepare your upgraded solution for importing data:

1. Create a folder named “Old Solution Files” inside the folder that
contains the new runtime solution database files.

2. Place copies of the old runtime solution database files in the “Old
Solution Files” folder.

3. In each upgraded file, create a script to convert the old solution
file and import records from it to the new file.

The functionality of the script should include:

1 Convert File [<filename of the old version of the solution file>]

1 Import Records [<old filename with the new solution’s
extension>]

1 Close File [<old filename with the new solution’s extension>]

 Using the Developer Utilities 27
4. Add a button to activate the script.

5. Repeat steps 3 and 4 for each upgraded file.

6. Use the Developer Utilities to bind your upgraded solution files
into the new runtime database solution.

7. Test your buttons in the runtime application.

Use sample data to make sure the records import properly and data
is imported to the correct fields.

8. Distribute the new solution files that contain the buttons.

9. Provide instructions telling users how to import data into the new
solution files.

Users can copy their old files into the “Old Solution Files” folder and
use the buttons in the new files to convert the old files and import
records from them into the new solution files.

Removing full access privileges
from databases
FileMaker Pro and FileMaker Developer use accounts, privilege
sets, and extended privileges to protect FileMaker databases. For
more information, see Help. You can use the Developer Utilities to
remove all administrative accounts from a file. For more information
about accounts and privileges, see Help.

Use the Developer Utilities to prevent users from altering the design
and structure of your database files and from changing any accounts
or privileges that you’ve set up. The Remove admin access from files
permanently option deletes from the database all accounts that were
using the Full Access privilege set. All Define dialog boxes will also
be unavailable, except for the Extended Privileges tab of the
Accounts & Privileges dialog box.
Note All database files must have at least one active account or they
can’t be opened. You can’t use the Remove admin access from files
permanently option if the accounts with Full Access privilege sets are
the only active accounts in the file. If you attempt to do so, you will
receive an error message.

Important Selecting this option permanently deletes from the
database all accounts that were using the Full Access privilege set.
This will permanently eliminate access to Layout mode and
ScriptMaker, and all Define dialog boxes, except for the Extended
Privileges tab of the Accounts & Privileges dialog box, for all
database files in the solution, whether they’re opened in a runtime
application, in FileMaker Pro, or in FileMaker Developer. Structural
and design elements of the files cannot be modified by anyone,
including FileMaker employees. The only way to modify the tables,
field definitions, relationships, scripts, or access privileges is by
returning to the original file before it was customized by the
Developer Utilities.

Consider the long-term needs of your users when defining access
privileges. Communicate their access privileges to them clearly in
the About layout and follow the rules specified by FileMaker. For
more information, see “Adding custom scripts to the About menu
command” on page 43.

28 FileMaker Developer’s Guide

Chapter 4
Distributing runtime database solutions
The final steps in developing your runtime database solution are to
bundle all of the necessary files together, choose how you will
distribute your solution—for example, on a CD-ROM or over a
network—and provide your users with documentation for installing
your solution. In addition, your documentation should include
instructions for starting the runtime application and what to do if a
file is damaged.

Organizing solution components
When you bind your database files into a runtime database solution,
the Developer Utilities create a new solution folder and place the
runtime application, the bound primary and auxiliary database files,
and an Extensions folder inside it. For Windows runtime solutions
there are also required Dynamic Link Library (DLL) files.

Windows solution folder Mac OS X solution folder

Runtime application
Runtime application
package

Bound primary and
auxiliary solution files

Bound primary and
auxiliary solution files

Extensions

Dictionaries

DLLs generated during
binding

Example of Windows and Mac OS X solution contents for distribution

Extensions

Dictionaries

language resource
folders
Important These files and folders must not be renamed.

If your runtime database solution requires custom files, you should
provide the files with the runtime files. Plug-ins should be stored in
the Extensions folder. If a developer uses a font not found on a user’s
system, the runtime application will make a font substitution. If a
font is included with the runtime, provision should be made for its
installation through the installer program. See “Using a custom
installation program” on page 31.

In addition to the runtime files, you will need to provide installation
instructions for your users. See “Documenting the installation
procedures” on page 32.

Mac OS X runtime application package
The Developer Utilities generate a runtime application package for
Mac OS X. The package will have the name that you give to your
runtime solution. The runtime application package contains the core
resources and code required for running the application. The
contents of the package should not be altered, except to remove the
language resource files. For more information, “Reducing solution
size” on page 30.

The package contains a Contents folder, which has information on
the package and the Frameworks, MacOS, and Resources folders.
The Resources folder includes the language resources folders
(*.lproj). The package can be opened by using the Show Package
Contents command.

The Extensions folder accompanies the Mac OS X package and
contains the Dictionaries folder. The Dictionaries folder contains
dictionary files (*.mpr) for all of the languages supported. The
Dictionaries folder also contains a file for the user spelling dictionary
(User.upr).

30 FileMaker Developer’s Guide
DLL files for Windows runtime solutions
The Developer Utilities generate a set of Dynamic Link Libraries
(DLLs) during the binding process. These are in the solution folder
along with the runtime application and bound database files. They
must be delivered as part of the runtime solution. If any of these files
are missing or become damaged, they must be replaced.

DBConverter.dll omniORB400_rt.dll

DBEngine.dll omnithread30_rt.dll

DOMSupport.dll PlatformSupport.dll

FML10.dll ProofReader.dll

FMLayout.dll ssleay32.dll

FMOLE.dll Support.dll

FMRSRC.dll XalanDOM.dll

FMScript.dll XalanExtensions.dll

FMUserModel.dll XalanSourceTree.dll

FMWrapper.dll XalanTransformer.dll

GdiPlus.dll XCore.dll

HBAM.dll XDraw.dll

libeay32.dll xerces.dll

mfc70u.dll XercesParserLiaison.dll

MFCX.dll XFC.dll

msvcp70.dll XGrfx.dll

msvcp70d.dll XMLEngine.dll

msvcr70.dll XMLSupport.dll

msvcr70d.dll XPath.dll

NSViews.dll XSLT.dll

omniDynamic400_rt.dll XText.dll
Extensions folder for Windows solutions
The Extensions folder of Windows runtime solutions contains a
folder for each language supported and a dictionaries folder. Each
language resource folder contains a DLL file for the language
(FMRSRC.dll), a file containing the text for the interface, dialog
boxes, and error messages (FMStrs.dls), and a file containing the
Windows language ID for the language (lang.dat).

The Extensions folder also contains the Dictionaries folder. The
Dictionaries folder contains dictionary files (*.mpr) for all of the
languages supported. The Dictionaries folder also contains a file for
the user spelling dictionary (User.upr).

Choosing a distribution method
After you have organized the files that comprise your solution, you
need to decide how your users will install them. You can distribute
your bundled solution on a CD-ROM, over a network, or via the
Internet.

Reducing solution size
If you are planning on distributing your runtime solution via the
Internet, you may want to reduce the size of the solution before you
package the solution. Deleting dictionaries and language resource
files for languages not supported by your database will reduce the
size of the application.

To reduce the size of your solution:

Windows

1. Open the Extensions folder that is copied to the runtime solution
folder.

2. Delete language resource folders for languages not supported by
your solution.

Important Do not delete the language resource folder for English.

 Distributing runtime database solutions 31
3. Open the Dictionaries folder.

4. Delete dictionaries for languages not supported by your solution.

Mac OS X

1. Open the Extensions folder that is copied to the runtime solution
folder.

2. Open the Dictionaries folder.

3. Delete dictionaries for languages not supported by your solution.

4. Control-click the runtime application package and choose Show
Package Contents.

5. Locate the Resources folder in the Contents folder.

6. Delete language resource folders (*.lproj) for languages not
supported by your solution.

Using a custom installation program
You should use a custom installation program to package your
runtime solution for installation by users. Configuring a custom
installation application to automatically install runtime database
solution files may require more engineering than using a
compression utility, but will help to ensure that your users do not
have difficulties installing your runtime solution.

Here are some custom installation applications that you might want
to use:

1 MindVision Installer VISE (Windows and Mac OS X) by
MindVision, Inc. (www.mindvision.com)

1 InstallShield MultiPlatform (Windows and Mac OS X) by
InstallShield Software Corporation (www.installshield.com)

1 StuffIt InstallerMaker (Mac OS X) by Aladdin Systems
(www.aladdinsys.com)
Using a compression utility program

If your runtime database solution is not complex and you have
confidence in the technical experience of your end users, you might
consider a compression utility program rather than a custom
installation program. To compress files, use a utility such as:

1 WinZip for Windows (Windows 2000, XP) by WinZip
Computing, Inc. (www.winzip.com)

1 StuffIt Deluxe (Windows and Mac OS X) by Aladdin Systems
(www.aladdinsys.com)

Sharing solutions over a network
Users cannot share your runtime database solution over a network
unless they access the files using FileMaker Pro or FileMaker
Developer installed on their machines. You must have a master
password to enable or change network access to the file. For optimal
performance, you can host the solution files using FileMaker Server.

For information about the FileMaker Server and FileMaker Pro
products, and information about volume license sales, see the
FileMaker web site at www.filemaker.com.

What your users need
In order to run your runtime database solution, your users will need
the same minimum equipment and software required by the
FileMaker Developer application (see the Installation and New
Features Guide for FileMaker Pro and FileMaker Developer). In
addition, your users will need instructions for installing and starting
your solution, and information about how to recover damaged files.

32 FileMaker Developer’s Guide
Documenting the installation procedures

You’ll need to provide instructions to your users on how to install
your runtime database solution. Here’s a list of things you should
document:

1 Provide written instructions for copying or installing your solution
to your users’ hard disks.

1 Include software and instructions specifying how your users can
decompress your solution files.

1 Include information about the minimum equipment and software
requirements.

For suggestions on other information to include with your runtime
database solution, “Providing user documentation” on page 33.

Starting runtime database solutions
After a user has run the installation program for your runtime
application, the files are installed on the user’s hard drive. The
solution’s three-character filename extension is registered with the
operating system (Windows) or in the system preferences
(Mac OS X). This registration allows the operating system to locate
and launch the runtime solution if the user double-clicks the primary
or auxiliary solution files. If a primary or auxiliary solution file is
double-clicked before the runtime application has registered the
extension, the runtime application won’t be found.

Important Your users should start your solution by double-clicking
the runtime application icon, not the primary file icon. Double-
clicking the icons for the primary or auxiliary files might result in
errors, depending on whether there are other copies of the runtime
application on their hard disk. If your users have more than one
solution on their computers with the same three-character extension

Double-click
to start

Primary file iconRuntime application icon
and they double-click the icon for the primary file, the most recently
installed runtime application is opened, which may not be the correct
application for your solution’s primary file.

Each time the runtime application is opened, it looks for the primary
file that has been bound to it. If the primary file can’t be found, the
user is asked to locate the primary file.

Caution your users that they should not rename the primary or
auxiliary solution files. If they do, relationships and external scripts
may not work properly.

Note When you make a change to your solution, make sure that your
users can import their data into your updated solution. Include a
script attached to a button to make it easy for your users to import
their data into the new solution files. For more information,
“Importing data into upgraded runtime solutions” on page 26.

Recovering damaged files
Power failures, hardware problems, or other factors can damage a
FileMaker database file. If your database solution becomes
damaged, your users will need to recover the damaged file. When the
runtime application discovers a damaged file, a dialog box appears,
telling the user to contact the developer. Even if the dialog box does
not appear, files can become corrupted and exhibit erratic behavior.

Once you know which file is damaged, you can recover it using the
Recover command, if you have FileMaker Pro or FileMaker
Developer installed. If your user only has the runtime application,
however, the Recover command does not appear in the File menu of
the runtime application.

To recover a damaged file:

1 On Windows machines, press Ctrl+Shift while double-clicking the
runtime application icon. Hold the keys down until you see the Open
Damaged File dialog box.

1 On Mac OS X machines, press Option + 3 while double-clicking
the runtime application icon. Hold the keys down until you see the
Open Damaged File dialog box.

 Distributing runtime database solutions 33
During the recovery process, the runtime application:

1 creates a new file

1 renames any damaged file by adding Old to the end of the
filenames (for example, Contact Manager is renamed to Contact
Manager Old)

1 gives the repaired file the original name

If users experience unusual behavior in the recovered files, they
should revert to a backup copy that was made before the file became
corrupt, or contact you for technical assistance.

In your documentation, you should tell your users what to do after a
file has been recovered. Tell your users to:

1. Recover the damaged solution file using the method described
above for the type of computer they are using.

2. Open the recovered solution file in the runtime application.

3. Choose File menu > Save a Copy As.

4. In the dialog box, choose compacted copy (smaller) from the Save
a (Windows) or Type (Mac OS X) drop-down list, name the file, and
click Save.

Give the compacted file the same filename as the original file.

5. Make a copy of the original database and import the data from the
recovered file into it.

Providing user documentation
You should provide documentation for your database solution,
whether it is a database that must be opened in FileMaker Pro or
FileMaker Developer, or a standalone runtime database solution.
There are several ways that you can provide documentation for your
solution, including a printed manual, an online Help system, and an
About layout that is available from any layout in the solution.

Create custom About and Help layouts that document what your
database solution is, how to use it, and where users can go for more
information. Then use the Developer Utilities to attach scripts to
menu commands that open the About and Help layouts.

Note The FileMaker Pro and FileMaker Developer Help system is
not available in runtime applications. However, Status bar Help
(Windows) and Help tags (Mac OS X) are available.

Creating an About layout
For runtime database solutions, the FileMaker Developer license
specifies that you must create an About layout that provides
information for your users on how to contact you for technical
support. FileMaker uses the About layout to distinguish databases
created by developers using FileMaker Developer rather than users
of FileMaker Pro.

For more information about what is required to appear in the About
layout for runtime database solutions, see “Your responsibilities as a
developer” on page 35.

To create an About layout:

1. Choose View menu > Layout Mode.

2. Choose Layouts menu > New Layout/Report.

Example of an About layout

34 FileMaker Developer’s Guide
3. Type About <your solution> in the Layout Name box.

Note For runtime database solutions, you must include the word
“About” in the layout name. You must also include certain specific
information in the layout. See “Your responsibilities as a developer”
on page 35.

4. Select Blank Layout.

5. Click Finish.

6. Include in the layout your logo, other graphics, and your company
information.

7. Include text that notifies users if the solution files are protected
with passwords or if full access privileges have been removed.

See “Your responsibilities as a developer” on page 35 for the exact
legal wording.

8. Create a button that lets your users return to the main layout of the
primary file.

9. Choose Scripts menu > ScriptMaker and create a script that goes
to the About layout.

1 Include the word “About” in the script’s name.

10. Use the Developer Utilities to create a menu command that
displays the About layout.

The Developer Utilities use the script’s name for the name of the
menu command. “Adding custom scripts to the About menu
command” on page 43.

To display the About layout when the runtime application is started:

1. Open the primary file for the database solution.

2. Choose File menu > File Options > Open/Close.

3. Select Switch to layout and choose the About layout from the drop-
down list.

Creating a custom Help layout
Create a Help layout that provides instructions for how to use your
custom solution and add data to it. Then create a script in the primary
file of your solution to display the Help system. Use the Developer
Utilities to make the script available as a command in the Help menu.
See “Adding custom scripts to the Help menu command” on
page 45.

A kiosk example containing a single Help layout

A runtime solution example with a separate Help window

 Distributing runtime database solutions 35
Including printed documentation
In addition to an online Help system, you should include printed
documentation that explains how to install your database solution
and briefly how to use it in case users are not able to open your
solution files.

Other items appropriate for printed documentation include:

1 how to install your bundled solution

1 how to install custom files

1 how to upgrade to new solution files

1 how to use your Help system

1 how to start the database solution (see “Starting runtime database
solutions” on page 32)

1 what to do in case of a damaged file (see “Recovering damaged
files” on page 32)

1 how to reach you for technical support

You might also want to include the following recommendations:

1 Tell your users not to rename any solution files (except the runtime
application), or they may be unable to run your solution.

1 Recommend that users back up their data regularly. You might
want to automate some of the process by including scripts that save
copies of the solution files. For more information, see Help.

Important In the event that your runtime database solution files
become damaged, make sure users have access to your technical
support email address or telephone number in your printed
documentation or in a text file. If a database file is damaged, they
may not be able to access the About layout in your solution to find
out how to contact you.
Your responsibilities as a developer
FileMaker has established procedures for repairing files. If a
customer complies with these procedures, then FileMaker may
supply a repaired file to the customer.

If you distribute database files with passwords or you have removed
full access privileges and do not want FileMaker to repair a file for a
customer who requests this service, you must:

1. Notify your customers in writing and keep a record of such notice
that your database solution contains passwords or data that can only
be provided by you.

2. Every file in your runtime database solution must contain an
About layout accessible from any layout in the database.

See “Adding custom scripts to the About menu command” on
page 43 and “Creating an About layout” on page 33.

3. The layout name must begin with the word “About.”

4. The About layout must contain these items:

1 solution name

1 your company name and contact information

1 your support policy (for example, how and when you are
available for technical support)

5. The About layout must contain this exact warning:

“USER WARNING: This database solution contains password(s) that can
only be provided by the Developer identified above.”

36 FileMaker Developer’s Guide
6. If full access privileges have been permanently removed from
your database solution by selecting the Remove admin access from
files permanently option in the Developer Utilities, then the About
layout must contain this exact warning:

“USER WARNING: This file is not customizable. Contact the above named
Developer for information on customizing this database solution.”

The accounts and privileges protection in a FileMaker file should not
be viewed as an absolute barrier that will prevent a customer from
accessing files. FileMaker cannot guarantee that a customer will not
be able to identify or bypass the password through third-party
solutions or tools. Therefore, FileMaker recommends that you take
appropriate steps to protect your consulting and development efforts
without relying solely upon the password. For more information
about accounts and privileges, see Help.

If you have a dispute with your customer, you must resolve this
dispute directly with the customer. FileMaker is unable to, and will
not, attempt to resolve such disputes.

Testing before and after
creating your solution
You should verify the functionality of your database solution by
testing it thoroughly before and after you customize it with the
Developer Utilities.

To ensure the quality of your custom database solution:

1 Verify every function and option in your solution. If you’re
developing a solution for both platforms, test it on both Windows
and Mac OS X platforms.
1 Make sure your runtime database solution does not use a standard
FileMaker Pro feature that is hidden or disabled in the runtime
application. See “Feature comparison of the runtime application
with FileMaker Pro” on page 71.

1 Verify that all scripts and buttons work as expected. This is
especially important if you’re displaying your solution in Kiosk
mode. See “About Kiosk mode” on page 39.

1 Verify your installation procedures and test other instructions in
the documentation.

1 Verify that your database layouts display well on monitors with
different color capabilities and resolutions and on the smallest size
monitor your users may be using.

1 Test your runtime database solution with actual data. This is
especially important if users are upgrading from earlier versions of
the runtime application and need to import data into new solution
files.

1 Make sure all the auxiliary files and DLLs (Windows) are present.

1 Show your database solution to intended users to uncover any
usability issues.

1 Install your bundled database files on a completely different
computer to verify that all the files associated with the primary file
can be found.

1 If you’re assigning passwords or permanently removing full
access privileges, test all access levels. Make sure your database
solution contains an About layout that notifies users of the level of
access you’re providing. See “Creating an About layout” on page 33
and “Your responsibilities as a developer” on page 35.

Important You should keep an unbound version of any runtime
database solution files, especially if you’ve permanently removed
full access privileges. See “Removing full access privileges
from databases” on page 27.

 Distributing runtime database solutions 37
Distributing updates to
runtime database solutions
If you make feature enhancements or modifications to the primary
bound file of your runtime database solution, you can distribute the
updated file to your users without rebinding it. If you change the
filename of the primary file, however, you’ll need to rebind the file
and distribute a new version of the runtime application along with the
updated file.

To distribute new or updated auxiliary files for your runtime
database solution, you need to bind them first using the original
binding key. If you are distributing a new auxillary file that requires
new file references in the main file or that requires other files to
interact with it, you must update all files that have been modified.

If you forget the original binding key for your runtime database
solution and want to update or add a file, you’ll need to rebind all of
the database files with a new binding key and redistribute the entire
solution.

To distribute an updated primary file:

1. Open the original primary file from your copy of the runtime
solution in FileMaker Developer.

2. Make the changes to the primary file.

3. If necessary, create an Import script so users can import their
existing data into the new primary file.

See “Importing data into upgraded runtime solutions” on page 26.

4. Send your users a copy of the new primary file with instructions
to replace the old primary file in the runtime database solution folder.
To distribute a new or updated auxiliary file:

1. In FileMaker Developer, create the new auxiliary file or open the
original auxiliary file (before it was bound) and make changes as
required.

2. If necessary, create an Import script so users can import their
existing data into the new file.

See “Importing data into upgraded runtime solutions” on page 26.

3. Use the Developer Utilities to rebind all of the files in the runtime
database solution and include the new or updated auxiliary file.

Use the same binding key that you used for the primary file.
Remember that the binding key is case-sensitive. See “Binding
databases into runtime database solutions” on page 22.

4. Send your users a copy of the new or updated auxiliary file along
with instructions to place it in the runtime database solution folder,
replacing the old file if appropriate.

As long as the binding key has not changed, you don’t need to
redistribute the runtime application or other solution files.

38 FileMaker Developer’s Guide

Chapter 5
Customizing database solutions
You can use FileMaker Developer to further customize your
solutions:

1 Use the Developer Utilities to create a solution that displays your
database in Kiosk mode. When users without administrative
accounts open a Kiosk solution, it displays on a full screen and
without toolbars, menus, or other window controls.

1 Use ScriptMaker to create scripts that can then be attached to
buttons. The runtime application does not have menu commands or
toolbar buttons to open or close other files. Scripts attached to
buttons must be used in runtime solutions and Kiosk solutions to
open or close other files. Scripts and buttons can be used for other
controls in database solutions.

1 Use the Developer Utilities to customize the About, Help, and
Scripts menus in database solutions and runtime database solutions.

About Kiosk mode
Kiosk mode is a way of displaying your database solution or your
runtime database solution on a full screen, without any toolbars or
menus. As the name suggests, Kiosk mode can be used to present
your database to users as an information kiosk. You can design your
database to run through a touch screen.

Database files that open in FileMaker Pro and FileMaker Developer,
or in the runtime application can both be transformed into files that
accounts with specific privilege sets must open in Kiosk mode.
When you create a solution to run in Kiosk mode, you need to
consider how users will navigate your solution and how they will
quit your solution. For more information about accounts and
privileges, see Help.
Navigating in Kiosk mode
The primary file is the main database that users see first in your
Kiosk solution. Because Kiosk mode does not contain any menus or
window controls, the primary file must contain buttons that users can
click to navigate through the solution, close the files, and to quit
FileMaker Pro, FileMaker Developer, or the runtime application.

To decide how users will navigate your Kiosk solution, start by
planning your navigation design on paper. Decide what will happen
when each button is clicked, and give users a way to get back to the
beginning of your solution from each layout. To further control what
users see, create startup scripts that display a specific layout when a
file is opened.

1 If your Kiosk solution will be run with a touch screen, use large
buttons and allow space between buttons.

1 Try to limit the number of options available on one screen.

1 Because Preview mode disables buttons, make sure that any Enter
Preview Mode script step is followed by a Pause/Resume Script
script step and specify an amount of time the script should remain in
Preview mode. Place an Enter Browse Mode script step after the
Pause/Resume Script script step.

Note When a Kiosk solution is open, access to the operating system
is limited. On Windows machines, you can press Alt+Tab to go to
another application from your Kiosk database solution.

Closing Kiosk solutions
If there is no Quit or Exit button available in your Kiosk solution,
users must force-quit the application by pressing Alt+F4 (Windows).
Force quitting is not recommended because it can cause data
corruption or damage open files.

40 FileMaker Developer’s Guide
To ensure that users can access the primary file and quit the
application cleanly:

1 In each auxiliary file, provide a startup script that opens the
primary file.

1 In each auxiliary file, place a “Main Menu” button that runs the
startup script to open the primary file.

1 In the primary file, include an Exit button.

For information about creating buttons and scripts that emulate
missing menu options and window controls, see “Emulating menu
commands and window controls” on page 41.

Creating Kiosk solutions

Kiosk mode is ignored if the solution is opened by accounts with the
Full Access privilege set, a privilege set that allows management of
extended privileges, or a privilege set that allows modification of
layouts, value lists, and scripts.

For your solution to display in Kiosk mode, you must:

1 create an account with a limited privilege set or create a specific
Kiosk account.

1 enable Kiosk mode. At the same time that you enable Kiosk mode,
you can bind the database as a runtime solution.

1 clear the default option of logging into the file with the Admin
account.

To create a Kiosk account:

1. With the database solution open, choose File menu > Define >
Accounts & Privileges.

2. In the Define Accounts & Privileges dialog box, click New.

3. In the Edit Account dialog box, type an account name, click
Active for the Account Status, and select New Privilege Set from the
Privilege Set list.

4. In the Edit Privilege Set dialog box, give the privilege set a name
and description.
5. For Layouts, Value Lists, and Scripts, select either All view only or
All no access.

6. Clear the Manage extended privileges checkbox.

7. Select other options as required.

8. Click OK.

To enable Kiosk mode:

1. Follow steps 1 to 9 in “Modifying database solution files” on
page 18.

2. In the Specify Solution Options dialog box, select Enable Kiosk
mode for non-admin accounts.

3. Select other options as required.

4. Click OK.

5. To be able to quickly repeat the process, click Save Settings, and
choose a folder and location for your settings file.

See “Saving and reusing Developer Utilities settings” on page 25.

6. Click Create.

If you did not bind the files to a runtime application, the Developer
Utilities copy the selected database files to the Project Folder. If you
did bind the files to a runtime application, the Developer Utilities
copy all of the runtime files to a new folder created inside the Project
Folder and named after the runtime solution.

To change the default option of logging into the file with the Admin
account:

1. With the database solution open, choose File menu > File Options.

2. On the Open/Close tab, clear Log in using.

3. Click OK.

Using scripts to control your solution
You can use scripts to automate much of your database solution,
control startup behavior, emulate menu commands and window

 Customizing database solutions 41
controls, navigate, and much more. For more information about
creating scripts to automate tasks, see Help.

Note Use the Debug Scripts option on the Scripts menu to test
scripts. See “Using the Script Debugger” on page 12.

Creating startup scripts
Startup scripts are useful for controlling what appears when users
open a file in your solution. You can control which layout is
displayed and the size, position, and magnification of the window.
For a startup script example, see Help.

To create a startup script:

1. Open the primary file of the database.

2. Choose Scripts menu > ScriptMaker and create a script to perform
the desired actions.

3. Choose File menu > File Options > Open/Close tab.

4. For When opening this file, select Perform script, then from the drop-
down list choose the script you created.

An example of a file-specific File Options dialog box
5. Click OK.

The script that you specified is automatically performed whenever
the file is opened.

Centering database windows in Kiosk screens
To center your databases in the middle of a Kiosk screen, create a
startup script that uses the Adjust Window and Set Zoom Level script
steps. When a file is opened in Kiosk mode, two things will happen:

1 The database window snaps to fit layout objects at the right and
bottom edges of the layout.

1 If the window is smaller than the available screen area, it is
centered in the middle of the screen.

Important Before using the Adjust Window script step, perform any
script steps that affect the window display area (such as Go to Layout
or Show/Hide Status Area). Once the window area is determined,
add the Adjust Window script step.

The Adjust Window script step may cover up a window that has an
Exit Application button. Be sure that users can close the Kiosk
database solution easily.

Emulating menu commands and window controls
Use the following script steps to emulate menu commands and
window controls.

To emulate these
interface elements

Create buttons with these
script steps attached

Menu commands Script steps for any menu command (for example,
Sort Records, Print, and Open Preferences)

Zoom controls Adjust Window or Set Zoom Level

Status area control Show/Hide Status Area

Mode pop-up menu Enter Browse Mode, Enter Find Mode, or Enter
Preview Mode

42 FileMaker Developer’s Guide
Creating dynamic buttons
By using scripts and calculations to evaluate the state of button
fields, you can make dynamic buttons that change each time they are
clicked.

To create dynamic buttons:

1. Define the dynamic button field.

2. Create the dynamic button script.

3. Connect the field and the script.

The following example shows how to create a button that changes
every time it is clicked.

To define the dynamic button field:

1. Choose File menu > Define > Database > Fields tab.

2. Create a field named Icons and make it a Container type.

3. Click Options > Storage tab.

4. Select the Use global storage checkbox and type the number of
button states for the Maximum number of repetitions.

5. Click OK.

6. In Browse mode, select the Icons field and choose
Insert menu > Picture to add graphics to the Icons field.

Vertical scroll bar Scroll Window (if the layout is longer than one
screen)

Horizontal scroll bar Scroll Window (if the layout objects are wider
than one screen)

Window size and location Move/Resize Window

To emulate these
interface elements

Create buttons with these
script steps attached
Tip Ensure that all graphics are the same size.

7. Choose File menu > Define > Database > Fields tab.

8. Create a container field named Buttons.

9. Click Options > Auto-Enter tab.

10. For Calculated value, click Specify and enter the function

GetRepetition (Icons; 1)

11. Click OK.

To create the dynamic button script:

1. Choose Scripts menu > ScriptMaker and click New.

2. Name the script Toggle Buttons.

3. Add a Set Field script step.

4. For Specify target field, click Specify.

5. Double-click Buttons.

6. For Calculated result, click Specify.

7. Write a Case function that evaluates each GetRepetition test
expression for the icon number and increments the number by one.

Graphics buttons added to a repeating field

Global repeating field

Repetition number

 Customizing database solutions 43
8. Click OK.

To connect the field and the script:

1. Choose View menu > Layout Mode.

2. Select the Buttons field and choose Format menu > Field Behavior.

3. Clear both Allow field to be entered checkboxes and click OK.

4. Choose Format menu > Button.

5. Select Perform Script and specify Toggle Buttons.

6. Click OK.

You can switch to Browse mode and test your dynamic button. For
more information about using buttons with scripts, see Help.

Customizing About, Help, and
Scripts menus
You can customize the menu bar in your database solution to display
a custom script as a menu command in the Help menu or Application
menu (Mac OS X), or to display a custom name for the Scripts menu.
The custom settings are stored in the primary file of your solution.

Adding custom scripts to the About menu command
Use the Developer Utilities to add a custom script to the About menu
command for your database solution or your runtime solution. The
custom script will bring the user to the About layout that describes
your solution and provides users necessary information about it.

Case function for dynamic buttons
When the Developer Utilities process your database files, they create
a menu command named “About <your solution>” and place it in the
Help menu (Windows) or Application menu (Mac OS X). For more
information, see “Creating an About layout” on page 33.

In runtime applications, the custom About command replaces the
About FileMaker Pro Runtime command. If you don’t specify an
About script when you bind your files into a runtime database
solution, an About FileMaker Pro Runtime menu command is added to
the Help menu (Windows) or Application menu (Mac OS X) in the
runtime application.

Custom About command in FileMaker Developer (Windows)

Custom About command in a runtime
application (Windows)

Custom About command in
FileMaker Developer (Mac OS X)

Custom About command in a
runtime application (Mac OS X)

44 FileMaker Developer’s Guide
Note In runtime database solutions, you are required to include an
About layout that provides information about your company and
where users can go for technical support. By identifying your
runtime database solution with an About layout in the format
required by FileMaker, FileMaker employees are alerted not to
provide technical support to unauthorized users attempting to open
the solution. For more information, see “Abiding by the license
agreement” on page 9 and “Your responsibilities as a developer” on
page 35.

This dialog box appears in the runtime application if you
don’t specify a custom script for the About command
To add a custom script to an About menu command in your solution:

1. Follow steps 1 to 9 in “Modifying database solution files” on
page 18.

2. In the Specify Solution Options dialog box, select Custom Script
for About menu item.

3. Select a script from the Script name drop-down list.

4. Select other options as required.

5. Click OK.

6. Click Create.

The About layout in this runtime solution example includes a button to return to
the main screen

 Customizing database solutions 45
If you did not bind the files to a runtime application, the Developer
Utilities copy the selected database files to the Project Folder. If you
did bind the files to a runtime application, the Developer Utilities
copy all of the runtime files to a new folder, created inside the Project
Folder and named after the runtime solution.

For more information, see “Creating an About layout” on page 33.

Adding custom scripts to the Help menu command
You can create your own help system for your solution. Create a
Help layout or file and use a script to open it. With the Developer
Utilities, you add the script name to the Help menu. In runtime
applications, the custom Help script command replaces the
FileMaker Developer Help command. For more information, see
“Creating a custom Help layout” on page 34.

Custom Help command in
FileMaker Developer (Windows)

Custom Help command in a
runtime application (Windows)

Custom Help command in
FileMaker Developer (Mac OS X)

Custom Help command in a
runtime application (Mac OS X)
To add a custom Help script command to the Help menu in your
solution:

1. Follow steps 1 to 9 in “Modifying database solution files” on
page 18.

2. In the Specify Solution Options dialog box, select Custom Script
for Help menu item.

3. Select a script from the Script name drop-down list.

4. Select other options as required.

5. Click OK.

6. Click Create.

If you did not bind the files to a runtime application, the Developer
Utilities copy the selected database files to the Project Folder. If you
did bind the files to a runtime application, the Developer Utilities
copy all of the runtime files to a new folder, created inside the Project
Folder and named after the runtime solution.

For more information, see “Creating a custom Help layout” on
page 34.

46 FileMaker Developer’s Guide
Renaming the Scripts menu
Use the Developer Utilities to rename the Scripts menu for your
database solution. The setting is stored in the primary file of your
solution and the new menu name appears in the menu bar in
FileMaker Developer and in a runtime application.

Note The menu name must not exceed 30 characters.

To rename the Scripts menu for your solution:

1. Follow steps 1 to 9 in “Modifying database solution files” on
page 18.

2. In the Specify Solution Options dialog box, select Custom Scripts
Menu name.

3. Type a menu name.

Database solution with Scripts menu

Database solution with renamed Scripts menu
Windows To specify a keyboard accelerator, type an ampersand (&)
before the character you want to use as the accelerator key. For
example, type Re&ports to display the Reports menu with the
letter “p” as the accelerator key.

1. Select other options as required.

2. Click OK.

3. Click Create.

If you did not bind the files to a runtime application, the Developer
Utilities copy the selected database files to the Project Folder. If you
did bind the files to a runtime application, the Developer Utilities
copy all of the runtime files to a new folder, created inside the Project
Folder and named after the runtime solution.

Chapter 6
Creating custom layout themes
FileMaker Pro and FileMaker Developer use a variety of layout
themes to describe the colors, patterns, fonts, and borders of text,
fields, and parts in a new layout.

A theme is an Extensible Markup Language (XML) document that
can be read and edited in a text editor (such as Notepad for Windows
or BBEdit for Mac OS X) or XML editor (such as XML SPY or
XMetaL). You can customize an existing theme or create your own,
and then use the New Layout/Report assistant to apply the custom
theme when you create layouts for your databases. You can modify
attributes defined by the theme in Layout mode after the layout is
created. However, you can’t apply a theme to an existing layout.

Note A FileMaker theme is not a stylesheet and does not contain
positioning information for objects on a layout.
For information about:

1 using layout themes and designing layouts, see Help

1 XML and its uses, see www.filemaker.com/xml

1 publishing your database on the web in XML format, see the PDF
manual, FileMaker Instant Web Publishing Guide

Modifying FileMaker Developer themes
FileMaker Pro and FileMaker Developer include theme files that can
be modified. A theme file can contain more than one theme. For
example, the Blue_gold.fth file contains two themes: “Blue and Gold
Screen” (for viewing onscreen) and “Blue and Gold Print” (for
printing).
Create themes to automatically apply different styles to text and background fills in layout parts, fields, and field labels
 Fill color and pattern for header part
Fill color and pattern for body part
Fill color and pattern for footer part
Field label
 Field text
 Field fill, border and shadow effect
Text in footer part
Text in header part

48 FileMaker Developer’s Guide
Important The XML for a layout theme must be well-formed and
comply with the required syntax. See “Requirements for theme files”
on page 49 and “Checking theme files for errors” on page 56.

To modify a theme:

1. Make a copy of one of the theme files in the Themes folder.

Windows: FileMaker Developer 7\Extensions\English\Themes\

or

Mac OS X: FileMaker Developer 7/ FileMaker Developer.app/Contents/
Resources/English.lproj/Themes/

Important The total number of theme files is limited to 50.

2. Rename the copy and include the .fth extension with the new
filename.

Keep the new file in the Themes folder. In order for the New Layout/
Report assistant to display a theme option, the theme file must reside
in the Themes folder and it must have the .fth filename extension.

3. Open the theme file in a text editor.

Multi-line
element

Single-line
element

Attributes
4. Change the name of a theme by replacing the value of the
THEMENAME element with a new name.

<THEMENAME VALUE="Purple and White Screen" />

Note If your THEMENAME value contains any upper-ASCII
characters, use the HINT attribute to ensure that the theme name will
appear on both the Windows and Mac OS X platforms. For
information, see “Valid values for theme attributes” on page 53.

5. Change the values of other elements and attributes.

For example, to change the background fill color of the body part in
a layout to a light purple, change the color hexadecimal (hex) value
to #9933CC:

<BODYPART>

<FILL COLOR = “#9933CC” PATTERN = “2” />

For guidelines, see the table in “Valid values for theme attributes” on
page 53 and “Using values for patterns and colors” on page 55.

6. Remove any elements that you don’t want to specify.

Be sure to remove the entire single-line or multi-line element
including its start and end tags. For information, see “Removing
elements from theme files” on page 50.

7. Scroll down to the next FMTHEME element and repeat these
steps to change the THEMENAME value and other elements.

8. Save the file in text format with the filename extension .fth in the
Themes folder inside the FileMaker Developer folder.

Each new THEMENAME value will appear in the New Layout/
Report assistant as a Layout Theme option.

9. In FileMaker Developer, choose Layouts menu > New Layout/
Report to use your theme.

 Creating custom layout themes 49
Follow the instruction in the New Layout/Report assistant. The third
panel presents you with a list of themes to select from.

If your new themes don’t appear in the New Layout/Report assistant,
you might have made a syntax error. For information, see “Checking
theme files for errors” on page 56.

Requirements for theme files
FileMaker Developer layout themes are described in an XML
document saved in text file format. Each text file must have the .fth
filename extension and reside in the Themes folder inside the
FileMaker Developer application folder.

XML resembles HTML in many ways. However, unlike HTML the
XML for layout themes must be well-formed and comply with the
required syntax. Omitting a required element or attribute, or
mismatching start and end tags will result in an unusable document
and FileMaker Developer will be unable to parse the XML or display
the theme in the New Layout/Report assistant.

Names of custom themes appear as options in the New Layout/Report assistant
Minimum XML elements for themes
Every theme file must begin with an XML-document processing
instruction that declares it as an XML document using the XML 1.0
specification. In addition, an XML document for a layout theme
must contain the <FMTHEMES> and </FMTHEMES> start and end
tags for the file. This FMTHEMES root element can contain one or
more FMTHEME element.

Containing all of your themes (FMTHEME elements) in one file is
useful if you want to organize the way that themes appear in the New
Report/Layout assistant. The order that FMTHEME elements are
listed in the file determines the order in which the THEMENAME
values appear.

Note Values for the THEMENAME element can contain any
characters from the ASCII character set. However, if you’re using an
XML editor to write your themes or if you plan to use the themes on
different platforms, certain measures must be taken.

Minimum elements required for a theme file

50 FileMaker Developer’s Guide
XML editors expect these characters to be coded as character
entities:

Using the character instead of the character entity results in an error
from the XML editor. However, FileMaker Pro and FileMaker
Developer do not reinterpret character entities. Values in the
THEMENAME element will appear exactly as typed. You can avoid
the problem by using a text editor to create your themes or by
ignoring the error from the XML editor. Your theme names will
appear as you write them in the New Layout/Report assistant.

If you’re planning to use your themes on Windows and Mac OS X
platforms, use the HINT attribute to ensure that upper-ASCII
characters (such as the accent mark) appear correctly on both
platforms. For more information, see “Valid values for theme
attributes” on page 53.

Removing elements from theme files
Theme files contain multi-line elements for fields, field labels, text,
and every part in a layout. Each of these elements contains other
multi-line elements and single-line elements. You can remove any of
these elements, but you must remove the entire element, which
includes everything inside the element’s start and end tags and the
start and end tags as well.

FileMaker Developer will use default values for any elements you
remove. See “Specifying default values for themes” on page 55.

Character Coded as

ampersand (&) &

less than (<) <

greater than (>) >

apostrophe (‘) '

quote (“) "

A single-line element, such as the PEN element, begins with <PEN
and ends with /> on a single line:

<PEN COLOR="#000066" PATTERN="2" SIZE="0" />

A multi-line element has start and end tags on separate lines:

<BORDER>

</BORDER>

To remove a multi-line element, delete the start and end tags and all
elements contained within them. For example, to remove a multi-line
BORDER element in the Blue_gold.fth file, delete all three lines:

<BORDER>

<PEN COLOR="#000000" PATTERN="2" SIZE="1" />

</BORDER>

XML elements for layout parts
An FMTHEME element can contain any of the following multi-line
elements to describe the parts in a layout. Each layout part element
contains additional elements to describe the background fill, text,
field labels, and fields in the layout part.

Elements for layout parts can be listed in any order within an
FMTHEME element in the XML document. However, if two
identical elements are listed (such as two BODYPART elements),
FileMaker Developer will only use the attributes for the last one in
the list.

This multi-lined
element is used To describe this layout part

<TITLEHEADERPART>

</TITLEHEADERPART>

Title header — appears only once at the top
of the first screen or page.

<HEADERPART>

</HEADERPART>

Header — appears at the top of every screen
or page, except the first one if there’s a title
header.

 Creating custom layout themes 51
<LEADGRANDSUMPART>

</LEADGRANDSUMPART>

Leading grand summary — appears at the
beginning of a report and displays a
summary field for all the records in a found
set. A layout can have only one leading
grand summary part.

<LEADSUBSUMPART>

</LEADSUBSUMPART>

Leading subsummary — appears above the
body part and displays a summary field for a
subset of records as defined by the break
field. You can describe up to nine leading
subsummary layout parts. Each
LEADSUBSUMPART element must
contain a PARTNUMBER element to
distinguish it from the others.

<BODYPART>

</BODYPART>

Body — appears in the middle of every
screen or page. A layout can have only one
body part.

<TRAILSUBSUMPART>

</TRAILSUBSUMPART>

Trailing subsummary — appears below the
body part and displays a summary field for a
subset of records as defined by the break
field. You can describe up to nine trailing
subsummary layout parts. Each
TRAILSUBSUMPART element must
contain a PARTNUMBER element to
distinguish it from the others.

<TRAILGRANDSUMPART>

</TRAILGRANDSUMPART>

Trailing grand summary — appears at the end
of a report and displays a summary field for all
the records in a found set. A layout can have
only one trailing grand summary part.

<FOOTERPART>

</FOOTERPART>

Footer — appears at the bottom of every
screen or page, except the first one if there’s
a title footer.

<TITLEFOOTPART>

</TITLEFOOTPART>

Title footer — appears only once at the
bottom of the first screen or page.

This multi-lined
element is used To describe this layout part
Note Although a theme may include descriptions for every type of
layout part, the type of layout you select in the New Layout/Report
assistant determines which parts will appear in your new layout or
report.

For information about layout parts, see Help.

XML elements for text
Any layout part element can contain FIELD, TEXTLABEL, and
TEXT elements that are used to describe the characteristics of text or
data in the part.

The FIELD element is used to describe text (data) in fields and field
borders. The TEXTLABEL element is used for field label text. Field
labels are displayed in the body part of a layout or in other parts such
as the header of columnar reports. The TEXT element describes all
other text that appears in a layout part, such as title text in the header.

XML elements and their theme attributes
The following tables describe the multi-line and single-line XML
elements supported by FileMaker Developer in a layout theme
document. Unknown elements are ignored by FileMaker Developer.

Table of multi-line elements

These multi-line elements May contain these elements

FMTHEMES

(required)

FMTHEME

The FMTHEMES root element can contain
multiple FMTHEME elements.

FMTHEME

(required)

VERSION

THEMENAME (required)

THEMEDEFAULT

Any or all layout part elements

52 FileMaker Developer’s Guide
TITLEHEADERPART

HEADERPART

LEADGRANDSUMPART

BODYPART

TRAILGRANDSUMPART

FOOTERPART

TITLEFOOTPART

FILL

FIELD

TEXT

TEXTLABEL

LEADSUBSUMPART

TRAILSUBSUMPART

FILL

FIELD

PARTNUMBER

TEXT

TEXTLABEL

FIELD

(text/data in a field)

BASELINE

BORDER

CHARSTYLE

EFFECT

FILL

TEXT

(text in a part, except field
labels or field data)

CHARSTYLE

EFFECT

FILL

PEN

TEXTLABEL

(text in a field label)

CHARSTYLE

EFFECT

FILL

PEN

BASELINE

(underlining field data)

ONOFF

PEN

BORDER

(field border)

PEN

SIDES

These multi-line elements May contain these elements
 BORDER and EFFECT elements share the same pen size. When
used together, the pen size value that you set for BORDER will also
apply to the EFFECT width. The pen size value must be greater than
zero in order for an effect or a border to appear.

Table of single-line elements
The following table describes the correct syntax for all single-line
elements and their attributes. Examples of attribute values are
indicated in boldface. For a list of the possible values you can use for
these attributes, see the next section, “Valid values for theme
attributes.”

These single-line
elements Must contain these attributes

CHARSTYLE COLOR

FONT

SIZE

STYLE

Syntax example:

<CHARSTYLE FONT=“Verdana, Helvetica, Arial”
SIZE=“18” STYLE=“BOLD, ITALIC”
COLOR=“#FFFFFF” />

EFFECT <EFFECT VALUE=“EMBOSS” />

FILL COLOR

PATTERN

Syntax example:

<FILL COLOR= “#000066” PATTERN= “2” />

ONOFF <ONOFF VALUE=“OFF” />

PARTNUMBER <PARTNUMBER VALUE=“0” />

PEN COLOR

PATTERN

SIZE

Syntax example:

<PEN COLOR=“#000066” PATTERN=“2” SIZE=“0”
/>

 Creating custom layout themes 53
SIDES <SIDES VALUE=“BOTTOM” />

THEMENAME HINT (optional)

VALUE

Syntax examples:

<THEMENAME VALUE=“Fern Green Print” />

<THEMENAME HINT=“MAC” VALUE=“Grün
Druck” />

THEMEDEFAULT VALUE

Syntax example:

<THEMEDEFAULT VALUE=“CURRENT”/>

For more information, see “Specifying default values
for themes” on page 55.

VERSION VALUE

Syntax example:

<VERSION VALUE=“ver. 1.0”/>

The VERSION element is currently not used by
FileMaker Developer, but may be used in future
versions.

These single-line
elements Must contain these attributes
Valid values for theme attributes
The following table describes the attribute values supported by
FileMaker Developer in a layout theme. Values must be enclosed
within quotation marks (“ ”). If a quotation mark is missing,
FileMaker Developer is unable to parse the XML and cannot display
the theme in the New Layout/Report assistant.

This
attribute

Is used to describe these
characteristics

And may contain
these values

COLOR RGB color hex values for
background fills, text, and borders
in layout parts, fields, text blocks,
and field labels.

To display a color, the PATTERN
attribute must not be set to “1”
(which is transparent).

FileMaker Developer themes use
web-safe palette colors to ensure
the color will appear the same on all
computers.

See “Using values for patterns and
colors” on page 55.

COLOR = “#FFFFFF”

COLOR = “#33FF00”

COLOR = “#CC9966”

Or any 6-digit hex value (a
combination of numbers
0-9 or letters A-F)
preceded by the # symbol.

EFFECT Embossing, engraving, or drop
shadow 3-D effects for a field, text,
or field label.

When used in conjunction with a
field border, the line width of the
effect will be the same as the border
pen size. The pen size value must be
greater than zero in order for the
effect or border to appear.

VALUE = “EMBOSS”

VALUE = “ENGRAVE”

VALUE =
“DROPSHADOW”

VALUE = “NONE”

54 FileMaker Developer’s Guide
FONT The name of the font. More than
one font name can be specified,
separated by commas. The first font
available on a user’s computer will
be used in the layout.

Note Font values are case sensitive
and must be entered in title case
with initial capitals.

FONT = “Times New
Roman”

FONT = “Geneva”

FONT = “New York,
Times, Helvetica, Arial”

Or any other available
font (In
FileMaker Developer,
choose Format menu >
Font to see the available
fonts.)

HINT The name of the platform that the
theme name is edited on and the
character set. This attribute ensures
that any upper-ASCII characters
present in the THEMENAME value
(for example, an accent over a letter
in the theme’s name) will appear in
FileMaker Developer on both
Windows and Mac OS X. Japanese
characters are supported if
SHIFTJIS is specified.

HINT = “WIN”

HINT = “MAC”

HINT = “WIN/ROMAN”

HINT = “MAC/
ROMAN”

HINT = “WIN/
SHIFTJIS”

HINT = “MAC/
SHIFTJIS”

ONOFF Whether a field’s border should be
displayed.

VALUE =“ON”

VALUE =“OFF”

PARTNUM
BER

To distinguish multiple leading or
trailing subsummary parts in a
layout.

This attribute is ignored for all other
parts. FileMaker Developer
supports values 0 through 9 and
ignores any other value.

VALUE =“0”

VALUE =“1”

VALUE =“2”

VALUE =“3”

VALUE =“4”

VALUE =“5”

VALUE =“6”

VALUE =“7”

VALUE =“8”

VALUE =“9”

This
attribute

Is used to describe these
characteristics

And may contain
these values
PATTERN One of 64 valid patterns from the
fill pattern palette in
FileMaker Developer. Used for
background fills in layout parts,
fields, text, and field labels, and for
borders of fields, field labels, and
text.

See “Using values for patterns and
colors” on page 55.

PATTERN = “1”

PATTERN = “47”

PATTERN = “64”

PATTERN = “NONE”

PATTERN = “SOLID”

PATTERN = “LTGRAY”

PATTERN = “GRAY”

PATTERN =
“DKGRAY”

SIDES One to four sides on a field’s
border.

To describe all four sides, you can
combine all four values.

VALUE="TOP"

VALUE="BOTTOM"

VALUE="LEFT"

VALUE="RIGHT"

Or any combination, such
as:

VALUE= “TOP
BOTTOM LEFT RIGHT”

VALUE= “LEFT TOP”

SIZE

(for the
FONT
element)

The point size for a font. Any valid
point size can be specified.

If a font size is unavailable on the
computer or for a particular font,
FileMaker Developer will
substitute the closest size.

SIZE = “36”

SIZE = “12”

SIZE = “9”

SIZE

(for the PEN
element)

Thickness in pixels for the outline
of text blocks, field labels, and field
borders.

The value for NONE is “0” and the
value for HAIRLINE is “-1.”

When applied to field borders, this
pen size also applies to the line
width of an EFFECT attribute (such
as DROPSHADOW) and must
have a value greater than zero.

SIZE = “0”

SIZE = “-1”

SIZE = “1” through

SIZE = “8”

SIZE = “12”

This
attribute

Is used to describe these
characteristics

And may contain
these values

 Creating custom layout themes 55
STYLE Character styles for text in fields,
text blocks, and field labels. More
than one style can be specified,
separated by commas or spaces.

No error checking is done for
contradicting styles, such as
UPPERCASE and LOWERCASE.

The PLAIN style value overrides all
other style values.

STRIKEOUT and STRIKETHRU
values are the same.

STYLE = “PLAIN”

STYLE = “BOLD”

STYLE = “ITALIC”

STYLE =
“STRIKEOUT”

STYLE =
“STRIKETHRU”

STYLE =
“SMALLCAPS”

STYLE =
“UNDERLINE”

STYLE =
“WORDUNDERLINE”

STYLE =
“DBLUNDERLINE”

STYLE =
“UPPERCASE”

STYLE =
“LOWERCASE”

STYLE = “TITLECASE”

STYLE =
“SUPERSCRIPT”

STYLE = “SUBSCRIPT”

STYLE = “CONDENSE”

STYLE = “EXTEND”

STYLE = “ITALIC,
BOLD, SMALLCAPS”

This
attribute

Is used to describe these
characteristics

And may contain
these values
Specifying default values for themes
FileMaker Pro and FileMaker Developer use default values to
replace attributes that are invalid or missing. For each theme listed in
a theme file, you can specify whether the default values are
determined by the current layout settings, which change when a user
changes them, or by standard layout values, which are the same
values that FileMaker uses when creating a file for the first time.

<THEMEDEFAULT VALUE=”CURRENT”/>

<THEMEDEFAULT VALUE=”STANDARD”/>

If you don’t specify a value for the THEMEDEFAULT element in
the theme, FileMaker Developer will use standard layout values by
default.

Using values for patterns and colors
The values for the patterns in the FileMaker Pro and FileMaker
Developer pattern palette are numbered consecutively, starting with
the top row and counting from left to right, where the value for the
pattern in the top left corner is 1. Five patterns in the first row can
also be defined with words: NONE (= 1), SOLID (= 2), DKGRAY
(= 6), GRAY (= 7), and LTGRAY (= 8).

Note The first pattern (value = 1) is transparent and the second
pattern (value = 2) is solid. For objects with a color fill, be sure to use
the solid pattern.

56 FileMaker Developer’s Guide
Themes use 6-digit color hexadecimal (hex) values to describe colors
(for example, #CC9966), which can be found in most graphics
programs that use a color palette.

Themes should use web-safe colors for databases that will be
accessed by multiple platforms, displayed on monitors with varying
resolutions, or displayed on a network. However, when your
databases will be displayed on a single platform or at a high
resolution, the full RGB color spectrum gives you a much larger and
richer color set.

The FileMaker Pro and FileMaker Developer color palette contains
only web-safe colors. For information on using the color palette, see
Help. For more information about using patterns and colors in a
layout, see Help.

Pattern attribute values begin at the top left corner of the fill pattern palette
with number 1 and end at the bottom right corner with number 64

2 3 4 5 6 7 81

57 58 59 60 61 62 63 64
Adding comments to theme files
You can add additional information to your XML theme files by
enclosing the information in comment tags:

<!- - my comment here - ->

FileMaker Pro and FileMaker Developer will ignore any unknown
(but syntactically correct) XML elements you may choose to
include. This allows your theme files to be backward and forward
compatible with other versions of FileMaker Pro and
FileMaker Developer.

Checking theme files for errors
FileMaker Pro and FileMaker Developer cannot parse an XML
theme document that is not well-formed, and they do not validate the
XML in your documents. If one required item is missing or wrong,
FileMaker Developer will ignore the entire document.

Here is a list of things to check for if your new layout themes don’t
appear in the New Layout/Report assistant as expected:

1 The theme filename has the .fth extension.

1 The theme file is in text format.

1 The theme file is located in the Themes folder inside the
FileMaker Developer application folder.

1 All required elements are there, including their start and end tags:

<?xml version="1.0" standalone="yes" ?>

<FMTHEMES>

<FMTHEME>

<THEMENAME VALUE="Purple and White Screen" />

</FMTHEME>

</FMTHEMES>

 Creating custom layout themes 57
1 All elements are complete. There are no missing attributes, values,
quotation marks, start tags, or end tags.

1 All values are enclosed in quotation marks (“value”). There are no
missing opening or closing quotation marks, and there are no missing
values (no blank quotation marks “ ”).

1 All elements and attributes are spelled correctly.

1 All attribute values are spelled correctly and are valid.

1 Every single-line element ends with />.

1All multi-line elements are spelled correctly and their start and end
tags match (for example, <BODYPART> and </BODYPART>).

58 FileMaker Developer’s Guide

Chapter 7
Developing third-party FileMaker plug-ins
If you are a C or C++ programmer and familiar with advanced
calculations in FileMaker Pro and FileMaker Developer, you can
create external function plug-ins that extend the feature set of the
applications. The plug-ins can take advantage of recursion and
looping or hook into other programming interfaces. Users can enable
your plug-ins in FileMaker Pro, FileMaker Developer, and
FileMaker Server and use your external functions in their calculation
fields and scripts.

Plug-ins must be registered with FileMaker. The FileMaker web site
(www.filemaker.com) includes a plug-in registration form and a
database of all the registered plug-ins. You can browse this database
to get an idea of what kind of plug-ins already exist and use it to list
your own plug-ins. For more information, see “Registering your
plug-in” on page 68.

About external functions
The FileMaker Developer CD includes an example plug-in project
that you can modify to include your own external functions. Users
can access your plug-ins through the Specify Calculation dialog box.

Follow these general steps to prepare your custom plug-ins:

1. Edit the example plug-in files to add your custom programming
code.

2. Compile and test the customized plug-in.

3. Register your plug-in with FileMaker.

4. Install the compiled plug-in file for your users.
To access your external functions, your users:

1. Enable your plug-in through the Preferences dialog box.

2. Configure your plug-in, if required.

3. Define or edit a calculation field.

4. In the Specify Calculation dialog box, choose
Function_Name(parameter 1 ...) as the calculation formula.

To see all external functions, select External functions from the View
drop-down list.

About the example plug-in
The example plug-in project is designed to illustrate what a complete
plug-in looks like. You can compile the example project files to
create a plug-in with several external functions that users can access
through the Specify Calculation dialog box. You can examine and
modify the source code of the example files in any text editor.

The plug-in example includes seven external functions. See
“Description of the FMExample plug-in’s external functions” on
page 61.

The plug-in example files include all the source code required to
compile the plug-in for the Windows and Mac OS X platforms. In
addition to the plug-in source code, FileMaker Developer includes
project files for CodeWarrior Development Studio, Mac OS X
Edition 8.3, and Microsoft Visual Studio .NET 2002.

The example plug-in files are located in the
English Extras\Examples\FMExample folder on the FileMaker
Developer CD. The plug-in example source code files are located in
subfolders in the FMExample plug-in folder. The following tables
describe some of the folders and files.

60 FileMaker Developer’s Guide
Contents of the FMExample folder

Contents of the Example folder

Contents of the Support folder

Folder Description

Example folder Contains all of the files that are part of the
FMExample.

Headers folder Contains function definition files for the FileMaker
API. Do not distribute to users who do not have
licenses for FileMaker Developer.

Libraries folder Contains library files for the FileMaker API. Do not
distribute to users who do not have licenses for
FileMaker Developer.

File/Folder Description

FMPluginExample.cpp Contains code for implementation of the
FMExample.

MacExample.fmplugin Compiled Mac OS X plug-in package.

MacExample.mcp CodeWarrior 8 project file.

WinExample.sln Microsoft Visual Studio .NET project file.

WinExample.vcproj Microsoft Visual C++ project file, used by
WinExample.sln.

WinExample.fmx Compiled Windows 2000, XP plug-in.

Support folder Contains all additional resources and code used by
FMPluginExample.cpp.

File/Folder Description

FMPluginExample.rc Contains the resources for Windows platform.

FMPluginExample.nib Contains the resources for Mac OS X platform.

FMPluginExample.strings Contains the strings for Mac OS X platform.
Installing, enabling, and configuring
the example plug-in
External function plug-in files must be installed in the appropriate
folder and enabled in FileMaker Pro, FileMaker Developer, or
FileMaker Server before they can be used. Some plug-ins must also
be configured by the user.

For information on installing Web Publishing plug-ins, see the
FileMaker Server Web Publishing Installation guide.

To install a plug-in, drag the plug-in file into the Extensions folder
inside the FileMaker Developer 7 folder. In Windows, the plug-in
extension must be .fmx. In Mac OS X, the plug-in extension must be
.fmplugin.

To enable a plug-in:

1. Open the Preferences dialog box.

Windows: Choose Edit menu > Preferences.

Mac OS X: Choose FileMaker Developer application menu >
Preferences.

FMPluginFunctions.cpp Contains code for implementation of external
functions in FMExample.

FMPluginFunctions.h Contains definitions for external functions,
including function IDs.

FMPluginGlobalDefines.h Contains constants used by the FMExample,
including compiler directives to control code
compilation.

FMPluginPrefs.cpp Contains code for implementation of configuration
dialog box in FMExample.

FMPluginPrefs.h Contains definitions for configuration dialog box.

MacExample.plc Contains bundle definition for Mac platform.

Resource.h Contains definitions for resource file.

File/Folder Description

 Developing third-party FileMaker plug-ins 61
2. Click the Plug-Ins tab.

3. Select the plug-in in the list.

A plug-in will appear in the list if it’s installed in the correct folder
inside the FileMaker Developer application folder.

To configure a plug-in:

1. Select the plug-in in the Preferences dialog box.

2. Click Configure.

The Configure button is only available when the sixth character in the
option string of the selected plug-in is “Y.” See “Option string
syntax” on page 65.

3. Follow instructions in the configuration dialog box to configure
the plug-in.

4. Click OK.

Select a plug-in to enable it

Plug-in description
text is defined in a
resource string
Description of the FMExample plug-in’s
external functions
The FMExample plug-in provided in the Microsoft Visual C++ and
CodeWarrior example projects adds the following external functions
to FileMaker Pro, FileMaker Developer, and FileMaker Server.

Function’s name
and parameter Description of external function

XMpl_Add
(number1; number2)

Adds number1 and number2 together and returns
the result. The function is the same as the plus
operator in the calculation engine.

XMpl_Append
(textToAppend ...)

Takes a multiple list of parameters, concatenates
them, and returns the result. The function is the
same as the ampersand operator in the calculation
engine.

XMpl_Evaluate
(calcToEvaluate)

Takes a simple or complex calculation, evaluates
the calculation, and returns the result. Any
calculation supported by FileMaker can be passed
to this function. The function is identical to the
Evaluate function in the calculation engine.

XMpl_NumToWords
(number)

Returns a number in bank check format. For
example 44.345 returns Forty-Four Dollars and 34
Cents. All digits beyond the second decimal place
and any alphabetical characters are ignored.

XMpl_StartScript
(filename; scriptname)

Runs the script specified by the scriptname
parameter on the file specified by the filename
parameter.

62 FileMaker Developer’s Guide
Using the example plug-in
To access the external functions:

1. Open the Preferences dialog box.

Windows: Choose Edit menu > Preferences.

Mac OS X: Choose FileMaker Developer application menu >
Preferences.

2. Click the Plug-Ins tab.

3. Select FMExample.

Because the example plug-in includes a function that requires
configuration, the Configure button is enabled.

4. Click Configure.

The configuration dialog box that appears depends on how the plug-
in source code was written. The XMpl_UserFormatNumber function
in the FMExample plug-in displays the following configuration
dialog box.

XMpl_UserFormatNumb
er (textOrNumber)

Returns the parameter as a text string formatted as
specified in the configuration dialog box. Use this
function to format text or numbers such as
telephone numbers, postal codes, and so on.

Formatting proceeds from right to left. Each #
symbol in the format string is replaced by the next
character in the parameter string. All remaining #
symbols are replaced with zeros.

This function demonstrates both client-only
functionality and the plug-in configuration dialog.

XMpl_FormatNumber
(formatString;
textOrNumber)

The same as XMpl_UserFormatNumber, but
formatString is provided as a parameter. This
function illustrates a function that is visible in the
Specify Calculation dialog for Auto Entry, and also
supports calls from FileMaker Server and Instant
Web Publishing.

Function’s name
and parameter Description of external function
5. Click OK to use the default format or type a new format.

The “#” symbols are replaced by numbers. All other text in the
format string is retained as is.

6. Click OK to close the Preferences dialog box.

7. In FileMaker Developer, choose Define menu > Database > Fields
tab.

8. Create a calculation field.

9. In the Specify Calculation dialog box, choose External Functions
from the View drop-down list.

The dialog box that appears when you configure the example plug-in

 Developing third-party FileMaker plug-ins 63
10. Double-click an external function to add it to the formula box.

All external function calls require the name of the external function
to call and the function’s parameter value, even if the value is null.

11. Replace the parameter placeholder with the required parameter
or parameters for the function.
12. Continue to build the formula then and click OK when you’re
done.

13. Click OK to close the Define Database dialog box.

Customizing the plug-in example
The plug-in example in FileMaker Developer is designed to be easily
modified so you can add your own custom functions. You need to
modify the following items:

1 version information in FMPluginExample.strings and
FMPluginExample.rc

1 plug-in and function names in FMPluginExample.strings and
FMPluginExample.rc

1 configuration function in FMPluginPrefs.cpp

1 external function definitions and coding in
FMPluginFunctions.cpp

Customizing the example resources
You must make the following modifications to the plug-in resource
files to create a custom external function plug-in:

1 Modify the version variables and strings to meet your needs.

1 Revise the configuration dialog box to meet your needs.

1 Specify the correct option string values.

1 Edit plug-in names and description.

1 Define your function names and function prototypes.

64 FileMaker Developer’s Guide
Customizing FMPluginExample.cpp
Make your modifications to the FMPluginExample.cpp in the
functions listed in the following table.

Customizing FMPluginPrefs.cpp
This file contains the Do_PluginPrefs function for the implementa-
tion of the configuration dialog box. Revise or remove this code as
needed.

Customizing FMPluginFunctions.cpp
Revise or remove the functions provided in the
FMPluginFunctions.cpp file and define your own. Do_PluginInit
refers to these functions when evaluating external functions in
calculations.

Function name Customization

Do_PluginInit Provide your own unique plugin ID for “pluginID.”
Register each function, providing its name,
description, and function to be used. Call
fmx::ExprEnv::RegisterExternalFunction to
register your functions.

Do_PluginIdle Add any idle processing your plug-in needs.

Do_PluginShutdown Revise the UnRegisterExternalFunction calls to
reverse the registration done in Do_PlugInit. Call
fmx::ExprEnv::UnRegisterExternalFunction to
unregister your functions.
Requirements for writing external
function plug-ins
FileMaker plug-ins are most useful when they contain a single
function or a set of functions with similar features. When you design
your plug-in, keep in mind that developers who use your plug-in may
not understand programming conventions that you take for granted.
The format of each function’s parameter should be understandable to
the typical user.

API code files
There are ten API code files in the Headers folder: FMXExtern.h,
FMXCalcEngine.h, FMXBinaryData.h, FMXDateTime.h,
FMXTextStyle.h FMXTypes.h, FMXFixPt.h, FMXClient.h,
FMXText.h, and FMXData.h. The files are not redistributable in
source code (or human readable) form, cannot be modified, and are
only provided to enable licensees of FileMaker Developer to
compile plug-ins for use with FileMaker products. Not all the files
are required to build all types of plug-ins.

The FMXExtern.h is absolutely required. The FMXExtern.h defines
the parameter block (the shared data structure used by your plug-in
and FileMaker Pro, FileMaker Developer, or FileMaker Server) and
some shared function calls. The function calls are used to manipulate
the parameter and result handles in the parameter block.

The FMXExtern.h file defines the call-back functions for backward
compatibility operations and the different kinds of plug-in events
(FileMaker Pro, FileMaker Developer, or FileMaker Server
messages) sent to the plug-in in a FMExternCallSwitch definition.

 Developing third-party FileMaker plug-ins 65
FMExternCallStruct defines the structure of the parameter block.
FMExternCallPtr is a pointer to that structure and gFMExternCallPtr
is a global variable that should be defined in your code.

The FMXCalcEngine.h file contains the register and unregister
functions. It will be used in most plug-ins, as the plug-ins will likely
need to register functions.

The functionality of the remaining API code files is described in
comments that are included in the files themselves.

Option string syntax
The option string must be 11 characters long for plug-ins.

The first four characters of the option string are the ID of the plug-
in. The ID must be unique for each plug-in and must not begin with
“F,” “FM,” or “Web.” For the Mac OS X, it is recommended that you
set the creator type of the plug-in to this same value. The ID can only
contain low-ASCII alphanumeric characters (such as 0-9, A-Z,
and a-z).

Note So that there will be a good chance of having a unique ID, you
should register the ID at the Apple Developer Support web site, even
if you won’t be creating a Mac OS X version of your plug-in. To
register plug-in IDs as Creator codes, go to the developer support
pages on the Apple Computer web site at www.apple.com/
developer. For more information, see “Registering your plug-in” on
page 68.

The fifth character of the option string is always “1” and the eight,
tenth, and eleventh are always “n.” Other values for these flags are
reserved for FileMaker use only.

For example, “Moc31YnnYnn” is a option string for a plug-in with the
ID of “Moc3” (characters 1-4) that requires configuration (character
6 = “Y”), uses the new style registration and functions callbacks
(character 7 = “n”), and requires special idle time
(characters 9 = “Y”).
Table of option string characters

Naming conventions for external functions
The function name prefix for all of the plug-in’s external functions
must be a unique value containing four or five characters and must
not begin with the characters “FM” or “Web.” Four-character prefixes
are reserved by FileMaker. For example, the FMPluginExample
plug-in’s function name prefix is “XMpl.”

FileMaker will manage the naming conventions for plug-in name,
filename, and function prefix. For this reason, you need to register

Characters
in the option
string Description of characters

1-4 Characters 1-4 are the plug-in ID. Register the ID as a Creator
code on the Apple Developer Support web site at
www.apple.com/developer.

5 Character 5 is always “1.”

6 Set the sixth character of the option string to “Y” if you want to
enable the Configure button for plug-ins in the Preferences
dialog box. Use “n” if there is no plug-in configuration needed.
If the flag is set to “Y,” then make sure to handle the
kFMXT_DoAppPreferences message. For more information,
see “FileMaker messages sent to the plug-in” on page 66.

7 Set to “n” for the new style plug-in registration and function
callbacks demonstrated in the FMExample. Only set to “Y” if
your plug-in requires the legacy function string list and single
external callback.

8 Character 8 is always “n.”

9 Set the ninth character of the option string to “Y” if the
kFMXT_Idle message is required. For simple external functions
this may not be needed and can be turned off by setting the
character to “n.”

10 Character 10 is always “n.”

11 Character 11 is always “n.”

66 FileMaker Developer’s Guide
your plug-in. FileMaker has reserved certain naming conventions for
external functions. For more information, see “Registering your
plug-in” on page 68.

FileMaker messages sent to the plug-in
There are six possible calls that FileMaker Pro, FileMaker
Developer, or FileMaker Server can request of your plug-in.
Messages sent to your plug-in are supplied in the whichCall field of
the parameter block, FMExternCallStruct, defined in the FMXExtern.h
file.

1 kFMXT_Init — the Initialization message

1 kFMXT_Shutdown — the Shutdown message

1 kFMXT_Idle — the Idle message

1 kFMXT_DoAppPreferences — the Preferences message

1 kFMXT_External — the External Function message received by
legacy plug-ins that set character 7 in the options string to “Y” and
that register their functions the old external way

1 kFMXT_GetString — the GetString message received by plug-ins
that use the new style of registration when the plug-ins provide the
option string, plug-in name, and description

Initialization message
The Initialization message, kFMXT_Init, is sent to the plug-in
whenever it is enabled in FileMaker Pro, FileMaker Developer, or
FileMaker Server. This may or may not correspond with the startup
of the application, depending on whether the plug-in is enabled in the
Preferences dialog box.

There are two possible result values that the plug-in should return in
response to the Initialization message:
1 kBadExtnVersion should be returned if the version number passed
is less than the value of kMinExtnVersion or greater than the value of
kMaxExtnVersion. This prevents the plug-in from running on an API
that is incompatible with the API with which it was compiled.

1 kCurrentExtnVersion is the only other result value that should be
returned. This causes the plug-in to be enabled.

For the FMPluginExample plug-in, the Do_PluginInit function is
called when the Initialization message is received. The Do_PluginInit
function first checks the version of the API that the plug-in was
compiled with to verify that it’s compatible with the version of
FileMaker Pro, FileMaker Developer, or FileMaker Server that has
loaded it. Then the function checks for preferences and sets them if
they exist. If no preferences currently exist, it will create them with
default values.

In Windows, these preferences are stored as registry entries. In
Mac OS X, they are stored in a file within the Preferences folder of
the System Folder. Due to the differences between the way this
information is stored on the two platforms, the Do_PluginInit function
uses preprocessor instructions to choose the correct code at compile
time.

If the preferences are set properly and the API version is correct, the
Do_PluginInit function in the FMPluginExample plug-in will return
kCurrentExtnVersion.

After you set the preferences, register each external function by
providing its name, description, and the function to be used. Use
fmx::ExprEnv::RegisterExternalFunction to register your functions.

Shutdown message
The Shutdown message, kFMXT_Shutdown, is sent to the plug-in
whenever it is disabled in FileMaker Pro, FileMaker Developer, or
FileMaker Server. This may or may not correspond with the quitting
of the application, depending on whether the plug-in is disabled in
the Preferences dialog box.

 Developing third-party FileMaker plug-ins 67
The FMPluginExample plug-in does not allocate any persistent
memory on the heap, and therefore does not do anything when it
receives the Shutdown message. You should implement a clean-up
function in your plug-in, however, to deallocate anything you have
on the heap and exit from any operating system services you may be
using. It’s possible for a plug-in to be enabled and disabled multiple
times during a session, so it’s important for your plug-in to clean up
memory.

Unregister each external function registered during the Initialization
message using fmx::ExprEnv::UnRegisterExternalFunction.

Idle message
The Idle message, kFMXT_Idle, is only sent to the plug-in during idle
time if the idle feature flag was set to “Y” in the option string and the
plug-in is currently enabled.

There are five times when this message is called by the FileMaker
application.

If the idleLevel parameter is not zero, then the routine has been called
while the application is running a script or is being controlled by the
user. One of the following four messages has been sent::

Do not perform any lengthy, user interface, or event processing when
the idleLevel parameter is not zero.

Message Meaning

kFMXT_UserNotIdle = 1 The user has done something within the
last 30 seconds.

kFMXT_ScriptPaused = 2 The user is running a script that has been
paused.

kFMXT_ScriptRunning = 3 The user is running a script.

kFMXT_Unsafe = 4 Same as if the unsafeCalls parameter is
set to true.
The Idle message will also be sent is when the application detects
free time and does its own internal idle handling.

Preferences message
The Preferences message, kFMXT_DoAppPreferences, is sent in
response to a user clicking the Configure button for the selected plug-
in in the Preferences dialog box.

The plug-in should display a dialog box that will allow the user to set
any specific configuration data required by the plug-in. If the plug-
in requires user-definable preferences, you should implement your
user interface here. The Configure button will only be enabled if the
sixth character of the option string is set to “Y.” For more
information, see “Option string syntax” on page 65.

Any options that need to be saved should be placed in their own
registry entry (Windows) or in their own preference file
(Mac OS X).

The FMExample plug-in needs to implement a configuration dialog
box for the XMpl_UserFormatNumber function, so the flag has been set
in the option string (Xmpl1Ynnnnn) and the function Do_PluginPrefs is
called when the Preferences message is received.

External Function message
The External Function message, kFMXT_External, is a legacy
message for old style plug-ins. It is no longer required for plug-ins
that are registered in the new style.

Message Meaning

kFMXT_UserIdle = 0 The user hasn’t done anything within the
last 30 seconds or more.

68 FileMaker Developer’s Guide
GetString message

The GetString message, kFMXT_GetString, is sent to the plug-in when
FileMaker Pro, FileMaker Developer, or FileMaker Server want to
retrieve one of the following strings from the plug-in. The plug-in
developer can decide where to store the strings.

Avoiding potential Mac OS X
resource conflicts
Problems can occur on Mac OS X machines if your plug-in has the
same ID for a resource that FileMaker Pro, FileMaker Developer,
FileMaker Server, or another plug-in has for the same type of
resource.

To avoid potential resource ID conflicts with your plug-in and other
applications or plug-ins, follow these guidelines:

1 Use ID numbers between 23,000 and 24,999

Use hard-coded IDs from this range for your dialog boxes, sounds,
icons, and other resources to avoid conflicts with FileMaker Pro,
FileMaker Developer, or FileMaker Server resources. FileMaker
does not use any of the IDs in this range for the application resources.

1 Set the current resource file to your plug-in

To avoid conflicts with other plug-ins that use the same resource IDs,
use the Mac OS X toolbox call in the Resource Manager to set the
current resource file to your plug-in before getting any resource
objects from the resource file.

String Meaning

kFMXT_OptionsStr = 131 The option string

kFMXT_NameStr = 128 The plug-in name

kFMXT_AppConfigStr = 129 The help text to display in the Preferences
dialog box
Include the following line before any line that references or uses a
resource:

UseResFile (pb -> resourceID) ;

When FileMaker Pro, FileMaker Developer, or FileMaker Server
loads your plug-in, the application gives the resource ID. This is
located in the parameter block near the param2 and param3 variables
in the FMExtern.h file. For more information, see “API code files”
on page 64.

Providing documentation for your plug-in
Your plug-in should include an example database file with any
special fields and scripts necessary to demonstrate the use of the
plug-in’s external functions. In addition, you should provide
documentation that describes each external function and its
parameters.

For ideas on how to document your plug-in, see other external
function plug-ins registered with FileMaker at www.filemaker.com.

Registering your plug-in
Register your external function plug-in with FileMaker to ensure that
it’s unique and not in use by any other plug-in. Registering also
allows you to make your plug-in visible to customers searching for a
plug-in to suit their needs.

Before registering your plug-in, you can search to see if the plug-in
name or option string ID you are requesting has already been
assigned.

You must register each plug-in separately. To register your plug-in,
go to the Support section of www.filemaker.com.

 Developing third-party FileMaker plug-ins 69
Revising a registered plug-in
If you need to revise information about a plug-in that is already
registered to you, you must send an email message to FileMaker at
plugins@filemaker.com. Please be sure to provide the following
information:

1 the registration ID number that was assigned to you when you first
registered your plug-in

1 your name

1 your full company name

1 your daytime phone number

1 the name of the plug-in with registered information you want to
revise

Include any changes you want to make. If applicable, send the
revised plug-in file. A confirmation of the revision will be sent to
you.

70 FileMaker Developer’s Guide

Appendix A
Feature comparison of the runtime application

with FileMaker Pro
When you double-click the FileMaker Pro application icon to start
the application, the New Database dialog box opens and you can
choose a database file. When you start a FileMaker Pro runtime
application, the primary bound database file opens automatically.

Other key differences between the runtime application and
FileMaker Pro include the following:

1 All the database design features have been removed or hidden in
the runtime application.

These include the Define Database, Define Value Lists, Define File
References, and Define Accounts & Privileges dialog boxes, Layout
mode, and ScriptMaker.

1 Custom functions created with FileMaker Developer will work in
the runtime application, although users of the runtime application
cannot modify them or create new custom functions.

1 Some other menu commands have been removed from the runtime
application.

For example, you can’t use the runtime application to create, open,
or close a database. (Bound runtime database files must contain a
custom button or script to close or open other files. There is no close
command on a runtime database window.)

1 The Scripts menu can be named something different in the runtime
application.

1 FileMaker Pro Help is not available in the runtime application.
However, the Help menu and the Runtime menu can contain custom
Help and About menu commands.
1 Some tools are not available on the toolbars in Browse mode, Find
mode, and Preview mode in the runtime application.

1 External function plug-ins can be enabled in the Preferences
dialog box.

1 FileMaker Pro File Sharing, serving a database on the web, or
communicating with a Java applet requires FileMaker Pro or
FileMaker Developer. You can, however, use a compatible version
of FileMaker Server to serve runtime solution files.

1 Apple events are supported but OLE automation is not supported
in the runtime application on Windows machines.

Application and document preferences
In the runtime application, the following options are not available on
the General tab of the Preferences dialog box:

1 Show templates in New Database dialog checkbox

1 Show recently opened files checkbox

72 FileMaker Developer’s Guide
The Layout tab is changed to the Color tab in the Preferences dialog
box for the runtime application.

General preferences in a
runtime application
 (Mac OS X)

General preferences
in a runtime
application
(Windows)
The File Options dialog box does not have the Open/Close and Text
tabs in the runtime application, only the Spelling tab—as shown
below.

File Options dialog
box in FileMaker Pro

File options dialog
box in a runtime
application

 Feature comparison of the runtime application with FileMaker Pro 73
Toolbar comparison
The New Database and Open tools in the standard toolbar (in Browse
mode, Find mode, and Preview mode) are not available in the
runtime application.

The Help tool on the standard toolbar in the runtime application is
dimmed unless a custom Help script has been specified.

The text formatting toolbar is the same for both the runtime
application and FileMaker Pro.

Menu command comparison
The following tables shows the menu commands that are available in
FileMaker Pro (Pro) and in the runtime application (RT).

Windows Mac OS X

File Menu command Pro RT Pro RT

New Database 1 1
Open 1 1
Open Remote 1 1
Open Recent 1 1
Close 1 1
Define 1 1
File Options 1 1 1 1

Toolbars in FileMaker Pro

Toolbars in a runtime application
1 Press Ctrl+Shift 2 Press Option+3

Change Password 1 1 1 1
Print Setup 1 1
Page Setup 1 1
Print 1 1 1 1
Import Records 1 1 1 1
Export Records 1 1 1 1
Save a Copy As 1 1 1 1
Recover 1 1 1 2

Exit 1 1

Windows Mac OS X

Edit Menu command Pro RT Pro RT

Undo 1 1 1 1
Cut 1 1 1 1
Copy 1 1 1 1
Paste 1 1 1 1
Paste Special 1 1
Clear 1 1 1 1
Select All 1 1 1 1
Find/Replace 1 1 1 1
Spelling 1 1 1 1
Object 1 1
Export Field Contents 1 1 1 1
Sharing 1
Preferences 1 1

Windows Mac OS X

File Menu command Pro RT Pro RT

74 FileMaker Developer’s Guide
Windows Mac OS X

View Menu command Pro RT Pro RT

Browse Mode 1 1 1 1
Find Mode 1 1 1 1
Layout Mode 1 1
Preview Mode 1 1 1 1
View as Form 1 1 1 1
View as List 1 1 1 1
View as Table 1 1 1 1
Toolbars 1 1 1 1
Status Bar 1 1
Status Area 1 1 1 1
Text Ruler 1 1 1 1
Zoom In 1 1 1 1
Zoom Out 1 1 1 1

Windows Mac OS X

Insert Menu command Pro RT Pro RT

Picture 1 1 1 1
QuickTime 1 1 1 1
Sound 1 1 1 1
File 1 1 1 1
Object 1 1
Current Date 1 1 1 1
Current Time 1 1 1 1
Current User Name 1 1 1 1
From Index 1 1 1 1
From Last Visited Record 1 1 1 1
Windows Mac OS X

Format Menu command Pro RT Pro RT

Font 1 1 1 1
Size 1 1 1 1
Style 1 1 1 1
Align Text 1 1 1 1
Line Spacing 1 1 1 1
Text Color 1 1 1 1
Text 1 1 1 1

Windows Mac OS X

Records Menu command Pro RT Pro RT

New Record 1 1 1 1
Duplicate Record 1 1 1 1
Delete Record 1 1 1 1
Delete All Records 1 1 1 1
Show All Records 1 1 1 1
Show Omitted Only 1 1 1 1
Omit Record 1 1 1 1
Omit Multiple 1 1 1 1
Modify Last Find 1 1 1 1
Sort Records 1 1 1 1
Unsort 1 1 1 1
Replace Field Contents 1 1 1 1
Relookup Field Contents 1 1 1 1
Revert Record 1 1 1 1

 Feature comparison of the runtime application with FileMaker Pro 75
Requests Menu command Windows Mac OS X

 (Find mode) Pro RT Pro RT

Add New Request 1 1 1 1
Duplicate Request 1 1 1 1
Delete Request 1 1 1 1
Show All Records 1 1 1 1
Perform Find 1 1 1 1
Constrain Found Set 1 1 1 1
Extend Found Set 1 1 1 1
Revert Request 1 1 1 1

Windows Mac OS X

Scripts Menu command Pro RT Pro RT

ScriptMaker 1 1
<Script names> 1 1 1 1

Windows Mac OS X

Window Menu command Pro RT Pro RT

New Window 1 1 1 1
Show Window 1 1 1 1
Hide Window 1 1 1 1
Minimize Window 1 1 1 1
Tile Horizontally 1 1 1 1
Tile Vertically 1 1 1 1
Cascade Windows 1 1 1 1
Arrange Icons 1 1
Bring all to front 1 1
<Names of open files> 1 1 1 1
1 See Application Menu command table

Windows Mac OS X

Help Menu command Pro RT Pro RT

FileMaker Pro Help 1 1
Keyboard Commands 1 1
FileMaker on the Web 1 1
Send Feedback to FileMaker 1 1
Register Now 1 1
About FileMaker Pro 1 1

About FileMaker Pro Runtime
(Displays if no custom About
script is specified)

1 1

About <runtime solution>
(Displays if custom About script
is specified)

1 1

<Runtime solution Help script
name> (Displays if custom Help
script is specified)

1 1

Mac OS X (only)

Application Menu command Pro RT

About FileMaker Pro 1
About FileMaker Pro Runtime (Displays if no custom
About script is specified)

1

About <runtime solution> (Displays if custom About
script is specified)

1

Sharing 1
Preferences 1 1
Services 1 1
Hide FileMaker Pro 1

76 FileMaker Developer’s Guide
Ignored script steps
Because some features have been removed from the runtime
application, the following script steps are ignored by the runtime
application:

1 Open Define Database

1 Open Define Value List

1 Open Define File References

1 Open Sharing

1 Open ScriptMaker

1 Open Help (executes custom Help script specified during binding)

1 Set Multi-User

1 New File

1 Open File Options (partially available; Spell checking tab will
open)

1 Open Remote

1 Execute SQL

1 Perform External Script (if the specified file has not been bound to
the runtime application)

1 Open File (if the specified file has not been bound to the runtime
application)

Hide <runtime solution> 1
Hide Others 1 1
Show All 1 1
Quit FileMaker Pro 1
Quit <runtime solution> 1

Mac OS X (only)

Application Menu command Pro RT
Stored registry settings or preferences
Windows registry settings

FileMaker Pro stores its registry settings at

HKEY_CURRENT_USER\Software\FileMaker\FileMaker Pro\7.0

FileMaker Developer stores its registry settings at

HKEY_CURRENT_USER\Software\FileMaker\FileMaker Pro\7.0D

The runtime application stores its registry settings at

HKEY_CURRENT_USER\Software\FileMaker\<solution name>\7.0

Note The filename extension for the runtime database files is
registered at HKEY_CLASSES_ROOT

Mac OS X preferences

FileMaker Pro stores its preferences in the FileMaker Pro 7.0 Prefs
file inside the FileMaker Preferences folder.

FileMaker Developer stores its preferences in the
FileMaker Pro 7.0D Prefs file inside the FileMaker Preferences
folder. The runtime application stores its preferences in the
<Solution name> 7 Prefs file inside the FileMaker Preferences
folder.

Index
A
About FileMaker Pro Runtime,

default menu command 43
About layout 9

accessing from menu command 43
creating 33
required contents of 35

access privileges 19, 36
accounts and privileges 27, 36
Adjust Window script step 13, 41
administrative accounts

removing from a file 27
Allow User Abort script step 13
ampersand (&) character entity 50
apostrophe (’) character entity 50
Apple Computer, Inc. 24, 65
Apple events in runtime applications 71
Application menu commands available

in runtime applications 75
ASCII characters

in plug-in IDs 65
in theme names 54

auxiliary files
opening 20
problems with double-clicking icons 32
updating 37

B
backing up your original files 18
binding 22

cross-platform solutions 22, 25
binding key

setting for runtime database solutions 25
updating runtime database solutions 37

body layout parts 51
breakpoints, script 13
Browse mode, in runtime applications 71
buttons, creating dynamic buttons 42

C
C/C++ 59
centering database windows in Kiosk mode 41
color palette 56
color values for layout themes 56
commands, menu

available in runtime applications 73
removing access to 27

compacting files 14
compression utilities for runtime databases 31
configuring plug-ins 65
Contents folder (Mac OS X) 29
converting files from previous versions 18, 26
creator codes 24
cross-platform solutions 22
custom functions 14

creating 15
deleting 16
disabling the display of 14
duplicating 16
editing 16

customer support
for FileMaker Developer 8
for runtime solutions 33

D
damaged runtime files, recovering 32
Database Design Reports 11
database schemas 11
database statistics 11
database structure, recreating 11
database template files 8
debugging scripts 12
defragmenting files 14
delay, splash screen 23
Developer Utilities 17

saving settings 25
dictionaries 21

deleting 31
Dictionaries folder 29, 30
distributing runtime database solutions

about 29
distributing updates 37
methods 30
terms and conditions 9

Do_PluginInit function 66
documenting

database solutions 33, 35
external function plug-ins 68
installation of runtime databases 33

Dynamic Link Libraries (DLLs) 29, 30

E
Edit menu commands available

in runtime applications 73
electronic documentation 8
elements in layout themes 49
emulating interface elements 41
Enter Browse Mode script step 39, 41
Enter Find Mode script step 41
Enter Preview Mode script step 41
error log 20
Execute SQL script step 76
Exit Application script step 41
extended privileges 27
Extensible Markup Language (XML).

See XML
Extensions folder 29

location for plug-ins 60

78 FileMaker Developer’s Guide
extensions, filename. See filename extensions
External Function message sent to plug-ins 67
external function plug-ins 59

documenting 68
enabling 60
in runtime applications 71
messages sent by FileMaker Pro 66
plug-in ID 65

external functions 59

F
File Maintenance feature 14

Compact File option 14
Optimize File option 14

File menu commands available in
runtime applications 73

File Options available in
runtime application 72

file references 21
FileMaker Developer

documentation 7
license agreement 9
upgrading from earlier versions 26

FileMaker Pro, menus available 73
FileMaker Server 31, 59, 71
filename extensions

for database files 20
for runtime databases 23
plug-ins 60
registered by runtime applications 32
registry conflicts (Windows) 24

files
closing in Kiosk mode 39
compacting 14
compressing runtime 31
converting 18, 26
naming 23
optimizing 14
recovering damaged 32
renaming 18
specifying for Developer Utilities 18
Find mode, in runtime applications 71
fmplugin filename extension 60
fmx filename extension 60
folder structure

example plug-in 59
solution 21, 29

fonts 47, 54
not on user’s system 29

footer layout parts 51
Format menu commands available

in runtime applications 74
fragmented files 14
full access privileges

deleting accounts using
Full Access privilege set 27

required to create a Database
Design Report 11

required to edit calculations
that use custom functions 15

functions
custom 14
external 59

G
GetString message sent to plug-ins 68
Go to Layout script step 41
greater than (>) character entity 50

H
header layout parts 50
Help

menu commands available in runtime
applications 75

tool on toolbar in runtime applications
73

Help layout 34
accessing from menu command 45
creating 34

hexadecimal (hex) values for layout themes 56
HTML format for Database Design Reports 11
I
icons for solution 32
Idle message sent to plug-ins 67
importing records 26
Initialization message sent to plug-ins 66
Insert menu commands available

in runtime applications 74
installation code. See license key
installation instructions 7

FileMaker Developer on
multiple computers 9

for runtime database users 32
installers for runtime databases 31
InstallShield 31
interface elements, emulating 41
Internet

databases on 8
runtime applications on 22

J
JDBC, using with FileMaker products 8

K
key, binding 25
keyboard shortcuts 12
Kiosk mode 39

centering database windows 41
closing files 39
example Help screen 34
preparing databases for 39

L
language resource folders,

runtime databases (Windows) 30
Layout mode commands

unavailable in runtime applications 71
unavailable to developer 27

layout parts 50
layout themes

 Index 79
attribute values 53
attributes for single-line elements 52
basic requirements 49
checking for errors 56
color values 56
comment tags 56
creating 47
default values 55
elements for layout parts 50
elements for layout text 51
modifying 47
multi-line elements 50, 51
pattern values 55
single-line elements 50, 51

leading grand summary layout parts 51
leading subsummary layout parts 51
legal requirements 9
less than (<) character entity 50
license agreement 9
license key 9
logo, adding to runtime solution 23

M
Mac OS X

creator codes 24
resource conflicts 68
runtime application package 29
stored preferences 76

menu commands
available in runtime applications 73
custom About layout 43
custom Help layout 45
default About runtime layout 43
removing access to 27

messages
error log 20
sent to external function plug-ins 66

Microsoft Visual Studio .NET 59
Microsoft Windows

runtime application components 30
stored registry settings 76
MindVision Installer VISE 31
minimum requirements, runtime database

solutions 31
Move/Resize Window script step 42
multi-line XML elements for layout themes 50
multiple database files 18
multiple tables per database file 17, 21

N
naming runtime database solutions 23, 25
navigating in Kiosk mode 39
New Database tool 73
New File script step 76
New Layout/Report assistant 47, 49

O
ODBC, using with FileMaker products 8
OLE automation in runtime applications 71
Open Define Database script step 76
Open Define File References script step 76
Open Define Value List script step 76
Open File Options script step 76
Open File script step 76
Open Help script step 76
Open Preferences script step 41
Open Remote script step 76
Open ScriptMaker script step 76
Open Sharing script step 76
Open tool 73
opening

files in runtime applications 20, 22
runtime databases in FileMaker Pro

and FileMaker Developer 24, 25
optimizing files 14
option string syntax for plug-ins 65

P
package, runtime application (Mac OS X) 29
page margins 21
parts, layout 50
passwords 24, 34
required warning in About layout 35

paths, file 21
pattern palette 55
Pause/Resume Script script step 39
Perform External Script script step 76
performance, improving 14
plug-ins

configuring 61, 65, 67
example project 59
function name prefix 65
IDs 65, 69
in runtime applications 71
installing 60
installing web publishing plug-ins 60
preparing 59
registering with Apple 65
registering with FileMaker 59, 68
required option string syntax 65
resource ID conflicts (Mac OS X) 68
revising registered 69

preferences available in runtime application 71
Preferences message sent to plug-ins 67
Preview mode

in runtime applications 71
script step 39

primary file 18
connecting auxiliary files 17
icon 32
in Kiosk mode 39
problems with double-clicking icon 32
stored setting for Scripts menu name 46
updating 37

Print script step 41
printing from runtime applications 21
privilege sets 27, 39
privileges, extended 27
Project Folder 23

and the Developer Utilities 20

80 FileMaker Developer’s Guide
Q
quote (") character entity 50

R
Records menu commands available in runtime

applications 74
recovering damaged runtime files 32
references, file 21
registering

FileMaker Developer 8
plug-in IDs 65

registry
conflicts with filename extensions 24
stored settings 76

renaming files 18
reports, database 11
Requests menu commands available

in runtime applications 75
requirements for About layouts 35
restoring document icons (Windows) 24
revising registered plug-ins 69
runtime applications

available menu commands 73
compared to FileMaker Pro 71
enabling plug-ins in 71
icon 32
ignored script steps 76
stored Mac OS X preferences 76
stored Windows registry settings 76
toolbars available 73

runtime database solutions
About layout requirements 33, 35
converting 26
creating 17, 22
custom About layout 43, 44
documenting installation 33
importing records 26
naming 23
opening files in 20
preparing files 17
printing reports 21
recovering damaged files 32
required DLL files (Windows) 30
size 30
spell checking 21
updating 37
upgrading 26

S
sav filename extension 25
saving Developer Utilities settings 25
schemas, database 11
Script Debugger 12

access privileges necessary to run 12
buttons and commands 13
overriding script steps 13
running scripts in debug mode 13

ScriptMaker commands
unavailable in runtime applications 71
unavailable to developer 27

ScriptMaker, opening from
Script Debugger 12

scripts
attaching to About and

Help commands 33
debugging 12
for emulating menu commands

and window controls 41
for navigating in Kiosk mode 39
for opening runtime databases 20
startup 41
steps ignored by runtime applications 76
to replace commands in

runtime solutions 39
Scripts menu

accelerator key for new name 46
commands available in

runtime applications 75
renaming 46

Scroll Window script step 42
SDK for FileMaker Pro 3.0 26
security concerns 8
Set Multi-User script step 76
Set Zoom Level script step 41
settings file 26
Show Package Contents command

(Mac OS X) 29
Show/Hide Status Area script step 41
Shutdown message sent to plug-ins 66
single-line XML elements for layout themes 50
size

of database files 14
of solutions 30

solutions. See runtime database solutions
Sort Records script step 41
spell checking in runtime solutions 21
splash screen in runtime solutions 23
startup scripts

creating 41
to display custom layout 22

statistics, database 11
status bar Help (Windows) 33
structure, database 11
StuffIt 31

T
tables, database

excluding from Database
Design Report 12

multiple per file 17
TechInfo Knowledge Base 8, 9
technical support

for FileMaker Developer 8
for runtime solutions 9, 33

testing database solutions 36
text editors 47
themes. See layout themes
title footer layout parts 51
title header layout parts 50
toolbar

FileMaker Pro 73
runtime application 73

 Index 81
touch screen, Kiosk mode 39
trailing grand summary layout parts 51
trailing subsummary layout parts 51

U
updates, distributing 37
upgrading runtime databases 26
user interaction with database solution 17
user spelling dictionary 29, 30

V
View menu commands available in

runtime applications 74
volume license 9

W
web browser users 8
web sites

Apple Computer, Inc. 24
Apple Developer Support 65
FileMaker, Inc. 8

web-safe colors 53, 56
Window menu commands available

in runtime applications 75
WinZip for Windows 31

X
XML

character entities 50
documents for layout themes 47
editors 47
format for Database Design

Reports 11
XML 1.0 specification 49
XML-document processing

instruction 49

82 FileMaker Developer’s Guide

	Chapter 1 Getting started
	About FileMaker Developer
	Using the FileMaker Developer documentation
	Where to find PDF documentation

	Registration and customer support
	About the license key
	Abiding by the license agreement
	About the TechInfo database

	Chapter 2 Using FileMaker Developer features
	Creating Database Design Reports
	Using the Script Debugger
	Using the File Maintenance feature
	Using custom functions
	Creating custom functions
	Editing custom functions
	Deleting custom functions
	Duplicating custom functions

	Chapter 3 Using the Developer Utilities
	Overview of preparing your solution files
	Modifying database solution files
	Creating an error log

	Considerations for a runtime database solution
	Checking file references
	Binding files for both platforms

	Binding databases into runtime database solutions
	Choosing filenames for runtime database solutions
	Assigning three-character filename extensions
	Setting the binding key
	Modifying bound runtime files

	Saving and reusing Developer Utilities settings
	Modifying a set of solution settings

	Converting and upgrading solution files
	Importing data into upgraded runtime solutions

	Removing full access privileges from databases

	Chapter 4 Distributing runtime database solutions
	Organizing solution components
	Mac OS X runtime application package
	DLL files for Windows runtime solutions
	Extensions folder for Windows solutions

	Choosing a distribution method
	Reducing solution size
	Using a custom installation program
	Using a compression utility program
	Sharing solutions over a network

	What your users need
	Documenting the installation procedures
	Starting runtime database solutions
	Recovering damaged files

	Providing user documentation
	Creating an About layout
	Creating a custom Help layout
	Including printed documentation

	Your responsibilities as a developer
	Testing before and after creating your solution
	Distributing updates to runtime database solutions

	Chapter 5 Customizing database solutions
	About Kiosk mode
	Navigating in Kiosk mode
	Closing Kiosk solutions
	Creating Kiosk solutions

	Using scripts to control your solution
	Creating startup scripts
	Centering database windows in Kiosk screens
	Emulating menu commands and window controls
	Creating dynamic buttons

	Customizing About, Help, and Scripts menus
	Adding custom scripts to the About menu command
	Adding custom scripts to the Help menu command
	Renaming the Scripts menu

	Chapter 6 Creating custom layout themes
	Modifying FileMaker Developer themes
	Requirements for theme files
	Minimum XML elements for themes
	Removing elements from theme files
	XML elements for layout parts
	XML elements for text

	XML elements and their theme attributes
	Valid values for theme attributes
	Specifying default values for themes
	Using values for patterns and colors
	Adding comments to theme files
	Checking theme files for errors

	Chapter 7 Developing third-party FileMaker plug-ins
	About external functions
	About the example plug-in
	Installing, enabling, and configuring the example plug-in
	Description of the FMExample plug-in’s external functions
	Using the example plug-in
	Customizing the plug-in example
	Customizing the example resources
	Customizing FMPluginExample.cpp
	Customizing FMPluginFunctions.cpp

	Requirements for writing external function plug-ins
	API code files
	Option string syntax
	Table of option string characters

	FileMaker messages sent to the plug-in
	Initialization message
	Shutdown message
	Idle message
	Preferences message
	External Function message
	GetString message

	Avoiding potential Mac OS X resource conflicts
	Providing documentation for your plug-in
	Registering your plug-in
	Revising a registered plug-in

	Appendix A Feature comparison of the runtime application with FileMaker Pro
	Application and document preferences
	Toolbar comparison
	Menu command comparison
	Ignored script steps
	Stored registry settings or preferences

	Index

