(19)

(12)

(11) **EP 2 927 323 A2**

C12N 15/29 (2006.01)

A01H 1/04 (2006.01)

EUROPEAN PATENT APPLICATION

(51) Int Cl.:

- (43) Date of publication: 07.10.2015 Bulletin 2015/41
- (21) Application number: 15161572.1
- (22) Date of filing: 11.04.2012
- (84) Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
- (30) Priority: 11.04.2011 US 201161474201 P
- (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
 12771677.7 / 2 697 378
- (71) Applicant: Targeted Growth, Inc. Seattle, WA 98102 (US)
- (72) Inventors:
 Olivier, Jean Paul Seattle, WA 98115 (US)

 Loeffler, Dayna L. Seattle, WA 98117 (US)

C12N 15/82^(2006.01)

A01H 5/10^(2006.01)

(74) Representative: Hesford, Sarah Elizabeth
 Gill Jennings & Every LLP
 The Broadgate Tower
 20 Primrose Street
 London EC2A 2ES (GB)

Remarks:

This application was filed on 30-03-2015 as a divisional application to the application mentioned under INID code 62.

(54) **IDENTIFICATION AND THE USE OF KRP MUTANTS IN PLANTS**

(57) The invention provides a plant cell, part, tissue culture or whole plant comprising at least one disrupted *KRP* gene of the present invention. The present invention also provides methods of increasing weight, size, and/or number of one or more organs, and/or yield of a plant by utilizing the disrupted *KRP* genes of the present invention. Furthermore, methods of breeding plants to produce

new plants having increased weight, size, and/or number of one or more organs, and/or yield are provided. The present invention provides isolated *Kinase Inhibitor Protein (KIP) Related Protein (KRP)* polynucleotide sequences and isolated KRP polypeptide sequences and methods of their use. Exemplary plants include wheat, rice and soybean.

EP 2 927 323 A2

Printed by Jouve, 75001 PARIS (FR)

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

⁵ **[0001]** This application claims the benefit of U.S. Provisional Application Serial No. 61/474,201, filed April 11, 2011, which is hereby incorporated by reference in its entirety for all purposes.

TECHNICAL FIELD

¹⁰ **[0002]** The invention generally relates to compositions and methods for improving traits of agronomic and horticultural crops, including by increasing crop yield. More specifically, the present invention relates to compositions and methods for improving one or more agronomic or horticultural traits by disturbing one or more Kinase Inhibitor Protein (KIP) Related Proteins (KRP) in monocotyledonous and dicotyledonous plants.

15 BACKGROUND

[0003] The most important trait as a target for crop improvement is yield. Efforts to improve crop yields by developing new plant varieties can be divided into two approaches. One is to reduce crop yield losses by breeding or engineering crop varieties with increased resistance to abiotic stress conditions such as drought, cold, or salt or to biotic stress

- 20 conditions resulting from pests or disease-causing pathogens. While this approach has value, it does not provide fundamentally improved crop yield in the absence of stress conditions and in fact, such resistance may direct plant resources that otherwise would be available for increased yield in the plant. The second approach is to breed or engineer new crop varieties in which the basic yield capacity is increased.
- [0004] Classical breeding programs have initially produced substantial gains in improved yield in a variety of crops. A commonly experienced pattern though has been substantial gains in yield initially followed by incremental further improvements that become smaller and more difficult to obtain. More recently developed approaches based on molecular biology technologies have in principle offered the potential to achieve substantial improvement in crop yield by altering the timing, location, or level of expression of plant genes or heterologous genes that play a role in plant growth and/or development. Substantial progress has been made over the past twenty years in identifying plant genes and or heter-
- 30 ologous genes that have a role in plant growth and/or development. Despite these gains in using molecular approaches, there continues to be a large unmet need for improved agronomic and horticultural plants produced through more conventional plant breeding. Because of the complexity of plant growth regulation and how it relates in the end to yield traits, it is still not obvious which, if any, of particular genes would be clear candidates to improve crop yield through either plant breeding and/or molecular techniques.
- ³⁵ [0005] KRP proteins belong to a class of cell cycle inhibitors that bind to and inhibit cyclin/CDK kinase complexes. Mutation of conserved residues within KRP family members are expected to modify KRP's ability to function as an inhibitor of cyclin-CDK kinase complexes. Specifically, some mutations in KRP genes would lead to expression of a nonfunctional KRP cell cycle inhibitor or a cell cycle inhibitor with reduced activity. This loss of or reduced cyclin/CDK kinase inhibitory activity would lead to increased cyclin-CDK kinase activity in cells when normally these cells would
- ⁴⁰ have reduced cyclin-CDK activity. This loss of or reduced cyclin/CDK kinase inhibitory activity would lead to increased cell divisions in tissue where the normal wild-type KRP version is expressed. This increased cell division would result in positive agronomic traits such as increased yield, increased weight, size, and/or number of one or more organs, for example, increased seed size, larger plants, larger leaves, larger roots etc. For background on KRP-related technologies, see, for example, WO/2007/016319 and US20070056058, each of which is incorporated by reference in its entirety for
- ⁴⁵ all purposes. The present invention identifies new KRP genes and proteins and provides methods for their use in producing improved agronomic and horticultural plants through conventional plant breeding and/or molecular methodologies.

SUMMARY OF THE INVENTION

50

55

[0006] The inventors of the present invention have used Targeting Induced Local Lesions in Genomes (TILLING®) methods in plants to identify KRP mutants, for example, in monocot plants, such as plants in the *Triticeae* tribe (e.g., plants in the *Triticum* genus), and plants in the tribe of *Oryzeae* (e.g., plants in *Oryza* genus), or in dicot plants, for example, in *Glycine spp*. The identified KRP mutants can be used for increasing weight, size, and/or number of one or more organs in a plant. The organ can be any part of a plant, for example, organs that contribute to yield in a plant. In some embodiments, the organ is seed, leaf, branch, root, shoot, stigma, ovule, pollen, seed pods, seed heads, or tiller. For example, in some embodiments, the present invention provides methods for increasing plant seed weight, seed size, seed number and/or yield.

[0007] This invention describes the search for mutations in plant KRPs that are expressed in cells within the developing seed. The strategy was to identify KRP family member(s) with seed expression and TILL® for mutants in these KRPs. Certain mutants that affect KRP function can then be characterized for positive agronomical and horticultural traits such as increased yields, early emergence, accelerated growth etc. In addition, this same methodology can be used for KRPs

- ⁵ expressed in other tissues such as leaves or stalks since increased cell divisions in these other tissues specific to the particular KRP expression pattern could also lead to positive agronomic traits.
 [0008] To date, KRP family members in agriculturally, horticulturally and/or industrially important plant species and their expression patterns in developing seed have yet to be studied. The inventors' strategy was to identify KRPs that are expressed in the developing seed. KRPs with expression pattern during development in a tissue specific manner
- are identified. For example, the rice *KRP4* gene (OsKRP4) showed almost exclusive expression in the developing seed. Equivalents to this sequence in rice and other plant species are also identified.
 [0009] The present invention provides mutated *KRP* genes compared to a wild type *KRP* having nucleic acid sequence comprising a sequence selected from the group consisting of SEQ ID NOs: 60-86, 100-107, 111-128, fragments and
- variations derived from thereof, which encode a KRP gene. In some embodiments, the KRP has an expression pattern
 in a tissue specific manner during development. In some embodiments, the expression is embryonic specific, pollen
 specific, or seed specific.

[0010] In some embodiments, the present invention provides mutated KRP genes compared to a wild type KRP comprising a sequence comprising a nucleic acid sequence that shares at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.1%, at least 91%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.1%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.1%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.1%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.1%, at least 95%, at least 96%, at least 96\%, at least 96\%

- 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, or at least 99.9% identity to SEQ ID NOs: 60-86, 100-107, 111-128, 138-139, 141-142, and 144-145.
 [0011] In some embodiments, the present invention provides mutated KRP genes compared to a wild type KRP encoding an amino acid sequence having at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.1%, at least 99.2%, at least 99.3%, at least 98%, at least 99%, at least 99.1%, at least 99.2%, at least 99.3%, at least 91%, at least 99.4%, at least 99.3%, at least 99.3
- ²⁵ 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, or at least 99.9% identity to SEQ ID NO: 87-99, 108-110, 129-137, 140, 143, and 146.
 [0012] For example, the present invention provides mutants in wheat (Ta) *KRP1A*, *KRP1B*, *KRP1D*, *KRP2A*, *KRP2B*, *KRP2D*, *KRP4B*, *KRP5A*, *KRP5D*, *KRP6A*, *KRP6B*, *KRP6D*. It appears that hexaploid wheat has been naturally
- selected to have what appear to be knock-out mutations in *KRP4A* and *KRP5B*. This was discovered during the course of TILLING®. For *KRP4A*, the gene appears to be completely missing from the hexaploid wheat genome, although it is still present in the tetraploid genome. For *KRP5B*, there appears to be one missing nucleotide in the gene, which would shift the translational frame and produce a predicted truncation a few amino acids further on.

[0013] The present invention in another aspect provides plant cells, plant parts, tissue culture, or whole plants comprising one or more disrupted *KRP* genes as described herein. In some embodiments, the present invention provides plant cells, plant parts, tissue culture or whole plants comprising at least one *KRP* gene, wherein the genome of the

- (10014) In some embodiments, the plant is a monocot. In some embodiments, the monocot is a species in the *Triticeae* tribe or the *Oryzeae* tribe. In some embodiments, the plant in the *Oryzeae* tribe is a plant in the *Oryzeae* tribe is a plant in the *Oryzeae* tribe.
- ⁴⁰ **[0015]** In some further embodiments, the plant in the *Triticum* genus is wheat, and wherein the plant in the Oryza genus is rice.

[0016] In some further embodiments, the wheat plant is tetraploid or hexaploid.

[0017] In some embodiments, the plant is a dicot. In some embodiments, the plant is a species in the *Fabaceae* family, for example, *Glycine spp.*, such as soybean.

- In some embodiments, the KRP in the wheat is TaKRP1, TaKRP2, TaKRP4, TaKRP5, TaKRP6, for example, SEQ ID NOs. 60-86, 138-139, 141-142, 144-145 or functional variants thereof, and the KRP in the rice is OsKRP1, OsKRP2, OsKRP4, or OsKRP5, for example, SEQ ID NOs. 100-107, or functional variants thereof; and the KRP in the Glycine spp. is Gm0003x00821, Gm0013x00399, Gm0043, Gm0053x00526, Gm0087x00306, Gm0102x00087, Gm0119x00131, Gm0151x00019, Gm0067x00001, for example, SEQ ID NOs. 111-128, or functional variants thereof.
- ⁵⁰ For example, in a tetraploid wheat plant, the KRP is TaKRP1A, TaKRP1B, TaKRP2A, TaKRP2B, TaKRP4A, TaKRP4B, TaKRP5A, TaKRP5B, TaKRP6A or TaKRP6B. In a hexaploid wheat, the KRP is TaKRP1A, TaKRP1B, TaKRP1D, TaKRP2A, TaKRP2B, TaKRP2D, TaKRP4A, TaKRP4B, TaKRP4D, TaKRP5A, TaKRP5B, TaKRP5D, TaKRP6A, TaKRP6B, or TaKRP6D.
- [0019] In some embodiments, the *KRP* genes function is disrupted by nucleotide substitution, deletion, insertion, homologous recombination, T-DNA, transposon, double strand oligonucleotide, antisense oligonucleotide, inverted repeat, or combination thereof.

[0020] In some embodiments, the disrupted KRP in the plant cell, plant part, tissue culture or whole plant comprises one or more mutations selected from any one of mutations listed in Tables 2 - 12, 25, 28, 29 - 37 for a particular *KRP* gene.

[0021] In another aspect, the present invention provides methods for increasing weight, size, and/or number of one or more organs, for example, for increasing seed weight, seed size, seed number and/or yield in a plant comprising disrupting one or more KRPs in the plant. In one embodiment, the plant is a dicotyledon plant or a monocotyledon plant. In some embodiments, the plant can be a plant selected from the *Triticeae* tribe, the *Oryzeae* tribe, or the *Fabaceae*

- family, for example, wheat, rice, and soybean. In some embodiments, methods of disrupting a gene function include but are not limited to mutagenesis (e.g., chemical mutagenesis, radiation mutagenesis, transposon mutagenesis, insertional mutagenesis, signature tagged mutagenesis, site-directed mutagenesis, and natural mutagenesis), antisense, knockouts, and/or RNA interference. In some embodiment, the plant with increased weight, size, and/or number of one or more organs, for example, a plant with increased seed weight, seed size, seed number and/or yield is not a genetically
- modified organism, or a transgenic plant. For example, the disruption of the KRP in the genome of the plant is simply due to natural mutation, or mutations induced by chemical mutagenesis or radiation mutagenesis.
 [0022] In some embodiments, mutations described in the Tables 2 12, 25, 28, 29 37 can be integrated into species closely related to the plants in the *Triticeae* tribe, the *Oryzeae* tribe, the *Fabaceae* family, or plants closely related to wheat, rice, or soybean. In some embodiments, amino acids in conserved domains or sites compared to KRP orthologs
- ¹⁵ in other species can be substituted or deleted to make mutants with reduced or abolished activity, and/or mutants that lead to loss-of-function (e.g., protein instability). In some embodiments, one or more KRPs in a plant are knocked down or knocked out by one or more methods available to one skilled in the art.

[0023] In some embodiments, one or more copies of one or more *KRP* genes are disrupted. For example, in a tetraploid wheat plant, one or two copies of a KRP gene are disrupted (e.g., *KRP1A, KRP1B; KRP2A, KRP2B; KRP4A, KRP4B;*

20 KRP5A, KRP5B; and KRP6A, KRP6B); in a hexaploid wheat plant, one or more copies of one, two, or three copies of a KRP gene are disrupted (e.g., KRP1A, KRP1B, KRP1D; KRP2A, KRP2B, KRP2D; KRP4A, KRP4B, KRP4D; KRP5A, KRP5B, KRP5D; and KRP6A, KRP6B, KRP6D)

[0024] The present invention also provides a plant having increased weight, size, and/or number of one or more organs, for example, a plant with increased seed size, seed number, and/or seed yield compared to a wild type reference

- ²⁵ plant, wherein the plant has one or more mutations in one or more KRP genes. In some embodiments, said plant is a monocot plant. In some embodiments, said monocot plant is a plant from the *Triticeae* tribe or the *Oryzeae* tribe. In some embodiments, said plant is a wheat or a rice plant. In some embodiments, said plant is a dicot plant. In some embodiments, said dicot plant is from the Fabaceae family, such as a soybean plant.
- [0025] The present invention further provides a seed, a fruit, a plant cell or a plant part of the transgenic plants as 30 described herein. For example, the present invention provides a pollen of the plant, an ovule of the plant, a genetically related plant population comprising the plant, a tissue culture of regenerable cells of the plant. In some embodiments, the regenerable cells are derived from embryos, protoplasts, meristematic cells, callus, pollen, leaves, anthers, stems, petioles, roots, root tips, fruits, seeds, flowers, cotyledons, and/or hypocotyls.

[0026] The present invention also provides methods of decreasing the activity of one or more KRP proteins in a plant cell, plant part, tissue culture or whole plant comprising contacting the plant cell, plant part, tissue culture or whole plant complementarity to a gene encoding said KRP protein. In some embodiments, the plant is a plant from the *Triticeae* tribe or the *Oryzeae* tribe. In some embodiments, said plant is a wheat or a rice plant. In some embodiments, said plant is a dicot plant. In some embodiments, said dicot plant is from the Fabaceae family, such as a soybean plant.

- 40 [0027] The present invention also provides methods of breeding a crop species having increased weight, size, and/or number of one or more organs, for example, a crop species with increased seed size, seed number, seed weight and/or seed yield compared to a wild type reference plant, comprising incorporating the genetic materials of a plant with disrupted KRP(s) into a recipient plant.
- [0028] In some embodiments, such methods comprise making a cross between a *Triticum sp.* mutant with one or more mutations listed in Tables 2 12 with a second *Triticum sp.* to produce an F1 plant, or with a species in the *Triticeae* tribe which can intercross with said first *Triticum sp.* The method may further comprise backcrossing the F1 plant to the second *Triticum sp.* or species in the *Triticeae* tribe; and repeating the backcrossing step to generate an near isogenic line, wherein the one or more mutations are integrated into the genome of said second *Triticum sp.* or the species in the *Triticeae* tribe; wherein the near isogenic line derived from the second *Triticum sp.* or the species in the *Triticeae* tribe
- ⁵⁰ with the integrated mutations has altered weight, size, and/or number of one or more organs, for example, altered seed weight, seed size, seed number, and/or seed yield. Optionally, such methods can be facilitated by molecular markers or TILLING®.

[0029] In some embodiments, such methods comprise making a cross between an *Oryza sp.* mutant with one or more mutations listed in Table 25 with a second *Oryza sp.* to produce an F1 plant, or with a species in the *Oryzeae* tribe which

⁵⁵ can intercross with said *Oryza sp.* The method may further comprise backcrossing the F1 plant to the second *Oryza sp.* or species in the *Oryzeae* tribe; and repeating the backcrossing step to generate an near isogenic line, wherein the one or more mutations are integrated into the genome of said second *Oryza sp.* or the species in the *Oryzeae* tribe; wherein the near isogenic line derived from the second *Oryza sp.* or the species in the *Oryzeae* tribe with the integrated mutations

has altered weight, size, and/or number of one or more organs, for example, altered seed weight, seed size, seed number, and/or seed yield. Optionally, such methods can be facilitated by molecular markers or TILLING®.

- **[0030]** In some embodiments, such methods comprise making a cross between a *Glycine sp.* mutant with one or more mutations listed in Tables 29 37 with a second *Glycine sp.* to produce an F1 plant, or with a species in the *Fabaceae*
- ⁵ family which can intercross with said first *Glycine sp.* The method may further comprise backcrossing the F1 plant to the second *Glycine sp.* or species in the *Fabaceae* family; and repeating the backcrossing step to generate an near isogenic line, wherein the one or more mutations are integrated into the genome of said second *Glycine sp.* or species in the *Fabaceae* family; wherein the near isogenic line derived from the second *Glycine sp.* or species in the *Fabaceae* family with the integrated mutations has altered weight, size, and/or number of one or more organs, for example, altered
- ¹⁰ seed weight, seed size, seed number, and/or seed yield. Optionally, such methods can be facilitated by molecular markers or TILLING®.

[0031] The present invention provides an isolated nucleic acid sequence comprising a sequence selected from the group consisting of SEQ ID NOs: 138, 139, 141, 142, 144, and 145, and fragments and variations derived from thereof, which encode a wheat KRP gene.

- In one embodiment, the present invention provides an isolated polynucleotide encoding plant KRP protein, comprising a nucleic acid sequence that shares at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.1%, at least 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, or at least 99.9% identity to SEQ ID NOs: 138, 139, 141, 142, 144, and 145.
- 20 [0033] The present invention further provides an isolated amino acid sequence (e.g., a peptide, polypeptide and the like) comprising a sequence selected from the group consisting of SEQ ID NOs: 140, 143, and 146 and fragments and variations derived from thereof, which form a KRP protein.

[0034] In some embodiments, the present invention provides an isolated amino acid sequence which forms a protein that shares an amino acid sequence having at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least

²⁵ 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.1%, at least 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, or at least 99.9% identity to SEQ ID NOs: 140, 143, and 146.

[0035] In one embodiment, isolated polynucleotides of the present invention comprise a sequence selected from the group consisting of: (a) sequences recited in SEQ ID NOs: 138, 139, 141, 142, 144, and 145, or portions thereof; (b)

- 30 complements of the sequences recited in SEQ ID NOs: 138, 139, 141, 142, 144, and 145, or portions thereof; (c) reverse complements of the sequences recited in SEQ ID NOs: 138, 139, 141, 142, 144, and 145 or portions thereof; (d) reverse sequences of the sequences recited in SEQ ID NOs: 138, 139, 141, 142, 144, and 145, or portions thereof; and (e) sequences having at least 50%, 75%, 90%, 95% or 98% identity, as defined herein, to a sequence of (a)-(d) or a specified region of a sequence of (a)-(d).
- ³⁵ **[0036]** The present invention also provides a chimeric gene comprising the isolated nucleic acid sequence of any one of the polynucleotides described above operably linked to suitable regulatory sequences.

[0037] The present invention also provides recombinant constructs comprising the chimeric gene as described above.[0038] The present invention further provides interfering RNA (RNAi) constructs based on nucleic acid sequences of the present invention. In some embodiments, the RNAi constructs are can be transformed into a wheat plant to down-

40 regulate one or more KRPs. The RNAi construct can be, but is not limited to antisense oligonucleotide construct, doublestrand oligonucleotide construct, siRNA construct, or inverted repeat construct. In some embodiment, the RNAi constructs comprise a plant promoter, such as a constitutive promoter, an inducible promoter, or a tissue-specific promoter. In some embodiments, the promoter is embryonic specific or seed specific.

45 BRIEF DESCRIPTION OF THE DRAWINGS

[0039]

50

55

Figure 1 A depicts an amplification plot of fluorescence signal versus cycle number for a wheat genomic sample homozygous for the wild type allele of wheat *KRP4B*. The upper curve represents the amplification with the wild type probe, while the bottom curve represents the amplification with the mutant probe. **Figure 1B** depicts an amplification plot of fluorescence signal versus cycle number for a wheat genomic sample homozygous for the mutant allele of wheat *KRP4B*. The upper curve represents the amplification with the mutant probe, while the bottom curve represents the amplification with the mutant probe, while the bottom curve represents the amplification with the mutant probe, while the bottom curve represents the amplification with the wild type probe. **Figure 1C** depicts an amplification plot of fluorescence signal versus cycle number for a wheat genomic sample heterozygous for the mutant allele of wheat *KRP4B*. **Figure 1D** depicts a sequence chromatogram showing the two nucleotides detected in a wheat genomic sample heterozygous for the mutant allele of wheat *KRP4B*.

Figure 2 depicts an allelic discrimination plot for samples in a KRP4B allelic discrimination assay. Samples ho-

mozygous for the wild type KRP4B allele are in blue, samples homozygous for the mutant *KRP4B* P109L allele are in red and samples heterozygous for the mutant *KRP4B* P109L allele are in green. Black squares represent no template controls and black x's are undetermined samples.

- Figure 3 depicts the C-terminal amino acid sequences that include the cyclin and cyclin-dependent kinase (CDK)
 binding domains for KRP1A, 2D, 4A and 5A. Nonsense and Type I severe missense TILLING® mutations tested in the *in vitro* kinase assay are indicated by asterisks or mutant amino acids, respectively, below the wild-type amino acids.
 - **Figure 4** depicts an autoradiograph of kinase assays using ZmCyclinD4/CDKA;1 kinase complex, indicated wildtype *Triticum aestivum* KRP and indicated *Triticum aestivum* KRP TILLING® mutant. Histone H1 (HH1) was used as the substrate for phosphorylation. Lanes 1 and 18: kinase complex without any wild-type or KRP TILLING® mutant. Lanes 2 and 19: only kinase complex in buffer. Lanes 3, 4, 5: kinase complex and wild-type TaKRP1A at 0.5, 0.25 and 0.1 μg, respectively. Lanes 6, 7, 8: kinase complex and mutant TaKRP1A P232L at 0.5, 0.25 and 0.1 μg, respectively. Lanes 9, 10, 11: kinase complex and mutant TaKRP1A G236S at 0.5, 0.25 and 0.1 μg, respectively. Lanes 12, 13, 14: kinase complex and mutant TaKRP1A W240* at 0.5, 0.25 and 0.1 μg, respectively. Lanes 15,
- 16, 17: kinase complex and wild-type TaKRP2D at 0.5, 0.25 and 0.1 μg, respectively. Lanes 20, 21, 22: kinase complex and mutant TaKRP2D P228S at 0.5, 0.25 and 0.1 μg, respectively. Lanes 23, 24, 25: kinase complex and mutant TaKRP2D D254N at 0.5, 0.25 and 0.1 μg, respectively. Lanes 26, 27, 28: kinase complex and mutant TaKRP2D R257C at 0.5, 0.25 and 0.1 μg, respectively. Lanes 29, 30: kinase complex and wild-type TaKRP4A at 0.25 and 0.1 μg, respectively. Lanes 31, 32, 33: kinase complex and mutant TaKRP4A W186* at 0.5. 0.25 and 0.1 μg, respectively.
 - **Figure 5** depicts an autoradiograph of kinase assays using ZmCyclinD4/CDKA;1 kinase complex, indicated wildtype *Triticum aestivum* KRP and indicated *Triticum aestivum* KRP TILLING® mutant. Histone H1 (HH1) was used as the substrate for phosphorylation. Lane 1: kinase complex without any wild-type or KRP TILLING® mutant. Lanes 2 and 18: only kinase complex in buffer. Lanes 3, 4, 5: kinase complex and wild-type TaKRP2D at 0.5, 0.25 and 0.1
- ²⁵ μg, respectively. Lanes 6, 7, 8: kinase complex and mutant TaKRP2D A238V at 0.5, 0.25 and 0.1 μg, respectively. Lanes 9, 10, 11: kinase complex and mutant TaKRP2D A239T at 0.5, 0.25 and 0.1 μg, respectively. Lanes 12, 13, 14: kinase complex and wild-type TaKRP5A at 0.5, 0.25 and 0.1 μg, respectively. Lanes 15, 16, 17: kinase complex and mutant TaKRP5A at 0.1 μg, respectively.
- Figure 6A depicts an autoradiograph of repeat kinase assays using ZmCyclinD4/CDKA;1 kinase complex, indicated *30* wild-type *Triticum aestivum* KRP and indicated *Triticum aestivum* KRP TILLING® mutant. Histone H1 (HH1) was used as the substrate for phosphorylation. Lane 1: kinase complex without any wild-type or KRP TILLING® mutant. Lane 2: only kinase complex in buffer. Lanes 3, 4, 5: kinase complex and wild-type TaKRP1A at 0.5, 0.25 and 0.1 µg, respectively. Lanes 6, 7, 8: kinase complex and mutant TaKRP1A W240* at 0.5, 0.25 and 0.1 µg, respectively. Lanes 9, 10: kinase complex and wild-type TaKRP4A at 0.25 and 0.1 µg, respectively. Lanes 11, 12, 13: kinase
- 35 complex and mutant TaKRP4A W186* at 0.5, 0.25 and 0.1 μg, respectively. Figure 6B depicts an autoradiograph of kinase assays using ZmCyclinD4/CDKA;1 kinase complex and ZmKRP2 W250*. ZmKRP2 W250* is the mutant corn krp2 protein with an equivalent premature stop codon very close to the end of the protein. Lanes 1 and 2: kinase complex and mutant ZmKRP2 W250* at 0.3 and 3 μg, respectively.
- Figure 7 depicts average grain yield (lbs/ac) of spring wheat KRP TILLING® mutants and check cultivar Express.
 Bozeman, MT, Fort Collins, CO. *, ** stands for significant difference between mutant and check cultivar at the 0.05 and 0.01 probability levels, respectively.

Figure 8 depicts average grain yield (lbs/ac) of wild type (WT) and homozygous (Homo) zygotic groups for each spring wheat KRP TILLING® mutant and for check cultivar 'Express'. Bozeman, MT, Fort Collins, CO. *, ** stands for significant difference between wild type (WT) and homozygous (Homo) zygotic groups at the 0.05 and 0.01 probability levels, respectively.

Figure 9 depicts average grain yield (lbs/ac) of wild type (WT) and homozygous (Homo) zygotic groups within sister F1 lines '148E04' and 149E05' from spring wheat KRP TILLING® mutant KRP4D Stop. Bozeman, MT, Fort Collins, CO.

- Figure 10 depicts a phylogenetic tree of rice (Os), corn (Zm) and wheat (Ta) KRPs.
- Figure 11 depicts an alignment of rice (Os), corn (Zm) and wheat (Ta) KRP proteins.

Figure 12 depicts an alignment of soy (Gm), Arabidopsis (At) and Brassica napus (Bn) KRP proteins.

SEQUENCES

45

50

10

⁵⁵ **[0040]** Sequence listings for SEQ ID No: 1 - SEQ ID No: 152 are part of this application and are incorporated by reference herein. Sequence listings are provided at the end of this document.

DETAILED DESCRIPTION

[0041] All publications, patents and patent applications, including any drawings and appendices, and all nucleic acid sequences and polypeptide sequences identified by GenBank Accession numbers, herein are incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

[0042] The following description includes information that may be useful in understanding the present invention. It is not an admission that any of the information provided herein is prior art or relevant to the presently claimed inventions, or that any publication specifically or implicitly referenced is prior art.

10

15

55

5

Definitions

[0043] As used herein, the verb "comprise" as is used in this description and in the claims and its conjugations are used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded.

[0044] As used herein, the term "plant" refers to any living organism belonging to the kingdom Plantae (i.e., any genus/species in the Plant Kingdom). This includes familiar organisms such as but not limited to trees, herbs, bushes, grasses, vines, ferns, mosses and green algae. The term refers to both monocotyledonous plants, also called monocots, and dicotyledonous plants, also called dicots. Examples of particular plants include but are not limited to plants in the

- 20 Triticeae tribe (e.g., plants in the Triticum genus), plants in the tribe of Oryzeae (e.g., plants in Oryza genus), plants in the Andropogoneae tribe (e.g., plants in the Zea genus, such has corn). Other non-limiting examples of plant include, potatoes, roses, apple trees, sunflowers, bananas, tomatoes, opo, pumpkins, squash, lettuce, cabbage, oak trees, guzmania, geraniums, hibiscus, clematis, poinsettias, sugarcane, taro, duck weed, pine trees, Kentucky blue grass, zoysia, coconut trees, brassica leafy vegetables (e.g. broccoli, broccoli raab, Brussels sprouts, cabbage, Chinese cab-
- ²⁵ bage (Bok Choy and Napa), cauliflower, cavalo, collards, kale, kohlrabi, mustard greens, rape greens, and other brassica leafy vegetable crops), bulb vegetables (e.g. garlic, leek, onion (dry bulb, green, and Welch), shallot, and other bulb vegetable crops), citrus fruits (e.g. grapefruit, lemon, lime, orange, tangerine, citrus hybrids, pummelo, and other citrus fruit crops), cucurbit vegetables (e.g. cucumber, citron melon, edible gourds, gherkin, muskmelons (including hybrids and/or cultivars of cucumis melons), water-melon, cantaloupe, and other cucurbit vegetable crops), fruiting vegetables
- 30 (including eggplant, ground cherry, pepino, pepper, tomato, tomatillo, and other fruiting vegetable crops), grape, leafy vegetables (e.g. romaine), root/tuber and corm vegetables (e.g. potato), and tree nuts (almond, pecan, pistachio, and walnut), berries (e.g., tomatoes, barberries, currants, elderberries, gooseberries, honeysuckles, mayapples, nannyberries, Oregon-grapes, see-buckthorns, hackberries, bearberries, lingonberries, strawberries, sea grapes, lackberries, cloudberries, loganberries, raspberries, salmonberries, thimbleberries, and wineberries), cereal crops (e.g., corn, rice, corn, rice).
- ³⁵ wheat, barley, sorghum, millets, oats, ryes, triticales, buckwheats, fonio, quinoa, oil palm), pome fruit (e.g., apples, pears), stone fruits (e.g., coffees, jujubes, mangos, olives, coconuts, oil palms, pistachios, almonds, apricots, cherries, damsons, nectarines, peaches and plums), vine (e.g., table grapes, wine grapes), fiber crops (e.g. hemp, cotton), ornamentals, and the like.
- [0045] As used herein, the term "plant part" refers to any part of a plant including but not limited to the shoot, root, stem, seeds, stipules, leaves, petals, flowers, ovules, bracts, branches, petioles, internodes, bark, pubescence, tillers, rhizomes, fronds, blades, pollen, stamen, and the like. The two main parts of plants grown in some sort of media, such as soil, are often referred to as the "above-ground" part, also often referred to as the "shoots", and the "below-ground" part, also often referred to as the "roots".
- [0046] The term "a" or "an" refers to one or more of that entity; for example, "a gene" refers to one or more genes or at least one gene. As such, the terms "a" (or "an"), "one or more" and "at least one" are used interchangeably herein. In addition, reference to "an element" by the indefinite article "a" or "an" does not exclude the possibility that more than one of the elements are present, unless the context clearly requires that there is one and only one of the elements. [0047] As used herein, the term "nucleic acid" refers to a polymeric form of nucleotides of any length, either ribonu-
- cleotides or deoxyribonucleotides, or analogs thereof. This term refers to the primary structure of the molecule, and thus includes double- and single-stranded DNA, as well as double- and single-stranded RNA. It also includes modified nucleic acids such as methylated and/or capped nucleic acids, nucleic acids containing modified bases, backbone modifications, and the like. The terms "nucleic acid" and "nucleotide sequence" are used interchangeably.

[0048] As used herein, the terms "polypeptide," "peptide," and "protein" are used interchangeably herein to refer to polymers of amino acids of any length. These terms also include proteins that are post-translationally modified through reactions that include glycosylation, acetylation and phosphorylation.

[0049] As used herein, the term "homologous" or "homologue" or "ortholog" is known in the art and refers to related sequences that share a common ancestor or family member and are determined based on the degree of sequence identity. The terms "homology", "homologous", "substantially similar" and "corresponding substantially" are used inter-

changeably herein. They refer to nucleic acid fragments wherein changes in one or more nucleotide bases do not affect the ability of the nucleic acid fragment to mediate gene expression or produce a certain phenotype. These terms also refer to modifications of the nucleic acid fragments of the instant invention such as deletion or insertion of one or more nucleotides that do not substantially alter the functional properties of the resulting nucleic acid fragment relative to the

- ⁵ initial, unmodified fragment. It is therefore understood, as those skilled in the art will appreciate, that the invention encompasses more than the specific exemplary sequences. These terms describe the relationship between a gene found in one species, subspecies, variety, cultivar or strain and the corresponding or equivalent gene in another species, subspecies, variety, cultivar or strain. For purposes of this invention homologous sequences are compared. "Homologous sequences" or "homologues" or "orthologs" are thought, believed, or known to be functionally related. A functional
- ¹⁰ relationship may be indicated in any one of a number of ways, including, but not limited to: (a) degree of sequence identity and/or (b) the same or similar biological function. Preferably, both (a) and (b) are indicated. The degree of sequence identity may vary, but in one embodiment, is at least 50% (when using standard sequence alignment programs known in the art), at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%,
- ¹⁵ at least about 97%, at least about 98%, or at least 98.5%, or at least about 99%, or at least 99.5%, or at least 99.8%, or at least 99.9%. Homology can be determined using software programs readily available in the art, such as those discussed in Current Protocols in Molecular Biology (F.M. Ausubel et al., eds., 1987) Supplement 30, section 7.718, Table 7.71. Some alignment programs are MacVector (Oxford Molecular Ltd, Oxford, U.K.), ALIGN Plus (Scientific and Educational Software, Pennsylvania) and AlignX (Vector NTI, Invitrogen, Carlsbad, CA). Another alignment program is
- Sequencher (Gene Codes, Ann Arbor, Michigan), using default parameters. [0050] As used herein, the term "nucleotide change" refers to, e.g., nucleotide substitution, deletion, and/or insertion, as is well understood in the art. For example, mutations contain alterations that produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded protein or how the proteins are made. [0051] As used herein, the term "protein modification" refers to, e.g., amino acid substitution, amino acid modification,
- ²⁵ deletion, and/or insertion, as is well understood in the art, [0052] As used herein, the term "derived from" refers to the origin or source, and may include naturally occurring, recombinant, unpurified, or purified molecules. A nucleic acid or an amino acid derived from an origin or source may have all kinds of nucleotide changes or protein modification as defined elsewhere herein.
- As used herein, the term "at least a portion" or "fragment" of a nucleic acid or polypeptide means a portion having the minimal size characteristics of such sequences, or any larger fragment of the full length molecule, up to and including the full length molecule. For example, a portion of a nucleic acid may be 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 22 nucleotides, 24 nucleotides, 26 nucleotides, 28 nucleotides, 30 nucleotides, 32 nucleotides, 34 nucleotides, 36 nucleotides, 38 nucleotides, 40 nucleotides, 45 nucleotides, 50 nucleotides, 55 nucleotides, and so on, going up to the full length nucleic acid.
- ³⁵ Similarly, a portion of a polypeptide may be 4 amino acids, 5 amino acids, 6 amino acids, 7 amino acids, and so on, going up to the full length polypeptide. The length of the portion to be used will depend on the particular application. A portion of a nucleic acid useful as hybridization probe may be as short as 12 nucleotides; in one embodiment, it is 20 nucleotides. A portion of a polypeptide useful as an epitope may be as short as 4 amino acids. A portion of a polypeptide that performs the function of the full-length polypeptide would generally be longer than 4 amino acids.
- 40 [0053] As used herein, "sequence identity" or "identity" in the context of two nucleic acid or polypeptide sequences includes reference to the residues in the two sequences which are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity)
- ⁴⁵ and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences which differ by such conservative substitutions are said to have "sequence similarity" or "similarity." Means for making this adjustment are well-known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for
- example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., according to the algorithm of Meyers and Miller, Computer Applic. Biol. Sci., 4:11-17 (1988).
 [0054] As used herein, the term "substantially complementary" means that two nucleic acid sequences have at least
- about 65%, preferably about 70% or 75%, more preferably about 80% or 85%, even more preferably 90% or 95%, and ⁵⁵ most preferably about 98% or 99%, sequence complementarities to each other. This means that primers and probes must exhibit sufficient complementarity to their template and target nucleic acid, respectively, to hybridize under stringent conditions. Therefore, the primer and probe sequences need not reflect the exact complementary sequence of the binding region on the template and degenerate primers can be used. For example, a non-complementary nucleotide

fragment may be attached to the 5'-end of the primer, with the remainder of the primer sequence being complementary to the strand. Alternatively, non-complementary bases or longer sequences can be interspersed into the primer, provided that the primer has sufficient complementarity with the sequence of one of the strands to be amplified to hybridize therewith, and to thereby form a duplex structure which can be extended by polymerizing means. The non-complementary

- ⁵ nucleotide sequences of the primers may include restriction enzyme sites. Appending a restriction enzyme site to the end(s) of the target sequence would be particularly helpful for cloning of the target sequence. A substantially complementary primer sequence is one that has sufficient sequence complementarity to the amplification template to result in primer binding and second-strand synthesis. The skilled person is familiar with the requirements of primers to have sufficient sequence complementarity to the amplification template.
- 10 [0055] As used herein, the terms "polynucleotide", "polynucleotide sequence", "nucleic acid sequence", "nucleic acid fragment", and "isolated nucleic acid fragment" are used interchangeably herein. These terms encompass nucleotide sequences and the like. A polynucleotide may be a polymer of RNA or DNA that is single- or double-stranded, that optionally contains synthetic, non-natural or altered nucleotide bases. A polynucleotide in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA, synthetic DNA, or mixtures thereof. Nucleotides
- ¹⁵ (usually found in their 5'-monophosphate form) are referred to by a single letter designation as follows: "A" for adenylate or deoxyadenylate (for RNA or DNA, respectively), "C" for cytidylate or deoxycytidylate, "G" for guanylate or deoxyguanylate, "U" for uridylate, "T" for deoxythymidylate, "R" for purines (A or G), "Y" for pyrimidines (C or T), "K" for G or T, "H" for A or C or T, "I" for inosine, and "N" for any nucleotide.
- [0056] As used herein, the phrase "a biologically active variant" or "functional variant" with respect to a protein refers to an amino acid sequence that is altered by one or more amino acids with respect to a reference sequence, while still maintains substantial biological activity of the reference sequence. The variant can have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties, e.g., replacement of leucine with isoleucine. Alternatively, a variant can have "nonconservative" changes, e.g., replacement of a glycine with a tryptophan. Analogous minor variations can also include amino acid deletion or insertion, or both. Guidance in determining which amino acid
- residues can be substituted, inserted, or deleted without eliminating biological or immunological activity can be found using computer programs well known in the art, for example, DNASTAR software.
 [0057] The term "primer" as used herein refers to an oligonucleotide which is capable of annealing to the amplification target allowing a DNA polymerase to attach, thereby serving as a point of initiation of DNA synthesis when placed under conditions in which synthesis of primer extension product is induced, i.e., in the presence of nucleotides and an agent
- for polymerization such as DNA polymerase and at a suitable temperature and pH. The (amplification) primer is preferably single stranded for maximum efficiency in amplification. Preferably, the primer is an oligodeoxyribonucleotide. The primer must be sufficiently long to prime the synthesis of extension products in the presence of the agent for polymerization. The exact lengths of the primers will depend on many factors, including temperature and composition (A/T vs. G/C content) of primer. A pair of bi-directional primers consists of one forward and one reverse primer as commonly used in the art of DNA amplification such as in PCR amplification.
- **[0058]** The terms "stringency" or "stringent hybridization conditions" refer to hybridization conditions that affect the stability of hybrids, e.g., temperature, salt concentration, pH, formamide concentration and the like. These conditions are empirically optimized to maximize specific binding and minimize non-specific binding of primer or probe to its target nucleic acid sequence. The terms as used include reference to conditions under which a probe or primer will hybridize
- 40 to its target sequence, to a detectably greater degree than other sequences (e.g. at least 2-fold over background). Stringent conditions are sequence dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. Generally, stringent conditions are selected to be about 5° C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe or
- ⁴⁵ primer. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M Na⁺ ion, typically about 0.01 to 1.0 M Na + ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C for short probes or primers (e.g. 10 to 50 nucleotides) and at least about 60° C for long probes or primers (e.g. greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringent conditions or "conditions of reduced stringency" include hybridization with a
- ⁵⁰ buffer solution of 30% formamide, 1 M NaCl, 1% SDS at 37° C and a wash in 2×SSC at 40° C. Exemplary high stringency conditions include hybridization in 50% formamide, 1M NaCl, 1% SDS at 37° C, and a wash in 0.1×SSC at 60° C. Hybridization procedures are well known in the art and are described by e.g. Ausubel et al., 1998 and Sambrook et al., 2001.
- [0059] As used herein, "coding sequence" refers to a DNA sequence that codes for a specific amino acid sequence. ⁵⁵ "Regulatory sequences" refer to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence.

[0060] As used herein, "regulatory sequences" may include, but are not limited to, promoters, translation leader se-

quences, introns, and polyadenylation recognition sequences.

[0061] As used herein, "promoter" refers to a DNA sequence capable of controlling the expression of a coding sequence or functional RNA. The promoter sequence consists of proximal and more distal upstream elements, the latter elements often referred to as enhancers. Accordingly, an "enhancer" is a DNA sequence that can stimulate promoter activity, and

- ⁵ may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue specificity of a promoter. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. It is further recognized that since
- in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of some variation may have identical promoter activity.
 [0062] As used herein, a "plant promoter" is a promoter capable of initiating transcription in plant cells whether or not its origin is a plant cell, e.g. it is well known that *Agrobacterium* promoters are functional in plant cells. Thus, plant
- promoters include promoter DNA obtained from plants, plant viruses and bacteria such as *Agrobacterium* and *Bradyrhizo- bium* bacteria. A plant promoter can be a constitutive promoter or a non-constitutive promoter.
 [0063] As used herein, a "constitutive promoter" is a promoter which is active under most conditions and/or during most development stages. There are several advantages to using constitutive promoters in expression vectors used in
- plant biotechnology, such as: high level of production of proteins used to select transgenic cells or plants; high level of expression of reporter proteins or scorable markers, allowing easy detection and quantification; high level of production
 of a transcription factor that is part of a regulatory transcription system; production of compounds that requires ubiquitous activity in the plant; and production of compounds that are required during all stages of plant development. Non-limiting accomplete activity in the plant; and production of compounds that are required during all stages of plant development. Non-limiting accomplete activity in the plant; and production of compounds that are required activity and production of compounds that are required during all stages of plant development. Non-limiting accomplete activity is premeter action production.
- exemplary constitutive promoters include, CaMV 35S promoter, opine promoters, ubiquitin promoter, actin promoter, alcohol dehydrogenase promoter, etc.
- [0064] As used herein, a "non-constitutive promoter" is a promoter which is active under certain conditions, in certain types of cells, and/or during certain development stages. For example, tissue specific, tissue preferred, cell type specific, cell type preferred, inducible promoters, and promoters under development control are non-constitutive promoters. Examples of promoters under developmental control include promoters that preferentially initiate transcription in certain tissues, such as stems, leaves, roots, or seeds.
- [0065] As used herein, "inducible" or "repressible" promoter is a promoter which is under chemical or environmental factors control. Examples of environmental conditions that may effect transcription by inducible promoters include anaerobic conditions, or certain chemicals, or the presence of light.
 [0066] As used herein, a "tissue specific" promoter is a promoter that initiates transcription only in certain tissues.

Unlike constitutive expression of genes, tissue-specific expression is the result of several interacting levels of gene regulation. As such, in the art sometimes it is preferable to use promoters from homologous or closely related plant

- ³⁵ species to achieve efficient and reliable expression of transgenes in particular tissues. This is one of the main reasons for the large amount of tissue-specific promoters isolated from particular plants and tissues found in both scientific and patent literature. Non-limiting tissue specific promoters include, beta-amylase gene or barley hordein gene promoters (for seed gene expression), tomato pz7 and pz130 gene promoters (for ovary gene expression), tobacco RD2 gene promoter (for root gene expression), banana TRX promoter and melon actin promoter (for fruit gene expression), and
- 40 embryo specific promoters, e.g., a promoter associated with an amino acid permease gene (AAP1), an oleate 12hydroxylase:desaturase gene from Lesquerella fendleri (LFAH12), an 2S2 albumin gene (2S2), a fatty acid elongase gene (FAE1), or a leafy cotyledon gene (LEC2).

[0067] As used herein, a "tissue preferred" promoter is a promoter that initiates transcription mostly, but not necessarily entirely or solely in certain tissues.

- [0068] As used herein, a "cell type specific" promoter is a promoter that primarily drives expression in certain cell types in one or more organs, for example, vascular cells in roots, leaves, stalk cells, and stem cells.
 [0069] As used herein, a "cell type preferred" promoter is a promoter that primarily drives expression mostly, but not necessarily entirely or solely in certain cell types in one or more organs, for example, vascular cells in roots, leaves, stalk cells, and stem cells.
 - necessarily entirely or solely in certain cell types in one or more organs, for example, vascular cells in roots, leaves, stalk cells, and stem cells. **[0070]** As used herein, the "3' non-coding sequences" or "3' untranslated regions" refer to DNA sequences located
- 50 [0070] As used herein, the "3' non-coding sequences" or "3' untranslated regions" refer to DNA sequences located downstream of a coding sequence and include polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression. The polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3' end of the mRNA precursor. The use of different 3' non-coding sequences is exemplified by Ingelbrecht, I. L., et al. (1989) Plant Cell 1:671-680.
- ⁵⁵ **[0071]** As used herein, "RNA transcript" refers to the product resulting from RNA polymerase-catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect complementary copy of the DNA sequence, it is referred to as the primary transcript. An RNA transcript is referred to as the mature RNA when it is an RNA sequence derived from post-transcriptional processing of the primary transcript. "Messenger RNA (mRNA)" refers to the RNA that is without

introns and that can be translated into protein by the cell. "cDNA" refers to a DNA that is complementary to and synthesized from an mRNA template using the enzyme reverse transcriptase. The cDNA can be single-stranded or converted into the double-stranded form using the Klenow fragment of DNA polymerase I. "Sense" RNA refers to RNA transcript that includes the mRNA and can be translated into protein within a cell or in vitro. "Antisense RNA" refers to an RNA transcript

- that is complementary to all or part of a target primary transcript or mRNA, and that blocks the expression of a target gene (U.S. Pat. No. 5,107,065). The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5' non-coding sequence, 3' non-coding sequence, introns, or the coding sequence. "Functional RNA" refers to antisense RNA, ribozyme RNA, or other RNA that may not be translated but yet has an effect on cellular processes. The terms "complement" and "reverse complement" are used interchangeably herein with respect to mRNA
- 10 transcripts, and are meant to define the antisense RNA of the message. [0072] As used herein, the term "operably linked" refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is regulated by the other. For example, a promoter is operably linked with a coding sequence when it is capable of regulating the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences
- ¹⁵ in a sense or antisense orientation. In another example, the complementary RNA regions of the invention can be operably linked, either directly or indirectly, 5' to the target mRNA, or 3' to the target mRNA, or within the target mRNA, or a first complementary region is 5' and its complement is 3' to the target mRNA.

[0073] As used herein, the term "recombinant" refers to an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques.

[0074] As used herein, the phrases "recombinant construct", "expression construct", "chimeric construct", "construct", and "recombinant DNA construct" are used interchangeably herein. A recombinant construct comprises an artificial combination of nucleic acid fragments, e.g., regulatory and coding sequences that are not found together in nature. For example, a chimeric construct may comprise regulatory sequences and coding sequences that are derived from different

- ²⁵ sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature. Such construct may be used by itself or may be used in conjunction with a vector. If a vector is used then the choice of vector is dependent upon the method that will be used to transform host cells as is well known to those skilled in the art. For example, a plasmid vector can be used. The skilled artisan is well aware of the genetic elements that must be present on the vector in order to successfully transform, select and propagate host
- 30 cells comprising any of the isolated nucleic acid fragments of the invention. The skilled artisan will also recognize that different independent transformation events will result in different levels and patterns of expression (Jones et al., (1985) EMBO J. 4:2411-2418; De Almeida et al., (1989) Mol. Gen. Genetics 218:78-86), and thus that multiple events must be screened in order to obtain lines displaying the desired expression level and pattern. Such screening may be accomplished by Southern analysis of DNA, Northern analysis of mRNA expression, immunoblotting analysis of protein expression,
- ³⁵ or phenotypic analysis, among others. Vectors can be plasmids, viruses, bacteriophages, pro-viruses, phagemids, transposons, artificial chromosomes, and the like, that replicate autonomously or can integrate into a chromosome of a host cell. A vector can also be a naked RNA polynucleotide, a naked DNA polynucleotide, a polynucleotide composed of both DNA and RNA within the same strand, a poly-lysine-conjugated DNA or RNA, a peptide-conjugated DNA or RNA, a liposome-conjugated DNA, or the like, that is not autonomously replicating.
- 40 **[0075]** The term "expression", as used herein, refers to the production of a functional endproduct e.g., an mRNA or a protein (precursor or mature).

[0076] As used herein, the phrase "plant selectable or screenable marker" refers to a genetic marker functional in a plant cell. A selectable marker allows cells containing and expressing that marker to grow under conditions unfavorable to growth of cells not expressing that marker. A screenable marker facilitates identification of cells which express that

⁴⁵ marker.

50

[0077] As used herein, the term "inbred", "inbred plant" is used in the context of the present invention. This also includes any single gene conversions of that inbred. The term single allele converted plant as used herein refers to those plants which are developed by a plant breeding technique called backcrossing wherein essentially all of the desired morphological and physiological characteristics of an inbred are recovered in addition to the single allele transferred into the inbred via the backcrossing technique.

[0078] As used herein, the term "sample" includes a sample from a plant, a plant part, a plant cell, or from a transmission vector, or a soil, water or air sample.

[0079] As used herein, the term "offspring" refers to any plant resulting as progeny from a vegetative or sexual reproduction from one or more parent plants or descendants thereof. For instance an offspring plant may be obtained by cloning or selfing of a parent plant or by crossing two parent plants and include selfings as well as the F1 or F2 or still further generations. An F1 is a first-generation offspring produced from parents at least one of which is used for the first time as denors of the twiking of experiments of the parent plants and include selfings as well as the F1 or F2 or still further generations. An F1 is a first-generation offspring produced from parents at least one of which is used for the first

time as donor of a trait, while offspring of second generation (F2) or subsequent generations (F3, F4, etc.) are specimens produced from selfings of F1's, F2's etc. An F1 may thus be (and usually is) a hybrid resulting from a cross between

two true breeding parents (true-breeding is homozygous for a trait), while an F2 may be (and usually is) an offspring resulting from self-pollination of said F1 hybrids.

[0080] As used herein, the term "cross", "crossing", "cross pollination" or "cross-breeding" refer to the process by which the pollen of one flower on one plant is applied (artificially or naturally) to the ovule (stigma) of a flower on another plant.

[0081] As used herein, the term "cultivar" refers to a variety, strain or race of plant that has been produced by horticultural or agronomic techniques and is not normally found in wild populations.

[0082] As used herein, the terms "dicotyledon" and "dicot" refer to a flowering plant having an embryo containing two seed halves or cotyledons. Dicotyledon plants at least include the Eudicot, Magnoliid, Amborella, Nymphaeales, Australia balance and Quester have a factor and the second second

- trobaileyales, Chloranthales, and Ceratophyllum groups. Eudicots include these clades: Ranunculales, sabiales, Proteales, Trochodendrales, Buxales, and Core Eudicots (e.g., Berberidopsidales, Dilleniales, Gunnerales, Caryophyllales, Santalales, Saxifragales. Vitales, Rosids and Asterids). Non-limiting examples of dicotyledon plants include tobacco, tomato, pea, alfalfa, clover, bean, soybean, peanut, members of the Brassicaceae family (e.g., camelina, Canola, oilseed rape, etc.), amaranth, sunflower, sugarbeet, cotton,'oaks, maples, roses, mints, squashes, daisies, nuts; cacti, violets
- ¹⁵ and buttercups.

5

30

45

[0083] As used herein, the term "monocotyledon" or "monocot" refer to any of a subclass (Monocotyledoneae) of flowering plants having an embryo containing only one seed leaf and usually having parallel-veined leaves, flower parts in multiples of three, and no secondary growth in stems and roots. Non-limiting examples of monocotyledon plants include lilies, orchids, corn, rice, wheat, barley, sorghum, millets, oats, ryes, triticales, buckwheats, fonio, quinoa, grasses,

- such as tall fescue, goat grass, and Kentucky bluegrass; grains, such as wheat, oats and barley, irises, onions, palms. [0084] As used herein, the term "gene" refers to any segment of DNA associated with a biological function. Thus, genes include, but are not limited to, coding sequences and/or the regulatory sequences required for their expression. Genes can also include nonexpressed DNA segments that, for example, form recognition sequences for other proteins. Genes can be obtained from a variety of sources, including cloning from a source of interest or synthesizing from known
- or predicted sequence information, and may include sequences designed to have desired parameters.
 [0085] As used herein, the term "genotype" refers to the genetic makeup of an individual cell, cell culture, tissue, organism (e.g., a plant), or group of organisms.

[0086] As used herein, the term "hemizygous" refers to a cell, tissue or organism in which a gene is present only once in a genotype, as a gene in a haploid cell or organism, a sex-linked gene in the heterogametic sex, or a gene in a segment of chromosome in a diploid cell or organism where its partner segment has been deleted.

[0087] As used herein, the terms "heterologous polynucleotide" or a "heterologous nucleic acid" or an "exogenous DNA segment" refer to a polynucleotide, nucleic acid or DNA segment that originates from a source foreign to the particular host cell, or, if from the same source, is modified from its original form. Thus, a heterologous gene in a host cell includes a gene that is endogenous to the particular host cell, but has been modified. Thus, the terms refer to a DNA

35 segment which is foreign or heterologous to the cell, or homologous to the cell but in a position within the host cell nucleic acid in which the element is not ordinarily found. Exogenous DNA segments are expressed to yield exogenous polypeptides.

[0088] As used herein, the term "heterologous trait" refers to a phenotype imparted to a transformed host cell or transgenic organism by an exogenous DNA segment, heterologous polynucleotide or heterologous nucleic acid.

⁴⁰ **[0089]** As used herein, the term "heterozygote" refers to a diploid or polyploid individual cell or plant having different alleles (forms of a given gene) present at least at one locus.

[0090] As used herein, the term "heterozygous" refers to the presence of different alleles (forms of a given gene) at a particular gene locus.

[0091] As used herein, the terms "homolog" or "homologue" refer to a nucleic acid or peptide sequence which has a common origin and functions similarly to a nucleic acid or peptide sequence from another species.

[0092] As used herein, the term "homozygote" refers to an individual cell or plant having the same alleles at one or more or all loci. When the term is used with reference to a specific locus or gene, it means at least that locus or gene has the same alleles.

[0093] As used herein, the terms "homozygous" or "HOMO" refer to the presence of identical alleles at one or more or all loci in homologous chromosomal segments. When the terms are used with reference to a specific locus or gene, it means at least that locus or gene has the same alleles.

[0094] As used herein, the term "hybrid" refers to any individual cell, tissue or plant resulting from a cross between parents that differ in one or more genes.

[0095] As used herein, the term "inbred" or "inbred line" refers to a relatively true-breeding strain.

⁵⁵ **[0096]** As used herein, the term "line" is used broadly to include, but is not limited to, a group of plants vegetatively propagated from a single parent plant, via tissue culture techniques or a group of inbred plants which are genetically very similar due to descent from a common parent(s). A plant is said to "belong" to a particular line if it (a) is a primary transformant (TO) plant regenerated from material of that line; (b) has a pedigree comprised of a T0 plant of that line;

or (c) is genetically very similar due to common ancestry (e.g., via inbreeding or selfing). In this context, the term "pedigree" denotes the lineage of a plant, e.g. in terms of the sexual crosses affected such that a gene or a combination of genes, in heterozygous (hemizygous) or homozygous condition, imparts a desired trait to the plant.

- [0097] As used herein, the terms "mutant" or "mutation" refer to a gene, cell, or organism with an abnormal genetic constitution that may result in a variant phenotype.
 - As used herein, the term "open pollination" refers to a plant population that is freely exposed to some gene flow, as opposed to a closed one in which there is an effective barrier to gene flow.
- [0098] As used herein, the terms "open-pollinated population" or "open-pollinated variety" refer to plants normally capable of at least some cross-fertilization, selected to a standard, that may show variation but that also have one or more genotypic or phenotypic characteristics by which the population or the variety can be differentiated from others. A hybrid, which has no barriers to cross-pollination, is an open-pollinated population or an open-pollinated variety.

[0099] As used herein when discussing plants, the term "ovule" refers to the female gametophyte, whereas the term "pollen" means the male gametophyte.

[0100] As used herein, the term "phenotype" refers to the observable characters of an individual cell, cell culture, organism (e.g., a plant), or group of organisms which results from the interaction between that individual's genetic makeup (i.e., genotype) and the environment.

[0101] As used herein, the term "plant tissue" refers to any part of a plant. Examples of plant organs include, but are not limited to the leaf, stem, root, tuber, seed, branch, pubescence, nodule, leaf axil, flower, pollen, stamen, pistil, petal, peduncle, stalk, stigma, style, bract, fruit, trunk, carpel, sepal, anther, ovule, pedicel, needle, cone, rhizome, stolon, shoot, pericarp, endosperm, placenta, berry, stamen, and leaf sheath.

shoot, pericarp, endosperm, placenta, berry, stamen, and leaf sheath.
 [0102] As used herein, the term "self-crossing", "self pollinated" or "self-pollination" means the pollen of one flower on one plant is applied (artificially or naturally) to the ovule (stigma) of the same or a different flower on the same plant.
 [0103] As used herein, the term "transformation" refers to the transfer of nucleic acid (i. e., a nucleotide polymer) into a cell. As used herein, the term "genetic transformation" refers to the transfer and incorporation of DNA, especially

²⁵ recombinant DNA, into a cell.

40

[0104] As used herein, the term "transformant" refers to a cell, tissue or organism that has undergone transformation. The original transformant is designated as "T0" or " T_0 ." Selfing the T0 produces a first transformed generation designated as "T1" or " T_1 ."

[0105] As used herein, the term "transgene" refers to a nucleic acid that is inserted into an organism, host cell or vector in a manner that ensures its function.

[0106] As used herein, the term "transgenic" refers to cells, cell cultures, organisms (e.g., plants), and progeny which have received a foreign or modified gene by one of the various methods of transformation, wherein the foreign or modified gene is from the same or different species than the species of the organism receiving the foreign or modified gene.

[0107] As used herein, the term "transposition event" refers to the movement of a transposon from a donor site to a target site.

[0108] As used herein, the term "variety" refers to a subdivision of a species, consisting of a group of individuals within the species that are distinct in form or function from other similar arrays of individuals.

[0109] As used herein, the term "vector", "plasmid", or "construct" refers broadly to any plasmid or virus encoding an exogenous nucleic acid. The term should also be construed to include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into virions or cells, such as, for example, polylysine compounds and the like. The vector may be a viral vector that is suitable as a delivery vehicle for delivery of the nucleic acid, or mutant thereof, to a cell, or

- the vector may be a non-viral vector which is suitable for the same purpose. Examples of viral and non-viral vectors for delivery of DNA to cells and tissues are well known in the art and are described, for example, in Ma et al. (1997, Proc. Natl. Acad. Sci. U.S.A. 94:12744-12746).
- ⁴⁵ **[0110]** As used herein, the phrase "seed size" refers to the volume of the seed material itself, which is the space occupied by the constituents of the seed.

[0111] As used herein, the phrase "seed number" refers to the average number of seeds produced from each fruit, each plant, or each predetermined area (e.g., 1 acre).

- **[0112]** As used herein, the phrase "Test Weight" or "Grain Test Weight" is a determination of bulk density (mass/vol-⁵⁰ ume), measured for commerce under specific conditions defined in the U.S. by the USDA-FGIS. Test weight is a general indicator of grain quality and higher test weight normally means higher quality grain. Grain test weight in units of pounds per bushel specifies the weight of a "volume" bushel, which is 32 quarts (30,283 cubic centimeters) of grain. When grain is traded, samples are usually tested for quality, and test weight is one of the tests carried out. Test weights have been a part of U.S. grain grades since the United States Grain Standards Act was passed by Congress in 1916. U.S. grades
- ⁵⁵ for most grains specify test weight minimums for each grade level. For instance, the official minimum allowable test weight in the U.S. for No. 1 yellow corn is 56 lbs/bu and for No. 2 yellow corn is 54 lbs/bu (USDA-GIPSA, 1996). By law, a "weight" bushel of corn is exactly 56 pounds, a soybean bushel is 60 pounds, and a wheat bushel is 60 pounds, regardless of the test weight. The "weight" bushel is used for the basis of payment for grain, but price discounts are

often tied to shipments of lower grade grain possessing low test weight.

[0113] As used herein, the phrase "Grain Apparent Density" refers to grain density determined in a fashion wherein the bulk density (mass/volume) of cereal seed is sometimes measured with the aid of a gas pycnometer, which typically uses helium and measures the volume of the sample. Grain kernels contain internal void spaces and intercellular spaces

⁵ and are not completely porous to helium. Since the gas cannot reach all internal spaces, the volume of material comprising the kernel can be overestimated with gas pycnometry and a density lower than the "true density" of grain material is determined (Chang, CS (1988) Cereal Chem:65:13-15).

[0114] As used herein, the phrase "Grain True Density" refers to the bulk density of grain, expressed as the quotient of mass divided by volume, whereby all void space not comprising solid materials of the seed has been eliminated before and instantian of the volume used in the calculation (Change CC (1000) Correct Cham(CT 12.15)

¹⁰ before, or discounted in, determination of the volume used in the calculation (Chang, CS (1988) Cereal Chem:65:13-15). [0115] As used herein, the term "cyclin dependent kinase inhibitor" (also referred to herein as "CDK inhibitor" or "CKI") refers to a class of proteins that negatively regulate cyclin dependent kinases (CDKs). CKIs amenable to the present invention are those having separate polypeptide regions capable of independently binding a cyclin and a CDK. Such CKIs include, for example, identified families of plant CKIs (the seven identified Arabidopsis CKIs), having homology to

¹⁵ Kinase Inhibitor Proteins (KIPs) in animals, referred to as KIP-related proteins (KRPs) (also known as Inhibitors of "CDKs," or "ICKs").

[0116] The term "naturally occurring," in the context of CKI polypeptides and nucleic acids, means a polypeptide or nucleic acid having an amino acid or nucleotide sequence that is found in nature, i.e., an amino acid or nucleotide sequence that can be isolated from a source in nature (an organism) and which has not been intentionally modified by

²⁰ human intervention. As used herein, laboratory strains of plants which may have been selectively bred according to classical genetics are considered naturally-occurring plants.
 [0117] As used herein, "wild-type CKI gene" or "wild-type CKI nucleic acid" refers to a sequence of nucleic acid,

corresponding to a CKI genetic locus in the genome of an organism, that encodes a gene product performing the normal function of the CKI protein encoded by a naturally-occurring nucleotide sequence corresponding to the genetic locus. A genetic locus can have more than one sequence or allele in a population of individuals, and the term "wild-type"

- A genetic locus can have more than one sequence or allele in a population of individuals, and the term "wild-type" encompasses all such naturally-occurring alleles that encode a gene product performing the normal function. "Wildtype" also encompasses gene sequences that are not necessarily naturally occurring, but that still encode a gene product with normal function (e.g., genes having silent mutations or encoding proteins with conservative substitutions).
- [0118] As used herein, the term "wild-type CKI polypeptide" or "wild-type CKI protein" refers to a CKI polypeptide encoded by a wild-type gene. A genetic locus can have more than one sequence or allele in a population of individuals, and the term "wild-type" encompasses all such naturally-occurring alleles that encode a gene product performing the normal function.

Breeding Methods

35

[0119] Classic breeding methods can be included in the present invention to introduce one or more recombinant KRPs of the present invention into other plant varieties, or other close-related species that are compatible to be crossed with the transgenic plant of the present invention.

- [0120] Open-Pollinated Populations. The improvement of open-pollinated populations of such crops as rye, many maizes and sugar beets, herbage grasses, legumes such as alfalfa and clover, and tropical tree crops such as cacao, coconuts, oil palm and some rubber, depends essentially upon changing gene-frequencies towards fixation of favorable alleles while maintaining a high (but far from maximal) degree of heterozygosity. Uniformity in such populations is impossible and trueness-to-type in an open-pollinated variety is a statistical feature of the population as a whole, not a characteristic of individual plants. Thus, the heterogeneity of open-pollinated populations contrasts with the homogeneity (or virtually so) of inbred lines, clones and hybrids.
- ⁴⁵ (or virtually so) of inbred lines, clones and hybrids.
 [0121] Population improvement methods fall naturally into two groups, those based on purely phenotypic selection, normally called mass selection, and those based on selection with progeny testing. Interpopulation improvement utilizes the concept of open breeding populations; allowing genes to flow from one population to another. Plants in one population (cultivar, strain, ecotype, or any germplasm source) are crossed either naturally (e.g., by wind) or by hand or by bees
- ⁵⁰ (commonly *Apis mellifera L.* or *Megachile rotundata F.*) with plants from other populations. Selection is applied to improve one (or sometimes both) population(s) by isolating plants with desirable traits from both sources.
 [0122] There are basically two primary methods of open-pollinated population improvement. First, there is the situation in which a population is changed en masse by a chosen selection procedure. The outcome is an improved population that is indefinitely propagable by random-mating within itself in isolation. Second, the synthetic variety attains the same
- ⁵⁵ end result as population improvement but is not itself propagable as such; it has to be reconstructed from parental lines or clones. These plant breeding procedures for improving open-pollinated populations are well known to those skilled in the art and comprehensive reviews of breeding procedures routinely used for improving cross-pollinated plants are provided in numerous texts and articles, including: Allard, Principles of Plant Breeding, John Wiley & Sons, Inc. (1960);

Simmonds, Principles of Crop Improvement, Longman Group Limited (1979); Hallauer and Miranda, Quantitative Genetics in Maize Breeding, Iowa State University Press (1981); and, Jensen, Plant Breeding Methodology, John Wiley & Sons, Inc. (1988).

[0123] Mass Selection. In mass selection, desirable individual plants are chosen, harvested, and the seed composited 5 without progeny testing to produce the following generation. Since selection is based on the maternal parent only, and there is no control over pollination, mass selection amounts to a form of random mating with selection. As stated herein,

the purpose of mass selection is to increase the proportion of superior genotypes in the population. [0124] Synthetics. A synthetic variety is produced by crossing inter se a number of genotypes selected for good combining ability in all possible hybrid combinations, with subsequent maintenance of the variety by open pollination.

- 10 Whether parents are (more or less inbred) seed-propagated lines, as in some sugar beet and beans (Vicia) or clones, as in herbage grasses, clovers and alfalfa, makes no difference in principle. Parents are selected on general combining ability, sometimes by test crosses or topcrosses, more generally by polycrosses. Parental seed lines may be deliberately inbred (e.g. by selfing or sib crossing). However, even if the parents are not deliberately inbred, selection within lines during line maintenance will ensure that some inbreeding occurs. Clonal parents will, of course, remain unchanged and
- 15 highly heterozygous.

[0125] Whether a synthetic can go straight from the parental seed production plot to the farmer or must first undergo one or two cycles of multiplication depends on seed production and the scale of demand for seed. In practice, grasses and clovers are generally multiplied once or twice and are thus considerably removed from the original synthetic.

[0126] While mass selection is sometimes used, progeny testing is generally preferred for polycrosses, because of 20 their operational simplicity and obvious relevance to the objective, namely exploitation of general combining ability in a synthetic.

[0127] The number of parental lines or clones that enter a synthetic varies widely. In practice, numbers of parental lines range from 10 to several hundred, with 100-200 being the average. Broad based synthetics formed from 100 or more clones would be expected to be more stable during seed multiplication than narrow based synthetics.

- 25 [0128] Pedigreed varieties. A pedigreed variety is a superior genotype developed from selection of individual plants out of a segregating population followed by propagation and seed increase of self pollinated offspring and careful testing of the genotype over several generations. This is an open pollinated method that works well with naturally self pollinating species. This method can be used in combination with mass selection in variety development. Variations in pedigree and mass selection in combination are the most common methods for generating varieties in self pollinated crops.
- 30 [0129] <u>Hybrids</u>. A hybrid is an individual plant resulting from a cross between parents of differing genotypes. Commercial hybrids are now used extensively in many crops, including corn (maize), sorghum, sugarbeet, sunflower and broccoli. Hybrids can be formed in a number of different ways, including by crossing two parents directly (single cross hybrids), by crossing a single cross hybrid with another parent (three-way or triple cross hybrids), or by crossing two different hybrids (four-way or double cross hybrids).
- 35 [0130] Strictly speaking, most individuals in an out breeding (i.e., open-pollinated) population are hybrids, but the term is usually reserved for cases in which the parents are individuals whose genomes are sufficiently distinct for them to be recognized as different species or subspecies. Hybrids may be fertile or sterile depending on qualitative and/or quantitative differences in the genomes of the two parents. Heterosis, or hybrid vigor, is usually associated with increased heterozygosity that results in increased vigor of growth, survival, and fertility of hybrids as compared with the parental lines
- 40 that were used to form the hybrid. Maximum heterosis is usually achieved by crossing two genetically different, highly inbred lines.

[0131] The production of hybrids is a well-developed industry, involving the isolated production of both the parental lines and the hybrids which result from crossing those lines. For a detailed discussion of the hybrid production process, see, e.g., Wright, Commercial Hybrid Seed Production 8:161-176, In Hybridization of Crop Plants.

45

50

Targeting Induced Local Lesions in Genomes (TILLING)

[0132] TILLING (Targeting Induced Local Lesions in Genomes) is a method in molecular biology that allows directed identification of mutations in a specific gene. TILLING® was introduced in 2000, using the model plant Arabidopsis thaliana. TILLING® has since been used as a reverse genetics method in other organisms such as zebrafish, corn, wheat, rice, soybean, tomato and lettuce.

[0133] The method combines a standard and efficient technique of mutagenesis with a chemical mutagen (e.g., Ethyl methanesulfonate (EMS)) with a sensitive DNA screening-technique that identifies single base mutations (also called point mutations) in a target gene. EcoTILLING is a method that uses TILLING® techniques to look for natural mutations

55 in individuals, usually for population genetics analysis. See Comai, et al., 2003. Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. The Plant Journal 37, 778-786. Gilchrist et al. 2006. Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol. Ecol. 15, 1367-1378. Mejlhede et al. 2006. EcoTILLING for the identification of allelic variation within the powdery mildew resistance genes

mlo and Mla of barley. Plant Breeding 125, 461-467. Nieto et al. 2007, EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biology 7, 34-42, each of which is incorporated by reference hereby for all purposes. DEcoTILLING is a modification of TILLING® and EcoTILLING which uses an inexpensive method to identify fragments (Garvin et al., 2007, DEco-TILLING: An inexpensive method for SNP discovery that reduces apparteinment bios. Malexular Ecology Nates 7, 725, 746).

- ⁵ that reduces ascertainment bias. Molecular Ecology Notes 7, 735-746). [0134] The TILLING® method relies on the formation of heteroduplexes that are formed when multiple alleles (which could be from a heterozygote or a pool of multiple homozygotes and heterozygotes) are amplified in a PCR, heated, and then slowly cooled. A "bubble" forms at the mismatch of the two DNA strands (the induced mutation in TILLING® or the natural mutation or SNP in EcoTILLING), which is then cleaved by single stranded nucleases. The products are then separated by size on several different platforms.
- then separated by size on several different platforms. [0135] Several TILLING® centers exists over the world that focus on agriculturally important species: UC Davis (USA), focusing on Rice; Purdue University (USA), focusing on Maize; University of British Columbia (CA), focusing on Brassica napus; John Innes Centre (UK), focusing on Brassica rapa; Fred Hutchinson Cancer Research, focusing on Arabidopsis; Southern Illinois University (USA), focusing on Soybean; John Innes Centre (UK), focusing on Lotus and Medicago;
- ¹⁵ and INRA (France), focusing on Pea and Tomato. [0136] More detailed description on methods and compositions on TILLING® can be found in references Nos. 1 - 35b, US 5994075, US 2004/0053236 A1, WO 2005/055704, and WO 2005/048692, each of which is hereby incorporated by reference for all purposes.
- 20 Triticeae tribe

[0137] Intense use of wild Triticeae can be seen in the Levant as early as 23,000 years ago. Triticeae is a tribe within the Pooideae subfamily of grasses that includes genera with many domesticated species. Major crop genera are found in this tribe including wheat (See Wheat taxonomy), barley, and rye; crops in other genera include some for human

²⁵ consumption and others used for animal feed or rangeland protection. Among the world's cultivated species, this tribe has some of the most complex genetic histories. An example is bread wheat, which contains the genomes of three species, only one of them originally a wheat *Triticum* species.

[0138] Genera in the *Triticeae* tribe include, but are not limited to, Aegilops (goat grasses - jointed goatgrass, Tausch goatgrass, etc.); Agropyron (crested wheatgrasses - Desert wheatgrass, quackgrass, etc.); Amblyopyrum (Slim wheat

- ³⁰ grass amblyopyrum, etc.); Australopyrum (Australian wheatgrasses velvet wheatgrass, pectinated wheatgrass, etc.); Cockaynea (See Stenostachys; Cockaynea is a younger, and hence invalid, name for Stenostachys, etc.); Crithopsis (delileana grass etc.); Dasypyrum (Mosquito grass; etc.); Elymus (Elymus (wild ryes - blue wildrye, Texas ryegrass, etc.); Elytrigia; Eremium (Argentine desert ryegrass, etc.); Eremopyrum (false wheatgrasses - tapertip false wheatgrass, annual wheatgrass, etc.); Festucopsis; Haynaldia; Henrardia; Heteranthelium; Hordelymus; Hordeum (barleys - common barley,
- ³⁵ foxtail barley, etc.); Hystrix (porcupine grass- bottlebrush grass, etc.); Kengyilia; Leymus (wild rye- American dune grass,lyme grass, etc.); Lophopyrum (tall wheatgrass); Malacurus Pascopyrum(western wheatgrass etc.); Peridictyon; Psathyrostachys (Russian wildrye, etc.); Pseudoroegneria (bluebunch wheatgrasses beardless wheatgrass, etc.); Secale (Ryes Cereal rye, Himalayan Rye, etc.); Sitanion; Stenostachys (New Zealand wheatgrasses, etc.); Taeniatherum (medusahead etc.); Thinopyrum (intermediate wheatgrass, Russian wheatgrass, thick guackgrass, etc.);
- 40 Triticum (Wheats common wheat, durum wheat, etc.).
 [0139] Triticeae and its sister tribe Bromeae (possible cultivars: Bromus mango S. America) when joined form a sister clade with Poeae and Aveneae (oats). Inter-generic gene flow characterized these taxa from the early stages. For example, Poeae and Aveneae share a genetic marker with barley and 10 other members of Triticeae, whereas all 19 genera of Triticeae bear a wheat marker along with Bromeae. Genera within Triticeae contain diploid, allotetraploid
- ⁴⁵ and/or allohexaploid genomes, the capacity to form allopolyploid genomes varies within the tribe. In this tribe, the majority of diploid species tested are closely related to Aegilops, the more distal members (earliest branch points) include Hordeum (Barley), Eremian, Psathyrostachys.

[0140] Many genera and species of Triticeae are exemplary of allopolyploids, having more chromosomes than seen in typical diploids. Typically allopolyploids are tetraploid or hexaploid, AABB or AABBDD. The creation of polyploid

⁵⁰ species results from natural random events tolerated by polyploid capable plants. Likewise natural allopolyploid plants may have selective benefits and may allow the recombination of distantly related genetic material facilitating at a later time a reversion back to diploid. Poulard wheat is an example of a stable allotetraploid wheat.

[0141] Aegilops appears to be basal to several taxa such as Triticum, Ambylopyrum, and Crithopsis. Certain species such as Aegilops speltoides could potentially represent core variants of the taxa. The generic placement may be more a matter of nomenclature. Aegilops and Triticum genera are very closely related as the Aegilops species occupy most of the basal branch points in bread wheat evolution indicating that Triticum genus evolved from Aegilops after an estimated 4 million years ago. The divergence of the genomes is followed by allotetraploidation of a speltoid goatgrass x basal wheat species *Triticum boeoticum* with strains in the Middle Eastern region giving rise to cultivated emmer wheat.

Triticum spp.

[0142] Triticum sp. is a grass cultivated worldwide. In 2007 world production of wheat was 607 million tons, making it the third most-produced cereal after maize (784 million tons) and rice (651 million tons). Globally, wheat is the leading source of vegetable protein in human food, having a higher protein content than either maize (corn) or rice, the other major cereals. In terms of total production tonnages used for food, it is currently second to rice as the main human food [0143] Wheat is planted to a limited extent as a forage crop for livestock, and its straw can be used as a construction material for roofing thatch. The husk of the grain, separated when milling white flour, is bran. Wheat germ is the embryo portion of the wheat kernel. It is a concentrated source of vitamins, minerals, and protein, and is sustained by the larger, starch storage region of the kernel-the endosperm.

[0144] Non-limiting examples of *Triticum* species include, *T. aestivum* (e.g., common wheat, or bread wheat, a.k.a. *Triticum aestivum* L. subsp. *Aestivum*; Club wheat, a.k.a. *Triticum aestivum* subspecies *compactum* (Host) MacKey; Macha wheat, a.k.a. *Triticum aestivum* subsp. *macha* (Dek. and Men.) MacKey; Vavilovi wheat, a.k.a. *Triticum aestivum* subsp. *vavilovi* (Tuman) Sears; Shot wheat, a.k.a. *Triticum aestivum* subsp. *sphacrococcum* (Perc.) MacKey), *T. aethi*

- ¹⁵ opicum, T araraticum, T. boeoticum (e.g., wild Einkorn, a.k.a. Triticum boeotictim Boiss), T. carthlicum, T. compactum, T. dimitrium, T. dicoccoides (e.g., wild emmer, a.k.a. Triticum dicoccoides (Koern. ex Ascb. & Graebn.) Aaronsohn.), T. dicoccum (e.g., Emmer), T. durum (e.g., durum wheat), T. ispahanicum, T. karamyschevii, T. macha, T. militinae, T. monococcum (e.g., Einkorn, a.k.a. Triticum monococcum L.), T. polonicum, T. spelta, T. sphaerococcum, T. timopheevii (e.g. timopheevi wheat, a.k.a. Triticum timopheevii (Zbuk.) Zbuk.), T. turanicum (e.g., oriental wheat, a.k.a. Triticum
- 20 turanicum jakubz), T. turgidum (e.g., poulard wheat, a.k.a. Triticum turgidum L.), T. urartu, T. vavilovii, and T. zhukovskyi. [0145] Wheat genetics is more complicated than that of most other domesticated species. Some wheat species are diploid, with two sets of chromosomes, but many are stable polyploids, with four sets of chromosomes (tetraploid) or six (hexaploid). Most tetraploid wheats (e.g. emmer and durum wheat) are derived from wild emmer, T. dicoccoides. Wild emmer is itself the result of a hybridization between two diploid wild grasses, T. urartu and a wild goatgrass such as
- Aegilops searsii or Ae. speltoides. The unknown grass has never been identified among now surviving wild grasses, but the closest living relative is Aegilops speltoides. The hybridization that formed wild emmer (AABB) occurred in the wild, long before domestication, and was driven by natural selection. Hexaploid wheats evolved in farmers' fields. Common wheat (*Triticum aestivum*, 2n = 42, AABBDD) is one of the most important cereal crops in the world. Either domesticated emmer or durum wheat hybridized with yet another wild diploid grass (*Aegilops cylindrica*) to make the hexaploid wheats,
- ³⁰ spelt wheat and bread wheat. These have three sets of paired chromosomes, three times as many as in diploid wheat. Synthetic hexaploids made by crossing the wild goatgrass wheat ancestor *Aegilops tauschii* and various durum wheats are now being deployed, and these increase the genetic diversity of cultivated wheats. [0146] Plant breeding methods for *Triticum spp.* are well known. Non-limiting methods for *Triticum spp.* breeding and
- ¹ agriculturally important traits (e.g., improving wheat yield, biotic stress tolerance, and abiotic stress tolerance etc.) are described in references Nos. 36 51, US 7652204, US 6197518, US 7034208, US 7528297, US 6407311, US20080040826, US20090300783, US20060223707, US20110027233, US20080028480, US20090320152, US20090320151, WO/2001/029237A2, WO/2008/02S097A1, and WO/2003/057848A2, each of which is incorporated by reference in its entirety for all purposes.
- [0147] Genetic materials may be transferred between *Triticum spp.* and other species, for example, some plant species in the *Triticeae* tribe. Xiang et al., describe somatic hybrids between wheat and *Setaria italica* (Genome 47: 680-688 (2004)); Ge et al. describe protoplast electrofusion between common wheat and Italian ryegrass (In Vitro Cellular and Developmental Biology Plant 42(2):179-187. 2006); Yue e al. describe asymmetic somatic hybridization between *Aeleuropus littorulis sinensis* and wheat (Plant Science, Volume 161, Issue 2, July 2001, Pages 259-266); Cai et al. describe somatic hybrids between *Festuca arundinacea Schreb.* and wheat (*Triticum aestivum* L.); Xiang et al. describe
- ⁴⁵ asymmetric somatic hybridization between wheat and Avena sativa L. (Science in China, Vol 46(3), 243-252); Zhou et al. describe asymmetric somatic hybridization between wheat and asymmetric somatic hybridization between wheat and Avena sativa Haynaldia villosa (Science in China, 44(3): 294-304); Xia et al. describe asymmetric somatic hybridization between wheat and Agropyron elongatum (Host) Nevishi (Theor Appl Genet. 2003 Jul;107(2):299-305. Epub 2003 Mar 19); Li et al. describe symmetric somatic hybridization between wheat and Psathyrostachys juncea (Sheng
- ⁵⁰ Wu Gong Cheng Xue Bao. 2004 Jul;20(4):610-4). More hybridization between *Triticum* spp. and other species are described in reference Nos. 77-86.

Oryzeae tribe

⁵⁵ **[0148]** The tribe Oryzeae (Poaceae), as conventionally delimited, includes approximately 12 genera and more than 70 species distributed throughout the tropical and temperate regions of the world (Clayton and Renvoize, 1986; Vaughan, 1994). As the largest tribe in the subfamily Ehrhartoideae, Oryzeae contains more than half of both genera and species of the subfamily (Guo et al., 2005, Watson and Dallwitz, 1999; GPWG, 2001).

[0149] Genera in the Oryzeae tribe include, but are not limited to, Chikusichloa Koidz, Hygroryza Nees, Leersia Sw., Luziola Juss, Maltebrunia Kunth, Oryza L., Porteresia Tateoka, Potamophila R.Br., Prosphytochloa Schweick., Rhynchoryza Baill., Zizania L., and Zizaniopsis Doll & Asch.

5 Oryza spp.

[0150] Oryza is a genus of seven to twenty species of grasses in the tribe Oryzeae, native to tropical and subtropical regions of Asia, Northern Australia and Africa. They are tall wetland grasses, growing to 1-2 m tall; the genus includes both annual and perennial species.

- 10 [0151] Oryza is situated within the tribe Oryzeae, which is characterized morphologically by its single flowered spikelets whose glumes are almost completely suppressed. In Oryza, two sterile lemma simulate glumes. The tribe Oryzeae is within the subfamily Bambusoideae, a group of Poaceae tribes with certain features of internal leaf anatomy in common. The Bambusoideae are in the family Poaceae, as they all have fibrous root systems, cylindrical stems, sheathing leaves with parallel veined blades, and inflorescences with spikelets.
- [0152] Non-limiting Oryza spp. include, O. sativa (e.g., Asian rice), O. barthii, O. glaberrima (e.g., Africa rice), O. 15 longistaminata, O. meridionalis, O. nivara, O. rufipogon (e.g., brownbeard rice and red rice), O. punctata, O. latifolia, O. alta, O. grandiglumis, O. eichingeri, O. officinalis, O. rhisomatis, O. minuta, O. australiensis, O. granulata, O. meyeriana, and O. brachyantha.
- [0153] Oryza sativa contains two major subspecies: the sticky, short grained japonica or sinica variety, and the non-20 sticky, long-grained indica variety. Japonica are usually cultivated in dry fields, in temperate East Asia, upland areas of Southeast Asia and high elevations in South Asia, while indica are mainly lowland rices, grown mostly submerged, throughout tropical Asia. Rice is known to come in a variety of colors, including: white, brown, black, purple, and red. A third subspecies, which is broad-grained and thrives under tropical conditions, was identified based on morphology and initially called javanica, but is now known as tropical japonica. Examples of this variety include the medium grain 'Tinawon'
- 25 and 'Unoy' cultivars, which are grown in the high-elevation rice terraces of the Cordillera Mountains of northern Luzon, Philippines. Glaszmann (1987) used isozymcs to sort Oryza sativa into six groups: japonica, aromatic, indica, aus, rayada, and ashina; Garris et al. (2004) used SSRs to sort Oryza sativa into five groups; temperate japonica, tropical japonica and aromatic comprise the japonica varieties, while indica and aus comprise the indica varieties.
- [0154] Plant breeding methods for Oryza spp. are well known. Non-limiting methods for Oryza spp. breeding and 30 agriculturally important traits (e.g., improving wheat yield, biotic stress tolerance, and abiotic stress tolerance etc.) are described in references Nos. 56 - 76, US20050097639, US20040168232. US20100287664, US20080109919, US 5981842, and US20050183173, WO/2003/000904A2.

[0155] Genetic materials may be transferred between Oryza spp. and other species, for example, some plant species in the Oryzeae tribe. Yan et al. (Plant Cell Rep. 2004 Mar;22(8):569-75. Epub 2003 Nov 1.) and Yu et al. (Phytochemistry.

- 35 2008 Jul;69(10):1989-96) describe asymmetric somatic hybridization between O. meyeriana L. and O. sativa L; and Shan et al. describe asymmetric somatic hybridization between rice (O. sativa) and wild rice (Zizania latifolia Griseb.). Somatic hybrid plants of rice and barnyard grass (Terada et al., 1987), interspecies somatic hybrids between cultivated and wild species (Hayashi et al., 1988), and diploid hybrid plants form the cell fusion of haploid cells (Toriyama and Hinata 1988) have been reported. More hybridization between Oryza spp. and other species are described in reference 40 Nos. 86 - 92.

50

Fabaceae family and Soybean

[0156] Fabaceae or Leguminosae is a large and economically important family of flowering plants, which is commonly 45 known as the legume family, pea family, bean family or pulse family. The name 'Fabaceae' comes from the defunct genus Faba, now included into Vicia. Leguminosae is an older name still considered valid, and refers to the typical fruit of these plants, which are called legumes.

[0157] Fabaceae is the third largest family of flowering plants, behind Orchidaceae and Asteraceae, with 730 genera and over 19,400 species, according to the Royal Botanical Gardens. The largest genera are Astragalus with more than 2,000 species, Acacia with more than 900 species, and Indigofera with around 700 species. Other large genera include

Crotalaria with 600 species and Mimosa with 500 species. [0158] The species of this family are found throughout the world, growing in many different environments and climates. A number are important agricultural plants, including: Glycine max (soybean), Phaseolus (beans), Pisum sativum (pea), Cicer arietinum (chickpeas), Medicago sativa (alfalfa), Arachis hypogaea (peanut), Ceratonia siliqua (carob), and Gly-

55 cyrrhiza glabra (licorice), which are among the best known members of Fabaceae. A number of species are also weedy pests in different parts of the world, including: Cytisus scoparius (broom) and Pueraria lobata (kudzu), and a number of Lupinus species.

[0159] The soybean (U.S.) or soya bean (UK) (Glycine max) is a species of legume native to East Asia, widely grown

for its edible bean which has numerous uses. The plant is classed as an oilseed rather than a pulse. Fat-free (defatted) soybean meal is a primary, low-cost, source of protein for animal feeds and most prepackaged meals; soy vegetable oil is another valuable product of processing the soybean crop. For example, soybean products such as textured vegetable protein (TVP) are important ingredients in many meat and dairy analogues.

5

10

Kinase Inhibitor Protein (KIP) Related Protein (KRP)

[0160] Plants have cyclin dependent kinases (CDK) that regulate the transitions between different phases of the cell cycle (Verkest et al., 2005, Switching the Cell Cycle. Kip-Related Proteins in Plant Cell Cycle Control, Plant Physiology, November 2005, Vol. 139, pp. 1099-1106, incorporated by reference in its entirety herein).

- **[0161]** In Arabidopsis (*Arabidopsis thaliana*), at least two classes of CDKs are involved in cell cycle regulation: the A-type CDKs that are represented by only one gene in the model species Arabidopsis (designated Arath;CDKA;1) and the B-type CDK family that has four members, grouped into the B1 (Arath;CDKB1;1 and Arath;CDKB1;2) and B2 (Arath; CDKB2;1 and Arath;CDKB2;2) subclasses (Vandepoele et al., 2002, Genome-wide analysis of core cell cycle genes in
- ¹⁵ Arabidopsis. Plant Cell 14: 903-916). A-type CDKs display kinase activity from late G1 phase until the end of mitosis, suggesting a role for this particular CDK at both the G1-to-S and G2-to-M transition points (Magyar et al., 1997; Porceddu et al., 2001; Sorrell et al., 2001). A central role for CDKA;1 in controlling cell number has been demonstrated using transgenic tobacco (*Nicotiana tabacum*) plants with reduced A-type CDK activity (Hemerly et al., 1995). The requirement for Arath;CKDA;1 at least for entry into mitosis has been demonstrated as well by cdka;1 null mutants that fail to progress
- ²⁰ through the second mitosis during male gametophytic development (Nowack et al., 2005). The group of B-type CDKs displays a peak of activity at the G2-to-M phase transition only (Magyar et al., 1997; Porceddu et al., 2001; Sorrell et al., 2001), suggesting that they play a role at the onset of, or progression through, mitosis. Correspondingly, cells of plants with reduced B-type CDK activity arrest in the G2 phase of the cell cycle (Porceddu et al., 2001; Boudolf et al., 2004). [0162] CDK is regulated by cyclins. Plant cyclins are very complicated. There are at least 49 different cyclins in
- Arabidopsis, which were classified into seven subclasses (A, B, C, D, H, P, and T) (Vandepoele et al., 2002; Wang et al., 2004). CDK are also regulated by docking of small proteins, generally known as CDK inhibitors (CKIs). CKIs have been identified in many organisms, e.g., budding yeast (*Saccharomyces cerevisiae*), fission yeast (*Schizosaccharomyces pombe*), mammals, and plants, see, Mendenhall, 1998; Kwon T.K. et al. 1998; Vlach J. et al. 1997; Russo et al., 1996; Wang et al., 1997, 1998 and 2000; Lui et al., 2000; De Veylder et al., 2001; Jasinski et al., 2002a, 2002b; Coelho et al.,
- 2005; Jasinski S. et al., 2002, each of which is incorporated by reference in its entirety).
 [0163] Plant CKIs are also known as KIP Related Proteins (KRPs). They have cyclin binding and CDK binding domains at their C-terminal, however the mechanism regulating this protein stability and function remains unknown (Zhou et al., 2003a; Weinl et al. 2005). KRP activity can be both regulated at the transcriptional level or at the posttranslational level (Wang et al., 1998; De Veylder et al., 2001; Jasinski et al., 2002b; Ormenese et al., 2004; Coqueret, 2003; Hengst,
- ³⁵ 2004; Verkest et al., 2005; Coelho et al., 2005, each of which is incorporated by reference in its entirety). KRPs in plant normally localize in nucleus (Jasinski et al., 2002b; Zhou et al., 2003a; Weinl et al., 2005).
 [0164] KRP can function as an integrator of developmental signals, and control endocycle onset, in different cell cycle programs (e.g., proliferation, endoreduplication, and cell cycle exit). See Wang et al., 1998; Richard et al., 2001; Himanen et al., 2002; Grafi and Larkins, 1995; Joube's et al., 1999; Verkest et al., 2005; Weinl et al., 2005; Boudolf et al., 2004b.
- 40

45

KRP Mutations

[0165] The present invention further provides disrupted *KRP* polynucleotides and KRP amino acid sequences compared to a wild type *KRP* gene or a wild type KRP protein. In some embodiments, the present invention provides mutations in one or more *KRP* genes that can be used to increase weight, size, and/or number of one or more organs, for example, to increase seed size, seed number, seed weight, and/or seed yield in a plant.

[0166] The mutations in a mutated *KRP* gene of the present invention can be in the coding region or the non-coding region of the *KRP* genes. The mutations can either lead to, or not lead to amino acid changes in the encoded KRP polypeptides. In some embodiments, the mutations can be missense, severe missense, silent, nonsense mutations. For

- ⁵⁰ example, the mutation can be nucleotide substitution, insertion, deletion, or genome re-arrangement, which in turn may lead to reading frame shift, splicing change, amino acid substitution, insertion, deletion, and/or polypeptides truncation. As a result, the mutant *KRP* gene encodes a KRP polypeptide having less inhibition activity on a cyclin/CDK complex compared to a polypeptide encoded by its corresponding wild-type *KRP* gene.
- **[0167]** As used herein, a nonsense mutation is a point mutation, e.g., a single-nucleotide polymorphism (SNP), in a sequence of DNA that results in a premature stop codon, or a nonsense codon in the transcribed mRNA, and in a truncated, incomplete, and usually nonfunctional protein product. A missense mutation (a type of nonsynonymous mutation) is a point mutation in which a single nucleotide is changed, resulting in a codon that codes for a different amino acid (mutations that change an amino acid to a stop codon are considered nonsense mutations, rather than missense

mutations). This can render the resulting protein nonfunctional. Silent mutations are DNA mutations that do not result in a change to the amino acid sequence of a protein. They may occur in a non-coding region (outside of a gene or within an intron), or they may occur within an exon in a manner that does not alter the final amino acid sequence. A severe missense mutation changes the amino acid, which lead to dramatic changes in conformation, charge status etc.

⁵ [0168] The mutations can be located at any portion of a *KRP* gene, for example, at the 5', the middle, or the 3' of a *KRP* gene, resulting mutations in any potions of the encoded KRP protein, for example, in the CDK binding domain or the cyclin binding domain, so long as the mutated gene encodes a mutant KRP polypeptide partially or completely lose the ability to inhibit one or more cyclin/CDK complexes, compared to the protein encoded by the corresponding wild type *KRP* gene. The KRP and the cyclin/CDK complexes can belong to the same plant species, different plant species in the same genus, or different plant species in different species.

[0169] The present invention provides effective systems to test if a candidate mutant KRP protein loses the inhibition ability on a cyclin/CDK complex compared to a wild type KRP protein. The effective systems comprise a kinase assay (the *"in vitro* KRP-Cylin-CDK kinase assay"), a non-limiting example of which is described herein.

- [0170] Basically in this kinase assay is an *in vitro* kinase assay. In the assay, a candidate mutant KRP derived from a wild type KRP of a plant species A, the wild type KRP protein of the plant species A, a wild type cyclin protein of a plant species B, and a wild type CDK protein of the plant species B, are recombinantly expressed and purified. Then, the recombinant wild type cyclin protein and the wild type CDK protein are mixed to form a complex (alternatively, the cyclin protein and the CDK protein can be co-expressed and co-purified as a complex). In some embodiments, the recombinant proteins are expressed in insect cells. Plant species A can be the same as or different from plant species
- B. This kinase activity of said complex is then monitored with a standard kinase assay described below. A substrate protein that can be activated (i.e., phosphorylated) by the Cyclin-CDK complex is selected. Such substrate protein can be Histone HI (HHI) or recombinant tobacco retinoblastoma protein (Nt Rb). At least three mixtures can be made by adding recombinant proteins into a kinase buffer cocktail according to the table below:

25	Compositions	Mixture I	Mixture II	Mixture III		
	I. Kinase complex comprising the wild-type cyclin protein and the wild-type CDK protein of the plant species B	at concentration of C1	at concentration of C1	at concentration of C1		
30	II. Wild-type KRP protein of the plant species A	0	at concentration of C2*	0		
35	III. Candidate mutant KRP derived from the wild-type KRP of the plant species A	0	0	at concentration of C3**		
	IV. Substrate	at concentration of C4	at concentration of C4	at concentration of C4		
40	Kinase Activity	100% (no inhibition)	X% (wt inhibition)	Y% (mutant inhibition)		
	* C2 is an amount of WT KRP that is sufficient to give between 0% and 20% kinase activity compared to mixture I.					

45

** C3 should be no more than 50X C2

A non-limiting example of the kinase buffer cocktail comprises KAB: 50 mM Tris pH 8.0, 10 mM MgCl₂, 100 μ M ATP plus 0.5 μ Ci/ml 32 P γ ATP and the substrate protein. Concentrations C1, C2, and C3 can be determined and optimized by one skilled in the art depending on experiment conditions.

- **[0171]** To determine if a candidate mutant KRP loses inhibition ability on the kinase complex, C2 should be about equimolar with C1; and, C3 should be no more than 50X of C2, or no more than 40X of C2, or no more than 30X of C2, or no more than 20X of C2, or no more than 10X of C2, or no more than 5X of C2. For example, in some instances the amount of C3 is about 1X, or about 2X, or about 3X, or about 4X, or about 5X, or about 6X, or about 7X, or about 8X, or about 9X, or about 10X, or about 11X, or about 12X, or about 13X, or about 14X, or about 15X, or about 16X, or
- ⁵⁵ 17X, or about 18X, or about 19X, or about 20X of the amount of C2. In some situations, however, the amount of C3 may be about 25X, or about 30X, or about 35X, or about 40X, or about 45X, or about 50X of the amount of C2. As discussed elsewhere herein, the amount of C3 which is utilized in any particular situation must be physiologically achievable in a plant cell, tissue or whole plant in order to have a dominant negative effect on the wild-type KRP.

[0172] Composition I and/or Composition III are incubated on ice for a certain amount of time (e.g., 30 minutes). Subsequently, Composition II is then added to the mixture and incubated at 4° C. for certain amount of time (e.g., 30 mins) to allow binding to the kinase complex. The kinase reaction is then initiated by adding the buffer cocktail (KAB) and to the kinase complex mixture (I, II, or III) and incubated at 27°C for a certain amount of time (e.g., 30 minutes) to

- ⁵ allow reaction to complete. The kinase reaction in each mixture is stopped with an equal volume of 2× Laemmli buffer and boiled for 5 minutes. Next, monitor [³²P] phosphate incorporation to the substrate protein by autoradiography and/or Molecular Dynamics PhosphorImager following SDS-PAGE in each mixture. The signal strength of [³²P] phosphate incorporation in Mixture I is set as 100% percent recovery of kinase function. The strength of [³²P] phosphate incorporation in Mixture II is compared to that of Mixture I, calculated as X%; the strength of [³²P] phosphate incorporation in Mixture
- III is compared to that of Mixture I, calculated as Y%. For example, if the signal strength is half of what is observed for Mixture I, the calculated percent recovery of kinase activity is 50%.
 [0173] The X% is compared with Y%, and the effect of the tested mutant KRP is calculated as follows: let Z% = (Y% X%), and Zmax% is the maximum Z% within the allowable range of C2 and C3; if Zmax% is not statistically higher than 0% (i.e., Y% ≤ X%), the tested mutant KRP does not lose inhibition activity on the complex compared to the
- ¹⁵ corresponding wild type KRP; if Zmax% is statistically higher that 0% (i.e., Y% > X%), but less than 30%, the tested mutant KRP has weak inhibition activity compared to the tested wild-type KRP; if Zmax% is higher that 30%, but less than 50%, the tested mutant KRP substantially loses inhibition activity compared to the tested wild-type KRP; if Zmax% is higher that 50%, the tested mutant KRP strongly loses inhibition activity compared to the tested wild-type KRP; if Zmax% is higher that 50%, the tested mutant KRP strongly loses inhibition activity compared to the tested wild-type KRP. In some embodiments, the mutant KRPs of the present invention do not substantially inhibit the kinase activity of the
- ²⁰ cyclin/CDK complex, even when present in large molar excess over the cyclin/CDK complex. Mutant KRPs with a Zmax% value higher than 0% are particularly useful for increasing weight, size, and/or number of one or more organs, for example, for increasing seed yield, seed size, seed number, and/or seed yield in a plant.
 [0174] The CDK protein and the cyclin protein in the cyclin/CDK complex can be derived from any plant, for example,

any dicot plants or monocot plants, especially agriculturally or industrially important plants. The CDK protein and the

- ²⁵ cyclin protein can be derived from the same plant species, or from different species. The KRP protein can be derived from the same species from which the CDK protein and the cyclin protein are derived, or from different plant species. In some embodiments, the Cyclin/CDK complexes comprise a CDK protein selected from the group consisting of *Zea mays* CDK A;1 (ZmCDKA;1), *Zea mays* CDK A;2 (ZmCDKA;2), wheat CDKs (e.g., GenBank Accession No. AAD10483, and rice CDKs (e.g., GenBank Accession No. NP_001048772 and NP_001045731), and CDKs from a plant in the
- Triticeae tribe or Oryzeae tribe, or the Fabaceae family; the cyclin protein selected from the group consisting of Zea mays Cyclin D1, D2, D3, D4, D5, D6, D7, wheat cyclin proteins (e.g., GenBank Accession No. AAQ08041 (cyclin D2)), rice cyclin proteins (e.g., GenBank Accession Nos. Q67V81 (cyclin-D1;1), Q8H339 (cyclin-D1;2), Q0J233 (cyclin-D2;1), Q10K98 (cyclin-D2;3), Q69QB8 (cyclin-D3;1), Q0DQA9 (cyclin-D5;1), Q53MB7 (cyclin-D7;1)), cyclin proteins from a plant in the Triticeae tribe or Oryzeae tribe, or the Fabaceae family, and combinations thereof, and the wild-type KRPs
- ³⁵ are selected from the group consisting of wheat KRP1 (TaKRP1), wheat KRP2 (TaKRP2), wheat KRP3 (TaKRP3), wheat KRP4 (TaKRP4), wheat KRP5 (TaKRP5), wheat KRP6 (TaKRP6), for example, SEQ ID NOs. 87-98, 140, 143, and 146, or functional variants thereof, rice KRP1, rice KRP2, rice KRP3, rice KRP4, rice KRP5, rice KRP6, rice KRP7, for example, SEQ ID NOs. 99, 108-110, or functional variants thereof, soy KRPs, for example, SEQ ID NOs. 129-137, or functional variants thereof, KRPs from a plant in the *Triticeae* tribe or *Oryzeae* tribe, the *Fabaceae* family, and
- 40 combinations thereof. For example, the wild-type KRP is wheat KRP1, wheat KRP2, wheat KRP4, wheat KRP5, or wheat KRP6. The numbering of the KRPs in wheat or rice does not necessarily correspond to the numbering of the KRPs in other species (e.g., Arabidopsis or maize). For example, wheat KRP1 is not necessarily equivalent or orthologous to Arabidopsis KRP1.
- [0175] In some embodiments, the Zea mays cyclin is selected from the 59 cyclins described in Hu et al., 2010, which
 ⁴⁵ is incorporated herein by reference in its entirety. In some embodiments, Zea mays cyclin is selected from the 21 cyclin
 D proteins described in Hu et al., 2010. For example, the cyclin is selected from the group consisting of Zea mays cyclin
 D1;1, D2;1, D2;2, D3;1, D3;2, D4;1, D4;2, D4;3, D4;4, D4;5, D4;6, D4;7, D4;8, D4;9, D4;10, D5;1, D5;2, D5;3, D5;4, D6;1, D7;1, and combination thereof.
- [0176] In some embodiments, said mutant KRP is derived from a wheat KRP. In some embodiments, the mutant KRP is derived from wheat KRP1 (A,B, or D), wheat KRP2 (A,B, or D), wheat KRP4 (A, B, or D), wheat KRP5 (A, B, or D), or wheat KRP6 (A, B, or D). In some embodiments, said mutant KRP is derived from a rice KRP. In some embodiments, the mutant KRP is derived from rice KRP1, rice KRP2, rice KRP3, rice KRP4, or rice KRP5. In some embodiments, said mutant KRP is derived from a soybean KRP. In some other embodiments, said mutant KRP is derived from a biologically active variant, or fragment thereof of wild-type wheat, rice or soybean KRPs. The mutant KRP can be natural mutation, or a mutation induced artificially by methods well known to one skilled in the art.
- **[0177]** Mutant KRP protein of the present invention can have one or more modifications to the wild-type KRP, or biologically active variant, or fragment thereof. Particularly suitable modifications include amino acid substitutions, insertions, deletions, or truncation. For example, amino acid substitutions can be generated as modifications in the CDK

or the cyclin-binding region that reduce or eliminate binding. Similarly, amino acid substitutions can be generated as modifications in the CDK or the cyclin-binding region of the KRP that reduce or eliminate the inhibitory activity of the KRP towards the Cyclin/CDK complex. In typical embodiments, at least one non-conservative amino acid substitution, insertion, or deletion in the CDK binding region or the cyclin binding region is made to disrupt or modify binding of the

- ⁵ CKI polypeptide to a CDK or cyclin protein. The substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more amino acids have been substituted in the same molecule. Insertional KRP mutants are those with one or more amino acids inserted immediately adjacent to an amino acid at a particular position in the wild-type KRP protein molecule, biologically active variant, or fragment thereof. The insertion can be one or more amino acids. The insertion can consist, e.g., of one or two conservative amino acids. Amino
- ¹⁰ acids similar in charge and/or structure to the amino acids adjacent to the site of insertion are defined as conservative. Alternatively, mutant KRP protein includes the insertion of an amino acid with a charge and/or structure that is substantially different from the amino acids adjacent to the site of insertion. In some other embodiments, the mutant KRP is a truncated protein losing one or more domains compared to the corresponding wild type KRP protein.

¹⁵ Methods of Increasing Organ Weight, Organ Size, Organ Number and/or Yield

[0178] The present invention further provides methods of increasing weight, size, and/or number of one or more organs, for example, methods of increasing seed weight, seed size, seed number, and/or yield in a plant. The plant can be a dicot plant or a monocot plant. In some embodiments, the plant is a monocot plant. In some embodiments, the plant is a plant species in the *Triticeae* tribe or *Oryzeae* tribe, or the *Fabaceae* family, for example, a wheat plant or a

- ²⁰ plant is a plant species in the *Triticeae* tribe or *Oryzeae* tribe, or the *Fabaceae* family, for example, a wheat plant or a rice plant. In some embodiments, the methods comprise disrupting one or more KRPs in the plant. The disruption can be at genomic level, transcriptional level, post-transcriptional level, translational level, and/or post translational level. In some embodiments, the methods comprise introducing one or more mutations into one or more *KRP* genes in the plant. In some embodiments, the methods comprise knocking-down expression of one or more *KRP* genes in the plant. In some embodiments, the methods comprise knocking-down expression of one or more *KRP* genes in the plant.
- some embodiments, the methods comprise knocking-down KRP mRNAs stability in the plant. In some embodiments, the methods comprise down-regulating one or more KRP proteins activity in the plant.
 [0179] For example, in some embodiments, the methods comprise introducing one or more KRP mutants of the present invention into the genome of the plant. In some embodiments, the methods comprise hybridizing a first plant having one or more mutated KRPs of the present invention with a second plant. In some embodiments, the hybridizing step comprises
- 30 crossing the first plant with the second plant. In some embodiments, the hybridizing step comprises transferring the genetic materials in the first plant to the second plant through in vitro breeding, e.g., somatic hybridization.
 [0180] Alternatively, the methods comprise mutating one or more KRPs in a plant. Methods of mutating a target gene have been known to one skilled in the art. These methods include, but are not limited to, mutagenesis (e.g., chemical mutagenesis, radiation mutagenesis, transposon mutagenesis, insertional mutagenesis, signature tagged mutagenesis,
- ³⁵ site-directed mutagenesis, and natural mutagenesis), TILLING®, homologous recombination, knock-outs/knock-ins, antisense and RNA interference. Various types of mutagenesis can be used to produce and/or isolate variant nucleic acids that encode for protein molecules and/or to further modify/mutate the proteins of the present invention. They include but are not limited to site-directed, random point mutagenesis, homologous recombination, DNA shuffling, mutagenesis using uracil containing templates, oligonucleotide-directed mutagenesis, phosphorothioate-modified DNA mutagenesis,
- 40 mutagenesis using gapped duplex DNA or the like. Additional suitable methods include point mismatch repair, mutagenesis using repair-deficient host strains, restriction-selection and restriction-purification, deletion mutagenesis, mutagenesis by total gene synthesis, double-strand break repair, and the like. Mutagenesis, e.g., involving chimeric constructs, is also included in the present invention. In one embodiment, mutagenesis can be guided by known information of the naturally occurring molecule or altered or mutated naturally occurring molecule, e.g., sequence, sequence comparisons,
- ⁴⁵ physical properties, crystal structure or the like. For more information of mutagenesis in plants, such as agents, protocols, see reference Nos. 94 to 98, each of which is herein incorporated by reference in its entity).
 [0181] In some embodiments, random mutations in *KRP* genes are created *in vitro*. For example, a library of *KRP* genes with one or more random mutations can be generated, and the produced mutant KRP genes are subjected to the in vitro KRP-Cylin-CDK kinase assay described herein to determine if the mutant KRP genes can be used for increasing
- ⁵⁰ weight, size, and/or number of one or more organs, for example, for increasing seed size, seed number, seed weight and/or yield. Methods for in vitro mutagenesis include, but are not limited to error-prone PCR, Rolling circle error-prone PCR, mutator strains, temporary mutator strains, insertion mutagenesis, chemical mutagenesis (e.g., EMS, nitrous acid etc.), DNA shuffling, and site directed random mutagenesis. More methods are described in Chusacultanachai et al, Fujii et al., Braman, and Trower. Commercial random mutagenesis kits are available, such as Random Mutagenesis
- ⁵⁵ Kits from Jena Bioscience.cat. No. PP-101, Diversify® PCR random mutagenesis kit from Clontech. [0182] In some embodiments, mutated KRPs of the present invention are generated *in vivo* by methods such as TILLING®, site-directed mutagenesis, homologous recombination, etc. The produced mutant KRP genes are screened and subjected to the in vitro KRP-Cylin-CDK kinase assay described herein to determine if the mutant KRP genes can

be used for increasing weight, size, and/or number of one or more organs, for example, for increasing seed size, seed number, seed weight and/or yield.

[0183] In some embodiments, the methods comprise knocking down expression of one or more KRPs in the plant. Techniques which can be employed in accordance with the present invention to knock down gene expression, include,

- ⁵ but are not limited to: (1) disrupting a gene's transcript, such as disrupting a gene's mRNA transcript; (2) disrupting the function of a polypeptide encoded by a gene, or (3) disrupting the gene itself.
 [0184] For example, antisense RNA, ribozyme, dsRNAi, RNA interference (RNAi) technologies can be used in the present invention to target RNA transcripts of one or more *KRP* genes. Antisense RNA technology involves expressing in, or introducing into, a cell an RNA molecule (or RNA derivative) that is complementary to, or antisense to, sequences
- found in a particular mRNA in a cell. By associating with the mRNA, the antisense RNA can inhibit translation of the encoded gene product. The use of antisense technology to reduce or inhibit the expression of specific plant genes has been described, for example in European Patent Publication No. 271988, Smith et al., Nature, 334:724-726 (1988); Smith et. al., Plant Mol. Biol., 14:369-379 (1990)).
- [0185] A ribozyme is an RNA that has both a catalytic domain and a sequence that is complementary to a particular mRNA. The ribozyme functions by associating with the mRNA (through the complementary domain of the ribozyme) and then cleaving (degrading) the message using the catalytic domain.
 [0185] RNA interference (RNA) is the presence of sequence specific part transcriptional gape silencing or transcription.

[0186] RNA interference (RNAi) is the process of sequence-specific, post-transcriptional gene silencing or transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene. The RNAi technique is discussed, for example, in Elibashir, et al., Methods Enzymol. 26:199 (2002);

- ²⁰ McManus & Sharp, Nature Rev. Genetics 3:737 (2002); PCT application WO 01/75164; Martinez et al., Cell 110:563 (2002); Elbashir et al., supra; Lagos-Quintana et al., Curr. Biol. 12:735 (2002); Tuschl et al., Nature Biotechnol. 20:446 (2002); Tuschl, Chembiochem. 2:239 (2001); Harborth et al., J. Cell Sci. 114:4557 (2001); et al., EMBO J. 20:6877 (2001); Lagos-Quintana et al., Science 294:8538 (2001); Hutvagner et al., loc cit, 834; Elbashir et al., Nature 411:494 (2001).
- ²⁵ **[0187]** The term "dsRNA" or "dsRNA molecule" or "double-strand RNA effector molecule" refers to an at least partially double-strand ribonucleic acid molecule containing a region of at least about 19 or more nucleotides that are in a double-strand conformation. The double-stranded RNA effector molecule may be a duplex double-stranded RNA formed from two separate RNA strands or it may be a single RNA strand with regions of self-complementarity capable of assuming an at least partially double-stranded hairpin conformation (i.e., a hairpin dsRNA or stem-loop dsRNA). In various em-
- ³⁰ bodiments, the dsRNA consists entirely of ribonucleotides or consists of a mixture of ribonucleotides and deoxynucleotides, such as RNA/DNA hybrids. The dsRNA may be a single molecule with regions of self-complementarity such that nucleotides in one segment of the molecule base pair with nucleotides in another segment of the molecule. In one aspect, the regions of self-complementarity are linked by a region of at least about 3-4 nucleotides, or about 5, 6, 7, 9 to 15 nucleotides or more, which lacks complementarity to another part of the molecule and thus remains single-stranded
- (i.e., the "loop region"). Such a molecule will assume a partially double-stranded stem-loop structure, optionally, with short single stranded 5' and/or 3' ends. In one aspect the regions of self-complementarity of the hairpin dsRNA or the double-stranded region of a duplex dsRNA will comprise an Effector Sequence and an Effector Complement (e.g., linked by a single-stranded loop region in a hairpin dsRNA). The Effector Sequence or Effector Strand is that strand of the double-stranded region or duplex which is incorporated in or associates with RISC. In one aspect the double-stranded
- 40 RNA effector molecule will comprise an at least 19 contiguous nucleotide effector sequence, preferably 19 to 29, 19 to 27, or 19 to 21 nucleotides, which is a reverse complement to the RNA of KRPs, or an opposite strand replication intermediate, or the anti-genomic plus strand or non-mRNA plus strand sequences of KRPs. In one embodiment, said double-stranded RNA effector molecules are provided by providing to a plant, plant tissue, or plant cell an expression construct comprising one or more double-stranded RNA effector molecules. In one embodiment, the expression construct
- ⁴⁵ comprise a double-strand RNA derived from any one of SEQ ID NOs 60-86, 100-107, 111-128, 138-119, 141-142, and 144-145. One skilled in the art will be able to design suitable double-strand RNA effector molecule based on the nucleotide sequences of KRPs in the present invention.

[0188] In some embodiments, the dsRNA effector molecule of the invention is a "hairpin dsRNA", a "dsRNA hairpin", "short-hairpin RNA" or "shRNA", i.e., an RNA molecule of less than approximately 400 to 500 nucleotides (nt), or less

- ⁵⁰ than 100 to 200 nt, in which at least one stretch of at least 15 to 100 nucleotides (e.g., 17 to 50 nt, 19 to 29 nt) is based paired with a complementary sequence located on the same RNA molecule (single RNA strand), and where said sequence and complementary sequence are separated by an unpaired region of at least about 4 to 7 nucleotides (or about 9 to about 15 nt, about 15 to about 100 nt, about 100 to about 1000 nt) which forms a single-stranded loop above the stem structure created by the two regions of base complementarity. The shRNA molecules comprise at least one stem-loop
- ⁵⁵ structure comprising a double-stranded stem region of about 17 to about 100 bp; about 17 to about 50 bp; about 40 to about 100 bp; about 18 to about 40 bp; or from about 19 to about 29 bp; homologous and complementary to a target sequence to be inhibited; and an unpaired loop region of at least about 4 to 7 nucleotides, or about 9 to about 15 nucleotides, about 15 to about 100 nt, about 100 to about 1000 nt, which forms a single-stranded loop above the stem

structure created by the two regions of base complementarity. It will be recognized, however, that it is not strictly necessary to include a "loop region" or "loop sequence" because an RNA molecule comprising a sequence followed immediately by its reverse complement will tend to assume a stem-loop conformation even when not separated by an irrelevant "stuffer" sequence.

- ⁵ [0189] The plants with disrupted one or more KRPs of the present invention can be used for many purposes. In one embodiment, a plant of the present invention is used as a donor plant of genetic material which can be transferred to a recipient plant to produce a plant with desired agronomic traits which has the transferred genetic material and having increased weight, size, and/or number of one or more organs, for example, having increased seed weight, seed size, seed number and/or yield. Any suitable method known in the art can be applied to transfer genetic material from a donor plant to a recipient plant. In most cases, such genetic material is genomic material.
- ¹⁰ plant to a recipient plant. In most cases, such genetic material is genomic material. [0190] Descriptions of other breeding methods that are commonly used for different traits and crops can be found in one of several reference books (e.g., R. W. Allard, 1960, Principles of Plant Breeding, John Wiley and Son, pp. 115-161; N.W. Simmonds, 1979, Principles of Crop Improvement, Longman Group Limited; W. R. Fehr, 1987, Principles of Crop Development, Macmillan Publishing Co.; N. F. Jensen, 1988, Plant Breeding Methodology, John Wiley & Sons).
- ¹⁵ **[0191]** In some embodiments, a backcross breeding process is used. The backcross breeding process comprises the following steps: (a) crossing a first wheat plants having one or more disrupted *KRP* genes with a second plant that comprise the desired trait(s); (b) selecting the F₁ progeny plants that have the desired trait(s); (c) crossing the selected F₁ progeny plants with the first wheat plant or the second wheat plant to produce backcross progeny plants; (d) selecting for backcross progeny plants that have the desired trait(s) and one or more disrupted *KRP* genes to produce selected
- ²⁰ backcross progeny plants; and (e) repeating steps (c) and (d) one, two, three, four, five six, seven, eight, nine, or more times in succession to produce selected, second, third, fourth, fifth, sixth, seventh, eighth, ninth, or higher backcross progeny plants that comprise said disrupted *KRP* genes, and/or the desired trait(s). [0192] The invention further provides methods for developing wheat varieties in a wheat breeding program using plant

[U192] The invention further provides methods for developing wheat varieties in a wheat breeding program using plant breeding techniques including recurrent selection, backcrossing, pedigree breeding, molecular markers (Isozyme Elec-

- trophoresis, Restriction Fragment Length Polymorphisms (RFLPs), Randomly Amplified Polymorphic DNAs (RAPDs), Arbitrarily Primed Polymerase Chain Reaction (AP-PCR), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs). Amplified Fragment Length Polymorphisms (AFLPs), and Simple Sequence Repeats (SSRs) which are also referred to as Microsatellites, etc.) enhanced selection, genetic marker enhanced selection, and transformation. Seeds, plants, and part(s) thereof produced by such breeding methods are also part of the invention.
- 30 [0193] In one embodiment, the whole genome of the plants of the present invention with disrupted KRP(s) is transferred into a recipient plant. This can be done by conventional breeding such as crossing, or somatic hybridization. In another embodiment, at least the parts having the disrupted KRP(s) of the donor plant's genome are transferred. This can be done by crossing donor plants to a recipient plant to create a F1 plant, followed with one or more backcrosses to one of the parent plants to give plants with the desired genetic background. Molecular marker assisted breeding can be
- ³⁵ utilized to monitor the transfer of the genetic material. The produced offsprings can be selected for having increased weight, size, and/or number of one or more organs, for example, having increased seed weight, seed size, seed number and/or yield.

[0194] In one embodiment, the recipient plant is an elite line having one or more certain agronomically important traits. As used herein, "agronomically important traits" include any phenotype in a plant or plant part that is useful or advanta-

- 40 geous for human use. Examples of agronomically important traits include but are not limited to those that result in increased biomass production, increased food production, improved food quality, decrease in cracking, quicker color change when the fruit matures etc. Additional examples of agronomically important traits includes pest resistance, vigor, development time (time to harvest), enhanced nutrient content, increase in seed oil content, novel growth patterns, flavors or colors, salt, heat, drought and cold tolerance, and the like.
- 45 [0195] Other agronomically important traits include resistance to biotic and/or abiotic stresses. As used herein, the phrase "biotic stress" or "biotic pressure" refers to a situation where damage is done to plants by other living organisms, such as bacteria, viruses, fungi, parasites, insects, weeds, animals and human. As used herein, the phrase "abiotic stress" or "abiotic pressure" refers to the negative impact of non-living factors on plants in a specific environment. The non-living variable must influence the environment beyond its normal range of variation to adversely affect the population
- ⁵⁰ performance or individual physiology of plants in a significant way. Non-limiting examples of stressors are high winds, extreme temperatures, drought, flood, and other natural disasters, such as tornados and wildfires.
 [0196] In some embodiments, the method comprises i) making a cross between a plant with one or more disrupted *KRP* genes to a second plant to produce a F1 plant, for example, a wheat, a rice, or a soybean plant with one or more disrupted *KRP* genes. Optionally, the method further comprises ii) backcrossing the F1 plant to the first or the second
- ⁵⁵ plant; and iii) repeating the backcrossing step to generate a near isogenic line, wherein the one or more disrupted *KRPs* are integrated into the genome of the second plant.

[0197] In some embodiments, the disrupted *KRP* gene is a wheat *KRP* selected from the group consisting of *TaKRP1A*, *TaKRP1B*, *TaKRP1D*, *TaKRP2A*, *TaKRP2B*, *TaKRP2D*, *TaKRP4B*, *TaKRP4B*, *TaKRP4D*, *TaKRP5A*, *TaKRP5B*,

TaKRP5D, TaKRP6A, TaKRP6B, or TaKRP6D, for example, SEQ ID NOs. 60-86, 138-139, 141-142, and 144-145, or functional variants thereof. In some embodiments, the first plant comprises one or more mutations selected from any one of mutations listed in Tables 2 - 12 for a particular *KRP* gene.

- [0198] In some embodiments, the disrupted KRP gene is a rice KRP selected from the group consisting of OsKRP1,
- ⁵ OSKRP2, OsKRP4, and OsKRP4, for example, SEQ ID NOs. 100-107, or functional variants thereof. In some embodiments, the first plant comprises one or more mutations selected from any one of mutations listed in Table 25 for a particular *KRP* gene.

[0199] In some embodiments, the disrupted *KRP* gene is a soybean *KRP*. In some embodiments, the *KRP* is selected from the group consisting of Gm0003x00821, Gm0013x00399, Gm0043, Gm0053x00526, Gm0087x00306, Gm0102x00087, Gm0119x00131, Gm0151x00019, Gm0067x00001, for example, SEQ ID NOs. 111-128, or functional variants thereof. In some embodiments, the first plant comprises one or more mutations selected from any one of

mutations listed in Tables 29 - 37 for a particular *KRP* gene. **[0200]** In some embodiments, the methods of the present invention can increase the average weight, size, and/or number of one or more organs, for example, the average seed weight, seed size, seed number and/or yield of a plant by at least 5% at least 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 16% 17% 18% 10% 20% 21% 22%

- ¹⁵ by at least 5%, at least 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%, 110%, 120%, 130%,
- ²⁰ 140%, 150%, 160%, 170%, 180%, 190%, 200%, 210%, 220%, 230%, 240%, 250%, 260%, 270%, 280%, 290%, 300%, 310%, 320%, 330%, 340%, 350%, 360%, 370%, 380%, 390%, 400%, or greater when compared to a control plant not having disrupted KRP(s).

[0201] The mutated KRPs in a plant genome can be viewed as quantitative trait loci (QTLs) related to weight, size, and/or number of one or more organs, for example, QTLs related to seed weight, seed size, seed number and/or yield

- of for yield. A QTL is a region of DNA that is associated with a particular phenotypic trait these QTLs are often found on different chromosomes. Knowing the number of QTLs that explains variation in a particular phenotypic trait informs about the genetic architecture of the trait. It may tell that plant with preferred phenotype is controlled by many genes of small effect, or by a few genes of large effect. Therefore, QTL mapping can be applied to determine the parts of the donor plant's genome comprising the mutated KRPs, and facilitate the breeding methods.
- ³⁰ **[0202]** One or more of such QTLs of mutated KRPs in a donor can be transferred to a recipient plant, confirming the phenotype of having increased weight, size, and/or number of one or more organs, for example, having increased seed weight, seed size, seed number, and/or yield. In some further embodiments, the QTLs related to mutated KRPs can be combined with one or more other QTLs that contribute to agriculturally important phenotypes, such as yield enhancement, resistance to biotic and abiotic stresses, etc. The primers in the present invention used for genotyping the mutated KRPs
- can be used as molecular markers indicating the presence or absence of the mutated KRPs. Instead, molecular marks closely linked to the mutated KRPs can be also used. Methods of developing molecular markers and their applications are described by Avise (Molecular markers, natural history, and evolution, Publisher: Sinauer Associates, 2004, ISBN 0878930418, 9780878930418), Srivastava et al. (Plant biotechnology and molecular markers, Publisher: Springer, 2004, ISBN1402019114, 9781402019111), and Vienne (Molecular markers in plant genetics and biotechnology, Publisher:
 Science Publishers, 2003), each of which is incorporated by reference in its entirety.
- 40 Science Publishers, 2003), each of which is incorporated by reference in its entirety. [0203] Without wishing to be bond by any theory, besides increased seed size, seed number, seed weight and/or yield, a plant having one or more disrupted KRPs may have one or more other phenotypes that are agriculturally or industrially important, which include, but are not limited to, increased plant vigor, organ size, increased adaptability to the environment, increased oil production, increased biomass production, and traits that allow a plant to grow better
- ⁴⁵ under certain environments with specific temperatures, soil conditions and levels of sunlight and precipitation compared to a wild type control plant.

Tissue Culture and Grafting

10

- ⁵⁰ **[0204]** Modern plant tissue culture is performed under aseptic conditions under filtered air. Living plant materials from the environment are naturally contaminated on their surfaces (and sometimes interiors) with microorganisms, so surface sterilization of starting materials (explants) in chemical solutions (usually alcohol or bleach) is required. Explants are then usually placed on the surface of a solid culture medium, but are sometimes placed directly into a liquid medium, particularly when cell suspension cultures are desired. Solid and liquid media are generally composed of inorganic salts
- ⁵⁵ plus a few organic nutrients, vitamins and plant hormones. Solid media are prepared from liquid media with the addition of a gelling agent, usually purified agar.

[0205] The composition of the medium, particularly the plant hormones and the nitrogen source (nitrate versus ammonium salts or amino acids) have profound effects on the morphology of the tissues that grow from the initial explant.

For example, an excess of auxin will often result in a proliferation of roots, while an excess of cytokinin may yield shoots. A balance of both auxin and cytokinin will often produce an unorganized growth of cells, or callus, but the morphology of the outgrowth will depend on the plant species as well as the medium composition. As cultures grow, pieces are typically sliced off and transferred to new media (subcultured) to allow for growth or to alter the morphology of the culture.

- The skill and experience of the tissue culturist are important in judging which pieces to culture and which to discard. As shoots emerge from a culture, they may be sliced off and rooted with auxin to produce plantlets which, when mature, can be transferred to potting soil for further growth in the greenhouse as normal plants.
 [0206] The tissue obtained from the plant to culture is called an explant. Based on work with certain model systems,
- particularly tobacco, it has often been claimed that a totipotent explant can be grown from any part of the plant. However,
 this concept has been vitiated in practice. In many species explants of various organs vary in their rates of growth and
 regeneration, while some do not grow at all. The choice of explant material also determines if the plantlets developed
 via tissue culture are haploid or diploid. Also the risk of microbial contamination is increased with inappropriate explants.
 Thus it is very important that an appropriate choice of explant be made prior to tissue culture.
- [0207] The specific differences in the regeneration potential of different organs and explants have various explanations. The significant factors include differences in the stage of the cells in the cell cycle, the availability of or ability to transport endogenous growth regulators, and the metabolic capabilities of the cells. The most commonly used tissue explants are the meristematic ends of the plants like the stem tip, auxiliary bud tip and root tip. These tissues have high rates of cell division and either concentrate or produce required growth regulating substances including auxins and cytokinins. Some explants, like the root tip, are hard to isolate and are contaminated with soil microflora that become problematic during
- 20 the tissue culture process. Certain soil microflora can form tight associations with the root systems, or even grow within the root. Soil particles bound to roots are difficult to remove without injury to the roots that then allows microbial attack. These associated microflora will generally overgrow the tissue culture medium before there is significant growth of plant tissue. Aerial (above soil) explants are also rich in undesirable microflora. However, they are more easily removed from the explant by gentle rinsing, and the remainder usually can be killed by surface sterilization. Most of the surface microflora
- do not form tight associations with the plant tissue. Such associations can usually be found by visual inspection as a mosaic, decolorization or localized necrosis on the surface of the explant.
 [0208] An alternative for obtaining uncontaminated explants is to take explants from seedlings which are aseptically

grown from surface-sterilized seeds. The hard surface of the seed is less permeable to penetration of harsh surface sterilizing agents, such as hypochlorite, so the acceptable conditions of sterilization used for seeds can be much more stringent than for vegetative tissues.

[0209] Tissue cultured plants are clones, if the original mother plant used to produce the first explants is susceptible to a pathogen or environmental condition, the entire crop would be susceptible to the same problem, and conversely any positive traits would remain within the line also. Plant tissue culture is used widely in plant science; it also has a number of commercial applications. Applications include:

35

50

55

30

1. Micropropagation is widely used in forestry and in floriculture. Micropropagation can also be used to conserve rare or endangered plant species.

2. A plant breeder may use tissue culture to screen cells rather than plants for advantageous characters, e.g. pathogen resistance/tolerance.

40 3. Large-scale growth of plant cells in liquid culture inside bioreactors as a source of secondary products, like recombinant proteins used as biopharmaceuticals.

4. To cross distantly related species by protoplast fusion and regeneration of the novel hybrid.

5. To cross-pollinate distantly related species and then tissue culture the resulting embryo which would otherwise normally die (Embryo Rescue).

6. For production of doubled monoploid (dihaploid) plants from haploid cultures to achieve homozygous lines more rapidly in breeding programs, usually by treatment with colchicine which causes doubling of the chromosome number.
7. As a tissue for transformation, followed by either short-term testing of genetic constructs or regeneration of transgenic plants.

8. Certain techniques such as meristem tip culture can be used to produce clean plant material from infected stock, such as potatoes and many species of soft fruit.

9. Micropropagation using meristem and shoot culture to produce large numbers of identical individuals.

[0210] Non-limiting exemplary tissue culture methods for wheat, rice, maize have been described by Trione et al., Dodig, et al., O'Hara et al., Zaidi et al., Wang et al., Ting et al., Hawcs ct al., and Sheridan, each of which is incorporated by reference in its entirety.

[0211] The present invention also provides a cutting, a rootstock, a scion, or an explant from the plants of the present invention.

[0212] Grafting is a method of asexual plant propagation widely used in agriculture and horticulture where the tissues

of one plant are encouraged to fuse with those of another. It is most commonly used for the propagation of trees and shrubs grown commercially. In most cases, one plant is selected for its roots, and this is called the stock or rootstock. The other plant is selected for its stems, leaves, flowers, or fruits and is called the scion. The scion contains the desired genes to be duplicated in future production by the stock/scion plant. In stem grafting, a common grafting method, a shoot

⁵ of a selected, desired plant cultivar is grafted onto the stock of another type. In another common form called budding, a dormant side bud is grafted on the stem of another stock plant, and when it has fused successfully, it is encouraged to grow by cutting out the stem above the new bud.

[0213] For successful grafting to take place, the vascular cambium tissues of the stock and scion plants must be placed in contact with each other. Both tissues must be kept alive until the graft has taken, usually a period of a few weeks. Successful grafting only requires that a vascular connection takes place between the two tissues. A physical weak point

- often still occurs at the graft, because the structural tissue of the two distinct plants, such as wood, may not fuse. **[0214]** Exemplary grafting techniques include, approach grafting, budding grafting (patch budding, chip budding, Tbudding), cleft grafting, side grafting, whip grafting, stub grafting, awl grafting, veneer grafting, bark grafting, tongue grafting, et al. Detailed non-limiting grafting methods for wheat and maize are described by Lacadena, 1968, and Katsumi
- ¹⁵ et al., each of which is incorporated by reference in its entirety.

Plant Transformation

10

- [0215] The polynucleotides of the present invention can be transformed into a plant. The most common method for the introduction of new genetic material into a plant genome involves the use of living cells of the bacterial pathogen *Agrobacterium tumefaciens* to literally inject a piece of DNA, called transfer or T-DNA, into individual plant cells (usually following wounding of the tissue) where it is targeted to the plant nucleus for chromosomal integration. There are numerous patents governing Agrobacterium mediated transformation and particular DNA delivery plasmids designed specifically for use with Agrobacterium---for example, US4536475, EP0265556, EP0270822, WO8504899, WO8603516,
- ²⁵ US5591616, EP0604662, EP0672752, WO8603776, WO9209696, WO9419930, WO9967357, US4399216, WO8303259, US5731179, EP068730, WO9516031, US5693512, US6051757 and EP904362A1. Agrobacterium-me-diated plant transformation involves as a first step the placement of DNA fragments cloned on plasmids into living Agrobacterium cells, which are then subsequently used for transformation into individual plant cells. Agrobacterium-mediated plant transformation is thus an indirect plant transformation method. Methods of Agrobacterium-mediated plant
- 30 transformation that involve using vectors with no T-DNA are also well known to those skilled in the art and can have applicability in the present invention. See, for example, U.S. Patent No. 7,250,554, which utilizes P-DNA instead of T-DNA in the transformation vector.

[0216] Direct plant transformation methods using DNA have also been reported. The first of these to be reported historically is electroporation, which utilizes an electrical current applied to a solution containing plant cells (M. E. Fromm

- et al., Nature, 319, 791 (1986); H. Jones et al., Plant Mol. Biol., 13, 501 (1989) and H. Yang et al., Plant Cell Reports, 7, 421 (1988). Another direct method, called "biolistic bombardment", uses ultrafine particles, usually tungsten or gold, that are coated with DNA and then sprayed onto the surface of a plant tissue with sufficient force to cause the particles to penetrate plant cells, including the thick cell wall, membrane and nuclear envelope, but without killing at least some of them (US 5,204,253, US 5,015,580). A third direct method uses fibrous forms of metal or ceramic consisting of sharp,
- 40 porous or hollow needle-like projections that literally impale the cells, and also the nuclear envelope of cells. Both silicon carbide and aluminum borate whiskers have been used for plant transformation (Mizuno et al., 2004; Petolino et al., 2000; US5302523 US Application 20040197909) and also for bacterial and animal transformation (Kaepler et al., 1992; Raloff, 1990; Wang, 1995). There are other methods reported, and undoubtedly, additional methods will be developed. However, the efficiencies of each of these indirect or direct methods in introducing foreign DNA into plant cells are
- ⁴⁵ invariably extremely low, making it necessary to use some method for selection of only those cells that have been transformed, and further, allowing growth and regeneration into plants of only those cells that have been transformed. [0217] For efficient plant transformation, a selection method must be employed such that whole plants are regenerated from a single transformed cell and every cell of the transformed plant carries the DNA of interest. These methods can employ positive selection, whereby a foreign gene is supplied to a plant cell that allows it to utilize a substrate present
- ⁵⁰ in the medium that it otherwise could not use, such as mannose or xylose (for example, refer US 5767378; US 5994629). More typically, however, negative selection is used because it is more efficient, utilizing selective agents such as herbicides or antibiotics that either kill or inhibit the growth of nontransformed plant cells and reducing the possibility of chimeras. Resistance genes that are effective against negative selective agents are provided on the introduced foreign DNA used for the plant transformation. For example, one of the most popular selective agents used is the antibiotic
- ⁵⁵ kanamycin, together with the resistance gene neomycin phosphotransferase (nptII), which confers resistance to kanamycin and related antibiotics (see, for example, Messing & Vierra, Gene 19: 259-268 (1982); Bevan et al., Nature 304:184-187 (1983)). However, many different antibiotics and antibiotic resistance genes can be used for transformation purposes (refer US 5034322, US 6174724 and US 6255560). In addition, several herbicides and herbicide resistance

genes have been used for transformation purposes, including the bar gene, which confers resistance to the herbicide phosphinothricin (White et al., Nucl Acids Res 18: 1062 (1990), Spencer et al., Theor Appl Genet 79: 625-631(1990), US 4795855, US 5378824 and US 6107549). In addition, the dhfr gene, which confers resistance to the anticancer agent methotrexate, has been used for selection (Bourouis et al., EMBO J. 2(7): 1099-1104 (1983).

- ⁵ **[0218]** The expression control elements used to regulate the expression of a given protein can either be the expression control element that is normally found associated with the coding sequence (homologous expression element) or can be a heterologous expression control element. A variety of homologous and heterologous expression control elements are known in the art and can readily be used to make expression units for use in the present invention. Transcription initiation regions, for example, can include any of the various opine initiation regions, such as octopine, mannopine,
- ¹⁰ nopaline and the like that are found in the Ti plasmids of *Agrobacterium tumefaciens*. Alternatively, plant viral promoters can also be used, such as the cauliflower mosaic virus 19S and 35S promoters (CaMV 19S and CaMV 35S promoters, respectively) to control gene expression in a plant (U.S. Patent Nos. 5,352,605; 5,530,196 and 5,858,742 for example). Enhancer sequences derived from the CaMV can also be utilized (U.S. Patent Nos. 5,164,316; 5,196,525; 5,322,938; 5,530,196; 5,352,605; 5,359,142; and 5,858,742 for example). Lastly, plant promoters such as prolifera promoter, fruit
- ¹⁵ specific promoters, Ap3 promoter, heat shock promoters, seed specific promoters, etc. can also be used. [0219] Either a gamete specific promoter, a constitutive promoter (such as the CaMV or Nos promoter), an organ specific promoter (e.g., stem specific promoter), or an inducible promoter is typically ligated to the protein or antisense encoding region using standard techniques known in the art. The expression unit may be further optimized by employing supplemental elements such as transcription terminators and/or enhancer elements. The expression cassette can com-
- ²⁰ prise, for example, a seed specific promoter (e.g. the phaseolin promoter (U.S. Pat. No. 5,504,200). The term "seed specific promoter", means that a gene expressed under the control of the promoter is predominantly expressed in plant seeds with no or no substantial expression, typically less than 10% of the overall expression level, in other plant tissues. Seed specific promoters have been well known in the art, for example, US Patent Nos. 5,623,067, 5,717,129, 6,403,371, 6,566,584, 6,642,437, 6,777,591, 7,081,565, 7,157,629, 7,192,774, 7,405,345, 7,554,006, 7,589,252, 7,595,384,
- ²⁵ 7,619,135, 7,642,346, and US Application Publication Nos. 20030005485, 20030172403, 20040088754, 20040255350, 20050125861, 20050229273, 20060191044, 20070022502, 20070118933, 20070199098, 20080313771, and 20090100551.

[0220] Thus, for expression in plants, the expression units will typically contain, in addition to the protein sequence, a plant promoter region, a transcription initiation site and a transcription termination sequence. Unique restriction enzyme

- 30 sites at the 5' and 3' ends of the expression unit are typically included to allow for easy insertion into a preexisting vector.
 [0221] In the construction of heterologous promoter/structural gene or antisense combinations, the promoter is preferably positioned about the same distance from the heterologous transcription start site as it is from the transcription start site in its natural setting. As is known in the art, however, some variation in this distance can be accommodated without loss of promoter function.
- In addition to a promoter sequence, the expression cassette can also contain a transcription termination region downstream of the structural gene to provide for efficient termination. The termination region may be obtained from the same gene as the promoter sequence or may be obtained from different genes. If the mRNA encoded by the structural gene is to be efficiently processed, DNA sequences which direct polyadenylation of the RNA are also commonly added to the vector construct. Polyadenylation sequences include, but are not limited to the *Agrobacterium* octopine synthase
- 40 signal (Gielen et al., EMBO J 3:835-846 (1984)) or the nopaline synthase signal (Depicker et al., Mol. and Appl. Genet. 1:561-573 (1982)). The resulting expression unit is ligated into or otherwise constructed to be included in a vector that is appropriate for higher plant transformation. One or more expression units may be included in the same vector. The vector will typically contain a selectable marker gene expression unit by which transformed plant cells can be identified in culture. Usually, the marker gene will encode resistance to an antibiotic, such as G418, hygromycin, bleomycin,
- ⁴⁵ kanamycin, or gentamicin or to an herbicide, such as glyphosate (Round-Up) or glufosinate (BASTA) or atrazine. Replication sequences, of bacterial or viral origin, are generally also included to allow the vector to be cloned in a bacterial or phage host, preferably a broad host range prokaryotic origin of replication is included. A selectable marker for bacteria may also be included to allow selection of bacterial cells bearing the desired construct. Suitable prokaryotic selectable markers include resistance to antibiotics such as ampicillin, kanamycin or tetracycline. Other DNA sequences encoding
- ⁵⁰ additional functions may also be present in the vector, as is known in the art. For instance, in the case of Agrobacterium transformations, T-DNA sequences will also be included for subsequent transfer to plant chromosomes. [0223] To introduce a desired gene or set of genes by conventional methods requires a sexual cross between two lines, and then repeated back-crossing between hybrid offspring and one of the parents until a plant with the desired characteristics is obtained. This process, however, is restricted to plants that can sexually hybridize, and genes in addition to the desired gene will be transferred.
 - to the desired gene will be transferred. **[0224]** Recombinant DNA techniques allow plant researchers to circumvent these limitations by enabling plant geneticists to identify and clone specific genes for desirable traits, such as resistance to an insect pest, and to introduce these genes into already useful varieties of plants. Once the foreign genes have been introduced into a plant, that plant can

then be used in conventional plant breeding schemes (e.g., pedigree breeding, single-seed-descent breeding schemes, reciprocal recurrent selection) to produce progeny which also contain the gene of interest.

[0225] Genes can be introduced in a site directed fashion using homologous recombination. Homologous recombination permits site specific modifications in endogenous genes and thus inherited or acquired mutations may be corrected,

- ⁵ and/or novel alterations may be engineered into the genome. Homologous recombination and site-directed integration in plants are discussed in, for example, U.S. Patent Nos. 5,451,513; 5,501,967 and 5,527,695.
 [0226] Methods of producing transgenic plants are well known to those of ordinary skill in the art. Transgenic plants can now be produced by a variety of different transformation methods including, but not limited to, electroporation; microinjection; microprojectile bombardment, also known as particle acceleration or biolistic bombardment; viral-medi-
- ¹⁰ ated transformation; and Agrobacterium-mediated transformation. See, for example, U.S. Patent Nos. 5,405,765; 5,472,869; 5,538,877; 5,538,880; 5,550,318; 5,641,664; 5,736,369 and 5,736,369; International Patent Application Publication Nos. WO2002/038779 and WO/2009/117555; Lu et al., (Plant Cell Reports, 2008, 27:273-278); Watson et al., Recombinant DNA, Scientific American Books (1992); Hinchee et al., Bio/Tech. 6:915-922 (1988); McCabe et al., Bio/Tech. 6:923-926 (1988); Toriyama et al., Bio/Tech. 6:1072-1074 (1988); Fromm et al., Bio/Tech. 8:833-839 (1990);
- ¹⁵ Mullins et al., Bio/Tech. 8:833-839 (1990); Hiei et al., Plant Molecular Biology 35:205-218 (1997); Ishida et al., Nature Biotechnology 14:745-750 (1996); Zhang et al., Molecular Biotechnology 8:223-231 (1997); Ku et al., Nature Biotechnology 17:76-80 (1999); and, Raineri et al., Bio/Tech. 8:33-38 (1990)), each of which is expressly incorporated herein by reference in their entirety.
- [0227] Agrobacterium tumefaciens is a naturally occurring bacterium that is capable of inserting its DNA (genetic information) into plants, resulting in a type of injury to the plant known as crown gall. Most species of plants can now be transformed using this method, including cucurbitaceous species.

[0228] Microprojectile bombardment is also known as particle acceleration, biolistic bombardment, and the gene gun (Biolistic® Gene Gun). The gene gun is used to shoot pellets that are coated with genes (e.g., for desired traits) into plant seeds or plant tissues in order to get the plant cells to then express the new genes. The gene gun uses an actual

- ²⁵ explosive (.22 caliber blank) to propel the material. Compressed air or steam may also be used as the propellant. The Biolistic® Gene Gun was invented in 1983-1984 at Cornell University by John Sanford, Edward Wolf, and Nelson Allen. It and its registered trademark are now owned by E. I. du Pont de Nemours and Company. Most species of plants have been transformed using this method.
- [0229] A transgenic plant formed using *Agrobacterium* transformation methods typically contains a single gene on one chromosome, although multiple copies are possible. Such transgenic plants can be referred to as being hemizygous for the added gene. A more accurate name for such a plant is an independent segregant, because each transformed plant represents a unique T-DNA integration event (U.S. Patent No. 6,156,953). A transgene locus is generally characterized by the presence and/or absence of the transgene. A heterozygous genotype in which one allele corresponds to the absence of the transgene is also designated hemizygous (U.S. Patent No. 6,008,437).
- ³⁵ [0230] General transformation methods, and specific methods for transforming certain plant species (e.g., maize, rice, wheat, barley, soybean) are described in U.S. Patent Nos. 4940838, 5464763, 5149645, 5501967, 6265638, 4693976, 5635381, 5731179, 5693512, 6162965, 5693512, 5981840, 6420630, 6919494, 6329571, 6215051, 6369298, 5169770, 5376543, 5416011, 5569834, 5824877, 5959179, 5563055, and 5968830, each of which is incorporated by reference in its entirety.
- ⁴⁰ **[0231]** This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application, as well as the Figures and the Sequence Listing, are incorporated herein by reference.

EXAMPLES 45

Materials and Methods

Mutagenesis

- ⁵⁰ **[0232]** In one embodiment of the present invention, wheat seeds of tetraploid wheat (*Triticum turgidum*) cultivar 'Kronos' and the hexaploid wheat (*Triticum aestivum*) cultivar 'Express' (PVP # 9000012) were vacuum infiltrated in H₂O (approximately 1,000 seeds/100 ml H₂O for approximately 4 minutes). The seeds were then placed on a shaker (45 rpm) in a fume hood at ambient temperature. The mutagen ethyl methanesulfonate (EMS) was added to the imbibing seeds to final concentrations ranging from about 0.75% to about 1.2% (v/v). Following an 18 hour incubation period, the EMS
- ⁵⁵ solution was replaced 4 times with fresh H₂O. The seeds were then rinsed under running water for about 1 hour. Finally, the mutagenized seeds were planted (96/tray) in potting soil and allowed to germinate indoors. Plants that were four to six weeks old were transferred to the field to grow to fully mature M1 plants. The mature M1 plants were allowed to self-pollinate and then seeds from the M1 plant were collected and planted to produce M2 plants.

DNA Preparation

[0233] DNA from these M2 plants was extracted and prepared in order to identify which M2 plants carried a mutation at their KRP loci. The M2 plant DNA was prepared using the methods and reagents contained in the Qiagen® (Valencia, 5 CA) DNeasy® 96 Plant Kit. Approximately 50 mg of frozen plant sample was placed in a sample tube with a tungsten bead, frozen in liquid nitrogen and ground 2 times for 1 minute each at 20 Hz using the Retsch® Mixer Mill MM 300. Next 400 µl of solution AP1 [Buffer AP1, solution DX and RNAse (100 mg/ml)] at 80° C was added to the sample. The tube was sealed and shaken for 15 seconds. Following the addition of 130 µl Buffer AP2, the tube was shaken for 15

seconds. The samples were placed in a freezer at minus 20° C for at least 1 hour. The samples were then centrifuged 10 for 20 minutes at 5,600 X g. A 400 µl aliquot of supernatant was transferred to another sample tube. Following the addition of 600 µl of Buffer AP3/E, this sample tube was capped and shaken for 15 seconds. A filter plate was placed on a square well block and 1ml of the sample solution was applied to each well and the plate was sealed. The plate and block were centrifuged for 4 minutes at 5,600 X g. Next, 800 µl of Buffer AW was added to each well of the filter plate, sealed and spun for 15 minutes at 5,600 X g in the square well block. The filter plate was then placed on a new set of

15 sample tubes and 80 µl of Buffer AE was applied to the filter. It was capped and incubated at room temperature for 1 minute and then spun for 2 minutes at 5,600 X g. This step was repeated with an additional 80 μ I Buffer AE. The filter plate was removed and the tubes containing the pooled filtrates were capped. The individual samples were then normalized to a DNA concentration of 5 to 10 $ng/\mu l$.

20 **TILLING**®

[0234] The M2 DNA was pooled into groups of two individual plants. The DNA concentration for each individual within the pool was approximately 1 to 2 ng/ μ l with a final concentration of 2 to 4 ng./ μ l for the entire pool. Then, 5 or 10 μ l of the pooled DNA samples (or 10 to 40 ng) was arrayed on microtiter plates and subjected to gene-specific PCR.

- 25 [0235] PCR amplification was performed in 15 or 20 µl reaction volumes containing 10 to 40 ng pooled DNA. A reaction included 1.24 μ l of 10X ExTaq buffer (Takara[®],), 0.73 μ l of 25mM MgCl₂, 1.98 μ l of 10 mM dNTPs, 0.066 μ l of 100 μ M primer mix, and 0.11 µl of 5U/ µl Ex-Taq (Takara[®],) DNA polymerase, with 6.87 µl H₂O. PCR additives such as dimethyl sulfoxide (DMSO), betaine or Polymer-Aide PCR Enhancer (Sigma Aldrich[®], St. Louis, MO) can be used to increase PCR efficiency. PCR amplification was performed using an MJ Research® thermal cycler as follows: 95° C for 2 minutes;
- 30 8 cycles of "touchdown PCR" (94° C for 20 second, followed by annealing step starting at 70-68° C for 30 seconds and decreasing 1° C per cycle, then a temperature ramp of 0.5° C per second to 72° C followed by 72° C for 1 minute); 25-45 cycles of 94° C for 20 seconds, 63-67.5° C for 30 seconds, ramp 0.5° C/sec to 72° C, 72° C for 1 minute; 72° C for 8 minutes; 98° C for 8 minutes; 80° C for 20 seconds; 60 cycles of 80° C for 7 seconds -0.3 degrees/cycle. [0236] The PCR primers (Eurofins MWG/Operon, Huntsville, AL) were mixed as follows:
- 35

12.5% 100 μM IRD-700 labeled left primer 37.5% 100 µM left primer 25% 100 µM IRD-800 labeled right primer 25% 100 µM right primer

40

A label can be attached to each primer as described or to only one of the primers. Alternatively, Cy5.5 modified primers could be used. The label was coupled to the oligonucleotide using conventional phosphoramidite chemistry. [0237] PCR products (15 or 20 µl) were digested in 96-well plates. Next, 30 µl of a solution containing 10 mM HEPES

[4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid] (pH 7.5), 10 mM MgSO₄, 0.002% (w/v) Triton[®] X-100, 20 ng/ml of 45 bovine serum albumin, 5ul of SURVEYOR® Nuclease (Transgenomic, Inc.) and 5ul of SURVEYOR® Enhancer (Transgenomic, Inc.) were added with mixing on ice, and the plate was incubated at 45° C for 30 minutes. Reactions were stopped by addition of 10 µl of a 2.5 M NaCl solution with 0.5 mg/ml blue dextran and 75 mM EDTA, followed by the addition of 80 µl isopropanol. The reactions were precipitated at room temperature, spun at 4,000 rpm for 30 minutes in an Eppendorf Centrifuge 5810. Pellets were resuspended in 6 µl of 33% formamide with 0.017% bromophenol blue

50 dye, heated at 80 ° C for 7 minutes and then at 95 ° C for 5 minutes. Samples were transferred to a membrane comb using a comb-loading robot (MWG Biotech). The comb was inserted into a slab acrylamide gel (6.5%) and electrophoresed for 4h 15min at 1,500-V, 40-W, and40-mA limits at 50° C.

[0238] During electrophoresis, the gel was imaged using a LI-COR[®] (Lincoln, NE) scanner which was set at a channel capable of detecting the IR Dye 700 and 800 labels. The gel image showed sequence-specific pattern of background bands common to all 96 lanes. Rare events, such as mutations, create new bands that stand out above the background pattern. Plants with bands indicative of mutations of interest were evaluated by TILLING® individual members of a pool

Example 1

TILLING for Triticum KRP mutants

⁵ [0239] Genome-specific primers were designed and used to TILL for wheat KRPs (Table 1).

Table 1. Genome-specific primers used for TILLING $\ensuremath{\mathbb{R}}$ of wheat KRP genes

Gene/ Genome†	Primer name	Primer Sequence (5' $ ightarrow$ 3')	SEQ ID NO
KRP1A_2-4			
	TaKRP1A_L	GGATACGATTCGAGATCTCCTTTTTGAC	6
	TaKRP1A_R	TGATAATGGTGGGAATATGTGAGCGAGTG	7
KRP1B 2-4			
	TaKRP1B_L	AAACAGCAAGGTGAGGGAATTGGGGTC	8
	TaKRP1B_R	TAATGCTTCTTTCCGGAGCATCTTTTTCC	9
KRP1D_2-4		CONTACANTICOAGATOTOCTITITOCTO	10
	TaKRP1D_L	TAATGCTTCTTTCCGGAGCATCTTTTTCC	10
KRP2A2			
	TaKRP2A2L1	GCCACTCACTGCCCTAGAATTCTCCGTA	12
	TaKRP2A2R1	CAATTTGGATGGGGAGAGAGAGAGAGAGCTAGTGT	13
KRP2B2			
	TaKRP2B2L2	GTCCACTGCCCTAGAATTCTCCGCTACTT	14
	TaKRP2B2_altR	GCCGTGGCCTAGTGAAAGGTAAAAAGAAA	15
KRP2D2			
	KRP2D2_ENDEX1_L	TCCACTGCCCTAGAATTCTCCGCTAAT	16
	KRP2D2_ENDEX4_R	GTCATTTGCATCATGCTCTGCTCACAC	17
	KRP4B_L_2_3_NEW	TTCCTTATTTTTTATGACTATTGATATGTGTTCTT C	18
	WKP4_BR2	GTGGTCATTACAGAATGAGCTGCTAACCGTT	19
KRP4D2			
	KRP4D_L_2_3_NEW		20
			21
KRP5A1			
	TaKRP5A1_L	GGCAAGTACATGCGCAAGAGCAAGG	22

(continued)

Gene/ Genome†	Primer name	Primer Sequence (5' $ ightarrow$ 3')	SEQ ID NO
	TaKRP5A1_R	GATTTTCTTCTCCATCAGGATTGAAGCGC	23
KRP5A2			
	TaKRP5A2_L	CACATTGTGTGATGTGGGGCACTTGTTA	24
	TaKRP5_ALL_EST_R	GAGCTACTGCTGACTGCGGGCTAACTCTA	25
KRP5D2			
	TaKRP5D_L_Z_2	TGTCTAGCGTGGGGCACTTGCAAATA	26
	TaKRP5_ALL_EST_R	GAGCTACTGCTGACTGCGGGCTAACTCTA	27

15

10

5

† number after genome letter refers to the exons or the region of the KRP gene TILL'ed. i.e. 2-4 mean exons 2-4, and the number 2 means the latter half of the gene (includes the cyclin/CDK binding domains). The number 1 means the first part of the KRP gene, excluding the cyclin/CDK binding domains.

20

Example 2

Mutations of Triticum KRP Genes identified in TILLING®

25

[0240] Screening of the TILLING® population for *KRP* mutants resulted in plants with silent, splice, nonsense (premature stop codons) and/or missense (severe or non-severe) mutations in *KRP1, KRP2, KRP4 and KRP5 (A, B,* and *D* genomes) genes.

[0241] Positions and effects of mutations in *KRP1*, *KRP2*, *KRP4* and *KRP5* (*A*, *B*, and *D* genomes) genes are displayed in Tables 2 to 12 below (* indicates the mutation results in a stop codon, = indicates silent mutation).

	Nucleotide Change^	Effect	Gene	Mutation Score
35	G389A	R4K [£]	KRP4B2§	Severe Missense
00	G390A	R4=	KRP4B2	Silent
	C400T	P8S	KRP4B2	Severe Missense
	C408T	S10=	KRP4B2	Silent
40	C457T	P27S	KRP4B2	Missense
	G461A	S28N	KRP4B2	Missense
	C465T	H29=	KRP4B2	Silent
45	G486A	V36=	KRP4B2	Silent
	G496A	A40T	KRP4B2	Missense
	G520A	A48T	KRP4B2	Missense
	G525A	E49=	KRP4B2	Silent
50	C540T	F54=	KRP4B2	Silent
	G550A	E58K	KRP4B2	Severe Missense
	G564A	Q62=	KRP4B2	Silent
55	G587A	Intron	KRP4B2	
	G635A	Intron	KRP4B2	
	C652A	Intron	KRP4B2	

(continued)

	Nucleotide Change^	Effect	Gene	Mutation Score	
F	C802T	N75=	KRP4B2	Silent	
0	G803A	D76N	KRP4B2	Severe Missense	
	C810T	P78L	KRP4B2	Severe Missense	
	C812T	L79F	KRP4B2	Severe Missense	
10	C815T	P80S	KRP4B2	Missense	
	T870C	Non-coding	KRP4B2		
	C894T	Non-coding	KRP4B2		
15	 [§]The designation "2" indicates that exons 2-3 of wheat KRP4B were TILLed. [£]Amino acid numbering docs not start from the beginning Methionine. [^]Nucleotide numbering is dependent upon the location of TILLING® primers. 				

Table 3. Summary of Triticum aestivum (hexaploid) KRP1A mutants

20	Table 3. Summary of <i>Triticum aestivum</i> (hexaploid) <i>KRP1A</i> mutants				
	Nucleotide Change [^]	Effect	Gene	Mutation Score	
	G512A	A140=	Krp1A§	Silent	
	G522A	A144T	Krp1A	Missense	
25	C676T	P162S	Krp1A	Missense	
	C539T	N149=	Krp1A	Silent	
	G547A	R152K	Krp1A	Missense	
30	G652A	E154K	Krp1A	Missense	
	G550A	Intron	Krp1A		
	A554G	Intron	Krp1A		
	C564T	Intron	Krp1A		
35	C618T	Intron	Krp1A		
	G652A	E154K	Krp1A	Missense	
	G654A	E154=	Krp1A	Silent	
40	G657A	T155=	Krp1A	Silent	
	C659T	T156M	Krp1A	Severe Missense	
	C661T	P157S	Krp1A	Severe Missense	
45	C676T	P162S	Krp1A	Missense	
45	C694T	L168=	Krp1A	Silent	
	G725A	G178D	Krp1A	Missense	
	C739T	P183S	Krp1A	Missense	
50	C746T	T185M	Krp1A	Missense	
	C748T	P186S	Krp1A	Missense	
	C749T	P186L	Krp1A	Missense	
	C756T	A188=	Krp1A	Silent	
55	C762T	A190=	Krp1A	Silent	
	C766T	P192S	Krp1A	Missense	

(continued)

Nucleotide Change^	Effect	Gene	Mutation Score
С767Т	P192L	Krp1A	Missense
C787T	P199S	Krp1A	Missense
C788T	P199L	Krp1A	Severe Missense
G808A	E206K	Krp1A	Missense
C818T	A209V	Krp1A	Severe Missense
G826A	E212K	Krp1A	Severe Missense
G828A	E212=	Krp1A	Silent
G832A	A214T	Krp1A	Missense
C834T	A214=	Krp1A	Silent
G879A	Intron	Krp1A	
G880A	Intron	Krp1A	
C925T	Intron	Krp1A	
G939A	Intron	Krp1A	
G940A	Intron	Krp1A	
G961A	A228T	Krp1A	Missense
G965A	R229H	Krp1A	Missense
C974T	P232L	Krp1A	Severe Missense
C978T	L233=	Krp1A	Silent
C983T	S235F	Krp1A	Severe Missense
G985A	G236S	Krp1A	Severe Missense
G999A	W240*	Krp1A	Nonsense
C1002T	T241=	Krp1A	Silent
C1003T	P242S	Krp1A	Missense
G1016A	S246N	Krp1A	Severe Missense
G1019A	S247N	Krp1A	Severe Missense
C1020T	S247=	Krp1A	Silent
G1027A	Non-coding	Krp1A	
G1037A	Non-coding	Krp1A	
G1043A	Non-coding	Krp1A	
G1051A	Non-coding	Krp1A	

50

Table 4. Summary of Triticum aestiv	<i>um</i> (hexaploid) <i>KRP1B</i> mutants
-------------------------------------	--

Nucleotide Change [^]	Effect	Gene	Mutation Score
C562T	G136=	Krp1B [§]	Silent
C567T	A138V	Krp1B	Missense
C589T	G145=	Krp1B	Silent

(continued)

	Nucleotide Change^	Effect	Gene	Mutation Score
5	C595T	N147=	Krp1B	Silent
5	G597A	R148H	Krp1B	Missense
	G603A	R150K	Krp1B	Missense
	G606A	Splice Junction	Krp1B	Splice
10	G614A	Intron	Krp1B	
	G662A	Intron	Krp1B	
	C667T	Intron	Krp1B	
15	C674T	Intron	Krp1B	
10	C679T	Intron	Krp1B	
	G708A	E152K	Krp1B	Severe Missense
	G710A	E152=	Krp1B	Silent
20	C715T	T154M	Krp1B	Severe Missense
	C718T	P155L	Krp1B	Severe Missense
	C721T	S156F	Krp1B	Severe Missense
25	G724A	S157N	Krp1B	Missense
20	C741T	L163=	Krp1B	Silent
	G752A	L166=	Krp1B	Silent
	G769A	G172D	Krp1B	Missense
30	C776T	N174=	Krp1B	Silent
	C787T	S178L	Krp1B	Missense
	G788A	S178=	Krp1B	Silent
35	G797A	P181=	Krp1B	Silent
	C798T	Q182*	Krp1B	Nonsense
	C802T	T183M	Krp1B	Missense
	G803A	T183=	Krp1B	Silent
40	C805T	P184L	Krp1B	Missense
	C808T	T185I	Krp1B	Severe Missense
	C811T	A186V	Krp1B	Missense
45	C812T	A186=	Krp1B	Silent
	C827T	A191=	Krp1B	Silent
	G828A	A192T	KRP1B	Missense
	G830A	A192=	Krp1B	Silent
50	G832A	R193K	Krp1B	Missense
	G839A	R195=	Krp1B	Silent
	C843T	P197S	Krp1B	Severe Missense
55	G857A	E201=	Krp1B	Silent
	C874T	A207V	Krp1B	Severe Missense
	G876A	A208T	Krp1B	Missense

(continued)

Nucleotide Change*	Effect	Gene	Mutation Score
G879A	A209T	KRP1B	Severe Missense
G882A	E210K	Krp1B	Severe Missense
G884A	E210=	Krp1B	Silent
G885A	E211K	Krp1B	Missense
G891A	E213K	Krp1B	Missense
A897C	R215-	Krp1B	Silent
G918A	Intron	Krp1B	
C927T	Intron	Krp1B	
G929A	Intron	Krp1B	
C930A	Intron	Krp1B	
G934A	Intron	Krp1B	
C942T	Intron	Krp1B	
G960A	Intron	Krp1B	
C965T	Intron	KRP1B	
G966A	Intron	KRP1B	
G972A	Intron	Krp1B	
G983A	Intron	Krp1B	
C1006T	Y221=	Krp1B	Silent
C1015T	D224=	Krp1B	Silent
C1034T	L231F	Krp1B	Severe Missense
G1044A	G234D	Krp1B	Severe Missense
C1045T	G234=	Krp1B	Silent
C1046T	R235W	Krp1B	Severe Missense
G1064A	A241T	Krp1B	Missense
C1065T	A241 V	Krp1B	Missense
A1084C	Intron	Krp1B	
C1086T	Intron	KRP1B	
G1088A	Intron	Krp1B	
G1094A	Intron	Krp1B	
C1095T	Intron	Krp1B	

50

Nucleotide Change [^]	Effect	Gene	Mutation Score
G638A	Splice Junction	Krp1D_2-4 [§]	Splice
C652T	P158S	Krp1D_2-4	Severe Missense
C666T	F162=	Krp1D_2-4	Silent
(continued)

	Nucleotide Change [^]	Effect	Gene	Mutation Score
5	C668T	P163L	Krp1D_2-4	Missense
5	C675T	D165=	Krp1D_2-4	Silent
	C685T	L169=	Krp1A_2-4	Silent
	C692T	S171L	Krp1D_2-4	Missense
10	C697T	L173=	Krp1D_2-4	Silent
	G700A	A174T	Krp1D_2-4	Missense
	C701T	A174V	Krp1D_2-4	Missense
15	G723A	S181=	Krp1D_2-4	Silent
10	G738A	T186=	Krp1D_2-4	Silent
	C758T	P193L	Krp1D_2-4	Missense
	C761T	A194V	Krp1D_2-4	Severe Missense
20	G765A	A 195=	Krp1D_2-4	Silent
	G767A	R196K	Krp1D_2-4	Missense
	C778T	P200S	Krp1D_2-4	Severe Missense
25	G780A	P200=	Krp1D_2-4	Silent
	G798A	E206=	Krp1D_2-4	Silent
	C809T	A210V	Krp1D_2-4	Severe Missense
	G817A	E213K	Krp1D_2-4	Severe Missense
30	C831T	A217=	Krp1D_2-4	Silent
	G833A	R218K	Krp1D_2-4	Missense
	G845A	C222Y	Krp1D_2-4	Missense
35	G870A	Intron	Krp1D_2-4	
	C911T	Intron	Krp1D_2-4	
	C933T	Intron	Krp1D_2-4	
	C938T	Intron	Krp1D_2-4	
40	C956T	D227=	Krp1D_2-4	Silent
	C963T	R230C	Krp1D_2-4	Severe Missense
	G967A	G231D	Krp1D_2-4	Missense
45	C974T	P233=	Krp1D_2-4	Silent
	C975T	L234F	Krp1D_2-4	Severe Missense
	С983Т	S236=	Krp1D_2-4	Silent
	C986T	G237=	Krp1D_2-4	Silent
50	C1001T	T242=	Krp1D_2-4	Silent
	C1006T	A244V	Krp1D_2-4	Missense
	G1026A	Non-coding	Krp1D_2-4	
55	G1060A	Non-coding	Krp1D_2-4	
	C1028T	Non-coding	Krp1D_2-4	

(continued)

Nucleotide Change [^]	Effect	Gene	Mutation Score
G1041A	Non-coding	Krp1D_2-4	
[§] The designation "2-4" indicates ^Nucleotide numbering is depen	that Exons 2-4 of wheat KF dent upon the location of T	RP1D were TILLed. ILLING® primers.	

10

5

Table 6. Summary of Triticum aestivum (hexaploid) KRP2A mutants

	Nucleotide Change [^]	Effect	Gene	Mutation Score
	G568A	Intron	KRP2A2 [§]	
15	G584A	C153Y	KRP2A2	Severe Missense
10	C597T	D157=	KRP2A2	Silent
	G601A	E159K	KRP2A2	Missense
	C606T	S160=	KRP2A2	Silent
20	C608T	S161F	KRP2A2	Severe Missense
	G614A	S163N	KRP2A2	Missense
	G631A	G169S	KRP2A2	Missense
25	G632A	G169D	KRP2A2	Missense
20	C651 T	Intron	KRP2A2	
	C663T	Intron	KRP2A2	
	G669A	Intron	KRP2A2	
30	G742A	Intron	KRP2A2	
	G764A	Intron	KRP2A2	
	G765A	Intron	KRP2A2	
35	G773A	Splice Junction	KRP2A2	Splice
	G774A	R172= (splice)	KRP2A2	Splice
	C783T	T175=	KRP2A2	Silent
	C787T	P177S	KRP2A2	Severe Missense
40	G813A	L185=	KRP2A2	Silent
	C819T	D187=	KRP2A2	Silent
	G825A	E189=	KRP2A2	Silent
45	G835A	A193T	KRP2A2	Missense
	G838A	A194T	KRP2A2	Missense
	C839T	A194V	KRP2A2	Missense
	C843T	D195=	KRP2A2	Silent
50	G852A	K198=	KRP2A2	Silent
	G860A	R201H	KRP2A2	Missense
	G864A	R202=	KRP2A2	Silent
55	G873A	P205=	KRP2A2	Silent
	G874A	A206T	KRP2A2	Missense
	C875T	A206V	KRP2A2	Missense

(continued)

	Nucleotide Change^	Effect	Gene	Mutation Score
5	C893T	A212V	KRP2A2	Missense
5	G895A	A213T	KRP2A2	Severe Missense
	C903T	F215=	KRP2A2	Silent
	G919A	A221T	KRP2A2	Missense
10	G929A	R224K	KRP2A2	Missense
	C934T	P226S	KRP2A2	Severe Missense
	G940A	A228T	KRP2A2	Severe Missense
15	C951T	1231=	KRP2A2	Silent
10	G952A	D232N	KRP2A2	Missense
	G955A	E233K	KRP2A2	Missense
	C963T	F235=	KRP2A2	Silent
20	C966T	A236=	KRP2A2	Silent
	G978A	K240=	KRP2A2	Silent
	C981T	A241=	KRP2A2	Silent
25	G984A	Q242=	KRP2A2	Silent
	C996T	F246=	KRP2A2	Silent
	C998T	A247V	KRP2A2	Severe Missense
	G1005A	Splice Junction	KRP2A2	Splice
30	G1011A	Intron	KRP2A2	
	G1026A	Intron	KRP2A2	
	C1046T	Intron	KRP2A2	
35	C1070T	Intron	KRP2A2	
	C1076T	Intron	KRP2A2	
	C1084T	Intron	KRP2A2	
	G1086A	Intron	KRP2A2	
40	A1089G	Intron	KRP2A2	
	C1092T	Intron	KRP2A2	
	C1104T	Intron	KRP2A2	
45	G1109A	Intron	KRP2A2	
	C1110T	Intron	KRP2A2	
	T1111A	Intron	KRP2A2	
	C1118T	Intron	KRP2A2	
50	C1121T	Intron	KRP2A2	
	G1124A	K249=	KRP2A2	Silent
	G1134A	D253N	KRP2A2	Severe Missense
55	G1137A	V254I	KRP2A2	Missense
	C1143T	R256C	KRP2A2	Severe Missense
	C1145T	R256=	KRP2A2	Silent

(continued)

Nucleotide Change [^]	Effect	Gene	Mutation Score
G1146A	G257S	KRP2A2	Severe Missense
G1147A	G257D	KRP2A2	Severe Missense
G1149A	V258M	KRP2A2	Severe Missense
C1152T	P259S	KRP2A2	Severe Missense
C1162T	A262V	KRP2A2	Severe Missense
G1165A	G263D	KRP2A2	Severe Missense
C1167T	R264W	KRP2A2	Severe Missense
G1169A	R264=	KRP2A2	Silent
G1194A	V273I	KRP2A2	Missense
G1201A	Non-coding	KRP2A2	
C1216T	Non-coding	KRP2A2	
G1225A	Non-coding	KRP2A2	
G1227A	Non-coding	KRP2A2	
G1230A	Non-coding	KRP2A2	
G1254A	Non-coding	KRP2A2	

30

Table 7. Summary of Triticum aestivum (hexaploid) KRP2B mutants

	Nucleotide Change [^]	Effect	Gene	Mutation Score
	C27A	Non-coding	KRP2B2§	
35	G57A	V7M [£]	KRP2B2	Missense
	C67T	S10F	KRP2B2	Severe Missense
	C111T	Intron	KRP2B2	
	C115T	Intron	KRP2B2	
40	C233T	Intron	KRP2B2	
	G241A	E23K	KRP2B2	Missense
	G243A	E23=	KRP2B2	Silent
45	C248T	T25M	KRP2B2	Severe Missense
	C250T	P26S	KRP2B2	Severe Missense
	C263T	S30L	KRP2B2	Missense
	C283T	L37=	KRP2B2	Silent
50	G286A	E38K	KRP2B2	Missense
	C295T	Q41*	KRP2B2	Nonsense
	G304A	D44N	KRP2B2	Missense
55	G307A	E45K	KRP2B2	Missense
	G315A	K47=	KRP2B2	Silent
	C322T	R50C	KRP2B2	Missense

(continued)

Nucleotide Change [^]	Effect	Gene	Mutation Score
G326A	R51K	KRP2B2	Missense
G329A	R52K	KRP2B2	Missense
C338T	A55V	KRP2B2	Missense
G340A	A56T	KRP2B2	Missense
G358A	A62T	KRP2B2	Severe Missense
C366T	F64=	KRP2B2	Silent
C375T	D67=	KRP2B2	Silent
G379A	E69K	KRP2B2	Missense
G403A	A77T	KRP2B2	Missense
G405A	A77=	KRP2B2	Silent
C497T	Intron	KRP2B2	
C503T	Intron	KRP2B2	
G523A	Intron	KRP2B2	
G527A	Intron	KRP2B2	
C553T	Intron	KRP2B2	
G591A	Splice Junction	KRP2B2	Splice
C623T	L109F	KRP2B2	Severe Missense
G643A	E115=	KRP2B2	Silent
G646A	W116*	KRP2B2	Nonsense
G653A	V119M	KRP2B2	Missense
C671T	Non-coding	KRP2B2	
C675T	Non-coding	KRP2B2	
C689T	Non-coding	KRP2B2	
G692A	Non-coding	KRP2B2	
T699A	Non-coding	KRP2B2	
G705A	Non-coding	KRP2B2	
G714A	Non-coding	KRP2B2	
G812A	Non-coding	KRP2B2	
G860A	Non-coding	KRP2B2	
С862 Т	Non-ending	KRP2B2	

Table 8. Summary of Triticum aestivum (hexaploid) KRP2D mutants

55	Nucleotide Change^	Effect	Gene	Mutation Score
55	G551A	Intron	KRP2D2§	
	G584A	A151T	KRP2D2	Severe Missense

(continued)

	Nucleotide Change^	Effect	Gene	Mutation Score
5	G586A	A151=	KRP2D2	Silent
5	G588A	C152Y	KRP2D2	Missense
	C596T	R155C	KRP2D2	Severe Missense
	G597A	R155H	KRP2D2	Missense
10	G604A	V157=	KRP2D2	Silent
	G609A	S159N	KRP2D2	Missense
	C610T	S159=	KRP2D2	Silent
15	C613T	S160=	KRP2D2	Silent
10	G614A	V161I	KRP2D2	Missense
	C616T	V161=	KRP2D2	Silent
	G618A	S162N	KRP2D2	Missense
20	G633A	G167D	KRP2D2	Missense
	C638T	R169W	KRP2D2	Severe Missense
	G639A	R169Q	KRP2D2	Severe Missense
25	G640A	R169=	KRP2D2	Silent
20	G646A	Splice Junction	KRP2D2	Splice
	C652T	Intron	KRP2D2	
	C653T	Intron	KRP2D2	
30	C655T	Intron	KRP2D2	
	G663A	Intron	KRP2D2	
	C668T	Intron	KRP2D2	
35	C682T	Intron	KRP2D2	
	G761A	Intron	KRP2D2	
	G762A	Intron	KRP2D2	
	G769A	Intron	KRP2D2	
40	G778A	R171=	KRP2D2	Silent
	G780A	R172K	KRP2D2	Missense
	G784A	E173=	KRP2D2	Silent
45	C786T	T174M	KRP2D2	Severe Missense
	G787A	T174=	KRP2D2	Silent
	G790A	T175=	KRP2D2	Silent
	C799T	S178=	KRP2D2	Silent
50	G805A	S180=	KRP2D2	Silent
	C806T	P181S	KRP2D2	Severe Missense
	G817A	L184=	KRP2D2	Silent
55	G819A	S185N	KRP2D2	Missense
	C823T	D186=	KRP2D2	Silent
	C836T	Q191*	KRP2D2	Nonsense

(continued)

	Nucleotide Change [^]	Effect	Gene	Mutation Score
5	C840T	A192V	KRP2D2	Severe Missense
0	G844A	A193=	KRP2D2	Silent
	C847T	D194=	KRP2D2	Silent
	C863T	R200C	KRP2D2	Severe Missense
10	C865T	R200=	KRP2D2	Silent
	G868A	R201=	KRP2D2	Silent
	G870A	R202K	KRP2D2	Missense
15	G871A	R202=	KRP2D2	Silent
	C876T	P204L	KRP2D2	Missense
	G877T	P204=	KRP2D2	Silent
	G878A	A205T	KRP2D2	Missense
20	C885T	T207M	KRP2D2	Missense
	G886A	T207=	KRP2D2	Silent
	G896A	A211T	KRP2D2	Missense
25	C897T	A211V	KRP2D2	Missense
	G899A	A212T	KRP2D2	Missense
	C902T	P213S	KRP2D2	Missense
	G907A	L214=	KRP2D2	Silent
30	C908T	H215Y	KRP2D2	Missense
	G914A	D217N	KRP2D2	Missense
	C916T	D217=	KRP2D2	Silent
35	G920A	E219K	KRP2D2	Missense
	G923A	A220T	KRP2D2	Missense
	G925A	A220=	KRP2D2	Silent
	G933A	R223K	KRP2D2	Missense
40	G935A	A224T	KRP2D2	Missense
	G940A	R225=	KRP2D2	Silent
	C947T	P228S	KRP2D2	Missense
45	G953A	A230T	KRP2D2	Missense
	C964T	D233=	KRP2D2	Silent
	T968A	F235I	KRP2D2	Severe Missense
	C970T	F235=	KRP2D2	Silent
50	C976T	A237=	KRP2D2	Silent
	C978T	A238V	KRP2D2	Severe Missense
	G980A	A239T	KRP2D2	Severe Missense
55	G982A	A239=	KRP2D2	Silent
	G988A	K241=	KRP2D2	Silent
	C991T	A242=	KRP2D2	Silent

(continued)

Nucleotide Change [^]	Effect	Gene	Mutation Score
G995A	A244T	KRP2D2	Severe Missense
G1000A	E245=	KRP2D2	Silent
C1001T	R246C	KRP2D2	Severe Missense
C1006T	F247=	KRP2D2	Silent
C1008T	A248V	KRP2D2	Severe Missense
G1010A	A249T	KRP2D2	Missense
C1011T	A249V	KRP2D2	Missense
G1022A	Intron	KRP2D2	
C917insA, G1035A	Insertion, intron	KRP2D2	Add new aa, cyclin- and CDK-binding go
G1037A	Intron	KRP2D2	
G1045A	Intron	KRP2D2	
C1048T	Intron	KRP2D2	
G1069A	Intron	KRP2D2	
C1094T	Intron	KRP2D2	
C1100T	Intron	KRP2D2	
G1106A	Intron	KRP2D2	
C1116T	Intron	KRP2D2	
C1119T	Intron	KRP2D2	
G1126A	Splice Junction	KRP2D2	Splice
G1137A	D254N	KRP2D2	Severe Missense
C1139T	D254=	KRP2D2	Silent
C1142T	V255=	KRP2D2	Silent
C1144T	A256V	KRP2D2	Missense
G1145A	A256=	KRP2D2	Silent
C1146T	R257C	KRP2D2	Severe Missense
G1154A	V259=	KRP2D2	Silent
C1156T	P260L	KRP2D2	Severe Missense

45

	Nucleotide Change [^]	Effect	Gene	Mutation Score
50	G370A	Non-coding	KRP4B2 [§]	
	C378T	Non-coding	KRP4B2	
	C401T	P8L [£]	KRP4B2	Severe Missense
55	C408T	S10=	KRP4B2	Silent
	C422T	S15L	KRP4B2	Missense
	G424A	G16R	KRP4B2	Missense

(continued)

	Nucleotide Change^	Effect	Gene	Mutation Score	
5	G429A	T17=	KRP4B2	Silent	
5	C440T	P21L	KRP4B2	Severe Missense	
	C474T	S32=	KRP4B2	Silent	
	A489G	Q37=	KRP4B2	Silent	
10	G525A	E49=	KRP4B2	Silent	
	C537T	F53=	KRP4B2	Silent	
	C540T	F54=	KRP4B2	Silent	
15	C545T	A56V	KRP4B2	Missense	
10	G550A	E58K	KRP4B2	Severe Missense	
	G780A	Splice Junction	KRP4B2	Splice	
	G780A	Splice Junction	KRP4B2	Splice	
20	C810T	P78L	KRP4B2	Severe Missense	
	C812T	L79F	KRP4B2	Severe Missense	
	G832A	W85*	KRP4B2	Nonsense	
25	G846A	*90=	KRP4B2	Silent	
	G846A	*90=	KRP4B2	Silent	
	G858A	Non-coding	KRP4B2		
	G867A	Non-coding	KRP4B2		
30	G922A	Non-coding	KRP4B2		
	[§] The designation "2" indicates that exons 2-3 of wheat KRP4B were TILLed. [£] Amino acid numbering does not start from the beginning Methionine. ^Nucleotide numbering is dependent upon the location of TILLING® primers.				

35

Table 10. Summary of Triticum aestivum (hexaploid) KRP4D mutants

	Nucleotide Change [^]	Effect	Gene	Mutation Score
40	C332T	Non-coding	KRP4D2§	
	G388A	R1=£	KRP4D2	Silent
	C393T	T3I	KRP4D2	Severe Missense
	G397A	R4=	KRP4D2	Silent
45	G400A	E5=	KRP4D2	Silent
	C407T	P8S	KRP4D2	Severe Missense
	C409T	P8=	KRP4D2	Silent
50	G418A	L11=	KRP4D2	Silent
	T421C	l12=	KRP4D2	Silent
	G425A	D14N	KRP4D2	Missense
	C435T	T17M	KRP4D2	Missense
55	C447T	P21 L	KRP4D2	Severe Missense
	G462A	R26K	KRP4D2	Missense

(continued)

Nucleotide Change [*]	Effect	Gene	Mutation Score
C469T	S28=	KRP4D2	Silent
C481T	S32=	KRP4D2	Silent
C500T	P39S	KRP4D2	Missense
G503A	A40T	KRP4D2	Missense
C518T	P45S	KRP4D2	Severe Missense
C519T	P45L	KRP4D2	Severe Missense
C525T	S47L	KRP4D2	Missense
G527A	A48T	KRP4D2	Missense
G532A	E49=	KRP4D2	Silent
C547T	F54=	KRP4D2	Silent
G556A	A57=	KRP4D2	Silent
G559A	E58=	KRP4D2	Silent
C566T	Q61*	KRP4D2	Nonsense
G571A	Q62=	KRP4D2	Silent
C572T	Q63*	KRP4D2	Nonsense
C577T	A64=	KRP4D2	Silent
G593A	Intron	KRP4D2	
G732A	Intron	KRP4D2	
C761T	Intron	KRP4D2	
C775T	Intron	KRP4D2	
G780A	Splice Junction	KRP4D2	Splice
G791A	D72N	KRP4D2	Severe Missense
C810T	P78L	KRP4D2	Severe Missense
C815T	P80S	KRP4D2	Missense
G819A	G81D	KRP4D2	Severe Missense
C820T	G81=	KRP4D2	Silent
C853T	Non-coding	KRP4D2	
G858A	Non-coding	KRP4D2	
G863A	Non-coding	KRP4D2	
C882T	Non-coding	KRP4D2	
C889A	Non-coding	KRP4D2	

Table 11. Summar	y of <i>Triticum</i>	aestivum (hexa	aploid) <i>KRP5A</i> m	utants
------------------	----------------------	----------------	------------------------	--------

Nucleotide Change [^]	Effect	Gene	Mutation Score
G84A	G25S	Krp5A1§	Severe Missense

(continued)

	Nucleotide Change [^]	Effect	Gene	Mutation Score
5	C90T	R27C	Krp5A1	Severe Missense
5	C95T	T28=	Krp5A1	Silent
	C100T	S30F	Krp5A1	Severe Missense
	C101T	S30=	Krp5A1	Silent
10	C110T	L33=	Krp5A1	Silent
	C112T	A34V	Krp5A1	Severe Missense
	G114A	A35T	Krp5A1	Silent
15	G116A	A35=	Krp5A1	Silent
10	C130T	A40V	Krp5A1	Missense
	G134A	P41=	Krp5A1	Silent
	C137T	S42=	Krp5A1	Silent
20	C259T	A83V	Krp5A1	Missense
	C405T	Intron	Krp5A1	
	C139T	P43L	Krp5A1	Missense
25	C150G	R47G	Krp5A1	Missense
	C150T	R47C	Krp5A1	Missense
	G156A	G49S	Krp5A1	Missense
	G162A	E51K	Krp5A1	Missense
30	G171A	D54N	Krp5A1	Missense
	C173T	D54=	Krp5A1	Silent
	G194A	R61=	Krp5A1	Silent
35	G196A	R62K	Krp5A1	Severe Missense
	G197A	R62=	Krp5A1	Silent
	G206A	K65=	Krp5A1	Silent
	G212A	P67=	Krp5A1	Silent
40	C216T	P69S	Krp5A1	Severe Missense
	G219A	G70R	Krp5A1	Missense
	C224T	P71=	Krp5A1	Silent
45	G234A	E75K	Krp5A1	Missense
	G236A	E75=	Krp5A1	Silent
	G240A	A77T	Krp5A1	Missense
	G245A	P78=	Krp5A1	Silent
50	C249T	P80S	Krp5A1	Severe Missense
	G251A	P80=	Krp5A1	Silent
	C252T	P81S	Krp5A1	Missense
55	C257T	A82=	Krp5A1	Silent
	G272A	R87=	Krp5A1	Silent
	G278A	E89=	Krp5A1	Silent

(continued)

	Nucleotide Change [^]	Effect	Gene	Mutation Score
5	C279T	Q90*	Krp5A1	Nonsense
5	G284A	A91=	Krp5A1	Silent
	G290A	S93=	Krp5A1	Silent
	C292T	S94L	Krp5A1	Missense
10	C296T	F95=	Krp5A1	Silent
	C298T	A96V	Krp5A1	Missense
	C302T	A97=	Krp5A1	Silent
15	G307A	G99D	Krp5A1	Severe Missense
10	C321T	L104F	Krp5A1	Missense
	G357A	D116N	Krp5A1	Severe Missense
	C368T	D119=	Krp5A1	Silent
20	C375T	Intron	Krp5A1	
	G382A	Intron	Krp5A1	
	C395T	Intron	Krp5A1	
25	C403T	Intron	Krp5A1	
20	C404T	Intron	Krp5A1	
	C405T	Intron	Krp5A1	
	C169T	Non-coding	Krp5A2 [¥]	
30	C199T	Non-coding	Krp5A2	
	T201G	Non-coding	Krp5A2	
	C213T	Non-coding	Krp5A2	
35	G227A	Non-coding	Krp5A2	
	G232A	G1S [£]	Krp5A2	Severe Missense
	G246A	T5=	Krp5A2	Silent
	G257A	S9N	Krp5A2	Missense
40	G273A	S14=	Krp5A2	Silent
	G274A	E15K	Krp5A2	Severe Missense
	G276A	E15=	Krp5A2	Silent
45	C290T	P20L	Krp5A2	Severe Missense
	C296T	S22L	Krp5A2	Severe Missense
	C302T	T24I	Krp5A2	Missense
	G305A	G25E	Krp5A2	Missense
50	G333A	R34=	Krp5A2	Silent
	G345A	P38=	Krp5A2	Silent
	G346A	V39I	Krp5A2	Missense
55	C351T	C40=	Krp5A2	Silent
	G353A	R41H	Krp5A2	Severe Missense
	C354T	R41=	Krp5A2	Silent

(continued)

Nucleotide Change [^]	Effect	Gene	Mutation Score
C366T	S45=	Krp5A2	Silent
G369A	S46=	Krp5A2	Silent
G372A	L47=	Krp5A2	Silent
C395T	A55V	Krp5A2	Missense
G402A	E57=	Krp5A2	Silent
G408A	Q59=	Krp5A2	Silent
C414T	H61=	Krp5A2	Silent
G426A	R65=	Krp5A2	Silent
G427A	D66N	Krp5A2	Severe Missense
G436A	Intron	Krp5A2	
N474A	Intron	Krp5A2	
C495T	Intron	Krp5A2	
G499A	Intron	Krp5A2	
G513A	K67=	Krp5A2	
C526T	P72S	Krp5A2	Missense
C537T	G75=	Krp5A2	Silent
C541T	P77S	Krp5A2	Severe Missense
C548T	P79L	Krp5A2	Severe Missense
G555A	R81=	Krp5A2	Silent
G568A	V86M	Krp5A2	Severe Missense
C593T	Non-coding	Krp5A2	
C599T	Non-coding	Krp5A2	
G608A	Non-coding	Krp5A2	
C614T	Non-coding	Krp5A2	
C617T	Non-coding	Krp5A2	
C626T	Non-coding	Krp5A2	
C627T	Non-coding	Krp_5A2	
C635T	Non-coding	Krp5A2	
C650T	Non-coding	Krp5A2	
G653A	Non-coding	Krp5A2	
G659A	Non-coding	Krp5A2	
G668A	Non-coding	Krp5A2	
[§] The designation "1" indicat [¥] The designation "2" indicat [£] Amino acid numbering doe ^Nucleotide numbering is do	es that exon 1 of wheat KI es that exons 2-3 of whea is not start from the beginn ependent upon the location	RP5A was TILLed. t KRP5A were TILLed. ning Methionine. n of TILLING® primers.	

	Nucleotide Change [^]	Effect	Gene	Mutation Score
5	C205T	S9=£	Krp5D2 [§]	Silent
	C206T	L10=	Krp5D2	Silent
	G226A	T16=	Krp5D2	Silent
10	G229A	M17I	Krp5D2	Missense
10	G240A	G21E	Krp5D2	Severe Missense
	G247A	A23=	Krp5D2	Silent
	C249T	T24I	Krp5D2	Severe Missense
15	G258A	R27H	Krp5D2	Missense
	C271T	R31=	Krp5D2	Silent
	C272T	R32C	Krp5D2	Severe Missense
20	G280A	A34=	Krp5D2	Silent
20	G286A	T36=	Krp5D2	Silent
	G290A	V38I	Krp5D2	Missense
	C295T	C39=	Krp5D2	Silent
25	C296T	R40C	Krp5D2	Severe Missense
	G302A	V42I	Krp5D2	Missense
	G309A	S44N	Krp5D2	Severe Missense
30	C310T	S44=	Krp5D2	Silent
00	C312T	S45L	Krp5D2	Missense
	G322A	M48I	Krp5D2	Missense
	G323A	D49N	Krp5D2	Missense
35	G328A	E50=	Krp5D2	Silent
	C339T	A54V	Krp5D2	Missense
	C340T	A54=	Krp5D2	Silent
40	G344A	E56K	Krp5D2	Severe Missense
	G369A	R64K	Krp5D2	Missense
	G371A	E65K	Krp5D2	Severe Missense
	G376A	Splice Junction	Krp5D2	Splice
45	С392Т	Intron	Krp5D2	
	G481A	Splice Junction	Krp5D2	Splice
	C485T	Y67=	Krp5D2	Silent
50	C496T	P71L	Krp5D2	Missense
	G506A	E74=	Krp5D2	Silent
	C510T	P76S	Krp5D2	Severe Missense
	C513T	L77F	Krp5D2	Severe Missense
55	C517T	P78L	Krp5D2	Severe Missense
	G519A	G79R	Krp5D2	Severe Missense

Table 12. Summary of Triticum aestivum (hexaploid) KRP5D mutants

Nucleotide Change [^]	Effect	Gene	Mutation Score	
G520A	G79E	Krp5D2	Severe Missense	
G530A	E82=	Krp5D2	Silent	
G532A	W83*	Krp5D2	Nonsense	
C548T	C88=	Krp5D2	Silent	
§The designation "2" indicates that exons 2-3 of wheat KRP5D were TILLed. [£] Amino acid numbering does not start from the beginning Methionine. ^Nucleotide numbering is dependent upon the location of TILLING® primers.				

15 Example 3

Wheat breeding program

[0242] The wheat KRP TILLING® mutants are prioritized for the breeding program in the following manner: 1) Nonsense and splice mutants; 2) Type I severe missense; and 3) Type II severe missense. Type I severe missense mutations are non-conservative amino acid substitutions in regions of the KRP protein known to be essential for binding to cyclin or cyclin-dependent kinase (CDK) and are predicted by SIFT analysis to be deleterious to protein function. Type II severe missense mutations are non-conservative amino acid substitutions outside of the cyclin and CDK binding domains but which satisfy two additional criteria. First, they are in regions of the protein determined by BLOCKS analysis (Henikoff,

S. and Henikoff, J.G. (1991) Nucleic Acids Res., 19, 6565-6572) to be evolutionarily conserved and therefore possibly of functional significance. Secondly, they have a SIFT (Ng, P.C. and Henikoff, S. (2003) Nucleic Acids Res. July 1; 31(13): 3812-3814) score of less than 0.05, and are therefore predicted to be deleterious to protein function.
[0243] Tables 13 to 22 list wheat KRP TILLING® mutants that are in the breeding program and is a subset of the mutants listed in Tables 2 to 12. A given wheat (WH) group is a number that identifies a particular mutation in a particular

30 gene.

45

50

55

- [0244] M3 seed homozygous or heterozygous for a given KRP TILLING® mutation is grown. Backcrosses with the hexaploid spring background parent Express are performed, ideally through several rounds (to the BC3 or BC4 level), to eliminate deleterious background mutations. Background mutations could contribute to undesirable traits such as delayed maturity, premature senescence, increased susceptibility to wheat pathogens, slow germination, and/or sterility. The progeny of each backcross (F1, BC1, BC2, etc.) are also selfed to produce F2 lines. F2 lines are genotyped to
- ³⁵ identify ones that are homozygous for the wild type or for the *krp* mutant allele. Homozygote wild type and mutant siblings are seed expanded to F3 for field trials.

Wheat *krp* mutant alleles are introgressed into other spring and winter wheat to transfer the yield enhancement to commercial varieties.

⁴⁰ **[0245]** Crosses between mutants are done to generate multiple stack mutants within a given KRP gene (e.g. *krp1A/1B, krp1B/krp1D, krp1A/1B/1D,* etc., all possible combinations) or across different KRP genes (e.g. *krp1A/2A, krp2B/krp4B, krp4D/krp5A, krp1B/krp2A/krp5D,* etc., all possible combinations).

[0246] The overall grain yield per unit area is determined (e.g. lbs/acre) and yield components such as seed count, seed size/weight (thousand kernel weight), seed per spike, head (spike) number, spike length, awn length, and/or tiller number, are measured. Agronomic characteristics such as stand rate, maturity rate and peduncle rate are also measured.

WH group	Gene	Nuc_Change from start codon	Effect-from beginning Met
1	KRP2A2	G569A	C153Y
2	KRP2A2	C593T	S161F
3	KRP2A2	G758A	Splice junction-intron2/exon3
4	KRP2A2	G759A	Splice junction-intron2/exon3
5	KRP2A2	C772T	P177S (and P77S on 5A2, hom)
6	KRP2A2	G880A	A213T

Table 13. Triticum aestivum (hexaploid) KRP2A TILLING® Mutants in breeding program

5

(continued)

Nuc_Change from start codon

G880A

C919T

G925A

C983T

G990A

G1119A

C1128T

G1131A

G1132A

G1134A

C1137T

C1147T

G1150A

C1152T

Effect-from beginning Met

A213T

P226S

A228T

A247V

Splice junction-exon3/intron3

D253N

R256C

G257S

G257D

V258M and G169S P259S

A262V

G263D

R264W

7 KRP2A2 8 KRP2A2 9 KRP2A2 10 KRP2A2 11 KRP2A2 12 KRP2A2 13 KRP2A2 14 KRP2A2 15 KRP2A2 16 KRP2A2 17 KRP2A2

Gene

KRP2A2

KRP2A2

KRP2A2

WH group

18

19

20

5

10

15

20

25

30

35

40

45

50

55

Table 14. Triticum aestivum (hexaploid) KRP2B TILLING® Mutants in breeding program

WH group	Gene	Nuc_Change from start codon	Effect-from beginning Met
21	KRP2B2	G569A	V156M
22	KRP2B2	C579T	S159F
23	KRP2B2	G753A	E172K
24	KRP2B2	C760T	T174M
25	KRP2B2	C762T	P175S
26	KRP2B2	C775T	S179L
27	KRP2B2	G798A	E187K
28	KRP2B2	C807T	Q190*
29	KRP2B2	G816A	D193N
30	KRP2B2	G819A	E194K
31	KRP2B2	G838A	R200K
32	KRP2B2	G841A	R201K
33	KRP2B2	C850T	A204V
34	KRP2B2	G852A	A205V
35	KRP2B2	G870A	A211T
36	KRP2B2	G891A	E218K
37	KRP2B2	G915A	A226T
38	KRP2B2	G1103A	Splice junction-intron3/exon4
39	KRP2B2	C1135T	L258F
40	KRP2B2	G1158A	W265*

(continued)

WH group	Gene	Nuc_Change from start codon	Effect-from beginning Met
41	KRP2B2	G1165A	V268M

5

Table 15A. Triticum turgidum ssp. durum (tetraploid) KRP4B TILLING® Mutants in breeding program

	WH group	Gene	Nuc_Change from start codon	Effect-from beginning Met
10	42	KRP4B2	N/A^	R105K
	43	KRP4B2	N/A	P109S
	46	KRP4B2	N/A	S129N
15	49	KRP4B2	N/A	A149T
	54	KRP4B2	N/A	D177N
	56	KRP4B2	N/A	P179L
	58	KRP4B2	N/A	L180F
20	59	KRP4B2	N/A	P181S
	^Full-length genomic set	equence of wild type KRP4E	3 not available; therefore nucleotide n	umbering is as given in Table 8.

25

Table 15B. Triticum aestivum (hexaploid) KRP4B TILLING® Mutants in breeding program

	WH group	Gene	Nuc_Change from start codon	Effect-from beginning Met
	44	KRP4B2	N/A^	P109L
30	45	KRP4B2	N/A	S116L
	47	KRP4B2	N/A	G117R
	48	KRP4B2	N/A	P122L
	50	KRP4B2	N/A	A157V
35	51	KRP4B2	N/A	E159K
	52	KRP4B2	N/A	Splice junction-intron2/exon3
	53	KRP4B2	N/A	P179L
40	55	KRP4B2	N/A	L180F
	57	KRP4B2	N/A	W186*
	^Full-length genom	nic sequence of wild type	KRP4B not available; therefore nucleot	ide numbering is as given in Table 8.

45

Table 16. Triticum aestivum (hexaploid) KRP4D TILLING® Mutants in breeding program

	WH group	Gene	Nuc_Change from start codon	Effect-from beginning Met
	60	KRP4D2	N/A^	T104I
50	61	KRP4D2	N/A	P109S
	62	KRP4D2	N/A	D115N
	63	KRP4D2	N/A	P122L
55	64	KRP4D2	N/A	R127K
	65	KRP4D2	N/A	P140S
	66	KRP4D2	N/A	A141T

(continued)

	WH group	Gene	Nuc_Change from start codon	Effect-from beginning Met
5	67	KRP4D2	N/A	P146S
0	68	KRP4D2	N/A	P146L
	69	KRP4D2	N/A	S148L
	70	KRP4D2	N/A	A149T
10	71	KRP4D2	N/A	Q162*
	72	KRP4D2	N/A	Q164*
	73	KRP4D2	N/A	Splice junction-intron2/exon3
15	74	KRP4D2	N/A	Splice junction-intron2/exon3
0	75	KRP4D2	N/A	D173N
	76	KRP4D2	N/A	P179L
	77	KRP4D2	N/A	P181S
20	78	KRP4D2	N/A	G182D
	^Full-length genom	ic sequence of wild type	KRP4D not available; therefore nucleot	ide numbering is as given in Table 9.

2

25

Table 17. Triticum aestivum (hexaploid) KRP5A TILLING® Mutants in breeding program

	WH group	Gene	Nuc_Change from start codon	Effect-from beginning Met
	79	KRP5A2	G1850A	G121S
00	80	KRP5A2	G1875A	S129N
30	81	KRP5A2	G1892A	E135K
	82	KRP5A2	C1908T	P140L
	83	KRP5A2	C1914T	S142L
35	84	KRP5A2	C1920T	T144I
	85	KRP5A2	G1923A	G145E
	86	KRP5A2	G1964A	V159I
10	87	KRP5A2	G1971A	R161H
40	88	KRP5A2	C2013T	A175V
	89	KRP5A2	G2045A	D186N
	90	KRP5A2	C2144T	P192S
45	91	KRP5A2	C2159T	P197S
	92	KRP5A2	C2166T	P199L
	93	KRP5A2	G2186A	V206M
50	545	KRP5A1	C268T	Q90*

Table 18. Triticum aestivum (hexaploid) KRP5D TILLING® Mutants in breeding program

WH group	Gene	Nuc_Change from start codon	Effect-from beginning Met
112	KRP5D2	G1767A	G137E
113	KRP5D2	C1776T	T140I

(continued)

	WH group	Gene	Nuc_Change from start codon	Effect-from beginning Met
5	114	KRP5D2	C1799T	R148C
5	115	KRP5D2	C1823T	R156C
	116	KRP5D2	G1829A	V158I
	117	KRP5D2	G1836A	S160N
10	118	KRP5D2	C1839T	S161L
	119	KRP5D2	G1849A	M164I
	120	KRP5D2	G1850A	D165N
15	121	KRP5D2	G1871A	E172K
	122	KRP5D2	G1898A	E181K
	123	KRP5D2	G1903A	Splice junction-exon2/intron2
	124	KRP5D2	G2008A	Splice junction-intron2/exon3
20	125	KRP5D2	C2023T	P187L
	126	KRP5D2	C2037T	P192S
	127	KRP5D2	C2040T	L193F
25	128	KRP5D2	C2044T	P194L
	129	KRP5D2	G2046A	G195R
	130	KRP5D2	G2047A	G195E
	131	KRP5D2	G2059A	W199*
30	L L			

Table 19. Triticum aestivum (hexaploid) KRP1B TILLING® Mutants in breeding program

	WH group	Gene	Nuc Change from start codon	Effect from beginning Met
35	147	KRP1B	C503T	A138V
	148	KRP1B	G539A	R150K
	149	KRP1B	G644A	E152K
10	150	KRP1B	C654T	P155L
40	151	KRP1B	C657T	S156F
	152	KRP1B	G705A	G172D
	153	KRP1B	C723T	S178L
45	154	KRP1B	C738T	T183M
	155	KRP1B	C744T	T185I
	156	KRP1B	G764A	A192T
50	157	KRP1B	G768A	R193K
	158	KRP1B	C779T	P197S
	159	KRP1B	G815A	A209T
	160	KRP1B	G821A	E211K
55	161	KRP1B	G827A	E213K
	162	KRP1B	G1000A	A241T

(continued)

WH group	Gene	Nuc Change from start codon	Effect from beginning Met
550	KRP1B	C733T	Q182*
551	KRP1B	G541A	Splice junction

Table 20. Triticum aestivum (hexaploid) KRP1D TILLING® Mutants in breeding program

WH group	Gene	Nuc Change from start codon	Effect from beginning Met
163	KRP1D	G634A	Splice Junction-intron2/exon3
164	KRP1D	C648T	P158S
165	KRP1D	C664T	P163L
166	KRP1D	C688T	S171L
167	KRP1D	G696A	A174T
168	KRP1D	C697T	A174V
169	KRP1D	C754T	P193L
170	KRP1D	C757T	A194V
171	KRP1D	G763A	R196K
172	KRP1D	C774T	P200S
173	KRP1D	C805T	A210V
174	KRP1D	G813A	E213K
175	KRP1D	G829A	R218K
176	KRP1D	G841A	C222Y
177	KRP1D	C959T	R230C
178	KRP1D	G963A	G231D
179	KRP1D	C971T	L234F
180	KRP1D	C1002T	A244V

Table 21. Triticum aestivum (hexaploid) KRP1A TILLING® Mutants in breeding program

	· · ·	,	01 0
WH group	Gene	Nuc Change from start codon	Effect from beginning Met
181	KRP1A	G518A	A 144T
182	KRP1A	G543A	R152K
183	KRP1A	G648A	E154K
184	KRP1A	C655T	T156M
185	KRP1A	C657T	P157S
186	KRP1A	C672T	P162S
187	KRP1A	C763T	P192L
188	KRP1A	C783T	P199S
189	KRP1A	C784T	P199L
190	KRP1A	G804A	E206K
191	KRP1A	C814T	A209V

(continued)

	WH group	Gene	Nuc Change from start codon	Effect from beginning Met
5	192	KRP1A	G822A	E212K
0	193	KRP1A	G961A	R229H
	194	KRP1A	C970T	P232L
	195	KRP1A	C979T	S235F
10	196	KRP1A	G981A	G236S
	197	KRP1A	G995A	W240*
	198	KRP1A	C999T	P242S
15	199	KRP1A	G1012A	S246N
	200	KRP1A	G1015A	S247N

Table 22. Triticum aestivum (hexaploid) KRP2D TILLING® Mutants in breeding program

		· ·	. ,	
20	WH group	Gene	Nuc Change from start codon	Effect from beginning Met
	201	KRP2D	G563A	C152Y
	202	KRP2D	C571T	R155C
25	203	KRP2D	G572A	R155H
	204	KRP2D	G584A	S159N
	205	KRP2D	G593A	S162N
	206	KRP2D	C613T	R169W
30	207	KRP2D	G614A	R169Q
	208	KRP2D	G753A	R171= (splice)
	209	KRP2D	C761T	T174M
35	210	KRN2D	C815T	A192V
	211	KRP2D	C838T	R200C
	212	KRP2D	C860T	T207M
40	213	KRP2D	C877T	P213S
40	214	KRP2D	C883T	H215Y
	215	KRP2D	C922T	P228S
	216	KRP2D	G928A	A230T
45	217	KRP2D	C953T	A238V
	218	KRP2D	G955A	A239T
	219	KRP2D	G1112A	D254N
50	220	KRP2D	C1121T	R257C
00	356	KRP2D	C807T	Q190*

Example 4

55 Genotyping of wheat krp TILLING® mutations

[0247] Wheat KRP TILLING® mutations were genotyped by allelic discrimination primer/probe sets in a real-time PCR

assay. First, genome-specific primers were used to amplify a given wheat KRP gene from a wheat genomic sample. The amplification product was then genotyped in a Taqman® allelic discrimination assay (AD assay, Applied Biosystems). The following is a specific example of an assay to genotype KRP4B2 P109L.

- [0248] Forward primer TTC CTT ATT TTT TAT GAC TAT TGA TAT GTG TTC TTC (SEQ ID NO: 28) and reverse primer GTG GTC ATT TCA GAA TGA GCT GCT AAC CGT T (SEQ ID NO: 29) were used to amplify KRP4B2 from 5 wheat genomic DNA. The PCR reaction contained 2 µL genomic DNA, 2.6 µL 10X Ex Taq reaction buffer, 2.0 µL 2.5 mM dNTPs, 0.75 μ L each of 5 mM forward and reverse primers, 0.1 μ L Ex Taq polymerase (5 units/ μ L, TaKaRa) and 17.8 μ L H₂O in a total reaction volume of 26 μ L. PCR amplification conditions were: initial denaturation at 94°C, 2 min; 40 cycles of 94°C, 30 sec, 58°C, 30 sec, 72°C, 1min 30 sec; final extension at 72°C, 5 min.
- 10 [0249] The amplification product was then used in an AD assay with flanking forward primer (TGTGTATGTATGTTTT-GTGGCTAGCA, SEQ ID NO: 30), flanking reverse primer (CGTTCCCGAGTCCCTAATCAAG SEQ ID NO: 31), a labeled probe specific to the wild type allele (VIC - TGC AGG GCG TCG TC - MGB - NFQ SEQ ID NO: 32) and a labeled probe specific to the mutant allele (FAM - C TGC AGA GCG TCG TC - MGB - NFQ SEQ ID NO: 33). The PCR reaction contained 2 µL of KRP4B2 amplification product, 3 µL ABI genotyping real time PCR master mix and 1 µL 6X (5.4 µM
- 15 each primer/1.2 µM each probe) SNP-specific AD assay primer/probe mix in a total reaction volume of 6 µL. The realtime PCR was conducted on an ABI real-time machine per ABI PCR conditions. [0250] Figure 1A-1C demonstrates that primer/probes can be designed to distinguish between wild type and mutant KRP4B alleles in an AD assay. A mutant heterozygous for the KRP4B P109L allele was confirmed by sequencing (Figure 1D). Figure 2 further shows that populations of samples homozygous for the wild type KRP4B allele, homozygous for
- 20 the mutant KRP4B P109L allele, or heterozygous for the mutant KRP4B P109L allele can be easily distinguished in an AD assay.

In vitro assays to test kinase inhibitory activity of mutant krp TILLING® proteins

- 25 [0251] Selected Type I severe missense and nonsense wheat KRP TILLING® mutants were tested in an in vitro assay to determine whether the mutant KRP proteins could still inhibit the kinase activity of ZmCyclinD4/ZmCDKA;1 kinase complex (Figure 3) (assay described in Dominant Negative Mutant Kip-Related Proteins (KRP) in Zea Mays and Methods of their Use, PCT/US2011/060598).
- [0252] Recombinant ZmCyclinD4 and ZmCDKA;1 were produced in and the complex isolated from S. frugiperda Sf9 30 insect cells. All wild-type TaKRP genes were synthesized by DNA2.0.

Mutagenesis of TaKRPs

[0253]

35

40

TaKRP1A P232L (pTG1947) TaKRP1A G236S (pTG1948) TaKRP1A W240* (pTG1949) TaKRP2D P228S (pTG1958) TaKRP2D A238V (pTG1959) TaKRP2D A239T (pTG1960) TaKRP2D D254N (pTG1961) TaKRP2D R257C (pTG1962) TaKRP4A W186* (pTG1950)

45 TaKRP5A W199* (pTG1951)

> [0254] Primers to generate the mutants listed above are found in Table 28.

- General methods for recombinant protein expression in bacteria, purification and detection are desribed below: [0255]
- I. Insect cells and media 50

55

[0256] The baculovirus expression system is a versatile eukaryotic system for heterologous gene expression. This system provides correct protein folding, disulfide bond formation and other important post-translational modifications. All methods were taken from the Baculovirus expression vector system: Procedures and methods manual. (BD Bio-

sciences, Pharmingen, San Diego, Calif. 6th Ed.). Sf9 insect cells were grown at 27° C. in TNM-FH insect cell media (BD Biosciences) for the reported studies. It should be noted that alternative media are well known to the skilled artisan and are also useful. Similarly, alternative insect cell lines such as Sf21 and High Five™ cells will also work for virus production and protein production.

II. Western blots and IPs

[0257] The recombinant protein expressed in insect cells was monitored by Western blot. Protein extracts (35 μg) were boiled in the presence of Laemmli buffer, run on 10% or 12% SDS-PAGE gels and transferred to a PVDF membrane using a submerged transfer apparatus (BioRad). Following the transfer, the membrane was blocked in TBS-T (25 mM Tris pH 7.5; 75 mM NaCl; 0.05% Tween) containing 5% non-fat dry milk powder. Primary antibody was used at 1:1000 dilution overnight in TBS-T blocking buffer. Blots were washed three times 15 minutes at room temperature. An appropriate secondary antibody conjugated to horse radish peroxidase (HRP) was used at 1:10,000 dilution in TBS-T blocking buffer. Blots were incubated in secondary antibody for 1 hour and then washed three times in TBS-T, 15 min each. Blots were then processed as described in the ECL system protocol (Amersham Biosciences). Antibodies commonly used were: anti-flag M2 monoclonal antibody (Sigma), anti-HA monoclonal or polyclonal antibody (Babco), anti-PSTAIR antibody (Sigma, Aldrich), anti-muc 9E10 memoclonal or polyclonal antibody (Babco), anti-PSTAIR antibody

- anti-flag M2 monoclonal antibody (Sigma), anti-HA monoclonal or polyclonal antibody (Babco), anti-PSTAIR antibody (Sigma-Aldrich), anti-myc 9E10 monoclonal or polyclonal (A-14) (Santa Cruz Biotechnology). Secondary antibodies used were anti-mouse IgG-HRP, and anti-rabbit IgG-HRP (GE Healthcare).
- ¹⁵ III. Baculovirus vector construction

[0258] The Baculovirus system was Bac-to-bac (Invitrogen). Alternative Baculovirus genomes can also be used. All bacmids containing our genes of interest were independently transfected into 293 cells using lipid based transfection reagents such as Fugene or Lipofectamine. *S. frugiperda* Sf9 cells were seeded at 9 x 10⁶ cells on 60 mm dish and transiently transfected with 1 μ g bacmid using 3 μ l Fugene 6 transfection reagent according to the manufacturer's protocol (Roche Diagnostics). After 4 hours of transfection the Fugene/DNA solution was removed and replaced with 3 ml of TNM-FH media. Four (4) days later, the supernatant was collected and subsequently used to infect more cells for amplification of the virus. This amplification was repeated until the virus titer was at least 10⁹ virus particles/ml. The virus was amplified by infecting Sf9 cells at a multiplicity of infection (moi) of < 1. The virus titer was monitored using light and

²⁵ fluorescence microscopy.

20

IV. Recombinant protein expression in bacteria and purification

- [0259] All bacterial expression plasmidscarrying inserts were transformed into BL21 RosettaBlue (DE3) (Novagen). Bacterial colonies from this fresh transformation was used to inoculate 400 ml of LB containing 100 μg/ml of ampicillin and grown at 37°C. When the culture reached an OD₆₀₀ between 0.6 and 0.8 recombinant protein expression was induced with <u>1</u> mM isopropyl -D-thiogalactopyranoside (IPTG). Cells were then grown at 30°C for three hours. Cells were collected by centrifugation in a JLA 10.500 Beckman rotor. Bacterial cell pellet was either stored at -80°C or lysed immediately. Bacteria were lysed in 10 ml Phosphate lysis buffer (100 mM Phosphate buffer pH 7.0, 150 mM NaCl, 1%
- ³⁵ Triton X100) containing protease inhibitors and lacking EDTA. The resuspended bacterial culture was lysed via a French press or repeated sonication. Lysed cells were centrifuged at 14,000 rpm in a Beckman JA20.1 rotor for 15 minutes at 4°C. Tagged KRP molecules were mainly insoluble. Insoluble tagged KRPs were solubilized in Urea buffer (8M Urea, 100 mM Phosphate buffer pH 7.0) manually with a pipette aid. Urea-insoluble proteins were eliminated by centrifugation at 14,000 rpm in a Beckman JA20.1 rotor for 15 minutes at 4°C.
- 40 Co²⁺ metal affinity resin equilibrated in Urea buffer. Batch purification was incubated at 4°C 3 hrs to overnight under slow rotation. Slurry was loaded on a column and resin was washed with 36 bed volumes of Urea buffer followed by 12 bed volumes of Urea buffer containing 5 mM Imidazole pH 7.0. Bound tagged KRP protein was eluted using Urea buffer containing 300 mM Imidazole pH 7.0. Fractions were monitored for tagged KRP by SDS-PAGE and/or by Bradford protein assay (BioRad). Refolding of the denatured tagged KRP1 was carried out using step-wise dilution dialysis.
- ⁴⁵ Fractions containing the majority of tagged KRP protein were combined and dialyzed in a 1M Urea, 100 mM Phosphate buffer pH 7.0, and 1mM Dithiothreitol for 20 hrs at 4°C. Dialysis buffer was then changed to 0.5 M Urea, 100 mM Phosphate buffer pH 7.0, and 1mM Dithiothreitol and continued for an additional 12 hrs. Recombinant protein was collected, quantified by Bradford assay and stored at 4°C.
- [0260] In *in vitro* kinase assays, a few TaKRP mutant proteins exhibited reduced inhibitory activity toward the cyclin/CDK kinase complex, while others behaved like their wild-type TaKRPs. Notably, TaKRP4A W186* (Figures 4 and 6A) and TaKRP5A W199* (Figure 5) did not inhibit the kinase activity of ZmCyclinD4/ZmCDKA;1 at 0.1, 0.25 or 0.5 µg. TaKRP1A W240* also did not inhibit the kinase activity of ZmCyclinD4/ZmCDKA;1 at 0.1, 0.25 or 0.5 µg, although its inhibitory activity was not as compromised at 0.25 and 0.5 µg (Figures 4 and 6A). TaKRP1A G236S could only strongly inhibit ZmCyclinD4/ZmCDKA;1 at 0.5 µg and weakly at 0.25 µg (Figure 4). Similarly, TaKRP2D P228S could only strongly
- ⁵⁵ inhibit ZmCyclinD4/ZmCDKA;1 at 0.5 μg and very weakly at 0.25 μg (Figure 4). TaKRP4A W186*, TaKRP5A W199* and TaKRP1A W240* contain premature stop codons very close to the end of the KRP proteins and thus still retain the cyclin- and CDK-binding domains. However, the elimination of the last 8 amino acids for TaKRP1A W240*, the last 6 amino acids for TaKRP5A W199* and the last 5 amino acids for TaKRP4A W186* compromises the ability of the mutant

KRPs to inhibit the kinase complex. A mutant corn KRP2 protein, ZmKRP2 W250^{*}, with an equivalent premature stop codon near the end of the protein, also was not able to inhibit the ZmCyclinD4/ZmCDKA;1 complex at 0.3 or 3 μ g (Figure 6B).

[0261] Other mutants, such as TaKRP1A P232L (Figure 4), TaKRP2D A238V (Figure 5), TaKRP2D A239T (Figure

5 5), TaKRP2D D254N (Figure 4) and TaKRP2D R257C (Figure 4), inhibit the ZmCyclinD4/ZmCDKA;1 complex as well as their wild-type counterparts at the indicated protein concentrations.

[0262] The inhibitory activities for various wheat *KRP* TILLING® mutants compared to their wild-type counterparts are summarized in Table 23.

10 Table 23. Inhibitory activity of wild-type wheat KRP or mutant wheat KRP on ZmCyclinD4/CDKA;1 kinase complex

	Wheat Krp	Inhibitory activity
	Krp1A wild type (WT)	++++
15	Krp1A (E212K)	Not tested
	Krp1A (P232L)	++++
	Krp1A (G236S)	++
20	Krp1A (W240*)	+
	Krp2D WT	++++
	Krp2D (P228S)	+++
	Krp2D (A238V)	++++
25	Krp2D (A239T)	++++
	Krp2D (D254N)	++++
	Krp2D (R257C)	++++
30	Krp4A WT	++++
	Krp4A (W186*)	-
	Krp5A WT	++++
	Krp5A (G200D)	Not tested
35	Krp5A (G200R)	Not tested
	Krp5A (W199*)	-

40 Example 5

45

Preliminary field trial results on M generation wheat KRP TILLING® mutants

[0263] The M5 generation of selected wheat KRP TILLING® mutants were grown in Yuma, AZ in fall 2009-winter 2010 to determine yield. Sixty entries (Table 24) were in the yield trial, with each entry being replicated three times randomly throughout the trial. Each plot was 4 ft by 10 ft with 7 rows per plot and 7 inches between rows. About 75g of seed were planted per plot, or about 2500 seeds/plot or about 360 seeds per 10-ft row. Planting took place in October.

- **[0264]** Where available, the wild type segregant of a given homozygous or heterozygous KRP TILLING® mutant was planted for comparison. The parent variety, Express, was also included in the trial. The stand rate was taken prior to harvest, the maturity rate was taken at flowering, and the peduncle rate, head number, kernel number, spike length and awn length were taken after harvest from subsamples. Maturity rate and peduncle rate were on a comparative scoring system, relative to the Express background parent. Maturity: 1 is early, 3 is similar to Express, 5 is late/vegetative. Peduncle: 1 is very thin, 3 is similar to Express, 5 is very thick (Table 24).
- [0265] Harvest was conducted in two rounds in May. Plots in replicate 1 were hand sickled and plants bundled and allowed to dry in the field for a few days prior to stationary threshing. The second round utilized a plot combine to harvest the remaining plots. Prior to the second harvest, heads from five plants per plot of replicates 2 and 3 (so 10 heads total per entry) were collected for head measurements. The cut was made approximately 5-6 inches below the base of the spike. [0266] Seed weight and seed count were determined for each 5-head subsample, from which a weight per seed could

be calculated. The plot weight was determined by hand. Seed count per plot was calculated from weight per seed and plot weight. Thousand kernel weight (TKW) is weight per seed multiplied by 1000.

[0267] A number of KRP mutants demonstrated excellent seed yield. These included WH68, WH3, WH91, WH124, WH4 and WH16 (Table 24). WH68 (KRP4D, P146L) was ranked first in yield at 3584.90 lbs/acre. Two mutants, WH3

⁵ and WH4, with changes in adjacent nucleotides that result in a splice mutation at the same intron/exon junction both showed good yield, ranking second (WH3) and sixth (WH4) out of the 60 entries. Another splice mutant in KRP5D, WH124, was ranked fifth in yield. A mutant, WH16, ranked seventh in yield interestingly has two mutations within the KRP2A gene (V258M and G169S).

10

15			
20			
25			
30			
35			
40			
45			
50			

	Awn	length	cm	7.00	8.50	8.00	6.00	5.50	7.00	7.50	8.00	8.00	8.50	6.00	6.00	8.00	6.50	9.00	7.50	5.50	6.50	6.50	7.50	6.00	5.50	7.50	7.00	7.50	6.00	6.00	8.00	7.00	8.50	8.50
5	Spike	length	cm	14.00	12.50	12.50	12.50	11.00	10.50	13.00	11.50	13.50	12.00	12.50	14.00	11.50	11.00	12.00	11.50	12.50	12.00	11.50	15.00	11.00	11.00	11.50	13.00	14.50	14.00	13.00	13.50	13.50	13.50	11.50
10		TKW	g/1000	40.53	46.92	42.13	37.05	38.56	39.44	46.50	40.75	41.34	42.79	43.13	37.56	40.26	42.82	35.81	41.20	37.99	37.25	41.37	45.17	39.52	40.53	44.07	43.89	46.44	43.67	45.48	45.39	45.01	48.78	46.35
	Kernel	number		77.30	60.70	75.50	73.70	66.60	61.60	63.20	71.40	82.90	74.20	65.40	69.30	74.90	67.00	82.70	65.80	75.50	76.90	80.70	93.30	73.70	77.50	55.10	77.30	82.40	74.60	76.80	77.40	72.30	66.90	60.60
15 •	la, AZ Head	number		3.21	2.92	2.63	2.87	3.51	2.95	3.11	2.87	3.36	2.82	2.18	2.26	2.77	2.97	2.21	2.93	3.62	3.34	3.37	2.78	3.17	2.58	1.87	1.99	2.55	3.63	2.82	2.77	3.20	2.62	2.20
20	Peduncle	rate		3.33	3.33	3.33	3.33	3.00	3.00	2.67	3.00	3.00	3.33	2.67	2.67	3.33	3.33	3.00	3.33	3.33	3.33	3.33	3.67	3.33	3.33	3.33	3.33	3.33	3.00	3.33	3.33	3.00	2.67	3.00
		ield		(18)	(39)	(34)	(48)	(40)	(49)	(25)	(46)	(2)	(29)	(22)	(58)	(36)	(32)	(23)	(38)	(10)	(19)	(2)	(2)	(21)	(30)	(69)	(54)	(8)	(9)	(26)	(24)	(15)	(37)	(51)
25		Grain y	Lbs/acre	2771.91	2295.06	2416.27	2137.06	2286.10	2090.37	2633.43	2164.89	3241.41	2572.98	1862.65	1641.34	2363.50	2447.61	1975.23	2330.24	2931.82	2771.59	3063.27	3304.74	2753.68	2551.87	1534.19	1926.94	2962.53	3117.00	2623.19	2645.26	2782.79	2360.30	2004.66
30	Maturity	rate		2.00	2.33	2.33	3.33	3.00	2.00	1.33	1.67	2.00	2.00	2.33	2.67	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	1.67	2.33	1.67	1.67	1.67	2.00	2.00	2.00	2.33	2.67	2.67
	Stand	rate		5.00	5.00	5.00	5.00	5.00	4.67	5.00	5.00	5.00	5.00	4.67	4.67	5.00	5.00	5.00	5.00	4.33	5.00	5.00	5.00	4.67	4.67	4.33	5.00	5.00	5.00	5.00	4.67	4.67	5.00	4.33
35	na agrono	Type		SPLCE	SPLCE	SPLCE	SPLCE	SPLCE	SPLCE	MSSE	SPLCE	SPLCE	SPLCE	MSSE	MSSE	STOP	STOP	STOP	STOP	MSSE	MSSE	MSSE	SPLCE	MSSE	MSSE	SPLCE	SPLCE	MSSE	SPLCE	SPLCE	SPLCE	SPLCE	STOP	STOP
40	24. Y I E I A A	Variant		KRP2A2	KRP2A2	KRP2A2	KRP2A2	KRP2A2	KRP2A2	KRP5D2	KRP5D2	KRP5D2	KRP5D2	KRP5D2	KRP5D2	KRP5D2	KRP5D2	KRP5D2	KRP5D2	KRP2A2	KRP2A2	KRP2A2	KRP2A2	KRP2B2	KRP2B2	KRP2B2	KRP2B2	KRP2B2	KRP2A2	KRP2A2	KRP2A2	KRP2A2	KRP2B2	KRP2B2
45	lable	Group		1	,	1	;-	1	1	116	124	124	124	125	125	131	131	131	131	14	14	16	ო	37	37	38	38	39	4	4	4	4	40	40
	1	Zygosity		MOH	MOH	MOH	MOH	MOH	MOH	MOH	MOH	MOH	MOH	MOH	WT	WT	HET	MOH	MOH	MOH	WT	MOH	MOH	MOH	МТ	MOH	MOH	НЕТ	MOH	MOH	HET	MOH	МТ	МОН
50 55	L	Entry		WH11 -120M5	WH11 -124M5	WH11 -125M5	WH11 -126M5	WH11 -126M5	WH11 -129M5	WH116-1212M5	WH124-1275M5	WH124 -1276M5	WH124-1277M5	WH125-1288M5	WH125-1290M5	WH131 -1336M5	WH131 -1337M5	WH131 -1342M5	WH131 -1346M5	WH14 -164M5	WH14-172M5	WH16-185M5	WH3 -2009M5	WH37 -423M5	WH37 -428M5	WH38 -432M5	WH38 -433M5	WH39 -437M5	WH4 -2060M5	WH4 -2066M5	WH4 -41M5	WH4 -53M5	WH40 -440M5	WH40 -443M5
		8 N		~	7	ю	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

| | Awn
Iength | cm | 6.50 | 9.50 | 8.00 | 8.50 | 8.00 | 6.50 | 6.50 | 7.00 | 7.50 | 6.50 | 8.50 | 6.50
 | 8.50
 | 8.00
 | 7.00 | 7.50 | 6.50 | 7.50 | 7.00 | 6.00 | 3.50 | 6.00 | 4.50
 | 9.00
 | 7.00 | 7.00 | 00.6 | 7.50 | 8.50
 | ** | |
|------------|------------------|---|---|--|--|--|---|---|---|--|---|--|--

--

--|-------------------------------------|--|-------------|---
---|--|---|--
--
---	---	---	---
	Spike length	cm	10.50
 | 12.00
 | 12.00
 | 13.00 | 13.00 | 11.50 | 12.50 | 12.00 | 10.50 | 12.50 | 12.00 | 15.00
 | 13.00
 | 13.50 | 14.00 | 12.50 | 13.50 | 12.00
 | * | |
| | ТКW | g/1000 | 42.89 | 45.74 | 44.97 | 40.99 | 46.63 | 31.35 | 32.97 | 37.24 | 49.53 | 48.83 | 47.40 | 45.78
 | 42.86
 | 42.43
 | 45.58 | 46.60 | 47.42 | 49.16 | 48.64 | 47.05 | 40.87 | 42.25 | 40.77
 | 34.98
 | 39.92 | 31.98 | 46.63 | 39.26 | 46.49
 | ** | |
| | Kernel
number | | 76.90 | 80.70 | 76.30 | 64.20 | 78.00 | 59.40 | 65.40 | 66.40 | 69.70 | 59.00 | 72.80 | 86.40
 | 73.20
 | 73.70
 | 66.80 | 73.10 | 71.50 | 76.00 | 76.60 | 73.10 | 76.10 | 73.30 | 79.10
 | 72.10
 | 89.50 | 72.80 | 83.90 | 74.10 | 81.30
 | ** | |
| | Head
number | | 2.38 | 2.88 | 2.85 | 2.66 | 3.48 | 2.67 | 2.26 | 2.31 | 2.78 | 2.96 | 3.63 | 2.34
 | 3.24
 | 3.10
 | 2.90 | 3.10 | 2.86 | 2.31 | 2.25 | 2.90 | 2.41 | 2.56 | 2.28
 | 3.53
 | 2.60 | 3.02 | 2.83 | 2.44 | 2.98
 | * | |
| | Peduncle
rate | | 3.00 | 3.00 | 3.33 | 3.33 | 3.00 | 3.33 | 3.00 | 3.33 | 3.00 | 3.00 | 3.33 | 3.33
 | 3.00
 | 3.00
 | 3.00 | 3.33 | 3.33 | 3.33 | 3.00 | 3.33 | 3.00 | 3.33 | 3.33
 | 2.67
 | 3.00 | 2.67 | 3.00 | 3.00 | 3.33
 | NA | |
| | eld | | (35) | (11) | (16) | (42) | (6) | (43) | (09) | (57) | (17) | (31) | (1) | (23)
 | (13)
 | (27)
 | (14) | (12) | (20) | (44) | (33) | (22) | (45) | (47) | (20)
 | (41)
 | (28) | (99) | (4) | (52) | (3)
 | | |
| | Grain yi | -bs/acre | 2372.77 | 2911.36 | 2777.99 | 2246.76 | 2938.54 | 2245.16 | 1498.37 | 1688.03 | 2773.19 | 2514.45 | 3584.90 | 2691.00
 | 2820.21
 | 2580.66
 | 2808.69 | 2902.08 | 2763.92 | 2173.52 | 2447.61 | 2730.02 | 2167.13 | 2151.13 | 2068.30
 | 2257.00
 | 2576.18 | 1817.24 | 3256.13 | 2000.18 | 3269.88
 | ** | |
| continued) | Maturity
rate | 1 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 1.67 | 2.67 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00
 | 2.00
 | 1.67
 | 2.33 | 2.33 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00
 | 2.00
 | 2.00 | 2.00 | 1.33 | 2.33 | 2.00
 | ** | |
| 0) | Stand
rate | | 4.33 | 4.67 | 4.67 | 4.00 | 5.00 | 4.67 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00
 | 5.00
 | 5.00
 | 4.67 | 5.00 | 5.00 | 4.33 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00
 | 4.67
 | 5.00 | 5.00 | 5.00 | 4.67 | 5.00
 | ** | |
| | Type | | MSSE | MSSE | MSSE | MSSE | MSSE | SPLCE | SPLCE | SPLCE | MSSE | MSSE | MSSE | STOP
 | STOP
 | STOP
 | STOP | STOP | STOP | STOP | STOP | STOP | SPLCE | SPLCE | SPLCE
 | MSSE
 | MSSE | MSSE | MSSE | MSSE | CTL
 | | |
| | Variant | | KRP4B2 | KRP4B2 | KRP4B2 | KRP4B2 | KRP4B2 | KRP4B2 | <pre><rp4b2< pre=""></rp4b2<></pre> | <pre><rp4b2< pre=""></rp4b2<></pre> | <pre><rp4d2< pre=""></rp4d2<></pre> | <pre><rp4d2< pre=""></rp4d2<></pre> | <pre><rp4d2< pre=""></rp4d2<></pre> | <pre><rp4d2< pre=""></rp4d2<></pre>
 | KRP4D2
 | <pre><rp4d2< pre=""></rp4d2<></pre>
 | <pre><rp4d2< pre=""></rp4d2<></pre> | KRP4D2 | KRP4D2 | <pre><rp4d2< pre=""></rp4d2<></pre> | <pre><rp4d2< pre=""></rp4d2<></pre> | <pre><rp4d2< pre=""></rp4d2<></pre> | KRP4D2 | <pre><rp4d2< pre=""></rp4d2<></pre> | KRP4D2
 | <pre><rp5a2< pre=""></rp5a2<></pre>
 | <pre><rp5a2< pre=""></rp5a2<></pre> | <pre><rp5a2< pre=""></rp5a2<></pre> | KRP5A2 | <pre><rp5a2< pre=""></rp5a2<></pre> | Express
 | | |
| | Group | | 44 | 44 | 44 | 44 | 48 | 52 | 52 | 52 | 63 | 63 | 68 | 71
 | 71
 | 71
 | 71 | 71 | 72 | 72 | 72 | 72 | 73 | 73 | 73
 | 91
 | 91 | 91 | 91 | 91 | 1000
 | | |
| | Zygosity | | MOH | MOH | MOH | MOH | МТ | MOH | WT | MOH | MOH | MOH | MOH | MOH
 | НЕТ
 | НЕТ
 | MOH | MOH | MOH | WT | MOH | MOH | MOH | MOH | MOH
 | MOH
 | WT | WT | НЕТ | WT | RP
 | | |
| | Entry | | WH44 -460M5 | WH44 -461M5 | WH44 -461M5 | WH44 -462M5 | WH48 -487M5 | WH52-513M5 | WH52 -522M5 | WH52 -524M5 | WH63 -634M5 | WH63 -635M5 | WH68 -676M5 | WH71 -2083M5
 | WH71 -708M5
 | WH71 -712M5
 | WH71 -713M5 | WH71 -714M5 | WH72 -724M5 | WH72 -725M5 | WH72 -729M5 | WH72 -734M5 | WH73 -739M5 | WH73 -740M5 | WH73 -747M5
 | WH91 -1000M5
 | WH91 -1003M5 | WH91 -1004M5 | WH91 -1005M5 | WH91 -1008M5 | Express
 | | |
| | No | | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43
 | 44
 | 45
 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54
 | 55
 | 56 | 57 | 58 | 59 | 60
 | р < F | |
| | (continued) | (continued)
No Entry Zygosity Group Variant Type Stand Maturity Grain yield Peduncle Head Kernel TKW Spike Awn
rate rate rate rate burnber number number hength length length | No Entry Zygosity Group Variant Type Stand Maturity Grain yield Peduncle Head Kemel TKW Spike Awn No Entry Zygosity Group Variant Type Stand Maturity Grain yield rate Image Maturity Image Maturity Image Maturity Image Maturity Image Image Image Image Image Image Image Image | No Entry Zygosity Group Variant Type Stand Maturity Grain yield Head Kemel TKW Spike Awn 32 WH44-460M5 HOM 44 KRP4B2 MSE 4.33 2.00 2372.77 (35) 3.00 2.38 76.90 42.89 10.50 6.50 | No Entry Zygosity Group Variant Type Stand Maturity Grain yield Head Kemel TKW Spike Ann 32 WH44-460M5 HOM 44 KRP4B2 MSE 4.33 2.00 2372.77 (35) 3.00 2.38 76.90 42.89 10.50 6.50 33 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 2911.36 (11) 3.00 2.38 80.70 45.74 13.00 9.50 | No Entry Zygosity Group Variant Type Stand Maturity Grain yield Head Kemel TKW Spike Ann 32 WH44-460M5 HOM 44 KRP4B2 MSE 4.33 2.00 2372.77 (35) 3.00 2.38 76.90 42.89 10.50 6.50 33 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 2372.77 (35) 3.00 2.38 76.90 42.89 10.50 6.50 33 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 2911.36 (11) 3.00 2.38 76.30 42.74 13.00 9.50 34 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 2911.36 (11) 3.00 2.85 76.30 44.97 13.00 9.50 | No Entry Zygosity Group Variant List Reducte Head Kernel TKW Spike Awn 32 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 2372.77 (35) 3.00 2.38 76.90 42.89 10.50 6.50 33 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 2372.77 (35) 3.00 2.38 76.90 42.89 10.50 6.50 34 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 2911.36 (11) 3.00 2.88 76.90 45.74 13.00 9.50 34 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 277.99 (16) 3.33 2.85 76.30 45.74 13.00 9.50 35 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 2777.99 76.30 | No Entry Zygosity Group Variant Item at the state Reducte Head Kemel TKW Spike Awn 32 WH44-461M5 HOM 44 KRP4B2 MSE 4.33 2.00 2372.77 (35) 3.00 2.38 76.90 42.89 10.50 6.50 33 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 2372.77 (35) 3.00 2.38 76.90 42.89 10.50 6.50 34 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 2241.36 (11) 3.00 2.88 76.30 44.97 13.00 8.00 35 WH44-461M5 HOM 44 KRP4B2 MSE 4.00 2.00 2246.76 (42) 3.33 2.86 64.20 44.97 13.00 8.00 36 WH44-461M5 WT 448 KRP4B2 MSE 4.00 2.00 2.33 2 | No Entry Zygosity Group Variant Type Stand Maturity Grain yield Peduncle Head Kernel TWW Spike Awn 32 WH44-460M5 HOM 44 KRP4B2 MSSE 4.33 2.00 2372.77 (35) 3.00 2.38 76.90 42.89 10.50 6.50 33 WH44-461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2777.99 (10) 3.00 2.38 80.70 42.89 10.50 6.50 34 WH44-461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2777.99 (16) 3.33 2.86 76.90 41.97 13.00 8.00 35 WH44-461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2777.99 (16) 3.33 2.86 76.90 41.97 13.00 8.00 36 WH44-461M5 HOM 44 KRP4B2 MSSE | Image: continued with the second stand sta | Indextrained No Entry Zygosity Group Variant Type Stand Maturity Grain vield Head Kemel TKW Splite Avminity 32 WH44 -460M5 HOM 44 KRP4B2 MSE 4.67 2.00 2372.77 (35) 3.00 2.38 76.90 42.89 10.50 6.50 33 WH44 -461M5 HOM 44 KRP4B2 MSE 4.67 2.00 2372.77 (35) 3.00 2.38 76.90 42.89 10.50 6.50 34 WH44 -461M5 HOM 44 KRP4B2 MSE 4.67 2.00 2377.99 (10) 3.00 2.86 64.20 4.9.97 13.00 8.0 35 WH44 -461M5 HOM 44 KRP4B2 MSE 4.67 2.00 2.11.3 2.66 64.20 4.9.97 13.00 8.0 36 WH44 -461M5 HOM 44 KRP4B2 MSE | Icontinued) No Entry Continued) Icontinued) Icontinued) No Entry Zygosity Group Variant Type Stand Maturity Grain yield Head Kernel TrW Splike Avm 32 WH44 460M5 HOM 44 KRP4B2 MSSE 4.33 2.00 2372.77 (35) 3.00 2.38 76.90 42.89 10.50 6.50 33 WH44 461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2372.77 (35) 3.00 2.38 76.90 42.97 13.00 8.00 34 WH44 461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2.38 76.90 44.97 13.00 8.00 35 WH44 461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2.016 44.97 13.00 8.00 36 WH44 46 | Icontinued) No Entry Zygosity Group Variant Tape Stand Maturity Groundle Head Kemel TKW Splic Ann 32 WH44 460M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2372.77 350 2.38 76.90 44.97 13.00 cm mm 33 WH44 461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2372.77 350 2.38 76.90 44.97 13.00 cm mm 33 WH44 461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2377.79 15.0 2.88 6.70 48.74 13.00 8.00 34 WH44 461M5 HOM 44 KRP4B2 MSSE 4.00 2.00 2.99 2.86 64.20 4.9.97 10.50 65.0 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 | (continued) (continued) No Entry Zygosity Ground Tate Mumber Head Kemel TitW Splite Amn 32 WH44-461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2372.77 (35) 3.00 2.38 80.70 47.97 15.00 8.0 33 WH44-461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2372.77 (35) 3.00 2.38 6.50 8.0 76.30 44.97 13.00 8.0 34 WH44-461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2372.77 (35) 3.00 2.38 6.50 8.0 76.30 44.97 13.00 8.0 76.30 8.0 76.30 8.0 76.30 8.0 76.30 8.0 76.30 8.0 76.30 8.0 76.30 8.0 76.30 8.0 76.30 8.0 76.30 8.0 | (continued) No Entry Zygosity Group Variant Type Stand Maturity Grain yield Head Kemel TKW Spike Am 32 WH44 -461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2372.77 (35) 3.00 2.38 76.90 42.89 10.00 cm monther Immber mumber mumber <td>Image: colspan="6">Image: colspan="6">Image: colspan="6" No Entry Zygosity Group Variant Type Stand Maturity Gradin yield Head Kemel Type Ann 32 WH44 460M5 HOM 44 KRPAB2 MSE 4.57 2.00 2372.77 (35) 3.00 2.38 76.90 47.97 [angth Immber Maturity Immber Immber Maturity Immber Immber Maturity Immber Immber Imm Immber Immber Imm Immber Immber Imm Immber Imm Immber Imm Imm Immber Imm <td< td=""><td></td><td>Interclast (continued) No Entry Zygosity Group Variant Type Stand Maturity Grain yield Head Kernel TxV Splike Awn 32 WH44 -460M5 HOM 44 KRP4B2 MSSE 4,57 33 300 2.38 76.90 42.89 10.50 6.50 33 WH44 -460M5 HOM 44 KRP4B2 MSSE 4,57 33 2.00 2.372.77 35 3.00 2.38 76.90 42.87 10.50 6.50 34 WH44 -461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2.377.79 (11) 3.00 2.38 8.070 4.97 13.00 8.00 35 WH44 -461M5 HOM 44 KRP4B2 MSSE 4.07 14.07 13.00 8.00 6.50 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00</td><td></td><td>(a) The transmission of transmit transmission of transmission of transmission of transm</td><td>Interview No Entry Zygosity Group Variant Type Stand Maurity Grain view Remeile Tick Specific Manuality Remeile Remeile Remeile R</td><td>(continued) No Entry Zygosity Group Variant Type Stand Maturity Grain yield Head Kernel Two Spire Ann 32 WH44-461M5 HOM 44 KRP4B2 MSE 4.37 2.00 237.71 351 3.00 2.38 76.00 mmber Two Rengit Monthier 35 WH44-461M5 HOM 44 KRP4B2 MSE 4.57 2.00 237.71 350 3.33 2.86 6.50 4.99 1500 6.50 36 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 237.71 330 2.86 6.50 4.99 1500 6.50 500 500 2.333 2.66 6.420 4.950 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500</td><td>Interview Interview No Entry Zygosity Group Variant Type Stand Maturity Read Kernel Tww Splite Arm 32 WH44 -461M5 HOM 44<</td> KFRP42 MSSE 4.67 2.00 2.94 9.00 0.00 6.60 33 WH44 -461M5 HOM 44 KFRP42 MSSE 4.67 2.00 2.911.36 1.10 3.00 2.88 6.07 4.97 13.00 9.60 34 WH44 -461M5 HOM 44 KFRP42 MSSE 4.67 2.00 2.911.36 110 3.00 2.88 6.07 4.97 13.00 8.00 35 WH44 -461M5 HOM 44 KFR42 MSSE 4.67 2.00 2.911.60 6.60 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6</td<></td> <td>(continued) No Entry Zygosity Group Variant Type Stand Maturity Grain viel Pedducte Head Kemler Tw Spike Ann 3 WH44 461M5 HOM 44 KRP482 MSSE 4.67 2.00 2717.99 169 3.33 2.86 76.90 4.97 13.00 66 3 WH44 461M5 HOM 44 KRP482 MSSE 4.67 2.00 2717.99 161 3.33 2.86 76.90 4.97 13.00 80 3 WH44 461M5 HOM 44 KRP482 MSSE 4.67 2.00 2777.99 161 3.33 2.86 76.90 4.97 13.00 80 3 WH44 461M5 HOM 44 KRP482 MSSE 4.67 2.00 277.39 161 7.00 700 700 700 700 700 700 700 700 700 700 700</td> <td>(continued) No Entry Zygosity Grout Variant Type Stand Maturity Grain yield Fleate Number Two Splite Ann 33 WH44 461M5 HOM 44 KRPAB2 MSSE 4.67 2.00 2372.71 95 75.30 4.97 13.00 9.60 9.0 34 WH44 461M5 HOM 44 KRPAB2 MSSE 4.67 2.00 2372.71 95 110 3.00 2.60 8.00 9.00 8.00 9.00 8.00 35 WH44 461M5 HOM 44 KRPAB2 MSSE 4.67 2.00 2.917.33 2.66 4.90 1.30 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 <t< td=""><td>No Entry Zygssity Grout Type Stand Maturity Reduncie Head Kemel Type Sind Maturity 33 WH44 460M5 HOM 44 KFPAB2 MSSE 4.53 2.00 2.38 76.30 4.999 10.00 650 34 WH44 460M5 HOM 44 KFPAB2 MSSE 4.57 2.00 2347 76.30 4.999 10.00 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650<td>No Entry Zygosity Group Variant Type Stand Maturity Caranyalid Pertonecic Head Kernel Txvn Spike Avmn 31 WH44 460M5 HOM 44 KRP422 MSE 4.57 2.00 2.911.36 (11) 3.00 2.88 9.100 Mm 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00</td><td>(continued) No Entry Zygasity Group Variant Type Stand Maturity Grain visit Frain Train <</td><td>No Entry Zygosity Groninued Remain Remain<</td><td>No Entry Zygasity Grout Mark Explanation And And<td>Application of the probability of t</td><td>Approval Continued) Approval <th colspa="</td"></th></td></td></td></t<></td> | Image: colspan="6">Image: colspan="6">Image: colspan="6" No Entry Zygosity Group Variant Type Stand Maturity Gradin yield Head Kemel Type Ann 32 WH44 460M5 HOM 44 KRPAB2 MSE 4.57 2.00 2372.77 (35) 3.00 2.38 76.90 47.97 [angth Immber Maturity Immber Immber Maturity Immber Immber Maturity Immber Immber Imm Immber Immber Imm Immber Immber Imm Immber Imm Immber Imm Imm Immber Imm Imm <td< td=""><td></td><td>Interclast (continued) No Entry Zygosity Group Variant Type Stand Maturity Grain yield Head Kernel TxV Splike Awn 32 WH44 -460M5 HOM 44 KRP4B2 MSSE 4,57 33 300 2.38 76.90 42.89 10.50 6.50 33 WH44 -460M5 HOM 44 KRP4B2 MSSE 4,57 33 2.00 2.372.77 35 3.00 2.38 76.90 42.87 10.50 6.50 34 WH44 -461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2.377.79 (11) 3.00 2.38 8.070 4.97 13.00 8.00 35 WH44 -461M5 HOM 44 KRP4B2 MSSE 4.07 14.07 13.00 8.00 6.50 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00</td><td></td><td>(a) The transmission of transmit transmission of transmission of transmission of transm</td><td>Interview No Entry Zygosity Group Variant Type Stand Maurity Grain view Remeile Tick Specific Manuality Remeile Remeile Remeile R</td><td>(continued) No Entry Zygosity Group Variant Type Stand Maturity Grain yield Head Kernel Two Spire Ann 32 WH44-461M5 HOM 44 KRP4B2 MSE 4.37 2.00 237.71 351 3.00 2.38 76.00 mmber Two Rengit Monthier 35 WH44-461M5 HOM 44 KRP4B2 MSE 4.57 2.00 237.71 350 3.33 2.86 6.50 4.99 1500 6.50 36 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 237.71 330 2.86 6.50 4.99 1500 6.50 500 500 2.333 2.66 6.420 4.950 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500</td><td>Interview Interview No Entry Zygosity Group Variant Type Stand Maturity Read Kernel Tww Splite Arm 32 WH44 -461M5 HOM 44<</td> KFRP42 MSSE 4.67 2.00 2.94 9.00 0.00 6.60 33 WH44 -461M5 HOM 44 KFRP42 MSSE 4.67 2.00 2.911.36 1.10 3.00 2.88 6.07 4.97 13.00 9.60 34 WH44 -461M5 HOM 44 KFRP42 MSSE 4.67 2.00 2.911.36 110 3.00 2.88 6.07 4.97 13.00 8.00 35 WH44 -461M5 HOM 44 KFR42 MSSE 4.67 2.00 2.911.60 6.60 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6</td<> | | Interclast (continued) No Entry Zygosity Group Variant Type Stand Maturity Grain yield Head Kernel TxV Splike Awn 32 WH44 -460M5 HOM 44 KRP4B2 MSSE 4,57 33 300 2.38 76.90 42.89 10.50 6.50 33 WH44 -460M5 HOM 44 KRP4B2 MSSE 4,57 33 2.00 2.372.77 35 3.00 2.38 76.90 42.87 10.50 6.50 34 WH44 -461M5 HOM 44 KRP4B2 MSSE 4.67 2.00 2.377.79 (11) 3.00 2.38 8.070 4.97 13.00 8.00 35 WH44 -461M5 HOM 44 KRP4B2 MSSE 4.07 14.07 13.00 8.00 6.50 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 | | (a) The transmission of transmit transmission of transmission of transmission of transm | Interview No Entry Zygosity Group Variant Type Stand Maurity Grain view Remeile Tick Specific Manuality Remeile Remeile Remeile R | (continued) No Entry Zygosity Group Variant Type Stand Maturity Grain yield Head Kernel Two Spire Ann 32 WH44-461M5 HOM 44 KRP4B2 MSE 4.37 2.00 237.71 351 3.00 2.38 76.00 mmber Two Rengit Monthier 35 WH44-461M5 HOM 44 KRP4B2 MSE 4.57 2.00 237.71 350 3.33 2.86 6.50 4.99 1500 6.50 36 WH44-461M5 HOM 44 KRP4B2 MSE 4.67 2.00 237.71 330 2.86 6.50 4.99 1500 6.50 500 500 2.333 2.66 6.420 4.950 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 | Interview Interview No Entry Zygosity Group Variant Type Stand Maturity Read Kernel Tww Splite Arm 32 WH44 -461M5 HOM 44< | (continued) No Entry Zygosity Group Variant Type Stand Maturity Grain viel Pedducte Head Kemler Tw Spike Ann 3 WH44 461M5 HOM 44 KRP482 MSSE 4.67 2.00 2717.99 169 3.33 2.86 76.90 4.97 13.00 66 3 WH44 461M5 HOM 44 KRP482 MSSE 4.67 2.00 2717.99 161 3.33 2.86 76.90 4.97 13.00 80 3 WH44 461M5 HOM 44 KRP482 MSSE 4.67 2.00 2777.99 161 3.33 2.86 76.90 4.97 13.00 80 3 WH44 461M5 HOM 44 KRP482 MSSE 4.67 2.00 277.39 161 7.00 700 700 700 700 700 700 700 700 700 700 700 | (continued) No Entry Zygosity Grout Variant Type Stand Maturity Grain yield Fleate Number Two Splite Ann 33 WH44 461M5 HOM 44 KRPAB2 MSSE 4.67 2.00 2372.71 95 75.30 4.97 13.00 9.60 9.0 34 WH44 461M5 HOM 44 KRPAB2 MSSE 4.67 2.00 2372.71 95 110 3.00 2.60 8.00 9.00 8.00 9.00 8.00 35 WH44 461M5 HOM 44 KRPAB2 MSSE 4.67 2.00 2.917.33 2.66 4.90 1.30 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 <t< td=""><td>No Entry Zygssity Grout Type Stand Maturity Reduncie Head Kemel Type Sind Maturity 33 WH44 460M5 HOM 44 KFPAB2 MSSE 4.53 2.00 2.38 76.30 4.999 10.00 650 34 WH44 460M5 HOM 44 KFPAB2 MSSE 4.57 2.00 2347 76.30 4.999 10.00 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650<td>No Entry Zygosity Group Variant Type Stand Maturity Caranyalid Pertonecic Head Kernel Txvn Spike Avmn 31 WH44 460M5 HOM 44 KRP422 MSE 4.57 2.00 2.911.36 (11) 3.00 2.88 9.100 Mm 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00</td><td>(continued) No Entry Zygasity Group Variant Type Stand Maturity Grain visit Frain Train <</td><td>No Entry Zygosity Groninued Remain Remain<</td><td>No Entry Zygasity Grout Mark Explanation And And<td>Application of the probability of t</td><td>Approval Continued) Approval <th colspa="</td"></th></td></td></td></t<> | No Entry Zygssity Grout Type Stand Maturity Reduncie Head Kemel Type Sind Maturity 33 WH44 460M5 HOM 44 KFPAB2 MSSE 4.53 2.00 2.38 76.30 4.999 10.00 650 34 WH44 460M5 HOM 44 KFPAB2 MSSE 4.57 2.00 2347 76.30 4.999 10.00 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 650 <td>No Entry Zygosity Group Variant Type Stand Maturity Caranyalid Pertonecic Head Kernel Txvn Spike Avmn 31 WH44 460M5 HOM 44 KRP422 MSE 4.57 2.00 2.911.36 (11) 3.00 2.88 9.100 Mm 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00</td> <td>(continued) No Entry Zygasity Group Variant Type Stand Maturity Grain visit Frain Train <</td> <td>No Entry Zygosity Groninued Remain Remain<</td> <td>No Entry Zygasity Grout Mark Explanation And And<td>Application of the probability of t</td><td>Approval Continued) Approval <th colspa="</td"></th></td></td> | No Entry Zygosity Group Variant Type Stand Maturity Caranyalid Pertonecic Head Kernel Txvn Spike Avmn 31 WH44 460M5 HOM 44 KRP422 MSE 4.57 2.00 2.911.36 (11) 3.00 2.88 9.100 Mm 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 6.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 | (continued) No Entry Zygasity Group Variant Type Stand Maturity Grain visit Frain Train < | No Entry Zygosity Groninued Remain Remain< | No Entry Zygasity Grout Mark Explanation And And <td>Application of the probability of t</td> <td>Approval Continued) Approval <th colspa="</td"></th></td> | Application of the probability of t | Approval Continued) Approval Approval <th colspa="</td"></th> | |

		Awn length	cm	13	1.87	7.17	
5		Spike length	cm	10	2.50	12.36	
10		ТKW	g/1000	5	4.16	42.58	
		Kernel number		10	14.96	73.24	
15		Head number		17	0.95	2.81	
20		Peduncle rate		13	0.65	3.15	
25		Grain yield	Lbs/acre	18	723.95	2493.27	
30	(continued)	Maturity rate		17	0.57	2.07	
35		T _{ype} Stand rate		7	0.57	4.86	
40		Variant .					
45		ity Group					
50		Zygos					
		Entry					
55		No		CV (%)	LSD (0.05)	Mean	

Example 6

Rice krp TILLING® mutant

⁵ [0268] A rice TILLING® library was screened for mutations in rice *KRPs 1, 2, 4 and 5* (SEQ ID NOs: 100-107). A mutant containing a premature stop codon in OsKRP4 was identified (Table 25). M3 seeds from two distinct M2 sibling plants heterozygous for the R167* mutation were planted in the greenhouse and genotyped to identify plants homozygous for the R167* allele or homozygous for the wild type allele. Homozygous R167* and wild type plants were selfed to obtain homozygous mutant and wild type M4 seed. Additionally, homozygous R167* plants were backcrossed to the recurrent Cypress parent to obtain F1 seed.

[0269] Seed number and seed weight were determined for the homozygous R167* and homozygous wild type M4 seed (Table 26). There is an indication that RI527 R167* homozygotes have at least a general increase in thousand kernel weight (TKW) compared to their wild type siblings (Table 27), and the RI526 R167* homozygotes may be better than their control for seed number. These same measurements will be taken again on seed from successive backcrossed generations.

- **[0270]** F1 and M4 seeds were planted in the greenhouse in the next cycle. F1 plants were genotyped to confirm the heterozygosity of R167*. Heterozygous R167* plants are backcrossed a second time to the recurrent parent to obtain BC1F1 seed. Simultaneously, heterozygous R167* F1 plants are selfed to obtain segregating F2 seed. Homozygous R167* F2 plants are identified by genotyping and seed expanded to F3 for field trials.
- 20 [0271] BC1F1 seed are grown in the greenhouse and the plants genotyped to identify ones heterozygous for the R167* allele or wild type allele. Heterozygous R167* plants are backcrossed to obtain BC2F1 and selfed to obtain BC1F2. Homozygous R167* BC1F2 plants are identified by genotyping and seed expanded to BC1F3 for field trials. Backcrossing may be continued to the BC3 or BC4 level. Throughout the backcrossing and selfing, wild type siblings are carried forward to serve as controls. Backcrosses are also done to Nipponbare to move the mutation into short grain rice.
- 25

15

Table 25. Oryza sativa KRP4 TILLING® Mutant in breeding program

	RI group	Gene	Nuc Change	Effect-from beginning Met
	526^	KRP4_2-3 [§]	C593T	R167*
30	527	KRP4_2-3	C593T	R167*

[^]The two RI groups represent two distinct M2 sibling plants heterozygous for the R167* mutation. [§]The designation "2-3" indicates that exons 2-3 of OsKRP4 were TILL'ed.

35

00	

40

45

50

Plant ID	#ofseeds	Total seed weight (g)	weight/seed (g)	ТК
526 HOMO #12	178	3.76	0.021	2
526 HOMO #13	164	3.39	0.021	2
526 HOMO #15	33	0.69	0.021	20
526 HOMO #21	258	4.91	0.019	19
526 HOMO #22	220	5.14	0.023	23
526 HOMO #27	261	5.90	0.023	22
526 HOMO #33	209	4.43	0.021	2'
526 HOMO #35	141	2.81	0.020	19
526 HOMO #37	155	3.33	0.021	2'
526 HOMO #4	169	3.77	0.022	22
526 HOMO #41	245	5.33	0.022	2
526 HOMO #8	151	2.94	0.019	19
526 WT #14	72	1.39	0.019	19
526 WT #19	161	3.43	0.021	2

(continued)

	Plant ID	#ofseeds	Total seed weight (g)	weight/seed (g)	TKW (g)
5	526 WT #23	229	5.10	0.022	22.3
Ŭ	526 WT #24	165	3.74	0.023	22.7
	526 WT #25	273	5.98	0.022	21.9
	526 WT #3	181	3.70	0.020	20.4
10	526 WT #30	165	3.69	0.022	22.4
	526 WT #32	121	2.51	0.021	20.7
	526 WT #36	1	0.02	0.020	20.0
15	526 WT #6	137	2.80	0.020	20.4
	526 WT #7	260	5.48	0.021	21.1
	526 WT #9	203	4.40	0.022	21.7
	527 HOMO #1	197	4.50	0.023	22.8
20	527 HOMO #14	220	4.93	0.022	22.4
	527 HOMO #2	215	5.13	0.024	23.9
	527 HOMO #20	4	0.11	0.028	27.5
25	527 HOMO #24	179	4.40	0.025	24.6
	527 HOMO #35	142	3.06	0.022	21.5
	527 HOMO #38	37	0.61	0.016	16.5
	527 HOMO #6	142	2.96	0.021	20.8
30	527 WT #10	201	4.67	0.023	23.2
	527 WT #11	6	0.10	0.017	16.7
	527 WT #13	38	0.70	0.018	18.4
35	527 WT #19	12	0.20	0.017	16.7
	527 WT #23	261	6.19	0.024	23.7
	527 WT #30	248	5.52	0.022	22.3
	527 WT #32	189	4.20	0.022	22.2
40	527 WT #34	187	4.32	0.023	23.1
	527 WT #36	68	1.54	0.023	22.6
	527 WT #7	189	3.85	0.020	20.4
45	Nipponbare	10	0.24	0.024	24.0
	Cypress	10	0.23	0.023	23.0

50

55

Table 27. Mean seed number and seed weight for OsKRP4 genotypes

Plant ID	Mean seed number	Mean TKW (g)
526 homo	182.00	21.15
526 wild type	164.00	21.18
527 homo	142.00	22.51
527 wild type	139.90	20.93

3	85
4	10
4	15
5	50

	Table 28. Primer sequences used to g	enerate mutant Krps
Wheat Krp	forward primer 5'->3'	reverse primer 5'->3'
Krp1A (E212K)	Cgaagagttctttgcggcggctaaaggggggggggaagcacgccg (SEQ ID NO: 34)	Cggcgtgcttccgcctctttagccgccgcaaagaactcttcg (SEQ ID NO: 35)
Krp1A (P232L)	Cgacgttgcacgcggcgtgcttctggattccggtcgctatgag (SEQ ID NO: 36)	Ctcatagcgaccggaatccagaagcacgccgcgtgcaacgtcg (SEQ ID NO: 37)
Krp1A (G236S)	Cggcgtgcctctggattccagtcgctatgagtggaccccggc (SEQ ID NO: 38)	Gccgggggtccactcgtagcgactggaatccagaggcacgccg (SEQ ID NO: 39)
ICrp1A (W240*)	Ggattccggtcgctatgagtgaaccccggcagtttccagcag (SEQ ID NO: 40)	Ctgctggaaactgccggggttcactcatagcgaccggaatcc (SEQ ID NO: 41)
Krp2D (P228S)	Ccgtgcccgtgcgcgtatgtcaccggcagcggaaatcgacg (SEQ ID NO: 42)	Cgtcgatttccgctgccggtgacatacgcgcacgggcacgg (SEQ ID NO: 43)
Krp2D (A238V)	Cgacgagttttttcgcggttgcggagaaagcccaggcagag (SEQ ID NO: 44)	Ctctgcctgggctttctccgcaaccgcgaaaactcgtcg (SEQ ID NO: 45)
Krp2D (A239T)	Cgacgagtttttcgcggctacggagaaagcccaggcagagcg (SEQ ID NO: 46)	Cgctctgcctgggctttctccgtagccgcgaaaactcgtcg (SEQ ID NO: 47)
Krp2D (D254N)	Cgccgcgaagtataactttaatgtggcccgtggcgttccgctg (SEQ ID NO: 48)	Cagcggaacgccacgggccacattaaagttatacttcgcggcg (SEQ ID NO: 49)
Krp2D (R257C)	Ctttgatgtggcctgtggcgttccgctgaatgctggtcgc (SEQ ID NO: 50)	Gcgaccagcattcagcggaacgccacaggccacatcaaag (SEQ ID NO: 51)
Krp4A (W186*)	Gccaggtcgttatgaataggtcaagctggactaactcgag (SEQ ID NO: 52)	Ctcgagttagtccagcttgacctattcataacgacctggc (SEQ ID NO: 53)
Krp5A (G200E)	Ctcgtggctgcccgctgccggatcgttacgagtggaccgtc (SEQ ID NO: 54)	Gacggtccactcgtaacgatccggcagcgggcagccacgag (SEQ ID NO: 55)
Krp5A (G200R)	Ctcgtggctgcccgctgccgaggcgttacgagtggaccgtc (SEQ ID NO: 56)	Gacggtccactcgtaacgcctcggcagcgggcagccacgag (SEQ ID NO: 57)
Krp5A (W199*)	Gctgccgggtcgttacgagtgaaccgtcctggactgctaactc (SEQ ID NO: 58)	Gagttagcagtccaggacggttcactcgtaacgacccggcagc (SEQ ID NO: 59)

Example 7

Mutations of Glycine max KRP Genes identified in TILLING®

⁵ [0272] Candidate *Glycine max* (soybean) KRP genes were searched on the Phytozome and nine KRP genes (SEQ ID NOs: 111-128) were identified. A soy TILLING® library was screened for mutations in these soy KRPs.
[0273] Representative mutations in *Glycine max KRPs* are displayed in Tables 29 to 37 below (* indicates the mutation results in a stop codon). This is only a representative list and should not be construed to be limiting in any way.

10	Table 29. Glycine max Gm 0003x00821 representative TILLING® Mutants				
	Gene	Nuc Change^	Effect from beginning Met	Mutation Score	
	KRP Gm0003x00821	C533T	A17V	Missense	
15	KRP Gm0003x00821	C542T	A20V	Missense	
15	KRP Gm0003x00821	G610A	A43T	Missense	
	KRP Gm0003x00821	G628A	G49R	Missense	
	KRP Gm0003x00821	C650T	S56F	Missense	
20	KRP Gm0003x00821	G655A	A58T	Missense	
	KRP Gm0003x00821	A674T	N64I	Missense	
	KRP Gm0003x00821	G721A	E80K	Severe Missense	
25	KRP Gm0003x00821	G873A	D92N	Missense	
20	KRP Gm0003x00821	A1274G	Splice Junction	Splice	
	KRP Gm0003x00821	G1275A	Splice Junction	Splice	
	KRP Gm0003x00821	A1277T	R102*	Nonsense	
30	KRP Gm0003x00821	C1320T	S116F	Severe Missense	
	KRP Gm0003x00821	G1328A	E119K	Missense	
	KRP Gm0003x00821	T1332A	V120E	Missense	
35	KRP Gm0003x00821	A1365T	K131I	Missense	
	KRP Gm0003x00821	C1392T	T140M	Severe Missense	
	KRP Gm0003x00821	G1400A	E143K	Severe Missense	
	KRP Gm0003x00821	G1421A	A150T	Missense	
40	KRP Gm0003x00821	A1428G	E152G	Severe Missense	
	^Nucleotide numbering is dependent upon the location of TILLING® primers.				

45

Table 30. Glycine max Gm0013 representative TILLING® Mutants

Gene	Nuc Change^	Effect from beginning Met	Mutation score
KRP Gm0013	C574T	S28F	Severe Missense
KRP Gm0013	C622T	S44F	Missense
KRP Gm0013	T648C	S53P	Severe Missense
KRP Cm0013	C649T	S53F	Severe Missense
KRP Gm0013	A685T	Q65L	Missense
KRP Gm0013	C727T	S79F	Severe Missense
KRP Gm0013	T732G	C81G	Severe Missense

55

Gene	Nuc Change [^]	Effect from beginning Met	Mutation score
KRP Gm0013	T732A	C81S	Severe Missense
KRP Gm0013	C736T	S82F	Severe Missense
KRP Gm0013	A738T	S83C	Severe Missense
KRP Gm0013	G783A	D98N	Severe Missense
KRP Gm0013	G792A	Splice Junction	Splice
KRP Gm0013	G1315C	E121Q	Missense
KRP Gm0013	G1320A	M122I	Missense
KRP Gm0013	A1334T	E127V	Missense
KRP Gm0013	G1360A	E136K	Missense
KRP Gm0013	C1448T	A165V	Missense
KRP Gm0013	C1462T	Q170*	Nonsense
KRP Gm0013	G1671A	G189R	Severe Missense
KRP Gm0013	A1690T	Q195L	Missense
^Nucleotide num	bering is depend	ent upon the location of TILLIN	IG® primers.

(continued)

Table 31. Glycine max Gm0043 representative TILLING® Mutants

	Gene	Nuc Change^	Effect from beginning Met	Mutation score
	KRP Gm0043_1-2§	A582T	Q42L	Missense
30	KRP Gm0043_1-2	T585A	F43Y	Severe Missense
	KRP Gm0043_1-2	T586A	F43L	Severe Missense
	KRP Gm0043_1-2	G599A	V48I	Missense
35	KRP Gm0043_1-2	G638A	V61I	Missense
	KRP Gm0043_1-2	G645A	G63D	Missense
	KRP Gm0043_1-2	G647T	D64Y	Missense
10	KRP Gm0043_1-2	A720T	Q88L	Missense
40 -	KRP Gm0043_1-2	T904A	Y102N	Missense
	KRP Gm0043_3-4€	C1194T	S113F	Severe Missense
	KRP Gm0043_3-4	C1215T	A120V	Missense
45	KRP Gm0043_3-4	C1227T	A124V	Missense
	KRP Gm0043_3-4	C1235T	R127W	Missense
	KRP Gm0043_3-4	G1259A	A135T	Missense
50	KRP Gm0043_3-4	G1289A	E145K	Severe Missense
50	KRP Gm0043_3-4	G1302A	R149Q	Missense
	KRP Gm0043_3-4	C1513T	P165L	Severe Missense
	KRP Gm0043_3-4	G1521A	G168S	Severe Missense

(continued)

Gene	Nuc Change [^]	Effect from beginning Met	Mutation score
KRP Gm0043_3-4	C1524T	R169C	Severe Missense
[\] Nucleotide numbering is de [§] The designation "1-2" indica [©] The designation "3-4" indica			

Table 32. Glycine max Gm0053 representative TILLING® Mutants

Gene	Nuc Change [^]	Effect from beginning Met	Mutation score
KRP Gm0053	G629A	R10Q	Missense
KRP Gm0053	C728T	S43F	Severe Missense
KRP Gm0053	C758T	A53V	Missense
KRP Gm0053	C814A	Q72K	Missense
KRP Gm0053	C866T	S89F	Severe Missense
KRP Gm0053	A868T	S90C	Severe Missense
KRP Gm0053	G869A	S90N	Severe Missense
KRP Gm0053	C1125T	T117M	Severe Missense
KRP Gm0053	G1408A	R127K	Missense
KRP Gm0053	A1409T	R127S	Severe Missense
KRP Gm0053	G1527A	E167K	Severe Missense
^Nucleotide numbering is dependent upon the location of TILLING® primers.			

Table 33. Glycine max Gm0087 representative TILLING® Mutants

35	Gene	Nuc Change^	Effect from beginning Met	Mutation score	
	KRP Gm0087_2-3§	G3098A	R137K	Severe Missense	
	KRP Gm0087_2-3	G3178A	A164T	Missense	
	KRP Gm0087_2-3	G3191A	R168Q	Missense	
40	KRP Gm0087_2-3	G3194A	R169K	Severe Missense	
	KRP Gm0087_2-3	C3227T	T180I	Severe Missense	
	KRP Gm0087_2-3	G3289A	E201K	Severe Missense	
45	KRP Gm0087_2-3	C3424T	L213F	Severe Missense	
	KRP Gm0087_2-3	G3430A	G215R	Severe Missense	
	KRP Gm0087_2-3	G3445A	E220K	Missense	
50	^Nucleotide numbering is dependent upon the location of TILLING® primers. §The designation "2-3" indicates that exons 2-3 of soy KRP Gm0087 were TILLed.				

55	Gene	Nuc Change [^]	Effect from beginning Met	Mutation score
	KRP Gm0102_3-4§	C722T	S120F	Missense
	KRP Gm0102_3-4	G724A	G121R	Severe Missense

Table 34. Glycine max Gm0102 representative TILLING® Mutants

Gene	Nuc Change [^]	Effect from beginning Met	Mutation score
KRP Gm0102_3-4	G733A	E124K	Missense
KRP Gm0102_3-4	A734T	E124V	Missense
KRP Gm0102_3-4	C743T	A127V	Missense
KRP Gm0102_3-4	C770T	A136V	Missense
KRP Gm0102_3-4	T776A	L138Q	Missense
KRP Gm0102_3-4	С790Т	P143S	Severe Missense
KRP Gm0102_3-4	C794T	P144L	Missense
KRP Gm0102_3-4	G799A	A146T	Missense
KRP Gm0102_3-4	C800T	A146V	Missense
KRP Gm0102_3-4	A809T	E149V	Severe Missense
KRP Gm0102_3-4	G811A	E150K	Missense
KRP Gm0102_3-4	G848A	R162Q	Severe Missense
KRP Gm0102_3-4	G1154A	D174N	Severe Missense
KRP Gm0102_3-4	C1160T	P176S	Severe Missense
KRP Gm0102_3-4	G1166A	E178K	Severe Missense
KRP Gm0102_3-4	A1179T	Q182L	Severe Missense

(continued)

ıg y

30

Table 35. Glycine max Gm0119 representative TILLING® Mutants

	Gene	Nuc Change^	Effect from beginning Met	Mutation score	
35	KRP Gm0119_2-3§	G2664A	Splice Junction	Splice	
	KRP Gm0119_2-3	C2717T	H133Y	Missense	
	KRP Gm0119_2-3	G2857A	Splice Junction	Splice	
40	KRP Gm0119_2-3	G3040A	R193Q	Severe Missense	
	KRP Gm0119_2-3	A3010T	D183V	Severe Missense	
	^Nucleotide numbering is dependent upon the location of TILLING® primers. §The designation "2-3" indicates that exons 2-3 of soy KRP Gm0119 were TILLed.				

45

Table 36. Glycine max Gm0151 representative TILLING® Mutants

	Gene	Nuc Change [^]	Effect from beginning Met	Mutation score
50	KRP Gm0151_2-3 [§]	A2306T	R122W	Severe Missense
50	KRP Gm0151_2-3	C2367T	T142I	Severe Missense
	KRP Gm0151_2-3	G2399A	E153K	Missense
	KRP Gm0151_2-3	G2412A	R157K	Missense
55	KRP Gm0151_2-3	G2485A	M181I	Missense

(continued)

Gene	Nuc Change [^]	Effect from beginning Met	Mutation score
KRP Gm0151_2-3	A2647T	E191D	Missense
^Nucleotide numbering is dependent upon the location of TILLING® primers. §The designation "2-3" indicates that exons 2-3 of soy KRP Gm0151 were TILLed.			

10

5

Table 37. Glycine max Gm0067 representative TILLING® Mutants

	Gene	Nuc Change^	Effect from beginning Met	Mutation score
	KRP Gm0067_1-2§	G631A	V4I	Severe Missense
15	KRP Gm0067_1-2	G652A	A11T	Severe Missense
	KRP Gm0067_1-2	C671T	S17F	Severe Missense
ľ	KRP Gm0067_1-2	T679A	S20T	Missense
-	KRP Gm0067_1-2	C682T	P21S	Missense
20	KRP Gm0067_1-2	G689A	R23K	Severe Missense
ľ	KRP Gm0067_1-2	С739Т	P40S	Missense
	KRP Gm0067_1-2	G748A	E43K	Missense
25	KRP Gm0067_1-2	C773T	P51L	Severe Missense
20	KRP Gm0067_1-2	C776T	A52V	Severe Missense
	KRP Gm0067_1-2	T778A	S53T	Severe Missense
ľ	KRP Gm0067_1-2	C788T	S56F	Severe Missense
30	KRP Gm0067_1-2	G818A	R66Q	Missense
	KRP Gm0067_1-2 C776T KRP Gm0067_1-2 T778A KRP Gm0067_1-2 C788T KRP Gm0067_1-2 G818A KRP Gm0067_1-2 A826T	K69*	Nonsense	
	KRP Gm0067_1-2	T832A	S71T	Missense
25	KRP Gm0067_1-2	C833T	S71L	Missense
5	KRP Gm0067_1-2	G841A	E74K	Severe Missense
	KRP Gm0067 1-2	T845A	Splice Junction	Splice

Example 8

$\begin{array}{c} \mbox{Preliminary field evaluation results on F2:3 generation wheat KRP TILLING \mbox{${\rm B}$ mutants}} \end{array}$

[0274] The objective was to assess the feasibility of obtaining reliable data from field evaluations of KRP TILLING® lines in spring wheat and to determine the performance of homozygous (F2:3) mutant lines.

Materials & Methods

50

[0275] Five field experiments were conducted during the growing season in Fort Collins, CO and Bozeman, MT (Table 38) in which a number of mutant lines were evaluated (Table 39).

55	Table 38. Sites of evaluation of spring wheat mutant materials		
	Location	Water regime	Planting date
	Bozeman, MT	Partially irrigated	May 5
(continued)			

Location	Water regime	Planting date
Fort Collins, CO	Dryland	April 11

5

20

Table 39. Mutant materials evaluated in and Bozeman, MT and Fort Collins, CO

	Experiment	Number of Entries	WH group	Gene	Genome	Туре	Zygosity	F1 families
10	1	39 + Check	4	KRP2	А	Splice	Homo WT	39D03
								41D05
								42D06
	2	54 + Check	11	KRP2	А	Splice	Homo WT	9051_A10
15	3	37 + Check	71	KRP4	D	Stop	Homo WT	148E94
10								148E95
	4	12 + Check	4/38	KRP2	A/B	Splice/Splice	Homo WT	9052_E03
_	5	17 + Check	44/71	KRP4	B/D	Miss/Stop	Homo WT	9052_G02

Major results

[0276] Mutant materials yielded significantly lower than the check cultivar (Figure 7). This is not surprising, since the mutant lines had been crossed only once to the Express parent and may still have deleterious lesions from the EMS mutagenesis compared to the unmutagenized Express cultivar. Notably, the yield difference between mutant line and check was not significantly different for the KRP4D Stop and the KRP2A Splice WH4 under high yielding conditions (Montana). The impact of mutation appeared to be less for single mutants than for double mutants (Figure 7). Mutant KRP2AB Splice/Splice had the highest reduction in yield (46% and 39% reductions in MT & CO), and mutant KRP4D Stop had the lowest reduction in yield (4% & 11% reductions in MT & CO).

- [0277] Between zygotic groups, the wild type (WT) lines tended to yield higher than their mutant counterparts (Homo), although under high yielding conditions (Montana), the opposite appeared to be the case for the double mutants KRP4BD missense/stop and KRP2AB splice/splice (Figure 8). Among Homo groups, mutants KRP4D Stop and KRP2A Splice WH11 showed the highest relative yield performance. Homozygous mutant KRP2A Splice WH11 performed consistently closer to the average yield of its WT counterpart under both CO and MT growing conditions.
- **[0278]** For KRP TILLING® mutants in which F1 sister lines were included, line '149E05' within the KRP4D Stop mutant showed a differential response: homozygous lines yielded above or at least the same as their wild type counterparts (Figure 9).

[0279] The relative grain yield response between the wild type and homozygous zygotic groups can be expressed by the WT/Homo ratio for grain yield and various yield components. Putative mechanisms associated with the relative grain

- yield response could be discerned (Table 40). In Montana the largest positive effect on yield (WT/Homo ratio = 0.92) was observed in the 'KRP4BD Missense/Stop' double mutant and was driven mainly by spike number, thousand kernel weight (TKW) and plant height, whereas the greatest negative effect on yield (WT/Homo ratio = 1.09) was observed in the 'KRP2A Splice WH4' mutant, line 42D06, driven mainly by disruptions in kernel number. In Colorado the largest positive effect on yield (WT/Homo ratio = 0.93) was observed in the 'KRP4D Stop' mutant, line 149E05, and was driven in the 'KRP
- ⁴⁵ mainly by TKW and plant height, whereas the largest negative effect on yield (WT/Homo ratio = 1.18) was observed in the variant 'KRP2A Splice WH4' mutant, line 42D06, driven mainly by disruptions in spike number and kernel number.

Table 40. Relative performance ratio between wild type and homozygous zygotic groups for the mutants evaluated. Bozeman, MT, Fort Collins, CO.

50	Gene	F1 line	Spike number Spikes/plant	Kernel number Kernels/spike	TKW g/1000	Plant height inches	Grain yield Lb/ac
				Montana			
FF	KRP2A Splice	39D03	1.00	1.03	1.01	1.02	1.02
55	KRP2A Splice	41D05	0.99	1.08	1.01	1.01	1.08
	KRP2A Splice	42D06	1.00	1.11	0.98	0.99	1.09
	KRP2A Splice	9051_A10	1.05	1.02	1.00	1.01	1.03

Gene	F1 line	Spike number	Kernel number	TKW	Plant height	Grain yield Lb/ac	
		Spikes/plant	Kernels/spike	g/1000	inches		
			Montana				
KRP4D Stop	148E04	1.12	1.05	1.01	0.99	1.04	
KRP4D Stop	149E05	0.97	0.97	1.01	0.98	1.00	
KRP2AB Splice/Splice	9052_E03	1.01	1.03	0.99	0.96	0.93	
KRP4BD Miss/Stop	9052_G02	0.97	0.99	0.96	0.91	0.92	
			Colorado				
KRP2A Splice	39D03	1.09	1.03	0.97	1.00	1.09	
KRP2A Splice	41D05	1.04	1.03	1.01	0.99	1.07	
KRP2A Splice	42D06	1.06	1.10	1.01	1.01	1.18	
KRP2A Splice	9051_A10	1.04	1.01	0.99	1.02	1.04	
KRP4D Stop	148E04	1.06	1.03	0.97	1.00	1.05	
KRP4D Stop	149E05	0.99	0.99	0.96	0.98	0.93	
KRP2AB Splice/Splice	9052_E03	1.02	0.98	1.04	0.98	1.03	
KRP4BD Miss/Stop	9052_G02						

(continued)

Example 9

Identification and Retrieval of other wheat KRPs

30

[0280] Rice serves as a diploid model cereal species for wheat. In rice two additional KRP genes are present and expressed: KRP3 and KRP6. KRP3 is expressed at a very specific time point in seed development, while KRP6 seems to be expressed throughout seed development in rice (Mizutani et al 2010). In order to complete the portfolio of wheat KRP TILLING® mutants, other wheat KRPs are identified for future TILLING®.

- 35 [0281] The rice KRP6 DNA sequence was used to identify a wheat KRP6 EST from a BLAST search at NCBI. Then longer wheat KRP6 sequences were pulled out from a wheat genomic sequences database (WheatBP) at University of Bristol using the wheat KRP6 EST from NCBI. The wheat database had 5X coverage of the Chinese Spring variety. The wheat TILLING® library is based on the variety Express, but not many polymorphisms are expected between the two varieties.
- 40 [0282] Wheat KRP6 sequences ranged from ~300 to 800bp. ContigExpress from Vector NTI (Invitrogen) was used to assemble the various reads into contigs. Reads were assembled into three contigs, which represented TaKRP6A, TaKRP6B and TaKRP6D. Further characterization is done to determine which contig corresponds to which genome. Exon/intron boundaries for the wheat KRP6 genes were deduced based on the rice KRP6 sequence. The deduced coding sequences were translated in Vector to generate protein sequences. Table 41 gives a comparison of KRP6 gene,
- 45 cDNA and protein lengths for wheat, rice, Brachypodium, corn and sorghum.

		·····	-,		, . .		
50		Total length of sequence available (bp)	5'	3'	Length Start-Stop (3 exons, 2 introns)	cDNA	Protein
	Ta KRP6-A (wheat)	1678 (contig of 17 reads)	94	613	971	264	87 aa
55	Ta KRP6-B (wheat)	1834 (contig of 18 reads)	164	729	941	264	87 aa
	Ta KRP6-D (wheat)	2141 (contig of 12 reads)	369	867	905	270	89 aa

Table 41. Comparison of wheat, rice, Brachypodium, corn and sorghum KRP6 sequences

		Total length of sequence available (bp)	5'	3'	Length Start-Stop (3 exons, 2 introns)	cDNA	Protein
5	Os KRP6 (rice)	1565			1269	261	87 aa
	Brachypodium KRP6	1377			891	258	86 aa
10	Zm KRP6 (corn)	1458			679	249	83 aa
	Sb KRP6 (sorghum)	1253			995	258	86 aa

(continued)

¹⁵ [0283] Using the sequences identified, three primer pairs were designed (Table 42). No wheat KRP6 amplification products were obtained from wheat genomic DNA using proofreading Phusion polymerase at annealing temperatures ranging from 55°C to 65°C. Using SureBand PCR Optimization kit (Bioline) at 58°C annealing temperature and one of the twelve buffers from the kit yielded a faint band with TaKRP6 49F and TaKRP6 258R. Repeating the amplification with the same buffer and primer pair, and testing a range of annealing temperatures from 54°C to 66.5°C, yielded strong,

²⁰ unique bands at 60°C and higher. The band was cut from the gel and the DNA purified and cloned using TA cloning and Zero Blunt cloning (Invitrogen). Colony screening showed several positive transformants. Minipreps were done on cultures from 30 colonies and all were sequenced from both ends of the insert using M13F and M13R primers.
 [0284] Sequences obtained were first assembled into contigs (M13F and M13R sequences from each of the 30 clones)

and then those contigs were assembled into larger contigs. After assembly and alignments, it was determined that all three versions of wheat KRP6 had been cloned: 14 clones for KRP6A, 1 clone for KRP6B and 14 clones for KRP6D.

Primer	Sequence (5' to 3')	SEQ ID NO
TaKRP6 START	atg gcc gcc acc gcc gcg gc	147
TaKRP6 nearSTOP	tcg gac cca ctc gta ccg ccc	148
TaKRP6 upstr	cct aat cct atc gtt atc tcc tcc ca	149
TaKRP6 downstr	cta cga gac aat gta cac aga taa cg	150
TaKRP6 49F	agc tgc agc aag ggc gag a	151
TaKRP6 258R	cct cac tcg gac cca ctc gta	152

Table 42. Primers to amplify wheat KRP6

[0285] The rice KRP3 cDNA sequence was used in a BLAST search at NCBI. Several wheat ESTs were identified. The wheat KRP6 sequences identified above were used to search for wheat KRP contigs in the cereal database. Using this approach, a contig was identified in the wheat database that looked similar but was not identical to KRP6 or other known wheat KRPs.

45 Example 10

TILLING® of other wheat KRPs and characterization of mutants

50

30

35

[0286] Design and validation of genome-specific TILLING® primers and TILLING® of other wheat KRPs, such as wheat KRP6, is done as described in Materials and Methods and Example 1 above. The KRP TILLING® mutants obtained are backcrossed, introgressed into other wheat varieties and combined with other wheat KRP mutants as described in Example 3 above. Determination of yield, yield components and agronomic characteristics is as described in Examples 3, 5 and 8 above.

[0287] Unless defined otherwise, all technical and scientific terms herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials, similar or equivalent to those described herein, can be used in the practice or testing of the present invention, the preferred methods and materials are described herein. All publications, patents, and patent publications cited are incorporated by reference herein in their entirety for all purposes.

[0288] The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.

1. Bentley, A., B. MacLennan, et al. (2000). "Targeted Recovery of Mutations in Drosophila." Genetics 156:

[0289] While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth and as follows in the scope of the appended claims.

10 REFERENCES

1169-1173.

[0290]

15

40

55

	2. Comai, L. and S. Henikoff (2006). "TILLING: practical single-nucleotide mutation discovery." Plant J 45(4): 684-94.
20	3. Comai, L., K. Young, et al. (2004). "Efficient discovery of DNA polymorphisms in natural populations by Ecotilling." Plant J 37(5): 778-86.
	4. Cooper, J. L., E. A. Greene, et al. (2008). "Retention of induced mutations in a Drosophila reverse-genetic resource." Genetics 180(1): 661-7.
25	5. Cooper, J. L., B. J. Till, et al. (2008). "Fly-TILL: reverse genetics using a living point mutation resource." Fly (Austin) 2(6): 300-2.
	6. Cooper, J. L., B. J. Till, et al. (2008). "TILLING to detect induced mutations in soybean." BMC Plant Biol 8: 9.
30	7. Eddy, S. R. (2004). "Where did the BLOSUM62 alignment score matrix come from?" Nat Biotechnol 22(8): 1035-6.
	8. Gilchrist, E. and G. Haughn "Reverse genetics techniques: engineering loss and gain of gene function in plants." Brief Funct Genomics 9(2): 103-10. 2010?
35	9. Gilchrist, E. J. and G. W. Haughn (2005). "TILLING without a plough: a new method with applications for reverse genetics." Curr Opin Plant Biol 8(2): 211-5.
	10. Gilchrist, E. J., G. W. Haughn, et al. (2006), "Use of Ecotilling as an efficient SNP discovery tool to survey genetic

- 11. Gilchrist, E. J., N. J. O'Neil, et al. (2006). "TILLING is an effective reverse genetics technique for Caenorhabditis
- 12. Greene, E. A., C. A. Codomo, et al. (2003). "Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis." Genetics 164(2): 731-40.

variation in wild populations of Populus trichocarpa." Mol Ecol 15(5): 1367-78.

elegans." BMC Genomics 7: 262.

13. Henikoff, S., B. J. Till, et al. (2004). "TILLING. Traditional mutagenesis meets functional genomics." Plant Physiol 135(2): 630-6.

50 14. Himelblau, E., E. J. Gilchrist, et al. (2009). "Forward and reverse genetics of rapid-cycling Brassica oleracea." Theor Appl Genet 118(5): 953-61.

15. McCallum, C. M., L. Comai, et al. (2000). "Targeted screening for induced mutations." Nat Biotechnol 18(4): 455-7. (referenced in Anawah patents)

16. McCallum, C. M., L. Comai, et al. (2000). "Targeting induced local lesions IN genomes (TILLING) for plant functional genomics." Plant Physiol 123(2): 439-42. (referenced in Anawah patents)

17. Ng, P. C. and S. Henikoff (2003). "SIFT: Predicting amino acid changes that affect protein function." Nucleic Acids Res 31(13): 3812-4.

18. Slade, A. J., S. I. Fuerstenberg, et al. (2005). "A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING®." Nat Biotechnol 23(1): 75-81.

5

20

25

40

19. Slade, A. J. and V. C. Knauf (2005). "TILLING moves beyond functional genomics into crop improvement." Transgenic Res 14(2): 109-15.

¹⁰ 20. Stemple, D. L. (2004). "TILLING--a high-throughput harvest for functional genomics." Nat Rev Genet 5(2): 145-50.

21. Styczynski, M. P., K. L. Jensen, et al. (2008). "BLOSUM62 miscalculations improve search performance." Nat Biotechnol 26(3): 274-5.

15 22. Talame, V., R. Bovina, et al. (2008). "TILLMore, a resource for the discovery of chemically induced mutants in barley." Plant Biotechnol J 6(5): 477-85.

23. Taylor, N. E. and E. A. Greene (2003). "PARSESNP: A tool for the analysis of nucleotide polymorphisms." Nucleic Acids Res 31(13): 3808-11.

- 24. Till, B. J., C. Burtncr, ct al. (2004). "Mismatch cleavage by single-strand specific nucleases." Nucleic Acids Res 32(8): 2632-41.
 - 25. Till, B. J., T. Colbert, et al. (2006). "High-throughput TILLING® for Arabidopsis." Methods Mol Biol 323: 127-35.
 - 26. Till, B. J., T. Colbert, et al. (2003). "High-throughput TILLING® for functional genomics." Methods Mol Biol 236: 205-20.
- 27. Till, B. J., J. Cooper, et al. (2007). "Discovery of chemically induced mutations in rice by TILLING®." BMC Plant Biol 7: 19.

28. Till, B. J., S. H. Reynolds, et al. (2003). "Large-scale discovery of induced point mutations with high-throughput TILLING®." Genome Res 13(3): 524-30.

29. Till, B. J., S. H. Reynolds, et al. (2004). "Discovery of induced point mutations in maize genes by TILLING®."
 BMC Plant Biol 4: 12.

30. Till, B. J., T. Zerr, et al. (2006). "A protocol for TILLING® and Ecotilling in plants and animals." Nat Protoc 1(5): 2465-77.

31. Triques, K., E. Piednoir, et al. (2008). "Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING® and Eco-TILLING in plants." BMC Mol Biol 9: 42.

32. Triques, K., B. Sturbois, et al. (2007). "Characterization of Arabidopsis thaliana mismatch specific endonucleases:
 application to mutation discovery by TILLING® in pea." Plant J 51(6): 1116-25.

33. Uauy, C., F. Paraiso, et al. (2009). "A modified TILLING® approach to detect induced mutations in tetraploid and hexaploid wheat." BMC Plant Biol 9: 115.

⁵⁰ 34. Weil, C. F. and R. Monde (2007). "Getting the Point--Mutations in Maize." Crop Science 47(S1)(No. 1):S-60-67.

35a. Zerr, T. and S. Henikoff (2005). "Automated band mapping in electrophoretic gel images using background information." Nucleic Acids Res 33(9): 2806-12.

- ⁵⁵ 35b. Tsai, H. et al. (2011), Discovery of Rare Mutations in Populations: TILLING by Sequencing, Plant Physiology, 156(3): 1257-1268
 - 36. Slafer and Araus (2007), Springer, "Physiological traits for improving wheat yield under a wide range of conditions",

Scale and Complexity in Plant Systems Research: Gene-Plant-Crop Relations, 147-156

37. Reynolds, "Physiological approaches to wheat breeding", Agriculture and Consumer Projection. Food and Agriculture Organization of the United Nations.

- 38. Richard et al., "Physiological Traits to Improve the Yield of Rainfed Wheat: Can Molecular Genetics Help", published by International Maize and Wheat Improvement Center.
- 39. Reynolds et al., "Evaluating Potential Genetic Gains in Wheat Associated with Stress-Adaptive Trait Expression
 in Elite Genetic Resources under Drought and Heat Stress Crop science", Crop Science 2007 47: Supplement_3:
 S-172-S-189

40. Setter et al., Review of wheat improvement for waterlogging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils. Annals of Botany, Volume 103(2): 221-235.

41. M. J. Foulkes, N. D. Paveley, A. Worland, S. J. Welham, J. Thomas, J. W. Snape. Major Genetic Changes in Wheat with Potential to Affect Disease Tolerance. Phytopathology, July, Volume 96, Number 7, Pages 680-688 (doi: 10.1094/PHYTO-96-0680)

- 42. Rosyara, U.R., K. Pant, E. Duveiller and R.C. Sharma. 2007. Variation in chlorophyll content, anatomical traits and agronomic performance of wheat genotypes differing in spot blotch resistance under natural epiphytotic conditions. Australasian Plant Pathology 36 : 245-251.
- 43. Rosyara, U.R., R.C. Sharma, and E. Duveiller. 2006. Variation of canopy temperature depression and chlorophyll
 ²⁵ content in spring wheat genotypes and association with foliar blight resistance. J. Plant Breed. Gr. 1 : 45-52.

44. Rosyara, U.R., R.C. Sharma, S.M. Shrestha, and E. Duveiller. 2005. Canopy temperature depression and its association with helminthosporium leaf blight resistance in spring wheat. Journal of Institute of Agriculture and Animal Science 26: 25-28.

45. Rosyara, U.R., R.C. Sharma, S.M. Shrestha, and E. Duveiller. 2006. Yield and yield components response to defoliation of spring wheat genotypes with different level of resistance to Helminthosporium leaf blight. Journal of Institute of Agriculture and Animal Science 27. 42-48.

- 46. Rosyara, U. R. 2002. Physio-morphological traits associated with Helminthosporium leaf blight resistance in spring wheat. Masters' Thesis. Tribhuvan University, Institute of Agriculture and Animal Science, Rampur, Chitwan, Nepal. supported by CIMMYT International. Available at CIMMYT library
- 47. Hayward, M. D., N. O. Bosemark, and I. Romangosa. 1993. Plant Breeding: Principle and Prospects. Chapman and Hall, London.

48. Wood, D. R., K. M. Rawal, and M. N. Wood (eds). 1983. Crop Breeding. American Society of Agronomy, Crop Science Society of America, Madison, Wisconsin.

- 45 49. Allard, R. W. 1960. Principles of Plant Breeding. John Wily and Sons Inc. New York.
 - 50. Simmonds, N. W. 1979. Principles of Crop Improvement. Longman Group Limited, London.
 - 51. Singh, B. D. 2000. Plant Breeding. Sixth ED. Kalyani Publishers, New Delhi.
- 50

55

5

15

30

52. Guo et al., 2005, American Journal of Botany 92(9): 1548-1558.

53. Watson et al. 1999. Grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochcmistry, cytology, classification, pathogens, world and local distribution, and references. Version: 18 August 1999,

54. GPWG. 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). Annals of the Missouri Botanical Garden 88: 373-457.

55. Clayton et al., 1986. Genera Graminum. Kew Bulletin Additional Series XIII: 1-389.

56. Vaughan, 1994. The wild relative of rice: a genetic resources handbook. International Rice Research Institute, Manila, Philippines.

57. Donald C.M., 1968. The breeding for crop ideotypes. Euphytica. 17, 385-403.

5

10

15

20

30

58. Gao P.W., Wang B.L. et al., 1988. Studies on physiology and ecology for rice with high yield. Liaoning Agricultural Science. 1, 7-11.

59. International Rice research Institute, 1996. Rice research in Asia. IRRI. 1-70.

60. Shao G.J. et al., 1995. Summarization and discussion on rice breeding research and development in Liaoning Province. Liaoning Agrirultural Science. 6, 28-33.

61. Wang B.L. et al., 1989. Incident light distribution over the population with high yield in rice. Liaoning Agricultural Science. 6, 27-30.

62. Wang B.L., 1992. The Trail and method of rice breeding for super high yield. The Proceedings of Rice Research. Chinese Science and Technological Press. 97-104.

63. Wang B. L. et al., 1997. Studies on genetic activities of semi-dwarfism and erect-panicle in rice. Journal of Shenyang Agricultural University. 28(2), 83-87.

64. Wang B.L., 2000. Studies on rice breeding for high yield, good quality and multiple resistance. Prospects of Rice Genetics and Breeding for the 21 st Century. China Agricultural Scientech Press. 191-195.

65. Wang B.L. et al., 2002. Analysis of rice breeding in Liaoning Province in 1949-2000. Liaoning Agricultural Science. 5, 5-8.

66. Yang S.J., et al 1987. Research on rice breeding through crossing indica and japonica and its evolution in the past thirty six years. Journal of Shenyang Agricultural University. 18(3), 3-9.

67. Tan et al., The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63, Thero. Appl. Genet (1999) 99:642-648

68. Yan et al., Comparative analyses of QTL for important agronomic traits between maize and rice, Yi Chuan Xue Bao, 2004, 31(12):1401-1407

40 69. Khush et al., Rice Genetics IV, Int. Rice Res. Inst. 2001

70. Yamamoto et al., "Towards the Understanding of Complex Traits in Rice: Substantially or Superficially?", DNA RESEARCH pp. 1-14, (2009)

⁴⁵ 71. Viraktamath et al., 1997, Hybrid rice breeding manual, ISBN 9712201031, 9789712201035

72. International Rice Research Institute, 1972, Rice Breeding

73. Rice breeding: Papers presented at the Symposium on Rice Breeding held at the International Rice Research
 Institute, 6-10 Sept., 1971

74. Chakraborty, 2001, Rice Breeding and Genetics, ISBN 8170228743, 9788170228745

75. International Rice Research Institute, 2003, Two-line hybrid rice breeding manual, ISBN 9712201856,9789712201851

76. Marshall and Wadsworth, Rice science and technology, vol. 59 of Food science and technology, CRC Press, 1994, ISBN 0824788877, 9780824788872

77. Xia, Progress of chromosome engineering mediated by asymmetric somatic hybridization., J Genet Genomics. 2009 Sep;36(9):547-56. Review.

78. Liu et al., Generation of high frequency of novel alleles of the high molecular weight glutenin in somatic hybrid ization between bread wheat and tall wheatgrass. Theor Appl Genet. 2009 Apr;118(6):1193-8. Epub 2009 Feb 8.

79. Zhou et al., Comparative study of symmetric and asymmetric somatic hybridization between common wheat and Haynaldia villosa. Sci China C Life Sci. 2001 Jun;44(3):294-304.

10 80. Wang et al., Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics. 2008 Apr;8(7):1470-89.

81. Cai et al., Genotyping of somatic hybrids between Festuca arundinacea Schreb. and Triticum aestivum L., Plant Cell Rep. 2007 Oct:26(10):1809-19. Epub 2007 Jun 27.

- 82. Deng et al., Analysis of remote asymmetric somatic hybrids between common wheat and Arabidopsis thaliana., Plant Cell Rep. 2007 Aug;26(8):1233-41. Epub 2007 Apr 4.
- 83. Zhou et al., Genetic characterization of asymmetric somatic hybrids between Bupleurum scorzonerifolium Willd
 and Triticum aestivum L.: potential application to the study of the wheat genome. Planta. 2006 Mar;223(4):714-24.
 Epub 2005 Nov 4.

84. Li et al., Regeneration of asymmetric somatic hybrid plants from the fusion of two types of wheat with Russian wildrye. Plant Cell Rep. 2004 Dec;23(7):461-7. Epub 2004 Jul 24.

- 85. Zhou et al., Introgression of the Haynaldia villosa genome into gamma-ray-induced asymmetric somatic hybrids of wheat. Plant Cell Rep. 2005 Jul;24(5):289-96. Epub 2005 Jun 3.
- 86. Xia et al., RAPD method for the identification of intergeneric asymmetric somatic hybrid plants of wheat. Shi Yan Sheng Wu Xue Bao. 1999 Sep;32(3):265-70. Chinese.

87. Mostageer et al., Establishment of a salt tolerant somatic hybrid through protoplast fusion between rice and ditch reed Arab J. Biotech., Vol. 6, No.(1) Jan. (2003): 1-12.

88. Nakajo et al., Somatic cell hybridization in rice (Oryza sativa L.) and birdsfoot trefoil (Lotus corniculatus L.)
 Japanese Journal of Breeding (Mar 1994)

89. Niizeki et al., Somatic hybridization in rice x soybean, Bajaj YPS (ed) Biotechnology in agriculture and forestry vol 8, Plant protoplasts and genetic engineering. Springer, Berlin Heidelberg New Tork, pp 410-434

- 90. Kisaka, et al., Intergeneric somatic hybridization of rice (Oryza sativa L.) and barley (Hordeum vulgare L.) by protoplast fusion, Plant Cell Reports, Volume 17, Number 5, 362-367
- 91. Cocking, Rice biotechnology: Somatic hybridisation for improved salinity tolerance and xylem colonisation by
 rhizobia for endophytic nitrogen fixation Cahiers Options, vol 40

92. Ishikawa e tal., Rice interspecies hybrids show precocious or delayed developmental transitions in the endosperm without change to the rate of syncytial nuclear division. Plant J. 2011 Mar;65(5):798-806.

⁵⁰ 93. X. Hu, X. Cheng, H. Jiang, S. Zhu, B. Cheng and Y. Xiang, (2010), Genome-wide analysis of cyclins in maize (Zea mays), Genet. Mol. Res. 9 (3): 1490-1503

94. Acquaah et al. Principles of plant genetics and breeding, Wiley-Blackwell, 2007, ISBN 1405136464,9781405136464

55

15

25

40

96. Roy Davies and Wall, "Artificial Mutagenesis in Plant Breeding", Nature 182, 955 - 956 (04 October 1958)

^{95.} Harten, Mutation Breeding, Cambridge University Press, 1998.

- 97. Grotewold, Plant Functional Genomics, Volume 236 of Methods in molecular biology, Humana Press, ISBN 1588291456, 9781588291455
- 98. Braman, In vitro mutagenesis protocols, Volume 182 of Methods in molecular biology, Human Press, 2002, ISBN 0896039102, 9780896039100

5

15

25

45

99. Chusacultanachai et al., "Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments." Methods Mol Biol. 2004;270:319-34.

100. Fujii et al., One-step random mutagenesis by error-prone rolling circle amplification, Nucl. Acids Res. (2004)
 32 (19): e145.

101. Trower, In vitro mutagenesis protocols, Volume 57 of Methods in molecular biology, John M. Walker Methods in molecular biology (Clifton, N.J.) 57, ISBN 0896033325, 9780896033320

102. Katsumi, M., Foard, D.E. and Phinney, B.O. (1983) Evidence for the translocation of gibberellin A3 and gibberellin-like substances in grafts between normal, dwarf1 and dwarf5 seedlings of Zea mays L. Plant Cell Physiol. 24, 379-388.

20 103. Lacadena, J.-R. Hybrid wheat. VII. Tests on the transmission of cytoplasmic male sterility in wheat by embryoendosperm grafting, Euphytica, 17(3), 439-444

104. Trione et al., 1968, IN VITRO CULTURE OF SOMATIC WHEAT CALLUS TISSUE American Journal of Botany, Vol. 55, No. 5, May - Jun., 19

- 105. Dodig, et al., tissue culture response of different wheat genotypes, environmental effect and association with plant traits, Options MEditerraneennes, Series A, No. 81, pages 129 to 132
- 106. O'HARA et al., Wheat Callus Culture: the Initiation, Growth and Organogenesis of Callus Derived from Various
 Explant Sources Ann Bot (1978) 42 (5): 1029-1978.

107. Zaidi et al., Optimizing tissue culture media for efficient transformation of different indica rice genotypes Agronomy Research 4(2):563-575, 2006

³⁵ 108. Wang et al., Tissue Culture Responses from Different Explants of Rice, Rice Science, 2005, 12(3): 229-232

109. Ting Y, Boyer A, McSweeney G (1978) Maize tissue culture. MNL 52:6

120. Martha C. Hawes, Diana Z.Sharpe, Maria-Ines Plata, Steven G. Pueppke, Prem S. Chourey, Auxin-independent
 growth of maize tissue culture cells, Plant Science, Volume 40, Issue 3, September 1985, Pages 197-202

121. SHERIDAN Tissue Culture of Maize, Physiologia Plantarum, 41(3):172-174, 1977

122. Mizutani et al. The syncytium-specific expression of the Orysa;KRP3 CDK inhibitor: implication of its involvement in the cell cycle control in the rice (Oryza sativa L.) syncytial endosperm J Exp Bot. 2010 March; 61(3): 791-798. Published online 2009 November 20. doi: 10.1093/jxb/erp343

[0291] Embodiment 1. A plant cell, plant part, plant tissue culture or whole plant comprising at least one *Kinase Inhibitor Protein (KIP) Related Protein (KRP)* gene, wherein the function of one or more copies of the *KRP* gene is disrupted, and wherein the disruption is due to get a more multiplication of a wild time KRP.

and wherein the disruption is due to one or more nucleotide changes of a wild type KRP gene as set forth in Tables 2-12, 25 and 29-37.
 [0292] Embodiment 2. The plant cell, plant part, plant tissue culture or whole plant of embodiment 1, wherein the plant

is a monocotyledonous plant and the one or more nucleotide changes of the wild type KRP gene are as set forth in Tables 2-12 and 25.

⁵⁵ **[0293]** Embodiment 3. The plant cell, plant part, plant tissue culture or whole plant of embodiment 2, wherein the monocotyledonous plant is a species in the *Triticeae* tribe and the one or more nucleotide changes of the wild type KRP gene are as set forth in Tables 2-12.

[0294] Embodiment 4. The plant cell, plant part, plant tissue culture or whole plant of embodiment 3, wherein the plant

in the *Triticeae* tribe is a plant in the *Triticum* genus.

5

15

45

[0295] Embodiment 5. The plant cell, plant part, plant tissue culture or whole plant of embodiment 4, wherein the plant in the *Triticum* genus is wheat.

- **[0296]** Embodiment 6. The plant cell, plant part, plant tissue culture or whole plant of embodiment 5, wherein the wheat plant is tetraploid or hexaploid.
- **[0297]** Embodiment 7. The plant cell, plant part, plant tissue culture or whole plant of embodiment 2, wherein the monocotyledonous plant is a species in the *Oryzeae* tribe and the one or more nucleotide changes of the wild type KRP gene are as set forth in Table 25.
- [0298] Embodiment 8. The plant cell, plant part, plant tissue culture or whole plant of embodiment 7, wherein the plant in the *Oryzeae* tribe is a plant in the *Oryza* genus.

[0299] Embodiment 9. The plant cell, plant part, plant tissue culture or whole plant of embodiment 8, wherein the plant in the *Oryza* genus is rice.

[0300] Embodiment 10. The plant cell, plant part, plant tissue culture or whole plant of embodiment 1, wherein the plant is a dicotyledonous plant and the one or more nucleotide changes of the wild type KRP gene are as set forth in Tables 29-37

[0301] Embodiment 11. The plant cell, plant part, plant tissue culture or whole plant of embodiment 10, wherein the dicotyledonous plant is a species in the *Fabaceae* family.

[0302] Embodiment 12. The plant cell, plant part, plant tissue culture or whole plant of embodiment 11, wherein the plant in the *Fabaceae* family is soybean.

²⁰ **[0303]** Embodiment 13. The plant cell, plant part, plant tissue culture or whole plant of embodiment 12, wherein the plant is *Glycine max.*

[0304] Embodiment 14. A wheat plant cell, plant part, plant tissue culture or whole plant comprising at least one *Kinase Inhibitor Protein (KIP) Related Protein (KRP)* gene, wherein the function of one or more copies of the *KRP* gene is disrupted, and wherein the disruption is due to one or more nucleotide changes of a wild type KRP gene selected from the group consisting of *TaKRP1*, *TaKRP2*, *TaKRP4*, *TaKRP5* and *TaKRP6*.

- ²⁵ the group consisting of *TaKRP1*, *TaKRP2*, *TaKRP4*, *TaKRP5* and *TaKRP6*. [0305] Embodiment 15. The wheat plant cell, plant part, plant tissue culture or whole plant of embodiment 14, wherein wheat is tetraploid wheat plant and the disrupted KRP gene is *TaKRP1A*, *TaKRP1B*, *TaKRP2A*, *TaKRP2B*, *TaKRP4A*, *TaKRP4B*, *TaKRP5A*, *TaKRP5B*, *TaKRP6A*, and/or *TaKRP6B*, and wherein the *KRP* in the hexaploid wheat is *TaKRP1A*, *TaKRP1B*, *TaKRP1D*, *TaKRP2A*, *TaKRP2A*, *TaKRP5B*, *TaKRP2B*, *TaKRP2B*, *TaKRP2B*, *TaKRP2B*, *TaKRP4B*, *TaKRP4B*, *TaKRP4D*, *TaKRP5A*, *TaKRP2A*, *TaKRP5B*, *TaKRP2B*, *TaKRP2B*, *TaKRP2B*, *TaKRP5B*, *TaKRP5B*, *TaKRP5B*, *TaKRP2B*, *TaKRP4B*, *TaKRP4B*, *TaKRP4D*, *TaKRP5A*, *TaKRP5B*, *TaKRP5B*, *TaKRP2B*, *TaKRP5B*, *TaKRP5B*, *TaKRP5B*, *TaKRP5B*, *TaKRP5B*, *TaKRP5B*, *TaKRP5B*, *TaKRP4B*, *TaKRP4B*, *TaKRP4D*, *TaKRP5A*, *TaKRP5B*, *TaKRP5B*,
- TaKRP5D, TaKRP6A, TaKRP6B, and/or TaKRP6D.
 [0306] Embodiment 16. A rice plant cell, plant part, plant tissue culture or whole plant comprising at least one *Kinase Inhibitor Protein (KIP) Related Protein (KRP)* gene, wherein the function of one or more copies of the *KRP* gene is disrupted, and wherein the disruption is due to one or more nucleotide changes of a wild type KRP gene selected from the group consisting of *OsKRP1*, *OsKRP2*, *OsKRP4* and *OsKRP5*.
- ³⁵ **[0307]** Embodiment 17. A soy plant cell, plant part, plant tissue culture or whole plant comprising at least one *Kinase Inhibitor Protein (KIP) Related Protein (KRP)* gene, wherein the function of one or more copies of the *KRP* gene is disrupted, and wherein the disruption is due to one or more nucleotide changes of a wild type KRP gene selected from the group consisting of Gm0003x00821, Gm0013x00399, Gm0043, Gm0053x00526, Gm0087x00306, Gm0102x00087, Gm0119x00131, Gm0151x00019, and Gm0067x00001.
- 40 [0308] Embodiment 18. A method of increasing organ weight, organ size, organ number and/or yield of a plant in the *Triticeae* tribe, the *Oryzeae* tribe, or the *Fabaceae* family comprising disrupting one or more *KRPs* in the plant.
 [0309] Embodiment 19. The method of embodiment 18, wherein the organ is seed.

[0310] Embodiment 20. The method of embodiment 19, wherein the plant in the *Triticeae* tribe is a plant in the *Triticum*

genus, wherein the plant in the *Oryzeae* tribe is a plant in the *Oryza* genus, and wherein the plant in the *Fabaceae* family is in the *Glycine* genus.

[0311] Embodiment 21. The method of embodiment 20, wherein the plant in the *Triticum* genus is a wheat plant, wherein the plant in the *Oryza* genus is a rice plant, and wherein the plant in the *Glycine* genus is a soybean plant. Embodiment 22. The method of embodiment 18, wherein the *KRP* in the wheat is *TaKRP1, TaKRP2, TaKRP4, TaKRP5,* or *TaKRP6,* the *KRP* in the rice is *OsKRP1, OsKRP2, OsKRP4, or OsKRP5,* and the *KRP* in the soybean is

- ⁵⁰ Gm0003x00821, Gm0013x00399, Gm0043, Gm0053x00526, Gm0087x00306, Gm0102x00087, Gm0119x00131, Gm0151 x00019, or Gm0067x00001.
 [0312] Embodiment 23. The method of embodiment 22, wherein the *KRP* in a tetraploid wheat plant is *TaKRP1A*, *TaKRP1B*, *TaKRP2A*, *TaKRP4A*, *TaKRP4B*, *TaKRP5A*, *TaKRP5B*, or *TaKRP6*, and wherein the *KRP* in a hexaploid wheat is *TaKRP1B*, *TaKRP1B*, *TaKRP1B*, *TaKRP1D*, *TaKRP2A*, *TaKRP4A*, *T*
- ⁵⁵ TaKRP5A, TaKRP5B, TaKRP5D, TaKRP6A, TaKRP6B, and TaKRP6C.
 [0313] Embodiment 24. The method of embodiment 18, wherein the *KRP* gene function is disrupted by nucleotide substitution, deletion, insertion, homologous recombination, T-DNA, transposon, antisense oligonucleotide, double stranded oligonucleotide, siRNA, shRNA, inverted oligonucleotide repeat, or combination thereof.

[0314] Embodiment 25. The method of embodiment 21, wherein the wheat plant comprises one or more mutations selected from any one of mutations listed in Tables 2 - 12 for a particular *KRP* gene; wherein the rice plant comprises one or more mutations selected from any one of mutations listed in Table 25 for a particular *KRP* gene; and wherein the soybean plant comprises one or more mutations selected from any one of mutations listed in Tables 29 - 37 for a particular *KRP* gene.

[0315] Embodiment 26. A method of producing a plant with increased organ size, organ weight, organ number and/or yield compared to a wild type plant, comprising

i) making a cross between a first plant to a second plant to produce a F1 plant, wherein the first plant is in the *Triticeae* tribe, the *Oryzeae* tribe, or the *Fabaceae* family comprising one or more disrupted *KRP* genes.

[0316] Embodiment 27. The method of embodiment 26, wherein the method further comprises

ii) backcrossing the F1 plant to the first or the second plant; and

5

10

15

20

iii) repeating the backcrossing step to generate a near isogenic line, wherein the one or more disrupted *KRPs* in the first plant are integrated into the genome of the near isogenic line.

[0317] Embodiment 28. The method of embodiment 26 or 27, wherein the plant in the *Triticeae* tribe is a plant in the *Triticum* genus, wherein the plant in the *Oryzeae* tribe is a plant in the *Oryza* genus, and wherein the plant in the *Fabaceae* family is in the *Glycine* genus.

[0318] Embodiment 29. The method of embodiment 28, wherein the plant in the *Triticum* genus is a wheat plant, wherein the plant in the *Oryza* genus is a rice plant, and wherein the plant in the *Glycine* genus is a soybean plant.
[0319] Embodiment 30. The method of embodiment 29, wherein the *KRP* in the wheat is *TaKRP1*, *TaKRP2*, *TaKRP4*,

TaKRP5, or *TaKRP6*, the *KRP* in the rice is *OsKRP1*, *OsKRP2*, *OsKRP4*, or *OsKRP5*, and the *KRP* in the soybean is
 Gm0003x00821, Gm0013x00399, Gm0043, Gm0053x00526, Gm0087x00306, Gm0102x00087, Gm0119x00131, Gm0151 x00019, or Gm0067x00001.

[0320] Embodiment 31. The method of embodiment 30, wherein the *KRP* in a tetraploid wheat plant is *TaKRP1A*, *TaKRP1B*, *TaKRP2A*, *TaKRP2A*, *TaKRP4A*, *TaKRP4B*, *TaKRP4B*, *TaKRP5A*, *TaKRP6A*, and/or *TaKRP6B*, and wherein the *KRP* in a hexaploid wheat is *TaKRP1A*, *TaKRP1B*, *TaKRP1D*, *TaKRP2A*, *TaKRP2B*, *TaKRP2D*, *TaKRP4A*, *TaKRP4A*, *TaKRP1A*, *TaKRP1B*, *TaKRP1A*, *TaKRP2A*, *TaKRP2A*, *TaKRP2B*, *TaKRP2D*, *TaKRP4A*, *TaKRP4A*,

- TaKRP4B, TaKRP4D, TaKRP5A, TaKRP5B, TaKRP5D, TaKRP6A, TaKRP6B, and/or TaKRP6D.
 [0321] Embodiment 32. The method of embodiment 26 or 27, wherein the KRP gene function is disrupted by nucleotide substitution, deletion, insertion, homologous recombination, T-DNA, transposon, antisense oligonucleotide, double stranded oligonucleotide, siRNA, shRNA, inverted oligonucleotide repeat, or combination thereof.
- **[0322]** Embodiment 33. The method of embodiment 32, wherein the plant is a wheat plant comprising one or more mutations selected from any one of mutations listed in Tables 2 12 for a particular *KRP* gene; wherein the plant is a rice plant comprising one or more mutations selected from any one of mutations listed in Table 25 for a particular *KRP* gene; and wherein the plant is a soybean plant comprising one or more mutations selected from any one of mutations listed in Tables 29 37 for a particular *KRP* gene.
- [0323] Embodiment 34. An isolated polynucleotide comprising a sequence selected from the group consisting of: (a) sequences recited in SEQ ID NOs: 138, 139, 141, 142, 144, and 145, and portions thereof; (b) complements of the sequences recited in SEQ ID NOs: 138, 139, 141, 142, 144, and 145, and portions thereof; (c) reverse complements of the sequences recited in SEQ ID NOs: 138, 139, 141, 142, 144, and 145, and portions thereof; (d) reverse sequences of the sequences recited in SEQ ID NOs: 138, 139, 141, 142, 144, and 145, and portions thereof; (d) reverse sequences of the sequences recited in SEQ ID NOs: 138, 139, 141, 142, 144, and 145, and portions thereof; and (e) sequences having at least 90% identity to a sequence of (a)-(d) or a specified region of a sequence of (a)-(d).
- ⁴⁵ **[0324]** Embodiment 35. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of (a) sequences recited in SEQ ID NOs: 140, 143, and 146, and portions thereof; (b) sequences having at least 90% identity to a sequence of (a).

[0325] Embodiment 36. A recombinant vector, recombinant nucleic acid, plant cell, plant part, plant tissue culture or whole plant comprising at least one isolated polynucleotide of embodiment 34.

⁵⁰ **[0326]** Embodiment 37. The plant cell, plant part, plant tissue culture or whole plant of embodiment 36, wherein the plant is a plant of the *Triticeae* tribe.

[0327] Embodiment 38. The plant cell, plant part, plant tissue culture of whole plant of embodiment 37, wherein the plant is a plant of the *Triticum* genus. Embodiment 39. The plant cell, plant part, plant tissue culture or whole plant of embodiment 38, wherein the plant in the *Triticum* genus is a wheat plant.

⁵⁵ **[0328]** Embodiment 40. The plant cell, plant part, plant tissue culture or whole plant of embodiment 39, wherein the wheat plant is tetraploid or hexaploid.

SEQUENCE LISTING

	<110>	Targeted Growth, Inc.	
5	<120>	IDENTIFICATION AND THE USE OF KRP MUTANTS IN PLANTS	
	<130>	JWJ01948EP1	
	<140>		
10	<141>	2012-04-11	
	<150> <151>	EP12771677.7 2012-04-11	
	<150>	PCT/US2012/033047	
15	<151>	2012-04-11	
	<150> <151>	US 61/474,201 2011-04-11	
	<160>	152	
20	170		
	<1/0>	Patentin version 3.5	
	<210> <211>	1 1276	
25	<212> <213>	DNA Arabidopsis sp.	
	<400>	1	
	aaatto	atca tetttettte ttettettee teateetete aatcatatet etetetetea	60
30	cagaga	ttgt gacttcacgc acacgtaacc taaatcgaag atggtgagaa aatatagaaa	120
	agctaa	agga attgtagaag ctggagtttc gtcaacgtat atgcagctac ggagccggag	180
35	aattgt	ttat gttagatcgg aaaaatcaag ctctgtctcc gtcgtcggtg ataatggagt	240
	ttcgtc	gtct tgtagtggaa gcaatgaata taagaagaaa gaattaatac atctggaggt	300
	tattta	atgt tgttgattct agattcttgt aactgtatat gtatcattta atgttaatgt	360
40	atttt	tttt gaaattttga aatttttgta ggaggaagat aaagatggtg acactgaaac	420
	gtcgac	gtat cgacggtgag tgttaaaaaa aaaactgaaa atgatttgaa ttttgaaggt	480
	tttatt	attt teeeggttat ttatttgact etetetteaa taaatttaga atettgettg	540
45	tgagtt	attt taggggtacg aagaggaagc tttttgaaaa tctgagagag gaggagaaag	600
	aagaat	taag taaatccatg gagaattatt catcggaatt tgaatcggcg gttaaagaat	660
50	cgttag	attg ttgttgtagc gggaggaaaa cgatggagga gacggtgacg gcggaggagg	720
50	aggaga	aggc gaaattgatg acggagatgc caacggaatc ggaaattgaa gattttttg	780
	tggaag	ctga gaaacaactc aaagaaaaat tcaagaagaa gtaagttttt attttatttt	840
55	gtgagt	ttga tttttataga taatatattt tttattcata atttaaaatt gattttgagg	900

960

84

taaaattaag agtgagttta tttttttta attaggtaca atttcgattt cgagaaggag

	aagccattag aaggacgtta cgaatgggta aagttagagt gaagaagaag aagaagttta	1020
	tggttttttt tttaactttt tagattttaa tatttcaggg aataagttaa ttttattttg	1080
5	ttgatttgga aatataagat ttgtaggagg aatgttttta gaagtacgaa attgcacaga	1140
	aaaagaagaa agctttttaa cagattttag agcccagaaa agtcgtgtct tttagctcta	1200
	cttttacctc ttcttcgaat cttgtgtatc ttttagcata ttctttagta cattttatg	1260
10	tttttggtga ctgata	1276
15	<210> 2 <211> 576 <212> DNA <213> Arabidopsis sp.	
	<400> 2 atggtgagaa aatatagaaa agctaaagga attgtagaag ctggagtttc gtcaacgtat	60
20	atgcagctac ggagccggag aattgtttat gttagatcgg aaaaatcaag ctctgtctcc	120
	gtcgtcggtg ataatggagt ttcgtcgtct tgtagtggaa gcaatgaata taagaagaaa	180
25	gaattaatac atctggagga ggaagataaa gatggtgaca ctgaaacgtc gacgtatcga	240
	cggggtacga agaggaagct ttttgaaaat ctgagagagg aggagaaaga agaattaagt	300
	aaatccatgg agaattattc atcggaattt gaatcggcgg ttaaagaatc gttagattgt	360
30	tgttgtagcg ggaggaaaac gatggaggag acggtgacgg cggaggagga ggagaaggcg	420
	aaattgatga cggagatgcc aacggaatcg gaaattgaag atttttttgt ggaagctgag	480
	aaacaactca aagaaaaatt caagaagaag tacaatttcg atttcgagaa ggagaagcca	540
35	ttagaaggac gttacgaatg ggtaaagtta gagtga	576
40	<210> 3 <211> 191 <212> PRT <213> Arabidopsis sp.	
	<400> 3	
45	Met Val Arg Lys Tyr Arg Lys Ala Lys Gly Ile Val Glu Ala Gly Val 1 5 10 15	
50	Ser Ser Thr Tyr Met Gln Leu Arg Ser Arg Arg Ile Val Tyr Val Arg 20 25 30	
	Ser Glu Lys Ser Ser Ser Val Ser Val Val Gly Asp Asn Gly Val Ser 35 40 45	
55	Ser Ser Cys Ser Gly Ser Asn Glu Tyr Lys Lys Lys Glu Leu Ile His 50 55 60	

	Leu 65	Glu	Glu	Glu	Asp	Lys 70	Asp	Gly	Asp	Thr	Glu 75	Thr	Ser	Thr	Tyr	Arg 80	
5	Arg	Gly	Thr	Lys	Arg 85	Lys	Leu	Phe	Glu	Asn 90	Leu	Arg	Glu	Glu	Glu 95	Lys	
10	Glu	Glu	Leu	Ser 100	Lys	Ser	Met	Glu	Asn 105	Tyr	Ser	Ser	Glu	Phe 110	Glu	Ser	
	Ala	Val	Lys 115	Glu	Ser	Leu	Asp	Cys 120	Cys	Cys	Ser	Gly	Arg 125	Lys	Thr	Met	
15	Glu	Glu 130	Thr	Val	Thr	Ala	Glu 135	Glu	Glu	Glu	Lys	Ala 140	Lys	Leu	Met	Thr	
20	Glu 145	Met	Pro	Thr	Glu	Ser 150	Glu	Ile	Glu	Asp	Phe 155	Phe	Val	Glu	Ala	Glu 160	
	Lys	Gln	Leu	Lys	Glu 165	Lys	Phe	Lys	Lys	Lys 170	Tyr	Asn	Phe	Asp	Phe 175	Glu	
25	Lys	Glu	Lys	Pro 180	Leu	Glu	Gly	Arg	Tyr 185	Glu	Trp	Val	Lys	Leu 190	Glu		
30	<210 <212 <212 <212	0> 4 1> ! 2> I 3> I	4 513 DNA Brass	sica	napı	15											
35	<400 atg)> 4 gtgaq	4 gaa a	aatgo	cagaa	aa aa	actaa	aaggo	g aco	ggtgg	ggag	ctto	cgtct	ac o	gtata	atgcaç	g 60
	ctto	cgcaç	gee q	ggaga	aatco	gt ti	acaç	gateq	g gaa	aaaaq	gcta	gcto	cgtco	gtc o	gtcgt	cttgt	120
	tgco	gcgaq	gta a	acaad	caato	gg ag	gttat	agat	ctt	gago	gagg	aaaq	gagat	gg 1	tgaga	actgaa	a 180
40	acg	tcgto	cgt q	gtcga	acgga	ag ta	agtaa	agago	y aaq	gctat	ttg	aaaa	accti	ag a	agaaa	aagaa	a 240
	tcta	atgga	aga a	attca	acago	ca aa	atcgt	aget	c ggt	tttç	gatt	ccgo	ccgto	yaa a	agaat	cate	j 300
45	gati	tgttç	gtt q	gcago	ccgga	ag aa	acato	ettto	y tca	aacga	acgg	agga	agaaq	ldd (gaaat	cageg	j 360
	acgo	gagca	aac o	cacca	aacgo	jc aç	gtgga	agati	gaa	agatt	ttt	tcgt	zggaa	agc 1	tgaga	aacaq	4 20
	ctco	catga	ata a	attto	caaga	aa ga	agta	ataad	ttt	tgatt	tcg	aaaa	aggaq	yaa o	gccat	tagaa	a 480
50	gga	cgcta	acg a	agtgo	ggtta	na at	tato	cagao	y taa	3							513
	<21(<21)	0> ! 1> :	5 170 287														

<212> PRT
55 <213> Brassica napus

<400> 5

	Met 1	Val	Arg	Lys	Cys 5	Arg	Lys	Thr	Lys	Gly 10	Thr	Val	Gly	Ala	Ser 15	Ser
5	Thr	Tyr	Met	Gln 20	Leu	Arg	Ser	Arg	Arg 25	Ile	Val	Tyr	Arg	Ser 30	Glu	Lys
10	Ala	Ser	Ser 35	Ser	Ser	Ser	Ser	Cys 40	Cys	Ala	Ser	Asn	Asn 45	Asn	Gly	Val
	Ile	Asp 50	Leu	Glu	Glu	Glu	Arg 55	Asp	Gly	Glu	Thr	Glu 60	Thr	Ser	Ser	Cys
15	Arg 65	Arg	Ser	Ser	Lys	Arg 70	Lys	Leu	Phe	Glu	Asn 75	Leu	Arg	Glu	Lys	Glu 80
20	Ser	Met	Glu	Asn	Ser 85	Gln	Gln	Ile	Val	Ala 90	Gly	Phe	Asp	Ser	Ala 95	Val
25	Lys	Glu	Ser	Ser 100	Asp	Cys	Cys	Cys	Ser 105	Arg	Arg	Thr	Ser	Leu 110	Ser	Thr
	Thr	Glu	Glu 115	Lys	Gly	Lys	Ser	Ala 120	Thr	Glu	Gln	Pro	Pro 125	Thr	Ala	Val
30	Glu	Ile 130	Glu	Asp	Phe	Phe	Val 135	Glu	Ala	Glu	Lys	Gln 140	Leu	His	Asp	Asn
35	Phe 145	Lys	Lys	Lys	Tyr	Asn 150	Phe	Asp	Phe	Glu	Lys 155	Glu	Lys	Pro	Leu	Glu 160
	Gly	Arg	Tyr	Glu	Trp 165	Val	Lys	Leu	Ser	Glu 170						
40	<21(<21) <212 <212	0> (1> 2 2> 1 3> 7	5 28 DNA Artif	Ficia	al Se	aner	ice									
45	<22(<22)	0> 3> 1	Prime	er T <i>l</i>	AKRP1	LA_L										
50	<40(ggat)> (tacga	s att d	cgaga	atcto	c tt	tttç	Jac								
55	<210 <211 <212 <213	0> - L> 2 2> I 3> 2	7 29 DNA Artif	ficia	al Se	equer	nce									
	<220	0>														

	<223>	Primer TAKRP1A_R	
	<400>	7	
	tgataa	tggt gggaatatgt gagcgagtg	29
5			
	<210>	8	
	<211>	27	
	<212>	DNA	
10	<213>	Artificial Sequence	
10	<220>		
	<223>	Primer TAKRP1B L	
		_	
	<400>	8	~ 7
15	aaacag	caag gtgagggaat tggggtc	27
	<210>	9	
	<211>	29	
20	<212>	DNA Artificial Sequence	
20	~215~	Artificial Sequence	
	<220>		
	<223>	Primer TAKRP1B_R	
	<400>	9	
25	taatgo	ttet tteeggagea tettttee	29
	_		
	<21.05	10	
	<210>	29	
30	<212>	DNA	
00	<213>	Artificial Sequence	
	<2205		
	<223>	Primer TAKRP1D L	
35	<400>	10	~ ~
	ggatac	aatt cgagatetee tttttgetg	29
	<210>	11	
40	<211>	29	
	<212>	DNA Artificial Sequence	
	1210/	Artificial Deducine	
	<220>		
	<223>	Primer TAKRP1D_R	
45	<400>	11	
	taatgo	ttct ttccggagca tcttttcc	29
	2		
	101.0-	10	
50	<210>	28	
	<212>	DNA	
	<213>	Artificial Sequence	
	.000		
	<220> <223>	Primer TAKRD2A21.1	
55	12.07		
	<400>	12	

	gccact	cact gccctagaat tctccgta	28
5	<210> <211> <212> <213>	13 33 DNA Artificial Sequence	
10	<220> <223>	Primer TAKRP2A2R1	
	<400> caattt	13 ggat ggggagagag agagagctag tgt	33
15	<210> <211> <212> <213>	14 29 DNA Artificial Sequence	
20	<220> <223>	Primer TAKRP2B2L2	
	<400> gtccact	14 tgcc ctagaattct ccgctactt	29
25	<210> <211> <212> <213>	15 29 DNA Artificial Sequence	
30	<220> <223>	Primer TAKRP2B2_ALTR	
35	<400> gccgtg	15 gcct agtgaaaggt aaaaagaaa	29
	<210> <211> <212>	16 27 DNA	
40	<213> <220> <223>	Artificial Sequence Primer KRP2D2_ENDEX1_L	
45	<400> tccact	16 gccc tagaattete egetaat	27
50	<210> <211> <212> <213>	17 27 DNA Artificial Sequence	
	<220> <223>	Primer KRP2D2_ENDEX4_R	
55	<400> gtcatt	17 tgca tcatgctctg ctcacac	27

	<210> <211>	18 36	
r.	<212> <213>	DNA Artificial Sequence	
5	<220> <223>	Primer KRP4B_L_2_3_NEW	
10	<400> ttcctt	18 attt tttatgacta ttgatatgtg ttcttc	36
15	<210> <211> <212> <213>	19 31 DNA Artificial Sequence	
	<220> <223>	WKP4_BR2	
20	<400> gtggtc	19 atta cagaatgagc tgctaaccgt t	31
25	<210> <211> <212> <213>	20 28 DNA Artificial Sequence	
	<220> <223>	Primer KRP4D_L_2_3_NEW	
30	<400> ttacga	20 uccac ggatgatatc gatatgtg	28
35	<210> <211> <212> <213>	21 27 DNA Artificial Sequence	
	<220> <223>	Primer KRP4D_R_2_3_NEW	
40	<400> cattgg	21 jagtt ttgagggatt agggtgt	27
45	<210> <211> <212> <213>	22 25 DNA Artificial Sequence	
50	<220> <223>	Primer TAKRP5A1_L	
	<400> ggcaag	22 Jaca tgcgcaagag caagg	25
55	<210> <211> <212>	23 29 DNA	

<213> Artificial Sequence <220> <223> Primer TAKRP5A1_R 5 <400> 23 gattttcttc tccatcagga ttgaagcgc 29 <210> 24 10 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer TAKRP5A2_L 15 <400> 24 28 cacattgtgt gatgtggggc acttgtta <210> 25 20 <211> 29 <212> DNA <213> Artificial Sequence <220> 25 <223> Primer TAKRP5_ALL_EST_R <400> 25 gagctactgc tgactgcggg ctaactcta 29 30 <210> 26 <211> 26 <212> DNA <213> Artificial Sequence 35 <220> <223> Primer TAKRP5D_L_Z_2 <400> 26 tgtctagcgt ggggcacttg caaata 26 40 <210> 27 <211> 29 <212> DNA <213> Artificial Sequence 45 <220> <223> Primer TAKRP5_ALL_EST_R <400> 27 29 gagctactgc tgactgcggg ctaactcta 50 <210> 28 <211> 36 <212> DNA <213> Artificial Sequence 55 <220>

	<223>	Primer KRP4B2 P109L-FORWARD GENOTYPING	
	<400> ttcctt	28 attt tttatgacta ttgatatgtg ttcttc	36
5			
	<210>	29	
	<212>	DNA	
10	<213>	Artificial Sequence	
	<220> <223>	Primer KRP4B2 P109L-REVERSE GENOTYPING	
	<400>	29	
15	gtggtc	attt cagaatgagc tgctaaccgt t	31
	<210>	30	
	<211> <212>	26 DNA	
20	<213>	Artificial Sequence	
	<220> <223>	AD ASSAY WITH FLANKING FORWARD PRIMER	
25	<400> tgtgta	30 tgta tgttttgtgg ctagca	26
	<210>	31	
30	<212>	DNA	
	<213>	Artificial Sequence	
	<220> <223>	AD ASSAY WITH FLANKING REVERSE PRIMER	
35	<400>	31	
00	cgttcc	cgag tccctaatca ag	22
	<210>	32	
40	<212>	DNA	
	<213>	Artificial Sequence	
	<220>	TADETED DODE CDECTETO DO DUE MILO MVDE ATTETE	
45	~2232	LABELLED PROBE SPECIFIC IO INE WILD TIPE ALLELE	
	<220>		
	<221>	misc_feature	
	<222> <223>	(1)(1) May be VIC labeled	
50	<220>		
	<221>	misc_feature	
	<222> <223>	(14)(14) May be MGB-NFO labeled	
55	~100-	30	
	<400> tgcagg	gegt egte	14

5	<210> <211> <212> <213>	33 15 DNA Artificial Sequence	
	<220> <223>	LABELED PROBE SPECIFIC TO THE MUTANT ALLELE	
10	<220> <221> <222> <223>	misc_feature (1)(1) May be FAM labeled	
15	<220> <221> <222> <223>	misc_feature (15)(15) May be MGB-NFQ labeled	
20	<400> ctgcaga	33 agcg tcgtc	15
25	<210> <211> <212> <213>	34 42 DNA Artificial Sequence	
	<220> <223>	Primer KRP1A (E212K)-F	
30	<400> cgaaga	34 gttc tttgcggcgg ctaaagaggc ggaagcacgc cg	42
35	<210> <211> <212> <213>	35 42 DNA Artificial Sequence	
40	<220> <223>	Primer KRP1A (E212K)-R	
	cggcgt	gett eegeetettt ageegeegea aagaaetett eg	42
45	<210> <211> <212> <213>	36 43 DNA Artificial Sequence	
50	<220> <223>	Primer KRP1A (P232L)-F	
	<400> cgacgti	36 tgca cgcggcgtgc ttctggattc cggtcgctat gag	43
55	<210> <211>	37 43	

	<212> <213>	DNA Artificial Sequence	
5	<220> <223>	Primer KRP1A (P232L)-R	
	<400> ctcata	37 gcga ccggaatcca gaagcacgcc gcgtgcaacg tcg	43
10	<210>	38	
	<211>	42	
	<212>	DNA	
	<213>	Artificial Sequence	
15	<220>		
	<223>	Primer KRP1A (G236S)-F	
	<400>	38	40
	CGGCGT	geet etggatteea gtegetatga gtggaeeeeg ge	42
20			
	<210>	39	
	<211>	42	
	<212>	DNA	
	<213>	Artificial Sequence	
25	<220>		
	<223>	Primer KRP1A (G236S)-R	
	<400>	39	
	gccggg	gtcc actcgtagcg actggaatcc agaggcacgc cg	42
30			
	~210>	40	
	<210>	40	
	<212>	DNA	
35	<213>	Artificial Sequence	
	<220>	Drimon KDD17 $/W240*) - E$	
	12232	FILMEL ARFIA (W240*) F	
	<400>	40	
40	ggatte	cggt cgctatgagt gaaccccggc agtttccagc ag	42
	<01.05	41	
	<210>	41 42	
	<212>	DNA	
45	<213>	Artificial Sequence	
	<220		
	<220>	Drimer KDD13 $(W240*) - D$	
	16637	111001 10101 IA (W43V / IV	
50	<400>	41	
	ctgctg	gaaa ctgccggggt tcactcatag cgaccggaat cc	42
	~210	42	
	<211>	41	
55	<212>	DNA	
	<213>	Artificial Sequence	

	<220> <223>	Primer KRP2D (P228S)-F	
5	<400> ccgtgc	42 ccgt gcgcgtatgt caccggcagc ggaaatcgac g	41
	<210>	43	
	<211>	41	
	<212>	DNA	
10	<213>	Artificial Sequence	
	<220>	Drimor KDD2D (D2206)_D	
	~223/	FIIMEI ARF2D (F2203)-R	
15	<400>	43 tttp. agataagaat asastsagaa asagaasaa a	41
	egrega	ttte egetgeeggt gacataegeg caegggeaeg g	4 L
	<210>	44	
20	<211>	40	
20	<212> <213>	Artificial Sequence	
	<220>		
05	<223>	Primer KRP2D (A238V)-F	
25	<400>	44	
	cgacga	gttt ttcgcggttg cggagaaagc ccaggcagag	40
	<210>	45	
30	<211>	40	
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
35	<223>	Primer KRP2D (A238V)-R	
	<400>	45 stag actitictors caaccacaaa aaactostos	40
	Clerge		-10
40	<210>	46	
	<211>		
	<212>	DNA Artificial Socuence	
	~213>	Artificial Sequence	
45	<220>	Drimer KDDOD (ACCOM) E	
	~223/	Plimer RF2D (A2391)-F	
	<400>		40
	cgacga	gttt ttcgcggcta cggagaaagc ccaggcagag cg	42
50			
	<210>	47	
	<211>	42	
	<212>	DNA	
	<213>	Artificial Sequence	
55	~220~		
	<223>	Primer KRP2D (A239T)-R	

	<400>	47 aast aasstttata aatoasaaa ooooostaat aa	12
	egetet	geet gygetttete egtageegeg aaaaaetegt eg	42
5	<210>	48	
	<211>	43	
	<212>	DNA	
	<213>	Artificial Sequence	
10	<220>		
10	<223>	Primer KRP2D (D254N)-F	
	<400>	48	
	cgccgc	gaag tataacttta atgtggcccg tggcgttccg ctg	43
15			
	<210>	49	
	<211>	43	
	<212>	DNA Ambificial Comunco	
	~2132	Artificial Sequence	
20	<220>		
	<223>	Primer KRP2D (D254N)-R	
	<400>	49	
	cagcgg	aacg ccacgggcca cattaaagtt atacttcgcg gcg	43
25			
	<210>	50	
	<211>	40	
	<212>	DNA	
20	<213>	Artificial Sequence	
30	~220>		
	<223>	Primer KRP2D (R257C)-F	
	<400>		40
35	CTTTGA	tgtg geetgtggeg tteegetgaa tgetggtege	40
	~2105	51	
	<211>	40	
	<212>	DNA	
40	<213>	Artificial Sequence	
	<220>		
	<223>	Primer KRP2D (R257C)-R	
	<400>	51	
45	gcgacc	agca ttcagcggaa cgccacaggc cacatcaaag	40
	<210>	52	
	<211>	40	
50	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
	<223>	Primer KRP4A (W186*)-F	
55	~1005	50	
	<400> accaaa	22 togt tatgaatagg toaagetgga ctaactegag	40
		, <u>, , , , , , , , , , , , , , , , , , </u>	

	<210> <211> <212>	53 40 DNA	
5	<213>	Artificial Sequence	
5	<220> <223>	Primer KRP4A (W186*)-R	
10	<400> ctcgag	53 ttag tccagcttga cctattcata acgacctggc	40
	<210>	54	
	<211>	41	
	<212>	DNA	
15	<213>	Artificial Sequence	
	<220>		
	<223>	Primer KRP5A (G200E)-F	
	<400>	54	
20	ctcgtg	getg ceegetgeeg gategttaeg agtggaeegt e	41
	<210>	55	
	<211>	41	
25	<212>	DNA	
20	<213>	Artificial Sequence	
	<220>		
	<223>	Primer KRP5A (G200E)-R	
30	<400>	55	
	gacggt	ccac togtaacgat coggoagogg goagooacga g	41
	<210>	56	
35	<211>	41	
00	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
40	<223>	Primer KRP5A (G200R)-F	
40	<400>	56	
	ctcgtg	getg ceegetgeeg aggegttaeg agtggaeegt e	41
45	<210>	57	
40	<211>	41	
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
50	<223>	Primer KRP5A (G200R)-R	
	<400>	57	
	gacggt	ccac tcgtaacgcc tcggcagcgg gcagccacga g	41
55	<210>	58	
	<211>	43	

	<212> <213>	DNA Arti	ificial Sequ	ience				
5	<220> <223>	Prin	ner KRP5A (V	¥199*)-F				
	<400> gctgcc	58 gggt	cgttacgagt	gaaccgtcct	ggactgctaa	ctc		43
10	<210> <211> <212> <213>	59 43 DNA Arti	ificial Sequ	ience				
15	<220> <223>	Prin	ner KRP5A (V	√199*)-R				
	<400> gagtta	59 gcag	tccaggacgg	ttcactcgta	acgacccggc	agc		43
20	<210> <211> <212> <213>	60 1518 DNA Trit	3 cicum sp.					
25	<400> cctggg	60 cgtc	ggatcgggac	ccgatccccc	ggctcccccc	ttggcgtgtt	atatgcgtac	60
	gcaccc	acgc	gcacgggggcg	cactccggac	ggggggagaga	atccaaagag	cagcccagcg	120
30	gcatca	tacc	cctccctccc	acccaccggc	gccgcgctgc	agacgcaaac	ggccaaaggc	180
	gagcgg	cgtg	gggcggagcg	cggggcgatg	gggaagtaca	tgcgcaagtg	cagggcggag	240
	gacggc	gcgg	tgggcggcgt	ggaggtcacg	caggccgtcg	gcgtccgcac	ccggtcccgc	300
35	gcggcc	gcgg	ccaacgtcgt	cgtctccaag	aggaggcgcc	cgctgccgcc	cggctcgccg	360
	tcggcc	tcgt	cgtccctcgc	tcgcgcccag	ggcgggagct	gctacctgaa	gctgcggagc	420
	cgcatg	ctgt	tcatggcccc	gccggcgccc	gcatcggggg	ctgccgccgg	gcacgggccg	480
40	gcgccg	ccgc	tcccggccgg	cctgtcgcgc	tgctccagca	cggcgtcgtc	cgtggacgcg	540
	tcggcc	gcgg	cgcaggacag	gagcctgctc	tcgtgcggct	ccgacgccgc	tgccaacaac	600
	aaggtg	aggg	aattgggtcc	aaaccctaga	attcggatac	gattcgagat	ctcctttttg	660
45	accgaa	accc	gtgtctttct	ccgctctgca	ggcaggcgcc	ccggagggct	cggcgagcaa	720
	caacgc	ggag	agcggcggca	accgcgagag	gtgcgagatc	gaattccgtc	ttctttccag	780
	cgaatt	cttg	tgaattatgc	ctcctgccgt	gctcctgacc	ccgtcccgct	cgccgttttt	840
50	gaaaat	tcag	gcgagagacg	acgccgtcca	gccatttccc	cggcgacctg	agcgacctgg	900
	agtcgg	atct	ggcggggcag	aacagcggcc	ggtcgtcgct	gccgcaaacg	ccgaccgccc	960
55	aggccc	agcc	cgccgcgagg	tcgagggtcc	cgccggcggc	cgagatcgag	gagttcttcg	1020
00	cggccg	ccga	ggaggccgag	gccaggcggt	tcgcttgcaa	gtaagtgctt	ttagcagcag	1080

120 acgcaggccg tcggcgtccg cacccggtcc cgcgcggccg cggccaacgt cgtcgtctcc 25 180 aagaggagge geeegetgee geeeggeteg eegteggeet egtegteeet egetegegee 240 cagggcggga gctgctacct gaagctgcgg agccgcatgc tgttcatggc cccgccggcg cccgcatcgg gggctgccgc cgggcacggg ccggcgccgc cgctcccggc cggcctgtcg 300 30 360 cgctgctcca gcacggcgtc gtccgtggac gcgtcggccg cggcgcagga caggagcctg 420 ctctcgtgcg gctccgacgc cgctgccaac aacaaggcag gcgccccgga gggctcggcg 35 480 agcaacaacg cggagagcgg cggcaaccgc gagaggcgag agacgacgcc gtccagccat 540 ttccccggcg acctgagcga cctggagtcg gatctggcgg ggcagaacag cggccggtcg 600 tegetgeege aaacgeegae egeceaggee cageeegeeg egaggtegag ggteeegeeg 40 gcggccgaga tcgaggagtt cttcgcggcc gccgaggagg ccgaggccag gcggttcgct 660 tgcaagtaca acttcgacgt ggcccgcggc gtgccgctcg actccggccg gtacgagtgg 720 744 accccggcgg tgagcagcag ctag 45 <210> 62 <211> 1251 <212> DNA <213> Triticum sp. 50 <400> 62 60 cgcgctgcgc actgcagacg gaaacggcca aaggagggca ggcaggagcg cgcggcgtgg ggcgatgggg aagtacatgc gcaagtgcag ggcggaggac ggcgtggggcg gcgtggaggt 120 55 cacgcaggcc gtcggcgtcc ggacccggtc gcgggcggcc gcggccaacg tcgtcgtttc 180

<210> 61 <211> 744 <212> DNA <213> Triticum sp.

61

<400>

20

1140 cggaaactct aattctccac ttcgtcgccg gagttctaac gtgagagctt tctctcgccg tggccaggta caacttcgac gtggcccgcg gcgtgccgct cggctccggc cggtacgagt 1200 1260 5 ggaccccggc ggtgagcagc agctaggcag gcgacgaaag cgggcgtgca aagggggggag 1320 agaageegta getagaaagt taeteactgt agagetgggg egeeggeegg eeggeeggee 1380 gtgtagaaag gccaagggaa aaagatgctc cggaaagaag aaaagaagca ttatagccta 10 accaaccaac caaccaccga tcatcaacaa ctttttcttt cactcactcg ctcacatatt 1440 1500 cccaccatta tcacttcaca cccccttaat cctgattttt cccagcagca gcagcagtag ttttacttcc ctactggg 1518 15

atggggaagt acatgcgcaa gtgcagggcg gaggacggcg cggtgggcgg cgtggaggtc

60

EP 2 927 323 A2

	caagaggagg	cggccgctgc	cgccaagctc	gcccctcggc	ggcgccgccg	ctcgcgccca	240
	gagcgggagc	tgctacctga	agctgcggag	ccgcatgctg	ttcatggccc	cgccggcgcc	300
5	tgcatcggct	gctggcccag	ggcacaggcc	ggcgccgccg	ctcccggcgg	gcctctcgcg	360
	ctgctccagc	acggcgtcgt	ccgtggacgc	gtcggccgcg	ggacaggata	ggagcctgcc	420
	gtcgtgcggc	tccgacgccg	ctgcaaacag	caaggtgagg	gaattggggt	ccaaacccta	480
10	gagttcggat	acgattcgag	atctcctttt	tttgctgaaa	atcgtggctt	tctccgctct	540
	acaggcaggc	gctccggagg	gctcagcaag	caacaacgcg	gagagcggcg	gcaaccgcga	600
	gaggtgcgag	atcgaattcc	ctcctgtctc	cggccaattc	ttgtgaatta	tgcctcctga	660
15	cgtgctcctg	accccgtccc	gctcgtcgct	tttgaaaatt	caggcgagag	acgacgccgt	720
	ccagccattt	ccccggcgac	ctgagcgacc	tggagtcgga	tctggcgggc	cagaacagcg	780
20	gccggtcgtc	gctgccgcaa	acgccgaccg	cccaggtcca	gccggccgcg	aggtcgagga	840
	tcccgccggc	ggccgagatc	gaggagttct	tcgcggccgc	cgaggaggcc	gaggccaggc	900
	gcttcgcttg	caagtaagta	ctttagcagc	agcggaaatt	tccttatctt	gcggccgccg	960
25	tcgccgtcgc	cggaattcta	acgtgcgagc	tctctgtgcc	aggtacaact	tcgacgtggc	1020
	ccgcggcgtg	cctctcgact	ccggccggta	cgagtggacc	ccggcggtga	gcagcaacta	1080
	gccagccgag	aaagcgggcg	tgcaaagggg	ggagagaagc	cgtagctaga	aagttactca	1140
30	ctgtagagct	ggggcgccgg	ccggccggcc	ggccgtgtag	aaaggcgaag	ggaaaaagat	1200
	gctccggaaa	gaagcattat	agcctaacca	accaacctac	caccgatcat	с	1251
35	<210> 63 <211> 738 <212> DNA <213> Trit	cicum sp.					
40	<400> 63 atggggaagt	acatgcgcaa	gtgcagggcg	gaggacggcg	tgggcggcgt	ggaggtcacg	60
	caggccgtcg	gcgtccggac	ccggtcgcgg	gcggccgcgg	ccaacgtcgt	cgtttccaag	120
	aggaggcggc	cgctgccgcc	aagctcgccc	ctcggcggcg	ccgccgctcg	cgcccagagc	180
45	gggagctgct	acctgaagct	gcggagccgc	atgctgttca	tggccccgcc	ggcgcctgca	240
	tcggctgctg	gcccagggca	caggccggcg	ccgccgctcc	cggcgggcct	ctcgcgctgc	300
	tccagcacgg	cgtcgtccgt	ggacgcgtcg	gccgcgggac	aggataggag	cctgccgtcg	360
50	tgcggctccg	acgccgctgc	aaacagcaag	gcaggcgctc	cggagggctc	agcaagcaac	420

55

100

aacgcggaga gcggcggcaa ccgcgagagg cgagagacga cgccgtccag ccatttcccc

ggcgacctga gcgacctgga gtcggatctg gcgggccaga acagcggccg gtcgtcgctg

ccgcaaacgc cgaccgccca ggtccagccg gccgcgaggt cgaggatccc gccggcggcc

480

540

<210> 64 <211> 1304 <212> DNA 10 <213> Triticum sp. <400> 64 60 atccaaaggg cgagccgaac aacccagcgg catcatatcc ctcccaccgg cgccgcgctg cgcactgcag acggaaacgg ccaaaggaga gcggcgtggg gcggagcggg gggcgatggg 120 15 180 gaagtacatg cgcaagtgca gggcggagga cgtcgcggtg ggcggcgtgg aggtcacgca 240 ggccgtcggc gtccggacgc ggtcccgggc ggccgcggcc aacgtcgtcg tctccaagag 20 gaggegeeeg etgeegeeeg cetegeegte ggeetegteg geeetegete gegeeeaggg 300 360 cgggagctgc tacctgaagc tgcggagccg catgctgttc atggccccgc cggcgcctgc 420 gtcggcgtcg gccgctgccg ccgggcacgg ggcgccgccg ccgctcccgg ccggcctctc 25 480 gcgctgctcc agcacggcct cgtccgtgga cgcgtcggcc gcggcgcagg acaggagcct gccgtcgtgc ggctccgacg ccgctgccaa caaggtgagg gaattgggtc caaaccctag 540 600 aatteggata caattegaga teteetttt getgaaaaee gtggetttet eegeeetaea 30 660 ggcaggcgct ccggagggct cggcgagcaa caacgcggag agcggcggca accgcgagag gtgcgagatc gaattccctc ctgtctccgg ccaattcttc cgaattatgc atcctaaccc 720 780 cgtcccgctc gctgcttttc aaaattcagg cgagagacga cgccgtccag ccatttcccc 35 840 ggcgacctga gcgacctgga gtcggatctg gcgggcaaga acagcggccg gtcgtcgctg ccgcaaacgc tggccgccca ggctcagccc gccgcgaggt cgagggtccc gccggcggcc 900 40 960 gagatcgagg agttcttcgc ggccgccgag gaggccgagg ccaggcgctt cgcttgcaag 1020 taagtactcc tactttagca gcagcggaaa tttccttatc ttgcggccgc cgtcgccgtc 1080 gccggaattc taacgtggga gctctctacg ccaggtacaa cttcgacgtg gcccgcggcg 45 tgcccctcga ctccggccgg tacgagtgga ccccggcggt gagcagcagc taggcaggcg 1140 acgaaagcgg gcgtgcaaag gggggagaga agccgtagct agaaagttac tcactgtaga 1200 1260 gctgggggcgc cggccggccg gccggccgtg tagaaaggcg aagggaaaaa gatgctccgg 50 aaagaagcat tatagcctaa ccaaccaacc taccaccgat catc 1304

tacaactteg acgtggeecg eggegtgeet etegaeteeg geeggtaega gtggaeeeeg 738

660 gagatcgagg agttcttcgc ggccgccgag gaggccgagg ccaggcgctt cgcttgcaag 720

gcggtgagca gcaactag

EP 2 927 323 A2

<210> 65 <211> 747 <212> DNA <213> Triticum sp.

55

	<100> 65						
	atggggaagt	acatgcgcaa	gtgcagggcg	gaggacgtcg	cggtgggcgg	cgtggaggtc	60
-	acgcaggccg	tcggcgtccg	gacgcggtcc	cgggcggccg	cggccaacgt	cgtcgtctcc	120
5	aagaggaggc	gcccgctgcc	gcccgcctcg	ccgtcggcct	cgtcggccct	cgctcgcgcc	180
	cagggcggga	gctgctacct	gaagctgcgg	agccgcatgc	tgttcatggc	cccgccggcg	240
10	cctgcgtcgg	cgtcggccgc	tgccgccggg	cacgggggcgc	cgccgccgct	cccggccggc	300
	ctctcgcgct	gctccagcac	ggcctcgtcc	gtggacgcgt	cggccgcggc	gcaggacagg	360
	agcctgccgt	cgtgcggctc	cgacgccgct	gccaacaagg	caggcgctcc	ggagggctcg	420
15	gcgagcaaca	acgcggagag	cggcggcaac	cgcgagaggc	gagagacgac	gccgtccagc	480
	catttccccg	gcgacctgag	cgacctggag	tcggatctgg	cgggcaagaa	cagcggccgg	540
	tcgtcgctgc	cgcaaacgct	ggccgcccag	gctcagcccg	ccgcgaggtc	gagggtcccg	600
20	ccggcggccg	agatcgagga	gttcttcgcg	gccgccgagg	aggccgaggc	caggcgcttc	660
	gcttgcaagt	acaacttcga	cgtggcccgc	ggcgtgcccc	tcgactccgg	ccggtacgag	720
	tggaccccgg	cggtgagcag	cagctag				747
30	<210> 66 <211> 1371 <212> DNA <213> Trit <220> <221> misc <222> (100)	L ticum sp. C_feature					
25	<223> n is	sa, c, g, c	or t				
35	<400> 66 ttcgtccgtt	cgcggatggg	gaagtacatg	cggaagtgcc	gggccgcgcc	gcgccgcggg	60
	cggcggcaag	gcggcgccgc	cgtcgtggag	caccgcgcgc	cggtggccct	cggcgtccgc	120
40	acgcggtccc	gcgcggccgc	cctcaacgcg	aagatgagga	agcagcagca	ggcgacgacg	180
	tccacggcgg	cgcgcgcggt	ggaggatgcg	ttgctgggcc	gtgacggcgg	cgacgcggcc	240
	gccgggtgct	acctgcatct	ccggagcagg	aggctgttca	tgcctgcttc	cgcggcggtg	300
45	gatcagetee	ggggacttgg	ggcggacgag	gaggcttcga	cggcgggggct	gccggattct	360
	cggccctcgg	tggaggcggc	ggtcgtggcc	ggggtctcgc	gctgctccag	caccgcgtcg	420
50	acggcggtgg	acgtggcggc	tagagagagg	agcggcgacg	aagcggaggt	gagtgggcca	480
	ctcactgccc	tagaattctc	cgtaaattcg	gccggtcgat	cggcagtttc	tgctgctgaa	540
	ttacgagatt	tggttctgac	tgtcttggtc	gatcagcagg	cgtgcgagag	tggcgacgtg	600
55	gagagctccg	tcagcgactc	tgagtgcggc	ggccgggaca	ggtgagtcct	cctctctcga	660
	taccgacagg	aattctgctg	aattatccat	tgttttctat	tctccagggt	gatcttgagt	720

	tcttgacccg	gttttgcttc	tgaatttgac	ctgtttgaat	tgtggtaatc	caggagggag	780
	accacgccgt	cgagccattc	cccggcagat	ttgagcgacc	tggagtcgag	ccagtcggcg	840
5	gacgagcaga	agcacaaacg	caggaggtat	ccggcaacaa	cgacgacgac	cgcagcgcca	900
	ttccgcttag	acttggaggc	gagagcaagg	atgccaccgg	cggcagagat	cgacgagttc	960
	ttcgccgccg	cggagaaggc	ccaggccgag	cgcttcgccg	ccaagtaagt	ggaaattaca	1020
10	attgagcaca	caagtacaca	tacgtcttgg	cacttggcag	tcgctctatc	gccgtcacag	1080
	acgccgccac	gnctaagcct	tgtgctctcg	ctgcctcact	gcaggtacaa	cttcgacgtc	1140
15	gcgcgcggcg	tgcctctcaa	cgccggccgg	ttcgagtgga	ccccggtggc	caccgtctga	1200
15	ggctctgagc	atgatgcaaa	atgacgggaa	gctagcggcg	gcgcgcgtag	aaagggaagg	1260
	cctgctggga	gtgaaaagag	acgctgatcc	aacccgcaaa	ggaaaacagt	aaagagaaag	1320
20	aggagtgaaa	aaagaacaga	ataatcccat	gcacagcagc	ctagagctag	a	1371
25	<210> 67 <211> 822 <212> DNA <213> Trit	cicum sp.					
	atggggaagt	acatgcggaa	gtgccgggcc	gcgccgcgcc	gcgggcggcg	gcaaggcggc	60
30	gccgccgtcg	tggagcaccg	cgcgccggtg	gccctcggcg	tccgcacgcg	gtcccgcgcg	120
	gccgccctca	acgcgaagat	gaggaagcag	cagcaggcga	cgacgtccac	ggcggcgcgc	180
	gcggtggagg	atgcgttgct	gggccgtgac	ggcggcgacg	cggccgccgg	gtgctacctg	240
35	catctccgga	gcaggaggct	gttcatgcct	gcttccgcgg	cggtggatca	gctccgggga	300
	cttggggcgg	acgaggaggc	ttcgacggcg	gggctgccgg	attctcggcc	ctcggtggag	360
	gcggcggtcg	tggccggggt	ctcgcgctgc	tccagcaccg	cgtcgacggc	ggtggacgtg	420
40	gcggctagag	agaggagcgg	cgacgaagcg	gaggcgtgcg	agagtggcga	cgtggagagc	480
	tccgtcagcg	actctgagtg	cggcggccgg	gacaggaggg	agaccacgcc	gtcgagccat	540
45	tccccggcag	atttgagcga	cctggagtcg	agccagtcgg	cggacgagca	gaagcacaaa	600
45	cgcaggaggt	atccggcaac	aacgacgacg	accgcagcgc	cattccgctt	agacttggag	660
	gcgagagcaa	ggatgccacc	ggcggcagag	atcgacgagt	tcttcgccgc	cgcggagaag	720
50	gcccaggccg	agcgcttcgc	cgccaagtac	aacttcgacg	tcgcgcgcgg	cgtgcctctc	780
	aacgccggcc	ggttcgagtg	gaccccggtg	gccaccgtct	ga		822

<210> 68 <211> 1364 <212> DNA <213> Triticum sp.

55

<400> 68 60 tttcgtccgt tcgcggatgg ggaagtacat gcggaagtgc aggggcgcgg ccgcgggcgg cggcagggcg gcgccggccg tcgtggagca ccgcgcgccg gtggccctcg gcgtccgcac 120 5 gcggtcccgc gcggccgcct tcgacgctaa gaggaggaag cagcaggcga cgacgtccac 180 ggcagcgcgc gcggtggacg atgcgttgct gggccgtgac ggcggcgacg cggccggcgg 240 gtgctacctg catctccgga gcaggaggct gttcatgcct gcttccgcgg tggtggatcg 300 10 360 gctccgggga cagggggcgg acgaggaggc ttcgacggcg aggctggcgg attccgggcc ttccgtggag gcgggggtcg tcgccggggt ctcgcgctgc tcgagcaccg cgtccacggc 420 15 agcagacgtg gcggctagag agaggagcgg cgacgaagca gaggtgagtg gtccactgcc 480 ctagaattet cegetaette gagetgtega tegggeeatt tetgetgetg aattaggagg 540 600 tttggttcct atgtcttgtc ctgcaggcgt gcgagagtcg cgacgtggag agctccgtca 20 gcgactctga gtgcggcggc cgggacaggt gagtcctcct ctctcgatat ataccgacgg 660 qaattctgct gaattatcca ttgttttcta ctccacaagg tgatcttgag ttgaggggcc 720 780 tggctttgct tctgaatttg acctgttgga ttgtactaat ccaggaggga ggcgacgccg 25 840 tcgagccgtt cgccggtaga tttgagcgac ctggagtcga gccaggcggc ggacgagcag 900 aagcacaaac gcaggaggtg tccggcagca acgacggcgg cagcagcgcc attccactta gacteggagg egagageaag gatgeeace geggeagaga tegaegagtt ettegeegee 960 30 1020 gccgagaagg cccaggccga gcacttcgcg gccaagtaag tggaaattta caatcgagcg catccgcacg cacgtacata ctcccgtctt ggcagtcgct ccatcgtcgt cacagacgtc 1080 35 cccgtgccta gctaagcatt gtgctgccgc tgcctcattg caggtacaac ttcgacgtcg 1140 cgcgcggcgt gcctctcaac gccggccggt tcgagtggac cccggtggcc accgtctgag 1200 gctctgatgc aattggcggg gagcgtagcg gcggctcgcg tagaaaggga aggcctgctg 1260 40 ggagtgaaaa gagacgctga tccaaccccc aaaggaaaac agtaaagaga aagaggagtg 1320 aaaaagaaca gaataatccc atgcacagca ggcctagagc taga 1364

EP 2 927 323 A2

- 45 <210> 69 <211> 816 <212> DNA <213> Triticum sp.
- <400> 69 atggggaagt acatgcggaa gtgcaggggc gcggccgcgg gcggcggcag ggcggcgccg 60 gccgtcgtgg agcaccgcgc gccggtggcc ctcggcgtcc gcacgcggtc ccgcgcggcc 120
 gccttcgacg ctaagaggag gaagcagcag gcgacgacgt ccacggcagc gcgcgggtg 180 gacgatgcgt tgctgggccg tgacggcggc gacgcggccg gcgggtgcta cctgcatctc 240

	cggagcagga	ggctgttcat	gcctgcttcc	gcggtggtgg	atcggctccg	gggacagggg	300
	gcggacgagg	aggcttcgac	ggcgaggctg	gcggattccg	ggccttccgt	ggaggcgggg	360
5	gtcgtcgccg	gggtctcgcg	ctgctcgagc	accgcgtcca	cggcagcaga	cgtggcggct	420
	agagagagga	gcggcgacga	agcagaggcg	tgcgagagtc	gcgacgtgga	gageteegte	480
	agcgactctg	agtgcggcgg	ccgggacagg	agggaggcga	cgccgtcgag	ccgttcgccg	540
10	gtagatttga	gcgacctgga	gtcgagccag	gcggcggacg	agcagaagca	caaacgcagg	600
	aggtgtccgg	cagcaacgac	ggcggcagca	gcgccattcc	acttagactc	ggaggcgaga	660
45	gcaaggatgc	cacccgcggc	agagatcgac	gagttcttcg	ccgccgccga	gaaggcccag	720
15	gccgagcact	tcgcggccaa	gtacaacttc	gacgtcgcgc	gcggcgtgcc	tctcaacgcc	780
	ggccggttcg	agtggacccc	ggtggccacc	gtctga			816

<210> 70 <211> 1388 <212> DNA <213> Triticum sp.

20

<400> 70 25 60 gttctttctt ttcgtccgtt cgcggatggg gaagtacatg cggaagtgca gggccgcggc 120 cgcgggcggc ggcagggcgg cgccggccgt cgtggagcac cgcgccgg tggccctcgg cgtccgcacg cggtcccgcg cggccgccct cgacgcgaag atgaggaagc agcagcaggc 180 30 240 gacgacgtcc acggcggcgc gcgcggtgga ggatgcgttg ctgggccgtg acggcggcga cgcggccgcc gggtgctacc tgcatctccg gagcaggagg ctgttcatgc ctgctgccgc 300 360 ggtggtggat cagctgcggg gacagggggt gtgtgaggag gcttccacag cggggctgcc 35 420 ggactetggg cceteggtgg aggeggeggt eggggeeggg gtetegeget geteeageae cgcgtccacg gcggtcgacg tggcggctag agagaggagc ggggatgaag cggaggtgag 480 40 540 tggtccactg ccctagaatt ctccgctaat tcgagctatc gatcgggccg tttctgctgc tgaattacga gatttggttc tgactgtctt ggtcgatcag caggcgtgcg agagtcgcga 600 660 cgtggagage teegteageg actetgagtg cggeggeegg gacaggtgag teeteetete 45 tcgataccga cgggaattct gctgaattac ccattgtttt ctactctcca gggtgatctt 720 gagttgaggg acctggtttt gcttctgaat ttgacctgtt ggattgtggc aatccaggag 780 ggagacgacg ccgtcgagcc gttcgccggt agatttgagc gacctggagt cgagccaggc 840 50 ggcggacgag cagaagcaca aacgcaggag gtgtccggca acaacgacga cgaccgcagc 900 960 gccattgcac tatgacttgg aggcgagagc aagagcaagg atgccaccag cggcagagat cgacgagttc ttcgccgccg cggagaaggc ccaggccgag cgcttcgccg ccaagtaagt 1020 55 ggaaatttac aattgagcaa atccgcacgc acgtcttggc agtcgctcga tcgtcctcac 1080

<400> 72 ctcgcttaaa tccgccaaag cgcacccage gggggccccaa accetageee gggeegegee 60 50 120 gcgcatgggc aagtacatgc gcaagcccaa ggtctccggc gaggtggccg tcatggaggt cgccgccgcg ccgctggggg tccgcacccg cgcgcgggcg ctcgcgatgc agaggcagcc 180 240 gcagggggcg ccgggggcca aggaccaggg ggagtacctg gagctcagga gccggaagct 55 cgagaagctg cccccgccgc cgccggc gaggaggagg gcggccgcgg cggagcgtgt 300

<210> 72 <211> 652 <212> DNA <213> Triticum sp.

45

<400> 71 60 atggggaagt acatgcggaa gtgcagggcc gcggccgcgg gcggcggcag ggcggcgccg 120 20 gccgtcgtgg agcaccgcgc gccggtggcc ctcggcgtcc gcacgcggtc ccgcgcggcc gccctcgacg cgaagatgag gaagcagcag caggcgacga cgtccacggc ggcgcgcgcg 180 240 gtggaggatg cgttgctggg ccgtgacggc ggcgacgcgg ccgccgggtg ctacctgcat 25 ctccggagca ggaggctgtt catgcctgct gccgcggtgg tggatcagct gcggggacag 300 360 ggggtgtgtg aggaggette cacagegggg etgeeggaet etgggeeete ggtggaggeg gcggtcgggg ccggggtctc gcgctgctcc agcaccgcgt ccacggcggt cgacgtggcg 420 30 480 gctagagaga ggagcggggga tgaagcggag gcgtgcgaga gtcgcgacgt ggagagctcc gtcagcgact ctgagtgcgg cggccgggac aggagggaga cgacgccgtc gagccgttcg 540 600 ccggtagatt tgagcgacct ggagtcgagc caggcggcgg acgagcagaa gcacaaacgc 35 aggaggtgtc cggcaacaac gacgacgacc gcagcgccat tgcactatga cttggaggcg 660 720 agagcaagag caaggatgcc accagcggca gagatcgacg agttcttcgc cgccgcggag aaggeecagg cegagegett egeegeeaag tacaactteg acgtegegeg eggegtgeet 780 40 825 ctcaacgccg gccggttcga gtggaccccg gtggccaccg tgtga

<210> 71 <211> 825 <212> DNA 15 <213> Triticum sp.

cctctccc

1140 agacgccgcc gcgcctaagc attgtgctac cgctgcctca ttgcaggtac aacttcgacg 1200 tcgcgcgcgg cgtgcctctc aacgccggcc ggttcgagtg gaccccggtg gccaccgtgt gagcagagca tgatgcaaat gacgggggagc tagcggcggc gcgcgtagaa agggaaggcc 1260 5 1320 tgctgggagt gaaaagagac gctgatccaa ccccccaaag gaaaacagta aagagaaaga 1380 ggagtaaaaa agaacagaat aatcccatgc acagctgcct agagctaggc atgcagtagc 10 1388

EP 2 927 323 A2

	cgaggccgag	gccgaggccg	acaaggtgtc	cttcggggag	aacgtgctcg	agccggaggc	360
	catggggagg	tgagccttct	cctgcgcccg	cgattttctt	cggttcatgg	ggttttattt	420
5	ctcggcgggg	ggattataac	cgtgccaggg	tttagggttt	tgtgtcgtac	cgagaagctt	480
	tggattgctt	cttctgtttc	gcgcttcggc	tcgttccatt	tttccttgtc	aatttggctt	540
	gttctatccg	tgctgcgtgc	ggggctcgaa	tttggtgtcg	atgctatttt	ccccaatatc	600
10	tttcttatta	agctttgctg	tttattgggg	attttttctg	tcccaactct	tc	652
15	<210> 73 <211> 905 <212> DNA <213> Trit	cicum sp.					
	<400> 73 aggcaaattc	ggtagaaatg	tgtagccaat	tgtggcattg	ctaggcctag	ttagaaccaa	60
20	acaaccccgg	atactcataa	gggggggatt	ccttattttt	ttatgaccac	ggatgatatc	120
	gatatgtttt	cttcttttg	cataccctgt	taagttacag	gtgattttt	cccttttgct	180
25	acgcgtcctc	gctatggttg	tttctaaaaa	ttgagtgtgt	atgtatgttt	tgtggctagc	240
	aggggtacca	gggagacgac	gccctgcagc	ttgattaggg	actcgggaat	gataagcact	300
	cctggatcca	caacaagacc	gagccactcg	aattcccatc	gcagggtgca	agctccagcg	360
30	cgccatatta	ttccaagttc	agcagagatg	aatgagttct	tctctgctgc	agagcaaccg	420
	caacagcaag	ccttcatcga	caagtacgac	attgtttggt	tctctcagtc	agttaacctt	480
	gtctaattaa	aaaaatctt	tcaatatctt	tgcagtgaag	aatgccaact	cagcgtgcaa	540
35	tgtggttttg	acacgtgata	tgttcatgcc	tttgctcttg	ataaaaagtg	tgattataac	600
	actaacaaca	tggtttcatg	gcttaataat	cttcaggtac	aactttgatc	ctgtgaacga	660
40	ctgtcctctc	ccaggccgat	acgagtgggt	gaagctagac	tgataattct	ccaggaagga	720
40	gagcaccatg	tatctctctg	ctccctccac	cttagcgtcg	tggtagaggc	gcgcaccgtc	780
	gtgttagctt	tgtttccgtt	gtaaaaagaa	ttagggttag	cctgtagtag	cctcaatggt	840
45	tgtgtaacat	acagaagtaa	tgctgagtta	caccctatcc	ctcaaactcc	ccaaatgtcg	900
	gtagc						905
50	<210> 74 <211> 573 <212> DNA <213> Trit	cicum sp.					
<i>E E</i>	<400> 74 atgggcaagt	acatgcgcaa	gcccaaggtc	tccggcgagg	tggccgtcat	ggaggtcgcc	60
00	gccgcgccgc	tgggggtccg	cacccgcgcg	cgggcgctcg	cgatgcagag	gcagccgcag	120

573 ccaggccgat acgagtgggt gaagctagac tga 15 <210> 75 <211> 651 <212> DNA <213> Triticum sp. 20 <400> 75 60 gcatgggcaa gtacatgcgc aagcccaagg tctccggcga ggtggccgtc atggaggtcg 120 25 ccgccgcgcc gctaggggtc cgcacccgcg cacgagcgct cgcgatgcag aggcagccgc 180 240 aggggggggg ggtggccaag gaccaggggg agtacctgga gctcaggagt cggaagctcg agaagetgee cccgccgccg ccgccggcga ggaggaggge ggeegeggeg gagegtgteg 300 30 360 aggccgaggc cgaggccgac gaggtgtcct tcggtgagaa cgtgctcgag tcggaggcca tggggaggtg agcettetee tgegeeggeg attttetteg gttattgggg ttttatttet 420 480 cggcgggggg attattaccg tgctagggtt tagggttttg tgtcgtaccg agaagctttg 35 gattgettet tetatttege getteggete gttteattte teettgteaa tttggettgt 540 600 tctatccgtg ctgcgtgcgg ggctcgaatt tggtgtggat gctattttcc ccaatatctt tgttactatt aaactttgct gtttattggg gatttttccg tctaactctt c 651 40 <210> 76 <211> 1071 <212> DNA <213> Triticum sp. 45 <400> 76 60 ttgggggggg ttactagece caccattett ttgttteeca tgggeettgt gttteggttg tgtgctagcc tttatatggc atatgagata gattgaaggg ctgtttagtt aggcaacttg 120 50 tggccccaat ctgtttgaac taaccttagg caagtttggt aagaaatgtg tggcaaattg 180 tggcattgct aggcctagtt agaaccaaac aaccccggat actcataagg gggggattcc 240 300 ttatttttta tgactattga tatgtgttct tctttttcca taccctgtta agttacaggt 55 gattttttcc cttttgctat gcttcctctc tatggttgtt tctaaaaatt gagtgtgtat 360

180 ggggcgccgg gggccaagga ccagggggag tacctggagc tcaggagccg gaagctcgag 240 aagetgeece egeegeegee geeggegagg aggagggegg eegeggegga gegtgtegag 300 gccgaggccg aggccgacaa ggtgtccttc ggggagaacg tgctcgagcc ggaggccatg 5 360 gggaggggta ccagggagac gacgccctgc agcttgatta gggactcggg aatgataagc 420 actcctggat ccacaacaag accgagccac tcgaattccc atcgcagggt gcaagctcca 10 gcgcgccata ttattccaag ttcagcagag atgaatgagt tcttctctgc tgcagagcaa 480 ccgcaacagc aagcetteat cgacaagtae aaetttgate etgtgaacga etgteetete 540

EP 2 927 323 A2
	gtatgttttg	tggctagcag	gggtaccagg	gagacgacgc	cctgcagctt	gattagggac	420
	tcgggaacga	taagcactcc	tggatccaca	acaagaccga	gccactcgaa	ttcccatcgc	480
5	agggtgcaag	ctccagcgcg	ccatattatt	ccatgttcag	cagagatgaa	tgagttcttc	540
	tctgctgcgg	agcaaccgca	acagcaagcc	ttcatcgaca	agtacggcat	tgtttggttc	600
	tctcagtcag	ttaaccttgt	ctaatttaaa	aaaagggaaa	tctttcaata	tcttcgcagt	660
10	gaagaatgcc	aactcagcgt	gcaatgtggt	tttgacacgt	gatatgttta	cgcctttgct	720
	cttgataaaa	agtgtgatta	taacactaac	aacatggttt	catggcttaa	taatcttcag	780
15	gtacaacttt	gatcctgtga	acgactgtcc	tctcccaggc	cgatacgagt	gggtgaagct	840
15	agactgataa	ttctccagga	aggagagcat	catgtacttc	tccgctccct	ccaccttagc	900
	gtcgtggtaa	aggcgcgccc	cgtcgtgtta	gctttgtttc	cgttgtaaaa	agaattaggt	960
20	tagcctgtag	tagcctcaat	ggtcgtgtaa	catacagaag	taatgctgag	ttacacccta	1020
	atccctcaaa	ctccaatgta	acggttagca	gctcattctg	aaatgaccac	a	1071
25	<210> 77 <211> 573 <212> DNA <213> Trit	cicum sp.					
30	<400> 77 atgggcaagt	acatgcgcaa	gcccaaggtc	tccggcgagg	tggccgtcat	ggaggtcgcc	60
	gccgcgccgc	taggggtccg	cacccgcgca	cgagcgctcg	cgatgcagag	gcagccgcag	120
	ddddcddcdd dccdcdccdc	taggggtccg tggccaagga	cacccgcgca ccagggggag	cgagcgctcg tacctggagc	cgatgcagag tcaggagtcg	gcagccgcag gaagctcgag	120 180
35	gccgcgccgc ggggcggcgg aagctgcccc	taggggtccg tggccaagga cgccgccgcc	cacccgcgca ccaggggggag gccggcgagg	cgagcgctcg tacctggagc aggagggcgg	cgatgcagag tcaggagtcg ccgcggcgga	gcagccgcag gaagctcgag gcgtgtcgag	120 180 240
35	gccgcgccgc ggggcggcgg aagctgcccc	taggggtccg tggccaagga cgccgccgcc aggccgacga	cacccgcgca ccaggggggag gccggcgagg ggtgtccttc	cgagcgctcg tacctggagc aggagggcgg ggtgagaacg	cgatgcagag tcaggagtcg ccgcggcgga tgctcgagtc	gcagccgcag gaagctcgag gcgtgtcgag ggaggccatg	120 180 240 300
35	gccgcgccgc ggggcggcgg aagctgcccc gccgaggccg gggagggta	taggggtccg tggccaagga cgccgccgcc aggccgacga ccagggagac	cacccgcgca ccaggggggag gccggcgagg ggtgtccttc gacgccctgc	cgagcgctcg tacctggagc aggagggcgg ggtgagaacg agcttgatta	cgatgcagag tcaggagtcg ccgcggcgga tgctcgagtc gggactcggg	gcagccgcag gaagctcgag gcgtgtcgag ggaggccatg aacgataagc	120 180 240 300 360
35 40	gccgcgccgc ggggcggcgg aagctgcccc gccgaggccg gggaggggta actcctggat	taggggtccg tggccaagga cgccgccgcc aggccgacga ccagggagac ccacaacaag	cacccgcgca ccaggggggag gccggcgagg ggtgtccttc gacgccctgc accgagccac	cgagcgctcg tacctggagc aggagggcgg ggtgagaacg agcttgatta tcgaattccc	cgatgcagag tcaggagtcg ccgcggcgga tgctcgagtc gggactcggg atcgcagggt	gcagccgcag gaagctcgag gcgtgtcgag ggaggccatg aacgataagc gcaagctcca	120 180 240 300 360 420
35 40	gccgcgccgc ggggcggcgg aagctgcccc gccgaggccg gggaggggta actcctggat gcgcgccata	taggggtccg tggccaagga cgccgccgcc aggccgacga ccagggagac ccacaacaag ttattccatg	cacccgcgca ccaggggggag gccggcgagg ggtgtccttc gacgccctgc accgagccac ttcagcagag	cgagcgctcg tacctggagc aggagggcgg ggtgagaacg agcttgatta tcgaattccc atgaatgagt	cgatgcagag tcaggagtcg ccgcggcgga tgctcgagtc gggactcggg atcgcagggt tcttctctgc	gcagccgcag gaagctcgag gcgtgtcgag ggaggccatg aacgataagc gcaagctcca tgcggagcaa	120 180 240 300 360 420 480
35 40 45	gccgcgccgc ggggcggcgg aagctgcccc gccgaggccg gggaggggta actcctggat gcgcgccata ccgcaacagc	taggggtccg tggccaagga cgccgccgcc aggccgacga ccagggagac ccacaacaag ttattccatg aagccttcat	cacccgcgca ccaggggggag gccggcgagg ggtgtccttc gacgccctgc accgagccac ttcagcagag cgacaagtac	cgagcgctcg tacctggagc aggagggcgg ggtgagaacg agcttgatta tcgaattccc atgaatgagt aactttgatc	cgatgcagag tcaggagtcg ccgcggcgga tgctcgagtc gggactcggg atcgcagggt tcttctctgc ctgtgaacga	gcagccgcag gaagctcgag gcgtgtcgag ggaggccatg aacgataagc gcaagctcca tgcggagcaa ctgtcctctc	120 180 240 300 360 420 480 540
35 40 45	gccgcgccgc ggggcggcgg aagctgcccc gccgaggccg gggaggggta actcctggat gcgcgccata ccgcaacagc ccaggccgat	taggggtccg tggccaagga cgccgccgcc aggccgacga ccagggagac ccacaacaag ttattccatg aagccttcat acgagtgggt	cacccgcgcaa ccaggggggag gccggcgagg ggtgtccttc gacgccctgc accgagccac ttcagcagag cgacaagtac gaagctagac	cgagcgctcg tacctggagc aggagggcgg ggtgagaacg agcttgatta tcgaattccc atgaatgagt aactttgatc tga	cgatgcagag tcaggagtcg ccgcggcgga tgctcgagtc gggactcggg atcgcagggt tcttctctgc ctgtgaacga	gcagccgcag gaagctcgag gcgtgtcgag ggaggccatg aacgataagc gcaagctcca tgcggagcaa ctgtcctctc	120 180 240 300 360 420 480 540 573
35 40 45 50	gccgcgccgc ggggggggggg aagctgcccc gccgaggccg gggaggggta actcctggat gcgcgccata ccgcaacagc ccaggccgat <210> 78 <211> 651 <212> DNA <213> Trit	taggggtccg tggccaagga cgccgccgcc aggccgacga ccagggagac ccacaacaag ttattccatg aagccttcat acgagtgggt	cacccgcgcaa ccaggggggag gccggcgagg ggtgtccttc gacgccctgc accgagccac ttcagcagag cgacaagtac gaagctagac	cgagcgctcg tacctggagc aggagggcgg ggtgagaacg agcttgatta tcgaattccc atgaatgagt aactttgatc tga	cgatgcagag tcaggagtcg ccgcggcgga tgctcgagtc gggactcggg atcgcagggt tcttctctgc ctgtgaacga	gcagccgcag gaagctcgag gcgtgtcgag ggaggccatg aacgataagc gcaagctcca tgcggagcaa ctgtcctctc	120 180 240 300 360 420 480 540 573

55ctcgcttaaa tccgcaaggc gcacccaggg gggcccaaac cctagcccgg gccgccccgc60gcatgggcaa gtacatgcgc aagcccaagg tctccggcga ggtggccgtc atggaggtcg120

	ccgccgcgcc	gctgggtgtc	cgcacccgcg	cgcgagcgct	cgcgatgcag	aggcagccgc	180
	aggggggcgcc	gggggccaag	gaccaggggg	agtacctgga	gctcaggagc	cggaagctcg	240
5	agaagctgcc	cctgccgccg	ccgccggcga	ggaggagggc	ggccgcggcg	gagcgtgtcg	300
	aggccgaggc	cgaggccgac	gaggtgtcct	tcggggagaa	cgtgctcgag	tcggaggcca	360
	tggggaggtg	agccgccttc	tcctgcgccg	gcgattttct	tcggttctgg	ggttttattt	420
10	ctcggcgggg	ggattattac	cgtgctaggg	tttagggttt	tgtgtcgtac	cgagaagctt	480
	tggattgctt	gttccatttc	acgcttcggc	tcgtttcttt	tttccttgtc	agtttggctt	540
	gttctgtccg	tgctgcgtgc	ggggctcgaa	tttggtgtgg	atgctatttt	ccccaatatc	600
15	tttgttaagc	ttggctgttt	tattggggat	tttttcctg	gctaactctt	С	651

<210> 79 <211> 1073 20 <212> DNA <213> Triticum sp.

	<400> 79	aactagooga	ccatttttt	atttcccata	aacettatat	tttaattata	60
	99999999955	uuccugeeeu		geeeeeeeg	ggeeeegege	cccggccgcg	00
25	tgctagcctt	tatatggcat	atgagataga	ttgaagggct	gtttggttag	gcaacttgtg	120
	gctccaattt	gtttgaacta	accttaggca	agtttggtga	gaaatgtgtg	gcaaattgtg	180
	gcattgctag	gcctagttag	aaccaaacaa	ccccggatac	tcataagggg	gggattcctt	240
30	atttcttacg	accacggatg	atatcgatat	gtgttcttct	ttttgcatac	cctgttaagt	300
	tacaggtgat	ttttcccctt	ttgctatact	tcctctctat	ggttgtttct	aaaaattgag	360
25	tgtgtatgta	tgttttgtgg	ctagcagggg	taccagggag	acgacgccct	gcagcttgat	420
55	tagggactcg	ggaacgataa	gcactcctgg	atccacaaca	agaccaagcc	actcgaattc	480
	ccatcgcagg	gtgcaagctc	cagcgcgcca	tattattcca	tgttcagcag	agatgaatga	540
40	gttcttctct	gctgcggagc	aaccgcaaca	gcaagcette	atcgacaagt	acggcattgt	600
	ttggttctct	cagtcagtta	accttgtcta	attaaaaaaa	tctttcaata	tcttcgcagt	660
	gaagaatgcc	aactcagagt	gcaatgtggt	tttgacacgt	gatatgttca	cgcctttgct	720
45	cttgataaaa	agtgtgatta	taacactaac	aacatggttt	catggcttaa	taatcttcag	780
	gtacaacttt	gatcctgtga	acgactgtcc	tctcccaggc	cgatacgagt	gggtgaagct	840
	agactgataa	ttctccagga	aggagagcac	catgtacctc	tccgctccct	ccaccttagc	900
50	gtcgtggtag	aggcgcgcac	cgccgtgtta	gctttgtttc	cgttgtaaaa	agaattaggg	960
	ttagcctgta	gtagcctcaa	tggtcttgta	acatacagaa	gtaatgctga	gttacaccct	1020
	aatccctcaa	aactccaatg	taacggttag	cagctcattc	tgtaatgacc	aca	1073

55

<210> 80

<211>	573	
<212>	DNA	
<213>	Triticum	sp.

5	<400> 80						
5	atgggcaagt	acatgcgcaa	gcccaaggtc	tccggcgagg	tggccgtcat	ggaggtcgcc	60
	gccgcgccgc	tgggtgtccg	cacccgcgcg	cgagcgctcg	cgatgcagag	gcagccgcag	120
10	ggggcgccgg	gggccaagga	ccaggggggag	tacctggagc	tcaggagccg	gaagctcgag	180
	aagctgcccc	tgccgccgcc	gccggcgagg	aggagggcgg	ccgcggcgga	gcgtgtcgag	240
	gccgaggccg	aggccgacga	ggtgtccttc	ggggagaacg	tgctcgagtc	ggaggccatg	300
15	gggaggggta	ccagggagac	gacgccctgc	agcttgatta	gggactcggg	aacgataagc	360
	actcctggat	ccacaacaag	accaagccac	tcgaattccc	atcgcagggt	gcaagctcca	420
	gcgcgccata	ttattccatg	ttcagcagag	atgaatgagt	tcttctctgc	tgcggagcaa	480
20	ccgcaacagc	aagccttcat	cgacaagtac	aactttgatc	ctgtgaacga	ctgtcctctc	540
	ccaggccgat	acgagtgggt	gaagctagac	tga			573

<210> 81
25
<211> 2259
<212> DNA
<213> Triticum sp.

<400> 81

30 <220> <221> misc_feature <222> (2103)..(2103) <223> n is a, c, g, or t

35 aagccggcgc catgggcaag tacatgcgca agagcaaggc ctcgggggag gtggccgtca 60 tggaggtcgc cggcgcgctg ctcggcgtcc gcacccgctc ccgcaccctc gccgcgcagc 120 agcagegege teegteeet tegeegeage geaagggeea egaggaegge gactaeeteg 180 40 240 ageteaggag caggaggete gagaageage egeegeeggg geeeaaggae aaggaggaeg cgccgcagcc gccggccgcc ggtgggagga ggatggagca ggcgccgtcg tcgttcgccg 300 360 ccgagggctt cgaggccgac ctcgaggtct ccttcggcga caacgtcctg gactgggacg 45 ccaccgacag gtaacaacag agcaccagac ttttctctcc tccccttcct cttccgccaa 420 480 tecceccet ecgecteagt cagcaateee etetegegee ecgeceegge egataegaat acgactgagg tttagggttt atccgccgcc gtgtcgccgt cctgctccat tagcgccgcc 540 50 gcgtgctctc aaatctcaac tctcaggcgc cggcaacctc aagaaccccc tccctatcag 600 ttttctcaga cgagcgccgc cgctggtccg gcgattttct tctccatcag gattgaagcg 660 cccaaatagc cacaccttcc gctgattgtg cccggatgcc tgcaagaatc aaggcctccg 720 55 780 ctggccttga tttcctcaag ccttagccgt tggctggctg gagcttgaaa gaatcgaaga

	aacgcctgtc	cgctgtgttg	acccggggaa	aaaggccccc	ctatttcccc	ccctccagaa	840
	aagccgccat	tttccccctc	caaacaaaga	tgcatccagg	cgcactcaat	caacccccaa	900
5	tcaaagtggg	cgctgcactt	gattagtgga	gcctcctcct	cctcctcctc	cagtggccgt	960
	ggccgtggcc	tccgcctttt	ccccgtagtg	gcaggggaaa	gtagccccct	ttccccttcc	1020
	ccaccacagc	cgccctccat	tggcctggcc	ccaatctttc	ccaacagcaa	ccagagggag	1080
10	agaggcccct	ctcccgccct	ttcgccagca	atttcaatcc	cacaaagccg	agcgccaccg	1140
	ccgtcgcgct	cagggcccca	ttcgccaccg	ccgtgggtga	aaatggcaag	ctgctcatca	1200
45	ttggcccttg	taccggagcg	ccaccgccgc	cattgaatgc	ctgcccttgt	ctggagggat	1260
15	atggctggac	ctttccgctt	gaatggacac	tctgaccgga	ccacgttttt	gttctagcca	1320
	gtgcctccat	tcatatttac	cccttggccc	ttgttgtgag	catttgcacc	agccacttga	1380
20	agagaaaaga	ttttacttct	agtaattcag	gccttggaag	acctcggtaa	atgtttcccc	1440
	agcttcttta	attccacacc	ttgttcgtag	gattgatctc	gcgcgtggtc	ccttgtcccc	1500
	cggcgtatgc	atgttgaacg	tgctcccccc	atttagcagc	ttgcttggcc	gtattaggcc	1560
25	aagttgttgc	ttgcttgtca	gcattcagtc	attcagcgtg	cttgtgctgc	tgctgcgcca	1620
	ataatcaggc	acacctcaca	ttgtgtgatg	tggggcactt	gttagcaatg	aaatggacaa	1680
	gatcatgcgg	catgctagaa	aatgaatgag	ctgtcgtgtt	cagcttcctg	tagcttggtc	1740
30	tcatctgagc	tcaccaacca	ggcttgattc	tgcagcagta	ctacgtaatt	tgcaaggccc	1800
	tcttgtgcat	ttctagcttc	tgaacctcat	gttgtgctgt	tcgtcggtgc	tgcgtgcagg	1860
	ggcgccaggg	agacgacgcc	gtgcagcctc	atctacagct	cggagacgat	gagcaccccc	1920
35	gggtcggcga	ccggaggagc	ccgcaaccac	tcccgccgca	gggcgcagac	gccggtctgc	1980
	cgctacgtgc	cgagctcgct	ggagatggac	gagttcttcg	ccgccgccga	gcagcagcaa	2040
40	caccagacct	tcagggacaa	gtaagagcat	gcttccttct	gctcttcttc	acatactgta	2100
	aanagaaact	tgctaacact	cgactgtgat	gttgaaatca	ggtacaactt	ctgtcctgcg	2160
	aggggctgcc	cgctccccgg	gcggtacgag	tggacggtgc	tagactgcta	gggcttcata	2220
45	cctcacacca	ccaccaggag	ctcctccatt	gatctctgt			2259
50	<210> 82 <211> 630 <212> DNA <213> Trit	cicum sp.					
	<400> 82						
	atgggcaagt	acatgcgcaa	gagcaaggcc	tcgggggagg	tggccgtcat	ggaggtcgcc	60

55 ggcgcgctgc tcggcgtccg cacccgctcc cgcaccctcg ccgcgcagca gcagcgcgct

112

ccgtcccctt cgccgcagcg caagggccac gaggacggcg actacctcga gctcaggagc

120

	aggaggctcg	agaagcagcc	gccgccgggg	cccaaggaca	aggaggacgc	gccgcagccg	240
	ccggccgccg	gtgggaggag	gatggagcag	gcgccgtcgt	cgttcgccgc	cgagggcttc	300
5	gaggccgacc	tcgaggtctc	cttcggcgac	aacgtcctgg	actgggacgc	caccgacagg	360
	ggcgccaggg	agacgacgcc	gtgcagcctc	atctacagct	cggagacgat	gagcaccccc	420
	gggtcggcga	ccggaggagc	ccgcaaccac	tcccgccgca	gggcgcagac	gccggtctgc	480
10	cgctacgtgc	cgagctcgct	ggagatggac	gagttcttcg	ccgccgccga	gcagcagcaa	540
	caccagacct	tcagggacaa	gtacaacttc	tgtcctgcga	ggggctgccc	gctccccggg	600
	cggtacgagt	ggacggtgct	agactgctag				630

15

20

<210> 83 <211> 2282 <212> DNA <213> Triticum sp.

<400> 83

ctccccatta ttccgcgatt cccctcccct cccctccctc ccagccagct gcccaccgga 60 120 agcagaggga agcagaggag aggccggggc cggcgccatg gggaagtaca tgcgcaagag 25 180 caaggeeteg ggggaggtgg eegteatgga ggtegeegge gegetgeteg gegteegeae ccgctcccgc accctcgccg cgcagcagca gcgcgccccc tccccgtccc cctcgccgca 240 300 gcgcaagggg caggaggacg gcgaccccgg ggctggcgac tacctcgagc tcaggagcag 30 360 gcggctcgag aagcagccgc cgccgggggc cagggagaag gaggacgcgc cgcagccggc cgcgaggagg gccgccgccg ctggcgggag gaggatggag caggcgccgt cgttcgccgc 420 480 cgaggggttc gaggccgacc tcgaggtctc cttcggcgac aacgtgctgg actgggacgc 35 caccgacagg taacaacaga gcaccagttc tttctttctt tctttcttcc cccaatcccc 540 cctctccggt tcagccagca atcccttgtc gcgcccgggt gataccaata cgattgggat 600 40 660 ttatgettta tegegeteca ttagegeege egegtggtet caaateteaa etetgaageg ccggcaacct caagaatccc ctccctatga gtttcctcag acgagcgccg acgctggttt 720 tettteteec caggattgaa gegeecaaac atecacaget teegetgatt gtgeegggat 780 45 840 tottgcaaga atcatcggtt ctccgttttc agcctgaatg aatttcctca accattagcc 900 gttggcgtcc gctcgaaaga atccaagaaa gaaacgcctg cccgccgtgt tgacccggcg aaaaaggccc ccatttcccc ccctccaaag aagccaccat ttttcccgtc caaacaatca 960 50 aaggegeact caateaacce aaceeccaat caaagtggge getgeacttg attagtggag 1020 1080 cctcctccag aaatcagtgg agcctcctcc ccctccagtg gccgggccg tggctccgcc ttttcccgat agtggcagag gaaagtagcc ccctttccat tccccttccc caccacagcc 1140 55 1200 gccctccatt ggctcggccc caatctttcc tctcccgctc tttcccgggc aatttcaacc

	ccccaaaggc	gccaccgccg	tcgcactcag	ggcccagttt	ctcgcccgcc	cgcccgccag	1260
	ccgccaccgc	cgtgggcgaa	aatggcatgc	agctcatcat	cagcacttgt	accagagcgc	1320
5	caccgccgcc	attgaatgct	cgctggcctc	ctgttagctt	cctgaccggg	ccttgagtgg	1380
	acgccggacc	acgtttttgt	tcggaacaga	ttttactttg	gtcaggccgt	ggaagacctc	1440
	agtaaatata	tctttctccg	gcttatttag	ttctacgtat	gttcgcatga	ttgatcccgt	1500
10	ggtccctttg	cccggcgtat	gcatgttgga	cgcacgcgcc	catttagctc	gcttgcttgg	1560
	ccgtgttagg	ccaagttgtt	gcttgtttgt	cagcgtccag	tcattcagcg	tgcttgtgct	1620
15	tgcgctgcac	caataatcag	gtgcgcctca	cattgtctag	cgtggggcac	ttgcaagcaa	1680
15	tgaaatggac	aagatcatgc	atgctagaaa	atgaatgagc	tgtcgtgttc	gacttcctgt	1740
	agcttgctgt	cacccgagct	caccaaccaa	gcttgcatct	gcagtagtaa	tttgcaagac	1800
20	ctcgtgtgca	tttcagcttc	tgaacctcat	gtgctgttgg	ttgcttgcag	gggcaccagg	1860
	gagacgacgc	cgtgcagcct	gatctacagc	tcggagacga	tgagcacccc	ggggtcggcg	1920
	acgggagccc	gcaaccattc	ccggcgcagg	gcgcagacgc	cggtgtgccg	ctacgtcccg	1980
25	agctcgctcg	agatggacga	gttcttcgcc	gccgcggagc	agcagcagca	ccagagcttc	2040
	agggacaagt	aagaagaact	ctgcctcctc	ctcctcctcc	tcttcacctg	aactatgcat	2100
	acggcaaagc	gaaacttgct	gacactggac	tgctctgatc	taaaaataac	caggtacaac	2160
30	ttctgcccgg	cgagcgagcg	cccgctcccg	gggcggtacg	agtggacggt	gctagactgc	2220
	tagggcttcc	tcatacctca	caccaccacc	accaccacca	ggagctcctc	cattgatctc	2280
	gt						2282
35	-210> 04						
	<pre><210> 84 <211> 660 <212> DNA <213> Trit</pre>	cicum sp.					
40	<400> 84						
	atggggaagt	acatgcgcaa	gagcaaggcc	tcgggggagg	tggccgtcat	ggaggtcgcc	60
45	ggcgcgctgc	tcggcgtccg	caccegetee	cgcaccctcg	ccgcgcagca	gcagcgcgcc	120
45	ccctccccgt	ccccctcgcc	gcagcgcaag	gggcaggagg	acggcgaccc	cggggctggc	180
	gactacctcg	agctcaggag	caggcggctc	gagaagcagc	cgccgccggg	ggccagggag	240
50	aaggaggacg	cgccgcagcc	ggccgcgagg	agggccgccg	ccgctggcgg	gaggaggatg	300
	gagcaggcgc	cgtcgttcgc	cgccgagggg	ttcgaggccg	acctcgaggt	ctccttcggc	360
	gacaacgtgc	tggactggga	cgccaccgac	aggggcacca	gggagacgac	gccgtgcagc	420
55	ctgatctaca	gctcggagac	gatgagcacc	ccggggtcgg	cgacgggagc	ccgcaaccat	480
	tcccggcgca	gggcgcagac	gccggtgtgc	cgctacgtcc	cgagctcgct	cgagatggac	540

			L 1				
	gagttetteg co	cgccgcgga	gcagcagcag	caccagagct	tcagggacaa	gtacaacttc	600
	tgcccggcga g	cgagcgccc	gctcccgggg	cggtacgagt	ggacggtgct	agactgctag	660
5	<210> 85 <211> 2430 <212> DNA <213> Tritic	cum sp.					
10	<220> <221> misc_: <222> (2415) <223> n is a	feature)(2415) a, c, g, o	or t				
15	<400> 85 aatggggaag ta	acatgcgta	agagcaaggc	ctcgggggag	gtggccgtca	tggaggtcgc	60
	cggcgcgctg c	tcggcgtcc	gcacccgctc	ccgcaccctc	gccgcgcagc	agcagcgcgc	120
20	teegteeet to	cgccgcagc	gcaagggcca	cgaggacggc	gactacctcg	agctcaggag	180
	caggaggctc ga	agaagcagc	cgccgccggg	gcccaaggac	aaggaggacg	cgccgcagcc	240
	gccggccgcc g	gtgggaggg	ggatggagtc	gttcgcggcc	gaggggttcg	aggccgacct	300
25	cgaggtctcc t	tcggcgaca	acgtgctgga	ctgggacgcc	accgacaggt	aagaacagag	360
	caccagcgcc t	tctttcctc	cccccttcct	ctcccctcaa	tccttcccct	ccggttcagt	420
30	cggcaatccc c	teegeeeeg	gccgatacca	atacgattga	ggtttagggt	tcatatccgc	480
	cgctgtttcg t	tctgctcca	ttagcgccgc	cgctgcgcgg	cctcgaatct	caacacgaat	540
	cccctcccct c	tcaaacgag	cgccgccgct	ggcccgctgg	ttttctccac	aggattgagc	600
35	caaaccttgt ge	ctgatttcg	cccggatgct	tgcgggaata	atcccttgca	gtttcctgat	660
	tttcctcaag c	tggagccgt	tggccgtagc	tttgaaagaa	tccaagaaac	gcctgcccgc	720
	cgtgttgacc co	ggcgaaaaa	gggcccccat	tttcccccct	ccaaaaaagc	cgccattttt	780
40	cccggccaaa ca	aaagatgca	tccatcaagg	cgcactcaat	caacccccaa	tcaaagtggg	840
	cgctgcactc ga	attagtgga	gcctcctcct	ccagtggccg	tggccttttc	cccgtagtgg	900
	caggggaaag ta	agccttccc	caccatagcc	gccctccatt	ggcttggcct	caatctttcc	960
45	caacagcaac ca	agagggaga	ggcccctctc	ccgctctttc	gccagcaatt	tcaatccccc	1020
	aaaggegeea e	cgccgtcgc	ggtcagggcc	ccatttctcg	cccgcccgcc	agtcgccacc	1080
50	gccgtgggtg a	aaatggctt	gctgctcatc	attggccctt	gtaccagagc	gccaccgccg	1140
	ccattgaatg c	ttgctggcc	tcttgttagc	ttcctgaccg	gacgttgaat	ggacaccgga	1200
	ccacgttatt g	ttcagacgc	ttggggtgaa	agggagctgc	ctccgttaaa	ttacctggtg	1260
55	ttgtgagtgc a	ccagccact	tgaacagcac	aaattttact	tactggtagt	tcaggccttg	1320
	gaagacctca g	taaatatat	ctttctccgg	cttatttaat	tctacttacg	ttcgtatgat	1380

	tgatctcgtg	gtcccgttgt	ccggcgtatg	catgttgaac	gcgcccattt	agcttgcttg	1440
	gccgtgttag	gccaagttgt	tgtttgtttg	tcagcatcca	gtcattcagt	gtgcttgtgc	1500
5	tgcaccaatt	atcaggtaca	cctgacattg	tctagcgtgg	ggcacttgca	aataatgaaa	1560
	tggacaaaat	catgctagaa	catgagctgt	cgtgttcaac	ttcctgtagc	ttggtctcat	1620
	ctgagctcac	caacccagct	tgcatctgca	gtaatttgca	agacctcgtg	tgcatttcag	1680
10	cttctgaacc	tcatgttgct	tgcaggggcg	ccagggagac	gacgccgtgc	agcctgatct	1740
	acagctcgga	gacgatgagc	acccccgggt	cggcgaccgg	ggcccgcaac	cattcccgcc	1800
45	gcagggcgca	gacgccggtc	tgccgctacg	tcccgagctc	gctcgagatg	gacgagttct	1860
15	tcgccgccgc	ggagcagcag	caacaccaga	ccttcaggga	gaagtaagaa	ctctgcctcc	1920
	tcctaccacc	atcatttaaa	catgctcact	gaagatcaag	cttcttgttc	atacaattgt	1980
20	tctaacactc	gctgcttcat	tctaatcagg	tacaacttct	gtcccgcgag	cgagcgcccg	2040
	ctccccggac	ggtacgagtg	gacggtgctg	gactgctagg	gcttcttcat	acctcacatc	2100
	accaccacca	ccaggagctc	ctccattgat	ctctgtaaca	ccagaatgac	caccaccatc	2160
25	agcagcagca	gcagcatgtc	atatgccgtg	ggcgcgatgc	aaatgcagta	gcgttaggtt	2220
	tctgattcac	ctgttgtaaa	aacttagagt	tagcccgcag	tcagcagtag	ctcagccagc	2280
	cagccatctc	tcagcctgat	ccccaacctc	actgtaaccg	tcgttagtta	acaacatctc	2340
30	atttccgtag	gctctagctt	gattagcagc	tcggttatct	tctgtatccc	ggtcctccat	2400
	caatgaatga	atcanagcta	gatttatttt				2430

- 35 <210> 86 <211> 615 <212> DNA <213> Triticum sp.
- <400> 86 40 60 atggggaagt acatgcgtaa gagcaaggcc tcgggggagg tggccgtcat ggaggtcgcc ggcgcgctgc tcggcgtccg cacccgctcc cgcaccctcg ccgcgcagca gcagcgcgct 120 ccgtcccctt cgccgcagcg caagggccac gaggacggcg actacctcga gctcaggagc 180 45 240 aggaggeteg agaageagee geegeegggg eeeaaggaea aggaggaege geegeageeg 300 ccggccgccg gtgggagggg gatggagtcg ttcgcggccg aggggttcga ggccgacctc 360 gaggteteet teggegacaa egtgetggae tgggaegeea eegacagggg egecagggag 50 acgacgccgt gcagcctgat ctacagctcg gagacgatga gcacccccgg gtcggcgacc 420 480 ggggcccgca accattcccg ccgcagggcg cagacgccgg tctgccgcta cgtcccgagc tcgctcgaga tggacgagtt cttcgccgcc gcggagcagc agcaacacca gaccttcagg 540 55 600 gagaagtaca acttctgtcc cgcgagcgag cgcccgctcc ccggacggta cgagtggacg

	gtgctggact gctag															
5	<21) <21: <21: <21: <21:	0> L> 2> 3>	87 247 PRT Trit:	icum	sp.											
	<40)>	87													
10	Met 1	Gly	' Lys	Tyr	Met 5	Arg	Lys	Cys	Arg	Ala 10	Glu	Asp	Gly	Ala	Val 15	Gly
15	Gly	Val	. Glu	Val 20	Thr	Gln	Ala	Val	Gly 25	Val	Arg	Thr	Arg	Ser 30	Arg	Ala
20	Ala	Ala	Ala 35	Asn	Val	Val	Val	Ser 40	Lys	Arg	Arg	Arg	Pro 45	Leu	Pro	Pro
	Gly	Ser 50	Pro	Ser	Ala	Ser	Ser 55	Ser	Leu	Ala	Arg	Ala 60	Gln	Gly	Gly	Ser
25	Cys 65	Tyr	: Leu	Lys	Leu	Arg 70	Ser	Arg	Met	Leu	Phe 75	Met	Ala	Pro	Pro	Ala 80
30	Pro	Ala	Ser	Gly	Ala 85	Ala	Ala	Gly	His	Gly 90	Pro	Ala	Pro	Pro	Leu 95	Pro
35	Ala	Gly	' Leu	Ser 100	Arg	Cys	Ser	Ser	Thr 105	Ala	Ser	Ser	Val	As p 110	Ala	Ser
	Ala	Ala	Ala 115	Gln	Asp	Arg	Ser	Leu 120	Leu	Ser	Cys	Gly	Ser 125	Asp	Ala	Ala
40	Ala	Asn 130	Asn	Lys	Ala	Gly	Ala 135	Pro	Glu	Gly	Ser	Ala 140	Ser	Asn	Asn	Ala
45	Glu 145	Ser	Gly	Gly	Asn	Arg 150	Glu	Arg	Arg	Glu	Thr 155	Thr	Pro	Ser	Ser	His 160
50	Phe	Pro	Gly	Asp	Leu 165	Ser	Asp	Leu	Glu	Ser 170	Asp	Leu	Ala	Gly	Gln 175	Asn
	Ser	Gly	Arg	Ser 180	Ser	Leu	Pro	Gln	Thr 185	Pro	Thr	Ala	Gln	Ala 190	Gln	Pro
55	Ala	Ala	Arg 195	Ser	Arg	Val	Pro	Pro 200	Ala	Ala	Glu	Ile	Glu 205	Glu	Phe	Phe

	Ala	Ala 210	Ala	Glu	Glu	Ala	Glu 215	Ala	Arg	Arg	Phe	Ala 220	Cys	Lys	Tyr	Asn
5	Phe 225	Asp	Val	Ala	Arg	Gly 230	Val	Pro	Leu	Gly	Ser 235	Gly	Arg	Tyr	Glu	Trp 240
10	Thr	Pro	Ala	Val	Ser 245	Ser	Ser									
15	<210 <211 <212 <213)> { _> 2 ?> 1 ?> 5 ?> 5	38 245 PRT Criti 38	.cum	sp.											
20	Met 1	Gly	Lys	Tyr	Met 5	Arg	Lys	Cys	Arg	Ala 10	Glu	Asp	Gly	Val	Gly 15	Gly
25	Val	Glu	Val	Thr 20	Gln	Ala	Val	Gly	Val 25	Arg	Thr	Arg	Ser	Arg 30	Ala	Ala
20	Ala	Ala	Asn 35	Val	Val	Val	Ser	Lys 40	Arg	Arg	Arg	Pro	Leu 45	Pro	Pro	Ser
30	Ser	Pro 50	Leu	Gly	Gly	Ala	Ala 55	Ala	Arg	Ala	Gln	Ser 60	Gly	Ser	Cys	Tyr
35	Leu 65	Lys	Leu	Arg	Ser	Arg 70	Met	Leu	Phe	Met	Ala 75	Pro	Pro	Ala	Pro	Ala 80
40	Ser	Ala	Ala	Gly	Pro 85	Gly	His	Arg	Pro	Ala 90	Pro	Pro	Leu	Pro	Ala 95	Gly
+0	Leu	Ser	Arg	C ys 100	Ser	Ser	Thr	Ala	Ser 105	Ser	Val	Asp	Ala	Ser 110	Ala	Ala
45	Gly	Gln	Asp 115	Arg	Ser	Leu	Pro	Ser 120	Cys	Gly	Ser	Asp	Ala 125	Ala	Ala	Asn
50	Ser	Lys 130	Ala	Gly	Ala	Pro	Glu 135	Gly	Ser	Ala	Ser	Asn 140	Asn	Ala	Glu	Ser
	Gly 145	Gly	Asn	Arg	Glu	Arg 150	Arg	Glu	Thr	Thr	Pro 155	Ser	Ser	His	Phe	Pro 160
55	Gly	Asp	Leu	Ser	Asp 165	Leu	Glu	Ser	Asp	Leu 170	Ala	Gly	Gln	Asn	Ser 175	Gly

	Arg	Ser	Ser	Leu 180	Pro	Gln	Thr	Pro	Thr 185	Ala	Gln	Val	Gln	Pro 190	Ala	Ala
5	Arg	Ser	Arg 195	Ile	Pro	Pro	Ala	Ala 200	Glu	Ile	Glu	Glu	Phe 205	Phe	Ala	Ala
10	Ala	Glu 210	Glu	Ala	Glu	Ala	Arg 215	Arg	Phe	Ala	Cys	Lys 220	Tyr	Asn	Phe	Asp
	Val 225	Ala	Arg	Gly	Val	Pro 230	Leu	Asp	Ser	Gly	Arg 235	Tyr	Glu	Trp	Thr	Pro 240
15	Ala	Val	Ser	Ser	As n 245											
20	<210 <211 <212 <213)> 8 L> 2 2> E 3> 1	39 248 PRT Triti	.cum	sp.											
25	<400)> 8	39													
25	Met 1	Gly	Lys	Tyr	Met 5	Arg	Lys	Cys	Arg	Ala 10	Glu	Asp	Val	Ala	Val 15	Gly
30	Gly	Val	Glu	Val 20	Thr	Gln	Ala	Val	Gly 25	Val	Arg	Thr	Arg	Ser 30	Arg	Ala
35	Ala	Ala	Ala 35	Asn	Val	Val	Val	Ser 40	Lys	Arg	Arg	Arg	Pro 45	Leu	Pro	Pro
	Ala	Ser 50	Pro	Ser	Ala	Ser	Ser 55	Ala	Leu	Ala	Arg	Ala 60	Gln	Gly	Gly	Ser
40	Cys 65	Tyr	Leu	Lys	Leu	Arg 70	Ser	Arg	Met	Leu	Phe 75	Met	Ala	Pro	Pro	Ala 80
45	Pro	Ala	Ser	Ala	Ser 85	Ala	Ala	Ala	Ala	Gly 90	His	Gly	Ala	Pro	Pro 95	Pro
50	Leu	Pro	Ala	Gly 100	Leu	Ser	Arg	Cys	Ser 105	Ser	Thr	Ala	Ser	Ser 110	Val	Asp
	Ala	Ser	Ala 115	Ala	Ala	Gln	Asp	Arg 120	Ser	Leu	Pro	Ser	Cys 125	Gly	Ser	Asp
55	Ala	Ala 130	Ala	Asn	Lys	Ala	Gly 135	Ala	Pro	Glu	Gly	Ser 140	Ala	Ser	Asn	Asn

	Ala 145	Glu	Ser	Gly	Gly	Asn 150	Arg	Glu	Arg	Arg	Glu 155	Thr	Thr	Pro	Ser	Ser 160
5	His	Phe	Pro	Gly	Asp 165	Leu	Ser	Asp	Leu	Glu 170	Ser	Asp	Leu	Ala	Gly 175	Lys
10	Asn	Ser	Gly	Arg 180	Ser	Ser	Leu	Pro	Gln 185	Thr	Leu	Ala	Ala	Gln 190	Ala	Gln
	Pro	Ala	Ala 195	Arg	Ser	Arg	Val	Pro 200	Pro	Ala	Ala	Glu	Ile 205	Glu	Glu	Phe
15	Phe	Ala 210	Ala	Ala	Glu	Glu	Ala 215	Glu	Ala	Arg	Arg	Phe 220	Ala	Cys	Lys	Tyr
20	As n 225	Phe	Asp	Val	Ala	Arg 230	Gly	Val	Pro	Leu	As p 235	Ser	Gly	Arg	Tyr	Glu 240
25	Trp	Thr	Pro	Ala	Val 245	Ser	Ser	Ser								
30	<210 <211 <212 <213)> 9 L> 2 2> H 3> 7	90 273 PRT Friti	Lcum	sp.											
	<400)> 9	€0		_											
35	Met 1	Gly	Lys	Tyr	Met 5	Arg	Lys	Cys	Arg	Ala 10	Ala	Pro	Arg	Arg	Gly 15	Arg
	Arg	Gln	Gly	Gly 20	Ala	Ala	Val	Val	Glu 25	His	Arg	Ala	Pro	Val 30	Ala	Leu
40	Gly	Val	Arg 35	Thr	Arg	Ser	Arg	Ala 40	Ala	Ala	Leu	Asn	Ala 45	Lys	Met	Arg
45	Lys	Gln 50	Gln	Gln	Ala	Thr	Thr 55	Ser	Thr	Ala	Ala	Arg 60	Ala	Val	Glu	Asp
50	Ala 65	Leu	Leu	Gly	Arg	Asp 70	Gly	Gly	Asp	Ala	Ala 75	Ala	Gly	Cys	Tyr	Leu 80
	His	Leu	Arg	Ser	Arg 85	Arg	Leu	Phe	Met	Pro 90	Ala	Ser	Ala	Ala	Val 95	Asp
55	Gln	Leu	Arg	Gly 100	Leu	Gly	Ala	Asp	Glu 105	Glu	Ala	Ser	Thr	Ala 110	Gly	Leu

	Pro	Asp	Ser 115	Arg	Pro	Ser	Val	Glu 120	Ala	Ala	Val	Val	Ala 125	Gly	Val	Ser
5	Arg	Cys 130	Ser	Ser	Thr	Ala	Ser 135	Thr	Ala	Val	Asp	Val 140	Ala	Ala	Arg	Glu
10	Arg 145	Ser	Gly	Asp	Glu	Ala 150	Glu	Ala	Cys	Glu	Ser 155	Gly	Asp	Val	Glu	Ser 160
	Ser	Val	Ser	Asp	Ser 165	Glu	Cys	Gly	Gly	Arg 170	Asp	Arg	Arg	Glu	Thr 175	Thr
15	Pro	Ser	Ser	His 180	Ser	Pro	Ala	Asp	Leu 185	Ser	Asp	Leu	Glu	Ser 190	Ser	Gln
20	Ser	Ala	As p 195	Glu	Gln	Lys	His	Lys 200	Arg	Arg	Arg	Tyr	Pro 205	Ala	Thr	Thr
25	Thr	Thr 210	Thr	Ala	Ala	Pro	Phe 215	Arg	Leu	Asp	Leu	Glu 220	Ala	Arg	Ala	Arg
	Met 225	Pro	Pro	Ala	Ala	Glu 230	Ile	Asp	Glu	Phe	Phe 235	Ala	Ala	Ala	Glu	Lys 240
30	Ala	Gln	Ala	Glu	Arg 245	Phe	Ala	Ala	Lys	Tyr 250	Asn	Phe	Asp	Val	Ala 255	Arg
35	Gly	Val	Pro	Leu 260	Asn	Ala	Gly	Arg	Phe 265	Glu	Trp	Thr	Pro	Val 270	Ala	Thr
	Val															
40	.01/															
15	<210 <211 <212 <213]> 2 L> 2 2> 1 3> 1	271 271 PRT Criti	Lcum	sp.											
45	<400)> 9	91		_											
50	Met 1	Gly	Lys	Tyr	Met 5	Arg	Lys	Cys	Arg	Gly 10	Ala	Ala	Ala	Gly	Gly 15	Gly
	Arg	Ala	Ala	Pro 20	Ala	Val	Val	Glu	His 25	Arg	Ala	Pro	Val	Ala 30	Leu	Gly
55	Val	Arg	Thr 35	Arg	Ser	Arg	Ala	Ala 40	Ala	Phe	Asp	Ala	Lys 45	Arg	Arg	Lys

	Gln	Gln 50	Ala	Thr	Thr	Ser	Thr 55	Ala	Ala	Arg	Ala	Val 60	Asp	Asp	Ala	Leu
5	Leu 65	Gly	Arg	Asp	Gly	Gly 70	Asp	Ala	Ala	Gly	Gly 75	Cys	Tyr	Leu	His	Leu 80
10	Arg	Ser	Arg	Arg	Leu 85	Phe	Met	Pro	Ala	Ser 90	Ala	Val	Val	Asp	Arg 95	Leu
	Arg	Gly	Gln	Gly 100	Ala	Asp	Glu	Glu	Ala 105	Ser	Thr	Ala	Arg	Leu 110	Ala	Asp
15	Ser	Gly	Pro 115	Ser	Val	Glu	Ala	Gly 120	Val	Val	Ala	Gly	Val 125	Ser	Arg	Cys
20	Ser	Ser 130	Thr	Ala	Ser	Thr	Ala 135	Ala	Asp	Val	Ala	Ala 140	Arg	Glu	Arg	Ser
25	Gly 145	Asp	Glu	Ala	Glu	Ala 150	Cys	Glu	Ser	Arg	Asp 155	Val	Glu	Ser	Ser	Val 160
	Ser	Asp	Ser	Glu	Cys 165	Gly	Gly	Arg	Asp	Arg 170	Arg	Glu	Ala	Thr	Pro 175	Ser
30	Ser	Arg	Ser	Pro 180	Val	Asp	Leu	Ser	As p 185	Leu	Glu	Ser	Ser	Gln 190	Ala	Ala
35	Asp	Glu	Gln 195	Lys	His	Lys	Arg	Arg 200	Arg	Cys	Pro	Ala	Ala 205	Thr	Thr	Ala
	Ala	Ala 210	Ala	Pro	Phe	His	Leu 215	Asp	Ser	Glu	Ala	Arg 220	Ala	Arg	Met	Pro
40	Pro 225	Ala	Ala	Glu	Ile	As p 230	Glu	Phe	Phe	Ala	Ala 235	Ala	Glu	Lys	Ala	Gln 240
45	Ala	Glu	His	Phe	Ala 245	Ala	Lys	Tyr	Asn	Phe 250	Asp	Val	Ala	Arg	Gly 255	Val
50	Pro	Leu	Asn	Ala 260	Gly	Arg	Phe	Glu	Trp 265	Thr	Pro	Val	Ala	Thr 270	Val	
	<210 <211 <212 <212)> 9 L> 2 2> 1 3> 1	92 274 PRT Criti	LCum	SD.											
55	<400)> (€2		- <u>-</u> -											

	Met 1	Gly	Lys	Tyr	Met 5	Arg	Lys	Cys	Arg	Ala 10	Ala	Ala	Ala	Gly	Gly 15	Gly
5	Arg	Ala	Ala	Pro 20	Ala	Val	Val	Glu	His 25	Arg	Ala	Pro	Val	Ala 30	Leu	Gly
10	Val	Arg	Thr 35	Arg	Ser	Arg	Ala	Ala 40	Ala	Leu	Asp	Ala	Lys 45	Met	Arg	Lys
	Gln	Gln 50	Gln	Ala	Thr	Thr	Ser 55	Thr	Ala	Ala	Arg	Ala 60	Val	Glu	Asp	Ala
15	Leu 65	Leu	Gly	Arg	Asp	Gly 70	Gly	Asp	Ala	Ala	Ala 75	Gly	Cys	Tyr	Leu	His 80
20	Leu	Arg	Ser	Arg	Arg 85	Leu	Phe	Met	Pro	Ala 90	Ala	Ala	Val	Val	Asp 95	Gln
25	Leu	Arg	Gly	Gln 100	Gly	Val	Cys	Glu	Glu 105	Ala	Ser	Thr	Ala	Gly 110	Leu	Pro
	Asp	Ser	Gly 115	Pro	Ser	Val	Glu	Ala 120	Ala	Val	Gly	Ala	Gly 125	Val	Ser	Arg
30	Суз	Ser 130	Ser	Thr	Ala	Ser	Thr 135	Ala	Val	Asp	Val	Ala 140	Ala	Arg	Glu	Arg
35	Ser 145	Gly	Asp	Glu	Ala	Glu 150	Ala	Cys	Glu	Ser	Arg 155	Asp	Val	Glu	Ser	Ser 160
	Val	Ser	Asp	Ser	Glu 165	Cys	Gly	Gly	Arg	Asp 170	Arg	Arg	Glu	Thr	Thr 175	Pro
40	Ser	Ser	Arg	Ser 180	Pro	Val	Asp	Leu	Ser 185	Asp	Leu	Glu	Ser	Ser 190	Gln	Ala
45	Ala	Asp	Glu 195	Gln	Lys	His	Lys	Arg 200	Arg	Arg	Cys	Pro	Ala 205	Thr	Thr	Thr
50	Thr	Thr 210	Ala	Ala	Pro	Leu	His 215	Tyr	Asp	Leu	Glu	Ala 220	Arg	Ala	Arg	Ala
	Arg 225	Met	Pro	Pro	Ala	Ala 230	Glu	Ile	Asp	Glu	Phe 235	Phe	Ala	Ala	Ala	Glu 240
55	Lys	Ala	Gln	Ala	Glu 245	Arg	Phe	Ala	Ala	Lys 250	Tyr	Asn	Phe	Asp	Val 255	Ala

	Arg	Gly	Val	Pro 260	Leu	Asn	Ala	Gly	Arg 265	Phe	Glu	Trp	Thr	Pro 270	Val	Ala
5	Thr	Val														
10	<210 <211 <212 <213)> 9 > 1 ?> 1 }> 1	93 190 PRT Friti	icum	sp.											
	<400)> 9	93													
15	Met 1	Gly	Lys	Tyr	Met 5	Arg	Lys	Pro	Lys	Val 10	Ser	Gly	Glu	Val	Ala 15	Val
20	Met	Glu	Val	Ala 20	Ala	Ala	Pro	Leu	Gly 25	Val	Arg	Thr	Arg	Ala 30	Arg	Ala
	Leu	Ala	Met 35	Gln	Arg	Gln	Pro	Gln 40	Gly	Ala	Pro	Gly	Ala 45	Lys	Asp	Gln
25	Gly	Glu 50	Tyr	Leu	Glu	Leu	Arg 55	Ser	Arg	Lys	Leu	Glu 60	Lys	Leu	Pro	Pro
30	Pro 65	Pro	Pro	Pro	Ala	Arg 70	Arg	Arg	Ala	Ala	Ala 75	Ala	Glu	Arg	Val	Glu 80
35	Ala	Glu	Ala	Glu	Ala 85	Asp	Lys	Val	Ser	Phe 90	Gly	Glu	Asn	Val	Leu 95	Glu
	Pro	Glu	Ala	Met 100	Gly	Arg	Gly	Thr	Arg 105	Glu	Thr	Thr	Pro	Cys 110	Ser	Leu
40	Ile	Arg	Asp 115	Ser	Gly	Met	Ile	Ser 120	Thr	Pro	Gly	Ser	Thr 125	Thr	Arg	Pro
45	Ser	His 130	Ser	Asn	Ser	His	Arg 135	Arg	Val	Gln	Ala	Pro 140	Ala	Arg	His	Ile
50	Ile 145	Pro	Ser	Ser	Ala	Glu 150	Met	Asn	Glu	Phe	Phe 155	Ser	Ala	Ala	Glu	Gln 160
	Pro	Gln	Gln	Gln	Ala 165	Phe	Ile	Asp	Lys	Tyr 170	Asn	Phe	Asp	Pro	Val 175	Asn
55	Asp	Cys	Pro	Leu 180	Pro	Gly	Arg	Tyr	Glu 185	Trp	Val	Lys	Leu	Asp 190		

	<210>	94 190												
	<212>	PRT												
	<213>	Tritic	cum sp.											
5	<400>	94												
	Met Gly 1	y Lys 1	Tyr Met 5	Arg	Lys	Pro	Lys	Val 10	Ser	Gly	Glu	Val	Ala 15	Val
10														
	Met Glı	1 Val 2	Ala Ala 20	Ala	Pro	Leu	Gly 25	Val	Arg	Thr	Arg	Ala 30	Arg	Ala
15	Leu Ala	a Met (35	Gln Arg	Gln	Pro	Gln 40	Gly	Ala	Ala	Val	Ala 45	Lys	Asp	Gln
20	Gly Glu 50	ı Tyr 1	Leu Glu	Leu	Arg 55	Ser	Arg	Lys	Leu	Glu 60	Lys	Leu	Pro	Pro
	Pro Pro 65) Pro 2	Ala Ala	Arg 70	Arg	Arg	Ala	Ala	Ala 75	Ala	Glu	Arg	Val	Glu 80
25	Ala Glu	ı Ala (Glu Ala 85	Asp	Glu	Val	Ser	Phe 90	Gly	Glu	Asn	Val	Leu 95	Glu
30	Ser Glu	1 Ala N 1	Met Gly 100	Arg	Gly	Thr	Arg 105	Glu	Thr	Thr	Pro	Cys 110	Ser	Leu
35	Ile Arq	g Asp S 115	Ser Gly	Thr	Ile	Ser 120	Thr	Pro	Gly	Ser	Thr 125	Thr	Arg	Pro
	Ser His 13(s Ser <i>l</i>)	Asn Ser	His	Arg 135	Arg	Val	Gln	Ala	Pro 140	Ala	Arg	His	Ile
40	Ile Pro 145	cys S	Ser Ala	Glu 150	Met	Asn	Glu	Phe	Phe 155	Ser	Ala	Ala	Glu	Gln 160
45	Pro Gli	n Gln (Gln Ala 165	Phe	Ile	Asp	Lys	Tyr 170	Asn	Phe	Asp	Pro	Val 175	Asn
50	Asp Cys	s Pro 1 1	Leu Pro 180	Gly	Arg	Tyr	Glu 185	Trp	Val	Lys	Leu	Asp 190		
	<210> <211> <212>	95 190 PRT												
55	<213>	Tritic 95	cum sp.											

	Met 1	Gly	Lys	Tyr	Met 5	Arg	Lys	Pro	Lys	Val 10	Ser	Gly	Glu	Val	Ala 15	Val
5	Met	Glu	Val	Ala 20	Ala	Ala	Pro	Leu	Gly 25	Val	Arg	Thr	Arg	Ala 30	Arg	Ala
10	Leu	Ala	Met 35	Gln	Arg	Gln	Pro	Gln 40	Gly	Ala	Pro	Gly	Ala 45	Lys	Asp	Gln
	Gly	Glu 50	Tyr	Leu	Glu	Leu	Arg 55	Ser	Arg	Lys	Leu	Glu 60	Lys	Leu	Pro	Leu
15	Pro 65	Pro	Pro	Pro	Ala	Arg 70	Arg	Arg	Ala	Ala	Ala 75	Ala	Glu	Arg	Val	Glu 80
20	Ala	Glu	Ala	Glu	Ala 85	Asp	Glu	Val	Ser	Phe 90	Gly	Glu	Asn	Val	Leu 95	Glu
25	Ser	Glu	Ala	Met 100	Gly	Arg	Gly	Thr	Arg 105	Glu	Thr	Thr	Pro	Cys 110	Ser	Leu
	Ile	Arg	As p 115	Ser	Gly	Thr	Ile	Ser 120	Thr	Pro	Gly	Ser	Thr 125	Thr	Arg	Pro
30	Ser	His 130	Ser	Asn	Ser	His	Arg 135	Arg	Val	Gln	Ala	Pro 140	Ala	Arg	His	Ile
35	Ile 145	Pro	Cys	Ser	Ala	Glu 150	Met	Asn	Glu	Phe	Phe 155	Ser	Ala	Ala	Glu	Gln 160
40	Pro	Gln	Gln	Gln	Ala 165	Phe	Ile	Asp	Lys	Tyr 170	Asn	Phe	Asp	Pro	Val 175	Asn
	Asp	Cys	Pro	Leu 180	Pro	Gly	Arg	Tyr	Glu 185	Trp	Val	Lys	Leu	Asp 190		
45	<210 <211 <212 <213)> 9 L> 2 2> 1 3> 1	96 209 PRT Criti	icum	sp.											
50	<400)> 9	96		_											
	Met 1	Gly	Lys	Tyr	Met 5	Arg	Lys	Ser	Lys	Ala 10	Ser	Gly	Glu	Val	Ala 15	Val
55	Met	Glu	Val	Ala 20	Gly	Ala	Leu	Leu	Gly 25	Val	Arg	Thr	Arg	Ser 30	Arg	Thr

	Leu	Ala	Ala 35	Gln	Gln	Gln	Arg	Ala 40	Pro	Ser	Pro	Ser	Pro 45	Gln	Arg	Lys
5	Gly	His 50	Glu	Asp	Gly	Asp	Tyr 55	Leu	Glu	Leu	Arg	Ser 60	Arg	Arg	Leu	Glu
10	Lys 65	Gln	Pro	Pro	Pro	Gly 70	Pro	Lys	Asp	Lys	Glu 75	Asp	Ala	Pro	Gln	Pro 80
	Pro	Ala	Ala	Gly	Gly 85	Arg	Arg	Met	Glu	Gln 90	Ala	Pro	Ser	Ser	Phe 95	Ala
15	Ala	Glu	Gly	Phe 100	Glu	Ala	Asp	Leu	Glu 105	Val	Ser	Phe	Gly	As p 110	Asn	Val
20	Leu	Asp	Trp 115	Asp	Ala	Thr	Asp	Arg 120	Gly	Ala	Arg	Glu	Thr 125	Thr	Pro	Cys
25	Ser	Leu 130	Ile	Tyr	Ser	Ser	Glu 135	Thr	Met	Ser	Thr	Pro 140	Gly	Ser	Ala	Thr
	Gly 145	Gly	Ala	Arg	Asn	His 150	Ser	Arg	Arg	Arg	Ala 155	Gln	Thr	Pro	Val	Cys 160
30	Arg	Tyr	Val	Pro	Ser 165	Ser	Leu	Glu	Met	Asp 170	Glu	Phe	Phe	Ala	Ala 175	Ala
35	Glu	Gln	Gln	Gln 180	His	Gln	Thr	Phe	Arg 185	Asp	Lys	Tyr	Asn	Phe 190	Cys	Pro
40	Ala	Arg	Gly 195	Cys	Pro	Leu	Pro	Gly 200	Arg	Tyr	Glu	Trp	Thr 205	Val	Leu	Asp
	Cys															
45	<21(<211 <212 <213)> 9 L> 1 2> 1 3> 1	97 L40 PRT Friti	Lcum	sp.											
50	<400)> 9	€7													
	Met 1	Gly	Lys	Tyr	Met 5	Arg	Lys	Ser	Lys	Ala 10	Ser	Gly	Glu	Val	Ala 15	Val
55	Met	Glu	Val	Ala 20	Gly	Ala	Leu	Leu	Gly 25	Val	Arg	Thr	Arg	Ser 30	Arg	Thr

Leu Ala Ala Gln Gln Gln Arg Ala Pro Ser Pro Ser Pro Ser Pro Gln Arg Lys Gly Gln Glu Asp Gly Asp Pro Gly Ala Gly Asp Tyr Leu Glu Leu Arg Ser Arg Arg Leu Glu Lys Gln Pro Pro Pro Gly Ala Arg Glu Lys Glu Asp Ala Pro Gln Arg Pro Arg Gly Gly Pro Pro Pro Leu Ala Gly Gly Gly Trp Ser Arg Arg Arg Arg Ser Pro Pro Arg Gly Ser Arg Pro Thr Ser Arg Ser Pro Ser Ala Thr Thr Cys Trp Thr Gly Thr Pro Pro Thr Gly Ala Pro Gly Arg Arg Arg Ala Ala <210> 98 <211> 204 <212> PRT <213> Triticum sp. <400> 98 Met Gly Lys Tyr Met Arg Lys Ser Lys Ala Ser Gly Glu Val Ala Val Met Glu Val Ala Gly Ala Leu Leu Gly Val Arg Thr Arg Ser Arg Thr Leu Ala Ala Gln Gln Gln Arg Ala Pro Ser Pro Ser Pro Gln Arg Lys Gly His Glu Asp Gly Asp Tyr Leu Glu Leu Arg Ser Arg Arg Leu Glu Lys Gln Pro Pro Pro Gly Pro Lys Asp Lys Glu Asp Ala Pro Gln Pro Pro Ala Ala Gly Gly Arg Gly Met Glu Ser Phe Ala Ala Glu Gly Phe

Glu Ala Asp Leu Glu Val Ser Phe Gly Asp Asn Val Leu Asp Trp Asp 100 105 110

	Ala	Thr	As p 115	Arg	Gly	Ala	Arg	Glu 120	Thr	Thr	Pro	Cys	Ser 125	Leu	Ile	Tyr
5	Ser	Ser 130	Glu	Thr	Met	Ser	Thr 135	Pro	Gly	Ser	Ala	Thr 140	Gly	Ala	Arg	Asn
10	His 145	Ser	Arg	Arg	Arg	Ala 150	Gln	Thr	Pro	Val	C ys 155	Arg	Tyr	Val	Pro	Ser 160
	Ser	Leu	Glu	Met	Asp 165	Glu	Phe	Phe	Ala	Ala 170	Ala	Glu	Gln	Gln	Gln 175	His
15	Gln	Thr	Phe	Arg 180	Glu	Lys	Tyr	Asn	Phe 185	Cys	Pro	Ala	Ser	Glu 190	Arg	Pro
20	Leu	Pro	Gly 195	Arg	Tyr	Glu	Trp	Thr 200	Val	Leu	Asp	Cys				
25	<210 <211 <212 <213)> 9 L> 2 2> E 3> (99 262 PRT Oryza	a sat	iva											
	<400)> 9	99													
30	Met 1	Gly	Lys	Tyr	Met 5	Arg	Lys	Phe	Arg	Gly 10	Ala	Thr	Gly	Glu	Glu 15	Leu
35	Ala	Ala	Met	Glu 20	Val	Thr	Gln	Val	Val 25	Gly	Val	Arg	Thr	Arg 30	Ser	Arg
	Ser	Ala	Ala 35	Ala	Ala	Gly	Ala	Thr 40	Thr	Thr	Lys	Val	Lys 45	Ala	Ala	Ser
40	Ala	Ala 50	Ser	Thr	Arg	Arg	Arg 55	Lys	Ala	Leu	Leu	Pro 60	Thr	Ala	Val	Val
45	Gly 65	Thr	Thr	Arg	Arg	Asp 70	Gly	Gly	Ser	Cys	Tyr 75	Leu	Gln	Leu	Arg	Ser 80
50	Arg	Met	Leu	Phe	Met 85	Ala	Pro	Pro	Arg	Pro 90	Ala	Pro	Ala	Ala	Arg 95	Ala
	Pro	Val	Val	Ala 100	Glu	Ala	Ala	Gly	Ser 105	Gly	Asn	Gly	Ala	Ala 110	Ala	His
55	Ala	Ala	Ala 115	Gly	Leu	Ser	Arg	Cys 120	Ser	Ser	Thr	Ala	Ser 125	Ser	Val	Asp

EP 2 927 323 A2 Ala Ala Gln Asp Arg Ser Leu Ala Cys Arg Ser Asp Val Ala Glu Ala Gly Ser Glu His Val Pro Glu Gly Ser Ala Ser Asp Ser Ala Ser Gly Arg Asp Arg Glu Arg Arg Glu Thr Thr Pro Ser Ser Phe Leu Pro Gly Glu Val Ser Asp Leu Glu Ser Asp Leu Ala Gly Gly Gln Lys Arg Ser Arg Pro Leu Pro Ser Ala Ala Thr Ala Ser Ala Gln Gln Ala Thr Arg Pro Lys Ile Pro Pro Ala Ala Glu Ile Glu Ala Phe Phe Ala Ala Ala Glu Glu Ala Glu Ala Lys Arg Phe Ala Ala Lys Tyr Asn Phe Asp Val Val Arg Gly Val Pro Leu Asp Ala Gly Arg Phe Glu Trp Thr Pro

30 Val Val Ser Ser Arg Ser

<210> 100 <211> 1265 <212> DNA <213> Oryza sativa

<400> 100 agggaaacgg ccaaagaagg cgacggcggc ggcgcaggag gggcgcgcac gcggcgcaga tgggcaagta catgaggaag ttcagggggg ccacgggggga ggagttggcc gccatggagg tcacgcaggt ggttggcgtc cggacgaggt cgaggtcggc agcggcggcg ggcgcgacga cgacgaaggt gaaggcggcg tcggcggcgt ccaccaggag gaggaaggcg ctgctgccga cggcggtcgt ggggactact cgccgtgacg gcgggagctg ctacctccag ctgaggagcc gcatgctgtt catggccccg ccgaggccgg cgccggccgc gagggctccg gttgtagcgg aggeggeggg tteegggaae ggageggegg egeatgegge ggetggeete tegegttget ccagcacggc gtcgtccgtg gacgcggcgg ctcaggacag gagcctcgcg tgccgctccg acgtcgcgga ggcaggcagc gagcatgtcc cggagggctc cgcgagcgac tcggcgagcg gccgtgaccg cgagaggaga gaaacaactc catcaagctt tctccccgga gaggtgagcg atctggagtc ggatctggct ggaggacaga agcgcagccg tccactacct tctgcggcaa

	cagcetcage	acagcaagcc	acgcggccga	agattccgcc	ggccgccgag	atcgaggcgt	720
	tcttcgcggc	ggccgaggag	gctgaggcca	agcgcttcgc	cgccaagtac	aacttcgacg	780
5	tcgttcgcgg	cgtgcccctc	gacgccggtc	ggttcgagtg	gactccggtg	gtcagcagcc	840
	gaagctgaag	cgagcgtgca	gattaagcgg	aagctagaaa	ggaaggtaca	gggggggcgcc	900
	gtgtagaaag	ggaaggcgag	ctagagagag	gagaagaaga	agaagaaaag	atgctcatcc	960
10	aaagggaata	aactggaaaa	gtgggagact	acaaaaaaag	aagcattata	gcctaacaac	1020
	caccgattcg	actcttttt	ctttcacatt	ttctttgcat	ttttactctt	actgtgtact	1080
15	agaaagtagt	agcagtagta	aactagtaat	tcgtcccagt	atttatcaga	ggtttatctc	1140
15	gataggaata	gatatattat	ccccttactg	taattgcctc	catcttgtat	ttggatggaa	1200
	attaaattta	ctgtacagca	gcagcagctg	ttctgcaagt	ttaagttaac	catcaccgtt	1260
20	ttatt						1265
25	<210> 101 <211> 789 <212> DNA <213> Ory:	za sativa					
	<400> 101 atgggcaagt	acatgaggaa	gttcaggggg	gccacggggg	aggagttggc	cgccatggag	60
30	gtcacgcagg	tggttggcgt	ccggacgagg	tcgaggtcgg	cagcggcggc	gggcgcgacg	120
	acgacgaagg	tgaaggcggc	gtcggcggcg	tccaccagga	ggaggaaggc	gctgctgccg	180
	acggcggtcg	tggggactac	tcgccgtgac	ggcgggagct	gctacctcca	gctgaggagc	240
35	cgcatgctgt	tcatggcccc	gccgaggccg	gcgccggccg	cgagggctcc	ggttgtagcg	300
	gaggcggcgg	gttccgggaa	cggagcggcg	gcgcatgcgg	cggctggcct	ctcgcgttgc	360
	tccagcacgg	cgtcgtccgt	ggacgcggcg	gctcaggaca	ggagcctcgc	gtgccgctcc	420
40	gacgtcgcgg	aggcaggcag	cgagcatgtc	ccggagggct	ccgcgagcga	ctcggcgagc	480
	ggccgtgacc	gcgagaggag	agaaacaact	ccatcaagct	ttctccccgg	agaggtgagc	540
	gatctggagt	cggatctggc	tggaggacag	aagcgcagcc	gtccactacc	ttctgcggca	600
45	acagcctcag	cacagcaagc	cacgcggccg	aagattccgc	cggccgccga	gatcgaggcg	660
	ttcttcgcgg	cggccgagga	ggctgaggcc	aagcgcttcg	ccgccaagta	caacttcgac	720
50	gtcgttcgcg	gcgtgcccct	cgacgccggt	cggttcgagt	ggactccggt	ggtcagcagc	780
	cgaagctga						789

<210> 102 <211> 750 <212> DNA <213> Oryza sativa

55

<210> 103 <211> 750 <212> DNA <213> Oryza sativa 30 <400> 103 60 atggggaaga agaagaagcg cgacggcgcg gcggcgagga ggcaggcgcg ggtggtggtc 120 ggcggcgtcc gtacgcgggc cgccgtcacg gcgaggaggg tggtggcgag cgcggaggag 35 ggttgtggtt tggtgggccg tggcggtggc ggtggcagtg gcggagacga tggcgagggc 180 240 ggatgctatc tgcgtctgcg gagcaggagg ctgcccttcg tggcggccgc ggtggtgtcg 300 tcgcggaggg aggaggcgct cggtgattcg gtggcggagg cggcttcgtc gtcgtcgtcg 40 360 cgggcggtgg aattgttggg ctgttctggt gaggaggagg ctatggccga gaaggtttgc 420 acgcaggcag gcgaggatca cgacgaggag agctccgtcg gcgactccgg ctgcggccgc gagaggageg cgacgaegec gtegageege eggeegeegg gagaegegga etegagegae 480 45 gcggagtcaa accaggaggc caagcagcaa atgtgccgcc ggagttcgac gacctcagca 540 600 gctgcatttc acgcggggagc gacgacgagg agcttcagga tgatggcacc gccggcggcg 50 660 gcggcagaga tcgaggagtt cctcgccgct gcggagaggt ccgaggccga gcgcttcgcc gccaagtaca acttcgacgt ggtgcgcggc gtgccgctcg acgccggcgg cgccgggcgg 720 750 ttcgaatgga ccgcggtggg cagcggctga 55

atggggaaga agaagaagcg cgacggcgcg gcggcgagga ggcaggcgcg ggtggtggtc 120 ggcggcgtcc gtacgcgggc cgccgtcacg gcgaggaggg tggtggcgag cgcggaggag 5 ggttgtggtt tggtgggccg tggcggtggc ggtggcagtg gcggagacga tggcgagggc 180 ggatgctatc tgcgtctgcg gagcaggagg ctgcccttcg tggcggccgc ggtggtgtcg 240 300 tcgcggaggg aggaggcgct cggtgattcg gtggcggagg cggcttcgtc gtcgtcgtcg 10 360 cgggcggtgg aattgttggg ctgttctggt gaggaggagg ctatggccga gaaggtttgc 420 acgcaggcag gcgaggatca cgacgaggag agctccgtcg gcgactccgg ctgcggccgc 480 gagaggageg cgacgaegec gtegageege eggeegeegg gagaegegga etegagegae 15 gcggagtcaa accaggaggc caagcagcaa atgtgccgcc ggagttcgac gacctcagca 540 600 gctgcatttc acgcgggagc gacgacgagg agcttcagga tgatggcacc gccggcggcg 20 660 gcggcagaga tcgaggagtt cctcgccgct gcggagaggt ccgaggccga gcgcttcgcc gccaagtaca acttcgacgt ggtgcgcggc gtgccgctcg acgccggcgg cgccgggcgg 720 750 ttcgaatgga ccgcggtggg cagcggctga 25

60

<400> 102

132

<210> 104

<211>	1025	
<212>	DNA	
<213>	Oryza	sativa

-	<400> 104						
5	ccctccaaat	ccacccgggg	tcccctacc	attttaaccc	cgcggcctta	gccgctaatg	60
	ctccgcgttt	gaaatcgcta	agcgcacccg	aaaccctagc	cccctcccct	cccgagtccc	120
10	gaccgccatg	ggcaagtaca	tgcgcaaggc	caaggtggtg	gtctccggcg	aggtggtggc	180
	cgccgccgtc	atggagctcg	ccgcggcgcc	gctcggggtg	cgcacccgcg	cccgctccct	240
	cgcgctgcag	aagaggcagg	gcggggagta	cctcgagctc	aggagccgca	ggctcgagaa	300
15	gctccctcct	cccccgccgc	cgccgccgag	gaggagggcg	acggctgcgg	ctgcgactgc	360
	tgatgcgacg	gcggcggaga	gcgcggaggc	ggaggtgtcg	ttcggggggg	agaacgtcct	420
	cgagctggag	gccatggaaa	ggaataccag	ggagacgaca	ccttgcagct	tgatcaggga	480
20	ccccgatacg	attagcaccc	ctggatctac	cacaaggcgc	agccactcga	gttctcattg	540
	caaggtgcaa	acacccgtgc	gccacaacat	tattccagca	tcagcagagc	tggaagcgtt	600
	cttcgctgcc	gaagagcaac	ggcaacgaca	ggctttcatc	gacaagtata	actttgatcc	660
25	tgtgaatgac	tgccctcttc	ccggccggtt	tgaatgggtc	aagctagact	gatagatttt	720
	caggaaaaga	agggcaccat	ggacctctct	gctccctcca	cagtagtagc	gtggcagagg	780
	cgcttaccgt	caagttagct	ttgatcctgt	tgtaaaaatt	tagggttagc	ctgtagactc	840
30	aatggtcaat	gtgaacatac	agaactgatg	ctgagttaca	accctaatcc	ctcaactaca	900
	atgtaaccct	taacagctca	ttctgtaagg	aaccacctcc	tcctctaggg	cctagctagc	960
25	cttatcatct	gttattacca	gttgctggat	taatgaagtt	agatctagat	attgtgtcac	1020
55	agttt						1025
	<210> 105						
40	<211> 585						
	<212> DNA <213> Orva	va sativa					
	~210× OLY	La Saciva					
	<400> 105						
	atgggcaagt	acatgcgcaa	ggccaaggtg	gtggtctccg	gcgaggtggt	ggccgccgcc	60
45	gtcatggagc	tcgccgcgac	gccgctcgaa	gtgcgcaccc	gcgcccgctc	cctcgcgctg	120

	gccgaagagc	aacggcaacg	acaggettte	atcgacaagt	ataactttga	tcctgtgaat	540
	gactgccctc	ttcccggccg	gtttgaatgg	gtcaagctag	actga		585
5	<210> 106 <211> 104 <212> DNA <213> Ory:	ō za sativa					
10	<400> 106 aaacgcgcgc	cgtttcccgc	ttccactccc	ctcccccat	tattcccgcg	attctcctcc	60
	cttcctcccg	ccgcgcgcgc	cttggccatg	gggaagtaca	tgcggaaggg	gaaggtgtcg	120
15	ggggaggtgg	cggtgatgga	ggtgggcggg	gcgctgctcg	gcgtccgcac	ccgctcccgc	180
	acgctcgcgc	tgcagcggac	gacctcgtcg	cagaagccgc	cggagaaggg	ggagggggac	240
	cccggtgcgg	gcgcgggcgc	gggggcggag	tacctcgagc	tcaggagccg	gaggctcgag	300
20	aagccgcctc	cgcacacgcc	gccggccaag	gagaaggaga	ccgccaggag	ggcttccgcc	360
	gccgccgccg	ccgccgtgag	gatgccggcg	gcgccgcaag	cggccgagga	gttcgaggcg	420
25	gaggtcgagg	tgtccttcgg	cgacaacgtt	cttgacctcg	acggcgacgc	catggagagg	480
	agtaccaggg	agacaacgcc	ttgcagttta	attaggagct	cagaaatgat	aagcacccct	540
	ggctccacaa	ctaaaaccaa	cacctcgatc	agttcccggc	gcagaatgga	gacctctgtt	600
30	tgtcgttacg	ttccgagttc	tcttgagatg	gaagagttct	ttgcagctgc	tgaacaacag	660
	caacatcagg	ctttcagaga	gaggtataac	ttctgtcctg	tgaacgactg	cccacttcct	720
	ggacggtacg	aatggacaag	gctagactgc	tagattttca	tcttgagagc	tccattgatc	780
35	tctccacaca	gttgactagc	accaccatgg	cagaggcaaa	atgcaattcg	attaggtttc	840
	ttctctgttg	taaaaaaaaa	atagagttag	tcagtagctc	aatgatcttg	tgtaacaaac	900

ataagtgatg ttgagttaca catcctgatc cccccaccaa catgtaaccg ttaactgctc
 ⁴⁰
 attctgtaac gaaccacctc ttttaggcct agctttatta tctgtcccca gtcgatttaa
 tgaatttagt tagaatttct ctagc
 1045

45 <210> 107 <211> 666 <212> DNA <213> Oryza sativa

	aago	gagaa	agg a	agaco	cgcca	ag ga	agggo	etteo	c gco	cgcco	geeg	ccgo	ccgco	gt o	gagga	atgcco	g	300
	gcgo	gegeo	ege a	agco	Idaco	ja go	gagti	cgao	a dcó	ggago	gtcg	aggt	gtco	tt o	cggco	Jacaad	2	360
5	gtto	ettga	acc t	cgad	cggcq	ja co	gccat	ggaq	g ago	gagta	acca	ggga	agaca	ac o	gcctt	gcagt	t	420
	ttaa	attaç	gga g	gctca	igaaa	at ga	ataaç	gcaco	c cct	-ggct	cca	caad	ctaaa	ac (caaca	acctco	3	480
	atca	agtto	ccc ç	ggcgd	cagaa	at go	gagad	cctct	; gtt	tgto	cgtt	acgt	tcc	jag 1	ttata	ttgaq	J	540
10	atgo	gaaga	agt t	cttt	gcaç	ge to	gctga	acaa	a caç	gcaad	catc	aggo	ettto	ag a	agaga	aggtat	t	600
	aact	tcto	gtc d	ctgtg	Jaaco	ga ct	gcco	cactt	c cct	ggad	cggt	acga	atgo	jac a	aaggo	ctagad	2	660
15	tgct	ag																666
20	<210 <211 <212 <213	0> 1 L> 2 2> 1 3> (L08 249 PRT Oryza	a sat	iva													
	<400)> 1	L08															
25	Met 1	Gly	Lys	Lys	Lys 5	Lys	Arg	Asp	Gly	Ala 10	Ala	Ala	Arg	Arg	Gln 15	Ala		
	Arg	Val	Val	Val 20	Gly	Gly	Val	Arg	Thr 25	Arg	Ala	Ala	Val	Thr 30	Ala	Arg		
30	Arg	Val	Val 35	Ala	Ser	Ala	Glu	Glu 40	Gly	Cys	Gly	Leu	Val 45	Gly	Arg	Gly		
35	Gly	Gly 50	Gly	Gly	Ser	Gly	Gly 55	Asp	Asp	Gly	Glu	Gly 60	Gly	Cys	Tyr	Leu		
	Arg 65	Leu	Arg	Ser	Arg	Arg 70	Leu	Pro	Phe	Val	Ala 75	Ala	Ala	Val	Val	Ser 80		
40	Ser	Arg	Arg	Glu	Glu 85	Ala	Leu	Gly	Asp	Ser 90	Val	Ala	Glu	Ala	Ala 95	Ser		
45	Ser	Ser	Ser	Ser 100	Arg	Ala	Val	Glu	Leu 105	Leu	Gly	Cys	Ser	Gly 110	Glu	Glu		
50	Glu	Ala	Met 115	Ala	Glu	Lys	Val	Cys 120	Thr	Gln	Ala	Gly	Glu 125	Asp	His	Asp		
	Glu	Glu 130	Ser	Ser	Val	Gly	Asp 135	Ser	Gly	Суз	Gly	Arg 140	Glu	Arg	Ser	Ala		
55	Thr 145	Thr	Pro	Ser	Ser	Arg 150	Arg	Pro	Pro	Gly	Asp 155	Ala	Asp	Ser	Ser	Asp 160		

	Ala	Glu	Ser	Asn	Gln 165	Glu	Ala	Lys	Gln	Gln 170	Met	Cys	Arg	Arg	Ser 175	Ser
5	Thr	Thr	Ser	Ala 180	Ala	Ala	Phe	His	Ala 185	Gly	Ala	Thr	Thr	Arg 190	Ser	Phe
10	Arg	Met	Met 195	Ala	Pro	Pro	Ala	Ala 200	Ala	Ala	Glu	Ile	Glu 205	Glu	Phe	Leu
	Ala	Ala 210	Ala	Glu	Arg	Ser	Glu 215	Ala	Glu	Arg	Phe	Ala 220	Ala	Lys	Tyr	Asn
15	Phe 225	Asp	Val	Val	Arg	Gly 230	Val	Pro	Leu	Asp	Ala 235	Gly	Gly	Ala	Gly	Arg 240
20	Phe	Glu	Trp	Thr	Ala 245	Val	Gly	Ser	Gly							
25	<210 <211 <212 <213)> 1 _> 1 2> E 3> (L09 L94 PRT Dryza	a sat	iva											
	<400)> 1	L09													
30	Met 1	Gly	Lys	Tyr	Met 5	Arg	Lys	Ala	Lys	Val 10	Val	Val	Ser	Gly	Glu 15	Val
35	Val	Ala	Ala	Ala 20	Val	Met	Glu	Leu	Ala 25	Ala	Ala	Pro	Leu	Gly 30	Val	Arg
	Thr	Arg	Ala 35	Arg	Ser	Leu	Ala	Leu 40	Gln	Lys	Arg	Gln	Gly 45	Gly	Glu	Tyr
40	Leu	Glu 50	Leu	Arg	Ser	Arg	Arg 55	Leu	Glu	Lys	Leu	Pro 60	Pro	Pro	Pro	Pro
45	Pro 65	Pro	Pro	Arg	Arg	Arg 70	Ala	Thr	Ala	Ala	Ala 75	Ala	Thr	Ala	Asp	Ala 80
50	Thr	Ala	Ala	Glu	Ser 85	Ala	Glu	Ala	Glu	Val 90	Ser	Phe	Gly	Gly	Glu 95	Asn
	Val	Leu	Glu	Leu 100	Glu	Ala	Met	Glu	Arg 105	Asn	Thr	Arg	Glu	Thr 110	Thr	Pro
55	Cys	Ser	Leu 115	Ile	Arg	Asp	Pro	Asp 120	Thr	Ile	Ser	Thr	Pro 125	Gly	Ser	Thr

Thr Arg Arg Ser His Ser Ser Ser His Cys Lys Val Gln Thr Pro Val Arg His Asn Ile Ile Pro Ala Ser Ala Glu Leu Glu Ala Phe Ala Ala Glu Glu Gln Arg Gln Arg Gln Ala Phe Ile Asp Lys Tyr Asn Phe Asp Pro Val Asn Asp Cys Pro Leu Pro Gly Arg Phe Glu Trp Val Lys Leu Asp <210> 110 <211> 221 <212> PRT <213> Oryza sativa <400> 110 Met Gly Lys Tyr Met Arg Lys Gly Lys Val Ser Gly Glu Val Ala Val Met Glu Val Gly Gly Ala Leu Leu Gly Val Arg Thr Arg Ser Arg Thr Leu Ala Leu Gln Arg Thr Thr Ser Ser Gln Lys Pro Pro Glu Lys Gly Glu Gly Asp Pro Gly Ala Gly Ala Gly Ala Gly Ala Glu Tyr Leu Glu Leu Arg Ser Arg Arg Leu Glu Lys Pro Pro Pro His Thr Pro Pro Ala Lys Glu Lys Glu Thr Ala Arg Arg Ala Ser Ala Ala Ala Ala Ala Ala Val Arg Met Pro Ala Ala Pro Gln Ala Ala Glu Glu Phe Glu Ala Glu Val Glu Val Ser Phe Gly Asp Asn Val Leu Asp Leu Asp Gly Asp Ala Met Glu Arg Ser Thr Arg Glu Thr Thr Pro Cys Ser Leu Ile Arg Ser

EP 2 927 323 A2

	Ser Glu Met 145	Ile Ser Th 15	r Pro Gly 0	Ser Thr Thr 155	Lys Thr Asn	Thr Ser 160	
5	Ile Ser Ser	Arg Arg An 165	g Met Glu	Thr Ser Val 170	Cys Arg Tyr	Val Pro 175	
10	Ser Ser Leu	Glu Met G] 180	u Glu Phe	Phe Ala Ala 185	Ala Glu Gln 190	Gln Gln	
	His Gln Ala 195	Phe Arg Gl	u Arg Tyr 200	Asn Phe Cys	Pro Val Asn 205	Asp Cys	
15	Pro Leu Pro 210	Gly Arg Ty	r Glu Trp 215	Thr Arg Leu	Asp Cys 220		
20	<210> 111 <211> 3220 <212> DNA <213> Glyc:	ine sp.					
25	<400> 111 aatgcctcct	ttaaatactt	actgaagtct	cgaaatgcaa	aaaaatatta	ttacagtaaa	60
	attaaaaata a	aacacacgag	gcaaagacag	aaaaagaaag	agaaagagtg	acacaatagt	120
	actgcagctg	tactgtactg	gctaaaacco	: caatccaaga	accctaataa	aactccttcc	180
30	ctttcctttc (ctttccattc	cccacgccta	aattctcact	ccctctaaaa	acccctcttt	240
	cctttccctc	tctttttcta	atttctttct	tttcgattcc	tgcaaaaccc	ttacatgggc	300
	aagtacatga a	agaagtccaa	aatcgccggc	gacgtcgccg	ccgtgatcat	ggaggctccg	360
35	ccgccgcact (cccacctcgg	cgtccgcacc	cgcgccaaga	ccctcgctct	ccagaacaac	420
	accacctccc	cggacccctc	cgcctaccto	cagctccgca	gccgccgcct	cctcaagctc	480
40	ccccctaccc (cgccggaaaa	tccccgccgc	tcctccgccg	aaaccgccgc	caatttccgc	540
	ctcgccaacg (cccaaaagct	tgcatctttc	gaagacgaca	acaacaccga	atgctctttc	600
	ggcgagaatt	tcttagacgc	cgagcccaga	gaagaaaggt	atataatata	ttatatacat	660
45	aattcccttt	cttcaatttc	tctgctctta	gttattttt	atttgtattt	tttcatgtgt	720
	ttttattcct t	ttcacccttc	gtctgtgttt	ctcttatttt	tattatttt	ttgtttaaat	780
	taaccatttt a	atggggttat	ttgccgatta	tttagggctt	tacggtaagc	cctgtttgtt	840
50	ctcgcttcat o	gcatatgtat	ggactgattt	tttttttgg	gtttaatata	tttttaattt	900
	ctgtaaacag o	ggcaattttt	atttagtccc	tatcaactaa	attctctttc	ttttctcttt	960
55	ttatgaaatg o	gttcataata	aaaatcacat	aatgacatat	tttcaaggag	gaggggctaa	1020
-	aggttaatat	tgaatagaat	tttagtcaac	: tttttgttgt	tgcattccag	tgttgcaatg	1080

	attttgagaa	tttccataag	tttgttttat	tttttatgt	tattttcttt	tcatttgaat	1140
	tgtttatttt	agtttctgaa	tttcttctgt	ttatgcgttt	ttactttctt	gtgattgttt	1200
5	gtgttttgct	aaaattgtta	catttttcag	tggagtgaga	gtcatgtgag	gttgtggaag	1260
	ggaaagggtt	ttattatcat	gactctctct	tgaaagtcac	cgctcttttg	attctcatgc	1320
	tttttctatt	gttggtgtca	ttactaaccg	ttgttgttaa	acctcgtgag	gtcttagtcc	1380
10	cttaactttt	tggttattat	gtgttttaac	tttcatgtga	tttgttttga	tttcccactc	1440
	tgtcaaatct	gtgtactgtg	ataaagctct	gttggtacaa	agggttgctc	agatttgtga	1500
	cttgtgtgtg	acttgtgata	ggttccgcac	cttgcatgcc	ctcaggatag	ttatttactg	1560
15	caacttgtat	ttttctgtgg	tattaatctt	tgcatgtcag	acataattta	taaatttcta	1620
	ttagaaaatc	ctattttctg	tagttatcat	tttatataaa	tgggttataa	ccaataacgt	1680
20	agagagttga	tgatttttca	agtaaataga	accaactaaa	tgttaaacaa	gttttgtaac	1740
20	ttggttcaaa	aaaaggaaga	acatctccaa	gtccaaattg	agtgaattga	tgtgcattaa	1800
	ttgtccttct	gcagatccag	ttgttgacaa	attttgtgat	tggacaattt	tcgtacagat	1860
25	ataattcgag	gccctttgtt	atttttagtc	catttctctc	aatttttta	tgaacttaaa	1920
	atttttgtaa	ttagaaatgt	ttctgtcttg	aatccaaaat	gcatttaccc	ttgattgtcc	1980
	ttgtttactt	ttgatctgca	agaagcctgc	atgaccttga	agcttagcac	tcctccgtaa	2040
30	atggtcaagt	tgaaaaaaat	ggattttagt	aataggagca	gccataagtc	ttatgactca	2100
	tgttagcaat	gaggtgtcat	gtacatgggg	cctagttttc	agattgatgt	ttttttggat	2160
	tcctatttgg	gtttgcggtg	aagtgagaaa	gatttggccg	tctctttatt	tgtattttt	2220
35	tagtgcatga	gcccactgag	tcagaacttg	tcccattaaa	tggcagttac	tttttatag	2280
	tagcaaaatt	tgtctctagt	tctactacac	tgagttgtag	ttggagattg	tgggaggaaa	2340
	aaatgatctg	tttcttctct	cacttatttt	gctgtcagcg	gttagcatgc	aacttctgat	2400
40	gtagaaactt	ttcataacaa	gtcagcatta	tttgtattta	tatataactg	ctatttttat	2460
	ttttataat	ttttataagc	ttatatatat	gttcattaaa	attttattgt	gttttaataa	2520
45	caggagcacc	agggaaggca	ccccttgtag	tttaataagg	gactcaaatg	ccattcatac	2580
40	ccctggttca	accacaaggc	caaggactcg	ccaaataatc	catgaacacg	tacaaagaaa	2640
	tattccaacg	gcttatgaga	tggaggagtt	ctttgcttat	gctgagaagc	agcaacagac	2700
50	aatatttatg	gacaagtatg	tactcttta	tagtcttata	ttccacaagt	cccttttctt	2760
	ttgttttaaa	cattaggggt	atttttattt	ggatttcttc	ctaattaata	atgtaattat	2820
	gtaatgtgct	tatgtataaa	ttgtctgtgt	tttgcaggta	caatttcgac	attgtcaatg	2880
55	acgtacctct	gcctggacgg	tacgagtggg	tcccagtact	ccactaggag	tgtcatatgg	2940
	tggtgattat	atatatggat	tgcaagaacc	attcgacgtg	tattttaatt	ttaacaacta	3000

	gaagaagctt	tcactaacca	tttagattgc	ttgaggctgt	tgtttaacaa	gctacaaggg	3060
	aaaggatctg	tttagaaatt	tccaatatct	gattagtagt	ttagtagtgt	ctttctgatt	3120
5	tgtagggtgt	agggggggta	tatggtatat	ctagttttta	ggtcatcttt	attgtaattt	3180
	cattaccttc	tgtttatata	attcagtggg	gattagacat			3220
10	<210> 112 <211> 606 <212> DNA <213> Glyc	cine sp.					
45	<400> 112						C 0
15	atgggcaagt	acatgaagaa	gtecaaaate	geeggegaeg	tegeegeegt	gateatggag	100
	gctccgccgc	cgcactccca	cctcggcgtc	cgcacccgcg	ccaagaccct	cgctctccag	120
20	aacaacacca	cctccccgga	cccctccgcc	tacctccagc	tccgcagccg	ccgcctcctc	180
20	aagctccccc	ctaccccgcc	ggaaaatccc	cgccgctcct	ccgccgaaac	cgccgccaat	240
	ttccgcctcg	ccaacgccca	aaagcttgca	tctttcgaag	acgacaacaa	caccgaatgc	300
25	tctttcggcg	agaatttctt	agacgccgag	cccagagaag	aaaggagcac	cagggaaggc	360
	accccttgta	gtttaataag	ggactcaaat	gccattcata	cccctggttc	aaccacaagg	420
	ccaaggactc	gccaaataat	ccatgaacac	gtacaaagaa	atattccaac	ggcttatgag	480
30	atggaggagt	tctttgctta	tgctgagaag	cagcaacaga	caatatttat	ggacaagtac	540
	aatttcgaca	ttgtcaatga	cgtacctctg	cctggacggt	acgagtgggt	cccagtactc	600
	cactag						606
35							
	<210> 113 <211> 3290 <212> DNA <213> Glyo) cine sp.					
40	<400> 113						
	ttaaaggaaa	aattgcctcc	tttaaataaa	aaaaatatta	ttacattaaa	aaataataaa	60
	tacatgaggc	aacaaagaga	tagtgagagt	gacacagtag	tagtactgca	cctgtcctcg	120
45	ctaaaacccc	aaagtaagcc	ccaatccaac	cctaataaaa	ctccttccct	ttgcccattc	180
	tatcaaattt	tccctctctc	tctcaaattt	tctctccctc	aaaaaaccct	tcactccttt	240
	ccctctcttt	tctaattttt	tttttagatt	cacccaaaac	ccgacaaccc	acacatgggg	300
50	aagtacatga	agaagtccaa	aatcgccggt	gacgtcgccg	ccgtgatcat	ggaggctccg	360
	ccgccgcact	cccacctcgg	cgtccgcacc	cgcgccaaga	ctctcgccct	ccagaatacc	420
55	tccccggact	cctccgccta	cctccagctc	cgcagccgcc	gcctcctcaa	gctccccct	480
	accccgccgg	aaaatccccg	ccgctccgcc	gccgaaaccg	ccgccaattc	ccgcctcgcc	540

	aaaacgacgt	cgtcccgtaa	cgccgaaaag	ttcgcatctt	tcgatgacga	caacaatacc	600
	gaatgctctt	tcggcgaaaa	tttcttagac	gccgaaccca	gggaggaaag	gtatatataa	660
5	ttataaataa	ttattccctt	tcttcaattt	ctctgttttt	caatcatttt	tcttgtgttt	720
	ttattccttt	ctccctttgt	gtctctgttt	ctcttgttta	tttatttatt	tatttatttt	780
	gtttaaatta	gccattttat	ggggttattt	gccggttatt	tagggctcta	ctgtaagttc	840
10	ttgctgtttt	tccttgcttc	atgcatgtgt	gtatttttg	ttggatttga	tgtattttta	900
	attccttcta	attgtgcaat	ttttatttt	agtccctatc	aaataaattc	tcattctttt	960
	ctcttgttta	tgaaatgggt	catatgtggt	tttttgtctt	tctcaaaaaa	ttgtttcgtt	1020
15	ttggtctctt	ttatgaaaat	aaaaatcaca	tgatgacata	ttttcgtgaa	agacggggggc	1080
	aaaagacctt	ttatttgtga	ggggctaaaa	gtgaatattg	aataaaattt	tagtcaactt	1140
20	tttgttgttg	ttacaggtaa	gtgtttaccg	tgattttgag	aattctcaca	agttttttat	1200
20	gttcttttat	tttgtattat	ttaattttta	gtttcagaat	tttcttctgt	ttatgcgttt	1260
	tcattttctt	gtgattgttt	gtgttttgct	aaaattgttg	catttttcag	tggagtgaca	1320
25	gccatgtaag	tttgtggaag	gaaagggttt	tgatattctc	tcttgaaagt	caccgctcat	1380
	ttgattctca	tgcctttttc	tattgttggt	gtcattacta	accgttgttg	ttgaacctcg	1440
	tgaggtttta	gtcccttgac	tttttggtta	ttatgtgttt	taactttcat	gtgatttgtg	1500
30	ttgatttttc	actctgtcaa	atccgtgtac	tgtgataaaa	gctctgttag	tacaaagggt	1560
	tgctcagatt	tgtgacttgt	gtgtgacttg	tgataggttc	tgcaccttgc	atgccctcag	1620
	gatagttatt	tactgcaatt	tgtattttc	tgtggtatta	atgtttgcat	gtcagacaca	1680
35	tactctataa	atttgttctt	agaaatccta	tttgctgtaa	ttatcatttt	acataaatgg	1740
	gttataacca	atactgtaga	gagttgatgt	tttttcaagt	aaatagaacc	aactaaatgt	1800
	taaacaagtt	ttgtaacttg	gttcaaaaaa	aggaagaaca	tctccaagtc	caaattgaat	1860
40	gaattgatgt	gcattaattg	tctctctgga	gatccagtag	ttgacaaatt	gtgtgatttg	1920
	acaattttca	ttcagttata	attcgcggcc	ctttgtcatt	tcaagttcat	ttctctcaaa	1980
	ttttgatgaa	cttaaaatct	tagtatttag	aaatgttttt	gtcatgaatc	caaaatgcat	2040
45	ttacccttga	ttgtccttgt	ttacttttga	tctgcaagac	acctgcatga	ccctgaagct	2100
	tagcactccg	taaatggtca	agttgaaaaa	aaaatggatt	ttagtaatag	gagcagccat	2160
50	aactcttatg	actcgtgtta	gcaacgaggt	gtcacgtaca	tggggcctag	tttgcagatt	2220
	gatgttttt	ttggattcct	atttgggttt	gcggtgaagt	gagaaagatt	tggccgtctc	2280
	tttctttgta	ttttttagt	gcatgagccc	actgagtcag	aacttgtccc	attaaatgcc	2340
55	agttactttt	ttatagtagc	aaaatttgtc	tttagttcca	cactgagctg	tagtaggaga	2400
	ttgtgggagg	aaaaaatga	gctgtttctt	ctcacttatt	ttgctgtcag	cggttagcat	2460

2520

gcaacttctg gtgtagaaac ttttcatacc aagtcagcat tttttgtatt tatatatgac

	tgctatttt	ttctttttat	aatttctata	agcttctatc	ttcattaaaa	ttttgttgtg	2580
5	ttttaataac	aggagcacca	gggaaagcac	cccttgtagt	tttataaggg	actcaaatgc	2640
	cattcatacc	cctggttcaa	ccacaaggcc	aaggactcgc	caaataatcc	atgagcacat	2700
	ccaaagaaac	attccaacgg	cttatgagat	ggaggagttc	tttgcttatg	ccgagaagca	2760
10	gcaacaaaca	atatttatgg	acaagtgtgt	atactcttat	attccacaag	tcctttttt	2820
	tgtttctaac	atatgggtat	ttgtatttag	atttcttcct	catttattaa	tgtaattatg	2880
45	taacgtgctt	atgtctaaac	tgtctgtatt	atgcaggtac	aatttcgaca	ttgtcaatga	2940
15	agtacctctg	cctggacggt	acgagtgggt	cccagtactc	cactaggagt	gtcatatggt	3000
	gataatatgg	gatttcaaga	gccattagac	ttgtatttta	attttaacaa	ctagaagaag	3060
20	ctttgactaa	ccatttagat	tgcttgaggc	tcttgtttaa	caagctacaa	gggaaaggat	3120
	ctgtttagaa	atttccaata	tccgattagt	agtttagtag	tgtctttctg	atctgtaggg	3180
	tgtagggggg	gtatatggta	tatctagttt	ctaagtcatc	tttaatgtaa	tttcattacc	3240
25	ttctgtttat	ataattcagc	ggggattaga	catgatgttc	ttgtagagag		3290
30	<210> 114 <211> 618 <212> DNA <213> Glyo	cine sp.					
	<400> 114 atggggaagt	acatgaagaa	gtccaaaatc	gccggtgacg	tcgccgccgt	gatcatggag	60
25	geteegeege	cgcactccca	cctcggcgtc	cgcacccgcg	ccaagactct	cgccctccag	120
35	aatacctccc	cggactcctc	cgcctacctc	cageteegca	gccgccgcct	cctcaagctc	180
	ccccctaccc	cgccggaaaa	teccegeege	teegeegeeg	aaaccgccgc	caattcccgc	240
40	ctcgccaaaa	cgacgtcgtc	ccgtaacgcc	gaaaagttcg	catctttcga	tgacgacaac	300
	aataccgaat	gctctttcgg	cgaaaatttc	ttagacgccg	aacccaggga	ggaaaggagc	360
	accagggaaa	gcaccccttg	tagttttata	agggactcaa	atgccattca	tacccctggt	420
45	tcaaccacaa	ggccaaggac	tcgccaaata	atccatgagc	acatccaaag	aaacattcca	480
							540
	acggcttatg	agatggagga	gttctttgct	tatgccgaga	agcagcaaca	aacaatattt	740
	acggcttatg atggacaagt	agatggagga acaatttcga	gttctttgct cattgtcaat	tatgccgaga gaagtacctc	agcagcaaca tgcctggacg	aacaatattt gtacgagtgg	600
50	acggcttatg atggacaagt gtcccagtac	agatggagga acaatttcga tccactag	gttctttgct cattgtcaat	tatgccgaga gaagtacctc	agcagcaaca tgcctggacg	aacaatattt gtacgagtgg	600 618

<210> 115 <211> 1728 <212> DNA <213> Glycine sp.

55

	aacctcatga	ttctcgtttt	ctcattcttc	ccctcccccc	aaccaaccgt	gacagcatca	
F	atttccgttt	ccgacacccc	ctcaaccgtc	acttcccgcc	acgtgtcact	ccctcattcg	
5	ccctcctttc	ggcgcctgtg	atcaccgcta	tcaaaaccct	caacacctca	accttttcga	
	gtttgtaacc	tctttgtcac	gttttcctcg	tcgcacaaac	accacactac	acttttgaac	
10	actgaaaatt	gagatcgcag	aagaagaata	ttaatggaga	tggctcaggt	taaggcacga	
	gctcgaactg	cattggccat	ggccgcttcc	gcaagttcac	ggaagagaag	aaaaatctcg	
	atcaacaaca	acttcgttca	aatcaagagt	ttgagcaacg	caaccgtgcc	ggcgacgggg	
15	gaacgaatct	ccggggaatc	tccggcgtct	tgctgctcca	gcaacggatc	cgtcgacgat	
	gaaaaccgaa	tcatcaaatt	ctcagatcta	gaggtgaatg	ttaataataa	ataataacaa	
	ttactaatta	ttaattgaac	tggcgttttg	tctctcctta	aattgcttct	cattaatgtg	
20	tagttgtgat	gtaacgcatt	tttttcagg	ttgagagcac	gcgagttgta	acgtcgacgt	
	gcgactgcgg	tgaacaacaa	caacaaataa	ggtctcgaat	tttaaattaa	attttaatta	
	atttgaagtt	caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	assaaassa	aggecaaaaa	aaaaaaaaaa	aaaaaaaaaa	

	gcgactgcgg	tgaacaacaa	caacaaataa	ggtctcgaat	tttaaattaa	attttaatta	720
	atttgaagtt	caaaaaagg	gaaaaggaaa	aggccaaaaa	aaagaaaaga	aaagaaaaga	780
25	aagtgcttac	aatcgtttca	aatctttaat	ggttcggttt	tgtttgaatt	caaaacaatt	840
	aaaaaggtgt	gattgagtga	gtttatcgta	tggtatgtgt	aagtcatcat	catgattatt	900
30	gttccttctg	ttaaaaaaaa	aaactaattc	tgtaactctc	tgacatgcat	gtatatcaat	960
	tatgcgcata	tatatatcat	atgcatcatc	ataaatatct	ctgcattatt	attacacatt	1020
	ctgaaaatta	accagaaaaa	aacattgtgt	tgttgtgttc	tttcaggaga	gagatgagtc	1080
35	tcacgagcga	gcttcgaatc	acgaattctt	cttcgcaaga	ggtggattca	gcggaggagc	1140
	agatcaccca	aaccaaatct	ttgccgccgc	agaaaatgcc	gacggagttg	gagctcgatg	1200
	aattcttcgc	cgctgctgag	aaagatattc	ggaaacgctt	ctcagacaag	taatataata	1260
40	gtagtagtaa	taacaaattt	ccatttcaaa	aaatgggaaa	ttaaaactga	aaaatggagt	1320
	atatgatatt	gttgattaat	aaatctgcag	gtataattat	gatattgtga	aggacgtgtc	1380
	attggaagga	cgatacgagt	gggttaaatt	gaagccataa	aagtgagagt	accaaccttg	1440
45	aaggaaggaa	ggaacaatag	aagaacacgg	ttaataaaaa	aatgccactt	gctgacatta	1500
	ttcttacgtt	aatttacttt	aggtacttga	ttttcactt	caattttccg	tctttcacag	1560
50	tagtactacg	ctttgtttgg	tgtacagtta	aatattattt	ttcttctatg	gttatttgtg	1620
00	tacggtttat	gatatagtta	tacggagaag	ctagttctgt	gaattccgtt	gagggaggtg	1680
	actagcgaaa	acggttccta	caaggctgta	acaaaattgt	agtctcat		1728

<210> 116 <211> 489

<400> 115

	<212> DNA <213> Glycine sp.	
5	<400> 116 atggagatgg ctcaggttaa ggcacgagct cgaactgcat tggccatggc cgcttccgca	60
	agttcacgga agagaagaaa aatctcgatc aacaacaact tcgttcaaat caagagtttg	120
	agcaacgcaa ccgtgccggc gacggggggaa cgaatctccg gggaatctcc ggcgtcttgc	180
10	tgctccagca acggatccgt cgacgatgaa aaccgaatca tcaaattctc agatctagag	240
	gttgagagca cgcgagttgt aacgtcgacg tgcgactgcg gtgaacaaca acaacaaata	300
15	aggagagaga tgagteteae gagegagett egaateaega attettette geaagaggtg	360
15	gattcagcgg aggagcagat cacccaaacc aaatctttgc cgccgcagaa aatgccgacg	420
	gagttggagc tcgatgaatt cttcgccgct gctgagaaag atattcggaa acgcttctca	480
20	gacaagtaa	489
25	<210> 117 <211> 1466 <212> DNA <213> Glycine sp.	
	<400> 117 gattetteet teetaacete atgatteteg tttaeteatt eeeeteeaa etaacegtga	60
30	cagcateett ttgegtttte aacaeeetet caacegteae eteeegeeae gtgteaetee	120
	ctcattcgcc ctcctccggc gcctgtgatc accgcttccc accgctatca aaacccccaa	180
	cacctcaacc tttcttcttt ttttttttc cttcttctct tcgtcacgat ttctatcctc	240
35	gtcgcacttt cgaacactga aaattgagat tgcagaagaa tatcaatgga gatggctcag	300
	gttaaggcac gagctcgaac tgcattggcc atggcagctt ccgcaacttc accgaagaga	360
	agaaaaatct ccttcgttca aatcaagagt ttgagcaacg ctacctctcc gacgacggag	420
40	gaacgaatct ccggcgaatc tccggcttcg tgctgctcca gcaacggatc cttcgacaac	480
	gaaaaccgaa tcatcaaatc ctcagatcta gaggtgaata ttatcaataa attataaatt	540
15	ataatgataa ttactaatta ttatatatca atgaattagt ttgattgaac ttgcgttttg	600
45	tctctcctta aattgcttct cattaatgtg ttgtaataat gtaacttaat tttttcaggt	660
	tgagagtgcg caagttgaaa catggacgtg caactgcggt gaacaacaac aacaaaaaat	720
50	aaggtetega attttagatt caaaaaagga aaacaacaaa ataaaatagt gattgeaata	780
	gtttcaaatc ttgaatgatt cggtttcgtt tgaattcaaa acgattaaaa aggtgtgagt	840
	gagtgagtgt atcgtatcgt atgtgcaagt catcatcatg attattgttc cttcctttca	900
55	aaaaaactaa ttctgtaact ctctgacatg catgtatcaa ttatgctcat gtatatgtat	960

144

atatatgcat catcatacat atgtgcatta ttattacaca ttctgaaaat taaccgaaaa 1020
	aaattgtgtc	gttgcaggag	agagatgagt	ctcacgcgcg	aggtggattc	aacggaggag	1080
	catatcacca	aaaccaaatc	tcgctgcgtt	ccaacggagt	cggagctcga	agatttcttc	1140
5	gctgctgcgg	agaaagacat	tcagaaacgc	ttcacagaca	agtaagataa	caattcattg	1200
	ccatttttaa	aatgtgaaat	taaaactgaa	ttaaaaatat	ggtatatata	tatatatata	1260
	tatatatatt	tattgatgtg	tttggaattt	tgcatattat	atttatttt	gttcattaat	1320
10	ctgcaggtat	aattatgatt	ttgtgaagga	catgcctttg	gagggacaat	acgagtgggt	1380
	taaattgaag	tcataaaagt	gaaagtacca	accttgaaag	aagaagaaga	agaagaccgt	1440
	taattaaaaa	atcatgccac	ttgctg				1466
20	<210> 118 <211> 366 <212> DNA <213> Glyc <400> 118	cine sp.					
	atggctcagg	ttaaggcacg	agctcgaact	gcattggcca	tggcagcttc	cgcaacttca	60
	ccgaagagaa	gaaaaatctc	cttcgttcaa	atcaagagtt	tgagcaacgc	tacctctccg	120
25	acgacggagg	aacgaatctc	cggcgaatct	ccggcttcgt	gctgctccag	caacggatcc	180
	ttcgacaacg	aaaaccgaat	catcaaatcc	tcagatctag	aggagagaga	tgagtctcac	240
	gcgcgaggtg	gattcaacgg	aggagcatat	caccaaaacc	aaatctcgct	gcgttccaac	300
30	ggagtcggag	ctcgaagatt	tcttcgctgc	tgcggagaaa	gacattcaga	aacgcttcac	360
	agacaa						366
35	<210> 119 <211> 1648 <212> DNA <213> Glyo	3 cine sp.					
40	<400> 119 actttcatca	gcaaaaacca	aaacctgaaa	aaggaagagt	gtgtggaaat	tggcatcgct	60
	cgcaagagca	acaactagta	gtacctaaag	agacagagag	tgtgcacatc	tatgtcatct	120
	caggtcggtg	tcaggacacg	agcccgagcc	gcattagcca	tggaagctgc	tactgccagt	180
45	tcagctcaac	cctcttcgaa	gagaaagaag	atctacgaca	ctaaccatgt	ggcaaaactc	240
	tccaaaactc	cgagaacaag	ttetteetee	ttcttcatac	ctgcgacggt	gacggagatt	300
50	gttcaggaac	gctgcctcag	ccctacctcc	agtgaaattc	cggcttcttg	ctgctccagc	360
00	aacggatcca	ttggcctcga	tgaggatagg	atcaagctct	tagatctgga	ggtaatcgat	420
	actattaaac	actcgctttg	ttgctacgat	ttattgctgt	gttgtagatt	ttgtaattga	480
55	acactcgttt	ttaatttgtt	gctgtccttg	attaatttac	cgctttagtt	tgtagagcct	540
	ttcgctcatt	catttttcc	ttcacctaaa	ttaatgcacc	ggattcgacg	ttccttttat	600

	ttacaggtgg	agagcgcgca	agttgaaacg	tcgacgtgca	atggtggtca	agaaattgag	660
	aggttttgaa	tgaaactgat	ttatttaatt	taaatttgaa	attgcttcaa	gtcactttta	720
5	atttcctggt	agaattctat	tttcaaaatt	ttgaataatt	caggtccatt	gagttcgaaa	780
	cgcacgagat	actcaacagt	cataatttct	tccgttcaaa	actccaactc	agtttttctc	840
	gcgcgtgtgt	gtgtatatat	tcattcgtgc	cactgcacat	tctgtctaca	attctgaacc	900
10	ataataattt	tttggtgtcg	gccgttgcag	gagagagatg	aaaagttcca	gcgagcttcg	960
	agagaattca	caggagccgg	agccaatgga	gatcaattct	caccgtgcct	tatcaaaggc	1020
15	aaaagccatg	cctaccgagt	tggagctcga	ggaattcttc	gttgctgcgg	agaaggacat	1080
15	tcagaaacga	tttcaagaca	agtaagttaa	aatcagtgga	attaattaat	tttcttctct	1140
	ctctctctct	ctctccactg	tttcttcttt	ttcttttaaa	atttttgaca	tcataattag	1200
20	tatatcatat	agctccatcc	atcattcctt	tcaattaaaa	aattattttg	caggtacaat	1260
	tatgatattg	ttaaggacgt	accactggaa	ggacgctacg	agtgggttca	gttgaagcca	1320
	tgaacgtgtg	cgtctcgcca	ccgaagaaga	aaaactccga	tcaatttgaa	catgtcattt	1380
25	tggtctattt	atatattgtt	aattaagtct	agtctaggtc	tttgatttca	atcttaatta	1440
	tctttttaat	tttacaccag	ccaagactct	tttatattct	ggttgcagct	tttttatat	1500
	ttcggtgtga	ttataggtta	agggtaaaca	ggaattcagc	ttcgtttgtt	ctctgtacgg	1560
30	agaagcagct	taaagctagc	ttgtgcagaa	aaatactgta	aatttccctt	ggtgaagaag	1620
	aacaaacgct	tccattttac	agacttca				1648

<210> 120 <211> 597 <212> DNA <213> Glycine sp.

35

<400> 120 40 atgtcatctc aggtcggtgt caggacacga gcccgagccg cattagccat ggaagctgct 60 actgccagtt cagctcaacc ctcttcgaag agaaagaaga tctacgacac taaccatgtg 120 gcaaaactct ccaaaactcc gagaacaagt tcttcctcct tcttcatacc tgcgacggtg 180 45 acggagattg ttcaggaacg ctgcctcagc cctacctcca gtgaaattcc ggcttcttgc 240 tgctccagca acggatccat tggcctcgat gaggatagga tcaagctctt agatctggag 300 360 gtggagagcg cgcaagttga aacgtcgacg tgcaatggtg gtcaagaaat tgagaggaga 50 gagatgaaaa gttccagcga gcttcgagag aattcacagg agccggagcc aatggagatc 420 480 aatteteace gtgeettate aaaggeaaaa geeatgeeta eegagttgga getegaggaa ttcttcgttg ctgcggagaa ggacattcag aaacgatttc aagacaagta caattatgat 540 55 attgttaagg acgtaccact ggaaggacgc tacgagtggg ttcagttgaa gccatga 597

	<210> 121 <211> 1724 <212> DNA <213> Glyo	l					
5	.400. 101	und op.					
	<400> 121 tgaacccctt	tcgtcattat	cacaattttc	gtcttctccg	tactacacgc	gcgcaccaac	60
	ttacgctcac	gccactcctc	ccttctttcc	tttcttcacc	cctagtttct	ctctcttaca	120
10	ttagcaaaaa	ccaaaacccg	aaaaacgca	cagcacagca	tcgagcacag	caacacctga	180
	aaaaggaagg	gttagtgagt	gtgtgtgtgg	aaattgtcat	cgctcgcaag	agcaacaaca	240
15	actagtactt	aaagagacag	agagtgtgca	catcaatgtc	tgctcaggtc	ggtgtcagga	300
15	cacgagccca	agccgcatta	gccatggaag	ctgttagttc	tgctgaacca	tcatccaaga	360
	gaaagaagat	cagcaacagt	actaaccaag	agccaaaact	ctccaagact	ccgagaacga	420
20	gttcttcctc	cgctgtcaaa	ccagcgacgg	tgacggagat	ggttcagccg	gtgtcgccgg	480
	agatggttca	gcaacgctgc	ctgagcccta	cctccagtga	aattccggcg	tcttgctgct	540
	ccagcaacgg	atccattggc	ctcgatcagg	acaggatcaa	gctcttagat	ctggaggtaa	600
25	tggatattga	gcactcgctt	tgttactagg	ctttactgct	cttgtagatt	ttctaattga	660
	acactcgttt	taattaattt	accgctttag	tgaagagcct	ttcgctcatt	cattttttcc	720
	ttcacctaaa	ttaatgcacc	gcattcattc	aacgttcctt	ttatttaaca	ggtggagagc	780
30	gcgcaagttg	aaacgtcgac	gtgcaatggt	ggtcatgaaa	ttgagaggtg	tttgaatgaa	840
	actgatttat	ttatttattt	atttaatttt	gaaattactc	caggtcagtt	ttaatttcat	900
35	ggtggaattc	tcatttcaaa	attttcgaaa	cgcacgaaat	aaattaaatt	atagtatgtc	960
	tcaacagtca	taatttcttc	cgttcaaaac	tccaactcgt	atgtgtatat	atattcgtgc	1020
	actgcacaca	ttctacctac	agttctgaat	cataataatt	ttttgtatct	gccattgcag	1080
40	gagagagatg	aaacgttcca	gcgagcttcg	cgagaattct	caggagccgg	agccaatgga	1140
	gatcaattct	caccgtgtct	tatcaaaggc	aaaagccatg	cctaccgaat	tggagctcga	1200
	ggaattcttc	gctgcctcgg	agaaagacat	tcagaaacga	tttcaagaca	ggtaagttaa	1260
45	aatcagtgga	attaattttc	ttctttctct	ctctttactg	tttcttctta	atttttcttt	1320
	tttttttat	aattttttgg	catcataatt	agtgtatcat	tcctttcaat	taaaaattc	1380
50	ttttgcagat	acaattatga	tattgttaag	gacgtaccgc	tggaaggacg	ctacgagtgg	1440
50	gttcagttga	agccttgaac	gtgtgcgtcc	cagttcgtat	cgccatcgaa	gaagaaaagc	1500
	tccgatcaaa	ttgaacatgt	cattttggcc	tatttatata	ttgttaatta	agtctagtct	1560
55	aggtctttga	tttcaatcta	aattatcttt	ttaatttaca	ccagccaaga	ctcttttatg	1620
	atctggtgta	cagcttttt	atatttattt	cggtgtggtt	agttattggt	taagggtaaa	1680

	caggaatgaa ttcagcttcg	tttgttctct	gtacggagag	cagc		1724
5	<210> 122 <211> 618 <212> DNA <213> Glycine sp.					
10	<400> 122 atgtctgctc aggtcggtgt	caggacacga	gcccaagccg	cattagccat	ggaagctgtt	60
	agttctgctg aaccatcatc	caagagaaag	aagatcagca	acagtactaa	ccaagagcca	120
	aaactctcca agactccgag	aacgagttct	tcctccgctg	tcaaaccagc	gacggtgacg	180
15	gagatggttc agccggtgtc	gccggagatg	gttcagcaac	gctgcctgag	ccctacctcc	240
	agtgaaattc cggcgtcttg	ctgctccagc	aacggatcca	ttggcctcga	tcaggacagg	300
	atcaagctct tagatctgga	ggtggagagc	gcgcaagttg	aaacgtcgac	gtgcaatggt	360
20	ggtcatgaaa ttgagaggag	agagatgaaa	cgttccagcg	agcttcgcga	gaattctcag	420
	gagccggagc caatggagat	caattctcac	cgtgtcttat	caaaggcaaa	agccatgcct	480
25	accgaattgg agctcgagga	attcttcgct	gcctcggaga	aagacattca	gaaacgattt	540
25	caagacagat acaattatga	tattgttaag	gacgtaccgc	tggaaggacg	ctacgagtgg	600
	gttcagttga agccttga					618
30	<210> 123 <211> 2714 <212> DNA <213> Glycine sp.					
35	<400> 123					60
						100
				gtteeegeet	cacegtggeg	120
40	gegegegegt ereegarggg	aaagtacatg	aagaaagega		agaactegeg	240
	ctcgtcgaat ccaccaccag	caacaccacc	acctectaea		aaccegegee	240
45	aaaaccetag egetteagaa	accgcacgcg	cagcagcacg	agetegeege	caceteegae	300
			cagaageete			420
	aagegeeeta ageaeeegaa	cectaaatee	ceaateeeeg	addetteedag	geteggaete	420
50	getteggage gegaegetae	ceteaaceae	aacaaggaca	there are the	tgagaatgee	480
	gageeteagg aagegtegtt	cygggaaaat	gututggatt		ayayaggtga	540
			ccaattcgtt	LIGALILIG	cactcataaa	600
55	getgettaeg gattttetea			attttgtga	tgaaaaaaaa	550
	aattaaatta gtgaatgccc	tatttttgg	ggggtattat	gatttcgtct	tgggtggaag	720

	acgactgtgg	ggcaaagtac	taaaacgtgg	atttgaaatt	gattttttc	tttttctctc	780
	tggttttatg	gtgttttgtt	cggttgagtt	aaccgtgttt	tgaagatcaa	agtgtttttg	840
5	aagcaattgt	aaaacttcat	ggccttattt	gctgcaatgt	aattcggttt	ctttcctgaa	900
	tatcagtcag	aactcagaaa	gatgattgag	tgtggggatt	tttgttttct	tctttaacgg	960
	ttcagtgttg	tgttcctatt	cttgtggtaa	gaggttgatt	tgctgcacag	cttttcttct	1020
10	cttcggacat	tttgtgctct	tttttttt	ttttggatga	tcttttcagt	tatgcatgca	1080
	attcttgtga	aatttttgag	ctagatttt	tctgtgaaag	tattttcttc	attgtcttct	1140
	atcatatttt	ccccccaatt	caaggattca	ctgaagaaag	atgttttgtt	ttetetteet	1200
15	accaaaactt	ttagtatatg	tttccaatat	cgaaagtcgt	gtgaccattt	tctttggaca	1260
	tgttcacctg	atatcctaaa	aatgcttcct	attgatctga	agatgttaat	tagaaaataa	1320
20	tctacgaaat	ctattcaagg	ggaatacttc	attttttta	tatcctgccg	ttggagtact	1380
20	ttgttggcag	aaaatgttga	tatttgataa	ttcgtcagaa	agttcgcctc	tttttcctca	1440
	atttgacgtt	tttatttatt	gttttagcga	ttgaaatatt	tcactaattt	ctctggtcgt	1500
25	gtgctattag	atttgtatat	aataatgata	ataatagtaa	taattaatat	taaccataat	1560
	aatgtagtgt	agagcggaaa	aaataatcaa	tttttttt	caactgagag	aatgatgtga	1620
	tctgtataaa	ccatcaaaag	aagagatatc	ccttattaag	caatctccca	tttcctgcaa	1680
30	acttcttttt	tctggcggaa	acgaggttag	aacttgaatc	gttaaatatt	ctcatatctg	1740
	aatcgacata	tgcacagtga	ttttgaaacc	ttgttctttg	gctttaaatg	tggtgctggt	1800
	cagccttgat	tttacgagca	ttatcatttt	tgccgttttg	agactagctc	ttacctctta	1860
35	cctaaaatat	tgttttgcct	tttgccacta	atatgctttc	atttttgtg	tgtgtttcta	1920
	ttctactact	ttacggttaa	attgttaaat	tgatatattt	attattcgct	gcagaagcac	1980
	tagggaatcc	acaccttgca	gtttgataag	ggactcggat	actgtcagga	ctccgggttc	2040
40	aactaccagg	cctacttgtt	cagctgaagc	ttatcgaaga	acagagcatg	cagctagaag	2100
	gcaaatccca	acctcccgtg	aaatggatga	attctttgct	gaaattgaag	aggeteagea	2160
	aaaaaattc	attgagaagt	atgctttatt	gctttgaatt	tatttagttc	tttcttgcta	2220
45	aactgcaacg	tctgttgcat	ccccacaaac	tagttaatca	cttgagttca	attgcaggta	2280
	caactttgat	cctgtgaatg	agaagccgct	ctcagggcgc	tatgaatggg	aaaagttgaa	2340
50	accctagaag	ggtaatgtag	tgttccatca	agacatcttt	gaagtagcag	gcaggcagca	2400
	gggttagaat	ttgttgaagc	ggtggtggcg	ttatttcact	tttccatcac	cttctattta	2460
	cttgtaaaga	aagtaggact	cttaaaactg	tgtagactaa	tggtctgtaa	ctttacagag	2520
55	gttgttgatt	acacaacaat	acaaatcaaa	ggcctttgtc	taacagatca	ttttaaggaa	2580
	gggggcaagg	gaagaagggg	ctgtagcgcg	taggattagg	gatcagtcaa	attaggtcag	2640

	tatgaggtac	aggaatttac	ctaggttttc	tcttgttctt	gtattttact	catcttttgt	2700
	ctatacttgt	actg					2714
5	<210> 124 <211> 675 <212> DNA <213> Glyc	cine sp.					
10	<400> 124 atgggaaagt	acatgaagaa	agcgaagccg	aaaggagaac	tcgcgctcgt	cgaatccacc	60
	accagcaaca	ccaccacctc	ctacatgggg	gtccgaaccc	gcgccaaaac	cctagcgctt	120
15	cagaaatcgc	acgcgcagca	gcacgagctc	gccgccacct	ccgactccta	cctccagctc	180
	cggagccgtc	gcctccagaa	gcctccgatt	ttggtccact	ctccgaagcg	ccctaagcac	240
	ccgaacccta	aatccccaat	ccccgaacct	cccaggctcg	gactcgcttc	ggagcgcgac	300
20	gctaccctca	accacaacaa	ggacaatact	ttgcatgaga	atgccgagcc	tcaggaagcg	360
	tcgttcgggg	aaaatgtttt	ggattttgaa	ggtagagaga	gaagcactag	ggaatccaca	420
25	ccttgcagtt	tgataaggga	ctcggatact	gtcaggactc	cgggttcaac	taccaggcct	480
	acttgttcag	ctgaagctta	tcgaagaaca	gagcatgcag	ctagaaggca	aatcccaacc	540
	tcccgtgaaa	tggatgaatt	ctttgctgaa	attgaagagg	ctcagcaaaa	aaaattcatt	600
30	gagaagtaca	actttgatcc	tgtgaatgag	aagccgctct	cagggcgcta	tgaatgggaa	660
	aagttgaaac	cctag					675
35	<210> 125 <211> 1775 <212> DNA <213> Glyo	5 cine sp.					
40	<400> 125 agaagagaag	agaagaggct	aaaagggtag	caatgatcgt	aacgatgtcg	tttagtggcc	60
	actgtagctg	gagaaggacg	aaggggaggg	agacaagagg	gacccacctt	ctgattaata	120
	aattaaatct	gaaccgtcca	aggatcgatt	cactgcgctc	agtaaatatt	ctctgcgatc	180
45	accctctttt	taagctccct	ctacctctct	ccctaagcct	accccatctc	aaaatagaaa	240
	aaagaaactc	tcccacaata	caaacacaga	cacagagaaa	gaaaagaata	atgggtgagt	300
50	gtaaacgctg	ctgctctctc	acagttctgg	ccatggaaga	accttcttca	agccaacatt	360
50	ccattttcaa	aaaaagaaaa	accaccgcta	ctgctgctca	ttccacttcc	ttccagttat	420
	gctcttccga	tatgcagttt	ccccacacta	tcgtctcgcc	ggaagtttca	tttagttccg	480
55	cctgcacggt	tgtttccggc	gagttttgct	ccgatcgctc	ctgctgcagc	tccagccacg	540
	ttaaggacct	ccactccgtg	ccgtcagatc	tgcaggttcg	gtcctcgaaa	ttctgaatta	600

	ttattattat	ttttatttt	attgcgaact	gtttttactt	tcttaatttt	ccgagttacc	660
	tttccaaatt	ttcctgtgtt	taattaacct	atttaatttc	tatatttatt	gatattcttc	720
5	gccgattaat	gcagaccaag	ggtttcgaaa	cggtagaaga	ctcaaccagc	ctcaatttca	780
	aatcgttcag	gtttttgttc	tactttttt	tttttttgt	tctacttgtt	tctcatgtac	840
	gcacgatcaa	attttcaaac	gaaacgttgt	cgcaactgaa	acgctacatt	tatttattta	900
10	tttatttgtt	tcggttttgg	ttgttcagtt	tgttgagtga	gttttccgga	gactcggagg	960
	aatcggcgat	gattccggcg	aagtcttccg	cggcggtgct	gaaagtgaag	acgccgccga	1020
45	aggcggagat	cgaagagttt	ttcgcgatgg	ctgaaaagta	cgagcaaaaa	cggttcacag	1080
15	agaagtaagt	agtagtatat	atagttgatt	gctacaaata	aaagttttaa	tattgcaaat	1140
	tactggtgca	gtctcaatta	cagtcacaag	ccttgatgat	acgacctaaa	ccagggtcgc	1200
20	gaaccctttt	ttaaaacctt	ctatggtcta	agagtatttt	attttatttt	ttcatttcgc	1260
	gcgacacagg	ataaggaatg	tgagccacct	cgcactctag	cggtaccaga	aatcgaaccc	1320
	taactaacta	actaacaact	ttcccttggg	tgcaggtaca	actttgatat	tgttagagat	1380
25	ttgccgttgg	agggtcgcta	ccagtgggtt	cgtttacatt	gaatgccttc	aatgagagag	1440
	agagagatag	agtttgcatt	tttagtttta	gaaagagaaa	tggaggttga	tgagagggtg	1500
	agtttgtagt	gtatgtttag	ccattggagt	acactggtga	ggaagctaac	ctgacacgag	1560
30	gtaaaacgaa	aacgagcatg	caacttttgt	tggttgctct	gaaaagacgg	tgctagtggt	1620
	agtggtgatg	ggttggttta	tgtatagcta	actgttttct	ctttctttt	atgtgggata	1680
	caacaaggtg	gcttttctgc	aaactctgca	ctcagaatag	aactagtaga	accttctttg	1740
35	tgaggtgatg	aagaaaaaga	aagaaaagga	aaaag			1775
40	<210> 126 <211> 564 <212> DNA <213> Glyo	cine sp.					
	<400> 126	gtaaacgetg	ctactetete	acagttetgg	ccatggaaga	accttcttca	60
45	agccaacatt	ccattttcaa	aaaaagaaaa	accaccgcta	ctgctgctca	ttccacttcc	120
	ttccagttat	gctcttccga	tatgcagttt	ccccacacta	tcqtctcqcc	ggaagtttca	180
	tttagttccg	cctgcacggt	tgtttccggc	gagttttgct	ccgatcgctc	ctgctgcagc	240
50	tccagccacq	ttaaggacct	ccactccgtq	ccgtcagatc	tgcagaccaa	gggtttcgaa	300
	acggtagaag	actcaaccag	cctcaatttc	aaatcgttca	gtttgttgag	tgagttttcc	360
	ggagactcoo	aggaatcooc	gatgattcco	gcgaagtctt	ccgcqqcqat	gctgaaaqtq	420
55	aagacgccgc	cgaaggcgga	gatcgaagag	tttttcgcga	tggctgaaaa	gtacgagcaa	480

aaacggttca cagagaagta caactttgat attgttagag atttgccgtt ggagggtcgc 540

	taccagtggg	ttcgtttaca	ttga				564
5	<210> 127 <211> 2149 <212> DNA <213> Glyo) cine sp.					
10	<400> 127 tttcatcgtg	tcgatatttg	ccctagcttg	gccccaccgg	tgacggaaaa	aaaaaccttt	60
	aattctataa	tttcaatatg	tgagtgattg	atttatttgt	aaaaataat	tcaacgagca	120
15	aacttatttg	taaaaaaag	aaaagaaggt	attttattt	actgatttca	aattattctg	180
	taattttggt	cataaaaatc	taaaactgaa	cataagttta	ttattattta	gaagagagaa	240
	gaagaggcta	aaagggagag	tagcagtagc	aatgatcgta	acgatgtcgt	ttagcgggta	300
20	ctgtagctgg	agaaagacaa	gagggaccat	ccacgaatcg	attcactgcg	ctcagtaaat	360
	attcctctgc	gatcactctc	tttttaagct	ccctccacct	ctctccctaa	gcctagccca	420
	tctcaaaata	gaaacacaac	acaacacaac	acagagaatg	ggtgagtgta	aacgctgctc	480
25	tctcacaatt	gccgccatag	aacaaccttc	ttcaagccaa	cattccattt	ccaagaaaag	540
	aaaaaccacc	gcttccttcc	agttacgctc	ttccgatacg	cagtttcccg	acactatcgt	600
30	ctcgccggaa	gcttccgtca	gttctaccgg	cacggttgtt	tccggcgatt	tttgctccga	660
00	tcgctcttgc	tgcagctcca	gccactttaa	ggacctccac	tccgtgccgt	cagatctgca	720
	ggttcgctcc	tcgaaattct	gaattattat	tatgaattgt	taatttactt	tcgtaatttt	780
35	ccgagttata	acctgtccaa	attttcctgt	gtttaatttc	tttatatcta	tttatttatt	840
	gatattcctc	gccgattaat	gcagaccaag	ggtttccaaa	cggtagagga	ctcaaccaac	900
	cgctacttca	agccgttcag	gttttattc	tacttatttt	ttgttcgagt	tctttctcat	960
40	gtacgcgcac	acgatcaatc	ttctaacgaa	acgttgccac	cgaaacactg	cgtatacata	1020
	catttatttt	attttatttt	atttatttat	ttgcttcggt	tttggttgtt	cagtttgttg	1080
	agtgagtttt	ctggagactc	ggaggaatcg	gcgaagtctt	ccgcggcagt	gcggaaattg	1140
45	aagacgccac	cacaagcaga	gatcgaagag	ttttcgcga	tggcggaaaa	gtacgagcga	1200
	aaacggttca	cagagaagta	agtagtgtag	tgtatatagt	tgatggcaac	attaagctaa	1260
50	gagtgtttta	ttttaatttt	ttatttcgcg	cgacacagaa	taaggaatgt	gagccagctc	1320
50	acactcaagc	ggtgccagaa	atcgaaccct	aactgactaa	caactttccc	ttgcgtgcag	1380
	gtacaacttt	gatattgtta	gagatttgcc	gttggagggt	cgctaccagt	gggttcgttt	1440
55	acattgaatg	ccttcaatga	aagagagaga	gagagagaga	gagtttgcat	tttttagttt	1500
	tagagagaga	aatggaggtt	gatgagtttg	tagtgtttag	tcatttgagt	acactggtaa	1560

	ggaagctaac	ctgacacgag	gtaaaacgaa	aacgagcgtg	caactttttc	tggttgcttt	1620
	gaaaaagacg	gtggtggtgg	tgggttggtt	tacgtatagc	taactgtttt	ctctttctct	1680
5	ttatgttgga	tacaacaagc	tagctttttc	tgcaatctct	gcactctgat	agaagtagta	1740
	gaaccttctt	tgtgaggtga	tgaagaaaaa	caaaaaacaa	aattgggttt	tgtgggaaat	1800
	atacaaagaa	cacaagaatt	tccgctatga	atattggtga	tctaaaatat	gttaatgtaa	1860
10	ttgagagttt	gagaccgtct	ccttcagtgt	ttccagaaca	ataagggggt	tcagctaatt	1920
	catgcggctg	tttttttta	aaaaataatt	attcattatc	agaagaattc	atggatagaa	1980
	gaatattaat	tgttatttgg	ttactaattt	tctatgaaaa	gtgtcttttc	ttcgaccttc	2040
15	ccctcttgcc	tgcatgtttc	cttttcagct	ttccgtagct	tcattcaatt	acctttttt	2100
	atgtctggca	ttctttttc	ctttaggcca	tttggaatat	cctctccat		2149

<210> 128 <211> 531 <212> DNA <213> Glycine sp.

<400> 128

20

25 atgggtgagt gtaaacgctg ctctctcaca attgccgcca tagaacaacc ttcttcaagc 60 caacatteea ttteeaagaa aagaaaaace accgetteet teeagttaeg etetteegat 120 acgcagtttc ccgacactat cgtctcgccg gaagcttccg tcagttctac cggcacggtt 180 30 gtttccggcg atttttgctc cgatcgctct tgctgcagct ccagccactt taaggacctc 240 cactccgtgc cgtcagatct gcagaccaag ggtttccaaa cggtagagga ctcaaccaac 300 cgctacttca agccgttcag tttgttgagt gagttttctg gagactcgga ggaatcggcg 360 35 aagtottoog oggoagtgog gaaattgaag acgocaccac aagcagagat ogaagagttt 420 ttcgcgatgg cggaaaagta cgagcgaaaa cggttcacag agaagtacaa ctttgatatt 480 gttagagatt tgccgttgga gggtcgctac cagtgggttc gtttacattg a 531 40

<210> 129 <211> 201 <212> PRT <213> Glycine sp. 45 <400> 129 Met Gly Lys Tyr Met Lys Lys Ser Lys Ile Ala Gly Asp Val Ala Ala 5 1 10 15 50 Val Ile Met Glu Ala Pro Pro Pro His Ser His Leu Gly Val Arg Thr 20 25 30 55 Arg Ala Lys Thr Leu Ala Leu Gln Asn Asn Thr Thr Ser Pro Asp Pro 35 40 45

	Ser	Ala 50	Tyr	Leu	Gln	Leu	Arg 55	Ser	Arg	Arg	Leu	Leu 60	Lys	Leu	Pro	Pro
5	Thr 65	Pro	Pro	Glu	Asn	Pro 70	Arg	Arg	Ser	Ser	Ala 75	Glu	Thr	Ala	Ala	Asn 80
10	Phe	Arg	Leu	Ala	Asn 85	Ala	Gln	Lys	Leu	Ala 90	Ser	Phe	Glu	Asp	Asp 95	Asn
	Asn	Thr	Glu	Cys 100	Ser	Phe	Gly	Glu	Asn 105	Phe	Leu	Asp	Ala	Glu 110	Pro	Arg
15	Glu	Glu	Arg 115	Ser	Thr	Arg	Glu	Gly 120	Thr	Pro	Cys	Ser	Leu 125	Ile	Arg	Asp
20	Ser	Asn 130	Ala	Ile	His	Thr	Pro 135	Gly	Ser	Thr	Thr	Arg 140	Pro	Arg	Thr	Arg
25	Gln 145	Ile	Ile	His	Glu	His 150	Val	Gln	Arg	Asn	Ile 155	Pro	Thr	Ala	Tyr	Glu 160
	Met	Glu	Glu	Phe	Phe 165	Ala	Tyr	Ala	Glu	Lys 170	Gln	Gln	Gln	Thr	Ile 175	Phe
30	Met	Asp	Lys	Tyr 180	Asn	Phe	Asp	Ile	Val 185	Asn	Asp	Val	Pro	Leu 190	Pro	Gly
35	Arg	Tyr	Glu 195	Trp	Val	Pro	Val	Leu 200	His							
40	<210 <211 <212 <213)> 1 L> 2 2> H 3> (L30 205 PRT Glyci	ine s	sp.											
	<400)> 1	L30													
45	Met 1	Gly	Lys	Tyr	Met 5	Lys	Lys	Ser	Lys	Ile 10	Ala	Gly	Asp	Val	Ala 15	Ala
50	Val	Ile	Met	Glu 20	Ala	Pro	Pro	Pro	His 25	Ser	His	Leu	Gly	Val 30	Arg	Thr
	Arg	Ala	Lys 35	Thr	Leu	Ala	Leu	Gln 40	Asn	Thr	Ser	Pro	Asp 45	Ser	Ser	Ala
55	Tyr	Leu 50	Gln	Leu	Arg	Ser	Arg 55	Arg	Leu	Leu	Lys	Leu 60	Pro	Pro	Thr	Pro

	Pro 65	Glu	Asn	Pro	Arg	Arg 70	Ser	Ala	Ala	Glu	Thr 75	Ala	Ala	Asn	Ser	Arg 80
5	Leu	Ala	Lys	Thr	Thr 85	Ser	Ser	Arg	Asn	Ala 90	Glu	Lys	Phe	Ala	Ser 95	Phe
10	Asp	Asp	Asp	Asn 100	Asn	Thr	Glu	Cys	Ser 105	Phe	Gly	Glu	Asn	Phe 110	Leu	Asp
	Ala	Glu	Pro 115	Arg	Glu	Glu	Arg	Ser 120	Thr	Arg	Glu	Ser	Thr 125	Pro	Cys	Ser
15	Phe	Ile 130	Arg	Asp	Ser	Asn	Ala 135	Ile	His	Thr	Pro	Gly 140	Ser	Thr	Thr	Arg
20	Pro 145	Arg	Thr	Arg	Gln	Ile 150	Ile	His	Glu	His	Ile 155	Gln	Arg	Asn	Ile	Pro 160
25	Thr	Ala	Tyr	Glu	Met 165	Glu	Glu	Phe	Phe	Ala 170	Tyr	Ala	Glu	Lys	Gln 175	Gln
	Gln	Thr	Ile	Phe 180	Met	Asp	Lys	Tyr	Asn 185	Phe	Asp	Ile	Val	Asn 190	Glu	Val
30	Pro	Leu	Pro 195	Gly	Arg	Tyr	Glu	Trp 200	Val	Pro	Val	Leu	His 205			
35	<21(<211 <212 <213)> 1 L> 1 2> I 3> (L31 L62 PRT Slyci	ine s	sp.											
40	<400)> 1	L31													
-0	Met 1	Glu	Met	Ala	Gln 5	Val	Lys	Ala	Arg	Ala 10	Arg	Thr	Ala	Leu	Ala 15	Met
45	Ala	Ala	Ser	Ala 20	Ser	Ser	Arg	Lys	Arg 25	Arg	Lys	Ile	Ser	Ile 30	Asn	Asn
50	Asn	Phe	Val 35	Gln	Ile	Lys	Ser	Leu 40	Ser	Asn	Ala	Thr	Val 45	Pro	Ala	Thr
	Gly	Glu 50	Arg	Ile	Ser	Gly	Glu 55	Ser	Pro	Ala	Ser	Cys 60	Суз	Ser	Ser	Asn
55	Gly 65	Ser	Val	Asp	Asp	Glu 70	Asn	Arg	Ile	Ile	Lys 75	Phe	Ser	Asp	Leu	Glu 80

	Val	Glu	Ser	Thr	Arg 85	Val	Val	Thr	Ser	Thr 90	Cys	Asp	Cys	Gly	Glu 95	Gln
5	Gln	Gln	Gln	Ile 100	Arg	Arg	Glu	Met	Ser 105	Leu	Thr	Ser	Glu	Leu 110	Arg	Ile
10	Thr	Asn	Ser 115	Ser	Ser	Gln	Glu	Val 120	Asp	Ser	Ala	Glu	Glu 125	Gln	Ile	Thr
	Gln	Thr 130	Lys	Ser	Leu	Pro	Pro 135	Gln	Lys	Met	Pro	Thr 140	Glu	Leu	Glu	Leu
15	Asp 145	Glu	Phe	Phe	Ala	Ala 150	Ala	Glu	Lys	Asp	Ile 155	Arg	Lys	Arg	Phe	Ser 160
20	Asp	Lys														
25	<210 <211 <212 <213)> 1 L> 1 2> 1 3> (L32 L44 PRT Glyci	ine s	sp.											
	<400)> 1	L32													
30	Met 1	Ala	Gln	Val	Lys 5	Ala	Arg	Ala	Arg	Thr 10	Ala	Leu	Ala	Met	Ala 15	Ala
35	Ser	Ala	Thr	Ser 20	Pro	Lys	Arg	Arg	Lys 25	Ile	Ser	Phe	Val	Gln 30	Ile	Lys
	Ser	Leu	Ser 35	Asn	Ala	Thr	Ser	Pro 40	Thr	Thr	Glu	Glu	Arg 45	Ile	Ser	Gly
40	Glu	Ser 50	Pro	Ala	Ser	Cys	Cys 55	Ser	Ser	Asn	Gly	Ser 60	Phe	Asp	Asn	Glu
45	Asn 65	Arg	Ile	Ile	Lys	Ser 70	Ser	Asp	Leu	Glu	Val 75	Glu	Ser	Ala	Gln	Val 80
50	Glu	Thr	Trp	Thr	Cys 85	Asn	Cys	Gly	Glu	Gln 90	Gln	Gln	Gln	Lys	Ile 95	Arg
	Arg	Glu	Met	Ser 100	Leu	Thr	Arg	Glu	Val 105	Asp	Ser	Thr	Glu	Glu 110	His	Ile
55	Thr	Lys	Thr 115	Lys	Ser	Arg	Cys	Val 120	Pro	Thr	Glu	Ser	Glu 125	Leu	Glu	Asp

	Phe	Phe 130	Ala	Ala	Ala	Glu	Lys 135	Asp	Ile	Gln	Lys	Arg 140	Phe	Thr	Asp	Lys
5	<21(<211 <212 <213)> 1 _> 1 }> E }> C	133 198 PRT Glyci	ine s	sp.											
10	<400)> 1	.33													
	Met 1	Ser	Ser	Gln	Val 5	Gly	Val	Arg	Thr	Arg 10	Ala	Arg	Ala	Ala	Leu 15	Ala
15	Met	Glu	Ala	Ala 20	Thr	Ala	Ser	Ser	Ala 25	Gln	Pro	Ser	Ser	Lys 30	Arg	Lys
20	Lys	Ile	Tyr 35	Asp	Thr	Asn	His	Val 40	Ala	Lys	Leu	Ser	Lys 45	Thr	Pro	Arg
25	Thr	Ser 50	Ser	Ser	Ser	Phe	Phe 55	Ile	Pro	Ala	Thr	Val 60	Thr	Glu	Ile	Val
20	Gln 65	Glu	Arg	Cys	Leu	Ser 70	Pro	Thr	Ser	Ser	Glu 75	Ile	Pro	Ala	Ser	C ys 80
30	Cys	Ser	Ser	Asn	Gly 85	Ser	Ile	Gly	Leu	Asp 90	Glu	Asp	Arg	Ile	Lys 95	Leu
35	Leu	Asp	Leu	Glu 100	Val	Glu	Ser	Ala	Gln 105	Val	Glu	Thr	Ser	Thr 110	Cys	Asn
	Gly	Gly	Gln 115	Glu	Ile	Glu	Arg	Arg 120	Glu	Met	Lys	Ser	Ser 125	Ser	Glu	Leu
40	Arg	Glu 130	Asn	Ser	Gln	Glu	Pro 135	Glu	Pro	Met	Glu	Ile 140	Asn	Ser	His	Arg
45	Ala 145	Leu	Ser	Lys	Ala	Lys 150	Ala	Met	Pro	Thr	Glu 155	Leu	Glu	Leu	Glu	Glu 160
50	Phe	Phe	Val	Ala	Ala 165	Glu	Lys	Asp	Ile	Gln 170	Lys	Arg	Phe	Gln	As p 175	Lys
	Tyr	Asn	Tyr	Asp 180	Ile	Val	Lys	Asp	Val 185	Pro	Leu	Glu	Gly	Arg 190	Tyr	Glu
55	Trp	Val	Gln 195	Leu	Lys	Pro										

	<210>	134													
	<211>	205													
	<212>	PRT													
_	<213>	GLYCi	.ne s	sp.											
5	<400>	134													
	Met Sea 1	r Ala	Gln	Val 5	Gly	Val	Arg	Thr	Arg 10	Ala	Gln	Ala	Ala	Leu 15	Ala
10															
	Met Gl	ı Ala	Val 20	Ser	Ser	Ala	Glu	Pro 25	Ser	Ser	Lys	Arg	Lys 30	Lys	Ile
15	Ser As	n Ser 35	Thr	Asn	Gln	Glu	Pro 40	Lys	Leu	Ser	Lys	Thr 45	Pro	Arg	Thr
20	Ser Se 50	r Ser	Ser	Ala	Val	Lys 55	Pro	Ala	Thr	Val	Thr 60	Glu	Met	Val	Gln
	Pro Va 65	l Ser	Pro	Glu	Met 70	Val	Gln	Gln	Arg	Cys 75	Leu	Ser	Pro	Thr	Ser 80
25	Ser Gl	ı Ile	Pro	Ala 85	Ser	Cys	Cys	Ser	Ser 90	Asn	Gly	Ser	Ile	Gly 95	Leu
30	Asp Gl:	n Asp	Arg 100	Ile	Lys	Leu	Leu	Asp 105	Leu	Glu	Val	Glu	Ser 110	Ala	Gln
35	Val Gl	ı Thr 115	Ser	Thr	Cys	Asn	Gly 120	Gly	His	Glu	Ile	Glu 125	Arg	Arg	Glu
	Met Ly: 13	s Arg)	Ser	Ser	Glu	Leu 135	Arg	Glu	Asn	Ser	Gln 140	Glu	Pro	Glu	Pro
40	Met Gla 145	ı Ile	Asn	Ser	His 150	Arg	Val	Leu	Ser	Lys 155	Ala	Lys	Ala	Met	Pro 160
45	Thr Gl	ı Leu	Glu	Leu 165	Glu	Glu	Phe	Phe	Ala 170	Ala	Ser	Glu	Lys	Asp 175	Ile
50	Gln Ly:	s Arg	Phe 180	Gln	Asp	Arg	Tyr	As n 185	Tyr	Asp	Ile	Val	Lys 190	Asp	Val
	Pro Le	ı Glu 195	Gly	Arg	Tyr	Glu	Trp 200	Val	Gln	Leu	Lys	Pro 205			
55	<210> <211>	135 224													

	<212 <213	2> 3>	PRT Glyci	ine s	sp.											
5	<400)>	135													
	Met 1	Gly	' Lys	Tyr	Met 5	Lys	Lys	Ala	Lys	Pro 10	Lys	Gly	Glu	Leu	Ala 15	Leu
10	Val	Glu	Ser	Thr 20	Thr	Ser	Asn	Thr	Thr 25	Thr	Ser	Tyr	Met	Gly 30	Val	Arg
15	Thr	Arg	Ala 35	Lys	Thr	Leu	Ala	Leu 40	Gln	Lys	Ser	His	Ala 45	Gln	Gln	His
	Glu	Leu 50	Ala	Ala	Thr	Ser	As p 55	Ser	Tyr	Leu	Gln	Leu 60	Arg	Ser	Arg	Arg
20	Leu 65	Gln	Lys	Pro	Pro	Ile 70	Leu	Val	His	Ser	Pro 75	Lys	Arg	Pro	Lys	His 80
25	Pro	Asn	Pro	Lys	Ser 85	Pro	Ile	Pro	Glu	Pro 90	Pro	Arg	Leu	Gly	Leu 95	Ala
	Ser	Glu	Arg	Asp 100	Ala	Thr	Leu	Asn	His 105	Asn	Lys	Asp	Asn	Thr 110	Leu	His
30	Glu	Asn	Ala 115	Glu	Pro	Gln	Glu	Ala 120	Ser	Phe	Gly	Glu	Asn 125	Val	Leu	Asp
35	Phe	Glu 130	Gly	Arg	Glu	Arg	Ser 135	Thr	Arg	Glu	Ser	Thr 140	Pro	Cys	Ser	Leu
40	Ile 145	Arg	Asp	Ser	Asp	Thr 150	Val	Arg	Thr	Pro	Gly 155	Ser	Thr	Thr	Arg	Pro 160
40	Thr	Cys	Ser	Ala	Glu 165	Ala	Tyr	Arg	Arg	Thr 170	Glu	His	Ala	Ala	Arg 175	Arg
45	Gln	Ile	Pro	Thr 180	Ser	Arg	Glu	Met	Asp 185	Glu	Phe	Phe	Ala	Glu 190	Ile	Glu
50	Glu	Ala	. Gln 195	Gln	Lys	Lys	Phe	Ile 200	Glu	Lys	Tyr	Asn	Phe 205	Asp	Pro	Val
	Asn	Glu 210	Lys	Pro	Leu	Ser	Gly 215	Arg	Tyr	Glu	Trp	Glu 220	Lys	Leu	Lys	Pro
55	<21(<211)> L>	136 187													

	<212> <213>	PRT Glyc:	ine s	sp.											
5	<400>	136													
-	Met Gl 1	y Glu	Суз	Lys 5	Arg	Cys	Cys	Ser	Leu 10	Thr	Val	Leu	Ala	Met 15	Glu
10	Glu Pr	o Ser	Ser 20	Ser	Gln	His	Ser	Ile 25	Phe	Lys	Lys	Arg	Lys 30	Thr	Thr
15	Ala Th	r Ala 35	Ala	His	Ser	Thr	Ser 40	Phe	Gln	Leu	Cys	Ser 45	Ser	Asp	Met
	Gln Ph 50	e Pro	His	Thr	Ile	Val 55	Ser	Pro	Glu	Val	Ser 60	Phe	Ser	Ser	Ala
20	Cys Th 65	r Val	Val	Ser	Gly 70	Glu	Phe	Cys	Ser	As p 75	Arg	Ser	Cys	Cys	Ser 80
25	Ser Se	r His	Val	Lys 85	Asp	Leu	His	Ser	Val 90	Pro	Ser	Asp	Leu	Gln 95	Thr
30	Lys Gl	y Phe	Glu 100	Thr	Val	Glu	Asp	Ser 105	Thr	Ser	Leu	Asn	Phe 110	Lys	Ser
	Phe Se	r Leu 115	Leu	Ser	Glu	Phe	Ser 120	Gly	Asp	Ser	Glu	Glu 125	Ser	Ala	Met
35	Ile Pr 13	o Ala O	Lys	Ser	Ser	Ala 135	Ala	Val	Leu	Lys	Val 140	Lys	Thr	Pro	Pro
40	Lys Al 145	a Glu	Ile	Glu	Glu 150	Phe	Phe	Ala	Met	Ala 155	Glu	Lys	Tyr	Glu	Gln 160
	Lys Ar	g Phe	Thr	Glu 165	Lys	Tyr	Asn	Phe	Asp 170	Ile	Val	Arg	Asp	Leu 175	Pro
45	Leu Gl	u Gly	Arg 180	Tyr	Gln	Trp	Val	Arg 185	Leu	His					
50	<210> <211> <212> <213>	137 176 PRT Glyc:	ine :	sp.											
55	<400> Met Gl	137 y Glu	Cys	Lys 5	Arg	Cys	Ser	Leu	Thr	Ile	Ala	Ala	Ile	Glu 15	Gln

	Pro	Ser	Ser	Ser 20	Gln	His	Ser	Ile	Ser 25	Lys	Lys	Arg	Lys	Thr 30	Thr	Ala	
5	Ser	Phe	Gln 35	Leu	Arg	Ser	Ser	Asp 40	Thr	Gln	Phe	Pro	Asp 45	Thr	Ile	Val	
10	Ser	Pro 50	Glu	Ala	Ser	Val	Ser 55	Ser	Thr	Gly	Thr	Val 60	Val	Ser	Gly	Asp	
	Phe 65	Cys	Ser	Asp	Arg	Ser 70	Cys	Cys	Ser	Ser	Ser 75	His	Phe	Lys	Asp	Leu 80	
15	His	Ser	Val	Pro	Ser 85	Asp	Leu	Gln	Thr	Lys 90	Gly	Phe	Gln	Thr	Val 95	Glu	
20	Asp	Ser	Thr	Asn 100	Arg	Tyr	Phe	Lys	Pro 105	Phe	Ser	Leu	Leu	Ser 110	Glu	Phe	
25	Ser	Gly	Asp 115	Ser	Glu	Glu	Ser	Ala 120	Lys	Ser	Ser	Ala	Ala 125	Val	Arg	Lys	
	Leu	Lys 130	Thr	Pro	Pro	Gln	Ala 135	Glu	Ile	Glu	Glu	Phe 140	Phe	Ala	Met	Ala	
30	Glu 145	Lys	Tyr	Glu	Arg	Lys 150	Arg	Phe	Thr	Glu	Lys 155	Tyr	Asn	Phe	Asp	Ile 160	
35	Val	Arg	Asp	Leu	Pro 165	Leu	Glu	Gly	Arg	Tyr 170	Gln	Trp	Val	Arg	Leu 175	His	
40	<210 <211 <212 <213	0> 1 1> 1 2> 1 3> 1	L38 L678 DNA Friti	icum	sp.												
	<40(gcaç)> 1 gagca	L38 ata ç	gcaco	cacca	ac có	ggcad	cageo	a cad	acacó	gtag	ggtç	ggaaa	aaa q	gtaga	agagag	60
45	agaa	acago	yaa q	yagaa	aggaa	ng aa	aagaa	aaaa	a gco	cgato	gcc	gcca	accgo	ccg (cggco	caccgt	120
	gaco	ggcga	acg q	geggo	cggcq	gt co	gaget	gcaq	g caa	agggo	cgag	agco	gtcgo	gca t	tgcç	ggcgcc	180
50	cgco	cgact	tg t	ccagt	ceteo	ca go	ctcto	cccto	c teo	cctgo	cctt	cctt	cctt	.cc 1	tcto	ctcctc	240
	acga	acaaa	acc a	attco	gaago	cc gt	gcto	gctgo	c gta	atgga	agtt	ctto	etget	ca d	cgcct	tggct	300
	gcto	gtttq	gtc ç	gtcgt	gaga	ca go	gacga	agaa	a ggo	cgaaq	jaag	ggca	aggto	cgc (cgaaq	gcgga	360
55	ggaq	gatgo	gag g	gcctt	ctto	cg ct	zgcgo	gegga	a ggo	gcgad	cgtc	gcgo	cggcó	gct 1	tagat	gccaa	420
	gtga	agtad	ccg d	cgcad	catgo	ca tọ	gagto	caggo	c aad	cagct	tcc	tcct	atco	ctc 1	ttggg	ggaaaa	480

	gccgccgtgg	atttatatgg	gagtagctag	ctagcaatgc	atgcgtagca	gtgggcctgt	540
	aaattctgct	caagtaacat	gaggcctctg	ctgccgaaga	tctcggttgt	cagtcagttt	600
5	ggtgttgcac	agaacacacg	cacactcaca	gtaaaaaaaa	cacccgccaa	gcatgtgctt	660
	tgccctccaa	ttctctgtcg	ccggttttct	ttttctcttg	attgaagagg	ccagctgctg	720
	gtgctagtgt	atgaaggaat	ttgaacaaaa	tcactacacg	tatagactgt	tttgagcacc	780
10	ccaaaaaagt	agttttgggg	atcttggtct	ttaaaaaaaa	actggaacgg	accggaagat	840
	ttctcaacag	caaaggaaaa	aatggttcca	acttaatttt	tgtatctgtc	aaattagctc	900
45	aagcaattat	atttccagaa	ataaaaagtg	aagttggcag	tgcagtacta	ctcctgttct	960
15	tttctaacgt	ttggatcttg	cgctttggat	tgaaggtaca	actatgacgt	cgtcacagac	1020
	gctcccatgg	atgggcggta	cgagtgggtc	cgagtgaggc	cgtaggaagg	aaggatatgc	1080
20	cgccgcagcc	agtcaagtgt	cagaggcccg	cacagacaga	ccacgttgtg	tcctttttaa	1140
	tcattctttt	gtagttacct	tgtcatgctt	tattagctgt	aattattgct	caccagatgc	1200
	ctaatcatgc	actgtattag	ctcaccatgt	aagtcgccag	tgtattgttc	cacctgtagc	1260
25	tagcttgcct	tttaacttgt	cgtgatatgt	tttgttccat	caagaaaaag	gaagtgtcgt	1320
	tatctgtgta	cattgtctcg	tagtagtagt	agtaggtact	ccctccgtcc	caaaattctt	1380
	gtcttagatt	tatctagata	cagatgtatc	taacactaaa	acgtgaatag	atacgtccgt	1440
30	atgtagacaa	atctaagaca	agaattttga	gacggaggga	gtagtacttt	tgttctggca	1500
	ctgcatatct	caacacctca	tagcatggta	agagcaaatc	tacggcctac	tttcaaagaa	1560
	aagtcattca	gagccggact	agacaaatac	gaccctaggc	gtctgtagac	gcacaggaca	1620
35	tgtccgggac	agtgtgccct	caaatgttct	actgcacatc	acacccttcg	tatcaaaa	1678
40	<210> 139 <211> 264 <212> DNA <213> Trit	cicum sp.					
	<400> 139 atggccgcca	ccgccgcggc	caccgtgacg	gcgacggcgg	cggcgtcgag	ctgcagcaag	60
45	ggcgagagcg	tcggcattgc	ggcgcccgcc	gacttgacga	agaaggcgaa	gaagggcagg	120
	tcgccgccgg	cggaggagat	ggaggccttc	ttcgctgcgg	cggagggcga	cgtcgcgcgg	180
50	cgcttcgctg	ccaagtacaa	ctatgacgtc	gtcacagacg	ctcccatgga	tgggcggtac	240
00	gagtgggtcc	gagtgaggcc	gtag				264
55	<210> 140 <211> 87						

<212> PRT <213> Triticum sp.

	<400> 140	
5	Met Ala Ala Thr Ala Ala Ala Thr Val Thr Ala Thr Ala Ala Ala Ser 1 5 10 15	
	Ser Cys Ser Lys Gly Glu Ser Val Gly Ile Ala Ala Pro Ala Asp Leu 20 25 30	
10	Thr Lys Lys Ala Lys Lys Gly Arg Ser Pro Pro Ala Glu Glu Met Glu 35 40 45	
15	Ala Phe Phe Ala Ala Ala Glu Gly Asp Val Ala Arg Arg Phe Ala Ala 50 55 60	
	Lys Tyr Asn Tyr Asp Val Val Thr Asp Ala Pro Met Asp Gly Arg Tyr 65	
20	Glu Trp Val Arg Val Arg Pro 85	
25	<210> 141 <211> 1834 <212> DNA <213> Triticum sp.	
	<400> 141	
30	acctaateet ategttatet ecteceacee ageeceagee eccacteegg eccegtaata	60
	cccagcgagc agagcacagc acccaccacc ggcacaggcg cgcgcgtggg tggaaaaaag	120
	tagagagaga acaggagaga aggaagaaaa gaaagaaa	180
35	cggccatcgt gacggcgacg gcggcggcgt cgagctgcag caagcgcgag agcgtcggca	240
	ttgcggcgcc cgccgacttg tcagtctcca gctcccttcc ttccttctcc tcacggcacg	300
	gcgctggccg ttccaagccg tgctgctgcg tgtggagttc tcttctcacg ctttggctgc	360
40	tgcctgttgt cgtgcgcagg acgaagaagg cgaagaaggg gaggtcgcca ccggcggagg	420
	agatggaggc cttcttcgcc gcggcggagg gcgacgtcgc gcggcgcttc gctgccaagt	480
45	gagtaccgca catgcatgag tcaggcaaca gcttcctcct atacgcttgg ggaaaagcca	540
	ccgtggattt atatgggagt agctagctag caatgcatgc gtagcagtgg gcctgtaaat	600
	tctgctcaag taacatgagg cctctgctga agatctcggt tgtcagtcag tttggtgttg	660
50	cacacactca cacagtaaaa aaaacgctag catgtgtttt tctgttgctg ttttcttttt	720
	ctcttgaaaa ggccagctgc tggtgctagt gtatgaagga atttgaagaa aatcactaca	780
	cagataggga gtttttgagc aaacaaaaaa agaaaaatgg ggatcttggt cttttgtaaa	840
55	aacccacaca cgcaacgggg acggactggg agaattcaga gcagcaaagg aaaaaatgat	900
	ttcaactcaa ttatggattt tggcaaatca gctcaagcaa ttatacacta ctatttccaa	960

	gaaaaagtga	ggttggcagt	gcagtgcttc	tcccggttct	tttctaacgt	ttggatcttg	1020
	cgctttggat	tgaaggtaca	actataacgt	cgtcacagac	gctcccatgg	atgggcggta	1080
5	cgagtgggtc	cgagtgaggc	cgtagcaagg	aaggatatgc	cgccgcagcc	agtcaagtgt	1140
	cagaagcccg	cacagacaga	ccacgttgtg	tcctttttaa	tcattctttt	gtagttaccc	1200
	tgtcatgctt	tattagctgt	aattattgct	cacgagatgc	ctaatcatgt	gaaagctcac	1260
10	catgtaaaag	tcgccagtgg	atgccctgtt	tctcctgtag	ctagcttgct	tttattaact	1320
	tgtcgtgata	tgttttgttt	catcaagaaa	aacaaagcgt	cgttatctgt	gtacattgtc	1380
15	tcgtagtact	agtacttttg	ttctgacact	gcatatctct	aacacatcat	agcatggtaa	1440
	gtccagccta	ctttcaaagc	aaaaacatac	agaactggga	cagatccgac	ccgtgaacgt	1500
	ctgtagacgc	acccggacac	gtccaagaca	gtgtccacgg	cctcttaaat	gccctactgt	1560
20	acatcacact	gctcgtatcg	aaatctcaaa	tccatgcaca	tggatcatac	acatgaatcg	1620
	cataaataac	atttgttcat	agcgaaaaaa	atacataatt	taaatataaa	atttgtttca	1680
	agtgtacagt	tcaaacatta	aactcccttt	ttctgttgtg	ggtctccata	tgctccacaa	1740
25	gcgtgcacat	ttcgatctcg	aagattccga	tgcatcttca	gaaagttcac	aaatatgctt	1800
	cgcgtcatgt	ttcgggaggt	ggacttgtac	tctt			1834
30	<210> 142 <211> 264 <212> DNA <213> Trit	cicum sp.					
35	<400> 142 atggccgcca	ccgccgcggc	catcgtgacg	gcgacggcgg	cggcgtcgag	ctgcagcaag	60
	cgcgagagcg	tcggcattgc	ggcgcccgcc	gacttgacga	agaaggcgaa	gaaggggagg	120
40	tcgccaccgg	cggaggagat	ggaggcette	ttcgccgcgg	cggagggcga	cgtcgcgcgg	180
	cgcttcgctg gagtgggtcc	ccaagtacaa gagtgaggcc	ctataacgtc gtag	gtcacagacg	ctcccatgga	tgggcggtac	240 264
45	<210> 143 <211> 87 <212> PRT <213> Trit	cicum sp.					
50	<400> 143						
	Met Ala Ala 1	a Thr Ala Al 5	la Ala Ile V	Val Thr Ala 10	Thr Ala Ala	a Ala Ser 15	
55	Ser Cys Sei	r Lys Arg Gl 20	lu Ser Val (Gly Ile Ala 25	Ala Pro Ala 30	a Asp Leu	

	Thr Lys Lys 35	s Ala Lys L	ys Gly Ar 4(rg Ser Pro)	Pro Ala Glu 45	Glu Met Glu	
5	Ala Phe Phe 50	e Ala Ala A	la Glu Gl 55	Ly Asp Val	Ala Arg Arg 60	Phe Ala Ala	
10	Lys Tyr Asr 65	n Tyr Asn V 7	al Val Th O	nr Asp Ala	Pro Met Asp 75	Gly Arg Tyr 80	
	Glu Trp Val	L Arg Val A 85	rg Pro				
15	<210> 144 <211> 2141 <212> DNA <213> Trit	L cicum sp.					
20	<400> 144 tgcacgggta	aaaaccaagc	cgcettee	agg tttgggd	act gcggcgct	cc tgtgcaccag	60
	gtccttccta	gctagctaca	gtgagtag	gct gctgtta	att atactagt	ag tagctggtag	120
25	tactcctgct	cggaatctct	cggctcgg	gac gtcgtac	gac cacctata	ag ctcgctcgct	180
	cgcggcctcc	accgtttcat	ttcccacc	cta atcctat	cgt tatctcct	cc cacccagccc	240
	ccagccccac	tccggccccg	taacacco	cag cgagcag	Jagc acagcacc	ca ccaccggcac	300
30	agccgcgcgc	gtgggagggt	ggaaaaaa	ngt agagaaa	lgaa caggagag	aa ggaagaaaag	360
	gaaaaaggca	tggccgccac	cgccgcgg	jcc accgtga	legg egaeggeg	ac ggcggcggcg	420
35	tcgagctgca	gcaagcgcga	gagegeeg	ggc attgcgg	rcgc ccgccgac	tt gtcagtctcc	480
	cgctcccttc	cttccttcca	cccacggo	cac agegetg	acc gttcgagg	ct gtgctgccgc	540
	gtatggaata	gttcttctgc	tcactctt	cg gcctctt	ttt gttgtggt	gt gcagggcgaa	600
40	gaaggcgaag	aaggcgaggt	cgccgccg	ıgc ggaggag	atg gagggctt	ct tcgcggcggc	660
	ggagggcgac	gtcgcgcggc	gcttcgct	gc caagtga	gtt ctaccgca	ca tgcatgcgtc	720
	aggcaacagc	ttcctcctat	actcttgg	ggg aaaagco	gcc gtggattt	at atgggagcag	780
45	ctagctagca	atgcatgcgc	agcagtgg	ggc ctgtaaa	ttc tgctctcg	ag taacatgagg	840
	cctctgctgc	tcaagatctg	gggtgtca	agt cagtttg	gtg ttgcacac	aa cacacgcaca	900
50	ctcacactgt	aaaaaacgc	aagcatgt	ge tttgeee	tcc aattctct	gt cgccgttttt	960
50	ctttttctct	tgattgaaaa	ggccagct	.gc tggtgct	agt gtatgaag	ga atttgaacaa	1020
	aatcactaca	catatagact	gttctgag	gca tacacac	aaa aaaaggta	at tcggggggatc	1080
55	ttggtttttt	gcatttgtca	aattagct	ca agcaatt	ata tttccaga	aa caaaaagtga	1140
	ggttggcagt	gcagtactac	tcccgttc	ett ttetaac	gtt tggatctt	gc gctttggatt	1200

	gaaggtacaa	ctatgacgtc	gtcgcagacg	ctcccatgga	cgggcggtac	gagtgggtcc	1260
	gactgaggcc	gtaggaagga	gggatatgcc	gccgcagcca	gtcaagcgtc	agaactcaga	1320
5	agcccgcaca	gacagacaga	ccacgttgtg	tcctttttaa	tcaattcttt	tgcagttacc	1380
	ctgtcatgct	ttgttagctg	taattattgc	tcacgagatg	cctaatcatg	taaaagctca	1440
	ccatgtataa	gtcgccagtg	gatgccctgt	ttcacctgta	gctagcttcg	cttttattaa	1500
10	cttgtcgtca	tatgttttgt	ttcatcaaga	aaaacaaggc	gtcgttatct	gtgtacattg	1560
	tctcgtagca	ggagtacttt	tgttctgaca	ctgcatatct	caacacatca	tagcatggta	1620
	agtccagcct	actttcaaag	caaaaacaat	cagagctagg	acaaatccga	cccgtgaaca	1680
15	tttctagacg	tacccggaca	tgatccgaga	cagcgcccac	ggccccttaa	atgccctact	1740
	gcacatcaca	ctgctcgtat	taaaacctta	aatccatgca	catcgatcat	acacatgaat	1800
20	cgcataaata	gcatttgttc	atagcgaaaa	aaatcatagt	tcaaacataa	aatttatttt	1860
20	gaatgcacaa	ttcaaacatt	aaactccttg	tttctattat	gtgtctgcat	atgctccaca	1920
	agcgcaaaca	tttagatccc	gaagattccg	atacatcttc	agaaagttca	caaatatgct	1980
25	tcacatcatg	ttttcgggag	gcggactttg	tactcttggc	ttctcaaaat	catgtgttcg	2040
	ggctgcccct	tcaccttcat	caccctcgac	aatcatactg	tgcaaaatga	caaaacatgt	2100
	cgccagctgc	cactaaagtc	tctgatttcc	ccatatcatt	g		2141
30	<210> 145 <211> 270 <212> DNA <213> Trit	cicum sp.					
35	<400> 145 atggccgcca	ccgccgcggc	caccgtgacg	gcgacggcga	cggcggcggc	gtcgagctgc	60
	agcaagcgcg	agagcgccgg	cattgcggcg	cccgccgact	tggcgaagaa	ggcgaagaag	120
40	gcgaggtcgc	cgccggcgga	ggagatggag	ggcttcttcg	cggcggcgga	gggcgacgtc	180
	gcgcggcgct	tcgctgccaa	gtacaactat	gacgtcgtcg	cagacgctcc	catggacggg	240
	cggtacgagt	gggtccgact	gaggccgtag				270
45	<210> 146 <211> 89 <212> PRT <213> Trit	cicum sp.					
50	<400> 146						
	Met Ala Ala 1	a Thr Ala A 5	la Ala Thr '	Val Thr Ala 10	Thr Ala Th	r Ala Ala 15	
55	Ala Ser Sei	r Cys Ser Ly 20	ys Arg Glu	Ser Ala Gly 25	Ile Ala Ala 30	a Pro Ala	

	Asp Le	eu Ala 35	Lys L	ys Ala	Lys	Lys 40	Ala	Arg	Ser	Pro	Pro 45	Ala	Glu	Glu
5	Met G1 50	lu Gly)	Phe P	he Ala	Ala 55	Ala	Glu	Gly	Asp	Val 60	Ala	Arg	Arg	Phe
10	Ala Al 65	la Lys	Tyr A	sn Tyr 70	Asp	Val	Val	Ala	Asp 75	Ala	Pro	Met	Asp	Gly 80
	Arg Ty	yr Glu	Trp V 8	al Arg 5	Leu	Arg	Pro							
15	<210> <211> <212> <213>	147 20 DNA Arti:	ficial	Seque	nce									
20	<220> <223>	Prim	er TaK	RP6 ST	ART									
25	<400> atggco	147 cgcca (ccgccg	cggc										
	<210> <211> <212>	148 21 DNA												
30	<213> <220> <223>	Arti: Prim	ficial er TaK	Seque RP6 ne	nce arST(O₽								
35	<400> tcggac	148 ccac	tcgtac	cgcc c										
40	<210> <211> <212> <213>	149 26 DNA Arti:	ficial	Seque	nce									
	<220> <223>	Prim	er TaK	RP6 up	str									
45	<400> cctaat	149 ccta f	tcgtta	tctc c	tccca	3								
50	<210> <211> <212> <213>	150 26 DNA Arti:	ficial	Seque	nce									
55	<220> <223>	Prim	er TaK	RP6 do	wnst	r								
	~400>	120												

ctacgagaca atgtacacag ataacg

151 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer TaKRP6 49F 10 <400> 151 agctgcagca agggcgaga 15 <210> 152 <211> 21 <212> DNA <213> Artificial Sequence 20 <220> <223> Primer TaKRP6 258R <400> 152

cctcactcgg acccactcgt a

Claims

25

- A plant cell, plant part, plant tissue culture or whole plant comprising at least one *Kinase Inhibitor Protein (KIP) Related Protein (KRP)* gene, wherein the function of one or more copies of the *KRP* gene is disrupted, and wherein the disruption is due to one or more nucleotide changes of a wild type KRP gene as set forth in Table 14.
 - 2. A plant cell, plant part, plant tissue culture or whole plant comprising at least one *Kinase Inhibitor Protein (KIP) Related Protein (KRP)* gene, wherein the function of one or more copies of the *KRP* gene is disrupted, and wherein the disruption is due to one or more nucleotide changes of a wild type KRP gene as set forth in Table 13.
 - 3. A plant cell, plant part, plant tissue culture or whole plant comprising at least one *Kinase Inhibitor Protein (KIP) Related Protein (KRP)* gene, wherein the function of one or more copies of the *KRP* gene is disrupted, and wherein the disruption is due to one or more nucleotide changes of a wild type KRP gene as set forth in Table 22.
- 40

45

35

- 4. The plant cell, plant part, plant tissue culture or whole plant of any of claims 1-3, wherein the plant is a monocotyledonous plant.
- 5. The plant cell, plant part, plant tissue culture or whole plant of claim 4, wherein the monocotyledonous plant is a species in the *Triticeae* tribe, preferably wherein the plant in the *Triticeae* tribe is a plant in the *Triticum* genus, preferably wherein the plant in the *Triticum* genus is wheat, and preferably wherein the wheat plant is hexaploid.
- 6. A wheat plant cell, plant part, plant tissue culture or whole plant comprising at least one *Kinase Inhibitor Protein* (*KIP*) *Related Protein* (*KRP*) gene, wherein the function of one or more copies of the *KRP* gene is disrupted, and
 ⁵⁰ wherein the disruption is due to one or more nucleotide changes of a wild type KRP gene as set forth in Tables 14, 13 or 22, wherein the disruption is selected from the group consisting of *TaKRP1, TaKRP2, TaKRP4, TaKRP5* and *TaKRP6*, preferably wherein the wheat plant is hexaploid and the disrupted KRP gene is *TaKRP2A, TaKRP2B or TaKRP2D*.
- ⁵⁵ **7.** A method of increasing organ weight, organ size, organ number and/or yield of a wheat plant in the *Triticeae* tribe, comprising disrupting one or more *KRP* genes as set forth in Tables 14, 13 or 22 in the plant.
 - 8. The method of claim 7, wherein the organ is seed, preferably wherein the plant in the Triticeae tribe is a plant in the

19

Triticum genus.

- 9. The method of claim 7 or claim 8, wherein the *KRP* in the wheat is *TaKRP1*, *TaKRP2*, *TaKRP4*, *TaKRP5*, or *TaKRP6*, preferably wherein the wheat is hexaploid wheat and the disrupted KRP gene is *TaKRP2A*, *TaKRP2B* or *TaKRP2D*,
- 5
- **10.** The method of claim any of claims 7 to 9, preferably wherein the *KRP* gene function is disrupted by nucleotide substitution, deletion, insertion, homologous recombination, T-DNA, transposon, antisense oligonucleotide, double stranded oligonucleotide, siRNA, shRNA, inverted oligonucleotide repeat, or combination thereof.
- 10 11. A method of producing a plant with increased organ size, organ weight, organ number and/or yield compared to a wild type plant, comprising

i) making a cross between a first plant to a second plant to produce a F1 plant, wherein the first plant is in the *Triticeae* tribe comprising one or more disrupted *KRP* genes as set forth in Tables 14, 13 or 22.

15

- **12.** A method according to claim 11, wherein the method further comprises
 - ii) backcrossing the F1 plant to the first or the second plant; and iii) repeating the backcrossing step to generate a near isogenic line,

wherein the one or more disrupted KRPs in the first plant are integrated into the genome of the near isogenic line.

- **13.** The method of claims 11 or 12, wherein the plant in the *Triticeae* tribe is a plant in the *Triticum* genus, preferably wherein the plant in the *Triticum* genus is a wheat plant.
- 25

20

- **14.** The method of any of claims 11 to 13, wherein the *KRP* in the wheat is *TaKRP1, TaKRP2, TaKRP4, TaKRP5,* or *TaKRP6,* preferably wherein the wheat is hexaploid wheat and the disrupted KRP gene is *TaKRP2A, TaKRP2B or TaKRP2D.*
- 30 15. The method of any of claims 11 to 14, wherein the KRP gene function is disrupted by nucleotide substitution, deletion, insertion, homologous recombination, T-DNA, transposon, antisense oligonucleotide, double stranded oligonucleotide, siRNA, shRNA, inverted oligonucleotide repeat, or combination thereof.

35

40

45

50

Figure 1

Heterozygous mutant KRP4B P109L sample

EP 2 927 323 A2

Figure 2

Figure 4

Figure 9

Figure 11

CKYNEDVARGVDLGSGRYEWTP	CKYNEDVARGVPLDSGRYEWTP	CKYNFDVARGVPLDSGRYEWTP SKYNFDFWRGVDLDMGGRWFMAD	SKYNFDFVRGVPLDPGGREEWAP	SKYNFDFVRGVPLD2GGREEWAP		A kyned v y rgv pe d@g r @ bw tp	AKYNFDVARGVPLN GREEWTP	AKYNFDVARGVPLNAGREEWTP	AKYNFDVARGVPLNEGREWTP	AKYN DVVTDAP DGRYEWVR	AKYN NVVTDAP DGRYEWVR	AKYN DVVADAP DGRYEWVR	VKYN DVVKDAP DGGRYEWVR	EKYNYDIALDRPLQGRYEWEP	EAYN VDVALDRPLEGREWVP	AKYNFDVVRGVPLDAGGAGREWTA	DKYNFDPVNDCPLPGRYEWVK	DKYNFDPVNDCPLPGRYEWVK	DKYNFDPVNDCPLPGRYEWVK	DKYNFDPVNDCPLPGREEWVK	DKYNFDPANDCPLPGREWVK	DKYNFDPVNDCPLPGREEWVK	EKYNFCPVNDCPLPGRYEWAR	EKYNFCPVNDCPLPGRYEWAR	ERYNFCPVNDCPLPGRYEWTR	DKYNFCPARGCPLPGRYEWTV	EKYNFCPAS RPLPGRYEWTV	
MPPANE EFFAAAEFAFA&	VPPAAEEFFAAEEAEARREA	LPPAAELEEFFAAAEEAEARREA WPPAHETOEFFAAAFAAOA < 8 FA	V P P A H E O E F F A A A A O A K F A	♥ PPAHE © QEFFAAAEAAQAKRFA	○PPAQETQEFFAA	PPAAE EAFFAAEEAEA	◇PPAAEIDEFFAAAEKAQAEHFAA	⋈₽₽₳ <mark>₳</mark> ₣₮ ○ ₣₣₣₳₳₳₤₭₳₢₳₤ <mark>₨</mark> ₣₳	MPPAAELDEFFAAAEKAQAERFA/	SPPAEE SEAFFAAAEGDVA SRFA	SPPAEEVEAFFAAAEGDVARRFA	SPPAEEVEGFFAAAEGDVARRFA/	SPPAEE EAFLAAAERGMA RFAV	SPPEAELEAFFAAAELAERERFA	PPTETE EAFFADAELAERERFA	PAAAAE EEFLAAAERSEAERFA	PCSAE NEFFSAAE OPOOAFII	PCSAEVNEFFSAAEQPQQAF11	PSSAE WEFFSAAE OPOOAFII	PASAE EAFFAAEEQRQRQAFII	V P SSR E N E V FAA EQRR O QQD F I I	I PSSTE NE FAAEQRROOAFII	I PSSLEVEEFSAAE QQEQ II SF RI	IPSSLEVEEFSAAFQQEQHNFRI	◇PSSLE € EEFFAAAEQQQHQAFRI	PSSLEVEFFAAAEQQQHQTFRI	VPSSLEMDEFFAAAEQQQHQTFRI	
192 PAARSR	193 PAARSR	190 PAARSR 202AAFLT	184AAELI	200AAELI	214 SAAELI	206 QATRPK	213 FHLDSEARAR	214 LHYDLEARARAR	215 FRLDLEARAR	41 41	41	436	65	157 AAAAGR-RPPLS	152 SQTPSPSPSPPPI	186 GATTRSFRMMAPH	1441§	144I	144T	148I	144A	14A	166E	170E	174Y	162Y	157Y	
TaKRP1A	TaKRP1D	TaKRP1B Zeama KRP 2	ZmKRP7	ZmKRP6	ZmKRP8	OsKrp1	TaKRP2B	TaKRP2D	TaKRP2A	TaKRP6-1	TaKRP6-2	TaKRP6-3	ZmKRP3	OSKRP3	ZmKRP5	OsKRP2	TaKRP4B	TaKRP4D	TaKRP4A	OsKRP4	Zeama KRP 1	ZmKRP9	ZmKRP1	ZmKRP2	OsKRP5	TaKRP5A	TaKRP5D	TaKRP5B

Figure 11 (Con	tinu	ed)
TaKRP1A	243	AVSSS
TaKRP1D	244	AVSSS
TaKRP1B	241	AVSSN
Zeama KRP 2	253	VSI
ZmKRP7	235	NSI
ZmKRP6	251	ISN
ZmKRP8		
0sKrp1	257	VSSRS
TaKRP2B	268	ATV
TaKRP2D	271	ATV
TaKRP2A	270	ATV
TaKRP6-1	85	NRP
TaKRP6-2	85 8	NRP
TaKRP6-3	87	RP
ZmKRP3	110	RPG
OsKRP3	212	ST
ZmKRP5	208	RPLTGGRRW
OsKRP2	246	GSG
TaKRP4B	189	D
TaKRP4D	189	Q
TaKRP4A	189	D
OsKRP4	193	D
Zeama KRP 1	189	D
ZmKRP9	9 0	D
ZmKRP1	211	DC
ZmKRP2	215	DC
0sKRP5	219	DC
TaKRP5A	207	DC
TaKRP5D	202	DC
TaKRP5B		
consensus	301	

182

Figure 12

m0003x00821	125	- EQITQT SLPPQKC PT	ELE BEFFAAAE KDI	RKRES K
0067x00001	110	EHITKT SRC PT	ESE F FFAARE (DI	<u>OKRFT®K</u>
0013x00399	140	INSHRALSKAKA PT	ELE EEFEVAAE «DI	<u>OKRFO®KYN©DIVKDVPIE0</u>
0053x00526	147	INSHRVLSKAKANPT	ELE EEFFAASENDI	QKRFQDRYNNDVELEC
0102×00087	135	AAVLKVTPPI	KAE EEFFAMAE KYE	QKRFTEKYNFDIVRDLPLEC
0043	124	AAVRKL	QAE EEFFAMAE XE	RKRFTEKYNFDIVRDLPLEC
KRP6 1	130	ADDRKSSPEVSKSPT	PGE DEFLSELESKD	QKRFVDKYNFDIVNDKPLQC
KRP6_2	132	ADDRKSSPEVSKSPT	PAE EEFLSELENKD	QKREMDKYNEDIVNDKPLQC
KRP6	139) ATKRKQPGVRKT <mark>PT</mark> i	AAE E LESELESPD-K	KKQF EKYNFDIVNDEPLEO
KRP7	132	TEMRDQ KTEKKKWEKS <mark>PT</mark> (QAE CORRESARE YE	<u>OKRFTEKYN XDIVNDTPLE</u> O
KRP1 1	114	EEKG SATEOP	AVE EDFFVEAE QL	HDNFKKYNFDFEKEKPLEC
KRP1_2	50	H −−EDKG©P−−−−TAEQP <mark>PT</mark> i	AVE EEFEVEAE QL	HDKEKKKYNEDFEKEKELEO
KRP1	135	EEEEKASLMTEMP-T	ESE EDFFVEAE QL	KEKEKKKYNEDFEK KPLEC
0119x00131	142	RTRQII	AYE BEFFAYAE 00	QTIFWBKYNFDIVNDVPLPQ
0151x00019	146	RTRQIIEHIQR-N	AYE VEEFFAYAE ×00	OTIFWDKYNFDIVNEVPLP O
087×00306	161	TCSAEAYRRTEHAARRO PT:	SREVIDEFFAEIEEAQ	QKKFTEKYNFDPVNEKPLSO
KRP4_1	185	SDNSNQREDSFSGSHRH	TPENDEFFSAAEEEQ	QKQF EKYNFDPVNEQPLPG
CRP4_2	184	SGNSNQ EDSFSGSHRH PT	TPEVDEFFSAABEEQ	QKQF EK
(RP4	227	S-ESNO EDSLSRSHRRPT'	TPEVIEFFSGAREEQ	QKQF EKYNFDPVN 20 PLP0
KRP5 1	149	IEATQS PSI	H-E EEFFAFAEQOO	OEFFTEKYNFDIVS NPLPO
KRP5_2	149	IEAIQSVPSI	H-E E FFAFAE200	<u>ORETTEKYNFDIVSENPIPO</u>
KRP5	143	KSIQS-	ETEDFFASAEQQQ	QREF QKYNFDIVSDNPLPG
KRP3 1	139	UTPARDST PT:	IGE EEFFAYAEQQQ	QRLFVEKYNFDIVNDVPLPO
(RP3_2	139	PTTMDST PTTMDST PT	IGE EEFFAYAEQQQ	QRLFVEKYNFDIVNDVPLTG
IRP3	164	ATKEYTREQDNV [PT]	TSEVEEFFAYAE200	ORLFMEKYNFDIVNDIPLS O
(RP2	148	SRRRLRSSLHETVKI	EAE E FROVAE DLRNK	LLECSMKYNFDFEKDELLG
sensus	241	•	* • • • • • •	

led
tinı
Con
12 (
arre
figi

ligure 12 (Cont	tinue	(F
m0003x00821		
m0067x00001		
m0013x00399	191	YEWVQ KP
m0053x00526	198	YEWVO KP
m0102x00087	181	YQWVH
m0043	170	H_suvo
nKRP6 1	181	YKWD VK
nKRP6_2	183	YKWD: KPLK
tKRP6	191	YKWD&
tKRP7	188	YQWVS KP
nKRP1 1	163	YEWV SE
nKRP1_2	6 6	YEWV: SE
tKRP1	185	YEWV E
m0119x00131	194	YEWVP LH
m0151x00019	198	YEWVPWLH
m0087x00306	217	YEWE, KP
nKRP4 1	241	EEWK DD
nKRP4_2		
tKRP4	282	⊐ EW TK VDD
nKRP5_1	192	YEW CONP
nKRP5_2	192	YEW EXCVP
tKRP5	182	YEWV MP
nKRP3_1	185	YEWVQ SP
nKRP3_2	185	YEWVQVSP
tKRP3	215	YEWVQ KP
tKRP2	202	YEWV NP
onsensus	301	•

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 61474201 A [0001]
- WO 2007016319 A [0005]
- US 20070056058 A [0005]
- US 5107065 A [0071]
- US 5994075 A [0136]
- US 20040053236 A1 [0136]
- WO 2005055704 A [0136]
- WO 2005048692 A [0136]
- US 7652204 B [0146]
- US 6197518 B [0146]
- US 7034208 B [0146]
- US 7528297 B [0146]
- US 6407311 B [0146]
- US 20080040826 A [0146]
- US 20090300783 A [0146]
- US 20060223707 A [0146]
- US 20110027233 A [0146]
- US 20080028480 A [0146]
- US 20090320152 A [0146]
- US 20090320151 A [0146]
- WO 2001029237 A2 [0146]
- WO 200802S097 A1 [0146]
- WO 2003057848 A2 [0146]
- US 20050097639 A [0154]
- US 20040168232 A [0154]
- US 20100287664 A [0154]
- US 20080109919 A [0154]
- US 5981842 A [0154]
- US 20050183173 A [0154]
- WO 2003000904 A2 [0154]
- EP 271988 A [0184]
- WO 0175164 A [0186]
- US 4536475 A [0215]
- EP 0265556 A [0215]
- EP 0270822 A [0215]
- WO 8504899 A [0215]
- WO 8603516 A [0215]
- US 5591616 A [0215]
- EP 0604662 A [0215]
- EP 0672752 A [0215]
- WO 8603776 A [0215]
- WO 9209696 A [0215]
- WO 9419930 A [0215]
- WO 9967357 A [0215]
- US 4399216 A [0215]
- WO 8303259 A [0215]
- US 5731179 A [0215] [0230]
- EP 068730 A [0215]
- WO 9516031 A [0215]

- US 5693512 A [0215] [0230]
- US 6051757 A [0215]
- EP 904362 A1 [0215]
- US 7250554 B [0215]
- US 5204253 A [0216]
- US 5015580 A [0216]
- US 5302523 A [0216]
- US 20040197909 A [0216]
- US 5767378 A [0217]
- US 5994629 A [0217]
- US 5034322 A [0217]
- US 6174724 B [0217]
- US 6255560 B [0217]
- US 4795855 A [0217]
- US 5378824 A [0217]
- US 6107549 A [0217]
- US 5352605 A [0218]
- US 5530196 A [0218]
- US 5858742 A [0218]
- US 5164316 A [0218]
- US 5196525 A [0218]
- US 5322938 A [0218]
- US 5359142 A [0218]
- US 5504200 A [0219]
- US 5623067 A [0219]
- US 5717129 A [0219]
- US 6403371 B [0219]
- US 6566584 B [0219]
- US 6642437 B [0219]
- US 6777591 B [0219]
- US 7081565 B [0219]
- US 7157629 B [0219]
 US 7192774 B [0219]
- US 7405345 B [0219]
- US 7554006 B [0219]
- US 7589252 B [0219]
- US 7595384 B [0219]
- US 7619135 B [0219]
- US 7642346 B [0219]
- US 20030005485 A [0219]
- US 20030003403 A [0219]
 US 20030172403 A [0219]
- US 20040088754 A [0219]
- US 20040255350 A [0219]
 US 20050125861 A [0219]
- US 20050125881 A [0219]
 US 20050229273 A [0219]
- US 20060191044 A [0219]
- US 20070022502 A [0219]

US 20070199098 A [0219]

US 20070118933 A [0219]

185

- US 20080313771 A [0219]
- US 20090100551 A [0219]
- US 5451513 A [0225]
- US 5501967 A [0225] [0230]
- US 5527695 A [0225]
- US 5405765 A [0226]
- US 5472869 A [0226]
- US 5538877 A [0226]
- US 5538880 A [0226]
- US 5550318 A [0226]
- US 5641664 A [0226]
- US 5736369 A [0226]
- WO 2002038779 A [0226]
- WO 2002038779 A [0226]
 WO 2009117555 A [0226]
- WO 2009117555 A [0220
- US 6156953 A [0229]
- US 6008437 A [0229]
- US 4940838 A [0230]
- US 5464763 A **[0230]**
- US 5149645 A [0230]

Non-patent literature cited in the description

- Current Protocols in Molecular Biology. Oxford Molecular Ltd, 1987, vol. 30 [0049]
- MEYERS; MILLER. Computer Applic. Biol. Sci., 1988, vol. 4, 11-17 [0053]
- INGELBRECHT, I. L. et al. Plant Cell, 1989, vol. 1, 671-680 [0070]
- JONES et al. EMBO J., 1985, vol. 4, 2411-2418 [0074]
- DE ALMEIDA et al. Mol. Gen. Genetics, 1989, vol. 218, 78-86 [0074]
- MA et al. Proc. Natl. Acad. Sci. U.S.A, 1997, vol. 94, 12744-12746 [0109]
- CHANG, CS. Cereal Chem, 1988, vol. 65, 13-15 [0113] [0114]
- ALLARD. Principles of Plant Breeding. John Wiley & Sons, Inc, 1960 [0122]
- SIMMONDS. Principles of Crop Improvement. Longman Group Limited, 1979 [0122]
- HALLAUER ; MIRANDA. Quantitative Genetics in Maize Breeding. Iowa State University Press, 1981 [0122]
- JENSEN. Plant Breeding Methodology. John Wiley & Sons, Inc, 1988 [0122]
- WRIGHT. Commercial Hybrid Seed Production, vol. 8, 161-176 [0131]
- **COMAI et al.** Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. *The Plant Journal*, 2003, vol. 37, 778-786 [0133]
- GILCHRIST et al. Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. *Mol. Ecol*, 2006, vol. 15, 1367-1378 [0133]

- US 6265638 B [0230] US 4693976 A [0230] US 5635381 A [0230] US 6162965 A [0230] US 5981840 A [0230] US 6420630 B [0230] US 6919494 B [0230] US 6329571 B [0230] US 6215051 B [0230] US 6369298 B [0230] US 5169770 A [0230] US 5376543 A [0230] US 5416011 A [0230] US 5569834 A [0230] US 5824877 A [0230] US 5959179 A [0230]
- US 5563055 A [0230]
- US 5968830 A [0230]
- US 2011060598 W [0251]
- MEJLHEDE et al. EcoTILLING for the identification of allelic variation within the powdery mildew resistance genes mlo and Mla of barley. *Plant Breeding*, 2006, vol. 125, 461-467 [0133]
- NIETO et al. EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. *BMC Plant Biology*, 2007, vol. 7, 34-42 [0133]
- GARVIN et al. DEco-TILLING: An inexpensive method for SNP discovery that reduces ascertainment bias. *Molecular Ecology Notes*, 2007, vol. 7, 735-746 [0133]
- Genome, 2004, vol. 47, 680-688 [0147]
- In Vitro Cellular and Developmental Biology Plant, 2006, vol. 42 (2), 179-187 [0147]
- Plant Science, July 2001, vol. 161 (2), 259-266 [0147]
- Science in China, vol. 46 (3), 243-252 [0147]
- Science in China, vol. 44 (3), 294-304 [0147]
- Theor Appl Genet., 19 March 2003, vol. 107 (2), 299-305 [0147]
- Sheng Wu Gong Cheng Xue Bao., July 2004, vol. 20
 (4), 610-4 [0147]
- YAN et al. *Plant Cell Rep.*, 01 November 2003, vol. 22 (8), 569-75 [0155]
- YU et al. *Phytochemistry*, July 2008, vol. 69 (10), 1989-96 [0155]
- VERKEST et al. Switching the Cell Cycle. Kip-Related Proteins in Plant Cell Cycle Control. *Plant Physi*ology, November 2005, vol. 139, 1099-1106 [0160]
- VANDEPOELE et al. Genome-wide analysis of core cell cycle genes in Arabidopsis. *Plant Cell*, 2002, vol. 14, 903-916 [0161]
- SMITH et al. Nature, 1988, vol. 334, 724-726 [0184]
- SMITH. Plant Mol. Biol., 1990, vol. 14, 369-379 [0184]

- ELIBASHIR et al. Methods Enzymol., 2002, vol. 26, 199 [0186]
- MCMANUS; SHARP. Nature Rev. Genetics, 2002, vol. 3, 737 [0186]
- MARTINEZ et al. Cell, 2002, vol. 110, 563 [0186]
- LAGOS-QUINTANA et al. Curr. Biol., 2002, vol. 12, 735 [0186]
- TUSCHL et al. Nature Biotechnol., 2002, vol. 20, 446 [0186]
- TUSCHL. Chembiochem, 2001, vol. 2, 239 [0186]
- HARBORTH et al. J. Cell Sci., 2001, vol. 114, 4557 [0186]
- EMBO J., 2001, vol. 20, 6877 [0186]
- LAGOS-QUINTANA et al. Science, 2001, vol. 294, 8538 [0186]
- ELBASHIR et al. Nature, 2001, vol. 411, 494 [0186]
- R. W. ALLARD. Principles of Plant Breeding. John Wiley and Son, 1960, 115-161 [0190]
- N.W. SIMMONDS. Principles of Crop Improvement. Longman Group Limited, 1979 [0190]
- W. R. FEHR. Principles of Crop Development. Macmillan Publishing Co, 1987 [0190]
- N. F. JENSEN. Plant Breeding Methodology. John Wiley & Sons, 1988 [0190]
- AVISE. Molecular markers, natural history, and evolution. Sinauer Associates, 2004 [0202]
- SRIVASTAVA et al. Plant biotechnology and molecular markers. Springer, 2004 [0202]
- VIENNE. Molecular markers in plant genetics and biotechnology. Science Publishers, 2003 [0202]
- M. E. FROMM et al. Nature, 1986, vol. 319, 791 [0216]
- H. JONES et al. Plant Mol. Biol., 1989, vol. 13, 501
 [0216]
- H. YANG et al. Plant Cell Reports, 1988, vol. 7, 421 [0216]
- MESSING ; VIERRA. Gene, 1982, vol. 19, 259-268 [0217]
- BEVAN et al. Nature, 1983, vol. 304, 184-187 [0217]
- WHITE et al. Nucl Acids Res, 1990, vol. 18, 1062
 [0217]
- SPENCER et al. Theor Appl Genet, 1990, vol. 79, 625-631 [0217]
- BOUROUIS et al. EMBO J., 1983, vol. 2 (7), 1099-1104 [0217]
- GIELEN et al. EMBO J, 1984, vol. 3, 835-846 [0222]
- DEPICKER et al. Mol. and Appl. Genet, 1982, vol. 1,
- 561-573 [0222]
 LU et al. Plant Cell Reports, 2008, vol. 27, 273-278 [0226]
- WATSON et al. Recombinant DNA. Scientific American Books, 1992 [0226]
- HINCHEE et al. *Bio/Tech*, 1988, vol. 6, 915-922 [0226]
- MCCABE et al. Bio/Tech, 1988, vol. 6, 923-926
 [0226]
- TORIYAMA et al. *Bio/Tech.*, 1988, vol. 6, 1072-1074 [0226]

- FROMM et al. *Bio/Tech.*, 1990, vol. 8, 833-839 [0226]
- MULLINS et al. Bio/Tech, 1990, vol. 8, 833-839
 [0226]
- HIEI et al. Plant Molecular Biology, 1997, vol. 35, 205-218 [0226]
- ISHIDA et al. Nature Biotechnology, 1996, vol. 14, 745-750 [0226]
- ZHANG et al. Molecular Biotechnology, 1997, vol. 8, 223-231 [0226]
- KU et al. Nature Biotechnology, 1999, vol. 17, 76-80 [0226]
- RAINERI et al. Biol Tech, 1990, vol. 8, 33-38 [0226]
- HENIKOFF, S.; HENIKOFF, J.G. Nucleic Acids Res., 1991, vol. 19, 6565-6572 [0242]
- NG, P.C. ; HENIKOFF, S. *Nucleic Acids Res.*, 01 July 2003, vol. 31 (13), 3812-3814 [0242]
- BENTLEY, A.; B. MACLENNAN et al. Targeted Recovery of Mutations in Drosophila. *Genetics*, 2000, vol. 156, 1169-1173 [0290]
- COMAI, L.; S. HENIKOFF. TILLING: practical single-nucleotide mutation discovery. *Plant J*, 2006, vol. 45 (4), 684-94 [0290]
- COMAI, L.; K. YOUNG et al. Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. *Plant J*, 2004, vol. 37 (5), 778-86 [0290]
- COOPER, J. L.; E. A. GREENE et al. Retention of induced mutations in a Drosophila reverse-genetic resource. *Genetics*, 2008, vol. 180 (1), 661-7 [0290]
- COOPER, J. L.; B. J. TILL et al. Fly-TILL: reverse genetics using a living point mutation resource. *Fly* (*Austin*), 2008, vol. 2 (6), 300-2 [0290]
- COOPER, J. L. ; B. J. TILL et al. TILLING to detect induced mutations in soybean. *BMC Plant Biol*, 2008, vol. 8, 9 [0290]
- EDDY, S. R. Where did the BLOSUM62 alignment score matrix come from?. *Nat Biotechnol*, 2004, vol. 22 (8), 1035-6 [0290]
- GILCHRIST, E.; G. HAUGHN. Reverse genetics techniques: engineering loss and gain of gene function in plants. *Brief Funct Genomics*, 2010, vol. 9 (2), 103-10 [0290]
- GILCHRIST, E. J.; G. W. HAUGHN. TILLING without a plough: a new method with applications for reverse genetics. *Curr Opin Plant Biol*, 2005, vol. 8 (2), 211-5 [0290]
- GILCHRIST, E. J.; G. W. HAUGHN et al. Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. *Mol Ecol*, 2006, vol. 15 (5), 1367-78 [0290]
- GILCHRIST, E. J.; N. J. O'NEIL et al. TILLING is an effective reverse genetics technique for Caenorhabditis elegans. *BMC Genomics*, 2006, vol. 7, 262 [0290]
- GREENE, E. A. ; C. A. CODOMO et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. *Genetics*, 2003, vol. 164 (2), 731-40 [0290]

- HENIKOFF, S.; B. J. TILL et al. TILLING. Traditional mutagenesis meets functional genomics. *Plant Physiol*, 2004, vol. 135 (2), 630-6 [0290]
- HIMELBLAU, E.; E. J. GILCHRIST et al. Forward and reverse genetics of rapid-cycling Brassica oleracea. *Theor Appl Genet*, 2009, vol. 118 (5), 953-61 [0290]
- MCCALLUM, C. M.; L. COMAI et al. Targeted screening for induced mutations. *Nat Biotechnol*, 2000, vol. 18 (4), 455-7 [0290]
- MCCALLUM, C. M.; L. COMAI et al. Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. *Plant Physiol*, 2000, vol. 123 (2), 439-42 [0290]
- NG, P. C.; S. HENIKOFF. SIFT: Predicting amino acid changes that affect protein function. *Nucleic Acids Res*, 2003, vol. 31 (13), 3812-4 [0290]
- SLADE, A. J.; S. I. FUERSTENBERG et al. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING®. *Nat Biotechnol*, 2005, vol. 23 (1), 75-81 [0290]
- SLADE, A. J.; V. C. KNAUF. TILLING moves beyond functional genomics into crop improvement. *Transgenic Res*, 2005, vol. 14 (2), 109-15 [0290]
- STEMPLE, D. L. TILLING--a high-throughput harvest for functional genomics. *Nat Rev Genet*, 2004, vol. 5 (2), 145-50 [0290]
- STYCZYNSKI, M. P.; K. L. JENSEN et al. BLOSUM62 miscalculations improve search performance. *Nat Biotechnol*, 2008, vol. 26 (3), 274-5 [0290]
- TALAME, V.; R. BOVINA et al. TILLMore, a resource for the discovery of chemically induced mutants in barley. *Plant Biotechnol J*, 2008, vol. 6 (5), 477-85 [0290]
- TAYLOR, N. E.; E. A. GREENE. PARSESNP: A tool for the analysis of nucleotide polymorphisms. *Nucleic Acids Res*, 2003, vol. 31 (13), 3808-11 [0290]
- TILL, B. J.; C. BURTNCR. Mismatch cleavage by single-strand specific nucleases. *Nucleic Acids Res*, 2004, vol. 32 (8), 2632-41 [0290]
- TILL, B. J.; T. COLBERT et al. High-throughput TILLING® for Arabidopsis. *Methods Mol Biol*, 2006, vol. 323, 127-35 [0290]
- TILL, B. J.; T. COLBERT et al. High-throughput TILLING® for functional genomics. *Methods Mol Biol*, 2003, vol. 236, 205-20 [0290]
- TILL, B. J.; J. COOPER et al. Discovery of chemically induced mutations in rice by TILLING®. *BMC Plant Biol*, 2007, vol. 7, 19 [0290]
- TILL, B. J.; S. H. REYNOLDS et al. Large-scale discovery of induced point mutations with high-throughput TILLING®. *Genome Res*, 2003, vol. 13 (3), 524-30 [0290]
- TILL, B. J.; S. H. REYNOLDS et al. Discovery of induced point mutations in maize genes by TILL-ING®. *BMC Plant Biol*, 2004, vol. 4, 12 [0290]

- TILL, B. J.; T. ZERR et al. A protocol for TILLING® and Ecotilling in plants and animals. *Nat Protoc*, 2006, vol. 1 (5), 2465-77 [0290]
- TRIQUES, K.; E. PIEDNOIR et al. Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING® and Eco-TILLING in plants. *BMC Mol Biol*, 2008, vol. 9, 42 [0290]
- TRIQUES, K.; B. STURBOIS et al. Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILL-ING® in pea. *Plant J*, 2007, vol. 51 (6), 1116-25 [0290]
- UAUY, C.; F. PARAISO et al. A modified TILLING® approach to detect induced mutations in tetraploid and hexaploid wheat. *BMC Plant Biol*, 2009, vol. 9, 115 [0290]
- WEIL, C. F.; R. MONDE. Getting the Point--Mutations in Maize. *Crop Science*, 2007, vol. 47 (1), 60-67 [0290]
- ZERR, T.; S. HENIKOFF. Automated band mapping in electrophoretic gel images using background information. *Nucleic Acids Res*, 2005, vol. 33 (9), 2806-12 [0290]
- **TSAI, H. et al.** Discovery of Rare Mutations in Populations: TILLING by Sequencing. *Plant Physiology,* 2011, vol. 156 (3), 1257-1268 [0290]
- Physiological traits for improving wheat yield under a wide range of conditions. SLAFER ; ARAUS. Scale and Complexity in Plant Systems Research: Gene-Plant-Crop Relations. Springer, 2007, 147-156 [0290]
- Physiological approaches to wheat breeding. REY-NOLDS. Agriculture and Consumer Projection. Food and Agriculture Organization of the United Nations [0290]
- **RICHARD et al.** Physiological Traits to Improve the Yield of Rainfed Wheat: Can Molecular Genetics Help. International Maize and Wheat Improvement Center [0290]
- **REYNOLDS et al.** Evaluating Potential Genetic Gains in Wheat Associated with Stress-Adaptive Trait Expression in Elite Genetic Resources under Drought and Heat Stress Crop science. *Crop Science*, 2007, vol. 47 (3), S-172-S-189 [0290]
- Review of wheat improvement for waterlogging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils. **SETTER et al.** Annals of Botany. vol. 103, 221-235 [0290]
- M. J. FOULKES; N. D. PAVELEY; A. WORLAND;
 S. J. WELHAM; J. THOMAS; J. W. SNAPE. Major Genetic Changes in Wheat with Potential to Affect Disease Tolerance. *Phytopathology*, vol. 96 (7), 680-688 [0290]

- ROSYARA, U.R.; K. PANT; E. DUVEILLER; R.C. SHARMA. Variation in chlorophyll content, anatomical traits and agronomic performance of wheat genotypes differing in spot blotch resistance under natural epiphytotic conditions. *Australasian Plant Pathology*, 2007, vol. 36, 245-251 [0290]
- ROSYARA, U.R.; R.C. SHARMA; E. DUVEILLER. Variation of canopy temperature depression and chlorophyll content in spring wheat genotypes and association with foliar blight resistance. *J. Plant Breed. Gr.*, 2006, vol. 1, 45-52 [0290]
- ROSYARA, U.R.; R.C. SHARMA; S.M. SHRESTHA; E. DUVEILLER. Canopy temperature depression and its association with helminthosporium leaf blight resistance in spring wheat. *Journal of Institute of Agriculture and Animal Science*, 2005, vol. 26, 25-28 [0290]
- ROSYARA, U.R.; R.C. SHARMA; S.M. SHRESTHA; E. DUVEILLER. Yield and yield components response to defoliation of spring wheat genotypes with different level of resistance to Helminthosporium leaf blight. *Journal of Institute of Agriculture and Animal Science*, 2006, vol. 27, 42-48 [0290]
- Physio-morphological traits associated with Helminthosporium leaf blight resistance in spring wheat. ROSYARA, U. R. Masters' Thesis. Institute of Agriculture and Animal Science, 2002 [0290]
- HAYWARD, M. D. ; N. O. BOSEMARK ; I. ROMAN-GOSA. Plant Breeding: Principle and Prospects. Chapman and Hall, 1993 [0290]
- Crop Breeding. American Society of Agronomy. Crop Science Society of America, 1983 [0290]
- ALLARD, R. W. Principles of Plant Breeding. John Wily and Sons Inc, 1960 [0290]
- SIMMONDS, N. W. Principles of Crop Improvement. Longman Group Limited, 1979 [0290]
- SINGH, B. D. Plant Breeding. Kalyani Publishers, 2000 [0290]
- GUO et al. American Journal of Botany, 2005, vol. 92 (9), 1548-1558 [0290]
- WATSON et al. Grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochcmistry, cytology, classification, pathogens, world and local distribution, and references, 18 August 1999 [0290]
- Phylogeny and subfamilial classification of the grasses (Poaceae). **GPWG.** Annals of the Missouri Botanical Garden. 2001, vol. 88, 373-457 [0290]
- CLAYTON et al. Genera Graminum. Kew Bulletin Additional Series XIII, 1986, 1-389 [0290]
- VAUGHAN. The wild relative of rice: a genetic resources handbook. International Rice Research Institute, 1994 [0290]
- DONALD C.M. The breeding for crop ideotypes. *Euphytica*, 1968, vol. 17, 385-403 [0290]

- GAO P.W. ; WANG B.L. et al. Studies on physiology and ecology for rice with high yield. *Liaoning Agricultural Science*, 1988, vol. 1, 7-11 [0290]
- Rice research in Asia. International Rice research Institute, 1996, 1-70 [0290]
- SHAO G.J. et al. Summarization and discussion on rice breeding research and development in Liaoning Province. *Liaoning Agrirultural Science*, 1995, vol. 6, 28-33 [0290]
- WANG B.L. et al. Incident light distribution over the population with high yield in rice. *Liaoning Agricultural Science*, 1989, vol. 6, 27-30 [0290]
- WANG B.L. The Trail and method of rice breeding for super high yield. The Proceedings of Rice Research. Chinese Science and Technological Press, 1992, 97-104 [0290]
- WANG B. L. et al. Studies on genetic activities of semi-dwarfism and erect-panicle in rice. *Journal of Shenyang Agricultural University*, 1997, vol. 28 (2), 83-87 [0290]
- WANG B.L. Studies on rice breeding for high yield, good quality and multiple resistance. Prospects of Rice Genetics and Breeding for the 21 st Century. China Agricultural Scientech Press, 2000, 191-195 [0290]
- WANG B.L. et al. Analysis of rice breeding in Liaoning Province in 1949-2000. *Liaoning Agricultural Science*, 2002, vol. 5, 5-8 [0290]
- YANG S.J. et al. Research on rice breeding through crossing indica and japonica and its evolution in the past thirty six years. *Journal of Shenyang Agricultural University*, 1987, vol. 18 (3), 3-9 [0290]
- **TAN et al.** The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63, Thero. *Appl. Genet,* 1999, vol. 99, 642-648 **[0290]**
- YAN et al. Comparative analyses of QTL for important agronomic traits between maize and rice. *Yi Chuan Xue Bao*, 2004, vol. 31 (12), 1401-1407 [0290]
- KHUSH et al. Rice Genetics IV, Int. Rice Res. Inst., 2001 [0290]
- YAMAMOTO et al. Towards the Understanding of Complex Traits in Rice: Substantially or Superficially?. DNA RESEARCH, 2009, 1-14 [0290]
- VIRAKTAMATH et al. Hybrid rice breeding manual. 1997 [0290]
- Rice Breeding. International Rice Research Institute, 1972 [0290]
- Rice breeding: Papers presented at the Symposium on Rice Breeding held at the International Rice Research Institute, 06 September 1971 [0290]
- CHAKRABORTY. *Rice Breeding and Genetics,* 2001, ISBN 8170228743 [0290]
- Two-line hybrid rice breeding manual. International Rice Research Institute, 2003 [0290]
- Rice science and technology. MARSHALL; WADSWORTH. Food science and technology. CRC Press, 1994, vol. 59 [0290]

- XIA. Progress of chromosome engineering mediated by asymmetric somatic hybridization. *J Genet Genomics*, September 2009, vol. 36 (9), 547-56 [0290]
- LIU et al. Generation of high frequency of novel alleles of the high molecular weight glutenin in somatic hybridization between bread wheat and tall wheatgrass. *Theor Appl Genet*, 08 February 2009, vol. 118 (6), 1193-8 [0290]
- **ZHOU et al.** Comparative study of symmetric and asymmetric somatic hybridization between common wheat and Haynaldia villosa. *Sci China C Life Sci.*, June 2001, vol. 44 (3), 294-304 **[0290]**
- WANG et al. Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. *Proteomics*, 2008, vol. 8 (7), 1470-89 [0290]
- CAI et al. Genotyping of somatic hybrids between Festuca arundinacea Schreb. and Triticum aestivum L. *Plant Cell Rep.*, 27 June 2007, vol. 26 (10), 1809-19 [0290]
- **DENG et al.** Analysis of remote asymmetric somatic hybrids between common wheat and Arabidopsis thaliana. *Plant Cell Rep.*, 04 April 2007, vol. 26 (8), 1233-41 [0290]
- **ZHOU et al.** Genetic characterization of asymmetric somatic hybrids between Bupleurum scorzonerifolium Willd and Triticum aestivum L.: potential application to the study of the wheat genome. *Planta,* 04 November 2005, vol. 223 (4), 714-24 **[0290]**
- LI et al. Regeneration of asymmetric somatic hybrid plants from the fusion of two types of wheat with Russian wildrye. *Plant Cell Rep.*, 24 July 2004, vol. 23 (7), 461-7 [0290]
- **ZHOU et al.** Introgression of the Haynaldia villosa genome into gamma-ray-induced asymmetric somatic hybrids of wheat. *Plant Cell Rep.*, 03 June 2005, vol. 24 (5), 289-96 **[0290]**
- XIA et al. RAPD method for the identification of intergeneric asymmetric somatic hybrid plants of wheat. *Shi Yan Sheng Wu Xue Bao.,* September 1999, vol. 32 (3), 265-70 [0290]
- MOSTAGEER et al. Establishment of a salt tolerant somatic hybrid through protoplast fusion between rice and ditch reed. *Arab J. Biotech.*, January 2003, vol. 6 (1), 1-12 [0290]
- NAKAJO et al. Somatic cell hybridization in rice (Oryza sativa L.) and birdsfoot trefoil (Lotus corniculatus L.). Japanese Journal of Breeding, March 1994 [0290]
- Somatic hybridization in rice x soybean. **NIIZEKI et al.** Biotechnology in agriculture and forestry vol 8, Plant protoplasts and genetic engineering. Springer, vol. 8, 410-434 **[0290]**
- KISAKA et al. Intergeneric somatic hybridization of rice (Oryza sativa L.) and barley (Hordeum vulgare L.) by protoplast fusion. *Plant Cell Reports,* vol. 17 (5), 362-367 [0290]

- COCKING. Rice biotechnology: Somatic hybridisation for improved salinity tolerance and xylem colonisation by rhizobia for endophytic nitrogen fixation Cahiers Options, vol. 40 [0290]
- ISHIKAWA. Rice interspecies hybrids show precocious or delayed developmental transitions in the endosperm without change to the rate of syncytial nuclear division. *Plant J.*, March 2011, vol. 65 (5), 798-806 [0290]
- X.HU; X.CHENG; H. JIANG; S.ZHU; B.CHENG;
 Y.XIANG. Genome-wide analysis of cyclins in maize (Zea mays). *Genet. Mol. Res.*, 2010, vol. 9 (3), 1490-1503 [0290]
- ACQUAAH et al. Principles of plant genetics and breeding. Wiley-Blackwell, 2007 [0290]
- HARTEN. Mutation Breeding. Cambridge University Press, 1998 [0290]
- ROY DAVIES ; WALL. Artificial Mutagenesis in Plant Breeding. *Nature*, 04 October 1958, vol. 182, 955-956 [0290]
- Plant Functional Genomics. GROTEWOLD. Methods in molecular biology. Humana Press, vol. 236 [0290]
- In vitro mutagenesis protocols. BRAMAN. Methods in molecular biology. Human Press, 2002, vol. 182 [0290]
- CHUSACULTANACHAI et al. Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments. *Methods Mol Biol.*, 2004, vol. 270, 319-34 [0290]
- **FUJII et al.** One-step random mutagenesis by error-prone rolling circle amplification. *Nucl. Acids Res.*, 2004, vol. 32 (19), e145 [0290]
- In vitro mutagenesis protocols. **TROWER.** Methods in molecular biology. John M. Walker Methods in molecular biology, vol. 57 [0290]
- KATSUMI, M. ; FOARD, D.E. ; PHINNEY, B.O. Evidence for the translocation of gibberellin A3 and gibberellin-like substances in grafts between normal, dwarf1 and dwarf5 seedlings of Zea mays L. *Plant Cell Physiol.*, 1983, vol. 24, 379-388 [0290]
- LACADENA, J.-R. Hybrid wheat. VII. Tests on the transmission of cytoplasmic male sterility in wheat by embryo-endosperm grafting. *Euphytica*, vol. 17 (3), 439-444 [0290]
- **TRIONE et al.** IN VITRO CULTURE OF SOMATIC WHEAT CALLUS TISSUE. *American Journal of Botany*, May 1968, vol. 55 (5), 19 [0290]
- **DODIG et al.** tissue culture response of different wheat genotypes, environmental effect and association with plant traits. *Options MEditerraneennes, Series A*, 129-132 **[0290]**
- O'HARA et al. Wheat Callus Culture: the Initiation, Growth and Organogenesis of Callus Derived from Various. *Explant Sources Ann Bot*, 1978, vol. 42 (5), 1029-1978 [0290]

- **ZAIDI et al.** Optimizing tissue culture media for efficient transformation of different indica rice genotypes. *Agronomy Research*, 2006, vol. 4 (2), 563-575 [0290]
- WANG et al. Tissue Culture Responses from Different Explants of Rice. *Rice Science*, 2005, vol. 12 (3), 229-232 [0290]
- TING Y ; BOYER A ; MCSWEENEY G. Maize tissue culture, 1978, vol. 52, 6 [0290]
- MARTHA C. HAWES; DIANA Z.SHARPE; MAR-IA-INES PLATA; STEVEN G. PUEPPKE; PREM S. CHOUREY. Auxin-independent growth of maize tissue culture cells. *Plant Science*, September 1985, vol. 40 (3), 197-202 [0290]
- SHERIDAN. Tissue Culture of Maize. *Physiologia Plantarum*, 1977, vol. 41 (3), 172-174 [0290]
- **MIZUTANI et al.** The syncytium-specific expression of the Orysa;KRP3 CDK inhibitor: implication of its involvement in the cell cycle control in the rice (Oryza sativa L.) syncytial endosperm. *J Exp Bot*, 20 November 2009, vol. 61 (3), 791-798 [0290]