Preliminary

TMS320C6000 Assembly Language Tools
v 6.0 Beta

User's Guide

Literature Number: SPRU186P
October 2006

Q‘ TEXAS
INSTRUMENTS

Preliminary

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Contents

g = (o = 13
1 Introduction to the Software Development TOOIS [iiiiiieieieeiieieeaeieiiereeaeeeiereraeaeieieees 17
11 Software Development TOOIS OVErVieW . e ueeereeereeeeiaieeraeieseeieeeeieseereeieseeireeereseereseeeaeess 13

1.2 TOOIS DESCIIDtIONS] 4t e teseereeeraseteneeteseeseseeieseeesseseseeeeneereseeesseieseeeeseeieseeeoseeesseeeseeianes 19

2 Introduction to Common Object File FOrmat [uiieeeeieiereeeeeeieieeaeeeieieeeeeeeeieiereceeeeeeces 27|
21 Sl o i T 27

2.2 How the Assembler Handles SeCtioNS] e e e ueeeeeeeieeeeeeesieeeeeesseeseeeeseaseeereeseeessesseeesiesseeeess 23

22 S O 1111 P21 1P4=Te ST =Tod 1o o - I 23

2.2.2 Initialized SeCHONS i oreseeaereereeenceeeeeoseeeeeeoseeeeeeeseeeeeeeeseeeeeessseeeeeeseeeeeeesnreeeesonces 29

A< T \F= 10 =T IRSTTer 1o o S 24

224 SUDSECHONS i itteeeeeeroeeeeeeoeroeeroeeoeeeseeoeeeeeeoeeeeeeeeroreeseeoeroeeeeeoeioseroeroeeeeioeeeeess 23

2.2.5 Section Program COUNErS e eeeeeeeeereoeerereeeaeeeeoeereoeeroseeeoeeeeoeeroseeraseeeosereseeeeneeses 249

2.2.6 UsSiNg SeCtioNS Dir€CtVES e s s s iseeeeereeeeeereeaeeesteaseeeetsesseeessessseessessseeesesseeesessnees 29

2.3 How the Linker Handles SeCtiONS|ueseeerereeeeeeeroeeeeeeoeroeeeoeeoereeeoeroeeeoeroeeeeeioeeeeeeeioeeaeeens 29

2.3.1 Default Memory AllOCAtiON sz eeeeeereaeeraeeteaeeeeoeereseeroeeeoeeeeoeeeoseeroseeeosereseeeeeeres 29

2.3.2 Placing Sections in the Memory Map| o ..eeeueeeeeeeeeeaeeesieeseeeessesseeeieseseeeiseeseeeesessnees 34

24 L] [o]oro1 (To] o 34

25 RUN-TiMe RelOCAtiON i s e e eeeeeoeeeeeeeaeeeeeeeaeeeeeeeoseeeeeeseeeeeeesseeeeessseeeeeesnceeeeeseeeeeeseeeeees 39

2.6 Loading @ PrOgraml e e e s see et e eseeseeeeeeeaeeeesieaseeesseeeeesseesseeesessseeeesesseeesiesseeesiessseeess 37

2.7 Symbols in @ COFF Fil€] oottt e et eeeeeteeeereeeeeaeeeeoeeeeseeroseeeoeeeeoeeeoseereseesoseeeseeeeeeses 33

2.7.1 EXternal SYmDOIS] s ieeeereeteaeeeeeeraeeraseieseeeeseeroseeroeeeseereseeioseeroeeeosereseeeaseeres 33

272 The Symbol Table] .ottt e et eieeeeeeesieeseeesseeeeessessseeessssseeesessaeeeeesssees 33

3 Assembler DeSCriPtiON [ttt tesee et i rereeaeeerraraeaeiererazaeeeierezaeaeiererazaeeeierezazaeeereses 39
3.1 ASSEMDIEr OVErVIEW[e sueieereeeroereeeeaeroeeeeeioeeeeeeoeioeeeoeeoeeeseeoetoeeeseroeteseroeeeeeenrroseeesaeeaes 39

3.2 The Assembler's Role in the Software Development FIOW[euvoeeieeeereeeeraeeeraeieneereieereseeraeienes 349

3.3 Invoking the Assembler] e ieeereeeieeeeieeeieneeieseeiaeeraseieneeieseeieseereseieeseiesseieseereseeseseeres 39

3.4 Naming Alternate Directories for Assembler Inputl .. oo oo oo eeeereneeraeeeeaeeeeeeeieseereeeeeaneees 44

3.4.1 Usingthe -1 Assembler Option oo eeeeeeeeeeaeeeaeeaeeeneeaeeoeeeoreoeeeeeeareeeeeoeeaeees 10

3.4.2 Using the C6X_A_DIR or A_DIR Environment Variable[..o ooeeeiiieeeee i ieeeeeereeieeeeeaanees 17

3.5 Source Statement FOrMatl ... eueeeeieneeieeeeieeeeiereieieeieseeiesreieseieieeieseeiesrereseieieereseeieseeres 42

N R I Lo =Y N Y o | 13

352 MNemoniC Field] e ieeeeeeeseeeeeeeseeeseeeeseaeeesseesseeesseeseeesssssseeessesseeesessseeeeessnees 13

3.5.3 Unit SpecCifier FlelO o e eeeeeaereeereeeaeeeeeeoeeeeeroreeeeeeroeeeeeeoeroreeeeroeeeeeeeroeeeeeeeeeeees 14

3.54 Operand Fieldl oo ee et eaeeeeeeeteneeraueeeaeeeeoseeeoeeroseeeoeeeeoeeeeseeroseeroseeeseeeeneeses 1]

355 Comment Field e s ieee e eseeeeeeseeeseeeeseaeeeeseesseeesseeseeesssssseeessssseeesessseeeeessnees Y|

3.6 (o] 151 - 1g | 43

3.6.1 Binary INtEQerS] s eereeereeeteaeeeeeeeroseeroseieseeeeoeereseeroseeeoeeeeoeeeoseeroseeeosereseeeeneeres 13

KA oo 1 M) Gl ol T 13

3.6.3 DeCimal INteQgerS i eeeeeeeeeeeereneeeaeeieeeeeeoeeioseeroeeeeoeeeeseeioneeioseeeseeeeoeeioseeroseeeeeess 13

3.6.4 Hexadecimal INtegerSoeeereeeeeeeeeeeeereoeeroreeeoeeeeoeeeeseeroseeeaeeeeoeeeeseeroseeroseeeseeeeeeses 19

3.6.5 Character CONStANTS e eereseeeeeereeeaeeeeeeaseeeetiesseeetseeseeesssssseeessesseeeseeseeeeesssees 419

3.6.6 Assembly-Time CONSIANTS e eiereeeereeeeeeeeroreroeeeeoeeeeeeeronreroeeeoeeeeoeeieseeroseeeeeees 4149

3.7 Character StriNQS i eeeeeeeeeaeeeeoeeeeeeereoeeroeeieoeeeeoeetoseeroseeeoseeeoeeioseeroseeeoeeeroeereseereseeeaeess Y|
SPRU186P—October 2006 Contents 3

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

3.8 SYMO S st e e eeeeeeeeeneeeeeeesneeeeeeeseeeeeesseeeeessneeeseesseeeeeessseeeiessseeeeesssseeioessseeeeessnees Y|
RSN -1 S Y|

RS A oo | N I o 1<) S N Y|

3.8.3 Symbolic CONSIANTS e e et e s e reeeeaeeeeeeeeeeetoneeroeeeeoeeeeseeioseeioseeeseeeeoeeioseeroeeeaeees 54

3.8.4 Defining Symbolic Constants (-ad OpPtioN)[ieeeieeeeeeeeereoeeroeereoeereeeeroseeroereoeereseeraneeres 5d

3.8.5 Predefined Symbolic ConstantS].....uieeeeeeeseeeeeeerreaseeeeieeeseeeiseeseeeieeeseeeesessseeesessnees 5]

3.8.6 Substitution Symbols] oo i i iiiiiiiriiiieiiitiietiiatetiitiiiititattiiaeeieeeiiieees 53

3.9 EXrESSIONS et teeeeeaeeeeeereneeroneeeoneeroeeeeoeeeeseeeoneeroseeeoeeeeoseeeneetoseeeoseeroseesoseieneeeeseeses 54
Rl ool - 1 (o] ¢ T 54

3.9.2 Expression Overflow and Underflow] e ieeeeeeeeeeroeeeeeeeroeeeeeeoeroeeeeeeoeeeeeoeroeeeeeeaeeeees 54

3.9.3 Well-Defined EXPreSSiONSeeeeeeeeeeeeeeeaeerereeeoeeeeoeeeeoeereseeeoeeeeseeeeseereseeroeeeseeeeneeses 53

3.9.4 Conditional EXPreSSIONS] ... e e uueeeeeeereeeaeeereeeseeeeteaseeeeieeeseeeiseesseeiseesseeesesseeesessnees 53

3.95 Legal EXPreSSIONS et teeeeeeeorroeeeeeeoeeeeeeoeioeeeoeeoereeeeoeeeeeeoeioreeeeroreeeeeeeroreeeeaeiees 59

3.9.6 EXPression EXamples]oee oo ieeeeeeeeereaeerareieaeeeeoeereseeroseeeaeeieeeeioseeroseeeoseieneeeeeeses 53

T (0 ST 10 (oL R M S o Lo [. 51
3.11 Debugging ASSembly SOUMCE[it it eeeeteeeerereraeeeeaeeeeseesoeeroeeeeoeeieseeeoseeioeeeseereseeeanees 53
3.12 Cross-Reference LiStiNgS i oeeieeeereeeeaneeroeeeeaeereseeeoeeroseeeoeeeeoeeeoseeroseeeoseeeoeeeeeeereseeeanees 60
4 ASSEMbDIEr Dilr€CHIVES [ttt tee ettt eaeee it taeaeeetereaeaeeeeetazaeaeieresacaeeererocacaeieresacaeeesenes 6]
4.1 Directives SUMMANY [s isee et e eeeeeeeeeeeeeeeeteeeseeeteeeeeeeteeeseeeeeeesseeeeeesseeeeeesseeeeieeeeeess 64
4.2 Directives That Define SeCtiONS i it ieeereeraereeeroereeeeoereereeeorroeeeseroreeseeorroeeroeeoereseroeraeeees 64
4.3 Directives That Initialize CoONStaNtS e uereeeeereeeereeeiareraeieaeereseereseeraseresseeeeeeieseereseeeaneeres 61
4.4 Directives That Perform Alignment and Reserve Spaceli.i.oeeeeeeiieeeieeeeieieeiiseiieseereeieieeieneeies 69
45 Directives That Format the Output LiStiNgS[ceieeeeieeeereeeeraeeieeeeeeeeeroneeroreeeoeeeeeeeieseereseeeaeeeres 69
4.6 Directives That Reference Other FileS] .. iueeueeeereeeeraneerareeraeeirieieseereseeeeseersseeraseieseeieneees 7Q
4.7 Directives That Enable Conditional Assembly ..o e et e e eeeeeeeeereeeeeeieeeeess 7]
4.8 Directives That Define UNioNS OF StrUCtUreS]ueeeieeeeeeeoeroeeeeerorreeeeeroeeeseroeroeeroeeoeeeseroesaeeens 72
4.9 Directives That Define Symbols at Assembly Timel .. oo ereeeeeeeerreeieneeieieeeeseereeeraeeieneeieneesns 74
410 Miscellaneous DireCtiVeS .. e s et iee e eereeeeteeeeeeeeeeeaeeeeeeaseeeeteeeeeeeseeseeeiseseeeeeeesseeeeeeeeees /9
4.11 Directives ReferenNCel i eeeeeereereeeraerereeoeioreeseeoereseroeeoeeeseroeeoeeioeroseeseroeeeeeorroseeesaeeees 74
5 Y E=Te] o I IR o Yo [V = To [N R, 121
5.1 (S [s MYl (o N 129
5.2 DefiNiNG MaACIOS] it teeeroeeeeeeareeeeeeeroeeeoeeoeieseeoeeeeeeoeeoeeeeeroeeeeeeoeioeereoeeoeeeseioeioreeoreeeeeees 123
5.3 Macro Parameters/Substitution Symbolslo oo oo eeieeeereeeeeaeeieaeeeeneeioseeroeieeeeeeneesns 129
5.3.1 Directives That Define Substitution Symbolsf. ..o eeeeeiiieee i eeeeeeeieeeseeeeeeeseeeeieaeees 130

5.3.2 Built-In Substitution Symbol FUNCtONS] o s oo e eeeeeaeereeeeoeeereeeeeseereeeeeaeees 137

5.3.3 Recursive Substitution SymbOIS ieieeiieeeereeeeeaeeieneeeoeereeeeaeereneeroseeroreeeseereseeeanees 133

5.3.4 Forced SUDSHIUtION e st e s st ieeeeesseeeeeeeseeeeeeeseaseeeeeieaseeesseeseeesssesseeessssseeeseeeees 133

5.3.5 Accessing Individual Characters of Subscripted Substitution Symbolsl .o oreeeeeeeeeere.e.. 134

5.3.6 Substitution Symbols as Local Variables in Macros[. ..ceeeeeooeeeeeeeeeeeeeeeeseeeeeesoeeeeeeeeees 133

5.4 VT (o N R o] -l [. 139
5.5 Using Conditional ASSembly in MaCrOS[ieieeeeeraeeeeeroeieeeeoeeeeeeeeroeeeeeeoeroeeeeeeorioeeeroeeeeeees 131
5.6 USiNg Labels iN MaCrOS e e ueeeeeeoeeieneeraeeieaeeeeeeeieneeroseeeoseeeoeeioneeroseeeoseeroeeeeneereseeeaeees 139
5.7 Producing Messages in MaCroS e e e s eeeeeeeeeeeeeieaseeesseaseeessaeseeesseesseeesssseeessesseeesieseees 140
5.8 Using Directives to Format the Output LiStiNQleeeeeeeeeeereeeeeeeoreoeeeeeroereeeeoeroeeeeeeoeioeeroeeeeeeees 177
5.9 Using Recursive and NeSted MaCrOS e oeeeeeeeeaeeeroeeeeoeereneeeoeeroeeeoeereseeioseeroeeeseereseeeanees 127
5.10 Macro DireCtiVesS SUMMAIY[oe s s eeereeseeeereeaeeeetseseeeetiesseeetseesseesssesseeessesseeeseesseeeeieasees 142
6 Archiver DeSCriPtiON [ooo ittt ittt et et st taraeeetereraeeeeersaraeeereraraeeeeesezareeeesesezareess 143
6.1 ArCNIVEr OVEIVIEW e utteeeeerarrereioetoeeeeraeteseroeeoeeeseroeeeseeoreeseeseioreeseeostoseroeroseeseroeeeeees 1449
Contents SPRU186P—October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

6.2 The Archiver's Role in the Software Development FIOW[ioeeeeeeeeeeeeeeeroeeeeeeeeieeroeeeeeeoeioeeeeees 1417
6.3 INnvoking the ArChiVer oo oot ee e eeeeeeeeeeeneereueeeaseeeoeeeeoeeroneeeoseessseeeseeioneeroseeeneeeseeses 1413
6.4 A (o [T S e o [149
7 Linker DeSCriptiON [ooe ettt te e ettt eeteeeesesarasaeeesezaraeeererazaraeeererarareesesecasaeeeresecazaees 157
7.1 [T @AV =T VT 159
7.2 The Linker's Role in the Software Development FIOW[..eieoeereeeireeeieaeeieieeieseereseeraeieseeieneeses 153
7.3 INVOKING the LinKer . ueeesieeeieeeeieeeeaeeieseieneeieieeeeseiesseeesseieseeeeseeesseeeseeieseeieseeesseeineeies 154
7.4 LiNKEr OpPtiONS et eeeeeeeeeeteneereeeeeeeeeoeeeeseereeeeoeeeeoeeeeretoseeeoseeeoeeeeneetoseeroseeeseeeeeeses 159
7.4.1 Relocation Capabilities (-a and -r OptioNS)[ieesieeeereeeeeeeerreeereseereieeieseereeieseereieeeanees 159
7.4.2 Create an Absolute Listing File (-abs Option)[isseeieeeeeeeeereeeieaeereieeieseereeeieseereieeienees 159
7.4.3 Allocate Memory for Use by the Loader to Pass Arguments (--args Option)ceeeeeeeeeeezee.s 157
7.4.4 Disable Merge of Symbolic Debugging Information (-b Option)[ieeeieeeeeeeeereeereneereieieaee.. 151
7.45 C Language Options (-C and -Cr OPtioNS)[iieeeeeeeereseeeeeereseereeeieieeieseereseereseieieerenees 151
7.4.6 Define an Entry Point (-e global_symbol Option)oseeeeeeeeeeeeeieaeerereeeoeereeeieseereeeeeaeess 157
7.4.7 Set Default Fill Value (-f fill_value Option)foeeeeeeereeeereeeerareieaeereieeieseeraseeraeieieeeaness 159
7.4.8 Make a Symbol Global (-g symbol Option)[ieeeeeieeeeeeeerieeeieeieriereieeiereeieiorieseiorieseens, 159
7.4.9 Make All Global Symbols Static (-h Option) ieieeeeeeeeeeeeeeeeeeieneerereeeeeeereeeroseerereeeaeess 153
7.4.10 Define Heap Size (-heap Siz€ OptioN)[ieeeieeeeeeeeieieereeeereseeraeeieieeieseeraseereeieieeienees 159

7.4.11 Alter the Library Search Algorithm (-I Option, -1 Option, and C_DIR/C6X_C_DIR
Environment Variables) oo oo eeeeieaeeieeeeaeeeeoeeieoeeroseesoneeeoeeieseeioseeeoneeroeeees 159
7.4.12 Disable Conditional Linking (-] OptioN) e ieeeeeeeereeeeeeeeraneeeaeereaeeroseeroseeroeereseeeenees 160
7.4.13 Create a Map File (-m filename OptioN) [sseeeeeereeeeeeerieeseeeiieeseeeiieeeseeesseseeeseeseees 167
7.4.14 Name an Output Module (-0 OpPtioN) eieeeeeereereeeeeeeoeeoeeroeeeeeeeeroeeeeeeorroeeeeeroreeeeees 167
7.4.15 Strip Symbolic Information (-S OptioN) e ieeeeeeeereeeeeeeerereeeaeereneeeoseeroeeroeereseeeenees 164
7.4.16 Define Stack Size (-stack Size OpPtiON) s eieeeeeerreeeeeerieeeeeeieeeseeeiseeseeeesesseeeeieesees 167
7.4.17 Generate Far Call Trampolines (--trampolines OptioN)[ieeeceeereoeeeeceaceeereoreoreeoceoeeee. 164
7.4.18 Introduce an Unresolved Symbol (-u symbol OptioNn)|eeeereeeeeeeereaeeeeeeerereeroeereaeeeenees 164
7.4.19 Display a Message When an Undefined Output Section Is Created (-w Option)[.r......... 164
7.4.20 Exhaustively Read and Search Libraries (-x and -priority OptionS)[feereeeeeeceoceeeecareoeeeee. 169
7.4.21 Generate XML Link Information File (--xmlI_link_info Option)eeceeeeereeeereeeeaeeieaeeeene.. 163
7.5 Linker Command Files[sioeeieeieieiieiiieeieneeieieeiaeiiaseiiaseieseeieseissseeeseeieseeroseessseesaeeies 164
7.5.1 Reserved Names in Linker Command Filesl ... ooveiieieeieiieeeieeieeeeieeieeeieeieeieiarienee.s 161
7.5.2 Constants in Linker Command FileS oo iieeeeeeeereeeeeeeeraseeeaeeieaeeieseeroseeroeereseeeenees 161
7.6 (o]l A N oJ oS 169
7.7 The MEMORY Dir€CtVe it ieeeeeroeeeeeeoeeeeeeeroeeeeeeoeroeeeeeeoreeeioeioseeoeeeeeeeroeeeeeerroeeeeees 169
7.7.1 Default Memory Modell o o o e e et ieeeieneeraneeeaeeeraeeieneereneeeoseeroseeeneereseeeanees 169
7.7.2 MEMORY DireCtive SYNtaX| .. uoeeeeereeeeeeerseaeeesiesseeesieeseeesiseeseeeiseeseeeseesseeesiessees 169
7.8 The SECTIONS Dir€CHVE i teeeeeroeeeeerareeeeeeroeeeseeareoeeeeeeoeeeeeoeroeeeoeeoeieetoreeseeseroeeeeeens 177
7.8.1 SECTIONS DireCtive SYNtaX[ieeeeeeeeeeeeereeeeoeeieseeeeseeroseeroeereseeieseeroseeroeeeeseeeenees 177
R I | (o Tor=Y i o] o A 173
7.8.3 SpecCifying INPUL SECHONS it teeterreeeeeeroreeeeeoeioeeeeeeeeroeeioeeeeeeeeroeeoreeoetoeeeeroreeeees 171
7.8.4 Using Multi-Level SUDSECHONS i eeeteeeeeeereeeeeieaeerereeeoeeeroeeieneereseeeoseeroeeieseereseeeanees 179
7.8.5 Allocation Using Multiple Memory RaNQesSeeeeeeeeeeerieeseeesieeeeeeiseeseeessesseeesseseees 179
7.8.6 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges[............ 180
7.8.7 Allocating an Archive Member to an Output SeCtON[e seeeereeeeaeereeeereneeroeeraeereeeeeenees 1387
7.9 Specifying a Section's RuN-Time AddreSS ..o ioeeeeereeeeeeereeeseeeeieeseeerieesseeeisesseeereesseeeeesss 1872
7.9.1 Specifying Load and RuN AddreSSeS i ereieereeeeeeeeeeeoeereseeeoeeieoeeeeseeioseeeoeeieseeeenees 187
7.9.2 Uninitialized SeCHONS . etteeeeieneereeieaeeeeeeereseeroreeeoeeeeoeeioseeroseeeoseeroeereseereseeeaeees 183
SPRU186P—October 2006 Contents 5

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

7.9.3 Referring to the Load Address by Using the .label DireCtivel . oeeeeoeeeeereeeneeeeeeeseeeeeeeeees 184

7.10 Using UNION and GROUP StatementS]eseeeeeeeeereeeeeoeereaeeeoneeroreeeaeeeeseeioseeroeeeaeereseeeenees 189
7.10.1 Overlaying Sections With the UNION Statement]eeuveeeeeeeieeeseeeieeeneeereeaseeeeieaeees 189

7.10.2 Grouping Output Sections TOYEtNer e ieeeeeeroereeereeeaeeeeeroeeeeeeeeroeeeeeeorroeeeroeeeeeeess 184

7.10.3 Nesting UNIONS and GROUPS ittt teeereeeieaeeieneeeoeeeroseeeaeereseeeoseeroeeeseeieseeeanees 187

7.10.4 Checking the Consistency of AlloCators[. .. oeeeeeeseeeeeeerieeseeerieeeeesiseeseeessesseeeseeseees 187

7.11 Special Section Types (DSECT, COPY, and NOLOAD) i iotiieteeaeeiaaeeroeeeeoeeeeoeeiesreroseeeeees 189
7.12 Default Allocation AlQOrthm e se et eeeeeeeeeraneereeeeeoeeeeeeeeeseeroeeeoeereseeeoseeroseeeaeereseeeenees 189
7.12.1 How the Allocation Algorithm Creates Output SeCtiONS .. ueeeeereeeeeeerreeneeeeeeeseeeeieaenes 189

7.12.2 Reducing Memory Fragmentation] .. oeeeeeeeeeeeeeeoeeeoeereeeeeoeereoeeeoeeroseeeseeieeeeeeeees 190

7.13 Assigning Symbols at Link Time i eeueeeeeeeeereoeereeeeoeeeeaeeeeseeroseeeoseieseeeeseeroseeraeereneeeeeees 190
7.13.1 Syntax of Assignment StatementS]eeeuieeeeerieeeeeerieeeeeeieeeseeeiseeseeeisesseeeeieasees 190

7.13.2 Assigning the SPCtoa Symbol oo e oot eeeereeeeeaeereeeeoeeeioseeeseereeeeeaeees 190

7.13.3 ASSIgNMeENt EXPreSSiONSEeeeieeeereeeeeeeeereeeieoeerereeeoeeroeieoeereseeeoseeroeeeseereseeeanees 197]

7.13.4 Symbols Defined by the LinKen o eeeuoeeee e iieeeeeeieeeeeeeteeeeeeieeeseeesseeseeessesseeeeiessees 197

7.13.5 Assigning Exact Start, End, and Size Values of a Sectiontoa Symboll....oeeeeeeeeeeeens.s 193

7.13.6 Why the Dot Operator Does Not Always WOrK oo oo eeeeeeeeereaeerereeeoeeroeeieseereseeeaeess 193

7.13.7 Address and DiImension OpPeratOrSeeeseeeeeeeereeeeeeieeseeesieesseeeiseeseeeseesseeeseessees 194

7.14 Creating and Filling HOleS ot e et e e ieeeeeeeereoeeeeneeeoneeioeeeeseeeeeesoseeioeeeeneereneeeeeees 194
7.14.1 Initialized and Uninitialized SeCtioNS[iieeeeioeeeeeeereneereeeeroeeeaeereneeieseeroeeeseereseeeanees 199

7.14.2 Creating HOleS e o ieee et ieee ettt ieeee et e ssaaeeessaseeesieeseeesssesseesssssseeessssseeeseessees 1949

7.04.3 Filling HOlES it sttt reetreeeeeeeeroeeaeeeoeeeeeeoeeoeeeeeeoeeoeeeoeeoeeeseeoeeoeeeoeioeioceroeeeeeenes 191

7.14.4 Explicit Initialization of Uninitialized SeCtioNS i eeeieeeeeeeeeeeeeieneerereeeeeeereeeieseereseeeaeess 199

7.15 Linker-Generated Copy Tables[..o ueeee e iieeee et eeeeeeeeieaeeeeesieeseeesseesseeissesseeesesseeeesesnees 199
7.15.1 A Current Boot-Loaded Application Development Process[.e.eeeeeeeeeeeeereeeeeeeieeeeene.. 199

7.15.2 An Alternative APProaCh]ieeieeeereeeeeaeeereeeeeaeereseeeeeeroseeeoeeieieeioseeroeeeseereseeeenees 199

7.15.3 Overlay Management EXample] oo e eieeeeeesieeeeeesieeeeeeeieeeseeesseeseeessesseeeeieasees 209

7.15.4 Generating Copy Tables Automatically With the Linker[oo oo oo eeeeeeeee e 209

7.15.5 Thetable() OperatOneeeseeeereeeereeeieeeeeeeeereseeroreeeoeeeeoeeioseeroseeeoseeroeeeeneereseeeaeess 207

7.15.6 Boot-Time Copy Tables .o eeee it eeee e e ieeeeeeeieeeseeeieeeseeesseeseeeesssseeesisssees 203

7.15.7 Using the table() Operator to Manage Object Componentsf. . ooeieeeeeeeerereeeeereeeeeene.. 204

7.15.8 Copy Table Contents]o o ieeeieeeereeeeeaeereneeeaeeieseeeeseeroseeeoeeieseeeeseeroseeroeeeeeeeeenees 204

7.15.9 General Purpose Copy ROUtNEE. e e it esieeeeeesieeeeeeeiseeseeeseeeseeeisseseeeesesseeesieesees 204
7.15.10 Linker Generated Copy Table Sections and Symbolsl oo e eeeeeeeeeeeeeeareoeeene. 204
7.15.11 Splitting Object Components and Overlay Management ... oeieeeeeeeeeeeeereneereeeeeaee.. 209

7.16 Partial (Incremental) LiNKIiNGE s e e s isee st e eseeaeeeeeeeeeeeeeseeseeetseeseeesssesseeessesseeesessseeeesesnees 207
7.17 LinKiNg C/C++ COO€ sttt e teeeereeeeaeeeeeeieteroeeeoeeeeoeeeeseeioseeeoeeeeeeeeoseeioseeroseieseeeesees 209
7.17.1 Run-Time Initialization s eeeteeeeeaeereaeeeeeeereneeroeeeoeeeeoeeioneeroseeeoseeeoeeioneereseeeaeess 203

7.17.2 Object Libraries and Run-Time SUppOrt. ... oo eesieeeeeeieeeeesieeseeesieeeeeessssseeesseseees 203

7.17.3 Setting the Size of the Stack and Heap SeCtioNS it ioereeeroeeeeeeeeroeeeeeeoeroeeeeerareeeeeess 209

7.17.4 Autoinitialization of Variables at RUN Time[oieoieieeeeeeeeeeeeeieneerereeeoseereeeieseereseeeaeess 209

7.17.5 Initialization of Variables at Load TiMe ... uieeeeeeeieeeeeerieeeeeeeieeeseeerseeseeessesseeesiessees 209

7.17.6 The -c and -Cr LinKer OptiONS i s ieeeeeroreeeeeoeroeeeeeeorroeeeoeeoeeeeeoeeoeeeoeroeieceroreeeeees 210

7.18 Linker EXamplel e eeeeeeeereneeraeeeeaeeeeoeeioneeraeeeoeeeeneeeeneetoeeeoseieseeieseetaseeraseieneeeenees 217
8 ADbsolute Lister DeSCriptioN [oieieuueireaeaeeearaeererererereaeaeararaeezerererereaeararaeazazerererereeeaeans 213
8.1 Producing an Absolute LiStiNgleeseseeeeeeeieeeeeaeeieieeeeeireseeieseieseeeeseessseeesseieseereseesssreiaeeses 214
8.2 INnvoking the ADSOIUtE LiSter e eeeeeeeeeeeereneeeaeereoeeeeeeroseeroeeieseeeeseesoseeroeeioneeroseesaseeroeeees 213
8.3 Absolute Lister EXample]ee oo ereeeeiaaeeraeieaeeieieeiaseeiaseeeaeeiraeeieseeieseeraseereseeeaeeieseeianeeses 219
Contents SPRU186P—October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

9 Cross-Reference Lister DeSCriPtiON [oooeeeieieieeeeieieraraeeeierezaraeiereraraeaererezaraeierezezaraeeezesess 219
9.1 Producing a Cross-Reference LiSting[ee.ieeeeeeeeeeeeeeeeeeraeeeoeeieseeeeseeroeeraeeioseeroseesaseeraeeses 227

9.2 Invoking the Cross-Reference Lister.eeueeeereeeereeereaereaeeiaaeeiaseieaseieseereseeraseessseieseesaeesas 227

9.3 Cross-Reference Listing EXamPIE]eeeieeeieeeeiereeeeeiesseiieeeieieeieseiesseeeeseieseereseesseeiaseienes 227

10 Object File Utilities DeSCIiPtiONS [iuieeeieterereeeeieieraeaeeeireraeeeietereeaeeeiereeaeaeieiereraceeiereens 223
10.1 Invoking the Object File Display Utility]s oo eseeeeeeeeeeaeeroeeieaeeeeseeroneeroreeeoeeeeoeeeeneereseeeaeess 229

N0 I Y [- T [o Lo 224

10.3 Example XML CONSUME i tutteeeeeeaereeeroeeaeeeoeeoeeeeeeoreeeeeoeeoeeeeeoeieeroeroseeoeeoseeeroeeeeeees 229

10.3.1 The Main AppliCatioN e seeeeeeeeereeeeaeereaeeeeseeraseeroeeieseeeeseesoseeraseieseereseesaseeroeeees 229

10.3.2 xml.h Declaration of the XMLEnNtity ObjecCt]....uueuieeeeeereeeeerieeeeeereeeseeeiseeseeeeseeseees 237

10.3.3 xml.cpp Definition of the XMLEnNtity Objectl. ... voeieeeieieeeeeeeieeeeierierieieeieeeeioeieeeenes 237

10.4 Invoking the Disassembler o i oo e e teaeeeeeeeaneeroeeieoeeieseeroneeroseeeoeeeeoeeeeneereseeeaeess 234

10.5 Invoking the Name Utility oo e e e ree e e e eseeseeeeieeseeesseesseessessseeessssseeessssseeesiesseeeeisesseeess 233

10.6 Invoking the Strip Uity oo e e eeeeeeeeereaeeeeneeeaseeroseeeoeeeeseeeonteroseeeoeeeeoeeeereroseeeeeees 233

11 Hex Conversion Utility DeSCrPtioN [Loiiieeeeiieieeeeeeieiesaeaeieieraraeaeiiesaeaeeeierecacaeiereeacaees 237
11.1 The Hex Conversion Utility's Role in the Software Development FIOW[ooeeveeeeeeeerieeeieneeieieeiaee.s 239

11.2 Invoking the Hex Conversion Uity . oo eeesee e e ieeeeeeeeeeseeeeseeeeeeeeseeneeeeeeeseeeeieseeeeeeeseeeess 239

11.2.1 Invoking the Hex Conversion Utility From the Command Line[. oooeeeeeeoeeeeeeeeeeeeeeeeees 239

11.2.2 Invoking the Hex Conversion Utility With a Command File [Leoeieereieeeieieereneeraneereen.. 247

11.3 Understanding Memory Widths]. ... eueeeeeeeeeieaeereseeieeeereeeieseeieseeiesrereseieseeieseeieseereseeeieess 242

11.3.1 Target Width] oo oo s oot et eeeeeeeereueeeaeeeeoeeeeoeeroeeeoseeeoeeeeneeioneeroseeeoeeeeeeses 243

11.3.2 Specifying the Memory Width[ee..oeieeeereeeeeaeeiiaeeieneeraieeeaeiiseeieseeiaseeraeeeseeeeneesns 243

11.3.3 Partitioning Data INto OUtpUt FileS e ieueereeereeeeieeereaeereseereseiisseeeseeieseeieseiesseeieeeies 244

11.3.4 Specifying Word Order for Output WoOrdS eeeseeeeeeeeeeoeereoeereeeroeeeeseeioseeroreeeaeeeeeeeses 249

114 The ROMS Dir€CtVE . eeteeeereueereueteneeeeaeetaneereseesaseeroseieseeieseeiasteraseeesseieseeieseeraseeeaeess 244

11.4.1 When to Use the ROMS Dir€CtiVel s isueereueeeeeeiieeeieaeeieseeeeeiisseeeseeieseeieseiesseeieeeies 241

11.4.2 An Example of the ROMS Dir€CtVE s eeeteeeereeeraeeroeeieaeeeeseeroeeraeeioseeroseeeaeeraeeees 243

11.5 The SECTIONS Dir€CtVe i eeeieeeeeeeaeraeeraeraeeeaeeaeeaeeroreaeeeoeeaeeeeeeareeeeoeeoseeoeeaseeseeoeeaeens 250

11.6 Excluding a Specified SeCHONE .t tseeeieeeereeeeieneereeiiieeeieeeieseeieseeiesrereseiesseieseeieseereseeeieess 2517

11.7 AsSigning Output FileNam e e eseeeeeeeeeeeeereoeeeereeroeeroeieseeieseeroneeroreeeoeeeeoeeeeneeroneeeaeees 259

11.8 Image Mode and the -fill OptioN] . .eeieeeereeeeraneeraeeieaeeeiaeeieseeieseeraneeraereseereseeraneeraseeeaeess 253

11.8.1 Generating a Memory IMageleesieeeeeeeeieieereeeereseeieseieseeieseeieseereseieseeieseesiseeieeeses 254

11.8.2 Specifying a Fill Value oo s oot ieeeteeeereeeeaeeeeaeeeeseeroseeeoeeeeoeeeeseeroseeeoeeeeseeeeeeses 253

11.8.3 Steps to Follow in Using Image Mode[...ooeeieeeeieeeeiaeieneeiaseeiaseeraeeieneereseesaeeiaeesns 253

11.9 Building a Table for an On-Chip BOOt LOAOEM s e eteseereeeereeerieeiiseeieseereseeieseeisseeeseeieseeienees 254

11.9.1 Description of the Boot Table[ios ooeieeereeeeeeeeereeeeeaeeieieeeereeroeeeeseeieseeroeeeeeeeeeeeses 259

11.9.2 The Boot Table FOrmMat .. ueueeeereeeeaeeieneeraseeiaeeiaeeieseeieseesaseeraseieneereseesaseeraeeses 254

11.9.3 How to Build the Boot Table[.. euieeeeeeeereieereseeiaseeieeeieseereseeieseereseieseeieseesieeiaeeses 254

11.9.4 Using the C6x Boot Loader oo ioeeieeereeeeeaeeraeeeeoeeieeeeeoseesoeeeeseeioneeroseeeaeeesoeeses 259

11.10 Controlling the ROM DeVice AdOreSS] e ueeeereeeeeeeeieseeieeeeieseereseirmseereeeieseereseeraeeraseieneess 251

11.11 Description of the Object FOrMatSE e ueeeeeeeeereeeieseereseeeeeereseiesreieseereseereseeieseieseeeeseeieneess 254
11.11.1 ASCII-Hex Object Format (-a Option)iieeeeeeeeeeeeeeeoeereeeeeeeeroeeeeseeroseeroreeeoeeeeeeeses 253

11.11.2 Intel MCS-86 Object Format (-i Option)[ieeeeeeeereeeeeaeeieneereseereseeraeeieneereseesnseeiaeesns 259

11.11.3 Motorola Exorciser Object Format (-m OptioN)leseeeeeeeieseereeereseereeeieseeieseeeiseeiaeeses 260

11.11.4 Texas Instruments SDSMAC Object Format (-t Option)[ieceeeeeeeeeereeeroeeeaeereeeeeaneesas 264

11.11.5 Extended Tektronix Object Format (-X OptioN)[ieeeeseeeereeeeeaeereeeereseeraseeeaeereseeiaeesns 267

11.12 Hex Conversion Utility Error MeSSages . eeueeieeeieeeeieseeeeeeeieseeieseieiseeeeeeieseeieseeseseeieseieneess 264

12 Sharing C/C++ Header Files With Assembly SOUIrCe [oiirioioiiieiereiiieieraeaeiieieraceeieieensn 263
SPRU186P—October 2006 Contents 7

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

12.1 Overview Of the .CAeCIS Dir€CtVE s soereeereeraeeeoeroeeeeeroeeeeeeoeroeeeeeeoeeeeeeeroreeeeeoeeeeeroeeeeeees 264
12.2 Notes 0N C/C++ CONVEISIONS iarrereenreeeeeonreeeeeoseeeeeeeeseeeeeeeeeeeeeesseeeeesseeereeseeeeeeesseeeees 264
i o]l [oe | T 264

12.2.2 Conditional Compilation (#if/#else/#ifdef/etC. e eeeereeeeraeeeeeeeeeseeroseeroeeeeseeeeeeses 269

12.2.3 Pragmas].eeeeieeeeeeeeeeeaeeeeieeseeeeteeseeetiesseeeeieasseeeieesseeeisessseeeesssneeersesseeeriesaees 269

12.2.4 The #error and #warning Dir€CtVeS .. ueeuieeeererreeeeeeeiseeseeeiseesseeersesseeersesseeeeieasees 263

12.2.5 Predefined symbol _ _ASM_HEADER_ [t eiiotieeieeeeeeeeeeeoeioeeeoeeoeeeeioeeeeeeoreeeeeees 263

12.2.6 Usage Within C/C++ asm() Statementsl o eeceeeeeereeeereeeeaeeeeeeeeeneeroseeeoeeieseeeaeesns 263

12.2.7 The #iNClude Dir€CtiVe e e s ieeeeeereeeseeeereeaeeeeeseaseeesieesseesiseeseeeissesseeissssseeeseeseees 263

12.2.8 Conversion Of #define MaCrOS eseseeereeereereeeerereeieeeroeeeeeeoeroeeeeeroreeeeoeroeeeoeeaeeeees 269

12.2.9 The #undef Dir€CtiVE i eeoeeeeeeereeeeeezceeeeeoseeeeeeesreeeeeeeseeeeeeesneeeeeessreeeeesseeeeeeeees 269
12.2.10 ENUMErations [ouueiieeeeeeeseeeeeeseeeseeesssasseeeesesseeeseessseesssesseeeisseseeeissssseeeseeseees 269
2 N R O S 1 ¢ o = 2649
12.2.12 C/C++ BuUilt-In FUNCHONS e s oo eeeeoeeeeeeazeeeeeeeseeeeeeeseeeeeeesneeeeeesnceeeeesseeeeeeeeees 261
12.2.13 Structures and UNiONS]e e e e ueeeeeeeeeeeeesieaseeesteaseeeiseeseeeiseesseeeesssseeeesesseeesieseees 261
12.2.14 Function/Variable PrototyPeSieeeseeeeeeeroereeeeoereeieeeroeeeeeeoeroeeeeeeoreeeeoeroreeoeeaeeeees 261
12.2.15 C Constant SUffIXES [oorreeeeeeeceeeeeoeeeeeeesseeeeeesseeeeeeeseeeeeeesneeeeeesnceeeeesseeeeeeseees 269
12.2.16 BaSiC C/CH+ TYPOS [auuurrrreeseeerreseeerisaseeesseaseeesseeseeeiseesseeessssseeeesesseeeeiessees 264

12.3 Notes on C++ SPeCific CONVEISIONS it ieeereeraeeerrorioeeroreeeeeoeroeeeeeeorreeeeeeroreeeeeorioeioeeeeeees 269
12.3.1 Name Manglng ieeieeeeeeeeeeeeereneeeoeereoeeeeseeroseeroeeieseeeeseesoseeroseieseereseesaseeroeeees 269

12.3.2 Derived ClaSSeS] . eeeiueeeeeereeaeeeereseeetieaseeesteaseeeiseeseeeiseesseeessesseeeesesseeesieseees 263

12.3.3 Templates] oo ieeeeeeeoreeeeeoeroeeeoeeeeiereeoeeeeeeoeeoeeeeeeoeeeseeoeioeeeeeeoeeeseioeeoceeoreeeeeees 269

12.3.4 Virtual FUNCHONS [foiiioozreeeeeenreeeeeeeeeeeeesneeeeeosseeeeeeesseeeeeesseeeeesesneeeeesseeeeeeeseees 269

124 New Assembler SUPPOr .. et eee et e eeeeaeeeetseaeeeetseeseeesseeseeesssssseeessssseeessesseeeeiesseeeess 269
12.4.1 Enumerations (.enum/.emember/.endenum) oo e iee et aeeeieeteeaeeianteiineiiaeriiaeeas 269

12.4.2 The .define DireCtiVe s eoreeeeeeeeeeeeeaeeeeeeesseeeeeeeseeeeeseseeeeeeesneeeeeesnceeeeesseeeeeeeeees 269

12.4.3 The .undefine/.unasg DireCtives .. o oeeeeiieeereeieaseesseeeeeeiseeseeesssesseeessesseeeseessees 277

12.4.4 The $defined() DireCtive o s e o uieeieeeereeeeeaeeeeeeerereroseeeoeeeeoeeeeneeroseeeoeeeeseeeeeeses 270

12.4.5 The $sizeof Built-In FUNCHON[ot et eeeereaeeraeeraeeeroeeieaeereseesoseeroeeioneereseesaseeroeeses 270

12.4.6 Structure/Union Alignment & $alignof()[eceeeeeereeeeeeraereeeeeeiaeeeeeroeeeeioeiaeeroeeaeeees 277

12.4.7 The .CStriNg Dir€CtVe i ieeeteereeeroeeeereeeroeeeeeeorreeeeeeeoeeeoeeoeroeeroeeeeeeoeioeeeeeeareeeeees 279

A Common Object File FOIrMat [t eie it teeeeieieteeaeeeieietaraeeeiereraeeeeeieiaraeeeieresacaeeecesnss 277
Al COFF File StruCtUIe oo iseeeeeeeeeeaeeeeeeeaeeeseeaeeesseeaneeeeesaseeeeeesseeeeeeseeeeeeeseeeeeeesseeeeenes 273
A.2 File Header StruCturel ... e s s ueee e teeee e eeeeeeeeeeeaeeeeeeaseeeeeeaeseeeiseeseeesesesseeeeeeseeeeeeeseees 274
A3 Optional File Header FOrmat [oo eieeeeeeeeeeaeeieoeeeeseeroseeroeeeeoeeeeseeroneereeeeoeeeeseeeeseeraeeeaes 274
A4 Section Header StrUCtUr€ .o v e e e seeeeeereeeeeseeeeeeeeseeeeeeeeeaeeeeeeaseeeeeessseeeeeesseeeeeeeneeeeenes 274
A5 Structuring Relocation INfOrmation [eueseeseeereeeereseeeaeeieseeeeseereseereseieseeieseeieseeieseieseerenees 274
A.6 Symbol Table Structure and CONteNt [ieeeeeeeereeeereeeeeaeereneerereeroseeroeeieseeieseeroseeroeereaeeeenees 271
A.6.1 Special SYmbOIS[. eeieetiieetiiaeieieeianeiiaseiiaeeiiietiaaeeiaatetaieiiietiiieeiinteiaieiiiriiaeens 279

A.6.2 Symbol Name FOrmatfee . eeeeeeereeeeeeeireseeieeeieseeeeseeieseeieseieseeeeseeieseereseieeseeraseees 274

A.6.3 String Table StruCtUrel e e eeeteeeeeeeeeraneeraeeieoeeeeoeeroseeroeieseeeeeeetoseeroseeeaseeraeeees 279

A.6.4 Storage ClaSSeS . eeieuerreueeieneeiaeieaeeieaeeiaseeiaseeeaeeieeeeieseereseeroseereseeeaeeieseesaeeres 279

A.6.5 Symbol ValuesS i ieeeiieeeiieeeiiaeeieieeieseireseieeeeieseeeeseeieseereseieseeieseeieseereseieieeeieseies 279

A.6.6 SeCtion NUMDE st ieereeraeeeoeraereseroeeeeeeoeroeeeseeoreeseeeioeeeseeoeioseroeroeeeseioeeeeees 280

A.6.7 AuXiliary ENtrieSeeieeeeeeeeereaeeiaeeeaeeirieeieseeiaseeiatiraseieaeeieieeiaseeiaseiiaeeieieeieneeies 280

B Symbolic Debugging Dir€CtiVeS [aiieieeieierereeeeieierezaeaeirezaraerereraraeaererezazaeeeiezezaraeeezesess 287
B.1 DWARF Debugging FOrmat e ueeseeereeeeeeeaereeeroeeeeeeoeeoeeeeeeoeeeeeeoeroeeeeeeoeeeseioeeeceeaeeeeeeees 282
B.2 COFF Debugging FOrmMat s o e e eeeeeeeaeeeeaeeieoeeeeeeeaseeroeeeeoeeeeseesoneeroseeeoseeeseesoseeraeeeaes 283
Contents SPRU186P-October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

B.3 Debug DireCtive SYNtaX]ieeseeeeeoeeeeeeereeereoreroeeeoeeeeeeeeesreioseeeoeeeeeeeeseeioseeroseeeseeeeeeeses 283

C XML Link Information File DeSCriptioN [eeeeieieieeeeeeeieiaeaeeeieieraraeeeieraraeeeeerecacaceeees 283
C.1 XML Information File Element TyPeS [eeieeeeteeeeraeieaeeieneereseeraeeeaeeieseeieseeraseeeseeieseeeanees 2349

C.2 Document Elements [e e s ueee e esee et eeeeeeeeeeeeeaeeeeeeeaseeeeeeesseeeieeeeeeieseseeeesesseeeeeeeseees 284

C.2.1 Header ElemMentS e ieeeeeereeeeeeroeroeeeoeeoeroseroeeoeeeeroeeoseeoeroeeeseroreeseeetoreeeearieee 2849

C.22 INPUtFilE LiStieeieeereeeeeaeeeraeeianeeraeeeaeeseaeesaseeraseeeaseeesseseneeraseesosessseeesseesaneens 281

C.2.3 Object COmMPONENt LiStessueeieeeieaeeieieeeeeereseeeeeeieseereseeieseeeeseieseeeeseeioseereseieneess 289

C.2.4 Logical Group LISt eeeieoeeeeeeeeeeeeeneerereeeaeeeeoeeeeseeroseeeoeeeeoeeeeseeroseeeoeeseoeeeeseeraneess 289

C.25 Placement Mapliieeeeieeteeeetieeeianeeiaeteaeeeiaeeiaseeieseeeaseieseeieseeraseeraseieseeeeseeianeess 297

C.2.6 FarCall Trampoling LiStl i eueeieeeeeeeeieseeeaeereseeeeeeieseeeeseeieseeeeseieseeeeseeioseereseieneess 292

C.2.7 Symbol Tablel oo e e e eeteteeeeaeeeeeeeeeseeroneeeoseeeoeeeeseetoseesoeeeeseeeeoeeioneens 293

D GlOSSANY [eiuieiereiereeeaeaearereteiererereaeaeaearasrerererereaeaearareeerererereeeaeacaracecerererereaeacacacacecerens 293

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Contents 9

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

List of Figures

1-1 TMS320C6000 Software Development FIOW (i oo ieeereeeeeaeeereeeeeseereoeeeaseereeeeesrereseeeoseeeeeeeaeesanes 13
2-1 Partitioning Memory Into Logical BIOCKS oo eeeeeeeeeeeeeraseeeesieaseeesseeeseeeseseseeeseseseeesesssseeeiseseeeeess 27
2-3 Object Code Generated by the File in Figure 2-2 oo e e e eeeeeeeeeeeeeeieoeeioeeeeseeeeoeeioseeroeeeeeees 23
2-4 Combining Input Sections to Form an Executable Object Module[oo oo e oo eeeeeeeaeeieneeraeeeeaeees 29
3-1 The Assembler in the TMS320C6000 Software Development FIOW oo oeeeiieeeeeeereeseeeieeeeeeiseeeeeieens 31
3-2 Example Assembler LiSting e eeeeeeeeeeeeeeeoereeeeoeeeeeeoeroeeeeeeoreeeeeeeroeeeeeeoeioeeeeeeoeioeeeeroreeeeeoeiaeess 53
4-1 The field DireCtVE et seeteeeeeeeeeraneeraeeeeeeeeeoeetoseereseeeoseeeneetoneeroseeeoseeeoeeeeseeroseeeoseeeoeeeeseeranes 61
4-2 INitialization Dir@CtiVES e ues et teeeereeeteneeteseereneeraseieaseeesseieseereseeeaseeioseieseeieseereseeroseesesereseeieseeres 69
4-3 The .align Dir€CtVel st eseeeeeereereeeroeeaeeeeeroeeeeeeoeeoeeeeeeeeeeseeoeroeeeoeeoetoeeroeeoseeseroeeeeeroreeseeoeioeees 69
4-4 The .space and .DesS DireCtVES et teeeereeeeeeeereeeeaeereseeeeseeraseeroeereseeeeseeroseeroereseeeeseeroseeraeeenes 69
4-5 Double-Precision Floating-Point Format] e e e it eeeeeeeesieeeeesieeeseeeseeeseeeseeeseeesesssseeeeseseeeeess 9]
4-6 The .field Dir€CtVE i ee et eeeeeeeeroeraeeeoeeeeeeeeroeeeeeeoeroeeeeeeoeeeseeoeroeeeoeeoeioeeroeeoeeeorroeeeeeeoreeeeeeeioeees 91
4-7 Single-Precision Floating-Point FOrmat e oo ueeeteeeerareeaeereoeeeeeeroeeeroeeieseeioseeeoseeeoeeieseereseeeaness 91
4-8 The .USECt DIr€CtVE [Leiieeieeeereseeieeeieseieaeeieseeseseeieseeeaseieseeseseeioseereseisseeeeseeioseeroseesnseeseeeses 129
6-1 The Archiver in the TMS320C6000 Software Development FIOW[e eeoereeeeeeeeereeeroeeeeeeeereeeeeeoeeeeeeees 147
7-1 The Linker in the TMS320C6000 Software Development FIOW[ceeooeieeereeeereeeieeeeeeeeeieseeroreeeeeeeeeeesns 153
7-2 Section Allocation Defined by Example 7-4 .o oot eee s ieeeeeeeieeeaeeeeseaseeeeieesseeeiiesseeeiseeseeeesnens 173
7-3 Run-Time Execution of EXample 7-O[et teeeeorreeeeeerareeeeeoeioeeeoeeeeeeoeeoeeeeeeorroeeeeeioreeeeorreseeeeeaeeees 184
7-4 Memory Allocation Shown in Example 7-11 and Example 7-120 o o i ieeeeeeereeeeeeeeeioneeroeeeneees 189
7-5 Autoinitialization at RUN TiMe e s e euteettieeeieneeiasetianeeieseieseeieseereseereseieseeieseeieseeieseeesseieseeeeeeres 209
7-6 Initialization at LOAd TimMe e seeeeeeeeeroreeeeeaeeeeeroeeeeeeoeroeeeeeeoeeeeeeoeeoeeeeeoeeeseeoeroeeeoeeoseeeroeeeeeees 210
8-1 Absolute Lister Development FIOW oo iioeereeeereeeeeaeeereeereaeeeeoeeroseeroeeeoeeieseeeoseeroseeeseereseeeeeeses 219
9-1 The Cross-Reference Lister in the TMS320C6000 Software Development FIOW[. oo veeeeeeeeieeeeeeeeeneee... 227
11-1 The Hex Conversion Utility in the TMS320C6000 Software Development Flow[oee oo oo ieeeeeeeeeeeeeeeee.. 239
11-2 Hex Conversion Utility ProceSS FIOWL . eeteeereeeeaeereoeeeeseeroseeroeieseeeeseeroseereseieseeeeeeereseeraseeeaeess 247
11-3 COFF Data and Memory Widths] oo e e e s s e e ereeeeeeseseeseeesseeseeesseesseeessssseeessssseeesiesseeeeieseeeess 243
11-4 Data, Memory, and ROM Widths oo oo e e e e eeoeeeeeeeneeeeeeesneeeeeesseeeeeeesseeeeessneeeeeossseesiessseeesesseeeees 243
11-5 The infile.out File Partitioned Into Four Output Files] . oo oo oo eeeeeneeraneeraeeeeoeeeeoeereseeraseeeaeees 249
11-6 ASCIl-Hex Object FOrMat] .. e e e st esseeeeeeeeaeeessseeseeesseeeeesseesseeessssseeesessseeesiessseeeieseseeess 253
11-7 Intel Hexadecimal Object Format] . o oo e oo eteeeeeeeeeeaeeeeeereseeeoeeesoeeeeseereoeeeeseeroseeeseeieneeeenees 259
11-8 Motorola-S FOrmMatl e se e reeereeeieaeeeeeeraeeraseeeoeeeeoeeeoseeroseeeoseeroeeeeseeroseeeeseeroseeeseereseeeanees 260
11-9 TI-Tagged Object FOrmMal .. e e e st eeseeeeeeeeaeseessseeseeesseeseeesessseeesessseeetiesseeesiessseeeieseseeess 267
11-10 Extended Tektronix Object FOrmat o e e e seeeeeeeereeeeeeeeraneeroeeeeoeeeeseesoseeroseeeeeeeeoeeiostereseeeaeess 267
A-1 COFF File StruCtUre e u e e seeeereeeeeaeeteeeeraneeeeseeeaeereseeeoseesoseeeseeioneeeeseesoseeroseioseeroseesoseeeaeeees 273
A-2 Sample COFF ODbjeCt File] . uueeiieeeeeetreeeeeeieaeeesseeseeesseesseeesessseeessesseeeeiesseeesieesseesiseesseeseees 273
A-3 Section Header Pointers for the .text SeCtON . oesreeioeereeeeereeeroereeeeorroeeeeeeoreeeeeoeroreeeeeoereeereeeeeees 279
A-4 Symbol Table ContentS o eeseeeeeeeeeaeereeeeeaeeroeeeeaeereoeeeoeeeeoseeeseeroseeroeesoeeeeoeeioneeroseesaseeeaeeses 271
A-5 String Table Entries for Sample Symbol Names] ouioeeeeiieeeeeeieeeeeeeieeaeeeeieeeeesieeseeesieeeseeeieees 279
10 List of Figures SPRU186P-October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

List of Tables

3-1 CPU CONtrol REQIStErS e e eereneeeeeeeeoeereseereseeeoseeeeeeeeseereseeeoseeeoeeeeoeetoseerosereseeeeoeeioseerareeeaeees 54
3-2 ProcesSOr SYMBDOIS et teeeereeeraeeeeeeeeeeeeeoneeroneeeaeeeeeeeeeseereeeeoseeroseeeoeeieseeeeseetoseesosereseeeeseeses 53
3-3 Assembler Version SYymbOIS o e oot oot eteeeeeaetereeeieaeeteeeeeaetetotioaeetooeetonteianteiaeeioaetieaeeiaees 53
3-4 Operators Used in Expressions (PrecedenCe) [Lueuieeeseeeereseerereeeeeeieseeieseeieseeiseeieseeieseeieseereseieneess % |
3-5)Y glelel Wa\aigl o[(1S . 60
4-1 Directives That Define SeCtiONS]. e eueeereeeereneereieeeaetiaeeieaeereseeraseeieseerseeieseereseereseereseieseeieneeses 69
4-2 Directives That Initialize Constants (Data and MemOry)ceseeeeeeereeeeeeeeroeeeoeereseeeeseeioseeroereseeeeeeeses 67
4-3 Directives That Perform Alignment and ReServe Spaceliooeeieeeeroeeieeeeeeeeeioseeroreeeeeeereeeioseereseesaeeeres 63
4-4 Directives That Format the OUtpUt LiStiNQ e eseeeeeeeeeeeeeroeeeeeroreeeeeeeroreeeeeoeroeeeeeeoeiereeeeroeeeeereeeeeees 63
4-5 Directives That Reference Other Files e e e usee e eeieeeeeeeeeaeeeeieeeeeeieeeseeeeeeeseeeeeeeseeeeeesseeeiieeseeeess 63
4-6 Directives That Enable Conditional Assemblyf .ottt ieeeeeeeieeeseeeieeeseeeseeeseeeeiseseeeeess 63
4-7 Directives That Define Unions Or StrUCIUreS .. ueeieeeereeeereeeieneereieeraseeieseeraeeieseeieseeiaseeraeieseeieneeses 64
4-8 Directives That Define Symbols at ASsembly Time oo ieeeeeeeereaeeeeeeroeeroeeieseeeeseeroseeroereseeeeeeeses 64
4-9 Directives That Perform Miscellaneous FUNCHONS i it iezrreereeeroeraeeeeeraeeeeeeoeroeeeeeeoereseeeeroeseeeaeiaeees 69
5-1 Substitution Symbol Functions and Return Values o oo oot eeeeeeeeeeeeeeeeieaeeeeeeeeeeeeeeeioseeroeeeeees 133
5-2 [ofg=F:\il [WY/ F- Vel (o1 I 143
5-3 Manipulating Substitution SYymDOIS]. e e et s et et eeeeeeeeiieeeeeiseeseeesssesseeessssseeeseesseeeeieseeeess 143
5-4 (o] g Lo 1 iTo] g PV aNSES=T00] o] Y I 143
5-5 Producing Assembly-Time MeSSagES et eteueereeeerereeeoeeeeoeeroseeroneeeoeeieoeeeeseeioseeioseeroeeeeaeeieseeeeeees 1213
5-6 Formatting the LiSting ieeseeeteeeeeeeeraueereneeeoeeeeoeeeeoreeeeeeoseeroeeieseeteseeroneeroseeeoeeeeoeeieneeroneeeaeees 113
7-1 Linker OptioNS SUMMIAIY oot ee e teoeereeeeeneeraeeeeoeeeeoeeeosteroseeeoeeeeoeeeoseeieseeioeeseseeeoeeieseeeeeees 159
7-2 Groups of Operators Used in EXpressions (PreCedenCe)lieseeeeieeeieeeereieereeiieeeeeeeieieeieseereseeieeeienes 199
9-1 Symbol Attributes in Cross-Reference Listingl . eeeeieeeeeeereeeaeeereeaseeeeseeseeeeiiesseeeiieeseeeiieeeeeeieses 227
O R Y I - To N [o (o 229
11-1 Basic Hex Conversion Utility OptioNS ieeeeeeeeeeeeereeeeeoeeeroeeieseereseeraeeeroseeeoeereseeeeseeroseeroeereseeeenees 244
2 e o) e F= (o (=T @ @] o] i To] o 1S 253
11-3 Options for Specifying Hex Conversion FOrmMatS ieeeeeeeereereeeeeeroeeeeeeorreeeeeeroreeeeeoeioeeroeeeeeeseraeeaeess 259
A-1 (SN o [=FTo [T o] (=10] & 274
A-2 File Header Flags (ByteS 18 and 1O) . .ueeueuuereereeeeeeereeseeesseeeeesseesseeessssseeeesssseeeisesseeeeiesseeeess 274
A-3 Optional File Header CONteNtS]u e e ueeereeeeraeeraeeteaeeteneeiaeeieseeeseeieseereseesssreraseieseereseesaneeraeeses 274
A-4 Section Header CONtENTS ieueeeeeeeereeeroeeteoeeeeoeeroseereeeeoeeeeoeerosteroseeeeeeteoeeeoseeroseeeosereseeeaneeres 279
A-5 Section Header Flags (Bytes 40 Through 43) i ieeeieeeereeeeeaeeeeoeeeeseereseereeeeoeeeeeeeioseeroseeeaeeeeaeeses 279
A-6 Relocation ENtry CONtENtS e e s e reeeereneeeeeeereeeeeoreeeoeeeoseeroseeeoeeeeoeeeoseeioseesoseeeeeeeesreieseeeeeees 279
A-7 Relocation Types (ByteS 8 and O) e ieueeieeeeeeeeereeeieseereieeeeeeeesseeeseereseeeeseieseeieseeieseeieseiesseeeneeies 279
A-8 Symbol Table Entry CoONteNtS e e e e eeeeeeeeraeseeesseeeeesseesseeesessseeeesesseeeesesseeesiesseeeisseseeeeseees 273
A-9 Special Symbols in the Symbol Table[.. ouieeiieeieeireieeiaeiineeieneeiaieeraseisieeieaeeieseeraseesaneeeneesns 279
A-10 SymbOl StOrage ClaSSES]eueeeeeeoeeieoreroeeeoneeeoeeroseeroreeeoeeeeoeeeoseeroseeeoseieseeeeseeroseeroseseseeeeneeses 279
A-11 SeCtion NUMDEIS] ..ttt teeeraeeeeeraeraeeroeraeeeseroetoeeeoeeeeeesetoeeeseeorroseeseioreeseiostoreeoetosseseroeseeens 280
A-12 Section Format for Auxiliary Table Entries i o oo ieeeereeeeeeeeeeeereeaeereeeeeeeeeeseeeoeeieseereseeeoseeeaeeees 287
B-1 Symbolic DebUgging Dir€CtiVeS| s e eieueereseereseerareieseereseeiesrereseieieeieseeieseereseeeeeeiieseieseereseeeenes 284
SPRU186P—October 2006 List of Tables 11

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

12 List of Tables SPRU186P—0October 2006
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

J@ TEXAS Preface
INSTRUMENTS SPRU186P—October 2006

Read This First

About This Manual

The TMS320C6000 Assembly Language Tools User's Guide tells you how to use these assembly
language tools:

» Assembler

* Archiver

* Linker

» Absolute lister

» Cross-reference lister

» Obiject file display utility
* Disassembler

* Name utility

e Strip utility

» Hex conversion utility

Before you use this book, you should install the assembly language tools.
How to Use This Manual

This book helps you learn how to use the Texas Instruments assembly language tools designed
specifically for the TMS320C6000™ 32-bit devices. This book consists of four parts:

» Introductory information, consisting of Chapter 1 and [Chapter 3, gives you an overview of the
assembly language development tools. It also discusses common object file format (COFF), which
helps you to use the TMS320C6000 tools more efficiently. Read Chapter 3, Introduction to Common
Object File Format, before using the assembler and linker.

« Assembler description, consisting of through [Chapter 5, contains detailed information
about using the assembler. This portion explains how to invoke the assembler and discusses source
statement format, valid constants and expressions, assembler output, and assembler directives. It also
describes the macro language.

» Additional assembly language tools, consisting of through Chapter 11], describes in detail
each of the tools provided with the assembler to help you create executable object files. For example,
explains how to invoke the linker, how the linker operates, and how to use linker directives;
explains how to use the hex conversion utility.

» Reference material, consisting of through Bppendix D, provides technical data about the
internal format and structure of COFF object files. It discusses symbolic debugging directives that the
TMS320C6000 C/C++ compiler uses. Finally, it includes hex conversion utility examples, assembler
and linker error messages, and a glossary.

SPRU186P—0October 2006 Read This First 13
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Notational Conventions

Notational Conventions

This document uses the following conventions:
» The TMS320C62x™, C64x™, and C67x™ core is referred to as TMS320C6000 or C6000™,

» Program listings, program examples, and interactive displays are shown in a speci al typef ace.
Interactive displays use a bold version of the special typeface to distinguish commands that you enter
from items that the system displays (such as prompts, command output, error messages, etc.).

Here is a sample program listing:

1 00000000 .data

2 00000000 0000002F x .byte 47

3 00000001 00000032 z .byte 50

4 00000000 . text

5 00000000 010401EOC ADD A0, A1, A2

» In syntax descriptions, the instruction, command, or directive is in a bold typeface and parameters are
in an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a
syntax that are in italics describe the type of information that should be entered. Following is an
example of command-line syntax.

‘C|6X -z [optiong] filename, ... filename,,

The cl6x -z command invokes the linker and has two parameters. The first parameter, options, is
optional (see the next bullet for details). The second parameter, flename, is required and you can
enter more than one.

e Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in a bold typeface, do not enter the
brackets themselves. The following is an example of a command that has an optional parameter.

‘ hex6x [options] filename

The hex6x command has two parameters. The second parameter, filename, is required. The first
parameter, options, is optional. Since options is plural, you can select several options.

* In assembler syntax statements, column 1 is reserved for the first character of a label or symbol. If the
label or symbol is optional, it is usually not shown. If it is a required parameter, it is shown starting
against the left margin of the shaded box, as in the example below. No instruction, command, directive,
or parameter other than a symbol or label can begin in column 1.

symbol .usect "section name", size in bytes [, alignment]

The symbol is required for the .usect directive and must begin in column 1. The section name must be
enclosed in quotes and the parameter size in bytes must be separated from the section name by a
comma. The alignment is optional and, if used, must be separated by a comma.

e Some directives can have a varying number of parameters. For example, the .byte directive can have
up to 100 parameters. This syntax shows that .byte must have at least one value parameter, but you
have the option of supplying additional value parameters, each separated from the previous one by a
comma.

.byte value, [, ..., value,]

* In program listings and program examples, pipe symbols (]|) indicate parallel instructions, and square
brackets ([]) indicate conditional instructions. In this example of parallel and conditional instructions,
the instruction on line five executes in parallel with instruction on line six. The instruction on line eight
is conditional: the branch to $1 only occurs if the contents of Al are not equal to O:

1 .global tabl, tab2
2

14 Read This First SPRU186P—0October 2006
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

; Preliminary
¥ 1
EXAS
INSTRUMENTS
www.ti.com
Related Documentation From Texas Instruments
3 00000000 00000028! MK tabl, AO
4 00000004 00000068! MVKH tabl, AO
5 00000008 008031A9 MVK 99, Al
6 0000000c 010848C0 || ZERO A2
7
8 00000010 80000212 $1:[Al] B $1
9 00000014 01003674 STW A2, *A0++
10 00000018 0087E1A0 SUB Al, 1, Al
11 0000001c 00004000 NOP 3

» Following are other symbols and abbreviations used throughout this document:

Symbol Definition
B,b Suffix — binary integer
H, h Suffix — hexadecimal integer
LSB Least significant bit
MSB Most significant bit
0x Prefix — hexadecimal integer
Q.q Suffix — octal integer

Related Documentation From Texas Instruments

The following books describe the TMS320C6000 devices and related support tools. To obtain a copy of
any of these Tl documents, call the Texas Instruments Literature Response Center at (800) 477-8924.
When ordering, please identify the book by its title and literature number.

EPRU328 —Code Composer Studio User's Guide. Explains how to use the Code Composer
development environment to build and debug embedded real-time DSP applications.

EPRUI87 —TMS320C6000 Optimizing Compiler v6.0 Beta User's Guide. Describes the
TMS320C6000 C compiler and the assembly optimizer. This C compiler accepts ANSI standard C
source code and produces assembly language source code for the TMS320C6000 platform of
devices (including the C64x+ and C67x+ generations). The assembly optimizer helps you optimize
your assembly code.

EPRUIZY —TMS320C6000 Programmer's Guide. Reference for programming the TMS320C6000
digital signal processors (DSPs). Before you use this manual, you should install your code
generation and debugging tools. Includes a brief description of the C6000 DSP architecture and
code development flow, includes C code examples and discusses optimization methods for the C
code, describes the structure of assembly code and includes examples and discusses optimizations
for the assembly code, and describes programming considerations for the C64x DSP.

EPRUI8Y —TMS320C6000 DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C6000 digital signal processors
(DSPs).

EPRUIS0 —TMS320C6000 DSP Peripherals Overview Reference Guide. Provides an overview and
briefly describes the peripherals available on the TMS320C6000 family of digital signal processors
(DSPs).

—TMS320C6000 Technical Brief. Provides an introduction to the TMS320C62x and
TMS320C67x digital signal processors (DSPs) of the TMS320C6000 DSP family. Describes the
CPU architecture, peripherals, development tools and third-party support for the C62x and C67x
DSPs.

SPRU186P—0October 2006 Read This First 15
Bubmif Documentation FeedbacK

http://www-s.ti.com/sc/techlit/spru328
http://www-s.ti.com/sc/techlit/spru187
http://www-s.ti.com/sc/techlit/spru198
http://www-s.ti.com/sc/techlit/spru189
http://www-s.ti.com/sc/techlit/spru190
http://www-s.ti.com/sc/techlit/spru197
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Related Documentation From Texas Instruments

Trademarks
TMS320C6000, TMS320C62%, C64x, C67x, C6000 are trademarks of Texas Instruments.
Intel is a trademark of Intel Corporation.
Windows is a trademark of Microsoft Corporation.
Windows is a registered trademark of Microsoft Corporation.
Motorola-S is a trademark of Motorola, Inc.
Tektronix is a trademark of Tektronix, Inc.
UNIX is a trademark of The Open Group.

UNIX is a registered trademark of licensed exclusively through X/Open Company Limited.

16 Read This First SPRU186P—0October 2006
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

J@ TEXAS Chapter 1
INSTRUMENTS SPRU186P—October 2006

Introduction to the Software Development Tools

The TMS320C6000™ is supported by a set of software development tools, which
includes an optimizing C/C++ compiler, an assembly optimizer, an assembler, a linker,
and assorted utilities. This chapter provides an overview of these tools.

The TMS320C6000 is supported by the following assembly language development

tools:

» Assembler
e Archiver

e Linker

» Absolute lister

» Cross-reference lister

* Obiject file display utility
» Disassembler

* Name utility

e Strip utility

» Hex conversion utility

This chapter shows how these tools fit into the general software tools development flow
and gives a brief description of each tool. For convenience, it also summarizes the
C/C++ compiler and debugging tools. For detailed information on the compiler and
debugger, and for complete descriptions of the TMS320C6000, refer to books listed in
Related Documentation From Texas Instruments.

Topic Page
1.1 Software Development Tools OVerviewWf...coovoieieeeieieieeaeeeiiiaeaeenns 13
P22 o To) SR D I=STo! o o) o] o K] T 19
SPRU186P—-October 2006 Introduction to the Software Development Tools 17

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Software Development Tools Overview

Preliminary

” TEXAS
INSTRUMENTS

www.ti.com

1.1 Software Development Tools Overview
shows the TMS320C6000 software development flow. The shaded portion highlights the most
common development path; the other portions are optional. The other portions are peripheral functions
that enhance the development process.
Figure 1-1. TMS320C6000 Software Development Flow
« CiC++]
. source o
. files .
« Macro -« [h
e SOUICE o . . .
. files . C/C++ o Linear
| compiler . assembly ¢
Archiver « Assembler o Assembly
\TJ . source optimizer
+ Macro ¢ v 5 =
$ library ¢ o Assembly- ,
. . Assembler + optimized ¢
: file :
* >
+ COFF Library-build
Archiver < object utility
: files : f
I — L] L]
; - I : Run-time- :
: Library of . — e Support e
s ot_Jject . > Linker r‘ o library e
o files o
/
« Executable o
T COFF [*
) s file :
Hex conversion
utility
v
EPROM (Cross—_reference) TMS320C6000
programmer lister
18 Introduction to the Software Development Tools SPRU186P-October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

Preliminary

INSTRUMENTS

www.ti.com

Tools Descriptions

1.2 Tools Descriptions
The following list describes the tools that are shown in Eigure 1-1I:

The assembly optimizer allows you to write linear assembly code without being concerned with the
pipeline structure or with assigning registers. It assigns registers and uses loop optimization to turn
linear assembly into highly parallel assembly that takes advantage of software pipelining.

See the TMS320C6000 Optimizing Compiler User's Guide for more information.

The C/C++ compiler accepts C/C++ source code and produces TMS320C6000 assembly language
source code. A shell program, an optimizer, and an interlist utility are included in the compiler
package:

— The shell program enables you to compile, assemble, and link source modules in one step.
— The optimizer modifies code to improve the efficiency of C/C++ programs.

— The interlist utility interlists C/C++ source statements with assembly language output to correlate
code produced by the compiler with your source code.

See the TMS320C6000 Optimizing Compiler User's Guide for more information.

The assembler translates assembly language source files into machine language COFF obiject files.
Source files can contain instructions, assembler directives, and macro directives. You can use
assembler directives to control various aspects of the assembly process, such as the source listing
format, data alignment, and section content. See Chapter 3, Assembler Description, through
Chapter 5, Macro Language, for more information. See the TMS320C6000 CPU and Instruction Set
Reference Guide for detailed information on the assembly language instruction set.

The linker combines object files into a single executable COFF object module. As it creates the
executable module, it performs relocation and resolves external references. The linker accepts
relocatable COFF object files (created by the assembler) as input. It also accepts archiver library
members and output modules created by a previous linker run. Linker directives allow you to combine
object file sections, bind sections or symbols to addresses or within memory ranges, and define or
redefine global symbols. See [Chapter 7, Linker Description, for more information.

The archiver allows you to collect a group of files into a single archive file, called a library. For
example, you can collect several macros into a macro library. The assembler searches the library and
uses the members that are called as macros by the source file. You can also use the archiver to collect
a group of object files into an object library. The linker includes in the library the members that resolve
external references during the link. The archiver allows you to modify a library by deleting, replacing,
extracting, or adding members. See [Chapter g, Archiver Description, for more information.

You can use the library-build utility to build your own customized run-time-support library. See the
TMS320C6000 Optimizing Compiler User's Guide for more information.

The hex conversion utility converts a COFF object file into TI-Tagged, ASCII-Hex, Intel™,
Motorola-S™, or Tektronix™ object format. The converted file can be downloaded to an EPROM
programmer. See [Chapter 11], Hex Conversion Utility Description, for more information.

The absolute lister uses linked object files to create .abs files. These files can be assembled to
produce a listing of the absolute addresses of object code. See Chapter g, Absolute Lister Description,
for more information.

The cross-reference lister uses object files to produce a cross-reference listing showing symbols,
their definition, and their references in the linked source files. See [Chapier 9, Cross-Reference Lister
Description, for more information.

The main product of this development process is a module that can be executed in a TMS320C6000
device. You can use one of several debugging tools to refine and correct your code. Available products
include:

— An instruction-accurate and clock-accurate software simulator

— An XDS emulator

For information about these debugging tools, see the Code Composer Studio User's Guide.

In addition, the following utilities are provided:

The object file display utility prints the contents of object files, executable files, and/or archive
libraries in both human readable and XML formats. See Becfion 10.1], Invoking the Object File Display
Utility, for more information.

SPRU186P—-October 2006 Introduction to the Software Development Tools 19
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Tools Descriptions

* The disassembler writes the disassembled object code from object or executable files. See
Bection 10.4, Invoking the Disassembler, for more information.

» The name utility prints a list of names defined and referenced in a COFF object or an executable file.
See Bection 10.5, Invoking the Name Utility, for more information.

» The strip utility removes symbol table and debugging information from object and executable files.
See Bection 10.4, Invoking the Strip Utility, for more information.

20 Introduction to the Software Development Tools SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

J@ TEXAS Chapter 2
INSTRUMENTS SPRU186P—October 2006

Introduction to Common Object File Format

The assembler and linker create object files that can be executed by a
TMS320C6000™ device. The format for these object files is called common object file
format (COFF).

COFF makes modular programming easier because it encourages you to think in terms
of blocks of code and data when you write an assembly language program. These
blocks are known as sections. Both the assembler and the linker provide directives that
allow you to create and manipulate sections.

This chapter focuses on the concept and use of sections in assembly language
programs. See Bppendix A, Common Object File Format, for details about COFF object
file structure.

Topic Page
P N ST <Yox { (o] o &) T 22
2.2 How the Assembler Handles SeCtionS|i...iieeeeieeeeeeeeseeieneeeaneesnneens 23
2.3 How the Linker Handles SeCtionS[. i iieeieeieeeieiaeeieeiaeianeiaeeaeeeneenss 29
A S = 1= (o Yox= 1 { (o] o | T 30
25 RUN-TIiME RelIOCATION] et ie e it iereeeereeieeaeraernsaseaeeseasrasencassasensassaes 37
26 LoadingaProgramf...coo oo 32
27 SymbolsinaCOFFFile[. .o eeeeeeeeee 33
SPRU186P—-October 2006 Introduction to Common Object File Format 21

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Sections

2.1

Sections

The smallest unit of an object file is called a section. A section is a block of code or data that occupies
contiguous space in the memory map with other sections. Each section of an object file is separate and
distinct. COFF object files always contain three default sections:

.text section usually contains executable code
.data section usually contains initialized data
.bss section usually reserves space for uninitialized variables

In addition, the assembler and linker allow you to create, name, and link named sections that are used like
the .data, .text, and .bss sections.

There are two basic types of sections:

Initialized sections contain data or code. The .text and .data sections are initialized; named
sections created with the .sect assembler directive are also initialized.

Uninitialized sections reserve space in the memory map for uninitialized data. The .bss section is
uninitialized; named sections created with the .usect assembler directive are
also uninitialized.

Several assembler directives allow you to associate various portions of code and data with the appropriate
sections. The assembler builds these sections during the assembly process, creating an object file
organized as shown in Figure 2-11.

One of the linker's functions is to relocate sections into the target system's memory map; this function is
called allocation. Because most systems contain several types of memory, using sections can help you
use target memory more efficiently. All sections are independently relocatable; you can place any section
into any allocated block of target memory. For example, you can define a section that contains an
initialization routine and then allocate the routine into a portion of the memory map that contains ROM.

shows the relationship between sections in an object file and a hypothetical target memory.

Figure 2-1. Partitioning Memory Into Logical Blocks

Object file Target memory
.bss > RAM
.data > EEPROM
text
» ROM
22 Introduction to Common Object File Format SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

Preliminary

INSTRUMENTS

www.ti.com

How the Assembler Handles Sections

2.2

How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that belong in a given section.
The assembler has five directives that support this function:

e .bss

e .usect
e text

» .data
» .sect

The .bss and .usect directives create uninitialized sections; the .text, .data, and .sect directives create
initialized sections.

You can create subsections of any section to give you tighter control of the memory map. Subsections are
created using the .sect and .usect directives. Subsections are identified with the base section name and a
subsection name separated by a colon. See Bection 2.2.4, Subsections, for more information.

Default Sections Directive

Note: If you do not use any of the sections directives, the assembler assembles everything into
the .text section.

2.2.1 Uninitialized Sections

Uninitialized sections reserve space in TMS320C6000 memory; they are usually allocated into RAM.

These sections have no actual contents in the object file; they simply reserve memory. A program can use

this space at run time for creating and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler directives.

» The .bss directive reserves space in the .bss section.

* The .usect directive reserves space in a specific uninitialized named section.

Each time you invoke the .bss or .usect directive, the assembler reserves additional space in the .bss or

the named section. The syntaxes for these directives are:
.bss symbol, size in bytes [, alignment[, bank offset]]

symbol .usect "section name", size in bytes [, alignment[, bank offset]]

symbol points to the first byte reserved by this invocation of the .bss or .usect directive. The
symbol corresponds to the name of the variable that you are reserving space for. It can
be referenced by any other section and can also be declared as a global symbol (with
the .global directive).

size in bytes is an absolute expression. The .bss directive reserves size in bytes bytes in the .bss
section. You must specify a size; there is no default value. The .usect directive
reserves size in bytes bytes in section name. You must specify a size; there is no
default value.

alignment is an optional parameter. It specifies the minimum alignment in bytes required by the
space allocated. The default value is byte aligned. The value must be power of 2.

bank offset is an optional parameter. It ensures that the space allocated to the symbol occurs on a
specific memory bank boundary. The bank offset measures the number of bytes to
offset from the alignment specified before assigning the symbol to that location.

section name tells the assembler which named section to reserve space in. For more information,
see Bection 2.2.3, Named Sections.

SPRU186P—-October 2006 Introduction to Common Object File Format 23

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

How the Assembler Handles Sections

222

2.2.3

The initialized section directives (.text, .data, and .sect) tell the assembler to stop assembling into the
current section and begin assembling into the indicated section. The .bss and .usect directives, however,
do not end the current section and begin a new one; they simply escape from the current section
temporarily. The .bss and .usect directives can appear anywhere in an initialized section without affecting
its contents. For an example, see Bection 2.2.4, Using Sections Directives.

The assembler treats uninitialized subsections (created with the .usect directive) in the same manner as
uninitialized sections. See [Bection 2.2.4, for more information on creating subsections.

Initialized Sections

Initialized sections contain executable code or initialized data. The contents of these sections are stored in
the object file and placed in TMS320C6000 memory when the program is loaded. Each initialized section
is independently relocatable and may reference symbols that are defined in other sections. The linker
automatically resolves these section-relative references.

Three directives tell the assembler to place code or data into a section. The syntaxes for these directives
are:

text
.data
.sect " section name "

When the assembler encounters one of these directives, it stops assembling into the current section
(acting as an implied end of current section command). It then assembles subsequent code into the
designated section until it encounters another .text, .data, or .sect directive.

Sections are built through an iterative process. For example, when the assembler first encounters a .data
directive, the .data section is empty. The statements following this first .data directive are assembled into
the .data section (until the assembler encounters a .text or .sect directive). If the assembler encounters
subsequent .data directives, it adds the statements following these .data directives to the statements
already in the .data section. This creates a single .data section that can be allocated continuously into
memory.

Initialized subsections are created with the .sect directive. The assembler treats initialized subsections in
the same manner as initialized sections. See Bection 2.2.4, for more information on creating subsections.

Named Sections

Named sections are sections that you create. You can use them like the default .text, .data, and .bss
sections, but they are assembled separately.

For example, repeated use of the .text directive builds up a single .text section in the object file. When
linked, this .text section is allocated into memory as a single unit. Suppose there is a portion of executable
code (perhaps an initialization routine) that you do not want allocated with .text. If you assemble this
segment of code into a named section, it is assembled separately from .text, and you can allocate it into
memory separately. You can also assemble initialized data that is separate from the .data section, and
you can reserve space for uninitialized variables that is separate from the .bss section.

Two directives let you create named sections:

* The .usect directive creates uninitialized sections that are used like the .bss section. These sections
reserve space in RAM for variables.

» The .sect directive creates initialized sections, like the default .text and .data sections, that can contain
code or data. The .sect directive creates named sections with relocatable addresses.

The syntaxes for these directives are:

24

Introduction to Common Object File Format SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

How the Assembler Handles Sections

symbol .usect "section name", size in bytes [, alignment[, bank offset]]

.sect " section name "

The section name parameter is the name of the section. Section names are significant to 200 characters.
You can create up to 32 767 separate named sections. For the .usect and .sect directives, a section name
can refer to a subsection; see for details.

Each time you invoke one of these directives with a new name, you create a new named section. Each
time you invoke one of these directives with a name that was already used, the assembler assembles
code or data (or reserves space) into the section with that name. You cannot use the same names with
different directives. That is, you cannot create a section with the .usect directive and then try to use the
same section with .sect.

2.2.4 Subsections

Subsections are smaller sections within larger sections. Like sections, subsections can be manipulated by
the linker. Subsections give you tighter control of the memory map. You can create subsections by using
the .sect or .usect directive. The syntaxes for a subsection name are:

symbol .usect "section name;subsection name", size in bytes [, alignment[, bank offset]]
.sect " section name : subsection name "

A subsection is identified by the base section name followed by a colon and the name of the subsection. A
subsection can be allocated separately or grouped with other sections using the same base name. For
example, you create a subsection called _func within the .text section:

.sect ".text:_func"

Using the linker's SECTIONS directive, you can allocate .text:_func separately, or with all the .text
sections. See Bection 7.8.1, SECTIONS Directive Syntax, for an example using subsections.
You can create two types of subsections:

« Initialized subsections are created using the .sect directive. See Bection 2.2.2.
» Uninitialized subsections are created using the .usect directive. See Bection 2.2.1].

Subsections are allocated in the same manner as sections. See Bection 7.8, The SECTIONS Directive, for
more information.

SPRU186P—-October 2006 Introduction to Common Object File Format 25
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

How the Assembler Handles Sections

2.2.5 Section Program Counters
The assembler maintains a separate program counter for each section. These program counters are
known as section program counters, or SPCs.
An SPC represents the current address within a section of code or data. Initially, the assembler sets each
SPC to 0. As the assembler fills a section with code or data, it increments the appropriate SPC. If you
resume assembling into a section, the assembler remembers the appropriate SPC's previous value and
continues incrementing the SPC from that value.
The assembler treats each section as if it began at address 0; the linker relocates each section according
to its final location in the memory map. For more information, see Bection 2.4, Relocation.

2.2.6 Using Sections Directives
shows how you can build COFF sections incrementally, using the sections directives to swap
back and forth between the different sections. You can use sections directives to begin assembling into a
section for the first time, or to continue assembling into a section that already contains code. In the latter
case, the assembler simply appends the new code to the code that is already in the section.
The format in is a listing file. shows how the SPCs are modified during assembly. A
line in a listing file has four fields:
Field 1 contains the source code line counter.
Field 2 contains the section program counter.
Field 3 contains the object code.
Field 4 contains the original source statement.
See Bection 3.10, Source Listings for more information on interpreting the fields in a source listing.

26 Introduction to Common Object File Format SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

. Preliminary
l
‘UTEXAS
INSTRUMENTS
www.ti.com
How the Assembler Handles Sections
2-2 Using Sections Directives Example
1 IR R EE SRS SRS SRR SRS R EE SRR SRR SRR R RS EEREEREEREEEEEEESESEES
2 ** Assenble an initialized table into .data. **
3 R SRR RS SR SRS SRR EESEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEESES
4 00000000 .data
5 00000000 00000011 coeff .word 011h, 022h
00000004 00000022
6 EEEEE SRS S EEEEE SRS R EEEEEEEEEEEREEEEEEEESEREEREEESEESESSE]
7 ** Reserve space in .bss for a variable. *x
8 ER R R I I I I R I R R I I O
9 00000000 . bss varl, 4
10 00000004 . bss buf fer, 40
11 IR R E R SRS SRR R EE SRS R EE SRR R EEEEE R RS EEEREEEEEEEEEESESES
12 ** Still in .data section **
13 R SRR R RS SR ERESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESES
14 00000008 00001234 ptr .word 01234h
15 R R R R R RS R E RS SRR R RS R SR SRR EE SRR EREREEEEEEEEEEEEEEEREESESES
16 ** Assenbl e code into .text section * %
17 IR EEE SRS SRS SRR SRS EEEEEEEEEEREEREESEEEEEESEEREEEEEEESESE]
18 00000000 . text
19 00000000 00800528 sum MVK 10, A1
20 00000004 021085E0 ZERO A4
21
22 00000008 01003664 al oop: LDW * AO++, A2
23 0000000c 00004000 NOP 3
24 00000010 0087E1A0 SUB Al, 1, Al
25 00000014 021041E0 ADD A2, A4, Ad
26 00000018 80000112 [A1] B al oop
27 0000001c 00008000 NOP 5
28
29 00000020 0200007C- STW A4, *+Bl4(varl)
30 IR R E R SRS SRR SRR SRS R EE SRR SRR SRR R RS SRR SRS R EEEEEEESESEES
31 ** Assenbl e another initialized table in .data **
32 R SRR RS SR SRS EEE RS EEREEEEEREEEEEEEEESEEEEEEEEEEEESEEESES
33 0000000c .data
34 0000000c OOO0OO00AA ivals .word Oaah, Obbh, Occh
00000010 000000BB
00000014 000000CC
35 RS R R R RS R E RS SRR R RS SR SRR ERE SRR EREREEEEEEEEEEEEEEEEESESES
36 ** Define another section for nore variables. **
37 EEEEE SRS EEEEEEEEEEEEEEEEEEEREEREESEEEEESEEREEEEEEESESES
38 00000000 var 2 .usect "newars”, 4
39 00000004 i nbuf .usect "newars”, 4
40 EEEEE SRS EEEEEEEEEEEEEEEEEEEREEEESEEEEEESEEEEEEEEESESEE
41 ** Assenbl e nore code into the .text section. **
42 IR R EE SRS SRR SRR SRS R EE SRS R EEEEEREEEEEEEEEEESEEEESEESESES
43 00000024 . text
44 00000024 01003664 xmult: LDW * AO++, A2
45 00000028 00006000 NOP 4
46 0000002c 020C4480 MPYHL A2, A3, Ad
47 00000030 02800028- MVKL var 2, A5
48 00000034 02800068- MVKH var 2, A5
49 00000038 02140274 STW A4, * A5
50 R R R RS RS R EE S EE SRR SRR SRS R R RS EERREEERREEREERREEEREEEREESEEES]
51 ** Define a naned section for interrupt vectors **
52 IR SRR R SRR EE SRS
53 00000000 . sect "vectors”
54 00000000 00000012’ B sum
55 00000004 00008000 NOP 5
Field 1 Field2 Field 3 Field 4
As shows, the file in creates five sections:

SPRU186P—October 2006
Bubmit Documentation FeedbacH

Introduction to Common Object File Format

27

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS
www.ti.com
How the Assembler Handles Sections
text contains 15 32-bit words of object code.
.data contains six words of initialized data.
vectors is a named section created with the .sect directive; it contains two words of object code.
.bss reserves 44 bytes in memory.
newvars is a named section created with the .usect directive; it contains eight bytes in memory.

The second column shows the object code that is assembled into these sections; the first column shows
the source statements that generated the object code.

Figure 2-3. Object Code Generated by the File in
Line numbers Object code Section

19 00800528 text
20 021085E0
22 01003664
23 00004000
24 0087E1A0
25 021041E0
26 80000112
27 00008000
29 0200007C-
44 01003664
45 00006000
46 020C4480
47 02800028-
48 02800068-
49 02140274

5 00000011 .data

5 00000022
14 00001234
34 000000AA
34 000000BB
34 0000o0CC
54 00000000’ vectors
54 00000024’

No data— .bss

9 44 bytes

10 reserved
No data— newvars

38 8 bytes
39 reserved

28

Introduction to Common Object File Format

SPRU186P—October 2006
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

Preliminary

INSTRUMENTS

www.ti.com

How the Linker Handles Sections

2.3

How the Linker Handles Sections

The linker has two main functions related to sections. First, the linker uses the sections in COFF object
files as building blocks; it combines input sections (when more than one file is being linked) to create
output sections in an executable COFF output module. Second, the linker chooses memory addresses for
the output sections.

Two linker directives support these functions:

 The MEMORY directive allows you to define the memory map of a target system. You can name
portions of memory and specify their starting addresses and their lengths.

e The SECTIONS directive tells the linker how to combine input sections into output sections and where
to place these output sections in memory.

Subsections allow you to manipulate sections with greater precision. You can specify subsections with the
linker's SECTIONS directive. If you do not specify a subsection explicitly, then the subsection is combined
with the other sections with the same base section name.

It is not always necessary to use linker directives. If you do not use them, the linker uses the target
processor's default allocation algorithm described in Bection 7.17, Default Allocation Algorithm. When you
do use linker directives, you must specify them in a linker command file.

Refer to the following sections for more information about linker command files and linker directives:
Bection 7.3, Linker Command Files

Bection 7.7, The MEMORY Directive

Bection 7.8, The SECTIONS Directive

Bection 7.12, Default Allocation Algorithm

2.3.1 Default Memory Allocation

illustrates the process of linking two files together.

Figure 2-4. Combining Input Sections to Form an Executable Object Module

filel.obj
text
.bss Executable
object module Memory map
filel
.data (.text) Executable
—————— code
Init file2 (.text)
(named section) 1 = (text)
filel
(.data) Initialized
i [[ety data
file2 (.data)
(.data)
filel
file2.0bj (-bss) Space for
— g A variables
file2 (.bss)
text (.bss)
bss > Init Init
data Tables Tables
Tables
(named section)
SPRU186P—-October 2006 Introduction to Common Object File Format 29

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Relocation
In Eigure 2-4, filel.obj and file2.obj have been assembled to be used as linker input. Each contains the

.text, .data, and .bss default sections; in addition, each contains a named section. The executable object
module shows the combined sections. The linker combines the .text section from filel.obj and the .text
section from file2.0bj to form one .text section, then combines the two .data sections and the two .bss
sections, and finally places the named sections at the end. The memory map shows how the sections are
put into memory; by default, the linker begins at Oh and places the sections one after the other in the
following order: .text, .const, .data, .bss, .cinit, and then any named sections in the order they are
encountered in the input files.

The C/C++ compiler uses the .const section to store string constants, and variables or arrays that are
defined as far const. The C/C++ compiler produces tables of data for autoinitializing global variables;
these variables are stored in a named section called .cinit (see Example 7-1). For more information on the
.const and .cinit sections, see the TMS320C6000 Optimizing Compiler User's Guide.

2.3.2 Placing Sections in the Memory Map
illustrates the linker's default method for combining sections. Sometimes you may not want to
use the default setup. For example, you may not want all of the .text sections to be combined into a single
.text section. Or you may want a named section placed where the .data section would normally be
allocated. Most memory maps contain various types of memory (RAM, ROM, EPROM, etc.) in varying
amounts; you may want to place a section in a specific type of memory.
For further explanation of section placement within the memory map, see the discussions in Gection 7.1,
The MEMORY Directive, and Eection 7.8, The SECTIONS Directive.
2.4 Relocation
The assembler treats each section as if it began at address 0. All relocatable symbols (labels) are relative
to address 0 in their sections. Of course, all sections cannot actually begin at address 0 in memory, so the
linker relocates sections by:
» Allocating them into the memory map so that they begin at the appropriate address as defined with the
linker's MEMORY directive
» Adjusting symbol values to correspond to the new section addresses
» Adjusting references to relocated symbols to reflect the adjusted symbol values
The linker uses relocation entries to adjust references to symbol values. The assembler creates a
relocation entry each time a relocatable symbol is referenced. The linker then uses these entries to patch
the references after the symbols are relocated. contains a code segment for a
TMS320C6000 device that generates relocation entries.
Example 2-1. Code That Generates Relocation Entries
1 .global X
2 00000000 00000012! Z: B X Uses an external relocation
3 00000004 0180082A MVKL Y, B3 Uses an internal relocation
4 00000008 0180006A MKH Y, B3 Uses an internal relocation
5 0000000C 00004000 NOP 3
6
7 00000010 0001E000 Y: | DLE
8 00000014 00000212 B Y
9 00000018 00008000 NOP 5
In Example 2-1], both symbols X and Y are relocatable. Y is defined in the .text section of this module; X is
defined in another module. When the code is assembled, X has a value of 0 (the assembler assumes all
undefined external symbols have values of 0), and Y has a value of 16 (relative to address 0 in the .text
section). The assembler generates two relocation entries: one for X and one for Y. The reference to X is
an external reference (indicated by the ! character in the listing). The reference to Y is to an internally
defined relocatable symbol (indicated by the ' character in the listing).
30 Introduction to Common Object File Format SPRU186P—October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Relocation

After the code is linked, suppose that X is relocated to address 0x7100. Suppose also that the .text
section is relocated to begin at address 0x7200; Y now has a relocated value of 0x7210. The linker uses
the two relocation entries to patch the two references in the object code:

00000012 B X becomes of ffe012
0180082A MVKL Y becomes 01B9082A
0180006A MVKH Y becomes 1860006A

Sometimes an expression contains more than one relocatable symbol, or cannot be evaluated at
assembly time. In this case, the assembler encodes the entire expression in the object file. After
determining the addresses of the symbols, the linker computes the value of the expression as shown in
Example 2-4.

Example 2-2. Simple Assembler Listing

.global synl, synP

W N -

00000000 00800028% MVKL syn2 - syni, Al

The symbols sym1 and sym2 are both externally defined. Therefore, the assembler cannot evaluate the
expression sym2 - sym1, so it encodes the expression in the object file. The '%' listing character indicates
a relocation expression. Suppose the linker relocates sym2 to 300h and sym1 to 200h. Then the linker
computes the value of the expression to be 300h - 200h = 100h. Thus the MVKL instruction is patched to:

00808028 MVKL 100h, A1

Expression Cannot Be Larger Than Space Reserved

Note: If the value of an expression is larger, in bits, than the space reserved for it, you will
receive an error message from the linker.

Each section in a COFF object file has a table of relocation entries. The table contains one relocation
entry for each relocatable reference in the section. The linker usually removes relocation entries after it
uses them. This prevents the output file from being relocated again (if it is relinked or when it is loaded). A
file that contains no relocation entries is an absolute file (all its addresses are absolute addresses). If you
want the linker to retain relocation entries, invoke the linker with the -r option (see Bection 3.3).

SPRU186P—-October 2006 Introduction to Common Object File Format 31
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary b Texas
INSTRUMENTS

www.ti.com

Run-Time Relocation

2.5

2.6

Run-Time Relocation

At times you may want to load code into one area of memory and run it in another. For example, you may
have performance-critical code in an external-memory-based system. The code must be loaded into
external memory, but it would run faster in internal memory.

The linker provides a simple way to handle this. Using the SECTIONS directive, you can optionally direct
the linker to allocate a section twice: first to set its load address and again to set its run address. Use the
load keyword for the load address and the run keyword for the run address.

The load address determines where a loader places the raw data for the section. Any references to the
section (such as references to labels in it) refer to its run address. The application must copy the section
from its load address to its run address before the first reference of the symbol is encountered at run time;
this does not happen automatically simply because you specify a separate run address. For an example
that illustrates how to move a block of code at run time, see Example 7-9.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is actually allocated as if it
were two separate sections of the same size.

Uninitialized sections (such as .bss) are not loaded, so the only significant address is the run address. The
linker allocates uninitialized sections only once; if you specify both run and load addresses, the linker
warns you and ignores the load address.

For a complete description of run-time relocation, see Bection 7.9, Specifying a Section's Run-Time
Address.

Loading a Program

The linker produces executable COFF object modules. An executable object file has the same COFF
format as object files that are used as linker input; the sections in an executable object file, however, are
combined and relocated into target memory.

To run a program, the data in the executable object module must be transferred, or loaded, into target
system memory. Several methods can be used for loading a program, depending on the execution
environment. Three common situations are described below:

e Code Composer Studio can load an executable COFF file into a simulator or onto hardware. The Code
Composer Studio loader reads the executable file and copies the program into target memory.

* You can use the hex conversion utility (hex6x, which is shipped as part of the assembly language
package) to convert the executable COFF object module into one of several object file formats. You
can then use the converted file with an EPROM programmer to burn the program into an EPROM.

» A standalone simulator can be invoked by the load6x command and the name of the executable object
file. The standalone simulator reads the executable file, copies the program into the simulator and
executes it, displaying any C /0.

32

Introduction to Common Object File Format SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Symbols in a COFF File

2.7 Symbols in a COFF File

A COFF file contains a symbol table that stores information about symbols in the program. The linker uses
this table when it performs relocation. Debugging tools can also use the symbol table to provide symbolic
debugging.

2.7.1 External Symbols

External symbols are symbols that are defined in one module and referenced in another module. You can
use the .def, .ref, or .global directive to identify symbols as external:

.def The symbol is defined in the current module and used in another module.
ref The symbol is referenced in the current module, but defined in another module.
.global The symbol may be either of the above.

The following code segment illustrates these definitions.

. def X
.ref y
.global z
.global g
q B B3
NOP 4
MVK 1, Bl
X W A0, Al
MVKL y, B3
MVKH y, B3
B z
NOP 5

In this example, the .def definition of x says that it is an external symbol defined in this module and that
other modules can reference x. The .ref definition of y says that it is an undefined symbol that is defined in
another module. The .global definition of z says that it is defined in some module and available in this file.
The .global definition of g says that it is defined in this module and that other modules can reference qg.

The assembler places x, y, z, and q in the object file's symbol table. When the file is linked with other
object files, the entries for x and q resolve references to x and q in other files. The entries for y and z
cause the linker to look through the symbol tables of other files for y's and z's definitions.

The linker must match all references with corresponding definitions. If the linker cannot find a symbol's
definition, it prints an error message about the unresolved reference. This type of error prevents the linker
from creating an executable object module.

2.7.2 The Symbol Table

The assembler always generates an entry in the symbol table when it encounters an external symbol
(both definitions and references defined by one of the directives in Gection 2.7.1)). The assembler also
creates special symbols that point to the beginning of each section; the linker uses these symbols to
relocate references to other symbols.

The assembler does not usually create symbol table entries for any symbols other than those described
above, because the linker does not use them. For example, labels are not included in the symbol table
unless they are declared with the .global directive. For informational purposes, it is sometimes useful to
have entries in the symbol table for each symbol in a program. To accomplish this, invoke the assembler
with the -as option (see Becfion 3.3).

SPRU186P—-October 2006 Introduction to Common Object File Format 33
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Symbols in a COFF File
34 Introduction to Common Object File Format SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Ji” TEXAS

INSTRUMENTS

Preliminary

Chapter 3

SPRU186P—0October 2006

Assembler Description

The TMS320C6000™ assembler translates assembly language source files into
machine language object files. These files are in common object file format (COFF),
which is discussed in [Chapter 4, Introduction to Common Object File Format, and
Bppendix_A, Common Object File Format. Source files can contain the following
assembly language elements:

Assembler directives described in
Macro directives described in
Assembly language instructions described in the TMS320C6000 CPU

and Instruction Set Reference Guide

Topic Page
3.1 Assembler OVervieWl..o.ooue e i i eeeeieieie i ieeeaeaeeieieieieieieaeaeaeenne. 349
3.2 The Assembler's Role in the Software Development Flow[............. 3G
3.3 Invoking the Assembler oot 33
3.4 Naming Alternate Directories for Assembler Inputl........................ 410
3.5 Source Statement Format[............cieiiiiiii e 42
IS I Oe 14 1] - T | &) I 43
IV AR O -1 = T3 (=T @S) g1 [o [S I LY
3.8 SymboOISlo i ereraraeeenen Y|
S I = ¢ o] =111 (o]0 K I 54
3.10 Source LiStiNngSleee ittt eeeae e i ieeeeeeiieiazaeaeizzazaeaeees 51
3.11 Debugging Assembly Sourcel . .coiieieiee i ieieeae et ieaeaeeeees 53
3.12 Cross-Reference LiStingS[e ieeieieeeeaieieieeaeieieieeeeieieisiaeaceeieiaensn 60

SPRU186P—-October 2006 Assembler Description 35

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Assembler Overview

3.1 Assembler Overview
The 2-pass assembler does the following:
» Processes the source statements in a text file to produce a relocatable object file
» Produces a source listing (if requested) and provides you with control over this listing
» Allows you to segment your code into sections and maintain a section program counter (SPC) for each
section of object code
» Defines and references global symbols and appends a cross-reference listing to the source listing (if
requested)
» Allows conditional assembly
» Supports macros, allowing you to define macros inline or in a library
3.2 The Assembler's Role in the Software Development Flow
illustrates the assembler's role in the software development flow. The shaded portion highlights
the most common assembler development path. The assembler accepts assembly language source files
as input, both those you create and those created by the TMS320C6000 C/C++ compiler.
36 Assembler Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

INSTRUMENTS

www.ti.com

Preliminary

The Assembler's Role in the Software Development Flow

Figure 3-1. The Assembler in the TMS320C6000 Software Development Flow

.
(]
°
L]
.
(]

CIC++
source
files

[XX NN

(] * M
O Macro O
oS OLICE y s Assembly o
. files o CCf+ * optimizer *
L compiler + source 3
Archiver o Assembler o Assembly
%J . source optimizer
L] L]
* (]
+ Macro ¢
. library . hJ + Assembly-
L] [] (] H H L]
° * Assembler « optimized ¢
: file H
L] L] . .
e COFF o Library-build
Archiver « object utility
: files : %}
I [° - °
" 5 v 0 Run-time- 0
0 Libraryof: 7 e Support e
i > e librar .
Somm0b |G Linker ° y
. files N
+ Executable
¢« COFF
() : file
Hex conversion
utility
\ 4
EPROM (Cross—_reference) TMS320C6000
programmer lister

?

Debugging
tools

SPRU186P—October 2006
Bubmit Documentation FeedbacH

Assembler Description

37

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Invoking the Assembler
3.3 Invoking the Assembler
To invoke the assembler, enter the following:
cl6x input file [options]
cléx is the command that invokes the assembler through the compiler. The compiler considers
any file with an .asm extension to be an assembly file and calls the assembler.
input file names the assembly language source file.
options identify the assembler options that you want to use. Options are not case sensitive and can
appear anywhere on the command line following the command. Precede each option with a
hyphen.

The valid assembler options are as follows:

-@ -@=filename appends the contents of a file to the command line. You can use this
option to avoid limitations on command line length imposed by the host operating
system. Use an asterisk or a semicolon (* or ;) at the beginning of a line in the
command file to include comments. Comments that begin in any other column
must begin with a semicolon. Within the command file, filenames or option
parameters containing embedded spaces or hyphens must be surrounded with
guotation marks. For example: "this-file.asm"

-aa creates an absolute listing. When you use -aa, the assembler does not produce an
object file. The -aa option is used in conjunction with the absolute lister.

-ac makes case insignificant in the assembly language files. For example, -ac makes
the symbols ABC and abc equivalent. If you do not use this option, case is
significant (default). Case significance is enforced primarily with symbol names,
not with mnemonics and register names.

-ad -ad=name [=value] sets the name symbol. This is equivalent to inserting name
.set [value] at the beginning of the assembly file. If value is omitted, the symbol is
set to 1. For more information, see Becfion 3.8.4, Defining Symbolic Constants
(-ad Option).

-ahc -ahc=filename tells the assembler to copy the specified file for the assembly
module. The file is inserted before source file statements. The copied file appears
in the assembly listing files.

-ahi -ahi=filename tells the assembiler to include the specified file for the assembly
module. The file is included before source file statements. The included file does
not appear in the assembly listing files.

-al (lowercase L) produces a listing file with the same name as the input file with a .Ist
extension.
-apd performs preprocessing for assembly files, but instead of writing preprocessed

output, writes a list of dependency lines suitable for input to a standard make
utility. The list is written to a file with the same name as the source file but with a
.ppa extension.

-api performs preprocessing for assembly files, but instead of writing preprocessed
output, writes a list of files included with the .include directive. The list is written to
a file with the same name as the source file but with a .ppa extension.

38 Assembler Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Invoking the Assembler

-mv

--No_compress

--no_reload_errors
-q

puts all defined symbols in the object file's symbol table. The assembler usually
puts only global symbols into the symbol table. When you use -as, symbols
defined as labels or as assembly-time constants are also placed in the table.

-au=name undefines the predefined constant name, which overrides any -ad
options for the specified constant.

produces a cross-reference table and appends it to the end of the listing file; it
also adds cross-reference information to the object file for use by the
cross-reference utility. If you do not request a listing file but use the -ax option, the
assembler creates a listing file automatically, naming it with the same name as the
input file with a .Ist extension.

(--symdebug:dwarf) enables assembler source debugging in the C source
debugger. Line information is output to the COFF file for every line of source in the
assembly language source file. You cannot use the -g option on assembly code
that contains .line directives. See Bection 3.11], Debugging Assembly Source, for
more information.

specifies a directory where the assembler can find files named by the .copy,
.include, or .mlib directives. The format of the -1 option is - | =pathname. There is
no limit to the number of directories you can specify in this manner; each
pathname must be preceded by the -1 option. For more information, see
Bection 3.4.7), Using the -1 Assembler Option.

produces object code in big-endian format.

-mv=num selects the target CPU version using the last four digits of the
TMS320C6000 part number.

prevents compression (C6400+). Fetch packets that utilize 16-bit instructions are
not created.

turns off all reload-related loop buffer error messages (C6400+)
suppresses the banner and progress information (assembler runs in quiet mode).

For more information about the -me and -mv options, see the TMS320C6000 Optimizing C Compiler

User's Guide.

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Assembler Description 39

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Naming Alternate Directories for Assembler Input

3.4 Naming Alternate Directories for Assembler Input
The .copy, .include, and .mlib directives tell the assembler to use code from external files. The .copy and
.include directives tell the assembler to read source statements from another file, and the .mlib directive
names a library that contains macro functions. Chapter 4, Assembler Directives, contains examples of the
.copy, .include, and .mlib directives. The syntax for these directives is:
.copy ["Ifilename["]
.include ["]filename["]
.mlib ["]filename["]
The filename names a copyl/include file that the assembler reads statements from or a macro library that
contains macro definitions. If filename begins with a number the double quotes are required. The filename
may be a complete pathname, a partial pathname, or a filename with no path information. The assembler
searches for the file in the following locations in the order given:
1. The directory that contains the current source file . The current source file is the file being assembled
when the .copy, .include, or .mlib directive is encountered.
2. Any directories named with the -1 assembler option
3. Any directories named with the C6X_A_DIR or A_DIR environment variable
Because of this search hierarchy, you can augment the assembler's directory search algorithm by using
the -1 assembler option (described in Bection 3.4.1)) or the C6X_A_DIR or A_DIR environment variable
(described in Bection 3.4.7).
3.4.1 Using the -1 Assembler Option
The - I assembler option names an alternate directory that contains copy/ include files or macro libraries.
The format of the - 1 option is as follows:
cl6x -1 =pathname source filename [other options]
There is no limit to the number of - | options per invocation; each - I option names one pathname. In
assembly source, you can use the .copy, .include, or .mlib directive without specifying path information. If
the assembler does not find the file in the directory that contains the current source file, it searches the
paths designated by the -1 options.
For example, assume that a file called source.asm is in the current directory; source.asm contains the
following directive statement:
. copy "copy.asnt
Assume the following paths for the copy.asm file:
UNIX™: ltools/files/copy.asm
Windows™: c:\tools\files\copy.asm
You could set up the search path with the commands shown below:
Operating System Enter
UNIX (Bourne shell) cl6x-1/tools/filessource.asm
Windows cl6x -lIc:\tools\filessource.asm
The assembler first searches for copy.asm in the current directory because source.asm is in the current
directory. Then the assembler searches in the directory named with the - 1 option.
40 Assembler Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS
www.ti.com
Naming Alternate Directories for Assembler Input
3.4.2 Using the C6X_A DIR or A_DIR Environment Variable

An environment variable is a system symbol that you define and assign a string to. The assembler uses
the C6X_A DIR and A_DIR environment variables to name alternate directories that contain copy/include
files or macro libraries.

The assembler looks for the C6X_A_DIR environment variable first and then reads and processes it. If it
does not find this variable, it reads the A_DIR environment variable and processes it. If both variables are
set, the settings of the processor-specific variable are used. The processor-specific variable is useful when
you are using Texas Instruments tools for different processors at the same time.

If the assembler does not find C6X_A DIR and A_DIR, it then searches for C6X_C_DIR and C_DIR. See
the TMS320C6000 Optimizing Compiler User's Guide for details on C6X_C_DIR and C_DIR.

The command syntax for assigning the environment variable is as follows:

Operating System Enter
UNIX (Bourne Shell) A_DIR="pathnamey;pathname,; . . . "; export A_DIR
Windows set A_DIR=pathname,;pathname,; . . .

The pathnames are directories that contain copy/include files or macro libraries. The pathnames must
follow these constraints:

e Pathnames must be separated with a semicolon.

e Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:

set A DIR= c:\path\onelto\tools ; c:\path\two\to\tools

* Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:

set a_ DIR=c:\first path\to\tools;d:\second path\to\tools

In assembly source, you can use the .copy, .include, or .mlib directive without specifying path information.
If the assembler does not find the file in the directory that contains the current source file or in directories
named by the - I option, it searches the paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy "copyl.asnt
. copy "copy2.asnt

Assume the following paths for the files:

UNIX: ltools/files/copyl.asm and /dsys/copy2.asm
Windows: c:\tools\files\copyl.asm and c:\dsys\copy2.asm

You could set up the search path with the commands shown below:

Operating System Enter

UNIX (Bourne shell) A DIR="/dsys"; export A DR
cl6x -l=/tools/files source.asm

Windows set A DI R=c:\dsys

cl6x -lc:\tools\files source.asm

The assembler first searches for copyl.asm and copy2.asm in the current directory because source.asm
is in the current directory. Then the assembler searches in the directory named with the -1 option and
finds copyl.asm. Finally, the assembler searches the directory named with A_DIR and finds copy2.asm.

The environment variable remains set until you reboot the system or reset the variable by entering one of
these commands:

SPRU186P—-October 2006 Assembler Description 41
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Source Statement Format

Operating System Enter
UNIX (Bourne shell) set A DI R=
Windows unset A DIR

3.5 Source Statement Format

TMS320C6000 assembly language source programs consist of source statements that can contain
assembler directives, assembly language instructions, macro directives, and comments. A source
statement can contain five ordered fields (label, mnemonic, unit specifier, operand list, and comment). The
general syntax for source statements is as follows:

‘[Iabel[:]] [lI] [[register]] mnemonic [unit specifier] [operand list][;comment] ‘

Following are examples of source statements:

t wo .set 2 ; Synmbol Two = 2
Label: MWK two, A2 ; Mouve 2 into register A2
.word 016h ; Initialize a word with 016h

The C6000 assembler reads up to 200 characters per line. Any characters beyond 200 are truncated.
Keep the operational part of your source statements (that is, everything other than comments) less than
200 characters in length for correct assembly. Your comments can extend beyond the 200-character limit,
but the truncated portion is not included in the listing file.

Follow these guidelines:
» All statements must begin with a label, a blank, an asterisk, or a semicolon.
» Labels are optional; if used, they must begin in column 1.

» One or more blanks must separate each field. Tab and space characters are blanks. You must
separate the operand list from the preceding field with a blank.

» Comments are optional. Comments that begin in column 1 can begin with an asterisk or a semicolon (*
or ;), but comments that begin in any other column must begin with a semicolon.

* In a conditional instruction, the condition register must be surrounded by square brackets.

» The functional unit specifier is optional. If you do not specify the functional unit, the assembler assigns
a legal functional unit based on the mnemonic field.

* A mnemonic cannot begin in column 1 or it will be interpreted as a label.

The following sections describe each of the fields.

42 Assembler Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

Preliminary

INSTRUMENTS

www.ti.com

Source Statement Format

3.5.1

Label Field

Labels are optional for all assembly language instructions and for most (but not all) assembler directives.
When used, a label must begin in column 1 of a source statement. A label can contain up to 128
alphanumeric characters (A-Z, a-z, 0-9, , and $). Labels are case sensitive (except when the -ac option is
used), and the first character cannot be a number. A label can be followed by a colon (:). The colon is not
treated as part of the label name. If you do not use a label, the first character position must contain a
blank, a semicolon, or an asterisk. You cannot use a label with an instruction that is in parallel with a
previous instruction.

When you use a label, its value is the current value of the SPC. The label points to the statement it is
associated with. For example, if you use the .word directive to initialize several words, a label points to the
first word. In the following example, the label Start has the value 40h.

9 * Assune sone code was assenbl ed
10 00000040 O000000A Start: .word 0Ah, 3,7

00000044 00000003

00000048 00000007

A label on a line by itself is a valid statement. The label assigns the current value of the section program
counter to the label; this is equivalent to the following directive statement:

|label .equ $; $ provides the current value of the SPC

When a label appears on a line by itself, it points to the instruction on the next line (the SPC is not
incremented):

1 00000000 Her e:
2 00000000 00000003 .word 3

If you do not use a label, the character in column 1 must be a blank, an asterisk, or a semicolon.

3.5.2 Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start in column 1; if it does, it is

interpreted as a label. There is one exception: the parallel bars (||) of the mnemonic field can start in

column 1. The mnemonic field can begin with one of the following items:

» Pipe symbols (|]) indicate instructions that are in parallel with a previous instruction. You can have up
to eight instructions running in parallel. The following example demonstrates six instructions running in
parallel:

Instl
[l Inst2
Il Inst3 These five instructions run in
[l Inst4 parallel with the first instruc-
Il Inst5 tion.
[l Inst6

Inst7

e Square brackets ([]) indicate conditional instructions. The machine-instruction mnemonic is executed
based on the value of the register within the brackets; valid register names are AO for C64xx only, Al,
A2, BO, B1, and B2. The instruction is executed if the value of the register is nonzero. If the register
name is preceded by an exclamation point (!), then the instruction is executed if the value of the
register is 0. For example:

[Al] ZEROA2 ; If Al is not equal to zero, A2 =0

Next, the mnemonic field contains one of the following items:

* Machine-instruction mnemonic (such as ADDK, MVKH, B)

» Assembler directive (such as .data, .list, .equ)

* Macro directive (such as .macro, .var, .mexit)

* Macro call

SPRU186P—-October 2006 Assembler Description 43

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Source Statement Format
3.5.3 Unit Specifier Field

The unit specifier field is an optional field that follows the mnemonic field for machine-instruction
mnemonics. The unit specifier field begins with a period (.) followed by a functional unit specifier. In
general, one instruction can be assigned to each functional unit in a single instruction cycle. There are
eight functional units, two of each functional type:

.D1 and .D2 Data/addition/subtraction

.L1and .L2 ALU/compares/long data arithmetic
.M1 and .M2 Multiply

.Sl and .S2 Shift/ALU/branch/bit field

ALU refers to an arithmetic logic unit.

There are several ways to use the unit specifier field:
* You can specify the particular functional unit (for example, .D1).

* You can specify only the functional type (for example, .M), and the assembler assigns the specific unit
(for example, .M2).

» If you do not specify the functional unit, the assembler assigns the functional unit based on the
mnemonic field and operand field.

For more information on functional units, including which assembly instructions require which functional
type, see the TMS320C6000 CPU and Instruction Set Reference Guide.

3.5.4 Operand Field

The operand field follows the mnemonic field and contains one or more operands. The operand field is not
required for all instructions or directives. An operand consists of the following items:

* Symbols (see Bection 3.9)
e Constants (see Bection 3.6)
« Expressions (combination of constants and symbols; see

You must separate operands with commas.

3.5.5 Comment Field

A comment can begin in any column and extends to the end of the source line. A comment can contain
any ASCII character, including blanks. Comments are printed in the assembly source listing, but they do
not affect the assembly.

A source statement that contains only a comment is valid. If it begins in column 1, it can start with a
semicolon (;) or an asterisk (*). Comments that begin anywhere else on the line must begin with a
semicolon. The asterisk identifies a comment only if it appears in column 1.

44 Assembler Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Constants

3.6 Constants

The assembler supports six types of constants:
e Binary integer

e Octal integer

» Decimal integer

* Hexadecimal integer

* Character

* Assembly-time

The assembler maintains each constant internally as a 32-bit quantity. Constants are not sign extended.
For example, the constant O0FFh is equal to O0FF (base 16) or 255 (base 10); it does not equal -1.
However, when used with the .byte directive, -1 is equivalent to O0FFh.

3.6.1 Binary Integers

A binary integer constant is a string of up to 32 binary digits (0Os and 1s) followed by the suffix B (or b). If
fewer than 32 digits are specified, the assembler right justifies the value and fills the unspecified bits with
zeros. These are examples of valid binary constants:

00000000B Constant equal to 045 or 044
0100000b Constant equal to 32, or 2044
01b Constant equal to 1,5 or 144
11111000B Constant equal to 248,, or OF8;¢

3.6.2 Octal Integers

An octal integer constant is a string of up to 11 octal digits (0 through 7) followed by the suffix Q (or q).
These are examples of valid octal constants:

10Q Constant equal to 8,4 or 8,4

010 Constant equal to 8;, or 8,5 © format)
100000Q Constant equal to 32 768;, or 8000,
2264 Constant equal to 150, or 96,4

3.6.3 Decimal Integers

A decimal integer constant is a string of decimal digits ranging from -2147 483 648 to 4 294 967 295.
These are examples of valid decimal constants:

1000 Constant equal to 1000, or 3E8,4
-32768 Constant equal to -32 768, or 800044
25 Constant equal to 25;, or 19,4
SPRU186P—-October 2006 Assembler Description 45

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Constants

3.64

3.6.5

3.6.6

Hexadecimal Integers

A hexadecimal integer constant is a string of up to eight hexadecimal digits followed by the suffix H (or h).
Hexadecimal digits include the decimal values 0-9 and the letters A-F or a-f. A hexadecimal constant must
begin with a decimal value (0-9). If fewer than eight hexadecimal digits are specified, the assembler right
justifies the bits. These are examples of valid hexadecimal constants:

78h Constant equal to 120,, or 00784

0x78 Constant equal to 120,, or 0078,5 © format)
OFh Constant equal to 15;, or 000F ¢

37ACh Constant equal to 14 252,, or 37AC,

Character Constants

A character constant is a single character enclosed in single quotes. The characters are represented
internally as 8-bit ASCII characters. Two consecutive single quotes are required to represent each single
guote that is part of a character constant. A character constant consisting only of two single quotes is valid
and is assigned the value 0. These are examples of valid character constants:

a' Defines the character constant a and is represented internally as 61,5
c Defines the character constant C and is represented internally as 434
Defines the character constant ' and is represented internally as 27,4
" Defines a null character and is represented internally as 0044

Notice the difference between character constants and character strings (Gection 3.7 discusses
character strings). A character constant represents a single integer value; a string is a sequence of
characters.

Assembly-Time Constants

If you use the .set directive to assign a value to a symbol (see Define Assembly-Time Constani), the
symbol becomes a constant. To use this constant in expressions, the value that is assigned to it must be
absolute. For example:

sym .set 3
MWK sym Bl

You can also use the .set directive to assign symbolic constants for register names. In this case, the
symbol becomes a synonym for the register:

sym .set Bl
MWK 10, sym

46

Assembler Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Character Strings

3.7 Character Strings

A character string is a string of characters enclosed in double quotes. Double quotes that are part of
character strings are represented by two consecutive double quotes. The maximum length of a string
varies and is defined for each directive that requires a character string. Characters are represented
internally as 8-bit ASCII characters.

These are examples of valid character strings:

"sample program" defines the 14-character string sample program.
"PLAN""C""" defines the 8-character string PLAN "C".

Character strings are used for the following:

» Filenames, as in .copy "“filename"

» Section names, as in .sect "section name"

« Data initialization directives, as in .byte "charstring"
* Operands of .string directives

3.8 Symbols

Symbols are used as labels, constants, and substitution symbols. A symbol name is a string of up to 200
alphanumeric characters (A-Z, a-z, 0-9, $, and _). The first character in a symbol cannot be a number, and
symbols cannot contain embedded blanks. The symbols you define are case sensitive; for example, the
assembler recognizes ABC, Abc, and abc as three unique symbols. You can override case sensitivity with
the -ac assembler option (see Bection 3.3). A symbol is valid only during the assembly in which it is
defined, unless you use the .global directive or the .def directive to declare it as an external symbol (see
[dentify Global Symbolq).

3.8.1 Labels

Symbols used as labels become symbolic addresses that are associated with locations in the program.
Labels used locally within a file must be unique. Mnemonic opcodes and assembler directive names
without the . prefix are valid label names.
Labels can also be used as the operands of .global, .ref, .def, or .bss directives; for example:

.global |abell

| abel 2: MVKL | abel 2, B3
MVKH | abel 2, B3
B | abel 1
NOP 5

3.8.2 Local Labels

Local labels are special labels whose scope and effect are temporary. A local label can be defined in two

ways:
* $n, where n is a decimal digit in the range 0-9. For example, $4 and $1 are valid local labels. See
Example 3-1].

* name?, where name is any legal symbol name as described above. The assembler replaces the
question mark with a period followed by a unique number. When the source code is expanded, you will
not see the unique number in the listing file. Your label appears with the question mark as it did in the
source definition. You cannot declare this label as global. See Example 3-2.

Normal labels must be unique (they can be declared only once), and they can be used as constants in the
operand field. Local labels, however, can be undefined and defined again. Local labels cannot be defined
by directives.

SPRU186P—-October 2006 Assembler Description a7
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Symbols

A local label can be undefined or reset in one of these ways:

e By using the .newblock directive

» By changing sections (using a .sect, .text, or .data directive)

* By entering an include file (specified by the .include or .copy directive)
* By leaving an include file (specified by the .include or .copy directive)

Example 3-1. Local Labels of the Form $n

This is an example of code that declares and uses a local label legally:

$1:
SUB Al 1,Al
[A1] B $1
SUBC A3, A0, A3
NOP 4
. newbl ock ; undefine $1 to use it again

$1 SUB A2,1, A2

[A2] B $1
MPY A3, A3, A3
NOP 4

The following code uses a local label illegally:

$1:
SuB Al, 1, Al
[Al] B $1
SUBC A3, A0, A3
NOP 4
$1 SUB A2,1,A2 ; WRONG - $1 is multiply defined

[A2] B $1
MPY A3, A3, A3
NP 4

The $1 label is not undefined before being reused by the second branch instruction. Therefore, $1 is
redefined, which is illegal.

Local labels are especially useful in macros. If a macro contains a normal label and is called more than
once, the assembler issues a multiple-definition error. If you use a local label and .newblock within a
macro, however, the local label is used and reset each time the macro is expanded.

Up to ten local labels can be in effect at one time. After you undefine a local label, you can define it and
use it again. Local labels do not appear in the object code symbol table.

Because local labels are intended to be used only locally, branches to local labels are not expanded in
case the branch's offset is out of range.

48 Assembler Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Symbols

Example 3-2. Local Labels of the Form name?

khkhkhkhkhkhhhkhhhkhhhhhhhhhhhkhhhhkhhhkhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkkkkk*k*k*k*x*%x

** First definition of l|ocal |abel nylab *x
khkkhkkhkhkkhhkhkhhkkhhkkhhkhkhhhhhhhhhhhdhdhhhhdhhhhrhhhdhrdrhkrhdhrdrdrhrhxhxkxx*x
nop
myl ab? nop
B nyl ab?
nop 5

kkhkkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkhkhkhkhkkhkkhkhkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkhkkkhkkhkkkkkkkkkkkkk*x*%x

** | nclude file has second definition of nylab >
khkhkhkhkhkhhkhkhhhhhhhhhhhhhhhhhhkhhkhhhhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkk*kk*kk**x*%

.copy "a.inc"

R R R R R R R

** Third definition of nylab, reset upon exit from.include **
kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkhkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkhkkkkkkkkkkkkkk*x*%x
nyl ab? nop

B nyl ab?

nop 5
khkkkkhkhkkhhkhkhhkkhhkkhhkhhhhhhhdhhhhhhhhhhhhhdhhdrhhhdhrdrhkrhdhrdrxdrhkrhxdxkxx*x
** Fourth definition of nylab in macro, nmacros use different **
** pamespace to avoid conflicts *x
khkkhkkhkhkkhkhkhkhkhkhhkkhhhkhhhhhhkhhhhhdhhhhhhdhdhdrhdhdhrdrhkrhdhrdrxdrhdxdxkxx*x
nymac . nacro
myl ab? nop

B nyl ab?

nop 5

.endm

R R R R R R R

** Macro invocation * %
IR EEEEEEEEEEEEREEEEEEEEEEEESEEEERESEEEEEEREEESEEEERESEEEEEEEEEEEEEEEE SRS

nynac
khkhkhkhkhkhkhkhhhhhhhhhkhkhhhkhhhhhhhhkhhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkk*k*k*kk*k*x*%
** Reference to third definition of nylab. Definition is not **
** reset by mmcro invocation. >
khkhkhkhkhkhhkhkhkhkhhhhhhhhhkhhhhhhhkhhhhhhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkk*k*k*k**x*%
B nyl ab?
nop 5

khkhkhkhkhkhhkhkhhhkhhhhhhkhhhkhhhhhhhkhkhhhkkkkkkk*k*k*k*x*x*%x

** Changing section, allowing fifth definition of nylab **
khkkhkkhkhkkhhkhkhhkkhhkkhhkhkhhhhhhdhhhhdhhhhhhhhhhhrhhhdhrdrhkrhdhrdrdrhrxdxkxx*x
.sect "Sect_One"
nop
nyl ab? .word 0O
nop
nop
B nyl ab?
nop 5

kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkhkhkhkhkkhkkhkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkkhkkkkkkkkkkkkkk*x*%x

** The .newbl ock directive allows sixth definition of nylab * %
IR RS R RS RS RS R E SRS S SRR EEEE R R E R RS SRR EEEEREEREEREEREEREEEEEESEESEEEEEEES]
. newbl ock
nyl ab? .word 0O
nop
nop
B nyl ab?
nop 5

SPRU186P—-October 2006 Assembler Description 49
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Symbols

3.8.3 Symbolic Constants

Symbols can be set to constant values. By using constants, you can equate meaningful names with
constant values. The .set and .struct/.tag/.endstruct directives enable you to set constants to symbolic
names. Symbolic constants cannot be redefined. The following example shows how these directives can
be used:

K .set 1024 ; constant definitions
maxbuf .set 2*K

item .struct ; itemstructure definition
value .int ; value offset = 0
delta .int ; delta offset = 4
i_len .endstruct ; itemsize =8

array .tag item
.bss array, i_len*K ; declare an array of K "itens"
. text
LDW *+Bl4(array.delta + 2*i _len), Al
access array [2].delta

The assembler also has several predefined symbolic constants; these are discussed in Bection 3.8.5.

3.8.4 Defining Symbolic Constants (-ad Option)

The -ad option equates a constant value or a string with a symbol. The symbol can then be used in place
of a value in assembly source. The format of the -ad option is as follows:

cl6x -ad=name[=value]

The name is the name of the symbol you want to define. The value is the constant or string value you
want to assign to the symbol. If the value is omitted, the symbol is set to 1. If you want to define a quoted
string and keep the quotation marks, do one of the following:

« For Windows®, use -ad=name="\"value\"". For example, -ad=car="\"sedan\
« For UNIX®, use -ad=name=""value"'. For example, -ad=car=""sedan
» For Code Composer Studio, enter the definition in a file and include that file with the -@ option.

Once you have defined the name with the -ad option, the symbol can be used in place of a constant
value, a well-defined expression, or an otherwise undefined symbol used with assembly directives and
instructions. For example, on the command line you enter:

cl 6x -adSYML=1 - adSYM2=2 -adSYM3=3 - adSYM4=4 val ue. asm

Since you have assigned values to SYM1, SYM2, SYM3, and SYM4, you can use them in source code.
shows how the value.asm file uses these symbols without defining them explicitly.

50 Assembler Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Symbols

Example 3-3. Using Symbolic Constants Defined on Command Line

If_4: if SYMA = SYM * SYMR
.byte SYM4 ; Equal val ues
. el se
. byte SYm * SYme ; Unequal val ues
.endif

IF_5: .if SYML <= 10
.byte 10 ; Less than / equal
. el se
.byte SYmL ; Greater than
.endif

IF_6: .if SYMB * SYM2 | = SYM4 + SYM
.byte SYMB * SYme ; Unequal val ue
. el se
. byte SYMt + SYM4 ; Equal val ues
.endif

IF_7: .if SYML = SYM
.byte SYML
.elseif SYM2 + SYMB = 5
. byte SYM2 + SYMB
.endif

Within assembler source, you can test the symbol defined with the -ad option with the following directives:

Type of Test Directive Usage
Existence .if $isdefed(" name ")
Nonexistence .if $isdefed(" name ") =0
Equal to value .if name = value

Not equal to value .if name != value

The argument to the $isdefed built-in function must be enclosed in quotes. The quotes cause the
argument to be interpreted literally rather than as a substitution symbol.

3.8.5 Predefined Symbolic Constants

The assembler has several predefined symbols, including the following types:

» $, the dollar-sign character, represents the current value of the section program counter (SPC). $ is a
relocatable symbol.

e Register symbols, including A0-A15 and B0-B15 for C6200 and C6700; and A16-31 and B16-31 for
C6400 and C6400+.

» CPU control registers, including those listed in [Table 3-1]. Control registers can be entered as all
upper-case or all lower-case characters; for example, CSR can also be entered as csr.

» Processor symbols, including those listed in Table 3-2.
« Assembler Version Symbols. See [Table 3-3.

SPRU186P—-October 2006 Assembler Description 51
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Symbols

Table 3-1. CPU Control Registers
Register Description
AMR Addressing mode register
CSR Control status register
DESR (C6700+ only) dMAX event status register
DETR (C6700+ only) dMAX event trigger register
DNUM (C6400+ only) DSP core number register
ECR (C6400+ only) Exception clear register
EFR (C6400+ only) Exception flag register
FADCR (C6700 only) Floating-point adder configuration register
FAUCR (C6700 only) Floating-point auxiliary configuration register
FMCR (C6700 only) Floating-point multiplier configuration register
GFPGFR (C6400 only) Galois field polynomial generator function register
GPLYA (C6400+ only) GMPY A-side polynomial register
GPLYB (C6400+ only) GMPY B-side polynomial register
ICR Interrupt clear register
IER Interrupt enable register
IERR (C6400+ only) Interrupt exception report register
IFR Interrupt flag register
ILC (C6400+ only) Inner loop count register
NRP Nonmaskable interrupt return pointer
IRP Interrupt return pointer
ISR Interrupt set register
ITSR (C6400+ only) Interrupt task state register
ISTP Interrupt service table pointer
NTSR (C6400+ only) NMI/Exception task state register
PCE1 Program counter
REP (C6400+ only) Restricted entry point address register
RILC (C6400+ only) Reload inner loop count register
SSR (C6400+ only) Saturation status register
TSCH (C6400+ only) Time-stamp counter (high 32) register
TSCL (C6400+ only) Time-stamp counter (low 32) register
TSR (C6400+ only) Task status register

Table 3-2. Processor Symbols

Symbol name

Description

.TMS320C6000
.TMS320C6200
.TMS320C6400
.TMS320C6400_PLUS
.TMS320C6700
.TMS320C6700_PLUS
.LITTLE_ENDIAN
.BIG_ENDIAN

Always set to 1

Set to 1 for C6200, otherwise 0

Set to 1 for C6400 and C6400+, otherwise O

Set to 1 for C6400+, otherwise 0

Set to 1 for C6700 and C6700+, otherwise O

Set to 1 for C6700+, otherwise 0

Set to 1 if little-endian mode is selected (the -me assembler option is not used); otherwise 0.
Set to 1 if big-endian mode is selected (the -me assembler option is used); otherwise 0.

52 Assembler Description

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

%3 Texas
INSTRUMENTS
www.ti.com
Symbols
Table 3-3. Assembler Version Symbols
Symbol name Description

3.8.6

__TI_ASSEMBLER_VERSION Defined to a 7-digit integer that takes the 3-digit release version number X.Y.Z and generates an
integer XXXYYYZZZ where each portion X, Y and Z is expanded to three digits and concatenated
together. The number does not contain a decimal. For example, version 3.2.1 is represented as
3002001. The leading zeros are dropped to prevent the number being interpreted as an octal.

Substitution Symbols

Symbols can be assigned a string value (variable). This enables you to alias character strings by equating
them to symbolic names. Symbols that represent character strings are called substitution symbols. When
the assembler encounters a substitution symbol, its string value is substituted for the symbol name. Unlike
symbolic constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program; for example:
.global _table

.asg "B14", PAGEPTR
.asg "*+B15(4)", LOCAL1
.asg "*+B15(8)", LOCAL2

LDW * +PAGEPTR(_t abl e) , AO
NOP 4
STW A0, LOCAL1
When you are using macros, substitution symbols are important because macro parameters are actually
substitution symbols that are assigned a macro argument. The following code shows how substitution

symbols are used in macros:

MAC .nmacro srcl, src2, dst ; Miltiply/Accunul ate nmacro
MPY srcl, src2, src2
NOP
ADD src2, dst, dst
.endm

* MAC macro invocation
MAC A0, Al, A2

For more information about macros, see Chapter §, Macro Language.

SPRU186P—October 2006

Assembler Description 53

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Expressions

Preliminary ” Texas
INSTRUMENTS

www.ti.com

3.9

Expressions

An expression is a constant, a symbol, or a series of constants and symbols separated by arithmetic
operators. The 32-hit ranges of valid expression values are -2147 483 648 to 2147 483 647 for signed
values, and 0 to 4 294 967 295 for unsigned values. Three main factors influence the order of expression

evaluation:

Parentheses

Precedence groups

Left-to-right evaluation

3.9.1 Operators

Expressions enclosed in parentheses are always evaluated first.
8/(4/12)=4,but8/4/2=1
You cannot substitute braces ({}) or brackets ([]) for parentheses.

Operators, listed in [Table 3-4, are divided into nine precedence groups.
When parentheses do not determine the order of expression evaluation,
the highest precedence operation is evaluated first.
8+4/2=10(4/2is evaluated first)

When parentheses and precedence groups do not determine the order of
expression evaluation, the expressions are evaluated from left to right,
except for Group 1, which is evaluated from right to left.
8/4*2=4,but8/(4*2)=1

lists the operators that can be used in expressions, according to precedence group.

Table 3-4. Operators Used in Expressions

(Precedence)
Group® Operator Description
1 + Unary plus
- Unary minus
~ 1s complement
! Logical NOT
2 * Multiplication
/ Division
% Modulo
3 + Addition
- Subtraction
4 << Shift left
>> Shift right
5 < Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
6 =[=] Equal to
I= Not equal to
& Bitwise AND
" Bitwise exclusive OR (XOR)
| Bitwise OR

()]

Note: Group 1 operators are evaluated right to left. All other
operators are evaluated left to right.

3.9.2 Expression Overflow and Underflow

The assembler checks for overflow and underflow conditions when arithmetic operations are performed at
assembly time. It issues a warning (the message Value Truncated) whenever an overflow or underflow
occurs. The assembler does not check for overflow or underflow in multiplication.

54

Assembler Description

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

Preliminary

INSTRUMENTS

www.ti.com

Expressions

3.9.3

Well-Defined Expressions

Some assembler directives require well-defined expressions as operands. Well-defined expressions
contain only symbols or assembly-time constants that are defined before they are encountered in the
expression. The evaluation of a well-defined expression must be absolute.

This is an example of a well-defined expression:
1000h+X

where X was previously defined as an absolute symbol.

3.9.4 Conditional Expressions
The assembler supports relational operators that can be used in any expression; they are especially
useful for conditional assembly. Relational operators include the following:
= Equal to I = Not equal to
< Less than <= Less than or equal to
> Greater than >= Greater than or equal to
Conditional expressions evaluate to 1 if true and O if false and can be used only on operands of
equivalent types; for example, absolute value compared to absolute value, but not absolute value
compared to relocatable value.
3.9.5 Legal Expressions
With the exception of the following expression contexts, there is no restriction on combinations of
operations, constants, internally defined symbols, and externally defined symbols.
When an expression contains more than one relocatable symbol or cannot be evaluated at assembly time,
the assembler encodes a relocation expression in the object file that is later evaluated by the linker. If the
final value of the expression is larger in bits than the space reserved for it, you receive an error message
from the linker. For more information on relocation expressions, see Becfion 2.4.
* When using the register relative addressing mode, the expression in brackets or parenthesis must be a
well-defined expression, as described in [Bection 3.9.3. For example:
*+A4[15]
» Expressions used to describe the offset in register relative addressing mode for the registers B14 and
B15, or expressions used as the operand to the branch instruction, are subject to the same limitations.
For these two cases, all legal expressions can be reduced to one of two forms:
relocatable symbol + absolute symbol B (extern_1-10)
or
a well-defined expression *+B14/ B15[14]
3.9.6 Expression Examples
Following are examples of expressions that use relocatable and absolute symbols. These examples use
four symbols that are defined in the same section:
.global extern_1 ; Defined in an external nodul e
intern_1: .word '"D ; Relocatable, defined in
; current nodul e
intern_2 ; Relocatable, defined in
; current nodul e
intern_3 ; Rel ocatable, defined in
; current nodul e
SPRU186P—-October 2006 Assembler Description 55

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Expressions
Example 1
In these contexts, there are no limitations on how expressions can be formed.
.word extern_1 * intern_2 - 13 ; Legal
MVKL (intern_1 - extern_1),Al ; Legal
Example 2
The first statement in the following example is valid; the statements that follow it are invalid.
B (extern_1 - 10) ; Legal
B (10-extern_1) ; Can't negate reloc. synbol

LDW*+B14 (-(intern_1)), Al ; Can't negate reloc. symbol
LDW *+B14 (extern_1/10), Al ; / not an additive operator
B (intern_1 + extern_1) ; Multiple relocatables
Example 3

The first statement below is legal; although intern_1 and intern_2 are relocatable, their difference is
absolute because they are in the same section. Subtracting one relocatable symbol from another
reduces the expression to relocatable symbol + absolute value. The second statement is illegal
because the sum of two relocatable symbols is not an absolute value.

B (intern_1 - intern_2 + extern_3) ; Legal
B (intern_1 + intern_2 + extern_3) ;111 egal
Example 4

A relocatable symbol's placement in the expression is important to expression evaluation. Although the
statement below is similar to the first statement in the previous example, it is illegal because of
left-to-right operator precedence; the assembler attempts to add intern_1 to extern_3.

B (intern_1 + extern_3 - intern_2) ;111 egal

56

Assembler Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Source Listings

3.10 Source Listings

A source listing shows source statements and the object code they produce. To obtain a listing file, invoke
the assembler with the -al (lowercase L) option (see Bection 3.3).

Two banner lines, a blank line, and a title line are at the top of each source listing page. Any title supplied
by the .title directive is printed on the title line. A page number is printed to the right of the title. If you do
not use the .title directive, the name of the source file is printed. The assembler inserts a blank line below
the title line.

Each line in the source file produces at least one line in the listing file. This line shows a source statement
number, an SPC value, the object code assembled, and the source statement. shows these in
an actual listing file.

Field 1: Source Statement Number
Line number
The source statement number is a decimal number. The assembler numbers source lines as it
encounters them in the source file; some statements increment the line counter but are not listed. (For
example, .title statements and statements following a .nolist are not listed.) The difference between two
consecutive source line numbers indicates the number of intervening statements in the source file that
are not listed.
Include file letter
A letter preceding the line number indicates the line is assembled from the include file designated by
the letter.
Nesting level number
A number preceding the line number indicates the nesting level of macro expansions or loop blocks.

Field 2: Section Program Counter

This field contains the SPC value, which is hexadecimal. All sections (.text, .data, .bss, and named
sections) maintain separate SPCs. Some directives do not affect the SPC and leave this field blank.

Field 3: Object Code
This field contains the hexadecimal representation of the object code. All machine instructions and
directives use this field to list object code. This field also indicates the relocation type associated with
an operand for this line of source code. If more than one operand is relocatable, this column indicates
the relocation type for the first operand. The characters that can appear in this column and their
associated relocation types are listed below:

! undefined external reference

' .text relocatable
+ .sect relocatable

.data relocatable
.bss, .usect relocatable

% relocation expression

Field 4: Source Statement Field

This field contains the characters of the source statement as they were scanned by the assembler. The
assembler accepts a maximum line length of 200 characters. Spacing in this field is determined by the
spacing in the source statement.

shows an assembler listing with each of the four fields identified.

SPRU186P—-October 2006 Assembler Description 57
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Debugging Assembly Source
Figure 3-2. Example Assembler Listing
Include file
letter Nesting level Line number
r’1umber
1 EEEEEE S EEEREEEEEEEEEEEEEEEEEREESEESEEEEEESEEEEEEESE]
2 ** d obal variables
3 EEEEEE S EEEEEEEEEEEEEEEEEEEEEREREEEEEEEESEEEEEEESE]
4 00000000 . bss varl, 4
5 00000004 . bss var2, 4
6
7 EE R R R R I S R R R R I R R S R R I I R R R R S I I R R R R R I I
8 ** | nclude multiply macro
9 EE R R S S R S O S
0 . copy npy32.inc
A 1 nmpy32 .macro A B
A 2
A 3 MPYLH ML A B/A ; tnmpl = Alo * B.hi
A 4 [MPYHL.M2 A BB ; tnp2 = Ahi * Blo
A 5
A 6 MPYU. M2 A BB ; tnp3 =Alo* Blo
A 7
A 8 ADD. L1 ABA ; A=tnpl + tnp2
A 9
A 10 SHL. S1 A 16, A ; A <<= 16
A 11
A 12 ADD. L1 BAAA ; A=A+ tn3
A 13 .endm
11
12 IR EEEE S EEEEEEEEEEEEEEEEEEEEEEESEESEEEEEEEEEEEEEESE]
13 ** func nmultiplies 2 global ints
14 EEEEEE SRS SR EEEEEEEEEEEEEEEEEREERESEEEEEESEEEEEEESE]
15 00000000 . text
16 00000000 _func
17 00000000 0200006C LDW *+Bl4(varl), Ad
18 00000004 0000016E- LDW *+Bl4(var2), BO
19 00000008 00006000 NOP 4
20 0000000c npy32 A4, BO
1
1 0000000c 02009881 MPYLH. ML A4,B0,A4 ; tnmpl = A lo * B. hi
1 00000010 00101882 || MPYHL. M2 A4,B0,BO ; tnp2 = A hi * B.lo
1
1 00000014 00101F82 MPYU. M2 A4,B0,B0O ; tnp3 = Alo * B.lo
1
1 00000018 02009078 ADD. L1 A4, B0, A4 ; A=tnpl + tnp2
1
1 0000001c 02120CA0 SHL. S1 A4, 16, A4 ; A <<= 16
1
1 00000020 02009078 ADD. L1 BO, A4, A4 ; A=A+ tnp3
21 00000024 00006362 B B3
22 00000028 00008000 NOP 5
23 * end _func
N — =
Field1 Field 2 Field 3 Field 4

3.11 Debugging Assembly Source

When you invoke cl6x with --symdebug:dwarf (or -g) when compiling an assembly file, the assembler
provides symbolic debugging information that allows you to step through your assembly code in a
debugger rather than using the Disassembly window in Code Composer Studio. This enables you to view
source comments and other source-code annotations while debugging.

58 Assembler Description SPRU186P-October 2006
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Debugging Assembly Source

The .asmfunc and .endasmfunc (see Mark Function Boundarieg) directives enable you to use C
characteristics in assembly code that makes the process of debugging an assembly file more closely
resemble debugging a C/C++ source file.

The .asmfunc and .endasmfunc directives allow you to name certain areas of your code, and make these
areas appear in the debugger as C functions. Contiguous sections of assembly code that are not enclosed
by the .asmfunc and .endasmfunc directives are automatically placed in assembler-defined functions
named with this syntax:

$ filename : starting source line : ending source line $

If you want to view your variables as a user-defined type in C code, the types must be declared and the
variables must be defined in a C file. This C file can then be referenced in assembly code using the .ref
directive (see [dentify Global Symbolq).

Example 3-4. Viewing Assembly Variables as C Types C Program

typedef struct

{
int i
int ng;
P X

X svar = { 1, 2 };

Example 3-5. Assembly Program for

; Tell the assenbler we're referencing variable "_svar", which is defined in
another file (cvars.c).

; addfive() - Add five to the second data nmenber of _svar

. text
. gl obal addfive
addfive: .asnfunc

LDW . D2T2 *+Bl4(_svar+4),B4 ; load svar.n2 into B4

RET . 82 B3 ; return from function

NOP 3 ; delay slots 1-3

ADD . D2 5, B4, B4 ; add 5 to B4 (delay slot 4)
STW . D2T2 B4, *+Bl14(_svar+4) ; store B4 back into svar.n®

(del ay sl ot 5)
. endasnf unc

shows the cvar.c C program that defines a variable, svar, as the structure type X. The svar
variable is then referenced in the addfive.asm assembly program in and 5 is added to svar's
second data member.

Compile both source files with the --symdebug:dwarf option (-g) and link them as follows:

cl 6x -syndebug: dwarf cvars.c addfive.asm-z -1=Ink.cmd -1=rts6000.!|ib -o=addfive. out

When you load this program into a symbolic debugger, addfive appears as a C function. You can monitor
the values in svar while stepping through main just as you would any regular C variable.

SPRU186P—-October 2006 Assembler Description 59
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Cross-Reference Listings

3.12 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a cross-reference listing, invoke
the assembler with the -ax option (see [Gection 3.3) or use the .option directive with the X operand (see
Belect Listing Optiong). The assembler appends the cross-reference to the end of the source listing.
shows the four fields contained in the cross-reference listing.

Example 3-6. An Assembler Cross-Reference Listing

LABEL VALUE DEFN REF
. Bl G_ENDI AN 00000000 0

. LI TTLE_ENDI AN 00000001 0

. TMB320C6200 00000001 0

. TM8320C6700 00000000 0

. TM8320C6X 00000001 0

_func 00000000' 18

var 1 00000000- 4 17

var 2 00000004- 5 18

Label column contains each symbol that was defined or referenced during the assembly.
Value column contains an 8-digit hexadecimal number (which is the value assigned to the

symbol) or a name that describes the symbol's attributes. A value may also be
preceded by a character that describes the symbol's attributes. lists these
characters and names.

Definition (DEFN) column contains the statement number that defines the symbol. This
column is blank for undefined symbols.

Reference (REF) column lists the line numbers of statements that reference the symbol. A
blank in this column indicates that the symbol was never used.

Table 3-5. Symbol Attributes

Character or Name Meaning
REF External reference (global symbol)

UNDF Undefined
' Symbol defined in a .text section
Symbol defined in a .data section
+ Symbol defined in a .sect section
- Symbol defined in a .bss or .usect section

Cross-Reference Listing Not Supported for C6400+

Note: The cross-reference listing capability is not supported for C6400+. You can use the
disassembler, the -m linker option or the object file utility (ofd6x) to obtain similar
information.

60 Assembler Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

J@ TEXAS Chapter 4
INSTRUMENTS SPRU186P—October 2006

Assembler Directives

Assembler directives supply data to the program and control the assembly process.
Assembler directives enable you to do the following:

» Assemble code and data into specified sections

* Reserve space in memory for uninitialized variables

» Control the appearance of listings

* Initialize memory

* Assemble conditional blocks

» Define global variables

» Specify libraries from which the assembler can obtain macros

» Examine symbolic debugging information

This chapter is divided into two parts: the first part (Section 4.7] through

describes the directives according to function, and the second part (Eection 4.17)) is an
alphabetical reference.

Topic Page
4.1 DireCtivesS SUMMAIY [ioouieieeeieieieieeaeieieieiaeeeieieieraeeeieieiacaeieieiacacnsn ¥
4.2 Directives That Define SeCtionS[.ieeiieieieieieieieeeieieieeaeieiisaeaeee. 639
4.3 Directives That Initialize Constants[. . ioiioieiieeeereeeeeaeincaeraeinzaeeaes 61
4.4 Directives That Perform Alignment and Reserve Spacel................. 63
4.5 Directives That Format the Output ListingS[.c.eveeeeeiiieeeeeeieeeeee . 69
4.6 Directives That Reference Other FileS[.iiiieieiiieiieieiieiieieiaeinees. 70
4.7 Directives That Enable Conditional Assembly[....coooiieiieiinen.... Y|
4.8 Directives That Define Unions or Structuresf...c.ocoveieeeeeeeieieaene... 72
4.9 Directives That Define Symbols at Assembly Time[....................... 74
4.10 Miscellaneous DireCtiVeS] i i i iieieeieeaeeaeaneaeeaeaneaeiaeencaeiaeenees 79
o R B | = To (V=S R = =g (o1 749

SPRU186P—-October 2006 Assembler Directives 61

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Summary

Preliminary

” TEXAS
INSTRUMENTS

www.ti.com

4.1 Directives Summary

through summarize the assembler directives.

Besides the assembler directives documented here, the TMS320C6000™ software tools support the

following directives:

« The assembler uses several directives for macros. Macro directives are discussed in Chapter 3, Macro
Language; they are not discussed in this chapter.

» The assembly optimizer uses several directives that supply data and control the optimization process.
Assembly optimizer directives are discussed in the TMS320C6000 Optimizing Compiler User's Guide;
they are not discussed in this book.

» The C compiler uses directives for symbolic debugging. Unlike other directives, symbolic debugging
directives are not used in most assembly language programs. Bppendix B, Symbolic Debugging
Directives, discusses these directives; they are not discussed in this chapter.

Labels and Comments Are Not Shown in Syntaxes
Note: Any source statement that contains a directive can also contain a label and a comment.
Labels begin in the first column (only labels and comments can appear in the first
column), and comments must be preceded by a semicolon, or an asterisk if the comment
is the only element in the line. To improve readability, labels and comments are not
shown as part of the directive syntax.
Table 4-1. Directives That Define Sections

Mnemonic and Syntax Description See

.bss symbol, size in bytes|, alignment Reserves size bytes in the .bss (uninitialized data) section
[, bank offset]]

.data Assembles into the .data (initialized data) section

.sect " section name " Assembles into a named (initialized) section

text Assembles into the .text (executable code) section

symbol .usect "section name", size in bytes Reserves size bytes in a named (uninitialized) section jusect topid
[, alignment], bank offset]]
Table 4-2. Directives That Initialize Constants (Data and Memory)

Mnemonic and Syntax Description See

.byte valueq], ..., value,] Initializes one or more successive bytes in the current section b pId

.char valueq[, ..., value,] Initializes one or more successive bytes in the current section [char topid

.double valueq], ..., value,] Initializes one or more 64-bit, IEEE double-precision,

floating-point constants

field value[, size] Initializes a field of size bits (1-32) with value

float value,], ..., value,] Initializes one or more 32-bit, IEEE single-precision,

floating-point constants

.half valueq], ..., valuep] Initializes one or more 16-bit integers (halfword)

.int valueq[, ..., value,] Initializes one or more 32-bit integers

long value4], ..., value,] Initializes one or more 32-bit integers

.short valueq[, ..., value,] Initializes one or more 16-bit integers (halfword)

.string {expry|"string;"}[,... , {expry|"string,"}] Initializes one or more text strings g topid

.word valueq[, ..., value,] Initializes one or more 32-bit integers fword topid

.uhalf valueq[, ..., value,] Initializes one or more 16-bit integers (halfword)

.uint valueq], ..., value,] Initializes one or more 32-bit integers

.ushort valueq|, ..., value,] Initializes one or more 16-bit integers (halfword) jushort topid

62 Assembler Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Directives Summary

Table 4-2. Directives That Initialize Constants (Data and Memory) (continued)

Mnemonic and Syntax Description See

.uword valueq], ..., value,] Initializes one or more 32-bit integers d topid
Table 4-3. Directives That Perform Alignment and Reserve Space

Mnemonic and Syntax Description See

.align [size in bytes]
.bes size

.space size

Aligns the SPC on a boundary specified by size in bytes, which a pId
must be a power of 2; defaults to byte boundary

Reserves size bytes in the current section; a label points to the [b pid
end of the reserved space

Reserves size bytes in the current section; a label points to the D pId
beginning of the reserved space

Table 4-4. Directives That Format the Output Listing

Mnemonic and Syntax Description See
drlist Enables listing of all directive lines (default)
.drnolist Suppresses listing of certain directive lines
felist Allows false conditional code block listing (default)
fenolist Suppresses false conditional code block listing
.length [page length] Sets the page length of the source listing
list Restarts the source listing [Tist topid
.mlist Allows macro listings and loop blocks (default)
.mnolist Suppresses macro listings and loop blocks
.nolist Stops the source listing
.option option,[, options,, . . .] Selects output listing options; available options are A, B, D, H,
L,M,N,O,R, T, W, and X
.page Ejects a page in the source listing
.sslist Allows expanded substitution symbol listing
.ssnolist Suppresses expanded substitution symbol listing (default) [SSnolist topid
.tab size Sets tab to size characters [fab topid
title " string " Prints a title in the listing page heading
.width [page width] Sets the page width of the source listing
Table 4-5. Directives That Reference Other Files
Mnemonic and Syntax Description See
.copy ["Ifilename["] Includes source statements from another file D pid
.def symboly[, ... , symbol,] Identifies one or more symbols that are defined in the current jdeft topid
module and that can be used in other modules
.global symboly[, ... , symbol,] Identifies one or more global (external) symbols glob DId
.include ["filename["] Includes source statements from another file jinclude fopid
.mlib ["]filename["] Defines macro library
.ref symbol4], ..., symbol,] Identifies one or more symbols used in the current module that [reftopid
are defined in another module
Table 4-6. Directives That Enable Conditional Assembly
Mnemonic and Syntax Description See
.break [well-defined expression] Ends .loop assembly if well-defined expression is true. When b DIq
using the .loop construct, the .break construct is optional.
.else Assembles code block if the .if well-defined expression is false. [else Topid

When using the .if construct, the .else construct is optional.

SPRU186P—October 2006
Bubmit Documentation FeedbacH

Assembler Directives

63

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Directives Summary

Table 4-6. Directives That Enable Conditional Assembly (continued)

Mnemonic and Syntax Description See
.elseif well-defined expression Assembles code block if the .if well-defined expression is false [elself topid
and the .elseif condition is true. When using the .if construct,
the .elseif construct is optional.
.endif Ends .if code block
.endloop Ends .loop code block
.if well-defined expression Assembles code block if the well-defined expression is true
.loop [well-defined expression] Begins repeatable assembly of a code block; the loop count is p topid

determined by the well-defined expression.

Table 4-7. Directives That Define Unions or Structures

Mnemonic and Syntax Description See
.cstruct Acts like .struct, but adds padding and alignment like that
which is done to C structures
.cunion Acts like .union, but adds padding and alignment like that
which is done to C structures
.endstruct Ends a structure definition ,
struc
.endunion Ends a union definition ,
.struct Begins structure definition struct topid
.tag Assigns structure attributes to a label cstruct/.cunion ,
[Sfrucl , [uniod
.union Begins a union definition

Table 4-8. Directives That Define Symbols at Assembly Time

Mnemonic and Syntax Description See

.asg ["]character string["], substitution symbol Assigns a character string to substitution symbol g topid

symbol .equ value Equates value with symbol [equ Topid

.evalwell-defined expression, Performs arithmetic on a numeric substitution symbol

substitution symbol

.label symbol Defines a load-time relocatable label in a section b DIg
symbol .set value Equates value with symbol [Set topid

.var Adds a local substitution symbol to a macro's parameter list jvar topid

64 Assembler Directives SPRU186P—October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

; Preliminary
l
‘U TEXAS
INSTRUMENTS
www.ti.com
Directives That Define Sections
Table 4-9. Directives That Perform Miscellaneous Functions
Mnemonic and Syntax Description See
.asmfunc Identifies the beginning of a block of code that contains a
function
.clink ["section name"] Enables conditional linking for the current or specified section
.cdecls [options,] "filename"[, "filename2"[, ...] Share C headers between C and assembly code d pId
.emsg string Sends user-defined error messages to the output device; jemsq topid
produces no .obj file
.end Ends program [end fopid
.endasmfunc Identifies the end of a block of code that contains a function
.mmsg string Sends user-defined messages to the output device
.newblock Undefines local labels
.nocmp Instructs tools to not utilize 16-bit instructions for section D topid
.wmsg string Sends user-defined warning messages to the output device g topiq

4.2 Directives That Define Sections

These directives associate portions of an assembly language program with the appropriate sections:

The .bss directive reserves space in the .bss section for uninitialized variables.

The .data directive identifies portions of code in the .data section. The .data section usually contains
initialized data.

The .sect directive defines an initialized named section and associates subsequent code or data with
that section. A section defined with .sect can contain code or data.

The .text directive identifies portions of code in the .text section. The .text section usually contains
executable code.

The .usect directive reserves space in an uninitialized named section. The .usect directive is similar to

the .bss directive, but it allows you to reserve space separately from the .bss section.

Chapter 3, Introduction to Common Object File Format, discusses COFF sections in detail.

shows how you can use sections directives to associate code and data with the proper
sections. This is an output listing; column 1 shows line numbers, and column 2 shows the SPC values.
(Each section has its own program counter, or SPC.) When code is first placed in a section, its SPC
equals 0. When you resume assembling into a section after other code is assembled, the section's SPC

res

umes counting as if there had been no intervening code.

The directives in perform the following tasks:

.text initializes words with the values 1, 2, 3, 4, 5, 6, 7, and 8.

.data initializes words with the values 9, 10, 11, 12, 13, 14, 15, and 16.
var_defs initializes words with the values 17 and 18.

.bss reserves 19 bytes.

Xy reserves 20 bytes.

The .bss and .usect directives do not end the current section or begin new sections; they reserve the
specified amount of space, and then the assembler resumes assembling code or data into the current
section.

Example 4-1. Sections Directives

l EE R R Sk Sk Sk kS S Sk Sk Sk S kS kS kS Sk Sk Sk Sk Sk Sk kS Sk gk kS kS ko
2 * Start assenbling into the .text section *
3 R R O I Rk R
4 00000000 text
SPRU186P—-October 2006 Assembler Directives 65

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives That Define Sections

Preliminary

” TEXAS
INSTRUMENTS

www.ti.com

Example 4-1. Sections Directives (continued)

5 00000000 00000001
00000004 00000002
6 00000008 00000003
0000000c 00000004

11 00000000

12 00000000 00000009
00000004 0000000A

13 00000008 0000000B
0000000c 0000000C

14

15

16

17

18

19 00000000

20 00000000 00000011
00000004 00000012

21

22

23

24

25 00000010

26 00000010 0000000D
00000014 0000000E

27 00000000

28 00000018 0000000F
0000001c 00000010

29

30

31

32

33 00000010

34 00000010 00000005
00000014 00000006

35 00000000

36 00000018 00000007
0000001c 00000008

. word 1,2

.word 3,4
R R SRS EEEEREEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS
* Start assenbling into the .data section *
khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhhkkhkkhkhkhkkhkkhkkhkkhkhkhkkhkkhkhkkkkkkkkkkkkkkkkk**x*%x

.data

. word 9, 10

.word 11, 12
EREE SRS EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS
* Start assenbling into a naned, *
* initialized section, var_defs *
R R SRS EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

. sect "var _defs"

.word 17, 18

EE R R Sk Sk Sk Sk Sk S Sk S Sk S kS kS Sk Sk Sk Sk Sk gk kS Sk Sk Sk kS Sk kg kS

* Resume assenbling into the .data section *
R R O Rk O R
.data
. word 13, 14

. bss sym 19 Reserve space in .bss

.word 15, 16 ; Still in .data
R R SRS EEEEREEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
* Resunme assenbling into the .text section *
EEEE R EEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEE RS EEEESESESS

. text

. word 5 6

usym .usect "xy", 20 ;

.word 7, 8 ;

Reserve space in xy
Still in .text

66 Assembler Directives

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

Preliminary

INSTRUMENTS

www.ti.com

Directives That Initialize Constants

4.3 Directives That Initialize Constants

Several directives assemble values for the current section:

The .byte and .char directives place one or more 8-bit values into consecutive bytes of the current
section. These directives are similar to .long and .word, except that the width of each value is restricted
to eight bits.

The .double directive calculates the double-precision (64-bit) IEEE floating-point representation of one
or more floating-point values and stores them in two consecutive words in the current section. The
.double directive automatically aligns to the double-word boundary.

The .field directive places a single value into a specified number of bits in the current word. With .field,
you can pack multiple fields into a single word; the assembler does not increment the SPC until a word
is filled.

shows how fields are packed into a word. Using the following assembled code, notice that
the SPC does not change (the fields are packed into the same word):

1 00000000 00000003 .field 3,4
2 00000000 00000083 .field 8,5
3 00000000 00002083 .field 16,7

Figure 4-1. The .field Directive

®__ 3 2 1 0
| 0O 0 1 1].field3, 4
-
o
3 8 7 6 5 4 bits
| 0 1.0 0 0/0 0 1 1]fields 5
31 15 14 13 12 11 10 9

0 0100 00[0 100 0[00 1 1ffierdus 7

The .float directive calculates the single-precision (32-bit) IEEE floating-point representation of a single
floating-point value and stores it in a word in the current section that is aligned to a word boundary.
The .half, .uhalf, .short, and .ushort directives place one or more 16-bit values into consecutive 16-bit
fields (halfwords) in the current section. The .half and .short directives automatically align to a short
(2-byte) boundary.

The .int, .uint, .long, .word, .uword directives place one or more 32-bit values into consecutive 32-bit
fields (words) in the current section. The .int, .long, and .word directives automatically align to a word
boundary.

The .string directive places 8-bit characters from one or more character strings into the current
section. This directive is similar to .byte, placing an 8-bit character in each consecutive byte of the
current section.

Directives That Initialize Constants When Used in a .struct/.endstruct Sequence

Note: The .byte, .char, .int, .long, .word, .double, .half, .short, .string, .float, and .field directives
do not initialize memory when they are part of a .struct/ .endstruct sequence; rather, they
define a member’s size. For more information, see the [struct/.endstruct direciivey .

compares the .byte, .half, .word, and .string directives. Using the following assembled code:

1 00000000 000000AB .byte 0ABh

2 .align 4

3 00000004 00OOCDEF . hal f 0CDEFh

4 00000008 89ABCDEF .word O089ABCDEFh
5 0000000c 00000068 .string "hel p"

0000000d 00000065
0000000e 0000006C
0000000f 00000070

SPRU186P—0October 2006 Assembler Directives 67
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Directives That Perform Alignment and Reserve Space

Figure 4-2. Initialization Directives

Word Contents Code
31 0
1 0 0 0 0 0 0 A B .byte 0ABh
—u)r
2 0 0 0 0 C D E F .hal f OCDEFh

2 bytes (half word)

.wor d 089ABCDEFh
3 8 9 A B C D E F

whole word

4 70 6C 65 68 .string ”hel p’

4.4 Directives That Perform Alignment and Reserve Space

These directives align the section program counter (SPC) or reserve space in a section:

» The .align directive aligns the SPC at the next byte boundary. This directive is useful with the .field
directive when you do not want to pack two adjacent fields in the same byte.

demonstrates the .align directive. Using the following assembled code:

1
2 00000000 0DAABBCC field OAABBCCh, 24
3 .align 2
4 00000000 OBAABBCC field OBh, 5
5 00000004 000000DE .field ODEh, 10
Figure 4-3. The .align Directive
Word Code
31 23 0
0 101010101011101111001100| -'i€ldOAABBCCh, 24
24-bit field
31 23 0
0 .align 2
00000000/1010101201011101111001100
31 4 0
1 | 01011| .field 0Bh, 5
—
5-bit field
31 15 4 0
1| 0011011110[0102 21| -fieldODE 10
10-bitfield

» The .bes and .space directives reserve a specified number of bytes in the current section. The
assembler fills these reserved bytes with Os.
— When you use a label with .space, it points to the first byte that contains reserved bits.
— When you use a label with .bes, it points to the last byte that contains reserved bits.

68 Assembler Directives SPRU186P—0October 2006
Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Directives That Format the Output Listings
shows how the .space and .bes directives work for the following assembled code:

1

2 00000000 00000100 .word 100h, 200h
00000004 00000200

3 00000008 Res_1: . Space 17

4 0000001c 0000000OF .word 15

5 00000033 Res_2: . bes 20

6 00000034 000000BA . byte 0BAh

Res_1 points to the first byte in the space reserved by .space. Res_2 points to the last byte in the
space reserved by .bes.

Figure 4-4. The .space and .bes Directives

NN
<4— Res_1=08h
17 bytes
reserved
20 bytes
reserved
<4— Res_2=33h
RN

4.5 Directives That Format the Output Listings
These directives format the listing file:

» The .drlist directive causes printing of the directive lines to the listing; the .drnolist directive turns it off
for certain directives. You can use the .drnolist directive to suppress the printing of the following
directives. You can use the .drlist directive to turn the listing on again.

.asg .eval length .mnolist var
.break felist .mlist .sslist .width
.emsg .fcnolist .mmsg .ssnolist .wmsg

» The source code listing includes false conditional blocks that do not generate code. The .fclist and
.fcnolist directives turn this listing on and off. You can use the .fclist directive to list false conditional

blocks exactly as they appear in the source code. You can use the .fcnolist directive to list only the
conditional blocks that are actually assembled.

* The .length directive controls the page length of the listing file. You can use this directive to adjust
listings for various output devices.

» The .list and .nolist directives turn the output listing on and off. You can use the .nolist directive to
prevent the assembler from printing selected source statements in the listing file. Use the .list directive
to turn the listing on again.

* The source code listing includes macro expansions and loop blocks. The .mlist and .mnolist directives
turn this listing on and off. You can use the .mlist directive to print all macro expansions and loop
blocks to the listing, and the .mnolist directive to suppress this listing.

» The .option directive controls certain features in the listing file. This directive has the following

operands:

A turns on listing of all directives and data, and subsequent expansions, macros, and blocks.
B limits the listing of .byte and .char directives to one line.

D turns off the listing of certain directives (same effect as .drnolist).

H limits the listing of .half and .short directives to one line.

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Assembler Directives 69

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Directives That Reference Other Files

limits the listing of .long directives to one line.

turns off macro expansions in the listing.

turns off listing (performs .nolist).

turns on listing (performs .list).

resets the B, H, L, M, T, and W directives (turns off the limits of B, H, L, M, T, and W).
limits the listing of .string directives to one line.

limits the listing of .word and .int directives to one line.

X s Hd4mozzgr

produces a cross-reference listing of symbols. You can also obtain a cross-reference listing
by invoking the assembler with the -x option (see Becfion 3.3).

The .page directive causes a page eject in the output listing.

The source code listing includes substitution symbol expansions. The .sslist and .ssnolist directives
turn this listing on and off. You can use the .sslist directive to print all substitution symbol expansions
to the listing, and the .ssnolist directive to suppress this listing. These directives are useful for
debugging the expansion of substitution symbols.

The .tab directive defines tab size.

The .title directive supplies a title that the assembler prints at the top of each page.

The .width directive controls the page width of the listing file. You can use this directive to adjust
listings for various output devices.

4.6 Directives That Reference Other Files

These directives supply information for or about other files that can be used in the assembly of the current
file:

The .copy and .include directives tell the assembler to begin reading source statements from another
file. When the assembler finishes reading the source statements in the copy/include file, it resumes
reading source statements from the current file. The statements read from a copied file are printed in
the listing file; the statements read from an included file are not printed in the listing file.

The .def directive identifies a symbol that is defined in the current module and that can be used in
another module. The assembler includes the symbol in the symbol table.

The .global directive declares a symbol external so that it is available to other modules at link time.
(For more information about global symbols, see Bection 2.7.1], External Symbols). The .global
directive does double duty, acting as a .def for defined symbols and as a .ref for undefined symbols.
The linker resolves an undefined global symbol reference only if the symbol is used in the program.
The .global directive declares a 16-bit symbol.

The .mlib directive supplies the assembler with the name of an archive library that contains macro
definitions. When the assembler encounters a macro that is not defined in the current module, it
searches for it in the macro library specified with .mlib.

The .ref directive identifies a symbol that is used in the current module but is defined in another
module. The assembler marks the symbol as an undefined external symbol and enters it in the object
symbol table so the linker can resolve its definition. The .ref directive forces the linker to resolve a
symbol reference.

70 Assembler Directives SPRU186P—0October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Directives That Enable Conditional Assembly

4.7 Directives That Enable Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to assemble certain sections of code
according to a true or false evaluation of an expression. Two sets of directives allow you to assemble

conditional blocks of code:

» The .ifl.elseifl.else/.endif directives tell the assembler to conditionally assemble a block of code
according to the evaluation of an expression.

.if well-defined expression
[.elseif well-defined expression]
.else

.endif

marks the beginning of a conditional block and assembles code
if the .if well-defined expression is true.

marks a block of code to be assembled if the .if well-defined
expression is false and the .elseif condition is true.

marks a block of code to be assembled if the .if well-defined
expression is false and any .elseif conditions are false.

marks the end of a conditional block and terminates the block.

» The .loop/.break/.endloop directives tell the assembler to repeatedly assemble a block of code
according to the evaluation of an expression.

loop [well-defined expression]

.break [well-defined expression]

.endloop

marks the beginning of a repeatable block of code. The optional
expression evaluates to the loop count.

tells the assembler to assemble repeatedly when the .break
well-defined expression is false and to go to the code
immediately after .endloop when the expression is true or
omitted.

marks the end of a repeatable block.

The assembler supports several relational operators that are useful for conditional expressions. For more
information about relational operators, see [Géction 3.9.4, Conditional Expressions.

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Assembler Directives 71

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Directives That Define Unions or Structures
4.8 Directives That Define Unions or Structures
These directives set up C or C-like structures or unions in assembly code.
72 Assembler Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

Preliminary

INSTRUMENTS

www.ti.com

Directives That Define Unions or Structures

The .cstruct/.endstruct directives set up C structure definitions. The .cunion/.endunion directives set
up C-like union definitions. The .tag directive assigns the C structure or union characteristics to a label.

The .cstruct/.endstruct directives allow you to organize your information into structures so that similar
elements can be grouped together. Similarly, the .cunion/.endunion directives allow you to organize
your information into unions. Element offset calculation is left up to the assembler. These directives do
not allocate memory. They simply create a symbolic template that can be used repeatedly. The .cstruct
and .cunion directives force the same alignment and padding as used by the C compiler when such
types are nested within compound data structures..

The .tag directive assigns a label to a structure. This simplifies the symbolic representation and also
provides the ability to define structures that contain other structures. The .tag directive does not
allocate memory, and the structure tag (stag) must be defined before it is used.

The .struct/.endstruct directives set up C-like structure definitions. The .union/.endunion directives
set up C-like union definitions. The .tag directive assigns the C-like structure or union characteristics to
a label.

The .struct/.endstruct directives allow you to organize your information into structures so that similar
elements can be grouped together. Similarly, the .union/.endunion directives allow you to organize your
information into unions. Element offset calculation is left up to the assembler. These directives do not
allocate memory. They simply create a symbolic template that can be used repeatedly.

The .tag directive assigns a label to a structure or union. This simplifies the symbolic representation
and also provides the ability to define structures that contain other structures. The .tag directive does
not allocate memory, and the structure tag (stag) must be defined before it is used.

COCRDT . struct ; structure tag definition

X .byte ;

Y .byte

T_LEN .endstruct

COORD .tag COORDT ; declare COORD (coordinate)
. bss COORD, T_LEN ; actual nenory allocation

LDB *+B14(COORD.Y), A2 ; nove nenber Y of structure
; COORD into register A2

SPRU186P—0October 2006 Assembler Directives 73
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Directives That Define Symbols at Assembly Time

4.9 Directives That Define Symbols at Assembly Time

Assembly-time symbol directives equate meaningful symbol names to constant values or strings.

e The .asg directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols can be redefined.

.asg "10, 20, 30, 40", coefficients
.byte coefficients

» The .eval directive evaluates a well-defined expression, translates the results into a character string,
and assigns the character string to a substitution symbol. This directive is most useful for manipulating
counters:

. asg 1, X

.1 oop

. byte x*10h
. break X =4
. eval x+1, x
. endl oop

» The .label directive defines a special symbol that refers to the load-time address within the current
section. This is useful when a section loads at one address but runs at a different address. For
example, you may want to load a block of performance-critical code into slower off-chip memory to
save space and move the code to high-speed on-chip memory to run. See the for an
example using a load-time address label.

» The .set and .equ directives set a constant value to a symbol. The symbol is stored in the symbol table
and cannot be redefined; for example:
bval .set 1000h
.long bval, bval*2, bval +12
MK bval, A2
The .set and .equ directives produce no object code. The two directives are identical and can be used
interchangeably.

74 Assembler Directives SPRU186P—0October 2006
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Miscellaneous Directives

410 Miscellaneous Directives

These directives enable miscellaneous functions or features:

* The .asmfunc and .endasmfunc directives mark function boundaries. These directives are used with
the compiler -gw option to generate debug information for separate functions.

* The .cdecls directive enables programmers in mixed assembly and C/C++ environments to share C
headers containing declarations and prototypes between C and assembly code.

» The .clink directive sets the STYP_CLINK flag in the type field for the named section. The .clink
directive can be applied to initialized or uninitialized sections. The STYP_CLINK flag enables
conditional linking by telling the linker to leave the section out of the final COFF output of the linker if
there are no references found to any symbol in the section.

» The .end directive terminates assembly. If you use the .end directive, it should be the last source
statement of a program. This directive has the same effect as an end-of-file character.

» The .newblock directive resets local labels. Local labels are symbols of the form $n, where n is a
decimal digit, or of the form NAME?, where you specify NAME. They are defined when they appear in
the label field. Local labels are temporary labels that can be used as operands for jump instructions.
The .newblock directive limits the scope of local labels by resetting them after they are used. For more
information, see Bection 3.8.4, Local Labels.

* The .nocmp directive for C6400+ instructs the tools to not utilize 16-bit instructions for the section
.nocmp appears in.

These three directives enable you to define your own error and warning messages:

e The .emsg directive sends error messages to the standard output device. The .emsg directive
generates errors in the same manner as the assembler, incrementing the error count and preventing
the assembler from producing an object file.

» The .mmsg directive sends assembly-time messages to the standard output device. The .mmsg
directive functions in the same manner as the .emsg and .wmsg directives but does not set the error
count or the warning count. It does not affect the creation of the object file.

e The .wmsg directive sends warning messages to the standard output device. The .wmsg directive

functions in the same manner as the .emsg directive but increments the warning count rather than the
error count. It does not affect the creation of the object file.

For more information about using the error and warning directives in macros, see Section 5.7, Producing
Messages in Macros.

SPRU186P—0October 2006 Assembler Directives 75
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Directives Reference

411 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are organized alphabetically, one
directive per topic. Related directives (such as .if/.else/.endif), however, are presented together in one

topic.

.align Align SPC on the Next Boundary

Syntax .align [size in bytes]

Description The .align directive aligns the section program counter (SPC) on the next boundary,
depending on the size in bytes parameter. The size can be any power of 2, although
only certain values are useful for alignment. An operand of 1 aligns the SPC on the next
byte boundary, and this is the default if no size in bytes is given. The assembler
assembles words containing null values (0) up to the next size in bytes boundary:

1 aligns SPC to byte boundary

2 aligns SPC to halfword boundary

4 aligns SPC to word boundary

8 aligns SPC to doubleword boundary

128 aligns SPC to page boundary

Using the .align directive has two effects:

e The assembler aligns the SPC on an x-byte boundary within the current section.

» The assembler sets a flag that forces the linker to align the section so that individual
alignments remain intact when a section is loaded into memory.

Example This example shows several types of alignment, including .align 2, .align 8, and a default
.align.

1 00000000 00000004 .byte 4
2 .align 2
3 00000002 00000045 .string "Errorcnt”
00000003 00000072
00000004 00000072
00000005 0000006F
00000006 00000072
00000007 00000063
00000008 0000006E
00000009 00000074
4 .align
5 00000008 0003746E field 3,3
6 00000008 002B746E field 5,4
7 .align 2
8 0000000c 00000003 field 3,3
9 .align 8
10 00000010 00000005 field 5,4
11 .align
12 00000011 00000004 .byte 4
76 Assembler Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Directives Reference

.asg

Syntax

Description

Example

Assign a Substitution Symbol

.asg ["|character string["], substitution symbol
.eval well-defined expression, substitution symbol

The .asg directive assigns character strings to substitution symbols. Substitution
symbols are stored in the substitution symbol table. The .asg directive can be used in
many of the same ways as the .set directive, but while .set assigns a constant value
(which cannot be redefined) to a symbol, .asg assigns a character string (which can be
redefined) to a substitution symbol.

» The assembler assigns the character string to the substitution symbol. The quotation
marks are optional. If there are no quotation marks, the assembler reads characters
up to the first comma and removes leading and trailing blanks. In either case, a
character string is read and assigned to the substitution symbol.

» The substitution symbol must be a valid symbol hame. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (_), and
the dollar sign ($).

The .eval directive performs arithmetic on substitution symbols, which are stored in the
substitution symbol table. This directive evaluates the well-defined expression and
assigns the string value of the result to the substitution symbol. The .eval directive is
especially useful as a counter in .loop/.endloop blocks.

e The well-defined expression is an alphanumeric expression in which all symbols have
been previously defined in the current source module, so that the result is an
absolute.

» The substitution symbol must be a valid symbol hame. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (_), and
the dollar sign ($).

This example shows how .asg and .eval can be used.

1 .sslist show expanded substitution synbols
2
3 .asg *+B14(100), GLOB100
4 .asg *+B15(4), AR
5
6 00000000 003B22E4 LDW GLOB100, A0
LDW *+B14(100), A0
7 00000004 00BC22E4 LDW ARQD, Al
LDW *+B15(4), Al
8 00000008 00006000 NOP 4
9 0000000c 010401E0 ADD A0, Al, A2
10
11 .asg 0,x
12 .1 oop 5
13 .word 100*x
14 .eval Xx+1, x
15 . endl oop
1 00000010 00000000 .word 100*x
.word 100*0
1 .eval Xx+1, x
.eval 0+1, x
1 00000014 00000064 .word 100*x
.wor d 100*1
1 .eval x+1, x
.eval 1+1,x
1 00000018 000000C8 .wor d 100*x
.word 100*2
1 .eval Xx+1, x
.eval 2+1,x
SPRU186P—0October 2006 Assembler Directives 77

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

.asmfunc/.endasm

0000001c 0000012C .wor d 100*x
.wor d 100*3
.eval x+1, x
.eval 3+1,x

00000020 00000190 .word 100*x
.wor d 100*4
.eval x+1,x
.eval 4+1, x

P EPR R PR

Mark Function Boundaries

Syntax symbol .asmfunc
.endasm
Description The .asmfunc and .endasmfunc directives mark function boundaries. These directives
are used with the compiler -g option (--symdebug:dwarf) to allow sections assembly
code to be debugged in the same manner as C/C++ functions.
You should not use the same directives generated by the compiler (see Bppendix B) to
accomplish assembly debugging; those directives should be used only by the compiler to
generate symbolic debugging information for C/C++ source files.
The .asmfunc and .endasmfunc directives cannot be used when invoking the compiler
with the backwards-compatibility --symdebug:coff option. This option instructs the
compiler to use the obsolete COFF symbolic debugging format, which does not support
these directives.
The symbol is a label that must appear in the label field.
Consecutive ranges of assembly code that are not enclosed within a pair of .asmfunc
and .endasmfunc directives are given a default name in the following format:
$ filename : beginning source line : ending source line $
Example In this example the assembly source generates debug information for the user_func
section.
1 00000000 .sect ".text"
2 . gl obal userfunc
3 .global _printf
4
5 userfunc: .asnfunc
6 00000000 00000010! CALL .s1 _printf
7 00000004 01BC94F6 STW .D2T2 B3, *B15--(16)
8 00000008 01800E2A MVKL .82 RLO, B3
9 0000000c 01800028+ MVKL .s1 SL1+0, A3
10 00000010 01800068+ MVKH .S1 SL1+0, A3
11
12 00000014 01BC22F5 STW .D2T1 A3, *+B15(4)
13 00000018 0180006A' | | MVKH .82 RLO, B3
14
15 0000001c 01BC92E6 RLO: LDW .D2T2 *++B15(16), B3
16 00000020 02000800 ZERO .Dl Ad
17 00000024 00004000 NOP 3
18 00000028 00000362 RET .S B3
19 0000002c 00008000 NOP 5
20 . endasnf unc
21
22 00000000 . sect ".const"
23 00000000 00000048 SL1: .string "Hello Wrld!'", 10,0
00000001 00000065
00000002 0000006C
00000003 0000006C
00000004 0000006F
00000005 00000020
00000006 00000057
00000007 0000006F
78 Assembler Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS
www.ti.com
Directives Reference
00000008 00000072
00000009 0000006C
0000000a 00000064
0000000b 00000021
0000000c 0000000A
0000000d 00000000
.bss Reserve Space in the .bss Section
Syntax .bss symbol, size in bytes|, alignment[, bank offset]]
Description The .bss directive reserves space for variables in the .bss section. This directive is
usually used to allocate space in RAM.

* The symbol is a required parameter. It defines a label that points to the first location
reserved by the directive. The symbol name must correspond to the variable that you
are reserving space for.

» The size in bytes is a required parameter; it must be an absolute expression. The
assembler allocates size bytes in the .bss section.

» The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. This boundary indicates the size of the slot
in bytes and must be set to a power of 2. If the SPC is aligned to the specified
boundary, it is not incremented.

» The bank offset is an optional parameter that ensures that the space allocated to the
symbol occurs on a specific memory bank boundary. The bank offset value measures
the number of bytes to offset from the alignment specified before assigning the
symbol to that location.

For more information about COFF sections, see [Chapter 2, Introduction to Common

Object File Format.

Example In this example, the .bss directive is used to allocate space for a variable, array. The

symbol array points to 100 bytes of uninitialized space (at .bss SPC = 0). Symbols

declared with the .bss directive can be referenced in the same manner as other symbols
and can also be declared global.

O~NO O~ WNBRE

©

10
11
12
13
14
15
16
17
18
19
20

00000000
00000000

00000000

00000004

008001A0

010401A0

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkk*x*%x

** Start assenbling into .text section. **
khkkhkkhkkhkkhkkhkkhkhhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkk*kk*k*k*x*%

.text

vV AO, AL
khkkkkhkhkkhkhkhkhkhkhkhkkhhkhhkhkhkhkhhkdhkdhkhkhkhhhrhhkhkhkhhhkhhhkxx
** Allocate 100 bytes in .bss. * %

khkkhkkkhkkhkhkkhkhhkkkk*k*k*k*k**x*%

.bss array, 100

khkkhkkkhkkhkhkkhkhhkkkk*k*k*k*k**x*%

** Still in .text **
PR R R R R R R R SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
W Al, A2
khkhkhkhkkhkkhkhkhkhkhkhkhhhkhkhhkhkhkhkhkhrhrhhkhkhkhhkdhkhkhrrdrxdxhhhhkkx*x
** Declare external .bss synbol *x

kkhkkkhkkkkkkkkkkkkk*k*%x

. gl obal array

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Assembler Directives

79

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

.byte/.

Syntax

char

Description

Example

Initialize Byte

.byte value4], ... , value,]
.char value,], ... , value,]

The .byte and .char directives place one or more values into consecutive bytes of the
current section. A value can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed number
» A character string enclosed in double quotes. Each character in a string represents a

separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The first byte occupies the eight least significant bits of a full 32-bit word. The second
byte occupies bits eight through 15 while the third byte occupies bits 16 through 23. The
assembler truncates values greater than eight bits. You can use up to 100 value
parameters, but the total line length cannot exceed 200 characters.

If you use a label, it points to the location of the first byte that is initialized.

When you use .byte or .char in a .struct/.endstruct sequence, .byte and .char define a
member's size; they do not initialize memory. For more information, see the
Istruct/.endstruct/.tag topiqd .

In this example, 8-bit values (10, -1, abc, and a) are placed into consecutive bytes in
memory with .byte and .char. The label strx has the value Oh, which is the location of the
first initialized byte. The label stry has the value 6h, which is the first byte initialized by
the .char directive.

1 00000000 OOOO000A strx . byte 10, -1, "abc","'a
00000001 000OO0O0FF
00000002 00000061
00000003 00000062
00000004 00000063
00000005 00000061
2 00000006 00000008 stry . char 8,-3,"def","'b'

80

Assembler Directives

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

{'f TEXAS
INSTRUMENTS
www.ti.com
Directives Reference
.cdecls Share C Headers Between C and Assembly Code
Syntax Single Line:
.cdecls [options,] "filename"[, "filename2"],...]]
Syntax Multiple Lines:
.cdecls [options]
%{
I* */
[* C/C++ code - Typically a list of #includes and a few defines */
I* */
%}
Description The .cdecls directive allows programmers in mixed assembly and C/C++ environments

to share C headers containing declarations and prototypes between the C and assembly
code. Any legal C/C++ can be used in a .cdecls block and the C/C++ declarations cause
suitable assembly to be generated automatically, allowing you to reference the C/C++
constructs in assembly code; such as calling functions, allocating space, and accessing
structure members; using the equivalent assembly mechanisms. While function and
variable definitions are ignored, most common C/C++ elements are converted to
assembly, for instance: enumerations, (hon-function-like) macros, function and variable
prototypes, structures, and unions.

The .cdecls options control whether the code is treated as C or C++ code; and how the
.cdecls block and converted code are presented. Options must be separated by
commas; they can appear in any order:

C Treat the code in the .cdecls block as C source code (default).

CPP Treat the code in the .cdecls block as C++ source code. This is the
opposite of the C option.

NOLIST Do not include the converted assembly code in any listing file generated
for the containing assembly file (default).

LIST Include the converted assembly code in any listing file generated for the
containing assembly file. This is the opposite of the NOLIST option.

NOWARN Do not emit warnings on STDERR about C/C++ constructs that cannot be
converted while parsing the .cdecls source block (default).

WARN Generate warnings on STDERR about C/C++ constructs that cannot be
converted while parsing the .cdecls source block. This is the opposite of
the NOWARN option.

In the single-line format, the options are followed by one or more filenames to include.
The filenames and options are separated by commas. Each file listed acts as if #include
"filename" was specified in the multiple-line format.

In the multiple-line format, the line following .cdecls must contain the opening .cdecls
block indicator %{. Everything after the %f{, up to the closing block indicator %}, is
treated as C/C++ source and processed. Ordinary assembler processing then resumes
on the line following the closing %}.

The text within %{ and %]} is passed to the C/C++ compiler to be converted into
assembly language. Much of C language syntax, including function and variable
definitions as well as function-like macros, is not supported and is ignored during the
conversion. However, all of what traditionally appears in C header files is supported,
including function and variable prototypes; structure and union declarations;
non-function-like macros; enumerations; and #define's. The resulting assembly language

SPRU186P—October 2006

Assembler Directives 81

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Directives Reference

is included in the assembly file at the point of the .cdecls directive. If the LIST option is
used, the converted assembly statements are printed in the listing file.

The assembly resulting from the .cdecls directive is treated similarly to a .include file.
Therefore the .cdecls directive can be nested within a file being copied or included. The
assembler limits nesting to ten levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. An A indicates the first copied file, B indicates a second
copied file, etc.

The .cdecls directive can appear anywhere in an assembly source file, and can occur
multiple times within a file. However, the C/C++ environment created by one .cdecls is
not inherited by a later .cdecls; the C/C++ environment starts new for each .cdecls.

See [Chapter 17, Sharing C Header Files in Assembly Source, for more information on
setting up and using .cdecls with C header files.

Example In this example, the .cdecls directive is used call the C header.h file.

C Header File:

#define WANT_I D 10
#defi ne NAME "John\ n"

extern int a_variable;
extern float cvt_integer(int src);

struct nmyGCstruct { int nenber_a; float menber_b; };

enum status_enum { OK = 1, FAILED = 256, RUNNING = 0 };

Source File:
.cdecl s C, LI ST, "nyheader . h"

si ze: .int $sizeof (nyCstruct)

aof fset: .int nmyCstruct.menber_a

boffset: .int myCstruct.nenber_b

okval ue: .int status_enum OK

failval: .int status_enum FAlI LED

.if $defined(WANT_I D)
id .cstring NAME
.endif
Listing File:
1 .cdecl s C, LIST,"nmyheader. h"

A e e
A 2 ; Assenbly Generated from C/ C++ Source Code
A 3 i
A 4
A 5 ; =========== MACRO DEFI NI TI ONS ===========
A 6 .define "10", WANT_I D
A 7 .define """John\n""", NAME
A 8
A 9 ; =========== TYPE DEFI NI TI ONS ===========
A 10 stat us_enum .enum
A 11 00000001 OK .enenber 1
A 12 00000100 FAI LED . enenber 256
A 13 00000000 RUNNI NG .enenber 0
A 14 . endenum
A 15
A 16 myCstruct .struct 0,4 ; struct size=(8 bytes|64 bits),
al i gnment =4
A 17 00000000 nenber_a .field 32 ; int nenber_a - offset 0 bytes, size
(4 bytes| 32 bits)
A 18 00000004 nenber _b .field 32 ; float nenber_b - offset 4 bytes, size
82 Assembler Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

.clink — Conditionally Leave Section Out of COFF Output

(4 bytes| 32 bits)
A 19
A 20
A 21
A 22
A 23
A 24
A 25
2 00000000
00000004
00000008
0000000c
00000010

00000008

00000008
00000000
00000004
00000001
00000100

si ze
aof f set :
bof f set :
okval ue
failval

.endstruct

EXTERNAL FUNCTI ONS
. gl oba

EXTERNAL VARI ABLES
. gl oba

$si zeof (nyCstruct)

nyCstruct. menber_a

myCstruct . nenber _b

stat us_enum OK

st at us_enum FAI LED

; final size=(8 bytes|64 bits)

_cvt_integer

_a variable

0 ~NOoO O~ w

00000014

0000004A i d

.if $defined(WANT_I D)
.cstring NAME

00000015
00000016
00000017
00000018
00000019

0000006F
00000068
0000006E
0000000A
00000000

.clink

Syntax

Description

Example

.endi f
Conditionally Leave Section Out of COFF Output

.clink [*section name"]

The .clink directive sets up conditional linking for a section by setting the STYP_CLINK
flag in the type field for section name. The .clink directive can be applied to initialized or
uninitialized sections.

The section name identifies the section. If .clink is used without a section name, it
applies to the current initialized section. If .clink is applied to an uninitialized section, the
section name is required. The section name is significant to 200 characters and must be
enclosed in double quotes. A section name can contain a subsection name in the form
section name:subsection name.

The .clink directive tells the linker to leave the section out of the final COFF output of the
linker if there are no references found in a linked section to any symbol defined in the
specified section. The -a linker option produces the final COFF output in the form of an
absolute, executable output module.

A section in which the entry point of a C program is defined cannot be marked as a
conditionally linked section.

In this example, the Vars and Counts sections are set for conditional linking.

1 00000000 .sect "Vars"

2 .clink

3 ; Vars section is conditionally |inked

4

5 00000000 0000001A X: .word 01Ah

6 00000004 0000001A Y: .word O01Ah

7 00000008 0000001A Z: .word 01Ah

8 00000000 .sect "Counts"

9 .clink

10 Counts section is conditionally Iinked
11

12 00000000 0000001A XCount: .word 01Ah

13 00000004 0000001A YCount: .word 01Ah

14 00000008 0000001A ZCount: .word 01Ah

15 00000000 .text

16 ; By default, .text is unconditionally Iinked
17

18 00000000 00B802C4 LDH *Bl4, Al

19 00000004 00000028+ MVKL X, A0

20 00000008 00000068+ MVKH X, AO

21 ; These references to synbol X cause the Vars

SPRU186P—October 2006

Assembler Directives 83

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
.clink — Conditionally Leave Section Out of COFF Output
22 ; section to be linked into the COFF out put
23 0000000c 00040AF8 CMPLT A0, A1, A0
84 Assembler Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Directives Reference

.copyl.include

Syntax

Description

Example 1

Copy Source File

.copy ["Ifilename["]
.include ["]filename["]

The .copy and .include directives tell the assembler to read source statements from a
different file. The statements that are assembled from a copy file are printed in the
assembly listing. The statements that are assembled from an included file are not printed
in the assembly listing, regardless of the number of .list/.nolist directives assembled.

When a .copy or .include directive is assembled, the assembler:
1. Stops assembling statements in the current source file
2. Assembles the statements in the copied/included file

3. Resumes assembling statements in the main source file, starting with the statement
that follows the .copy or .include directive

The filename is a required parameter that names a source file. It can be enclosed in
double quotes and must follow operating system conventions. If filename starts with a
number the double quotes are required.

You can specify a full pathname (for example, /320tools/filel.asm). If you do not specify
a full pathname, the assembler searches for the file in:

1. The directory that contains the current source file
2. Any directories named with the -1 assembler option
3. Any directories specified by the C6X_A_DIR or A_DIR environment variable

For more information about the -I option, C6x_A_DIR, and A_DIR, see Bection 3.4,
Naming Alternate Directories for Assembler Input.

The .copy and .include directives can be nested within a file being copied or included.
The assembler limits nesting to 32 levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. A indicates the first copied file, B indicates a second
copied file, etc.

In this example, the .copy directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file.

The original file, copy.asm, contains a .copy statement copying the file byte.asm. When
copy.asm assembles, the assembler copies byte.asm into its place in the listing (hote
listing below). The copy file byte.asm contains a .copy statement for a second file,
word.asm.

When it encounters the .copy statement for word.asm, the assembler switches to
word.asm to continue copying and assembling. Then the assembler returns to its place
in byte.asm to continue copying and assembling. After completing assembly of byte.asm,
the assembler returns to copy.asm to assemble its remaining statement.

copy.asm byte.asm word.asm
(source file) (first copy file) (second copy file)
. space 29 ** |n byte.asm ** |n word.asm
.copy "byte. asnf .byte32,1+' A . wor d 0ABCDh, 56q
** Backinoriginal file .copy "word. asnf
.string"done" ** Back i n byte.asm
. byte 67h + 3q

SPRU186P—October 2006

Assembler Directives 85

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

.copyl.include — Copy Source File

” TEXAS
INSTRUMENTS

www.ti.com

Listing file:
1 00000000 . space 29
2 .copy "byte.asnt
A 1 ** |n byte.asm
A 2 0000001d 00000020 .byte 32,1+ ' A
0000001e 00000042
A 3 .copy "word.asnt
B 1 ** |n word. asm
B 2 00000020 0000ABCD .word OABCDh, 56q
00000024 0000002E
A 4 ** Back in byte.asm
A 5 00000028 0000006A .byte 67h + 3q
3
4 ** Back in original file
5 00000029 00000064 .string "done"
0000002a 0000006F
0000002b 0000006E
0000002c 00000065
Example 2 In this example, the .include directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file. The
mechanism is similar to the .copy directive, except that statements are not printed in the
listing file.
include.asm byte2.asm word2.asm
(source file) (first copy file) (second copy file)
. space 29 ** |n byte2.asm ** |'n word2.asm
.include "byte2. asnt .byte 32, 1+"' A . wor d 0ABCDh, 56q
** Backinoriginal file .include "word2. asnt
.string "done" ** Back i n byt e2. asm
.byte 67h + 3q
Listing file:
1 00000000 . Space 29
2 .include "byte2.asnt
3
4 ** Back in original file
5 00000029 00000064 .string "done"
0000002a 0000006F
0000002b 0000006E
0000002c 00000065
86 Assembler Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Directives Reference

.cstruct/.cunion/.endstruct/.endunion/.tag

Syntax

Description

Example

Declare C Structure Type

[stag] .cstruct|.cunion [expr]
[memy] element [expro]
[mem;] element [exprq]
[mem,] .tag stag [expr,]
[memy] element [expry]
[size] .endstruct|.endunion
label tag stag

The .cstruct and .cunion directives have been added to support ease of sharing of
common data structures between assembly and C code. The .cstruct and .cunion
directives can be used exactly like the existing .struct and .union directives except that
they are guaranteed to perform data layout matching the layout used by the C compiler
for C struct and union data types.

In particular, the .cstruct and .cunion directives force the same alignment and padding as
used by the C compiler when such types are nested within compound data structures.

The .endstruct directive terminates the structure definition. The .endunion directive
terminates the union definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

e The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. A .stag is optional for .struct, but is required for .tag.

» The element is one of the following descriptors: .string, .byte, .char, .int, .half, .short,
.word, .long, .double, .float, .tag, or .field. All of these except .tag are typical
directives that initialize memory. Following a .struct directive, these directives
describe the structure element's size. They do not allocate memory. A .tag directive
is a special case because stag must be used (as in the definition of stag).

* The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

» The expr,,\ is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

* The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

» The size is an optional label for the total size of the structure.

e The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. A .stag is optional for .struct, but is required for .tag.

This example illustrates a structure in C that will be accessed in assembly code.

SPRU186P—October 2006

Assembler Directives 87

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
.cstruct/.cunion/.endstruct/.endunion/.tag — Declare C Structure Type
; typedef struct STRUCT1
] int i0; /* offset 0 */
; short sO; /* offset 4 */
i} structl; /* size 8, alignnment 4 */
; typedef struct STRUCT2
q structl stl; /* offset 0 */
; short s1i; /* offset 8 */
; } struct?2; /* size 12, alignment 4 */
; The structure will get the follow ng offsets once
; the C conpiler lays out the structure el ements according
; to the C standard rul es
; offsetof(structl, i0) =0
; offsetof(structl, s0) = 4
; sizeof (structl) =38
; offsetof(struct2, s1) =0
; offsetof(struct2, il) =8
; sizeof (struct?2) =12
; Attenpts to replicate this structure in assenbly using the
; .struct/.union directive will not create the correct offsets
; because the assenbler tries to use the npbst conpact arrangenent:
structl .struct
i0 .int ; bytes 0-3
sO .short ; bytes 4-5
structll en .endstruct ; size 6, alignnent 4
struct2 .struct
stl .tag structl ; bytes 0-5
sl .short ; bytes 6-7
endstruct2 .endstruct ; size 8, alignnment 4
.sect "datal"
.word structl.iO ;0
.word structl.s0 ;4
.word structllen ;6
.sect "data2"
.word struct2.stl ;0
.word struct2.sl ;6
.word endstruct2 ;8
; The .cstruct/.cunion directives will calculate
; the offsets in the sane nanner as the C conpiler. The
; resulting assenbly structure can be used to access the
; elements of the C structure. Notice the different in
; the offsets fromthose structures defined via .struct
; above, and conpare themto the offsets for the C code.
cstructl .cstruct
i0 .int ; bytes 0-3
sO .short ; bytes 4-5
cstructll en .endstruct ; size 8, alignnent 4
cstruct2 .cstruct
stl .tag cstructl ; bytes 0-7
sl .short ; bytes 8-9
cendstruct2 .endstruct ; size 12, alignment 4
.sect "data3"
.word cstructl.i0, structl.iO ;0
88 Assembler Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

.cstruct/.cunion/.endstruct/.endunion/.tag — Declare C Structure Type

.wor d
.word

. sect
.word
.wor d
.wor d

cstruct 1. s0,
cstruct 1l en,

" dat a4"
cstruct2.stl,
cstruct 2. s1,
cendstruct 2,

struct1.s0
struct 1l en

struct2.stl ;

struct2.sl
endstruct2

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Assembler Directives

89

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Directives Reference
.data Assemble Into the .data Section
Syntax .data
Description The .data directive tells the assembler to begin assembling source code into the .data

section; .data becomes the current section. The .data section is normally used to contain
tables of data or preinitialized variables.

For more information about COFF sections, see [Chapter 4, Introduction to Common
Object File Format.

Example In this example, code is assembled into the .data and .text sections.
l ER R R I S I S R S I I I R R I R R I S I
2 *x Reserve space in .data *x
3 EEE R RS SRR R R R R R EEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEES
4 00000000 .data
5 00000000 .space 0CCh
6
7 ER R R R S I S R S I I S R I I I R R S I
8 *x Assenbl e into .text * %
9 khkkhkkhkhkkhkkhkhkhkhkhkhkhkhhkhhhkhhkhkhkhkhdrhkhhkhkhkhkhkhkhkhrhrhkhhhhdhhhxx
10 00000000 . text
11 00000000 00800358 ABS A0, Al
12
13 ER R R I S I S R R S I I I R R S I I R R S S I
14 ** Assenble into .data *x
15 khkkhkkhkkhkkhkkhkhhkhkhkhkhhhkhhkhkhhkhkhkhkhdhhkhkhkhhkhhkhhkhrhrhhhhkhdhhhxx
16 000000cc table: .data
17 000000cc FFFFFFFF .word -1
18 000000d0 OOOOOOFF .byte OFFh
19
20 IR EE R EEEEEEEEEEEEEEEEREEEEEEESEEREEEEEEEEEESEEEESES
21 *x Assenbl e into .text **
22 ER R R I S I S R S R R S I I I R I R S S I
23 00000004 . text
24 00000004 008001A0 vV A0, Al
25
26 IR EE R EEEEEEEEEEEESEEEEREEEEEEEE SRS EEEEE RS RS EEEESES
27 ** Resune assenbling into the .data section **
28 ER R R I S I S I R S I I I R I S I S I R R S I
29 000000d1 .data

30 000000d4 00000000 coeff .word 00h, Oah, Obh
000000d8 0000000A
000000dc 0000000B

90 Assembler Directives SPRU186P—0October 2006
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.double Initialize Double-Precision Floating-Point Value

Syntax .double value, [, ..., value,]

Description The.doubledirectiveplacesthelEEEdouble-precisionfloating-
pointrepresentationofoneormorefloating-
pointvaluesintothecurrentsection.Eachvaluemustbeafloating-
pointconstantorasymbolthathasbeenequatedtoafloating-
pointconstant.Eachconstantisconvertedtoafloating-pointvalueinlEEEdouble-precision64-
bitformat.Double-precisionfloatingpointconstantsarealignedtoadoublewordboundary.

The 64-bit value is stored in the format shown in Figure 4-5.

Figure 4-5. Double-Precision Floating-Point Format

IS‘EEEEEEEEEEEMMMMMMMMMMMMMMMMMMMMI

31 20 0

IM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MI

31 0

When you use .double in a .struct/.endstruct sequence, .double defines a member's size;
it does not initialize memory. For more information, see the [struct/.endstruct/.tag topiqd .

Example This example shows the .double directive.

1 00000000 2C280291 . doubl e -2.0e25
00000004 C5308B2A

2 00000008 00000000 . doubl e 6
0000000c 40180000

3 00000010 00000000 . doubl e 456
00000014 407C8000

SPRU186P—0October 2006 Assembler Directives 91
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Directives Reference
drlist/.drnolist Control Listing of Directives
Syntax drlist
.drnolist
Description Two directives enable you to control the printing of assembler directives to the listing file:

The .drlist directive enables the printing of all directives to the listing file.

The .drnolist directive suppresses the printing of the following directives to the listing
file. The .drnolist directive has no affect within macros.

e .asg « fenolist e .ssnolist
e .break e .mlist e var

* .emsg e .mmsg e .wmsg

« .eval e .mnolist

o fclist e .sslist

By default, the assembler acts as if the .drlist directive had been specified.

Example This example shows how .drnolist inhibits the listing of the specified directives.
Source file:
.length 65
.width 85
. asg 0, x
.l oop 2
.eval x+1, X
. endl oop
.drnoli st
.length 55
.width 95
. asg 1, x
.loop 3
. eval x+1, X
. endl oop
Listing file:
3 .asg 0, x
4 .l oop 2
5 .eval x+1, X
6 . endl oop
1 .eval 0+1, x
1 .eval 1+1, x
7
8 .drnoli st
12 .1 oop 3
13 . eval x+1, X
14 . endl oop
92 Assembler Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Directives Reference

.emsg/.mmsg/.wmsg

Define Messages

Syntax

Description

Example

.emsg string
.mmsg string
.wmsg string

These directives allow you to define your own error and warning messages. When you
use these directives, the assembler tracks the number of errors and warnings it
encounters and prints these numbers on the last line of the listing file.

The .emsg directive sends an error message to the standard output device in the same
manner as the assembler. It increments the error count and prevents the assembler from
producing an object file.

The .mmsg directive sends an assembly-time message to the standard output device in
the same manner as the .emsg and .wmsg directives. It does not, however, set the error
or warning counts, and it does not prevent the assembler from producing an object file.

The .wmsg directive sends a warning message to the standard output device in the
same manner as the .emsg directive. It increments the warning count rather than the
error count, however, and it does not prevent the assembler from producing an object
file.

In this example, the message ERROR -- MISSING PARAMETER is sent to the standard
output device.

Source file:
. gl obal PARAM
MSG_ EX .nmacro parnl
Jif $sym en(parnml) =0
.emsg "ERROR -- M SSING PARAMETER'
. el se
MVK parmi, Al
.endi f
.endm

MBG_EX PARAM

MSG_EX

Listing file:

1 . gl obal
. macr o

PARAM
2 par mi
3 Jif $sym en(parnl) =0
4 .emsg "ERROR -- M SSING PARAMETER'
5 . el se
6 MWK parntl, Al
7 .endi f
8 .endm
9
10 00000000 MSG_EX PARAM
Jif $sym en(parnt) =0
.emsg "ERROR -- M SSING PARAMETER'
.el se
MK PARAM Al
.endi f

00000000 00800028!

A Y

11

12 00000004 M5G_EX

Jif $sym en(parnl) =0

1 .emsg "ERROR -- M SSING PARAMETER'
*x*xxx USER ERROR ***** - ERROR -- M SSI NG PARAMETER

1 .el se

1 MWK parml, Al

=

SPRU186P—October 2006

Assembler Directives 93

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

1 .endif

1 Error, No Vrnings

In addition, the following messages are sent to standard output by the assembler:

ERRORI line 12 USER ERROR ***** ERROR -- M SSI NG PARAVETER
.emsg "ERROR -- M SSI NG PARAMETER' 11

* Kk k * ok ok ok ok

1 Assenbly Error,
Errors in source -

No Assenbly Warnings
Assenbl er Aborted

.end End Assembly
Syntax .end
Description The .end directive is optional and terminates assembly. The assembler ignores any
source statements that follow a .end directive. If you use the .end directive, it must be
the last source statement of a program.
This directive has the same effect as an end-of-file character. You can use .end when
you are debugging and you want to stop assembling at a specific point in your code.
Ending a Macro
Note: Do not use the .end directive to terminate a macro; use the .endm
macro directive instead.
Example This example shows how the .end directive terminates assembly. If any source
statements follow the .end directive, the assembler ignores them.
Source file:
start: .text
ZERO A0
ZERO Al
ZERO A3
. end
ZERO M
Listing file:
1 00000000 start: .text
2 00000000 000005EQ ZERO A0
3 00000004 008425E0 ZERO Al
4 00000008 018CB5E0 ZERO A3
5 .end
94 Assembler Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
‘U TEXAS
INSTRUMENTS
www.ti.com
Directives Reference
fclist/.fcnolist Control Listing of False Conditional Blocks
Syntax fclist
fcnolist
Description Two directives enable you to control the listing of false conditional blocks:
The fclist directive allows the listing of false conditional blocks (conditional blocks that
do not produce code).
The .fcnolist directive suppresses the listing of false conditional blocks until a .fclist
directive is encountered. With .fcnolist, only code in conditional blocks that are actually
assembled appears in the listing. The .if, .elseif, .else, and .endif directives do not
appeatr.
By default, all conditional blocks are listed; the assembler acts as if the .fclist directive
had been used.
Example This example shows the assembly language and listing files for code with and without
the conditional blocks listed.
Source file:
a . set 0
b . set 1
fclist ;. list false conditional blocks
i f a
MWK 5, A0
.el se
MK 0, A0
.endif
.fcnolist ; do not |list false conditional blocks
i f a
MWK 5, A0
.el se
MK 0, A0
.endif
Listing file:
1 00000000 a . set 0
2 00000001 b . set 1
3 fclist ; list false conditional blocks
4 i f a
5 MVK 5, A0
6 .el se
7 00000000 00000028 MK 0, A0
8 .endif
9 .fcnolist ; do not list false conditional blocks
13 00000004 00000028 MK 0, A0
SPRU186P-0ctober 2006 Assembler Directives 95

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

field

Syntax

Description

Example

Initialize Field

field value [, size in bits]

The .field directive initializes a multiple-bit field within a single word of memory. This
directive has two operands:

The value is a required parameter; it is an expression that is evaluated and placed in
the field. The value must be absolute.

The size in bits is an optional parameter; it specifies a number from 1 to 32, which is
the number of bits in the field. If you do not specify a size, the assembler assumes
the size is 32 bits. If you specify a value that cannot fit in size in bits, the assembler
truncates the value and issues a warning message. For example, .field 3,1 causes
the assembler to truncate the value3to 1; the assembler also prints the message:
*** WARNING line 21: WO001: Field value truncated to 1

field 3, 1
Successive .field directives pack values into the specified number of bits starting at
the current 32-bit slot. Fields are packed starting at the least significant bit (bit 0),
moving toward the most significant bit (bit 31) as more fields are added. If the
assembler encounters a field size that does not fit in the current 32-bit word, it fills the
remaining bits of the current byte with 0s, increments the SPC to the next word
boundary, and begins packing fields into the next word.

You can use the .align directive to force the next .field directive to begin packing into
a new word.

If you use a label, it points to the byte that contains the specified field.

When you use .field in a .struct/.endstruct sequence, .field defines a member's size; it
does not initialize memory. For more information, see the [struct/.endstruct/.tag topid .

This example shows how fields are packed into a word. The SPC does not change until
a word is filled and the next word is begun. shows how the directives in this
example affect memory.

l kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkk*x

2 * % Initialize a 24-bit field. **

3 khkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkk*k*x*%x

4 00000000 0OOBBCCDD .field OBBCCDDh, 24

khkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkk**x*%x

5
6
7 ** Initialize a 5-bit field **
8

khkkhkhkhkhhkhhkhhkhhhhhhhhhhhhhhhhhhhhkhkk

9 00000000 0ABBCCDD .field 0Ah, 5

11 khkhkhkhkhhkhhkhhhhhhhkhhhhhhhhhhhhhkhkhx

12 ** Initialize a 4-bit field *x
13 ** in a new word. **
14 ER R R I I R R I I I I I R I I
15 00000004 0000000C .field 0Ch, 4

16

17 khkkhkhkhkhhkhhkhhkhhhhhhhhhhhhhhhhhhhhkhkx

18 ** Initialize a 3-bit field *x
19 khkkkkhkkkhkhkhkhkhkhhkdhhkhkhkhkhkhkhhkhkhkhhhkhhkdkdkkkxkxx
20 00000004 0000001C x: .field 01h, 3

21

22 khkkkkhkkkhkhkhkhkhkhhkhhkhkhkhkhkhkhhkhkhkhkhhkhkhkdkdkkhkxkxx
23 * % Initialize a 32-bit field * %
24 *x rel ocatable field in the * %
25 ** next word **

26 khkkhkhkhkhkhkhhkhhkhhhhhhhhhhhhhhhhhhhhkhkk

27 00000008 00000004 .field x

96 Assembler Directives

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

; Preliminary
l
‘U TEXAS
INSTRUMENTS
www.ti.com
Directives Reference
Figure 4-6. The .field Directive

Word Contents Code
31302928272625242322212019181716 1514131211109 8 7 6 543 2 1 0

@o | 10111011110011001101110 1| -'ed0BBEC 24

24-bit field

31302928272625242322212019181716 1514131211109 8 7 6 54 3 2 1 0

o | 01010/101110111100110011011 | -fierdoan s

\//
5-bit field
24-bitfield

31302928272625242322212019181716 1514131211109 8 7 6 54 3 2 1 0

©0 fooolo1o010/101112011110011200112011102] field 0 4
31302928272625242322212019181716 1514131211109 8 7 6 54 3 2 1 0

1| 110 0
\—V—/
4-bit field

31302928272625242322212019181716 1514131211109 8 7 6 54 3 2 1 0

@1 | oo1d1100| .fierd o1n 3

——
3-bit field

31302928272625242322212019181716 1514131211109 8 7 6 54 3 2 1 0

@©1 [0000000000000000000000000[0011100] .fietd «
8
0

31302928272625242322212019181716 1514131211109 8 7 6 54 3 2 1 0
2 [0000000000000000000000000000010 0

float Initialize Single-Precision Floating-Point Value
Syntax float value [, ...,value,]
Description The .float directive places the IEEE single-precision floating-point representation of a

single floating-point constant into a word in the current section. The value must be a
floating-point constant or a symbol that has been equated to a floating-point constant.
Each constant is converted to a floating-point value in IEEE single-precision 32-bit
format.

The 32-bit value is stored exponent byte first, most significant byte of fraction second,
and least significant byte of fraction third, in the format shown in Eiqure 4-7.

Figure 4-7. Single-Precision Floating-Point Format

|S|EEEEEEEE|MMMMMMMMMMMMMMMMMMMMMMM'

31 23 0

value = (-1)S x (1.0 + mantissa) x (2)exponent-127

When you use .float in a .struct/.endstruct sequence, .float defines a member's size; it
does not initialize memory. For more information, see the [struct/.endstruct/.tag topid .

Example Following are examples of the .float directive:
1 00000000 E9045951 .float -1.0e25
2 00000004 40400000 .float 3
3 00000008 42F60000 .float 123
SPRU186P—-October 2006 Assembler Directives 97

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

.global/.def/.ref

Syntax

Description

Example

Identify Global Symbols

.global symbol,], ..., symbol,]
.def symbol,], ..., symbol,]
-ref symboly[, ... , symbol,]

Three directives identify global symbols that are defined externally or can be referenced
externally:

The .def directive identifies a symbol that is defined in the current module and can be
accessed by other files. The assembler places this symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current module but is defined in
another module. The linker resolves this symbol's definition at link time.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, .bss, or .usect directive. As with all symbols, if a
global symbol is defined more than once, the linker issues a multiple-definition error. The
.ref directive always creates a symbol table entry for a symbol, whether the module uses
the symbol or not; .global, however, creates an entry only if the module actually uses the
symbol.

A symbol can be declared global for either of two reasons:

» If the symbol is not defined in the current module (which includes macro, copy, and
include files), the .global or .ref directive tells the assembler that the symbol is
defined in an external module. This prevents the assembler from issuing an
unresolved reference error. At link time, the linker looks for the symbol's definition in
other modules.

» If the symbol is defined in the current module, the .global or .def directive declares
that the symbol and its definition can be used externally by other modules. These
types of references are resolved at link time.

This example shows four files. The filel.Ist and file2.Ist refer to each other for all symbols
used; file3.Ist and file4.Ist are similarly related.

The filel.Ist and file3.Ist files are equivalent. Both files define the symbol INIT and
make it available to other modules; both files use the external symbols X, Y, and Z. Also,
filel.Ist uses the .global directive to identify these global symbols; file3.Ist uses .ref and
.def to identify the symbols.

The file2.Ist and file4.Ist files are equivalent. Both files define the symbols X, Y, and Z
and make them available to other modules; both files use the external symbol INIT. Also,
file2.Ist uses the .global directive to identify these global symbols; file4.Ist uses .ref and
.def to identify the symbols.

filel.lst

A obal synbol defined in this file
.global INT
d obal synbols defined in file2.1st
.global X VY, Z
00000000 INIT:
00000000 00902058 ADD. L1 0x01, A4, A1
00000004 00000000! .word X

P OOWO~NOOUDMWNDNLPER

el

.end

98 Assembler Directives

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

INSTRUMENTS

www.ti.com

Preliminary

.global/.def/.ref — Identify Global Symbols

file2.Ist

1
2
3
4
5
6
7
8

9
10
11
12

file3.Ist

oO~NO O~ WNBRE

©

10
11

filed.Ist

00000000

00000000
00000000
00000004

00000000

00000001 X
00000002 Y:
00000003 Z:
00000000!

d obal

d obal

d obal

d obal

I'NIT:

00902058
00000000!

00000001 X
00000002 Y:
00000003 Z:
00000000!

d obal

d obal

synbols defined in this file

. gl obal
synbol
. gl obal
. set

. set

. set
.word

.end

synbol

ADD. L1 0x01, A4, Al

.wor d

.end

XY, Z

defined in filel.lst

INIT
1
2
3
INIT

defined in this file
.def INT
synbols defined in file4.lst
.ref XY, Z

X

synbols defined in this file

.def X, VY, Z

synbol defined in file3.Ist
.ref INIT

. set 1

. set 2

. set 3

.wor d INIT

.end

SPRU186P—October 2006

Bubmit Documentafion FeedbacK

Assembler Directives

99

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

.half/.short/.uhalf/.ushort
Initialize 16-Bit Integers

Syntax .half value,], ..., value,]
.short value,[, ... , value,]
.uhalf value,], ... , value,]
.ushort valuey|, ... , value,]

Description The .half, .uhalf, .short, and .ushort directives place one or more values into
consecutive halfwords in the current section. Each value is placed in a 2-byte slot by
itself. A value can be either:

e An expression that the assembler evaluates and treats as a 16-bit signed or unsigned
number

» A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 16-bit field,
which is padded with Os.

The assembler truncates values greater than 16 bits. You can use as many values as fit

on a single line, but the total line length cannot exceed 200 characters.

If you use a label with .half or .short, it points to the location where the assembler places

the first byte.

The .half and .short directives perform a halfword (16-bit) alignment before data is

written to the section. This guarantees that data resides on a 16-bit boundary.

When you use .half or .short in a .struct/.endstruct sequence, they define a member's

size; they do not initialize memory. For more information, see the [struct/.endstruct/.taq

fopid .

Example In this example, .half is used to place 16-bit values (10, -1, abc, and a) into consecutive
halfwords in memory; .short is used to place 16-bit values (8, -3, def, and b) into
consecutive halfwords in memory. The label STRN has the value 100ch, which is the
location of the first initialized halfword for .short.

1 00000000 .space 100h * 16

2 00001000 0000000A .half 10, -1, "abc", 'a'
00001002 000OFFFF
00001004 00000061
00001006 00000062
00001008 00000063
0000100a 00000061

3 0000100c 00000008 STRN .short 8, -3, "def", 'b'
0000100e 0000FFFD
00001010 00000064
00001012 00000065
00001014 00000066
00001016 00000062

100 Assembler Directives SPRU186P-0ctober 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.ifl.elseif/.else/.endif
Assemble Conditional Blocks

Syntax .if well-defined expression
[.elseif well-defined expression]
[.else]
.endif

Description Four directives provide conditional assembly:

The .if directive marks the beginning of a conditional block. The well-defined expression
is a required parameter.

« If the expression evaluates to true (nonzero), the assembler assembles the code that
follows the expression (up to a .elseif, .else, or .endif).

» If the expression evaluates to false (0), the assembler assembles code that follows a
.elseif (if present), .else (if present), or .endif (if no .elseif or .else is present).

The .elseif directive identifies a block of code to be assembled when the .if expression is
false (0) and the .elseif expression is true (nonzero). When the .elseif expression is
false, the assembler continues to the next .elseif (if present), .else (if present), or .endif
(if no .elseif or .else is present). The .elseif directive is optional in the conditional block,
and more than one .elseif can be used. If an expression is false and there is no .elseif
statement, the assembler continues with the code that follows a .else (if present) or a
.endif.

The .else directive identifies a block of code that the assembler assembles when the .if
expression and all .elseif expressions are false (0). The .else directive is optional in the
conditional block; if an expression is false and there is no .else statement, the assembler
continues with the code that follows the .endif.

The .endif directive terminates a conditional block.

The .elseif and .else directives can be used in the same conditional assembly block, and
the .elseif directive can be used more than once within a conditional assembly block.

For information about relational operators, see [Section 3.9.4, Conditional Expressions.

Example This example shows conditional assembly:
1 00000001 SYML . set 1
2 00000002 SYM2 . set 2
3 00000003 SYMB . set 3
4 00000004 SYwms . set 4
5
6 I f_4: Lif SYME = SYme * Syme
7 00000000 00000004 .byte SYM4 ; Equal val ues
8 .el se
9 .byte SYMR * Syme ; Unequal val ues
10 .endif
11
12 If_5: Jif SYML <; = 10
13 00000001 0000000A . byte 10 ; Less than / equal
14 .el se
15 .byte SYmML ; Greater than
16 .endif
17
18 If_6: i f SYMB * SYM2 != SYM4 + SYM2
19 .byte SYMB * SYme ; Unequal val ue
20 .el se
21 00000002 00000008 . byte SYM4 + SYM4 ; Equal val ues
22 .endif
23
24 If_7: Jif SYML = SYM
25 . byte SYML
SPRU186P—0October 2006 Assembler Directives 101

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Directives Reference
26 .elseif SYM + SYMB = 5
27 00000003 00000005 .byte SYM2 + SYMB
28 .endi f
.int/.long/.word/.uint/.uword
Initialize 32-Bit Integers
Syntax .int value4][, ... , value,]
Jong value[, ... , value,]
word value,], ..., value,]
.uint valueq], ..., value]
.uword valueq], ..., value,]
Description The .int, .uint, .long, .word and .uword directives place one or more values into

consecutive words in the current section. Each value is placed in a 32-bit word by itself
and is aligned on a word boundary. A value can be either:

» An expression that the assembler evaluates and treats as a 32-bit signed or unsigned
number

» A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 32-bit field,
which is padded with Os.

A value can be either an absolute or a relocatable expression. If an expression is
relocatable, the assembler generates a relocation entry that refers to the appropriate
symbol; the linker can then correctly patch (relocate) the reference. This allows you to
initialize memory with pointers to variables or labels.

You can use as many values as fit on a single line (200 characters). If you use a label
with .int, .long, or .word, it points to the first word that is initialized.

When you use .int, .long, or .word directives in a .struct/.endstruct sequence, they define
a member's size; they do not initialize memory. For more information, see the
Istruct/.endstruct/.tag topiqg .

Example 1 This example uses the .int directive to initialize words. Notice that the symbol SYMPTR
puts the symbol's address in the object code and generates a relocatable reference
(indicated by the - character appended to the object word).

1 00000000 .space 73h

2 00000000 .bss PAGE, 128

3 00000080 .bss SYMPTR 3

4 00000074 003Cl2E4 |INST: LDWD2 *++B15[0], A0

5 00000078 0000000A .int 10, SYMPTR -1, 35 + 'a', INST
0000007c 00000080-
00000080 FFFFFFFF
00000084 00000084
00000088 00000074

Example 2 This example initializes two 32-bit fields and defines DATL1 to point to the first location.
The contents of the resulting 32-bit fields are FFFABCDh and 141h.
1 00000000 FFFFABCD DAT1: .long OFFFFABCDh,' A’ +100h

00000004 00000141

Example 3 This example initializes five words. The symbol WordX points to the first word.

1 00000000 00000C80 ;WrdX .word 3200, 1+ AB', -' AF', OF410h, "' A
00000004 00004242
00000008 FFFFB9BF
0000000c 000OF410
00000010 00000041

102 Assembler Directives SPRU186P—0October 2006
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Directives Reference

Jabel

Syntax

Description

Example

Data Size of longs

Note: For the C6000 C/C++ compiler, a long data value is 40 bits. For the
C6000 assembler, a long data value is 32 bits. Therefore, the .long
directive treats values assigned to it as 32-bit values.

Create a Load-Time Address Label

.label symbol

The .label directive defines a special symbol that refers to the load-time address rather
than the run-time address within the current section. Most sections created by the
assembler have relocatable addresses. The assembler assembles each section as if it
started at 0, and the linker relocates it to the address at which it loads and runs.

For some applications, it is desirable to have a section load at one address and run at a
different address. For example, you may want to load a block of performance-critical
code into slower memory to save space and then move the code to high-speed memory
to run it. Such a section is assigned two addresses at link time: a load address and a run
address. All labels defined in the section are relocated to refer to the run-time address
so that references to the section (such as branches) are correct when the code runs.

The .label directive creates a special label that refers to the load-time address. This
function is useful primarily to designate where the section was loaded for purposes of
the code that relocates the section.

This example shows the use of a load-time address label.

sect ".exanp"
.l abel exanp_load ; |oad address of section

start: ; run address of section
<code>

finish: ; run address of section end
.l abel exanp_end ; |oad address of section end

For more information about assigning run-time and load-time addresses in the linker, see
Bection 7.9, Specifying a Section's Run-Time Address

SPRU186P—October 2006

Assembler Directives 103

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Jlength/.width

Set Listing Page Size

Syntax Iength [page length]
.width [page width]
Description Two directives allow you to control the size of the output listing file.
The .length directive sets the page length of the output listing file. It affects the current
and following pages. You can reset the page length with another .length directive.
» Default length: 60 lines. If you do not use the .length directive or if you use the
.length directive without specifying the page length, the output listing length defaults
to 60 lines.
e Minimum length: 1 line
* Maximum length: 32 767 lines
The .width directive sets the page width of the output listing file. It affects the next line
assembled and the lines following. You can reset the page width with another .width
directive.
» Default width: 132 characters. If you do not use the .width directive or if you use the
.width directive without specifying a page width, the output listing width defaults to
132 characters.
* Minimum width: 80 characters
e Maximum width: 200 characters
The width refers to a full line in a listing file; the line counter value, SPC value, and
object code are counted as part of the width of a line. Comments and other portions of a
source statement that extend beyond the page width are truncated in the listing.
The assembler does not list the .width and .length directives.
Example The following example shows how to change the page length and width.
* % Page |l ength = 65 lines * %
*x Page width = 85 characters *x
.length 65
.width 85
*x Page length = 55 lines *x
*x Page wi dth = 100 characters *x
.length 55
.width 100
104 Assembler Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Directives Reference

Jdist/.nolist

Syntax

Description

Example

Start/Stop Source Listing

list

.nolist
Twodirectivesenableyoutocontroltheprintingofthesourcelisting:
The .list directive allows the printing of the source listing.

The .nolist directive suppresses the source listing output until a .list directive is
encountered. The .nolist directive can be used to reduce assembly time and the source
listing size. It can be used in macro definitions to suppress the listing of the macro
expansion.

The assembler does not print the .list or .nolist directives or the source statements that
appear after a .nolist directive. However, it continues to increment the line counter. You
can nest the .list/.nolist directives; each .nolist needs a matching .list to restore the
listing.

By default, the source listing is printed to the listing file; the assembler acts as if the .list
directive had been used. However, if you do not request a listing file when you invoke
the assembler by including the -al option on the command line (see Bection 3.3, Invoking
the Assembler), the assembler ignores the .list directive.

This example shows how the .list and .nolist directives turn the output listing on and off.
The .nolist, the table: .data through .byte lines, and the .list directives do not appear in
the listing file. Also, the line counter is incremented even when source statements are
not listed.

Source file:
.data
.space 0CCh
.text
ABS A0, Al
.nolist

table: .data
.word -1
.byte OFFh
st
.text
\Y A0, Al
.data

coef f .wor d 00h, Oah, Obh

Listing file:
1 00000000 .data
2 00000000 .space 0CCh
3 00000000 . text
4 00000000 00800358 ABS A0, Al
5
13
14 00000004 . text
15 00000004 008001A0 W A0, Al
16 000000d1 .data

17 000000d4 00000000 coeff .word 00h, Oah, Obh
000000d8 0000000A
000000dc 0000000B

SPRU186P—October 2006

Assembler Directives 105

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Jloop/.endloop/.break

Syntax

Description

Example

Assemble Code Block Repeatedly

.loop [well-defined expression]
.break [well-defined expression]
.endloop

Three directives allow you to repeatedly assemble a block of code:

The .loop directive begins a repeatable block of code. The optional expression
evaluates to the loop count (the number of loops to be performed). If there is no
well-defined expression, the loop count defaults to 1024, unless the assembler first
encounters a .break directive with an expression that is true (nonzero) or omitted.

The .break directive, along with its expression, is optional. This means that when you
use the .loop construct, you do not have to use the .break construct. The .break directive
terminates a repeatable block of code only if the well-defined expression is true
(nonzero) or omitted, and the assembler breaks the loop and assembles the code after
the .endloop directive. If the expression is false (evaluates to 0), the loop continues.

The .endloop directive terminates a repeatable block of code; it executes when the
.break directive is true (nonzero) or when the number of loops performed equals the loop
count given by .loop.

This example illustrates how these directives can be used with the .eval directive. The
code in the first six lines expands to the code immediately following those six lines.

1

OO wWN

PR RPRPPPRPRPRPRPEPEPRPRPRPRPPRPPR

00000000

00000004

00000008

0000000c

00000010

00000014

00000000

00000064

000000C8

0000012C

00000190

000001F4

COEF

. eval
.1 oop
.wor d
. eval

. break
. endl oop
.wor d
.eva

. break
.wor d
.eva

. break
.wor d
.eva

. break
.wor d
.eva

. break
.wor d
.eva

. break
.wor d
.eva

. break

0, x

x*100
x+1, X
X =6

0*100
0+1, x
1 =6
1*100
1+1, x
2 =6
2*100
2+1, X
3 =6
3*100
3+1, X
4 =6
4*100
4+1, X
5=6
5*100
5+1, X
6 =6

106 Assembler Directives

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Directives Reference

.macro/.endm

Syntax

Description

.mlib

Syntax

Description

Example

Define Macro

macname .macro [parameter,][, ... parameter,]]
model statements or macro directives
.endm
The .macro and .endm directives are used to define macros.

You can define a macro anywhere in your program, but you must define the macro
before you can use it. Macros can be defined at the beginning of a source file, in an
.include/.copy file, or in a macro library.

macname names the macro. You must place the name in the source
statement's label field.

.macro identifies the source statement as the first line of a macro definition.
You must place .macro in the opcode field.

[parameters] are optional substitution symbols that appear as operands for the
.macro directive.

model statements are instructions or assembler directives that are executed each time
the macro is called.

macro directives are used to control macro expansion.
.endm marks the end of the macro definition.

Macros are explained in further detail in Chapter 5, Macro Language.
Define Macro Library

.mlib ["]filename["]

The .mlib directive provides the assembler with the filename of a macro library. A macro
library is a collection of files that contain macro definitions. The macro definition files are
bound into a single file (called a library or archive) by the archiver.

Each file in a macro library contains one macro definition that corresponds to the name
of the file. The filename of a macro library member must be the same as the macro
name, and its extension must be .asm. The filename must follow host operating system
conventions; it can be enclosed in double quotes. You can specify a full pathname (for
example, c:\320tools\macs.lib). If you do not specify a full pathname, the assembler
searches for the file in the following locations in the order given:

1. The directory that contains the current source file
2. Any directories named with the -1 assembler option
3. Any directories specified by the C6X_A_DIR or A_DIR environment variable

For more information about the -I option, C6X_A_DIR, and A_DIR, see [Section 3.4,
Naming Alternate Directories for Assembler Input.

When the assembler encounters a .mlib directive, it opens the library specified by the
filename and creates a table of the library's contents. The assembler enters the names
of the individual library members into the opcode table as library entries. This redefines
any existing opcodes or macros that have the same name. If one of these macros is
called, the assembler extracts the entry from the library and loads it into the macro table.
The assembler expands the library entry in the same way it expands other macros, but it
does not place the source code into the listing. Only macros that are actually called from
the library are extracted, and they are extracted only once.

For more information on macros and macro libraries, see Chapter §, Macro Language.

This example creates a macro library that defines two macros, incl and decl. The file

SPRU186P—October 2006

Assembler Directives 107

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

.mlist/. mnolist

incl.asm contains the definition of incl, and decl.asm contains the definition of decl.

incl.asm decl.asm
* Macro for increnenting * Macro for decrenenting
incl .macro A decl .macro A
ADD A 1, A SUB A 1A
.endm .endm

Use the archiver to create a macro library:

ar6x -a mac incl.asmdecl.asm

Now you can use the .mlib directive to reference the macro library and define the incl
and decl macros:

1 .mib "mac.lib"
2
3 * Macro Call
4 00000000 incl A0
1 00000000 000021A0 ADD A0, 1, A0
5
6 * Macro Call
7 00000004 decl BO
1 00000004 0003E1A2 SUB BO, 1, BO

Start/Stop Macro Expansion Listing

Syntax .mlist
.mnolist

Description Two directives enable you to control the listing of macro and repeatable block
expansions in the listing file:

The .mlist directive allows macro and .loop/.endloop block expansions in the listing file.
The .mnolist directive suppresses macro and .loop/.endloop block expansions in the
listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

For more information on macros and macro libraries, see Chapter 3, Macro Language.
For more information, see the [Toop/.break/.endloop topid .

Example This example defines a macro named STR_3. The first time the macro is called, the
macro expansion is listed (by default). The second time the macro is called, the macro
expansion is not listed, because a .mnolist directive was assembled. The third time the
macro is called, the macro expansion is again listed because a .mlist directive was
assembled.

1 STR 3 .macro P1, P2, P3
2 .string ":pl:", ":p2:", ":p3:"
3 .endm
4
5 00000000 STR 3 "as", "I", "anf
1 00000000 0000003A .string ":pl:", ":p2:", ":p3:"
00000001 00000070
00000002 00000031
00000003 0000003A
00000004 0000003A
00000005 00000070
00000006 00000032
00000007 0000003A
00000008 0000003A
00000009 00000070
0000000a 00000033
0000000b 0000003A
6 .mol i st
108 Assembler Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

; Preliminary
l
‘U TEXAS
INSTRUMENTS
www.ti.com
Directives Reference
7 0000000c STR 3 "as", "I", "anf
8 .mist
9 00000018 STR 3 "as", "I", "anf
1 00000018 0000003A .string ":pl:", ":p2:", ":p3:"
00000019 00000070
0000001a 00000031
0000001b 0000003A
0000001c 0000003A
0000001d 00000070
0000001e 00000032
0000001f 0000003A
00000020 0000003A
00000021 00000070
00000022 00000033
00000023 0000003A
.newblock Terminate Local Symbol Block
Syntax .newblock
Description The .newblock directive undefines any local labels currently defined. Local labels, by
nature, are temporary; the .newblock directive resets them and terminates their scope.
A local label is a label in the form $n, where n is a single decimal digit, or name?, where
name is a legal symbol name. Unlike other labels, local labels are intended to be used
locally, cannot be used in expressions, and do not qualify for branch expansion if used
with a branch. They can be used only as operands in 8-bit jump instructions. Local labels
are not included in the symbol table.
After a local label has been defined and (perhaps) used, you should use the .newblock
directive to reset it. The .text, .data, and .sect directives also reset local labels. Local
labels that are defined within an include file are not valid outside of the include file.
For more information on the use of local labels, see Béection 3.8.4, Local Labels.
Example This example shows how the local label $1 is declared, reset, and then declared again.

1 .global tablel, table2
2

3 00000000 00000028! MVKL tabl el, AO

4 00000004 00000068! MVKH tabl el, AO
5 00000008 008031A9 MVK 99, Al

6 0000000c 010848C0 || ZERO A2

7

8 00000010 80000212 $1:[Al] B $1

9 00000014 01003674 STW A2, *A0++

10 00000018 0087E1A0 SuB Al, 1, Al

11 0000001c 00004000 NOP 3

12

13 .newbl ock ; undefine $1
14

15 00000020 00000028! MVKL tabl e2, AO

16 00000024 00000068! MVKH tabl e2, AO

17 00000028 008031A9 MVK 99, Al

18 0000002c 010829C0 || SuUB A2,1, A2

19

20 00000030 80000212 $1:[Al] B $1

21 00000034 01003674 STW A2, *A0++

22 00000038 0087E1A0 SuB Al, 1, Al

23 0000003c 00004000 NOP 3

SPRU186P—October 2006

Bubmit Documentafion FeedbacK

Assembler Directives

109

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

.nocmp

Syntax

Description

Example

.option

Syntax

Description

Example

Do Not Utilize 16-Bit Instructions in Section

.nocmp

The C6400+ .nocmp directive instructs the compiler to not utilize 16-bit instructions for
the code section .nocmp appears in. The .nocmp directive can appear anywhere in the
section.

In the example, the section one is not compressed, whereas section two is compressed.

.sect "one"
LDW *A4, A5
LDW *B4, A5

. nocnp

NOP 4

ADD A4, A5, A6
ADD B4, B5, B6

NOP

.sect "two"
ADD A4, A5, A6
NOP

NOP

Select Listing Options

.option option,[, option,, . . .]

The .option directive selects options for the assembler output listing. The options must
be separated by commas; each option selects a listing feature. These are valid options:

A

U Oz r T O

= -

turns on listing of all directives and data, and subsequent expansions, macros,
and blocks.

limits the listing of .byte and .char directives to one line.

turns off the listing of certain directives (same effect as .drnolist).
limits the listing of .half and .short directives to one line.

limits the listing of .long directives to one line.

turns off macro expansions in the listing.

turns off listing (performs .nolist).

turns on listing (performs .list).

resets the B, H, L, M, T, and W directives (turns off the limits of B, H, L, M, T,
and W).

limits the listing of .string directives to one line.
limits the listing of .word and .int directives to one line.

produces a cross-reference listing of symbols. You can also obtain a
cross-reference listing by invoking the assembler with the -x option (see

Bection 3.3).

Options are not case sensitive.

This example shows how to limit the listings of the .byte, .char, .int, .word, and .string
directives to one line each.

1 khkkkkhkkkhkhkkhkkhkhkkhkhkkhhkhhkhkhhkkhkhkkhhkdhhkhhkhhkdhkhkhxkxkx%x
2 ** |imt the listing of .byte, .char, **
3 *x .int, .word, and .string **

110 Assembler Directives

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

@ Preliminary
TEXAS
INSTRUMENTS
www.ti.com
Directives Reference
4 > directives to 1 |line each. >
5 khkkhkkhkkhkkhkkhkkhkkhkkhhkkkkkk*kk*k*x*%
6 .option B, W T
7 00000000 000000BD .byte -'C, 0BOh, 5
8 00000003 000000BC .char -'D, 00h, 6
9 00000008 0000000A .int 10, 35 + 'a', "abc"
10 0000001c AABBCCDD .long OAABBCCDDh, 536 + 'A
00000020 00000259
11 00000024 000015AA .word 5546, 78h
12 0000002c 00000052 .string "Registers"
ii kkhkkkkkhkkkkkkkkkkkkk*x
15 > Reset the listing options. >
16 khkkhkkhkkhkkhkkhkkhkkhkhkkhkkkk*k*k*kk*k*x*%
17 .option R
18 00000035 000000BD .byte -'C, 0BOh, 5
00000036 000000B0
00000037 00000005
19 00000038 000000BC .char -'D, 00h, 6
00000039 00000000
0000003a 00000006
20 0000003c 0000000A .int 10, 35 + 'a', "abc"
00000040 00000084
00000044 00000061
00000048 00000062
0000004c 00000063
21 00000050 AABBCCDD .long OAABBCCDDh, 536 + 'A
00000054 00000259
22 00000058 000015AA .word 5546, 78h
0000005¢c 00000078
23 00000060 00000052 .string "Registers"
00000061 00000065
00000062 00000067
00000063 00000069
00000064 00000073
00000065 00000074
00000066 00000065
00000067 00000072
00000068 00000073
.page Eject Page in Listing
Syntax .page
Description The .page directive produces a page eject in the listing file. The .page directive is not
printed in the source listing, but the assembler increments the line counter when it
encounters the .page directive. Using the .page directive to divide the source listing into
logical divisions improves program readability.
Example This example shows how the .page directive causes the assembler to begin a new page

of the source listing.

Source file
.title

. page
Listing file:
TMS320C6x COFF Assenbl er

Ver si on X. XX

"x*x*x* Pgage Directive Exanple ****"

Tue Apr 14 17:16:51 1997

Copyright © 1996-1997 Texas |nstrunents | ncor porated

xx Page Directive Exanple ****

PAGE

SPRU186P—October 2006

Bubmit Documentafion FeedbacK

Assembler Directives

111

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Directives Reference

2 ;

3 ;

4 ; .
TMS320C6x COFF Assenbl er Version X. XX Tue Apr 14 17:16:51 1997
Copyright © 1996-1997 Texas Instruments | ncor porated
**** Page Directive Exanple **** PAGE 2

.sect

Syntax

Description

Example

No Errors, No Warni ngs
Assemble Into Named Section

.sect "section name"

The .sect directive defines a named section that can be used like the default .text and
.data sections. The .sect directive tells the assembler to begin assembling source code
into the named section.

The section name identifies the section. The section name is significant to 200
characters and must be enclosed in double quotes. A section name can contain a
subsection name in the form section name:subsection name.

For more information about COFF sections, see [Chapter 4, Introduction to Common
Object File Format.

This example defines one special-purpose section, vars, and assembles code into it.

1 khkkkkhkkkhkhkhkkhhkkhhkhhkhkhhkhhdhhkhhkhhkhhhhhkdhdhxdkrhrhxdxdxx*x
2 *x Begi n assenbling into .text section. *x
3 kkhkkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkkkk*x*x
4 00000000 . text

5 00000000 OOOOO5EO ZERO A0

6 00000004 008425E0 ZERO Al

7

8 khkkhkkhkkhkkhkkhkkhkhhhkkkkk*kkk*k*k*x*x*%
9 *x Begi n assenbling into vars section. *x
10 khkkkkhkkkhkhkhkkhhkkhhkhhkhkhhkhhkdhhhhkhhkhhhrhkdhrdhxdkrhdhxdxdxx*x
11 00000000 .sect "vars"

12 00000000 4048F5C3 pi .float 3.14

13 00000004 000007D0 nax .int 2000

14 00000008 00000001 min .int 1

15

16 khkkkkhkhkkhhkhkhhkkhhkhhkhkhhkkhhdhhhhkdhkhhhhhkdhdhxdrhrhxdxdxx*x
17 *x Resurme assenbling into .text section. **
18 kkhkkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkk*x*%x
19 00000008 . text

20 00000008 010000A8 MVK 1, A2

21 0000000c 018000A8 MVK 1, A3

22

23 khkkhkkhkkhkkhkkhkkhkkkkk*kk*k*k*k*k*x*%
24 *x Resume assenbling into vars section. *x
25 khkkhkkkhkhkkhkhkhkkhhkkhhkkhhkhkhhkhhdhhhhdhhhdhhkdhdkhxdrhrhxdxkxx*x
26 0000000c .sect "vars"

27 0000000c 00000019 count .short 25

112 Assembler Directives

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary

b TEXAS

INSTRUMENTS

www.ti.com
Directives Reference

.set/.equ Define Assembly-Time Constant

Syntax symbol .set value
symbol .equ value

Description The .set and .equ directives equate a constant value to a symbol. The symbol can then
be used in place of a value in assembly source. This allows you to equate meaningful
names with constants and other values. The .set and .equ directives are identical and
can be used interchangeably.
» The symbol is a label that must appear in the label field.
e The value must be a well-defined expression, that is, all symbols in the expression

must be previously defined in the current source module.

Undefined external symbols and symbols that are defined later in the module cannot be
used in the expression. If the expression is relocatable, the symbol to which it is
assigned is also relocatable.
The value of the expression appears in the object field of the listing. This value is not
part of the actual object code and is not written to the output file.
Symbols defined with .set or .equ can be made externally visible with the .def or .global
directive (see the [global/.defl.ref topid). In this way, you can define global absolute
constants.

Example This example shows how symbols can be assigned with .set and .equ.

1 khkkkkhkkkhkhkhkkhhkkhhkhhkhkhhkhhdhhkhhkhhkhhhhhkdhdhxdkrhrhxdxdxx*x
2 *x Equat e synbol AUX Rl to register Al *x
3 *x and use it instead of the register. *x
4 khkkkkhkhkkhkhkhkkhhkkhhkkhhkhkhhkhhkdhhhhkdhkhhdhhkdhdhxdkrhdhxdxkxx*x
5 00000001 AUX R1 .set Al

6 00000000 00B802D4 STH AUX_R1, *+B14

7

8 khkkhkkhkkhkkhkkhkkhkhhhkkkkk*kkk*k*k*x*x*%
9 *x Set symbol index to an integer expr. *x
10 > and use it as an imedi ate operand. >
11 khkkhkkhkkhkkhkkhkkhkhkhkkhkkkkk*kk*k*k*k*k*x*%
12 00000035 | NDEX .equ 100/2 +3

13 00000004 01001ADO ADDK I NDEX, A2

14

15 kkhkkkkhkkkkkkkkkkkkkkk*k*%x
16 ** Set synbol SYMIAB to a rel ocatable expr. **
17 *x and use it as a rel ocatabl e operand. * %
18 kkhkkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkk*x*%x
19 00000008 0000000A LABEL .word 10

20 00000009' SYMIAB .set LABEL + 1

21

22 khkkkkhkhkkhkhkhkkhhkkhhkhhkhkhhkhhkhhhkhhkhhdhhhhkdhdhxdrhrhxdxkxx*x
23 *x Set synmbol NSYMS equal to the synbol * %
24 *x INDEX and use it as you woul d | NDEX. *x
25 khkkhkkkhkhkkhkhkhkkhhkkhhkkhhkhkhhkhhdhhhhdhhhdhhkdhdkhxdrhrhxdxkxx*x
26 00000035 NSYMS .set | NDEX

27 0000000c 00000035 .word NSYMS

SPRU186P—October 2006

Assembler Directives 113

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Directives Reference
.space/.bes Reserve Space
Syntax [label] .space size in bytes
[label] .bes size in bytes
Description The .space and .bes directives reserve the number of bytes given by size in bytes in the

current section and fill them with Os. The section program counter is incremented to
point to the word following the reserved space.

When you use a label with the .space directive, it points to the first byte reserved. When
you use a label with the .bes directive, it points to the last byte reserved.

Example This example shows how memory is reserved with the .space and .bes directives.
1 khkkhkhkhkkhkhhkhkhhkhhhhkhkhhhkhkhhkkk*k*k*k*k*k*k*k*x*%x
2 *x Begin assenbling into the .text section. *x
3 khkkkkhkhkkhkhkhkkhhkkhhkkhhkhhhhhkhhkhhhhhkhhdhhkrhkhhdhrdhrdrddhdkhrdxhxxx*k
4 00000000 . text
5 kkhkkkhkkkkkkkkkkkkkkkk*x*%x
6 ** Reserve OF0 bytes (60 words in .text section). **
7 khkkhkhkkhkkhkkhhhhhhhhhhkhhkhhhkkhkkk*kk*kkk*k*x*%
8 00000000 .space OFOh
9 000000f 0 00000100 .word 100h, 200h

000000f 4 00000200

10 kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkkkkkkkkkkkkkkkk*x*%x
11 > Begi n assenbling into the .data section. >
12 khkkhkkkhkkhkkhhkhhkhhhhkhkhhhhhkkkk*k*k*k*k*k*k*x*%
13 00000000 .data
14 00000000 00000049 .string "In .data"

00000001 0000006E
00000002 00000020
00000003 0000002E
00000004 00000064
00000005 00000061
00000006 00000074
00000007 00000061

15 kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkk*x*%x
16 > Reserve 100 bytes in the .data section; >
17 ** RES_1 points to the first word **
18 *x that contains reserved bytes. *x
19 khkkkkhkhkkhkhkhkkhhkkhhkkhhkhhhkhhhhdhhhhkhhdhdhhkhhdhdrdkrhkdhxdhxdxhxxx*%
20 00000008 RES_1: .space 100
21 0000006c 0000000F .word 15
22 00000070 00000008" .word RES_1
23 khkhkhkhkhkhkhkhhhhhhhhhhhhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkk*k*k*k*kk*k*x*%x
24 *x Reserve 20 bytes in the .data section; *x
25 > RES 2 points to the last word >
26 *x that contains reserved bytes. *x
27 kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkhkkkkkkkkkkkkk*k*%x
28 00000087 RES _2: .bes 20
29 00000088 00000036 .word 36h
30 0000008c 00000087 .word RES_2

114 Assembler Directives SPRU186P—October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

; Preliminary
l
‘U TEXAS
INSTRUMENTS
www.ti.com
Directives Reference
.sslist/.ssnolist Control Listing of Substitution Symbols
Syntax .sslist
.ssnolist
Description Two directives allow you to control substitution symbol expansion in the listing file:
The .sslist directive allows substitution symbol expansion in the listing file. The
expanded line appears below the actual source line.
The .ssnolist directive suppresses substitution symbol expansion in the listing file.
By default, all substitution symbol expansion in the listing file is suppressed; the
assembler acts as if the .ssnolist directive had been used.
Lines with the pound (#) character denote expanded substitution symbols.
Example This example shows code that, by default, suppresses the listing of substitution symbol
expansion, and it shows the .sslist directive assembled, instructing the assembler to list
substitution symbol code expansion.
1 00000000 . bss X, 4
2 00000004 . bss y, 4
3 00000008 . bss z,4
4
5 addm .macro srcl,src2, dst
6 LDW *+Bl4(:srcl:), A0
7 LDW *+B14(:src2:), Al
8 NOP 4
9 ADD A0, AL, AO
10 STW AQ, *+B14(: dst:)
11 .endm
12
13 00000000 addm X,Y,Z
1 00000000 0000006C LDW *+B14(x), A0
1 00000004 0080016C LDW *+Bl4(y), Al
1 00000008 00006000 NOP 4
1 0000000c 000401E0 ADD A0, AL, AO
1 00000010 0000027C STW AO, *+B14(z)
14
15 .sslist
16 00000014 addm X, Y,z
1 00000014 0000006C- LDW *+B14(:srcl:), A0
LDW *+B14(x), A0
1 00000018 0080016C LDW *+Bl4(:src2:), Al
LDW *+Bl4(y), Al
1 0000001c 00006000 NOP 4
1 00000020 000401E0 ADD A0, AL, AO
1 00000024 0000027C STW AO, *+B14(: dst:)
STW A0, *+B14(z)
17
SPRU186P—-October 2006 Assembler Directives 115

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

.string

Syntax

Description

Examp

le

Initialize Text

.string {expr; | "string;"}[, ... , {expr, | "string,,"}]
The .string directive places 8-bit characters from a character string into the current
section. The expr or string can be one of the following:
* An expression that the assembler evaluates and treats as an 8-bit signed number.

» A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The assembler truncates any values that are greater than eight bits. You can have up to
100 operands, but they must fit on a single source statement line.

If you use a label with .string, it points to the location of the first byte that is initialized.

When you use .string in a .struct/.endstruct sequence, .string defines a member's size; it
does not initialize memory. For more information, see the [struct/.endstruct/.tag topid .

In this example, 8-bit values are placed into consecutive bytes in the current section.
The label Str_Ptr has the value Oh, which is the location of the first initialized byte.

1 00000000 00000041 Str_Ptr: .string "ABCD'
00000001 00000042
00000002 00000043
00000003 00000044
2 00000004 00000041 .string 41h, 42h, 43h, 44h
00000005 00000042
00000006 00000043
00000007 00000044
3 00000008 00000041 .string "Austin", "Houston"
00000009 00000075
0000000a 00000073
0000000b 00000074
0000000c 00000069
0000000d 0000006E
0000000e 00000048
0000000f 0000006F
00000010 00000075
00000011 00000073
00000012 00000074
00000013 0000006F
00000014 0000006E
4 00000015 00000030 .string 36 + 12

116

Assembler Directives

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Directives Reference

.struct/.endstruct/.tag
Declare Structure Type

Syntax

Description

[stag] .struct [expr]
[memy] element [expry]
[mem;] element [expr,]

[mem,] .tag stag [expr,]

[memy] element [expry]
[size] .endstruct
label .tag stag

The .struct directive assigns symbolic offsets to the elements of a data structure
definition. This allows you to group similar data elements together and let the assembler
calculate the element offset. This is similar to a C structure or a Pascal record. The
.struct directive does not allocate memory; it merely creates a symbolic template that can
be used repeatedly.

The .endstruct directive terminates the structure definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

e The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. A .stag is optional for .struct, but is required for .tag.

» The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

* The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

* The element is one of the following descriptors: .string, .byte, .char, .int, .half, .short,
.word, .long, .double, .float, .tag, or .field. All of these except .tag are typical
directives that initialize memory. Following a .struct directive, these directives
describe the structure element's size. They do not allocate memory. A .tag directive
is a special case because stag must be used (as in the definition of stag).

* The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

» The size is an optional label for the total size of the structure.

SPRU186P—October 2006

Assembler Directives 117

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

.struct/.endstruct/.tag — Declare Structure Type

” TEXAS
INSTRUMENTS

www.ti.com

Directives That Can Appear in a .struct/.endstruct Sequence

Note:

The only directives that can appear in a .struct/.endstruct sequence

are element descriptors, conditional assembly directives, and the
.align directive, which aligns the member offsets on word boundaries.
Empty structures are illegal.

The following examples show various uses of the .struct, .tag, and .endstruct directives.

Examplel 1 real _rec .struct ; stag
2 00000000 nom .int menberl = 0
3 00000004 den .int ; menber2 =1
4 00000008 real _l en .endstruct ; real _len =2
5
6 00000000 0080016C- LDW *+Bl4(real +real _rec.den), Al
7 ; access structure
8
9 00000000 .bss real, real _len ; allocate memrec
10
Example 2 11 cpl x_rec .struct stag
12 00000000 reali .tag real_rec ; menmberl =0
13 00000008 imagi .tag real _rec ; menber2 =2
14 00000010 cpl x_l en .endstruct cplx_len = 4
15
16 conplex .tag cplx_rec ; assign structure
17 attribute
18 00000008 .bss conplex, cplx_len ; allocate memrec
19
20 00000004 0100046C- LDW *+B14(conpl ex.imagi . nom, A2
21 ; access structure
22 00000008 0100036C- LDW *+Bl4(conplex.reali.den), A2
23 access structure
24 0000000c 018C4A78 CVMPEQ A2, A3, A3
Example 3 1 . struct ; no stag puts
2 ; menms into global
3 ; synbol table
4
5 00000000 X .byte ; create 3 dim
6 00000001 Y .byte ; tenpl ates
7 00000002 Z . byte
8 00000003 . endstruct
Example 4 1 bit_rec .struct stag
2 00000000 stream .string 64
3 00000040 bit7 .field 7 ; bit7 = 64
4 00000040 bit1l .field 9 bit9 = 64
5 00000042 bit5 .field 10 ; bits = 64
6 00000044 x_int .byte ; x_int = 68
7 00000045 bit_len .endstruct length = 72
8
9 bits .tag bit_rec
10 00000000 .bss bits, bit_len
11
12 00000000 0100106C- LDW *+Bl4(bits.bit7), A2
13 load field
14 00000004 0109E7A0 AND OFh, A2, A2 ; mask off garbage
118 Assembler Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Directives Reference

.tab

Syntax

Description

Example

Define Tab Size

.tab size

The .tab directive defines the tab size. Tabs encountered in the source input are

translated to size character spaces in the listing. The default tab size is eight spaces.

In this example, each of the lines of code following a .tab statement consists of a single
tab character followed by an NOP instruction.

Source file:

; default tab size

Listing file:

1

o~NOOA~WN

©

12
13
14

00000000
00000004
00000008

0000000c
00000010
00000014

00000018
0000001c
00000020

00000000
00000000
00000000

00000000
00000000
00000000

00000000
00000000
00000000

; default tab size
NOP
NOP
NOP
.tab4

.tab 16

SPRU186P—October 2006

Bubmit Documentafion FeedbacK

Assembler Directives

119

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

text

Syntax

Description

Examp

le

Assemble Into the .text Section

text

The .text directive tells the assembler to begin assembling into the .text section, which
usually contains executable code. The section program counter is set to 0 if nothing has
yet been assembled into the .text section. If code has already been assembled into the
.text section, the section program counter is restored to its previous value in the section.

The .text section is the default section. Therefore, at the beginning of an assembly, the
assembler assembles code into the .text section unless you use a .data or .sect directive
to specify a different section.

For more information about COFF sections, see Chapter 2, Introduction to Common
Object File Format.

This example assembles code into the .text and .data sections.

1 khkkhkhkhkhhkhhkhhhhhhhhhhhhkhhhhhhhkhhkhhhhkhkhkxx

** Begin assenbling into .data section. **
LR R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS RS ESEE]
00000000 .data
00000000 00000005 . byte 5,6
00000001 00000006

a b wnN

Khkhhkhhhkhhkhhkhhhhhkhhkhhhhhkhhkhhhhkhhkhhkhkhkxx

o0 ~N O

** Begin assenbling into .text section. **
9 khkkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhhkhhhkkhhkkhhkdhkhkhkhkhhkhkhxkx*k
10 00000000 . text
11 00000000 00000001 .byte 1
12 00000001 00000002 .byte 2,3

00000002 00000003
13

14 khkkhkhkhkhhkhhkhhhhhhhhhhhhhhhhhhhkhhkhdhhkhkhkxx

15 ** Resume assenbling into .data section.**
16 LR R R R R EEEEEEEEEEEEEEEEEEEEEEE SRS EEE RS RS ESEE]
17 00000002 .data
18 00000002 00000007 .byte 7,8

00000003 00000008
19

20 Khkhhkhhhkhhkhhkhhhhhkhhkhhhhhkhhkhhhhkhkhhkhkkkxx

21 ** Resume assenbling into .text section.**
22 khkkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhhkhhhkhhkkhhkdhkhkhhkdhkhkhxkx*k
23 00000003 . text

24 00000003 00000004 .byte 4

120

Assembler Directives

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

{'f TEXAS
INSTRUMENTS
www.ti.com
Directives Reference
title Define Page Title
Syntax title "string"
Description The .title directive supplies a title that is printed in the heading on each listing page. The
source statement itself is not printed, but the line counter is incremented.
The string is a quote-enclosed title of up to 64 characters. If you supply more than 64
characters, the assembler truncates the string and issues a warning:
*** WARNING |ine x: WO001: String is too long - will be truncated
The assembler prints the title on the page that follows the directive and on subsequent
pages until another .title directive is processed. If you want a title on the first page, the
first source statement must contain a .title directive.
Example In this example, one title is printed on the first page and a different title is printed on

succeeding pages.

Source file:
.title "**** Fast Fourier Transforns ****"

.title "**** Floating-Point Routines ****"

. page
Listing file:
TMS320C6x COFF Assenbl er Version X. XX Tue Apr 14 17:18:21 1997
Copyright © 1996-1997 Texas Instruments | ncor porated
% Fast Fourier Transforms **** PACE 1
2 ;
3 ;
4 ; .
TMS320C6x COFF Assenbl er Ver si on X. Xx Tue Apr 14 17:18:21 1997
Copyright © 1996-1997 Texas |nstrunents | ncor porated
**** F| oating-Point Routines **** PAGE 2

No Errors, No Warnings

SPRU186P—October 2006

Assembler Directives 121

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

.union/.endunion/.tag
Declare Union Type

Syntax

Description

[stag] .union [expr]
[memy] element [expry]
[mem;] element [exprq]

[mem,] .tag stag [expr,]

[mem,] element [expry]
[size] .endunion
label .tag stag

The .union directive assigns symbolic offsets to the elements of alternate data structure
definitions to be allocated in the same memory space. This enables you to define
several alternate structures and then let the assembler calculate the element offset. This
is similar to a C union. The .union directive does not allocate any memory; it merely
creates a symbolic template that can be used repeatedly.

A .struct definition can contain a .union definition, and .structs and .unions can be
nested.

The .endunion directive terminates the union definition.

The .tag directive gives structure or union characteristics to a label, simplifying the
symbolic representation and providing the ability to define structures or unions that
contain other structures or unions. The .tag directive does not allocate memory. The
structure or union tag of a .tag directive must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

* The utag is the union's tag. is the union's tag. Its value is associated with the
beginning of the union. If no utag is present, the assembler puts the union members
in the global symbol table with the value of their absolute offset from the top of the
union. In this case, each member must have a unique name.

e The expr is an optional expression indicating the beginning offset of the union.
Unions default to start at 0. This parameter can only be used with a top-level union. It
cannot be used when defining a nested union.

* The mem,,y is an optional label for a member of the union. This label is absolute and
equates to the present offset from the beginning of the union. A label for a union
member cannot be declared global.

* The element is one of the following descriptors: .byte, .char, .double, field, .float, .half,
.int, .long, .short, .string, .ubyte, .uchar, .uhalf, .uint, .ulong, .ushort, .uword, and
.word. An element can also be a complete declaration of a nested structure or union,
or a structure or union declared by its tag. Following a .union directive, these
directives describe the element's size. They do not allocate memory.

» The expr,,\ is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

* The size is an optional label for the total size of the union.

122

Assembler Directives

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

; Preliminary
l
‘U TEXAS
INSTRUMENTS
www.ti.com
.union/.endunion/.tag — Declare Union Type
Directives That Can Appear in a .union/.endunion Sequence
Note: The only directives that can appear in a .union/.endunion sequence
are element descriptors, structure and union tags, and conditional
assembly directives. Empty structures are illegal.
These examples show unions with and without tags.
Example 1 1 . gl obal enpl oyid
2 xanpl e . union ut ag
3 0000 ival .wor d ; menberl = int
4 0000 fval .float ; menber2 = fl oat
5 0000 sval .string ; nmenber3 = string
6 0002 real _Ilen .endunion ; real _len =2
7
8 000000 .bss enployid, real _Ilen ;allocate nmenory
9
10 enployid .tag xanple ; name an instance
11 000000 0000- ADD enployid.fval, A access uni on el enent
Example 2 1
2 . uni on ; utag
3 0000 x .long ; nmenberl = long
4 0000 vy .float ; menber2 = fl oat
5 0000 z .wor d ; menber3 = word
6 0002 size_u .endunion ; real _len =2
7

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Assembler Directives 123

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Directives Reference

Preliminary ” Texas
INSTRUMENTS

www.ti.com

.usect

Syntax

Description

Example

Reserve Uninitialized Space

symbol .usect "section name"”, size in bytes [, alignment[, bank offset]]

The .usect directive reserves space for variables in an uninitialized, named section. This
directive is similar to the .bss directive; both simply reserve space for data and that
space has no contents. However, .usect defines additional sections that can be placed
anywhere in memory, independently of the .bss section.

» The symbol points to the first location reserved by this invocation of the .usect
directive. The symbol corresponds to the name of the variable for which you are
reserving space.

e The section name is significant to 200 characters and must be enclosed in double
quotes. This parameter names the uninitialized section. A section name can contain
a subsection name in the form section name:subsection name.

» The size in bytes is an expression that defines the number of bytes that are reserved
in section name.

e The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. This boundary indicates the size of the slot
in bytes and can be set to any power of 2.

» The bank offset is an optional parameter that ensures that the space allocated to the
symbol occurs on a specific memory bank boundary. The bank offset value measures
the number of bytes to offset from the alignment specified before assigning the
symbol to that location.

Initialized sections directives (.text, .data, and .sect) end the current section and tell the
assembler to begin assembling into another section. A .usect or .bss directive
encountered in the current section is simply assembled, and assembly continues in the
current section.

Variables that can be located contiguously in memory can be defined in the same
specified section; to do so, repeat the .usect directive with the same section name and
the subsequent symbol (variable name).

For more information about COFF sections, see [Chapter 4, Introduction to Common
Object File Format.

This example uses the .usect directive to define two uninitialized, named sections, varl
and var2. The symbol ptr points to the first byte reserved in the varl section. The symbol
array points to the first byte in a block of 100 bytes reserved in varl, and dflag points to
the first byte in a block of 50 bytes in varl. The symbol vec points to the first byte
reserved in the var2 section.

shows how this example reserves space in two uninitialized sections, varl
and var2.

1 khkkhkkkhhkkhkhkhkkhhkkhhkkhhkhhhhhhhdhhkdhkdhhhhhhkdhdhxdrxhkdhrdhxdxhxxx*k
2 ** Assenble into .text section *x
3 kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkkkkkkkkkkk*x*%x
4 00000000 . text

5 00000000 008001A0 Y A0, Al

6

7 khkkkkhkhkkhkhkhkhkhkkhhkkhhkhhhhhhhdhhkhhdhhhhdhdhdhdrhkdhxdhxdxhxxx*k
8 *x Reserve 2 bytes in varl. *x
9 kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkk*x*%x
10 00000000 ptr .usect "varl",?2

11 00000004 0100004C- LDH *+Bl4(ptr),A2 ; still in .text

12

13 khkkkkhhkkhkhkhkhkhkkhhkhhkhhhhhkhhhhhhhdhdhddhdhdhrdrhkrhrdxdxhxxx*k
14 *x Reserve 100 bytes in varl *x
15 kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkkkkkkkkkkkkk*x*x
16 00000002 array .usect "varl", 100

17 00000008 01800128- MVK array, A3 ;ostill in .text

18 0000000c 01800068- MVKH array, A3

124 Assembler Directives

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

; Preliminary
l
‘U TEXAS
INSTRUMENTS
www.ti.com
Directives Reference
19
20 khkkhkhkkhkkhkhkhkhhkhkhkhkhkhkhkhhkhhkkkk*kk*kk*k*k*x*x*%
21 *x Reserve 50 bytes in varl *x
22 R SRR R S SRR R R EEEEEEEEEEEEEEEEEEEEE RS RS EE SRS EE S
23 00000066 dflag .usect "varl",50
24 00000010 02003328- MVK dfl ag, A4
25 00000014 02000068- MVKH df | ag, A4
26
27 kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkk*x*x
28 > Reserve 100 bytes in varl >
29 khkkhkhkkhkkhkkhkhkhkhkhhkhhkhkhkhhkhhkkkk*k*kk*k**x*x*%
30 00000000 vec .usect "var2", 100
31 00000018 0000002A- MVK vec, BO ;o ostill in .text
32 0000001c 0OOOOO006A- MVKH vec, BO
Figure 4-8. The .usect Directive
section varl section var2
ptr ——» vec —»
2 bytes
array —»
100 bytes
100 bytes
100 bytes reserved in var2
dflag —»
50 bytes
152 bytes reserved in varl
.var Use Substitution Symbols as Local Variables
Syntax var symy[, sym, ..., sym,]
Description The .var directive allows you to use substitution symbols as local variables within a

macro. With this directive, you can define up to 32 local macro substitution symbols
(including parameters) per macro.

The .var directive creates temporary substitution symbols with the initial value of the null
string. These symbols are not passed in as parameters, and they are lost after
expansion.

For more information on macros, see [Chapter 3, Macro Language.

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Assembler Directives

125

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Directives Reference
126 Assembler Directives SPRU186P—0October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

J@ TEXAS
INSTRUMENTS

The TMS320C6000™ assembler supports a macro language that
enables you to create your own instructions. This is especially useful
when a program executes a particular task several times. The macro

Preliminary

Chapter 5

SPRU186P—0October 2006

Macro Language

language lets you:

» Define your own macros and redefine existing macros

» Simplify long or complicated assembly code

» Access macro libraries created with the archiver

» Define conditional and repeatable blocks within a macro
» Manipulate strings within a macro

» Control expansion listing

Topic

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
59
5.10

Page

LT Ta (o [\Y/F= Ted do <] I 123
Defining Macroslooeeeeee oo ieeeeeee 123
Macro Parameters/Substitution Symbols[........... 129
[Yol do W] o) =T o [=1S] 134
Using Conditional Assembly in Macros|.............. 137
Using Labelsin Macros[...coeeeeeeeeieieieieeeeeeeene s 139
Producing Messages in Macros[.......coeeeeeeeene...... 149
Using Directives to Format the Output Listing[.... 147
Using Recursive and Nested Macros|.................. 147
Macro Directives Summary[..oooooieieeeieieieeeeieinsn.. 143

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Macro Language

127

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Using Macros

5.1

5.2

Using Macros

Programs often contain routines that are executed several times. Instead of repeating the source
statements for a routine, you can define the routine as a macro, then call the macro in the places where
you would normally repeat the routine. This simplifies and shortens your source program.

If you want to call a macro several times but with different data each time, you can assign parameters
within a macro. This enables you to pass different information to the macro each time you call it. The
macro language supports a special symbol called asubstitution symbol, which is used for macro
parameters. See Bection 5.3, Macro Parameters/Substitution Symbols, for more information.

Using a macro is a 3-step process.

Step 1. Define the macro. You must define macros before you can use them in your program. There
are two methods for defining macros:

a. Macros can be defined at the beginning of a source file or in an copy/include file. See Bection 5.7,
Defining Macros, for more information.

b. Macros can also be defined in a macro library. A macro library is a collection of files in archive format
created by the archiver. Each member of the archive file (macro library) may contain one macro
definition corresponding to the member name. You can access a macro library by using the .mlib
directive. For more information, see Bection 5.4, Macro Libraries.

Step 2. Call the macro. After you have defined a macro, call it by using the macro name as a mnemonic
in the source program. This is referred to as a macro call.

Step 3. Expand the macro. The assembler expands your macros when the source program calls them.
During expansion, the assembler passes arguments by variable to the macro parameters,
replaces the macro call statement with the macro definition, then assembles the source code. By
default, the macro expansions are printed in the listing file. You can turn off expansion listing by
using the .mnolist directive. For more information, see [Gection 5.9, Using Directives to Format
the Output Listing.

When the assembler encounters a macro definition, it places the macro name in the opcode table. This
redefines any previously defined macro, library entry, directive, or instruction mnemonic that has the same
name as the macro. This allows you to expand the functions of directives and instructions, as well as to
add new instructions.

Defining Macros

You can define a macro anywhere in your program, but you must define the macro before you can use it.
Macros can be defined at the beginning of a source file or in a .copy/.include file (see [Copy Source Filg);
they can also be defined in a macro library. For more information, see Bection 5.4, Macro Libraries.

Macro definitions can be nested, and they can call other macros, but all elements of the macro must be
defined in the same file. Nested macros are discussed in Beciion 5.9, Using Recursive and Nested
Macros.

A macro definition is a series of source statements in the following format:

macname .macro [parameter] [, ... ,parameter,]
model statements or macro directives
[.mexit]
.endm

macname names the macro. You must place the name in the source statement's label field.
Only the first 128 characters of a macro name are significant. The assembler
places the macro name in the internal opcode table, replacing any instruction or
previous macro definition with the same name.

128

Macro Language SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS
www.ti.com
Macro Parameters/Substitution Symbols

.macro is the directive that identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.

parameter;, are optional substitution symbols that appear as operands for the .macro directive.

parameter,, Parameters are discussed in Bection 5.3, Macro Parameters/Substitution Symbols.

model statements are instructions or assembler directives that are executed each time the macro is
called.

macro directives are used to control macro expansion.

.mexit is a directive that functions as a goto .endm. The .mexit directive is useful when
error testing confirms that macro expansion fails and completing the rest of the
macro is unnecessary.

.endm is the directive that terminates the macro definition.

5.3

shows the definition, call, and expansion of a macro.

Example 5-1. Macro Definition, Call, and Expansion

Macro definition: The following code defines a macro, sadd4, with four parameters:

sadd4 .macro rl1,r2,r3,r4

!

! sadd4 r1, r2 ,r3, r4

' rl=r1+7r2+7r3 + r4 (saturated)
!

SADD rl,r2,rl
SADD rl,r3,rl
SADD rl,rd4,rl
.endm

©O©oOo~NOoOOhsWNPRE

Macro call: The following code calls the sadd4 macro with four arguments:
10
11 00000000 sadd4 A0, Al, A2, A3

Macro expansion: The following code shows the substitution of the macro definition for the macro call.
The assembler substitutes A0, Al, A2, and A3 for the r1, r2, r3, and r4 parameters of sadd4.

1 00000000 00040278 SADD A0, A1, AO
1 00000004 00080278 SADD A0, A2, AO
1 00000008 000C0278 SADD A0, A3, A0

If you want to include comments with your macro definition but do not want those comments to appear in
the macro expansion, use an exclamation point to precede your comments. If you do want your comments
to appear in the macro expansion, use an asterisk or semicolon. See Bection 5.4, Producing Messages in
Macros, for more information about macro comments.

Macro Parameters/Substitution Symbols

If you want to call a macro several times with different data each time, you can assign parameters within
the macro. The macro language supports a special symbol, called a substitution symbol, which is used for
macro parameters.

Macro parameters are substitution symbols that represent a character string. These symbols can also be
used outside of macros to equate a character string to a symbol name (see Bection 3.8.6, Substitution
Symbols).

Valid substitution symbols can be up to 128 characters long and must begin with a letter. The remainder
of the symbol can be a combination of alphanumeric characters, underscores, and dollar signs.

SPRU186P—-October 2006 Macro Language 129
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

Substitution symbols used as macro parameters are local to the macro they are defined in. You can define
up to 32 local substitution symbols (including substitution symbols defined with the .var directive) per
macro. For more information about the .var directive, see Bection 5.3.4, Substitution Symbols as Local
Variables in Macros.

During macro expansion, the assembler passes arguments by variable to the macro parameters. The
character-string equivalent of each argument is assigned to the corresponding parameter. Parameters
without corresponding arguments are set to the null string. If the number of arguments exceeds the
number of parameters, the last parameter is assigned the character-string equivalent of all remaining
arguments.

If you pass a list of arguments to one parameter or if you pass a comma or semicolon to a parameter, you
must surround these terms with quotation marks .

At assembly time, the assembler replaces the macro parameter/substitution symbol with its corresponding
character string, then translates the source code into object code.

shows the expansion of a macro with varying numbers of arguments.
Example 5-2. Calling a Macro With Varying Numbers of Arguments

Macro definition:
Par ns .macro a,

o
nonon
Qoo

.endm

Calling the macro:

Par ns 100, | abel Par ns 100, | abel , x,y
a = 100 ; a = 100
b = | abel ; b = | abe
c="" ; c =Xy

Par s 100, , x Par ms " 100, 200, 300", x, y
a = 100 ; a = 100, 200, 300
b="" ; b = x
c =X ; c=y

Par ns ""Ustring""", X,y
a = "string"
b = x
c =y

5.3.1 Directives That Define Substitution Symbols

You can manipulate substitution symbols with the .asg and .eval directives.
» The .asg directive assigns a character string to a substitution symbol.

For the .asg directive, the quotation marks are optional. If there are no quotation marks, the assembler
reads characters up to the first comma and removes leading and trailing blanks. In either case, a
character string is read and assigned to the substitution symbol. The syntax of the .asg directive is:

‘ .asg["]character string["], substitution symbol

shows character strings being assigned to substitution symbols.

130 Macro Language SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

Example 5-3. The .asg Directive

. asg "A4", RETVAL ; return val ue

. asg "Bl4", PAGEPTR ; gl obal page pointer
. asg """Version 1.0""", version

.asg "pl, p2, p3", list

* The .eval directive performs arithmetic on numeric substitution symbols.
The .eval directive evaluates the expression and assigns the string value of the result to the
substitution symbol. If the expression is not well defined, the assembler generates an error and
assigns the null string to the symbol. The syntax of the .eval directive is:

‘ .eval well-defined expression , substitution symbol

shows arithmetic being performed on substitution symbols.

Example 5-4. The .eval Directive

. asg 1, counter

.loop 100

.word counter

.eval counter + 1,counter
. endl oop

In Example 5-4, the .asg directive could be replaced with the .eval directive (.eval 1, counter) without
changing the output. In simple cases like this, you can use .eval and .asg interchangeably. However, you
must use .eval if you want to calculate a value from an expression. While .asg only assigns a character
string to a substitution symbol, .eval evaluates an expression and then assigns the character string
equivalent to a substitution symbol.

See [Assign a Substitution Symbol for more information about the .asg and .eval assembler directives.

SPRU186P—-October 2006 Macro Language 131
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

5.3.2 Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make decisions on the basis of the string
value of substitution symbols. These functions always return a value, and they can be used in
expressions. Built-in substitution symbol functions are especially useful in conditional assembly
expressions. Parameters of these functions are substitution symbols or character-string constants.

In the function definitions shown in [[able 5-1], a and b are parameters that represent substitution symbols
or character-string constants. The term string refers to the string value of the parameter. The symbol ch
represents a character constant.

Table 5-1. Substitution Symbol Functions and Return Values

Function

Return Value

$symlen (a)
$symecmp (a,b)
$firstch (a,ch)
$lastch (a,ch)
Sisdefed (a)

$ismember (a,b)

$iscons (a)

$isname(a)

$isreg (a) W

Length of string a

<Oifa<b;0ifa=b;>0ifa>b

Index of the first occurrence of character constant ch in string a
Index of the last occurrence of character constant ch in string a

1 if string a is defined in the symbol table
0 if string a is not defined in the symbol table

Top member of list b is assigned to string a
0 if b is a null string

1 if string a is a binary constant

2 if string a is an octal constant

3 if string a is a hexadecimal constant
4 if string a is a character constant

5 if string a is a decimal constant

1 if string a is a valid symbol name
0 if string a is not a valid symbol name

1 if string a is a valid predefined register name
0 if string a is not a valid predefined register name

@ For more information about predefined register names, see Fection 3.8.9, Predefined Symbolic

Constants.

shows built-in substitution symbol functions.
Example 5-5. Using Built-In Substitution Symbol Functions

pushx . macro |ist
|

I Push nore than one item

I $i smenber renoves the first itemin the list

.var item

.1 oop

. break ($ismenber(item list) = 0)
STW item *B15--[1]

. endl oop

.endm

pushx A0, A1, A2, A3

132

Macro Language

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

5.3.3 Recursive Substitution Symbols

534

When the assembler encounters a substitution symbol, it attempts to substitute the corresponding
character string. If that string is also a substitution symbol, the assembler performs substitution again. The
assembler continues doing this until it encounters a token that is not a substitution symbol or until it
encounters a substitution symbol that it has already encountered during this evaluation.

In Example 5-§, the x is substituted for z; z is substituted for y; and y is substituted for x. The assembler
recognizes this as infinite recursion and ceases substitution.

Example 5-6. Recursive Substitution

.asg X declare z and assign z = "x"
. asg "z" declare y and assigny = "z"
. asg "y declare x and assign x = "y"
MVKL x
MVKH x

* MVKL X,
* MKH X,

recursive expansion
recursive expansion

22 BBEuln

Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler. The forced substitution
operator, which is a set of colons surrounding the symbol, enables you to force the substitution of a
symbol's character string. Simply enclose a symbol with colons to force the substitution. Do not include
any spaces between the colons and the symbol.

The syntax for the forced substitution operator is:

:symbol:

The assembler expands substitution symbols surrounded by colons before expanding other substitution
symbols.

You can use the forced substitution operator only inside macros, and you cannot nest a forced substitution
operator within another forced substitution operator.

shows how the forced substitution operator is used.
Example 5-7. Using the Forced Substitution Operator

force . macr o X
.1 oop 8
PORT: x: . set xX*4
. eval x+1, X
. endl oop
.endm
.global portbase
force
PORTO . set 0
PORT1 . set 4
PORT7 . set 28

SPRU186P—October 2006

Macro Language 133

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Macro Parameters/Substitution Symbols

Preliminary

” TEXAS
INSTRUMENTS

www.ti.com

5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access the individual characters (substrings) of a substitution symbol with subscripted
substitution symbols. You must use the forced substitution operator for clarity.

You can access substrings in two ways:
» :symbol (well-defined expression):

This method of subscripting evaluates to a character string with one character.
» :symbol (well-defined expression;, well-defined expression,):

In this method, expression; represents the substring's starting position, and expression, represents the
substring's length. You can specify exactly where to begin subscripting and the exact length of the

resulting character string. The index of substring characters begins with 1, not 0.

Example 5-§ and Example 5-9 show built-in substitution symbol functions used with subscripted

substitution symbols.

Example 5-8. Using Subscripted Substitution Symbols to Redefine an Instruction

storex .nmacro
.var

. asg

i f
STW
.elseif
STW
.elseif
MVK
STW

. el se

. ensg
.endif
.endm

st or ex
st or ex

X
tnp

x(1):, tnp
$syncnp(tnp, "A') == 0
X, * A15- - (4)
$syncnp(tnp,"B") == 0
X, * Al5- - (4)

$i scons(x)

X, AO

AO, *A15- - (4)

"Bad Macro Paraneter"

10h
Al5

In Example 5-§, subscripted substitution symbols redefine the STW instruction so that it handles

immediate.

134

Macro Language

u

SPRU186P—October 2006
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

Example 5-9. Using Subscripted Substitution Symbols to Find Substrings

substr . macro start, strgl, strg2, pos

.var lenl,len2,i,tnp

Jif $sym en(start) =0
.eval 1, start

.endi f

. eval 0, pos

.eval start,

. eval $synmi en(strgl),lenl

. eval $syni en(strg2), | en2
.1 oop

. break I = (len2 - lenl + 1)
.asg ":strg2(i,lenl):", tnp
i f $syncnp(strgl,tnmp) = 0
.eval i, pos

. break

.el se

. eval I+ 1,i

.endi f

. endl oop

.endm

.asg 0, pos

. asg "arl ar2 ar3 ar4",regs
substr 1, "ar2", regs, pos
.word pos

In Example 5-9, the subscripted substitution symbol is used to find a substring strgl beginning at position
start in the string strg2. The position of the substring strgl is assigned to the substitution symbol pos.

5.3.6 Substitution Symbols as Local Variables in Macros

If you want to use substitution symbols as local variables within a macro, you can use the .var directive to
define up to 32 local macro substitution symbols (including parameters) per macro. The .var directive
creates temporary substitution symbols with the initial value of the null string. These symbols are not
passed in as parameters, and they are lost after expansion.

var sym; [,sym,, ... ,sym,]

The .var directive is used in Example 5-§ and Example 5-9.

SPRU186P—-October 2006 Macro Language 135
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Macro Libraries

5.4

Macro Libraries

One way to define macros is by creating a macro library. A macro library is a collection of files that contain
macro definitions. You must use the archiver to collect these files, or members, into a single file (called an
archive). Each member of a macro library contains one macro definition. The files in a macro library must
be unassembled source files. The macro name and the member name must be the same, and the macro
filename's extension must be .asm. For example:

Macro Name Filename in Macro Library

simple simple.asm
add3 add3.asm

You can access the macro library by using the .mlib assembler directive (described in). The syntax is:

.mlib filename

When the assembler encounters the .mlib directive, it opens the library named by filename and creates a
table of the library's contents. The assembler enters the names of the individual members within the library
into the opcode tables as library entries; this redefines any existing opcodes or macros that have the same
name. If one of these macros is called, the assembler extracts the entry from the library and loads it into
the macro table.

The assembler expands the library entry in the same way it expands other macros. (See Bection 5.1,
Using Macros, for how the assembler expands macros.) You can control the listing of library entry
expansions with the .mlist directive. For more information about the .mlist directive, see Bection 5.8, Using
Directives to Format the Output Listing, and Btart/Stop Macro Expansion Listind . Only macros that are
actually called from the library are extracted, and they are extracted only once.

You can use the archiver to create a macro library by including the desired files in an archive. A macro
library is no different from any other archive, except that the assembler expects the macro library to
contain macro definitions. The assembler expects only macro definitions in a macro library; putting object
code or miscellaneous source files into the library may produce undesirable results. For information about
creating a macro library archive, see Chapter g, Archiver Description.

136

Macro Language SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Using Conditional Assembly in Macros

5.5 Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/ .break/.endloop. They can be
nested within each other up to 32 levels deep. The format of a conditional block is:

.if well-defined expression
[.elseifwell-defined expression]
[-else]

.endif

The .elseif and .else directives are optional in conditional assembly. The .elseif directive can be used
more than once within a conditional assembly code block. When .elseif and .else are omitted and when
the .if expression is false (0), the assembler continues to the code following the .endif directive. See
Assemble Condtional Blockd for more information on the .if/ .elseif/.else/.endif directives.

The .loop/.break/.endloop directives enable you to assemble a code block repeatedly. The format of a
repeatable block is:

Joop [well-defined expression]
[.break [well-defined expression]]

.endloop

The .loop directive's optional well-defined expression evaluates to the loop count (the number of loops to
be performed). If the expression is omitted, the loop count defaults to 1024 unless the assembler
encounters a .break directive with an expression that is true (nonzero). See Assemble Code BlocH

for more information on the .loop/.break/.endloop directives.

The .break directive and its expression are optional in repetitive assembly. If the expression evaluates to
false, the loop continues. The assembler breaks the loop when the .break expression evaluates to true or
when the .break expression is omitted. When the loop is broken, the assembler continues with the code
after the .endloop directive.

Example 5-10, Example 5-17], and Example 5-17 show the .loop/.break/ .endloop directives, properly
nested conditional assembly directives, and built-in substitution symbol functions used in a conditional
assembly code block.

Example 5-10. The .loop/.break/.endloop Directives

. asg 1, x
.1 oop

.break (x == 10) ; if x == 10, quit |oop/break with expression

.eval x+1, X
. endl oop

SPRU186P—-October 2006 Macro Language 137
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Using Conditional Assembly in Macros

Example 5-11. Nested Conditional Assembly Directives

. asg 1,x
.1 oop

i (x == 10) ; if x == 10, quit |oop
.break (x == 10) ; force break
.endi f

. eval x+1, X
. endl oop

Example 5-12. Built-In Substitution Symbol Functions in a Conditional Assembly Code Block

MACK3 .macro srcl, src2, sum k
!

! dst = dst + k * (srcl * src2)

i f k =0

MPY srcl, src2, src2
NOP

ADD Src2, sum sum
.el se

MPY srcl,src2,src2
MVK k,srcl

MPY srcl,src2,src2
NOP

ADD Src2, sum sum
.endif

.endm

MACK3 A0, A1, A3,0
MACK3 AQ0, Al, A3, 100

For more information, see Bection 4.7, Directives That Enable Conditional Assembly.

138 Macro Language SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Using Labels in Macros

5.6 Using Labels in Macros

All labels in an assembly language program must be unique. This includes labels in macros. If a macro is
expanded more than once, its labels are defined more than once. Defining a label more than once is
illegal. The macro language provides a method of defining labels in macros so that the labels are unique.
Simply follow each label with a question mark, and the assembler replaces the question mark with a
period followed by a unique number. When the macro is expanded, you do not see the unique number in
the listing file. Your label appears with the question mark as it did in the macro definition. You cannot
declare this label as global. The syntax for a unique label is:

| label ?
shows unique label generation in a macro.
Example 5-13. Unique Labels in a Macro
1 mn .macro X,Y,z
2
3 W Y,z
4 | CWVPLT X, Y, Y
5 y B 1?
6 NOP 5
7 \Y X, Z
8 I ?
9 .endm
10
11
12 00000000 M N A0, Al, A2
1
1 00000000 010401A1 W Al, A2
1 00000004 00840AF8 || CVWPLT A0, AL, Al
1 00000008 80000292 [Al] B I ?
1 0000000c 00008000 NOP 5
1 00000010 010001A0 W A0, A2
1 00000014 I ?
LABEL VALUE DEFN REF
. TM5320060 00000001 0
. tms320060 00000001 0
| 1 00000014’ 12 12

The maximum label length is shortened to allow for the unique suffix. For example, if the macro is
expanded fewer than 10 times, the maximum label length is 126 characters. If the macro is expanded from
10 to 99 times, the maximum label length is 125. The label with its unique suffix is shown in the
cross-listing file. To obtain a cross-listing file, invoke the assembler with the -ax option (see Bection 3.3).

SPRU186P—-October 2006 Macro Language 139
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Producing Messages in Macros

5.7 Producing Messages in Macros

The macro language supports three directives that enable you to define your own assembly-time error and
warning messages. These directives are especially useful when you want to create messages specific to
your needs. The last line of the listing file shows the error and warning counts. These counts alert you to
problems in your code and are especially useful during debugging.

.emsg sends error messages to the listing file. The .emsg directive generates errors in the same
manner as the assembler, incrementing the error count and preventing the assembler from
producing an object file.

.mmsg sends assembly-time messages to the listing file. The .mmsg directive functions in the same
manner as the .emsg directive but does not set the error count or prevent the creation of an
object file.

.wmsg sends warning messages to the listing file. The .wmsg directive functions in the same
manner as the .emsg directive, but it increments the warning count and does not prevent the
generation of an object file.

Macro comments are comments that appear in the definition of the macro but do not show up in the
expansion of the macro. An exclamation point in column 1 identifies a macro comment. If you want your
comments to appear in the macro expansion, precede your comment with an asterisk or semicolon.

shows user messages in macros and macro comments that do not appear in the macro
expansion.

Example 5-14. Producing Messages in a Macro

TEST .macro X,y

This macro checks for the correct nunber of paraneters.
It generates an error nmessage if x and y are not present.

|
|
|
!
! The first line tests for proper input.
|

Vi f ($symen(x) + || $symen(y) == 0)

. ensg "ERROR --missing paraneter in call to TEST"

. mexi t

.el se

.endif
i f

.endif
.endm

For more information about the .emsg, .mmsg, and .wmsg assembler directives, see Define Messagey .

140 Macro Language SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Using Directives to Format the Output Listing

5.8 Using Directives to Format the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide information. You may need to
see this hidden information, so the macro language supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional blocks in the list output file. You
may want to turn this listing off or on within your listing file. Four sets of directives enable you to control
the listing of this information:

« Macro and loop expansion listing

.mlist expands macros and .loop/.endloop blocks. The .mlist directive prints all code
encountered in those blocks.

.mnolist suppresses the listing of macro expansions and .loop/ .endloop blocks.
For macro and loop expansion listing, .mlist is the default.

« False conditional block listing

fclist causes the assembler to include in the listing file all conditional blocks that do not
generate code (false conditional blocks). Conditional blocks appear in the listing
exactly as they appear in the source code.

fcnolist suppresses the listing of false conditional blocks. Only the code in conditional blocks
that actually assemble appears in the listing. The .if, .elseif, .else, and .endif directives
do not appear in the listing.

For false conditional block listing, .fclist is the default.

e Substitution symbol expansion listing

.sslist expands substitution symbols in the listing. This is useful for debugging the expansion
of substitution symbols. The expanded line appears below the actual source line.

.ssnolist turns off substitution symbol expansion in the listing.
For substitution symbol expansion listing, .ssnolist is the default.

« Directive listing
drlist causes the assembler to print to the listing file all directive lines.

.drnolist suppresses the printing of certain directives in the listing file. These directives are
.asg, .eval, .var, .sslist, .mlist, .fclist, .ssnolist, .mnolist, .fcnolist, .emsg, .wmsg,
.mmsg, .length, .width, and .break.

For directive listing, .drlist is the default.

5.9 Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means that you can call other
macros in a macro definition. You can nest macros up to 32 levels deep. When you use recursive macros,
you call a macro from its own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention to the arguments that you
pass to macro parameters because the assembler uses dynamic scoping for parameters. This means that
the called macro uses the environment of the macro from which it was called.

shows nested macros. The y in the in_block macro hides the y in the out_block macro. The
x and z from the out_block macro, however, are accessible to the in_block macro.

SPRU186P—-October 2006 Macro Language 141
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

Macro Directives Summary

” TEXAS
INSTRUMENTS

www.ti.com

Example 5-15. Using Nested Macros

in_block .nmacro y,a
; visible paraneters are y,a and x, z
. ; fromthe calling nacro
.endm

out _bl ock . macro X,Y,Z
; visible paraneters are x,y, z
in_block x,y ; macro call with x and y as argunents
.endm
out _bl ock ; macro call

shows recursive and fact macros. The fact macro produces assembly code necessary to
calculate the factorial of n, where n is an immediate value. The result is placed in the Al register. The fact

macro accomplishes this by calling factl1, which calls itself recursively.

Example 5-16. Using Recursive Macros

.fcnoli st

factl .macro n
Jif on ==
MK gl obcnt, Al
. el se
.eval 1, tenp ; Compute the decrenent of synbol n.
.eval globcnt*tenp, globcnt Multiply to get a new result.
factl tenp ; Recursive call.
.endi f
.endm

Leave the answer in the Al register.

fact .macro n
.if ! $iscons(n)
.enmsg "Parm not a constant"”

Test that input is a constant.

.elseif n<1 ; Type check i nput.
MWK 0, Al

.el se
.var tenp
.asg n, globcnt

factl n ; Performrecursive procedure

.endif
.endm

5.10 Macro Directives Summary

The directives listed in through can be used with macros. The .macro, .mexit, .endm
and .var directives are valid only with macros; the remaining directives are general assembly language

directives.

142 Macro Language

SPRU186P—October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Macro Directives Summary

Table 5-2. Creating Macros

See
Mnemonic and Syntax Description Macro Use Directive
.endm End macro definition Secfion 5.2
?;gﬁg:rr;]m acro [parameter,][.... Define macro by macname Bection 57 [macrd
.mexit Go to .endm Bection 57 Bection 57
.mlib filename Identify library containing macro definitions bection 5.4

Table 5-3. Manipulating Substitution Symbols

See
Mnemonic and Syntax Description Macro Use Directive
.asg ["]character string["], substitution symbol Assign character string to substitution symbol
:s(;\:naét\)/\llell defined expression, substitution SP;rrr:‘ggg arithmetic on numeric substitution
var symq [,syms, ...,symy] Define local macro symbols S g

Table 5-4. Conditional Assembly

See
Mnemonic and Syntax Description Macro Use Directive
.break [well-defined expression] Optional repeatable block assembly Bection 5.3 [breal
.endif End conditional assembly Bection 5.3 [endi
.endloop End repeatable block assembly Bection 5.3 [endlood
.else Optional conditional assembly block Seciion 5.9 [elsd
.elseif well-defined expression Optional conditional assembly block Bection 5.3 [elsel
.if well-defined expression Begin conditional assembly Seciion 5.9 1|
.loop [well-defined expression] Begin repeatable block assembly Seciion 5.9

Table 5-5. Producing Assembly-Time Messages

See
Mnemonic and Syntax Description Macro Use Directive
.emsg Send error message to standard output emsg
.mmsg Send assembly-time message to standard mmsg

output
wmsg Send warning message to standard output EBection 51 Wms
Table 5-6. Formatting the Listing

See
Mnemonic and Syntax Description Macro Use Directive
felist Allow false conditional code block listing S g

(default)

fenolist Suppress false conditional code block listing Bection 53 [fcnolis]
.mlist Allow macro listings (default) Bection 53 [mnisi
.mnolist Suppress macro listings Becfion 54 [mnons
.sslist Allow expanded substitution symbol listing Bection 5.9
.ssnolist Suppress expanded substitution symbol listing Eection 5.9 [SsnoTis]

(default)

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Macro Language

143

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Macro Directives Summary
144 Macro Language SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

J@ TEXAS
INSTRUMENTS

Preliminary

Chapter 6

SPRU186P—0October 2006

Archiver Description

The TMS320C6000™ archiver lets you combine several individual
files into a single archive file. For example, you can collect several
macros into a macro library. The assembler searches the library and
uses the members that are called as macros by the source file. You
can also use the archiver to collect a group of object files into an
object library. The linker includes in the library the members that
resolve external references during the link. The archiver allows you to
modify a library by deleting, replacing, extracting, or adding members.

Topic

6.1
6.2

6.3
6.4

Page
Archiver OVervieW[oo ieeueieieaiereaiieareiearerearenen, 144
The Archiver's Role in the Software
Development Flow[...oooo oo 147
Invoking the Archiver[.o e 143
Archiver Examples[oooooee oo 149

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Archiver Description 145

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Archiver Overview

6.1

Archiver Overview

You can build libraries from any type of files. Both the assembler and the linker accept archive libraries as
input; the assembler can use libraries that contain individual source files, and the linker can use libraries
that contain individual object files.

One of the most useful applications of the archiver is building libraries of object modules. For example,
you can write several arithmetic routines, assemble them, and use the archiver to collect the object files
into a single, logical group. You can then specify the object library as linker input. The linker searches the
library and includes members that resolve external references.

You can also use the archiver to build macro libraries. You can create several source files, each of which
contains a single macro, and use the archiver to collect these macros into a single, functional group. You
can use the .mlib directive during assembly to specify that macro library to be searched for the macros
that you call. Chapter 5, Macro Language, discusses macros and macro libraries in detail, while this
chapter explains how to use the archiver to build libraries.

146

Archiver Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

INSTRUMENTS

www.ti.com

Preliminary

The Archiver's Role in the Software Development Flow

6.2

The Archiver's Role in the Software Development Flow

shows the archiver's role in the software development process. The shaded portion highlights

the most common archiver development path. Both the assembler and the linker accept libraries as input.

C/C++
source
files

E Macro E I
. source o s Assembly ¢
. files . C/Cf+ * optimizer
compiler D
Archiver « Assembler o Assembly
\TJ ° source o optimizer
+ Macro ¢ v - -
o library ¢ < Assembly-
: * Assembler ° Opt'mlzed O
: file :
« COFF Library-build
L] . ™
Archiver o Object utility
. files \T)
—— - . -
v e Runtime- o
e Library of e r_ e Support e
. object = > . : library 2
o - o Linker
o files N
\
+ Executable
v « COFF
4 . M file
Hex conversion
utility
A
EPROM (Cross—_reference) TMS320C6000
programmer lister

|

?

Figure 6-1. The Archiver in the TMS320C6000 Software Development Flow

SPRU186P—October 2006
Bubmit Documentation FeedbacH

Archiver Description

147

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Invoking the Archiver

Preliminary ” Texas
INSTRUMENTS

www.ti.com

6.3 Invoking the Archiver
To invoke the archiver, enter:
‘ar6x [[lcommand [options] libname [filename; ... filename,]

ar6x is the command that invokes the archiver.

[-Jcommand tells the archiver how to manipulate the existing library members and any specified . A
command can be preceded by an optional hyphen. You must use one of the following
commands when you invoke the archiver, but you can use only one command per
invocation. The archiver commands are as follows:

@ uses the contents of the specified file instead of command line entries. You can
use this command to avoid limitations on command line length imposed by the
host operating system. Use a ; at the beginning of a line in the command file to
include comments. (See for an example using an archiver command
file.)

a adds the specified files to the library. This command does not replace an existing
member that has the same name as an added file; it simply appends new
members to the end of the archive.

d deletes the specified members from the library.

r replaces the specified members in the library. If you do not specify filenames, the
archiver replaces the library members with files of the same name in the current
directory. If the specified file is not found in the library, the archiver adds it instead
of replacing it.

t prints a table of contents of the library. If you specify filenames, only those files
are listed. If you do not specify any filenames, the archiver lists all the members in
the specified library.

X extracts the specified files. If you do not specify member names, the archiver
extracts all liborary members. When the archiver extracts a member, it simply
copies the member into the current directory; it does not remove it from the library.

options In addition to one of the commands, you can specify options. To use options, combine
them with a command; for example, to use the a command and the s option, enter -as
or as. The hyphen is optional for archiver options only. These are the archiver options:

-q (quiet) suppresses the banner and status messages.

-s prints a list of the global symbols that are defined in the library. (This option is
valid only with the a, r, and d commands.)

-u replaces library members only if the replacement has a more recent modification
date. You must use the r command with the -u option to specify which members to
replace.

-v (verbose) provides a file-by-file description of the creation of a new library from an
old library and its members.

libname names the archive library to be built or modified. If you do not specify an extension for
libname, the archiver uses the default extension .lib.

filenames names individual files to be manipulated. These files can be existing library members or
new files to be added to the library. When you enter a filename, you must enter a
complete filename including extension, if applicable.

148 Archiver Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

’ Preliminary
b TEXAS
INSTRUMENTS
www.ti.com
Archiver Examples
Naming Library Members
Note: It is possible (but not desirable) for a library to contain several members with the same

name. If you attempt to delete, replace, or extract a member whose name is the same as
another library member, the archiver deletes, replaces, or extracts the first library member

with that name.

6.4 Archiver Examples

The following are examples of typical archiver operations:
» If you want to create a library called function.lib that contains the files sine.obj, cos.obj, and flt.obj,

enter:

ar 6x

-a function sine.obj cos.obj flt.obj

The archiver responds as follows:

==> new archive 'function.lib'
bui | di ng new archive 'function.lib'

e You can print a table of contents of function.lib with the -t command, enter:

==>

ar 6x

function

The archiver responds as follows:
FI LE NAME

si ne. obj
cO0s. obj
flt.obj

e If you want to add new members to the library, enter:

ar 6x

SI ZE DATE

300 Wed Apr 16 10:00: 24 1997
300 Wed Apr 16 10:00:30 1997
300 Wed Apr 16 09:59:56 1997

-as function atan. obj

The archiver responds as follows:

==>
==>

==>
==>

library called function.lib. If function.lib does not exist, the archiver creates it. (The -s option tells the

synbol
synbol
synbol
synbol
synbol
synbol
synbol
synbol

defi
defi
defi
defi
defi
defi
defi
defi

ned:
ned:
ned:
ned:
ned:
ned:
ned:
ned:

'_sin'
"$sin'
_cos'
" $cos'
'_tan'
"$tan'
' _atan
' $at an’

bui | ding archive 'function.lib’
Because this example does not specify an extension for the libname, the archiver adds the files to the

archiver to list the global symbols that are defined in the library.)

» If you want to modify a library member, you can extract it, edit it, and replace it. In this example,
assume there is a library named macros.lib that contains the members push.asm, pop.asm, and
swap.asm.

ar 6x

-X macros pUSh. asm

The archiver makes a copy of push.asm and places it in the current directory; it does not remove
push.asm from the library. Now you can edit the extracted file. To replace the copy of push.asm in the
library with the edited copy, enter:

ar 6x

macros push. asm

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Archiver Description

149

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Archiver Examples

» If you want to use a command file, specify the command filename after the -@ command. For
example:

ar 6x - @modul es. cnd

The archiver responds as follows:
==> building archive 'nodules.lib'

is the modules.cmd command file. The r command specifies that the filenames given in
the command file replace files of the same name in the modules.lib library. The -u option specifies that
these files are replaced only when the current file has a more recent revision date than the file that is
in the library.

Example 6-1. Archiver Command File

; Command file to replace nenbers of the
modul es library with updated files

; Use r conmand and u option:

ru

Specify library nane:

nodul es. lib

; List filenanes to be replaced if updated:

al i gn. asm

bss. asm

data. asm

text.asm

sect.asm

clink.asm

copy. asm

doubl e. asm

drnolist.asm

ensg. asm

end. asm

150 Archiver Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

J@ TEXAS
INSTRUMENTS

Preliminary

Chapter 7

SPRU186P—0October 2006

Linker Description

The TMS320C6000™ linker creates executable modules by
combining COFF object files. This chapter describes the linker
options, directives, and statements used to create executable
modules. Object libraries, command files, and other key concepts are
discussed as well.

The concept of COFF sections is basic to linker operation; Chapter 2,
Introduction to Common Object File Format, discusses the COFF
format in detail.

Topic Page
7.1 Linker OVervieW[iiooieeeieaieiearereieeieniaieieareieaieienns 153
7.2 The Linker's Role in the Software Development

= (o)1 153
7.3 Invokingthelinker[.ooooooeoeeoe i 154
7.4 Linker OptionNSf. e ieeeeeeeeieeeee 153
7.5 Linker Command FileS[ieieieeieienieienieiieaieieaienenns 164
7.6 Object Libraries[ececeeieieeeeeieieieeaeiieiesieaeaeininnen 169
7.7 The MEMORY DirectiVe]..eeeeeieieeeeeieieraeaeeeininsn.. 169
7.8 The SECTIONS Directivelooeeeieeeeeieieieeeeeaeaeene. 177
7.9 Specifying a Section's Run-Time Address[.......... 187
7.10 Using UNION and GROUP Statements|................ 183
7.11 Special Section Types (DSECT, COPY, and

N[0l Ne7:\0) 189
7.12 Default Allocation Algorithm[............................. 189
7.13 Assigning Symbols at Link Time[....................... 199
7.14 Creating and FillingHoles[........ooooo oo s 194
7.15 Linker-Generated Copy Tables[........c.ceeeeeeee....... 1939
7.16 Partial (Incremental) Linkingleoeoeeoeeeveveveeeeenee 207
7.17 Linking C/C++ Code[.iiuiiieeieieiiaeaeieiiaiaeaeininsnes 203
7.18 LinkerExamplel ooooeee e 217

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Linker Description

151

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Linker Overview

7.1 Linker Overview
The TMS320C6000 linker allows you to configure system memory by allocating output sections efficiently
into the memory map. As the linker combines object files, it performs the following tasks:
» Allocates sections into the target system's configured memory
* Relocates symbols and sections to assign them to final addresses
» Resolves undefined external references between input files
The linker command language controls memory configuration, output section definition, and address
binding. The language supports expression assignment and evaluation. You configure system memory by
defining and creating a memory model that you design. Two powerful directives, MEMORY and
SECTIONS, allow you to:
» Allocate sections into specific areas of memory
« Combine object file sections
» Define or redefine global symbols at link time

152 Linker Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

The Linker's Role in the Software Development Flow

7.2 The Linker's Role in the Software Development Flow

illustrates the linker's role in the software development process. The linker accepts several
types of files as input, including object files, command files, libraries, and partially linked files. The linker
creates an executable COFF object module that can be downloaded to one of several development tools
or executed by a TMS320C6000 device.

Figure 7-1. The Linker in the TMS320C6000 Software Development Flow

. ClIc++ o]
. source <
: files .
. Macro o [
e SOUICE o s Assembly ¢
L] H []
: files o C/CT * optimizer ¢
compiler + source ¢
Archiver < Assembler o Assembly
%J . source optimizer
L] L]
L] L]
+ Macro ¢ v . .
¢ library ¢ :As?.enjbl)é-:
° ° Assembler . opumized ,
: file :
. COFF =« Library-build
Archiver object . utility
T —
I|
« Run-time- o
* Library of * f_v < support
« object o > Li e library &
o - . inker
N files .
« Executable
v . COFF)
7 . : file Debugging
Hex conversion tools
utility
v
EPROM Cross-reference TMS320C6000
programmer lister
SPRU186P—-October 2006 Linker Description 153

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Invoking the Linker
7.3 Invoking the Linker
The general syntax for invoking the linker is:
‘cl6x -z [optionsg] filename, filename,,
cléx -z is the command that invokes the linker.
options can appear anywhere on the command line or in a linker command file. (Options are
discussed in Bection 7.4, Linker Options.)
filename,, can be object files, linker command files, or archive libraries. The default extension for
filename,, all input files is .obj; any other extension must be explicitly specified. The linker can

determine whether the input file is an object or ASCII file that contains linker
commands. The default output filename is a.out, unless you use the -o option to
name the output file.

There are two methods for invoking the linker:

Specify options and filenames on the command line. This example links two files, filel.obj and file2.obj,
and creates an output module named link.out.
cl6x -z filel.obj file2.0bj -0 Iink.out

Put filenames and options in a linker command file. Filenames that are specified inside a linker
command file must begin with a letter. For example, assume the file linker.cmd contains the following

lines:

-0 link.out
filel. obj
file2. obj

Now you can invoke the linker from the command line; specify the command filename as an input file:

cl6x -z linker.cnd

When you use a command file, you can also specify other options and files on the command line. For
example, you could enter:

cl6x -z -mlink.map linker.cnd file3.obj
The linker reads and processes a command file as soon as it encounters the filename on the

command line, so it links the files in this order: filel.obj, file2.0bj, and file3.obj. This example creates an
output file called link.out and a map file called link.map.

For information on invoking the linker for C/C++ files, see Bection 7.17, Linking C/C++ Code.

154

Linker Description

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Linker Options

7.4

Linker Options

Linker options control linking operations. They can be placed on the command line or in a command file.
Linker options must be preceded by a hyphen (-). Options can be separated from arguments (if they have
them) by an optional space. summarizes the linker options.

Table 7-1. Linker Options Summary

Option Description Section

-a Produces an absolute, executable module. This is the default; if neither -a nor -r is S 1]
specified, the linker acts as if -a were specified.

-abs Produces an absolute listing file

-ar Produces a relocatable, executable object module

--args Allocates memory to be used by the loader to pass arguments bection 7.4.3

-b Disables merge of symbolic debugging information S 17

-C Autoinitializes variables at run time 5 73

-cr Initializes variables at load time 5 73

-e=global_symbol Defines a global symbol that specifies the primary entry point for the output module S 1.0

-f=fill_value Sets default fill values for holes within output sections; fill_value is a 32-bit constant

-g=symbol Makes symbol global (overrides -h)

-h Makes all global symbols static

-heap= size Sets heap size (for the dynamic memory allocation in C) to size words and defines a
global symbol that specifies the heap size. Default = 1K bytes

-help or -? Displays information about syntax and available options -

-I=pathname Alters library-search algorithms to look in a directory named with pathname before looking
in the default location. This option must appear before the -| option.

- Disables conditional linking

-1= filename Names an archive library or linker command filename as linker input

-m=filename Produces a map or listing of the input and output sections, including holes, and places the
listing in filename

-o= filename Names the executable output module. The default filename is a.out.

-priority Satisfies unresolved references by the first library that contains a definition for that symbol

-r Produces a nonexecutable, relocatable output module

-S Strips symbol table information and line number entries from the output module S 1719

-stack= size Sets C system stack size to size words and defines a global symbol that specifies the S 219
stack size. Default = 1K bytes

--trampolines Generates far call trampolines

-u=symbol Places an unresolved external symbol into the output module's symbol table S 2119

-w Displays a message when an undefined output section is created S .19

-X Forces rereading of libraries, which resolves back references S 220

--xml_link_info file Generates a well-formed XML file containing detailed information about the result of a link [427

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Linker Description 155

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Linker Options

7.4.1 Relocation Capabilities (-a and -r Options)

The linker performs relocation, which is the process of adjusting all references to a symbol when the
symbol's address changes. The linker supports two options (-a and -r) that allow you to produce an
absolute or a relocatable output module.

When the linker encounters a file that contains no relocation or symbol table information, it issues a
warning message (but continues executing). Relinking an absolute file can be successful only if each input
file contains no information that needs to be relocated (that is, each file has no unresolved references and
is bound to the same virtual address that it was bound to when the linker created it).

7.4.1.1 Producing an absolute output module (-a option)

When you use the -a option without the -r option, the linker produces an absolute, executable output
module. Absolute files contain no relocation information. Executable files contain the following:

» Special symbols defined by the linker (see
» An optional header that describes information such as the program entry point
* No unresolved references

The following example links filel.obj and file2.obj and creates an absolute output module called a.out:
cl6x -z -a filel.obj file2. obj

The -a and -r Options
Note: If you do not use the -a or the -r option, the linker acts as if you specified -a.

7.4.1.2 Producing arelocatable output module (-r option)

When you use the -r option without the -a option, the linker retains relocation entries in the output module.
If the output module is relocated (at load time) or relinked (by another linker execution), use -r to retain the
relocation entries.

The linker produces a file that is not executable when you use the -r option without -a. A file that is not
executable does not contain special linker symbols or an optional header. The file can contain unresolved
references, but these references do not prevent creation of an output module.

This example links filel.obj and file2.obj and creates a relocatable output module called a.out:
cl6x -z -r filel.obj file2. obj
The output file a.out can be relinked with other object files or relocated at load time. (Linking a file that will

be relinked with other files is called partial linking. For more information, see Section 7.14, Partial
(Incremental) Linking.)

7.4.1.3 Producing an executable relocatable output module (-ar option combination)

If you invoke the linker with both the -a and -r options, the linker produces an executable, relocatable
object module. The output file contains the special linker symbols, an optional header, and all resolved
symbol references; however, the relocation information is retained.

This example links filel.obj and file2.0bj and creates an executable, relocatable output module called
Xr.out:

cl6x -z -ar filel.obj file2.0bj -0 xr.out

7.4.2 Create an Absolute Listing File (-abs Option)
The -abs option produces an output file for each file that was linked. These files are named with the input
filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs file.

156 Linker Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Linker Options

7.4.3 Allocate Memory for Use by the Loader to Pass Arguments (--args Option)

The --args option instructs the linker to allocate memory to be used by the loader to pass arguments from
the command line of the loader to the program. The syntax of the --args option is:

-args = size

The size is a number representing the number of bytes to be allocated in target memory for command-line
arguments.

By default, the linker creates the ¢ _args__ symbol and sets it to -1. When you specify --args=size, the
following occur:

» The linker creates an uninitialized section named .args of size bytes.

» The __c_args__ symbol contains the address of the .args section.

The loader and the target boot code use the .args section and the __c_args__ symbol to determine

whether and how to pass arguments from the host to the target program. See the TMS320C6000
Optimizing Compiler User's Guide for information about the loader.

7.4.4 Disable Merge of Symbolic Debugging Information (-b Option)
By default, the linker eliminates duplicate entries of symbolic debugging information. Such duplicate
information is commonly generated when a C program is compiled for debugging. For example:

-[header.h]-
typedef struct

{
<define sonme structure nenbers>
} XYZ;

-[f1.¢c]-
#i ncl ude "header. h"

-[f2.¢]-
#i ncl ude "header.h"

When these files are compiled for debugging, both f1.obj and f2.0bj have symbolic debugging entries to
describe type XYZ. For the final output file, only one set of these entries is necessary. The linker
eliminates the duplicate entries automatically.

Use the -b option if you want the linker to keep such duplicate entries. Using the -b option has the effect of
the linker running faster and using less machine memory.

7.4.5 C Language Options (-c and -cr Options)

The -c and -cr options cause the linker to use linking conventions that are required by the C compiler.
* The -c option tells the linker to autoinitialize variables at run time.
* The -cr option tells the linker to initialize variables at load time.

For more information, see Bection 7.17, Linking C Code, Bection 7.17.4, Autoinitialization of Variables at
Run Time, and Beclion 7.17.1, Initialization of Variables at Load Time.

7.4.6 Define an Entry Point (-e global_symbol Option)

The memory address at which a program begins executing is called theentry point. When a loader loads a
program into target memory , the program counter (PC) must be initialized to the entry point; the PC then
points to the beginning of the program.

SPRU186P—-October 2006 Linker Description 157
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Linker Options

The linker can assign one of four values to the entry point. These values are listed below in the order in
which the linker tries to use them. If you use one of the first three values, it must be an external symbol in
the symbol table.

» The value specified by the -e option. The syntax is:

-e= global_symbol

where global_symbol defines the entry point and must be as an external symbol of the input files.

e The value of symbol _c_int0O0 (if present). The _c_int0O0 symbol must be the entry point if you are
linking code produced by the C compiler.

» The value of symbol _main (if present)
* 0 (default value)

This example links filel.obj and file2.obj. The symbol begin is the entry point; begin must be defined as
external in filel or file2.

cl6x -z -e=begin filel.obj file2.obj

7.4.7 Set Default Fill Value (-f fill_value Option)

The -f option fills the holes formed within output sections. The syntax for the -f option is:

-f=fill_value

The argument fill_value is a 32-bit constant (up to eight hexadecimal digits). If you do not use -f, the linker
uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCDABCD:
cl 6x -z -f=0xABCDABCD filel.obj file2.obj

7.4.8 Make a Symbol Global (-g symbol Option)

The -h option makes all global symbols static. If you have a symbol that you want to remain global and
you use the -h option, you can use the -g option to declare that symbol to be global. The -g option
overrides the effect of the -h option for the symbol that you specify. The syntax for the -g option is:

-g= global_symbol

7.4.9 Make All Global Symbols Static (-h Option)

The -h option makes all global symbols static. Static symbols are not visible to externally linked modules.
By making global symbols static, global symbols are essentially hidden. This allows external symbols with
the same name (in different files) to be treated as unique.

The -h option effectively nullifies all .global assembler directives. All symbols become local to the module
in which they are defined, so no external references are possible. For example, assume filel.obj and
file2.0bj both define global symbols called EXT. By using the -h option, you can link these files without
conflict. The symbol EXT defined in filel.obj is treated separately from the symbol EXT defined in file2.0bj.

cl6x -z -h filel.obj file2. obj

158 Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Linker Options

7.4.10 Define Heap Size (-heap size Option)

The C/C++ compiler uses an uninitialized section called .sysmem for the C run-time memory pool used by
malloc(). You can set the size of this memory pool at link time by using the -heap option. The syntax for
the -heap option is:

’ -heap= size

The size must be a constant. This example defines a 4K byte heap:
cl 6x -z -heap 0x1000 /* defines a 4k heap (.sysnmem section)*/

The linker creates the .sysmem section only if there is a .sysmem section in an input file.

The linker also creates a global symbol __ SYSMEM_SIZE and assigns it a value equal to the size of the
heap. The default size is 1K bytes.

For more information, see [Bection 7.17, Linking C/C++ Code.

7.4.11 Alter the Library Search Algorithm (-1 Option, -1 Option, and C_DIR/C6X_C_DIR
Environment Variables)

Usually, when you want to specify a file as linker input, you simply enter the filename; the linker looks for
the file in the current directory. For example, suppose the current directory contains the library object.lib.
Assume that this library defines symbols that are referenced in the file filel.obj. This is how you link the
files:

cl6x -z filel.obj object.lib

If you want to use a file that is not in the current directory, use the -l (lowercase L) linker option. The
syntax for this option is:

-| [pathname] filename

The filename is the name of an archive, an object file, or linker command file; the space between -l and
the filename is optional. You can specify up to 128 search paths.

The -l option is not required when one or more members of an object library are specified for input to an
output section. For more information, see Bection 7.8.7, Allocating an Archive Member to an Output
Section.

You can augment the linker's directory search algorithm by using the -1 linker option or the C_DIR or
C6X_C_DIR environment variables. The linker searches for object libraries and command files specified
by the -I option in the following order:

1. It searches directories named with the -1 linker option. The -l option must appear before the -l option on
the command line or in a command file.

2. It searches directories named with C_DIR and C6X_C_DIR.

3. If C_DIR and C6X_C_DIR are not set, it searches directories named with the assembler's A_DIR or
C6X_A_DIR environment variable.

4. It searches the current directory.

7.4.11.1 Name an Alternate Library Directory (-I pathname Option)
The - I option names an alternate directory that contains input files. The syntax for this option is:
-1 pathname

The pathname names a directory that contains input files; the space between -1 and the pathname is
optional.

When the linker is searching for input files named with the -l option, it searches through directories named
with - | first. Each - I option specifies only one directory, but you can several -1 options per invocation.
When you use the -1 option to name an alternate directory, it must precede any -l option used on the
command line or in a command file.

SPRU186P—-October 2006 Linker Description 159
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Linker Options

For example, assume that there are two archive libraries called r.lib and lib2.lib. The table below shows
the directories that r.lib and lib2.lib reside in, how to set environment variable, and how to use both
libraries during a link. Select the row for your operating system:

Operating System Pathname Enter
UNIX (Bourne shell) /Id and /Id2 cl6x -z fl.o0bj f2.0bj -1/1d -1/1d2 -Ir.lib -l1lib2.1ib
Windows \Id and \ld2 cléx -z fl.obj f2.0bj -I\lId -I1\Id2 -Ir.lib -Ilib2.lib

7.4.11.2 Name an Alternate Library Directory (C_DIR and C6X_C_DIR Environment Variables)

An environment variable is a system symbol that you define and assign a string to. The linker uses
environment variables namedC6X_C_DIR and C_DIR to name alternate directories that contain object
libraries. The command syntaxes for assigning the environment variable are:

Operating System Enter

UNIX (Bourne shell) C_DIR=" pathname; ; pathname, ; . .."; export C_DIR
Windows set C_DIR= pathname; ; pathname, ; . ..

The pathnames are directories that contain input files. Use the -l (lowercase L) linker option on the
command line or in a command file to tell the linker which library or linker command file to search for. The
pathnames must follow these constraints:
« Pathnames must be separated with a semicolon.
» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:
set CDIR= c:\path\onelto\tools ; c:\path\tw\to\tools
e Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:
set c_DIR=c:\first path\to\tools;d:\second path\to\tools
In the example below, assume that two archive libraries called r.lib and lib2.lib reside in Id and 1d2

directories. The table below shows the directories that r.lib and lib2.lib reside in, how to set the
environment variable, and how to use both libraries during a link. Select the row for your operating system:

Operating System Pathname Invocation Command

CDR="/ld ;/1d2"; export CD Rcl6x -z fl.obj f2.0bj -1 r.lib -I
UNIX (Bourne shell) /ld and /Id2 lib2.lib
Windows \Id and \ld2 set CDIR\Id;\ld2cl6x -z fl.0bj f2.0bj -1 r.lib -1 lib2.1ib

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) unset C DR
Windows set CDR=

The assembler uses an environment variable named C6X_A DIR or A_DIR to name alternate directories
that contain copy/include files or macro libraries. If C6X_C_DIR or C_DIR is not set, the linker searches
for object libraries in the directories named with C6X_A_DIR or A_DIR. For more information about object
libraries, see Bection 7.G.

7.4.12 Disable Conditional Linking (-j Option)

The -j option disables removal of unreferenced sections. Only sections marked as candidates for removal
with the .clink assembler directive are affected by conditional linking. See for details on setting up
conditional linking using the .clink directive.

160 Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Linker Options

7.4.13 Create a Map File (-m filename Option)

The -m option creates a linker map listing and puts it in filename. The syntax for the -m option is:

-m= filename

The linker map describes:

* Memory configuration

e Input and output section allocation

» The addresses of external symbols after they have been relocated

The map file contains the name of the output module and the entry point; it can also contain up to three
tables:

» A table showing the new memory configuration if any nondefault memory is specified (memory
configuration). The table has the following columns; this information is generated on the basis of the
information in the MEMORY directive in the linker command file:

— Name. This is the name of the memory range specified with the MEMORY directive.

— Origin. This specifies the starting address of a memory range.

— Length. This specifies the length of a memory range.

— Unused. This specifies the total amount of unused (available) memory in that memory area.
— Attributes. This specifies one to four attributes associated with the named range:

R specifies that the memory can be read.

W specifies that the memory can be written to.

X specifies that the memory can contain executable code.
I specifies that the memory can be initialized.

« For more information about the MEMORY directive, see Bection 7.7, The MEMORY Directive.

» A table showing the linked addresses of each output section and the input sections that make up the
output sections (section allocation map). This table has the following columns; this information is
generated on the basis of the information in the SECTIONS directive in the linker command file:

— Output section. This is the name of the output section specified with the SECTIONS directive.

— Origin. The first origin listed for each output section is the starting address of that output section.
The indented origin value is the starting address of that portion of the output section.

— Length. The first length listed for each output section is the length of that output section. The
indented length value is the length of that portion of the output section.

— Attributes/input sections. This lists the input file or value associated with an output section. If the
input section could not be allocated, the map file will indicate this with "FAILED TO ALLOCATE".

» For more information about the SECTIONS directive, see [Gection 7.9, The SECTIONS Directive.
» Atable showing each external symbol and its address sorted by symbol name.

» A table showing each external symbol and its address sorted by symbol address.

This following example links filel.obj and file2.0bj and creates a map file called map.out:

cl6x -z filel.obj file2.0obj -nEmap.out

shows an example of a map file.

7.4.14 Name an Output Module (-0 Option)

The linker creates an output module when no errors are encountered. If you do not specify a filename for
the output module, the linker gives it the default name a.out. If you want to write the output module to a
different file, use the -o option. The syntax for the -0 option is:

SPRU186P—-October 2006 Linker Description 161
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Linker Options

-o= filename

The filename is the new output module name.

This example links filel.obj and file2.0bj and creates an output module named run.out:
cl6x -z -o=run.out filel.obj file2.obj

7.4.15 Strip Symbolic Information (-s Option)

The -s option creates a smaller output module by omitting symbol table information and line number
entries. The -s option is useful for production applications when you do not want to disclose symbolic
information to the consumer.

This example links filel.obj and file2.obj and creates an output module, stripped of line numbers and
symbol table information, named nosym.out:

cl6x -z -o nosymout -s filel.obj file2.obj

Using the -s option limits later use of a symbolic debugger.

7.4.16 Define Stack Size (-stack size Option)

The TMS320C6000 C/C++ compiler uses an uninitialized section, .stack, to allocate space for the run-time
stack. You can set the size of this section in bytes at link time with the -stack option. The syntax for the
-stack option is:

-stack size

The size must be a constant and is in bytes. This example defines a 4K byte stack:

cl 6x -z -stack=0x1000 /* defines a 4K stack (.stack section) */

If you specified a different stack size in an input section, the input section stack size is ignored. Any
symbols defined in the input section remain valid; only the stack size is different.

When the linker defines the .stack section, it also defines a global symbol, _ STACK_SIZE, and assigns it
a value equal to the size of the section. The default software stack size is 1K bytes.

7.4.17 Generate Far Call Trampolines (--trampolines Option)

The TMS320C6000 has PC-relative call and PC-relative branch instructions whose range is smaller than
the entire address space. When these instructions are used, the destination address must be near enough
to the instruction that the difference between the call and the destination fits in the available encoding bits.
If the called function is too far away from the calling function, the linker generates an error.

The alternative to a PC-relative call is an absolute call, which is often implemented as an indirect call: load
the called address into a register, and call that register. This is often undesirable because it takes more
instructions (speed- and size-wise) and requires an extra register to contain the address.

By default, the compiler generates near calls. The --trampolines option causes the linker to generate a
trampoline code section for each call that is linked out-of-range of its called destination. The trampoline
code section contains a sequence of instructions that performs a transparent long branch to the original
called address. Each calling instruction that is out-of-range from the called function is redirected to the
trampoline.

For example, in a section of C code the bar function calls the foo function. The compiler generates this
code for the function:

bar:

cal | foo ; call the function "foo"

162 Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Linker Options

If the foo function is placed out-of-range from the call to foo that is inside of bar, then with --trampolines
the linker changes the original call to foo into a call to foo_trampoline as shown:

bar:

cal | foo_tranpoline ; call a tranpoline for foo

The above code generates a trampoline code section called foo_trampoline, which contains code that
executes a long branch to the original called function, foo. For example:

foo_tranpoline:
branch_l ong foo

Trampolines can be shared among calls to the same called function. The only requirement is that all calls
to the called function be linked near the called function's trampoline.

When the linker produces a map file (the -m option) and it has produced one or more trampolines, then
the map file will contain statistics about what trampolines were generated to reach which functions. A list
of calls for each trampoline is also provided in the map file.

The Linker Assumes B15 Contains the Stack Pointer

Note: Assembly language programmers must be aware that the linker assumes B15 contains
the stack pointer. The linker must save and restore values on the stack in trampoline code
that it generates. If you do not use B15 as the stack pointer, you should use the linker
option that disables trampolines, --trampolines=off. Otherwise, trampolines could corrupt
memory and overwrite register values.

7.4.17.1 Carrying Trampolines From Load Space to Run Space

It is sometimes useful to load code in one location in memory and run it in another. The linker provides the
capability to specify separate load and run allocations for a section. The burden of actually copying the
code from the load space to the run space is left to you.

A copy function must be executed before the real function can be executed in its run space. To facilitate
this copy function, the assembler provides the .label directive, which allows you to define a load-time
address. These load-time addresses can then be used to determine the start address and size of the code
to be copied. However, this mechanism will not work if the code contains a call that requires a trampoline
to reach its called function. This is because the trampoline code is generated at link time, after the
load-time addresses associated with the .label directive have been defined. If the linker detects the
definition of a .label symbol in an input section that contains a trampoline call, then a warning is
generated.

To solve this problem, you can use the START(), END(), and SIZE() operators (see Bection 7.13.1,
Address and Dimension Operators). These operators allow you to define symbols to represent the
load-time start address and size inside the linker command file. These symbols can be referenced by the
copy code, and their values are not resolved until link time, after the trampoline sections have been
allocated.

Here is an example of how you could use the START() and SIZE() operators in association with an output
section to copy the trampoline code section along with the code containing the calls that need trampolines:

SECTI ONS
{ .foo: load = ROM run = RAM start(foo_start), size(foo_size)
{ x.obj(.text) }
.text: {} > ROM

far @0 { -lrts.lib(.text) } > FAR MEM

SPRU186P—-October 2006 Linker Description 163
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Linker Options

A function in x.0obj contains an run-time-support call. The run-time-support library is placed in far memory
and so the call is out-of-range. A trampoline section will be added to the .foo output section by the linker.
The copy code can refer to the symbols foo_start and foo_size as parameters for the load start address
and size of the entire .foo output section. This allows the copy code to copy the trampoline section along
with the original x.obj code in .text from its load space to its run space.

7.4.17.2 Disadvantages of Using Trampolines

An alternative method to creating a trampoline code section for a call that cannot reach its called function
is to actually modify the source code for the call. In some cases this can be done without affecting the size
of the code. However, in general, this approach is extremely difficult, especially when the size of the code
is affected by the transformation.

While generating far call trampolines provides a more straightforward solution, trampolines have the
disadvantage that they are somewhat slower than directly calling a function. They require both a call and a
branch. Additionally, while inline code could be tailored to the environment of the call, trampolines are
generated in a more general manner, and may be slightly less efficient than inline code.

7.4.18 Introduce an Unresolved Symbol (-u symbol Option)

The -u option introduces an unresolved symbol into the linker's symbol table. This forces the linker to
search a library and include the member that defines the symbol. The linker must encounter the -u option
before it links in the member that defines the symbol. The syntax for the -u option is:

-u= symbol

For example, suppose a library named rts6200.lib contains a member that defines the symbol symtab;
none of the object files being linked reference symtab. However, suppose you plan to relink the output
module and you want to include the library member that defines symtab in this link. Using the -u option as
shown below forces the linker to search rts6200.lib for the member that defines symtab and to link in the
member.

cl6x -z -u=synmtab filel.obj file2.obj rts6200.1ib

If you do not use -u, this member is not included, because there is no explicit reference to it in filel.obj or
file2.0bj.

7.4.19 Display a Message When an Undefined Output Section Is Created (-w Option)

In a linker command file, you can set up a SECTIONS directive that describes how input sections are
combined into output sections. However, if the linker encounters one or more input sections that do not
have a corresponding output section defined in the SECTIONS directive, the linker combines the input
sections that have the same name into an output section with that name. By default, the linker does not
display a message to tell you that this occurred.

You can use the -w option to cause the linker to display a message when it creates a new output section.

For more information about the SECTIONS directive, see [Gection 7.g. For more information about the
default actions of the linker, see Bection 7.12.

164 Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Linker Options

7.4.20 Exhaustively Read and Search Libraries (-x and -priority Options)

There are two ways to exhaustively search for unresolved symbols:

» Reread libraries if you cannot resolve a symbol reference (-x).
» Search libraries in the order that they are specified (-priority).

The linker normally reads input files, including archive libraries, only once when they are encountered on
the command line or in the command file. When an archive is read, any members that resolve references
to undefined symbols are included in the link. If an input file later references a symbol defined in a
previously read archive library, the reference is not resolved.

With the -x option, you can force the linker to reread all libraries. The linker rereads libraries until no more
references can be resolved. Linking using -x may be slower, so you should use it only as needed. For
example, if a.lib contains a reference to a symbol defined in b.lib, and b.lib contains a reference to a
symbol defined in a.lib, you can resolve the mutual dependencies by listing one of the libraries twice, as
in:

cl6x -z -la.lib -l1b.lib -la.lib

or you can force the linker to do it for you:

cléx -z -x -la.lib -Ib.1ib

The -priority option provides an alternate search mechanism for libraries. Using -priority causes each
unresolved reference to be satisfied by the first library that contains a definition for that symbol. For

example:
objfile references A
libl defines B
lib2 defines A B; obj defining A references B

%cl6x -z objfile libl I'ib2

Under the existing model, obijfile resolves its reference to A in lib2, pulling in a reference to B, which
resolves to the B in lib2.

Under -priority, objfile resolves its reference to A in lib2, pulling in a reference to B, but now B is resolved
by searching the libraries in order and resolves B to the first definition it finds, namely the one in lib1.

The -priority option is useful for libraries that provide overriding definitions for related sets of functions in
other libraries without having to provide a complete version of the whole library.

For example, suppose you want to override versions of malloc and free defined in the rts6200.lib without
providing a full replacement for rts6200.lib. Using -priority and linking your new library before rts6200.lib
guarantees that all references to malloc and free resolve to the new library.

The -priority option is intended to support linking programs with DSP/BIOS where situations like the one
illustrated above occur.

7.4.21 Generate XML Link Information File (--xml_link_info Option)

The linker supports the generation of an XML link information file via the --xml_link_info file option. This
option causes the linker to generate a well-formed XML file containing detailed information about the result
of a link. The information included in this file includes all of the information that is currently produced in a
linker generated map file.

See Bppendix J, XML Link Information File Description, for specifics on the contents of the generated file.

SPRU186P—-October 2006 Linker Description 165
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Linker Command Files

7.5

Linker Command Files

Linker command files allow you to put linking information in a file; this is useful when you invoke the linker
often with the same information. Linker command files are also useful because they allow you to use the
MEMORY and SECTIONS directives to customize your application. You must use these directives in a
command file; you cannot use them on the command line.

Linker command files are ASCII files that contain one or more of the following:

» Input filenames, which specify object files, archive libraries, or other command files. (If a command file
calls another command file as input, this statement must be the last statement in the calling command
file. The linker does not return from called command files.)

» Linker options, which can be used in the command file in the same manner that they are used on the
command line

» The MEMORY and SECTIONS linker directives. The MEMORY directive defines the target memory
configuration (see Bection 7.7). The SECTIONS directive controls how sections are built and allocated
(see Bection 7.9.)

e Assignment statements, which define and assign values to global symbols

To invoke the linker with a command file, enter the cl6x -z command and follow it with the name of the
command file:

cl6x -z command_filename

The linker processes input files in the order that it encounters them. If the linker recognizes a file as an
object file, it links the file. Otherwise, it assumes that a file is a command file and begins reading and
processing commands from it. Command filenames are case sensitive, regardless of the system used.

shows a sample linker command file called link.cmd.

Example 7-1. Linker Command File

a. obj /* First input filename */
b. obj /* Second input filenanme */
-0 prog.out /* Option to specify output file */
-m prog. nap /* Option to specify map file */

The sample file in contains only filenames and options. (You can place comments in a
command file by delimiting them with /* and */.) To invoke the linker with this command file, enter:

cl6x -z link.cnd

You can place other parameters on the command line when you use a command file:

cl6x -z -r link.cmd c.obj d.obj

The linker processes the command file as soon as it encounters the filename, so a.obj and b.obj are
linked into the output module before c.obj and d.obj.

You can specify multiple command files. If, for example, you have a file called names.Ist that contains
filenames and another file called dir.cmd that contains linker directives, you could enter:

cl6x -z nanes.lst dir.cnd

One command file can call another command file; this type of nesting is limited to 16 levels. If a command
file calls another command file as input, this statement must be the last statement in the calling command
file.

166

Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Linker Command Files

Blanks and blank lines are insignificant in a command file except as delimiters. This also applies to the
format of linker directives in a command file. shows a sample command file that contains
linker directives.

Example 7-2. Command File With Linker Directives

a.obj b.obj c.obj /* I'nput filenanes */
-0 prog.out -m prog. map /* Options */
MEMORY /* MEMORY directive */
{

FAST_MEM origin = 0x0100 I ength = 0x0100

SLOW MEM origin = 0x7000 I ength = 0x1000
}
SECTI ONS /* SECTIONS directive */

{
.text: > SLOW MEM

.data: > SLOW MEM
. bss: > FAST_MEM

}

For more information, see Bection 7.4, The MEMORY Directive, and Bection 7.9, The SECTIONS
Directive.
7.5.1 Reserved Names in Linker Command Files

The following names are reserved as keywords for linker directives. Do not use them as symbol or section
names in a command file.

align DSECT len 0 RUN
ALIGN f length org SECTIONS
attr fill LENGTH origin spare
ATTR FILL load ORIGIN type

block group LOAD range TYPE
BLOCK GROUP MEMORY run UNION
COPY | (lowercase L) NOLOAD

7.5.2 Constants in Linker Command Files

You can specify constants with either of two syntax schemes: the scheme used for specifying decimal,
octal, or hexadecimal constants used in the assembler (see Bection 3.6, Constants) or the scheme used
for integer constants in C syntax.

Examples:

Format Decimal Octal Hexadecimal

Assembler format 32 40q 020h

C format 32 040 0x20
SPRU186P—-October 2006 Linker Description 167

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Object Libraries

7.6

Object Libraries

An object library is a partitioned archive file that contains object files as members. Usually, a group of
related modules are grouped together into a library. When you specify an object library as linker input, the
linker includes any members of the library that define existing unresolved symbol references. You can use
the archiver to build and maintain libraries. Chapter G, Archiver Description, contains more information
about the archiver.

Using object libraries can reduce link time and the size of the executable module. Normally, if an object
file that contains a function is specified at link time, the file is linked whether the function is used or not;
however, if that same function is placed in an archive library, the file is included only if the function is
referenced.

The order in which libraries are specified is important, because the linker includes only those members
that resolve symbols that are undefined at the time the library is searched. The same library can be
specified as often as necessary; it is searched each time it is included. Alternatively, you can use the -x
option to reread libraries until no more references can be resolved (see Becfion 7.4.20, Exhaustively Read
and Search Libraries (-x and -priority Options)). A library has a table that lists all external symbols defined
in the library; the linker searches through the table until it determines that it cannot use the library to
resolve any more references.

The following examples link several files and libraries, using these assumptions:

» Input files f1.obj and f2.0obj both reference an external function named clrscr.

» Input file f1.0bj references the symbol origin.

« Input file f2.0bj references the symbol fillclr.

» Member 0 of library libc.lib contains a definition of origin.

» Member 3 of library liba.lib contains a definition of fillclr.

* Member 1 of both libraries defines clrscr.

If you enter:

cl6x -z fl.obj f2.0bj liba.lib libc.lib

then:

 Member 1 of liba.lib satisfies the fl1.0bj and f2.0bj references to clrscr because the library is searched
and the definition of clrscr is found.

* Member 0 of libc.lib satisfies the reference to origin.
* Member 3 of liba.lib satisfies the reference to fillclr.

If, however, you enter:

cl6x -z fl.obj f2.0bj libc.lib liba.lib

then the references to clrscr are satisfied by member 1 of libc.lib.

If none of the linked files reference symbols defined in a library, you can use the -u option to force the
linker to include a library member. (See Bection 7.4.1§, Introduce an Unresolved Symbol (-u symbol
Option).) The next example creates an undefined symbol routl in the linker's global symbol table:

cl6x -z -u routl libc.lib

If any member of libc.lib defines routl, the linker includes that member.

Library members are allocated according to the SECTIONS directive default allocation algorithm. For more
information, see Bection 7.9, The SECTIONS Directive.

Bection 7.4.17), Alter the Library Search Algorithm (-| Option, -1 Option, and C_DIR/C6X_C_DIR
Environment Variables) describes methods for specifying directories that contain object libraries.

168

Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

The MEMORY Directive

7.7 The MEMORY Directive

The linker determines where output sections are allocated into memory; it must have a model of target
memory to accomplish this. The MEMORY directive allows you to specify a model of target memory so
that you can define the types of memory your system contains and the address ranges they occupy. The
linker maintains the model as it allocates output sections and uses it to determine which memory locations
can be used for object code.

The memory configurations of TMS320C6000 systems differ from application to application. The
MEMORY directive allows you to specify a variety of configurations. After you use MEMORY to define a
memory model, you can use the SECTIONS directive to allocate output sections into defined memory.

For more information, see Bection 2.3, How the Linker Handles Sections and [Section 2.4, Relocation.

7.7.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory model that is based on the
TMS320C6000 architecture. This model assumes that the full 32-bit address space (232 locations) is
present in the system and available for use. For more information about the default memory model, see
Bection 7.12, Default Allocation Algorithm.

7.7.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically present in the target system and
can be used by a program. Each range has several characteristics:

* Name
» Starting address
* Length

» Optional set of attributes
Optional fill specification

When you use the MEMORY directive, be sure to identify all memory ranges that are available for loading
code. Memory defined by the MEMORY directive is configured; any memory that you do not explicitly
account for with MEMORY is unconfigured. The linker does not place any part of a program into
unconfigured memory. You can represent nonexistent memory spaces by simply not including an address
range in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY (uppercase), followed by a
list of memory range specifications enclosed in braces. The MEMORY directive in defines a
system that has 4K bytes of fast external memory at address 0x0000 0000, 2K bytes of slow external
memory at address 0x0000 1000 and 4K bytes of slow external memory at address 0x1000 0000.

Example 7-3. The MEMORY Directive

/**/

1 * Sanmpl e command file with MEMORY directive */
/**/
filel. obj file2. obj /* Input files */
-0 prog.out I * Opti ons */
MEMORY
{
FAST_MEM (RX): origin = 0x00000000 |ength = 0x00001000
SLOW MEM (RW: origin = 0x00001000 |ength = 0x00000800
EXT_MEM (RX): origin = 0x10000000 |ength = 0x00001000
SPRU186P—-October 2006 Linker Description 169

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

The MEMORY Directive

The general syntax for the MEMORY directive is:

MEMORY

{

name 1 [(attr)] : origin = constant, length = constant [, fill = constant]

name n [(attr)] : origin = constant, length = constant [, fill = constant]

name

attr

origin

length

fill

Note:

names a memory range. A memory name can be one to 64 characters; valid characters
include A-Z, a-z, $, ., and _. The names have no special significance to the linker; they
simply identify memory ranges. Memory range names are internal to the linker and are not
retained in the output file or in the symbol table. All memory ranges must have unique
names and must not overlap.

specifies one to four attributes associated with the named range. Attributes are optional;
when used, they must be enclosed in parentheses. Attributes restrict the allocation of
output sections into certain memory ranges. If you do not use any attributes, you can
allocate any output section into any range with no restrictions. Any memory for which no
attributes are specified (including all memory in the default model) has all four attributes.
Valid attributes are:

R specifies that the memory can be read.

w specifies that the memory can be written to.

X specifies that the memory can contain executable code.
I specifies that the memory can be initialized.

specifies the starting address of a memory range; enter as origin, org, or 0. The value,
specified in bytes, is a 32-bit constant and can be decimal, octal, or hexadecimal. specifies
the starting address of a memory range; enter as ,, or . The value, specified in bytes, is a
32-bit constant and can be decimal, octal, or hexadecimal.

specifies the length of a memory range; enter as length, len, or |. The value, specified in
bytes, is a 32-bit constant and can be decimal, octal, or hexadecimal. specifies the length
of a memory range; enter as , , or . The value, specified in bytes, is a 32-bit constant and
can be decimal, octal, or hexadecimal.

specifies a fill character for the memaory range; enter as fill orf. Fills are optional. The value
is a 32-bit integer constant and can be decimal, octal, or hexadecimal. The fill value is
used to fill areas of the memory range that are not allocated to a section. specifies a fill
character for the memory range; enter as or. Fills are optional. The value is a 32-bit integer
constant and can be decimal, octal, or hexadecimal. The fill value is used to fill areas of the
memory range that are not allocated to a section.

Filling Memory Ranges

If you specify fill values for large memory ranges, your output file will be very large
because filling a memory range (even with 0s) causes raw data to be generated for all
unallocated blocks of memory in the range.

The following example specifies a memory range with the R and W attributes and a fill constant of
OFFFFFFFFh:

MEMORY

170

Linker Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

The SECTIONS Directive

{

}

You normally use the MEMORY directive in conjunction with the SECTIONS directive to control allocation
of output sections. After you use MEMORY to specify the target system's memory model, you can use
SECTIONS to allocate output sections into specific named memory ranges or into memory that has
specific attributes. For example, you could allocate the .text and .data sections into the area named
FAST_MEM and allocate the .bss section into the area named SLOW_MEM.

RFILE (RW : o = 0x0020h, | = 0x1000, f = OxFFFFFFFFh

7.8 The SECTIONS Directive

The SECTIONS directive:

» Describes how input sections are combined into output sections
» Defines output sections in the executable program

» Specifies where output sections are placed in memory (in relation to each other and to the entire
memory space)

e Permits renaming of output sections

For more information, see Bection 2.3, How the Linker Handles Sections, Bection 2.4, Relocation, and
Bection 2.2.4, Subsections. Subsectlons allow you to manipulate sections with greater precision.

If you do not specify a SECTIONS directive, the linker uses a default algorithm for combining and
allocating the sections. Bection 7.17, Default Allocation Algorithm, describes this algorithm in detail.

7.8.1 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SECTIONS (uppercase), followed by
a list of output section specifications enclosed in braces.

The general syntax for the SECTIONS directive is:
SECTIONS

{
name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]

Each section specification, beginning with name, defines an output section. (An output section is a section
in the output file.) A section name can be a subsection specification. (See for information on
multi-level subsections.) After the section name is a list of properties that define the section's contents and
how the section is allocated. The properties can be separated by optional commas. Possible properties for
a section are as follows:

e Load allocation defines where in memory the section is to be loaded.

Syntax: load = allocation or
allocation or
> allocation
SPRU186P—-October 2006 Linker Description 171

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS

www.ti.com

The SECTIONS Directive

* Run allocation defines where in memory the section is to be run.
Syntax: run = allocation or
run > allocation

* Input sections defines the input sections (object files) that constitute the output section.
Syntax: { input_sections }
« Section type defines flags for special section types.
Syntax: type = COPY or
type = DSECT or
type = NOLOAD
For more information, see Becfion 7.17], Special Section Types (DSECT, COPY, and NOLOAD).

« Fill value defines the value used to fill uninitialized holes.
Syntax: fill = value or

name :
[properties=value

For more information, see Bection 7.14, Creating and Filling Holes.

shows a SECTIONS directive in a sample linker command file.
Example 7-4. The SECTIONS Directive

AR R E R AR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

/* Sanple command file with SECTIONS directive */

/**/

filel. obj file2. obj /* Input files */
-0 prog.out /* Options */
SECTI ONS
{

.text: load = EXT_MEM run = 0x00000800

.const: | oad = FAST_MEM

. bss: | oad = SLOW MEM

.vectors: | oad = 0x00000000

{

t1.0bj(.intvecl)
t2.0bj (.intvec2)

endvec = .;
.data: al pha: align = 16
.data: beta: align = 16

shows the six output sections defined by the SECTIONS directive in (.vectors,
.text, .const, .bss, .data:alpha, and .data:beta) and shows how these sections are allocated in memory.

172

Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
‘U TEXAS
INSTRUMENTS
www.ti.com
The SECTIONS Directive
Figure 7-2. Section Allocation Defined by
0x00000000 —

.vectors - Bound at 0x00000000 The .vectors section is composed of the .intvecl
section from tl.obj and the .intvec2 section from
t2.0bj.

.const - Allocated in FAST_MEM The .const section combines the .const sections
from filel.obj and file2.0bj.

0x00001000

SLOW_MEM

.bss - Allocated in SLOW_MEM The .bss section combines the .bss sections from
filel.obj and file2.0bj.

.data:alpha - Aligned on 16-byte The .data:alpha subsection combines the .data:al-

boundary pha subsections from filel.obj and file2.obj. The
:) .data:beta subsection combines the .data:beta
-data:beta ~ Aligned on 16-byte subsections from file1.obj and file2.obj. The linker
boundary . .
places the subsections anywhere there is space for
0x00001800 them (in SLOW_MEM in this illustration) and aligns
V each on a 16-byte boundary.
- Empty range of memory
/ as defined in above
0x10000000
EXT_MEM The .text section combines the .text sections from
] filel.obj and file2.0bj. The linker combines all sec-
text ~ Allocated in EXT_MEM tions named .text into this section. The application
must relocate the section to run at 0x00000800.
0x10001000 /
/ - Empty range of memory
/ as defined in above
OXFFFFFFFF /]

7.8.2 Allocation

The linker assigns each output section two locations in target memory: the location where the section will
be loaded and the location where it will be run. Usually, these are the same, and you can think of each
section as having only a single address. The process of locating the output section in the target's memory
and assigning its address(es) is called allocation. For more information about using separate load and run
allocation, see Bection 7.9, Specifying a Section's Run-Time Address.

If you do not tell the linker how a section is to be allocated, it uses a default algorithm to allocate the
section. Generally, the linker puts sections wherever they fit into configured memory. You can override this
default allocation for a section by defining it within a SECTIONS directive and providing instructions on
how to allocate it.

You control allocation by specifying one or more allocation parameters. Each parameter consists of a
keyword, an optional equal sign or greater-than sign, and a value optionally enclosed in parentheses. If
load and run allocation are separate, all parameters following the keyword LOAD apply to load allocation,
and those following the keyword RUN apply to run allocation. The allocation parameters are:

Binding allocates a section at a specific address.
.text: load = 0x1000

Named memory allocates the section into a range defined in the MEMORY directive with the specified
name (like SLOW_MEM) or attributes.
.text: load > SLOW MEM

SPRU186P—-October 2006 Linker Description 173
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
The SECTIONS Directive
Alighment uses the align or palign keyword to specify that the section must start on an address
boundary.
.text: align = 0x100
Blocking uses the block keyword to specify that the section must fit between two address

boundaries: if the section is too big, it starts on an address boundary.
.text: bl ock(0x100)

For the load (usually the only) allocation, you can simply use a greater-than sign and omit the load
keyword:

text: > SLOW MEM .text: {...} > SLON MM

.text: > 0x4000

If more than one parameter is used, you can string them together as follows:
.text: > SLONMEM align 16

Or if you prefer, use parentheses for readability:
.text: load = (SLOW MEM al i gn(16))

You can also use an input section specification to identify the sections from input files that are combined
to form an output section. For more information, see Béection 7.8.3, Specifying Input Sections.

7.8.2.1 Binding

You can supply a specific starting address for an output section by following the section name with an
address:

.text: 0x00001000

This example specifies that the .text section must begin at location 0x1000. The binding address must be
a 32-bit constant.

Output sections can be bound anywhere in configured memory (assuming there is enough space), but
they cannot overlap. If there is not enough space to bind a section to a specified address, the linker issues
an error message.

Binding is Incompatible With Alignment and Named Memory

Note: You cannot bind a section to an address if you use alignment or named memory. If you
try to do this, the linker issues an error message.

7.8.2.2 Named Memory

You can allocate a section into a memory range that is defined by the MEMORY directive (see
Eection 7.7, The MEMORY Directive). This example names ranges and links sections into them:

MEMORY

{
SLOWMEM (RIX) : origin
FAST_MEM (RWX) : origin

0x00000000, Ilength
0x30000000, Iength

0x00001000
0x00000300

}

SECTI ONS

{
Ltext > SLOW MEM
.data > FAST_MEM AL|I G\(128)
. bss : > FAST_MEM

In this example, the linker places .text into the area called SLOW_MEM. The .data and .bss output
sections are allocated into FAST_MEM. You can align a section within a named memory range; the .data
section is aligned on a 128-byte boundary within the FAST_MEM range.

174

Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

The SECTIONS Directive

Similarly, you can link a section into an area of memory that has particular attributes. To do this, specify a
set of attributes (enclosed in parentheses) instead of a memory name. Using the same MEMORY directive
declaration, you can specify:

SECTI ONS

{
.text: > (X) /* .text --> executable menory */
.data: > (RI) /* .data --> read or init nenory */
.bss: > (RW /* .bss -->read or wite nmenory */

}

In this example, the .text output section can be linked into either the SLOW_MEM or FAST_MEM area
because both areas have the X attribute. The .data section can also go into either SLOW_MEM or
FAST_MEM because both areas have the R and | attributes. The .bss output section, however, must go
into the FAST_MEM area because only FAST_MEM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated, although the linker uses lower
memory addresses first and avoids fragmentation when possible. In the preceding examples, assuming no
conflicting assignments exist, the .text section starts at address 0. If a section must start on a specific
address, use binding instead of named memory.

7.8.2.3 Controlling Allocation Using The HIGH Location Specifier

The linker allocates output sections from low to high addresses within a designated memory range by
default. Alternatively, you can cause the linker to allocate a section from high to low addresses within a
memory range by using the HIGH location specifier in the SECTION directive declaration.

For example, given this MEMORY directive:

MEMORY

{
RAM ; origin = 0x0200, Iength = 0x0800
FLASH : origin = 0x1100, length = OxEEEQ
VECTORS®) : origin = OXFFEO, length = Ox001E
RESET : origin = OXFFFE, length = 0x0002

}
and an accompanying SECTIONS directive:

SECTI ONS

{
. bss : {} > RAM
.sysmem : {} > RAM
. stack : {} > RAM (H &H)

}

The HIGH specifier used on the .stack section allocation causes the linker to attempt to allocate .stack into
the higher addresses within the RAM memory range. The .bss and .sysmem sections are allocated into
the lower addresses within RAM. illustrates a portion of a map file that shows where the
given sections are allocated within RAM for a typical program.

SPRU186P—-October 2006 Linker Description 175
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

The SECTIONS Directive

Preliminary

” TEXAS
INSTRUMENTS

www.ti.com

Example 7-5. Linker Allocation With the HIGH Specifier

00000200
00000200
0000031a
000003a2
0000041a
00000460
00000468
0000046¢
0000046e

. bss 0

00000470
00000470

. sysmem 0

000008c0
000008c0

. stack 0

00000270
0000011a
00000088
00000078
00000046
00000008
00000004
00000002
00000002

00000120
00000004

00000140
00000002

UNI NI TI ALI ZED
rts6200.1ib :

hel | 0. obj (.bs

UNI NI TI ALl ZED
rts6200.1ib :

UNI NI TI ALl ZED
rts6200.1ib :

defs.obj (.bss)
trgdrv.obj (.bss)

| ow ev. obj (.bss)
exit.obj (.bss)
menory. obj (.bss)
_lock.obj (.bss)

f open. obj (.bss)

s)

menory. obj (.sysnen)
boot . obj (. stack)

As shown in , the .bss and .sysmem sections are allocated at the lower addresses of RAM
(0x0200 - 0x0590) and the .stack section is allocated at address 0x0880, even though lower addresses

are available.

Without using the HIGH specifier, the linker allocation would have resulted in the code shown in

=a:

Example 7-6. Linker Allocation Without HIGH Specifier

00000200
00000200
0000031a
000003a2
0000041a
00000460
00000468
0000046¢
0000046e

. bss 0

00000470
00000470

.stack 0

000005b0
000005b0

. sysmem 0

00000270
0000011a
00000088
00000078
00000046
00000008
00000004
00000002
00000002

00000140
00000002

00000120
00000004

UNI NI TI ALI ZED
rts6200.lib :

hell 0. obj (.bs

UNI NI TI ALI ZED
rts6200.1ib :

UNI NI TI ALI ZED
rts6200.1ib :

defs.obj (.bss)
trgdrv.obj (.bss)

| ow ev. obj (. bss)
exit.obj (.bss)
menory. obj (.bss)
_lock.obj (.bss)
fopen. obj (.bss)

s)

boot . obj (.stack)
menory. obj (.sysnemn

The HIGH specifier is ignored if it is used with specific address binding or automatic section splitting (>>

operator).

7.8.2.4 Alignment and Blocking

You can tell the linker to place an output section at an address that falls on an n-byte boundary, where n
is a power of 2, by using the align keyword. For example:

.text: load = align(32)

allocates .text so that it falls on a 32-byte boundary.

You can specify the same alignment with the palign keyword. In addition, palign ensures the section's size
is a multiple of its placement alignment restrictions, padding the section size up to such a boundary, as

needed.

Blocking is a weaker form of alignment that allocates a section anywhere within a block of size n. The
specified block size must be a power of 2. For example:

176

Linker Description

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

Preliminary

INSTRUMENTS

www.ti.com

The SECTIONS Directive

bss: 1 oad = bl ock(0x0080)
allocates .bss so that the entire section is contained in a single 128-byte page or begins on that boundary.

You can use alignment or blocking alone or in conjunction with a memory area, but alignment and
blocking cannot be used together.

7.8.3 Specifying Input Sections
An input section specification identifies the sections from input files that are combined to form an output
section. In general, the linker combines input sections by concatenating them in the order in which they
are specified. However, if alignment or blocking is specified for an input section, all of the input sections
within the output section are ordered as follows:
« All aligned sections, from largest to smallest
» All blocked sections, from largest to smallest
» All other sections, from largest to smallest
The size of an output section is the sum of the sizes of the input sections that it comprises.
shows the most common type of section specification; note that no input sections are listed.
Example 7-7. The Most Common Method of Specifying Section Contents
SECTI ONS
{
.text:
. dat a:
. bss:
}
In Example 7-17, the linker takes all the .text sections from the input files and combines them into the .text
output section. The linker concatenates the .text input sections in the order that it encounters them in the
input files. The linker performs similar operations with the .data and .bss sections. You can use this type of
specification for any output section.
You can explicitly specify the input sections that form an output section. Each input section is identified by
its filename and section name:
SECTI ONS
{
.text : /* Build .text output section */
{
f1.0bj(.text) /* Link .text section fromf1. obj */
f 2. obj (secl) /* Link secl section from f2. obj */
f 3. obj /* Link ALL sections from f3. obj */
f4.0bj(.text,sec2) /* Link .text and sec2 from f4. obj */
}
}
It is not necessary for input sections to have the same name as each other or as the output section they
become part of. If a file is listed with no sections,all of its sections are included in the output section. If any
additional input sections have the same name as an output section but are not explicitly specified by the
SECTIONS directive, they are automatically linked in at the end of the output section. For example, if the
linker found more .text sections in the preceding example and these .text sections were not specified
anywhere in the SECTIONS directive, the linker would concatenate these extra sections after f4.obj(sec2).
The specifications in are actually a shorthand method for the following:
SECTI ONS
{
Ctext: { *(.text) }
.data: { *(.data) }
.bss: { *(.bss) }
}
SPRU186P—-October 2006 Linker Description 177

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

The SECTIONS Directive

7.8.4

The specification *(.text) means the unallocated .text sections from all the input files. This format is useful
when:

* You want the output section to contain all input sections that have a specified name, but the output
section name is different from the input sections' name.

* You want the linker to allocate the input sections before it processes additional input sections or
commands within the braces.

The following example illustrates the two purposes above:

SECTI ONS
{
text 0 |
abc. obj (xqt)
*(.text)
}
.data : {

*(.data)
fil.obj(table)

}

In this example, the .text output section contains a hamed section xqt from file abc.obj, which is followed
by all the .text input sections. The .data section contains all the .data input sections, followed by a named
section table from the file fil.obj. This method includes all the unallocated sections. For example, if one of
the .text input sections was already included in another output section when the linker encountered
*(.text), the linker could not include that first .text input section in the second output section.

Using Multi-Level Subsections

Originally, subsections were identified with the base section name and a subsection name separated by a
colon. For example, A:B names a subsection of the base section A. In certain places in a linker command
file specifying a base name, such as A, selects the section A as well as any subsections of A, such as A:B
or A:C.

This concept has been extended to include multiple levels of subsection naming. The original constraints
are still true, but a name such as A:B can be used to specify a (sub)section of that name as well as any
(multi-level) subsections beginning with that name, such as A:B:C, A:B:OTHER, etc. All the subsections of
A:B are also subsections of A. A and A:B are supersections of A:B:C. Among a group of supersections of
a subsection, the nearest supersection is the supersection with the longest name. Thus, among {A, A:B}
the nearest supersection of A:B:C:D is A:B.

With multiple levels of subsections, the constraints are the following:

1. When specifying input sections within a file (or library unit) the section name selects an input section
of the same name and any subsections of that name.

2. Input sections that are not explicitly allocated are allocated in an existing output section of the same
name or in the nearest existing supersection of such an output section. An exception to this rule is that
during a partial link (specified by the -r linker option) a subsection is allocated only to an existing output
section of the same name.

3. If no such output section described in 2) is defined, the input section is put in a newly created output
section with the same name as the base name of the input section.

Consider linking input sections with the following names:

europe:north:norway europe:central:france europe:south:spain
europe:north:sweden europe:central:germany europe:south:italy
europe:north:finland europe:central:denmark europe:south:malta
europe:north:iceland

178

Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

The SECTIONS Directive

This SECTIONS specification allocates the input sections as indicated in the comments:
SECTI ONS {

nordic

}

{*(europe: north)

(europe:central :denmark)} / the nordic countries */
central: {*(europe:central)}
therest: {*(europe)}

/* france
/* spain,

ger many

italy, malta

*/
*/

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTI ONS {
i sl ands: {*(europe:south:malta)
(europe:north:iceland)} / malta,

eur ope:
eur ope:
eur ope:
eur ope:

/* (italy,

Note:

north:finland : {}
north {}
central {}

central :france: {}

/* finland
/* norway,
/* ger many
/* france

cel and

sweden
denmar k

*/
*/
*/
*/
*/

spain) go into a |inker-generated output section "europe" */

Upward Compatibility of Multi-Level Subsections

Existing linker commands that use the existing single-level subsection features and which
do not contain section names containing multiple colon characters continue to behave as
before. However, if section names in a linker command file or in the input sections
supplied to the linker contain multiple colon characters, some change in behavior could be
possible. You should carefully consider the impact of the new rules for multiple levels to
see if it affects a particular system link.

7.8.5 Allocation Using Multiple Memory Ranges

The linker allows you to specify an explicit list of memory ranges into which an output section can be

allocated. Consider the following example:

MEMORY

{
P_MEML :
P_MEM2
P_MEMB :
P_MEMA :

}

SECTI ONS

{
. text

}

The | operator is used to specify the multiple memory ranges. The .text output section is allocated as a

origin = 02000h, |ength = 01000h
origin = 04000h, |length = 01000h
origin = 06000h, 1Iength = 01000h
origin = 08000h, |ength = 01000h
{} > P MM | PMEMR | P_MEWA

whole into the first memory range in which it fits. The memory ranges are accessed in the order specified.
In this example, the linker first tries to allocate the section in P_MEML1. If that attempt fails, the linker tries
to place the section into P_MEMZ2, and so on. If the output section is not successfully allocated in any of

the named memory ranges, the linker issues an error message.

With this type of SECTIONS directive specification, the linker can seamlessly handle an output section
that grows beyond the available space of the memory range in which it is originally allocated. Instead of
modifying the linker command file, you can let the linker move the section into one of the other areas.

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Linker Description

179

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

The SECTIONS Directive

7.8.6 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

The linker can split output sections among multiple memory ranges to achieve an efficient allocation. Use
the >> operator to indicate that an output section can be split, if necessary, into the specified memory
ranges. For example:

MVEMORY

{
P MEML : origin = 02000h, Ilength = 01000h
P_MEM2 : origin = 04000h, Iength = 01000h
P_MEMB : origin = 06000h, Iength = 01000h
P MEMA : origin = 08000h, Iength = 01000h

}

SECTI ONS

{
.text: { *(.text) } > P_MEML | P_.MEMR | P_MEMB | P_MEMA

}

In this example, the >> operator indicates that the .text output section can be split among any of the listed
memory areas. If the .text section grows beyond the available memory in P_MEMZ1, it is split on an input
section boundary, and the remainder of the output section is allocated to P_MEM2 | P_MEMS3 | P_MEMA4.

The | operator is used to specify the list of multiple memory ranges.

You can also use the >> operator to indicate that an output section can be split within a single memory
range. This functionality is useful when several output sections must be allocated into the same memory
range, but the restrictions of one output section cause the memory range to be partitioned. Consider the
following example:

MEMORY

{
RAM : origin = 01000h, |ength = 08000h

}

SECTI ONS

{
.special: { fl.obj(.text) } = 04000h
.text: { *(.text) } >> RAM

}

The .special output section is allocated near the middle of the RAM memory range. This leaves two
unused areas in RAM: from 01000h to 04000h, and from the end of f1.0bj(.text) to 08000h. The
specification for the .text section allows the linker to split the .text section around the .special section and
use the available space in RAM on either side of .special.

The >> operator can also be used to split an output section among all memory ranges that match a
specified attribute combination. For example:

MEMORY

{
P_MEML (RWK) : origin = 01000h, Iength = 02000h
P_MEM2 (RW) : origin = 04000h, |ength = 01000h

}

SECTI ONS
{

Ctext: { *(.text) } >> (RW
}

The linker attempts to allocate all or part of the output section into any memory range whose attributes
match the attributes specified in the SECTIONS directive.
This SECTIONS directive has the same effect as:

SECTI ONS

{
.text: { *(.text) } > P_MEML | P_MEMR}

Certain sections should not be split:

180

Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

The SECTIONS Directive

» Certain sections created by the compiler, including
— The .cinit section, which contains the autoinitialization table for C/C++ programs
— The .pinit section, which contains the list of global constructors for C++ programs
— The .bss section, which defines global variables

* An output section with an input section specification that includes an expression to be evaluated. The
expression may define a symbol that is used in the program to manage the output section at run time.

* An output section that is a GROUP member. The intent of a GROUP directive is to force contiguous
allocation of GROUP member output sections.

* An output section that has a START(), END(), OR SIZE() operator applied to it. These operators
provide information about a section's load or run address, and size. Splitting the section may
compromise the integrity of the operation.

» The run allocation of a UNION. (Splitting the load allocation of a UNION is allowed.)

If you use the >> operator on any of these sections, the linker issues a warning and ignores the operator.

7.8.7 Allocating an Archive Member to an Output Section

The ability to specify an archive member of a library archive for allocation into a specific output section
can be specified inside angle brackets after a library name. Any object files separated by commas or
spaces from the specified archive file are legal within the angle brackets. The syntax for allocating
archived library members specifically inside of a SECTIONS directive is as follows:

’[—I] library name <memberl[,] member2[,] ...> [(input sections)]

specifies that the text sections of boot.obj, exit.obj, and strcpy.obj from the run-time-support
library should be placed in section .boot. The remainder of the .text sections from the run-time-support
library are to be placed in section .rts. Finally, the remainder of all other .text sections are to be placed in
section .text.

Example 7-8. Archive Members to Output Sections

SECTI ONS
{
boot > BOOT1
{
-l rtsXX. i b<boot.obj> (.text)
-lrtsXX. lib>exit.obj strcpy.obj> (.text)
}
.rts > BOOT2
{
SlrtsXX. lib (.text)
}
.text > RAM

The -l option (which normally implies a library path search be made for the named file following the option)
listed before each library in is optional when listing specific archive members inside < >.
Using < > implies that you are referring to a library.

To collect a set of the input sections from a library in one place, use the -I option within the SECTIONS
directive. For example, the following collects all the .text sections from rts6200.lib into the .rtstest section:
SECTI ONS

{

SPRU186P—-October 2006 Linker Description 181
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Specifying a Section's Run-Time Address

.rtstest { -1rts6200.lib(.text) } > RAM

SECTIONS Directive Effect on -priority

Note: Specifying a library in a SECTIONS directive causes that library to be entered in the list of
libraries that the linker searches to resolve references. If you use the -priority option, the
first library specified in the command file will be searched first.

7.9 Specifying a Section's Run-Time Address
At times, you may want to load code into one area of memory and run it in another. For example, you may
have performance-critical code in slow external memory. The code must be loaded into slow external
memory, but it would run faster in fast external memory.
The linker provides a simple way to accomplish this. You can use the SECTIONS directive to direct the
linker to allocate a section twice: once to set its load address and again to set its run address. For
example:
.fir: load = SLONMEM run = FAST_MEM
Use the load keyword for the load address and the run keyword for the run address.
See Bection 2.3, Run-Time Relocation, for an overview on run-time relocation.

7.9.1 Specifying Load and Run Addresses
The load address determines where a loader places the raw data for the section. Any references to the
section (such as labels in it) refer to its run address. The application must copy the section from its load
address to its run address; this doesnot happen automatically when you specify a separate run address.
If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is allocated as if it were
two sections of the same size. This means that both allocations occupy space in the memory map and
cannot overlay each other or other sections. (The UNION directive provides a way to overlay sections; see
Bection 7.10.7], Overlaying Sections With the UNION Statement.)
If either the load or run address has additional parameters, such as alignment or blocking, list them after
the appropriate keyword. Everything related to allocation after the keyword load affects the load address
until the keyword run is seen, after which, everything affects the run address. The load and run allocations
are completely independent, so any qualification of one (such as alignment) has no effect on the other.
You can also specify run first, then load. Use parentheses to improve readability.
The examples below specify load and run addresses:
.data: load = SLONMEM align = 32, run = FAST_MEM
(align applies only to load)
.data: load = (SLONMEM align 32), run = FAST_MEM
(identical to previous example)
.data: run = FAST_MEM align 32,

load = align 16

(align 32 in FAST_MEM for run; align 16 anywhere for load)

182 Linker Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Specifying a Section's Run-Time Address

7.9.2 Uninitialized Sections

Uninitialized sections (such as .bss) are not loaded, so their only significant address is the run address.
The linker allocates uninitialized sections only once: if you specify both run and load addresses, the linker
warns you and ignores the load address. Otherwise, if you specify only one address, the linker treats it as
a run address, regardless of whether you call it load or run. This example specifies load and run
addresses for an uninitialized section:

.bss: load = 0x1000, run = FAST_MEM

A warning is issued, load is ignored, and space is allocated in FAST_MEM. All of the following examples
have the same effect. The .bss section is allocated in FAST_MEM.
.bss: load = FAST_MEM

.bss: run = FAST_MEM
. bss: > FAST_MEM

7.9.3 Referring to the Load Address by Using the .label Directive

Normally, any reference to a symbol in a section refers to its run-time address. However, it may be
necessary at run time to refer to a load-time address. Specifically, the code that copies a section from its
load address to its run address must have access to the load address. The .label directive defines a
special symbol that refers to the section's load address. Thus, whereas normal symbols are relocated with
respect to the run address, .label symbols are relocated with respect to the load address. See
Load-Time Address Labe] for more information on the .label directive.

Example 7-9 and Example 7-10 show the use of the .label directive to copy a section from its load address

in SLOW_MEM to its run address in FAST_MEM. illustrates the run-time execution of
3
Example 7-9. Copying Section Assembly Language File

.sect ".fir"

.align 4

.label fir_src
fir
insert code here

.l abel fir_end

.text

MVKL fir_src, A4
M/KH fir_src, A4
MVKL fir_end, A5
MVKH fir_end, A5
MVKL fir, A6
M/KH fir, A6
SuB A5, A4, Al

| oop:
[VA1] B done
LDW *Ad+ +, B3
NOP 4
branch occurs
STW B3, *A6+ +
SUB Al, 4, Al
B | oop
NOP 5
branch occurs
done:
B fir
NOP 5
call occurs
SPRU186P—-October 2006 Linker Description 183

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

Specifying a Section's Run-Time Address

” TEXAS
INSTRUMENTS

www.ti.com

Example 7-10. Linker Command File for

/**/

/* PARTI AL LI NKER COMVAND FI LE FOR FI R EXAMPLE */

AR R EE AR EEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEER LY

MEMORY
{
FAST_MEM : origin = 0x00001000, |ength = 0x00001000
SLOWMEM : origin = 0x10000000, |ength = 0x00001000
}
SECTI ONS
{
.text: load = FAST_MEM
.fir: load = SLOWNMEM run FAST_MEM
}

Figure 7-3. Run-Time Execution of

0x00000000
FAST_MEM
f——————
‘ fir (relocated ‘
to run here) W
iiiiii N
0x00001000
0x10000000
SLOW_MEM
r— 1
| fir (loads here) |
L N
0x10001000
OXFFFFFFFF

184 Linker Description

u

SPRU186P—October 2006

mit bocumentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

{'f TEXAS
INSTRUMENTS

www.ti.com

Using UNION and GROUP Statements

7.10 Using UNION and GROUP Statements

Two SECTIONS statements allow you to conserve memory: GROUP and UNION. Unioning sections
causes the linker to allocate them to the same run address. Grouping sections causes the linker to
allocate them contiguously in memory. Section names can refer to sections, subsections, or archive library
members.

7.10.1 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section to run at the same address. For
example, you may have several routines you want in fast external memory at various stages of execution.
Or you may want several data objects that are not active at the same time to share a block of memory.
The UNION statement within the SECTIONS directive provides a way to allocate several sections at the
same run-time address.

In Example 7-117], the .bss sections from filel.obj and file2.obj are allocated at the same address in
FAST_MEM. In the memory map, the union occupies as much space as its largest component. The
components of a union remain independent sections; they are simply allocated together as a unit.

Example 7-11. The UNION Statement

SECTI ONS

{
.text: load = SLON MEM
UNI ON: run = FAST_MEM

{
.bss:partl: { filel.obj(.bss) }

.bss:part2: { file2.0bj(.bss) }

.bss:part3: run = FAST_MEM { gl obal s. obj (. bss) }

Allocation of a section as part of a union affects only its run address. Under no circumstances can
sections be overlaid for loading. If an initialized section is a union member (an initialized section, such as
.text, has raw data), its load allocation must be separately specified. See Example 7-12.

Example 7-12. Separate Load Addresses for UNION Sections

UNI ON run = FAST_MEM

{

SLOVMEM { filel.obj(.text) }
SLOVMEM { file2.0bj(.text) }

.text:partl: |oad
.text:part2: |oad

SPRU186P—-October 2006 Linker Description 185
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Using UNION and GROUP Statements

Figure 7-4. Memory Allocation Shown in Example 7-17 and Example 7-12

FAST _MEM FAST _MEM
Sections can run

w.| Copies at

.bss:part2 | ; . .text 2 (run) .
as a union. This run time
.bSS:partl |S run_tlme a”oca_ text1 (run)
tion only.
.bss:part3
7///// W
SLOW_MEM SLOW_MEM
text text 1 (load) -

Sections cannot
load as a union. text 2 (load) L

Since the .text sections contain data, they cannot load as a union, although they can be run as a union.
Therefore, each requires its own load address. If you fail to provide a load allocation for an initialized
section within a UNION, the linker issues a warning and allocates load space anywhere it can in
configured memory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is meaningless to specify a load
address for the union itself. For purposes of allocation, the union is treated as an uninitialized section: any
one allocation specified is considered a run address, and if both run and load addresses are specified, the
linker issues a warning and ignores the load address.

7.10.2 Grouping Output Sections Together

The SECTIONS directive's GROUP option forces several output sections to be allocated contiguously. For
example, assume that a section named term_rec contains a termination record for a table in the .data
section. You can force the linker to allocate .data and term_rec together:

Example 7-13. Allocate Sections Together

SECTI ONS
{
.text /* Normal output section */
. bss /* Nornmal output section */
GROUP 0x00001000 : /* Specify a group of sections */
{
.data /* First section in the group */
termrec /* Allocated imediately after .data */
}
}

You can use hinding, alignment, or named memory to allocate a GROUP in the same manner as a single
output section. In the preceding example, the GROUP is bound to address 0x00001000. This means that
.data is allocated at 0x00001000, and term_rec follows it in memory.

186

Linker Description SPRU186P-October 2006
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

Preliminary

INSTRUMENTS

www.ti.com

Using UNION and GROUP Statements

7.10.3 Nesting UNIONs and GROUPs

The linker allows arbitrary nesting of GROUP and UNION statements with the SECTIONS directive. By
nesting GROUP and UNION statements, you can express hierarchical overlays and groupings of sections.
shows how two overlays can be grouped together.

Example 7-14. Nesting GROUP and UNION Statements

SECTI ONS

{

GROUP 1000h : run = FAST_MEM
{
UNI ON:
{
nysect1:1 oad = SLOW MEM
nysect2: |oad = SLOW MEM
}
UNI ON:
{
nysect3: | oad = SLOW MEM
nmysect4: load =

For this example, the linker performs the following allocations:

The four sections (mysectl, mysect2, mysect3, mysect4) are assigned unique, non-overlapping load
addresses in the SLOW_MEM memory region. This assignment is determined by the particular load
allocations given for each section.

Sections mysectl and mysect2 are assigned the same run address in FAST_MEM.
Sections mysect3 and mysect4 are assigned the same run address in FAST_MEM.

The run addresses of mysectl/mysect2 and mysect3/mysect4 are allocated contiguously, as directed
by the GROUP statement (subject to alignment and blocking restrictions).

To refer to groups and unions, linker diagnostic messages use the notation:
GROUP_n UNION_n

In this notation, n is a sequential number (beginning at 1) that represents the lexical ordering of the group
or union in the linker control file, without regard to nesting. Groups and unions each have their own
counter.

7.10.4 Checking the Consistency of Allocators

The linker checks the consistency of load and run allocations specified for unions, groups, and sections.
The following rules are used:

Run allocations are only allowed for top-level sections, groups, or unions (sections, groups, or unions
that are not nested under any other groups or unions). The linker uses the run address of the top-level
structure to compute the run addresses of the components within groups and unions.

The linker does not accept a load allocation for UNIONSs.
The linker does not accept a load allocation for uninitialized sections.

In most cases, you must provide a load allocation for an initialized section. However, the linker does
not accept a load allocation for an initialized section that is located within a group that already defines
a load allocator.

As a shortcut, you can specify a load allocation for an entire group, to determine the load allocations
for every initialized section or subgroup nested within the group. However, a load allocation is
accepted for an entire group only if all of the following conditions are true:

— The group is initialized (i.e., it has at least one initialized member).
— The group is not nested inside another group that has a load allocator.

SPRU186P—-October 2006 Linker Description 187
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Special Section Types (DSECT, COPY, and NOLOAD)

— The group does not contain a union containing initialized sections.

« If the group contains a union with initialized sections, it is necessary to specify the load allocation for
each initialized section nested within the group. Consider the following example:

SECTI ONS

{
GROUP: |l oad = SLONWMEM run = SLON MEM
{

.text1:

UNI ON:

{
.text2:
Ltext3:

}

}
}

» The load allocator given for the group does not uniquely specify the load allocation for the elements
within the union: .text2 and .text3. In this case, the linker issues a diagnostic message to request that
these load allocations be specified explicitly.

7.11 Special Section Types (DSECT, COPY, and NOLOAD)

You can assign three special types to output sections: DSECT, COPY, and NOLOAD. These types affect

the way that the program is treated when it is linked and loaded. You can assign a type to a section by

placing the type after the section definition. For example:

SECTI ONS

{
secl: | oad = 0x00002000, type = DSECT {fl.o0bj}
sec2: | oad = 0x00004000, type = COPY {f2.0bj}
sec3: | oad = 0x00006000, type = NOLOAD {f3.0bj}

}

* The DSECT type creates a dummy section with the following characteristics:

— ltis notincluded in the output section memory allocation. It takes up no memory and is not included
in the memory map listing.

— It can overlay other output sections, other DSECTSs, and unconfigured memory.

— Global symbols defined in a dummy section are relocated normally. They appear in the output
module's symbol table with the same value they would have if the DSECT had actually been
loaded. These symbols can be referenced by other input sections.

— Undefined external symbols found in a DSECT cause specified archive libraries to be searched.

— The section's contents, relocation information, and line number information are not placed in the
output module.

* In the preceding example, none of the sections from f1.obj are allocated, but all the symbols are
relocated as though the sections were linked at address 0x2000. The other sections can refer to any of
the global symbols in sec1.

e A COPY section is similar to a DSECT section, except that its contents and associated information are
written to the output module. The .cinit section that contains initialization tables for the TMS320C6000
C/C++ compiler has this attribute under the run-time initialization model.

» A NOLOAD section differs from a normal output section in one respect: the section's contents,
relocation information, and line number information are not placed in the output module. The linker
allocates space for the section, and it appears in the memory map listing.

7.12 Default Allocation Algorithm

The MEMORY and SECTIONS directives provide flexible methods for building, combining, and allocating

sections. However, any memory locations or sections that you choose not to specify must still be handled

by the linker. The linker uses default algorithms to build and allocate sections within the specifications you
supply.
188 Linker Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Default Allocation Algorithm

If you do not use the MEMORY and SECTIONS directives, the linker allocates output sections as though
the definitions in were specified.

Example 7-15. Default Allocation for TMS320C6000 Devices

MEMORY
{
RAM : origin = 0x00000001, |ength = OXxFFFFFFFE
}
SECTI ONS
{
text @ ALIGN(32) {} RAM
.const : ALIGN(8) ({} RAM
.data : ALIGN(8) ({} RAM
. bss o ALIGN(8) {} RAM

.cinit © ALIGN(4) {} RAM ; cflag option only

VVVVVVVVVYVYV
<

.pinit : ALIGN(4) {} ; cflag option only
.stack : ALIG\N(8) ({} RAM ; cflag option only
.far o ALIGN(8) {} RAM ; cflag option only
.sysmem ALIGN(8) {} RAM ; cflag option only
.switch: ALIGN(4) {} RAM ; cflag option only
.cio o ALIGN(4) {} RAM ; cflag option only

All .text input sections are concatenated to form a .text output section in the executable output file, and all
.data input sections are combined to form a .data output section.

If you use a SECTIONS directive, the linker performs no part of the default allocation. Allocation is
performed according to the rules specified by the SECTIONS directive and the general algorithm
described next in Bection 7.12.1].

7.12.1 How the Allocation Algorithm Creates Output Sections
An output section can be formed in one of two ways:

Method 1 As the result of a SECTIONS directive definition

Method 2 By combining input sections with the same name into an output section that is not defined in
a SECTIONS directive

If an output section is formed as a result of a SECTIONS directive, this definition completely determines
the section's contents. (See Bection 7.8, The SECTIONS Directive, for examples of how to define an
output section's content.)

If an output section is formed by combining input sections not specified by a SECTIONS directive, the
linker combines all such input sections that have the same name into an output section with that name.
For example, suppose the files f1.obj and f2.0bj both contain named sections called Vectors and that the
SECTIONS directive does not define an output section for them. The linker combines the two Vectors
sections from the input files into a single output section named Vectors, allocates it into memory, and
includes it in the output file.

By default, the linker does not display a message when it creates an output section that is not defined in
the SECTIONS directive. You can use the -w linker option (see Bection 7.4.19, Display a Message When
an Undefined Output Section Is Created (-w Option)) to cause the linker to display a message when it
creates a new output section.

After the linker determines the composition of all output sections, it must allocate them into configured
memory. The MEMORY directive specifies which portions of memory are configured. If there is no
MEMORY directive, the linker uses the default configuration as shown in Example 7-153. (See Becfion 7.1,
The MEMORY Directive, for more information on configuring memory.)

SPRU186P—-October 2006 Linker Description 189
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Assigning Symbols at Link Time

7.12.2 Reducing Memory Fragmentation

7.13

The linker's allocation algorithm attempts to minimize memory fragmentation. This allows memory to be
used more efficiently and increases the probability that your program will fit into memory. The algorithm
comprises these steps:

1. Each output section for which you have supplied a specific binding address is placed in memory at that
address.

2. Each output section that is included in a specific, named memory range or that has memory attribute
restrictions is allocated. Each output section is placed into the first available space within the named
area, considering alignment where necessary.

3. Any remaining sections are allocated in the order in which they are defined. Sections not defined in a
SECTIONS directive are allocated in the order in which they are encountered. Each output section is
placed into the first available memory space, considering alignment where necessary.

Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols and assign values to them at
link time. You can use this feature to initialize a variable or pointer to an allocation-dependent value.

7.13.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of assignment statements in the C
language:

symbol = expression; assigns the value of expression to symbol
symbol += expression; adds the value of expression to symbol
symbol -= expression; subtracts the value of expression from symbol
symbol * = expression; multiplies symbol by expression

symbol /= expression; divides symbol by expression

The symbol should be defined externally. If it is not, the linker defines a new symbol and enters it into the
symbol table. The expression must follow the rules defined in Gection 7.13.3, Assignment Expressions.
Assignment statements must terminate with a semicolon.

The linker processes assignment statements after it allocates all the output sections. Therefore, if an
expression contains a symbol, the address used for that symbol reflects the symbol's address in the
executable output file.

For example, suppose a program reads data from one of two tables identified by two external symbols,
Tablel and Table2. The program uses the symbol cur_tab as the address of the current table. The
cur_tab symbol must point to either Tablel or Table2. You could accomplish this in the assembly code,
but you would need to reassemble the program to change tables. Instead, you can use a linker
assignment statement to assign cur_tab at link time:

pr og. obj /* Input file */

cur_tab = Tablel; /* Assign cur_tab to one of the tables */

7.13.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the section program counter (SPC)
during allocation. The SPC keeps track of the current location within a section. The linker's . symbol is
analogous to the assembler's $ symbol. The . symbol can be used only in assignment statements within a
SECTIONS directive because . is meaningful only during allocation and SECTIONS controls the allocation
process. (See Bection 7.8, The SECTIONS Directive.)

The . symbol refers to the current run address, not the current load address, of the section.

190

Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Assigning Symbols at Link Time

For example, suppose a program needs to know the address of the beginning of the .data section. By
using the .global directive (see [dentify Global Symbolg), you can create an external undefined variable
called Dstart in the program. Then, assign the value of . to Dstart:

SECTI ONS

{
.text: {}
. dat a: {Dstart = .;}
.bss : {}

}

This defines Dstart to be the first linked address of the .data section. (Dstart is assigned before .data is
allocated.) The linker relocates all references to Dstart.

A special type of assignment assigns a value to the . symbol. This adjusts the SPC within an output
section and creates a hole between two input sections. Any value assigned to . to create a hole is relative
to the beginning of the section, not to the address actually represented by the . symbol. Holes and
assignments to . are described in Bection 7.14, Creating and Filling Holes.

7.13.3 Assignment Expressions

These rules apply to linker expressions:
» Expressions can contain global symbols, constants, and the C language operators listed in [Table 7-2.
» All numbers are treated as long (32-bit) integers.

« Constants are identified by the linker in the same way as by the assembler. That is, numbers are
recognized as decimal unless they have a suffix (H or h for hexadecimal and Q or q for octal). C
language prefixes are also recognized (0 for octal and Ox for hex). Hexadecimal constants must begin
with a digit. No binary constants are allowed.

* Symbols within an expression have only the value of the symbol's address. No type-checking is
performed.

» Linker expressions can be absolute or relocatable. If an expression contains any relocatable symbols
(and 0 or more constants or absolute symbols), it is relocatable. Otherwise, the expression is absolute.
If a symbol is assigned the value of a relocatable expression, it is relocatable; if it is assigned the value
of an absolute expression, it is absolute.

The linker supports the C language operators listed in in order of precedence. Operators in the
same group have the same precedence. Besides the operators listed in [[able 7-7, the linker also has an
align operator that allows a symbol to be aligned on an n-byte boundary within an output section (n is a
power of 2). For example, the expression

= align(16);
aligns the SPC within the current section on the next 16-byte boundary. Because the align operator is a

function of the current SPC, it can be used only in the same context as . —that is, within a SECTIONS
directive.

SPRU186P—-October 2006 Linker Description 191
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Assigning Symbols at Link Time
Table 7-2. Groups of Operators Used in Expressions (Precedence)
Group 1 (Highest Precedence) Group 6
! Logical NOT & Bitwise AND
~ Bitwise NOT
- Negation
Group 2 Group 7
* Multiplication Bitwise OR
/ Division
% Modulus
Group 3 Group 8
+ Addition && Logical AND
- Subtraction
Group 4 Group 9
>> Arithmetic right shift Il Logical OR
<< Arithmetic left shift
Group 5 Group 10 (Lowest Precedence)
== Equal to = Assignment
I= Not equal to += A+=B"A=A+B
> Greater than -= A-=B"A=A-B
< Less than *= A*=B"A=A*B
<= Less than or equal to /= A/=B"A=A/B
> = Greater than or equal to

7.13.4 Symbols Defined by the Linker

The linker automatically defines several symbols based on which sections are used in your assembly
source. A program can use these symbols at run time to determine where a section is linked. Since these
symbols are external, they appear in the linker map. Each symbol can be accessed in any assembly
language module if it is declared with a .global directive (see [dentify Global Symbolg). You must have
used the corresponding section in a source module for the symbol to be created. Values are assigned to
these symbols as follows:

text is assigned the first address of the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address of the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
(It marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

end is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

The following symbols are defined only for C/C++ support when the -c or -cr option is used.

__ _STACK_SIZE is assigned the size of the .stack section.
__SYSMEM_SIZE is assigned the size of the .sysmem section.
192 Linker Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Assigning Symbols at Link Time

7.13.5 Assigning Exact Start, End, and Size Values of a Section to a Symbol

The code generation tools currently support the ability to load program code in one area of (slow) memory
and run it in another (faster) area. This is done by specifying separate load and run addresses for an
output section or group in the linker command file. Then execute a sequence of instructions (the copying
code in Example 7-9) that moves the program code from its load area to its run area before it is needed.

There are several responsibilities that a programmer must take on when setting up a system with this
feature. One of these responsibilities is to determine the size and run-time address of the program code to
be moved. The current mechanisms to do this involve use of the .label directives in the copying code. A
simple example is illustrated Example 7-9.

This method of specifying the size and load address of the program code has limitations. While it works
fine for an individual input section that is contained entirely within one source file, this method becomes
more complicated if the program code is spread over several source files or if the programmer wants to
copy an entire output section from load space to run space.

Another problem with this method is that it does not account for the possibility that the section being
moved may have an associated far call trampoline section that needs to be moved with it.

7.13.6 Why the Dot Operator Does Not Always Work

The dot operator (.) is used to define symbols at link-time with a particular address inside of an output
section. It is interpreted like a PC. Whatever the current offset within the current section is, that is the
value associated with the dot. Consider an output section specification within a SECTIONS directive:

out sect :

{
sl.obj (.text)
end_of _s1 = .
start_of _s2 = .;
s2.0bj (.text)
end_of _s2 = .;

}
This statement creates three symbols:
* end_of_sl—the end address of .text in s1.0bj

» start_of_s2—the start address of .text in s2.0bj
» end_of_s2—the end address of .text in s2.0bj

Suppose there is padding between s1.0bj and s2.obj that is created as a result of alignment. Then
start_of _s2 is not really the start address of the .text section in s2.0bj, but it is the address before the
padding needed to align the .text section in s2.0bj. This is due to the linker's interpretation of the dot
operator as the current PC. It is also due to the fact that the dot operator is evaluated independently of the
input sections around it.

Another potential problem in the above example is that end_of_s2 may not account for any padding that
was required at the end of the output section. You cannot reliably use end_of_s2 as the end address of
the output section. One way to get around this problem is to create a dummy section immediately after the
output section in question. For example:

GROUP
{

out sect:

{

start_of _outsect = .;

dummy: { size_of _outsect = . - start_of_outsect; }

SPRU186P—-October 2006 Linker Description 193
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Assigning Symbols at Link Time

7.13.7 Address and Dimension Operators
Six new operators have been added to the linker command file syntax:

LOAD_START(sym) Defines sym with the load-time start address of related allocation unit
START(sym)

LOAD_END(sym) Defines sym with the load-time end address of related allocation unit
END(sym)

LOAD_SIZE(sym) Defines sym with the load-time size of related allocation unit
SIZE(sym)

RUN_START(sym) Defines sym with the run-time start address of related allocation unit
RUN_END(sym) Defines sym with the run-time end address of related allocation unit
RUN_SIZE(sym) Defines sym with the run-time size of related allocation unit

Linker Command File Operator Equivalencies

Note: LOAD_START() and START() are equivalent, as are LOAD_END()/END() and
LOAD_SIZE()/SIZE().

The new address and dimension operators can be associated with several different kinds of allocation
units, including input items, output sections, GROUPs, and UNIONs. The following sections provide some
examples of how the operators can be used in each case.

7.13.7.1 Input Items

Consider an output section specification within a SECTIONS directive:
out sect :

{
sl.obj (.text)
end_of _s1 = .
start_of _s2 = .;
s2.0bj (.text)
end_of _s2 = .;

}

This can be rewritten using the START and END operators as follows:
out sect:

{
sl.obj(.text) { END(end_of _sl1) }
s2.0bj (.text) { START(start_of_s2), END(end_of_s2) }

}

The values of end_of sl and end_of s2 will be the same as if you had used the dot operator in the
original example, but start_of s2 would be defined after any necessary padding that needs to be added
between the two .text sections. Remember that the dot operator would cause start_of_s2 to be defined
before any necessary padding is inserted between the two input sections.

The syntax for using these operators in association with input sections calls for braces { } to enclose the
operator list. The operators in the list are applied to the input item that occurs immediately before the list.

194 Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Assigning Symbols at Link Time

7.13.7.2 Output Section

The START, END, and SIZE operators can also be associated with an output section. Here is an example:
outsect: START(start_of outsect), SIZE(size_of_outsect)

{

}

In this case, the SIZE operator defines size_of outsect to incorporate any padding that is required in the
output section to conform to any alignment requirements that are imposed.

<list of input itens>

The syntax for specifying the operators with an output section do not require braces to enclose the
operator list. The operator list is simply included as part of the allocation specification for an output
section.

7.13.7.3 GROUPs

Here is another use of the START and SIZE operators in the context of a GROUP specification:

GROUP
{

outsectl: { ... }
outsect2: { ... }
} load = ROM run = RAM START(group_start), SIZE(group_size);

This can be useful if the whole GROUP is to be loaded in one location and run in another. The copying
code can use group_start and group_size as parameters for where to copy from and how much is to be
copied. This makes the use of .label in the source code unnecessary.

7.13.7.4 UNIONs

The RUN_SIZE and LOAD_SIZE operators provide a mechanism to distinguish between the size of a
UNION's load space and the size of the space where its constituents are going to be copied before they
are run. Here is an example:

UNION: run = RAM LQOAD_START(uni on_| oad_addr),
LOAD_SI ZE(uni on_I d_sz), RUN_SI ZE(uni on_run_sz)
{
.textl: |oad
.text2: |oad

ROM Sl ZE(text1l size) { fl.obj(.text) }
ROM Sl ZE(text2_size) { f2.obj(.text) }

}

Here union_ld_sz is going to be equal to the sum of the sizes of all output sections placed in the union.
The union_run_sz value is equivalent to the largest output section in the union. Both of these symbols
incorporate any padding due to blocking or alignment requirements.

SPRU186P—-October 2006 Linker Description 195
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Creating and Filling Holes

7.14 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections that have nothing linked into
them. These areas are calledholes. In special cases, uninitialized sections can also be treated as holes.
This section describes how the linker handles holes and how you can fill holes (and uninitialized sections)
with values.

7.14.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of output sections. An output section contains either:
» Raw data for the entire section
* No raw data

A section that has raw data is referred to as initialized. This means that the object file contains the actual
memory image contents of the section. When the section is loaded, this image is loaded into memory at
the section's specified starting address. The .text and .data sectionsalwayshave raw data if anything was
assembled into them. Named sections defined with the .sect assembler directive also have raw data.

By default, the .bss section (see fhe .bss topid) and sections defined with the .usect directive (see fhg
[usectiopid) have no raw data (they are uninitialized). They occupy space in the memory map but have
no actual contents. Uninitialized sections typically reserve space in fast external memory for variables. In
the object file, an uninitialized section has a normal section header and can have symbols defined in it; no
memory image, however, is stored in the section.

7.14.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when you force the linker to leave
extra space between input sections within an output section. When such a hole is created, the linker must
supply raw data for the hole.

Holes can be created only within output sections. Space can exist between output sections, but such
space is not a hole. To fill the space between output sections, see [Bection 7.7.4, MEMORY Directive
Syntax.

To create a hole in an output section, you must use a special type of linker assignment statement within
an output section definition. The assignment statement modifies the SPC (denoted by .) by adding to it,
assigning a greater value to it, or aligning it on an address boundary. The operators, expressions, and
syntaxes of assignment statements are described in Bection 7.13, Assigning Symbols at Link Time.

The following example uses assignment statements to create holes in output sections:

SECTI ONS
{

out sect:

{
filel.obj(.text)

+= 0x0100 /* Create a hole with size 0x0100 */
file2.obj(.text)

= align(16); /* Create a hole to align the SPC */
file3.obj(.text)

}
}

The output section outsect is built as follows:

1. The .text section from filel.obj is linked in.

2. The linker creates a 256-byte hole.

3. The .text section from file2.obj is linked in after the hole.

4. The linker creates another hole by aligning the SPC on a 16-byte boundary.
5. Finally, the .text section from file3.obj is linked in.

All values assigned to the . symbol within a section refer to the relative address within the section. The

196

Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Creating and Filling Holes

linker handles assignments to the . symbol as if the section started at address 0 (even if you have
specified a binding address). Consider the statement . = align(16) in the example. This statement
effectively aligns the file3.obj .text section to start on a 16-byte boundary within outsect. If outsect is
ultimately allocated to start on an address that is not aligned, the file3.obj .text section will not be aligned
either.

The . symbol refers to the current run address, not the current load address, of the section.

Expressions that decrement the . symbol are illegal. For example, it is invalid to use the -= operator in an
assignment to the . symbol. The most common operators used in assignments to the . symbol are += and
align.

If an output section contains all input sections of a certain type (such as .text), you can use the following
statements to create a hole at the beginning or end of the output section.

.text: { .+= 0x0100; } /* Hol e at the beginning */
.data: { *(.data)
+= 0x0100; } /* Hole at the end */

Another way to create a hole in an output section is to combine an uninitialized section with an initialized
section to form a single output section. In this case, thelinker treats the uninitialized section as a hole and
supplies data for it. The following example illustrates this method:

SECTI ONS
{

out sect:

{
filel.obj(.text)

filel.obj(.bss) /* This becones a hole */
}
}

Because the .text section has raw data, all of outsect must also contain raw data. Therefore, the
uninitialized .bss section becomes a hole.

Uninitialized sections become holes only when they are combined with initialized sections. If several
uninitialized sections are linked together, the resulting output section is also uninitialized.

7.14.3 Filling Holes

When a hole exists in an initialized output section, the linker must supply raw data to fill it. The linker fills
holes with a 32-bit fill value that is replicated through memory until it fills the hole. The linker determines
the fill value as follows:

1. If the hole is formed by combining an uninitialized section with an initialized section, you can specify a
fill value for the uninitialized section. Follow the section name with an = sign and a 32-bit constant. For
example:

SECTI ONS
{ outsect:

{
filel.obj(.text)

file2.obj(.bss)= OxFFOOFFOO /* Fill this hole wi th OxFFOOFFOO */
}
}
2. You can also specify a fill value for all the holes in an output section by supplying the fill value after the
section definition:

SECTI ONS
{ outsect:fill = OxFFOOFFOO /* Fills holes w th OxFFOOFFOO */
{
+= 0x0010; /* This creates a hole */
filel.obj(.text)
filel.obj(.bss) /* This creates another hole */

}
}
3. If you do not specify an initialization value for a hole, the linker fills the hole with the value specified
with the -f option (see Bection 7.4.7, Set Default Fill Value (-f fill_value Option)). For example, suppose

SPRU186P—-October 2006 Linker Description 197
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Linker-Generated Copy Tables

the command file link.cmd contains the following SECTIONS directive:

SECTI ONS
{

}
Now invoke the linker with the -f option:

cl6x -z -f OxFFFFFFFF |ink.cnd
This fills the hole with OXFFFFFFFF.

4. If you do not invoke the linker with the -f option or otherwise specify a fill value, the linker fills holes
with Os.

.text: { .= 0x0100; } /* Create a 100 word hole */

Whenever a hole is created and filled in an initialized output section, the hole is identified in the link map
along with the value the linker uses to fill it.

7.14.4 Explicit Initialization of Uninitialized Sections

You can force the linker to initialize an uninitialized section by specifying an explicit fill value for it in the
SECTIONS directive. This causes the entire section to have raw data (the fill value). For example:

SECTI ONS
{

.bss: fill = 0x12341234 /* Fills .bss with 0x12341234 */
}

Filling Sections

Note: Because filling a section (even with 0s) causes raw data to be generated for the entire
section in the output file, your output file will be very large if you specify fill values for
large sections or holes.

7.15 Linker-Generated Copy Tables

The linker supports extensions to the linker command file syntax that enable the following:

» Make it easier for you to copy objects from load-space to run-space at boot time

* Make it easier for you to manage memory overlays at run time

» Allow you to split GROUPs and output sections that have separate load and run addresses

7.15.1 A Current Boot-Loaded Application Development Process

In some embedded applications, there is a need to copy or download code and/or data from one location
to another at boot time before the application actually begins its main execution thread. For example, an
application may have its code and/or data in FLASH memory and need to copy it into on-chip memory
before the application begins execution.

One way you can develop an application like this is to create a copy table in assembly code that contains
three elements for each block of code or data that needs to be moved from FLASH into on-chip memory
at boot time:

* The load address
e The run address
* The size

The process you follow to develop such an application might look like this:

1. Build the application to produce a .map file that contains the load and run addresses of each section
that has a separate load and run placement.

2. Edit the copy table (used by the boot loader) to correct the load and run addresses as well as the size
of each block of code or data that needs to be moved at boot time.

3. Build the application again, incorporating the updated copy table.
4. Run the application.

198

Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Linker-Generated Copy Tables

This process puts a heavy burden on you to maintain the copy table (by hand, no less). Each time a piece
of code or data is added or removed from the application, you must repeat the process in order to keep
the contents of the copy table up to date.

7.15.2 An Alternative Approach

You can avoid some of this maintenance burden by using the LOAD_START(), RUN_START(), and
SIZE() operators that are already part of the linker command file syntax . For example, instead of building
the application to generate a .map file, the linker command file can be annotated:

SECTI ONS
{

.flashcode: { app_tasks.obj(.text) }
load = FLASH, run = PMEM
LOAD_START(_flash_code_l d_start),
RUN_START(_fl ash_code_rn_start),
S| ZE(_fl ash_code_si ze)

}

In this example, the LOAD_START(), RUN_START(), and SIZE() operators instruct the linker to create
three symbols:

Symbol Description

_flash_code_ld_start Load address of .flashcode section
_flash_code_rn_start Run address of .flashcode section
_flash_code_size Size of .flashcode section

These symbols can then be referenced from the copy table. The actual data in the copy table will be
updated automatically each time the application is linked. This approach removes step 1 of the process
described in Bection 7.15.1].

While maintenance of the copy table is reduced markedly, you must still carry the burden of keeping the
copy table contents in sync with the symbols that are defined in the linker command file. Ideally, the linker
would generate the boot copy table automatically. This would avoid having to build the application twice
and free you from having to explicitly manage the contents of the boot copy table.

For more information on the LOAD_START(), RUN_START(), and SIZE() operators, see Bection 7.13.1,
Address and Dimension Operators.

SPRU186P—-October 2006 Linker Description 199
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Linker-Generated Copy Tables

7.15.3 Overlay Management Example

Consider an application which contains a memory overlay that must be managed at run time. The memory
overlay is defined using a UNION in the linker command file as illustrated in Example 7-18:

Example 7-16. Using a UNION for Memory Overlay

SECTI ONS
{

UNI ON

{
GROUP

{
.taskl: { taskl.obj(.text) }
.task2: { task2.obj(.text) }

} load = ROM LOAD START(_taskl12_| oad_start), SIZE(_taskl1l2_size)

GROUP

{
.task3: { task3.obj(.text) }
.task4: { task4.obj(.text) }

} load = ROM LOAD START(_task34_load_start), SIZE(_task_34_size)

} run = RAM RUN_START(_task_run_start)

The application must manage the contents of the memory overlay at run time. That is, whenever any
services from .taskl or .task2 are needed, the application must first ensure that .taskl and .task2 are
resident in the memory overlay. Similarly for .task3 and .task4.

To affect a copy of .taskl and .task2 from ROM to RAM at run time, the application must first gain access
to the load address of the tasks (_task12_ load_start), the run address (_task_run_start), and the size
(_task12_size). Then this information is used to perform the actual code copy.

7.15.4 Generating Copy Tables Automatically With the Linker

The linker supports extensions to the linker command file syntax that enable you to do the following:

» Identify any object components that may need to be copied from load space to run space at some
point during the run of an application

» Instruct the linker to automatically generate a copy table that contains (at least) the load address, run
address, and size of the component that needs to be copied

» Instruct the linker to generate a symbol specified by you that provides the address of a
linker-generated copy table. For instance, can be written as shown in Example 7-17:

200 Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Linker-Generated Copy Tables

Example 7-17. Produce Address for Linker Generated Copy Table

SECTI ONS
{

UNI ON

{
GROUP

{
.taskl: { taskl.obj(.text) }

.task2: { task2.obj(.text) }
} load = ROM tabl e(_taskl2_copy_table)

GROUP

{
.task3: { task3.obj(.text) }
.task4: { task4.obj(.text) }

} load = ROM tabl e(_task34_copy_table)

} run = RAM

Using the SECTIONS directive from in the linker command file, the linker generates two
copy tables named: task12 copy_table and _task34 copy table. Each copy table provides the load
address, run address, and size of the GROUP that is associated with the copy table. This information is
accessible from application source code using the linker-generated symbols, _task12_copy_table and
_task34_copy_table, which provide the addresses of the two copy tables, respectively.

Using this method, you do not have to worry about the creation or maintenance of a copy table. You can
reference the address of any copy table generated by the linker in C/C++ or assembly source code,
passing that value to a general purpose copy routine which will process the copy table and affect the
actual copy.

7.15.5 The table() Operator

You can use the table() operator to instruct the linker to produce a copy table. A table() operator can be
applied to an output section, a GROUP, or a UNION member. The copy table generated for a particular
table() specification can be accessed through a symbol specified by you that is provided as an argument
to the table() operator. The linker creates a symbol with this name and assigns it the address of the copy
table as the value of the symbol. The copy table can then be accessed from the application using the
linker-generated symbol.

Each table() specification you apply to members of a given UNION must contain a unique name. If a
table() operator is applied to a GROUP, then none of that GROUP's members may be marked with a
table() specification. The linker detects violations of these rules and reports them as warnings, ignoring
each offending use of the table() specification. The linker does not generate a copy table for erroneous
table() operator specifications.

SPRU186P—-October 2006 Linker Description 201
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary b Texas
INSTRUMENTS

www.ti.com

Linker-Generated Copy Tables

7.15.6 Boot-Time Copy Tables

The linker supports a special copy table name, BINIT (or binit), that you can use to create a boot-time
copy table. For example, the linker command file for the boot-loaded application described in

Bection 7.15.7 can be rewritten as follows:

SECTI ONS

{
.flashcode: { app_tasks.obj(.text) }

|l oad = FLASH, run = PVEM
tabl e(BINIT)

}

For this example, the linker creates a copy table that can be accessed through a special linker-generated
symbol, __ binit_, which contains the list of all object components that need to be copied from their load
location to their run location at boot-time. If a linker command file does not contain any uses of
table(BINIT), then the ___ binit __ symbol is given a value of -1 to indicate that a boot-time copy table does
not exist for a particular application.

You can apply the table(BINIT) specification to an output section, GROUP, or UNION member. If used in
the context of a UNION, only one member of the UNION can be designated with table(BINIT). If applied to
a GROUP, then none of that GROUP's members may be marked with table(BINIT).The linker detects
violations of these rules and reports them as warnings, ignoring each offending use of the table(BINIT)
specification.

7.15.7 Using the table() Operator to Manage Object Components

If you have several pieces of code that need to be managed together, then you can apply the same table()
operator to several different object components. In addition, if you want to manage a particular object
component in multiple ways, you can apply more than one table() operator to it. Consider the linker

command file excerpt in Example 7-18:

Example 7-18. Linker Command File to Manage Object Components

SECTI ONS

{
UNI ON

{
first: { al.obj(.text), bl.obj(.text), cl.obj(.text) }

load = EMEM run = PMEM table(BINIT), table(_first_cthl)

.second: { a2.obj(.text), b2.obj(.text) }
load = EMEM run = PMEM tabl e(_second_ctbl)

.extra: load = EMEM run = PMEM tabl e(BINT)

In this example, the output sections .first and .extra are copied from external memory (EMEM) into
program memory (PMEM) at boot time while processing the BINIT copy table. After the application has
started executing its main thread, it can then manage the contents of the overlay using the two overlay
copy tables named: _first_ctbl and _second_ctbl.

7.15.8 Copy Table Contents

In order to use a copy table that is generated by the linker, you must be aware of the contents of the copy
table. This information is included in a new run-time-support library header file, cpy_tbl.h, which contains a
C source representation of the copy table data structure that is automatically generated by the linker.

shows the TMS320C6000 copy table header file.

202

Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Linker-Generated Copy Tables

Example 7-19. TMS320C6000 cpy_tbl.h File

/**/

/* cpy_tbl.h */
/* */
/* Copyright © 2003 Texas Instrunents |ncorporated */
/* */
/* Specification of copy table data structures which can be autonatically */
/* generated by the linker (using the table() operator in the LCF). */
/* */

/AR R E RS EEEEEEEEEEEE SRR EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

/**/

/* Copy Record Data Structure */
/**/
typedef struct copy_record
{

unsi gned int | oad_addr;

unsi gned int run_addr;

unsi gned int size;
} COPY_RECORD;

AR AR E R EEEEEEEEEEEEE SRR EEEEEEEREEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEY]

/* Copy Table Data Structure */
/**/
typedef struct copy_table
{

unsi gned short rec_size;

unsi gned short numrecs;

COPY_RECORD recs[1];
} COPY_TABLE;

/**/

/* Prototype for general purpose copy routine. */

AR R E RS EEEEEEEEEEEE SRR EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

extern void copy_i n(COPY_TABLE *tp);

For each object component that is marked for a copy, the linker creates a COPY_RECORD obiject for it.
Each COPY_RECORD contains at least the following information for the object component:

* The load address
e The run address
* The size

The linker collects all COPY_RECORDs that are associated with the same copy table into a
COPY_TABLE object. The COPY_TABLE object contains the size of a given COPY_RECORD, the
number of COPY_RECORD:s in the table, and the array of COPY_RECORDSs in the table. For instance, in
the BINIT example in Bection 7.15.4, the .first and .extra output sections will each have their own
COPY_RECORD entries in the BINIT copy table. The BINIT copy table will then look like this:

COPY_TABLE _ binit__ = { 12, 2,

{ <l oad address of .first>,
<run address of .first>,
<size of .first>},

{ <l oad address of .extra>,
<run address of .extra>,
<size of .extra>} };

SPRU186P—-October 2006 Linker Description 203
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Linker-Generated Copy Tables

7.15.9 General Purpose Copy Routine

The cpy_tbl.h file in also contains a prototype for a general-purpose copy routine, copy_in(),
which is provided as part of the run-time-support library. The copy_in() routine takes a single argument:
the address of a linker-generated copy table. The routine then processes the copy table data object and
performs the copy of each object component specified in the copy table.

The copy_in() function definition is provided in the cpy_tbl.c run-time-support source file shown in
[-20.

Example 7-20. Run-Time-Support cpy_tbl.c File

AR R E R EEEEEEEEEEEEE SRR EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

/* cpy_tbhl.c */
/* */
/* Copyright © 2003 Texas |Instrunents |ncor porated */
/* */
/* General purpose copy routine. Gven the address of a |inker-generated */
/* COPY_TABLE data structure, effect the copy of all object conponents */
/* that are designated for copy via the corresponding LCF table() operator. */
/* */

AR AR E R EEEEEE SRR EEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEELY]

#i ncl ude <cpy_tbl.h>
#i ncl ude <string. h>

/**/

/* COPY_I N() */

/AR AR R E R EEEEEEEEEEEE SRR EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEELY]

voi d copy_i n(COPY_TABLE *tp)

{
unsi gned short |;
for (I =0; | < tp->numrecs; |++)
{
COPY_RECORD crp = tp->recs[i];
unsi gned char *1d_addr = (unsigned char *)crp.|oad_addr;
unsi gned char *rn_addr = (unsigned char *)crp.run_addr;
mencpy(rn_addr, |d_addr, crp.size);
}
}

7.15.10 Linker Generated Copy Table Sections and Symbols

The linker creates and allocates a separate input section for each copy table that it generates. Each copy
table symbol is defined with the address value of the input section that contains the corresponding copy
table.

The linker generates a unique name for each overlay copy table input section. For example,
table(_first_ctbl) would place the copy table for the .first section into an input section called
.ovly:_first_ctbl. The linker creates a single input section, .binit, to contain the entire boot-time copy table.

illustrates how you can control the placement of the linker-generated copy table sections
using the input section names in the linker command file.

204 Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Linker-Generated Copy Tables

Example 7-21. Controlling the Placement of the Linker-Generated Copy Table Sections

SECTI ONS

{
UNI ON

{
first: { al.obj(.text), bl.obj(.text), cl.obj(.text) }

load = EMEM run = PMEM table(BINIT), table(_first_cthbl)

.second: { a2.obj(.text), b2.obj(.text) }
load = EMEM run = PMEM tabl e(_second_ctbl)

}

.extra: load = EMEM run = PMEM tabl e(BINT)

.ovly: { } > BMEM
.binit: { } > BMEM

For the linker command file in Example 7-21], the boot-time copy table is generated into a .binit input
section, which is collected into the .binit output section, which is mapped to an address in the BMEM
memory area. The _first_ctbl is generated into the .ovly:_first_ctbl input section and the _second_ctbl is
generated into the .ovly:_second_ctbl input section. Since the base names of these input sections match
the name of the .ovly output section, the input sections are collected into the .ovly output section, which is
then mapped to an address in the BMEM memory area.

If you do not provide explicit placement instructions for the linker-generated copy table sections, they are
allocated according to the linker's default placement algorithm.

The linker does not allow other types of input sections to be combined with a copy table input section in
the same output section. The linker does not allow a copy table section that was created from a partial link
session to be used as input to a succeeding link session.

7.15.11 Splitting Object Components and Overlay Management

In previous versions of the linker, splitting sections that have separate load and run placement instructions
was not permitted. This restriction was because there was no effective mechanism for you, the developer,
to gain access to the load address or run address of each one of the pieces of the split object component.
Therefore, there was no effective way to write a copy routine that could move the split section from its load
location to its run location.

However, the linker can access both the load address and run address of every piece of a split object
component. Using the table() operator, you can tell the linker to generate this information into a copy table.
The linker gives each piece of the split object component a COPY_RECORD entry in the copy table
object.

For example, consider an application which has 7 tasks. Tasks 1 through 3 are overlaid with tasks 4
through 7 (using a UNION directive). The load placement of all of the tasks is split among 4 different
memory areas (LMEM1, LMEM2, LMEM3, and LMEM4). The overlay is defined as part of memory area
PMEM. You must move each set of tasks into the overlay at run time before any services from the set are
used.

You can use table() operators in combination with splitting operators, >>, to create copy tables that have
all the information needed to move either group of tasks into the memory overlay as shown in

=22. illustrates a possible driver for such an application.

SPRU186P—-October 2006 Linker Description 205
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Linker-Generated Copy Tables

Example 7-22. Creating a Copy Table to Access a Split Object Component

SECTI ONS
{
UNI ON
{

.tasklto3: { *(.taskl), *(.task2), *(.task3) }
load >> LMEML | LMEM2 | LMEMA4, table(_task1l3_cthl)

GROUP

{
.task4: { *(.task4) }
.task5: { *(.task5) }
.task6: { *(.task6) }
.task7: { *(.task7) }

} load >> LMEML | LMEMB | LMEM4, table(_task47_ctbl)

} run = PVMEM

.ovly: > LMEMA

Example 7-23. Split Object Component Driver

#i ncl ude <cpy_tbl.h>

extern far COPY_TABLE task13_cthl;
extern far COPY_TABLE task47_cthl;

extern void taskl(void);

extern void task7(void);

mai n()

{
copy_in(& ask13_cthl);
taskl1();
task2();

task3();

copy_in(& ask47_cthl);
task4();
task5();
task6();
task7();

You must declare a COPY_TABLE object as far to allow the overlay copy table section placement to be
independent from the other sections containing data objects (such as .bss).

The contents of the .task1to3 section are split in the section's load space and contiguous in its run space.
The linker-generated copy table, task13_ctbl, contains a separate COPY_RECORD for each piece of the
split section .task1to3. When the address of _task13_ctbl is passed to copy_in(), each piece of .task1to3
is copied from its load location into the run location.

206

Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

Preliminary

INSTRUMENTS

www.ti.com

Partial (Incremental) Linking

7.16

The contents of the GROUP containing tasks 4 through 7 are also split in load space. The linker performs
the GROUP split by applying the split operator to each member of the GROUP in order. The copy table for
the GROUP then contains a COPY_RECORD entry for every piece of every member of the GROUP.
These pieces are copied into the memory overlay when the _task47_ctbl is processed by copy_in().

The split operator can be applied to an output section, GROUP, or the load placement of a UNION or
UNION member. The linker does not permit a split operator to be applied to the run placement of either a
UNION or of a UNION member. The linker detects such violations, emits a warning, and ignores the
offending split operator usage.

Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules. This is known aspartial
linkingor incremental linking. Partial linking allows you to partition large applications, link each part
separately, and then link all the parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

* The intermediate files produced by the linker must have relocation information. Use the -r option when
you link the file the first time. (See Bection 7.4.1.7, Relocation Capabilities (-a and -r Options).)

» Intermediate filesmusthave symbolic information. By default, the linker retains symbolic information in
its output. Do not use the -s option if you plan to relink a file, because -s strips symbolic information
from the output module. (See Bection 7.4.15, Strip Symbolic Information (-s Option).)

» Intermediate link steps should be concerned only with the formation of output sections and not with
allocation. All allocation, binding, and MEMORY directives should be performed in the final link step.

» If the intermediate files have global symbols that have the same name as global symbols in other files
and you want them to be treated as static (visible only within the intermediate file), you must link the
files with the -h option (see Beclion 7.4.9, Make All Global Symbols Static (-h Option)).

e If you are linking C code, do not use -c or -cr until the final link step. Every time you invoke the linker
with the -c or -cr option, the linker attempts to create an entry point. (See Bection 7.4.5, C Language
Options (-c and -cr Options).)

The following example shows how you can use partial linking:

Step 1: Link the file filel.com; use the -r option to retain relocation information in the output file

tempoutl.out.
cl6x -z -r -0 tenpoutl filel.com

filel.com contains:
SECTIONS { ss1: { fl.obj f2.0bj . . . fn.obj } }

Step 2: Link the file file2.com; use the -r option to retain relocation information in the output file

tempout2.out.
cl6x -z -r -0 tenpout2 file2.com

file2.com contains:
SECTIONS { ss2: { gl.obj g2.obj . . . gn.obj } }

Step 3: Link tempoutl.out and tempout2.out.
cléx -z -mfinal.map -o final.out tenpoutl.out tenpout2.out

SPRU186P—-October 2006 Linker Description 207
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Linking C/C++ Code

7.17 Linking C/C++ Code

The C/C++ compiler produces assembly language source code that can be assembled and linked. For
example, a C program consisting of modules progl, prog2, etc., can be assembled and then linked to
produce an executable file called prog.out:

cl6x -z -c -0 prog.out progl.obj prog2.obj ... rts6200.lib
The -c option tells the linker to use special conventions that are defined by the C/C++ environment.

The archive libraries listed below contain C/C++ run-time-support functions:

rts6200.lib rts6400.lib rts64plus.lib rts6700.lib rts67plus.lib
rts6200_eh.lib rts6400_eh.lib rts64plus_eh.lib rts6700_eh.lib rts67plus_eh.lib
rts6200e.lib rts6400e.lib rts64pluse.lib rts6700e.lib rts67pluse.lib
rts6200e_eh.lib rts6400e_eh.lib rts64pluse_eh.lib rts6700e_eh.lib rts67pluse_eh.lib

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support
functions and variables that can be called and referenced from both C and C++ will have the same
linkage.

For more information about the TMS320C6000 C/C++ language, including the run-time environment and
run-time-support functions, see the TMS320C6000 Optimizing Compiler User's Guide.

7.17.1 Run-Time Initialization

All C/C++ programs must be linked with code to initialize and execute the program, called a bootstrap

routine, also known as the boot.obj object module. The symbol _c_int00 is defined as the program entry

point and is the start of the C boot routine in boot.obj; referencing _c_int00 ensures that boot.obj is

automatically linked in from the run-time-support library. When a program begins running, it executes

boot.obj first. The boot.obj symbol contains code and data for initializing the run-time environment and

performs the following tasks:

» Sets up the system stack and configuration registers

» Processes the run-time .cinit initialization table and autoinitializes global variables (when the linker is
invoked with the -c option)

» Disables interrupts and calls _main
The run-time-support object libraries contain boot.obj. You can:

* Use the archiver to extract boot.obj from the library and then link the module in directly.

* Include the appropriate run-time-support library as an input file (the linker automatically extracts
boot.obj when you use the -c or -cr option).

7.17.2 Object Libraries and Run-Time Support

The TMS320C6000 Optimizing C/C++ Compiler User's Guide describes additional run-time-support
functions that are included in rts.src. If your program uses any of these functions, you must link the
appropriate run-time-support library with your object files.

You can also create your own object libraries and link them. The linker includes and links only those
library members that resolve undefined references.

7.17.3 Setting the Size of the Stack and Heap Sections

The C/C++ language uses two uninitialized sections called .sysmem and .stack for the memory pool used
by the malloc() functions and the run-time stacks, respectively. You can set the size of these by using the
-heap or -stack option and specifying the size of the section as a 4-byte constant immediately after the
option. The default size for both, if the options are not used, is 1K words.

See Bection 7.4.10, Define Heap Size (-heap size Option) and Bection 7.4.18G, Define Stack Size (-stack
size Option) for more information on setting stack sizes.

208

Linker Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Linking C/C++ Code

7.17.4 Autoinitialization of Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke
the linker with the -c option.

Using this method, the .cinit section is loaded into memory along with all the other initialized sections. The
linker defines a special symbol called cinit that points to the beginning of the initialization tables in
memory. When the program begins running, the C boot routine copies data from the tables (pointed to by
.cinit) into the specified variables in the .bss section. This allows initialization data to be stored in slow
external memory and copied to fast external memory each time the program starts.

illustrates autoinitialization at run time. Use this method in any system where your application
runs from code burned into slow external memory.

Figure 7-5. Autoinitialization at Run Time
Object file Memory

cinit

cinit Initialization
L Loader tables
section d (SLOW_MEM)

Boot
routine

.bss
section
(FAST_MEM)

7.17.5 Initialization of Variables at Load Time

Initialization of variables at load time enhances performance by reducing boot time and by saving the
memory used by the initialization tables. To use this method, invoke the linker with the -cr option.

When you use the -cr linker option, the linker sets the STYP_COPY bit in the .cinit section's header. This
tells the loader not to load the .cinit section into memory. (The .cinit section occupies no space in the
memory map.) The linker also sets the cinit symbol to -1 (normally, cinit points to the beginning of the
initialization tables). This indicates to the boot routine that the initialization tables are not present in
memory; accordingly, no run-time initialization is performed at boot time.

A loader must be able to perform the following tasks to use initialization at load time:

» Detect the presence of the .cinit section in the object file.

» Determine that STYP_COPY is set in the .cinit section header, so that it knows not to copy the .cinit
section into memory.

* Understand the format of the initialization tables.
illustrates the initialization of variables at load time.

SPRU186P—-October 2006 Linker Description 209
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Linker Example

Figure 7-6. Initialization at Load Time

Object file Memory
.cinit
section Loader
; .bss
section

7.17.6 The -c and -cr Linker Options

The following list outlines what happens when you invoke the linker with the -c or -cr option.

» The symbol _c_int00 is defined as the program entry point. The _c_int00 symbol is the start of the C
boot routine in boot.obj; referencing _c_int00 ensures that boot.obj is automatically linked in from the
appropriate run-time-support library.

» The .cinit output section is padded with a termination record to designate to the boot routine
(autoinitialize at run time) or the loader (initialize at load time) when to stop reading the initialization
tables.

* When you autoinitialize at run time (-c option), the linker defines cinit as the starting address of the
.cinit section. The C boot routine uses this symbol as the starting point for autoinitialization.

* When you initialize at load time (-cr option):

— The linker sets cinit to -1. This indicates that the initialization tables are not in memory, so no
initialization is performed at run time.

— The STYP_COPY flag (0010h) is set in the .cinit section header. STYP_COPY is the special
attribute that tells the loader to perform initialization directly and not to load the .cinit section into
memory. The linker does not allocate space in memory for the .cinit section.

7.18 Linker Example

This example links three object files named demo.obj, ctrl.obj, and tables.obj and creates a program called
demo.out.

Assume that target memory has the following program memory configuration:

Address Range Contents
0x00000000 to 0x00001000 SLOW_MEM
0x00001000 to 0x00002000 FAST_MEM
0x08000000 to 0x08000400 EEPROM
210 Linker Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

Preliminary

INSTRUMENTS

www.ti.com

Linker Example

The output sections are constructed from the following input sections:

Executable code, contained in the .text sections of demo.obj, ctrl.obj, and tables.obj, must be linked

into FAST_MEM.

A set of interrupt vectors, contained in the .intvecs section of tables.obj, must be linked at address

0x00000000.

A table of coefficients, contained in the .data section of tables.obj, must be linked into EEPROM. The

remainder of block EEPROM must be initialized to the value OxFFOOFFOO.

A set of variables, contained in the .bss section of ctrl.obj, must be linked into SLOW_MEM and

preinitialized to 0x00000100.

The .bss sections of demo.obj and tables.obj must be linked into SLOW_MEM.

shows the linker command file for this example. shows the map file.

Example 7-24. Linker Command File, demo.cmd

/**/

[xxxx Speci fy Linker Options *okkk

/**/

-e SETUP /* Define the programentry point */
-0 deno. out /* Nane the output file */
-m deno. nmap /* Create an output nap */
/**/
[xxxx Specify the Input Files *okkx

/**/

deno. obj ctrl. objtabl es. obj

IR AR R EE LSRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEREEEEEEEEEEEEEEEEEEY]

[Specify the Menory Configuration *xkk |

/**/

MEMORY

{

FAST_MEM : org = 0x00000000 |en = 0x00001000

SLOWMEM : org = 0x00001000 | en = 0x00001000

EEPROM : org = 0x08000000 Ien = 0x00000400
}
/)\'******************/
| xEEx Specify the Qutput Sections *rkx]

/**/

SECTI ONS

{
.text : {} > FAST_MEM /* Link all .text sections into ROM */
.intvecs : {} > 0x0 /* Link interrupt vectors at 0x0 */
.data : /* Link .data sections */
{
tabl es. obj (. data)
= 0x400; /* Create hole at end of bl ock */
} = OxFFOOFFOO > EEPROM /* Fill and link into EEPROM */
ctrl_vars: /* Create new ctrl_vars section */
{
ctrl.obj(.bss)
} = 0x00000100 > SLOWMEM /* Fill with 0x100 and link into RAM */
. bss : {} > SLOWMEM /* Link renmining .bss sections into RAM */
}
/)\'***********************/
| xEEx End of Command File *rkx]

/**/

Invoke the linker by entering the following command:

cl6x -z demo.cnd

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Linker Description

211

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Linker Example

Preliminary

” TEXAS
INSTRUMENTS

www.ti.com

This creates the map file shown in and an output file called demo.out that can be run on a

TMS320C6000.

Example 7-25. Output Map File, demo.map

OQUTPUT FI LE NAME
ENTRY PO NT SYMBOL

MEMORY CONFI GURAT

namnme

FAST_MEM 00000000 000001000 00000078
SLOW MEM 00001000 000001000 00000502
08000000 000000400 00000400

EEPROM

<deno. out >

00
ON

origin

SECTI ON ALLOCATI ON MAP

out put
section

.text 0

page

.intvecs 0

.data 0

ctrl _vars 0

. bss 0

GLOBAL SYMBOLS

addr ess

00001500
00001500
08000000
00000000
00000018
00000040
00000000
08000400
00001502
00000064 et ext
08000000 gvar
[11 synbol s]

name

$bss

. bss
.data
.text
_SETUP
_fill _tab
_X42
edat a

end

origin

00000000
00000000
00000030
00000030
00000040
00000000
00000000
08000000
08000000
08000004
08000400
08000400
00001000
00001000
00001500
00001500
00001502

I ength

00000064
00000030
00000000
00000010
00000024
00000014
00000014
00000400
00000004
000003f ¢
00000000
00000000
00000500
00000500
00000002
00000002
00000000

used attributes

attributes/

i nput sections

deno. obj (.text)

tabl es. obj (.text)
--HOLE-- [fill = 00000000]
ctrl.obj (.text)

tabl es. obj (.intvecs)
tabl es. obj (.data)
--HOLE-- [fill = ff00ff00]
ctrl.obj (.data)

deno. obj (.data)

ctrl.obj (.bss) [fill
UNI NI TI ALI ZED

deno. obj (. bss)
tabl es. obj (. bss)

= 00000100]

addr ess
00000000 .text
00000000 _x42
00000018 _SETUP
00000040 _fill_tab
00000064 et ext
00001500 $bss
00001500 . bss
00001502 end
08000000 gvar
08000000 . data
08000400

nane

edat a

212 Linker Description

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

J@ TEXAS
INSTRUMENTS

Preliminary

Chapter 8

SPRU186P—0October 2006

Absolute Lister Description

The TMS320C6000™ absolute lister is a debugging tool that accepts
linked object files as input and creates .abs files as output. These
.abs files can be assembled to produce a listing that shows the
absolute addresses of object code. Manually, this could be a tedious
process requiring many operations; however, the absolute lister utility
performs these operations automatically.

Absolute Listing Is Not Supported for C6400+

Note: The absolute listing capability is not supported for
C6400+. You can use the disassembler (dis6x) or
the -m linker option instead.

Topic Page
8.1 Producing an Absolute Listing[Lecoeoieeeeeeieeenne... 214
8.2 Invoking the Absolute Listerf.....cocoeveeeeeeieieinrne... 213
8.3 Absolute Lister Example[..cooeeeeeieie e eeeeeen. 214

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Absolute Lister Description 213

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

Producing an Absolute Listing

” TEXAS
INSTRUMENTS

www.ti.com

8.1 Producing an Absolute Listing
illustrates the steps required to produce an absolute listing.
Figure 8-1. Absolute Lister Development Flow
. Assembler ; i
Step 1: First, assemble a source file.
Assembler
—— file fJ—————————"—"———————————
Step 2: 1 Link the resulting object file.
Linker
Linked object
—— 117
Step 3: Invoke the absolute lister; use the linked
object file as input. This creates a file with an
Atl’.so'“‘e .abs extension.
ister
.abs
———— fle Jm—m————————————————— — —
Step 4: Finally, assemble the .abs file; you must
invoke the assembler with the -a option. This
Assembler produces a listing file that contains absolute
addresses.
Absolute
listing
214 Absolute Lister Description SPRU186P-October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Invoking the Absolute Lister

8.2 Invoking the Absolute Lister
The syntax for invoking the absolute lister is:

‘abs6x [-options] input file

abs6x is the command that invokes the absolute lister.

options identifies the absolute lister options that you want to use. Options are not case sensitive
and can appear anywhere on the command line following the command. Precede each
option with a hyphen (-). The absolute lister options are as follows:

-e enables you to change the default naming conventions for filename extensions on
assembly files, C source files, and C header files. The three options are listed below.
» ea [.]Jasmext for assembly files (default is .asm)
» ec [.Jeext for C source files (default is .c)
» eh [.]Jhext for C header files (default is .h)

The . in the extensions and the space between the option and the extension are
optional.

-q (quiet) suppresses the banner and all progress information.

input file names the linked object file. If you do not supply an extension, the absolute lister
assumes that the input file has the default extension .out. If you do not supply an input
filename when you invoke the absolute lister, the absolute lister prompts you for one.

The absolute lister produces an output file for each file that was linked. These files are named with the
input filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs
file.

Assemble these files with the -aa assembler option as follows to create the absolute listing:
cl6x -aa filename .abs

The -e options affect both the interpretation of filenames on the command line and the names of the
output files. They should always precede any filename on the command line.

The -e options are useful when the linked object file was created from C files compiled with the debugging
option (-g compiler option). When the debugging option is set, the resulting linked object file contains the
name of the source files used to build it. In this case, the absolute lister does not generate a
corresponding .abs file for the C header files. Also, the .abs file corresponding to a C source file uses the
assembly file generated from the C source file rather than the C source file itself.

For example, suppose the C source file hello.csr is compiled with the debugging option set; the debugging
option generates the assembly file hello.s. The hello.csr file includes hello.hsr. Assuming the executable
file created is called hello.out, the following command generates the proper .abs file:

abs6x -ea s -ec csr -eh hsr hello.out

An .abs file is not created for hello.hsr (the header file), and hello.abs includes the assembly file hello.s,
not the C source file hello.csr.

SPRU186P—-October 2006 Absolute Lister Description 215
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com
Absolute Lister Example
8.3 Absolute Lister Example

This example uses three source files. The files modulel.asm and module2.asm both include the file
globals.def.

modulel.asm

. text

.align 4

. bss array, 100
. bss dfl ag, 4

. copy gl obal s. def

MVKL of fset, AO

MKH of fset, A0

LDW *+b14(dfl ag), A2
nop 4

module2.asm

. bss offset, 2
.copy gl obal s. def

nvkl of fset, a0

nmvkh of fset, a0

mvkl array, a3

mvkh array, a3
globals.def

. gl obal dflag

.global array
. gl obal offset

The following steps create absolute listings for the files modulel.asm and module2.asm:

Step 1: First, assemble modulel.asm and module2.asm:
cl 6x nodul el cl 6x nodul e2

This creates two object files called modulel.obj and module2.ob;.

Step 2: Next, link modulel.obj and module2.obj using the following linker command file, called
bttest.cmd:
-0 bttest.out
-m bttest.map
nmodul el. obj
nodul e2. obj

MEMORY
{
PMEM ori gi n=00000000h | engt h=00010000h
DMEM ori gi n=80000000h | engt h=00010000h
}
SECTI ONS
{
.data: >DVEM
.text: >PMEM
. bss: >DMEM
}

Invoke the linker:
cl6x -z bttest.cnd

This command creates an executable object file called bttest.out; use this new file as input
for the absolute lister.

216 Absolute Lister Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Absolute Lister Example

Step 3:

Now, invoke the absolute lister:
abs6x bttest. out

This command creates two files called modulel.abs and module2.abs:

modulel.abs:
.nolist

array .setsym 080000000h

dfl ag .setsym 080000064h

of fset .setsym 080000068h
.data .setsym 080000000h
___data__ .setsym 080000000h
edata .setsym 080000000h
___edata__ .setsym 080000000h
.text .setsym 000000000h

___text__ .setsym 000000000h
etext .setsym 000000040h
___etext__ .setsym 000000040h

.bss .setsym 080000000h

___bss__ .setsym 080000000h

end .setsym 08000006ah

___end__ .setsym 08000006ah

$bss . setsym 080000000h
.setsect ".text", 000000020h
.setsect ".data", 080000000h
.setsect ".bss",080000000h
Llist
. text

.copy "nodul el. asnt

module2.abs:
.noli st

array .setsym 080000000h

df lag .setsym 080000064h

of fset .setsym 080000068h
.data .setsym 080000000h
__data__ .setsym 080000000h
edata .setsym 080000000h
___edata__ .setsym 080000000h
.text .setsym 000000000h

___text__ .setsym 000000000h
etext .setsym 000000040h
___etext__ .setsym 000000040h

.bss .setsym 080000000h

___bss__ .setsym 080000000h

end .setsym 08000006ah

___end__ .setsym 08000006ah

$bss .setsym 080000000h
.setsect ".text",000000000h
.setsect ".data", 080000000h
.setsect ".bss", 080000068h
.list
. text

.copy "nodul e2. asnt

These files contain the following information that the assembler needs for step 4:

« They contain .setsym directives, which equate values to global symbols. Both files contain
global equates for the symbol dflag. The symbol dflag was defined in the file globals.def,

which was included in modulel.asm and module2.asm.

« They contain .setsect directives, which define the absolute addresses for sections.
« They contain .copy directives, which defines the assembly language source file to include.

The .setsym and .setsect directives are useful only for creating absolute listings, not normal

assembly.

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Absolute Lister Description

217

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Absolute Lister Example

Step 4:

Finally, assemble the .abs files created by the absolute lister (remember that you must use

the -aa option when you invoke the assembler):
cl 6x -aa nodul el. abs cl 6x -aa nodul e2. abs

This command sequence creates two listing files called modulel.Ist and module2.Ist; no
object code is produced. These listing files are similar to normal listing files; however, the
addresses shown are absolute addresses.

The absolute listing files created are modulel.Ist (seeExample 8-1) and module2.Ist (see

D O)

Example 8-1. modulel.lst

TMS320C6x COFF Assenbl er

Ver si on X. XX Mon Jan 5 11:34:00 1998

Copyright (c) 1996-1998 Texas |nstruments | ncorporated

nmodul el. abs PAGE 1

22 00000020 .text
23 . copy "modul el. asnt'

A 1 00000020 .text

A 2 .align 4

A 3 80000000 . bss array, 100

A 4 80000064 . bss df l ag, 4

A 5 . copy gl obal s. def

B 1 .global dflag

B 2 .global array

B 3 . gl obal offset

A 6

A 7 00000020 00003428! MVKL of fset, A0

A 8 00000024 00400068! MVKH of fset, A0

A 9 00000028 0100196C- LDW *+bl4(dfl ag), A2

A 10 0000002c 00006000 nop 4

No Errors, No Warnings

Example 8-2. module2.Ist

TMS320C6x COFF Assenbl er

Ver si on X. XX Mon Jan 5 11:34:05 1998

Copyright (c) 1996-1998 Texas Instrunents | ncorporated

nodul e2. abs

22
23
1

WwNhEFEDN

5
6

A

A

B

B

B

A

A 4
A

A

A 7
No

Errors,

PAGE 1
00000000 .text
. copy "modul e2. asnt'

80000068 .bss offset, 2

.copy gl obal s. def

.global dflag

. gl obal array

. gl obal of f set
00000000 00003428- nvkl of fset, a0
00000004 00400068- mvkh of fset, a0
00000008 01800028! mvkl array, a3
0000000c 01C00068! mvkh array, a3

No War ni ngs

218

Absolute Lister Description

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

J@ TEXAS
INSTRUMENTS

Preliminary

Chapter 9

SPRU186P—0October 2006

Cross-Reference Lister Description

The TMS320C6000™ cross-reference lister is a debugging tool. This
utility accepts linked object files as input and produces a
cross-reference listing as output. This listing shows symbols, their
definitions, and their references in the linked source files.

Cross-Reference Listing Not Supported for
C6400+

Note: The cross-reference listing capability is not
supported for C6400+. You can use the
disassembler, the -m linker option or the object
file utility (ofd6x) to obtain similar information.

Topic Page
9.1 Producing a Cross-Reference Listing[......c.......... 227
9.2 Invoking the Cross-Reference Lister[.....c............ 227
9.3 Cross-Reference Listing Example[.....c.coeeeeeee...... 221

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Cross-Reference Lister Description 219

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Producing a Cross-Reference Listing

Preliminary

” TEXAS
INSTRUMENTS

www.ti.com

9.1 Producing a Cross-Reference Listing
illustrates the steps required to produce a cross-reference listing.

Figure 9-1. The Cross-Reference Lister in the TMS320C6000 Software Development Flow

Step 1:

Step 2:

Step 3:

Assembler
source file

Assembler

Object
file

Linker

| Linked object
file

2

Cross-reference
lister

Cross-reference
listing

First, invoke the assembler with the -ax option.
This option produces a cross-reference table
in the listing file and adds to the object file
cross-reference information. By default, the
assembler cross-references only global
symbols. If you use the -as option when
invoking the assembler, it cross-references
local symbols as well.

Link the object file (.obj) to obtain an
executable object file (.out).

Invoke the cross-reference lister. The following
section provides the command syntax for
invoking the cross-reference lister utility.

9.2 Invoking the Cross-Reference Lister

To use the cross-reference utility, the file must be assembled with the correct options and then linked into
an executable file. Assemble the assembly language files with the -ax option. This option creates a
cross-reference listing and adds cross-reference information to the object file. By default, the assembler
cross-references only global symbols, but if the assembler is invoked with the -as option, local symbols
are also added. Link the object files to obtain an executable file.

220 Cross-Reference Lister Description

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Cross-Reference Listing Example

To invoke the cross-reference lister, enter the following:

‘xref6x [options] [input filename [output filename]]

xreféx
options

input filename
output filename

is the command that invokes the cross-reference utility.

identifies the cross-reference lister options you want to use. Options are not case
sensitive and can appear anywhere on the command line following the command.

-l (lowercase L) specifies the number of lines per page for the output file. The format
of the -l option is -Inum, where num is a decimal constant. For example, -130 sets
the number of lines per page in the output file to 30. The space between the
option and the decimal constant is optional. The default is 60 lines per page.

-q suppresses the banner and all progress information (run quiet).
is a linked object file. If you omit the input filename, the utility prompts for a filename.

is the name of the cross-reference listing file. If you omit the output filename, the default
filename is the input filename with an .xrf extension.

9.3 Cross-Reference Listing Example
is an example of cross-reference listing.

Example 9-1. Cross-Reference Listing

Synbol : _SETUP

Fi | enane

RTYP Asnval LnkVal Def Ln Ref Ln Ref Ln Ref Ln

EDEF '00000018 00000018 18 13 20

Synbol : _fill_tab

Fi | enane RTYP Asnval LnkVal Def Ln Ref Ln Ref Ln Ref Ln
ctrl.asm EDEF ' 00000000 00000040 10 5

Synbol : _x42

Fi | enane RTYP Asnval LnkVal Def Ln Ref Ln Ref Ln Ref Ln
derp. asm EDEF ' 00000000 00000000 7 4 18

Synbol : gvar

Fi | enane RTYP Asnval LnkVal Def Ln Ref Ln Ref Ln Ref Ln
tabl es. asm EDEF "00000000 08000000 11 10

SPRU186P—October 2006

Cross-Reference Lister Description 221

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Cross-Reference Listing Example

The terms defined below appear in the preceding cross-reference listing:

Symbol Name of the symbol listed

Filename Name of the file where the symbol appears

RTYP The symbol's reference type in this file. The possible reference types are:

STAT The symbol is defined in this file and is not declared as global.
EDEF The symbol is defined in this file and is declared as global.

EREF The symbol is not defined in this file but is referenced as global.
UNDF The symbol is not defined in this file and is not declared as global.

AsmVal This hexadecimal number is the value assigned to the symbol at assembly time. A
value may also be preceded by a character that describes the symbol's attributes.
lists these characters and names.

LnkVal This hexadecimal number is the value assigned to the symbol after linking.

DefLn The statement number where the symbol is defined.

RefLn The line number where the symbol is referenced. If the line number is followed by an
asterisk (*), then that reference can modify the contents of the object. A blank in this
column indicates that the symbol was never used.

Table 9-1. Symbol Attributes in Cross-Reference
Listing
Character Meaning

Symbol defined in a .text section
Symbol defined in a .data section

+ Symbol defined in a .sect section
Symbol defined in a .bss or .usect section

222 Cross-Reference Lister Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

J@ TEXAS
INSTRUMENTS

This chapter describes how to invoke the following miscellaneous
utilities:

Preliminary

Chapter 10

SPRU186P—0October 2006

Object File Utilities Descriptions

» The object file display utility prints the contents of object files,
executable files, and/or archive libraries in both text and XML
formats.

» The disassembler writes the disassembled object code from
object or executable files.

e The name utility prints a list of names defined and referenced in

a COFF object or an executable file.

» The strip utility removes symbol table and debugging information

from object and executable files.

Topic

10.1
10.2
10.3
10.4
10.5
10.6

Invoking the Object File Display Utility[............... 224
XML Tag IndexXceeeeee e ieeeaeeeeee 224
Example XML Consumer]oceioieieeeeieiieaeaeieensnes 223
Invoking the Disassembler]...ccccoovieieeieieiaeaene.s 234
Invoking the Name Utility[....coooeeeeeeee . 233
Invoking the Strip Utility[...oeeeeeeeeee e 233

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Object File Utilities Descriptions

223

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Invoking the Object File Display Utility

10.1 Invoking the Object File Display Utility
The object file display utility, ofd6x, prints the contents of object files (.obj), executable files (.out), and/or
archive libraries (.lib) in both text and XML formats.
To invoke the object file display utility, enter the following:
‘ ofd6x [options] input filenames [input filenames] ‘
ofd6x is the command that invokes the object file display utility.
input filenames names the assembly language source file. The filename must contain an .asm
extension.
options identify the object file display utility options that you want to use. Options are not case
sensitive and can appear anywhere on the command line following the command.
Precede each option with a hyphen.
-g Appends DWARF debug information to program output.
-0 filename Sends program output to filename rather than to the screen.
-X Displays output in XML format.
If the object file display utility is invoked without any options, it displays information about the contents of
the input files on the console screen.
Object File Display Format
Note: The object file display utility produces data in a text format by default. This data is not
intended to be used as machine or software input.
10.2 XML Tag Index
describes the XML tags that are generated by the object file display utility when invoked with
the -x option.
Table 10-1. XML Tag Index
Tag Name Context Description
<addr> <line_entry> PC address
<row> PC address
<value> Machine address
<addr_class> <value> Address class
<addr_size> <compile_unit> Size of one machine address (octets)
<section> Size of one machine address (octets)
<alignment> <section> Alignment factor
<archive> <ofd> Archive file (.lib)
<attribute> <die> Attribute of a DWARF DIE
<aux_count> <symbol> Number of auxiliary entries for this symbol
<banner> <ofd> Tool name and version information
<block> <section> True if alignment is used as blocking factor
<value> Data block
<bss> <section> True if this section contains uninitialized data
<bss_size> <optional_file_header> Size of uninitialized data
224 Object File Utilities Descriptions SPRU186P-October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS
www.ti.com
XML Tag Index
Table 10-1. XML Tag Index (continued)
Tag Name Context Description

<byte_swapped>

<file_header>

Endianness of build host is opposite of current host

<clink> <section> True if this section is conditionally linked
<column> <line_entry> Source column number

<compile_unit> <section> Compile unit

<const> <value> Constant

<copy> <section> True if this section is a copy section
<copyright> <ofd> Copyright notice

<cpu_flags> <file_header> CPU flags

<data> <section> True if this section contains initialized data
<data_size> <optional_file_header> Size of initialized data

<data_start>

<optional_file_header>

Beginning address of initialized data

<destination>

<register>

Destination register

<die>

<compile_unit>

DWARF debugging information entry (DIE)

<dim_bound>

<dimension>

Dimension upper-bound

<dim_num>

<dimension>

Dimension number

<dimension>

<symbol>

Array dimension

<disp> <reloc_entry> Extra address encoding information
<dummy> <section> True if this section is a dummy section
<dwarf> <ti_coff> DWARF information

<endian> <file_header> Endianness of target machine

<entry_point>

<optional_file_header>

Entry point of executable program

<exec> <file_header> True if this file is executable
<fde> <section> A DWARF frame description entry (FDE)
<field_size> <reloc_entry> Size of the field to relocate

<file_header>

<ti_coff>

COFF file header

<file_length> <file_header> Size of this file
<file_name> <line_entry> Name of source file
<symbol> Name of source file
<file_offsets> <section> File offsets associated with this section
<flag> <value> Flag
<form> <attribute> Attribute form

<frame_size>

<symbol>

Size of function frame

<function> <line_numbers> Line number entries for one function

<icode> <section> True if this section has I-Code associated with it
<index> <symbol> Index of this symbol in the symbol table
<indirect_register> <memory> Indirect register used for calculating destination address
<initial_location> <fde> Start of function referred to by the FDE

<internal> <reloc_entry> True if this relocation is internal
<kind> <symbol> Kind of symbol (defined, undefined, absolute, symbolic debug)
<length> <symbol> Length of section
<line> <line_entry> Source line number
<symbol> First source line associated with this symbol
<line_count> <section> Number of line number entries
<symbol> Number of line number entries

<line_entry>

<compile_unit>

<line_numbers>

Line number entry
Line number entry

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Object File Utilities Descriptions 225

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

XML Tag Index

Preliminary

” TEXAS
INSTRUMENTS

www.ti.com

Table 10-1. XML Tag Index (continued)

Tag Name

Context

Description

<line_numbers>

<section>

Line number entries

<line_ptr> <file_offsets> File offset of line number entries
<symbol> File offset of line number entries
<Inno_strip> <file_header> True if line numbers were stripped from this file

<localsym_strip>

<file_header>

True if local symbols were stripped from this file

<magic>

<optional_file_header>

Optional file header magic number (0x0108)

<math_relative>

<reloc_entry>

True if this relocation is math relative

<memory> <row> SOE register is saved to memory
<name> <fde> Name of function referred to by the FDE
<function> Name of the current function
<ofd> Name of an object or archive file
<section> Name of this section
<symbol> Name of this symbol
<next_symbol> <symbol> Index of next symbol after multi-symbol entity
<noload> <section> True if this section is a no-load section
<object_file> <ofd> Object file (.obj, .out)
<ofd> Object file display (OFD) document
<offset> <memory> Offset of destination address from indirect register

<reloc_entry>

Offset of the field from relocatable address

<optional_file_header> <ti_coff> Optional file header

<padded> <section> True if this section has been padded (C55x only)
<page> <section> Memory page

<pass> <section> True if this section is passed through unchanged
<physical_addr> <section> Physical (run) address of section

<raw_data_ptr>

<file_offsets>

File offset of raw data

<raw_data_size> <section> Size of raw data (octets)

<ref> <value> Reference

<register> <row> SOE register is saved to register

<register_mask> <symbol> Mask of saved SOE registers

<regular> <section> True if this section is a regular section

<reloc_count> <section> Number of relocation entries
<symbol> Number of relocation entries

<reloc_entry>

<relocations>

Relocation entry

<reloc_ptr>

<file_offsets>

File offset of relocation entries

<reloc_strip>

<file_header>

True if relocation information was stripped from this file

<relocations> <section> Relocation entries
<return_address_register> <fde> Register used to pass the return address of this function
<row> <table> Table row
<section> <dwarf> DWARF section
<symbol> Section containing the definition of this symbol
<ti_coff> COFF section

<section_count>

<file_header>

Number of section headers

<size_in_addrs> <symbol> Number of machine-address-sized units in function
<size_in_bits> <symbol> Size of symbol (bits)
<source> <memory> Source register

<register> Source register

Object File Utilities Descriptions

SPRU186P—October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

; Preliminary
l
‘U TEXAS
INSTRUMENTS
www.ti.com
XML Tag Index
Table 10-1. XML Tag Index (continued)
Tag Name Context Description
<start_symbol> <symbol> First symbol in multi-symbol entity
<storage_class> <symbol> Storage class of this symbol
<storage_type> <symbol> Storage type of this symbol
<string> <string_table> String table entry
<value> String
<string_table> <ti_coff> String table

<string_table_size>

<string_table>

Size of string table

<sym_merge>

<file_header>

True if debug type-symbols were merged

<symbol>

<symbol_table>

Symbol table entry

<symbol_count>

<file_header>

Number of entries in the symbol table

<symbol_relative>

<reloc_entry>

Relocation is relative to the specified symbol

<symbol_table> <ti_coff> Symbol table

<table> <fde> FDE table

<tag> <die> Tag name

<tag_index> <symbol> Reference to user-defined type

<target_id> <file_header> Target ID; magic number identifying the target machine
<text> <section> True if this section contains code

<text_size> <optional_file_header> Size of executable code

<text_start>

<optional_file_header>

Beginning address of executable code

<ti_coff>

<object_file>

TI COFF file

<tool_version>

<optional_file_header>

Tool version stamp

<type> <attribute> Attribute type
<reloc_entry> Type of relocation
<type_ref> <value> Type reference
<value> <attribute> Attribute value
<reloc_entry> Value
<symbol> Value
<vector> <section> True if this section contains a vector table (C55x only)
<version> <compile_unit> DWAREF version

<file_header>

Version ID; structure version of this COFF file

<virtual_addr>

<reloc_entry>

<section>

Virtual address to be relocated
Virtual (load) address of section

<word_size>

<reloc_entry>

Number of address-sized units containing the relocation field

<xml_version>

<dwarf>
<ti_coff>

Version of the DWARF XML language
Version of the COFF XML language

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Object File Utilities Descriptions

227

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Example XML Consumer

Preliminary

” TEXAS
INSTRUMENTS

www.ti.com

10.3 Example XML Consumer

10.3.1 The Main Application

In this section, we present an example of a small application that uses the XML output of ofd6x to

calculate the size of the executable code contained in an object file.

The example contains three source files: codesize.cpp, xml.h, and xml.cpp. When compiled into an
executable named codesize, it can be used with ofd6x from the command line as follows:

% of d6x -Xx a.out | codesize

Code
Code

Code
Code

Code
Code

Tot al

Section
Section

Section
Section

Section
Section

Code Si

Nanme: .text
Si ze: 44736

Name: .text2
Si ze: 64

Name: .text3
Si ze: 64

ze: 44864

The codesize.cpp file contains the main application for the object file display utility example.

//***

/| CCODESI ZE. CPP - An exanple application that cal cul ates the size of the
/1 executable code in an object file using the XM. out put

/1 of the OFD utility.
//***
#i nclude "xm . h"

#i ncl ude <i ostreanr

usi ng nanespace std;

static void parse_XM__prol og(istream & n);

*

*

*

//***

/1l main() - List the names and sizes of the code sections (in octets),
out put the total

/1

//***

int main()

{

/1 Build our tree of XML Entities fromstandard i nput (See xm .{cpp, h} for

/1 the definition of the XM.Entity object).

/1

parse_XM__prol og(cin);

XMLEntity *root = new XM.Entity(cin);

/1

/'l Fetch the XML Entities of the section roots.
the XMLEntity sub-trees naned "section" that are in the
"of d->obj ect _file->ti_coff",

/1

list of all
/1 context of

/1 XML docunent.

CEntitylLi st

{ "ofd",

query_result;
const char *section_query[]
"object_file",

"section",

query_result = root->query(section_query);

/1

unsi gned | ong total _code_size

I'n other words,

where "ofd"

is the root of our

Iterate over the section Entities,

| ooki ng for code sections.

CEntityList_Clt pit;

228

Object File Utilities Descriptions

u

SPRU186P—October 2006
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Example XML Consumer

for (pit = query_result.begin(); pit != query_result.end(); ++pit)

{
e
/1 Query for the nane, text, and raw data_size sub-entities of each -
/1 section. XMLEntity::query() always returns a list, even if there -
/1 will only ever be a maxi mumof one result. If the tag is not -
/1 found, an enpty list is returned. -
e T T T
const char *section_name_query[] = { "section", "name", NULL };
const char *section_text_query[] = { "section", "text", NULL };
const char *section_size_query[] = { "section", "raw data_size", NULL };
CEntityLi st snanme_|;
CEntityList stext_|I;
CEntityList ssize_l;
shane_| = (*pit)->query(section_nane_query);
stext_| = (*pit)->query(section_text_query);
ssize | = (*pit)->query(section_size_query);
e T T T
/1 If a"text" flag was found, this is a code section. CQutput -
/1 the section nane and size, and add its size to our total code size -
/1 counter. -
e
if (stext_I|.size() > 0)
{
unsi gned | ong si ze;
size = strtoul ((*ssize_l.begin())->value().c_str(), NULL, 16);
cout << "Code Section Nanme: " << (*snane_|.begin())->value() << endl;
cout << "Code Section Size: " << size << endl;
cout << endl;
total _code_size += size;
}
}
e R
// Qutput the total code size, and clean up. -
R e R T
cout << "Total Code Size: " << total _code_size << endl;

del ete root;

return O;

//***

/1 parse_XM__prolog() - Parse the XM prolog, and throw it away. *

//)\'***********************
static void parse_XM__prol og(istream & n)

{

char c;

while (true)
{

/'l Look for the next tag; if it is not an XML directive, we're done. -
e
for (in.get(c); c!="< && 'in.eof(); in.get(c))

; Il enpty body

if (in.eof()) return;
if (in.peek() '="?") { in.unget(); return; }

SPRU186P—-October 2006 Object File Utilities Descriptions 229
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com

Example XML Consumer

e e

/Il Otherwise, read in the directive and continue. -

e e

for (in.get(c); c!="> && 'in.eof(); in.get(c))

/] enpty body
}
}

230 Object File Utilities Descriptions SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Example XML Consumer

10.3.2 xml.h Declaration of the XMLEntity Object

The xml.h file contains the declaration of the XMLEntity object for the codesize.cpp application.

//***

/1l XML.H - Declaration of the XM_Entity object. *
//)\')\')\')\')\')\')\')\')\')\')\')\')\')\'************************)\')\')\')\')\')\')\')\')\')\')\')\')\')\')\'************************
#i fndef XM__H

#define XM__H

#i nclude <list>

#i ncl ude <string>

//***

/'l Type Decl arations. *
//)\'************************
class XMLEntity;

typedef |ist<XM.Entity*> EntityList;

typedef |ist<const XMEntity*> CEntitylLi st;

typedef CEntityList::const_iterator CEntityList_Clt;

typedef EntityList::const_iterator EntityList_Clt;

8
//***
/1 CLASS XMLENTITY - A Sinplified XML Entity Object. *

IFEEEEA R R AR R RS EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

class XMLEntity

{
publi c:
XMLEntity (istream & n, XM.Entity *parent=NULL);
~XMLEntity ();
const CEntityList query (const char **context) const;
const string &t ag () const { return tag_m }
const string &alue () const { return val ue_m }
private:
void parse_raw tag (const string & aw_tag);
void sub_query (CEntitylList &esult, const char **context) const;
string tag_m /1 Tag Nane
string val ue_m /1 Val ue
XMLEntity *parent_m /1 Pointer to parent in XM hierarchy
EntityList children_m // List of children in XM hierarchy
h
#endi f

10.3.3 xml.cpp Definition of the XMLEntity Object

The xml.cpp file contains the definition of the XMLEntity object for the codesize.cpp application.

TR R R R A SRR RS EE RS EEEEEEEEEREREEEEEEEEEREEEEEEEEEEEEEEEEREEEEEEEEEE]

/1 XML.CPP - Definition of the XM_.Entity object. *
//***
#i nclude "xnl . h"

#i ncl ude <i ostreanr

#i ncl ude <string>

#i nclude <list>

#i ncl ude <cstdlib>

1N R R AR EEEE SRR R EEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEE]

/1 XMLEntity::query() - Return the list of XMEntities a list that reside *
/1 in the given XML context. *

1N R R R AR R RS EE]

const CEntityList XMLEntity::query(const char **context) const

{
CEntityList result;
if (!*context) return result;
SPRU186P—-October 2006 Object File Utilities Descriptions 231

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

Example XML Consumer

” TEXAS
INSTRUMENTS

www.ti.com

sub_query(result, context);

return result;

}

IFEEEEA R R AR R RS EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

/1 XMLEntity::sub_query() - Recurse through the XML tree |l ooking for a match *
11 to the current query. *

//)\'***********************
void XMLEntity::sub_query(CEntityList &esult, const char **context) const
{

if (!context[O0] || tag() != context[0]) return;

if ('context[1])
result. push_front(this);
el se

{
EntityList _Clt pit;

for (pit = children_mbegin(); pit != children_mend(); ++pit)
(*pit)->sub_query(result, context+1);

}

return;

}

1N R R R AR R RS EE]

/1 XMLEntity::parse_raw tag() - Cut out the tag name fromthe conplete string *
/1 we found between the < > brackets. This throws out any attributes. *

1N R EE AR EEREEEEEEEEEE]

voi d XMLEntity::parse_raw tag(const string & aw_tag)

{
string attribute;
int l;
for (I =0; | <raw_tag.size() & raw tag[i] '=" "'; ++l)
tag_m+= raw_ tag[i];
}

//***

/1 XMLEntity::XMEntity() - Recursively construct a tree of XM.Entities from *
/1 the given input stream *
//***
XMLEntity:: XMLEntity(istream & n, XM.Entity *parent)
tag_m""), value_m""), parent_n(parent)
{

string raw_t ag;

char C;

int l;

[= = e e eeiiiiooo-

// Store the tag nane and attributes in "raw tag", then call -
Il process_raw tag() to separate the tag name fromthe attributes and -
/] store it in tag_m -

for (in.get(c); c!="> & c !="'/" & & 'in.eof(); in.get(c))
raw tag += c;

parse_raw_tag(raw_tag);

232

Object File Utilities Descriptions

SPRU186P—October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Example XML Consumer

e e R
/1 Otherw se, parse our val ue. -
e L LT T T
while (true)
{
e e e T R R T T T
/! Read in the closing '>', then start reading in characters and add -
/! themto value_m Stop when we hit the beginning of a tag. -
e e e T R R T T T
for (in.get(c); c!="< in.get(c)) value_m+= c;
e e e T R R T T T
/1 If we're reading in a start tag, parse in the entire entity, and -
/1 add it to our child list (recursive constructor call). -
e e e T R R T T T
if (in.peek() '="'/")
{
L R EE L R T
/1 Put back the opening '<', since XMLEntity() expects to read it. -
e e T
in.unget();
children_m push_front(new XM.Entity(in, this));
}
e e e T R R T T T
/Il Otherwise, read in our end tag, and exit. -
e
el se
{
for (in.get(c); c!="'>"; in.get(c))
;11 enpty body
br eak;
}
}
e R
/1 Strip off leading and trailing white space from our val ue. -
R e R T
for (I =0; I < value_msize(); |++)
if (value_nfi] !'=" " && value_nfi] !="\n") break;
val ue_merase(0, I);
for (I = value_msize()-1; | >=0; I--)
if (value_nfi] !'=" " && value_n{i] !="\n") break;
val ue_merase(l +1, value_msize()-1);
}
//)\'************************
/1 XMLEntity::~XM.Entity() - Delete a XM_.Entity object. *

//***

XMLEntity:: ~XMEntity()

{
EntityList_CIt pit;
for (pit = children_mbegin(); pit != children_mend(); ++pit)
delete (*pit);
}
SPRU186P—-October 2006 Object File Utilities Descriptions 233

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Invoking the Disassembler

Preliminary

” TEXAS
INSTRUMENTS

www.ti.com

10.4 Invoking the Disassembler
The disassembler, dis6x, examines the output of the assembler or linker. This utility accepts an object file
or executable file as input and writes the diassembled object code to standard output or a specified file.
To invoke the disassembler, enter the following:
dis6xinput filename [output filename]
dis6x is the command that invokes the disassembiler.
input filename is a COFF object file (.obj) or an executable file (.out).
output filename is the name of the optional output file to which the disassembly will be written. If an
output filename is not specified, the disassembly is written to standard output.
When the example file in is compiled, the assembler will produce an object file, simple.obj.
Example 10-1. Object File simple.asm
.data
coefficients:
.word 0x11111111
.word 0x22222222
.short 0x3333
.word 0x44444444
.short 0x5555
.text
f oo:
B.S2 B3
[| MPY.MLX A4, B4, A4
NOP
ADD. L1 A4, A6, A4
NOP 3
As shown in Example 10-7, the disassembler can produce disassembly from the object file, simple.obj.
The first two lines are entered on the command line.
Example 10-2. Disassambly From simple.obj
% cl 6x sinple.asm
% di s6x si npl e. obj
TEXT Section .text (Little Endian), 0x20 bytes at 0xO0
00000000 .text:
00000000 000c0363 B. S2 B3
00000004 02109c80 | | MPY. MLX A4, B4, M
00000008 00000000 NOP
0000000c 02188078 ADD. L1 A4, A6, Ad
00000010 00004000 NOP 3
00000014 00000000 NOP
00000018 00000000 NOP
0000001c 00000000 NOP
DATA Section .data (Little Endian), 0x12 bytes at 0x0
00000000 . dat a:
00000000 11111111 .word 0x11111111
00000004 22222222 .word 0x22222222
00000008 00003333 .word 0x00003333
0000000c 44444444 .word 0x44444444
234 Object File Utilities Descriptions SPRU186P-October 2006

u

mit bocumentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Invoking the Name Utility

Example 10-2. Disassambly From simple.obj (continued)
00000010 00005555 .word 0x00005555

10.5 Invoking the Name Utility

The name utility, nm6x, prints the list of names defined and referenced in a COFF object (.obj) or an
executable file (.out). It also prints the symbol value and an indication of the kind of symbol.

To invoke the name utility, enter the following:

’ nmo6x [-options] [input filenames]

nme6x is the command that invokes the name utility.
input filename is a COFF object file (.obj) or an executable file (.out).
options identifies the name utility options you want to use. Options are not case sensitive and

can appear anywhere on the command line following the invocation. Precede each
option with a hyphen (-). The name utility options are as follows:

-a prints all symbols.

-C also prints C_NULL symbols.

-d also prints debug symbols.

-f prepends file name to each symbol.
-g prints only global symbols.

-h shows the current help screen.

-l produces a detailed listing of the symbol information.
-n sorts symbols numerically rather than alphabetically.
-o file outputs to the given file.

-p causes the name utility to not sort any symbols.

-q (quiet mode) suppresses the banner and all progress information.
-r sorts symbols in reverse order.

-t also prints tag information symbols.

-u only prints undefined symbols.

10.6 Invoking the Strip Utility
The strip utility, strip6x, removes symbol table and debugging information from object and executable files.

To invoke the strip utility, enter the following:

‘stripGx [-p] input filename [input filename]

SPRU186P—-October 2006 Object File Utilities Descriptions 235
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Invoking the Strip Utility
strip6x is the command that invokes the strip utility.
input filename is a COFF object file (.obj) or an executable file (.out).
options identifies the strip utility options you want to use. Options are not case sensitive and

can appear anywhere on the command line following the invocation. Precede each

option with a hyphen (-). The strip utility option is as follows:

-p removes all information not required for execution. This option causes more
information to be removed than the default behavior, but the object file is left in a
state that cannot be linked. This option should be used only with executable (.out)
files.

When the strip utility is invoked, the input object files are replaced with the stripped version.

236 Object File Utilities Descriptions SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

J@ TEXAS
INSTRUMENTS

The TMS320C6000™ assembler and linker create object files that are
in common object file format (COFF). COFF is a hinary object file
format that encourages modular programming and provides powerful
and flexible methods for managing code segments and target system
memory.

Most EPROM programmers do not accept COFF object files as input.
The hex conversion utility converts a COFF object file into one of
several standard ASCII hexadecimal formats, suitable for loading into
an EPROM programmer. The utility is also useful in other applications
requiring hexadecimal conversion of a COFF object file (for example,

Preliminary

Chapter 11

SPRU186P—0October 2006

Hex Conversion Utility Description

when using debuggers and loaders).

The hex conversion utility can produce these output file formats:
» ASCII-Hex, supporting 16-bit addresses

e Extended Tektronix (Tektronix)

* Intel MCS-86 (Intel)

* Motorola Exorciser (Motorola-S), supporting 16-bit addresses
» Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit

addresses
Topic

11.1 The Hex Conversion Utility's Role in the

Software Development Flow[ooeoeeoioieieeeeinne... 233
11.2 Invoking the Hex Conversion Utility[....ccooviene.... 239
11.3 Understanding Memory Widths[...............ooe o 242
11.4 The ROMS DireCtiVe o eeeeeeeieeeeeeieraeaeaeieiraeaeeens 244
11.5 The SECTIONS DirecCtiVel..ceiererereaearararaeeirerere... 250
11.6 Excluding a Specified Section[....eoeeeeeeeeeeieieen..... 257
11.7 Assigning Output Filenames[..ceovoieeeeeeiiaeens.s 252
11.8 Image Mode and the -fill Option[coeeeeeeeeiiiene.... 253
11.9 Building a Table for an On-Chip Boot Loader[...... 254
11.10 Controlling the ROM Device Address|................ 251
11.11 Description of the Object Formats[.................... 253

11.12 Hex Conversion Utility Error Messages[..-.......... 267

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Hex Conversion Utility Description

237

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
The Hex Conversion Utility's Role in the Software Development Flow
11.1 The Hex Conversion Utility's Role in the Software Development Flow
highlights the role of the hex conversion utility in the software development process.

Figure 11-1. The Hex Conversion Utility in the TMS320C6000 Software Development Flow

. ClC++
. source o
. files .
<« Macro []
L) L)
e SOUICE e + Assembly o
: files o C/C’f_l’“ ¢ optimizer ¢
\ compiler s source ¢
. L] [}
Archiver + Assembler < Assembly
%} . source ¢ optimizer
. .
L] L]
e Macro ¢
. library . y + Assembly- o
L] L] (] H H L]
o . Assembler + optimized ¢
H file H
(] (] . .
e COFF o Library-build
Archiver s object s utility
: files : f
T
° . (]
= S v 0 Run-time- 0
e Library of — o Support e
« object o P> _ ¢ library o
o . o Linker
. files .
« Executable
.+ COFF .
: : file Debugging
Hex conversion tools
utility
v
EPROM (Cross—‘reference) TMS320C6000
programmer lister
238 Hex Conversion Utility Description SPRU186P—October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Invoking the Hex Conversion Utility

11.2 Invoking the Hex Conversion Utility

There are two basic methods for invoking the hex conversion utility:

e Specify the options and filenames on the command line. The following example converts the file
firmware.out into TI-Tagged format, producing two output files, firm.Isb and firm.msb.

hex6x -t firmvare -o firmlsb -o firmnsb

» Specify the options and filenames in a command file. You can create a batch file that stores
command line options and filenames for invoking the hex conversion utility. The following example
invokes the utility using a command file called hexutil.cmd:

hex6x hexutil.cnd

In addition to regular command line information, you can use the hex conversion utility ROMS and
SECTIONS directives in a command file.

11.2.1 Invoking the Hex Conversion Utility From the Command Line
To invoke the hex conversion utility, enter:

‘ hex6x [options] filename

hex6x is the command that invokes the hex conversion utility.
options supplies additional information that controls the hex conversion process. You can use
options on the command line or in a command file. lists the basic options.

« All options are preceded by a hyphen and are not case sensitive.

« Several options have an additional parameter that must be separated from the option
by at least one space.

¢ Options with multicharacter names must be spelled exactly as shown in this document;
no abbreviations are allowed.

« Options are not affected by the order in which they are used. The exception to this rule
is the -q (quiet) option, which must be used before any other options.

filename names a COFF object file or a command file (for more information, see Gection 11.2.7). If
you do not specify a filename, the utility prompts you for one.

SPRU186P—-October 2006 Hex Conversion Utility Description 239
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Invoking the Hex Conversion Utility
Table 11-1. Basic Hex Conversion Utility Options
General Options Option Description See
Control the overall operation of ~ -exclude section_name Ignore specified section S g
the hex conversion utility. -map filename Generate a map file S 17
-o filename Specify an output filename
-q Run quietly (when used, it must appear before [Eection T1.2.2
other options)
Image Options Option Description See
Create a continuous image of a -fill value Fill holes with value S 89
range of target memory -image Specify image mode S 3. 1]
-zero Reset the address origin to 0 in image mode S 8
Memory Options Option Description See
Configure the memory widths for -memwidth value Define the system memory word width (default [Bection T1.3:2
your output files 32 bits)
-romwidth value Specify the ROM device width (default
depends on format used)
-order L Output file is in little-endian format bection 11.5.4
-order M Output file is in big-endian format
Output Options Option Description See
Specify the output format -a Select ASCII-Hex
-i Select Intel
-m Select Motorola-S
-t Select TI-Tagged bection 11.11.4
-X Select Tektronix (default) Beciion IT1.11T.H
Boot Options Option Description See
Control the boot loader -boot Convert all initialized sections into bootable S 9.37]
form (use instead of a SECTIONS directive)
-bootorg Specify the source address of the boot loader [9.3.7]
table
-bootsection sectname value Specify which section contains the boot S 0.3.]]
routine and where it should be placed
-e value Specify the entry point at which to begin S 9.3.7]

execution after boot loading. The value can be
an address or a global symbol.

240 Hex Conversion Utility Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Invoking the Hex Conversion Utility

11.2.2 Invoking the Hex Conversion Utility With a Command File

A command file is useful if you plan to invoke the utility more than once with the same input files and
options. It is also useful if you want to use the ROMS and SECTIONS hex conversion utility directives to
customize the conversion process.

Command files are ASCII files that contain one or more of the following:

» Options and filenames. These are specified in a command file in exactly the same manner as on the
command line.

« ROMS directive. The ROMS directive defines the physical memory configuration of your system as a
list of address-range parameters. (For more information, see [Gection 11.4.)

» SECTIONS directive. The hex conversion utility SECTIONS directive specifies which sections from the
COFF object file are selected. (For more information, see Bection 11.5.)

« Comments. You can add comments to your command file by using the /* and */ delimiters. For
example:

/* This is a comment. */
To invoke the utility and use the options you defined in a command file, enter:
hex6x command_filename
You can also specify other options and files on the command line. For example, you could invoke the
utility by using both a command file and command line options:
hex6x firmwvare.cnd -map firmare. nkp
The order in which these options and filenames appear is not important. The utility reads all input from the

command line and all information from the command file before starting the conversion process. However,
if you are using the -q option, it must appear as the first option on the command line or in a command file.

The -q option suppresses the hex conversion utility's normal banner and progress information.
* Assume that a command file named firmware.cmd contains these lines:

firmare. out /* input file */

-t /* TI-Tagged */

-o firmlsb /* output file */

-0 firmmsb /* output file */

You can invoke the hex conversion utility by entering:
hex6x firmare. cnd

» This example shows how to convert a file called appl.out into eight hex files in Intel format. Each output
file is one byte wide and 4K bytes long.

appl . out /* input file */
- /* Intel format */
-map appl . mxp /* map file */
ROVS

{
ROWML: ori gi n=0x00000000 | en=0x4000 ronwi dt h=8
files={ appl.u0 appl.ul appl.u2 appl.u3 }
ROM2: ori gi n=0x00004000 | en=0x4000 romni dt h=8
files={ appl.ud appl.u5 appl.u6 appl.u7 }

}

SECTI ONS
{ .text, .data, .cinit, .sectl, .vectors, .const:

}

SPRU186P—-October 2006 Hex Conversion Utility Description 241
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Understanding Memory Widths

11.3 Understanding Memory Widths

The hex conversion utility makes your memory architecture more flexible by allowing you to specify
memory and ROM widths. To use the hex conversion utility, you must understand how the utility treats
word widths. Three widths are important in the conversion process:

e Target width
* Memory width

« ROM width
The terms target word, memory word, and ROM word refer to a word of such a width.
illustrates the two separate and distinct phases of the hex conversion utility's process flow.
Figure 11-2. Hex Conversion Utility Process Flow
Raw data in COFF files is repre-
/ sented in the target's address-
. i able units. For the
C COFF input file) TMS320C6000, this is 32 bits.
The raw data in the COFF file
is grouped into words according
Phase | to the size specified by the
-memwidth option.
The memwidth-sized words are
broken up according to the size
Phase I specified by tht_a -romW|dt_h option
and are written to a file(s)
according to the specified format
(i.e., Intel, Tektronix, etc.).

C Output file(s))

11.3.1 Target Width

Target width is the unit size (in bits) of the target processor's word. The unit size corresponds to the data
bus size on the target processor. The width is fixed for each target and cannot be changed. The
TMS320C6000 targets have a width of 32 bits.

242

Hex Conversion Utility Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Understanding Memory Widths

11.3.2 Specifying the Memory Width

Memory width is the physical width (in bits) of the memory system. Usually, the memory system is
physically the same width as the target processor width: a 32-bit processor has a 32-bit memory
architecture. However, some applications require target words to be broken into multiple, consecutive, and
narrower memory words.

By default, the hex conversion utility sets memory width to the target width (in this case, 32 bits).
You can change the memory width by:

e Using the -memwidth option. This changes the memory width value for the entire file.

e Setting the memwidth parameter of the ROMS directive. This changes the memory width value for the
address range specified in the ROMS directive and overrides the -memwidth option for that range. See

Bection 114
For both methods, use a value that is a power of 2 greater than or equal to 8.

You should change the memory width default value of 32 only when you need to break single target words
into consecutive, narrower memory words.

demonstrates how the memory width is related to COFF data.

Figure 11-3. COFF Data and Memory Widths

S fil
ource e _word OAABBCCDDh

.word 011223344h

COFF data (assumed to be in little-endian format)

11223344

iz
158

Memory widths (variable)
-memwidth 32 (default) -memwidth 16 -memwidth 8
AABBCCDD
Data after D
phasel
SPRU186P—-October 2006 Hex Conversion Utility Description 243

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Understanding Memory Widths

11.3.3 Partitioning Data Into Output Files

ROM width specifies the physical width (in bits) of each ROM device and corresponding output file
(usually one byte or eight bits). The ROM width determines how the hex conversion utility partitions the
data into output files. After the COFF data is mapped to the memory words, the memory words are broken
into one or more output files. The number of output files is determined by the following formulas:
» If memory width > ROM width:
number of files = memory width + ROM width
e If memory width < ROM width:
number of files = 1
For example, for a memory width of 32, you could specify a ROM width value of 32 and get a single
output file containing 32-bit words. Or you can use a ROM width value of 16 to get two files, each
containing 16 bits of each word.
The default ROM width that the hex conversion utility uses depends on the output format:
« All hex formats except TI-Tagged are configured as lists of 8-bit bytes; the default ROM width for these
formats is 8 bits.
* TI-Tagged is a 16-bit format; the default ROM width for TI-Tagged is 16 bits.

The TI-Tagged Format is 16 Bits Wide

Note: You cannot change the ROM width of the TI-Tagged format. The TI-Tagged format
supports a 16-bit ROM width only.

You can change ROM width (except for TI-Tagged format) by:
» Using the -romwidth option. This option changes the ROM width value for the entire COFF file.

» Setting the romwidth parameter of the ROMS directive. This parameter changes the ROM width value
for a specific ROM address range and overrides the -romwidth option for that range. See Béection 11.4.

For both methods, use a value that is a power of 2 greater than or equal to 8.

If you select a ROM width that is wider than the natural size of the output format (16 bits for TI-Tagged or
8 bits for all others), the utility simply writes multibyte fields into the file.

illustrates how the COFF data, memory, and ROM widths are related to one another.

Memory width and ROM width are used only for grouping the COFF data; they do not represent values.
Thus, the byte ordering of the COFF data is maintained throughout the conversion process. To refer to the
partitions within a memory word, the bits of the memory word are always numbered from right to left as
follows:

-memwidth 32

[AABBCCDD11223344 |
31 0

244

Hex Conversion Utility Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS
www.ti.com
Understanding Memory Widths
Figure 11-4. Data, Memory, and ROM Widths
Source file .word OAABBCCDDh
.word 011223344h
COFF data (assumed to be in little-endian format)
AABBCCDD
11223344
Memory widths (variable) TN PN
s / N / \
7 -memwidth 32 ™\ /” -memwidth 16 \\ / -memwidth 8 \
/' [AnBBCCDD] /[[eod] v [/ [DB]
\ [t1223344], | [AmB| | | cC \
Data after N - . </ \ 3344 I BB |
phase | TN \ 1122 // | AA |
of hex6x \\ N Y l]
\ S \ 44 /
\ NN 33 /
\\ \ NV 22 /
\ \ \ 1] /
l.' \ NN
Output files / \\ \\ \\
-romwidth 8 / | \ \
-0 file.b0 : ll |I \\
-o file.b1 . | | I
o file.b2 BB 22 | / /]'
-o file.b3 _ / // I
/ /
/ / /
thﬁazgﬁ: -romwidth 16 // /
of hex6x -0 file.wrd | CCDDAABB33441122 | '// o //
4 /
/
-romwidth 8 P //
-o file.bO [DD BB 44 22 | . y
o file.b1 [CC AA 33 11| /
s
. -
-romwidth 8 e
-o file.byt | DDCCBBAA44332211 |7 .

SPRU186P—October 2006
Bubmit Documentation FeedbacH

Hex Conversion Utility Description

245

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

The ROMS Directive

11.3.4 Specifying Word Order for Output Words

There are two ways to split a wide word into consecutive memory locations in the same hex conversion

utility output file:

» -order M specifies big-endian ordering, in which the most significant part of the wide word occupies
the first of the consecutive locations

» -order L specifies little-endian ordering, in which the the least significant part of the wide word
occupies the first of the consecutive locations

By default, the utility uses little-endian format. Unless your boot loader program expects big-endian format,
avoid using -order M.

When the -order Option Applies
Notes:

« This option applies only when you use a memory width with a value of 32
(-memwidth32). Otherwise, the hex utility does not have access to the entire 32-bit
word and cannot perform the byte swapping necessary to change the endianness;
-order is ignored.

« This option does not affect the way memory words are split into output files. Think of
the files as a set: the set contains a least significant file and a most significant file, but
there is no ordering over the set. When you list filenames for a set of files, you
always list the least significant first, regardless of the -order option.

11.4 The ROMS Directive
The ROMS directive specifies the physical memory configuration of your system as a list of address-range
parameters.
Each address range produces one set of files containing the hex conversion utility output data that
corresponds to that address range. Each file can be used to program one single ROM device.
The ROMS directive is similar to the MEMORY directive of the TMS320C6000 linker: both define the
memory map of the target address space. Each line entry in the ROMS directive defines a specific
address range. The general syntax is:
ROMS
{
romname : [origin=value,] [length=value,] [romwidth=value,]
[memwidth=value,] [fill=value]
[files={filename,, filename,, ...}]
romname : [origin=value,] [length=value,] [romwidth=value,]
[memwidth=value,] [fill=value]
[files={filename,, filename,, ...}]
}
246 Hex Conversion Utility Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS
www.ti.com
The ROMS Directive
ROMS begins the directive definition.
romname identifies a memory range. The name of the memory range can be one to eight
characters in length. The name has no significance to the program; it simply identifies
the range. (Duplicate memory range names are allowed.)
origin specifies the starting address of a memory range. It can be entered as origin, org, or o.
The associated value must be a decimal, octal, or hexadecimal constant. If you omit
the origin value, the origin defaults to 0. The following table summarizes the notation
you can use to specify a decimal, octal, or hexadecimal constant:
Constant Notation Example
Hexadecimal 0x prefix or h suffix 0x77 or 077h
Octal 0 prefix 077
Decimal No prefix or suffix 77
length specifies the length of a memory range as the physical length of the ROM device. It
can be entered as length, len, or I. The value must be a decimal, octal, or hexadecimal
constant. If you omit the length value, it defaults to the length of the entire address
space.
romwidth specifies the physical ROM width of the range in bits (see Bection 11.3.3). Any value
you specify here overrides the -romwidth option. The value must be a decimal, octal,
or hexadecimal constant that is a power of 2 greater than or equal to 8.
memwidth specifies the memory width of the range in bits (see Bection 11.3.2). Any value you
specify here overrides the -memwidth option. The value must be a decimal, octal, or
hexadecimal constant that is a power of 2 greater than or equal to 8. When using the
memwidth parameter, you must also specify the paddr parameter for each section in
the SECTIONS directive. (See Bection 11.3.)
fill specifies a fill value to use for the range. In image mode, the hex conversion utility
uses this value to fill any holes between sections in a range. A hole is an area between
the input sections that comprises an output section that contains no actual code or
data. The fill value must be a decimal, octal, or hexadecimal constant with a width
equal to the target width. Any value you specify here overrides the -fill option. When
using fill, you must also use the -image command line option. (See Bection 11.8.7.)
files identifies the names of the output files that correspond to this range. Enclose the list of

names in curly braces and order them from least significant to most significant output
file, where the bits of the memory word are numbered from right to left. The number of
file names must equal the number of output files that the range generates. To calculate
the number of output files, see Bection 11.3.3. The utility warns you if you list too many
or too few filenames.

Unless you are using the -image option, all of the parameters that define a range are optional; the
commas and equal signs are also optional. A range with no origin or length defines the entire address
space. In image mode, an origin and length are required for all ranges.

Ranges must not overlap and must be listed in order of ascending address.

11.4.1 When to Use the ROMS Directive

If you do not use a ROMS directive, the utility defines a single default range that includes the entire
address space. This is equivalent to a ROMS directive with a single range without origin or length.

Use the ROMS directive when you want to:

SPRU186P—October 2006

Hex Conversion Utility Description 247

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

The ROMS Directive

Program large amounts of data into fixed-size ROMs. When you specify memory ranges
corresponding to the length of your ROMs, the utility automatically breaks the output into blocks that fit
into the ROMs.

Restrict output to certain segments. You can also use the ROMS directive to restrict the conversion
to a certain segment or segments of the target address space. The utility does not convert the data
that falls outside of the ranges defined by the ROMS directive. Sections can span range boundaries;
the utility splits them at the boundary into multiple ranges. If a section falls completely outside any of
the ranges you define, the utility does not convert that section and issues no messages or warnings.
Thus, you can exclude sections without listing them by name with the SECTIONS directive. However, if
a section falls partially in a range and partially in unconfigured memory, the utility issues a warning and
converts only the part within the range.

Use image mode. When you use the -image option, you must use a ROMS directive. Each range is
filled completely so that each output file in a range contains data for the whole range. Holes before,
between, or after sections are filled with the fill value from the ROMS directive, with the value specified
with the -fill option, or with the default value of 0.

11.4.2 An Example of the ROMS Directive

The ROMS directive in shows how 16K bytes of 16-bit memory could be partitioned for two
8K-byte 8-bit EPROMS. illustrates the input and output files.

Example 11-1. A ROMS Directive Example

infile. out
-i mage
-memwi dth 16
ROVS
}
EPROML: org = 0x00004000, Ien = 0x2000, romv dth = 8
files = { rom000. bO, romi000. b1}
EPROM2: org = 0x00006000, |en = 0x2000, roma dth = 8,
fill = OxFFOOFFOO,
files = { ron6000. b0, ron6000. b1}
}
248 Hex Conversion Utility Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

’ Preliminary
b TEXAS
INSTRUMENTS
www.ti.com
The ROMS Directive
Figure 11-5. The infile.out File Partitioned Into Four Output Files
COFF File: Output Files:
infile.out EPROM1
rom4000.b0 rom4000.b1
0x00004000 0x00004000
or
text (org) text text
0x0000487F
4
0x00005B80 0x00004880 Oh 0
h
.data 0x00005B80
.data .data
0x0000633F 0x00005FFF
0x00006700 ——
width = 8 bits len = 2000h (8K)
table EPROM2
rom6000.b0 rom6000.b1
0x00007C7F 0x00006000 data data
0x00006340
0x00006700 32 00
.table .table
0x00007C80 FFh 00h
0x00007FFF

The map file (specified with the -map option) is advantageous when you use the ROMS directive with
multiple ranges. The map file shows each range, its parameters, names of associated output files, and a
list of contents (section names and fill values) broken down by address. is a segment of the
map file resulting from the example in Example 11-1].

Example 11-2. Map File Output From Showing Memory Ranges

OUTPUT FILES: rom000.b0 [bO. . b7]
romi000. bl [b8..b15]
CONTENTS: 00004000. . 0000487f . t ext
00004880. . 00005b7f FILL = 00000000
00005b80. . 00005fff . data

QUTPUT FI LES: rom6000. b0 [bO. . b7]
ron6000. bl [b8. . bl5]
CONTENTS: 00006000. . 0000633f . data
00006340. . 000066ff FILL = ffOOff00
00006700. . 00007c7f .table
00007c80. . 00007fff FILL = ffO0OffO00

SPRU186P—-October 2006 Hex Conversion Utility Description 249
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com
The SECTIONS Directive
EPROML1 defines the address range from 0x00004000 through 0xO0005FFF with the following sections:

This section ... Has this range ...
text 0x00004000 through 0x0000487F
.data 0x00005B80 through 0xO0005FFF

The rest of the range is filled with Oh (the default fill value), converted into two output files:
* rom4000.b0 contains bits 0 through 7
» rom4000.b1 contains bits 8 through 15

EPROM2 defines the address range from 0x00006000 through 0x00007FFF with the following sections:

This section ... Has this range ...
.data 0x00006000 through 0x0000633F
.table 0x00006700 through 0x00007C7F

The rest of the range is filled with OxFFOOFFOO (from the specified fill value). The data from this range is
converted into two output files:

e rom6000.b0 contains bits 0 through 7
* rom6000.b1 contains bits 8 through 15

11.5 The SECTIONS Directive

You can convert specific sections of the COFF file by name with the hex conversion utility SECTIONS
directive. You can also specify those sections that you want to locate in ROM at a different address than
the load address specified in the linker command file. If you:

» Use a SECTIONS directive, the utility converts only the sections that you list in the directive and
ignores all other sections in the COFF file.

» Do not use a SECTIONS directive, the utility converts all initialized sections that fall within the
configured memory. For the TMS320C6000 these sections are .text, .const, and .cinit.

Uninitialized sections are never converted, whether or not you specify them in a SECTIONS directive.

Sections Generated by the C/C++ Compiler

Note: The TMS320C6000 C/C++ compiler automatically generates these sections:
. Initialized sections: .text, .const, .cinit, and .switch
¢ Uninitialized sections: .bss, .stack, and .sysmem

Use the SECTIONS directive in a command file. (For more information, see Bection 11.2.3.) The general
syntax for the SECTIONS directive is:

SECTIONS
{

shamel:] [paddr=value]
shamel:] [paddr=boot]
shamel:] [boot]

}
SECTIONS begins the directive definition.
shame identifies a section in the COFF input file. If you specify a section that does not exist,
the utility issues a warning and ignores the name.
250 Hex Conversion Utility Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS
www.ti.com
Excluding a Specified Section
paddr=value specifies the physical ROM address at which this section should be located. This value
overrides the section load address given by the linker. This value must be a decimal,
octal, or hexadecimal constant. It can also be the word boot (to indicate a boot table
section for use with a boot loader). If your file contains multiple sections, and if one
section uses a paddr parameter, then all sections must use a paddr parameter.
boot configures a section for loading by a boot loader. This is equivalent to using

paddr=boot. Boot sections have a physical address determined by the location of the
boot table. The origin of the boot table is specified with the -bootorg option.

For more similarity with the linker's SECTIONS directive, you can use colons after the section names (in
place of the equal sign on the boot keyboard). For example, the following statements are equivalent:

SECTIONS { .text: .data: boot }

SECTIONS { .text: .data = boot }

In the example below, the COFF file contains six initialized sections: .text, .data, .const, .vectors, .coeff,
and .tables. Suppose you want only .text and .data to be converted. Use a SECTIONS directive to specify
this:

SECTIONS { .text: .data: }

To configure both of these sections for boot loading, add the boot keyword:
SECTIONS { .text = boot .data = boot }

Using the -boot Option and the SECTIONS Directive

Note: When you use the SECTIONS directive with the boot table (-boot) option, the -boot option
is ignored. You must explicitly specify any boot sections in the SECTIONS directive. For
more information about -boot and other command line options associated with boot
tables, see Gection 11.7.

11.6 Excluding a Specified Section

The -exclude section_name option can be used to inform the hex utility to ignore the specified section. If a
SECTIONS directive is used, it overrides the -exclude option.

For example, if a SECTIONS directive containing the section name mysect is used and an -exclude
mysect is specified, the SECTIONS directive takes precedence and mysect is not excluded.

The -exclude option has a limited wildcard capability. The * character can be placed at the beginning or
end of the name specifier to indicate a suffix or prefix, respectively. For example, -exclude sect*
disqualifies all sections that begin with the characters sect.

If you specify the -exclude option on the command line with the * wildcard, enter quotes around the
section name and wildcard. For example, -exclude"sect*". Using quotes prevents the * form being
interpreted by the hex conversion utility. If -exclude is in a command file, then the quotes should not be
specified.

SPRU186P—-October 2006 Hex Conversion Utility Description 251
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Assigning Output Filenames

11.7 Assigning Output Filenames

When the hex conversion utility translates your COFF object file into a data format, it partitions the data
into one or more output files. When multiple files are formed by splitting memory words into ROM words,
filenames are always assigned in order from least to most significant, where bits in the memory words are
numbered from right to left. This is true, regardless of target or COFF endian ordering.

The hex conversion utility follows this sequence when assigning output filenames:

1.

It looks for the ROMS directive. If a file is associated with a range in the ROMS directive and you
have included a list of files (files = {. . .}) on that range, the utility takes the filename from the list.

For example, assume that the target data is 32-bit words being converted to four files, each eight bits
wide. To name the output files using the ROMS directive, you could specify:

ROVB

{

}
The utility creates the output files by writing the least significant bits to xyz.b0O and the most significant
bits to xyz.b3.

It looks for the -0 options. You can specify names for the output files by using the -o option.If no
filenames are listed in the ROMS directive and you use -0 options, the utility takes the filename from
the list of -0 options. The following line has the same effect as the example above using the ROMS
directive:

-0 xXyz.b0 -0 xyz.bl -0 xyz.b2 -0 xyz.b3

If both the ROMS directive and -0 options are used together, the ROMS directive overrides the -0
options.

It assigns a default filename. If you specify no filenames or fewer names than output files, the utility
assigns a default filename. A default filename consists of the base name from the COFF input file plus
a 2- to 3-character extension. The extension has three parts:

a. A format character, based on the output format (see for more information):
a for ASCII-Hex

RANGELl: romwi dt h=8, files={ xyz.b0 xyz.bl xyz.b2 xyz.b3 }

[for Intel

m for Motorola-S
t for TI-Tagged
X for Tektronix

b. The range number in the ROMS directive. Ranges are numbered starting with 0. If there is no
ROMS directive, or only one range, the utility omits this character.

c. The file number in the set of files for the range, starting with O for the least significant file.

For example, assume coff.out is for a 32-bit target processor and you are creating Intel format output.

With no output filenames specified, the utility produces four output files named coff.i0, coff.i1, coff.i2,

coff.i3.

If you include the following ROMS directive when you invoke the hex conversion utility, you would have

eight output files:

ROV
{
rangel: o = 0x00001000 | = 0x1000
range2: o = 0x00002000 | = 0x1000
}
These output files ... Contain data in these locations ...
coff.i00, coff.i01, coff.i01 0x00001000 through 0x00001FFF
coff.i02, coff.i03 0x00002000 through 0x00002FFF
252 Hex Conversion Utility Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Image Mode and the -fill Option

11.8 Image Mode and the -fill Option

This section points out the advantages of operating in image mode and describes how to produce output
files with a precise, continuous image of a target memory range.

11.8.1 Generating a Memory Image

With the -image option, the utility generates a memory image by completely filling all of the mapped
ranges specified in the ROMS directive.

A COFF file consists of blocks of memory (sections) with assigned memory locations. Typically, all
sections are not adjacent: there are holes between sections in the address space for which there is no
data. When such a file is converted without the use of image mode, the hex conversion utility bridges
these holes by using the address records in the output file to skip ahead to the start of the next section. In
other words, there may be discontinuities in the output file addresses. Some EPROM programmers do not
support address discontinuities.

In image mode, there are no discontinuities. Each output file contains a continuous stream of data that
corresponds exactly to an address range in target memory. Any holes before, between, or after sections
are filled with a fill value that you supply.

An output file converted by using image mode still has address records, because many of the
hexadecimal formats require an address on each line. However, in image mode, these addresses are
always contiguous.

Defining the Ranges of Target Memory

Note: If you use image mode, you must also use a ROMS directive. In image mode, each
output file corresponds directly to a range of target memory. You must define the ranges.
If you do not supply the ranges of target memory, the utility tries to build a memory image
of the entire target processor address space- potentially a huge amount of output data. To
prevent this situation, the utility requires you to explicitly restrict the address space with
the ROMS directive.

11.8.2 Specifying a Fill Value

The -fill option specifies a value for filling the holes between sections. The fill value must be specified as
an integer constant following the -fill option. The width of the constant is assumed to be that of a word on
the target processor. For example, specifying -fill OFFFFh results in a fill pattern of 0000FFFFh. The
constant value is not sign extended.

The hex conversion utility uses a default fill value of 0 if you do not specify a value with the fill option. The
-fill option is valid only when you use -image; otherwise, it is ignored.

11.8.3 Steps to Follow in Using Image Mode

Step 1: Define the ranges of target memory with a ROMS directive. See for details.

Step 2: Invoke the hex conversion utility with the -image option. You can optionally use the -zero
option to reset the address origin to 0 for each output file. If you do not specify a fill value
with the ROMS directive and you want a value other than the default of 0, use the -fill option.

SPRU186P—-October 2006 Hex Conversion Utility Description 253
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Building a Table for an On-Chip Boot Loader

11.9 Building a Table for an On-Chip Boot Loader

On the C621x, C671x, and C64x devices, a ROM boot process is supported where the EDMA copies 1K
bytes from the beginning of CE1 (EMIFB CE1 on C64x) to address 0, using default ROM timings. After the
transfer, the CPU begins executing from address 0. In this mode a second level boot load typically occurs,
due to the limited amount of memory copied at boot.

The hex conversion utility supports the second level boot loader by automatically building the boot table.

11.9.1 Description of the Boot Table

The input for a boot loader is the boot table. The boot table contains records that instruct the boot loader
to copy blocks of data contained in the table to specified destination addresses. The hex conversion utility
automatically builds the boot table for the boot loader. Using the utility, you specify the COFF sections you
want the boot loader to initialize through the boot table, the table location, and the name of the section
containing the boot loader and where it should be located. The hex conversion utility builds a complete
image of the table and converts it into hexadecimal in the output files. Then, you can burn the table into
ROM.

11.9.2 The Boot Table Format

The boot table format is simple. There is a header record containing a 4 byte field that indicates where the
boot loader should branch after it has completed coping data. After the header, each COFF section that is
to be included in the boot table will have the following:

1. 4 byte field containing the size of the section
2. 4 byte field containing the destination address for the copy
3. The actual data to be copied

Multiple sections can be entered; a termination block containing a 4 byte field of zeros follows the last
COFF section.

Section 1 Size

Section 1 Dest

Section 1 Data

Section 2 Size

Section 2 Dest

Section 2 Data

Section N Size

Section N Dest

Section N Data

0x00000000

11.9.3 How to Build the Boot Table

summarizes the hex conversion utility options available for the boot loader.

254

Hex Conversion Utility Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS
www.ti.com
Building a Table for an On-Chip Boot Loader
Table 11-2. Boot-Loader Options
Option Description
-boot Convert all sections into bootable form (use instead of a SECTIONS directive).

-bootorg value

Specify the source address of the boot loader table.

-bootsection sectname value Specify the section name sectname containing the boot loader routine. The value

-e value

argument tells the hex utility where to place the boot loader routine.

Specify the entry point at which to begin execution after boot loading. The value can be
an address or a global symbol.

11.9.3.1 Building the Boot Table

To build the
Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

boot table, follow these steps:

Link the file. Each block of the boot table data corresponds to an initialized section in the
COFF file. Uninitialized sections are not converted by the hex conversion utility (see

Bection I1.5). You must link into your application a boot loader routine that will read the boot
table and perform the copy operations. It should be linked to its eventual run-time address.

When you select a section for placement in a boot-loader table, the hex conversion utility
places the section's load address in the destination address field for the block in the boot
table. The section content is then treated as raw data for that block. The hex conversion
utility does not use the section run address. When linking, you need not worry about the
ROM address or the construction of the boot table- the hex conversion utility handles this.

Identify the bootable sections. You can use the -boot option to tell the hex conversion
utility to configure all sections for boot loading. Or, you can use a SECTIONS directive to
select specific sections to be configured (see Bection 11.5). Note that if you use a
SECTIONS directive, the -boot option is ignored.

Set the ROM address of the boot table. Use the -bootorg option to set the source address
of the complete table. For example, if you are using the C6711 and booting from memory
location 0x90000400, specify -bootorg 0x90000400. The address field for the boot table in
the the hex conversion utility output file will then start at 0xX90000400.

If you do not use the -bootorg option at all, the utility places the table at the origin of the first
memory range in a ROMS directive. If you do not use a ROMS directive, the table will start at
the first section load address.

Set boot-loader-specific options. Set entry point. If -e is not used to set the entry point,
then it will default to the entry point indicated in the COFF object file.

Describe the boot routine. If the boot option is used, then you should use the -bootsection
option to indicate to the hex utility which COFF section contains the boot routine. This option
will prevent the boot routine from being in the boot table. The -bootsection option also
indicates to the hex utility where the routine should be placed in ROM. For the C621x,
C671x, and C64x devices, this address would typically be the beginning of CE1 (EMIFB CE1
on C64x). This option is ignored if -boot is not used.

When the SECTIONS directive is used to explicitly identify which sections should exits in the
boot table, use the PADDR section option to indicate where the boot routine section will exist.

Describe your system memory configuration. See Bection 11.3, and Gection 11.4.

11.9.3.2 Leaving Room for the Boot Table

The complete boot table is similar to a single section containing all of the header records and data for the

boot loader.

The address of this "section" is the boot table origin. As part of the normal conversion

process, the hex conversion utility converts the boot table to hexadecimal format and maps it into the

output files |

ike any other section.

SPRU186P—-October 2006 Hex Conversion Utility Description 255
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Building a Table for an On-Chip Boot Loader

Be sure to leave room in your system memory for the boot table, especially when you are using the
ROMS directive. The boot table cannot overlap other nonboot sections or unconfigured memory. Usually,
this is not a problem; typically, a portion of memory in your system is reserved for the boot table. Simply
configure this memory as one or more ranges in the ROMS directive, and use the -bootorg option to
specify the starting address.

11.9.3.3 Setting the Entry Point for the Boot Table

After the boot routine finishes copying data, it branches to the entry point defined the COFF object file. By
using the -e option with the hex conversion utility, you can set the entry point to a different address.

For example, if you want your program to start running at address 0123h after loading, specify -e 0123h
on the command line or in a command file. You can determine the -e address by looking at the map file
that the linker generates.

Valid Entry Points

Note: The value can be a constant, or it can be a symbol that is externally defined (for example,
with a .global) in the assembly source.

11.9.4 Using the C6x Boot Loader

This subsection explains how to use the hex conversion utility with the boot loader for C6x devices
through sample hex utility command files. uses the SECTIONS directive to specify exactly
which COFF sections will be placed in the boot table.

Example 11-3. Sample Command File for Booting From a C6x EPROM

abc. out /* input file */
-a /* ascii format */
-i mage /* create conplete ROMinmage */
-zero /* reset address origin to 0 */
-menmni dth 8 /* 8-bit menory */
-map abchex. map /* create a hex map file */
- boot org 0x90000400 /* external nenory boot */
ROVS

{
FLASH. or g=0x90000000, | en=0x20000, romwi dth=8, fil es={abc. hex}

}

SECTI ONS

{
. boot _I oad: PADDR=0x90000000

.text: BOOT
.cinit: BOOT
.const: BOOT

does not explicitly name the boot sections with the SECTIONS directive. Instead, it uses the
-boot option to indicate that all initialized sections should be placed in the boot table. It also uses the
-bootsection option to distinguish the section containing the boot routine.

Example 11-4. Alternative Sample Command File for Booting From a C6x EPROM

abc. out /* input file */
-a /* ascii format */
-i mage /* create conplete Rominmage */
-zero /* reset address origin to O */
-menmni dth 8 /* 8-bit menory */
256 Hex Conversion Utility Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Controlling the ROM Device Address

Example 11-4. Alternative Sample Command File for Booting From a C6x EPROM (continued)

-map abchex. map /* create a hex map file */
- boot /* create boot table */
- boot org 0x90000400 /* external nenory boot */

-boot section .boot_| oad 0x90000000 /* give boot section & addr */

ROV

{
FLASH. or g=0x90000000, | en=0x20000, romwi dth=8, fil es={abc. hex}

}

11.10 Controlling the ROM Device Address

The hex conversion utility output address field corresponds to the ROM device address. The EPROM
programmer burns the data into the location specified by the hex conversion utility output file address field.
The hex conversion utility offers some mechanisms to control the starting address in ROM of each
section. However, many EPROM programmers offer direct control of the location in ROM in which the
data is burned.

Depending on whether or not you are using the boot loader, the hex conversion utility output file
controlling mechanisms are different.

Non-boot loader mode. The address field of the hex conversion utility output file is controlled by the
following mechanisms listed from low to high priority:

1. The linker command file. By default, the address field of the hex conversion utility output file is the
load address (as given in the linker command file).

2. The paddr parameter of the SECTIONS directive. When the paddr parameter is specified for a
section, the hex conversion utility bypasses the section load address and places the section in the
address specified by paddr.

3. The -zero option. When you use the -zero option, the utility resets the address origin to 0 for each
output file. Since each file starts at 0 and counts upward, any address records represent offsets from
the beginning of the file (the address within the ROM) rather than actual target addresses of the data.

You must use the -zero option in conjunction with the -image option to force the starting address in
each output file to be zero. If you specify the -zero option without the -image option, the utility issues a
warning and ignores the -zero option.

Boot-Loader Mode. When the boot loader is used, the hex conversion utility places the different COFF
sections that are in the boot table into consecutive memory locations. Each COFF section becomes a boot
table block whose destination address is equal to the linker-assigned section load address.

In a boot table, the address field of the hex conversion utility output file is not related to the section load
addresses assigned by the linker. The address fields of the boot table are simply offsets to the beginning
of the table. The section load addresses assigned by the linker will be encoded into the boot table along
with the size of the section and the data contained within the section. These addresses will be used to
store the data into memory during the boot load process.

The beginning of the boot table defaults to the linked load address of the first bootable section in the
COFF input file, unless you use one of the following mechanisms, listed here from low to high priority.
Higher priority mechanisms override the values set by low priority options in an overlapping range.

1. The ROM origin specified in the ROMS directive. The hex conversion utility places the boot table at
the origin of the first memory range in a ROMS directive.

2. The -bootorg option. The hex conversion utility places the boot table at the address specified by the
-bootorg option if you select boot loading from memory.

SPRU186P—-October 2006 Hex Conversion Utility Description 257
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Description of the Object Formats
11.11 Description of the Object Formats
The hex conversion utility has options that identify each format. specifies the format options.

They are described in the following sections.

* You need to use only one of these options on the command line. If you use more than one option, the
last one you list overrides the others.

* The default format is Tektronix (-x option).

Table 11-3. Options for Specifying Hex Conversion Formats

Option Format Address Bits Default Width
-a ASCII-Hex 16 8
-i Intel 32 8
-m Motorola-S 32 8
-t TI-Tagged 16 16
-X Tektronix 32 8

Address bits determine how many bits of the address information the format supports. Formats with
16-bit addresses support addresses up to 64K only. The utility truncates target addresses to fit in the
number of available bits.

The default width determines the default output width of the format. You can change the default width by
using the -romwidth option or by using the romwidth parameter in the ROMS directive. You cannot change
the default width of the TI-Tagged format, which supports a 16-bit width only.

11.11.1 ASCII-Hex Object Format (-a Option)

The ASCII-Hex object format supports 16-bit addresses. The format consists of a byte stream with bytes
separated by spaces. Figure 11-§ illustrates the ASCII-Hex format.

Figure 11-6. ASCIl-Hex Object Format

Nonprintable
Nonprintable Address end code

start code jj Jj

AB - AXXXXXXXX,
XX XX XX XX XX XX XX XX XX XX . . ~C

Data byte

The file begins with an ASCII STX character (ctrl-B, 02h) and ends with an ASCIl ETX character (ctrl-C,
03h). Address records are indicated with $AXXXXXXX, in which XXXXXXXX is a 8-digit (32-bit)
hexadecimal address. The address records are present only in the following situations:

* When discontinuities occur
* When the byte stream does not begin at address 0

You can avoid all discontinuities and any address records by using the -image and -zero options. This
creates output that is simply a list of byte values.

258

Hex Conversion Utility Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Description of the Object Formats

11.11.2 Intel MCS-86 Object Format (-i Option)

The Intel object format supports 16-bit addresses and 32-bit extended addresses. Intel format consists of
a 9-character (4-field) prefix (which defines the start of record, byte count, load address, and record type),
the data, and a 2-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description

00 Data record
01 End-of-file record
04 Extended linear address record

Record type00, the data record, begins with a colon (:) and is followed by the byte count, the address of
the first data byte, the record type (00), and the checksum. The address is the least significant 16 bits of a
32-bit address; this value is concatenated with the value from the most recent 04 (extended linear
address) record to create a full 32-bit address. The checksum is the 2s complement (in binary form) of the
preceding bytes in the record, including byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed by the byte count, the
address, the record type (01), and the checksum.

Record type 04, the extended linear address record, specifies the upper 16 address bits. It begins with a
colon (:), followed by the byte count, a dummy address of Oh, the record type (04), the most significant
16 bits of the address, and the checksum. The subsequent address fields in the data records contain the
least significant bytes of the address.

illustrates the Intel hexadecimal object format.

Figure 11-7. Intel Hexadecimal Object Format

Start
character
Address

Extended linear
address record
Most significant 16 bits

:2000000000000100020003000400050006000700080009000A000B000CO00DOOOEOOOFO068
:2000200010001100120013001400150016001700180019001A001B001C001DO01EO001F0048 Data
:2000400000000100020003000400050006000700080009000A000B000CO00DOOOEOOOF0028 records
: 2000600010001100120013001400150016001700180019001A001BOOlCOOlDOOlEOOlFOOOSj

: 00000001FF o
T |
‘ Checksum
Byte Record End-of-file
count type record
SPRU186P—-October 2006 Hex Conversion Utility Description 259

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Description of the Object Formats
11.11.3 Motorola Exorciser Object Format (-m Option)
The Motorola-S format supports 32-bit addresses. It consists of a start-of-file (header) record, data

records, and an end-of-file (termination) record. Each record consists of five fields: record type, byte
count, address, data, and checksum. The three record types are:

Record Type Description
SO Header record
S3 Code/data record
S7 Termination record

The byte count is the character pair count in the record, excluding the type and byte count itself.

The checksum is the least significant byte of the 1s complement of the sum of the values represented by
the pairs of characters making up the byte count, address, and the code/data fields.

illustrates the Motorola-S object format.

Figure 11-8. Motorola-S Format

Record Address Checksum

type
S00600004844521B _F Header record
$32200DD
S31A0P001FFEBO00FA Data records
S70500000000FA F Termination

record
Checksum
Byte count

Address for S3 records

11.11.4 Texas Instruments SDSMAC Object Format (-t Option)

The Texas Instruments SDSMAC (TI-Tagged) object format supports 16-bit addresses, including
start-of-file record, data records, and end-of-file record. Each data records consists of a series of small
fields and is signified by a tag character:

Tag Character Description

K Followed by the program identifier
Followed by a checksum

Followed by a dummy checksum (ignored)
Followed by a 16-bit load address
Followed by a data word (four characters)
Identifies the end of a data record

* T W © o ~

Followed by a data byte (two characters)

260 Hex Conversion Utility Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

{'f TEXAS
INSTRUMENTS
www.ti.com
Description of the Object Formats
illustrates the tag characters and fields in TI-Tagged object format.
Figure 11-9. TI-Tagged Object Format
Start-of-file Load
record Program address Tag characters

identifier ‘

b L]

KOOOCOFFTOTI 90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7 EF3DF
BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EE37F | Data

ETFFFﬁl%FFFﬁI%FFFFXI%FFFFXBXFFFFXI%FFFFXBXFFFHI%FFFITB}FFFFXBXFFFFIF2451F B records
T [I I

End-of-file Data

record words Checksum

If any data fields appear before the first address, the first field is assigned address 0000h. Address fields
may be expressed but not required for any data byte. The checksum field, preceded by the tag character
7, is the 2s complement of the sum of the 8-bit ASCII values of characters, beginning with the first tag
character and ending with the checksum tag character (7 or 8). The end-of-file record is a colon (:).

11.11.5 Extended Tektronix Object Format (-x Option)
The Tektronix object format supports 32-bit addresses and has two types of records:
Data records contains the header field, the load address, and the object code.

Termination records signifies the end of a module.

The header field in the data record contains the following information:
Number of ASCII

Item Characters Description

% 1 Data type is Tektronix format

Block length 2 Number of characters in the record, minus the %
Block type 1 6 = data record

8 = termination record

Checksum 2 A 2-digit hex sum modulo 256 of all values in the record except the % and the
checksum itself.

The load address in the data record specifies where the object code will be located. The first digit
specifies the address length; this is always 8. The remaining characters of the data record contain
the object code, two characters per byte.

illustrates the Tektronix object format.

Figure 11-10. Extended Tektronix Object Format

Checksum: 21h= 1+5+6+8+1+0+0+0+0+0+0+

0+
Block length o 2+0+2+0+2+0+2+0+2+0+2+
lah =26 Object code: 6 bytes

Header %45621810000000202020202020

character T
Load address: 10000000h

Block type: 6 Length of
(data) load address

SPRU186P—-October 2006 Hex Conversion Utility Description 261
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Hex Conversion Utility Error Messages
11.12 Hex Conversion Utility Error Messages
section mapped to reserved memory message
Description A section is mapped into a reserved memory area, listed in the processor memory
map.
Action Correct the section's allocation or boot-loader address. For valid memory locations,
refer to the TMS320C6200 CPU and Instruction Set Reference Guide.
sections overlapping
Description Two or more COFF section load addresses overlap or a boot table address overlaps
another section.
Action This problem may be caused by an incorrect translation (from the load address to the

hexadecimal output file address) that is performed by the hex conversion utility when
the memory width is less than the data width. See Bection 11.3, and Bection 11.10.

unconfigured memory error

Description The COFF file contains a section whose load address falls outside the memory range
defined in the ROMS directive.
Action Correct the ROM range as defined by the ROMS directive to cover the memory range

as needed, or modify the section load address. Remember that if the ROMS directive
is not used, the memory range defaults to the entire processor address space. For this
reason, removing the ROMS directive could also be a workaround.

262

Hex Conversion Utility Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

J@ TEXAS Chapter 12
INSTRUMENTS SPRU186P—October 2006

Sharing C/C++ Header Files With Assembly Source

You can use the .cdecls assembler directive to share C headers
containing declarations and prototypes between C and assembly
code. Any legal C/C++ can be used in a .cdecls block and the C/C++
declarations will cause suitable assembly to be generated
automatically, allowing you to reference the C/C++ constructs in
assembly code.

Topic Page
12.1 Overview of the .cdecls Directivel...eoveeieeeeienne.... 264
12.2 Notes on C/C++ CoNnversionSfeceieuereeeeeieieiaeaeee.s 264
12.3 Notes on C++ Specific Conversions[.......c.coueue.... 269
12.4 New Assembler Supportl.ceeeeeeeeeeeieeieeeieieeee .. 269
SPRU186P—-October 2006 Sharing C/C++ Header Files With Assembly Source 263

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Overview of the .cdecls Directive

12.1 Overview of the .cdecls Directive

The .cdecls directive allows programmers in mixed assembly and C/C++ environments to share C headers
containing declarations and prototypes between the C and assembly code. Any legal C/C++ can be used
in a .cdecls block and the C/C++ declarations will cause suitable assembly to be generated automatically.
This allows the programmer to reference the C/C++ constructs in assembly code — calling functions,
allocating space, and accessing structure members — using the equivalent assembly mechanisms. While
function and variable definitions are ignored, most common C/C++ elements are converted to assembly:
enumerations, (non function-like) macros, function and variable prototypes, structures, and unions.

See [he _.cdecls topid for details on the syntax of the .cdecls assembler directive.

The .cdecls directive can appear anywhere in an assembly source file, and can occur multiple times within
a file. However, the C/C++ environment created by one .cdecls is not inherited by a later .cdecls; the
C/C++ environment starts over for each .cdecls instance.

For example, the following code causes the warning to be issued:
.cdecl s C NOLI ST
A
#defi ne ASMTEST 1
%

.cdecl s C NOLI ST
A
#i f ndef ASMIEST
#warn "ASMIEST not defined!" /* will be issued */
#endi f
%
Therefore, a typical use of the .cdecls block is expected to be a single usage near the beginning of the
assembly source file, in which all necessary C/C++ header files are included.

Use the compiler -I path (include path) options to specify additional include file paths needed for the
header files used in assembly, as you would when compiling C files.

Any C/C++ errors or warnings generated by the code of the .cdecls are emitted as they normally would for
the C/C++ source code. C/C++ errors cause the directive to fail, and any resulting converted assembly is
not included.

C/C++ constructs that cannot be converted, such as function-like macros or variable definitions, cause a
comment to be output to the converted assembly file. For example:

; ASM HEADER WARNI NG - variable definition ' ABCD ignored

The prefix ASM HEADER WARNING appears at the beginning of each message. To see the warnings,

either the WARN parameter needs to be specified so the messages are displayed on STDERR, or else
the LIST parameter needs to be specified so the warnings appear in the listing file, if any.

Finally, note that the converted assembly code does not appear in the same order as the original C/C++
source code and C/C++ constructs may be simplified to a normalized form during the conversion process,
but this should not affect their final usage.

12.2 Notes on C/C++ Conversions
The following sections describe C and ++ conversion elements that you need to be aware of when sharing
header files with assembly source.

12.2.1 Comments

Comments are consumed entirely at the C level, and do not appear in the resulting converted assembly
file.

264 Sharing C/C++ Header Files With Assembly Source SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Notes on C/C++ Conversions

12.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)

Conditional compilation is handled entirely at the C level during the conversion step. Define any necessary
macros either on the command line (using the compiler -DNAME=value option) or within a .cdecls block
using #define. The #if, #ifdef, etc. C/C++ directives are not converted to assembly .if, .else, .elseif, and
.endif directives.

12.2.3 Pragmas

Pragmas found in the C/C++ source code cause a warning to be generated as they are not converted.
They have no other effect on the resulting assembly file. See for the WARN and NOWARN parameter
discussion for where these warnings are created.

12.2.4 The #error and #warning Directives

These preprocessor directives are handled completely by the compiler during the parsing step of
conversion. If one of these directives is encountered, the appropriate error or warning message is emitted.
These directives are not converted to .emsg or .wmsg in the assembly output.

12.2.5 Predefined symbol __ASM_HEADER_ _

The C/C++ macro _ _ASM_HEADER_ _is defined in the compiler while processing code within .cdecls.
This allows you to make changes in your code, such as not compiling definitions, during the .cdecls
processing.

Be Careful With the _ _ASM_HEADER_ _ Macro

Note: You must be very careful not to use this macro to introduce any changes in the code that
could result in inconsistencies between the code processed while compiling the C/C++
source and while converting to assembly.

12.2.6 Usage Within C/C++ asm() Statements

The .cdecls directive is not allowed within C/C++ asm() statements and will cause an error to be
generated.

12.2.7 The #include Directive

The C/C++ #include preprocessor directive is handled transparently by the compiler during the conversion
step. Such #includes can be nested as deeply as desired as in C/C++ source. The assembly directives
.include and .copy are not used or needed within a .cdecls. Use the command line -Ipath option to specify
additional paths to be searched for included files, as you would for C compilation.

12.2.8 Conversion of #define Macros

Only object-like macros are converted to assembly. Function-like macros have no assembly
representation and so cannot be converted. Pre-defined and built-in C/C++ macros are not converted to
assembly (i.e., FILE , TIME__, Tl COMPILER_VERSION__, etc.). For example, this code is
converted to assembly because it is an object-like macro:

#defi ne NAME Charl ey

This code is not converted to assembly because it is a function-like macro:
#define MAX(X,y) (x>y ? x : y)
Some macros, while they are converted, have no functional use in the containing assembly file. For

example, the following results in the assembly substitution symbol FOREVER being set to the value
while(1), although this has no useful use in assembly because while(1) is not legal assembly code.

#def i ne FOREVER whi | e(1)

SPRU186P—-October 2006 Sharing C/C++ Header Files With Assembly Source 265
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Notes on C/C++ Conversions

Macro values are not interpreted as they are converted. For example, the following results in the
assembler substitution symbol OFFSET being set to the literal string value 5+12 and not the value 17.
This happens because the semantics of the C/C++ language require that macros are evaluated in context
and not when they are parsed.

#defi ne OFFSET 5+12

Because macros in C/C++ are evaluated in their usage context, C/C++ printf escape sequences such as
\n are not converted to a single character in the converted assembly macro. See for
suggestions on how to use C/C++ macro strings.

Macros are converted using the new .define directive (see Bection 12.4.7), which functions similarly to the
.asg assembler directive. The exception is that .define disallows redefinitions of register symbols and
mnemonics to prevent the conversion from corrupting the basic assembly environment. To remove a
macro from the assembly scope, .undef can be used following the .cdecls that defines it (see

Bection 12.4.3).

The macro functionality of # (stringize operator) is only useful within functional macros. Since functional
macros are not supported by this process, # is not supported either. The concatenation operator ## is only
useful in a functional context, but can be used degenerately to concatenate two strings and so it is
supported in that context.

12.2.9 The #undef Directive

Symbols undefined using the #undef directive before the end of the .cdecls are not converted to assembly.

12.2.10 Enumerations

Enumeration members are converted to .enum elements in assembly. For example:
enum state { ACTI VE=0x10, SLEEPI NG=0x01, | NTERRUPT=0x100, POWEROFF, LAST};

is converted to the following assembly code:

state .enum

ACTI VE .emenber 16

SLEEPI NG .enmenber 1

NTERRUPT . emenber 256

PONERCFF .emenber 257

LAST . emenber 258
.endenum

The members are used via the pseudo-scoping created by the .enum directive:
ACD = #(state. ACTI VE)

The usage is similar to that for accessing structure members, enum_name.member.

This pseudo-scoping is used to prevent enumeration member names from corrupting other symbols within
the assembly environment.

12.2.11 C Strings

Because C string escapes such as \n and \t are not converted to hex characters 0xOA and 0x09 until their
use in a string constant in a C/C++ program, C macros whose values are strings cannot be represented
as expected in assembly substitution symbols. For example:

#define MSG "\tH\n"

becomes, in assembly:
.define """\tHI\n""" , MS5G ; 6 quoted characters! not 5!
When used in a C string context, you expect this statement to be converted to 5 characters (tab, H, I,

newline, NULL), but the .string assembler directive does not know how to perform the C escape
conversions.

266

Sharing C/C++ Header Files With Assembly Source SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Notes on C/C++ Conversions

You can use the new .cstring directive to cause the escape sequences and NULL termination to be
properly handled as they would in C/C++. Using the above symbol MSG with a .cstring directive results in
5 characters of memory being allocated, the same characters as would result if used in a C/C++ strong
context. (See for the .cstring directive syntax.)

12.2.12 C/C++ Built-In Functions

The C/C++ built-in functions, such as sizeof(), are not translated to their assembly counterparts, if any, if
they are used in macros. Also, their C expression values are not inserted into the resulting assembly
macro because macros are evaluated in context and there is no active context when converting the
macros to assembly.

Suitable functions such as $sizeof() are available in assembly expressions. However, as the basic types
such as int/char/float have no type representation in assembly, there is no way to ask for $sizeof(int), for
example, in assembly.

12.2.13 Structures and Unions

C/C++ structures and unions are converted to assembly .struct and .union elements. Padding and ending
alignments are added as necessary to make the resulting assembly structure have the same size and
member offsets as the C/C++ source. The primary purpose is to allow access to members of C/C++
structures, as well as to facilitate debugging of the assembly code. For nested structures, the assembly
.tag feature is used to refer to other structures/unions.

The alignment is also passed from the C/C++ source so that the assembly symbol is marked with the
same alignment as the C/C++ symbol. (See for information about pragmas, which may
attempt to modify structures.) Because the alignment of structures is stored in the assembly symbol,
built-in assembly functions like $sizeof() and $alignof() can be used on the resulting structure name
symbol.

When using unnamed structures (or unions) in typedefs, such as:

typedef struct { int a_nenber; } nystrnang;

This is really a shorthand way of writing:
struct tenporary_name { int a_nenber; };
typedef tenporary_nane nystrnane;

The conversion processes the above statements in the same manner: generating a temporary name for
the structure and then using .define to output a typedef from the temporary name to the user name. You
should use your mystrname in assembly the same as you would in C/C++, but do not be confused by the
assembly structure definition in the list, which contains the temporary name. You can avoid the temporary
name by specifying a hame for the structure, as in:

typedef struct a_st_nanme { ... } nystrnang;

If a shorthand method is used in C to declare a variable with a particular structure, for example:
extern struct a_name { int a_nenber; } a_variable;

Then after the structure is converted to assembly, a .tag directive is generated to declare the structure of
the external variable, such as:

_a variable .tag a_st_nane

This allows you to refer to _a_variable.a_member in your assembly code.

12.2.14 Function/Variable Prototypes

Non-static function and variable prototypes (not definitions) will result in a .global directive being generated
for each symbol found.

See for C++ name mangling issues.

Function and variable definitions will result in a warning message being generated (see the
WARN/NOWARN parameter discussion for where these warnings are created) for each, and they will not
be represented in the converted assembly.

SPRU186P—-October 2006 Sharing C/C++ Header Files With Assembly Source 267
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Notes on C++ Specific Conversions

The assembly symbol representing the variable declarations will not contain type information about those
symbols. Only a .global will be issued for them. Therefore, it is your responsibility to ensure the symbol is
used appropriately.

See for information on variables names which are of a structure/union type.

12.2.15 C Constant Suffixes

The C constant suffixes u, |, and f are passed to the assembly unchanged. The assembler will ignore
these suffixes if used in assembly expressions.

12.2.16 Basic C/C++ Types

12.3

Only complex types (structures and unions) in the C/C++ source code are converted to assembly. Basic
types such as int, char, or float are not converted or represented in assembly beyond any existing .int,
.char, float, etc. directives that previously existed in assembly.

Typedefs of basic types are therefore also not represented in the converted assembly.

Notes on C++ Specific Conversions

The following sections describe C++ specific conversion elements that you need to be aware of when
sharing header files with assembly source.

12.3.1 Name Mangling

Symbol names may be mangled in C++ source files. When mangling occurs, the converted assembly will
use the mangled names to avoid symbol name clashes. You can use the demangler (dem430) to
demangle names and identify the correct symbols to use in assembly.

To defeat name mangling in C++ for symbols where polymorphism (calling a function of the same name
with different kinds of arguments) is not required, use the following syntax:

extern "C' void sonmefunc(int arg);

The above format is the short method for declaring a single function. To use this method for multiple
functions, you can also use the following syntax:

extern "C'

{

voi d sonefunc(int arg);
int anotherfunc(int arg);

12.3.2 Derived Classes

Derived classes are only partially supported when converting to assembly because of issues related to
C++ scoping which does not exist in assembly. The greatest difference is that base class members do not
automatically become full (top-level) members of the derived class. For example:

cl ass base

{
publi c:
int bil;
H

class derived : public base

{
publi c:
int di;

268

Sharing C/C++ Header Files With Assembly Source SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

New Assembler Support

In C++ code, the class derived would contain both integers b1 and d1. In the converted assembly
structure "derived”, the members of the base class must be accessed using the name of the base class,
such as derived.__b_base.bl rather than the expected derived.bl.

A non-virtual, non-empty base class will have b prepended to its name within the derived class to
signify it is a base class name. That is why the example above is derived.__b_base.bl and not simply
derived.base.bl.

12.3.3 Templates
No support exists for templates.

12.3.4 Virtual Functions
No support exists for virtual functions, as they have no assembly representation.

12.4 New Assembler Support

12.4.1 Enumerations (.enum/.emember/.endenum)
New directives have been created to support a pseudo-scoping for enumerations.

The format of these new directives is:

ENUM_NAME .enum

MEMBER1 .emember [value]
MEMBER2 .emember [value]
.endenum

The .enum directive begins the enumeration definition and .endenum terminates it.
The enumeration name (ENUM_NAME) cannot be used to allocate space; its size is reported as zero.

The format to use the value of a member is ENUM_NAME.MEMBER, similar to a structure member
usage.

The .emember directive optionally accepts the value to set the member to, just as in C/C++. If not
specified, the member takes a value one more than the previous member. As in C/C++, member names
cannot be duplicated, although values can be. Unless specified with .emember, the first enumeration
member will be given the value 0 (zero), as in C/C++.

The .endenum directive cannot be used with a label, as structure .endstruct directives can, because the
.endenum directive has no value like the .endstruct does (containing the size of the structure).

Conditional compilation directives (.if/.else/.elsif/.endif) are the only other non-enumeration code allowed
within the .enum/.endenum sequence.

12.4.2 The .define Directive

The new .define directive functions in the same manner as the existing .asg directive, except that .define
disallows creation of a substitution symbol that has the same name as a register symbol or mnemonic. It
does not create a new symbol name space in the assembler, rather it uses the existing substitution
symbol name space. The syntax for the directive is:

.define substitution string, substitution symbol name

The .define directive is used to prevent corruption of the assembly environment when converting C/C++
headers.

SPRU186P—-October 2006 Sharing C/C++ Header Files With Assembly Source 269
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

New Assembler Support

12.4.3 The .undefine/.unasg Directives

The .undef directive is used to remove the definition of a substitution symbol created using .define or .asg.
This directive will remove the named symbol from the substitution symbol table from the point of the .undef
to the end of the assembly file. The syntax for these directives is:

.undefine substitution symbol name
.unasg substitution symbol name

This can be used to remove from the assembly environment any C/C++ macros that may cause a
problem.

Also see Bection 12.4.7, which covers the .define directive.

12.4.4 The $defined() Directive

The $defined directive returns true/l or false/0 depending on whether the name exists in the current
substitution symbol table or the standard symbol table. In essence $defined returns TRUE if the
assembler has any user symbol in scope by that name. This differs from $isdefed in that $isdefed only
tests for NON-substitution symbols. The syntax is:

$defined(substitution symbol name)

A statement such as ".if $defined(macroname)” is then similar to the C code "#ifdef macroname".

See Bection 12.4.3 and Bection 12.4.3 for the use of .define and .undef in assembly.

12.45 The $sizeof Built-In Function

The new assembly built-in function $sizeof() can be used to query the size of a structure in assembly. It is
an alias for the already existing $structsz(). The syntax is:

$sizeof(structure name)
The $sizeof function can then be used similarly to the C built-in function sizeof().

The assembler's $sizeof() built-in function cannot be used to ask for the size of basic C/C++ types, such
as $sizeof(int), because those basic type names are not represented in assembly. Only complex types are
converted from C/C++ to assembly.

Also see Bection 12.2.17, which notes that this conversion does not happen automatically if the C/C++
sizeof() built-in function is used within a macro.

12.4.6 Structure/Union Alignment & $alignof()

The assembly .struct and .union directives now take an optional second argument which can be used to
specify a minimum alignment to be applied to the symbol name. This is used by the conversion process to
pass the specific alignment from C/C++ to assembly.

The assembly built-in function $alignof() can be used to report the alignment of these structures. This can
be used even on assembly structures, and the function will return the minimum alignment calculated by
the assembler.

12.4.7 The .cstring Directive

You can use the new .cstring directive to cause the escape sequences and NULL termination to be
properly handled as they would in C/C++.

.cstring "String with C escapes.\nWI| be NULL term nated.\012"
See for more information on the new .cstring directive.

270 Sharing C/C++ Header Files With Assembly Source SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

J@ TEXAS
INSTRUMENTS

Preliminary

Appendix A

SPRU186P—0October 2006

Common Object File Format

The assembler and linker create object files in common object file
format (COFF). COFF is an implementation of an object file format of
the same name that was developed by AT&T for use on UNIX-based
systems. This format encourages modular programming and provides
powerful and flexible methods for managing code segments and
target system memory.

Sections are a basic COFF concept.Chapter J discusses COFF
sections in detail. If you understand section operation, you can use
the assembly language tools more efficiently.

This appendix contains technical details about the TMS320C6000™
COFF object file structure. Much of this information pertains to the
symbolic debugging information that is produced by the C compiler.
The purpose of this appendix is to provide supplementary information
on the internal format of COFF object files.

Topic Page
A.l COFF File Structure [eoeveeeeeeeeeee e 2772
A.2 File Header Structurel..ccooeeeieeeieiieeeieiiaeaeee.s 273
A.3 Optional File Header Format [.......coooeeeeeeeeeene.... 279
A.4 Section Header Structureli. e oieeieieieeieeieiieiaeeeas 279
A.5 Structuring Relocation Information [................... 274
A.6 Symbol Table Structure and Content [......oevv....... 271

SPRU186P—October 2006
Eubmit Documentation Feedbacl

Common Object File Format

271

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

COFF File Structure

A.1 COFF File Structure

The elements of a COFF object file describe the file's sections and symbolic debugging information. These
elements include:

A file header

Optional header information

A table of section headers

Raw data for each initialized section

Relocation information for each initialized section
A symbol table

A string table

The assembler and linker produce object files with the same COFF structure; however, a program that is
linked for the final time does not usually contain relocation entries. illustrates the object file
structure.

Figure A-1. COFF File Structure

File header

Optional file header

Section 1 header

Section headers

Section n header

Section 1
raw data
——————————— Raw data
(executable code and
"~ " Sectonn | initialized data)
raw data
Section 1
relocation information
Relocation
F—— — == — — — — — information
Section n
relocation information
Symbol table
String table

shows a typical example of a COFF object file that contains the three default sections, .text,
.data, and .bss, and a named section (referred to as <named>). By default, the tools place sections into
the object file in the following order: .text, .data, initialized named sections, .bss, and uninitialized named
sections. Although uninitialized sections have section headers, notice that they have no raw data,
relocation information, or line number entries. This is because the .bss and .usect directives simply
reserve space for uninitialized data; uninitialized sections contain no actual code.

272 Common Object File Format SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

Preliminary

www.ti.com

File Header Structure

Figure A-2. Sample COFF Object File

File header

text
section header

.data

section header .
___________ Section headers

<named> section
section header

text
raw data

Raw data
<named> section
raw data

text
relocation information

_ .data) Relocation
relocation information information

<named> section
relocation information

Symbol table

String table

A.2 File Header Structure

The file header contains 22 bytes of information that describe the general format of an object file.

shows the structure of the C6000 COFF file header.
Table A-1. File Header Contents

Byte Number Type Description
0-1 Unsigned short Version ID; indicates version of COFF file structure
2-3 Unsigned short Number of section headers
4-7 Integer Time and date stamp; indicates when the file was created
8-11 Integer File pointer; contains the symbol table's starting address
12-15 Integer Number of entries in the symbol table
16-17 Unsigned short Number of bytes in the optional header. This field is either O or 28; if it is O, there is no
optional file header.
18-19 Unsigned short Flags (see [[able A-)
20-21 Unsigned short Target ID; magic number (0099h) indicates the file can be executed in a C6000 system

lists the flags that can appear in bytes 18 and 19 of the file header. Any number and
combination of these flags can be set at the same time (for example, if bytes 18 and 19 are set to 0003h,

both F_RELFLG and F_EXEC are set).

SPRU186P—October 2006
Bubmit Documentation FeedbacH

Common Object File Format 273

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Optional File Header Format
Table A-2. File Header Flags (Bytes 18 and 19)
Mnemonic Flag Description
F_RELFLG 0001h Relocation information was stripped from the file
F_EXEC 0002h The file is relocatable (it contains no unresolved external references)
0004h Reserved
F_LSYMS 0008h Local symbols were stripped from the file
F_LITTLE 0100h The target is a little-endian device
F_BIG 0200h The target is a big-endian device

A.3 Optional File Header Format

The linker creates the optional file header and uses it to perform relocation at download time. Partially
linked files do not contain optional file headers. illustrates the optional file header format.

Table A-3. Optional File Header Contents

Byte Number Type Description

0-1 Short Optional file header magic number (0108h)
2-3 Short Version stamp
4-7 Integer Size (in bytes) of executable code

8-11 Integer Size (in bytes) of initialized data

12-15 Integer Size (in bytes) of uninitialized data

16-19 Integer Entry point

20-23 Integer Beginning address of executable code

24-27 Integer Beginning address of initialized data

A.4 Section Header Structure

COFF object files contain a table of section headers that define where each section begins in the object
file. Each section has its own section header. shows the structure of each section header.

Table A-4. Section Header Contents

Byte Number Type Description

0-7 Character This field contains one of the following: 1) An 8-character section name padded
with nulls. 2) A pointer into the string table if the symbol name is longer than
eight characters.

8-11 Integer Section's physical address
12-15 Integer Section's virtual address
16-19 Integer Section size in bytes

20-23 Integer File pointer to raw data
24-27 Integer File pointer to relocation entries
28-31 Integer Reserved

32-35 Unsigned integer Number of relocation entries
36-39 Unsigned integer Reserved

40-43 Unsigned integer Flags (see

44-45 Unsigned short Reserved

46-47 Unsigned short Memory page number

lists the flags that can appear in bytes 36 through 39 of the section header.

274 Common Object File Format SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

@ 7 Preliminary
EXAS
INSTRUMENTS
www.ti.com
Section Header Structure
Table A-5. Section Header Flags (Bytes 40 Through 43)
Mnemonic Flag Description
STYP_REG 00000000h Regular section (allocated, relocated, loaded)
STYP_DSECT 00000001h Dummy section (relocated, not allocated, not loaded)
STYP_NOLOAD 00000002h Noload section (allocated, relocated, not loaded)
STYP_COPY 00000010h Copy section (relocated, loaded, but not allocated; relocation entries
are processed normally)
STYP_TEXT 00000020h Section contains executable code
STYP_DATA 00000040h Section contains initialized data
STYP_BSS 00000080h Section contains uninitialized data
STYP_BLOCK 00001000h Alignment used as a blocking factor
STYP_PASS 00002000h Section should pass through unchanged
STYP_CLINK 00004000h Section requires conditional linking
STYP_VECTOR 00008000h Section contains vector table
STYP_PADDED 00010000h Section has been padded

The flags listed in can be combined; for example, if the flag's word is set to 060h, both
STYP_DATA and STYP_TEXT are set.

Bits 8-11 of the section header flags are used for defining the alignment. The alignment is defined to be
2™(value of bits 8-11). For example if bits 8-11 are 0101b (decimal integer 5), then the alignment is 32
(275).

illustrates how the pointers in a section header point to the elements in an object file that are
associated with the .text section.

Figure A-3. Section Header Pointers for the .text Section

text 07 811 1215 1619 2023 24-27 28-31 32-33 34-35 36-37 38 39

hoader [oe | [[[e e [[[[[]

text
Raw data

text
Relocation information

As shows, uninitialized sections (created with the .bss and .usect directives) vary from this
format. Although uninitialized sections have section headers, they have no raw data or relocation
information. They occupy no actual space in the object file. Therefore, the number of relocation entries,
the number of line number entries, and the file pointers are 0 for an uninitialized section. The header of an
uninitialized section simply tells the linker how much space for variables it should reserve in the memory
map.

SPRU186P—-October 2006 Common Object File Format 275
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Structuring Relocation Information

A.5

Structuring Relocation Information

A COFF object file has one relocation entry for each relocatable reference. The assembler automatically
generates relocation entries. The linker reads the relocation entries as it reads each input section and
performs relocation. The relocation entries determine how references within each input section are
treated.

COFF file relocation information entries use the 10-byte format shown in [Table A-§.

Table A-6. Relocation Entry Contents

Byte
Number Type Description

0-3 Integer Virtual address of the reference
4-5 Short Symbol table index (0-65 535)
6-7 Unsigned short Reserved

8-9 Unsigned short Relocation type (see

The virtual address is the symbol's address in the current section before relocation; it specifies where a
relocation must occur. (This is the address of the field in the object code that must be patched.)

Following is an example of code that generates a relocation entry:

2 .global X
3 00000000 ! 00000012 b X

In this example, the virtual address of the relocatable field is 0001.

The symbol table index is the index of the referenced symbol. In the preceding example, this field
contains the index of X in the symbol table. The amount of the relocation is the difference between the
symbol's current address in the section and its assembly-time address. The relocatable field must be
relocated by the same amount as the referenced symbol. In the example, X has a value of 0 before
relocation. Suppose X is relocated to address 2000h. This is the relocation amount (2000h - 0 = 2000h),
so the relocation field at address 1 is patched by adding 2000h to it.

You can determine a symbol's relocated address if you know which section it is defined in. For example, if
X is defined in .data and .data is relocated by 2000h, X is relocated by 2000h.

If the symbol table index in a relocation entry is -1 (OFFFFh), this is called an internal relocation. In this
case, the relocation amount is simply the amount by which the current section is being relocated.

The relocation type specifies the size of the field to be patched and describes how the patched value is
calculated. The type field depends on the addressing mode that was used to generate the relocatable
reference. In the preceding example, the actual address of the referenced symbol X is placed in an 8-bit
field in the object code. This is an 8-bit address, so the relocation type is R_RELBYTE. lists the
relocation types.

Table A-7. Relocation Types (Bytes 8 and 9)

Mnemonic Flag Relocation Type

R_ABS 0000h No relocation

R_RELBYTE 000Fh 8-bit direct reference to symbol's address
R_RELWORD 0010h 16-bit direct reference to symbol's address
R_RELLONG 0011h 32-bit direct reference to symbol's address
R_C60BASE 0050h Data page pointer-based offset
R_C60DIR15 0051h Load or store long displacement
R_C60PCR21 0052h 21-bit packet, PC relative

R_C60LO16 0054h MVK instruction low half register
R_C60HI16 0055h MVKH or MVKLH high half register
R_C60SECT 0056h Section-based offset

R_C60PCR10 0053h 10-bit Packet PC Relative (BDEC, BPOS)

276

Common Object File Format SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Symbol Table Structure and Content

Table A-7. Relocation Types (Bytes 8 and 9) (continued)

Mnemonic Flag Relocation Type

R_C60S16 0057h Signed 16-bit offset for MVK
R_C60PCR7 0070h 7-bit Packet PC Relative (ADDKPC)
R_C60PCR12 0071h 12-bit Packet PC Relative (BNOP)
RE_ADD 4000h Operator instruction +

RE_SUB 4001h Operator instruction -

RE_NEG 4002h Operator instruction unary -
RE_MPY 4003h Operator instruction *

RE_DIV 4004h Operator instruction /

RE_MOD 4005h Operator instruction %

RE_SR 4006h Unsigned shift right

RE_ASR 4007h Signed shift right

RE_SL 4008h Shift left

RE_AND 4009h AND function

RE_OR 400Ah OR function

RE_XOR 400Bh Exclusive OR function

RE_NOTB 400Ch ~

RE_ULDFLD 400Dh Unsigned relocation field load
RE_SLDFLD 400Eh Signed relocation field load
RE_USTFLD 400Fh Unsigned relocation field store
RE_SSTFLD 4010h Signed relocation field store
RE_XSTFLD 4016h Signed state is not relevant
RE_PUSH 4011h Push symbol on the stack
RE_PUSHSV c011h Push symbol: SEGVALUE flag is set
RE_PUSHSK 4012h Push signed constant on the stack
RE_PUSHUK 4013h Push unsigned constant on the stack
RE_PUSHPC 4014h Push current section PC on the stack
RE_DUP 4015h Duplicate tos and push copy

A.6 Symbol Table Structure and Content
The order of symbols in the symbol table is very important; they appear in the sequence shown in

0 A-4

Figure A-4. Symbol Table Contents

|
| Static variables

Defined global symbols

Undefined global symbols

Static variables refer to symbols defined in C/C++ that have storage class static outside any function. If
you have several modules that use symbols with the same name, making them static confines the scope
of each symbol to the module that defines it (this eliminates multiple-definition conflicts).

The entry for each symbol in the symbol table contains the symbol's:
« Name (or an offset into the string table)

SPRU186P—-October 2006 Common Object File Format 277
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Symbol Table Structure and Content

* Type

e Value

e Section it was defined in
» Storage class

Section names are also defined in the symbol table.

All symbol entries, regardless of class and type, have the same format in the symbol table. Each symbol
table entry contains the 18 bytes of information listed in [[able_A-§. Each symbol may also have an
18-byte auxiliary entry; the special symbols listed in [able_A-9 always have an auxiliary entry. Some
symbols may not have all the characteristics listed above; if a particular field is not set, it is set to null.

Table A-8. Symbol Table Entry Contents

Byte Number Type Description
0-7 Char This field contains one of the following: 1) An 8-character symbol name, padded
with nulls. 2) A pointer into the string table if the symbol name is longer than eight
characters.
8-11 Integer Symbol value; storage class dependent
12-13 Short Section number of the symbol
14-15 Unsigned short Reserved
16 Char Storage class of the symbol
17 Char Number of auxiliary entries (always 0 or 1)

A.6.1 Special Symbols

The symbol table contains some special symbols that are generated by the compiler, assembler, and
linker. Each special symbol contains ordinary symbol table information as well as an auxiliary entry.
lists these symbols.

Table A-9. Special Symbols in the Symbol Table

Symbol Description

text Address of the .text section

.data Address of the .data section

.bss Address of the .bss section

etext Next available address after the end of the .text output section
edata Next available address after the end of the .data output section
end Next available address after the end of the .bss output section

A.6.2 Symbol Name Format

The first eight bytes of a symbol table entry (bytes 0-7) indicate a symbol's hame:

» If the symbol name is eight characters or less, this field has type character. The name is padded with
nulls (if necessary) and stored in bytes 0-7.

» If the symbol name is greater than eight characters, this field is treated as two integers. The entire
symbol name is stored in the string table. Bytes 0-3 contain 0, and bytes 4-7 are an offset into the
string table.

A.6.3 String Table Structure

The string table stores symbols with names longer than eight characters. The field in the symbol table
entry that would normally contain the symbol's name actually points to the symbol's nhame in the string
table. The string table contiguously stores names, delimited by a null byte. The first four bytes of the table
contain the table size in bytes; thus, offsets into the string table are greater than or equal to 4.

278 Common Object File Format SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Symbol Table Structure and Content

is a string table that contains two symbol names, Adaptive-Filter and Fourier-Transform. The
index in the string table is 4 for Adaptive-Filter and 20 for Fourier-Transform.

A.6.4 Storage Classes

Figure A-5. String Table Entries for Sample Symbol Names

38 bytes

4 bytes
A o’ ‘a’ '’
't T Vv ‘e’
-’ ' i T
hs e’ T’ O’
' o’ u’ T
i) e’ T’ '~
T r 'a’ n
'S’ ' ‘0’ T
m’ O’

Byte 16 of the symbol table entry indicates the storage class of the symbol. Storage classes refer to the
method in which the C/C++ compiler accesses a symbol. lists valid storage classes.

Table A-10. Symbol Storage Classes

Mnemonic Value Storage Class Mnemonic Value Storage Class

C_NULL 0 No storage class C_USTATIC 14 Undefined static

C_AUTO 1 Reserved C_ENTAG 15 Reserved

C_EXT 2 External definition C_MOE 16 Reserved

C_STAT 3 Static C_REGPARM 17 Reserved

C_REG 4 Reserved C_FIELD 18 Reserved

C_EXTREF 5 External reference C_UEXT 19 Tentative external definition

C_LABEL 6 Label C_STATLAB 20 Static load time label

C_ULABEL 7 Undefined label C_EXTLAB 21 External load time label

C_MOS 8 Reserved C_VARARG 27 Last declared parameter of a function with a
variable number of arguments

C_ARG 9 Reserved C_BLOCK 100 Reserved

C_STRTAG 10 Reserved C_FCN 101 Reserved

C_MOU 11 Reserved C_EOS 102 Reserved

C_UNTAG 12 Reserved C_FILE 103 Reserved

C_TPDEF 13 Reserved C_LINE 104 Used only by utility programs

A.6.5 Symbol Values

Bytes 8-11 of a symbol table entry indicate a symbol's value. The C_EXT, C_STAT, and C_LABEL
storage classes hold relocatable addresses.

The value of a relocatable symbol is its virtual address. When the linker relocates a section, the value of a

relocatable symbol changes accordingly.

SPRU186P—October 2006

Bubmit Documentafion FeedbacK

Common Object File Format

279

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Symbol Table Structure and Content
A.6.6 Section Number

Bytes 12-13 of a symbol table entry contain a number that indicates in which section the symbol was
defined. lists these numbers and the indicated sections.

Table A-11. Section Numbers

Mnemonic Section Number Description

None -2 Reserved

N_ABS -1 Absolute symbol

N_UNDEF 0 Undefined external symbol

None 1 .text section (typical)

None 2 .data section (typical)

None 3 .bss section (typical)

None 4-32 767 Section humber of a named section, in the order in which the named

sections are encountered

If there were no .text, .data, or .bss sections, the numbering of named sections would begin with 1.

If a symbol has a section number of 0, -1, or -2, it is not defined in a section. A section number of -1
indicates that the symbol has a value but is not relocatable. A section number of 0 indicates a relocatable
external symbol that is not defined in the current file.

A.6.7 Auxiliary Entries

Each symbol table entry can have one or noauxiliary entry. An auxiliary symbol table entry contains the
same number of bytes as a symbol table entry (18). illustrates the format of auxiliary table

entries.
Table A-12. Section Format for Auxiliary Table Entries
Byte Number Type Description
0-3 Integer Section length
4-5 Unsigned short Number of relocation entries
6-7 Unsigned short Number of line number entries
8-17 — Not used (zero filled)
280 Common Object File Format SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

J@ TEXAS Appendix B
INSTRUMENTS SPRU186P—October 2006

Symbolic Debugging Directives

The assembler supports several directives that the TMS320C6000
C/C++ compiler uses for symbolic debugging. These directives differ
for the two debugging formats, DWARF and COFF.

These directives are not meant for use by assembly-language
programmers. They require arguments that can be difficult to
calculate manually, and their usage must conform to a predetermined
agreement between the compiler, the assembler, and the debugger.
This appendix documents these directives for informational purposes

only.
Topic Page
B.1 DWARF Debugging Format[......coeeeeeeeeeeiene. .. 284
B.2 COFF Debugging Format[.......coeeeeeeeeeeeiene. .. 283
B.3 Debug Directive Syntax[..cooeeieeeeeeiieeeeeeaieieeee.s 283
SPRU186P—-October 2006 Symbolic Debugging Directives 281

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

DWARF Debugging Format

B.1 DWARF Debugging Format

A subset of the DWARF symbolic debugging directives are always listed in the assembly language file that
the compiler creates for program analysis purposes. To list the complete set used for full symbolic debug,
invoke the compiler with the -g option, as shown below:

cl6x -g -k input_file

The -k option instructs the compiler to retain the generated assembly file.

To disable the generation of all symbolic debug directives, invoke the compiler with the -symdebug:none
option:

cl 6x --syndebug: none -k input_file

The DWARF debugging format consists of the following directives:

» The .dwtag and .dwendtag directives define a Debug Information Entry (DIE) in the .debug_info
section.

» The .dwattr directive adds an attribute to an existing DIE.
» The .dwpsn directive identifies the source position of a C/C++ statement.

» The .dwcie and .dwendentry directives define a Common Information Entry (CIE) in the .debug_frame
section.

» The .dwfde and .dwendentry directives define a Frame Description Entry (FDE) in the .debug_frame
section.

* The .dwcfa directive defines a call frame instruction for a CIE or FDE.

B.2 COFF Debugging Format

COFF symbolic debug is now obsolete. These directives are supported for backwards-compatibility only.

The decision to switch to DWARF as the symbolic debug format was made to overcome many limitations

of COFF symbolic debug, including the absence of C++ support.

The COFF debugging format consists of the following directives:

* The .sym directive defines a global variable, a local variable, or a function. Several parameters allow
you to associate various debugging information with the variable or function.

» The .stag, .etag, and .utag directives define structures, enumerations, and unions, respectively. The
.member directive specifies a member of a structure, enumeration, or union. The .eos directive ends a
structure, enumeration, or union definition.

« The .func and .endfunc directives specify the beginning and ending lines of a C/C++ function.

» The .block and .endblock directives specify the bounds of C/C++ blocks.

* The .file directive defines a symbol in the symbol table that identifies the current source filename.
* The .line directive identifies the line number of a C/C++ source statement.

282 Symbolic Debugging Directives SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Debug Directive Syntax

B.3 Debug Directive Syntax

is an alphabetical listing of the symbolic debugging directives. For information on the C/C++
compiler, refer to the TMS320C6000 Optimizing Compiler User's Guide.

Table B-1. Symbolic Debugging Directives

Label Directive Arguments
.block [beginning line number]
.dwattr DIE label,DIE attribute name(DIE attribute value)[,DIE attribute name(attribute value) |, ...]
.dwcfa call frame instruction opcode[,operand[,operand]]

CIE label .dwcie version , return address register
.dwendentry
.dwendtag
.dwfde CIE label
.dwpsn " filename ", line number , column number

DIE label .dwtag DIE tag name,DIE attribute name(DIE attribute value)[,DIE attribute name(attribute value) |, ...]
.endblock [ending line number]
.endfunc [ending line number[,register mask[, frame size]]]
.eos
.etag name[, size]
file " filename "
func [beginning line number]
line line number|, address]
.member name, value], type, storage class, size, tag, dims]
.stag name[, size]
.Ssym name, value], type, storage class, size, tag, dims]
.utag name[, size]

SPRU186P—-October 2006 Symbolic Debugging Directives 283

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Debug Directive Syntax
284 Symbolic Debugging Directives SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

J@ TEXAS
INSTRUMENTS

Preliminary

Appendix C

SPRU186P—0October 2006

XML Link Information File Description

The linker supports the generation of an XML link information file via
the --xml_link_info file option. This option causes the linker to
generate a well-formed XML file containing detailed information about
the result of a link. The information included in this file includes all of
the information that is currently produced in a linker-generated map
file.

As the linker evolves, the XML link information file may be extended
to include additional information that could be useful for static analysis
of linker results.

This appendix enumerates all of the elements that are generated by
the linker into the XML link information file.

Topic Page
C.1 XML Information File Element Types[.................. 234
C.2 Document Elements [Lioieieieeeeeereieieieiereieieieaeerne.. 2849

SPRU186P—October 2006
Eubmit Documentation Feedbacl

XML Link Information File Description

285

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

XML Information File Element Types

C1l

C.2

XML Information File Element Types

These element types will be generated by the linker:

» Container elements represent an object that contains other elements that describe the object.
Container elements have an id attribute that makes them accessible from other elements.

» String elements contain a string representation of their value.

« Constant elements contain a 32-bit unsigned long representation of their value (with a 0x prefix).

» Reference elements are empty elements that contain an idref attribute that specifies a link to another
container element.

In Bection C.7, the element type is specified for each element in parentheses following the element
description. For instance, the <link_time> element lists the time of the link execution (string).

Document Elements

The root element, or the document element, is <link_info>. All other elements contained in the XML link
information file are children of the <link_info> element. The following sections describe the elements that
an XML information file can contain.

C.2.1 Header Elements

The first elements in the XML link information file provide general information about the linker and the link
session:
» The <banner> element lists the name of the executable and the version information (string).
* The <copyright> element lists the TI copyright information (string).
» The <link_time> is a timestamp representation of the link time (unsigned 32-bit int).
» The <output_file> element lists the name of the linked output file generated (string).
e The <entry_point> element specifies the program entry point, as determined by the linker (container)
with two entries:
— The <name> is the entry point symbol name, if any (string).
— The <address> is the entry point address (constant).

Example C-1. Header Element for the hi.out Output File

<banner >TM5320Cxx COFF Li nker Version x.xx (Jan 6 2004) </ banner >
<copyri ght >Copyright (c) 1996-2004 Texas |nstrunments | ncorporated</copyright>
<link_time>0x43df d8a4</Iink_tine>
<out put _file>hi.out</output_file>
<entry_point>

<nanme>_c_i nt 00</ nane>

<addr ess>0xaf 80</ addr ess>
</entry_point>

286

XML Link Information File Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{'f TEXAS
INSTRUMENTS

www.ti.com

Preliminary

Document Elements

C.2.2 Input File List

The next section of the XML link information file is the input file list, which is delimited with a
<input_file_list> container element. The <input_file_list> can contain any number of <input_file>
elements.

Each <input_file> instance specifies the input file involved in the link. Each <input_file> has an id attribute
that can be referenced by other elements, such as an <object_component>. An <input_file> is a container
element enclosing the following elements:

e The <path> element names a directory path, if applicable (string).

» The <kind> element specifies a file type, either archive or object (string).

» The <file> element specifies an archive name or filename (string).

» The <name> element specifies an object file name, or archive member name (string).

Example C-2. Input File List for the hi.out Output File

<input_file_list>

<input_file id="fl-1">
<ki nd>obj ect </ ki nd>
<file>hi.obj</file>
<nane>hi . obj </ name>

</input_file>

<input_file id="fl-2">
<pat h>/t ool s/ |i b/ </ pat h>
<ki nd>ar chi ve</ ki nd>
<file>rtsxxx.lib</file>
<nane>boot . obj </ nane>

</input_file>

<input_file id="fl-3">
<pat h>/t ool s/ |i b/ </ pat h>
<ki nd>ar chi ve</ ki nd>
<file>rtsxxx.lib</file>
<nane>exi t. obj </ name>

</input_file>

<input_file id="fl-4">
<pat h>/t ool s/ li b/ </ pat h>
<ki nd>ar chi ve</ ki nd>
<file>rtsxxx.lib</file>
<nane>pri ntf. obj </ name>

</input_file>

</input_file_list>

SPRU186P—-October 2006 XML Link Information File Description 287
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com
Document Elements
C.2.3 Object Component List

The next section of the XML link information file contains a specification of all of the object components
that are involved in the link. An example of an object component is an input section. In general, an object
component is the smallest piece of object that can be manipulated by the linker.

The <object_component_list> is a container element enclosing any number of <object_component>
elements.

Each <object_component> specifies a single object component. Each <object_component> has an id
attribute so that it can be referenced directly from other elements, such as a <logical_group>. An
<object_component> is a container element enclosing the following elements:

» The <name> element names the object component (string).

» The <load_address> element specifies the load-time address of the object component (constant).
» The <run_address> element specifies the run-time address of the object component (constant).

» The <size> element specifies the size of the object component (constant).

e The <input_file_ref> element specifies the source file where the object component originated
(reference).

Example C-3. Object Component List for the fl-4 Input File

<obj ect _conponent id="oc-20">
<nane>. t ext </ name>
<l oad_addr ess>0xac00</ | oad_addr ess>
<run_addr ess>0xac00</ run_addr ess>
<si ze>0xc0</ si ze>
<input_file_ref idref="fl-4"/>

</ obj ect _conponent >

<obj ect _conponent id="oc-21">
<nane>. dat a</ nane>
<l oad_addr ess>0x80000000</ | oad_addr ess>
<run_addr ess>0x80000000</ r un_addr ess>
<si ze>0x0</ si ze>
<input_file_ref idref="fl-4"/>

</ obj ect _conponent >

<obj ect _conponent id="oc-22">
<nane>. bss</ nanme>
<l oad_addr ess>0x80000000</ | oad_addr ess>
<run_addr ess>0x80000000</ r un_addr ess>
<si ze>0x0</ si ze>
<input_file_ref idref="fl-4"/>

</ obj ect _conponent >

288 XML Link Information File Description SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Document Elements

C.2.4 Logical Group List

The <logical_group_list> section of the XML link information file is similar to the output section listing in a
linker generated map file. However, the XML link information file contains a specification of GROUP and
UNION output sections, which are not represented in a map file. There are three kinds of list items that
can occur in a <logical_group_list>:

» The <logical_group> is the specification of a section or GROUP that contains a list of object
components or logical group members. Each <logical_group> element is given an id so that it may be
referenced from other elements. Each <logical_group> is a container element enclosing the following
elements:

— The <name> element names the logical group (string).

— The <load_address> element specifies the load-time address of the logical group (constant).

— The <run_address> element specifies the run-time address of the logical group (constant).

— The <size> element specifies the size of the logical group (constant).

— The <contents> element lists elements contained in this logical group (container). These elements
refer to each of the member objects contained in this logical group:
» The <object_component_ref> is an object component that is contained in this logical group

(reference).

» The <logical_group_ref>is a logical group that is contained in this logical group (reference).

» The <overlay> is a special kind of logical group that represents a UNION, or a set of objects that
share the same memory space (container). Each <overlay> element is given an id so that it may be
referenced from other elements (like from an <allocated_space> element in the placement map). Each
<overlay> contains the following elements:

— The <name> element names the overlay (string).

— The <run_address> element specifies the run-time address of overlay (constant).

— The <size> element specifies the size of logical group (constant).

— The <contents> container element lists elements contained in this overlay. These elements refer to
each of the member objects contained in this logical group:
» The <object_component_ref> is an object component that is contained in this logical group

(reference).

» The <logical_group_ref>is a logical group that is contained in this logical group (reference).

» The <split_section> is another special kind of logical group that represents a collection of logical
groups that is split among multiple memory areas. Each <split_section> element is given an id so that
it may be referenced from other elements. The id consists of the following elements.

— The <name> element names the split section (string).

— The <contents> container element lists elements contained in this split section. The
<logical_group_ref> elements refer to each of the member objects contained in this split section,
and each element referenced is a logical group that is contained in this split section (reference).

SPRU186P—-October 2006 XML Link Information File Description 289
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

Document Elements

” TEXAS
INSTRUMENTS

www.ti.com

Example C-4. Logical Group List for the fl-4 Input File

<l ogi cal _group_list>

<l ogi cal _group id="1g-7">
<nane>. t ext </ name>

<l oad_addr ess>0x20</ | oad_addr ess>
<run_addr ess>0x20</r un_addr ess>

<si ze>0xbh240</ si ze>

<cont ent s>

<obj ect _conponent _ref idref="0c-34"/>
<obj ect _conponent _ref idref="o0oc-108"/>
<obj ect _conponent _ref idref="oc-e2"/>

</ cont ent s>
</l ogi cal _group>

<overlay id="1g-b">

<nanme>UNl ON_1</ nane>

<run_addr ess>0xb600</ run_addr ess>

<si ze>0xcO0</ si ze>

<cont ent s>

<obj ect _conponent _ref idref="0c-45"/>
<l ogi cal _group_ref idref="1g-8"/>

</ cont ent s>

</ overl ay>

<split_section id="1g"12">
<nane>. t ask_scn</ nane>

<si ze>0x120</ si ze>

<cont ent s>

<l ogi cal _group_ref idref="1g"10"/>
<l ogi cal _group_ref idref="1g"11"/>
</ cont ent s>

</l ogi cal _group_list>

290

XML Link Information File Description

u

SPRU186P—October 2006
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

{';‘ TEXAS

Preliminary

INSTRUMENTS

www.ti.com

Document Elements

C.2.5 Placement Map

The <placement_map> element describes the memory placement details of all named memory areas in
the application, including unused spaces between logical groups that have been placed in a particular
memory area.

The <memory_area> is a description of the placement details within a named memory area (container).
The description consists of these items:

The <name> names the memory area (string).

The <page_id> gives the id of the memory page in which this memory area is defined (constant).
The <origin> specifies the beginning address of the memory area (constant).

The <length> specifies the length of the memory area (constant).

The <used_space> specifies the amount of allocated space in this area (constant).

The <unused_space> specifies the amount of available space in this area (constant).

The <attributes> lists the RWXI attributes that are associated with this area, if any (string).

The <fill_value> specifies the fill value that is to be placed in unused space, if the fill directive is
specified with the memory area (constant).

The <usage_details> lists details of each allocated or available fragment in this memory area. If the
fragment is allocated to a logical group, then a <logical_group_ref> element is provided to facilitate
access to the details of that logical group. All fragment specifications include <start_address> and
<size> elements.

— The <allocated_space> element provides details of an allocated fragment within this memory area

(container):

Example C-5. Placement Map for the fl-4 Input File

<pl acenment _nap>

<nenory_area>

<nanme>PMEMK/ nane>

<page_i d>0x0</ page_i d>

<ori gi n>0x20</ ori gi n>

<l engt h>0x100000</ | engt h>
<used_space>0xb240</ used_space>
<unused_space>0xf 4dc0</ unused_space>
<attributes>RWKI </attributes>
<usage_detai |l s>

<al | ocat ed_space>
<start_address>0x20</start_address>
<si ze>0xbh240</ si ze>

<l ogi cal _group_ref idref="1g-7"/>
</ al | ocat ed_space>

<avai |l abl e_space>
<start_address>0xb260</ st art _address>
<si ze>0xf 4dc0</ si ze>

</ avai |l abl e_space>

</ usage_det ai | s>

</ menory_area>

</ pl acenment _map>

SPRU186P—October 2006
Eubmit Documentation Feedbacl

XML Link Information File Description

201

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

Document Elements

” TEXAS
INSTRUMENTS

www.ti.com

C.2.6 Far Call Trampoline List

The <far_call_trampoline_list> is a list of <far_call_trampoline> elements. The C6000 linker supports the
generation of far call trampolines to help a call site reach a destination that is out of range. A far call
trampoline function is guaranteed to reach the called function (callee) as it may utilize an indirect call to
the called function.

The <far_call_trampoline_list> enumerates all of the far call trampolines that are generated by the linker
for a particular link. The <far_call_trampoline_list> can contain any number of <far_call_trampoline>
elements. Each <far_call_trampoline> is a container enclosing the following elements:

Example C-6. Fall Call Trampoline List for the fl-4 Input File

The <callee_name> element names the destination function (string).
The <callee_address> is the address of the called function (constant).

The <trampoline_object_component_ref> is a reference to an object component that contains the

definition of the trampoline function (reference).

The <trampoline_address> is the address of the trampoline function (constant).
The <caller_list> enumerates all call sites that utilize this trampoline to reach the called function

(container).

The <trampoline_call_site> provides the details of a trampoline call site (container) and consists of

these items:

— The <caller_address> specifies the call site address (constant).

— The <caller_object_component_ref> is the object component where the call site resides

(reference).

<far_call _tranmpoline_list>

<far_cal |l _tranpoline>
<cal | ee_nane>_f oo</ cal | ee_name>
<cal | ee_addr ess>0x08000030</ cal | ee_addr ess>

<tranpol i ne_obj ect _conponent _ref idref="oc-123"/>
<t ranpol i ne_addr ess>0x2020</ t r anpol i ne_addr ess>

<cal ler_list>

<call _site>

<cal | er _addr ess>0x1800</ cal | er _addr ess>

<cal | er _obj ect _conponent _ref idref="0c-23"/>
</call _site>

<cal | _site>

<cal | er _address>0x1810</cal | er _addr ess>

<cal | er _obj ect _conponent _ref idref="0c-23"/>
</call_site>

</caller_list>

</far_call _tranpoline>

</far_call _tranpoline_list>

292

XML Link Information File Description

u

SPRU186P—October 2006
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Document Elements

C.2.7 Symbol Table

The <symbol_table> contains a list of all of the global symbols that are included in the link. The list
provides information about a symbol's name and value. In the future, the symbol_table list may provide
type information, the object component in which the symbol is defined, storage class, etc.

The <symbol> is a container element that specifies the name and value of a symbol with these elements:
* The <name> element specifies the symbol name (string).
* The <value> element specifies the symbol value (constant).

Example C-7. Symbol Table for the fl-4 Input File

<synbol _t abl e>
<synbol >
<nanme>_c_i nt 00</ nane>
<val ue>0xaf 80</ val ue>
</ synbol >

<synbol >
<nane>_mai n</ nane>
<val ue>0xble0</ val ue>
</ synbol >

<synbol >
<nane>_pri nt f </ nane>
<val ue>0xac00</ val ue>
</ synmbol >

</ synbol _t abl e>

SPRU186P—-October 2006 XML Link Information File Description 293
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas

INSTRUMENTS
www.ti.com
Document Elements
294 XML Link Information File Description SPRU186P-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

J@ TEXAS Appendix D
INSTRUMENTS SPRU186P—October 2006
Glossary

absolute address —An address that is permanently assigned to a TMS320C6000 memory location.

alignment — A process in which the linker places an output section at an address that falls on an n-byte
boundary, where n is a power of 2. You can specify alignment with the SECTIONS linker directive.

allocation — A process in which the linker calculates the final memory addresses of output sections.

American Standard Code for Information Interchange (ASCIl) —A standard computer code for
representing and exchanging alphanumeric information.

archive library — A collection of individual files that have been grouped into a single file.

archiver — A software program that allows you to collect several individual files into a single file called
an archive library. The archiver also allows you to delete, extract, or replace members of the
archive library, as well as to add new members.

assembler — A software program that creates a machine-language program from a source file that
contains assembly language instructions, directives, and macro directives. The assembler
substitutes absolute operation codes for symbolic operation codes, and absolute or relocatable
addresses for symbolic addresses.

assembly-time constant — A symbol that is assigned a constant value with the .set directive.
assignment statement —A statement that assigns a value to a variable.

autoinitialization — The process of initializing global C variables (contained in the .cinit section) before
beginning program execution.

auxiliary entry — The extra entry that a symbol may have in the symbol table and that contains
additional information about the symbol (whether it is a filename, a section name, a function name,
etc.).

binding — A process in which you specify a distinct address for an output section or a symbol.

big endian — An addressing protocol in which bytes are numbered from left to right within a word. More
significant bytes in a word have lower numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also little endian

block — A set of declarations and statements that are grouped together with braces.

.bss — One of the default COFF sections. You can use the .bss directive to reserve a specified amount
of space in the memory map that can later be used for storing data. The .bss section is
uninitialized.

byte — A sequence of eight adjacent bits operated upon as a unit.

C/C++ compiler — A program that translates C/C++ source statements into assembly language source
statements.

command file — A file that contains options, filenames, directives, or commands for the linker or hex
conversion utility.

SPRU186P—-October 2006 Glossary 295
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Appendix D

comment — A source statement (or portion of a source statement) that is used to document or improve
readability of a source file. Comments are not compiled, assembled, or linked; they have no effect
on the object file.

common object file format (COFF) — A binary object file format configured by a standard developed by
AT&T. All COFF sections are independently relocatable in memory space; you can place any
section into any allocated block of target memory.

conditional processing — A method of processing one block of source code or an alternate block of
source code, according to the evaluation of a specified expression.

configured memory — Memory that the linker has specified for allocation.
constant — A numeric value that does not change and that can be used as an operand.

cross-reference listing — An output file created by the assembler and appended to the end of the listing
file. The cross reference information lists the symbols that were defined, what line they were
defined on, which lines referenced them, and the values as determined by the input assembly
source file.

.data — One of the default COFF sections. The .data section is an initialized section that contains
initialized data. You can use the .data directive to assemble code into the .data section.

directives — Special-purpose commands that control the actions and functions of a software tool (as
opposed to assembly language instructions, which control the actions of a device).

emulator — A hardware development system that emulates TMS320C6200 operation.
entry point — The starting execution point in target memory.

executable module — An object file that has been linked and can be executed in a TMS320C6000
system.

expression — A constant, a symbol, or a series of constants and symbols separated by arithmetic
operators.

external symbol — A symbol that is used in the current program module but is defined in a different
program module.

field — For the TMS320C6000, a software-configurable data type whose length can be programmed to
be any value in the range of 1-32 bits.

file header — A portion of a COFF object file that contains general information about the object file, such
as the number of section headers, the type of system the object file can be downloaded to, the
number of symbols in the symbol table, and the symbol table's starting address.

global symbol — A kind of symbol that is either 1) defined in the current module and accessed in
another, or 2) accessed in the current module but defined in another.

GROUP — An option of the SECTIONS directive that forces specified output sections to be allocated
contiguously (as a group).

hex conversion utility — A program that accepts COFF files and converts them into one of several
standard ASCII hexadecimal formats suitable for loading into an EPROM programmer.

high-level language debugging —The ability of a compiler to retain symbolic and high-level language
information (such as type and function definitions) so that a debugging tool can use this
information.

hole — An area containing no actual code or data. This area is between the input sections that compose
an output section.

incremental linking — Linking files in several passes. Incremental linking is useful for large applications,
because you can partition the application, link the parts separately, and then link all of the parts
together.

296

Glossary SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

/. Preliminary
b TEXAS
INSTRUMENTS

www.ti.com

Appendix D

initialized section — A COFF section that contains executable code or initialized data. An initialized
section can be built up with the .data, .text, or .sect directive.

input section — A section from an object file that will be linked into an executable module.

label — A symbol that begins in column 1 of a source statement and corresponds to the address of that
statement.

line-number entry — An entry in a COFF output module that maps lines of assembly code back to the
original C source file that created them.

linker — A software tool that combines object files to form an object module that can be allocated into
TMS320C6000 system memory and executed by the device.

listing file — An output file, created by the assembler, that lists source statements, their line numbers,
and their effects on the SPC.

little endian — An addressing protocol in which bytes are numbered from right to left within a word. More
significant bytes in a word have higher numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also big endian

loader — A device that loads an executable module into TMS320C6000 system memory.
macro — A user-defined routine that can be used as an instruction.
macro call — The process of invoking a macro.

macro definition —A block of source statements that define the name and the code that make up a
macro.

macro library — An archive library composed of macros. Each file in the library must contain one macro;
its name must be the same as the macro name it defines, and it must have an extension of .asm.

macro expansion —The source statements that are substituted for the macro call and are subsequently
assembled.

magic number — A COFF file header entry that identifies an object file as a module that can be executed
by the TMS320C6000.

map file — An output file, created by the linker, that shows the memory configuration, section
composition, and section allocation, as well as symbols and the addresses at which they were
defined.

member — The elements or variables of a structure, union, archive, or enumeration.
memory map — A map of target system memory space that is partitioned into functional blocks.
mnemonic — An instruction name that the assembler translates into machine code.

model statement — Instructions or assembler directives in a macro definition that are assembled each
time a macro is invoked.

named section — An initialized section that is defined with a .sect directive.
object file — A file that has been assembled or linked and contains machine-language object code.
object library — An archive library made up of individual object files.

operands — The arguments, or parameters, of an assembly language instruction, assembler directive, or
macro directive.

optional header — A portion of a COFF object file that the linker uses to perform relocation at download
time.

options — Command parameters that allow you to request additional or specific functions when you
invoke a software tool.

SPRU186P—-October 2006 Glossary 297
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary ” Texas
INSTRUMENTS

www.ti.com

Appendix D

output module — A linked, executable object file that can be downloaded and executed on a target
system.

output section — A final, allocated section in a linked, executable module.

partial linking — Linking files in several passes. Incremental linking is useful for large applications
because you can patrtition the application, link the parts separately, and then link all of the parts
together.

guiet run — An option that suppresses the normal banner and the progress information.
raw data —Executable code or initialized data in an output section.

relocation — A process in which the linker adjusts all the references to a symbol when the symbol's
address changes.

run address —The address where a section runs.

section — A relocatable block of code or data that will ultimately occupy contiguous space in the
TMS320C6000 memory map.

section header — A portion of a COFF obiject file that contains information about a section in the file.
Each section has its own header; the header points to the section's starting address, contains the
section's size, etc.

section program counter (SPC) — An element that keeps track of the current location within a section;
each section has its own SPC.

sign extend — To fill the unused MSBs of a value with the value's sign bit.
simulator — A software development system that simulates TMS320C6000 operation.

source file — A file that contains C code or assembly language code that will be compiled or assembled
to form an object file.

static variable — An element whose scope is confined to a function or a program. The values of static
variables are not discarded when the function or program is exited; the previous value is resumed
when the function or program is reentered.

storage class — Any entry in the symbol table that indicates how a symbol is accessed.

string table — A table that stores symbol names that are longer than eight characters (symbol names of
eight characters or longer cannot be stored in the symbol table; instead, they are stored in the
string table). The name portion of the symbol's entry points to the location of the string in the string
table.

structure — A collection of one or more variables grouped together under a single name.

subsection — A relocatable block of code or data that will ultimately occupy continuous space in the
TMS320C6000 memory map. Subsections are smaller sections within larger sections. Subsections
give you tighter control of the memory map.

symbol — A string of alphanumeric characters that represents an address or a value.

symbol table — A portion of a COFF object file that contains information about the symbols that are
defined and used by the file.

symbolic debugging — The ability of a software tool to retain symbolic information so that it can be used
by a debugging tool, such as a simulator or an emulator.

tag — An optional type name that can be assigned to a structure, union, or enumeration.

target memory — Physical memory in a TMS320C6000 system into which executable object code is
loaded.

298

Glossary SPRU186P-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

Preliminary

{'f TEXAS
INSTRUMENTS

www.ti.com

Appendix

D

.text — One of the default COFF sections. The .text section is an initialized section that contains
executable code. You can use the .text directive to assemble code into the .text section.

unconfigured memory — Memory that is not defined as part of the memory map and cannot be loaded
with code or data.

uninitialized section — A COFF section that reserves space in the memory map but that has no actual
contents. These sections are built up with the .bss and .usect directives.

UNION — An option of the SECTIONS directive that causes the linker to allocate the same address to
multiple sections.

union — A variable that can hold objects of different types and sizes.
unsigned value —An element that is treated as a positive number, regardless of its actual sign.

well-defined expression — A term or group of terms that contains only symbols or assembly-time
constants that have been defined before they appear in the expression.

word — A 16-bit addressable location in target memory.

SPRU186P—-October 2006 Glossary
Eubmit Documentafion FeedbacH

299

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186P

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

	Table of Contents
	Preface
	1 Introduction to the Software Development Tools
	1.1 Software Development Tools Overview
	1.2 Tools Descriptions

	2 Introduction to Common Object File Format
	2.1 Sections
	2.2 How the Assembler Handles Sections
	2.2.1 Uninitialized Sections
	2.2.2 Initialized Sections
	2.2.3 Named Sections
	2.2.4 Subsections
	2.2.5 Section Program Counters
	2.2.6 Using Sections Directives
	2-2 Using Sections Directives Example

	2.3 How the Linker Handles Sections
	2.3.1 Default Memory Allocation
	2.3.2 Placing Sections in the Memory Map

	2.4 Relocation
	2.5 Run-Time Relocation
	2.6 Loading a Program
	2.7 Symbols in a COFF File
	2.7.1 External Symbols
	2.7.2 The Symbol Table

	3 Assembler Description
	3.1 Assembler Overview
	3.2 The Assembler's Role in the Software Development Flow
	3.3 Invoking the Assembler
	3.4 Naming Alternate Directories for Assembler Input
	3.4.1 Using the -I Assembler Option
	3.4.2 Using the C6X_A_DIR or A_DIR Environment Variable

	3.5 Source Statement Format
	3.5.1 Label Field
	3.5.2 Mnemonic Field
	3.5.3 Unit Specifier Field
	3.5.4 Operand Field
	3.5.5 Comment Field

	3.6 Constants
	3.6.1 Binary Integers
	3.6.2 Octal Integers
	3.6.3 Decimal Integers
	3.6.4 Hexadecimal Integers
	3.6.5 Character Constants
	3.6.6 Assembly-Time Constants

	3.7 Character Strings
	3.8 Symbols
	3.8.1 Labels
	3.8.2 Local Labels
	3.8.3 Symbolic Constants
	3.8.4 Defining Symbolic Constants (-ad Option)
	3.8.5 Predefined Symbolic Constants
	3.8.6 Substitution Symbols

	3.9 Expressions
	3.9.1 Operators
	3.9.2 Expression Overflow and Underflow
	3.9.3 Well-Defined Expressions
	3.9.4 Conditional Expressions
	3.9.5 Legal Expressions
	3.9.6 Expression Examples

	3.10 Source Listings
	3.11 Debugging Assembly Source
	3.12 Cross-Reference Listings

	4 Assembler Directives
	4.1 Directives Summary
	4.2 Directives That Define Sections
	4.3 Directives That Initialize Constants
	4.4 Directives That Perform Alignment and Reserve Space
	4.5 Directives That Format the Output Listings
	4.6 Directives That Reference Other Files
	4.7 Directives That Enable Conditional Assembly
	4.8 Directives That Define Unions or Structures
	4.9 Directives That Define Symbols at Assembly Time
	4.10 Miscellaneous Directives
	4.11 Directives Reference

	5 Macro Language
	5.1 Using Macros
	5.2 Defining Macros
	5.3 Macro Parameters/Substitution Symbols
	5.3.1 Directives That Define Substitution Symbols
	5.3.2 Built-In Substitution Symbol Functions
	5.3.3 Recursive Substitution Symbols
	5.3.4 Forced Substitution
	5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols
	5.3.6 Substitution Symbols as Local Variables in Macros

	5.4 Macro Libraries
	5.5 Using Conditional Assembly in Macros
	5.6 Using Labels in Macros
	5.7 Producing Messages in Macros
	5.8 Using Directives to Format the Output Listing
	5.9 Using Recursive and Nested Macros
	5.10 Macro Directives Summary

	6 Archiver Description
	6.1 Archiver Overview
	6.2 The Archiver's Role in the Software Development Flow
	6.3 Invoking the Archiver
	6.4 Archiver Examples

	7 Linker Description
	7.1 Linker Overview
	7.2 The Linker's Role in the Software Development Flow
	7.3 Invoking the Linker
	7.4 Linker Options
	7.4.1 Relocation Capabilities (-a and -r Options)
	7.4.1.1 Producing an absolute output module (-a option)
	7.4.1.2 Producing a relocatable output module (-r option)
	7.4.1.3 Producing an executable relocatable output module (-ar option combination)

	7.4.2 Create an Absolute Listing File (-abs Option)
	7.4.3 Allocate Memory for Use by the Loader to Pass Arguments (--args Option)
	7.4.4 Disable Merge of Symbolic Debugging Information (-b Option)
	7.4.5 C Language Options (-c and -cr Options)
	7.4.6 Define an Entry Point (-e global_symbol Option)
	7.4.7 Set Default Fill Value (-f fill_value Option)
	7.4.8 Make a Symbol Global (-g symbol Option)
	7.4.9 Make All Global Symbols Static (-h Option)
	7.4.10 Define Heap Size (-heap size Option)
	7.4.11 Alter the Library Search Algorithm (-l Option, -I Option, and C_DIR/C6X_C_DIR Environment Variables)
	7.4.11.1 Name an Alternate Library Directory (-I pathname Option)
	7.4.11.2 Name an Alternate Library Directory (C_DIR and C6X_C_DIR Environment Variables)

	7.4.12 Disable Conditional Linking (-j Option)
	7.4.13 Create a Map File (-m filename Option)
	7.4.14 Name an Output Module (-o Option)
	7.4.15 Strip Symbolic Information (-s Option)
	7.4.16 Define Stack Size (-stack size Option)
	7.4.17 Generate Far Call Trampolines (--trampolines Option)
	7.4.17.1 Carrying Trampolines From Load Space to Run Space
	7.4.17.2 Disadvantages of Using Trampolines

	7.4.18 Introduce an Unresolved Symbol (-u symbol Option)
	7.4.19 Display a Message When an Undefined Output Section Is Created (-w Option)
	7.4.20 Exhaustively Read and Search Libraries (-x and -priority Options)
	7.4.21 Generate XML Link Information File (--xml_link_info Option)

	7.5 Linker Command Files
	7.5.1 Reserved Names in Linker Command Files
	7.5.2 Constants in Linker Command Files

	7.6 Object Libraries
	7.7 The MEMORY Directive
	7.7.1 Default Memory Model
	7.7.2 MEMORY Directive Syntax

	7.8 The SECTIONS Directive
	7.8.1 SECTIONS Directive Syntax
	7.8.2 Allocation
	7.8.2.1 Binding
	7.8.2.2 Named Memory
	7.8.2.3 Controlling Allocation Using The HIGH Location Specifier
	7.8.2.4 Alignment and Blocking

	7.8.3 Specifying Input Sections
	7.8.4 Using Multi-Level Subsections
	7.8.5 Allocation Using Multiple Memory Ranges
	7.8.6 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges
	7.8.7 Allocating an Archive Member to an Output Section

	7.9 Specifying a Section's Run-Time Address
	7.9.1 Specifying Load and Run Addresses
	7.9.2 Uninitialized Sections
	7.9.3 Referring to the Load Address by Using the .label Directive

	7.10 Using UNION and GROUP Statements
	7.10.1 Overlaying Sections With the UNION Statement
	7.10.2 Grouping Output Sections Together
	7.10.3 Nesting UNIONs and GROUPs
	7.10.4 Checking the Consistency of Allocators

	7.11 Special Section Types (DSECT, COPY, and NOLOAD)
	7.12 Default Allocation Algorithm
	7.12.1 How the Allocation Algorithm Creates Output Sections
	7.12.2 Reducing Memory Fragmentation

	7.13 Assigning Symbols at Link Time
	7.13.1 Syntax of Assignment Statements
	7.13.2 Assigning the SPC to a Symbol
	7.13.3 Assignment Expressions
	7.13.4 Symbols Defined by the Linker
	7.13.5 Assigning Exact Start, End, and Size Values of a Section to a Symbol
	7.13.6 Why the Dot Operator Does Not Always Work
	7.13.7 Address and Dimension Operators
	7.13.7.1 Input Items
	7.13.7.2 Output Section
	7.13.7.3 GROUPs
	7.13.7.4 UNIONs

	7.14 Creating and Filling Holes
	7.14.1 Initialized and Uninitialized Sections
	7.14.2 Creating Holes
	7.14.3 Filling Holes
	7.14.4 Explicit Initialization of Uninitialized Sections

	7.15 Linker-Generated Copy Tables
	7.15.1 A Current Boot-Loaded Application Development Process
	7.15.2 An Alternative Approach
	7.15.3 Overlay Management Example
	7.15.4 Generating Copy Tables Automatically With the Linker
	7.15.5 The table() Operator
	7.15.6 Boot-Time Copy Tables
	7.15.7 Using the table() Operator to Manage Object Components
	7.15.8 Copy Table Contents
	7.15.9 General Purpose Copy Routine
	7.15.10 Linker Generated Copy Table Sections and Symbols
	7.15.11 Splitting Object Components and Overlay Management

	7.16 Partial (Incremental) Linking
	7.17 Linking C/C++ Code
	7.17.1 Run-Time Initialization
	7.17.2 Object Libraries and Run-Time Support
	7.17.3 Setting the Size of the Stack and Heap Sections
	7.17.4 Autoinitialization of Variables at Run Time
	7.17.5 Initialization of Variables at Load Time
	7.17.6 The -c and -cr Linker Options

	7.18 Linker Example

	8 Absolute Lister Description
	8.1 Producing an Absolute Listing
	8.2 Invoking the Absolute Lister
	8.3 Absolute Lister Example

	9 Cross-Reference Lister Description
	9.1 Producing a Cross-Reference Listing
	9.2 Invoking the Cross-Reference Lister
	9.3 Cross-Reference Listing Example

	10 Object File Utilities Descriptions
	10.1 Invoking the Object File Display Utility
	10.2 XML Tag Index
	10.3 Example XML Consumer
	10.3.1 The Main Application
	10.3.2 xml.h Declaration of the XMLEntity Object
	10.3.3 xml.cpp Definition of the XMLEntity Object

	10.4 Invoking the Disassembler
	10.5 Invoking the Name Utility
	10.6 Invoking the Strip Utility

	11 Hex Conversion Utility Description
	11.1 The Hex Conversion Utility's Role in the Software Development Flow
	11.2 Invoking the Hex Conversion Utility
	11.2.1 Invoking the Hex Conversion Utility From the Command Line
	11.2.2 Invoking the Hex Conversion Utility With a Command File

	11.3 Understanding Memory Widths
	11.3.1 Target Width
	11.3.2 Specifying the Memory Width
	11.3.3 Partitioning Data Into Output Files
	11.3.4 Specifying Word Order for Output Words

	11.4 The ROMS Directive
	11.4.1 When to Use the ROMS Directive
	11.4.2 An Example of the ROMS Directive

	11.5 The SECTIONS Directive
	11.6 Excluding a Specified Section
	11.7 Assigning Output Filenames
	11.8 Image Mode and the -fill Option
	11.8.1 Generating a Memory Image
	11.8.2 Specifying a Fill Value
	11.8.3 Steps to Follow in Using Image Mode

	11.9 Building a Table for an On-Chip Boot Loader
	11.9.1 Description of the Boot Table
	11.9.2 The Boot Table Format
	11.9.3 How to Build the Boot Table
	11.9.3.1  Building the Boot Table
	11.9.3.2  Leaving Room for the Boot Table
	11.9.3.3  Setting the Entry Point for the Boot Table

	11.9.4 Using the C6x Boot Loader

	11.10 Controlling the ROM Device Address
	11.11 Description of the Object Formats
	11.11.1 ASCII-Hex Object Format (-a Option)
	11.11.2 Intel MCS-86 Object Format (-i Option)
	11.11.3 Motorola Exorciser Object Format (-m Option)
	11.11.4 Texas Instruments SDSMAC Object Format (-t Option)
	11.11.5 Extended Tektronix Object Format (-x Option)

	11.12 Hex Conversion Utility Error Messages

	12 Sharing C/C++ Header Files With Assembly Source
	12.1 Overview of the .cdecls Directive
	12.2 Notes on C/C++ Conversions
	12.2.1 Comments
	12.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)
	12.2.3 Pragmas
	12.2.4 The #error and #warning Directives
	12.2.5 Predefined symbol _ _ASM_HEADER_ _
	12.2.6 Usage Within C/C++ asm() Statements
	12.2.7 The #include Directive
	12.2.8 Conversion of #define Macros
	12.2.9 The #undef Directive
	12.2.10 Enumerations
	12.2.11 C Strings
	12.2.12 C/C++ Built-In Functions
	12.2.13 Structures and Unions
	12.2.14 Function/Variable Prototypes
	12.2.15 C Constant Suffixes
	12.2.16 Basic C/C++ Types

	12.3 Notes on C++ Specific Conversions
	12.3.1 Name Mangling
	12.3.2 Derived Classes
	12.3.3 Templates
	12.3.4 Virtual Functions

	12.4 New Assembler Support
	12.4.1 Enumerations (.enum/.emember/.endenum)
	12.4.2 The .define Directive
	12.4.3 The .undefine/.unasg Directives
	12.4.4 The $defined() Directive
	12.4.5 The $sizeof Built-In Function
	12.4.6 Structure/Union Alignment & $alignof()
	12.4.7 The .cstring Directive

	A Common Object File Format
	A.1 COFF File Structure
	A.2 File Header Structure
	A.3 Optional File Header Format optional file headerCOFFoptional file header
	A.4 COFFsection headerssectionheader Section Header Structure
	A.5 Structuring Relocation Information COFFrelocationrelocationinformation
	A.6 Symbol Table Structure and Content COFFsymbol tablesymboltablestructure and content
	A.6.1 Special Symbols
	A.6.2 Symbol Name Format
	A.6.3 String Table Structure
	A.6.4 Storage Classes
	A.6.5 Symbol Values
	A.6.6 Section Number
	A.6.7 Auxiliary Entries

	B Symbolic Debugging Directives
	B.1 DWARF Debugging Format
	B.2 COFF Debugging Format
	B.3 Debug Directive Syntax

	C XML Link Information File Description
	C.1 XML Information File Element Types
	C.2 Document Elements XML link information filedocument elements detaileddocument element in XMLXML elementlink_info
	C.2.1 Header Elements
	C.2.2 Input File List
	C.2.3 Object Component List
	C.2.4 Logical Group List
	C.2.5 Placement Map
	C.2.6 Far Call Trampoline List
	C.2.7 Symbol Table

	D Glossary

