
AXI4-Stream Video IP
and System Design
Guide

UG934 October 30, 2019

AXI4-Stream Video IP and System Design 2
UG934 October 30, 2019 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Date Version Revision

10/30/2019 2.2 Removed diagrams in Example Multi Pixel Encoding.
12/10/2018 2.2 Updated for Interlaced System design and added Example Pixel packing diagrams.
10/05/2016 2.2 Updated Dynamic TDATA Configuration section with additional examples (RAW14 and

RGB888).
04/06/2016 2.2 Updated for Encoding section.
09/30/2015 2.2 Updated pixel alignment in the Dynamic TDATA Configuration section.
04/02/2014 2.1 Updated Introduction chapter for the expansion of the video protocol to multiple

pixels transferred over one AXI4-Stream DATA beat.
06/19/2013 2.0 Added Video Subsystem Software Guidelines and Video Subsystem Bandwidth

Requirements sections. Removed Core Generator support.
07/25/2012 1.0 Initial Xilinx release.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=2

Table of Contents

Chapter 1: Introduction

AXI4-Stream Signaling Interface . 5

Data Format . 7

Chapter 2: System Design Guide

Video Timing Information . 17

Propagating Video Timing Information . 18

Reset Requirements. 19

Input/Output Interfaces - Automatic Delay Matching . 20

External Frame Buffers . 27

Multipoint Interfaces. 28

Ancillary Data . 29

Interlaced Video Support . 30

Video Subsystem Software Guidelines. 36

Video Subsystem Bandwidth Requirements . 47

Chapter 3: IP Development Guide

IP Parameterization . 60

General IP Structure. 61

Timing Representation . 65

Input/Output Timing . 70

Buffering Requirements . 71

READY – VALID Propagation . 73

Flushing Pipelined Cores . 74

Propagating SOF and EOL Signals . 76

Interframe Reinitialization . 76

Interrupt Subsystem . 76

Debugging Features . 77

Chapter 4: Tool Support

Core Generator and Vivado Compatibility . 79

EDK Compatibility . 79
AXI4-Stream Video IP and System Design 3
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=3

Appendix A: Additional Resources and Legal Notices

Xilinx Resources . 80

Solution Centers. 80

Documentation Navigator and Design Hubs . 80

Please Read: Important Legal Notices . 81
AXI4-Stream Video IP and System Design 4
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=4

Chapter 1

Introduction
This section summarizes the AXI4-Stream interface Video protocol as fully defined in the
Video IP: AXI Feature Adoption section of the AXI Reference Guide (UG1037).

AXI4-Stream Signaling Interface
The AXI4-Stream carries active video data, driven by both the master and slave interfaces as
seen in Figure 1-1.

Blank periods, audio data, and ancillary data packets are not transferred through the video
protocol over AXI4-Stream. All signals listed in Table 1-1 and Table 1-2 are required for
video over AXI4-Stream interfaces.

Table 1-1 shows the interface signal names and functions for the input (slave) side
connectors. To avoid naming collisions, the signal prefix s_axis_video should be
appended to s_axis_videok, for IP with multiple AXI4-Stream input interfaces, where k is
the index of the respective input AXI4-Stream; for example, axis_video_tvalid
becomes s_axis_video0_tvalid for stream 0 and s_axis_video1_tvalid for
stream 1.

X-Ref Target - Figure 1-1

Figure 1‐1: Video IP with Multiple AXI4-Stream Slave (Input) and Master (Output) Interfaces

Video IP
s_axis_video0_tdata
s_axis_video0_tvalid
s_axis_video0_tready
s_axis_video0_tlast

s_axis_video1_tdata
s_axis_video1_tvalid
s_axis_video1_tready
s_axis_video1_tlast
s_axis_video1_tuser

m_axis_video0_tdata
m_axis_video0_tvalid

m_axis_video0_tready
m_axis_video0_tlast

m_axis_video0_tuser

m_axis_video1_tdata
m_axis_video1_tvalid

m_axis_video1_tready
m_axis_video1_tlast

m_axis_video1_tuser

From
Video IP or
AXI VDMA

From
Video IP or
AXI VDMA

To
Video IP or
AXI VDMA

To
Video IP or
AXI VDMA

s_axis_video0_tuser

clk_proc

aclk_m
aclken_m
aresetn_m

aclk_s
aclken_s
aresetn_s
AXI4-Stream Video IP and System Design 5
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=5

Chapter 1: Introduction
1. InterfaceX Name mandates the top-level IP port names.
2. Video Specific Name should be short, descriptive signal names referring to AXI4-Stream ports that are to be used

in HDL code, timing diagrams, and test benches.

Table 1-2 shows the interface signal names and functions for the output (master) side
connectors. Similarly, for IP with multiple AXI4-Stream output interfaces, the signal prefix
m_axis_video should be appended to m_axis_videok_, where k is the index of the
respective output AXI4-Stream; for example, axis_video_tvalid becomes
m_axis_video0_tvalid for stream 0 and m_axis_video1_tvalid for stream 1.

READY/VALID Handshake

A valid transfer occurs whenever READY, VALID, ACLKEN, and ARESETn signals are High at
the rising edge of ACLK, as shown in Figure 1-2.

Table 1‐1: AXI4-Stream Video Protocol Input (Slave) Interface Signals

Function Width Direction AXI4-Stream Signal Name Video Specific Name

Video Data Any number of bytes In s_axis_video_tdata DATA
Valid 1 In s_axis_video_tvalid VALID
Ready 1 Out s_axis_video_tready READY

Start Of Frame 1 In s_axis_video_tuser SOF
End Of Line 1 In s_axis_video_tlast EOL

Table 1‐2: AXI4-Stream Video Protocol Output (Master) Interface Signals

Function Width Direction AXI4-Stream Signal Name Video Specific Name

Video Data Any number of bytes Out m_axis_video_tdata DATA
Valid 1 Out m_axis_video_tvalid VALID
Ready 1 In m_axis_video_tready READY

Start Of Frame 1 Out m_axis_video_tuser SOF
End Of Line 1 Out m_axis_video_tlast EOL

X-Ref Target - Figure 1-2

Figure 1‐2: Example of READY/VALID Handshake, Start of a New Frame
AXI4-Stream Video IP and System Design 6
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=6

Chapter 1: Introduction
During valid transfers, DATA only carries active video data. Blank periods and ancillary data
packets are not transferred by video over AXI4-Stream.

Start of Frame Signal

The start of frame (SOF) signal is physically transmitted over the AXI4-Stream TUSER0
signal, and signifies the first pixel of a video field or frame. The SOF pulse is one valid
transaction wide, and must coincide with the first pixel of the field or frame (Figure 1-2).
SOF functions as a frame synchronization signal, allowing downstream cores to reinitialize,
and detect the first pixel of a field or frame.

End of Line Signal

The end of line (EOL) signal is physically transmitted over the AXI4-Stream TLAST signal,
and signifies the last pixel of a line. The EOL pulse is one valid transaction wide, and must
coincide with the last pixel of a scan-line (Figure 1-3).

Data Format
To transport video data, the DATA vector encodes logical channel subsets of the physical
DATA signals. AXI4-Stream interfaces between video modules can facilitate the transfer of
video using different precision (e.g., 8, 10, or 12 bits per color channel), and/or different
formats (e.g., RGB or YUV 420) and different number of pixels per data beat.

X-Ref Target - Figure 1-3

Figure 1‐3: Use of EOL and SOF Signals
AXI4-Stream Video IP and System Design 7
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=7

Chapter 1: Introduction
AXI4-Stream Specific Parameterization

Video IP configuration parameters are described in IP Parameterization in Chapter 3. The
specific parameters for the AXI4-Stream interface video protocol are listed in Table 1-3.

The C_tk_AXIS_TDATA_WIDTH parameter determines the width of variable-width
interface signal TDATA on AXI4-Stream interface tk, where interface type t can have the
values [m,s] designating a master or slave interface, while optional integer k specifies the
interface ID. Typically, C_tk_AXIS_TDATA_WIDTH is a function of the component data
width, the number of pixels/samples per data beat, and the number of components the
actual video format is using.

The recommended parameter names for component data width is C_tk_DATA_WIDTH. The
optional format parameter C_tk_VIDEO_FORMAT can help the IP determine the number of
color components present on DATA using a HDL function. Video IP typically requires
specific formats on the input interfaces and can have the number of color component
channels hard coded in the IP. However, when C_tk_VIDEO_FORMAT (set by a default value
on the master interface) is propagated in HDL designs to slave interfaces, the IP source
code can perform DRC using assertions to ensure that AXI4-Stream video interfaces are
driven by video that was encoded in the expected format.

Encoding

The DATA bits are represented using the [N-1:0] bit numbering convention (N-1 through
0). The components of implicit subfields of DATA should be packed tightly together; for
example, a DW=10 bit RGB data packed together to 30 bits. If necessary, the packed data
word should be zero padded with most significant bits (MSBs) so the width of the resulting
word is an integer that is a multiple of eight as shown in Figure 1-4.

Table 1‐3: Video over AXI4-Stream Specific IP Parameters

Parameter Name Function

C_tk_DATA_WIDTH Width of color/component data
C_tk_VIDEO_FORMAT Video format code

C_tk_AXIS_TDATA_WIDTH Width of interface signal TDATA
C_tk_MAX_SAMPLES_PER_CLOCK Maximum number of samples/pixels per data beat

X-Ref Target - Figure 1-4

Figure 1‐4: Video Data Padding for TDATA for Multiple Pixels

816243240

Component GComponent BComponent R

bit 0
AXI4-Stream Video IP and System Design 8
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=8

Chapter 1: Introduction
The detailed representation of different formats is listed in Table 1-4, with
DW = C_DATA_WIDTH and VF = C_VIDEO_FORMAT.

Note: For any of the 4:2:2 and 4:2:0 formats, Cb (or U) and Cr (or V) samples are split over two data
beats but only in a one sample per clock mode. The first data beat holds Cb (or U); the second data
beat holds Cr (or V). In other words, the first active pixel of the frame contains [Cb0:Y0] and the next
pixel contains [Cr0:Y1]. The 4:2:0 format adds vertical subsampling to the 4:2:2 format, which is
implemented in Video over AXI4-Stream by omitting the chroma data on every other line.
Note: Bayer Sensor data is also referred to as RAW data, which is generally in
RAW8/RAW10/RAW12/RAW14/RAW16, etc. formats.

Encoding Multiple Pixels - Static TDATA Configuration

When multiple samples/pixels are carried by AXI4-Stream, pixels should be packed from
least significant bit (LSB) to MSB, e.g., the least significant pixel should correspond to the
left-most pixel in a scanline, or to the pixel captured earliest in time. For example, if 4
samples/pixels are sent per data beat, the first sample sits in the least significant, the 4th
sample sits in the most significant bit positions.

When multiple pixels or samples are transferred using the video protocol over AXI4-Stream,
color components pertinent to the individual pixels are arranged according to Table 1-5,
presenting examples for transferring two pixels for video modes 0, 1, 2, 3, 12. Pixel data is
packed continuously without any padding between pixels. When N*DW is not an integer

Table 1‐4: Video Format Codes and Data Representation for C_tk_MAX_SAMPLES_PER_CLOCK =1

VF Code Video Format [4DW-1: 3DW] [3DW-1: 2DW] [2DW-1: DW] [DW-1:0]

0 YUV 4:2:2 V/U, Cr/Cb Y
1 YUV 4:4:4 V, Cr U, Cb Y
2 RGB R B G
3 YUV 4:2:0 V/U, Cr/Cb Y
4 YUVA 4:2:2 V/U, Cr/Cb Y
5 YUVA 4:4:4 V, Cr U, Cb Y
6 RGBA R B G
7 YUVA 4:2:0 , V/U, Cr/Cb Y
8 YUVD 4:2:2 D V/U, Cr/Cb Y
9 YUVD 4:4:4 D V, Cr U, Cb Y

10 RGBD D R B G
11 YUV 4:2:0 D V/U, Cr/Cb Y

12 Mono/Bayer
Sensor (RAW) Y, RGB, CMY

13 Custom2 2 Components – No DRC
14 Custom3 3 Components – No DRC
15 Custom4 4 Components – No DRC
AXI4-Stream Video IP and System Design 9
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=9

Chapter 1: Introduction
multiple of 8, video data is zero padded on the MSBs, as presented on Figure 1-5. If the line
size is not divisible by the number pixels/samples per data beat, then the last beat of the
line should use the LSBs. Then, the unused pixel in the MSBs of the last data beat of the line
should be padded with zeros.

Encoding Multiple Pixel - Dynamic TDATA Configuration

For applications where video IP can dynamically change color-component width, video
format, or the number of pixels/samples per data beat, pixels and components should
remain at the static locations determined by the generic parameters for instantiation. For
example, if only one pixel is transmitted over an interface supporting at most two pixels per
data beat, the sample/pixel should be aligned to the least significant pixel position.
Similarly, if only 8 bits per component are transmitted over an interface generated for 10
bits per component, the active bits should be MSB aligned and LSB padded with zeros.
Three examples are shown in Figure 1-6 through Figure 1-9.

IMPORTANT: Although this specification supports dynamically changing the number of pixels/samples
per data beat, this is not recommended because not all IPs support this feature.

X-Ref Target - Figure 1-5

Figure 1‐5: Video Data Padding for TDATA

5664 48 8162432

Component GComponent B

bit 0

Component R

40

Component GComponent BComponent R

Table 1‐5: Video Format Codes and Data Representation

VF
Code

Video
Format

[6DW-1:
5DW]

[5DW-1:
4DW]

[4DW-1: 3DW]
[3DW-1:

2DW]
[2DW-1: DW] [DW-1:0]

0 YUV 4:2:2 V0, Cr0 Y1 U0, Cb0 Y0
1 YUV 4:4:4 V1, Cr1 U1, Cb1 Y1 V0, Cr0 U0, Cb0 Y0
2 RGB R1 B1 G1 R0 B0 G0
3 YUV 4:2:0 V0, Cr0 Y1 U0, Cb0 Y0

12
Mono/Bay
er Sensor

(RAW)
RGB1, CMY1 RBGB0, CMY0

X-Ref Target - Figure 1-6

Figure 1‐6: One Pixel per Data Beat, Eight Bits per Component over a Two-Pixel per Data Beat, 10-Bits
per Component Bus

5664 48 8162432

Component GComponent B

bit 0

Component R

40
X22096-121018
AXI4-Stream Video IP and System Design 10
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=10

Chapter 1: Introduction
Figure 1-8. captures RGB888 (pixel with three components, component width of 8).

Notes:
1. Each G,B,R component sits in 14-bit component space with MSB alignment.

Figure 1-9. captures RAW14 (pixel with single component, component width of 14).

Notes:
1. Although RAW14 may only use the lower 28 bits, the full AXI4-Stream interface remains 88-bits because it must

accommodate the possibility of switching to RGB at full 14-bits per color if requested when dealing with dynamic
TDATA. Down stream logic must be aware of this and should provide the appropriate bus interface and then
internally discard bits if it does not use them.

Comparing the two data type component widths in Figure 1-8 and Figure 1-9, the RAW14,
VF Code 2 data type has 14-bit component and RGB888 (VF Code 2) 8-bit component.
Therefore, the RGB888 components are placed with MSB aligned and LSB padded with zeros
on 14-bit component bus. Additionally, the RAW14 pixels are packed tightly together.

X-Ref Target - Figure 1-7

Figure 1‐7: Two Pixels per Data Beat, Eight Bits per Component over a Two-Pixel per Data Beat,
10-Bits per Component Bus

X-Ref Target - Figure 1-8

Figure 1‐8: Two Pixels per Data Beat, Eight bits per Component (RGB888, VF Code 2) over a
Two-Pixel per Data Beat, 14-bits per Component Bus

X-Ref Target - Figure 1-9

Figure 1‐9: Two Pixels per Data Beat, 14 Bits per Component (RAW14, VF Code 12) over a
Two-Pixel per Data Beat, 14-bits per Component Bus

5664 48 8162432

Component GComponent B

bit 0

Component R

40

Component GComponent R Component B

Pixel 1 Pixel 0

X22097-121018

5664 48 8162432

Component GComponent B

bit 0

Component R

40

Pixel 1 Pixel 0

80 7288

Component GComponent BComponent R

X22098-121018

5664 48 8162432 bit 040

Pixel 1 Pixel 0

80 7288
X22099-121018
AXI4-Stream Video IP and System Design 11
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=11

Chapter 1: Introduction
Example Multi Pixel Encoding

The AXI4-Stream video interface supports dual or quad pixels per clock with 8 bits, 10 bits,
12 bits and 16 bits per component for RGB, YUV444, and YUV420 color spaces. When the
parameter, Max Bits Per Component, is set to 16, Figure 1-10 shows the data format for
quad pixels per clock to be fully compliant with the AXI4-Stream video protocol.

A data format for a fully compliant AXI4-Stream video protocol dual pixel per clock is
illustrated in Figure 1-11.

When the parameter, Max Bits Per Component, is set to 12, video formats with actual bits
per component larger than 12 is truncated to the Max Bits Per Component. The remaining
least significant bits are discarded. If the actual bits per component is smaller than Max Bits
Per Component set in the Vivado® IDE, all bits are transported with the MSB aligned and
the remaining LSB bits are padded with 0. This applies to all Max Bits Per Component
settings.

As an illustration, when Max Bits Per Component is set to 12, Figure 1-12 shows the data
format for quad pixels per clock to be fully compliant with the AXI4-Stream video protocol.

X-Ref Target - Figure 1-10

Figure 1‐10: Quad Pixels Data Format (Max Bits Per Component = 16)

X-Ref Target - Figure 1-11

Figure 1‐11: Dual Pixels Data Format (Max Bits Per Component = 16)

Y1
12-bits

Y2
12-bits

U2
12-bits

G 0/ Y0
8-bits

B0 / U0
8-bits

R0 / V0
8-bits

G1 / Y1
8-bits

B1 / U1
8-bits

R1 / V1
8-bits

G2 / Y2
8-bits

B2 / U2
8-bits

R2 / V2
8-bits

G3 / Y3
8-bits

B3 / U3
8-bits

R3 / V3
8-bits

192

RGB / YUV444
8-bits

G 0/ Y0
10-bits

B0 / U0
10-bits

R0 / V0
10-bits

G1 / Y1
10-bits

B1 / U1
10-bits

R1 / V1
10-bits

G2 / Y2
10-bits

B2 / U2
10-bits

R2 / V2
10-bits

G3 / Y3
10-bits

B3 / U3
10-bits

R3 / V3
10-bits

RGB / YUV444
10-bits

G 0/ Y0
12-bits

B0 / U0
12-bits

R0 / V0
12-bits

G1 / Y1
12-bits

B1 / U1
12-bits

R1 / V1
12-bits

G2 / Y2
12-bits

B2 / U2
12-bits

R2 / V2
12-bits

G3 / Y3
12-bits

B3 / U3
12-bits

R3 / V3
12-bits

RGB / YUV444
12-bits

G 0/ Y0
16-bits

B0 / U0
16-bits

R0 / V0
16-bits

G1 / Y1
16-bits

B1 / U1
16-bits

R1 / V1
16-bits

G2 / Y2
16-bits

B2 / U2
16-bits

R2 / V2
16-bits

G3 / Y3
16-bits

B3 / U3
16-bits

R3 / V3
16-bits

RGB / YUV444
16-bits

Y0
12-bits

U0
12-bits

V0
12-bits

V2
12-bits

Y3
12-bits

RGB / YUV444
12-bits

176 160 144 128 112 96 80 64 48 32 16 0

X22100-121018

R0 / V0
10-bits

G0 / Y0
10-bits

B0 / U0
10-bits

G1 / Y1
10-bits

B1 / U1
10-bits

R1 / V1
10-bits

RGB / YUV444
10-bits

R0 / V0
8-bits

G0 / Y0
8-bits

B0 / U0
8-bits

G1 / Y1
8-bits

B1 / U1
8-bits

R1 / V1
8-bits

0163248648096

Y0
12-bits

U0
12-bits

Y1
12-bits

V0
12-bits

YUV422
12-bits

RGB / YUV444
8-bits

R0 / V0
12-bits

G0 / Y0
12-bits

B0 / U0
12-bits

G1 / Y1
12-bits

B1 / U1
12-bits

R1 / V1
12-bits

RGB / YUV444
12-bits

R0 / V0
16-bits

G0 / Y0
16-bits

B0 / U0
16-bits

G1 / Y1
16-bits

B1 / U1
16-bits

R1 / V1
16-bits

RGB / YUV444
16-bits

X22101-121018
AXI4-Stream Video IP and System Design 12
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=12

Chapter 1: Introduction
A data format for a fully compliant AXI4-Stream video protocol with dual pixels per clock is
illustrated in Figure 1-13.

When the parameter, Max Bits Per Component, is set to 12, video formats with actual bits
per component larger than 12 is truncated to the Max Bits Per Component. The remaining
least significant bits are discarded. If the actual bits per component is smaller than Max Bits
Per Component set in the Vivado IDE, all bits are transported with the MSB aligned and the
remaining LSB bits are padded with 0. This applies to all Max Bits Per Component settings.

X-Ref Target - Figure 1-12

Figure 1‐12: Quad Pixels Data Format (Max Bits Per Component = 12)

X-Ref Target - Figure 1-13

Figure 1‐13: Dual Pixels Data Format (Max Bits Per Component = 12)

Table 1‐6: Max Bits Per Component Support

Max Bits Per Component Actual Bits Per Component Bits Transported by Hardware

16

8 [7:0]
10 [9:0]
12 [11:0]
16 [15:0]

12

8 [7:0]
10 [9:0]
12 [11:0]
16 [15:4]

Y1
12-bits

Y2
12-bits

U2
12-bits

G 0/ Y0
8-bits

B0 / U0
8-bits

R0 / V0
8-bits

G1 / Y1
8-bits

B1 / U1
8-bits

R1 / V1
8-bits

G2 / Y2
8-bits

B2 / U2
8-bits

R2 / V2
8-bits

G3 / Y3
8-bits

B3 / U3
8-bits

R3 / V3
8-bits

144

RGB / YUV444
8-bits

G 0/ Y0
10-bits

B0 / U0
10-bits

R0 / V0
10-bits

G1 / Y1
10-bits

B1 / U1
10-bits

R1 / V1
10-bits

G2 / Y2
10-bits

B2 / U2
10-bits

R2 / V2
10-bits

G3 / Y3
10-bits

B3 / U3
10-bits

R3 / V3
10-bits

RGB / YUV444
10-bits

G 0/ Y0
12-bits

B0 / U0
12-bits

R0 / V0
12-bits

G1 / Y1
12-bits

B1 / U1
12-bits

R1 / V1
12-bits

G2 / Y2
12-bits

B2 / U2
12-bits

R2 / V2
12-bits

G3 / Y3
12-bits

B3 / U3
12-bits

R3 / V3
12-bits

RGB / YUV444
12-bits

Y0
12-bits

U0
12-bits

V0
12-bits

V2
12-bits

Y3
12-bits

YUV422
12-bits

132 120 108 96 84 72 60 48 36 24 12 0
X22102-121018

R0 / V0
10-bits

G0 / Y0
10-bits

B0 / U0
10-bits

G1 / Y1
10-bits

B1 / U1
10-bits

R1 / V1
10-bits

RGB / YUV444
10-bits

R0 / V0
8-bits

G0 / Y0
8-bits

B0 / U0
8-bits

G1 / Y1
8-bits

B1 / U1
8-bits

R1 / V1
8-bits

0122436486072

Y0
12-bits

U0
12-bits

Y1
12-bits

V0
12-bits

YUV422
12-bits

RGB / YUV444
8-bits

R0 / V0
12-bits

G0 / Y0
12-bits

B0 / U0
12-bits

G1 / Y1
12-bits

B1 / U1
12-bits

R1 / V1
12-bits

RGB / YUV444
12-bits

X22103-121018
AXI4-Stream Video IP and System Design 13
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=13

Chapter 1: Introduction
As an illustration, when Max Bits Per Component is set to 12, Figure 1-14 shows the data
format for quad pixels per clock to be fully compliant with the AXI4-Stream video protocol.
A data format for a fully compliant AXI4-Stream video protocol with dual pixels per clock is
illustrated in Figure 1-15.

10

8 [7:0]
10 [9:0]
12 [11:2]
16 [15:6]

8

8 [7:0]
10 [9:2]
12 [11:4]
16 [15:8]

Table 1‐6: Max Bits Per Component Support (Cont’d)

Max Bits Per Component Actual Bits Per Component Bits Transported by Hardware

X-Ref Target - Figure 1-14

Figure 1‐14: Quad Pixels Data Format (Max Bits Per Component = 12)

G0 /
Y0

8-bits

G0 / Y0
10-bits

B0 /
U0

8-bits

B0 / U0
10-bits

R0 /
V0

8-bits

R0 / V0
10-bits

G1 /
Y1

8-bits

G1 / Y1
10-bits

B1 /
U1

8-bits

B1 / U1
10-bits

R1 /
V1

8-bits

R1 / V1
10-bits

G2 /
Y2

8-bits

G2 / Y2
10-bits

B2 /
U2

8-bits

B2 / U2
10-bits

R2 /
V2

8-bits

R2 / V2
10-bits

G3 /
Y3

8-bits

G3 / Y3
10-bits

B3 /
U3

8-bits

B3 / U3
10-bits

R3 /
V3

8-bits

R3 / V3
10-bits

012243648608496108 72120144 132

Y0
12-bits

U0
12-bits

Y1
12-bits

V0
12-bits

Y2
12-bits

U2
12-bits

Y3
12-bits

V2
12-bits

RGB / YUV444
8-bits

RGB / YUV444
10-bits

YUV422
12-bits

G0 / Y0
12-bits

B0 / U0
12-bits

R0 / V0
12-bits

G1 / Y1
12-bits

B1 / U1
12-bits

R1 / V1
12-bits

G2 / Y2
12-bits

B2 / U2
12-bits

R2 / V2
12-bits

G3 / Y3
12-bits

B3 / U3
12-bits

R3 / V3
12-bits

RGB / YUV444
12-bits

• • • • • • •• • • • • •
AXI4-Stream Video IP and System Design 14
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=14

Chapter 1: Introduction
The video interface can also transport quad and dual pixels in the YUV420 color space.

Similarly, for YUV 4:2:0 deep color (10, 12, or 16 bits), the data representation is the same.
The only difference is that each component carries more bits (10, 12, and 16). When
transporting using AXI4-Stream, the data representation need to be compliant to the
protocol defined in UG934. With the remapping feature, the same native video data will be
converted into AXI4-Stream formats, which is shown in Figure 1-16. The 4:2:0 format adds
vertical subsampling to the 4:2:2 format, which is implemented in Video over AXI4-Stream
by omitting the chroma data on every other line.

Note: For RGB/YUV444/YUV422, Video data are directly mapped from AXI4 Stream to Native Video
interface without any line buffer. Therefore, Figure 1-12 to Figure 1-15 are common to represent
data interface for both AXI4 Stream and Native Video. The control signals are omitted in the figures.

X-Ref Target - Figure 1-15

Figure 1‐15: Dual Pixels Data Format (Max Bits Per Component = 12)

X-Ref Target - Figure 1-16

Figure 1‐16: YUV 4:2:0 AXI4-Stream Video Data (Dual Pixel per Clock)

G0 / Y0
8-bits

G0 / Y0
10-bits

B0 / U0
8-bits

B0 / U0
10-bits

R0 / V0
8-bits

R0 / V0
10-bits

G1 / Y1
8-bits

G1 / Y1
10-bits

B1 / U1
8-bits

B1 / U1
10-bits

R1 / V1
8-bits

R1 / V1
10-bits

0122436486072

Y0
12-bits

U0
12-bits

Y1
12-bits

V0
12-bits

RGB / YUV444
8-bits

RGB / YUV444
10-bits

YUV422
12-bits

G0 / Y0
12-bits

B0 / U0
12-bits

R0 / V0
12-bits

G1 / Y1
12-bits

B1 / U1
12-bits

R1 / V1
12-bits

RGB / YUV444
12-bits

• • • • • • •• • • • • •

clk

tvalid

tdata[71:60]

tdata[59:48]

tdata[47:36] Cr00 Cr02 Cr04 Cr06

tdata[35:24] Y01 Y03 Y05 Y07 Y11 Y13 Y15 Y17

tdata[23:12] Cb00 Cb02 Cb04 Cr06

tdata[11:0] Y00 Y02 Y04 Y06 Y10 Y12 Y14 Y16

tlast

AXI4-Stream Line0 Line1
AXI4-Stream Video IP and System Design 15
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=15

Chapter 1: Introduction
The subsystem provides full flexibility to construct a system using the configuration
parameters, maximum bits per component and number of pixels per clock. Set these
parameters so that the video clock and link clock are supported by the targeted device. For
example, when dual pixels per clock is selected, the AXI4-Stream video need to run at
higher clock rate comparing with quad pixels per clock design. In this case, it is more
difficult for the system to meeting timing requirements. Therefore the quad pixels per clock
data mapping is recommended for design intended to send higher video resolutions.

Some video resolutions (for example, 720p60) have horizontal timing parameters (1650)
which are not a multiple of 4. In this case the dual pixels per clock data mapping must be
chosen.
AXI4-Stream Video IP and System Design 16
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=16

Chapter 2

System Design Guide

Video Timing Information
AXI4-Stream carries only video pixel data, SOF, and EOL signals between component
interfaces. Blanking or sync signals are not carried by the signaling interface, and strict
signal periodicity is not required.

In addition to extracting video pixel data from the input stream and sending it to
subsequent modules using video over AXI4-Stream, the interface modules must measure
timing information (including the number of pixels per scan-line, number of active rows per
frame, and so on) when receiving video from a standard periodic video source such as DVI,
HDMI, SDI, or an image sensor. Input interface modules make this information available to
video processing and output interface modules, which then recreate periodic timing signals
and embed output video pixel data that was processed by the video system to recreate a
periodic output stream such as DVI (Figure 2-1).

Figure 2-1 illustrates the extraction and propagation of timing information. The Video In to
AXI4-Stream input interface and Video Timing Detector cores measure timing information,
and extract video pixel data. It then transmit the data using the AXI4-Stream (represented
by the AXI4-S arrows in Figure 2-1). Timing information is propagated through optional
AXI4-Lite interfaces. When present, the system processor (AXI4-Lite master) reads out
measured timing information from the timing detector, and programs subsequent

X-Ref Target - Figure 2-1

Figure 2‐1: Timing Information Extraction and Propagation Example

AXI4-SAXI4-SAXI4-S DVI
AXI4-Stream

To
Video

Video
Timing

Generator

Video
to

AXI4-Stream

Video
Timing

Detector

DVI Chroma
Resampler

Enhance

uBlaze or A9
AXI4-Lite master

AXI4-Lite
AXI4-Stream Video IP and System Design 17
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=17

Chapter 2: System Design Guide
processing cores and the timing generator using the AXI4-Lite control register interfaces.
When instantiated without an AXI4-Lite control interface, video cores can only process a
fixed video format / resolution, specified in the core GUI. In Figure 2-1, the Chroma
Resampler and Enhance cores process the video stream. The processing cores might
contain line buffers for which the number of active pixels per scan line is necessary. The
processing cores receive active size (number of pixels per scan line, number of scan lines
per frame) measurement values, among other timing parameters from the Video Timing
Detector module, which is used with the DVI input interface IP. Processing cores also verify
the data by employing pixel counters between subsequent EOL pulses. The AXI4-Stream to
Video output interface core generates Standard Sync, Blank and Active Video timing
signals, as defined by the timing information received, and embeds the video pixel data as
received over the AXI4-Stream input interface.

Propagating Video Timing Information
Input and Output interface IP should provide two interface options to make measured
timing information available for subsequent cores. For embedded systems either using a
processor or dedicated IP acting as the AXI4-Lite master, an AXI4-Lite interface should be
provided with a standardized register API to present timing information. For standalone
video systems without an embedded processor, timing parameters for a fixed
format/resolution should be provided through the IP parameters and/or GUI. The Video
Timing Controller (VTC) core contains the Timing Detector and Timing Generator cores for
use with custom AXI4-Stream interfaces.

The Video to AXI4-Stream and AXI4-Stream to Video cores are delivered as HDL source
code and provided as examples to expedite custom interface development. For embedded
systems using a processor acting as an AXI4-Lite master or dedicated IP acting as the
AXI4-Lite master, an AXI4-Lite pCore interface should be provided with a standardized
register API to present timing information. For more information, see AXI4-Lite Interface in
Chapter 3.

Using the TUSER signal to transmit periodic sync information, such as hsync or vsync
along with the video data is prohibited as there are no guarantees on IP delay consistency
(aperiodicity), and delay matching between DATA and TUSER bits through IP cores.
Furthermore, when video data is written and retrieved from frame buffers, sync information
from TUSER is not recovered.

Transferring timing information or ancillary data embedded in the AXI4-Stream video
stream is also prohibited, either in the form of a header or as a watermark. No method is
provided for, or expected from processing cores to distinguish timing information or
ancillary data packets from valid pixel data. When video data is re-formatted, for example
video scaling changes the active frame dimensions, no mechanism is provided or expected
to change timing or stream information embedded in video data.
AXI4-Stream Video IP and System Design 18
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=18

Chapter 2: System Design Guide
Reset Requirements

Hardware Reset

Each AXI interface must be designed to accommodate entering or exiting a reset on a
different (preceding or subsequent) cycle than the interface to which it is connected.
Specifically, an IP core must not rely on another connected IP being reset simultaneously
during the same cycle. Video IP should be designed so that any reset of the AXI4-Stream
interfaces re-initializes the IP to reduce disruption on the output video stream.

Although Xilinx® IP can generally have multiple AXI interfaces connected to isolated
interconnection networks to support the localized reset of some interfaces, it is not
recommended. As a practical system design guideline, the reset source(s) should be held
active internally for some minimum number of cycles (of the slowest clock in the system) to
ensure that all IP is properly reinitialized and all AXI interfaces go into the quiescent state
prior to releasing the reset. If internal extension of the reset pulse is not throughble, video
IP data sheets specify the required reset pulse-width, if greater than one cycle.

As stated in the Xilinx AXI Reference Guide guidelines, it is recommended that all AXI
interfaces in a system be globally reset together. When resetting multiple video cores in a
system, all interfaces must be reset before any interface comes out of reset. Video IP should
accept and drop (not propogate) valid samples until the SOF signal is received.

AXI4-Stream interfaces must deassert their VALID and READY outputs while in reset. This
does not need to commence immediately upon sampling the reset input active, but in time
to allow the network of connected IP to reach a quiescent reset state prior to the
deassertion of reset at any IP. This allows for arbitrary (but reasonable) internal pipe-lining
of reset inputs, including resynchronization to a different clock domain, if necessary.

Software Reset

When resetting multiple video cores within a system, all interfaces must be reset before any
interface comes out of reset. When reset is performed in the software (which
asserts/deasserts software reset flags sequentially), the IP cores should be reset from the
output towards the input. The software reset pin of video IP closest to the system output
should be asserted first. Subsequent cores near the signal source should then be reset.
Software reset pins should be deasserted in the same sequence.

If permitted by the application, provide a soft software reset option (SSR) for the video IP,
where reset is synchronized with video frame boundaries. If sufficient time is available
between video frames, (for example, a vertical blanking period is present), a soft reset after
the predicted end-of-frame can facilitate the reset of individual cores without negatively
impacting system performance.
AXI4-Stream Video IP and System Design 19
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=19

Chapter 2: System Design Guide
Input/Output Interfaces - Automatic Delay
Matching
The handshaking mechanism of AXI4-Stream provides a framework that allows building
video systems that align data and timing signals without having to manually calculate
propagation delay through processing blocks, as well as creating frame sync signals to
trigger certain blocks. For data and output sync signal alignment, consider the following
design constraints:

• Is it possible to hold up the input video stream? Is there a back pressure signal?
• Must the output stream be phase-locked to an external Frame Sync signal?
• Are the input and output video clocks the same or phase-locked to each other?

Based on the above consideration, typical use cases include:

• Timed video input, such as DVI, that cannot be delayed. Timed video output using the
same video clock. For automatic delay matching, synchronization is necessary.

• Input and output are in unrelated clock domains (scaled video), and a frame buffer is
necessary.

No delay matching is necessary in a hardware accelerator scenario where input is coming
from memory or from a processor. Processing and output blocks can generate output when
the input is available. If input and output are in unrelated clock domains, a frame buffer is
necessary. The following sections contain recommendations for implementing
protocol-based delay matching for scenarios with or without frame buffers.

In all cases, the input interface module is expected to have a “locked” output, originating
from the VTC timing detector. The VTC timing detector issues a signal when the input timing
measurements are stabilized. The input interface module is expected to drop pixel data until
input timing has locked.

Periodic Input Stream, Unconstrained Output Stream, No
Frame Buffer

This section provides an algorithm (Figure 2-2) describing how automatic data-sync signal
alignment can be achieved at the output interface for a video system that contains

• no frame buffer
• a periodic input stream that cannot be held off
• an output video pixel clock that is either the same, or a derivative of the input pixel

clock, and
AXI4-Stream Video IP and System Design 20
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=20

Chapter 2: System Design Guide
• the output video stream does not have to be phase locked to an external Frame Sync
signal.

This scenario applies to a sensor image pre-processing pipeline, where input and output
pixel rates are identical, and the output timing generator does not have to be locked to an
external frame sync source. After power on or reset, the output AXI4-Stream interface
deasserts READY, and the output timing signal generator state machine is initialized to wait
in the state just before the start of active video.

Note: In this case, the function of READY is limited to what the internal buffers allow if the input
stream cannot be held back.

The output timing generator waits for the input interface to signal that timing information
has stabilized (locked). Now, the output AXI4-Stream interface should assert READY, which
propagates backward towards the input of the pipeline. As a result, pixel data is propagated
down the pipeline. Processed pixel data reaches the output interface module when its
VALID input is sampled high. When the input data buffer of the output video interface gets
50% full, the output timing generator can start generating periodic output sync/blank
signals, and pixel data can be fed forward to the output.

X-Ref Target - Figure 2-2

Figure 2‐2: Output Timing Generator Control Flowchart for Unconstrained Output Video Stream

Reset / POR State

Output timing
generator stopped
at first active pixel

Input
Timing

Locked?

Yes

Output timing
generator running

locked to input
video clock

No

R
ES

ET
 o

r b
uf

fe
r u

nd
er

ru
n

Waiting for
Input buffer to fill

up over 50%
AXI4-Stream Video IP and System Design 21
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=21

Chapter 2: System Design Guide
Output Stream Generation for Pixel Data from Frame Buffer

This section provides an algorithm for automatic data–sync signal alignment at the output
interface for a video system that contains a frame buffer, and the output video stream might
be in a separate clock domain or might have to be phase-locked to an external Frame Sync
signal (Figure 2-3).

The portion of this system relevant to output stream synchronization is the leg from the
frame buffer to the output interface core, which can contain processing cores. These
processing cores can change the effective pixel rate. The example presented in Figure 2-4
uses a video scaler, which typically changes the pixel rate, and can operate in three different
clock domains:

• its input interface running at the memory system clock rate
• the core processing data at a processing clock rate
• its output interface running at the same clock as the output interface, which can come

from an external clock source

The choice of external frame buffer for AXI4-Stream based IP video systems is the
AXI-VDMA core, which must be configured to the desired frame size using an AXI4-Lite
interface. Figure 2-4 illustrates timing information (from an input interface core, or from
software) distributed using this interface.

X-Ref Target - Figure 2-3

Figure 2‐3: Example System with Output Sync Tied to an External Frame Sync Signal

AXI4-S AXI4-SAXI4-SAXI4-S DVI
AXI4-Stream

To
Video

Video
Timing

Generator

Video
to

AXI4-Stream

Video
Timing

Detector

DVI
Video

Processing
Pipeline

AXI-
VDMA

Video to
Frame
Buffer

uBlaze or A9
AXI4-Lite master

AXI4-Lite

AXI-
VDMA

Video
from

Frame
Buffer

External Memory

Video
Processing

Pipeline

clk

Fsync
AXI4-Stream Video IP and System Design 22
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=22

Chapter 2: System Design Guide
Three possible scenarios are addressed in this setup:

1. External output clock (Ext clk) is different from the input clock, but there is no
external Fsync signal.

2. Output Timing Generator needs to be locked to an external Fsync.
3. External Fsync driving the AXI-VDMA readouts.

For scenario 1, the data – sync signal alignment algorithm is as follows:

After power up or reset, the output interface core should deassert READY and set all
outputs to defaults until timing information is locked (Figure 2-7). The AXI-VDMA should be
configured with the write side being Fsync and Genlock master. When the input buffer of
the Video output core is 50% filled with data from the AXI-VDMA, the output timing signal
generation should commence. When the timing generator gets to the phase where active
video needs to be sent, but pixels are not present yet, blank frames should be generated. If
the output interface data buffer gets full, the output interface core should deassert TREADY.

For scenario two, the setup and protocol are identical, but the video timing generator
should be configured to sync with the external Fsync.

For scenario 3, a frame sync signal originating from the output timing generator or an
external fsync is used to trigger AXI-VDMA frame reads. If an external frame sync signal is
present, ensure that the phase relationship between the external Fsync pulse and the VTC
generator Fsync allows pixel data to be fetched from the AXI-VDMA and propagated
through subsequent cores between the AXI-VDMA and the output interface module. This
allows data and timing signals on the output interface to be synchronized.

A good example of this is when the external frame sync is in phase with the start of vertical
blanking. If output pixels are needed immediately, this sync is too late to trigger readout
from the AXI-VDMA.

X-Ref Target - Figure 2-4

Figure 2‐4: Example System with a Video Scaler

AXI4-S DVIAXI4-S Video Scaler

m
od

e
fra

m
e

pt
r

fra
m

e
si

ze

tim
in

g
da

ta

AXI-
VDMA

Ext
Fsync

Fsync

Ext
clk

AXI4-
Stream

To
Video

Video
Timing

GeneratorAXI4-Lite
AXI4-Stream Video IP and System Design 23
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=23

Chapter 2: System Design Guide
The timing generator core contains logic which can generate frame sync pulses at arbitrary
phases after the generator is generating periodic timing signals. For scenarios when the
external frame sync is too late to trigger data readout, an earlier, regenerated frame sync
pulse should be used. This ensures that pixel data gets to the output interface core before
it needs to be sent in phase with the periodic output timing signals.

For video systems with a Frame Buffer but no external output frame sync source, the
AXI-VDMA core can automatically fetch the last frame finished on the write-side to be
picked up immediately when the read size is in idle (reading a frame has completed).

When pixel data propagates to the output interface core, the output interface core should
deassert its READY output and start driving pixel data using READY to maintain synchrony
between the input pixel flow and output sync signals.

When Sync is Lost

When output interface cores are used in conjunction with a frame buffer (see Periodic Input
Stream, Unconstrained Output Stream, No Frame Buffer), output timing signal generation
should start immediately after timing has locked, regardless of whether an external frame
sync pulse is present.

When an out-of-sync external frame sync pulse is received, output timing generation should
re-initialize. A new fsync pulse should be generated for the AXI-VDMA, and input pixels
from the existing frame should be dropped until the arrival of the SOF pulse. If necessary, a
blank frame should be sent on the output until sync is reestablished.

If the external frame sync pulse is not present when expected, output timing generation
should continue freewheeling.

Input Interface cores should not start sending incomplete frames. If the timed video source
is disconnected or reconnected, or when the system recovers from reset or power-up, the
input AXI4-Stream interface core should wait until the start of the first frame after timing is
locked before sending data over the AXI4-Stream master interface.

When Timing Information Is Incorrect

This situation can arise if any of the AXI-VDMA frame dimensions, the scaler frame
dimensions or ratios, or the output interface timing parameters are programmed incorrectly
(Figure 2-4).

There could be a discrepancy between measured frame dimensions based on EOL and SOF
locations and the frame dimensions provided to the VTC generator side and the processing
cores through the core GUI or the AXI4-Lite register interface.

If the SOF and EOL framing signals occur early, processing cores should immediately start
processing the new line or new frame. If the framing signals are late, processing cores
AXI4-Stream Video IP and System Design 24
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=24

Chapter 2: System Design Guide
should purge partial frames by dropping pixels until the expected SOF or EOL signal is
received.

Streaming Video Input Connection

As illustrated in Figure 2-3, the Video In to AXI4-Stream core (VID-IN) is provided to
interface periodic video, such as HDMI or DVI to AXI4-Stream, and is intended for use with
the Video Timing Controller (VTC). Together, the VTC processes timing signals and the
VID-IN core buffers input video data (as necessary) before transmission over AXI4-Stream.
The VTC core can process one of the following sets of timing signals:

• Vsync, Hsync, and DE
• Vblank, Hblank, and DE
• Vsync, Hsync, Vbank, Hblank, and DE

The choice of timing signal sets should be specified when generating the VTC core.

Figure 2-5 shows a typical example of connecting the VID-IN and VTC cores to downstream
video processing cores (“Video IP Sink”) through AXI4-Stream interfaces.

X-Ref Target - Figure 2-5

Figure 2‐5: Connecting the Video to AXI4-Stream Core to the Video Timing Controller

m_axis_video_tdata
m_axis_video_tvalid

m_axis_video_tready
m_axis_video_tlast

m_axis_video_tuser

vtd_active_video
vtd_vblank
vtd_hblank

vtd_hsync
vtd_vsync

vid_data
vid_de
vid_vblank

vid_vsync
vid_hblank

vid_in_clk
vid_hsync

Video In to AXI4-Stream

aclk
aclken

aresetn

s_axis_video_tdata
s_axis_video_tvalid
s_axis_video_tready
s_axis_video_tlast
s_axis_video_tuser
aclk
aclken
aresetn

m_axis_video_tdata
m_axis_video_tvalid

m_axis_video_tready
m_axis_video_tlast

m_axis_video_tuser

Video IP “Sink”

active_video_in
vblank_in
hblank_in
vsync_in
hsync_in

Video Timing Controller (detector)

aclk
aclken

aresetn

axis_enable

INTC_IF

INTC_IF[8] - locked
AXI4-Stream Video IP and System Design 25
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=25

Chapter 2: System Design Guide
At startup, the following points should be considered:

• The VID-IN core should not start sending data to downstream core(s) until they are
enabled and initialized.

• The VID-IN core should not start sending data to downstream cores until the VTC cores
is enabled, initialized, and locked.

After the start of streaming video, bootup, or resetting the system, the VTC core can take
more than a full frame of data to accurately measure all timing parameters. During this time
the locked status bit of the VTC, available through bit 8 of the optional INTC_IF interface, is
0. It is recommended to connect INTC_IF[8] to the axis_enable input of VID-IN core. This
hardware configuration ensures that no video is sent before the VTC is locked.

Xilinx recommends that the VTC detector be enabled only after the rest of the downstream
processing cores are all initialized and enabled. Otherwise, the output FIFO within the
VID-In core can become full while downstream cores initialize in the pipe, ultimately
resulting to lost pixels, lines, and/or frames of video.

If the downstream IP core need to know the input resolution before it can be configured,
the you should:

1. SW Reset and SW disable all processing cores and the VTC
2. Enable the VTC to detect input resolution.
3. Once the VTC is locked, read measured resolution.
4. Reset the VTC
5. Configure the downstream IP.
6. Enable the downstream IP.
7. Enable the VTC
AXI4-Stream Video IP and System Design 26
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=26

Chapter 2: System Design Guide
External Frame Buffers
The choice of an external-frame-buffer solution for AXI4-Stream based video systems is the
AXI-VDMA core. The AXI-VDMA core supports the AXI4-Stream video interfaces natively,
meaning SOF and EOL signals are properly interpreted and generated by the AXI-VDMA
core.

As illustrated in Figure 2-6, the AXI-VDMA core supports one master and one slave
interface. Slave/Master interfaces can:

• Use any input SOF signals, or an external Frame Sync input as a source to initiate Frame
transfers (AXI-VDMA Frame sync crossbar).

• AXI Master interfaces to use any AXI Slave interfaces to be the Gen-lock master.
• AXI Slave interfaces to use any AXI Master interfaces to be the Gen-lock master

(Genlock crossbar).

Using a Frame sync crossbar enables video systems with a Frame Buffer, but without
external output Frame sync source, to automatically retrieve the last frame finished on the
write-side. This is picked up immediately after reading a frame has completed on the read
side.

Some IP cores, such as the Video On-Screen Display, can have multiple read channels (slave
interfaces) which must be synchronized. You might need multiple instances of a slower core
running in parallel to achieve sufficient throughput. These parallel core instances can use
multiple write channels (master interfaces), which must be synchronized. Operating modes
for single write - multiple read ports:

X-Ref Target - Figure 2-6

Figure 2‐6: AXI-VDMA Layer

AXI-VDMA
Layer

AXI Master
(External Memory Write Side)

AXI Slave
(External Memory Read Side)

Line Buffer Line Buffer

AXI4-Stream AXI4-Stream

To
 E

xt

M
em

or
ey

Fr
om

 E
xt

M

em
or

ey

M_fsync

S_fsync
M-S Gen-lock

S-M_Gen-lock

Gen-lock
output

Gen-lock
inputAlmost

full

AXI_VDMA
F-sync

Gen-lock
outputGen-lock

input
Almost

full

AXI_VDMA
F-sync

Fsync in

X22104-121018
AXI4-Stream Video IP and System Design 27
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=27

Chapter 2: System Design Guide
• Genlock mode: Write side and read side individually freewheels.
• Same Frame Readout mode: Write side freewheels, but all read sides need to read out

the same frame.
• Synchronizer mode: All frames written need to be read out on all ports.

Incorrect Timing Information

There can be some discrepancy between the measured frame dimensions based on EOL and
SOF locations and the frame dimensions the AXI-VDMA programmed through the AXI4-Lite
interface. This is often due to programming or communication errors.

When the number of pixels between subsequent EOL pulses is less than the line-length
programmed into the AXI-VDMA core, the core triggers an interrupt indicating the error.
The AXI-VDMA line pointer moves forward to the next line. Data received after received EOL
is written to the start of a new line. No padding data is written to the frame buffer to
complete the line as programmed to the core.

When the number of pixels between subsequent EOL pulses is more than the line-length
programmed into the AXI-VDMA, the core triggers an interrupt indicating the error and
drops extraneous pixels until EOL is received.

When the number of lines between subsequent SOF pulses is less than the line-length
programmed into the AXI-VDMA, the core triggers an interrupt indicating the error and the
frame pointer moves forward to the next line. Data received after received SOF is written to
the next frame in the buffer. No padding data is written to the buffer to complete the frame
as programmed to the AXI-VDMA core.

When the number of lines between subsequent SOF pulses is more than the line-length
programmed into the AXI-VDMA, the core triggers an interrupt indicating the error and
drops extraneous lines until SOF is received.

Multipoint Interfaces
Some applications require a single AXI4-Stream master interface connected to multiple
slaves, such as a stream splitter, or multiple master interfaces to be connected to a single
slave, such as a stream combiner.

For video applications, the use of stream combiners is discouraged. Without the TID and
TDEST fields, pixel sources are ambiguous. The recommended solution is to create separate
slave component interfaces on the receiver IP to the IP to distinguish data received from
different sources, if necessary. No explicit video IP is provided to split AXI4-Streams. HDL
and EDK users can easily implement the video splitter with AND gates.
AXI4-Stream Video IP and System Design 28
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=28

Chapter 2: System Design Guide
Example: 1-to-2 splitter implemented in VHDL

source_READY <= target1_READY and target2_READY;
target1_VALID <= source_VALID and target2_READY;
target2_VALID <= source_VALID and target1_READY;

The example above assumes downstream target interfaces asserting READY as soon as the
target is ready to receive data, independent from VALID. Otherwise, a small, distributed
memory based FIFO must be inserted between the splitter and the target to avoid
deadlocks.

Ancillary Data
Ancillary data (which includes audio, teletext, captions, or metadata) is digital data
embedded in a video stream. Because video over an AXI4-Stream interface is not packetized
to carry video and non-video data, ancillary data must be deembedded or discarded by the
input interface and transmitted from front-to-end using a separate (AXI or non-AXI)
auxiliary channel, as seen in Figure 2-7.

When video frame rates change, buffering, re-sampling, and other processing may be
required on ancillary data. This must be done separately from the Video over AXI4-Stream
interface by deembedding the ancillary data before the frame rate change, processing it,
and reembedding it into the video stream after the frame rate change.

X-Ref Target - Figure 2-7

Figure 2‐7: Ancillary Data Management

AXI4-SAXI4-S DVIDVI

clk

Fsync

clk
domain

1

clk
domain

2

Ancillary Data Processing

Video
to

AXI4-Stream

Video
Timing

Detector

AXI4-Stream
To

 Video

Video
Timing

Detector
AXI4-Lite

uBlaze or A9
AXI4-Lite master
AXI4-Stream Video IP and System Design 29
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=29

Chapter 2: System Design Guide
Interlaced Video Support
Interlaced video is a technique for doubling the perceived frame rate of a video display
without consuming extra bandwidth. The interlaced signal contains two fields of a video
frame captured at two different times. This enhances motion perception to the viewer, and
reduces flicker by taking advantage of the phi phenomenon.

This effectively doubles the time resolution (also called temporal resolution) as compared
to non-interlaced footage (for frame rates equal to field rates). Interlaced signals require a
display that is natively capable of showing the individual fields in a sequential order. CRT
displays and ALiS plasma displays are made for displaying interlaced signals.

Interlaced video standards have several differences over progressive standards:

• Each field consists of a different set of lines. The set of odd lines is separated in time
from the set of even lines.

• The timing may vary on a per frame basis. Because there are usually an odd number of
lines per frame, the number of total lines per field is different by one line. Moreover,
this line difference may appear in the active period or in the blanking period
depending on the particular line standard. This means that timing intervals may be
different in odd frames and even frames.

• There is a need to distinguish fields from each other. For progressive video, it is
sufficient to mark video frames, because the timing and line composition of each frame
is identical, however for interlace the two frames must be distinguished from each
other, and the correct set of lines must be presented with frame timing for the picture
to be displayed properly.
AXI4-Stream Video IP and System Design 30
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=30

Chapter 2: System Design Guide
Interlace Video Timing

Figure 2-8 shows examples of interlaced line standards, including details of the vertical
timing.

Xilinx IP Interlace Video Support

Xilinx Video IP supports Interlace content using field_id or fid interface as a separate
port along with AXI4S-Video interface. The field_id signal indicates the polarity of the
field when the video is interlaced. This signal is only used with interlaced data and set to
zero for progressive video inputs. The field_id signal changes with the rising edge of
Start of Frame/Field (TUSER) of the AXI4-Stream interface. The following IPs help handle the
interlaced content effectively using field_id signal.

Deinterlacer

The Video Deinterlacer converts live incoming interlaced video streams into progressive
video streams. Interlaced images may have temporal motion between the two fields that
comprise an interlaced frame. The conversion to a progressive format recombines these two
fields into one single progressive scan frame. The combining of interlaced video streams

X-Ref Target - Figure 2-8

Figure 2‐8: Interlaced Video Line Standards

NTSC

525 1

3 4 265 266 3 4

525 1 19263 264 282 283

20 244 24320

Field 0 (262 lines) Field 1 (263 lines)

line#

vblank

field_id

PAL

623 624

625 1 312 313 625 1

623 624 22310 311 335 336

24 288 28825

Field 0 (312 lines) Field 1 (313 lines)

line#

vblank

field_id

625 1 22 23 6251 23

20

1080i

1123
1124
1125

22 540 54023

line#

vblank

field_id
1 20 21

1125 1

560
561

583
584

1123
1124
1125 1 20 21

1125 1

563
564

Field 0 (563 lines) Field 1 (562 lines)

X22105-121018
AXI4-Stream Video IP and System Design 31
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=31

Chapter 2: System Design Guide
results in unsightly motion artifacts in the progressive output image. For this reason, the
Video Deinterlacer can be configured to use three field buffers and produce progressive
frames based on a combination of spatial and temporal processing. This core is part of
Video processing sub system, refer to the Video Processing Subsystem LogiCORE PIP Product
Guide (PG231)for more information on this IP.

AXI4-Stream Video Bridges

There are two AXI4-Stream bridges which convert native video to AXI4-Stream Video
protocol and vice versa, as depicted in Figure 2-9.

AXI4-Stream to Video Out

The Xilinx LogiCORE™ IP AXI4-Stream to Video Out core is designed to interface from the
AXI4-Stream interface implementing a Video Protocol to a video source (parallel video data,
video syncs, and blanks). This core works with the Xilinx Video Timing Controller (VTC) core.
This core provides a bridge between video processing cores with AXI4-Stream interfaces
and a video output. The interlace content is supported by field_id signal.

Video In to AXI4-Stream

The Xilinx LogiCORE IP Video In to AXI4-Stream core is designed to interface from a video
source (clocked parallel video data with synchronization signals - active video with either
syncs, blanks or both) to the AXI4-Stream Video Protocol Interface. This core works with the
timing detector portion of the Xilinx Video Timing Controller (VTC) core. This core provides
a bridge between a video input and video processing cores with AXI4-Stream Video
Protocol interfaces. The interlace content is supported by field_id signal.

X-Ref Target - Figure 2-9

Figure 2‐9: AXI4-Stream Data Timing Diagram with field id Signal
AXI4-Stream Video IP and System Design 32
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/documentation/ip_documentation/v_proc_ss/v2_0/pg231-v-proc-ss.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=32

Chapter 2: System Design Guide
Frame Buffer Read/Write

The Xilinx LogiCORE IP Video Frame Buffer Read and Video Frame Buffer Write cores
provide high-bandwidth direct memory access between memory and AXI4-Stream video
type target peripherals, which support the AXI4-Stream Video protocol. Interlaced content
is supported using field_id signal over AXI4-Stream interface.

Video Test Pattern Generator

The Xilinx LogiCORE IP Video Test Pattern Generator core generates test patterns for video
system bring up, evaluation, and debugging. The core provides a wide variety of tests
patterns enabling you to debug and assess video system color, quality, edge, and motion
performance. The core can be inserted in an AXI4-Stream video interface that allows
user-selectable pass-through of system video signals or insertion of test patterns.
Interlaced content is supported using field_id signal over AXI4-Stream interface.

Basic Video System with Interlace Content

Figure 2-10 shows the interfaces on Video In to AXI4-Stream, AXI4-Stream to Video Out,
and VTC cores to support the video field ID with the interlace-related signals highlighted in
red.

Most video processing cores are field-agnostic, and not aware of whether the picture being
processed is an odd or even frame, or a progressive field. Therefore, interlace has no impact
on these cores. The Video In to AXI4-Stream core has a frame ID output, fid, timed to the
native video bus. This signal can be used as needed in the system. The only cores that use
this fid bit are the AXI4-Stream to Video Out.

AXI4-Stream to Video Out core aligns the axi_field_id signal with the field_id signal
generated by Video Timing Controller module. You can directly connect the field_id

X-Ref Target - Figure 2-10

Figure 2‐10: Video System with Interlaced Content Using AXI4-Stream Bridges

(detector)

Video Timing
Controller

(generator)

Video Timing
Controller

Video Processing C
ore(s)

Video In to AXI4-Stream AXI4-Stream to Video Out
Video Input

AXI4-Stream
Master

AXI4-Stream
Slave

Video Output

Data in

data_valid
vblank

hblank

vsync

hsync
field_id

axi_field_id axi_field_id

Data in

data_valid
vblank

hblank

vsync

hsync

field_id

VTIMING

Luser|Q||SOF|

Llas |EOL|

Ldata

Lready

Lvalid

Luser|Q||SOF|

Llas |EOL|

Ldata

Lready

Lvalid

X22106-121018
AXI4-Stream Video IP and System Design 33
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=33

Chapter 2: System Design Guide
signal to AXI4-Stream to Video Out core bypassing the Video processing cores as shown in
Figure Figure 2-10 only when latency of the processing core is less than one Video frame. If
the latency is more than one video frame, respective video processing cores should delay
the field id signal accordingly.

On the Video In to AXI4-Stream core, the fid bit changes coincident with SOF and remains
constant throughout the remainder of the field. On the AXI4-Stream to Video Out core, the
fid bit is sampled coincident with SOF in Figure 2-11. Therefore, the Video In to
AXI4-Stream can provide the field bit directly to the AXI4-Stream to Video Out core if no
intervening frame buffer exists. When a deinterlacer or frame buffer is used, a similar
scheme can be employed: generate the field ID coincident with the start of the field, and on
the receiving side sample the field ID coincident with the first received pixel.

X-Ref Target - Figure 2-11

Figure 2‐11: AXI4-Stream Data Timing Diagram with field id Signal

Field 0

Field 0 Field 1

processing latency

AXI4-Stream Data

SOF (tuser[0])

Axi_field_id

AXI4-Stream Data

SOF (tuser[0])

Axi_field_id

Vid In

Vid Out

X22107-121018
AXI4-Stream Video IP and System Design 34
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=34

Chapter 2: System Design Guide
Frame buffer read/Write and Video Deinterlacer cores. The AXI4-Stream to Video Out core
has a field ID input (fid), sampled in time with the AXI4-Stream input bus. This fid bit
must be asserted by the upstream source of AXI4-Stream video. For systems without a
frame buffer or deinterlacing, the field ID input originates from the Video In core, as shown
in Figure 2-12.

For systems with a frame buffer, the field ID input can come from any core containing a
frame buffer. The field ID from the Video In to AXI4-Stream core can be used by the frame
buffer if necessary, shown in Figure 2-12.

Note: In Figure 2-12, the AXI4-Stream to Video Out core is operating in slave mode.

X-Ref Target - Figure 2-12

Figure 2‐12: Video System with Interlaced Content Using Frame Buffer Write/Read

(detector)

Video Timing
Controller

(generator)

Video Timing
Controller

Video Processing C
ore(s)

Video In to AXI4-Stream AXI4-Stream to Video Out
Video Input Video Output

Data in

data_valid
vblank

hblank

vsync

hsync
field_id

axi_field_id axi_field_id

Data in

data_valid
vblank

hblank

vsync

hsync

field_id

VTIMING

Fram
eBuffer W

hite

Fram
eBuffer R

ed

Video Processing C
ore(s)

field_id

DDR

X22108-121018
AXI4-Stream Video IP and System Design 35
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=35

Chapter 2: System Design Guide
Interlace to Progressive Conversion

A deinterlacer can be used after the Video In to AXI4-Stream core to convert the video
format from interlaced to progressive. In this case, the deinterlacer uses the field ID bit, fid,
from the Video In to AXI4-Stream core, as shown in Figure 2-13.

Video Subsystem Software Guidelines
Each video subsystem comprises one or more video pipelines. A video pipeline is any chain
of video IP cores that starts from a Video-In or AXI VDMA (MM2S Channel) core and
terminates on a Video-Out or AXI VDMA (S2MM channel) core.

Each pipeline must be reset, configured, reconfigured, enabled, or disabled starting from
the output (back-end) moving toward the input (front-end). The following is a list of typical
video pipeline operations that must be performed from back-end to front-end:

• Video pipeline reset: Resetting all cores within a pipeline
• Video pipeline configuration: Configuring all cores after reset. Do not Enable the cores

during this step
• Video pipeline dynamic reconfiguration: Configuring all cores without resetting, such

as a frame size change

X-Ref Target - Figure 2-13

Figure 2‐13: Video System with Interlaced Content Using Deinterlacer

(detector)

Video Timing
Controller

D
einterlacer

Video In to AXI4-Stream
Video Input

Data in

data_valid
vblank

hblank

vsync

hsync
field_id

axi_field_id

VTIMING

Video Processing C
ore(s)

X22109-121018
AXI4-Stream Video IP and System Design 36
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=36

Chapter 2: System Design Guide
• Video pipeline enable: Enabling all cores within a pipeline
• Video pipeline disable: Disabling all cores within a pipeline

In general, to initialize a video pipe, the following operations should be performed in this
order:

1. Initialize all video IP drivers.
2. Reset all cores starting from the back-end first, moving forward in the pipe.
3. Configure without enabling all cores starting from the back-end first, moving forward in

the pipe.
4. Enable all cores starting from the back-end first, moving forward in the pipe.
Note: Step one only needs to be done once after boot time. Drivers do not need to be reinitialized
if the video pipeline needs to be reconfigured.

If a video subsystem contains more than one video pipeline, then each pipeline can be
operated upon individually. However, in most applications the input (front-end) pipelines
should be operated upon first, before back-end pipelines to avoid invalid data to be
processed and/or displayed.

Note: Pipelines are operated upon from front-end to back-end. Cores within a pipeline are operated
upon from back-end to front-end.

Video Pipeline Example

Refer to the video subsystem depicted in Figure 2-14 in the following example operations
and C code snippets. This video subsystem contains three video pipelines. The three
pipelines consist of the following cores:

• Pipeline 1:

° Video to AXI4-Stream

° Video IP 1

° AXI VDMA 1 (S2MM Channel)
• Pipeline 2:

° AXI VDMA 1 (MM2S Channel)

° Video Processing Subsystem

° AXI VDMA 2 (S2MM Channel)
• Pipeline 3:

° AXI VDMA 2 (MM2S Channel)

° Video IP 2
AXI4-Stream Video IP and System Design 37
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=37

Chapter 2: System Design Guide
° AXI4-Stream to Video

To bring up this system in software, the following operations should be performed in the
following order:

1. Initialize core drivers (Perform One time only) using the <core>_CfgInitialize()
functions.

2. Bring up Pipeline 1 (Input Video Pipeline)
a. SW Reset AXI VDMA 1 (S2MM Channel)
b. SW Reset Video IP 1
c. SW Reset VTC detector
d. Configure AXI VDMA 1 (S2MM Channel)
e. Configure Video IP 1
f. Configure VTC detector
g. Enable AXI VDMA 1 (S2MM Channel)
h. Enable Video IP 1
i. Enable VTC detector

3. Bring up Pipeline 2 (Scaler Pipeline)
a. SW Reset AXI VDMA 2 (S2MM Channel)
b. SW Reset Scaler
c. SW Reset AXI VDMA 1 (MM2S Channel)
d. Configure AXI VDMA 2 (MM2S Channel)
e. Configure Scaler

X-Ref Target - Figure 2-14

Figure 2‐14: Example Video Subsystem with Three Video Pipelines

Video
Scaler AXI4-S VDMA

2
VDMA

1

Video IP
1

Video IP
2

Video
To

AXI4
Stream

AXI4
Stream

To
Video

AXI4-S

HDMI

AX
I4

-S
Video
Timing

Controller
Detector

HDMI AXI4-S AXI4-S

Video
Timing

Controller
Generator

AX
I4

-S
AXI4-Stream Video IP and System Design 38
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=38

Chapter 2: System Design Guide
f. Configure AXI VDMA 1 (MM2S Channel)
g. Enable AXI VDMA 2 (MM2S Channel)
h. Enable Scaler
i. Enable AXI VDMA 1 (MM2S Channel)

4. Bring up Pipeline 3 (Output Video Pipeline)
a. SW Reset VTC generator
b. SW Reset Video IP 2
c. SW Reset AXI VDMA 2 (MM2S Channel)
d. Configure VTC generator
e. Configure Video IP 2
f. Configure AXI VDMA 2 (MM2S Channel)
g. Enable VTC generator
h. Enable Video IP 2
i. Enable AXI VDMA 2 (MM2S Channel)

To reconfigure this system, perform the above operations except step 1 (Initialize core
drivers).

Note: VDMA S2MM and MM2S channels should be reset, configured, reconfigured and enabled
separately. Each VDMA channel should be treated as individual cores belonging to separate video
pipelines. Avoid operating on both channels at the same time. The channel operations should by
synchronized to the pipeline in which the channel belongs.

The following C code snippet shows the code needed to bring up the VDMA 1, Scaler,
VDMA 2 pipeline:

#include <stdio.h>
#include "platform.h"
#include "xparameters.h"
#include "xscaler.h"
#include "xaxivdma.h"

//
// Global Defines
//
#define VIDIN_FBADDR 0x31800000
#define SCALEROUT_FBADDR 0x33000000

#define FRAME_STORE_WIDTH 2048
#define FRAME_STORE_HEIGHT 2048
#define FRAME_STORE_DATA_BYTES 2

#define VDMA_CIRC 1
#define VDMA_NOCIRC 0
#define VDMA_EXT_GENLOCK 0
AXI4-Stream Video IP and System Design 39
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=39

Chapter 2: System Design Guide
#define VDMA_INT_GENLOCK 2
#define VDMA_S2MM_FSYNC 8
#define COEFF_SET_INDEX 0

//
// Function Prototypes
//
void vdma_init(XAxiVdma *VDMAPtr, int device_id);
int vdma_reset(XAxiVdma *VDMAPtr, int direction);
int vdma_setup(XAxiVdma *VDMAPtr,
 int direction,
 int width,
 int height,
 int frame_stores,
 int start_address,
 int mode
);
void scaler_init(XScaler *ScalerPtr, int device_id);
int scaler_setup(XScaler *ScalerInstPtr,
 int ScalerInWidth,
 int ScalerInHeight,
 int ScalerOutWidth,
 int ScalerOutHeight);

//
// Global Core Driver Structures
//
XAxiVdma VDMA1;
XAxiVdma VDMA2;
XScaler Scaler;

XScalerAperture Aperture;/* Aperture setting */
XScalerStartFraction StartFraction;/* Luma/Chroma Start Fraction setting*/
XScalerCoeffBank CoeffBank;/* Coefficient bank */

//
// Function: configure_scaler_pipeline()
// Configure Scaler Pipeline (Pipeline 2)
//
int configure_scaler_pipeline(
 int input_x,
 int input_y,
 int output_x,
 int output_y)
{
 int Status;
 //
 // Initialize Drivers – Order not important
 // Do after clocks are setup
 ///
 vdma_init (&VDMA1, 0);
 vdma_init (&VDMA2, 1);
 scaler_init(&Scaler, 0);

 ///
 // Pipeline 2: Reset Cores
 ///
AXI4-Stream Video IP and System Design 40
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=40

Chapter 2: System Design Guide
 vdma_reset (&VDMA2, XAXIVDMA_WRITE);
 scaler_reset(&Scaler);
 vdma_reset (&VDMA1, XAXIVDMA_READ);

 ///
 // Pipeline 2: Configure Cores
 ///
 printf("Setting up VDMA Writer...\n");
 vdma_setup(&VDMA2,
 XAXIVDMA_WRITE,
 output_x,
 output_y,
 3,
 SCALEROUT_FBADDR,
 VDMA_NOCIRC|VDMA_INT_GENLOCK);

 printf("Setting up Scaler...\n");
 scaler_setup(&Scaler, input_x, input_y, output_x, output_y);

 printf("Setting up VDMA Reader...\n");
 vdma_setup(&VDMA1,
 XAXIVDMA_READ,
 input_x,
 input_y,
 3,
 VIDIN_FBADDR,
 VDMA_NOCIRC|VDMA_INT_GENLOCK|VDMA_S2MM_FSYNC);

 ///
 // Pipeline 2: Enable cores
 ///

 //Enable write VDMA, VDMA2 (S2MM Channel)
 Status = XAxiVdma_DmaStart(&VDMA2, XAXIVDMA_WRITE);
 if (Status != XST_SUCCESS)
 {
 printf("ERROR: VDMA2 Start write transfer failed %d\r\n", Status);
 return XST_FAILURE;
 }

 XScaler_Enable(&Scaler);

 Status = XAxiVdma_DmaStart(&VDMA1, XAXIVDMA_READ);
 if (Status != XST_SUCCESS)
 {
 printf("ERROR: VDMA1 Start read transfer failed %d\r\n", Status);
 return XST_FAILURE;
 }

 return 1;
}

///
// Function: vdma_init()
// Initialize VDMA Driver
//
void vdma_init(XAxiVdma *VDMAPtr, int device_id)
{

AXI4-Stream Video IP and System Design 41
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=41

Chapter 2: System Design Guide
 int Status;
 XAxiVdma_Config *VDMACfgPtr;

 VDMACfgPtr = XAxiVdma_LookupConfig(device_id);
 if (!VDMACfgPtr)
 {

 printf("ERROR: No VDMA found for ID %d\r\n", device_id);
 }

 Status = XAxiVdma_CfgInitialize(VDMAPtr,
 VDMACfgPtr,
 VDMACfgPtr->BaseAddress
);
 if (Status != XST_SUCCESS) {
 printf("ERROR: VDMA Configuration Initialization failed %d\r\n",
 Status);
 }

}
//
// VDMA Channel Reset
//
int vdma_reset(XAxiVdma *VDMAPtr, int direction)
{

 int Polls;

 printf("Resetting VDMA ...\n");
 XAxiVdma_Reset(VDMAPtr, direction);
 Polls = 100000;

 while (Polls && XAxiVdma_ResetNotDone(VDMAPtr, direction)) {
 Polls -= 1;
 }

 if (!Polls) {
 printf("ERROR: VDMA %s channel reset failed %x\n\r",
 (direction==XAXIVDMA_READ)?"Read":"Write", 0);

 return XST_FAILURE;
 }

 return 1;
}

//
// VDMA Channel Configure/Setup
//
int vdma_setup(XAxiVdma *VDMAPtr, int direction, int width, int height, int
frame_stores, int start_address, int mode)
{
 int Status, i, Addr;

 XAxiVdma_DmaSetup DmaSetup;

 //printf("Setting up VDMA Read Config...\n");
 DmaSetup.VertSizeInput = height;
AXI4-Stream Video IP and System Design 42
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=42

Chapter 2: System Design Guide
 DmaSetup.HoriSizeInput = width * FRAME_STORE_DATA_BYTES ;

 DmaSetup.Stride = FRAME_STORE_WIDTH * FRAME_STORE_DATA_BYTES ;
 DmaSetup.FrameDelay = 0;

 DmaSetup.EnableCircularBuf = mode&1;
 DmaSetup.EnableSync = mode&1;

 DmaSetup.PointNum = (mode>>2) & 1;
 DmaSetup.EnableFrameCounter = 0; /* Endless transfers */

 DmaSetup.FixedFrameStoreAddr = 0; /* We are not doing parking */

 //Only set the number of frames if the VDMA can support more that we need
 //NOTE: the VDMA debug features for write to the frame store
 // num reg must be enabled.
 if(VDMAPtr->MaxNumFrames > frame_stores)
 {
 Status = XAxiVdma_SetFrmStore(VDMAPtr, frame_stores, direction);
 if (Status != XST_SUCCESS) {

 printf("WARNING %d: VDMA - Setting Frame Store Number to %d Failed for %s
Channel. Exiting config.\r\n",
 Status, frame_stores,
 (direction==XAXIVDMA_READ)?"Read":"Write");

 return XST_FAILURE;
 }
 }

 Status = XAxiVdma_DmaConfig(VDMAPtr, direction, &DmaSetup);
 if (Status != XST_SUCCESS) {
 printf("ERROR: VDMA - %s channel config failed. (%d)\r\n",
 (direction==XAXIVDMA_READ)?"Read":"Write", Status);

 return XST_FAILURE;
 }

 /* Initialize buffer addresses
 *
 * These addresses are physical addresses
 */
 Addr = start_address;
 for(i=0; i < frame_stores; i++) {
 printf(" vdma_setup: Address %d = 0x%08x.\n\r", i, Addr);
 DmaSetup.FrameStoreStartAddr[i] = Addr;

 Addr += FRAME_STORE_WIDTH * FRAME_STORE_HEIGHT * FRAME_STORE_DATA_BYTES;
 }

 /* Set the buffer addresses for transfer in the DMA engine
 * The buffer addresses are physical addresses
 */
 Status = XAxiVdma_DmaSetBufferAddr(VDMAPtr, direction,
 DmaSetup.FrameStoreStartAddr);
 if (Status != XST_SUCCESS) {
AXI4-Stream Video IP and System Design 43
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=43

Chapter 2: System Design Guide
 printf("ERROR: VDMA - %s channel set buffer address failed %d\r\n",
 (direction==XAXIVDMA_READ)?"Read":"Write",Status);

 return XST_FAILURE;
 }

 if(direction==XAXIVDMA_WRITE)
 {
 // use the TUSER bit for the frame sync for the write (S2MM side)
 XAxiVdma_FsyncSrcSelect(VDMAPtr,
 XAXIVDMA_S2MM_TUSER_FSYNC,
 XAXIVDMA_WRITE);
 }
 else
 {
 if(mode&0x08)
 {
 // VDMA Read (MM2S side) for the scaler input must be synced
 // to the S2MM frame Sync
 XAxiVdma_FsyncSrcSelect(VDMAPtr,
 XAXIVDMA_CHAN_OTHER_FSYNC,
 XAXIVDMA_READ); // DMA_CR[6:5] = 0b01

 }
 else
 {
 // VDMA 2 Read (MM2S side) must be not by synced and in free run
 // Its timing is governed by the output VTC generator
 // and AXI4-Stream to Video Out
 XAxiVdma_FsyncSrcSelect(VDMAPtr, XAXIVDMA_CHAN_FSYNC, XAXIVDMA_READ);
 // DMA_CR[6:5] = 0b00
 }
 }

 Status = XAxiVdma_GenLockSourceSelect(VDMAPtr, (mode>>1)&1, direction);
 if (Status != XST_SUCCESS) {
 printf("ERROR: VDMA - %s channel set gen-lock %s src failed %d\r\n",
 (direction==XAXIVDMA_READ)?"Read":"Write",
 (((mode>>1)&1)==XAXIVDMA_INTERNAL_GENLOCK)?"Internal":"External",

 Status);

 return XST_FAILURE;
 }

 return 1;

}
//
// Initialize Scaler Driver
//
void scaler_init(XScaler *ScalerPtr, int device_id)
{
 int Status;
 XScaler_Config *ScalerCfgPtr;

 ScalerCfgPtr = XScaler_LookupConfig(device_id);
 if (!ScalerCfgPtr)
 {
AXI4-Stream Video IP and System Design 44
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=44

Chapter 2: System Design Guide
 printf("ERROR: No Scaler found for ID %d\r\n", device_id);
 }
 Status = XScaler_CfgInitialize(ScalerPtr,
 ScalerCfgPtr,
ScalerCfgPtr->BaseAddress);
 if (Status != XST_SUCCESS) {
 printf("ERROR: Scaler Configuration Initialization failed %d\r\n",
 Status);
 }

}
//
// Scaler Configure/Setup
//
int scaler_setup(XScaler *ScalerInstPtr,

int ScalerInWidth, int ScalerInHeight,
int ScalerOutWidth, int ScalerOutHeight)

{
 u8 ChromaFormat;
 u8 ChromaLumaShareCoeffBank;
 u8 HoriVertShareCoeffBank;

 /*
 * Disable the scaler before setup and tell the device not to pick up
 * the register updates until all are done
 */
 XScaler_DisableRegUpdate(ScalerInstPtr);
 XScaler_Disable(ScalerInstPtr);

 /*
 * Load a set of Coefficient values
 */

 /* Fetch Chroma Format and Coefficient sharing info */
 XScaler_GetCoeffBankSharingInfo(ScalerInstPtr,
 &ChromaFormat,
 &ChromaLumaShareCoeffBank,
 &HoriVertShareCoeffBank);

 CoeffBank.SetIndex = COEFF_SET_INDEX;
 CoeffBank.PhaseNum = ScalerInstPtr->Config.MaxPhaseNum;
 CoeffBank.TapNum = ScalerInstPtr->Config.VertTapNum;

 /* Locate coefficients for Horizontal scaling */
 CoeffBank.CoeffValueBuf = (s16 *)
 XScaler_CoefValueLookup(ScalerInWidth,
 ScalerOutWidth,
 CoeffBank.TapNum,
 CoeffBank.PhaseNum);

 /* Load coefficient bank for Horizontal Luma */
 XScaler_LoadCoeffBank(ScalerInstPtr, &CoeffBank);

 /* Horizontal Chroma bank is loaded only if chroma/luma sharing flag
 * is not set */
 if (!ChromaLumaShareCoeffBank)
 XScaler_LoadCoeffBank(ScalerInstPtr, &CoeffBank);
AXI4-Stream Video IP and System Design 45
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=45

Chapter 2: System Design Guide
 /* Vertical coeff banks are loaded only if horizontal/vertical sharing
 * flag is not set
 */
 if (!HoriVertShareCoeffBank) {

 /* Locate coefficients for Vertical scaling */
 CoeffBank.CoeffValueBuf = (s16 *)
 XScaler_CoefValueLookup(ScalerInHeight,
 ScalerOutHeight,
 CoeffBank.TapNum,
 CoeffBank.PhaseNum);

 /* Load coefficient bank for Vertical Luma */
 XScaler_LoadCoeffBank(ScalerInstPtr, &CoeffBank);

 /* Vertical Chroma coeff bank is loaded only if chroma/luma
 * sharing flag is not set
 */
 if (!ChromaLumaShareCoeffBank)
 XScaler_LoadCoeffBank(ScalerInstPtr, &CoeffBank);
 }

 /*
 * Load phase-offsets into scaler
 */
 StartFraction.LumaLeftHori = 0;
 StartFraction.LumaTopVert = 0;
 StartFraction.ChromaLeftHori = 0;
 StartFraction.ChromaTopVert = 0;
 XScaler_SetStartFraction(ScalerInstPtr, &StartFraction);

 /*
 * Set up Aperture.
 */
 Aperture.InFirstLine = 0;
 Aperture.InLastLine = ScalerInHeight - 1;

 Aperture.InFirstPixel = 0;
 Aperture.InLastPixel = ScalerInWidth - 1;

 Aperture.OutVertSize = ScalerOutHeight;
 Aperture.OutHoriSize = ScalerOutWidth;

 // Added by Xilinx 2012.12.10
 Aperture.SrcVertSize = ScalerInHeight;
 Aperture.SrcHoriSize = ScalerInWidth;

 XScaler_SetAperture(ScalerInstPtr, &Aperture);

 /*
 * Set up phases
 */
 XScaler_SetPhaseNum(ScalerInstPtr, ScalerInstPtr->Config.MaxPhaseNum,
 ScalerInstPtr->Config.MaxPhaseNum);

 /*
 * Choose active set indexes for both vertical and horizontal directions
 */
AXI4-Stream Video IP and System Design 46
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=46

Chapter 2: System Design Guide
 XScaler_SetActiveCoeffSet(ScalerInstPtr, COEFF_SET_INDEX,
 COEFF_SET_INDEX);

 /*
 * Enable the scaling operation
 */
 XScaler_EnableRegUpdate(ScalerInstPtr);

 return 1;
}

Video Subsystem Bandwidth Requirements
Video data is typically transmitted in contiguous bursts. Each burst comprises active pixel
data. This data is transmitted in contiguous clock cycles which can be followed by clock
cycles of no active data. These cycles of “no data” are called blanking periods. There are
horizontal blanking periods which occur during each between video lines, and vertical
blanking periods that equate to full video lines with no active pixel data at all.

To a memory subsystem, this translates to periods of bursts of video data the size of the
active video frame size followed by burst gaps the length of the video blanking period.
Therefore, for a given video frame, there are periods that require a certain peak bandwidth,
or BWpeak, followed by quiescent periods of no data transmittal. This equates to a peak
bandwidth requirement, or BWpeak.

BWpeak is calculated from the data width, or bits-per-pixel (bpp), and from the video pixel
clock frequency, Fvid. Fvid can be calculated from the video frame rate (Fframe) measured in
frames-per-second, the number of lines-per-frame (including blanking lines) and the
number of pixel clock-cycles-per-line (including blanking clock cycles), shown in
Equation 2-1.

Fvid = Fframe * Nfull lines * Npixels Equation 2‐1

The BWpeak is calculated by multiplying the Video Pixel clock frequency by the number of
bits-per pixel, shown in Equation 2-2.

BWpeak = Fvid * bpp Equation 2‐2

The average bandwidth requirement is defined as the overall number of bits within a frame
over a one entire times the frame rate video frame period (not just during the bursts). This
is the average bandwidth and is always lower than the peak bandwidth requirement. For a
given video frame period, the average bandwidth is BWave. This is shown in Equation 2-3.

Fave= Fframe * Nactive lines * Nactive pixels Equation 2‐3

The BWave is calculated the same as BWpeak by multiplying the Video Pixel clock frequency
by the number of bits-per pixel. This is shown in Equation 2-4.

BWave = Fave * bpp Equation 2‐4
AXI4-Stream Video IP and System Design 47
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=47

Chapter 2: System Design Guide
It is important to keep the BWpeak and BWave in mind when designing video subsystems, as
these numbers define the clock frequencies and data width of the video IP core(s) and of
the memory subsystem.

Bandwidth and Clocking

Live Video to/from Memory

If a memory subsystem is connected to a video subsystem that drives a live video output or
is driven by a live video input, the memory subsystem must be able to accommodate the
peak frame bandwidth requirements.

X-Ref Target - Figure 2-15

Figure 2‐15: Video Bandwidth and Live Video

Video
Subsystem

Video Output
BWpeak

Memory
Subsystem BWmem

Video
Subsystem

Memory
SubsystemBWmem

Video Input
BWpeak
AXI4-Stream Video IP and System Design 48
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=48

Chapter 2: System Design Guide
Memory to/from Memory

If a memory subsystem is connected to a video subsystem that writes to an external
memory interface (to Frame Buffer) or reads from an external memory interface (from frame
buffer) ONLY (thus, no live external video input/outputs), the memory subsystem must be
only able to accommodate the average frame bandwidth requirements.

Bandwidth Examples

Scaling: Down-Scaling/Decimation

In the down-scaling system case, the input video frame is larger than the output video
frame. The average bandwidth of the output is less than the input.

Down-scaling Memory-to-Memory

Figure 2-17 shows an example of down-scaling a video frame. It assumes that the video
frame is read from external memory and written back to external memory. This allows for a
slower minimum operating clock frequency and a lower bandwidth requirement.

X-Ref Target - Figure 2-16

Figure 2‐16: Video Bandwidth and External Memory

Video
Subsystem

Video
Subsystem

Video
Subsystem

Memory
Subsystem

BWave BWave

BWmem BWmem
AXI4-Stream Video IP and System Design 49
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=49

Chapter 2: System Design Guide
For the example in Figure 2-17, Table 2-1 shows the input and output minimum frequency
and minimum bandwidth requirements, assuming a data width of 16 and a 60
frames-per-second frame rate.

Down-scaling Live External Video

Figure 2-18 shows an example of down-scaling a video frame. It assumes that the input
video frame is from live external video and the output video frame is to live external video.
The bandwidth requirement in this case is the peak bandwidth and has to take into account
bursts of video at the higher frequency.

X-Ref Target - Figure 2-17

Figure 2‐17: Down-scaling Memory-to-Memory (720p@60 to 640x480p@60)

Input
Output

72
0

48
0

1280 640

Table 2‐1: Down-scaling Mem-to-Mem Example Minimum Bandwidth and Frequency
Requirements

Input Output

Minimum Frequency 55.3 MHz 18.43 MHz
Minimum Bandwidth 0.88 Gb/s 0.29 Gb/s
AXI4-Stream Video IP and System Design 50
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=50

Chapter 2: System Design Guide
In the example in Figure 2-18, Table 2-2 shows the input and output minimum frequency
and minimum bandwidth requirements, assuming a data width of 16 and a 60
frames-per-second frame rate.

Down-scaling Example System

Figure 2-19 shows a video system that includes live-external video (peak) bandwidth and
memory (average) bandwidth requirements.

X-Ref Target - Figure 2-18

Figure 2‐18: Down-scaling Live Video (720p@60 to 640x480p@60)

Input
Output

72
0

48
0

1280 640

1650 800

52
5

75
0

Table 2‐2: Down-scaling Live-Video Example Minimum Bandwidth and Frequency Requirements

Input Output

Minimum Frequency 74.25 MHz 25.20 MHz
Minimum Bandwidth 1.19 Gb/s 0.40 Gb/s
AXI4-Stream Video IP and System Design 51
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=51

Chapter 2: System Design Guide
In Figure 2-19, 720p live video frames are written to external memory with a bandwidth of
1.19 Gb/s. These frames can be read at an average bandwidth of 0.88 Gb/s. These frames are
then downscaled and written at an average bandwidth of 0.29 Gb/s. The downscaled frames
can then be read from external memory at a peak bandwidth of 0.40 Gb/s to display to
external video.

Thus, video input bandwidth is BWpeak of input size. Video output bandwidth is BWpeak of
output size. Intermediate memory read bandwidth is BWave of input size. Intermediate
memory write bandwidth is BWave of output size.

X-Ref Target - Figure 2-19

Figure 2‐19: Down-scaling (720p@60 to 640x480p@60) Subsystem Example

Video
In

Video
OutVDMA 1

AX
I4

-M
M AXI4-M

M

AXI4
Stream

To DisplayScaler AXI4
Stream VDMA 2

AX
I4

-M
M AXI4-M

M

AXI4
Stream

AXI4-
Stream

Video Input
1280x720p@60

16 bits
BWpeak = 1.19Gbps
Fpeak = 74.25MHz

From
Camera

Mem Write
1280x720p@60

16 bits
BWpeak = 1.19Gbps
Fpeak = 74.25MHz

Mem Read
1280x720p@60

16 bits
BWave = 0.88Gbps
Fave = 55.30MHz

Vieo Output
640x480p@60

16 bits
BWpeak = 0.40Gbps
Fpeak = 25.20MHz

Mem Read
640x480p@60

16 bits
BWpeak = 0.40Gbps

Fpeak =25.20MHz

Mem Write
640x480p@60

16 bits
BWave = 0.29Gbps
Fave = 18.43MHz
AXI4-Stream Video IP and System Design 52
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=52

Chapter 2: System Design Guide

Up-Scaling

In the up-scaling case, the input video frame is smaller than the output video frame. The
average bandwidth of the output is more than the input.

Up-scaling Memory-to-Memory

Figure 2-20 shows an example of up-scaling a video frame. It assumes that the video frame
is read from external memory and written back to external memory. This allows for a slower
minimum operating clock frequency and a lower bandwidth requirement.

In the example in Figure 2-20, the Table 2-4 shows the input and output minimum
frequency and minimum bandwidth requirements, assuming a data width of 16 and a 60
frames-per-second frame rate.

Table 2‐3: Downscaling Subsystem Example Total Bandwidth and Minimum Frequency Requirements

Video Input
(Memory Write) Memory Read Memory Write

Memory Read
(Video Output) Total/Maximum

Minimum
Frequency

74.25 MHz 55.3 MHz 18.43 MHz 25.20 MHz 74.25 MHz
(Max)

Minimum
Bandwidth

1.19 Gb/s 0.88 Gb/s 0.29 Gb/s 0.40 Gb/s 2.76 Gb/s
(Sum)
1.48 Gb/s (W)
1.28 Gb/s (R)

X-Ref Target - Figure 2-20

Figure 2‐20: Up-scaling Memory-to-Memory (640x480p@60 to 720p@60)

Input
Output

72
0

48
0

1280640

Table 2‐4: Up-scaling Mem-to-Mem Example Minimum Bandwidth and Frequency Requirements

Input Output

Minimum Frequency 18.43 MHz 55.3 MHz
Minimum Bandwidth 0.29 Gb/s 0.88 Gb/s
AXI4-Stream Video IP and System Design 53
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=53

Chapter 2: System Design Guide
Up-scaling Live External Video

Figure 2-21 shows an example of up-scaling a video frame. It assumes that the input video
frame is from live external video and the output video frame is to live external video. The
bandwidth requirement in this case is the peak bandwidth and has to take into account
bursts of video at the higher frequency.

In the example in Figure 2-21 and Table 2-5 describe the input and output minimum
frequency and minimum bandwidth requirements, assuming a data width of 16 and a 60
frames-per-second frame rate.

X-Ref Target - Figure 2-21

Figure 2‐21: Up-scaling Live Video (640x480p@60 to 720p@60)

Input
Output

72
0

48
0

1280640

1650800

52
5

75
0

Table 2‐5: Up-scaling Live-Video Example Minimum Bandwidth and Frequency Requirements

Input Output

Frequency 25.20 MHz 74.25 MHz
Bandwidth 0.40 Gb/s 1.19 Gb/s
AXI4-Stream Video IP and System Design 54
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=54

Chapter 2: System Design Guide
Up-scaling Example System

Figure 2-22 shows a video system that includes live-external video (peak) bandwidth and
memory (average) bandwidth requirements.

In the Figure 2-22, 640x480p live video frames are written to external memory with a
bandwidth of 0.40 Gb/s. These frames can be read at an average bandwidth of 0.29 Gb/s.
These frames are then up-scaled and written at an average bandwidth of 0.88 Gb/s. The
upscaled frames can then be read from external memory at a peak bandwidth of 1.19 Gb/s
to display to external video.

Thus, video input bandwidth is BWpeak of input size. Video output bandwidth is BWpeak of
output size. Intermediate memory read bandwidth is BWave of input size. Intermediate
memory write bandwidth is BWave of output size.

X-Ref Target - Figure 2-22

Figure 2‐22: Up-scaling (640x480p@60 to 720p@60) Subsystem Example

Video
In

Video
OutVDMA 1

AX
I4

-M
M AXI4-M

M

AXI4
Stream

To DisplayScaler AXI4
Stream VDMA 2

AX
I4

-M
M AXI4-M

M

AXI4
Stream

AXI4-
Stream

Video Output
1280x720p@60

16 bits
BWpeak = 1.19Gbps
Fpeak = 74.25MHz

From
Camera

Video input
640x480p@60

16 bits
BWpeak = 0.40Gbps
Fpeak = 25.20MHz

Mem Write
640x480p@60

16 bits
BWpeak = 0.40Gbps

Fpeak =25.20MHz

Mem Read
1280x720p@60

16 bits
BWpeak = 1.19Gbps
Fpeak = 74.25MHz

Mem Read
640x480p@60

16 bits
BWave = 0.29Gbps
Fave = 18.43MHz

Mem Write
1280x720p@60

16 bits
BWave = 0.88Gbps
Fave = 55.30MHz
AXI4-Stream Video IP and System Design 55
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=55

Chapter 2: System Design Guide

Zoom

In the zoom system case, the input video frame is the same as the output video frame. The
average bandwidth at the output is same as the input.

Zoom Memory-to-Memory

Figure 2-23 shows an example of zooming a video frame. It assumes that the video frame is
read from external memory and written back to external memory. This allows for a slower
minimum operating clock frequency and a lower bandwidth requirement.

In the example in Figure 2-23, Table 2-7 shows the input and output minimum frequency
and minimum bandwidth requirements, assuming a data width of 16 and a 60
frames-per-second frame rate.

Table 2‐6: Up-scaling Subsystem Example Total Bandwidth and Minimum Frequency Requirements

Video Input
(Memory Write) Memory Read Memory Write

Memory Read
(Video Output) Total/Maximum

Minimum
Frequency

25.20 MHz 18.43 MHz 55.3 MHz 74.25 MHz 74.25 MHz (Max)

Minimum
Bandwidth

0.40 Gb/s 0.29 Gb/s 0.88 Gb/s 1.19 Gb/s
2.76 Gb/s (Sum)

1.28 Gb/s (W) 1.48
Gb/s (R)

X-Ref Target - Figure 2-23

Figure 2‐23: Zoom Memory-to-Memory (to 720p@60 to 720p@60)

Input

72
0

1280

Output

1280

Table 2‐7: Zoom Mem-to-Mem Example Minimum Bandwidth and Frequency Requirements

Input Output

Minimum Frequency 55.3 MHz 55.3 MHz
Minimum Bandwidth 0.88 Gb/s 0.88 Gb/s
AXI4-Stream Video IP and System Design 56
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=56

Chapter 2: System Design Guide
Zoom Live External Video

Figure 2-24 shows an example of zooming a video frame. It assumes that the input video
frame is from live external video and the output video frame is to live external video. The
bandwidth requirement in this case is the peak bandwidth and has to take into account
bursts of video at the higher frequency.

In the example in Figure 2-24 and Table 2-8 describe the input and output minimum
frequency and minimum bandwidth requirements, assuming a data width of 16 and a 60
frames-per-second frame rate.

X-Ref Target - Figure 2-24

Figure 2‐24: Zoom Live Video (640x480p@60 to 720p@60)

Input

72
0

1280

1650

75
0

Output

1280

1650

Table 2‐8: Zoom Live-Video Example Minimum Bandwidth and Frequency Requirements

Input Output

Minimum Frequency 74.25 MHz 74.25 MHz
Minimum Bandwidth 1.19 Gb/s 1.19 Gb/s
AXI4-Stream Video IP and System Design 57
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=57

Chapter 2: System Design Guide
Zoom Example System

Figure 2-25 shows a video system that includes live-external video (peak) bandwidth and
memory (average) bandwidth requirements.

In the Figure 2-25, 1280x720p live video frames are written to external memory with a
bandwidth of 1.19 Gb/s. A 640x480 region in the video frame is read at an average
bandwidth of 0.29 Gb/s. These frames are then up-scaled and written at an average
bandwidth of 0.88 Gb/s. The upscaled frames can then be read from external memory at a
peak bandwidth of 1.19 Gb/s to display to external video (Same as the input).

Thus, video input bandwidth is BWpeak of input size. Video output bandwidth is BWpeak of
output size. Intermediate memory read bandwidth is BWave of input size. Intermediate
memory write bandwidth is BWave of output size.

X-Ref Target - Figure 2-25

Figure 2‐25: Zoom (640x480p@60 to 720p@60) Subsystem Example

Video
In

Video
OutVDMA 1

AX
I4

-M
M AXI4-M

M

AXI4
Stream

To DisplayScaler AXI4
Stream VDMA 2

AX
I4

-M
M AXI4-M

M

AXI4
Stream

AXI4-
Stream

Video Output
1280x720p@60

16 bits
BWpeak = 1.19Gbps
Fpeak = 74.25MHz

From
Camera

Mem Read
1280x720p@60

16 bits
BWpeak = 1.19Gbps
Fpeak = 74.25MHz

Mem Write
1280x720p@60

16 bits
BWave = 0.88Gbps
Fave = 55.30MHz

Video Input
1280x720p@60

16 bits
BWpeak = 1.19Gbps
Fpeak = 74.25MHz

Mem Write
1280x720p@60

16 bits
BWpeak = 1.19Gbps
Fpeak = 74.25MHz

Mem Read
640x480p@60

16 bits
BWave = 0.29Gbps
Fave = 18.43MHz
AXI4-Stream Video IP and System Design 58
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=58

Chapter 2: System Design Guide

Typical Video Formats

Typical video formats and their operating frequency and bandwidth (average and peak) in
Table 2-10.

Table 2‐9: Zoom Subsystem Example Total Bandwidth and Minimum Frequency Requirements

Video Input
(Memory Write) Memory Read Memory Write

Memory Read
(Video Output) Total/Maximum

Minimum
Frequency

74.25 MHz 18.43 MHz 55.3 MHz 74.25 MHz 74.25 MHz Max

Minimum
Bandwidth

1.19 Gb/s 0.29 Gb/s 0.88 Gb/s 1.19 Gb/s
3.55 Gb/s (Sum)
2.07 Gb/s (W)
1.48 Gb/s (R)

Table 2‐10: Typical Video Format Sizes, Frequencies and Bandwidths

Video Format Frequency
Average

Bandwidth
BWave

Peak Burst
Bandwidth

BWpeak

BPP
Active

H Active V FPS Full H Full V

Min
Frame/

Ave
MHz

Min
Line/Pe
ak MHz

Gb/s Gb/s2 Gb/s3 GB/s4

16 1920 1080 60 2200 1125 124.42 148.50 1.99 0.25 2.38 0.30
32 1920 1080 60 2200 1125 124.42 148.50 3.98 0.50 4.75 0.59
16 800 600 60 1056 628 28.80 39.79 0.46 0.06 0.64 0.08
32 800 600 60 1056 628 28.80 39.79 0.92 0.12 1.27 0.16
16 1280 720 60 1650 750 55.30 74.25 0.88 0.11 1.19 0.15
32 1280 720 60 1650 750 55.30 74.25 1.77 0.22 2.38 0.30
16 4096 2048 60 4300 2300 503.32 593.40 8.05 1.01 9.49 1.19
36 4096 2048 60 4300 2300 503.32 593.40 18.12 2.26 21.36 2.67
16 640 480 60 800 525 18.43 25.20 0.29 0.04 0.40 0.05
16 720 480 60 858 525 20.74 27.03 0.33 0.04 0.43 0.05
16 720 576 50 864 625 20.74 27.00 0.33 0.04 0.43 0.05
16 1024 768 60 1344 806 47.19 65.00 0.75 0.09 1.04 0.13
16 1280 768 60 1440 790 58.98 68.26 0.94 0.12 1.09 0.14
16 1280 800 60 1680 831 61.44 83.76 0.98 0.12 1.34 0.17
16 1280 960 60 1800 1000 73.73 108.00 1.18 0.15 1.73 0.22
16 1280 1024 60 1688 1066 78.64 107.96 1.26 0.16 1.73 0.22
16 1440 900 60 1904 934 77.76 106.70 1.24 0.16 1.71 0.21
16 1680 1050 60 2240 1089 105.84 146.36 1.69 0.21 2.34 0.29
AXI4-Stream Video IP and System Design 59
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=59

Chapter 3

IP Development Guide

IP Parameterization
General IP configuration parameters are not covered in this specification. However,
commonly used video IP parameters generally are listed in Table 3-1.

Only one video format can be supported in video IP core systems that use an AXI-4
interface without an embedded processor. For this configuration (C_HAS_AXI4_LITE=0),
you can define the supported resolution through generic parameters C_ACTIVE_ROWS and
C_ACTIVE_COLS defined in the core GUI. When C_HAS_AXI4_LITE=0, C_ MAX_COLS
should be equal to C_ACTIVE_COLS.

When an embedded processor is present and the Video core is instantiated with an
AXI4-Lite interface (C_HAS_AXI4_LITE=1), generic parameters C_ACTIVE_ROWS and
C_ACTIVE_COLS assign default values to control registers to define the active resolution.
As an upper bound on the active scanline length supported by the core instance,
C_MAX_COLS is used to define line buffer depths, which have a direct effect on block RAM
footprint. For example, a video core, instantiated to service 720p video (1650 total pixels,
1280 active pixels per line), needs to have C_MAX_COLS set to 1280. This core instance is
not be able to service 1080p video, but works with 720p or any lower resolutions, such as
480p, when the active_size register in the AXI4-Lite control interface is set according to
720p or 480p.

C_MAX_COLS refers to the maximum number of non-blank pixels a core instance must
service. This parameter is often used to allocate block RAMs for line buffers within the core.
For example, a core instance targeting resolutions up to 720p must have this parameter set
to 1280.

Table 3‐1: Standard Video IP Parameters

Parameter Name Parameter Function

C_HAS_AXI4_LITE 0 or 1 determines whether the core has an AXI4-Lite control interface
C_ACTIVE_ROWS Number of active (non-blank) scan lines per frame
C_ACTIVE_COLS Number of active (non-blank) pixels per scan line

C_MAX_COLS Maximum number of active (non-blank) pixels per scan line supported by a particular core
instance
AXI4-Stream Video IP and System Design 60
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=60

Chapter 3: IP Development Guide
General IP Structure
Video IP cores should provide an AXI4-Lite interface option to allows dynamic read and
write processing parameters, status and control data, and timing parameters. For
embedded systems using either a processor or dedicated IP acting as the AXI4-Lite master,
an AXI4-Lite interface should be provided with a standardized register API. For systems
without an embedded processor, video cores should provide a way to be instantiated,
supporting one fixed video resolution.

Figure 3-1 is a schematic for a typical video processing core with one AXI4-Stream slave
input, one AXI4-Stream master output, and an AXI4-Lite interface. In this example, the IP
core processing the input and the output AXI4-Stream interfaces are apart of the same
clock domain (ACLK), but the AXI4-Lite processor interface input is in the AXI4-Lite
processor clock domain. Typically the AXI4-Lite interface does not use the same clock as the
AXI4-Stream video slave and master interfaces. Therefore, the IP should contain
Clock-Domain Crossing (CDC) logic to facilitate re-sampling the AXI4-Lite register data to
the processing core clock domain.

All video IP cores should contain control logic to govern the propagation of VALID and
READY signals, enable/disable/initialize the core Signal Processing Function, manage

X-Ref Target - Figure 3-1

Figure 3‐1: General Video IP Structure with AXI4-Lite and AXI4-Stream Interfaces

Control Logic

Core Signal
Processing
Function

CDC
Logic

Core
Register
Interface

DATA

VALID

READY

SOF

EOL

DATA

VALID

READY

SOF

EOL

IRQCE
SCLR

sw_en
sw_rst

user
timing

ARESE Tn

ACLKEN

ACLK

AXI4 Lite

X22110-121018
AXI4-Stream Video IP and System Design 61
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=61

Chapter 3: IP Development Guide
internal buffers, generate SOF and EOL signals, and monitor error conditions. See READY –
VALID Propagation and Flushing Pipelined Cores for more information.

AXI4-Lite Interface

Many video applications have an embedded processor that can dynamically monitor and
control processing parameters within IP cores. The AXI4-Lite interface provides a
standardized API across which core functionality can be controlled and monitored. Layers of
the API consist of a memory-mapped interface with programmable registers, a low level
driver to identify physical memory locations, and higher level driver functions to control
multiple registers or complex processes. The proposed standard set of memory mapped
registers is described in Table 3-2.

Table 3‐2: Standard Video IP Registers

Offset Function Default Access Bit-field Definitions

0x0000 CONTROL 0 R/W Bit 0: SW_ENABLE
Bit 1: REG_UPDATE
Bit 4: BYPASS (Optional. See Core Bypass
Option.)
Bit 5: TEST_PATTERN
(Optional. See Built in Test-Pattern
Generator.)
Bit 31: SW_RESET (1: reset)

0x0004 STATUS 0 R/W Bit 0: Frame processing Started
Bit 1: Frame Processing Complete
Bits 2-15: Core specific Status Flags
Bit 16: Slave0 error
Bit 17: Slave1 error (Optional)
Bit 18: Slave2 error (Optional)
Bit 19: Slave3 error (Optional)

0x0008 ERROR 0 R/W Bit 0: Slave0 EOL early
Bit 1: Slave0 EOL late
Bit 2: Slave0 SOF early
Bit 3: Slave0 SOF late
Bit 4: Slave1 EOL early (Optional)
Bit 5: Slave1 EOL late (Optional)
Bit 6: Slave1 SOF early (Optional)
Bit 7: Slave1 SOF late (Optional)

0x000C IRQ_ENABLE 0 R/W Bit 0-31: Interrupt enable bits
corresponding to STATUS conditions

0x0010 VERSION R 31-16: Core version in 4bits. 4bits
format.
0-15: CRC generated by CORE Generator
(Optional. See Version Register.)

0x0014 SYSDEBUG0 0 R Frame Throughput monitor (Optional)
AXI4-Stream Video IP and System Design 62
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=62

Chapter 3: IP Development Guide
For more information on optional debugging, see Debugging Features.

Control Register

The SW_ENABLE flag, located on bit 0 of the CONTROL register, allows the core to be
dynamically enabled or disabled. Disabling the core from software has similar effects as
deasserting ACLKEN. When disabled, the core AXI4-Lite decoding units remain active to
facilitate re-enabling the core. The default value of Software Enable is 1 (enabled).

Flags of the CONTROL register are not buffered, which means changes take effect
immediately. The application or higher-level driver functions need to deassert these flags to
re-enable status/error acquisition.

Status and Error Registers

When using the AXI4-Lite interface, it is recommended that processing events and errors
assert STATUS and ERROR register flags. The event flags should remain set until the
application clears the flags, or the core is reset. STATUS register flags should be able to
trigger interrupts through an IRQ pin. Bits of the STATUS and ERROR registers should be
individually toggled when the application writes a '1' to the appropriate bit position of the
STATUS and ERROR registers.

If the core does not provide an AXI4-Lite interface, the IP should be configured to provide
notification of critical status and error events through a dedicated set of pins. These pins
can be connected to an external interrupt controller (INTC) core in an EDK system to
facilitate interrupt requests, identification, and clearing of interrupt sources. For this
application, it is recommended that the dedicated output signals remain asserted only as
long as the status or error event persists.

0x0018 SYSDEBUG1 0 R Line Throughput monitor (Optional)
0x001C SYSDEBUG2 0 R Pixel Throughput monitor (Optional)
0x0020 Timing Register

Set 0
Application
Dependent

See Timing Representation.
0x005C
0x0060 Timing Register

Set 1
Application
Dependent

Optional for IP using multiple interfaces
with different Encoding or Timing. 0x009C

0x00A0
-

0x00FC

Reserved

0x0100 Core Specific
Registers

Application
Dependent

Defined in Core Data Sheets
0x3FFC

Table 3‐2: Standard Video IP Registers (Cont’d)

Offset Function Default Access Bit-field Definitions
AXI4-Stream Video IP and System Design 63
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=63

Chapter 3: IP Development Guide
IRQ_ENABLE (0x000C) Register

Any bits of the STATUS register can generate a host-processor interrupt request through
the IRQ pin. The Interrupt Enable register facilitates selecting which bits of STATUS register
asserts IRQ. Bits of the STATUS registers are masked by (AND) corresponding bits of the
IRQ_ENABLE register and the resulting terms are combined (OR) together to generate IRQ.
For more information, see Debugging Features.

Version (0x0010) Register

Bit fields of the Version register facilitate software identification of the exact version of the
hardware peripheral incorporated into a system. The core driver can use this Read-Only
value to verify that the software version is matched to the hardware. For more information,
see Debugging Features.

SYSDEBUG0 (0x0014) Register

The SYSDEBUG0, or Frame Throughput Monitor, register indicates the number of frames
processed because power-up or the last time the core was reset. The SYSDEBUG registers
can be useful to identify external memory, Frame buffer, or throughput bottlenecks in a
video system. For more information, see Debugging Features.

SYSDEBUG1 (0x0018) Register

The SYSDEBUG1, or Line Throughput Monitor, register indicates the number of lines
processed because power-up or the last time the core was reset. The SYSDEBUG registers
can be useful to identify external memory, Frame buffer, or throughput bottlenecks in a
video system. For more information, see Debugging Features.

SYSDEBUG2 (0x001C) Register

The SYSDEBUG2, or Pixel Throughput Monitor, register indicates the number of pixels
processed because power-up or the last time the core was reset. The SYSDEBUG registers
can be useful to identify external memory, Frame buffer, or throughput bottlenecks in a
video system. For more information, see Debugging Features.

Register Synchronization

Most control registers that provide frame-by-frame control over processing should be
double-buffered to ensure no image tearing occurs if register values are modified while a
frame is being processed. Exceptions are registers which command immediate actuation
(CONTROL, STATUS, ERROR and IRQ_ENABLE registers) or need to be changed multiple
times within a frame (a readout or coefficient address register). With double buffering,
register writes are updating the first set of registers while the processing core uses values
from a second set of registers. All writable registers are also readable. Any reads from
writable registers return values that are stored in the first set of registers.
AXI4-Stream Video IP and System Design 64
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=64

Chapter 3: IP Development Guide
A semaphore mechanism allows you to update multiple registers without having all updates
take place within a single frame or between frames.

Values from the first register set should be copied over (committed) to the second register
set when processing cores receive the SOF signal and semaphore flag REG_UPDATE,
located on bit 1 of register CONTROL, is set.

deasserting REG_UPDATE allows applications to modify multiple registers at any time
without causing any artifacts with incomplete intra-frame updates. By asserting
REG_UPDATE, congruently updated registers are being used for the subsequent frames
starting at the next frame boundary.

Timing Representation
Timing information captures the phase/edge relationships between four periodic timing
signals:

• Vertical Sync (VSync)
• Horizontal Sync (HSync)
• Vertical Blank (VBlank)
• Horizontal Blank (HBlank)

Timing detector/timing generator modules provided as part of the Xilinx Video Timing
Controller core measure and regenerate timing signals. For an embedded processor with
AXI4-Lite interface, measured timing information is accessible through a standardized
register set, described inTable 3-3.

Blank/Sync Polarities

The input interface core automatically detects if timing signals (VSync, HSync, VBlank,
HBlank) are inverted. Periodic sync pulses are defined as Active Low if the low portion of
the signal is shorter than the high portion (signal pulses low). Bits 0 and 1 of timing variable
POLARITY correspond to VSync and HSync respectively, and should be set to 1 when
Active Low sync pulses are detected or to 0 when Active Low sync pulses are not detected

Periodic Blank signals are defined Active Low if the low portion of the signal is shorter than
the high portion because an active area is expected to be longer than the blanked area. Bits
2 and 3 of timing variable POLARITY correspond to VBlank and HBlank respectively, and
should be set to 1 when active low blank signals are detected or 0 when Active Low blank
signals are not detected.
AXI4-Stream Video IP and System Design 65
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=65

Chapter 3: IP Development Guide
Description of Timing Variables

A frame period for progressive video is defined by the number of video clock cycles
between Vsync pulses. Similarly, a field period for interlaced video is defined by the
number of video clock cycles between Vertical Sync pulses.

The field periods for even (F0) and odd (F1) fields can differ. A frame period for interlaced
video is defined by the sum of two subsequent (odd + even) field periods. The frame
periods for both interlaced and progressive video is expected to be constant for any given
video format.

The intervals when both HBlank and VBlank are inactive mark the active video area of the
frame, where pixel data is considered valid and should be translated from a periodic
standard such as DVI to AXI4-Stream.

The frame period contains blank and active areas and can be visualized as a set of
rectangles, as seen in Figure 3-2. In the top-left corner of the frame, pixel index 0 (scan line
index 0) is designated to be the first active pixel on the first complete active line.

The total number of scan lines per frame is defined as the number of scan-lines per frame,
or VSIZE. The timing variable VSIZE reflects the total number of active and blank lines per
frame. The index of the last scan line in a frame is VSIZE-1.

The number of video clock cycles between the HBlank pulses is expected to be equal to the
number of video clock cycles between the HSync pulses in each field. The timing variable
HSIZE reflects the total number of active and blank pixels per scan line. The index of the
last pixel in scan lines is HSIZE-1.

X-Ref Target - Figure 3-2

Figure 3‐2: Definition of Timing Variables – Falling Edge of Blanks

Active Video

Vertical Blanking

H
or

iz
on

ta
l B

la
nk

in
g

H Sync

H Blank

VSIZE

Vsync End
Vsync Start

Vblank Start
(V EAV)

Hblank Start
(H EAV)

Hsync
Start

Hsync
End

HSIZE

V Blank

V Sync

0
(SAV)

0

X22111-121018
AXI4-Stream Video IP and System Design 66
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=66

Chapter 3: IP Development Guide
The Xilinx Video Timing Controller IP works with complete scan lines, so the total number
of video clock cycles in a frame period is expected to be an integer multiple of the total
number of pixels per scan line (HSIZE * VSIZE).

For progressive video, the period between the VBlank pulses is expected to have the same
number of video clock cycles as the period between the VSync pulses. For interlaced video,
the number of total scan lines in even and odd fields can differ. Therefore, two sets of timing
registers (F0 for even fields and F1 for odd fields) keep track of timing variables for
interlaced video fields.

For progressive video, only the F0 bank of timing registers are used.

The falling and rising edges of VBlank might not coincide with the falling edge of HBlank,
which could be visualized as VBlank falling on a pixel position other than 0 in a scan line
(Figure 3-2). Also, the phase difference between VBlank and HBlank can change between
even and odd fields. This phase difference between the falling and rising edges of VBlank
is captured in the nibbles of the registers F0_VBLANK_H and F1_VBLANK_H.

The phase relationships of the VSync and HSync signals can be arbitrary in relationship to
the first active pixel, the origin of the V/H coordinate system (Figure 3-2), and might be
different between even and odd fields. Nibbles in registers F0_VSYNC_V and F0_VSYNC_H
capture the horizontal and vertical positions of falling and rising edges of VSYNC for even
fields. Similarly, nibbles in registers F1_VSYNC_V and F1_VSYNC_H capture the horizontal
and vertical positions of falling and rising edges of VSYNC for odd fields.

The scan line index where VBlank transitions high1 (VBlank start) marks the vertical end
of the active area and the start of the vertical blank area. The pixel index where HBlank
transitions high1 (HBlank start) marks the horizontal end of the active area, and the start
of the horizontal blank area.

Nibbles of timing registers ACTIVE_SIZE denote the vertical (number of scan lines), and
horizontal sizes (number of pixels) in the active area.

Table 3‐3: Standardized Timing Registers

Offset Name Function Bit fields

0x0020 ACTIVE_SIZE Horizontal and Vertical Frame
Size (without blanking)

15-0: Horizontal active frame size
31-16: Vertical active frame size

0x0024 TIMING_STATUS Timing Measurement Status 0: LOCKED
1: VBLANK_START_DETECT
2: VBLANK_END_DETECT

0x0028 ENCODING Frame encoding 0-3: VIDEO_FORMAT
4-5: NBITS
6: INTERLACED/Progressive(0)
7: FIELD_PARITY
8: CHROMA_PARITY
AXI4-Stream Video IP and System Design 67
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=67

Chapter 3: IP Development Guide
ACTIVE_SIZE (0x0020) Register

The ACTIVE_SIZE register encodes the number of active pixels per scan line and the
number of active scan lines per frame. The lower half-word (bits 12:0) encodes the number
of active pixels per scan line. Supported values should be between 32 and the value
provided in the Maximum number of pixels per scan line field in the GUI. The upper
half-word (bits 28:16) encodes the number of active pixels per scan line. Supported values
should be 32 to 7680. To avoid processing errors, restrict values written to ACTIVE_SIZE to
the range supported by the core instance.

0x0032 POLARITY Blank, Sync polarities 0: Vertical Blank pulse polarity
1: Horizontal Blank pulse polarity
2: Vertical Sync polarity
3: Horizontal Sync polarity

0x0030 HSIZE Horizontal Frame Size (with
blanking)

15-0: Horizontal frame size

0x0034 VSIZE Vertical Frame Size (with
blanking)

15-0: Vertical frame size for field 0
31-16: Vertical frame size for field 1

0x0038 HSYNC Start and end cycle index of
HSync

15:0: Start cycle index of HSync.
31-16: End cycle index of HSync.

0x003C F0_VBLANK_H Start and end cycle index of
VBlank for field 0.

15:0: Start cycle index of VBlank
31-16: End cycle index of VBlank

0x0040 F0_VSYNC_V Start and end line index of
VSync for field 0.

15:0: Start line index of VSync
31-16: End line index of VSync

0x0044 F0_VSYNC_H Start and end cycle index of
VSync for field 0.

15:0: Start cycle index of VSync
31-16: End cycle index of VSync

0x0048 F1_VBLANK_H Start and end cycle index of
VBlank for field 1.

15:0: Start cycle index of VBlank
31-16: End cycle index of VBlank

0x004C F1_VSYNC_V Start and end line index of
VSync for field 1.

15:0: Start line index of VSync
31-16: End line index of VSync

0x0050 F1_VSYNC_H Start and end cycle index of
VSync for field 1.

15:0: Start cycle index of VSync
31-16: End cycle index of VSync

0x0058 Reserved Reserved Reserved
0x005C Reserved Reserved Reserved

Table 3‐3: Standardized Timing Registers (Cont’d)

Offset Name Function Bit fields
AXI4-Stream Video IP and System Design 68
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=68

Chapter 3: IP Development Guide
Frame Encoding

Bits 0 to 3 (VIDEO_FORMAT) define the sampling structure of video using the video format
codes (VF) defined in Table 1-4. Bits 4-5 define the data representation, the number of bits
per component channel, as defined in Table 3-4.

Bit 6 (INTERLACED) should be set if the video processed is interlaced (1). For progressive
video, this bit should be set to 0. Corresponding Bit 7, indicates field polarity (0: even field,
1: odd field) if interlaced video is used. Processing cores should not expect the host
processor to update this register value on a frame-by-frame basis. Instead, the IP is
expected to toggle automatically after processing fields, using the programmed value as
the initial value for the first field after the value is committed.

Bit 8 (CHROMA_PARITY) of the ENCODING register specifies whether the first line of video
contains chroma information (1) or not (0) when YUV 420 encoded video is being
processed. Processing cores should not expect the host processor to update this register
value on a line-by-line basis to reflect whether the current line contains chroma or not.
Instead, the IP is expected to toggle automatically after each line was processed, using the
programmed value as the initial value for the first line of the first frame after the value is
committed. Table 3-5 provides example values for timing variable assignments for typical
video standards using 8 bit data.

Table 3‐4: Data Representation Codes

ENCODING[5:4] Bits per Component Channel

00 8
01 10
10 12
11 16

Table 3‐5: Typical Values for Timing Variables

Name 720p@59.94/60 RGB 1080p@59.94/60 YUV422 1080i@59.94/60 YUV420

ENCODING 0x0000_0002 0x0000_0000 0x0000_0043
POLARITY 0x0000_000F

0: VB Active-High
1: HB Active-High
2: VS Active-High
3: HS Active-High

0x0000_000F
0: VB Active-High
1: HB Active-High
2: VS Active-High
3: HS Active-High

0x0000_000F
0: VB Active-High
1: HB Active-High
2: VS Active-High
3: HS Active-High

ACTIVE_SIZE 0x02D0_0500
15-0: HSIZE = 1280
31-16: VSIZE = 720

0x0438_0780
15-0: HSIZE = 1920
31-16: VSIZE = 1080

0x021C_0780
15-0: HSIZE = 1920
31-16: VSIZE = 540

HSIZE 0x0000_0672
15-0: HSIZE_F0= 1650
31-16: Reserved

0x0000_0898
15-0: HSIZE_F0 = 2200
31-16: Reserved

0x0000_0898
15-0: HSIZE_F0= 2200
31-16: Reserved
AXI4-Stream Video IP and System Design 69
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=69

Chapter 3: IP Development Guide
Input/Output Timing
The recommended design convention for AXI4-Stream component interfaces suggests that
outputs should be registered or driven directly by flip-flops or FIFO/block RAM primitives.
Ideally, inputs are also registered but can be combinatorial. Combinatorial inputs can limit
Fmax so the amount of combinatorial logic present on inputs should be limited.

There must be no combinatorial paths between input and output signals on either master
or slave interfaces. Combinatorial paths between input and output signals are not
permitted across separate AXI4-Stream interfaces. In some cases, outputs driven by
combinatorial logic are a suitable design choice or a reasonable design trade-off, such as
when latency is critical. The IP core data sheet describes AXI4-Stream output signals that are
not registered.

VSIZE 0x0000_02EE
VSIZE_F0 = 750
VSIZE_F1 = 0

0x0000_0465
VSIZE_F0 = 1125
VSIZE_F1 = 0

0x0233_0232
VSIZE_F0 = 562
VSIZE_F1 = 563

HSYNC 0x0596_056E
15-0: START = 1390
31-16: END = 1430

0x0804_07D8
15-0: START = 2008
31-16: END = 2052

0x0804_07D8
15-0: START = 2008
31-16: END = 2052

F0_VBLANK_H 0x0000_0000 0x0000_0000 0x0000_0000
15-0: H_START = 0
31-16: H_END = 0

F0_VSYNC_V 0x02DA_02D5
15-0: START = 725
31-16: END = 730

0x0441_043C
15-0: START = 1084
31-16: END = 1089

0x0223_021E
15-0: START = 542
31-16: END = 547

F0_VSYNC_H 0x0000_0000 0x0000_0000 0x0000_0000
15-0: H_START = 0
31-16: H_END = 0

F1_VBLANK_H 0x0000_0000 0x0000_0000 0x0000_0000
15-0: H_START = 0
31-16: H_END = 0

F1_VSYNC_V 0x0000_0000 0x0000_0000 0x0223_021E
15-0: START = 542
31-16: END = 547

F1_VSYNC_H 0x0000_0000 0x0000_0000 0x044C_044C
15-0: H_START = 1100
31-16: H_END = 1100

Table 3‐5: Typical Values for Timing Variables (Cont’d)

Name 720p@59.94/60 RGB 1080p@59.94/60 YUV422 1080i@59.94/60 YUV420
AXI4-Stream Video IP and System Design 70
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=70

Chapter 3: IP Development Guide
Buffering Requirements
The output interface module does not start generating valid output frames until it receives
valid data on its input AXI4-Stream interface. However, after periodic output frame
generation starts, all cores in the processing pipeline should be able to provide data at the
rate required by the output standard.

For most output standards three different data rates should be defined. As an example,
720p30 video over DVI rates are used. Table 3-6 describes the three data rates.

Identifying the above rates helps determine what type of buffering is necessary, if any,
within or between processing cores. If a processing core can maintain the active pixel rate
indefinitely, such as a test-pattern generator core, no buffering is necessary.

• If a processing core cannot maintain the active pixel rate but can maintain the line pixel
rate, a line buffer is necessary on the processing core output.

• If a processing core cannot maintain the line pixel rate but can maintain the frame pixel
rate, a frame buffer is necessary on the processing core output. It is assumed that the
frame buffer IP also contains line buffers to smooth access bursts.

• If a processing core cannot maintain the frame pixel rate due to insufficient
throughput, no amount of buffering is sufficient to produce uninterrupted output
video for the desired output standard.

Line Buffer Placement

All cores that cannot process pixels fast enough to sustain one pixel per output clock need
output line-buffer(s) to avoid stalling the pipeline. Although combining line buffers at the
end of a processing pipeline (by taking advantage of an output interface core with
programmable line-buffer depth) might seem like an attractive option to save resources, it
can also defeat the purpose of buffering.

In this example, (Figure 3-3) a hypothetical output interface needs to generate frames with
320 clock cycles per line, with 200 active pixels per line. The external memory interface
retrieves pixels in 64 pixel bursts after which it is unavailable for 16 clock cycles. Core A

Table 3‐6: Output Data Rates

Pixel Rate Description

Active Within the active portion of each row, pixels are sent back to back on each clock cycle, at 37.125 MHz.

Line
Active video lines typically contain active and non-active (horizontally blanked) periods. As no pixels
need to be transmitted in the non-active period, the average data rate within an active line is less
than the active pixel rate. For 720p30 over DVI, this rate is 28.8 Mega-samples per second (Msps).

Frame
Video frames typically contain active, and non-active (vertically blanked) periods. As no pixels need
to be transmitted in the non-active period, the average data rate within a frame is less than line pixel
rate. For 720p30 over DVI, this rate is 27.648 Msps.
AXI4-Stream Video IP and System Design 71
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=71

Chapter 3: IP Development Guide
takes 3 clock cycles to generate 2 output pixels. Core B takes three line periods to generate
two active lines (no output for the 960 pixels, then 400 pixels consecutively).

Although all cores (external memory, Core A, Core B) have the throughput necessary to
generate 200 pixels per 320 clock cycles on the average, the throughput degrades unless
there are line buffers on each core output when connected as a system. For example, if the
external memory provides data in 64 cycle bursts, Core A produces 42 output samples per
burst or 170 pixels per line. Core A requires the whole line period to produce the active
pixels, but it is forced to idle during the 4x16 cycles when the external memory is not
available.

To avoid processing bubbles, all cores should be appropriately buffered on the output of
the core as if the core was driving the output interface directly. Figure 3-3 illustrates the
scenario when processing cores can maintain the line-pixel rate, but cores need output
buffers to avoid processing bubbles. Green arrows represent subsequent cores reading
from the output buffers of preceding cores.

Buffer Management

Even if sufficiently deep line buffers (FIFOs) are present on the output of processing cores,
bubbles can form if buffers under-run. This can happen when a core master interface asserts
its VALID output immediately when the core output FIFO is not empty. In this case, data
percolates through a processing pipeline rapidly and trigger the output interface to start
output timing generation, after which output pixels have to be supplied consistently. Now,
if any of the cores cannot sustain the uninterrupted data rate and have to deassert its
VALID output, processing bubbles form, which eventually cause a buffer under-run at the
output interface core and break the output data–sync alignment.

X-Ref Target - Figure 3-3

Figure 3‐3: Simple Pipeline with Internal Line Buffers

External
Memory

Core A Core B Output
Interface

D Q

valid valid

ready ready

D Q

valid valid

ready ready

D Q

valid valid

ready ready

D Q

valid hblank

ready a_chroma

vblank

a_video

v_sync

X22112-121018
AXI4-Stream Video IP and System Design 72
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=72

Chapter 3: IP Development Guide
1. Core A and Core B ran out of valid samples.

Figure 3-4 presents an example scenario when processing cores A and B run out of valid
samples mid-frame, so when the output interface asserts its ready output to start a new
line, samples must be retrieved from external memory and must be processed by Core A
and Core B, causing significant delay, which can break the sync - data alignment at the
output interface.

To avoid processing bubbles, cores should not assert the VALID signal on the output
interfaces until internal FIFOs are almost full and keep VALID asserted until output FIFOs
and internal pipeline stages are empty.

The READY output should be driven in a greedy fashion; asserted unless all pipeline stages
are full, internal FIFOs are almost full, and the master interface READY is sampled low, as
described in READY – VALID Propagation, or internal pipelines need to be flushed as
described in Flushing Pipelined Cores. This behavior ensures processing efficiency and
proper flushing of pipelines and processing systems at line and frame ends.

READY – VALID Propagation
For very simple IP cores, propagating VALID from master to slave and propagating READY
from slave to master seems straight-forward. However, when the IP core has pipeline
registers and/or FIFOs, the internal state of pipelines and FIFOs must be factored in to the
READY/VALID output assignments. See Buffer Management for more information.

As stated in Input/Output Timing, the READY output on the slave interface and VALID
output on the master interface must be registered. This requirement inserts a propagation
delay of at least one clock cycle between the deasserted READY signal on the IP core slave
interface input and the master interface READY output. The logic controlling these outputs,
as well as the latching in of new pixels from the slave interface to internal FIFOs or pipeline
registers, must consider the scenario when all internal buffers (pipeline registers and FIFOs)
are full, the downstream slave interface just deasserted READY, but the upstream master
interface sends one more pixel due to the core master interface READY signal lagging
behind the slave interface.

X-Ref Target - Figure 3-4

Figure 3‐4: Processing Bubble Example

External
Memory

Core A Core B Output
Interface

D Q

valid valid

ready ready

D Q

valid valid

ready ready

D Q

valid valid

ready ready

D Q

valid hblank

ready a_chroma

vblank

a_video

v_sync

X22113-121018
AXI4-Stream Video IP and System Design 73
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=73

Chapter 3: IP Development Guide
To avoid pixel drops in the above situation, pipelined cores without internal FIFOs should
contain one (or more) additional pipeline stage(s) to accept one (or more) pixel(s). These
cores should keep the master interface READY output deasserted until the extra pipeline
stage is processed.

To mitigate the pixel drop condition for cores with internal FIFOs the master interface
READY output should be asserted unless:

• all pipeline stages are full, internal FIFOs are almost full, and the master interface
READY is sampled low.

• internal pipelines need to be flushed.

Flushing Pipelined Cores
Pipelined IP cores must maintain the consistent validity of data in pipeline stages from
beginning to end of video lines. For example, if horizontal FIR filtering is performed to
generate valid output samples, all taps of the FIR filter delay line should only contain valid
pixels. If valid data is not always present on the input (slave) interface of the filtering core,
the clock-enable pins of the delay-line and the filter arithmetic should be pulsed to latch in
and process only valid input samples. This implies that data in the processing pipeline of the
IP core only moves forward when new, valid samples are available to process. Take for
example a Color-Space Converter processing streaming video with horizontal and vertical
blanking periods where no valid samples are transferred over the AXI4-Stream video
interfaces for a large number of ACLK cycles. This behavior would imply that the results
corresponding to the end of scan line are only available when the samples from the
beginning of the next line clock them out. Similarly, the last samples from the end of a
frame only become available at the beginning of the next frame. Both behaviors are
prohibited because they introduce processing bubbles that break the output interface
data-sync alignment.

Instead, processing pipelines must be flushed at the end of each scan-line. If samples for
the next line (and next frame) are available immediately, processing cores can use these
samples. If samples are not available, processing cores can flush pipelines by repeating the
last valid pixel or applying a more sophisticated edge padding solution. If padding by zeros
or repeated samples from the next line are needed in preparation for the next line or next
frame, a processing core might deassert its READY input for as many clock cycles as it takes
to empty valid data samples from the pipeline or to pad and re-initialize for a new line.
AXI4-Stream Video IP and System Design 74
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=74

Chapter 3: IP Development Guide
When flushing is completed and the pipeline is empty, processing cores should assert the
READY output signals on the slave interfaces irrespective of the READY inputs of the master
interfaces, as seen in the READY_out and READY_in signals of Figure 3-5 and described in
READY – VALID Propagation.

If the READY output signal (READY_out) assertion is delayed until the slave interface
READY_in is asserted, subsequent cores would keep inserting longer breaks between
lines/frames, as illustrated on Figure 3-6. In this example, the gap between frames/lines of
the input stream grows because the flushing periods of subsequent cores accumulate if the
IP core holds off re-asserting its READY_out output until its READY_in is asserted.

X-Ref Target - Figure 3-5

Figure 3‐5: Simple Video IP with One Slave and One Master AXI4-Stream Interfaces

Example IP

s_axis_video_tdata
s_axis_video_tvalid
s_axis_video_tready
s_axis_video_tlast

m_axis_video_tdata
m_axis_video_tvalid

m_axis_video_tready
m_axis_video_tlast

m_axis_video_tusers_axis_video_tuser

aclk
aclken
aresetn

X-Ref Target - Figure 3-6

Figure 3‐6: Inefficient Flushing Growing a Processing Bubble at the End of Frame
AXI4-Stream Video IP and System Design 75
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=75

Chapter 3: IP Development Guide
Propagating SOF and EOL Signals
Video processing IP cores either delay or re-generate the SOF and EOL pulses. No
recommendations are given for which method to use when generating output SOF and EOL
pulses. However, for simple pipelined IP cores without line buffers, such as a Color Space
Converter, delay lines matching pipeline latency is recommended. For complex IP with line
buffers, generating SOF and EOL pulses is recommended.

In accordance with AXI4-Stream Signaling Interface in Chapter 1, complex video IP can
detect a discrepancy between expected number of active lines (as programmed by timing
variables) and the actual number of EOL pulses received between consecutive SOF pulses.

When SOF is detected early, the output SOF signal should be generated early as well,
meaning the previous frame is not padded to match programmed frame dimensions. When
SOF is detected late, extra lines/pixels from the previous frame should be dropped and the
output SOF signal should be generated according to the programmed values.

In accordance with End of Line Signal in Chapter 1, complex video IP can detect a
discrepancy between expected number of active pixels, as programmed by timing variables,
and the actual number of valid pixels received between consecutive EOL pulses.

When EOL is detected early, the output EOL signal should be generated early as well,
meaning the previous frame is not padded to match programmed frame dimensions. When
EOL is detected late, the output EOL signal should be according to programmed values and
extra pixels from the previous line should be dropped.

Interframe Reinitialization
Some video IP cores, such as the Image Statistics and Image Characterization, take
thousands of clock cycles to initialize between frames because block RAMs holding
statistical data must be cleared or large sets of metadata must be written to external
memory.

As a general recommendation, video IP cores should re-initialize at the end of the frame,
instead of at the beginning of the frame when the SOF pulse is received.

Interrupt Subsystem
Video processing cores should provide optional interrupt pin (IRQ). Timing and core
function related STATUS and ERROR flags, described in Table 3-2, should be individually
selectable to generate an interrupt.
AXI4-Stream Video IP and System Design 76
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=76

Chapter 3: IP Development Guide
In EDK, the interrupt controller (INTC) IP can be used to integrate IRQ pins for the system
processor. For Vivado® tools, you might need to create a custom built priority interrupt
controller to aggregate interrupt requests and identify interrupt sources.

Video IP core APIs, including registers and driver functions, should enable application
software developers to identify and clear interrupt sources within the IP.

Debugging Features
The following sections recommend video IP core features which ease and accelerate system
design, starting up and debug.

Version Register

Bit fields of the Version Register facilitate identification of the exact version of the hardware
peripheral incorporated into a system. The core driver uses this Read-Only value to verify
that the software is matched to the correct version of the hardware.

Recommended bit assignments of the version register are:

• Bits 7-0: REVISION_NUMBER
• Bits 11-8: PATCH_ID
• Bits 15-12: VERSION_REVISION
• Bits 23-16: VERSION_MINOR
• Bits 31-24: VERSION_MAJOR

Core Bypass Option

If conceptually possible, video processing IP cores should facilitate an optional straight
through connection between input (AXI4-Stream slave) and output (AXI4-Stream master)
by-passing any processing functionality.

Use Flag BYPASS, located on bit 4 of the CONTROL register, to turn bypassing on (1) or off.
For single-clock-domain IP cores, this switch can control multiplexers in the AXI4-Stream
path. For applications where the input and output AXI4-Stream interfaces are in different
clock domains, the bypass multiplexers select between a clock-domain crossing FIFO
implemented using distributed memory and the actual video processing core.
AXI4-Stream Video IP and System Design 77
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=77

Chapter 3: IP Development Guide
Built in Test-Pattern Generator

If conceptually possible, video processing IP should offer an optional built-in test-pattern
generator to temporarily feed the output AXI4-Stream master interface with a predefined
pattern.

Use Flag TEST_PATTERN, located on bit 5 of the CONTROL register to turn test-pattern
generation on (1) or off. This switch can control multiplexers driving the AXI4-Stream
master output and switch between the regular core processing output and the test-pattern
generator. When enabled, a set of counters should generate 256 scan-lines of color-bars,
each color bar 64 pixels wide, repetitively cycling through the colors Black, Red, Green,
Yellow, Blue, Magenta, Cyan, and White until the end of each scan line. After the Color-Bars
segment is processed, the remainder of the frame should be filled with a monochrome
horizontal + vertical ramp.

Throughput Monitors

To debug frame-buffer bandwidth limitation issues, and if possible allow video application
software to balance memory pathways, video IP cores should offer frame, line, and pixel
counter registers.

The recommended name and location of these registers are SYSDEBUG0, SYSDEBUG1 and
SYSDEBUG2, as indicated in Table 3-2. The registers should initialize to 0 after reset, but the
core might implement other, additional mechanisms to clear the counters.
AXI4-Stream Video IP and System Design 78
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=78

AXI4-Stream Video IP and System Design 79
UG934 October 30, 2019 www.xilinx.com

Chapter 4

Tool Support

Core Generator and Vivado Compatibility
For video-IP to show up in the Core Generator and Vivado® repositories, CORE Generator
and/or Vivado GUI files must be present in the core /gui /xgui directories, product guide
documentation must be in PDF format in the /doc directory of the IP, and VHDL or Verilog
simulation models, if present, must reside in the /simulation directory.

The IP is also recommended to include a C model (/lib directory), test-fixtures
(/verification) and hardware validation projects or designs in the /validation
directory.

For more information on designing and delivering IP using Vivado tools, see the Vivado
tools documentation at:

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;t=vivado+userguides

EDK Compatibility
For native Xilinx EDK support, video IP must have a peripheral descriptor file (.mpd file), a
user interface file (.mui file), and driver files. The MPD file lists IP parameters and ports, and
identifies clock, reset, and interrupt pins.

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;t=vivado+userguides
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=79

Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.
AXI4-Stream Video IP and System Design 80
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=80

Appendix A: Additional Resources and Legal Notices
Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty,
please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products
in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2012–2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the
property of their respective owners.
AXI4-Stream Video IP and System Design 81
UG934 October 30, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG934&Title=AXI4-Stream%20Video%20IP%20and%20System%20Design%20Guide&releaseVersion=2.2&docPage=81

	AXI4-Stream Video IP and System Design Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	AXI4-Stream Signaling Interface
	READY/VALID Handshake
	Start of Frame Signal
	End of Line Signal

	Data Format
	AXI4-Stream Specific Parameterization
	Encoding
	Encoding Multiple Pixels - Static TDATA Configuration
	Encoding Multiple Pixel - Dynamic TDATA Configuration

	Example Multi Pixel Encoding

	Ch. 2: System Design Guide
	Video Timing Information
	Propagating Video Timing Information
	Reset Requirements
	Hardware Reset
	Software Reset

	Input/Output Interfaces - Automatic Delay Matching
	Periodic Input Stream, Unconstrained Output Stream, No Frame Buffer
	Output Stream Generation for Pixel Data from Frame Buffer
	When Sync is Lost
	When Timing Information Is Incorrect
	Streaming Video Input Connection

	External Frame Buffers
	Incorrect Timing Information

	Multipoint Interfaces
	Ancillary Data
	Interlaced Video Support
	Interlace Video Timing
	Xilinx IP Interlace Video Support
	Deinterlacer
	AXI4-Stream Video Bridges
	AXI4-Stream to Video Out
	Video In to AXI4-Stream
	Frame Buffer Read/Write
	Video Test Pattern Generator
	Basic Video System with Interlace Content
	Interlace to Progressive Conversion

	Video Subsystem Software Guidelines
	Video Pipeline Example

	Video Subsystem Bandwidth Requirements
	Bandwidth and Clocking
	Live Video to/from Memory
	Memory to/from Memory

	Bandwidth Examples
	Scaling: Down-Scaling/Decimation
	Up-Scaling

	Zoom
	Zoom Memory-to-Memory
	Zoom Live External Video
	Zoom Example System

	Typical Video Formats

	Ch. 3: IP Development Guide
	IP Parameterization
	General IP Structure
	AXI4-Lite Interface
	Control Register
	Status and Error Registers
	Register Synchronization

	Timing Representation
	Blank/Sync Polarities
	Description of Timing Variables
	ACTIVE_SIZE (0x0020) Register
	Frame Encoding

	Input/Output Timing
	Buffering Requirements
	Line Buffer Placement
	Buffer Management

	READY – VALID Propagation
	Flushing Pipelined Cores
	Propagating SOF and EOL Signals
	Interframe Reinitialization
	Interrupt Subsystem
	Debugging Features
	Version Register
	Core Bypass Option
	Built in Test-Pattern Generator
	Throughput Monitors

	Ch. 4: Tool Support
	Core Generator and Vivado Compatibility
	EDK Compatibility

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	Please Read: Important Legal Notices

