
11TH INTERNATIONAL SYMPOSIUM ON PARTICLE IMAGE VELOCIMETRY – 
PIV15 Santa Barbara, California, September 14-16, 2015 

1 
 

 
3D Turbulent Flow Measurements Combining V3V and Digital Inline 

Holographic PIV 
 

Mostafa Toloui1，2, Wing Lai3, Dan Troolin3 and Jiarong Hong1，2 
 

1 Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA 
 
2 Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA 
                                                        

                                                 3 Fluid Mechanics Division, TSI Incorporated, Shoreview, MN, USA  
jhong@umn.edu 

 
ABSTRACT 
 
Wall-bounded turbulent flows generally cover a wide range of scales, which cannot be fully-resolved by any of the existing 
3D PIV measurement techniques alone. In this study, two different 3D PIV measurement techniques, i.e. V3V and DIH-
PIV, are combined to measure the 3D velocity fields above the rough surface composed of deformable cylinders. V3V 
measurement is implemented to capture significant flow structures up to integral scales of turbulence and the high 
resolution DIH-PIV is employed to capture fine near-wall flow structures down to the scale of few wall-unit. Specifically, 
the experiment is conducted in 1.2 m long test section of 50 mm square cross section, where the V3V system provides 1 
mm vector spacing within a sampling volume of 60×15×40 mm3 (in the streamwise, wall-normal and spanwise directions). 
The DIH-PIV measurement volume (e.g. 0.5×4×0.5 mm3) is located right above a single cylindrical element within V3V 
sampling volume. The refractive index matching using NaI solution as working fluid is employed to minimize optical 
aberrations near the fluid-roughness interface. The resulted instantaneous flow fields display flow structures of a wide range 
of scales, from ~100 μm to ~ 1 cm. The averaged 3D velocity fields show a consistent trend of velocity distributions from 
both measurement techniques. Overall, the results show a great promise of combining DIH-PIV and V3V for a full-range 
scale quantification of wall-bounded turbulent flows.  
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1. INTRODUCTION 
 
Wall-bounded turbulent flows are inherently three dimensional (3D), and cover a broad spectrum of flow structures, and the 
range of turbulent scales varying at different distances away from the wall. These features impose a significant challenge 
for implementing particle image velocimetry (PIV) to capture flow structures generated from the wall and their interaction 
with outer-layer flows. Although several 3D PIV techniques, including, e.g., tomographic PIV [1], volumetric three-
component velocimetry (V3V) [2], and digital in-line holographic PIV (DIH-PIV) [3], etc., have been developed and 
employed for flow measurements, none of these technique alone is able to capture the full range of flow structures in wall-
bounded turbulence. Specifically, tomographic PIV has been widely used for wall–bounded flow measurements. For 
example, Schröder et al. [4] employed tomographic PIV to study the evolution of coherent turbulent structures within the 
logarithmic region of turbulent boundary layer (TBL) in a sampling volume of 63×15×68 mm3 with the velocity spatial 
resolution of 2.5 mm × 2.5 mm × 2.5 mm in thestreamwise, wall-normal and spanwise directions, respectively, 
corresponding to 55×55×55 wall units (WU). Ghaemi and Scarano [5] used tomographic PIV with improved velocity 
resolution of 1.7 mm× 0.9 mm× 1.7 mm (43×22×43 WU3) to investigate the turbulent structure of high-amplitude 
pressure peaks within the TBL over a sampling volume of 16 × 6 × 24 mm3. Using V3V, Ortiz-Dueñas et al. [6] 
investigated the effects of upstream cylindrical obstacles on TBL within 120 × 120 × 50 mm3 volume of interest spanning 
2.1 mm to 39.5 mm (52 WU to 1000 WU) in wall-normal direction. However, both of these techniques have been only 
restricted to quantifying larger scales flow motions (due to their limited spatial resolution) and the flows in the region above 
the inner layer of TBL. On the other hand, DIH-PIV have been successfully implemented for flow measurements the near 
wall region with significantly higher spatial resolution [7, 8]. For example, Sheng et al. [7] used DIH-PIV to study near 
wall coherent structures in a smooth wall channel flow within a volume of interest of 1.5 × 2.5 × 1.5 mm3 starting at ~ 3.5 
μm (0.2 WU) from the wall and with 51 μm × 136 μm × 17 μm (3×8×1 WU) resolution. Although, DIH-PIV provides 
significant increase in velocity spatial resolution and wall proximity measurement, it is currently restricted to much smaller 
measurement volume compared with those of tomographic PIV and V3V.   
Recently, based on refractive-index-matching (RIM) technique, Hong et al. [9,10] and Talapatra et al. [8] have examined 
the turbulent flow structures within and above the roughness sublayer over a rough wall composed of pyramidal roughness 
elements using 2D PIV and DIH-PIV, respectively. Their results indicate the roughness elements generate unique coherent 
structures which can significantly alter the turbulent energy transport across a wide range of scales within and above the 
inner layer. These prior studies highlights the significance to obtain 3D characterization of the turbulent structures over a 
full range of scales that covers both near wall region and out-layer of the wall-bounded turbulent flows. Therefore, in the 
current study, we combine V3V and DIH-PIV to quantify the full range of flow structures in a rough-wall channel flow. 
Specifically, V3V is implemented to capture significant flow structures up to integral scales of turbulence, and the high 
resolution DIH-PIV is employed to capture fine near-wall flow structures down to micrometer scales. The detailed 
experimental methods and results are presented in the sections below.  
 
 
2. EXPERIMENTAL SET-UP AND MEASURMENT TECHNIQUES: 
 
2.1 REFRACTIVE INDEXMATCHING FLOW FACILITY  

The experiments are conducted at separate times using both V3V and DIH-PIV over a rough wall in a refractive-index-
matched (RIM) flow facility (Fig. 1). The facility is operated using sodium iodide solution with Reynolds number (based 
on the channel width), i.e. Reh = 20000-60000. The test section is a 1.2 m long acrylic channel of 50 mm × 50 mm square 
cross section. It is designed with three windows located at upstream, middle section and downstream of the channel in order 
to facilitate the change of the upstream flow condition and rough surface conditions. In this experiment, the roughness is 
generated using a 200 mm (length) × 50 mm (width) stretch of tapered cylindrical elements, which is placed downstream of 
the channel (Fig. 2). Each roughness element is a cylinder of 1 mm in diameter and 3 mm in height made out of 
Polydimethylsiloxane (PDMS) polymer and spaced every 4 mm (center-to-center distance) in an aligned layout. The 
deformability of roughness is adjusted by controlling the mixing ratio of its two liquid components (cross-linking agent and 
SYLGARD 184 silicon elastomer), i.e. Young’s modulus of PDMS solid samples range from 2.1 MPa to 0.15 MPa for 
weight mixing ratio of 2 to 20 [11]. Notably, under this range of deformability, the refractive index of the PDMS samples 
stays almost constant around 1.41 (< 0.01 change; [12]). To match the refractive index of the rough surface, the sodium 
iodine solution of 40 % by weight is employed as the working fluid during the experiments. For the current study, the flow 
facility is operated at Reh = 26000, corresponding to a centerline velocity of Uc = 0.5 m s−1, the channel width of 50 mm and 
the liquid viscosity equal to ν = μ/ρ = 1.1 × 10−6 m2 s−1.  
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As a future step in this study, in order to characterize the turbulent flow structures and turbulent statistics within and above 
the roughness sublayer, the experiments will be repeated within an overlapping measurement volume for both high 
resolution (using DIH-PIV) and large field of view (V3V). Specifically, the sampling volume of 1 mm × 4 mm × 1 mm for 
DIH-PIV will be set in the middle of V3V measurement that covers 50 mm × 20 mm × 50 mm volume, and both volumes 
will start from the bottom wall of the channel. The measurements will be conducted over rough walls with similar 
geometrical features but various deformability levels (Young’s modulus ranging from 0.15 MPa to 2.1 MPa). These 
experiments will provide insights into the effect of roughness deformability on near-wall coherent structures and turbulent 
energy transport within and above the roughness sublayer. 
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